xref: /linux/lib/assoc_array.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /* Generic associative array implementation.
2  *
3  * See Documentation/assoc_array.txt for information.
4  *
5  * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
6  * Written by David Howells (dhowells@redhat.com)
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public Licence
10  * as published by the Free Software Foundation; either version
11  * 2 of the Licence, or (at your option) any later version.
12  */
13 //#define DEBUG
14 #include <linux/rcupdate.h>
15 #include <linux/slab.h>
16 #include <linux/err.h>
17 #include <linux/assoc_array_priv.h>
18 
19 /*
20  * Iterate over an associative array.  The caller must hold the RCU read lock
21  * or better.
22  */
23 static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root,
24 				       const struct assoc_array_ptr *stop,
25 				       int (*iterator)(const void *leaf,
26 						       void *iterator_data),
27 				       void *iterator_data)
28 {
29 	const struct assoc_array_shortcut *shortcut;
30 	const struct assoc_array_node *node;
31 	const struct assoc_array_ptr *cursor, *ptr, *parent;
32 	unsigned long has_meta;
33 	int slot, ret;
34 
35 	cursor = root;
36 
37 begin_node:
38 	if (assoc_array_ptr_is_shortcut(cursor)) {
39 		/* Descend through a shortcut */
40 		shortcut = assoc_array_ptr_to_shortcut(cursor);
41 		smp_read_barrier_depends();
42 		cursor = ACCESS_ONCE(shortcut->next_node);
43 	}
44 
45 	node = assoc_array_ptr_to_node(cursor);
46 	smp_read_barrier_depends();
47 	slot = 0;
48 
49 	/* We perform two passes of each node.
50 	 *
51 	 * The first pass does all the leaves in this node.  This means we
52 	 * don't miss any leaves if the node is split up by insertion whilst
53 	 * we're iterating over the branches rooted here (we may, however, see
54 	 * some leaves twice).
55 	 */
56 	has_meta = 0;
57 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
58 		ptr = ACCESS_ONCE(node->slots[slot]);
59 		has_meta |= (unsigned long)ptr;
60 		if (ptr && assoc_array_ptr_is_leaf(ptr)) {
61 			/* We need a barrier between the read of the pointer
62 			 * and dereferencing the pointer - but only if we are
63 			 * actually going to dereference it.
64 			 */
65 			smp_read_barrier_depends();
66 
67 			/* Invoke the callback */
68 			ret = iterator(assoc_array_ptr_to_leaf(ptr),
69 				       iterator_data);
70 			if (ret)
71 				return ret;
72 		}
73 	}
74 
75 	/* The second pass attends to all the metadata pointers.  If we follow
76 	 * one of these we may find that we don't come back here, but rather go
77 	 * back to a replacement node with the leaves in a different layout.
78 	 *
79 	 * We are guaranteed to make progress, however, as the slot number for
80 	 * a particular portion of the key space cannot change - and we
81 	 * continue at the back pointer + 1.
82 	 */
83 	if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE))
84 		goto finished_node;
85 	slot = 0;
86 
87 continue_node:
88 	node = assoc_array_ptr_to_node(cursor);
89 	smp_read_barrier_depends();
90 
91 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
92 		ptr = ACCESS_ONCE(node->slots[slot]);
93 		if (assoc_array_ptr_is_meta(ptr)) {
94 			cursor = ptr;
95 			goto begin_node;
96 		}
97 	}
98 
99 finished_node:
100 	/* Move up to the parent (may need to skip back over a shortcut) */
101 	parent = ACCESS_ONCE(node->back_pointer);
102 	slot = node->parent_slot;
103 	if (parent == stop)
104 		return 0;
105 
106 	if (assoc_array_ptr_is_shortcut(parent)) {
107 		shortcut = assoc_array_ptr_to_shortcut(parent);
108 		smp_read_barrier_depends();
109 		cursor = parent;
110 		parent = ACCESS_ONCE(shortcut->back_pointer);
111 		slot = shortcut->parent_slot;
112 		if (parent == stop)
113 			return 0;
114 	}
115 
116 	/* Ascend to next slot in parent node */
117 	cursor = parent;
118 	slot++;
119 	goto continue_node;
120 }
121 
122 /**
123  * assoc_array_iterate - Pass all objects in the array to a callback
124  * @array: The array to iterate over.
125  * @iterator: The callback function.
126  * @iterator_data: Private data for the callback function.
127  *
128  * Iterate over all the objects in an associative array.  Each one will be
129  * presented to the iterator function.
130  *
131  * If the array is being modified concurrently with the iteration then it is
132  * possible that some objects in the array will be passed to the iterator
133  * callback more than once - though every object should be passed at least
134  * once.  If this is undesirable then the caller must lock against modification
135  * for the duration of this function.
136  *
137  * The function will return 0 if no objects were in the array or else it will
138  * return the result of the last iterator function called.  Iteration stops
139  * immediately if any call to the iteration function results in a non-zero
140  * return.
141  *
142  * The caller should hold the RCU read lock or better if concurrent
143  * modification is possible.
144  */
145 int assoc_array_iterate(const struct assoc_array *array,
146 			int (*iterator)(const void *object,
147 					void *iterator_data),
148 			void *iterator_data)
149 {
150 	struct assoc_array_ptr *root = ACCESS_ONCE(array->root);
151 
152 	if (!root)
153 		return 0;
154 	return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data);
155 }
156 
157 enum assoc_array_walk_status {
158 	assoc_array_walk_tree_empty,
159 	assoc_array_walk_found_terminal_node,
160 	assoc_array_walk_found_wrong_shortcut,
161 };
162 
163 struct assoc_array_walk_result {
164 	struct {
165 		struct assoc_array_node	*node;	/* Node in which leaf might be found */
166 		int		level;
167 		int		slot;
168 	} terminal_node;
169 	struct {
170 		struct assoc_array_shortcut *shortcut;
171 		int		level;
172 		int		sc_level;
173 		unsigned long	sc_segments;
174 		unsigned long	dissimilarity;
175 	} wrong_shortcut;
176 };
177 
178 /*
179  * Navigate through the internal tree looking for the closest node to the key.
180  */
181 static enum assoc_array_walk_status
182 assoc_array_walk(const struct assoc_array *array,
183 		 const struct assoc_array_ops *ops,
184 		 const void *index_key,
185 		 struct assoc_array_walk_result *result)
186 {
187 	struct assoc_array_shortcut *shortcut;
188 	struct assoc_array_node *node;
189 	struct assoc_array_ptr *cursor, *ptr;
190 	unsigned long sc_segments, dissimilarity;
191 	unsigned long segments;
192 	int level, sc_level, next_sc_level;
193 	int slot;
194 
195 	pr_devel("-->%s()\n", __func__);
196 
197 	cursor = ACCESS_ONCE(array->root);
198 	if (!cursor)
199 		return assoc_array_walk_tree_empty;
200 
201 	level = 0;
202 
203 	/* Use segments from the key for the new leaf to navigate through the
204 	 * internal tree, skipping through nodes and shortcuts that are on
205 	 * route to the destination.  Eventually we'll come to a slot that is
206 	 * either empty or contains a leaf at which point we've found a node in
207 	 * which the leaf we're looking for might be found or into which it
208 	 * should be inserted.
209 	 */
210 jumped:
211 	segments = ops->get_key_chunk(index_key, level);
212 	pr_devel("segments[%d]: %lx\n", level, segments);
213 
214 	if (assoc_array_ptr_is_shortcut(cursor))
215 		goto follow_shortcut;
216 
217 consider_node:
218 	node = assoc_array_ptr_to_node(cursor);
219 	smp_read_barrier_depends();
220 
221 	slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
222 	slot &= ASSOC_ARRAY_FAN_MASK;
223 	ptr = ACCESS_ONCE(node->slots[slot]);
224 
225 	pr_devel("consider slot %x [ix=%d type=%lu]\n",
226 		 slot, level, (unsigned long)ptr & 3);
227 
228 	if (!assoc_array_ptr_is_meta(ptr)) {
229 		/* The node doesn't have a node/shortcut pointer in the slot
230 		 * corresponding to the index key that we have to follow.
