xref: /linux/lib/assoc_array.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /* Generic associative array implementation.
2  *
3  * See Documentation/assoc_array.txt for information.
4  *
5  * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
6  * Written by David Howells (dhowells@redhat.com)
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public Licence
10  * as published by the Free Software Foundation; either version
11  * 2 of the Licence, or (at your option) any later version.
12  */
13 //#define DEBUG
14 #include <linux/slab.h>
15 #include <linux/err.h>
16 #include <linux/assoc_array_priv.h>
17 
18 /*
19  * Iterate over an associative array.  The caller must hold the RCU read lock
20  * or better.
21  */
22 static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root,
23 				       const struct assoc_array_ptr *stop,
24 				       int (*iterator)(const void *leaf,
25 						       void *iterator_data),
26 				       void *iterator_data)
27 {
28 	const struct assoc_array_shortcut *shortcut;
29 	const struct assoc_array_node *node;
30 	const struct assoc_array_ptr *cursor, *ptr, *parent;
31 	unsigned long has_meta;
32 	int slot, ret;
33 
34 	cursor = root;
35 
36 begin_node:
37 	if (assoc_array_ptr_is_shortcut(cursor)) {
38 		/* Descend through a shortcut */
39 		shortcut = assoc_array_ptr_to_shortcut(cursor);
40 		smp_read_barrier_depends();
41 		cursor = ACCESS_ONCE(shortcut->next_node);
42 	}
43 
44 	node = assoc_array_ptr_to_node(cursor);
45 	smp_read_barrier_depends();
46 	slot = 0;
47 
48 	/* We perform two passes of each node.
49 	 *
50 	 * The first pass does all the leaves in this node.  This means we
51 	 * don't miss any leaves if the node is split up by insertion whilst
52 	 * we're iterating over the branches rooted here (we may, however, see
53 	 * some leaves twice).
54 	 */
55 	has_meta = 0;
56 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
57 		ptr = ACCESS_ONCE(node->slots[slot]);
58 		has_meta |= (unsigned long)ptr;
59 		if (ptr && assoc_array_ptr_is_leaf(ptr)) {
60 			/* We need a barrier between the read of the pointer
61 			 * and dereferencing the pointer - but only if we are
62 			 * actually going to dereference it.
63 			 */
64 			smp_read_barrier_depends();
65 
66 			/* Invoke the callback */
67 			ret = iterator(assoc_array_ptr_to_leaf(ptr),
68 				       iterator_data);
69 			if (ret)
70 				return ret;
71 		}
72 	}
73 
74 	/* The second pass attends to all the metadata pointers.  If we follow
75 	 * one of these we may find that we don't come back here, but rather go
76 	 * back to a replacement node with the leaves in a different layout.
77 	 *
78 	 * We are guaranteed to make progress, however, as the slot number for
79 	 * a particular portion of the key space cannot change - and we
80 	 * continue at the back pointer + 1.
81 	 */
82 	if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE))
83 		goto finished_node;
84 	slot = 0;
85 
86 continue_node:
87 	node = assoc_array_ptr_to_node(cursor);
88 	smp_read_barrier_depends();
89 
90 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
91 		ptr = ACCESS_ONCE(node->slots[slot]);
92 		if (assoc_array_ptr_is_meta(ptr)) {
93 			cursor = ptr;
94 			goto begin_node;
95 		}
96 	}
97 
98 finished_node:
99 	/* Move up to the parent (may need to skip back over a shortcut) */
100 	parent = ACCESS_ONCE(node->back_pointer);
101 	slot = node->parent_slot;
102 	if (parent == stop)
103 		return 0;
104 
105 	if (assoc_array_ptr_is_shortcut(parent)) {
106 		shortcut = assoc_array_ptr_to_shortcut(parent);
107 		smp_read_barrier_depends();
108 		cursor = parent;
109 		parent = ACCESS_ONCE(shortcut->back_pointer);
110 		slot = shortcut->parent_slot;
111 		if (parent == stop)
112 			return 0;
113 	}
114 
115 	/* Ascend to next slot in parent node */
116 	cursor = parent;
117 	slot++;
118 	goto continue_node;
119 }
120 
121 /**
122  * assoc_array_iterate - Pass all objects in the array to a callback
123  * @array: The array to iterate over.
124  * @iterator: The callback function.
125  * @iterator_data: Private data for the callback function.
126  *
127  * Iterate over all the objects in an associative array.  Each one will be
128  * presented to the iterator function.
129  *
130  * If the array is being modified concurrently with the iteration then it is
131  * possible that some objects in the array will be passed to the iterator
132  * callback more than once - though every object should be passed at least
133  * once.  If this is undesirable then the caller must lock against modification
134  * for the duration of this function.
135  *
136  * The function will return 0 if no objects were in the array or else it will
137  * return the result of the last iterator function called.  Iteration stops
138  * immediately if any call to the iteration function results in a non-zero
139  * return.
140  *
141  * The caller should hold the RCU read lock or better if concurrent
142  * modification is possible.
143  */
144 int assoc_array_iterate(const struct assoc_array *array,
145 			int (*iterator)(const void *object,
146 					void *iterator_data),
147 			void *iterator_data)
148 {
149 	struct assoc_array_ptr *root = ACCESS_ONCE(array->root);
150 
151 	if (!root)
152 		return 0;
153 	return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data);
154 }
155 
156 enum assoc_array_walk_status {
157 	assoc_array_walk_tree_empty,
158 	assoc_array_walk_found_terminal_node,
159 	assoc_array_walk_found_wrong_shortcut,
160 };
161 
162 struct assoc_array_walk_result {
163 	struct {
164 		struct assoc_array_node	*node;	/* Node in which leaf might be found */
165 		int		level;
166 		int		slot;
167 	} terminal_node;
168 	struct {
169 		struct assoc_array_shortcut *shortcut;
170 		int		level;
171 		int		sc_level;
172 		unsigned long	sc_segments;
173 		unsigned long	dissimilarity;
174 	} wrong_shortcut;
175 };
176 
177 /*
178  * Navigate through the internal tree looking for the closest node to the key.
179  */
180 static enum assoc_array_walk_status
181 assoc_array_walk(const struct assoc_array *array,
182 		 const struct assoc_array_ops *ops,
183 		 const void *index_key,
184 		 struct assoc_array_walk_result *result)
185 {
186 	struct assoc_array_shortcut *shortcut;
187 	struct assoc_array_node *node;
188 	struct assoc_array_ptr *cursor, *ptr;
189 	unsigned long sc_segments, dissimilarity;
190 	unsigned long segments;
191 	int level, sc_level, next_sc_level;
192 	int slot;
193 
194 	pr_devel("-->%s()\n", __func__);
195 
196 	cursor = ACCESS_ONCE(array->root);
197 	if (!cursor)
198 		return assoc_array_walk_tree_empty;
199 
200 	level = 0;
201 
202 	/* Use segments from the key for the new leaf to navigate through the
203 	 * internal tree, skipping through nodes and shortcuts that are on
204 	 * route to the destination.  Eventually we'll come to a slot that is
205 	 * either empty or contains a leaf at which point we've found a node in
206 	 * which the leaf we're looking for might be found or into which it
207 	 * should be inserted.
