1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * lib/bitmap.c 4 * Helper functions for bitmap.h. 5 */ 6 7 #include <linux/bitmap.h> 8 #include <linux/bitops.h> 9 #include <linux/ctype.h> 10 #include <linux/device.h> 11 #include <linux/export.h> 12 #include <linux/slab.h> 13 14 /** 15 * DOC: bitmap introduction 16 * 17 * bitmaps provide an array of bits, implemented using an 18 * array of unsigned longs. The number of valid bits in a 19 * given bitmap does _not_ need to be an exact multiple of 20 * BITS_PER_LONG. 21 * 22 * The possible unused bits in the last, partially used word 23 * of a bitmap are 'don't care'. The implementation makes 24 * no particular effort to keep them zero. It ensures that 25 * their value will not affect the results of any operation. 26 * The bitmap operations that return Boolean (bitmap_empty, 27 * for example) or scalar (bitmap_weight, for example) results 28 * carefully filter out these unused bits from impacting their 29 * results. 30 * 31 * The byte ordering of bitmaps is more natural on little 32 * endian architectures. See the big-endian headers 33 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h 34 * for the best explanations of this ordering. 35 */ 36 37 bool __bitmap_equal(const unsigned long *bitmap1, 38 const unsigned long *bitmap2, unsigned int bits) 39 { 40 unsigned int k, lim = bits/BITS_PER_LONG; 41 for (k = 0; k < lim; ++k) 42 if (bitmap1[k] != bitmap2[k]) 43 return false; 44 45 if (bits % BITS_PER_LONG) 46 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 47 return false; 48 49 return true; 50 } 51 EXPORT_SYMBOL(__bitmap_equal); 52 53 bool __bitmap_or_equal(const unsigned long *bitmap1, 54 const unsigned long *bitmap2, 55 const unsigned long *bitmap3, 56 unsigned int bits) 57 { 58 unsigned int k, lim = bits / BITS_PER_LONG; 59 unsigned long tmp; 60 61 for (k = 0; k < lim; ++k) { 62 if ((bitmap1[k] | bitmap2[k]) != bitmap3[k]) 63 return false; 64 } 65 66 if (!(bits % BITS_PER_LONG)) 67 return true; 68 69 tmp = (bitmap1[k] | bitmap2[k]) ^ bitmap3[k]; 70 return (tmp & BITMAP_LAST_WORD_MASK(bits)) == 0; 71 } 72 73 void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits) 74 { 75 unsigned int k, lim = BITS_TO_LONGS(bits); 76 for (k = 0; k < lim; ++k) 77 dst[k] = ~src[k]; 78 } 79 EXPORT_SYMBOL(__bitmap_complement); 80 81 /** 82 * __bitmap_shift_right - logical right shift of the bits in a bitmap 83 * @dst : destination bitmap 84 * @src : source bitmap 85 * @shift : shift by this many bits 86 * @nbits : bitmap size, in bits 87 * 88 * Shifting right (dividing) means moving bits in the MS -> LS bit 89 * direction. Zeros are fed into the vacated MS positions and the 90 * LS bits shifted off the bottom are lost. 91 */ 92 void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, 93 unsigned shift, unsigned nbits) 94 { 95 unsigned k, lim = BITS_TO_LONGS(nbits); 96 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 97 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits); 98 for (k = 0; off + k < lim; ++k) { 99 unsigned long upper, lower; 100 101 /* 102 * If shift is not word aligned, take lower rem bits of 103 * word above and make them the top rem bits of result. 