xref: /linux/lib/bitmap.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  * lib/bitmap.c
3  * Helper functions for bitmap.h.
4  *
5  * This source code is licensed under the GNU General Public License,
6  * Version 2.  See the file COPYING for more details.
7  */
8 #include <linux/module.h>
9 #include <linux/ctype.h>
10 #include <linux/errno.h>
11 #include <linux/bitmap.h>
12 #include <linux/bitops.h>
13 #include <asm/uaccess.h>
14 
15 /*
16  * bitmaps provide an array of bits, implemented using an an
17  * array of unsigned longs.  The number of valid bits in a
18  * given bitmap does _not_ need to be an exact multiple of
19  * BITS_PER_LONG.
20  *
21  * The possible unused bits in the last, partially used word
22  * of a bitmap are 'don't care'.  The implementation makes
23  * no particular effort to keep them zero.  It ensures that
24  * their value will not affect the results of any operation.
25  * The bitmap operations that return Boolean (bitmap_empty,
26  * for example) or scalar (bitmap_weight, for example) results
27  * carefully filter out these unused bits from impacting their
28  * results.
29  *
30  * These operations actually hold to a slightly stronger rule:
31  * if you don't input any bitmaps to these ops that have some
32  * unused bits set, then they won't output any set unused bits
33  * in output bitmaps.
34  *
35  * The byte ordering of bitmaps is more natural on little
36  * endian architectures.  See the big-endian headers
37  * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
38  * for the best explanations of this ordering.
39  */
40 
41 int __bitmap_empty(const unsigned long *bitmap, int bits)
42 {
43 	int k, lim = bits/BITS_PER_LONG;
44 	for (k = 0; k < lim; ++k)
45 		if (bitmap[k])
46 			return 0;
47 
48 	if (bits % BITS_PER_LONG)
49 		if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
50 			return 0;
51 
52 	return 1;
53 }
54 EXPORT_SYMBOL(__bitmap_empty);
55 
56 int __bitmap_full(const unsigned long *bitmap, int bits)
57 {
58 	int k, lim = bits/BITS_PER_LONG;
59 	for (k = 0; k < lim; ++k)
60 		if (~bitmap[k])
61 			return 0;
62 
63 	if (bits % BITS_PER_LONG)
64 		if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
65 			return 0;
66 
67 	return 1;
68 }
69 EXPORT_SYMBOL(__bitmap_full);
70 
71 int __bitmap_equal(const unsigned long *bitmap1,
72 		const unsigned long *bitmap2, int bits)
73 {
74 	int k, lim = bits/BITS_PER_LONG;
75 	for (k = 0; k < lim; ++k)
76 		if (bitmap1[k] != bitmap2[k])
77 			return 0;
78 
79 	if (bits % BITS_PER_LONG)
80 		if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
81 			return 0;
82 
83 	return 1;
84 }
85 EXPORT_SYMBOL(__bitmap_equal);
86 
87 void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
88 {
89 	int k, lim = bits/BITS_PER_LONG;
90 	for (k = 0; k < lim; ++k)
91 		dst[k] = ~src[k];
92 
93 	if (bits % BITS_PER_LONG)
94 		dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
95 }
96 EXPORT_SYMBOL(__bitmap_complement);
97 
98 /*
99  * __bitmap_shift_right - logical right shift of the bits in a bitmap
100  *   @dst - destination bitmap
101  *   @src - source bitmap
102  *   @nbits - shift by this many bits
103  *   @bits - bitmap size, in bits
104  *
105  * Shifting right (dividing) means moving bits in the MS -> LS bit
106  * direction.  Zeros are fed into the vacated MS positions and the
107  * LS bits shifted off the bottom are lost.
108  */
109 void __bitmap_shift_right(unsigned long *dst,
110 			const unsigned long *src, int shift, int bits)
111 {
112 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
113 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
114 	unsigned long mask = (1UL << left) - 1;
115 	for (k = 0; off + k < lim; ++k) {
116 		unsigned long upper, lower;
117 
118 		/*
119 		 * If shift is not word aligned, take lower rem bits of
120 		 * word above and make them the top rem bits of result.
