xref: /linux/lib/assoc_array.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 /* Generic associative array implementation.
2  *
3  * See Documentation/assoc_array.txt for information.
4  *
5  * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
6  * Written by David Howells (dhowells@redhat.com)
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public Licence
10  * as published by the Free Software Foundation; either version
11  * 2 of the Licence, or (at your option) any later version.
12  */
13 //#define DEBUG
14 #include <linux/rcupdate.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/assoc_array_priv.h>
18 
19 /*
20  * Iterate over an associative array.  The caller must hold the RCU read lock
21  * or better.
22  */
23 static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root,
24 				       const struct assoc_array_ptr *stop,
25 				       int (*iterator)(const void *leaf,
26 						       void *iterator_data),
27 				       void *iterator_data)
28 {
29 	const struct assoc_array_shortcut *shortcut;
30 	const struct assoc_array_node *node;
31 	const struct assoc_array_ptr *cursor, *ptr, *parent;
32 	unsigned long has_meta;
33 	int slot, ret;
34 
35 	cursor = root;
36 
37 begin_node:
38 	if (assoc_array_ptr_is_shortcut(cursor)) {
39 		/* Descend through a shortcut */
40 		shortcut = assoc_array_ptr_to_shortcut(cursor);
41 		smp_read_barrier_depends();
42 		cursor = ACCESS_ONCE(shortcut->next_node);
43 	}
44 
45 	node = assoc_array_ptr_to_node(cursor);
46 	smp_read_barrier_depends();
47 	slot = 0;
48 
49 	/* We perform two passes of each node.
50 	 *
51 	 * The first pass does all the leaves in this node.  This means we
52 	 * don't miss any leaves if the node is split up by insertion whilst
53 	 * we're iterating over the branches rooted here (we may, however, see
54 	 * some leaves twice).
55 	 */
56 	has_meta = 0;
57 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
58 		ptr = ACCESS_ONCE(node->slots[slot]);
59 		has_meta |= (unsigned long)ptr;
60 		if (ptr && assoc_array_ptr_is_leaf(ptr)) {
61 			/* We need a barrier between the read of the pointer
62 			 * and dereferencing the pointer - but only if we are
63 			 * actually going to dereference it.
64 			 */
65 			smp_read_barrier_depends();
66 
67 			/* Invoke the callback */
68 			ret = iterator(assoc_array_ptr_to_leaf(ptr),
69 				       iterator_data);
70 			if (ret)
71 				return ret;
72 		}
73 	}
74 
75 	/* The second pass attends to all the metadata pointers.  If we follow
76 	 * one of these we may find that we don't come back here, but rather go
77 	 * back to a replacement node with the leaves in a different layout.
78 	 *
79 	 * We are guaranteed to make progress, however, as the slot number for
80 	 * a particular portion of the key space cannot change - and we
81 	 * continue at the back pointer + 1.
82 	 */
83 	if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE))
84 		goto finished_node;
85 	slot = 0;
86 
87 continue_node:
88 	node = assoc_array_ptr_to_node(cursor);
89 	smp_read_barrier_depends();
90 
91 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
92 		ptr = ACCESS_ONCE(node->slots[slot]);
93 		if (assoc_array_ptr_is_meta(ptr)) {
94 			cursor = ptr;
95 			goto begin_node;
96 		}
97 	}
98 
99 finished_node:
100 	/* Move up to the parent (may need to skip back over a shortcut) */
101 	parent = ACCESS_ONCE(node->back_pointer);
102 	slot = node->parent_slot;
103 	if (parent == stop)
104 		return 0;
105 
106 	if (assoc_array_ptr_is_shortcut(parent)) {
107 		shortcut = assoc_array_ptr_to_shortcut(parent);
108 		smp_read_barrier_depends();
109 		cursor = parent;
110 		parent = ACCESS_ONCE(shortcut->back_pointer);
111 		slot = shortcut->parent_slot;
112 		if (parent == stop)
113 			return 0;
114 	}
115 
116 	/* Ascend to next slot in parent node */
117 	cursor = parent;
118 	slot++;
119 	goto continue_node;
120 }
121 
122 /**
123  * assoc_array_iterate - Pass all objects in the array to a callback
124  * @array: The array to iterate over.
125  * @iterator: The callback function.
126  * @iterator_data: Private data for the callback function.
127  *
128  * Iterate over all the objects in an associative array.  Each one will be
129  * presented to the iterator function.
130  *
131  * If the array is being modified concurrently with the iteration then it is
132  * possible that some objects in the array will be passed to the iterator
133  * callback more than once - though every object should be passed at least
134  * once.  If this is undesirable then the caller must lock against modification
135  * for the duration of this function.
136  *
137  * The function will return 0 if no objects were in the array or else it will
138  * return the result of the last iterator function called.  Iteration stops
139  * immediately if any call to the iteration function results in a non-zero
140  * return.
141  *
142  * The caller should hold the RCU read lock or better if concurrent
143  * modification is possible.
144  */
145 int assoc_array_iterate(const struct assoc_array *array,
146 			int (*iterator)(const void *object,
147 					void *iterator_data),
148 			void *iterator_data)
149 {
150 	struct assoc_array_ptr *root = ACCESS_ONCE(array->root);
151 
152 	if (!root)
153 		return 0;
154 	return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data);
155 }
156 
157 enum assoc_array_walk_status {
158 	assoc_array_walk_tree_empty,
159 	assoc_array_walk_found_terminal_node,
160 	assoc_array_walk_found_wrong_shortcut,
161 };
162 
163 struct assoc_array_walk_result {
164 	struct {
165 		struct assoc_array_node	*node;	/* Node in which leaf might be found */
166 		int		level;
167 		int		slot;
168 	} terminal_node;
169 	struct {
170 		struct assoc_array_shortcut *shortcut;
171 		int		level;
172 		int		sc_level;
173 		unsigned long	sc_segments;
174 		unsigned long	dissimilarity;
175 	} wrong_shortcut;
176 };
177 
178 /*
179  * Navigate through the internal tree looking for the closest node to the key.
180  */
181 static enum assoc_array_walk_status
182 assoc_array_walk(const struct assoc_array *array,
183 		 const struct assoc_array_ops *ops,
184 		 const void *index_key,
185 		 struct assoc_array_walk_result *result)
186 {
187 	struct assoc_array_shortcut *shortcut;
188 	struct assoc_array_node *node;
189 	struct assoc_array_ptr *cursor, *ptr;
190 	unsigned long sc_segments, dissimilarity;
191 	unsigned long segments;
192 	int level, sc_level, next_sc_level;
193 	int slot;
194 
195 	pr_devel("-->%s()\n", __func__);
196 
197 	cursor = ACCESS_ONCE(array->root);
198 	if (!cursor)
199 		return assoc_array_walk_tree_empty;
200 
201 	level = 0;
202 
203 	/* Use segments from the key for the new leaf to navigate through the
204 	 * internal tree, skipping through nodes and shortcuts that are on
205 	 * route to the destination.  Eventually we'll come to a slot that is
206 	 * either empty or contains a leaf at which point we've found a node in
207 	 * which the leaf we're looking for might be found or into which it
208 	 * should be inserted.
209 	 */
210 jumped:
211 	segments = ops->get_key_chunk(index_key, level);
212 	pr_devel("segments[%d]: %lx\n", level, segments);
213 
214 	if (assoc_array_ptr_is_shortcut(cursor))
215 		goto follow_shortcut;
216 
217 consider_node:
218 	node = assoc_array_ptr_to_node(cursor);
219 	smp_read_barrier_depends();
220 
221 	slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
222 	slot &= ASSOC_ARRAY_FAN_MASK;
223 	ptr = ACCESS_ONCE(node->slots[slot]);
224 
225 	pr_devel("consider slot %x [ix=%d type=%lu]\n",
226 		 slot, level, (unsigned long)ptr & 3);
227 
228 	if (!assoc_array_ptr_is_meta(ptr)) {
229 		/* The node doesn't have a node/shortcut pointer in the slot
230 		 * corresponding to the index key that we have to follow.
