xref: /linux/lib/bitmap.c (revision 7a8fc9b248e77a4eab0613acf30a6811799786b3)
1 /*
2  * lib/bitmap.c
3  * Helper functions for bitmap.h.
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 #include <linux/module.h>
9 #include <linux/ctype.h>
10 #include <linux/errno.h>
11 #include <linux/bitmap.h>
12 #include <linux/bitops.h>
13 #include <asm/uaccess.h>
14 
15 /*
16  * bitmaps provide an array of bits, implemented using an an
17  * array of unsigned longs.  The number of valid bits in a
18  * given bitmap does _not_ need to be an exact multiple of
19  * BITS_PER_LONG.
20  *
21  * The possible unused bits in the last, partially used word
22  * of a bitmap are 'don't care'.  The implementation makes
23  * no particular effort to keep them zero.  It ensures that
24  * their value will not affect the results of any operation.
25  * The bitmap operations that return Boolean (bitmap_empty,
26  * for example) or scalar (bitmap_weight, for example) results
27  * carefully filter out these unused bits from impacting their
28  * results.
29  *
30  * These operations actually hold to a slightly stronger rule:
31  * if you don't input any bitmaps to these ops that have some
32  * unused bits set, then they won't output any set unused bits
33  * in output bitmaps.
34  *
35  * The byte ordering of bitmaps is more natural on little
36  * endian architectures.  See the big-endian headers
37  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
38  * for the best explanations of this ordering.
39  */
40 
41 int __bitmap_empty(const unsigned long *bitmap, int bits)
42 {
43 	int k, lim = bits/BITS_PER_LONG;
44 	for (k = 0; k < lim; ++k)
45 		if (bitmap[k])
46 			return 0;
47 
48 	if (bits % BITS_PER_LONG)
49 		if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
50 			return 0;
51 
52 	return 1;
53 }
54 EXPORT_SYMBOL(__bitmap_empty);
55 
56 int __bitmap_full(const unsigned long *bitmap, int bits)
57 {
58 	int k, lim = bits/BITS_PER_LONG;
59 	for (k = 0; k < lim; ++k)
60 		if (~bitmap[k])
61 			return 0;
62 
63 	if (bits % BITS_PER_LONG)
64 		if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
65 			return 0;
66 
67 	return 1;
68 }
69 EXPORT_SYMBOL(__bitmap_full);
70 
71 int __bitmap_equal(const unsigned long *bitmap1,
72 		const unsigned long *bitmap2, int bits)
73 {
74 	int k, lim = bits/BITS_PER_LONG;
75 	for (k = 0; k < lim; ++k)
76 		if (bitmap1[k] != bitmap2[k])
77 			return 0;
78 
79 	if (bits % BITS_PER_LONG)
80 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
81 			return 0;
82 
83 	return 1;
84 }
85 EXPORT_SYMBOL(__bitmap_equal);
86 
87 void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
88 {
89 	int k, lim = bits/BITS_PER_LONG;
90 	for (k = 0; k < lim; ++k)
91 		dst[k] = ~src[k];
92 
93 	if (bits % BITS_PER_LONG)
94 		dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
95 }
96 EXPORT_SYMBOL(__bitmap_complement);
97 
98 /**
99  * __bitmap_shift_right - logical right shift of the bits in a bitmap
100  *   @dst : destination bitmap
101  *   @src : source bitmap
102  *   @shift : shift by this many bits
103  *   @bits : bitmap size, in bits
104  *
105  * Shifting right (dividing) means moving bits in the MS -> LS bit
106  * direction.  Zeros are fed into the vacated MS positions and the
107  * LS bits shifted off the bottom are lost.
108  */
109 void __bitmap_shift_right(unsigned long *dst,
110 			const unsigned long *src, int shift, int bits)
111 {
112 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
113 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
114 	unsigned long mask = (1UL << left) - 1;
115 	for (k = 0; off + k < lim; ++k) {
116 		unsigned long upper, lower;
117 
118 		/*
119 		 * If shift is not word aligned, take lower rem bits of
120 		 * word above and make them the top rem bits of result.
121 		 */
122 		if (!rem || off + k + 1 >= lim)
123 			upper = 0;
124 		else {
125 			upper = src[off + k + 1];
126 			if (off + k + 1 == lim - 1 && left)
127 				upper &= mask;
128 		}
129 		lower = src[off + k];
130 		if (left && off + k == lim - 1)
131 			lower &= mask;
132 		dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
133 		if (left && k == lim - 1)
134 			dst[k] &= mask;
135 	}
136 	if (off)
137 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
138 }
139 EXPORT_SYMBOL(__bitmap_shift_right);
140 
141 
142 /**
143  * __bitmap_shift_left - logical left shift of the bits in a bitmap
144  *   @dst : destination bitmap
145  *   @src : source bitmap
146  *   @shift : shift by this many bits
147  *   @bits : bitmap size, in bits
148  *
149  * Shifting left (multiplying) means moving bits in the LS -> MS
150  * direction.  Zeros are fed into the vacated LS bit positions
151  * and those MS bits shifted off the top are lost.