208 	 */
209 jumped:
210 	segments = ops->get_key_chunk(index_key, level);
211 	pr_devel("segments[%d]: %lx\n", level, segments);
212 
213 	if (assoc_array_ptr_is_shortcut(cursor))
214 		goto follow_shortcut;
215 
216 consider_node:
217 	node = assoc_array_ptr_to_node(cursor);
218 	smp_read_barrier_depends();
219 
220 	slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
221 	slot &= ASSOC_ARRAY_FAN_MASK;
222 	ptr = ACCESS_ONCE(node->slots[slot]);
223 
224 	pr_devel("consider slot %x [ix=%d type=%lu]\n",
225 		 slot, level, (unsigned long)ptr & 3);
226 
227 	if (!assoc_array_ptr_is_meta(ptr)) {
228 		/* The node doesn't have a node/shortcut pointer in the slot
229 		 * corresponding to the index key that we have to follow.
230 		 */
231 		result->terminal_node.node = node;
232 		result->terminal_node.level = level;
233 		result->terminal_node.slot = slot;
234 		pr_devel("<--%s() = terminal_node\n", __func__);
235 		return assoc_array_walk_found_terminal_node;
236 	}
237 
238 	if (assoc_array_ptr_is_node(ptr)) {
239 		/* There is a pointer to a node in the slot corresponding to
240 		 * this index key segment, so we need to follow it.
241 		 */
242 		cursor = ptr;
243 		level += ASSOC_ARRAY_LEVEL_STEP;
244 		if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0)
245 			goto consider_node;
246 		goto jumped;
247 	}
248 
249 	/* There is a shortcut in the slot corresponding to the index key
250 	 * segment.  We follow the shortcut if its partial index key matches
251 	 * this leaf's.  Otherwise we need to split the shortcut.
252 	 */
253 	cursor = ptr;
254 follow_shortcut:
255 	shortcut = assoc_array_ptr_to_shortcut(cursor);
256 	smp_read_barrier_depends();
257 	pr_devel("shortcut to %d\n", shortcut->skip_to_level);
258 	sc_level = level + ASSOC_ARRAY_LEVEL_STEP;
259 	BUG_ON(sc_level > shortcut->skip_to_level);
260 
261 	do {
262 		/* Check the leaf against the shortcut's index key a word at a
263 		 * time, trimming the final word (the shortcut stores the index
264 		 * key completely from the root to the shortcut's target).
265 		 */
266 		if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0)
267 			segments = ops->get_key_chunk(index_key, sc_level);
268 
269 		sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT];
270 		dissimilarity = segments ^ sc_segments;
271 
272 		if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) {
273 			/* Trim segments that are beyond the shortcut */
274 			int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK;
275 			dissimilarity &= ~(ULONG_MAX << shift);
276 			next_sc_level = shortcut->skip_to_level;
277 		} else {
278 			next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE;
279 			next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
280 		}
281 
282 		if (dissimilarity != 0) {
283 			/* This shortcut points elsewhere */
284 			result->wrong_shortcut.shortcut = shortcut;
285 			result->wrong_shortcut.level = level;
286 			result->wrong_shortcut.sc_level = sc_level;
287 			result->wrong_shortcut.sc_segments = sc_segments;
288 			result->wrong_shortcut.dissimilarity = dissimilarity;
289 			return assoc_array_walk_found_wrong_shortcut;
290 		}
291 
292 		sc_level = next_sc_level;
293 	} while (sc_level < shortcut->skip_to_level);
294 
295 	/* The shortcut matches the leaf's index to this point. */
296 	cursor = ACCESS_ONCE(shortcut->next_node);
297 	if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) {
298 		level = sc_level;
299 		goto jumped;
300 	} else {
301 		level = sc_level;
302 		goto consider_node;
303 	}
304 }
305 
306 /**
307  * assoc_array_find - Find an object by index key
308  * @array: The associative array to search.
309  * @ops: The operations to use.
310  * @index_key: The key to the object.
311  *
312  * Find an object in an associative array by walking through the internal tree
313  * to the node that should contain the object and then searching the leaves
314  * there.  NULL is returned if the requested object was not found in the array.
315  *
316  * The caller must hold the RCU read lock or better.
317  */
318 void *assoc_array_find(const struct assoc_array *array,
319 		       const struct assoc_array_ops *ops,
320 		       const void *index_key)
321 {
322 	struct assoc_array_walk_result result;
323 	const struct assoc_array_node *node;
324 	const struct assoc_array_ptr *ptr;
325 	const void *leaf;
326 	int slot;
327 
328 	if (assoc_array_walk(array, ops, index_key, &result) !=
329 	    assoc_array_walk_found_terminal_node)
330 		return NULL;
331 
332 	node = result.terminal_node.node;
333 	smp_read_barrier_depends();
334 
335 	/* If the target key is available to us, it's has to be pointed to by
336 	 * the terminal node.
337 	 */
338 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
339 		ptr = ACCESS_ONCE(node->slots[slot]);
340 		if (ptr && assoc_array_ptr_is_leaf(ptr)) {
341 			/* We need a barrier between the read of the pointer
342 			 * and dereferencing the pointer - but only if we are
343 			 * actually going to dereference it.
344 			 */
345 			leaf = assoc_array_ptr_to_leaf(ptr);
346 			smp_read_barrier_depends();
347 			if (ops->compare_object(leaf, index_key))
348 				return (void *)leaf;
349 		}
350 	}
351 
352 	return NULL;
353 }
354 
355 /*
356  * Destructively iterate over an associative array.  The caller must prevent
357  * other simultaneous accesses.