231 		 */
232 		result->terminal_node.node = node;
233 		result->terminal_node.level = level;
234 		result->terminal_node.slot = slot;
235 		pr_devel("<--%s() = terminal_node\n", __func__);
236 		return assoc_array_walk_found_terminal_node;
237 	}
238 
239 	if (assoc_array_ptr_is_node(ptr)) {
240 		/* There is a pointer to a node in the slot corresponding to
241 		 * this index key segment, so we need to follow it.
242 		 */
243 		cursor = ptr;
244 		level += ASSOC_ARRAY_LEVEL_STEP;
245 		if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0)
246 			goto consider_node;
247 		goto jumped;
248 	}
249 
250 	/* There is a shortcut in the slot corresponding to the index key
251 	 * segment.  We follow the shortcut if its partial index key matches
252 	 * this leaf's.  Otherwise we need to split the shortcut.
253 	 */
254 	cursor = ptr;
255 follow_shortcut:
256 	shortcut = assoc_array_ptr_to_shortcut(cursor);
257 	smp_read_barrier_depends();
258 	pr_devel("shortcut to %d\n", shortcut->skip_to_level);
259 	sc_level = level + ASSOC_ARRAY_LEVEL_STEP;
260 	BUG_ON(sc_level > shortcut->skip_to_level);
261 
262 	do {
263 		/* Check the leaf against the shortcut's index key a word at a
264 		 * time, trimming the final word (the shortcut stores the index
265 		 * key completely from the root to the shortcut's target).
266 		 */
267 		if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0)
268 			segments = ops->get_key_chunk(index_key, sc_level);
269 
270 		sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT];
271 		dissimilarity = segments ^ sc_segments;
272 
273 		if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) {
274 			/* Trim segments that are beyond the shortcut */
275 			int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK;
276 			dissimilarity &= ~(ULONG_MAX << shift);
277 			next_sc_level = shortcut->skip_to_level;
278 		} else {
279 			next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE;
280 			next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
281 		}
282 
283 		if (dissimilarity != 0) {
284 			/* This shortcut points elsewhere */
285 			result->wrong_shortcut.shortcut = shortcut;
286 			result->wrong_shortcut.level = level;
287 			result->wrong_shortcut.sc_level = sc_level;
288 			result->wrong_shortcut.sc_segments = sc_segments;
289 			result->wrong_shortcut.dissimilarity = dissimilarity;
290 			return assoc_array_walk_found_wrong_shortcut;
291 		}
292 
293 		sc_level = next_sc_level;
294 	} while (sc_level < shortcut->skip_to_level);
295 
296 	/* The shortcut matches the leaf's index to this point. */
297 	cursor = ACCESS_ONCE(shortcut->next_node);
298 	if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) {
299 		level = sc_level;
300 		goto jumped;
301 	} else {
302 		level = sc_level;
303 		goto consider_node;
304 	}
305 }
306 
307 /**
308  * assoc_array_find - Find an object by index key
309  * @array: The associative array to search.
310  * @ops: The operations to use.
311  * @index_key: The key to the object.
312  *
313  * Find an object in an associative array by walking through the internal tree
314  * to the node that should contain the object and then searching the leaves
315  * there.  NULL is returned if the requested object was not found in the array.
316  *
317  * The caller must hold the RCU read lock or better.
318  */
319 void *assoc_array_find(const struct assoc_array *array,
320 		       const struct assoc_array_ops *ops,
321 		       const void *index_key)
322 {
323 	struct assoc_array_walk_result result;
324 	const struct assoc_array_node *node;
325 	const struct assoc_array_ptr *ptr;
326 	const void *leaf;
327 	int slot;
328 
329 	if (assoc_array_walk(array, ops, index_key, &result) !=
330 	    assoc_array_walk_found_terminal_node)
331 		return NULL;
332 
333 	node = result.terminal_node.node;
334 	smp_read_barrier_depends();
335 
336 	/* If the target key is available to us, it's has to be pointed to by
337 	 * the terminal node.
338 	 */
339 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
340 		ptr = ACCESS_ONCE(node->slots[slot]);
341 		if (ptr && assoc_array_ptr_is_leaf(ptr)) {
342 			/* We need a barrier between the read of the pointer
343 			 * and dereferencing the pointer - but only if we are
344 			 * actually going to dereference it.
345 			 */
346 			leaf = assoc_array_ptr_to_leaf(ptr);
347 			smp_read_barrier_depends();
348 			if (ops->compare_object(leaf, index_key))
349 				return (void *)leaf;
350 		}
351 	}
352 
353 	return NULL;
354 }
355 
356 /*
357  * Destructively iterate over an associative array.  The caller must prevent
358  * other simultaneous accesses.
359  */
360 static void assoc_array_destroy_subtree(struct assoc_array_ptr *root,
361 					const struct assoc_array_ops *ops)
362 {
363 	struct assoc_array_shortcut *shortcut;
364 	struct assoc_array_node *node;
365 	struct assoc_array_ptr *cursor, *parent = NULL;
366 	int slot = -1;
367 
368 	pr_devel("-->%s()\n", __func__);
369 
370 	cursor = root;
371 	if (!cursor) {
372 		pr_devel("empty\n");
373 		return;
374 	}
375 
376 move_to_meta:
377 	if (assoc_array_ptr_is_shortcut(cursor)) {
378 		/* Descend through a shortcut */
379 		pr_devel("[%d] shortcut\n", slot);
380 		BUG_ON(!assoc_array_ptr_is_shortcut(cursor));
381 		shortcut = assoc_array_ptr_to_shortcut(cursor);
382 		BUG_ON(shortcut->back_pointer != parent);
383 		BUG_ON(slot != -1 && shortcut->parent_slot != slot);
384 		parent = cursor;
385 		cursor = shortcut->next_node;
386 		slot = -1;
387 		BUG_ON(!assoc_array_ptr_is_node(cursor));
388 	}
389 
390 	pr_devel("[%d] node\n", slot);
391 	node = assoc_array_ptr_to_node(cursor);
392 	BUG_ON(node->back_pointer != parent);
393 	BUG_ON(slot != -1 && node->parent_slot != slot);
394 	slot = 0;
395 
396 continue_node:
397 	pr_devel("Node %p [back=%p]\n", node, node->back_pointer);
398 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
399 		struct assoc_array_ptr *ptr = node->slots[slot];
400 		if (!ptr)
401 			continue;
402 		if (assoc_array_ptr_is_meta(ptr)) {
403 			parent = cursor;
404 			cursor = ptr;
405 			goto move_to_meta;
406 		}
407 
408 		if (ops) {
409 			pr_devel("[%d] free leaf\n", slot);
410 			ops->free_object(assoc_array_ptr_to_leaf(ptr));
411 		}
412 	}
413 
414 	parent = node->back_pointer;
415 	slot = node->parent_slot;
416 	pr_devel("free node\n");
417 	kfree(node);
418 	if (!parent)
419 		return; /* Done */
420 
421 	/* Move back up to the parent (may need to free a shortcut on
422 	 * the way up) */
423 	if (assoc_array_ptr_is_shortcut(parent)) {
424 		shortcut = assoc_array_ptr_to_shortcut(parent);
425 		BUG_ON(shortcut->next_node != cursor);
426 		cursor = parent;
427 		parent = shortcut->back_pointer;
428 		slot = shortcut->parent_slot;
429 		pr_devel("free shortcut\n");
430 		kfree(shortcut);
431 		if (!parent)
432 			return;
433 
434 		BUG_ON(!assoc_array_ptr_is_node(parent));
435 	}
436 
437 	/* Ascend to next slot in parent node */
438 	pr_devel("ascend to %p[%d]\n", parent, slot);
439 	cursor = parent;
440 	node = assoc_array_ptr_to_node(cursor);
441 	slot++;
442 	goto continue_node;
443 }
444 
445 /**
446  * assoc_array_destroy - Destroy an associative array
447  * @array: The array to destroy.
448  * @ops: The operations to use.
449  *
450  * Discard all metadata and free all objects in an associative array.  The
451  * array will be empty and ready to use again upon completion.  This function
452  * cannot fail.