104 */ 105 if (!rem || off + k + 1 >= lim) 106 upper = 0; 107 else { 108 upper = src[off + k + 1]; 109 if (off + k + 1 == lim - 1) 110 upper &= mask; 111 upper <<= (BITS_PER_LONG - rem); 112 } 113 lower = src[off + k]; 114 if (off + k == lim - 1) 115 lower &= mask; 116 lower >>= rem; 117 dst[k] = lower | upper; 118 } 119 if (off) 120 memset(&dst[lim - off], 0, off*sizeof(unsigned long)); 121 } 122 EXPORT_SYMBOL(__bitmap_shift_right); 123 124 125 /** 126 * __bitmap_shift_left - logical left shift of the bits in a bitmap 127 * @dst : destination bitmap 128 * @src : source bitmap 129 * @shift : shift by this many bits 130 * @nbits : bitmap size, in bits 131 * 132 * Shifting left (multiplying) means moving bits in the LS -> MS 133 * direction. Zeros are fed into the vacated LS bit positions 134 * and those MS bits shifted off the top are lost. 135 */ 136 137 void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, 138 unsigned int shift, unsigned int nbits) 139 { 140 int k; 141 unsigned int lim = BITS_TO_LONGS(nbits); 142 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG; 143 for (k = lim - off - 1; k >= 0; --k) { 144 unsigned long upper, lower; 145 146 /* 147 * If shift is not word aligned, take upper rem bits of 148 * word below and make them the bottom rem bits of result. 149 */ 150 if (rem && k > 0) 151 lower = src[k - 1] >> (BITS_PER_LONG - rem); 152 else 153 lower = 0; 154 upper = src[k] << rem; 155 dst[k + off] = lower | upper; 156 } 157 if (off) 158 memset(dst, 0, off*sizeof(unsigned long)); 159 } 160 EXPORT_SYMBOL(__bitmap_shift_left); 161 162 /** 163 * bitmap_cut() - remove bit region from bitmap and right shift remaining bits 164 * @dst: destination bitmap, might overlap with src 165 * @src: source bitmap 166 * @first: start bit of region to be removed 167 * @cut: number of bits to remove 168 * @nbits: bitmap size, in bits 169 * 170 * Set the n-th bit of @dst iff the n-th bit of @src is set and 171 * n is less than @first, or the m-th bit of @src is set for any 172 * m such that @first <= n < nbits, and m = n + @cut. 173 * 174 * In pictures, example for a big-endian 32-bit architecture: 175 * 176 * The @src bitmap is:: 177 * 178 * 31 63 179 * | | 180 * 10000000 11000001 11110010 00010101 10000000 11000001 01110010 00010101 181 * | | | | 182 * 16 14 0 32 183 * 184 * if @cut is 3, and @first is 14, bits 14-16 in @src are cut and @dst is:: 185 * 186 * 31 63 187 * | | 188 * 10110000 00011000 00110010 00010101 00010000 00011000 00101110 01000010 189 * | | | 190 * 14 (bit 17 0 32 191 * from @src) 192 * 193 * Note that @dst and @src might overlap partially or entirely. 194 * 195 * This is implemented in the obvious way, with a shift and carry 196 * step for each moved bit. Optimisation is left as an exercise 197 * for the compiler. 198 */ 199 void bitmap_cut(unsigned long *dst, const unsigned long *src, 200 unsigned int first, unsigned int cut, unsigned int nbits) 201 { 202 unsigned int len = BITS_TO_LONGS(nbits); 203 unsigned long keep = 0, carry; 204 int i; 205 206 if (first % BITS_PER_LONG) { 207 keep = src[first / BITS_PER_LONG] & 208 (~0UL >> (BITS_PER_LONG - first % BITS_PER_LONG)); 209 } 210 211 memmove(dst, src, len * sizeof(*dst)); 212 213 while (cut--) { 214 for (i = first / BITS_PER_LONG; i < len; i++) { 215 if (i < len - 1) 216 carry = dst[i + 1] & 1UL; 217 else 218 carry = 0; 219 220 dst[i] = (dst[i] >> 1) | (carry << (BITS_PER_LONG - 1)); 221 } 222 } 223 224 dst[first / BITS_PER_LONG] &= ~0UL << (first % BITS_PER_LONG); 225 dst[first / BITS_PER_LONG] |= keep; 226 } 227 EXPORT_SYMBOL(bitmap_cut); 228 229 bool __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 230 const unsigned long *bitmap2, unsigned int bits) 231 { 232 unsigned int k; 233 unsigned int lim = bits/BITS_PER_LONG; 234 unsigned long result = 0; 235 236 for (k = 0; k < lim; k++) 237 result |= (dst[k] = bitmap1[k] & bitmap2[k]); 238 if (bits % BITS_PER_LONG) 239 result |= (dst[k] = bitmap1[k] & bitmap2[k] & 240 BITMAP_LAST_WORD_MASK(bits)); 241 return result != 0; 242 } 243 EXPORT_SYMBOL(__bitmap_and); 244 245 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 246 const unsigned long *bitmap2, unsigned int bits) 247 { 248 unsigned int k; 249 unsigned int nr = BITS_TO_LONGS(bits); 250 251 for (k = 0; k < nr; k++) 252 dst[k] = bitmap1[k] | bitmap2[k]; 253 } 254 EXPORT_SYMBOL(__bitmap_or); 255 256 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 257 const unsigned long *bitmap2, unsigned int bits) 258 { 259 unsigned int k; 260 unsigned int nr = BITS_TO_LONGS(bits); 261 262 for (k = 0; k < nr; k++) 263 dst[k] = bitmap1[k] ^ bitmap2[k]; 264 } 265 EXPORT_SYMBOL(__bitmap_xor); 266 267 bool __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 268 const unsigned long *bitmap2, unsigned int bits) 269 { 270 unsigned int k; 271 unsigned int lim = bits/BITS_PER_LONG; 272 unsigned long result = 0; 273 274 for (k = 0; k < lim; k++) 275 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]); 276 if (bits % BITS_PER_LONG) 277 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] & 278 BITMAP_LAST_WORD_MASK(bits)); 279 return result != 0; 280 } 281 EXPORT_SYMBOL(__bitmap_andnot); 282 283 void __bitmap_replace(unsigned long *dst, 284 const unsigned long *old, const unsigned long *new, 285 const unsigned long *mask, unsigned int nbits) 286 { 287 unsigned int k; 288 unsigned int nr = BITS_TO_LONGS(nbits); 289 290 for (k = 0; k < nr; k++) 291 dst[k] = (old[k] & ~mask[k]) | (new[k] & mask[k]); 292 } 293 EXPORT_SYMBOL(__bitmap_replace); 294 295 bool __bitmap_intersects(const unsigned long *bitmap1, 296 const unsigned long *bitmap2, unsigned int bits) 297 { 298 unsigned int k, lim = bits/BITS_PER_LONG; 299 for (k = 0; k < lim; ++k) 300 if (bitmap1[k] & bitmap2[k]) 301 return true; 302 303 if (bits % BITS_PER_LONG) 304 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 305 return true; 306 return false; 307 } 308 EXPORT_SYMBOL(__bitmap_intersects); 309 310 bool __bitmap_subset(const unsigned long *bitmap1, 311 const unsigned long *bitmap2, unsigned int bits) 312 { 313 unsigned int k, lim = bits/BITS_PER_LONG; 314 for (k = 0; k < lim; ++k) 315 if (bitmap1[k] & ~bitmap2[k]) 316 return false; 317 318 if (bits % BITS_PER_LONG) 319 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits)) 320 return false; 321 return true; 322 } 323 EXPORT_SYMBOL(__bitmap_subset); 324 325 #define BITMAP_WEIGHT(FETCH, bits) \ 326 ({ \ 327 unsigned int __bits = (bits), idx, w = 0; \ 328 \ 329 for (idx = 0; idx < __bits / BITS_PER_LONG; idx++) \ 330 w += hweight_long(FETCH); \ 331 \ 332 if (__bits % BITS_PER_LONG) \ 333 w += hweight_long((FETCH) & BITMAP_LAST_WORD_MASK(__bits)); \ 334 \ 335 w; \ 336 }) 337 338 unsigned int __bitmap_weight(const unsigned long *bitmap, unsigned int bits) 339 { 340 return BITMAP_WEIGHT(bitmap[idx], bits); 341 } 342 EXPORT_SYMBOL(__bitmap_weight); 343 344 unsigned int __bitmap_weight_and(const unsigned long *bitmap1, 345 const unsigned long *bitmap2, unsigned int bits) 346 { 347 return BITMAP_WEIGHT(bitmap1[idx] & bitmap2[idx], bits); 348 } 349 EXPORT_SYMBOL(__bitmap_weight_and); 350 351 void __bitmap_set(unsigned long *map, unsigned int start, int len) 352 { 353 unsigned long *p = map + BIT_WORD(start); 354 const unsigned int size = start + len; 355 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG); 356 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start); 