358  */
359 static void assoc_array_destroy_subtree(struct assoc_array_ptr *root,
360 					const struct assoc_array_ops *ops)
361 {
362 	struct assoc_array_shortcut *shortcut;
363 	struct assoc_array_node *node;
364 	struct assoc_array_ptr *cursor, *parent = NULL;
365 	int slot = -1;
366 
367 	pr_devel("-->%s()\n", __func__);
368 
369 	cursor = root;
370 	if (!cursor) {
371 		pr_devel("empty\n");
372 		return;
373 	}
374 
375 move_to_meta:
376 	if (assoc_array_ptr_is_shortcut(cursor)) {
377 		/* Descend through a shortcut */
378 		pr_devel("[%d] shortcut\n", slot);
379 		BUG_ON(!assoc_array_ptr_is_shortcut(cursor));
380 		shortcut = assoc_array_ptr_to_shortcut(cursor);
381 		BUG_ON(shortcut->back_pointer != parent);
382 		BUG_ON(slot != -1 && shortcut->parent_slot != slot);
383 		parent = cursor;
384 		cursor = shortcut->next_node;
385 		slot = -1;
386 		BUG_ON(!assoc_array_ptr_is_node(cursor));
387 	}
388 
389 	pr_devel("[%d] node\n", slot);
390 	node = assoc_array_ptr_to_node(cursor);
391 	BUG_ON(node->back_pointer != parent);
392 	BUG_ON(slot != -1 && node->parent_slot != slot);
393 	slot = 0;
394 
395 continue_node:
396 	pr_devel("Node %p [back=%p]\n", node, node->back_pointer);
397 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
398 		struct assoc_array_ptr *ptr = node->slots[slot];
399 		if (!ptr)
400 			continue;
401 		if (assoc_array_ptr_is_meta(ptr)) {
402 			parent = cursor;
403 			cursor = ptr;
404 			goto move_to_meta;
405 		}
406 
407 		if (ops) {
408 			pr_devel("[%d] free leaf\n", slot);
409 			ops->free_object(assoc_array_ptr_to_leaf(ptr));
410 		}
411 	}
412 
413 	parent = node->back_pointer;
414 	slot = node->parent_slot;
415 	pr_devel("free node\n");
416 	kfree(node);
417 	if (!parent)
418 		return; /* Done */
419 
420 	/* Move back up to the parent (may need to free a shortcut on
421 	 * the way up) */
422 	if (assoc_array_ptr_is_shortcut(parent)) {
423 		shortcut = assoc_array_ptr_to_shortcut(parent);
424 		BUG_ON(shortcut->next_node != cursor);
425 		cursor = parent;
426 		parent = shortcut->back_pointer;
427 		slot = shortcut->parent_slot;
428 		pr_devel("free shortcut\n");
429 		kfree(shortcut);
430 		if (!parent)
431 			return;
432 
433 		BUG_ON(!assoc_array_ptr_is_node(parent));
434 	}
435 
436 	/* Ascend to next slot in parent node */
437 	pr_devel("ascend to %p[%d]\n", parent, slot);
438 	cursor = parent;
439 	node = assoc_array_ptr_to_node(cursor);
440 	slot++;
441 	goto continue_node;
442 }
443 
444 /**
445  * assoc_array_destroy - Destroy an associative array
446  * @array: The array to destroy.
447  * @ops: The operations to use.
448  *
449  * Discard all metadata and free all objects in an associative array.  The
450  * array will be empty and ready to use again upon completion.  This function
451  * cannot fail.
452  *
453  * The caller must prevent all other accesses whilst this takes place as no
454  * attempt is made to adjust pointers gracefully to permit RCU readlock-holding
455  * accesses to continue.  On the other hand, no memory allocation is required.
456  */
457 void assoc_array_destroy(struct assoc_array *array,
458 			 const struct assoc_array_ops *ops)
459 {
460 	assoc_array_destroy_subtree(array->root, ops);
461 	array->root = NULL;
462 }
463 
464 /*
465  * Handle insertion into an empty tree.
466  */
467 static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit)
468 {
469 	struct assoc_array_node *new_n0;
470 
471 	pr_devel("-->%s()\n", __func__);
472 
473 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
474 	if (!new_n0)
475 		return false;
476 
477 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
478 	edit->leaf_p = &new_n0->slots[0];
479 	edit->adjust_count_on = new_n0;
480 	edit->set[0].ptr = &edit->array->root;
481 	edit->set[0].to = assoc_array_node_to_ptr(new_n0);
482 
483 	pr_devel("<--%s() = ok [no root]\n", __func__);
484 	return true;
485 }
486 
487 /*
488  * Handle insertion into a terminal node.
489  */
490 static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit,
491 						  const struct assoc_array_ops *ops,
492 						  const void *index_key,
493 						  struct assoc_array_walk_result *result)
494 {
495 	struct assoc_array_shortcut *shortcut, *new_s0;
496 	struct assoc_array_node *node, *new_n0, *new_n1, *side;
497 	struct assoc_array_ptr *ptr;
498 	unsigned long dissimilarity, base_seg, blank;
499 	size_t keylen;
500 	bool have_meta;
501 	int level, diff;
502 	int slot, next_slot, free_slot, i, j;
503 
504 	node	= result->terminal_node.node;
505 	level	= result->terminal_node.level;
506 	edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot;
507 
508 	pr_devel("-->%s()\n", __func__);
509 
510 	/* We arrived at a node which doesn't have an onward node or shortcut
511 	 * pointer that we have to follow.  This means that (a) the leaf we
512 	 * want must go here (either by insertion or replacement) or (b) we
513 	 * need to split this node and insert in one of the fragments.
514 	 */
515 	free_slot = -1;
516 
517 	/* Firstly, we have to check the leaves in this node to see if there's
518 	 * a matching one we should replace in place.
519 	 */
520 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
521 		ptr = node->slots[i];
522 		if (!ptr) {
523 			free_slot = i;
524 			continue;
525 		}
526 		if (ops->compare_object(assoc_array_ptr_to_leaf(ptr), index_key)) {
527 			pr_devel("replace in slot %d\n", i);
528 			edit->leaf_p = &node->slots[i];
529 			edit->dead_leaf = node->slots[i];
530 			pr_devel("<--%s() = ok [replace]\n", __func__);
531 			return true;
532 		}
533 	}
534 
535 	/* If there is a free slot in this node then we can just insert the
536 	 * leaf here.
537 	 */
538 	if (free_slot >= 0) {
539 		pr_devel("insert in free slot %d\n", free_slot);
540 		edit->leaf_p = &node->slots[free_slot];
541 		edit->adjust_count_on = node;
542 		pr_devel("<--%s() = ok [insert]\n", __func__);
543 		return true;
544 	}
545 
546 	/* The node has no spare slots - so we're either going to have to split
547 	 * it or insert another node before it.
548 	 *
549 	 * Whatever, we're going to need at least two new nodes - so allocate
550 	 * those now.  We may also need a new shortcut, but we deal with that
551 	 * when we need it.