121 		 */
122 		if (!rem || off + k + 1 >= lim)
123 			upper = 0;
124 		else {
125 			upper = src[off + k + 1];
126 			if (off + k + 1 == lim - 1 && left)
127 				upper &= mask;
128 		}
129 		lower = src[off + k];
130 		if (left && off + k == lim - 1)
131 			lower &= mask;
132 		dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
133 		if (left && k == lim - 1)
134 			dst[k] &= mask;
135 	}
136 	if (off)
137 		memset(&dst[lim - off], 0, off*sizeof(unsigned long));
138 }
139 EXPORT_SYMBOL(__bitmap_shift_right);
140 
141 
142 /*
143  * __bitmap_shift_left - logical left shift of the bits in a bitmap
144  *   @dst - destination bitmap
145  *   @src - source bitmap
146  *   @nbits - shift by this many bits
147  *   @bits - bitmap size, in bits
148  *
149  * Shifting left (multiplying) means moving bits in the LS -> MS
150  * direction.  Zeros are fed into the vacated LS bit positions
151  * and those MS bits shifted off the top are lost.
152  */
153 
154 void __bitmap_shift_left(unsigned long *dst,
155 			const unsigned long *src, int shift, int bits)
156 {
157 	int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
158 	int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
159 	for (k = lim - off - 1; k >= 0; --k) {
160 		unsigned long upper, lower;
161 
162 		/*
163 		 * If shift is not word aligned, take upper rem bits of
164 		 * word below and make them the bottom rem bits of result.
165 		 */
166 		if (rem && k > 0)
167 			lower = src[k - 1];
168 		else
169 			lower = 0;
170 		upper = src[k];
171 		if (left && k == lim - 1)
172 			upper &= (1UL << left) - 1;
173 		dst[k + off] = lower  >> (BITS_PER_LONG - rem) | upper << rem;
174 		if (left && k + off == lim - 1)
175 			dst[k + off] &= (1UL << left) - 1;
176 	}
177 	if (off)
178 		memset(dst, 0, off*sizeof(unsigned long));
179 }
180 EXPORT_SYMBOL(__bitmap_shift_left);
181 
182 void __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
183 				const unsigned long *bitmap2, int bits)
184 {
185 	int k;
186 	int nr = BITS_TO_LONGS(bits);
187 
188 	for (k = 0; k < nr; k++)
189 		dst[k] = bitmap1[k] & bitmap2[k];
190 }
191 EXPORT_SYMBOL(__bitmap_and);
192 
193 void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
194 				const unsigned long *bitmap2, int bits)
195 {
196 	int k;
197 	int nr = BITS_TO_LONGS(bits);
198 
199 	for (k = 0; k < nr; k++)
200 		dst[k] = bitmap1[k] | bitmap2[k];
201 }
202 EXPORT_SYMBOL(__bitmap_or);
203 
204 void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
205 				const unsigned long *bitmap2, int bits)
206 {
207 	int k;
208 	int nr = BITS_TO_LONGS(bits);
209 
210 	for (k = 0; k < nr; k++)
211 		dst[k] = bitmap1[k] ^ bitmap2[k];
212 }
213 EXPORT_SYMBOL(__bitmap_xor);
214 
215 void __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
216 				const unsigned long *bitmap2, int bits)
217 {
218 	int k;
219 	int nr = BITS_TO_LONGS(bits);
220 
221 	for (k = 0; k < nr; k++)
222 		dst[k] = bitmap1[k] & ~bitmap2[k];
223 }
224 EXPORT_SYMBOL(__bitmap_andnot);
225 
226 int __bitmap_intersects(const unsigned long *bitmap1,
227 				const unsigned long *bitmap2, int bits)
228 {
229 	int k, lim = bits/BITS_PER_LONG;
230 	for (k = 0; k < lim; ++k)
231 		if (bitmap1[k] & bitmap2[k])
232 			return 1;
233 
234 	if (bits % BITS_PER_LONG)
235 		if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
236 			return 1;
237 	return 0;
238 }
239 EXPORT_SYMBOL(__bitmap_intersects);
240 
241 int __bitmap_subset(const unsigned long *bitmap1,
242 				const unsigned long *bitmap2, int bits)
243 {
244 	int k, lim = bits/BITS_PER_LONG;
245 	for (k = 0; k < lim; ++k)
246 		if (bitmap1[k] & ~bitmap2[k])
247 			return 0;
248 
249 	if (bits % BITS_PER_LONG)
250 		if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
251 			return 0;
252 	return 1;
253 }
254 EXPORT_SYMBOL(__bitmap_subset);
255 
256 int __bitmap_weight(const unsigned long *bitmap, int bits)
257 {
258 	int k, w = 0, lim = bits/BITS_PER_LONG;
259 
260 	for (k = 0; k < lim; k++)
261 		w += hweight_long(bitmap[k]);
262 
263 	if (bits % BITS_PER_LONG)
264 		w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
265 
266 	return w;
267 }
268 EXPORT_SYMBOL(__bitmap_weight);
269 
270 /*
271  * Bitmap printing & parsing functions: first version by Bill Irwin,
272  * second version by Paul Jackson, third by Joe Korty.