357 358 while (len - bits_to_set >= 0) { 359 *p |= mask_to_set; 360 len -= bits_to_set; 361 bits_to_set = BITS_PER_LONG; 362 mask_to_set = ~0UL; 363 p++; 364 } 365 if (len) { 366 mask_to_set &= BITMAP_LAST_WORD_MASK(size); 367 *p |= mask_to_set; 368 } 369 } 370 EXPORT_SYMBOL(__bitmap_set); 371 372 void __bitmap_clear(unsigned long *map, unsigned int start, int len) 373 { 374 unsigned long *p = map + BIT_WORD(start); 375 const unsigned int size = start + len; 376 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG); 377 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start); 378 379 while (len - bits_to_clear >= 0) { 380 *p &= ~mask_to_clear; 381 len -= bits_to_clear; 382 bits_to_clear = BITS_PER_LONG; 383 mask_to_clear = ~0UL; 384 p++; 385 } 386 if (len) { 387 mask_to_clear &= BITMAP_LAST_WORD_MASK(size); 388 *p &= ~mask_to_clear; 389 } 390 } 391 EXPORT_SYMBOL(__bitmap_clear); 392 393 /** 394 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area 395 * @map: The address to base the search on 396 * @size: The bitmap size in bits 397 * @start: The bitnumber to start searching at 398 * @nr: The number of zeroed bits we're looking for 399 * @align_mask: Alignment mask for zero area 400 * @align_offset: Alignment offset for zero area. 401 * 402 * The @align_mask should be one less than a power of 2; the effect is that 403 * the bit offset of all zero areas this function finds plus @align_offset 404 * is multiple of that power of 2. 405 */ 406 unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 407 unsigned long size, 408 unsigned long start, 409 unsigned int nr, 410 unsigned long align_mask, 411 unsigned long align_offset) 412 { 413 unsigned long index, end, i; 414 again: 415 index = find_next_zero_bit(map, size, start); 416 417 /* Align allocation */ 418 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset; 419 420 end = index + nr; 421 if (end > size) 422 return end; 423 i = find_next_bit(map, end, index); 424 if (i < end) { 425 start = i + 1; 426 goto again; 427 } 428 return index; 429 } 430 EXPORT_SYMBOL(bitmap_find_next_zero_area_off); 431 432 /** 433 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap 434 * @buf: pointer to a bitmap 435 * @pos: a bit position in @buf (0 <= @pos < @nbits) 436 * @nbits: number of valid bit positions in @buf 437 * 438 * Map the bit at position @pos in @buf (of length @nbits) to the 439 * ordinal of which set bit it is. If it is not set or if @pos 440 * is not a valid bit position, map to -1. 441 * 442 * If for example, just bits 4 through 7 are set in @buf, then @pos 443 * values 4 through 7 will get mapped to 0 through 3, respectively, 444 * and other @pos values will get mapped to -1. When @pos value 7 445 * gets mapped to (returns) @ord value 3 in this example, that means 446 * that bit 7 is the 3rd (starting with 0th) set bit in @buf. 447 * 448 * The bit positions 0 through @bits are valid positions in @buf. 449 */ 450 static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits) 451 { 452 if (pos >= nbits || !test_bit(pos, buf)) 453 return -1; 454 455 return bitmap_weight(buf, pos); 456 } 457 458 /** 459 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap 460 * @dst: remapped result 461 * @src: subset to be remapped 462 * @old: defines domain of map 463 * @new: defines range of map 464 * @nbits: number of bits in each of these bitmaps 465 * 466 * Let @old and @new define a mapping of bit positions, such that 467 * whatever position is held by the n-th set bit in @old is mapped 468 * to the n-th set bit in @new. In the more general case, allowing 469 * for the possibility that the weight 'w' of @new is less than the 470 * weight of @old, map the position of the n-th set bit in @old to 471 * the position of the m-th set bit in @new, where m == n % w. 472 * 473 * If either of the @old and @new bitmaps are empty, or if @src and 474 * @dst point to the same location, then this routine copies @src 475 * to @dst. 476 * 477 * The positions of unset bits in @old are mapped to themselves 478 * (the identity map). 