552 	 */
553 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
554 	if (!new_n0)
555 		return false;
556 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
557 	new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
558 	if (!new_n1)
559 		return false;
560 	edit->new_meta[1] = assoc_array_node_to_ptr(new_n1);
561 
562 	/* We need to find out how similar the leaves are. */
563 	pr_devel("no spare slots\n");
564 	have_meta = false;
565 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
566 		ptr = node->slots[i];
567 		if (assoc_array_ptr_is_meta(ptr)) {
568 			edit->segment_cache[i] = 0xff;
569 			have_meta = true;
570 			continue;
571 		}
572 		base_seg = ops->get_object_key_chunk(
573 			assoc_array_ptr_to_leaf(ptr), level);
574 		base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
575 		edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
576 	}
577 
578 	if (have_meta) {
579 		pr_devel("have meta\n");
580 		goto split_node;
581 	}
582 
583 	/* The node contains only leaves */
584 	dissimilarity = 0;
585 	base_seg = edit->segment_cache[0];
586 	for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++)
587 		dissimilarity |= edit->segment_cache[i] ^ base_seg;
588 
589 	pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity);
590 
591 	if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) {
592 		/* The old leaves all cluster in the same slot.  We will need
593 		 * to insert a shortcut if the new node wants to cluster with them.
594 		 */
595 		if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0)
596 			goto all_leaves_cluster_together;
597 
598 		/* Otherwise we can just insert a new node ahead of the old
599 		 * one.
600 		 */
601 		goto present_leaves_cluster_but_not_new_leaf;
602 	}
603 
604 split_node:
605 	pr_devel("split node\n");
606 
607 	/* We need to split the current node; we know that the node doesn't
608 	 * simply contain a full set of leaves that cluster together (it
609 	 * contains meta pointers and/or non-clustering leaves).
610 	 *
611 	 * We need to expel at least two leaves out of a set consisting of the
612 	 * leaves in the node and the new leaf.
613 	 *
614 	 * We need a new node (n0) to replace the current one and a new node to
615 	 * take the expelled nodes (n1).
616 	 */
617 	edit->set[0].to = assoc_array_node_to_ptr(new_n0);
618 	new_n0->back_pointer = node->back_pointer;
619 	new_n0->parent_slot = node->parent_slot;
620 	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
621 	new_n1->parent_slot = -1; /* Need to calculate this */
622 
623 do_split_node:
624 	pr_devel("do_split_node\n");
625 
626 	new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
627 	new_n1->nr_leaves_on_branch = 0;
628 
629 	/* Begin by finding two matching leaves.  There have to be at least two
630 	 * that match - even if there are meta pointers - because any leaf that
631 	 * would match a slot with a meta pointer in it must be somewhere
632 	 * behind that meta pointer and cannot be here.  Further, given N
633 	 * remaining leaf slots, we now have N+1 leaves to go in them.
634 	 */
635 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
636 		slot = edit->segment_cache[i];
637 		if (slot != 0xff)
638 			for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++)
639 				if (edit->segment_cache[j] == slot)
640 					goto found_slot_for_multiple_occupancy;
641 	}
642 found_slot_for_multiple_occupancy:
643 	pr_devel("same slot: %x %x [%02x]\n", i, j, slot);
644 	BUG_ON(i >= ASSOC_ARRAY_FAN_OUT);
645 	BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1);
646 	BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT);
647 
648 	new_n1->parent_slot = slot;
649 
650 	/* Metadata pointers cannot change slot */
651 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
652 		if (assoc_array_ptr_is_meta(node->slots[i]))
653 			new_n0->slots[i] = node->slots[i];
654 		else
655 			new_n0->slots[i] = NULL;
656 	BUG_ON(new_n0->slots[slot] != NULL);
657 	new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1);
658 
659 	/* Filter the leaf pointers between the new nodes */
660 	free_slot = -1;
661 	next_slot = 0;
662 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
663 		if (assoc_array_ptr_is_meta(node->slots[i]))
664 			continue;
665 		if (edit->segment_cache[i] == slot) {
666 			new_n1->slots[next_slot++] = node->slots[i];
667 			new_n1->nr_leaves_on_branch++;
668 		} else {
669 			do {
670 				free_slot++;
671 			} while (new_n0->slots[free_slot] != NULL);
672 			new_n0->slots[free_slot] = node->slots[i];
673 		}
674 	}
675 
676 	pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot);
677 
678 	if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) {
679 		do {
680 			free_slot++;
681 		} while (new_n0->slots[free_slot] != NULL);
682 		edit->leaf_p = &new_n0->slots[free_slot];
683 		edit->adjust_count_on = new_n0;
684 	} else {
685 		edit->leaf_p = &new_n1->slots[next_slot++];
686 		edit->adjust_count_on = new_n1;
687 	}
688 
689 	BUG_ON(next_slot <= 1);
690 
691 	edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0);
692 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
693 		if (edit->segment_cache[i] == 0xff) {
694 			ptr = node->slots[i];
695 			BUG_ON(assoc_array_ptr_is_leaf(ptr));
696 			if (assoc_array_ptr_is_node(ptr)) {
697 				side = assoc_array_ptr_to_node(ptr);
698 				edit->set_backpointers[i] = &side->back_pointer;
699 			} else {
700 				shortcut = assoc_array_ptr_to_shortcut(ptr);
701 				edit->set_backpointers[i] = &shortcut->back_pointer;
702 			}
703 		}
704 	}
705 
706 	ptr = node->back_pointer;
707 	if (!ptr)
708 		edit->set[0].ptr = &edit->array->root;
709 	else if (assoc_array_ptr_is_node(ptr))
710 		edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot];
711 	else
712 		edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node;
713 	edit->excised_meta[0] = assoc_array_node_to_ptr(node);
714 	pr_devel("<--%s() = ok [split node]\n", __func__);
715 	return true;
716 
717 present_leaves_cluster_but_not_new_leaf:
718 	/* All the old leaves cluster in the same slot, but the new leaf wants
719 	 * to go into a different slot, so we create a new node to hold the new
720 	 * leaf and a pointer to a new node holding all the old leaves.
721 	 */
722 	pr_devel("present leaves cluster but not new leaf\n");
723 
724 	new_n0->back_pointer = node->back_pointer;
725 	new_n0->parent_slot = node->parent_slot;
726 	new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
727 	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
728 	new_n1->parent_slot = edit->segment_cache[0];
729 	new_n1->nr_leaves_on_branch = node->nr_leaves_on_branch;
730 	edit->adjust_count_on = new_n0;
731 
732 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++)
733 		new_n1->slots[i] = node->slots[i];
734 
735 	new_n0->slots[edit->segment_cache[0]] = assoc_array_node_to_ptr(new_n0);
736 	edit->leaf_p = &new_n0->slots[edit->segment_cache[ASSOC_ARRAY_FAN_OUT]];
737 
738 	edit->set[0].ptr = &assoc_array_ptr_to_node(node->back_pointer)->slots[node->parent_slot];
739 	edit->set[0].to = assoc_array_node_to_ptr(new_n0);
740 	edit->excised_meta[0] = assoc_array_node_to_ptr(node);
741 	pr_devel("<--%s() = ok [insert node before]\n", __func__);
742 	return true;
743 
744 all_leaves_cluster_together:
745 	/* All the leaves, new and old, want to cluster together in this node
746 	 * in the same slot, so we have to replace this node with a shortcut to
747 	 * skip over the identical parts of the key and then place a pair of
748 	 * nodes, one inside the other, at the end of the shortcut and
749 	 * distribute the keys between them.