231 		 */
232 		result->terminal_node.node = node;
233 		result->terminal_node.level = level;
234 		result->terminal_node.slot = slot;
235 		pr_devel("<--%s() = terminal_node\n", __func__);
236 		return assoc_array_walk_found_terminal_node;
237 	}
238 
239 	if (assoc_array_ptr_is_node(ptr)) {
240 		/* There is a pointer to a node in the slot corresponding to
241 		 * this index key segment, so we need to follow it.
242 		 */
243 		cursor = ptr;
244 		level += ASSOC_ARRAY_LEVEL_STEP;
245 		if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0)
246 			goto consider_node;
247 		goto jumped;
248 	}
249 
250 	/* There is a shortcut in the slot corresponding to the index key
251 	 * segment.  We follow the shortcut if its partial index key matches
252 	 * this leaf's.  Otherwise we need to split the shortcut.
253 	 */
254 	cursor = ptr;
255 follow_shortcut:
256 	shortcut = assoc_array_ptr_to_shortcut(cursor);
257 	smp_read_barrier_depends();
258 	pr_devel("shortcut to %d\n", shortcut->skip_to_level);
259 	sc_level = level + ASSOC_ARRAY_LEVEL_STEP;
260 	BUG_ON(sc_level > shortcut->skip_to_level);
261 
262 	do {
263 		/* Check the leaf against the shortcut's index key a word at a
264 		 * time, trimming the final word (the shortcut stores the index
265 		 * key completely from the root to the shortcut's target).
266 		 */
267 		if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0)
268 			segments = ops->get_key_chunk(index_key, sc_level);
269 
270 		sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT];
271 		dissimilarity = segments ^ sc_segments;
272 
273 		if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) {
274 			/* Trim segments that are beyond the shortcut */
275 			int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK;
276 			dissimilarity &= ~(ULONG_MAX << shift);
277 			next_sc_level = shortcut->skip_to_level;
278 		} else {
279 			next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE;
280 			next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
281 		}
282 
283 		if (dissimilarity != 0) {
284 			/* This shortcut points elsewhere */
285 			result->wrong_shortcut.shortcut = shortcut;
286 			result->wrong_shortcut.level = level;
287 			result->wrong_shortcut.sc_level = sc_level;
288 			result->wrong_shortcut.sc_segments = sc_segments;
289 			result->wrong_shortcut.dissimilarity = dissimilarity;
290 			return assoc_array_walk_found_wrong_shortcut;
291 		}
292 
293 		sc_level = next_sc_level;
294 	} while (sc_level < shortcut->skip_to_level);
295 
296 	/* The shortcut matches the leaf's index to this point. */
297 	cursor = ACCESS_ONCE(shortcut->next_node);
298 	if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) {
299 		level = sc_level;
300 		goto jumped;
301 	} else {
302 		level = sc_level;
303 		goto consider_node;
304 	}
305 }
306 
307 /**
308  * assoc_array_find - Find an object by index key
309  * @array: The associative array to search.
310  * @ops: The operations to use.
311  * @index_key: The key to the object.
312  *
313  * Find an object in an associative array by walking through the internal tree
314  * to the node that should contain the object and then searching the leaves
315  * there.  NULL is returned if the requested object was not found in the array.
316  *
317  * The caller must hold the RCU read lock or better.
318  */
319 void *assoc_array_find(const struct assoc_array *array,
320 		       const struct assoc_array_ops *ops,
321 		       const void *index_key)
322 {
323 	struct assoc_array_walk_result result;
324 	const struct assoc_array_node *node;
325 	const struct assoc_array_ptr *ptr;
326 	const void *leaf;
327 	int slot;
328 
329 	if (assoc_array_walk(array, ops, index_key, &result) !=
330 	    assoc_array_walk_found_terminal_node)
331 		return NULL;
332 
333 	node = result.terminal_node.node;
334 	smp_read_barrier_depends();
335 
336 	/* If the target key is available to us, it's has to be pointed to by
337 	 * the terminal node.
338 	 */
339 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
340 		ptr = ACCESS_ONCE(node->slots[slot]);
341 		if (ptr && assoc_array_ptr_is_leaf(ptr)) {
342 			/* We need a barrier between the read of the pointer
343 			 * and dereferencing the pointer - but only if we are
344 			 * actually going to dereference it.
345 			 */
346 			leaf = assoc_array_ptr_to_leaf(ptr);
347 			smp_read_barrier_depends();
348 			if (ops->compare_object(leaf, index_key))
349 				return (void *)leaf;
350 		}
351 	}
352 
353 	return NULL;
354 }
355 
356 /*
357  * Destructively iterate over an associative array.  The caller must prevent
358  * other simultaneous accesses.
359  */
360 static void assoc_array_destroy_subtree(struct assoc_array_ptr *root,
361 					const struct assoc_array_ops *ops)
362 {
363 	struct assoc_array_shortcut *shortcut;
364 	struct assoc_array_node *node;
365 	struct assoc_array_ptr *cursor, *parent = NULL;
366 	int slot = -1;
367 
368 	pr_devel("-->%s()\n", __func__);
369 
370 	cursor = root;
371 	if (!cursor) {
372 		pr_devel("empty\n");
373 		return;
374 	}
375 
376 move_to_meta:
377 	if (assoc_array_ptr_is_shortcut(cursor)) {
378 		/* Descend through a shortcut */
379 		pr_devel("[%d] shortcut\n", slot);
380 		BUG_ON(!assoc_array_ptr_is_shortcut(cursor));
381 		shortcut = assoc_array_ptr_to_shortcut(cursor);
382 		BUG_ON(shortcut->back_pointer != parent);
383 		BUG_ON(slot != -1 && shortcut->parent_slot != slot);
384 		parent = cursor;
385 		cursor = shortcut->next_node;
386 		slot = -1;
387 		BUG_ON(!assoc_array_ptr_is_node(cursor));
388 	}
389 
390 	pr_devel("[%d] node\n", slot);
391 	node = assoc_array_ptr_to_node(cursor);
392 	BUG_ON(node->back_pointer != parent);
393 	BUG_ON(slot != -1 && node->parent_slot != slot);
394 	slot = 0;
395 
396 continue_node:
397 	pr_devel("Node %p [back=%p]\n", node, node->back_pointer);
398 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
399 		struct assoc_array_ptr *ptr = node->slots[slot];
400 		if (!ptr)
401 			continue;
402 		if (assoc_array_ptr_is_meta(ptr)) {
403 			parent = cursor;
404 			cursor = ptr;
405 			goto move_to_meta;
406 		}
407 
408 		if (ops) {
409 			pr_devel("[%d] free leaf\n", slot);
410 			ops->free_object(assoc_array_ptr_to_leaf(ptr));
411 		}
412 	}
413 
414 	parent = node->back_pointer;
415 	slot = node->parent_slot;
416 	pr_devel("free node\n");
417 	kfree(node);
418 	if (!parent)
419 		return; /* Done */
420 
421 	/* Move back up to the parent (may need to free a shortcut on
422 	 * the way up) */
423 	if (assoc_array_ptr_is_shortcut(parent)) {
424 		shortcut = assoc_array_ptr_to_shortcut(parent);
425 		BUG_ON(shortcut->next_node != cursor);
426 		cursor = parent;
427 		parent = shortcut->back_pointer;
428 		slot = shortcut->parent_slot;
429 		pr_devel("free shortcut\n");
430 		kfree(shortcut);
431 		if (!parent)
432 			return;
433 
434 		BUG_ON(!assoc_array_ptr_is_node(parent));
435 	}
436 
437 	/* Ascend to next slot in parent node */
438 	pr_devel("ascend to %p[%d]\n", parent, slot);
439 	cursor = parent;
440 	node = assoc_array_ptr_to_node(cursor);
441 	slot++;
442 	goto continue_node;
443 }
444 
445 /**
446  * assoc_array_destroy - Destroy an associative array
447  * @array: The array to destroy.
448  * @ops: The operations to use.
449  *
450  * Discard all metadata and free all objects in an associative array.  The
451  * array will be empty and ready to use again upon completion.  This function
452  * cannot fail.