479 * 480 * Apply the above specified mapping to @src, placing the result in 481 * @dst, clearing any bits previously set in @dst. 482 * 483 * For example, lets say that @old has bits 4 through 7 set, and 484 * @new has bits 12 through 15 set. This defines the mapping of bit 485 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 486 * bit positions unchanged. So if say @src comes into this routine 487 * with bits 1, 5 and 7 set, then @dst should leave with bits 1, 488 * 13 and 15 set. 489 */ 490 void bitmap_remap(unsigned long *dst, const unsigned long *src, 491 const unsigned long *old, const unsigned long *new, 492 unsigned int nbits) 493 { 494 unsigned int oldbit, w; 495 496 if (dst == src) /* following doesn't handle inplace remaps */ 497 return; 498 bitmap_zero(dst, nbits); 499 500 w = bitmap_weight(new, nbits); 501 for_each_set_bit(oldbit, src, nbits) { 502 int n = bitmap_pos_to_ord(old, oldbit, nbits); 503 504 if (n < 0 || w == 0) 505 set_bit(oldbit, dst); /* identity map */ 506 else 507 set_bit(find_nth_bit(new, nbits, n % w), dst); 508 } 509 } 510 EXPORT_SYMBOL(bitmap_remap); 511 512 /** 513 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit 514 * @oldbit: bit position to be mapped 515 * @old: defines domain of map 516 * @new: defines range of map 517 * @bits: number of bits in each of these bitmaps 518 * 519 * Let @old and @new define a mapping of bit positions, such that 520 * whatever position is held by the n-th set bit in @old is mapped 521 * to the n-th set bit in @new. In the more general case, allowing 522 * for the possibility that the weight 'w' of @new is less than the 523 * weight of @old, map the position of the n-th set bit in @old to 524 * the position of the m-th set bit in @new, where m == n % w. 525 * 526 * The positions of unset bits in @old are mapped to themselves 527 * (the identity map). 528 * 529 * Apply the above specified mapping to bit position @oldbit, returning 530 * the new bit position. 531 * 532 * For example, lets say that @old has bits 4 through 7 set, and 533 * @new has bits 12 through 15 set. This defines the mapping of bit 534 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other 535 * bit positions unchanged. So if say @oldbit is 5, then this routine 536 * returns 13. 537 */ 538 int bitmap_bitremap(int oldbit, const unsigned long *old, 539 const unsigned long *new, int bits) 540 { 541 int w = bitmap_weight(new, bits); 542 int n = bitmap_pos_to_ord(old, oldbit, bits); 543 if (n < 0 || w == 0) 544 return oldbit; 545 else 546 return find_nth_bit(new, bits, n % w); 547 } 548 EXPORT_SYMBOL(bitmap_bitremap); 549 550 #ifdef CONFIG_NUMA 551 /** 552 * bitmap_onto - translate one bitmap relative to another 553 * @dst: resulting translated bitmap 554 * @orig: original untranslated bitmap 555 * @relmap: bitmap relative to which translated 556 * @bits: number of bits in each of these bitmaps 557 * 558 * Set the n-th bit of @dst iff there exists some m such that the 559 * n-th bit of @relmap is set, the m-th bit of @orig is set, and 560 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap. 561 * (If you understood the previous sentence the first time your 562 * read it, you're overqualified for your current job.) 563 * 564 * In other words, @orig is mapped onto (surjectively) @dst, 565 * using the map { <n, m> | the n-th bit of @relmap is the 566 * m-th set bit of @relmap }. 