453  *
454  * The caller must prevent all other accesses whilst this takes place as no
455  * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
456  * accesses to continue.  On the other hand, no memory allocation is required.
457  */
458 void assoc_array_destroy(struct assoc_array *array,
459 			 const struct assoc_array_ops *ops)
460 {
461 	assoc_array_destroy_subtree(array->root, ops);
462 	array->root = NULL;
463 }
464 
465 /*
466  * Handle insertion into an empty tree.
467  */
468 static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit)
469 {
470 	struct assoc_array_node *new_n0;
471 
472 	pr_devel("-->%s()\n", __func__);
473 
474 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
475 	if (!new_n0)
476 		return false;
477 
478 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
479 	edit->leaf_p = &new_n0->slots[0];
480 	edit->adjust_count_on = new_n0;
481 	edit->set[0].ptr = &edit->array->root;
482 	edit->set[0].to = assoc_array_node_to_ptr(new_n0);
483 
484 	pr_devel("<--%s() = ok [no root]\n", __func__);
485 	return true;
486 }
487 
488 /*
489  * Handle insertion into a terminal node.
490  */
491 static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit,
492 						  const struct assoc_array_ops *ops,
493 						  const void *index_key,
494 						  struct assoc_array_walk_result *result)
495 {
496 	struct assoc_array_shortcut *shortcut, *new_s0;
497 	struct assoc_array_node *node, *new_n0, *new_n1, *side;
498 	struct assoc_array_ptr *ptr;
499 	unsigned long dissimilarity, base_seg, blank;
500 	size_t keylen;
501 	bool have_meta;
502 	int level, diff;
503 	int slot, next_slot, free_slot, i, j;
504 
505 	node	= result->terminal_node.node;
506 	level	= result->terminal_node.level;
507 	edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot;
508 
509 	pr_devel("-->%s()\n", __func__);
510 
511 	/* We arrived at a node which doesn't have an onward node or shortcut
512 	 * pointer that we have to follow.  This means that (a) the leaf we
513 	 * want must go here (either by insertion or replacement) or (b) we
514 	 * need to split this node and insert in one of the fragments.
515 	 */
516 	free_slot = -1;
517 
518 	/* Firstly, we have to check the leaves in this node to see if there's
519 	 * a matching one we should replace in place.
520 	 */
521 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
522 		ptr = node->slots[i];
523 		if (!ptr) {
524 			free_slot = i;
525 			continue;
526 		}
527 		if (assoc_array_ptr_is_leaf(ptr) &&
528 		    ops->compare_object(assoc_array_ptr_to_leaf(ptr),
529 					index_key)) {
530 			pr_devel("replace in slot %d\n", i);
531 			edit->leaf_p = &node->slots[i];
532 			edit->dead_leaf = node->slots[i];
533 			pr_devel("<--%s() = ok [replace]\n", __func__);
534 			return true;
535 		}
536 	}
537 
538 	/* If there is a free slot in this node then we can just insert the
539 	 * leaf here.
540 	 */
541 	if (free_slot >= 0) {
542 		pr_devel("insert in free slot %d\n", free_slot);
543 		edit->leaf_p = &node->slots[free_slot];
544 		edit->adjust_count_on = node;
545 		pr_devel("<--%s() = ok [insert]\n", __func__);
546 		return true;
547 	}
548 
549 	/* The node has no spare slots - so we're either going to have to split
550 	 * it or insert another node before it.
551 	 *
552 	 * Whatever, we're going to need at least two new nodes - so allocate
553 	 * those now.  We may also need a new shortcut, but we deal with that
554 	 * when we need it.
555 	 */
556 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
557 	if (!new_n0)
558 		return false;
559 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
560 	new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
561 	if (!new_n1)
562 		return false;
563 	edit->new_meta[1] = assoc_array_node_to_ptr(new_n1);
564 
565 	/* We need to find out how similar the leaves are. */
566 	pr_devel("no spare slots\n");
567 	have_meta = false;
568 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
569 		ptr = node->slots[i];
570 		if (assoc_array_ptr_is_meta(ptr)) {
571 			edit->segment_cache[i] = 0xff;
572 			have_meta = true;
573 			continue;
574 		}
575 		base_seg = ops->get_object_key_chunk(
576 			assoc_array_ptr_to_leaf(ptr), level);
577 		base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
578 		edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
579 	}
580 
581 	if (have_meta) {
582 		pr_devel("have meta\n");
583 		goto split_node;
584 	}
585 
586 	/* The node contains only leaves */
587 	dissimilarity = 0;
588 	base_seg = edit->segment_cache[0];
589 	for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++)
590 		dissimilarity |= edit->segment_cache[i] ^ base_seg;
591 
592 	pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity);
593 
594 	if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) {
595 		/* The old leaves all cluster in the same slot.  We will need
596 		 * to insert a shortcut if the new node wants to cluster with them.
597 		 */
598 		if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0)
599 			goto all_leaves_cluster_together;
600 
601 		/* Otherwise we can just insert a new node ahead of the old
602 		 * one.
603 		 */
604 		goto present_leaves_cluster_but_not_new_leaf;
605 	}
606 
607 split_node:
608 	pr_devel("split node\n");
609 
610 	/* We need to split the current node; we know that the node doesn't
611 	 * simply contain a full set of leaves that cluster together (it
612 	 * contains meta pointers and/or non-clustering leaves).
613 	 *
614 	 * We need to expel at least two leaves out of a set consisting of the
615 	 * leaves in the node and the new leaf.
616 	 *
617 	 * We need a new node (n0) to replace the current one and a new node to
618 	 * take the expelled nodes (n1).
619 	 */
620 	edit->set[0].to = assoc_array_node_to_ptr(new_n0);
621 	new_n0->back_pointer = node->back_pointer;
622 	new_n0->parent_slot = node->parent_slot;
623 	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
624 	new_n1->parent_slot = -1; /* Need to calculate this */
625 
626 do_split_node:
627 	pr_devel("do_split_node\n");
628 
629 	new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
630 	new_n1->nr_leaves_on_branch = 0;
631 
632 	/* Begin by finding two matching leaves.  There have to be at least two
633 	 * that match - even if there are meta pointers - because any leaf that
634 	 * would match a slot with a meta pointer in it must be somewhere
635 	 * behind that meta pointer and cannot be here.  Further, given N
636 	 * remaining leaf slots, we now have N+1 leaves to go in them.
637 	 */
638 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
639 		slot = edit->segment_cache[i];
640 		if (slot != 0xff)
641 			for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++)
642 				if (edit->segment_cache[j] == slot)
643 					goto found_slot_for_multiple_occupancy;
644 	}
645 found_slot_for_multiple_occupancy:
646 	pr_devel("same slot: %x %x [%02x]\n", i, j, slot);
647 	BUG_ON(i >= ASSOC_ARRAY_FAN_OUT);
648 	BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1);
649 	BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT);
650 
651 	new_n1->parent_slot = slot;
652 
653 	/* Metadata pointers cannot change slot */
654 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
655 		if (assoc_array_ptr_is_meta(node->slots[i]))
656 			new_n0->slots[i] = node->slots[i];
657 		else
658 			new_n0->slots[i] = NULL;
659 	BUG_ON(new_n0->slots[slot] != NULL);
660 	new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1);
661 
662 	/* Filter the leaf pointers between the new nodes */
663 	free_slot = -1;
664 	next_slot = 0;
665 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
666 		if (assoc_array_ptr_is_meta(node->slots[i]))
667 			continue;
668 		if (edit->segment_cache[i] == slot) {
669 			new_n1->slots[next_slot++] = node->slots[i];
670 			new_n1->nr_leaves_on_branch++;
671 		} else {
672 			do {
673 				free_slot++;
674 			} while (new_n0->slots[free_slot] != NULL);
675 			new_n0->slots[free_slot] = node->slots[i];
676 		}
677 	}
678 
679 	pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot);
680 
681 	if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) {
682 		do {
683 			free_slot++;
684 		} while (new_n0->slots[free_slot] != NULL);
685 		edit->leaf_p = &new_n0->slots[free_slot];
686 		edit->adjust_count_on = new_n0;
687 	} else {
688 		edit->leaf_p = &new_n1->slots[next_slot++];
689 		edit->adjust_count_on = new_n1;
690 	}
691 
692 	BUG_ON(next_slot <= 1);
693 
694 	edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0);
695 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
696 		if (edit->segment_cache[i] == 0xff) {
697 			ptr = node->slots[i];
698 			BUG_ON(assoc_array_ptr_is_leaf(ptr));
699 			if (assoc_array_ptr_is_node(ptr)) {
700 				side = assoc_array_ptr_to_node(ptr);
701 				edit->set_backpointers[i] = &side->back_pointer;
702 			} else {
703 				shortcut = assoc_array_ptr_to_shortcut(ptr);
704 				edit->set_backpointers[i] = &shortcut->back_pointer;
705 			}
706 		}
707 	}
708 
709 	ptr = node->back_pointer;
710 	if (!ptr)
711 		edit->set[0].ptr = &edit->array->root;
712 	else if (assoc_array_ptr_is_node(ptr))
713 		edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot];
714 	else
715 		edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node;
716 	edit->excised_meta[0] = assoc_array_node_to_ptr(node);
717 	pr_devel("<--%s() = ok [split node]\n", __func__);
718 	return true;
719 
720 present_leaves_cluster_but_not_new_leaf:
721 	/* All the old leaves cluster in the same slot, but the new leaf wants
722 	 * to go into a different slot, so we create a new node to hold the new
723 	 * leaf and a pointer to a new node holding all the old leaves.