750 	 *
751 	 * Firstly we need to work out where the leaves start diverging as a
752 	 * bit position into their keys so that we know how big the shortcut
753 	 * needs to be.
754 	 *
755 	 * We only need to make a single pass of N of the N+1 leaves because if
756 	 * any keys differ between themselves at bit X then at least one of
757 	 * them must also differ with the base key at bit X or before.
758 	 */
759 	pr_devel("all leaves cluster together\n");
760 	diff = INT_MAX;
761 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
762 		int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]),
763 					  index_key);
764 		if (x < diff) {
765 			BUG_ON(x < 0);
766 			diff = x;
767 		}
768 	}
769 	BUG_ON(diff == INT_MAX);
770 	BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP);
771 
772 	keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
773 	keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
774 
775 	new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
776 			 keylen * sizeof(unsigned long), GFP_KERNEL);
777 	if (!new_s0)
778 		return false;
779 	edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0);
780 
781 	edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
782 	new_s0->back_pointer = node->back_pointer;
783 	new_s0->parent_slot = node->parent_slot;
784 	new_s0->next_node = assoc_array_node_to_ptr(new_n0);
785 	new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
786 	new_n0->parent_slot = 0;
787 	new_n1->back_pointer = assoc_array_node_to_ptr(new_n0);
788 	new_n1->parent_slot = -1; /* Need to calculate this */
789 
790 	new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK;
791 	pr_devel("skip_to_level = %d [diff %d]\n", level, diff);
792 	BUG_ON(level <= 0);
793 
794 	for (i = 0; i < keylen; i++)
795 		new_s0->index_key[i] =
796 			ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE);
797 
798 	blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK);
799 	pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank);
800 	new_s0->index_key[keylen - 1] &= ~blank;
801 
802 	/* This now reduces to a node splitting exercise for which we'll need
803 	 * to regenerate the disparity table.
804 	 */
805 	for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
806 		ptr = node->slots[i];
807 		base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr),
808 						     level);
809 		base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
810 		edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK;
811 	}
812 
813 	base_seg = ops->get_key_chunk(index_key, level);
814 	base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK;
815 	edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK;
816 	goto do_split_node;
817 }
818 
819 /*
820  * Handle insertion into the middle of a shortcut.
821  */
822 static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit,
823 					    const struct assoc_array_ops *ops,
824 					    struct assoc_array_walk_result *result)
825 {
826 	struct assoc_array_shortcut *shortcut, *new_s0, *new_s1;
827 	struct assoc_array_node *node, *new_n0, *side;
828 	unsigned long sc_segments, dissimilarity, blank;
829 	size_t keylen;
830 	int level, sc_level, diff;
831 	int sc_slot;
832 
833 	shortcut	= result->wrong_shortcut.shortcut;
834 	level		= result->wrong_shortcut.level;
835 	sc_level	= result->wrong_shortcut.sc_level;
836 	sc_segments	= result->wrong_shortcut.sc_segments;
837 	dissimilarity	= result->wrong_shortcut.dissimilarity;
838 
839 	pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n",
840 		 __func__, level, dissimilarity, sc_level);
841 
842 	/* We need to split a shortcut and insert a node between the two
843 	 * pieces.  Zero-length pieces will be dispensed with entirely.
844 	 *
845 	 * First of all, we need to find out in which level the first
846 	 * difference was.
847 	 */
848 	diff = __ffs(dissimilarity);
849 	diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK;
850 	diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK;
851 	pr_devel("diff=%d\n", diff);
852 
853 	if (!shortcut->back_pointer) {
854 		edit->set[0].ptr = &edit->array->root;
855 	} else if (assoc_array_ptr_is_node(shortcut->back_pointer)) {
856 		node = assoc_array_ptr_to_node(shortcut->back_pointer);
857 		edit->set[0].ptr = &node->slots[shortcut->parent_slot];
858 	} else {
859 		BUG();
860 	}
861 
862 	edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut);
863 
864 	/* Create a new node now since we're going to need it anyway */
865 	new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
866 	if (!new_n0)
867 		return false;
868 	edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
869 	edit->adjust_count_on = new_n0;
870 
871 	/* Insert a new shortcut before the new node if this segment isn't of
872 	 * zero length - otherwise we just connect the new node directly to the
873 	 * parent.
874 	 */
875 	level += ASSOC_ARRAY_LEVEL_STEP;
876 	if (diff > level) {
877 		pr_devel("pre-shortcut %d...%d\n", level, diff);
878 		keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE);
879 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
880 
881 		new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) +
882 				 keylen * sizeof(unsigned long), GFP_KERNEL);
883 		if (!new_s0)
884 			return false;
885 		edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0);
886 		edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0);
887 		new_s0->back_pointer = shortcut->back_pointer;
888 		new_s0->parent_slot = shortcut->parent_slot;
889 		new_s0->next_node = assoc_array_node_to_ptr(new_n0);
890 		new_s0->skip_to_level = diff;
891 
892 		new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0);
893 		new_n0->parent_slot = 0;
894 
895 		memcpy(new_s0->index_key, shortcut->index_key,
896 		       keylen * sizeof(unsigned long));
897 
898 		blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
899 		pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank);
900 		new_s0->index_key[keylen - 1] &= ~blank;
901 	} else {
902 		pr_devel("no pre-shortcut\n");
903 		edit->set[0].to = assoc_array_node_to_ptr(new_n0);
904 		new_n0->back_pointer = shortcut->back_pointer;
905 		new_n0->parent_slot = shortcut->parent_slot;
906 	}
907 
908 	side = assoc_array_ptr_to_node(shortcut->next_node);
909 	new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch;
910 
911 	/* We need to know which slot in the new node is going to take a
912 	 * metadata pointer.
913 	 */
914 	sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK);
915 	sc_slot &= ASSOC_ARRAY_FAN_MASK;
916 
917 	pr_devel("new slot %lx >> %d -> %d\n",
918 		 sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot);
919 
920 	/* Determine whether we need to follow the new node with a replacement
921 	 * for the current shortcut.  We could in theory reuse the current
922 	 * shortcut if its parent slot number doesn't change - but that's a
923 	 * 1-in-16 chance so not worth expending the code upon.