567 * 568 * Any set bits in @orig above bit number W, where W is the 569 * weight of (number of set bits in) @relmap are mapped nowhere. 570 * In particular, if for all bits m set in @orig, m >= W, then 571 * @dst will end up empty. In situations where the possibility 572 * of such an empty result is not desired, one way to avoid it is 573 * to use the bitmap_fold() operator, below, to first fold the 574 * @orig bitmap over itself so that all its set bits x are in the 575 * range 0 <= x < W. The bitmap_fold() operator does this by 576 * setting the bit (m % W) in @dst, for each bit (m) set in @orig. 577 * 578 * Example [1] for bitmap_onto(): 579 * Let's say @relmap has bits 30-39 set, and @orig has bits 580 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine, 581 * @dst will have bits 31, 33, 35, 37 and 39 set. 582 * 583 * When bit 0 is set in @orig, it means turn on the bit in 584 * @dst corresponding to whatever is the first bit (if any) 585 * that is turned on in @relmap. Since bit 0 was off in the 586 * above example, we leave off that bit (bit 30) in @dst. 587 * 588 * When bit 1 is set in @orig (as in the above example), it 589 * means turn on the bit in @dst corresponding to whatever 590 * is the second bit that is turned on in @relmap. The second 591 * bit in @relmap that was turned on in the above example was 592 * bit 31, so we turned on bit 31 in @dst. 593 * 594 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst, 595 * because they were the 4th, 6th, 8th and 10th set bits 596 * set in @relmap, and the 4th, 6th, 8th and 10th bits of 597 * @orig (i.e. bits 3, 5, 7 and 9) were also set. 598 * 599 * When bit 11 is set in @orig, it means turn on the bit in 600 * @dst corresponding to whatever is the twelfth bit that is 601 * turned on in @relmap. In the above example, there were 602 * only ten bits turned on in @relmap (30..39), so that bit 603 * 11 was set in @orig had no affect on @dst. 604 * 605 * Example [2] for bitmap_fold() + bitmap_onto(): 606 * Let's say @relmap has these ten bits set:: 607 * 608 * 40 41 42 43 45 48 53 61 74 95 609 * 610 * (for the curious, that's 40 plus the first ten terms of the 611 * Fibonacci sequence.) 612 * 613 * Further lets say we use the following code, invoking 614 * bitmap_fold() then bitmap_onto, as suggested above to 615 * avoid the possibility of an empty @dst result:: 616 * 617 * unsigned long *tmp; // a temporary bitmap's bits 618 * 619 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits); 620 * bitmap_onto(dst, tmp, relmap, bits); 621 * 622 * Then this table shows what various values of @dst would be, for 623 * various @orig's. I list the zero-based positions of each set bit. 624 * The tmp column shows the intermediate result, as computed by 625 * using bitmap_fold() to fold the @orig bitmap modulo ten 626 * (the weight of @relmap): 627 * 628 * =============== ============== ================= 629 * @orig tmp @dst 630 * 0 0 40 631 * 1 1 41 632 * 9 9 95 633 * 10 0 40 [#f1]_ 634 * 1 3 5 7 1 3 5 7 41 43 48 61 635 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45 636 * 0 9 18 27 0 9 8 7 40 61 74 95 637 * 0 10 20 30 0 40 638 * 0 11 22 33 0 1 2 3 40 41 42 43 639 * 0 12 24 36 0 2 4 6 40 42 45 53 640 * 78 102 211 1 2 8 41 42 74 [#f1]_ 641 * =============== ============== ================= 642 * 643 * .. [#f1] 644 * 645 * For these marked lines, if we hadn't first done bitmap_fold() 646 * into tmp, then the @dst result would have been empty. 