152  */
153 
154 void __bitmap_shift_left(unsigned long *dst,
155 			const unsigned long *src, int shift, int bits)
156 {
157 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
158 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
159 	for (k = lim - off - 1; k >= 0; --k) {
160 		unsigned long upper, lower;
161 
162 		/*
163 		 * If shift is not word aligned, take upper rem bits of
164 		 * word below and make them the bottom rem bits of result.
165 		 */
166 		if (rem && k > 0)
167 			lower = src[k - 1];
168 		else
169 			lower = 0;
170 		upper = src[k];
171 		if (left && k == lim - 1)
172 			upper &= (1UL << left) - 1;
173 		dst[k + off] = lower  >> (BITS_PER_LONG - rem) | upper << rem;
174 		if (left && k + off == lim - 1)
175 			dst[k + off] &= (1UL << left) - 1;
176 	}
177 	if (off)
178 		memset(dst, 0, off*sizeof(unsigned long));
179 }
180 EXPORT_SYMBOL(__bitmap_shift_left);
181 
182 void __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
183 				const unsigned long *bitmap2, int bits)
184 {
185 	int k;
186 	int nr = BITS_TO_LONGS(bits);
187 
188 	for (k = 0; k < nr; k++)
189 		dst[k] = bitmap1[k] & bitmap2[k];
190 }
191 EXPORT_SYMBOL(__bitmap_and);
192 
193 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
194 				const unsigned long *bitmap2, int bits)
195 {
196 	int k;
197 	int nr = BITS_TO_LONGS(bits);
198 
199 	for (k = 0; k < nr; k++)
200 		dst[k] = bitmap1[k] | bitmap2[k];
201 }
202 EXPORT_SYMBOL(__bitmap_or);
203 
204 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
205 				const unsigned long *bitmap2, int bits)
206 {
207 	int k;
208 	int nr = BITS_TO_LONGS(bits);
209 
210 	for (k = 0; k < nr; k++)
211 		dst[k] = bitmap1[k] ^ bitmap2[k];
212 }
213 EXPORT_SYMBOL(__bitmap_xor);
214 
215 void __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
216 				const unsigned long *bitmap2, int bits)
217 {
218 	int k;
219 	int nr = BITS_TO_LONGS(bits);
220 
221 	for (k = 0; k < nr; k++)
222 		dst[k] = bitmap1[k] & ~bitmap2[k];
223 }
224 EXPORT_SYMBOL(__bitmap_andnot);
225 
226 int __bitmap_intersects(const unsigned long *bitmap1,
227 				const unsigned long *bitmap2, int bits)
228 {
229 	int k, lim = bits/BITS_PER_LONG;
230 	for (k = 0; k < lim; ++k)
231 		if (bitmap1[k] & bitmap2[k])
232 			return 1;
233 
234 	if (bits % BITS_PER_LONG)
235 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
236 			return 1;
237 	return 0;
238 }
239 EXPORT_SYMBOL(__bitmap_intersects);
240 
241 int __bitmap_subset(const unsigned long *bitmap1,
242 				const unsigned long *bitmap2, int bits)
243 {
244 	int k, lim = bits/BITS_PER_LONG;
245 	for (k = 0; k < lim; ++k)
246 		if (bitmap1[k] & ~bitmap2[k])
247 			return 0;
248 
249 	if (bits % BITS_PER_LONG)
250 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
251 			return 0;
252 	return 1;
253 }
254 EXPORT_SYMBOL(__bitmap_subset);
255 
256 int __bitmap_weight(const unsigned long *bitmap, int bits)
257 {
258 	int k, w = 0, lim = bits/BITS_PER_LONG;
259 
260 	for (k = 0; k < lim; k++)
261 		w += hweight_long(bitmap[k]);
262 
263 	if (bits % BITS_PER_LONG)
264 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
265 
266 	return w;
267 }
268 EXPORT_SYMBOL(__bitmap_weight);
269 
270 /*
271  * Bitmap printing & parsing functions: first version by Bill Irwin,
272  * second version by Paul Jackson, third by Joe Korty.