724 	 */
725 	pr_devel("present leaves cluster but not new leaf\n");
726 
727 	new_n0->back_pointer = node->back_pointer;
728 	new_n0->parent_slot = node->parent_slot;
729 	new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
730 	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
731 	new_n1->parent_slot = edit->segment_cache[0];
732 	new_n1->nr_leaves_on_branch = node->nr_leaves_on_branch;
733 	edit->adjust_count_on = new_n0;
734 
735 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
736 		new_n1->slots[i] = node->slots[i];
737 
738 	new_n0->slots[edit->segment_cache[0]] = assoc_array_node_to_ptr(new_n0);
739 	edit->leaf_p = &new_n0->slots[edit->segment_cache[ASSOC_ARRAY_FAN_OUT]];
740 
741 	edit->set[0].ptr = &assoc_array_ptr_to_node(node->back_pointer)->slots[node->parent_slot];
742 	edit->set[0].to = assoc_array_node_to_ptr(new_n0);
743 	edit->excised_meta[0] = assoc_array_node_to_ptr(node);
744 	pr_devel("<--%s() = ok [insert node before]\n", __func__);
745 	return true;
746 
747 all_leaves_cluster_together:
748 	/* All the leaves, new and old, want to cluster together in this node
749 	 * in the same slot, so we have to replace this node with a shortcut to
750 	 * skip over the identical parts of the key and then place a pair of
751 	 * nodes, one inside the other, at the end of the shortcut and
752 	 * distribute the keys between them.
753 	 *
754 	 * Firstly we need to work out where the leaves start diverging as a
755 	 * bit position into their keys so that we know how big the shortcut
756 	 * needs to be.
757 	 *
758 	 * We only need to make a single pass of N of the N+1 leaves because if
759 	 * any keys differ between themselves at bit X then at least one of
760 	 * them must also differ with the base key at bit X or before.
761 	 */
762 	pr_devel("all leaves cluster together\n");
763 	diff = INT_MAX;
764 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
765 		int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]),
766 					  index_key);
767 		if (x < diff) {
768 			BUG_ON(x < 0);
769 			diff = x;
770 		}
771 	}
772 	BUG_ON(diff == INT_MAX);
773 	BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP);
774 
775 	keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
776 	keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
777 
778 	new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
779 			 keylen * sizeof(unsigned long), GFP_KERNEL);
780 	if (!new_s0)
781 		return false;
782 	edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0);
783 
784 	edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
785 	new_s0->back_pointer = node->back_pointer;
786 	new_s0->parent_slot = node->parent_slot;
787 	new_s0->next_node = assoc_array_node_to_ptr(new_n0);
788 	new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
789 	new_n0->parent_slot = 0;
790 	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
791 	new_n1->parent_slot = -1; /* Need to calculate this */
792 
793 	new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK;
794 	pr_devel("skip_to_level = %d [diff %d]\n", level, diff);
795 	BUG_ON(level <= 0);
796 
797 	for (i = 0; i < keylen; i++)
798 		new_s0->index_key[i] =
799 			ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE);
800 
801 	blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
802 	pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank);
803 	new_s0->index_key[keylen - 1] &= ~blank;
804 
805 	/* This now reduces to a node splitting exercise for which we'll need
806 	 * to regenerate the disparity table.
807 	 */
808 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
809 		ptr = node->slots[i];
810 		base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr),
811 						     level);
812 		base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
813 		edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
814 	}
815 
816 	base_seg = ops->get_key_chunk(index_key, level);
817 	base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
818 	edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK;
819 	goto do_split_node;
820 }
821 
822 /*
823  * Handle insertion into the middle of a shortcut.
824  */
825 static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
826 					    const struct assoc_array_ops *ops,
827 					    struct assoc_array_walk_result *result)
828 {
829 	struct assoc_array_shortcut *shortcut, *new_s0, *new_s1;
830 	struct assoc_array_node *node, *new_n0, *side;
831 	unsigned long sc_segments, dissimilarity, blank;
832 	size_t keylen;
833 	int level, sc_level, diff;
834 	int sc_slot;
835 
836 	shortcut	= result->wrong_shortcut.shortcut;
837 	level		= result->wrong_shortcut.level;
838 	sc_level	= result->wrong_shortcut.sc_level;
839 	sc_segments	= result->wrong_shortcut.sc_segments;
840 	dissimilarity	= result->wrong_shortcut.dissimilarity;
841 
842 	pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
843 		 __func__, level, dissimilarity, sc_level);
844 
845 	/* We need to split a shortcut and insert a node between the two
846 	 * pieces.  Zero-length pieces will be dispensed with entirely.
847 	 *
848 	 * First of all, we need to find out in which level the first
849 	 * difference was.
850 	 */
851 	diff = __ffs(dissimilarity);
852 	diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK;
853 	diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK;
854 	pr_devel("diff=%d\n", diff);
855 
856 	if (!shortcut->back_pointer) {
857 		edit->set[0].ptr = &edit->array->root;
858 	} else if (assoc_array_ptr_is_node(shortcut->back_pointer)) {
859 		node = assoc_array_ptr_to_node(shortcut->back_pointer);
860 		edit->set[0].ptr = &node->slots[shortcut->parent_slot];
861 	} else {
862 		BUG();
863 	}
864 
865 	edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut);
866 
867 	/* Create a new node now since we're going to need it anyway */
868 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
869 	if (!new_n0)
870 		return false;
871 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
872 	edit->adjust_count_on = new_n0;
873 
874 	/* Insert a new shortcut before the new node if this segment isn't of
875 	 * zero length - otherwise we just connect the new node directly to the
876 	 * parent.
877 	 */
878 	level += ASSOC_ARRAY_LEVEL_STEP;
879 	if (diff > level) {
880 		pr_devel("pre-shortcut %d...%d\n", level, diff);
881 		keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
882 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
883 
884 		new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
885 				 keylen * sizeof(unsigned long), GFP_KERNEL);
886 		if (!new_s0)
887 			return false;
888 		edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0);
889 		edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
890 		new_s0->back_pointer = shortcut->back_pointer;
891 		new_s0->parent_slot = shortcut->parent_slot;
892 		new_s0->next_node = assoc_array_node_to_ptr(new_n0);
893 		new_s0->skip_to_level = diff;
894 
895 		new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
896 		new_n0->parent_slot = 0;
897 
898 		memcpy(new_s0->index_key, shortcut->index_key,
899 		       keylen * sizeof(unsigned long));
900 
901 		blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
902 		pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank);
903 		new_s0->index_key[keylen - 1] &= ~blank;
904 	} else {
905 		pr_devel("no pre-shortcut\n");
906 		edit->set[0].to = assoc_array_node_to_ptr(new_n0);
907 		new_n0->back_pointer = shortcut->back_pointer;
908 		new_n0->parent_slot = shortcut->parent_slot;
909 	}
910 
911 	side = assoc_array_ptr_to_node(shortcut->next_node);
912 	new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch;
913 
914 	/* We need to know which slot in the new node is going to take a
915 	 * metadata pointer.