273  */
274 
275 #define CHUNKSZ				32
276 #define nbits_to_hold_value(val)	fls(val)
277 #define unhex(c)			(isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10))
278 #define BASEDEC 10		/* fancier cpuset lists input in decimal */
279 
280 /**
281  * bitmap_scnprintf - convert bitmap to an ASCII hex string.
282  * @buf: byte buffer into which string is placed
283  * @buflen: reserved size of @buf, in bytes
284  * @maskp: pointer to bitmap to convert
285  * @nmaskbits: size of bitmap, in bits
286  *
287  * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into
288  * comma-separated sets of eight digits per set.
289  */
290 int bitmap_scnprintf(char *buf, unsigned int buflen,
291 	const unsigned long *maskp, int nmaskbits)
292 {
293 	int i, word, bit, len = 0;
294 	unsigned long val;
295 	const char *sep = "";
296 	int chunksz;
297 	u32 chunkmask;
298 
299 	chunksz = nmaskbits & (CHUNKSZ - 1);
300 	if (chunksz == 0)
301 		chunksz = CHUNKSZ;
302 
303 	i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
304 	for (; i >= 0; i -= CHUNKSZ) {
305 		chunkmask = ((1ULL << chunksz) - 1);
306 		word = i / BITS_PER_LONG;
307 		bit = i % BITS_PER_LONG;
308 		val = (maskp[word] >> bit) & chunkmask;
309 		len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
310 			(chunksz+3)/4, val);
311 		chunksz = CHUNKSZ;
312 		sep = ",";
313 	}
314 	return len;
315 }
316 EXPORT_SYMBOL(bitmap_scnprintf);
317 
318 /**
319  * bitmap_parse - convert an ASCII hex string into a bitmap.
320  * @ubuf: pointer to buffer in user space containing string.
321  * @ubuflen: buffer size in bytes.  If string is smaller than this
322  *    then it must be terminated with a \0.
323  * @maskp: pointer to bitmap array that will contain result.
324  * @nmaskbits: size of bitmap, in bits.
325  *
326  * Commas group hex digits into chunks.  Each chunk defines exactly 32
327  * bits of the resultant bitmask.  No chunk may specify a value larger
328  * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
329  * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
330  * characters and for grouping errors such as "1,,5", ",44", "," and "".
331  * Leading and trailing whitespace accepted, but not embedded whitespace.
332  */
333 int bitmap_parse(const char __user *ubuf, unsigned int ubuflen,
334         unsigned long *maskp, int nmaskbits)
335 {
336 	int c, old_c, totaldigits, ndigits, nchunks, nbits;
337 	u32 chunk;
338 
339 	bitmap_zero(maskp, nmaskbits);
340 
341 	nchunks = nbits = totaldigits = c = 0;
342 	do {
343 		chunk = ndigits = 0;
344 
345 		/* Get the next chunk of the bitmap */
346 		while (ubuflen) {
347 			old_c = c;
348 			if (get_user(c, ubuf++))
349 				return -EFAULT;
350 			ubuflen--;
351 			if (isspace(c))
352 				continue;
353 
354 			/*
355 			 * If the last character was a space and the current
356 			 * character isn't '\0', we've got embedded whitespace.