273  */
274 
275 #define CHUNKSZ				32
276 #define nbits_to_hold_value(val)	fls(val)
277 #define unhex(c)			(isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10))
278 #define BASEDEC 10		/* fancier cpuset lists input in decimal */
279 
280 /**
281  * bitmap_scnprintf - convert bitmap to an ASCII hex string.
282  * @buf: byte buffer into which string is placed
283  * @buflen: reserved size of @buf, in bytes
284  * @maskp: pointer to bitmap to convert
285  * @nmaskbits: size of bitmap, in bits
286  *
287  * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into
288  * comma-separated sets of eight digits per set.
289  */
290 int bitmap_scnprintf(char *buf, unsigned int buflen,
291 	const unsigned long *maskp, int nmaskbits)
292 {
293 	int i, word, bit, len = 0;
294 	unsigned long val;
295 	const char *sep = "";
296 	int chunksz;
297 	u32 chunkmask;
298 
299 	chunksz = nmaskbits & (CHUNKSZ - 1);
300 	if (chunksz == 0)
301 		chunksz = CHUNKSZ;
302 
303 	i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
304 	for (; i >= 0; i -= CHUNKSZ) {
305 		chunkmask = ((1ULL << chunksz) - 1);
306 		word = i / BITS_PER_LONG;
307 		bit = i % BITS_PER_LONG;
308 		val = (maskp[word] >> bit) & chunkmask;
309 		len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
310 			(chunksz+3)/4, val);
311 		chunksz = CHUNKSZ;
312 		sep = ",";
313 	}
314 	return len;
315 }
316 EXPORT_SYMBOL(bitmap_scnprintf);
317 
318 /**
319  * bitmap_scnprintf_len - return buffer length needed to convert
320  * bitmap to an ASCII hex string
321  * @nr_bits: number of bits to be converted
322  */
323 int bitmap_scnprintf_len(unsigned int nr_bits)
324 {
325 	unsigned int nr_nibbles = ALIGN(nr_bits, 4) / 4;
326 	return nr_nibbles + ALIGN(nr_nibbles, CHUNKSZ / 4) / (CHUNKSZ / 4) - 1;
327 }
328 
329 /**
330  * __bitmap_parse - convert an ASCII hex string into a bitmap.
331  * @buf: pointer to buffer containing string.
332  * @buflen: buffer size in bytes.  If string is smaller than this
333  *    then it must be terminated with a \0.
334  * @is_user: location of buffer, 0 indicates kernel space
335  * @maskp: pointer to bitmap array that will contain result.
336  * @nmaskbits: size of bitmap, in bits.
337  *
338  * Commas group hex digits into chunks.  Each chunk defines exactly 32
339  * bits of the resultant bitmask.  No chunk may specify a value larger
340  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
341  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
342  * characters and for grouping errors such as "1,,5", ",44", "," and "".
343  * Leading and trailing whitespace accepted, but not embedded whitespace.
344  */
345 int __bitmap_parse(const char *buf, unsigned int buflen,
346 		int is_user, unsigned long *maskp,
347 		int nmaskbits)
348 {
349 	int c, old_c, totaldigits, ndigits, nchunks, nbits;
350 	u32 chunk;
351 	const char __user *ubuf = buf;
352 
353 	bitmap_zero(maskp, nmaskbits);
354 
355 	nchunks = nbits = totaldigits = c = 0;
356 	do {
357 		chunk = ndigits = 0;
358 
359 		/* Get the next chunk of the bitmap */
360 		while (buflen) {
361 			old_c = c;
362 			if (is_user) {
363 				if (__get_user(c, ubuf++))
364 					return -EFAULT;
365 			}
366 			else
367 				c = *buf++;
368 			buflen--;
369 			if (isspace(c))
370 				continue;
371 
372 			/*
373 			 * If the last character was a space and the current
374 			 * character isn't '\0', we've got embedded whitespace.
375 			 * This is a no-no, so throw an error.
376 			 */
377 			if (totaldigits && c && isspace(old_c))
378 				return -EINVAL;
379 
380 			/* A '\0' or a ',' signal the end of the chunk */
381 			if (c == '\0' || c == ',')
382 				break;
383 
384 			if (!isxdigit(c))
385 				return -EINVAL;
386 
387 			/*
388 			 * Make sure there are at least 4 free bits in 'chunk'.
389 			 * If not, this hexdigit will overflow 'chunk', so
390 			 * throw an error.