924 	 */
925 	level = diff + ASSOC_ARRAY_LEVEL_STEP;
926 	if (level < shortcut->skip_to_level) {
927 		pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level);
928 		keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
929 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
930 
931 		new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) +
932 				 keylen * sizeof(unsigned long), GFP_KERNEL);
933 		if (!new_s1)
934 			return false;
935 		edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1);
936 
937 		new_s1->back_pointer = assoc_array_node_to_ptr(new_n0);
938 		new_s1->parent_slot = sc_slot;
939 		new_s1->next_node = shortcut->next_node;
940 		new_s1->skip_to_level = shortcut->skip_to_level;
941 
942 		new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1);
943 
944 		memcpy(new_s1->index_key, shortcut->index_key,
945 		       keylen * sizeof(unsigned long));
946 
947 		edit->set[1].ptr = &side->back_pointer;
948 		edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1);
949 	} else {
950 		pr_devel("no post-shortcut\n");
951 
952 		/* We don't have to replace the pointed-to node as long as we
953 		 * use memory barriers to make sure the parent slot number is
954 		 * changed before the back pointer (the parent slot number is
955 		 * irrelevant to the old parent shortcut).
956 		 */
957 		new_n0->slots[sc_slot] = shortcut->next_node;
958 		edit->set_parent_slot[0].p = &side->parent_slot;
959 		edit->set_parent_slot[0].to = sc_slot;
960 		edit->set[1].ptr = &side->back_pointer;
961 		edit->set[1].to = assoc_array_node_to_ptr(new_n0);
962 	}
963 
964 	/* Install the new leaf in a spare slot in the new node. */
965 	if (sc_slot == 0)
966 		edit->leaf_p = &new_n0->slots[1];
967 	else
968 		edit->leaf_p = &new_n0->slots[0];
969 
970 	pr_devel("<--%s() = ok [split shortcut]\n", __func__);
971 	return edit;
972 }
973 
974 /**
975  * assoc_array_insert - Script insertion of an object into an associative array
976  * @array: The array to insert into.
977  * @ops: The operations to use.
978  * @index_key: The key to insert at.
979  * @object: The object to insert.
980  *
981  * Precalculate and preallocate a script for the insertion or replacement of an
982  * object in an associative array.  This results in an edit script that can
983  * either be applied or cancelled.
984  *
985  * The function returns a pointer to an edit script or -ENOMEM.
986  *
987  * The caller should lock against other modifications and must continue to hold
988  * the lock until assoc_array_apply_edit() has been called.
989  *
990  * Accesses to the tree may take place concurrently with this function,
991  * provided they hold the RCU read lock.
992  */
993 struct assoc_array_edit *assoc_array_insert(struct assoc_array *array,
994 					    const struct assoc_array_ops *ops,
995 					    const void *index_key,
996 					    void *object)
997 {
998 	struct assoc_array_walk_result result;
999 	struct assoc_array_edit *edit;
1000 
1001 	pr_devel("-->%s()\n", __func__);
1002 
1003 	/* The leaf pointer we're given must not have the bottom bit set as we
1004 	 * use those for type-marking the pointer.  NULL pointers are also not
1005 	 * allowed as they indicate an empty slot but we have to allow them
1006 	 * here as they can be updated later.
1007 	 */
1008 	BUG_ON(assoc_array_ptr_is_meta(object));
1009 
1010 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1011 	if (!edit)
1012 		return ERR_PTR(-ENOMEM);
1013 	edit->array = array;
1014 	edit->ops = ops;
1015 	edit->leaf = assoc_array_leaf_to_ptr(object);
1016 	edit->adjust_count_by = 1;
1017 
1018 	switch (assoc_array_walk(array, ops, index_key, &result)) {
1019 	case assoc_array_walk_tree_empty:
1020 		/* Allocate a root node if there isn't one yet */
1021 		if (!assoc_array_insert_in_empty_tree(edit))
1022 			goto enomem;
1023 		return edit;
1024 
1025 	case assoc_array_walk_found_terminal_node:
1026 		/* We found a node that doesn't have a node/shortcut pointer in
1027 		 * the slot corresponding to the index key that we have to
1028 		 * follow.
1029 		 */
1030 		if (!assoc_array_insert_into_terminal_node(edit, ops, index_key,
1031 							   &result))
1032 			goto enomem;
1033 		return edit;
1034 
1035 	case assoc_array_walk_found_wrong_shortcut:
1036 		/* We found a shortcut that didn't match our key in a slot we
1037 		 * needed to follow.
1038 		 */
1039 		if (!assoc_array_insert_mid_shortcut(edit, ops, &result))
1040 			goto enomem;
1041 		return edit;
1042 	}
1043 
1044 enomem:
1045 	/* Clean up after an out of memory error */
1046 	pr_devel("enomem\n");
1047 	assoc_array_cancel_edit(edit);
1048 	return ERR_PTR(-ENOMEM);
1049 }
1050 
1051 /**
1052  * assoc_array_insert_set_object - Set the new object pointer in an edit script
1053  * @edit: The edit script to modify.
1054  * @object: The object pointer to set.
1055  *
1056  * Change the object to be inserted in an edit script.  The object pointed to
1057  * by the old object is not freed.  This must be done prior to applying the
1058  * script.
1059  */
1060 void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object)
1061 {
1062 	BUG_ON(!object);
1063 	edit->leaf = assoc_array_leaf_to_ptr(object);
1064 }
1065 
1066 struct assoc_array_delete_collapse_context {
1067 	struct assoc_array_node	*node;
1068 	const void		*skip_leaf;
1069 	int			slot;
1070 };
1071 
1072 /*
1073  * Subtree collapse to node iterator.
1074  */
1075 static int assoc_array_delete_collapse_iterator(const void *leaf,
1076 						void *iterator_data)
1077 {
1078 	struct assoc_array_delete_collapse_context *collapse = iterator_data;
1079 
1080 	if (leaf == collapse->skip_leaf)
1081 		return 0;
1082 
1083 	BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT);
1084 
1085 	collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf);
1086 	return 0;
1087 }
1088 
1089 /**
1090  * assoc_array_delete - Script deletion of an object from an associative array
1091  * @array: The array to search.
1092  * @ops: The operations to use.
1093  * @index_key: The key to the object.
1094  *
1095  * Precalculate and preallocate a script for the deletion of an object from an
1096  * associative array.  This results in an edit script that can either be
1097  * applied or cancelled.
1098  *
1099  * The function returns a pointer to an edit script if the object was found,
1100  * NULL if the object was not found or -ENOMEM.