453  *
454  * The caller must prevent all other accesses whilst this takes place as no
455  * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
456  * accesses to continue.  On the other hand, no memory allocation is required.
457  */
458 void assoc_array_destroy(struct assoc_array *array,
459 			 const struct assoc_array_ops *ops)
460 {
461 	assoc_array_destroy_subtree(array->root, ops);
462 	array->root = NULL;
463 }
464 
465 /*
466  * Handle insertion into an empty tree.
467  */
468 static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit)
469 {
470 	struct assoc_array_node *new_n0;
471 
472 	pr_devel("-->%s()\n", __func__);
473 
474 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
475 	if (!new_n0)
476 		return false;
477 
478 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
479 	edit->leaf_p = &new_n0->slots[0];
480 	edit->adjust_count_on = new_n0;
481 	edit->set[0].ptr = &edit->array->root;
482 	edit->set[0].to = assoc_array_node_to_ptr(new_n0);
483 
484 	pr_devel("<--%s() = ok [no root]\n", __func__);
485 	return true;
486 }
487 
488 /*
489  * Handle insertion into a terminal node.
490  */
491 static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit,
492 						  const struct assoc_array_ops *ops,
493 						  const void *index_key,
494 						  struct assoc_array_walk_result *result)
495 {
496 	struct assoc_array_shortcut *shortcut, *new_s0;
497 	struct assoc_array_node *node, *new_n0, *new_n1, *side;
498 	struct assoc_array_ptr *ptr;
499 	unsigned long dissimilarity, base_seg, blank;
500 	size_t keylen;
501 	bool have_meta;
502 	int level, diff;
503 	int slot, next_slot, free_slot, i, j;
504 
505 	node	= result->terminal_node.node;
506 	level	= result->terminal_node.level;
507 	edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot;
508 
509 	pr_devel("-->%s()\n", __func__);
510 
511 	/* We arrived at a node which doesn't have an onward node or shortcut
512 	 * pointer that we have to follow.  This means that (a) the leaf we
513 	 * want must go here (either by insertion or replacement) or (b) we
514 	 * need to split this node and insert in one of the fragments.
515 	 */
516 	free_slot = -1;
517 
518 	/* Firstly, we have to check the leaves in this node to see if there's
519 	 * a matching one we should replace in place.
520 	 */
521 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
522 		ptr = node->slots[i];
523 		if (!ptr) {
524 			free_slot = i;
525 			continue;
526 		}
527 		if (ops->compare_object(assoc_array_ptr_to_leaf(ptr), index_key)) {
528 			pr_devel("replace in slot %d\n", i);
529 			edit->leaf_p = &node->slots[i];
530 			edit->dead_leaf = node->slots[i];
531 			pr_devel("<--%s() = ok [replace]\n", __func__);
532 			return true;
533 		}
534 	}
535 
536 	/* If there is a free slot in this node then we can just insert the
537 	 * leaf here.
538 	 */
539 	if (free_slot >= 0) {
540 		pr_devel("insert in free slot %d\n", free_slot);
541 		edit->leaf_p = &node->slots[free_slot];
542 		edit->adjust_count_on = node;
543 		pr_devel("<--%s() = ok [insert]\n", __func__);
544 		return true;
545 	}
546 
547 	/* The node has no spare slots - so we're either going to have to split
548 	 * it or insert another node before it.
549 	 *
550 	 * Whatever, we're going to need at least two new nodes - so allocate
551 	 * those now.  We may also need a new shortcut, but we deal with that
552 	 * when we need it.
553 	 */
554 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
555 	if (!new_n0)
556 		return false;
557 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
558 	new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
559 	if (!new_n1)
560 		return false;
561 	edit->new_meta[1] = assoc_array_node_to_ptr(new_n1);
562 
563 	/* We need to find out how similar the leaves are. */
564 	pr_devel("no spare slots\n");
565 	have_meta = false;
566 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
567 		ptr = node->slots[i];
568 		if (assoc_array_ptr_is_meta(ptr)) {
569 			edit->segment_cache[i] = 0xff;
570 			have_meta = true;
571 			continue;
572 		}
573 		base_seg = ops->get_object_key_chunk(
574 			assoc_array_ptr_to_leaf(ptr), level);
575 		base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
576 		edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
577 	}
578 
579 	if (have_meta) {
580 		pr_devel("have meta\n");
581 		goto split_node;
582 	}
583 
584 	/* The node contains only leaves */
585 	dissimilarity = 0;
586 	base_seg = edit->segment_cache[0];
587 	for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++)
588 		dissimilarity |= edit->segment_cache[i] ^ base_seg;
589 
590 	pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity);
591 
592 	if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) {
593 		/* The old leaves all cluster in the same slot.  We will need
594 		 * to insert a shortcut if the new node wants to cluster with them.
595 		 */
596 		if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0)
597 			goto all_leaves_cluster_together;
598 
599 		/* Otherwise we can just insert a new node ahead of the old
600 		 * one.
601 		 */
602 		goto present_leaves_cluster_but_not_new_leaf;
603 	}
604 
605 split_node:
606 	pr_devel("split node\n");
607 
608 	/* We need to split the current node; we know that the node doesn't
609 	 * simply contain a full set of leaves that cluster together (it
610 	 * contains meta pointers and/or non-clustering leaves).
611 	 *
612 	 * We need to expel at least two leaves out of a set consisting of the
613 	 * leaves in the node and the new leaf.
614 	 *
615 	 * We need a new node (n0) to replace the current one and a new node to
616 	 * take the expelled nodes (n1).
617 	 */
618 	edit->set[0].to = assoc_array_node_to_ptr(new_n0);
619 	new_n0->back_pointer = node->back_pointer;
620 	new_n0->parent_slot = node->parent_slot;
621 	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
622 	new_n1->parent_slot = -1; /* Need to calculate this */
623 
624 do_split_node:
625 	pr_devel("do_split_node\n");
626 
627 	new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
628 	new_n1->nr_leaves_on_branch = 0;
629 
630 	/* Begin by finding two matching leaves.  There have to be at least two
631 	 * that match - even if there are meta pointers - because any leaf that
632 	 * would match a slot with a meta pointer in it must be somewhere
633 	 * behind that meta pointer and cannot be here.  Further, given N
634 	 * remaining leaf slots, we now have N+1 leaves to go in them.
635 	 */
636 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
637 		slot = edit->segment_cache[i];
638 		if (slot != 0xff)
639 			for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++)
640 				if (edit->segment_cache[j] == slot)
641 					goto found_slot_for_multiple_occupancy;
642 	}
643 found_slot_for_multiple_occupancy:
644 	pr_devel("same slot: %x %x [%02x]\n", i, j, slot);
645 	BUG_ON(i >= ASSOC_ARRAY_FAN_OUT);
646 	BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1);
647 	BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT);
648 
649 	new_n1->parent_slot = slot;
650 
651 	/* Metadata pointers cannot change slot */
652 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
653 		if (assoc_array_ptr_is_meta(node->slots[i]))
654 			new_n0->slots[i] = node->slots[i];
655 		else
656 			new_n0->slots[i] = NULL;
657 	BUG_ON(new_n0->slots[slot] != NULL);
658 	new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1);
659 
660 	/* Filter the leaf pointers between the new nodes */
661 	free_slot = -1;
662 	next_slot = 0;
663 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
664 		if (assoc_array_ptr_is_meta(node->slots[i]))
665 			continue;
666 		if (edit->segment_cache[i] == slot) {
667 			new_n1->slots[next_slot++] = node->slots[i];
668 			new_n1->nr_leaves_on_branch++;
669 		} else {
670 			do {
671 				free_slot++;
672 			} while (new_n0->slots[free_slot] != NULL);
673 			new_n0->slots[free_slot] = node->slots[i];
674 		}
675 	}
676 
677 	pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot);
678 
679 	if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) {
680 		do {
681 			free_slot++;
682 		} while (new_n0->slots[free_slot] != NULL);
683 		edit->leaf_p = &new_n0->slots[free_slot];
684 		edit->adjust_count_on = new_n0;
685 	} else {
686 		edit->leaf_p = &new_n1->slots[next_slot++];
687 		edit->adjust_count_on = new_n1;
688 	}
689 
690 	BUG_ON(next_slot <= 1);
691 
692 	edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0);
693 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
694 		if (edit->segment_cache[i] == 0xff) {
695 			ptr = node->slots[i];
696 			BUG_ON(assoc_array_ptr_is_leaf(ptr));
697 			if (assoc_array_ptr_is_node(ptr)) {
698 				side = assoc_array_ptr_to_node(ptr);
699 				edit->set_backpointers[i] = &side->back_pointer;
700 			} else {
701 				shortcut = assoc_array_ptr_to_shortcut(ptr);
702 				edit->set_backpointers[i] = &shortcut->back_pointer;
703 			}
704 		}
705 	}
706 
707 	ptr = node->back_pointer;
708 	if (!ptr)
709 		edit->set[0].ptr = &edit->array->root;
710 	else if (assoc_array_ptr_is_node(ptr))
711 		edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot];
712 	else
713 		edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node;
714 	edit->excised_meta[0] = assoc_array_node_to_ptr(node);
715 	pr_devel("<--%s() = ok [split node]\n", __func__);
716 	return true;
717 
718 present_leaves_cluster_but_not_new_leaf:
719 	/* All the old leaves cluster in the same slot, but the new leaf wants
720 	 * to go into a different slot, so we create a new node to hold the new
721 	 * leaf and a pointer to a new node holding all the old leaves.