391 			 */
392 			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
393 				return -EOVERFLOW;
394 
395 			chunk = (chunk << 4) | unhex(c);
396 			ndigits++; totaldigits++;
397 		}
398 		if (ndigits == 0)
399 			return -EINVAL;
400 		if (nchunks == 0 && chunk == 0)
401 			continue;
402 
403 		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
404 		*maskp |= chunk;
405 		nchunks++;
406 		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
407 		if (nbits > nmaskbits)
408 			return -EOVERFLOW;
409 	} while (buflen && c == ',');
410 
411 	return 0;
412 }
413 EXPORT_SYMBOL(__bitmap_parse);
414 
415 /**
416  * bitmap_parse_user()
417  *
418  * @ubuf: pointer to user buffer containing string.
419  * @ulen: buffer size in bytes.  If string is smaller than this
420  *    then it must be terminated with a \0.
421  * @maskp: pointer to bitmap array that will contain result.
422  * @nmaskbits: size of bitmap, in bits.
423  *
424  * Wrapper for __bitmap_parse(), providing it with user buffer.
425  *
426  * We cannot have this as an inline function in bitmap.h because it needs
427  * linux/uaccess.h to get the access_ok() declaration and this causes
428  * cyclic dependencies.
429  */
430 int bitmap_parse_user(const char __user *ubuf,
431 			unsigned int ulen, unsigned long *maskp,
432 			int nmaskbits)
433 {
434 	if (!access_ok(VERIFY_READ, ubuf, ulen))
435 		return -EFAULT;
436 	return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits);
437 }
438 EXPORT_SYMBOL(bitmap_parse_user);
439 
440 /*
441  * bscnl_emit(buf, buflen, rbot, rtop, bp)
442  *
443  * Helper routine for bitmap_scnlistprintf().  Write decimal number
444  * or range to buf, suppressing output past buf+buflen, with optional
445  * comma-prefix.  Return len of what would be written to buf, if it
446  * all fit.
447  */
448 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
449 {
450 	if (len > 0)
451 		len += scnprintf(buf + len, buflen - len, ",");
452 	if (rbot == rtop)
453 		len += scnprintf(buf + len, buflen - len, "%d", rbot);
454 	else
455 		len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
456 	return len;
457 }
458 
459 /**
460  * bitmap_scnlistprintf - convert bitmap to list format ASCII string
461  * @buf: byte buffer into which string is placed
462  * @buflen: reserved size of @buf, in bytes
463  * @maskp: pointer to bitmap to convert
464  * @nmaskbits: size of bitmap, in bits
465  *
466  * Output format is a comma-separated list of decimal numbers and
467  * ranges.  Consecutively set bits are shown as two hyphen-separated
468  * decimal numbers, the smallest and largest bit numbers set in
469  * the range.  Output format is compatible with the format
470  * accepted as input by bitmap_parselist().
471  *
472  * The return value is the number of characters which would be
473  * generated for the given input, excluding the trailing '\0', as
474  * per ISO C99.
475  */
476 int bitmap_scnlistprintf(char *buf, unsigned int buflen,
477 	const unsigned long *maskp, int nmaskbits)
478 {
479 	int len = 0;
480 	/* current bit is 'cur', most recently seen range is [rbot, rtop] */
481 	int cur, rbot, rtop;
482 
483 	if (buflen == 0)
484 		return 0;
485 	buf[0] = 0;
486 
487 	rbot = cur = find_first_bit(maskp, nmaskbits);
488 	while (cur < nmaskbits) {
489 		rtop = cur;
490 		cur = find_next_bit(maskp, nmaskbits, cur+1);
491 		if (cur >= nmaskbits || cur > rtop + 1) {
492 			len = bscnl_emit(buf, buflen, rbot, rtop, len);
493 			rbot = cur;
494 		}
495 	}
496 	return len;
497 }
498 EXPORT_SYMBOL(bitmap_scnlistprintf);
499 
500 /**
501  * bitmap_parselist - convert list format ASCII string to bitmap
502  * @bp: read nul-terminated user string from this buffer
503  * @maskp: write resulting mask here
504  * @nmaskbits: number of bits in mask to be written
505  *
506  * Input format is a comma-separated list of decimal numbers and
507  * ranges.  Consecutively set bits are shown as two hyphen-separated
508  * decimal numbers, the smallest and largest bit numbers set in
509  * the range.
510  *
511  * Returns 0 on success, -errno on invalid input strings.