916 	 */
917 	sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
918 	sc_slot &= ASSOC_ARRAY_FAN_MASK;
919 
920 	pr_devel("new slot %lx >> %d -> %d\n",
921 		 sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot);
922 
923 	/* Determine whether we need to follow the new node with a replacement
924 	 * for the current shortcut.  We could in theory reuse the current
925 	 * shortcut if its parent slot number doesn't change - but that's a
926 	 * 1-in-16 chance so not worth expending the code upon.
927 	 */
928 	level = diff + ASSOC_ARRAY_LEVEL_STEP;
929 	if (level < shortcut->skip_to_level) {
930 		pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level);
931 		keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
932 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
933 
934 		new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) +
935 				 keylen * sizeof(unsigned long), GFP_KERNEL);
936 		if (!new_s1)
937 			return false;
938 		edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1);
939 
940 		new_s1->back_pointer = assoc_array_node_to_ptr(new_n0);
941 		new_s1->parent_slot = sc_slot;
942 		new_s1->next_node = shortcut->next_node;
943 		new_s1->skip_to_level = shortcut->skip_to_level;
944 
945 		new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1);
946 
947 		memcpy(new_s1->index_key, shortcut->index_key,
948 		       keylen * sizeof(unsigned long));
949 
950 		edit->set[1].ptr = &side->back_pointer;
951 		edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1);
952 	} else {
953 		pr_devel("no post-shortcut\n");
954 
955 		/* We don't have to replace the pointed-to node as long as we
956 		 * use memory barriers to make sure the parent slot number is
957 		 * changed before the back pointer (the parent slot number is
958 		 * irrelevant to the old parent shortcut).
959 		 */
960 		new_n0->slots[sc_slot] = shortcut->next_node;
961 		edit->set_parent_slot[0].p = &side->parent_slot;
962 		edit->set_parent_slot[0].to = sc_slot;
963 		edit->set[1].ptr = &side->back_pointer;
964 		edit->set[1].to = assoc_array_node_to_ptr(new_n0);
965 	}
966 
967 	/* Install the new leaf in a spare slot in the new node. */
968 	if (sc_slot == 0)
969 		edit->leaf_p = &new_n0->slots[1];
970 	else
971 		edit->leaf_p = &new_n0->slots[0];
972 
973 	pr_devel("<--%s() = ok [split shortcut]\n", __func__);
974 	return edit;
975 }
976 
977 /**
978  * assoc_array_insert - Script insertion of an object into an associative array
979  * @array: The array to insert into.
980  * @ops: The operations to use.
981  * @index_key: The key to insert at.
982  * @object: The object to insert.
983  *
984  * Precalculate and preallocate a script for the insertion or replacement of an
985  * object in an associative array.  This results in an edit script that can
986  * either be applied or cancelled.
987  *
988  * The function returns a pointer to an edit script or -ENOMEM.
989  *
990  * The caller should lock against other modifications and must continue to hold
991  * the lock until assoc_array_apply_edit() has been called.
992  *
993  * Accesses to the tree may take place concurrently with this function,
994  * provided they hold the RCU read lock.
995  */
996 struct assoc_array_edit *assoc_array_insert(struct assoc_array *array,
997 					    const struct assoc_array_ops *ops,
998 					    const void *index_key,
999 					    void *object)
1000 {
1001 	struct assoc_array_walk_result result;
1002 	struct assoc_array_edit *edit;
1003 
1004 	pr_devel("-->%s()\n", __func__);
1005 
1006 	/* The leaf pointer we're given must not have the bottom bit set as we
1007 	 * use those for type-marking the pointer.  NULL pointers are also not
1008 	 * allowed as they indicate an empty slot but we have to allow them
1009 	 * here as they can be updated later.
1010 	 */
1011 	BUG_ON(assoc_array_ptr_is_meta(object));
1012 
1013 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1014 	if (!edit)
1015 		return ERR_PTR(-ENOMEM);
1016 	edit->array = array;
1017 	edit->ops = ops;
1018 	edit->leaf = assoc_array_leaf_to_ptr(object);
1019 	edit->adjust_count_by = 1;
1020 
1021 	switch (assoc_array_walk(array, ops, index_key, &result)) {
1022 	case assoc_array_walk_tree_empty:
1023 		/* Allocate a root node if there isn't one yet */
1024 		if (!assoc_array_insert_in_empty_tree(edit))
1025 			goto enomem;
1026 		return edit;
1027 
1028 	case assoc_array_walk_found_terminal_node:
1029 		/* We found a node that doesn't have a node/shortcut pointer in
1030 		 * the slot corresponding to the index key that we have to
1031 		 * follow.
1032 		 */
1033 		if (!assoc_array_insert_into_terminal_node(edit, ops, index_key,
1034 							   &result))
1035 			goto enomem;
1036 		return edit;
1037 
1038 	case assoc_array_walk_found_wrong_shortcut:
1039 		/* We found a shortcut that didn't match our key in a slot we
1040 		 * needed to follow.
1041 		 */
1042 		if (!assoc_array_insert_mid_shortcut(edit, ops, &result))
1043 			goto enomem;
1044 		return edit;
1045 	}
1046 
1047 enomem:
1048 	/* Clean up after an out of memory error */
1049 	pr_devel("enomem\n");
1050 	assoc_array_cancel_edit(edit);
1051 	return ERR_PTR(-ENOMEM);
1052 }
1053 
1054 /**
1055  * assoc_array_insert_set_object - Set the new object pointer in an edit script
1056  * @edit: The edit script to modify.
1057  * @object: The object pointer to set.
1058  *
1059  * Change the object to be inserted in an edit script.  The object pointed to
1060  * by the old object is not freed.  This must be done prior to applying the
1061  * script.
1062  */
1063 void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object)
1064 {
1065 	BUG_ON(!object);
1066 	edit->leaf = assoc_array_leaf_to_ptr(object);
1067 }
1068 
1069 struct assoc_array_delete_collapse_context {
1070 	struct assoc_array_node	*node;
1071 	const void		*skip_leaf;
1072 	int			slot;
1073 };
1074 
1075 /*
1076  * Subtree collapse to node iterator.
1077  */
1078 static int assoc_array_delete_collapse_iterator(const void *leaf,
1079 						void *iterator_data)
1080 {
1081 	struct assoc_array_delete_collapse_context *collapse = iterator_data;
1082 
1083 	if (leaf == collapse->skip_leaf)
1084 		return 0;
1085 
1086 	BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT);
1087 
1088 	collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf);
1089 	return 0;
1090 }
1091 
1092 /**
1093  * assoc_array_delete - Script deletion of an object from an associative array
1094  * @array: The array to search.
1095  * @ops: The operations to use.
1096  * @index_key: The key to the object.
1097  *
1098  * Precalculate and preallocate a script for the deletion of an object from an
1099  * associative array.  This results in an edit script that can either be
1100  * applied or cancelled.
1101  *
1102  * The function returns a pointer to an edit script if the object was found,
1103  * NULL if the object was not found or -ENOMEM.
1104  *
1105  * The caller should lock against other modifications and must continue to hold
1106  * the lock until assoc_array_apply_edit() has been called.
1107  *
1108  * Accesses to the tree may take place concurrently with this function,
1109  * provided they hold the RCU read lock.