722 	 */
723 	pr_devel("present leaves cluster but not new leaf\n");
724 
725 	new_n0->back_pointer = node->back_pointer;
726 	new_n0->parent_slot = node->parent_slot;
727 	new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
728 	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
729 	new_n1->parent_slot = edit->segment_cache[0];
730 	new_n1->nr_leaves_on_branch = node->nr_leaves_on_branch;
731 	edit->adjust_count_on = new_n0;
732 
733 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
734 		new_n1->slots[i] = node->slots[i];
735 
736 	new_n0->slots[edit->segment_cache[0]] = assoc_array_node_to_ptr(new_n0);
737 	edit->leaf_p = &new_n0->slots[edit->segment_cache[ASSOC_ARRAY_FAN_OUT]];
738 
739 	edit->set[0].ptr = &assoc_array_ptr_to_node(node->back_pointer)->slots[node->parent_slot];
740 	edit->set[0].to = assoc_array_node_to_ptr(new_n0);
741 	edit->excised_meta[0] = assoc_array_node_to_ptr(node);
742 	pr_devel("<--%s() = ok [insert node before]\n", __func__);
743 	return true;
744 
745 all_leaves_cluster_together:
746 	/* All the leaves, new and old, want to cluster together in this node
747 	 * in the same slot, so we have to replace this node with a shortcut to
748 	 * skip over the identical parts of the key and then place a pair of
749 	 * nodes, one inside the other, at the end of the shortcut and
750 	 * distribute the keys between them.
751 	 *
752 	 * Firstly we need to work out where the leaves start diverging as a
753 	 * bit position into their keys so that we know how big the shortcut
754 	 * needs to be.
755 	 *
756 	 * We only need to make a single pass of N of the N+1 leaves because if
757 	 * any keys differ between themselves at bit X then at least one of
758 	 * them must also differ with the base key at bit X or before.
759 	 */
760 	pr_devel("all leaves cluster together\n");
761 	diff = INT_MAX;
762 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
763 		int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]),
764 					  index_key);
765 		if (x < diff) {
766 			BUG_ON(x < 0);
767 			diff = x;
768 		}
769 	}
770 	BUG_ON(diff == INT_MAX);
771 	BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP);
772 
773 	keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
774 	keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
775 
776 	new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
777 			 keylen * sizeof(unsigned long), GFP_KERNEL);
778 	if (!new_s0)
779 		return false;
780 	edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0);
781 
782 	edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
783 	new_s0->back_pointer = node->back_pointer;
784 	new_s0->parent_slot = node->parent_slot;
785 	new_s0->next_node = assoc_array_node_to_ptr(new_n0);
786 	new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
787 	new_n0->parent_slot = 0;
788 	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
789 	new_n1->parent_slot = -1; /* Need to calculate this */
790 
791 	new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK;
792 	pr_devel("skip_to_level = %d [diff %d]\n", level, diff);
793 	BUG_ON(level <= 0);
794 
795 	for (i = 0; i < keylen; i++)
796 		new_s0->index_key[i] =
797 			ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE);
798 
799 	blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
800 	pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank);
801 	new_s0->index_key[keylen - 1] &= ~blank;
802 
803 	/* This now reduces to a node splitting exercise for which we'll need
804 	 * to regenerate the disparity table.
805 	 */
806 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
807 		ptr = node->slots[i];
808 		base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr),
809 						     level);
810 		base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
811 		edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
812 	}
813 
814 	base_seg = ops->get_key_chunk(index_key, level);
815 	base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
816 	edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK;
817 	goto do_split_node;
818 }
819 
820 /*
821  * Handle insertion into the middle of a shortcut.
822  */
823 static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
824 					    const struct assoc_array_ops *ops,
825 					    struct assoc_array_walk_result *result)
826 {
827 	struct assoc_array_shortcut *shortcut, *new_s0, *new_s1;
828 	struct assoc_array_node *node, *new_n0, *side;
829 	unsigned long sc_segments, dissimilarity, blank;
830 	size_t keylen;
831 	int level, sc_level, diff;
832 	int sc_slot;
833 
834 	shortcut	= result->wrong_shortcut.shortcut;
835 	level		= result->wrong_shortcut.level;
836 	sc_level	= result->wrong_shortcut.sc_level;
837 	sc_segments	= result->wrong_shortcut.sc_segments;
838 	dissimilarity	= result->wrong_shortcut.dissimilarity;
839 
840 	pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
841 		 __func__, level, dissimilarity, sc_level);
842 
843 	/* We need to split a shortcut and insert a node between the two
844 	 * pieces.  Zero-length pieces will be dispensed with entirely.
845 	 *
846 	 * First of all, we need to find out in which level the first
847 	 * difference was.
848 	 */
849 	diff = __ffs(dissimilarity);
850 	diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK;
851 	diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK;
852 	pr_devel("diff=%d\n", diff);
853 
854 	if (!shortcut->back_pointer) {
855 		edit->set[0].ptr = &edit->array->root;
856 	} else if (assoc_array_ptr_is_node(shortcut->back_pointer)) {
857 		node = assoc_array_ptr_to_node(shortcut->back_pointer);
858 		edit->set[0].ptr = &node->slots[shortcut->parent_slot];
859 	} else {
860 		BUG();
861 	}
862 
863 	edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut);
864 
865 	/* Create a new node now since we're going to need it anyway */
866 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
867 	if (!new_n0)
868 		return false;
869 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
870 	edit->adjust_count_on = new_n0;
871 
872 	/* Insert a new shortcut before the new node if this segment isn't of
873 	 * zero length - otherwise we just connect the new node directly to the
874 	 * parent.
875 	 */
876 	level += ASSOC_ARRAY_LEVEL_STEP;
877 	if (diff > level) {
878 		pr_devel("pre-shortcut %d...%d\n", level, diff);
879 		keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
880 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
881 
882 		new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
883 				 keylen * sizeof(unsigned long), GFP_KERNEL);
884 		if (!new_s0)
885 			return false;
886 		edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0);
887 		edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
888 		new_s0->back_pointer = shortcut->back_pointer;
889 		new_s0->parent_slot = shortcut->parent_slot;
890 		new_s0->next_node = assoc_array_node_to_ptr(new_n0);
891 		new_s0->skip_to_level = diff;
892 
893 		new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
894 		new_n0->parent_slot = 0;
895 
896 		memcpy(new_s0->index_key, shortcut->index_key,
897 		       keylen * sizeof(unsigned long));
898 
899 		blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
900 		pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank);
901 		new_s0->index_key[keylen - 1] &= ~blank;
902 	} else {
903 		pr_devel("no pre-shortcut\n");
904 		edit->set[0].to = assoc_array_node_to_ptr(new_n0);
905 		new_n0->back_pointer = shortcut->back_pointer;
906 		new_n0->parent_slot = shortcut->parent_slot;
907 	}
908 
909 	side = assoc_array_ptr_to_node(shortcut->next_node);
910 	new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch;
911 
912 	/* We need to know which slot in the new node is going to take a
913 	 * metadata pointer.