512  * Error values:
513  *    %-EINVAL: second number in range smaller than first
514  *    %-EINVAL: invalid character in string
515  *    %-ERANGE: bit number specified too large for mask
516  */
517 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
518 {
519 	unsigned a, b;
520 
521 	bitmap_zero(maskp, nmaskbits);
522 	do {
523 		if (!isdigit(*bp))
524 			return -EINVAL;
525 		b = a = simple_strtoul(bp, (char **)&bp, BASEDEC);
526 		if (*bp == '-') {
527 			bp++;
528 			if (!isdigit(*bp))
529 				return -EINVAL;
530 			b = simple_strtoul(bp, (char **)&bp, BASEDEC);
531 		}
532 		if (!(a <= b))
533 			return -EINVAL;
534 		if (b >= nmaskbits)
535 			return -ERANGE;
536 		while (a <= b) {
537 			set_bit(a, maskp);
538 			a++;
539 		}
540 		if (*bp == ',')
541 			bp++;
542 	} while (*bp != '\0' && *bp != '\n');
543 	return 0;
544 }
545 EXPORT_SYMBOL(bitmap_parselist);
546 
547 /**
548  * bitmap_pos_to_ord(buf, pos, bits)
549  *	@buf: pointer to a bitmap
550  *	@pos: a bit position in @buf (0 <= @pos < @bits)
551  *	@bits: number of valid bit positions in @buf
552  *
553  * Map the bit at position @pos in @buf (of length @bits) to the
554  * ordinal of which set bit it is.  If it is not set or if @pos
555  * is not a valid bit position, map to -1.
556  *
557  * If for example, just bits 4 through 7 are set in @buf, then @pos
558  * values 4 through 7 will get mapped to 0 through 3, respectively,
559  * and other @pos values will get mapped to 0.  When @pos value 7
560  * gets mapped to (returns) @ord value 3 in this example, that means
561  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
562  *
563  * The bit positions 0 through @bits are valid positions in @buf.
564  */
565 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
566 {
567 	int i, ord;
568 
569 	if (pos < 0 || pos >= bits || !test_bit(pos, buf))
570 		return -1;
571 
572 	i = find_first_bit(buf, bits);
573 	ord = 0;
574 	while (i < pos) {
575 		i = find_next_bit(buf, bits, i + 1);
576 	     	ord++;
577 	}
578 	BUG_ON(i != pos);
579 
580 	return ord;
581 }
582 
583 /**
584  * bitmap_ord_to_pos(buf, ord, bits)
585  *	@buf: pointer to bitmap
586  *	@ord: ordinal bit position (n-th set bit, n >= 0)
587  *	@bits: number of valid bit positions in @buf
588  *
589  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
590  * Value of @ord should be in range 0 <= @ord < weight(buf), else
591  * results are undefined.
592  *
593  * If for example, just bits 4 through 7 are set in @buf, then @ord
594  * values 0 through 3 will get mapped to 4 through 7, respectively,
595  * and all other @ord values return undefined values.  When @ord value 3
596  * gets mapped to (returns) @pos value 7 in this example, that means
597  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
598  *
599  * The bit positions 0 through @bits are valid positions in @buf.
600  */
601 static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
602 {
603 	int pos = 0;
604 
605 	if (ord >= 0 && ord < bits) {
606 		int i;
607 
608 		for (i = find_first_bit(buf, bits);
609 		     i < bits && ord > 0;
610 		     i = find_next_bit(buf, bits, i + 1))
611 	     		ord--;
612 		if (i < bits && ord == 0)
613 			pos = i;
614 	}
615 
616 	return pos;
617 }
618 
619 /**
620  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
621  *	@dst: remapped result
622  *	@src: subset to be remapped
623  *	@old: defines domain of map
624  *	@new: defines range of map
625  *	@bits: number of bits in each of these bitmaps
626  *
627  * Let @old and @new define a mapping of bit positions, such that
628  * whatever position is held by the n-th set bit in @old is mapped
629  * to the n-th set bit in @new.  In the more general case, allowing
630  * for the possibility that the weight 'w' of @new is less than the
631  * weight of @old, map the position of the n-th set bit in @old to
632  * the position of the m-th set bit in @new, where m == n % w.
633  *
634  * If either of the @old and @new bitmaps are empty, or if @src and
635  * @dst point to the same location, then this routine copies @src
636  * to @dst.
637  *
638  * The positions of unset bits in @old are mapped to themselves
639  * (the identify map).
640  *
641  * Apply the above specified mapping to @src, placing the result in
642  * @dst, clearing any bits previously set in @dst.
643  *
644  * For example, lets say that @old has bits 4 through 7 set, and
645  * @new has bits 12 through 15 set.  This defines the mapping of bit
646  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
647  * bit positions unchanged.  So if say @src comes into this routine
648  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
649  * 13 and 15 set.