1101  *
1102  * The caller should lock against other modifications and must continue to hold
1103  * the lock until assoc_array_apply_edit() has been called.
1104  *
1105  * Accesses to the tree may take place concurrently with this function,
1106  * provided they hold the RCU read lock.
1107  */
1108 struct assoc_array_edit *assoc_array_delete(struct assoc_array *array,
1109 					    const struct assoc_array_ops *ops,
1110 					    const void *index_key)
1111 {
1112 	struct assoc_array_delete_collapse_context collapse;
1113 	struct assoc_array_walk_result result;
1114 	struct assoc_array_node *node, *new_n0;
1115 	struct assoc_array_edit *edit;
1116 	struct assoc_array_ptr *ptr;
1117 	bool has_meta;
1118 	int slot, i;
1119 
1120 	pr_devel("-->%s()\n", __func__);
1121 
1122 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1123 	if (!edit)
1124 		return ERR_PTR(-ENOMEM);
1125 	edit->array = array;
1126 	edit->ops = ops;
1127 	edit->adjust_count_by = -1;
1128 
1129 	switch (assoc_array_walk(array, ops, index_key, &result)) {
1130 	case assoc_array_walk_found_terminal_node:
1131 		/* We found a node that should contain the leaf we've been
1132 		 * asked to remove - *if* it's in the tree.
1133 		 */
1134 		pr_devel("terminal_node\n");
1135 		node = result.terminal_node.node;
1136 
1137 		for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1138 			ptr = node->slots[slot];
1139 			if (ptr &&
1140 			    assoc_array_ptr_is_leaf(ptr) &&
1141 			    ops->compare_object(assoc_array_ptr_to_leaf(ptr),
1142 						index_key))
1143 				goto found_leaf;
1144 		}
1145 	case assoc_array_walk_tree_empty:
1146 	case assoc_array_walk_found_wrong_shortcut:
1147 	default:
1148 		assoc_array_cancel_edit(edit);
1149 		pr_devel("not found\n");
1150 		return NULL;
1151 	}
1152 
1153 found_leaf:
1154 	BUG_ON(array->nr_leaves_on_tree <= 0);
1155 
1156 	/* In the simplest form of deletion we just clear the slot and release
1157 	 * the leaf after a suitable interval.
1158 	 */
1159 	edit->dead_leaf = node->slots[slot];
1160 	edit->set[0].ptr = &node->slots[slot];
1161 	edit->set[0].to = NULL;
1162 	edit->adjust_count_on = node;
1163 
1164 	/* If that concludes erasure of the last leaf, then delete the entire
1165 	 * internal array.
1166 	 */
1167 	if (array->nr_leaves_on_tree == 1) {
1168 		edit->set[1].ptr = &array->root;
1169 		edit->set[1].to = NULL;
1170 		edit->adjust_count_on = NULL;
1171 		edit->excised_subtree = array->root;
1172 		pr_devel("all gone\n");
1173 		return edit;
1174 	}
1175 
1176 	/* However, we'd also like to clear up some metadata blocks if we
1177 	 * possibly can.
1178 	 *
1179 	 * We go for a simple algorithm of: if this node has FAN_OUT or fewer
1180 	 * leaves in it, then attempt to collapse it - and attempt to
1181 	 * recursively collapse up the tree.
1182 	 *
1183 	 * We could also try and collapse in partially filled subtrees to take
1184 	 * up space in this node.
1185 	 */
1186 	if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1187 		struct assoc_array_node *parent, *grandparent;
1188 		struct assoc_array_ptr *ptr;
1189 
1190 		/* First of all, we need to know if this node has metadata so
1191 		 * that we don't try collapsing if all the leaves are already
1192 		 * here.
1193 		 */
1194 		has_meta = false;
1195 		for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1196 			ptr = node->slots[i];
1197 			if (assoc_array_ptr_is_meta(ptr)) {
1198 				has_meta = true;
1199 				break;
1200 			}
1201 		}
1202 
1203 		pr_devel("leaves: %ld [m=%d]\n",
1204 			 node->nr_leaves_on_branch - 1, has_meta);
1205 
1206 		/* Look further up the tree to see if we can collapse this node
1207 		 * into a more proximal node too.
1208 		 */
1209 		parent = node;
1210 	collapse_up:
1211 		pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch);
1212 
1213 		ptr = parent->back_pointer;
1214 		if (!ptr)
1215 			goto do_collapse;
1216 		if (assoc_array_ptr_is_shortcut(ptr)) {
1217 			struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr);
1218 			ptr = s->back_pointer;
1219 			if (!ptr)
1220 				goto do_collapse;
1221 		}
1222 
1223 		grandparent = assoc_array_ptr_to_node(ptr);
1224 		if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) {
1225 			parent = grandparent;
1226 			goto collapse_up;
1227 		}
1228 
1229 	do_collapse:
1230 		/* There's no point collapsing if the original node has no meta
1231 		 * pointers to discard and if we didn't merge into one of that
1232 		 * node's ancestry.
1233 		 */
1234 		if (has_meta || parent != node) {
1235 			node = parent;
1236 
1237 			/* Create a new node to collapse into */
1238 			new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1239 			if (!new_n0)
1240 				goto enomem;
1241 			edit->new_meta[0] = assoc_array_node_to_ptr(new_n0);
1242 
1243 			new_n0->back_pointer = node->back_pointer;
1244 			new_n0->parent_slot = node->parent_slot;
1245 			new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch;
1246 			edit->adjust_count_on = new_n0;
1247 
1248 			collapse.node = new_n0;
1249 			collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf);
1250 			collapse.slot = 0;
1251 			assoc_array_subtree_iterate(assoc_array_node_to_ptr(node),
1252 						    node->back_pointer,
1253 						    assoc_array_delete_collapse_iterator,
1254 						    &collapse);
1255 			pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch);
1256 			BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1);
1257 
1258 			if (!node->back_pointer) {
1259 				edit->set[1].ptr = &array->root;
1260 			} else if (assoc_array_ptr_is_leaf(node->back_pointer)) {
1261 				BUG();
1262 			} else if (assoc_array_ptr_is_node(node->back_pointer)) {
1263 				struct assoc_array_node *p =
1264 					assoc_array_ptr_to_node(node->back_pointer);
1265 				edit->set[1].ptr = &p->slots[node->parent_slot];
1266 			} else if (assoc_array_ptr_is_shortcut(node->back_pointer)) {
1267 				struct assoc_array_shortcut *s =
1268 					assoc_array_ptr_to_shortcut(node->back_pointer);
1269 				edit->set[1].ptr = &s->next_node;
1270 			}
1271 			edit->set[1].to = assoc_array_node_to_ptr(new_n0);
1272 			edit->excised_subtree = assoc_array_node_to_ptr(node);
1273 		}
1274 	}
1275 
1276 	return edit;
1277 
1278 enomem:
1279 	/* Clean up after an out of memory error */
1280 	pr_devel("enomem\n");
1281 	assoc_array_cancel_edit(edit);
1282 	return ERR_PTR(-ENOMEM);
1283 }
1284 
1285 /**
1286  * assoc_array_clear - Script deletion of all objects from an associative array
1287  * @array: The array to clear.