914 	 */
915 	sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
916 	sc_slot &= ASSOC_ARRAY_FAN_MASK;
917 
918 	pr_devel("new slot %lx >> %d -> %d\n",
919 		 sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot);
920 
921 	/* Determine whether we need to follow the new node with a replacement
922 	 * for the current shortcut.  We could in theory reuse the current
923 	 * shortcut if its parent slot number doesn't change - but that's a
924 	 * 1-in-16 chance so not worth expending the code upon.
925 	 */
926 	level = diff + ASSOC_ARRAY_LEVEL_STEP;
927 	if (level < shortcut->skip_to_level) {
928 		pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level);
929 		keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
930 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
931 
932 		new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) +
933 				 keylen * sizeof(unsigned long), GFP_KERNEL);
934 		if (!new_s1)
935 			return false;
936 		edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1);
937 
938 		new_s1->back_pointer = assoc_array_node_to_ptr(new_n0);
939 		new_s1->parent_slot = sc_slot;
940 		new_s1->next_node = shortcut->next_node;
941 		new_s1->skip_to_level = shortcut->skip_to_level;
942 
943 		new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1);
944 
945 		memcpy(new_s1->index_key, shortcut->index_key,
946 		       keylen * sizeof(unsigned long));
947 
948 		edit->set[1].ptr = &side->back_pointer;
949 		edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1);
950 	} else {
951 		pr_devel("no post-shortcut\n");
952 
953 		/* We don't have to replace the pointed-to node as long as we
954 		 * use memory barriers to make sure the parent slot number is
955 		 * changed before the back pointer (the parent slot number is
956 		 * irrelevant to the old parent shortcut).
957 		 */
958 		new_n0->slots[sc_slot] = shortcut->next_node;
959 		edit->set_parent_slot[0].p = &side->parent_slot;
960 		edit->set_parent_slot[0].to = sc_slot;
961 		edit->set[1].ptr = &side->back_pointer;
962 		edit->set[1].to = assoc_array_node_to_ptr(new_n0);
963 	}
964 
965 	/* Install the new leaf in a spare slot in the new node. */
966 	if (sc_slot == 0)
967 		edit->leaf_p = &new_n0->slots[1];
968 	else
969 		edit->leaf_p = &new_n0->slots[0];
970 
971 	pr_devel("<--%s() = ok [split shortcut]\n", __func__);
972 	return edit;
973 }
974 
975 /**
976  * assoc_array_insert - Script insertion of an object into an associative array
977  * @array: The array to insert into.
978  * @ops: The operations to use.
979  * @index_key: The key to insert at.
980  * @object: The object to insert.
981  *
982  * Precalculate and preallocate a script for the insertion or replacement of an
983  * object in an associative array.  This results in an edit script that can
984  * either be applied or cancelled.
985  *
986  * The function returns a pointer to an edit script or -ENOMEM.
987  *
988  * The caller should lock against other modifications and must continue to hold
989  * the lock until assoc_array_apply_edit() has been called.
990  *
991  * Accesses to the tree may take place concurrently with this function,
992  * provided they hold the RCU read lock.
993  */
994 struct assoc_array_edit *assoc_array_insert(struct assoc_array *array,
995 					    const struct assoc_array_ops *ops,
996 					    const void *index_key,
997 					    void *object)
998 {
999 	struct assoc_array_walk_result result;
1000 	struct assoc_array_edit *edit;
1001 
1002 	pr_devel("-->%s()\n", __func__);
1003 
1004 	/* The leaf pointer we're given must not have the bottom bit set as we
1005 	 * use those for type-marking the pointer.  NULL pointers are also not
1006 	 * allowed as they indicate an empty slot but we have to allow them
1007 	 * here as they can be updated later.
1008 	 */
1009 	BUG_ON(assoc_array_ptr_is_meta(object));
1010 
1011 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1012 	if (!edit)
1013 		return ERR_PTR(-ENOMEM);
1014 	edit->array = array;
1015 	edit->ops = ops;
1016 	edit->leaf = assoc_array_leaf_to_ptr(object);
1017 	edit->adjust_count_by = 1;
1018 
1019 	switch (assoc_array_walk(array, ops, index_key, &result)) {
1020 	case assoc_array_walk_tree_empty:
1021 		/* Allocate a root node if there isn't one yet */
1022 		if (!assoc_array_insert_in_empty_tree(edit))
1023 			goto enomem;
1024 		return edit;
1025 
1026 	case assoc_array_walk_found_terminal_node:
1027 		/* We found a node that doesn't have a node/shortcut pointer in
1028 		 * the slot corresponding to the index key that we have to
1029 		 * follow.
1030 		 */
1031 		if (!assoc_array_insert_into_terminal_node(edit, ops, index_key,
1032 							   &result))
1033 			goto enomem;
1034 		return edit;
1035 
1036 	case assoc_array_walk_found_wrong_shortcut:
1037 		/* We found a shortcut that didn't match our key in a slot we
1038 		 * needed to follow.
1039 		 */
1040 		if (!assoc_array_insert_mid_shortcut(edit, ops, &result))
1041 			goto enomem;
1042 		return edit;
1043 	}
1044 
1045 enomem:
1046 	/* Clean up after an out of memory error */
1047 	pr_devel("enomem\n");
1048 	assoc_array_cancel_edit(edit);
1049 	return ERR_PTR(-ENOMEM);
1050 }
1051 
1052 /**
1053  * assoc_array_insert_set_object - Set the new object pointer in an edit script
1054  * @edit: The edit script to modify.
1055  * @object: The object pointer to set.
1056  *
1057  * Change the object to be inserted in an edit script.  The object pointed to
1058  * by the old object is not freed.  This must be done prior to applying the
1059  * script.
1060  */
1061 void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object)
1062 {
1063 	BUG_ON(!object);
1064 	edit->leaf = assoc_array_leaf_to_ptr(object);
1065 }
1066 
1067 struct assoc_array_delete_collapse_context {
1068 	struct assoc_array_node	*node;
1069 	const void		*skip_leaf;
1070 	int			slot;
1071 };
1072 
1073 /*
1074  * Subtree collapse to node iterator.
1075  */
1076 static int assoc_array_delete_collapse_iterator(const void *leaf,
1077 						void *iterator_data)
1078 {
1079 	struct assoc_array_delete_collapse_context *collapse = iterator_data;
1080 
1081 	if (leaf == collapse->skip_leaf)
1082 		return 0;
1083 
1084 	BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT);
1085 
1086 	collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf);
1087 	return 0;
1088 }
1089 
1090 /**
1091  * assoc_array_delete - Script deletion of an object from an associative array
1092  * @array: The array to search.
1093  * @ops: The operations to use.
1094  * @index_key: The key to the object.
1095  *
1096  * Precalculate and preallocate a script for the deletion of an object from an
1097  * associative array.  This results in an edit script that can either be
1098  * applied or cancelled.
1099  *
1100  * The function returns a pointer to an edit script if the object was found,
1101  * NULL if the object was not found or -ENOMEM.
1102  *
1103  * The caller should lock against other modifications and must continue to hold
1104  * the lock until assoc_array_apply_edit() has been called.
1105  *
1106  * Accesses to the tree may take place concurrently with this function,
1107  * provided they hold the RCU read lock.