650  */
651 void bitmap_remap(unsigned long *dst, const unsigned long *src,
652 		const unsigned long *old, const unsigned long *new,
653 		int bits)
654 {
655 	int oldbit, w;
656 
657 	if (dst == src)		/* following doesn't handle inplace remaps */
658 		return;
659 	bitmap_zero(dst, bits);
660 
661 	w = bitmap_weight(new, bits);
662 	for (oldbit = find_first_bit(src, bits);
663 	     oldbit < bits;
664 	     oldbit = find_next_bit(src, bits, oldbit + 1)) {
665 	     	int n = bitmap_pos_to_ord(old, oldbit, bits);
666 		if (n < 0 || w == 0)
667 			set_bit(oldbit, dst);	/* identity map */
668 		else
669 			set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
670 	}
671 }
672 EXPORT_SYMBOL(bitmap_remap);
673 
674 /**
675  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
676  *	@oldbit: bit position to be mapped
677  *	@old: defines domain of map
678  *	@new: defines range of map
679  *	@bits: number of bits in each of these bitmaps
680  *
681  * Let @old and @new define a mapping of bit positions, such that
682  * whatever position is held by the n-th set bit in @old is mapped
683  * to the n-th set bit in @new.  In the more general case, allowing
684  * for the possibility that the weight 'w' of @new is less than the
685  * weight of @old, map the position of the n-th set bit in @old to
686  * the position of the m-th set bit in @new, where m == n % w.
687  *
688  * The positions of unset bits in @old are mapped to themselves
689  * (the identify map).
690  *
691  * Apply the above specified mapping to bit position @oldbit, returning
692  * the new bit position.
693  *
694  * For example, lets say that @old has bits 4 through 7 set, and
695  * @new has bits 12 through 15 set.  This defines the mapping of bit
696  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
697  * bit positions unchanged.  So if say @oldbit is 5, then this routine
698  * returns 13.
699  */
700 int bitmap_bitremap(int oldbit, const unsigned long *old,
701 				const unsigned long *new, int bits)
702 {
703 	int w = bitmap_weight(new, bits);
704 	int n = bitmap_pos_to_ord(old, oldbit, bits);
705 	if (n < 0 || w == 0)
706 		return oldbit;
707 	else
708 		return bitmap_ord_to_pos(new, n % w, bits);
709 }
710 EXPORT_SYMBOL(bitmap_bitremap);
711 
712 /**
713  * bitmap_onto - translate one bitmap relative to another
714  *	@dst: resulting translated bitmap
715  * 	@orig: original untranslated bitmap
716  * 	@relmap: bitmap relative to which translated
717  *	@bits: number of bits in each of these bitmaps
718  *
719  * Set the n-th bit of @dst iff there exists some m such that the
720  * n-th bit of @relmap is set, the m-th bit of @orig is set, and
721  * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
722  * (If you understood the previous sentence the first time your
723  * read it, you're overqualified for your current job.)
724  *
725  * In other words, @orig is mapped onto (surjectively) @dst,
726  * using the the map { <n, m> | the n-th bit of @relmap is the
727  * m-th set bit of @relmap }.
728  *
729  * Any set bits in @orig above bit number W, where W is the
730  * weight of (number of set bits in) @relmap are mapped nowhere.
731  * In particular, if for all bits m set in @orig, m >= W, then
732  * @dst will end up empty.  In situations where the possibility
733  * of such an empty result is not desired, one way to avoid it is
734  * to use the bitmap_fold() operator, below, to first fold the
735  * @orig bitmap over itself so that all its set bits x are in the
736  * range 0 <= x < W.  The bitmap_fold() operator does this by
737  * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
738  *
739  * Example [1] for bitmap_onto():
740  *  Let's say @relmap has bits 30-39 set, and @orig has bits
741  *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
742  *  @dst will have bits 31, 33, 35, 37 and 39 set.
743  *
744  *  When bit 0 is set in @orig, it means turn on the bit in
745  *  @dst corresponding to whatever is the first bit (if any)
746  *  that is turned on in @relmap.  Since bit 0 was off in the
747  *  above example, we leave off that bit (bit 30) in @dst.
748  *
749  *  When bit 1 is set in @orig (as in the above example), it
750  *  means turn on the bit in @dst corresponding to whatever
751  *  is the second bit that is turned on in @relmap.  The second
752  *  bit in @relmap that was turned on in the above example was
753  *  bit 31, so we turned on bit 31 in @dst.
754  *
755  *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
756  *  because they were the 4th, 6th, 8th and 10th set bits
757  *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
758  *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
759  *
760  *  When bit 11 is set in @orig, it means turn on the bit in
761  *  @dst corresponding to whatever is the twelth bit that is
762  *  turned on in @relmap.  In the above example, there were
763  *  only ten bits turned on in @relmap (30..39), so that bit
764  *  11 was set in @orig had no affect on @dst.