1110  */
1111 struct assoc_array_edit *assoc_array_delete(struct assoc_array *array,
1112 					    const struct assoc_array_ops *ops,
1113 					    const void *index_key)
1114 {
1115 	struct assoc_array_delete_collapse_context collapse;
1116 	struct assoc_array_walk_result result;
1117 	struct assoc_array_node *node, *new_n0;
1118 	struct assoc_array_edit *edit;
1119 	struct assoc_array_ptr *ptr;
1120 	bool has_meta;
1121 	int slot, i;
1122 
1123 	pr_devel("-->%s()\n", __func__);
1124 
1125 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1126 	if (!edit)
1127 		return ERR_PTR(-ENOMEM);
1128 	edit->array = array;
1129 	edit->ops = ops;
1130 	edit->adjust_count_by = -1;
1131 
1132 	switch (assoc_array_walk(array, ops, index_key, &result)) {
1133 	case assoc_array_walk_found_terminal_node:
1134 		/* We found a node that should contain the leaf we've been
1135 		 * asked to remove - *if* it's in the tree.
1136 		 */
1137 		pr_devel("terminal_node\n");
1138 		node = result.terminal_node.node;
1139 
1140 		for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1141 			ptr = node->slots[slot];
1142 			if (ptr &&
1143 			    assoc_array_ptr_is_leaf(ptr) &&
1144 			    ops->compare_object(assoc_array_ptr_to_leaf(ptr),
1145 						index_key))
1146 				goto found_leaf;
1147 		}
1148 	case assoc_array_walk_tree_empty:
1149 	case assoc_array_walk_found_wrong_shortcut:
1150 	default:
1151 		assoc_array_cancel_edit(edit);
1152 		pr_devel("not found\n");
1153 		return NULL;
1154 	}
1155 
1156 found_leaf:
1157 	BUG_ON(array->nr_leaves_on_tree <= 0);
1158 
1159 	/* In the simplest form of deletion we just clear the slot and release
1160 	 * the leaf after a suitable interval.
1161 	 */
1162 	edit->dead_leaf = node->slots[slot];
1163 	edit->set[0].ptr = &node->slots[slot];
1164 	edit->set[0].to = NULL;
1165 	edit->adjust_count_on = node;
1166 
1167 	/* If that concludes erasure of the last leaf, then delete the entire
1168 	 * internal array.
1169 	 */
1170 	if (array->nr_leaves_on_tree == 1) {
1171 		edit->set[1].ptr = &array->root;
1172 		edit->set[1].to = NULL;
1173 		edit->adjust_count_on = NULL;
1174 		edit->excised_subtree = array->root;
1175 		pr_devel("all gone\n");
1176 		return edit;
1177 	}
1178 
1179 	/* However, we'd also like to clear up some metadata blocks if we
1180 	 * possibly can.
1181 	 *
1182 	 * We go for a simple algorithm of: if this node has FAN_OUT or fewer
1183 	 * leaves in it, then attempt to collapse it - and attempt to
1184 	 * recursively collapse up the tree.
1185 	 *
1186 	 * We could also try and collapse in partially filled subtrees to take
1187 	 * up space in this node.
1188 	 */
1189 	if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1190 		struct assoc_array_node *parent, *grandparent;
1191 		struct assoc_array_ptr *ptr;
1192 
1193 		/* First of all, we need to know if this node has metadata so
1194 		 * that we don't try collapsing if all the leaves are already
1195 		 * here.
1196 		 */
1197 		has_meta = false;
1198 		for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1199 			ptr = node->slots[i];
1200 			if (assoc_array_ptr_is_meta(ptr)) {
1201 				has_meta = true;
1202 				break;
1203 			}
1204 		}
1205 
1206 		pr_devel("leaves: %ld [m=%d]\n",
1207 			 node->nr_leaves_on_branch - 1, has_meta);
1208 
1209 		/* Look further up the tree to see if we can collapse this node
1210 		 * into a more proximal node too.
1211 		 */
1212 		parent = node;
1213 	collapse_up:
1214 		pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch);
1215 
1216 		ptr = parent->back_pointer;
1217 		if (!ptr)
1218 			goto do_collapse;
1219 		if (assoc_array_ptr_is_shortcut(ptr)) {
1220 			struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr);
1221 			ptr = s->back_pointer;
1222 			if (!ptr)
1223 				goto do_collapse;
1224 		}
1225 
1226 		grandparent = assoc_array_ptr_to_node(ptr);
1227 		if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1228 			parent = grandparent;
1229 			goto collapse_up;
1230 		}
1231 
1232 	do_collapse:
1233 		/* There's no point collapsing if the original node has no meta
1234 		 * pointers to discard and if we didn't merge into one of that
1235 		 * node's ancestry.
1236 		 */
1237 		if (has_meta || parent != node) {
1238 			node = parent;
1239 
1240 			/* Create a new node to collapse into */
1241 			new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1242 			if (!new_n0)
1243 				goto enomem;
1244 			edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
1245 
1246 			new_n0->back_pointer = node->back_pointer;
1247 			new_n0->parent_slot = node->parent_slot;
1248 			new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
1249 			edit->adjust_count_on = new_n0;
1250 
1251 			collapse.node = new_n0;
1252 			collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf);
1253 			collapse.slot = 0;
1254 			assoc_array_subtree_iterate(assoc_array_node_to_ptr(node),
1255 						    node->back_pointer,
1256 						    assoc_array_delete_collapse_iterator,
1257 						    &collapse);
1258 			pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch);
1259 			BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1);
1260 
1261 			if (!node->back_pointer) {
1262 				edit->set[1].ptr = &array->root;
1263 			} else if (assoc_array_ptr_is_leaf(node->back_pointer)) {
1264 				BUG();
1265 			} else if (assoc_array_ptr_is_node(node->back_pointer)) {
1266 				struct assoc_array_node *p =
1267 					assoc_array_ptr_to_node(node->back_pointer);
1268 				edit->set[1].ptr = &p->slots[node->parent_slot];
1269 			} else if (assoc_array_ptr_is_shortcut(node->back_pointer)) {
1270 				struct assoc_array_shortcut *s =
1271 					assoc_array_ptr_to_shortcut(node->back_pointer);
1272 				edit->set[1].ptr = &s->next_node;
1273 			}
1274 			edit->set[1].to = assoc_array_node_to_ptr(new_n0);
1275 			edit->excised_subtree = assoc_array_node_to_ptr(node);
1276 		}
1277 	}
1278 
1279 	return edit;
1280 
1281 enomem:
1282 	/* Clean up after an out of memory error */
1283 	pr_devel("enomem\n");
1284 	assoc_array_cancel_edit(edit);
1285 	return ERR_PTR(-ENOMEM);
1286 }
1287 
1288 /**
1289  * assoc_array_clear - Script deletion of all objects from an associative array
1290  * @array: The array to clear.
1291  * @ops: The operations to use.
1292  *
1293  * Precalculate and preallocate a script for the deletion of all the objects
1294  * from an associative array.  This results in an edit script that can either
1295  * be applied or cancelled.
1296  *
1297  * The function returns a pointer to an edit script if there are objects to be
1298  * deleted, NULL if there are no objects in the array or -ENOMEM.
1299  *
1300  * The caller should lock against other modifications and must continue to hold
1301  * the lock until assoc_array_apply_edit() has been called.
1302  *
1303  * Accesses to the tree may take place concurrently with this function,
1304  * provided they hold the RCU read lock.
1305  */
1306 struct assoc_array_edit *assoc_array_clear(struct assoc_array *array,
1307 					   const struct assoc_array_ops *ops)
1308 {
1309 	struct assoc_array_edit *edit;
1310 
1311 	pr_devel("-->%s()\n", __func__);
1312 
1313 	if (!array->root)
1314 		return NULL;
1315 
1316 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1317 	if (!edit)
1318 		return ERR_PTR(-ENOMEM);
1319 	edit->array = array;
1320 	edit->ops = ops;
1321 	edit->set[1].ptr = &array->root;
1322 	edit->set[1].to = NULL;
1323 	edit->excised_subtree = array->root;
1324 	edit->ops_for_excised_subtree = ops;
1325 	pr_devel("all gone\n");
1326 	return edit;
1327 }
1328 
1329 /*
1330  * Handle the deferred destruction after an applied edit.