1108  */
1109 struct assoc_array_edit *assoc_array_delete(struct assoc_array *array,
1110 					    const struct assoc_array_ops *ops,
1111 					    const void *index_key)
1112 {
1113 	struct assoc_array_delete_collapse_context collapse;
1114 	struct assoc_array_walk_result result;
1115 	struct assoc_array_node *node, *new_n0;
1116 	struct assoc_array_edit *edit;
1117 	struct assoc_array_ptr *ptr;
1118 	bool has_meta;
1119 	int slot, i;
1120 
1121 	pr_devel("-->%s()\n", __func__);
1122 
1123 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1124 	if (!edit)
1125 		return ERR_PTR(-ENOMEM);
1126 	edit->array = array;
1127 	edit->ops = ops;
1128 	edit->adjust_count_by = -1;
1129 
1130 	switch (assoc_array_walk(array, ops, index_key, &result)) {
1131 	case assoc_array_walk_found_terminal_node:
1132 		/* We found a node that should contain the leaf we've been
1133 		 * asked to remove - *if* it's in the tree.
1134 		 */
1135 		pr_devel("terminal_node\n");
1136 		node = result.terminal_node.node;
1137 
1138 		for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1139 			ptr = node->slots[slot];
1140 			if (ptr &&
1141 			    assoc_array_ptr_is_leaf(ptr) &&
1142 			    ops->compare_object(assoc_array_ptr_to_leaf(ptr),
1143 						index_key))
1144 				goto found_leaf;
1145 		}
1146 	case assoc_array_walk_tree_empty:
1147 	case assoc_array_walk_found_wrong_shortcut:
1148 	default:
1149 		assoc_array_cancel_edit(edit);
1150 		pr_devel("not found\n");
1151 		return NULL;
1152 	}
1153 
1154 found_leaf:
1155 	BUG_ON(array->nr_leaves_on_tree <= 0);
1156 
1157 	/* In the simplest form of deletion we just clear the slot and release
1158 	 * the leaf after a suitable interval.
1159 	 */
1160 	edit->dead_leaf = node->slots[slot];
1161 	edit->set[0].ptr = &node->slots[slot];
1162 	edit->set[0].to = NULL;
1163 	edit->adjust_count_on = node;
1164 
1165 	/* If that concludes erasure of the last leaf, then delete the entire
1166 	 * internal array.
1167 	 */
1168 	if (array->nr_leaves_on_tree == 1) {
1169 		edit->set[1].ptr = &array->root;
1170 		edit->set[1].to = NULL;
1171 		edit->adjust_count_on = NULL;
1172 		edit->excised_subtree = array->root;
1173 		pr_devel("all gone\n");
1174 		return edit;
1175 	}
1176 
1177 	/* However, we'd also like to clear up some metadata blocks if we
1178 	 * possibly can.
1179 	 *
1180 	 * We go for a simple algorithm of: if this node has FAN_OUT or fewer
1181 	 * leaves in it, then attempt to collapse it - and attempt to
1182 	 * recursively collapse up the tree.
1183 	 *
1184 	 * We could also try and collapse in partially filled subtrees to take
1185 	 * up space in this node.
1186 	 */
1187 	if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1188 		struct assoc_array_node *parent, *grandparent;
1189 		struct assoc_array_ptr *ptr;
1190 
1191 		/* First of all, we need to know if this node has metadata so
1192 		 * that we don't try collapsing if all the leaves are already
1193 		 * here.
1194 		 */
1195 		has_meta = false;
1196 		for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1197 			ptr = node->slots[i];
1198 			if (assoc_array_ptr_is_meta(ptr)) {
1199 				has_meta = true;
1200 				break;
1201 			}
1202 		}
1203 
1204 		pr_devel("leaves: %ld [m=%d]\n",
1205 			 node->nr_leaves_on_branch - 1, has_meta);
1206 
1207 		/* Look further up the tree to see if we can collapse this node
1208 		 * into a more proximal node too.
1209 		 */
1210 		parent = node;
1211 	collapse_up:
1212 		pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch);
1213 
1214 		ptr = parent->back_pointer;
1215 		if (!ptr)
1216 			goto do_collapse;
1217 		if (assoc_array_ptr_is_shortcut(ptr)) {
1218 			struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr);
1219 			ptr = s->back_pointer;
1220 			if (!ptr)
1221 				goto do_collapse;
1222 		}
1223 
1224 		grandparent = assoc_array_ptr_to_node(ptr);
1225 		if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1226 			parent = grandparent;
1227 			goto collapse_up;
1228 		}
1229 
1230 	do_collapse:
1231 		/* There's no point collapsing if the original node has no meta
1232 		 * pointers to discard and if we didn't merge into one of that
1233 		 * node's ancestry.
1234 		 */
1235 		if (has_meta || parent != node) {
1236 			node = parent;
1237 
1238 			/* Create a new node to collapse into */
1239 			new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1240 			if (!new_n0)
1241 				goto enomem;
1242 			edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
1243 
1244 			new_n0->back_pointer = node->back_pointer;
1245 			new_n0->parent_slot = node->parent_slot;
1246 			new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
1247 			edit->adjust_count_on = new_n0;
1248 
1249 			collapse.node = new_n0;
1250 			collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf);
1251 			collapse.slot = 0;
1252 			assoc_array_subtree_iterate(assoc_array_node_to_ptr(node),
1253 						    node->back_pointer,
1254 						    assoc_array_delete_collapse_iterator,
1255 						    &collapse);
1256 			pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch);
1257 			BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1);
1258 
1259 			if (!node->back_pointer) {
1260 				edit->set[1].ptr = &array->root;
1261 			} else if (assoc_array_ptr_is_leaf(node->back_pointer)) {
1262 				BUG();
1263 			} else if (assoc_array_ptr_is_node(node->back_pointer)) {
1264 				struct assoc_array_node *p =
1265 					assoc_array_ptr_to_node(node->back_pointer);
1266 				edit->set[1].ptr = &p->slots[node->parent_slot];
1267 			} else if (assoc_array_ptr_is_shortcut(node->back_pointer)) {
1268 				struct assoc_array_shortcut *s =
1269 					assoc_array_ptr_to_shortcut(node->back_pointer);
1270 				edit->set[1].ptr = &s->next_node;
1271 			}
1272 			edit->set[1].to = assoc_array_node_to_ptr(new_n0);
1273 			edit->excised_subtree = assoc_array_node_to_ptr(node);
1274 		}
1275 	}
1276 
1277 	return edit;
1278 
1279 enomem:
1280 	/* Clean up after an out of memory error */
1281 	pr_devel("enomem\n");
1282 	assoc_array_cancel_edit(edit);
1283 	return ERR_PTR(-ENOMEM);
1284 }
1285 
1286 /**
1287  * assoc_array_clear - Script deletion of all objects from an associative array
1288  * @array: The array to clear.
1289  * @ops: The operations to use.
1290  *
1291  * Precalculate and preallocate a script for the deletion of all the objects
1292  * from an associative array.  This results in an edit script that can either
1293  * be applied or cancelled.
1294  *
1295  * The function returns a pointer to an edit script if there are objects to be
1296  * deleted, NULL if there are no objects in the array or -ENOMEM.
1297  *
1298  * The caller should lock against other modifications and must continue to hold
1299  * the lock until assoc_array_apply_edit() has been called.
1300  *
1301  * Accesses to the tree may take place concurrently with this function,
1302  * provided they hold the RCU read lock.
1303  */
1304 struct assoc_array_edit *assoc_array_clear(struct assoc_array *array,
1305 					   const struct assoc_array_ops *ops)
1306 {
1307 	struct assoc_array_edit *edit;
1308 
1309 	pr_devel("-->%s()\n", __func__);
1310 
1311 	if (!array->root)
1312 		return NULL;
1313 
1314 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1315 	if (!edit)
1316 		return ERR_PTR(-ENOMEM);
1317 	edit->array = array;
1318 	edit->ops = ops;
1319 	edit->set[1].ptr = &array->root;
1320 	edit->set[1].to = NULL;
1321 	edit->excised_subtree = array->root;
1322 	edit->ops_for_excised_subtree = ops;
1323 	pr_devel("all gone\n");
1324 	return edit;
1325 }
1326 
1327 /*
1328  * Handle the deferred destruction after an applied edit.