765  *
766  * Example [2] for bitmap_fold() + bitmap_onto():
767  *  Let's say @relmap has these ten bits set:
768  *		40 41 42 43 45 48 53 61 74 95
769  *  (for the curious, that's 40 plus the first ten terms of the
770  *  Fibonacci sequence.)
771  *
772  *  Further lets say we use the following code, invoking
773  *  bitmap_fold() then bitmap_onto, as suggested above to
774  *  avoid the possitility of an empty @dst result:
775  *
776  *	unsigned long *tmp;	// a temporary bitmap's bits
777  *
778  *	bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
779  *	bitmap_onto(dst, tmp, relmap, bits);
780  *
781  *  Then this table shows what various values of @dst would be, for
782  *  various @orig's.  I list the zero-based positions of each set bit.
783  *  The tmp column shows the intermediate result, as computed by
784  *  using bitmap_fold() to fold the @orig bitmap modulo ten
785  *  (the weight of @relmap).
786  *
787  *      @orig           tmp            @dst
788  *      0                0             40
789  *      1                1             41
790  *      9                9             95
791  *      10               0             40 (*)
792  *      1 3 5 7          1 3 5 7       41 43 48 61
793  *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
794  *      0 9 18 27        0 9 8 7       40 61 74 95
795  *      0 10 20 30       0             40
796  *      0 11 22 33       0 1 2 3       40 41 42 43
797  *      0 12 24 36       0 2 4 6       40 42 45 53
798  *      78 102 211       1 2 8         41 42 74 (*)
799  *
800  * (*) For these marked lines, if we hadn't first done bitmap_fold()
801  *     into tmp, then the @dst result would have been empty.
802  *
803  * If either of @orig or @relmap is empty (no set bits), then @dst
804  * will be returned empty.
805  *
806  * If (as explained above) the only set bits in @orig are in positions
807  * m where m >= W, (where W is the weight of @relmap) then @dst will
808  * once again be returned empty.
809  *
810  * All bits in @dst not set by the above rule are cleared.
811  */
812 void bitmap_onto(unsigned long *dst, const unsigned long *orig,
813 			const unsigned long *relmap, int bits)
814 {
815 	int n, m;       	/* same meaning as in above comment */
816 
817 	if (dst == orig)	/* following doesn't handle inplace mappings */
818 		return;
819 	bitmap_zero(dst, bits);
820 
821 	/*
822 	 * The following code is a more efficient, but less
823 	 * obvious, equivalent to the loop:
824 	 *	for (m = 0; m < bitmap_weight(relmap, bits); m++) {
825 	 *		n = bitmap_ord_to_pos(orig, m, bits);
826 	 *		if (test_bit(m, orig))
827 	 *			set_bit(n, dst);
828 	 *	}
829 	 */
830 
831 	m = 0;
832 	for (n = find_first_bit(relmap, bits);
833 	     n < bits;
834 	     n = find_next_bit(relmap, bits, n + 1)) {
835 		/* m == bitmap_pos_to_ord(relmap, n, bits) */
836 		if (test_bit(m, orig))
837 			set_bit(n, dst);
838 		m++;
839 	}
840 }
841 EXPORT_SYMBOL(bitmap_onto);
842 
843 /**
844  * bitmap_fold - fold larger bitmap into smaller, modulo specified size
845  *	@dst: resulting smaller bitmap
846  *	@orig: original larger bitmap
847  *	@sz: specified size
848  *	@bits: number of bits in each of these bitmaps
849  *
850  * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
851  * Clear all other bits in @dst.  See further the comment and
852  * Example [2] for bitmap_onto() for why and how to use this.
853  */
854 void bitmap_fold(unsigned long *dst, const unsigned long *orig,
855 			int sz, int bits)
856 {
857 	int oldbit;
858 
859 	if (dst == orig)	/* following doesn't handle inplace mappings */
860 		return;
861 	bitmap_zero(dst, bits);
862 
863 	for (oldbit = find_first_bit(orig, bits);
864 	     oldbit < bits;
865 	     oldbit = find_next_bit(orig, bits, oldbit + 1))
866 		set_bit(oldbit % sz, dst);
867 }
868 EXPORT_SYMBOL(bitmap_fold);
869 
870 /*
871  * Common code for bitmap_*_region() routines.
872  *	bitmap: array of unsigned longs corresponding to the bitmap
873  *	pos: the beginning of the region
874  *	order: region size (log base 2 of number of bits)
875  *	reg_op: operation(s) to perform on that region of bitmap
876  *
877  * Can set, verify and/or release a region of bits in a bitmap,
878  * depending on which combination of REG_OP_* flag bits is set.