357 			 * This is a no-no, so throw an error.
358 			 */
359 			if (totaldigits && c && isspace(old_c))
360 				return -EINVAL;
361 
362 			/* A '\0' or a ',' signal the end of the chunk */
363 			if (c == '\0' || c == ',')
364 				break;
365 
366 			if (!isxdigit(c))
367 				return -EINVAL;
368 
369 			/*
370 			 * Make sure there are at least 4 free bits in 'chunk'.
371 			 * If not, this hexdigit will overflow 'chunk', so
372 			 * throw an error.
373 			 */
374 			if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
375 				return -EOVERFLOW;
376 
377 			chunk = (chunk << 4) | unhex(c);
378 			ndigits++; totaldigits++;
379 		}
380 		if (ndigits == 0)
381 			return -EINVAL;
382 		if (nchunks == 0 && chunk == 0)
383 			continue;
384 
385 		__bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
386 		*maskp |= chunk;
387 		nchunks++;
388 		nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
389 		if (nbits > nmaskbits)
390 			return -EOVERFLOW;
391 	} while (ubuflen && c == ',');
392 
393 	return 0;
394 }
395 EXPORT_SYMBOL(bitmap_parse);
396 
397 /*
398  * bscnl_emit(buf, buflen, rbot, rtop, bp)
399  *
400  * Helper routine for bitmap_scnlistprintf().  Write decimal number
401  * or range to buf, suppressing output past buf+buflen, with optional
402  * comma-prefix.  Return len of what would be written to buf, if it
403  * all fit.
404  */
405 static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
406 {
407 	if (len > 0)
408 		len += scnprintf(buf + len, buflen - len, ",");
409 	if (rbot == rtop)
410 		len += scnprintf(buf + len, buflen - len, "%d", rbot);
411 	else
412 		len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
413 	return len;
414 }
415 
416 /**
417  * bitmap_scnlistprintf - convert bitmap to list format ASCII string
418  * @buf: byte buffer into which string is placed
419  * @buflen: reserved size of @buf, in bytes
420  * @maskp: pointer to bitmap to convert
421  * @nmaskbits: size of bitmap, in bits
422  *
423  * Output format is a comma-separated list of decimal numbers and
424  * ranges.  Consecutively set bits are shown as two hyphen-separated
425  * decimal numbers, the smallest and largest bit numbers set in
426  * the range.  Output format is compatible with the format
427  * accepted as input by bitmap_parselist().
428  *
429  * The return value is the number of characters which would be
430  * generated for the given input, excluding the trailing '\0', as
431  * per ISO C99.
432  */
433 int bitmap_scnlistprintf(char *buf, unsigned int buflen,
434 	const unsigned long *maskp, int nmaskbits)
435 {
436 	int len = 0;
437 	/* current bit is 'cur', most recently seen range is [rbot, rtop] */
438 	int cur, rbot, rtop;
439 
440 	rbot = cur = find_first_bit(maskp, nmaskbits);
441 	while (cur < nmaskbits) {
442 		rtop = cur;
443 		cur = find_next_bit(maskp, nmaskbits, cur+1);
444 		if (cur >= nmaskbits || cur > rtop + 1) {
445 			len = bscnl_emit(buf, buflen, rbot, rtop, len);
446 			rbot = cur;
447 		}
448 	}
449 	return len;
450 }
451 EXPORT_SYMBOL(bitmap_scnlistprintf);
452 
453 /**
454  * bitmap_parselist - convert list format ASCII string to bitmap
455  * @bp: read nul-terminated user string from this buffer
456  * @maskp: write resulting mask here
457  * @nmaskbits: number of bits in mask to be written
458  *
459  * Input format is a comma-separated list of decimal numbers and
460  * ranges.  Consecutively set bits are shown as two hyphen-separated
461  * decimal numbers, the smallest and largest bit numbers set in
462  * the range.
463  *
464  * Returns 0 on success, -errno on invalid input strings.