1329  */
1330 static void assoc_array_rcu_cleanup(struct rcu_head *head)
1331 {
1332 	struct assoc_array_edit *edit =
1333 		container_of(head, struct assoc_array_edit, rcu);
1334 	int i;
1335 
1336 	pr_devel("-->%s()\n", __func__);
1337 
1338 	if (edit->dead_leaf)
1339 		edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf));
1340 	for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++)
1341 		if (edit->excised_meta[i])
1342 			kfree(assoc_array_ptr_to_node(edit->excised_meta[i]));
1343 
1344 	if (edit->excised_subtree) {
1345 		BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree));
1346 		if (assoc_array_ptr_is_node(edit->excised_subtree)) {
1347 			struct assoc_array_node *n =
1348 				assoc_array_ptr_to_node(edit->excised_subtree);
1349 			n->back_pointer = NULL;
1350 		} else {
1351 			struct assoc_array_shortcut *s =
1352 				assoc_array_ptr_to_shortcut(edit->excised_subtree);
1353 			s->back_pointer = NULL;
1354 		}
1355 		assoc_array_destroy_subtree(edit->excised_subtree,
1356 					    edit->ops_for_excised_subtree);
1357 	}
1358 
1359 	kfree(edit);
1360 }
1361 
1362 /**
1363  * assoc_array_apply_edit - Apply an edit script to an associative array
1364  * @edit: The script to apply.
1365  *
1366  * Apply an edit script to an associative array to effect an insertion,
1367  * deletion or clearance.  As the edit script includes preallocated memory,
1368  * this is guaranteed not to fail.
1369  *
1370  * The edit script, dead objects and dead metadata will be scheduled for
1371  * destruction after an RCU grace period to permit those doing read-only
1372  * accesses on the array to continue to do so under the RCU read lock whilst
1373  * the edit is taking place.
1374  */
1375 void assoc_array_apply_edit(struct assoc_array_edit *edit)
1376 {
1377 	struct assoc_array_shortcut *shortcut;
1378 	struct assoc_array_node *node;
1379 	struct assoc_array_ptr *ptr;
1380 	int i;
1381 
1382 	pr_devel("-->%s()\n", __func__);
1383 
1384 	smp_wmb();
1385 	if (edit->leaf_p)
1386 		*edit->leaf_p = edit->leaf;
1387 
1388 	smp_wmb();
1389 	for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++)
1390 		if (edit->set_parent_slot[i].p)
1391 			*edit->set_parent_slot[i].p = edit->set_parent_slot[i].to;
1392 
1393 	smp_wmb();
1394 	for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++)
1395 		if (edit->set_backpointers[i])
1396 			*edit->set_backpointers[i] = edit->set_backpointers_to;
1397 
1398 	smp_wmb();
1399 	for (i = 0; i < ARRAY_SIZE(edit->set); i++)
1400 		if (edit->set[i].ptr)
1401 			*edit->set[i].ptr = edit->set[i].to;
1402 
1403 	if (edit->array->root == NULL) {
1404 		edit->array->nr_leaves_on_tree = 0;
1405 	} else if (edit->adjust_count_on) {
1406 		node = edit->adjust_count_on;
1407 		for (;;) {
1408 			node->nr_leaves_on_branch += edit->adjust_count_by;
1409 
1410 			ptr = node->back_pointer;
1411 			if (!ptr)
1412 				break;
1413 			if (assoc_array_ptr_is_shortcut(ptr)) {
1414 				shortcut = assoc_array_ptr_to_shortcut(ptr);
1415 				ptr = shortcut->back_pointer;
1416 				if (!ptr)
1417 					break;
1418 			}
1419 			BUG_ON(!assoc_array_ptr_is_node(ptr));
1420 			node = assoc_array_ptr_to_node(ptr);
1421 		}
1422 
1423 		edit->array->nr_leaves_on_tree += edit->adjust_count_by;
1424 	}
1425 
1426 	call_rcu(&edit->rcu, assoc_array_rcu_cleanup);
1427 }
1428 
1429 /**
1430  * assoc_array_cancel_edit - Discard an edit script.
1431  * @edit: The script to discard.
1432  *
1433  * Free an edit script and all the preallocated data it holds without making
1434  * any changes to the associative array it was intended for.
1435  *
1436  * NOTE!  In the case of an insertion script, this does _not_ release the leaf
1437  * that was to be inserted.  That is left to the caller.
1438  */
1439 void assoc_array_cancel_edit(struct assoc_array_edit *edit)
1440 {
1441 	struct assoc_array_ptr *ptr;
1442 	int i;
1443 
1444 	pr_devel("-->%s()\n", __func__);
1445 
1446 	/* Clean up after an out of memory error */
1447 	for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) {
1448 		ptr = edit->new_meta[i];
1449 		if (ptr) {
1450 			if (assoc_array_ptr_is_node(ptr))
1451 				kfree(assoc_array_ptr_to_node(ptr));
1452 			else
1453 				kfree(assoc_array_ptr_to_shortcut(ptr));
1454 		}
1455 	}
1456 	kfree(edit);
1457 }
1458 
1459 /**
1460  * assoc_array_gc - Garbage collect an associative array.
1461  * @array: The array to clean.
1462  * @ops: The operations to use.
1463  * @iterator: A callback function to pass judgement on each object.
1464  * @iterator_data: Private data for the callback function.
1465  *
1466  * Collect garbage from an associative array and pack down the internal tree to
1467  * save memory.
1468  *
1469  * The iterator function is asked to pass judgement upon each object in the
1470  * array.  If it returns false, the object is discard and if it returns true,
1471  * the object is kept.  If it returns true, it must increment the object's
1472  * usage count (or whatever it needs to do to retain it) before returning.
1473  *
1474  * This function returns 0 if successful or -ENOMEM if out of memory.  In the
1475  * latter case, the array is not changed.
1476  *
1477  * The caller should lock against other modifications and must continue to hold
1478  * the lock until assoc_array_apply_edit() has been called.
1479  *
1480  * Accesses to the tree may take place concurrently with this function,
1481  * provided they hold the RCU read lock.
1482  */
1483 int assoc_array_gc(struct assoc_array *array,
1484 		   const struct assoc_array_ops *ops,
1485 		   bool (*iterator)(void *object, void *iterator_data),
1486 		   void *iterator_data)
1487 {
1488 	struct assoc_array_shortcut *shortcut, *new_s;
1489 	struct assoc_array_node *node, *new_n;
1490 	struct assoc_array_edit *edit;
1491 	struct assoc_array_ptr *cursor, *ptr;
1492 	struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp;
1493 	unsigned long nr_leaves_on_tree;
1494 	int keylen, slot, nr_free, next_slot, i;
1495 
1496 	pr_devel("-->%s()\n", __func__);
1497 
1498 	if (!array->root)
1499 		return 0;
1500 
1501 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1502 	if (!edit)
1503 		return -ENOMEM;
1504 	edit->array = array;
1505 	edit->ops = ops;
1506 	edit->ops_for_excised_subtree = ops;
1507 	edit->set[0].ptr = &array->root;
1508 	edit->excised_subtree = array->root;
1509 
1510 	new_root = new_parent = NULL;
1511 	new_ptr_pp = &new_root;
1512 	cursor = array->root;
1513 
1514 descend:
1515 	/* If this point is a shortcut, then we need to duplicate it and
1516 	 * advance the target cursor.