1331  */
1332 static void assoc_array_rcu_cleanup(struct rcu_head *head)
1333 {
1334 	struct assoc_array_edit *edit =
1335 		container_of(head, struct assoc_array_edit, rcu);
1336 	int i;
1337 
1338 	pr_devel("-->%s()\n", __func__);
1339 
1340 	if (edit->dead_leaf)
1341 		edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf));
1342 	for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++)
1343 		if (edit->excised_meta[i])
1344 			kfree(assoc_array_ptr_to_node(edit->excised_meta[i]));
1345 
1346 	if (edit->excised_subtree) {
1347 		BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree));
1348 		if (assoc_array_ptr_is_node(edit->excised_subtree)) {
1349 			struct assoc_array_node *n =
1350 				assoc_array_ptr_to_node(edit->excised_subtree);
1351 			n->back_pointer = NULL;
1352 		} else {
1353 			struct assoc_array_shortcut *s =
1354 				assoc_array_ptr_to_shortcut(edit->excised_subtree);
1355 			s->back_pointer = NULL;
1356 		}
1357 		assoc_array_destroy_subtree(edit->excised_subtree,
1358 					    edit->ops_for_excised_subtree);
1359 	}
1360 
1361 	kfree(edit);
1362 }
1363 
1364 /**
1365  * assoc_array_apply_edit - Apply an edit script to an associative array
1366  * @edit: The script to apply.
1367  *
1368  * Apply an edit script to an associative array to effect an insertion,
1369  * deletion or clearance.  As the edit script includes preallocated memory,
1370  * this is guaranteed not to fail.
1371  *
1372  * The edit script, dead objects and dead metadata will be scheduled for
1373  * destruction after an RCU grace period to permit those doing read-only
1374  * accesses on the array to continue to do so under the RCU read lock whilst
1375  * the edit is taking place.
1376  */
1377 void assoc_array_apply_edit(struct assoc_array_edit *edit)
1378 {
1379 	struct assoc_array_shortcut *shortcut;
1380 	struct assoc_array_node *node;
1381 	struct assoc_array_ptr *ptr;
1382 	int i;
1383 
1384 	pr_devel("-->%s()\n", __func__);
1385 
1386 	smp_wmb();
1387 	if (edit->leaf_p)
1388 		*edit->leaf_p = edit->leaf;
1389 
1390 	smp_wmb();
1391 	for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++)
1392 		if (edit->set_parent_slot[i].p)
1393 			*edit->set_parent_slot[i].p = edit->set_parent_slot[i].to;
1394 
1395 	smp_wmb();
1396 	for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++)
1397 		if (edit->set_backpointers[i])
1398 			*edit->set_backpointers[i] = edit->set_backpointers_to;
1399 
1400 	smp_wmb();
1401 	for (i = 0; i < ARRAY_SIZE(edit->set); i++)
1402 		if (edit->set[i].ptr)
1403 			*edit->set[i].ptr = edit->set[i].to;
1404 
1405 	if (edit->array->root == NULL) {
1406 		edit->array->nr_leaves_on_tree = 0;
1407 	} else if (edit->adjust_count_on) {
1408 		node = edit->adjust_count_on;
1409 		for (;;) {
1410 			node->nr_leaves_on_branch += edit->adjust_count_by;
1411 
1412 			ptr = node->back_pointer;
1413 			if (!ptr)
1414 				break;
1415 			if (assoc_array_ptr_is_shortcut(ptr)) {
1416 				shortcut = assoc_array_ptr_to_shortcut(ptr);
1417 				ptr = shortcut->back_pointer;
1418 				if (!ptr)
1419 					break;
1420 			}
1421 			BUG_ON(!assoc_array_ptr_is_node(ptr));
1422 			node = assoc_array_ptr_to_node(ptr);
1423 		}
1424 
1425 		edit->array->nr_leaves_on_tree += edit->adjust_count_by;
1426 	}
1427 
1428 	call_rcu(&edit->rcu, assoc_array_rcu_cleanup);
1429 }
1430 
1431 /**
1432  * assoc_array_cancel_edit - Discard an edit script.
1433  * @edit: The script to discard.
1434  *
1435  * Free an edit script and all the preallocated data it holds without making
1436  * any changes to the associative array it was intended for.
1437  *
1438  * NOTE!  In the case of an insertion script, this does _not_ release the leaf
1439  * that was to be inserted.  That is left to the caller.
1440  */
1441 void assoc_array_cancel_edit(struct assoc_array_edit *edit)
1442 {
1443 	struct assoc_array_ptr *ptr;
1444 	int i;
1445 
1446 	pr_devel("-->%s()\n", __func__);
1447 
1448 	/* Clean up after an out of memory error */
1449 	for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) {
1450 		ptr = edit->new_meta[i];
1451 		if (ptr) {
1452 			if (assoc_array_ptr_is_node(ptr))
1453 				kfree(assoc_array_ptr_to_node(ptr));
1454 			else
1455 				kfree(assoc_array_ptr_to_shortcut(ptr));
1456 		}
1457 	}
1458 	kfree(edit);
1459 }
1460 
1461 /**
1462  * assoc_array_gc - Garbage collect an associative array.
1463  * @array: The array to clean.
1464  * @ops: The operations to use.
1465  * @iterator: A callback function to pass judgement on each object.
1466  * @iterator_data: Private data for the callback function.
1467  *
1468  * Collect garbage from an associative array and pack down the internal tree to
1469  * save memory.
1470  *
1471  * The iterator function is asked to pass judgement upon each object in the
1472  * array.  If it returns false, the object is discard and if it returns true,
1473  * the object is kept.  If it returns true, it must increment the object's
1474  * usage count (or whatever it needs to do to retain it) before returning.
1475  *
1476  * This function returns 0 if successful or -ENOMEM if out of memory.  In the
1477  * latter case, the array is not changed.
1478  *
1479  * The caller should lock against other modifications and must continue to hold
1480  * the lock until assoc_array_apply_edit() has been called.
1481  *
1482  * Accesses to the tree may take place concurrently with this function,
1483  * provided they hold the RCU read lock.
1484  */
1485 int assoc_array_gc(struct assoc_array *array,
1486 		   const struct assoc_array_ops *ops,
1487 		   bool (*iterator)(void *object, void *iterator_data),
1488 		   void *iterator_data)
1489 {
1490 	struct assoc_array_shortcut *shortcut, *new_s;
1491 	struct assoc_array_node *node, *new_n;
1492 	struct assoc_array_edit *edit;
1493 	struct assoc_array_ptr *cursor, *ptr;
1494 	struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp;
1495 	unsigned long nr_leaves_on_tree;
1496 	int keylen, slot, nr_free, next_slot, i;
1497 
1498 	pr_devel("-->%s()\n", __func__);
1499 
1500 	if (!array->root)
1501 		return 0;
1502 
1503 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1504 	if (!edit)
1505 		return -ENOMEM;
1506 	edit->array = array;
1507 	edit->ops = ops;
1508 	edit->ops_for_excised_subtree = ops;
1509 	edit->set[0].ptr = &array->root;
1510 	edit->excised_subtree = array->root;
1511 
1512 	new_root = new_parent = NULL;
1513 	new_ptr_pp = &new_root;
1514 	cursor = array->root;
1515 
1516 descend:
1517 	/* If this point is a shortcut, then we need to duplicate it and
1518 	 * advance the target cursor.