465  * Error values:
466  *    %-EINVAL: second number in range smaller than first
467  *    %-EINVAL: invalid character in string
468  *    %-ERANGE: bit number specified too large for mask
469  */
470 int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
471 {
472 	unsigned a, b;
473 
474 	bitmap_zero(maskp, nmaskbits);
475 	do {
476 		if (!isdigit(*bp))
477 			return -EINVAL;
478 		b = a = simple_strtoul(bp, (char **)&bp, BASEDEC);
479 		if (*bp == '-') {
480 			bp++;
481 			if (!isdigit(*bp))
482 				return -EINVAL;
483 			b = simple_strtoul(bp, (char **)&bp, BASEDEC);
484 		}
485 		if (!(a <= b))
486 			return -EINVAL;
487 		if (b >= nmaskbits)
488 			return -ERANGE;
489 		while (a <= b) {
490 			set_bit(a, maskp);
491 			a++;
492 		}
493 		if (*bp == ',')
494 			bp++;
495 	} while (*bp != '\0' && *bp != '\n');
496 	return 0;
497 }
498 EXPORT_SYMBOL(bitmap_parselist);
499 
500 /*
501  * bitmap_pos_to_ord(buf, pos, bits)
502  *	@buf: pointer to a bitmap
503  *	@pos: a bit position in @buf (0 <= @pos < @bits)
504  *	@bits: number of valid bit positions in @buf
505  *
506  * Map the bit at position @pos in @buf (of length @bits) to the
507  * ordinal of which set bit it is.  If it is not set or if @pos
508  * is not a valid bit position, map to -1.
509  *
510  * If for example, just bits 4 through 7 are set in @buf, then @pos
511  * values 4 through 7 will get mapped to 0 through 3, respectively,
512  * and other @pos values will get mapped to 0.  When @pos value 7
513  * gets mapped to (returns) @ord value 3 in this example, that means
514  * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
515  *
516  * The bit positions 0 through @bits are valid positions in @buf.
517  */
518 static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
519 {
520 	int i, ord;
521 
522 	if (pos < 0 || pos >= bits || !test_bit(pos, buf))
523 		return -1;
524 
525 	i = find_first_bit(buf, bits);
526 	ord = 0;
527 	while (i < pos) {
528 		i = find_next_bit(buf, bits, i + 1);
529 	     	ord++;
530 	}
531 	BUG_ON(i != pos);
532 
533 	return ord;
534 }
535 
536 /**
537  * bitmap_ord_to_pos(buf, ord, bits)
538  *	@buf: pointer to bitmap
539  *	@ord: ordinal bit position (n-th set bit, n >= 0)
540  *	@bits: number of valid bit positions in @buf
541  *
542  * Map the ordinal offset of bit @ord in @buf to its position in @buf.
543  * Value of @ord should be in range 0 <= @ord < weight(buf), else
544  * results are undefined.
545  *
546  * If for example, just bits 4 through 7 are set in @buf, then @ord
547  * values 0 through 3 will get mapped to 4 through 7, respectively,
548  * and all other @ord values return undefined values.  When @ord value 3
549  * gets mapped to (returns) @pos value 7 in this example, that means
550  * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
551  *
552  * The bit positions 0 through @bits are valid positions in @buf.
553  */
554 static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
555 {
556 	int pos = 0;
557 
558 	if (ord >= 0 && ord < bits) {
559 		int i;
560 
561 		for (i = find_first_bit(buf, bits);
562 		     i < bits && ord > 0;
563 		     i = find_next_bit(buf, bits, i + 1))
564 	     		ord--;
565 		if (i < bits && ord == 0)
566 			pos = i;
567 	}
568 
569 	return pos;
570 }
571 
572 /**
573  * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
574  *	@dst: remapped result
575  *	@src: subset to be remapped
576  *	@old: defines domain of map
577  *	@new: defines range of map
578  *	@bits: number of bits in each of these bitmaps
579  *
580  * Let @old and @new define a mapping of bit positions, such that
581  * whatever position is held by the n-th set bit in @old is mapped
582  * to the n-th set bit in @new.  In the more general case, allowing
583  * for the possibility that the weight 'w' of @new is less than the
584  * weight of @old, map the position of the n-th set bit in @old to
585  * the position of the m-th set bit in @new, where m == n % w.