1517 	 */
1518 	if (assoc_array_ptr_is_shortcut(cursor)) {
1519 		shortcut = assoc_array_ptr_to_shortcut(cursor);
1520 		keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
1521 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
1522 		new_s = kmalloc(sizeof(struct assoc_array_shortcut) +
1523 				keylen * sizeof(unsigned long), GFP_KERNEL);
1524 		if (!new_s)
1525 			goto enomem;
1526 		pr_devel("dup shortcut %p -> %p\n", shortcut, new_s);
1527 		memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) +
1528 					 keylen * sizeof(unsigned long)));
1529 		new_s->back_pointer = new_parent;
1530 		new_s->parent_slot = shortcut->parent_slot;
1531 		*new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s);
1532 		new_ptr_pp = &new_s->next_node;
1533 		cursor = shortcut->next_node;
1534 	}
1535 
1536 	/* Duplicate the node at this position */
1537 	node = assoc_array_ptr_to_node(cursor);
1538 	new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1539 	if (!new_n)
1540 		goto enomem;
1541 	pr_devel("dup node %p -> %p\n", node, new_n);
1542 	new_n->back_pointer = new_parent;
1543 	new_n->parent_slot = node->parent_slot;
1544 	*new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n);
1545 	new_ptr_pp = NULL;
1546 	slot = 0;
1547 
1548 continue_node:
1549 	/* Filter across any leaves and gc any subtrees */
1550 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1551 		ptr = node->slots[slot];
1552 		if (!ptr)
1553 			continue;
1554 
1555 		if (assoc_array_ptr_is_leaf(ptr)) {
1556 			if (iterator(assoc_array_ptr_to_leaf(ptr),
1557 				     iterator_data))
1558 				/* The iterator will have done any reference
1559 				 * counting on the object for us.
1560 				 */
1561 				new_n->slots[slot] = ptr;
1562 			continue;
1563 		}
1564 
1565 		new_ptr_pp = &new_n->slots[slot];
1566 		cursor = ptr;
1567 		goto descend;
1568 	}
1569 
1570 	pr_devel("-- compress node %p --\n", new_n);
1571 
1572 	/* Count up the number of empty slots in this node and work out the
1573 	 * subtree leaf count.
1574 	 */
1575 	new_n->nr_leaves_on_branch = 0;
1576 	nr_free = 0;
1577 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1578 		ptr = new_n->slots[slot];
1579 		if (!ptr)
1580 			nr_free++;
1581 		else if (assoc_array_ptr_is_leaf(ptr))
1582 			new_n->nr_leaves_on_branch++;
1583 	}
1584 	pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch);
1585 
1586 	/* See what we can fold in */
1587 	next_slot = 0;
1588 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1589 		struct assoc_array_shortcut *s;
1590 		struct assoc_array_node *child;
1591 
1592 		ptr = new_n->slots[slot];
1593 		if (!ptr || assoc_array_ptr_is_leaf(ptr))
1594 			continue;
1595 
1596 		s = NULL;
1597 		if (assoc_array_ptr_is_shortcut(ptr)) {
1598 			s = assoc_array_ptr_to_shortcut(ptr);
1599 			ptr = s->next_node;
1600 		}
1601 
1602 		child = assoc_array_ptr_to_node(ptr);
1603 		new_n->nr_leaves_on_branch += child->nr_leaves_on_branch;
1604 
1605 		if (child->nr_leaves_on_branch <= nr_free + 1) {
1606 			/* Fold the child node into this one */
1607 			pr_devel("[%d] fold node %lu/%d [nx %d]\n",
1608 				 slot, child->nr_leaves_on_branch, nr_free + 1,
1609 				 next_slot);
1610 
1611 			/* We would already have reaped an intervening shortcut
1612 			 * on the way back up the tree.
1613 			 */
1614 			BUG_ON(s);
1615 
1616 			new_n->slots[slot] = NULL;
1617 			nr_free++;
1618 			if (slot < next_slot)
1619 				next_slot = slot;
1620 			for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1621 				struct assoc_array_ptr *p = child->slots[i];
1622 				if (!p)
1623 					continue;
1624 				BUG_ON(assoc_array_ptr_is_meta(p));
1625 				while (new_n->slots[next_slot])
1626 					next_slot++;
1627 				BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT);
1628 				new_n->slots[next_slot++] = p;
1629 				nr_free--;
1630 			}
1631 			kfree(child);
1632 		} else {
1633 			pr_devel("[%d] retain node %lu/%d [nx %d]\n",
1634 				 slot, child->nr_leaves_on_branch, nr_free + 1,
1635 				 next_slot);
1636 		}
1637 	}
1638 
1639 	pr_devel("after: %lu\n", new_n->nr_leaves_on_branch);
1640 
1641 	nr_leaves_on_tree = new_n->nr_leaves_on_branch;
1642 
1643 	/* Excise this node if it is singly occupied by a shortcut */
1644 	if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) {
1645 		for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++)
1646 			if ((ptr = new_n->slots[slot]))
1647 				break;
1648 
1649 		if (assoc_array_ptr_is_meta(ptr) &&
1650 		    assoc_array_ptr_is_shortcut(ptr)) {
1651 			pr_devel("excise node %p with 1 shortcut\n", new_n);
1652 			new_s = assoc_array_ptr_to_shortcut(ptr);
1653 			new_parent = new_n->back_pointer;
1654 			slot = new_n->parent_slot;
1655 			kfree(new_n);
1656 			if (!new_parent) {
1657 				new_s->back_pointer = NULL;
1658 				new_s->parent_slot = 0;
1659 				new_root = ptr;
1660 				goto gc_complete;
1661 			}
1662 
1663 			if (assoc_array_ptr_is_shortcut(new_parent)) {
1664 				/* We can discard any preceding shortcut also */
1665 				struct assoc_array_shortcut *s =
1666 					assoc_array_ptr_to_shortcut(new_parent);
1667 
1668 				pr_devel("excise preceding shortcut\n");
1669 
1670 				new_parent = new_s->back_pointer = s->back_pointer;
1671 				slot = new_s->parent_slot = s->parent_slot;
1672 				kfree(s);
1673 				if (!new_parent) {
1674 					new_s->back_pointer = NULL;
1675 					new_s->parent_slot = 0;
1676 					new_root = ptr;
1677 					goto gc_complete;
1678 				}
1679 			}
1680 
1681 			new_s->back_pointer = new_parent;
1682 			new_s->parent_slot = slot;
1683 			new_n = assoc_array_ptr_to_node(new_parent);
1684 			new_n->slots[slot] = ptr;
1685 			goto ascend_old_tree;
1686 		}
1687 	}
1688 
1689 	/* Excise any shortcuts we might encounter that point to nodes that
1690 	 * only contain leaves.
1691 	 */
1692 	ptr = new_n->back_pointer;
1693 	if (!ptr)
1694 		goto gc_complete;
1695 
1696 	if (assoc_array_ptr_is_shortcut(ptr)) {
1697 		new_s = assoc_array_ptr_to_shortcut(ptr);
1698 		new_parent = new_s->back_pointer;
1699 		slot = new_s->parent_slot;
1700 
1701 		if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) {
1702 			struct assoc_array_node *n;
1703 
1704 			pr_devel("excise shortcut\n");
1705 			new_n->back_pointer = new_parent;
1706 			new_n->parent_slot = slot;
1707 			kfree(new_s);
1708 			if (!new_parent) {
1709 				new_root = assoc_array_node_to_ptr(new_n);
1710 				goto gc_complete;
1711 			}
1712 
1713 			n = assoc_array_ptr_to_node(new_parent);
1714 			n->slots[slot] = assoc_array_node_to_ptr(new_n);
1715 		}
1716 	} else {
1717 		new_parent = ptr;
1718 	}
1719 	new_n = assoc_array_ptr_to_node(new_parent);
1720 
1721 ascend_old_tree:
1722 	ptr = node->back_pointer;
1723 	if (assoc_array_ptr_is_shortcut(ptr)) {
1724 		shortcut = assoc_array_ptr_to_shortcut(ptr);
1725 		slot = shortcut->parent_slot;
1726 		cursor = shortcut->back_pointer;
1727 		if (!cursor)
1728 			goto gc_complete;
1729 	} else {
1730 		slot = node->parent_slot;
1731 		cursor = ptr;
1732 	}
1733 	BUG_ON(!cursor);
1734 	node = assoc_array_ptr_to_node(cursor);
1735 	slot++;
1736 	goto continue_node;
1737 
1738 gc_complete:
1739 	edit->set[0].to = new_root;
1740 	assoc_array_apply_edit(edit);
1741 	array->nr_leaves_on_tree = nr_leaves_on_tree;
1742 	return 0;
1743 
1744 enomem:
1745 	pr_devel("enomem\n");
1746 	assoc_array_destroy_subtree(new_root, edit->ops);
1747 	kfree(edit);
1748 	return -ENOMEM;
1749 }
1750