647 * 648 * If either of @orig or @relmap is empty (no set bits), then @dst 649 * will be returned empty. 650 * 651 * If (as explained above) the only set bits in @orig are in positions 652 * m where m >= W, (where W is the weight of @relmap) then @dst will 653 * once again be returned empty. 654 * 655 * All bits in @dst not set by the above rule are cleared. 656 */ 657 void bitmap_onto(unsigned long *dst, const unsigned long *orig, 658 const unsigned long *relmap, unsigned int bits) 659 { 660 unsigned int n, m; /* same meaning as in above comment */ 661 662 if (dst == orig) /* following doesn't handle inplace mappings */ 663 return; 664 bitmap_zero(dst, bits); 665 666 /* 667 * The following code is a more efficient, but less 668 * obvious, equivalent to the loop: 669 * for (m = 0; m < bitmap_weight(relmap, bits); m++) { 670 * n = find_nth_bit(orig, bits, m); 671 * if (test_bit(m, orig)) 672 * set_bit(n, dst); 673 * } 674 */ 675 676 m = 0; 677 for_each_set_bit(n, relmap, bits) { 678 /* m == bitmap_pos_to_ord(relmap, n, bits) */ 679 if (test_bit(m, orig)) 680 set_bit(n, dst); 681 m++; 682 } 683 } 684 685 /** 686 * bitmap_fold - fold larger bitmap into smaller, modulo specified size 687 * @dst: resulting smaller bitmap 688 * @orig: original larger bitmap 689 * @sz: specified size 690 * @nbits: number of bits in each of these bitmaps 691 * 692 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst. 693 * Clear all other bits in @dst. See further the comment and 694 * Example [2] for bitmap_onto() for why and how to use this. 695 */ 696 void bitmap_fold(unsigned long *dst, const unsigned long *orig, 697 unsigned int sz, unsigned int nbits) 698 { 699 unsigned int oldbit; 700 701 if (dst == orig) /* following doesn't handle inplace mappings */ 702 return; 703 bitmap_zero(dst, nbits); 704 705 for_each_set_bit(oldbit, orig, nbits) 706 set_bit(oldbit % sz, dst); 707 } 708 #endif /* CONFIG_NUMA */ 709 710 unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags) 711 { 712 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long), 713 flags); 714 } 715 EXPORT_SYMBOL(bitmap_alloc); 716 717 unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags) 718 { 719 return bitmap_alloc(nbits, flags | __GFP_ZERO); 720 } 721 EXPORT_SYMBOL(bitmap_zalloc); 722 723 unsigned long *bitmap_alloc_node(unsigned int nbits, gfp_t flags, int node) 724 { 725 return kmalloc_array_node(BITS_TO_LONGS(nbits), sizeof(unsigned long), 726 flags, node); 727 } 728 EXPORT_SYMBOL(bitmap_alloc_node); 729 730 unsigned long *bitmap_zalloc_node(unsigned int nbits, gfp_t flags, int node) 731 { 732 return bitmap_alloc_node(nbits, flags | __GFP_ZERO, node); 733 } 734 EXPORT_SYMBOL(bitmap_zalloc_node); 735 736 void bitmap_free(const unsigned long *bitmap) 737 { 738 kfree(bitmap); 739 } 740 EXPORT_SYMBOL(bitmap_free); 741 742 static void devm_bitmap_free(void *data) 743 { 744 unsigned long *bitmap = data; 745 746 bitmap_free(bitmap); 747 } 748 749 unsigned long *devm_bitmap_alloc(struct device *dev, 750 unsigned int nbits, gfp_t flags) 751 { 752 unsigned long *bitmap; 753 int ret; 754 755 bitmap = bitmap_alloc(nbits, flags); 756 if (!bitmap) 757 return NULL; 758 759 ret = devm_add_action_or_reset(dev, devm_bitmap_free, bitmap); 760 if (ret) 761 return NULL; 762 763 return bitmap; 764 } 765 EXPORT_SYMBOL_GPL(devm_bitmap_alloc); 766 767 unsigned long *devm_bitmap_zalloc(struct device *dev, 768 unsigned int nbits, gfp_t flags) 769 { 770 return devm_bitmap_alloc(dev, nbits, flags | __GFP_ZERO); 771 } 772 EXPORT_SYMBOL_GPL(devm_bitmap_zalloc); 773 774 #if BITS_PER_LONG == 64 775 /** 776 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap 777 * @bitmap: array of unsigned longs, the destination bitmap 778 * @buf: array of u32 (in host byte order), the source bitmap 779 * @nbits: number of bits in @bitmap 780 */ 781 void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits) 782 { 783 unsigned int i, halfwords; 784 785 halfwords = DIV_ROUND_UP(nbits, 32); 786 for (i = 0; i < halfwords; i++) { 787 bitmap[i/2] = (unsigned long) buf[i]; 788 if (++i < halfwords) 789 bitmap[i/2] |= ((unsigned long) buf[i]) << 32; 790 } 791 792 /* Clear tail bits in last word beyond nbits. */ 793 if (nbits % BITS_PER_LONG) 794 bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits); 795 } 796 EXPORT_SYMBOL(bitmap_from_arr32); 797 798 /** 799 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits 800 * @buf: array of u32 (in host byte order), the dest bitmap 801 * @bitmap: array of unsigned longs, the source bitmap 802 * @nbits: number of bits in @bitmap 803 */ 804 void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits) 805 { 806 unsigned int i, halfwords; 807 808 halfwords = DIV_ROUND_UP(nbits, 32); 809 for (i = 0; i < halfwords; i++) { 810 buf[i] = (u32) (bitmap[i/2] & UINT_MAX); 811 if (++i < halfwords) 812 buf[i] = (u32) (bitmap[i/2] >> 32); 813 } 814 815 /* Clear tail bits in last element of array beyond nbits. */ 816 if (nbits % BITS_PER_LONG) 817 buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31)); 818 } 819 EXPORT_SYMBOL(bitmap_to_arr32); 820 #endif 821 822 #if BITS_PER_LONG == 32 823 /** 824 * bitmap_from_arr64 - copy the contents of u64 array of bits to bitmap 825 * @bitmap: array of unsigned longs, the destination bitmap 826 * @buf: array of u64 (in host byte order), the source bitmap 827 * @nbits: number of bits in @bitmap 828 */ 829 void bitmap_from_arr64(unsigned long *bitmap, const u64 *buf, unsigned int nbits) 830 { 831 int n; 832 833 for (n = nbits; n > 0; n -= 64) { 834 u64 val = *buf++; 835 836 *bitmap++ = val; 837 if (n > 32) 838 *bitmap++ = val >> 32; 839 } 840 841 /* 842 * Clear tail bits in the last word beyond nbits. 843 * 844 * Negative index is OK because here we point to the word next 845 * to the last word of the bitmap, except for nbits == 0, which 846 * is tested implicitly. 847 */ 848 if (nbits % BITS_PER_LONG) 849 bitmap[-1] &= BITMAP_LAST_WORD_MASK(nbits); 850 } 851 EXPORT_SYMBOL(bitmap_from_arr64); 852 853 /** 854 * bitmap_to_arr64 - copy the contents of bitmap to a u64 array of bits 855 * @buf: array of u64 (in host byte order), the dest bitmap 856 * @bitmap: array of unsigned longs, the source bitmap 857 * @nbits: number of bits in @bitmap 858 */ 859 void bitmap_to_arr64(u64 *buf, const unsigned long *bitmap, unsigned int nbits) 860 { 861 const unsigned long *end = bitmap + BITS_TO_LONGS(nbits); 862 863 while (bitmap < end) { 864 *buf = *bitmap++; 865 if (bitmap < end) 866 *buf |= (u64)(*bitmap++) << 32; 867 buf++; 868 } 869 870 /* Clear tail bits in the last element of array beyond nbits. */ 871 if (nbits % 64) 872 buf[-1] &= GENMASK_ULL((nbits - 1) % 64, 0); 873 } 874 EXPORT_SYMBOL(bitmap_to_arr64); 875 #endif 876