586  *
587  * If either of the @old and @new bitmaps are empty, or if @src and
588  * @dst point to the same location, then this routine copies @src
589  * to @dst.
590  *
591  * The positions of unset bits in @old are mapped to themselves
592  * (the identify map).
593  *
594  * Apply the above specified mapping to @src, placing the result in
595  * @dst, clearing any bits previously set in @dst.
596  *
597  * For example, lets say that @old has bits 4 through 7 set, and
598  * @new has bits 12 through 15 set.  This defines the mapping of bit
599  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
600  * bit positions unchanged.  So if say @src comes into this routine
601  * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
602  * 13 and 15 set.
603  */
604 void bitmap_remap(unsigned long *dst, const unsigned long *src,
605 		const unsigned long *old, const unsigned long *new,
606 		int bits)
607 {
608 	int oldbit, w;
609 
610 	if (dst == src)		/* following doesn't handle inplace remaps */
611 		return;
612 	bitmap_zero(dst, bits);
613 
614 	w = bitmap_weight(new, bits);
615 	for (oldbit = find_first_bit(src, bits);
616 	     oldbit < bits;
617 	     oldbit = find_next_bit(src, bits, oldbit + 1)) {
618 	     	int n = bitmap_pos_to_ord(old, oldbit, bits);
619 		if (n < 0 || w == 0)
620 			set_bit(oldbit, dst);	/* identity map */
621 		else
622 			set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
623 	}
624 }
625 EXPORT_SYMBOL(bitmap_remap);
626 
627 /**
628  * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
629  *	@oldbit: bit position to be mapped
630  *	@old: defines domain of map
631  *	@new: defines range of map
632  *	@bits: number of bits in each of these bitmaps
633  *
634  * Let @old and @new define a mapping of bit positions, such that
635  * whatever position is held by the n-th set bit in @old is mapped
636  * to the n-th set bit in @new.  In the more general case, allowing
637  * for the possibility that the weight 'w' of @new is less than the
638  * weight of @old, map the position of the n-th set bit in @old to
639  * the position of the m-th set bit in @new, where m == n % w.
640  *
641  * The positions of unset bits in @old are mapped to themselves
642  * (the identify map).
643  *
644  * Apply the above specified mapping to bit position @oldbit, returning
645  * the new bit position.
646  *
647  * For example, lets say that @old has bits 4 through 7 set, and
648  * @new has bits 12 through 15 set.  This defines the mapping of bit
649  * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
650  * bit positions unchanged.  So if say @oldbit is 5, then this routine
651  * returns 13.
652  */
653 int bitmap_bitremap(int oldbit, const unsigned long *old,
654 				const unsigned long *new, int bits)
655 {
656 	int w = bitmap_weight(new, bits);
657 	int n = bitmap_pos_to_ord(old, oldbit, bits);
658 	if (n < 0 || w == 0)
659 		return oldbit;
660 	else
661 		return bitmap_ord_to_pos(new, n % w, bits);
662 }
663 EXPORT_SYMBOL(bitmap_bitremap);
664 
665 /*
666  * Common code for bitmap_*_region() routines.
667  *	bitmap: array of unsigned longs corresponding to the bitmap
668  *	pos: the beginning of the region
669  *	order: region size (log base 2 of number of bits)
670  *	reg_op: operation(s) to perform on that region of bitmap
671  *
672  * Can set, verify and/or release a region of bits in a bitmap,
673  * depending on which combination of REG_OP_* flag bits is set.
674  *
675  * A region of a bitmap is a sequence of bits in the bitmap, of
676  * some size '1 << order' (a power of two), aligned to that same
677  * '1 << order' power of two.
678  *
679  * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
680  * Returns 0 in all other cases and reg_ops.