879  *
880  * A region of a bitmap is a sequence of bits in the bitmap, of
881  * some size '1 << order' (a power of two), aligned to that same
882  * '1 << order' power of two.
883  *
884  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
885  * Returns 0 in all other cases and reg_ops.
886  */
887 
888 enum {
889 	REG_OP_ISFREE,		/* true if region is all zero bits */
890 	REG_OP_ALLOC,		/* set all bits in region */
891 	REG_OP_RELEASE,		/* clear all bits in region */
892 };
893 
894 static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
895 {
896 	int nbits_reg;		/* number of bits in region */
897 	int index;		/* index first long of region in bitmap */
898 	int offset;		/* bit offset region in bitmap[index] */
899 	int nlongs_reg;		/* num longs spanned by region in bitmap */
900 	int nbitsinlong;	/* num bits of region in each spanned long */
901 	unsigned long mask;	/* bitmask for one long of region */
902 	int i;			/* scans bitmap by longs */
903 	int ret = 0;		/* return value */
904 
905 	/*
906 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
907 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
908 	 */
909 	nbits_reg = 1 << order;
910 	index = pos / BITS_PER_LONG;
911 	offset = pos - (index * BITS_PER_LONG);
912 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
913 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
914 
915 	/*
916 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
917 	 * overflows if nbitsinlong == BITS_PER_LONG.
918 	 */
919 	mask = (1UL << (nbitsinlong - 1));
920 	mask += mask - 1;
921 	mask <<= offset;
922 
923 	switch (reg_op) {
924 	case REG_OP_ISFREE:
925 		for (i = 0; i < nlongs_reg; i++) {
926 			if (bitmap[index + i] & mask)
927 				goto done;
928 		}
929 		ret = 1;	/* all bits in region free (zero) */
930 		break;
931 
932 	case REG_OP_ALLOC:
933 		for (i = 0; i < nlongs_reg; i++)
934 			bitmap[index + i] |= mask;
935 		break;
936 
937 	case REG_OP_RELEASE:
938 		for (i = 0; i < nlongs_reg; i++)
939 			bitmap[index + i] &= ~mask;
940 		break;
941 	}
942 done:
943 	return ret;
944 }
945 
946 /**
947  * bitmap_find_free_region - find a contiguous aligned mem region
948  *	@bitmap: array of unsigned longs corresponding to the bitmap
949  *	@bits: number of bits in the bitmap
950  *	@order: region size (log base 2 of number of bits) to find
951  *
952  * Find a region of free (zero) bits in a @bitmap of @bits bits and
953  * allocate them (set them to one).  Only consider regions of length
954  * a power (@order) of two, aligned to that power of two, which
955  * makes the search algorithm much faster.
956  *
957  * Return the bit offset in bitmap of the allocated region,
958  * or -errno on failure.
959  */
960 int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
961 {
962 	int pos;		/* scans bitmap by regions of size order */
963 
964 	for (pos = 0; pos < bits; pos += (1 << order))
965 		if (__reg_op(bitmap, pos, order, REG_OP_ISFREE))
966 			break;
967 	if (pos == bits)
968 		return -ENOMEM;
969 	__reg_op(bitmap, pos, order, REG_OP_ALLOC);
970 	return pos;
971 }
972 EXPORT_SYMBOL(bitmap_find_free_region);
973 
974 /**
975  * bitmap_release_region - release allocated bitmap region
976  *	@bitmap: array of unsigned longs corresponding to the bitmap
977  *	@pos: beginning of bit region to release
978  *	@order: region size (log base 2 of number of bits) to release
979  *
980  * This is the complement to __bitmap_find_free_region() and releases
981  * the found region (by clearing it in the bitmap).
982  *
983  * No return value.
984  */
985 void bitmap_release_region(unsigned long *bitmap, int pos, int order)
986 {
987 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
988 }
989 EXPORT_SYMBOL(bitmap_release_region);
990 
991 /**
992  * bitmap_allocate_region - allocate bitmap region
993  *	@bitmap: array of unsigned longs corresponding to the bitmap
994  *	@pos: beginning of bit region to allocate
995  *	@order: region size (log base 2 of number of bits) to allocate
996  *
997  * Allocate (set bits in) a specified region of a bitmap.
998  *
999  * Return 0 on success, or %-EBUSY if specified region wasn't
1000  * free (not all bits were zero).
1001  */
1002 int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
1003 {
1004 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1005 		return -EBUSY;
1006 	__reg_op(bitmap, pos, order, REG_OP_ALLOC);
1007 	return 0;
1008 }
1009 EXPORT_SYMBOL(bitmap_allocate_region);
1010