1519 	 */
1520 	if (assoc_array_ptr_is_shortcut(cursor)) {
1521 		shortcut = assoc_array_ptr_to_shortcut(cursor);
1522 		keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
1523 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
1524 		new_s = kmalloc(sizeof(struct assoc_array_shortcut) +
1525 				keylen * sizeof(unsigned long), GFP_KERNEL);
1526 		if (!new_s)
1527 			goto enomem;
1528 		pr_devel("dup shortcut %p -> %p\n", shortcut, new_s);
1529 		memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) +
1530 					 keylen * sizeof(unsigned long)));
1531 		new_s->back_pointer = new_parent;
1532 		new_s->parent_slot = shortcut->parent_slot;
1533 		*new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s);
1534 		new_ptr_pp = &new_s->next_node;
1535 		cursor = shortcut->next_node;
1536 	}
1537 
1538 	/* Duplicate the node at this position */
1539 	node = assoc_array_ptr_to_node(cursor);
1540 	new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1541 	if (!new_n)
1542 		goto enomem;
1543 	pr_devel("dup node %p -> %p\n", node, new_n);
1544 	new_n->back_pointer = new_parent;
1545 	new_n->parent_slot = node->parent_slot;
1546 	*new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n);
1547 	new_ptr_pp = NULL;
1548 	slot = 0;
1549 
1550 continue_node:
1551 	/* Filter across any leaves and gc any subtrees */
1552 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1553 		ptr = node->slots[slot];
1554 		if (!ptr)
1555 			continue;
1556 
1557 		if (assoc_array_ptr_is_leaf(ptr)) {
1558 			if (iterator(assoc_array_ptr_to_leaf(ptr),
1559 				     iterator_data))
1560 				/* The iterator will have done any reference
1561 				 * counting on the object for us.
1562 				 */
1563 				new_n->slots[slot] = ptr;
1564 			continue;
1565 		}
1566 
1567 		new_ptr_pp = &new_n->slots[slot];
1568 		cursor = ptr;
1569 		goto descend;
1570 	}
1571 
1572 	pr_devel("-- compress node %p --\n", new_n);
1573 
1574 	/* Count up the number of empty slots in this node and work out the
1575 	 * subtree leaf count.
1576 	 */
1577 	new_n->nr_leaves_on_branch = 0;
1578 	nr_free = 0;
1579 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1580 		ptr = new_n->slots[slot];
1581 		if (!ptr)
1582 			nr_free++;
1583 		else if (assoc_array_ptr_is_leaf(ptr))
1584 			new_n->nr_leaves_on_branch++;
1585 	}
1586 	pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch);
1587 
1588 	/* See what we can fold in */
1589 	next_slot = 0;
1590 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1591 		struct assoc_array_shortcut *s;
1592 		struct assoc_array_node *child;
1593 
1594 		ptr = new_n->slots[slot];
1595 		if (!ptr || assoc_array_ptr_is_leaf(ptr))
1596 			continue;
1597 
1598 		s = NULL;
1599 		if (assoc_array_ptr_is_shortcut(ptr)) {
1600 			s = assoc_array_ptr_to_shortcut(ptr);
1601 			ptr = s->next_node;
1602 		}
1603 
1604 		child = assoc_array_ptr_to_node(ptr);
1605 		new_n->nr_leaves_on_branch += child->nr_leaves_on_branch;
1606 
1607 		if (child->nr_leaves_on_branch <= nr_free + 1) {
1608 			/* Fold the child node into this one */
1609 			pr_devel("[%d] fold node %lu/%d [nx %d]\n",
1610 				 slot, child->nr_leaves_on_branch, nr_free + 1,
1611 				 next_slot);
1612 
1613 			/* We would already have reaped an intervening shortcut
1614 			 * on the way back up the tree.
1615 			 */
1616 			BUG_ON(s);
1617 
1618 			new_n->slots[slot] = NULL;
1619 			nr_free++;
1620 			if (slot < next_slot)
1621 				next_slot = slot;
1622 			for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1623 				struct assoc_array_ptr *p = child->slots[i];
1624 				if (!p)
1625 					continue;
1626 				BUG_ON(assoc_array_ptr_is_meta(p));
1627 				while (new_n->slots[next_slot])
1628 					next_slot++;
1629 				BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT);
1630 				new_n->slots[next_slot++] = p;
1631 				nr_free--;
1632 			}
1633 			kfree(child);
1634 		} else {
1635 			pr_devel("[%d] retain node %lu/%d [nx %d]\n",
1636 				 slot, child->nr_leaves_on_branch, nr_free + 1,
1637 				 next_slot);
1638 		}
1639 	}
1640 
1641 	pr_devel("after: %lu\n", new_n->nr_leaves_on_branch);
1642 
1643 	nr_leaves_on_tree = new_n->nr_leaves_on_branch;
1644 
1645 	/* Excise this node if it is singly occupied by a shortcut */
1646 	if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) {
1647 		for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++)
1648 			if ((ptr = new_n->slots[slot]))
1649 				break;
1650 
1651 		if (assoc_array_ptr_is_meta(ptr) &&
1652 		    assoc_array_ptr_is_shortcut(ptr)) {
1653 			pr_devel("excise node %p with 1 shortcut\n", new_n);
1654 			new_s = assoc_array_ptr_to_shortcut(ptr);
1655 			new_parent = new_n->back_pointer;
1656 			slot = new_n->parent_slot;
1657 			kfree(new_n);
1658 			if (!new_parent) {
1659 				new_s->back_pointer = NULL;
1660 				new_s->parent_slot = 0;
1661 				new_root = ptr;
1662 				goto gc_complete;
1663 			}
1664 
1665 			if (assoc_array_ptr_is_shortcut(new_parent)) {
1666 				/* We can discard any preceding shortcut also */
1667 				struct assoc_array_shortcut *s =
1668 					assoc_array_ptr_to_shortcut(new_parent);
1669 
1670 				pr_devel("excise preceding shortcut\n");
1671 
1672 				new_parent = new_s->back_pointer = s->back_pointer;
1673 				slot = new_s->parent_slot = s->parent_slot;
1674 				kfree(s);
1675 				if (!new_parent) {
1676 					new_s->back_pointer = NULL;
1677 					new_s->parent_slot = 0;
1678 					new_root = ptr;
1679 					goto gc_complete;
1680 				}
1681 			}
1682 
1683 			new_s->back_pointer = new_parent;
1684 			new_s->parent_slot = slot;
1685 			new_n = assoc_array_ptr_to_node(new_parent);
1686 			new_n->slots[slot] = ptr;
1687 			goto ascend_old_tree;
1688 		}
1689 	}
1690 
1691 	/* Excise any shortcuts we might encounter that point to nodes that
1692 	 * only contain leaves.
1693 	 */
1694 	ptr = new_n->back_pointer;
1695 	if (!ptr)
1696 		goto gc_complete;
1697 
1698 	if (assoc_array_ptr_is_shortcut(ptr)) {
1699 		new_s = assoc_array_ptr_to_shortcut(ptr);
1700 		new_parent = new_s->back_pointer;
1701 		slot = new_s->parent_slot;
1702 
1703 		if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) {
1704 			struct assoc_array_node *n;
1705 
1706 			pr_devel("excise shortcut\n");
1707 			new_n->back_pointer = new_parent;
1708 			new_n->parent_slot = slot;
1709 			kfree(new_s);
1710 			if (!new_parent) {
1711 				new_root = assoc_array_node_to_ptr(new_n);
1712 				goto gc_complete;
1713 			}
1714 
1715 			n = assoc_array_ptr_to_node(new_parent);
1716 			n->slots[slot] = assoc_array_node_to_ptr(new_n);
1717 		}
1718 	} else {
1719 		new_parent = ptr;
1720 	}
1721 	new_n = assoc_array_ptr_to_node(new_parent);
1722 
1723 ascend_old_tree:
1724 	ptr = node->back_pointer;
1725 	if (assoc_array_ptr_is_shortcut(ptr)) {
1726 		shortcut = assoc_array_ptr_to_shortcut(ptr);
1727 		slot = shortcut->parent_slot;
1728 		cursor = shortcut->back_pointer;
1729 		if (!cursor)
1730 			goto gc_complete;
1731 	} else {
1732 		slot = node->parent_slot;
1733 		cursor = ptr;
1734 	}
1735 	BUG_ON(!cursor);
1736 	node = assoc_array_ptr_to_node(cursor);
1737 	slot++;
1738 	goto continue_node;
1739 
1740 gc_complete:
1741 	edit->set[0].to = new_root;
1742 	assoc_array_apply_edit(edit);
1743 	array->nr_leaves_on_tree = nr_leaves_on_tree;
1744 	return 0;
1745 
1746 enomem:
1747 	pr_devel("enomem\n");
1748 	assoc_array_destroy_subtree(new_root, edit->ops);
1749 	kfree(edit);
1750 	return -ENOMEM;
1751 }
1752