681  */
682 
683 enum {
684 	REG_OP_ISFREE,		/* true if region is all zero bits */
685 	REG_OP_ALLOC,		/* set all bits in region */
686 	REG_OP_RELEASE,		/* clear all bits in region */
687 };
688 
689 static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
690 {
691 	int nbits_reg;		/* number of bits in region */
692 	int index;		/* index first long of region in bitmap */
693 	int offset;		/* bit offset region in bitmap[index] */
694 	int nlongs_reg;		/* num longs spanned by region in bitmap */
695 	int nbitsinlong;	/* num bits of region in each spanned long */
696 	unsigned long mask;	/* bitmask for one long of region */
697 	int i;			/* scans bitmap by longs */
698 	int ret = 0;		/* return value */
699 
700 	/*
701 	 * Either nlongs_reg == 1 (for small orders that fit in one long)
702 	 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
703 	 */
704 	nbits_reg = 1 << order;
705 	index = pos / BITS_PER_LONG;
706 	offset = pos - (index * BITS_PER_LONG);
707 	nlongs_reg = BITS_TO_LONGS(nbits_reg);
708 	nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
709 
710 	/*
711 	 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
712 	 * overflows if nbitsinlong == BITS_PER_LONG.
713 	 */
714 	mask = (1UL << (nbitsinlong - 1));
715 	mask += mask - 1;
716 	mask <<= offset;
717 
718 	switch (reg_op) {
719 	case REG_OP_ISFREE:
720 		for (i = 0; i < nlongs_reg; i++) {
721 			if (bitmap[index + i] & mask)
722 				goto done;
723 		}
724 		ret = 1;	/* all bits in region free (zero) */
725 		break;
726 
727 	case REG_OP_ALLOC:
728 		for (i = 0; i < nlongs_reg; i++)
729 			bitmap[index + i] |= mask;
730 		break;
731 
732 	case REG_OP_RELEASE:
733 		for (i = 0; i < nlongs_reg; i++)
734 			bitmap[index + i] &= ~mask;
735 		break;
736 	}
737 done:
738 	return ret;
739 }
740 
741 /**
742  * bitmap_find_free_region - find a contiguous aligned mem region
743  *	@bitmap: array of unsigned longs corresponding to the bitmap
744  *	@bits: number of bits in the bitmap
745  *	@order: region size (log base 2 of number of bits) to find
746  *
747  * Find a region of free (zero) bits in a @bitmap of @bits bits and
748  * allocate them (set them to one).  Only consider regions of length
749  * a power (@order) of two, aligned to that power of two, which
750  * makes the search algorithm much faster.
751  *
752  * Return the bit offset in bitmap of the allocated region,
753  * or -errno on failure.
754  */
755 int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
756 {
757 	int pos;		/* scans bitmap by regions of size order */
758 
759 	for (pos = 0; pos < bits; pos += (1 << order))
760 		if (__reg_op(bitmap, pos, order, REG_OP_ISFREE))
761 			break;
762 	if (pos == bits)
763 		return -ENOMEM;
764 	__reg_op(bitmap, pos, order, REG_OP_ALLOC);
765 	return pos;
766 }
767 EXPORT_SYMBOL(bitmap_find_free_region);
768 
769 /**
770  * bitmap_release_region - release allocated bitmap region
771  *	@bitmap: array of unsigned longs corresponding to the bitmap
772  *	@pos: beginning of bit region to release
773  *	@order: region size (log base 2 of number of bits) to release
774  *
775  * This is the complement to __bitmap_find_free_region and releases
776  * the found region (by clearing it in the bitmap).
777  *
778  * No return value.
779  */
780 void bitmap_release_region(unsigned long *bitmap, int pos, int order)
781 {
782 	__reg_op(bitmap, pos, order, REG_OP_RELEASE);
783 }
784 EXPORT_SYMBOL(bitmap_release_region);
785 
786 /**
787  * bitmap_allocate_region - allocate bitmap region
788  *	@bitmap: array of unsigned longs corresponding to the bitmap
789  *	@pos: beginning of bit region to allocate
790  *	@order: region size (log base 2 of number of bits) to allocate
791  *
792  * Allocate (set bits in) a specified region of a bitmap.
793  *
794  * Return 0 on success, or %-EBUSY if specified region wasn't
795  * free (not all bits were zero).
796  */
797 int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
798 {
799 	if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
800 		return -EBUSY;
801 	__reg_op(bitmap, pos, order, REG_OP_ALLOC);
802 	return 0;
803 }
804 EXPORT_SYMBOL(bitmap_allocate_region);
805