1288  * @ops: The operations to use.
1289  *
1290  * Precalculate and preallocate a script for the deletion of all the objects
1291  * from an associative array.  This results in an edit script that can either
1292  * be applied or cancelled.
1293  *
1294  * The function returns a pointer to an edit script if there are objects to be
1295  * deleted, NULL if there are no objects in the array or -ENOMEM.
1296  *
1297  * The caller should lock against other modifications and must continue to hold
1298  * the lock until assoc_array_apply_edit() has been called.
1299  *
1300  * Accesses to the tree may take place concurrently with this function,
1301  * provided they hold the RCU read lock.
1302  */
1303 struct assoc_array_edit *assoc_array_clear(struct assoc_array *array,
1304 					   const struct assoc_array_ops *ops)
1305 {
1306 	struct assoc_array_edit *edit;
1307 
1308 	pr_devel("-->%s()\n", __func__);
1309 
1310 	if (!array->root)
1311 		return NULL;
1312 
1313 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1314 	if (!edit)
1315 		return ERR_PTR(-ENOMEM);
1316 	edit->array = array;
1317 	edit->ops = ops;
1318 	edit->set[1].ptr = &array->root;
1319 	edit->set[1].to = NULL;
1320 	edit->excised_subtree = array->root;
1321 	edit->ops_for_excised_subtree = ops;
1322 	pr_devel("all gone\n");
1323 	return edit;
1324 }
1325 
1326 /*
1327  * Handle the deferred destruction after an applied edit.
1328  */
1329 static void assoc_array_rcu_cleanup(struct rcu_head *head)
1330 {
1331 	struct assoc_array_edit *edit =
1332 		container_of(head, struct assoc_array_edit, rcu);
1333 	int i;
1334 
1335 	pr_devel("-->%s()\n", __func__);
1336 
1337 	if (edit->dead_leaf)
1338 		edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf));
1339 	for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++)
1340 		if (edit->excised_meta[i])
1341 			kfree(assoc_array_ptr_to_node(edit->excised_meta[i]));
1342 
1343 	if (edit->excised_subtree) {
1344 		BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree));
1345 		if (assoc_array_ptr_is_node(edit->excised_subtree)) {
1346 			struct assoc_array_node *n =
1347 				assoc_array_ptr_to_node(edit->excised_subtree);
1348 			n->back_pointer = NULL;
1349 		} else {
1350 			struct assoc_array_shortcut *s =
1351 				assoc_array_ptr_to_shortcut(edit->excised_subtree);
1352 			s->back_pointer = NULL;
1353 		}
1354 		assoc_array_destroy_subtree(edit->excised_subtree,
1355 					    edit->ops_for_excised_subtree);
1356 	}
1357 
1358 	kfree(edit);
1359 }
1360 
1361 /**
1362  * assoc_array_apply_edit - Apply an edit script to an associative array
1363  * @edit: The script to apply.
1364  *
1365  * Apply an edit script to an associative array to effect an insertion,
1366  * deletion or clearance.  As the edit script includes preallocated memory,
1367  * this is guaranteed not to fail.
1368  *
1369  * The edit script, dead objects and dead metadata will be scheduled for
1370  * destruction after an RCU grace period to permit those doing read-only
1371  * accesses on the array to continue to do so under the RCU read lock whilst
1372  * the edit is taking place.
1373  */
1374 void assoc_array_apply_edit(struct assoc_array_edit *edit)
1375 {
1376 	struct assoc_array_shortcut *shortcut;
1377 	struct assoc_array_node *node;
1378 	struct assoc_array_ptr *ptr;
1379 	int i;
1380 
1381 	pr_devel("-->%s()\n", __func__);
1382 
1383 	smp_wmb();
1384 	if (edit->leaf_p)
1385 		*edit->leaf_p = edit->leaf;
1386 
1387 	smp_wmb();
1388 	for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++)
1389 		if (edit->set_parent_slot[i].p)
1390 			*edit->set_parent_slot[i].p = edit->set_parent_slot[i].to;
1391 
1392 	smp_wmb();
1393 	for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++)
1394 		if (edit->set_backpointers[i])
1395 			*edit->set_backpointers[i] = edit->set_backpointers_to;
1396 
1397 	smp_wmb();
1398 	for (i = 0; i < ARRAY_SIZE(edit->set); i++)
1399 		if (edit->set[i].ptr)
1400 			*edit->set[i].ptr = edit->set[i].to;
1401 
1402 	if (edit->array->root == NULL) {
1403 		edit->array->nr_leaves_on_tree = 0;
1404 	} else if (edit->adjust_count_on) {
1405 		node = edit->adjust_count_on;
1406 		for (;;) {
1407 			node->nr_leaves_on_branch += edit->adjust_count_by;
1408 
1409 			ptr = node->back_pointer;
1410 			if (!ptr)
1411 				break;
1412 			if (assoc_array_ptr_is_shortcut(ptr)) {
1413 				shortcut = assoc_array_ptr_to_shortcut(ptr);
1414 				ptr = shortcut->back_pointer;
1415 				if (!ptr)
1416 					break;
1417 			}
1418 			BUG_ON(!assoc_array_ptr_is_node(ptr));
1419 			node = assoc_array_ptr_to_node(ptr);
1420 		}
1421 
1422 		edit->array->nr_leaves_on_tree += edit->adjust_count_by;
1423 	}
1424 
1425 	call_rcu(&edit->rcu, assoc_array_rcu_cleanup);
1426 }
1427 
1428 /**
1429  * assoc_array_cancel_edit - Discard an edit script.
1430  * @edit: The script to discard.
1431  *
1432  * Free an edit script and all the preallocated data it holds without making
1433  * any changes to the associative array it was intended for.
1434  *
1435  * NOTE!  In the case of an insertion script, this does _not_ release the leaf
1436  * that was to be inserted.  That is left to the caller.
1437  */
1438 void assoc_array_cancel_edit(struct assoc_array_edit *edit)
1439 {
1440 	struct assoc_array_ptr *ptr;
1441 	int i;
1442 
1443 	pr_devel("-->%s()\n", __func__);
1444 
1445 	/* Clean up after an out of memory error */
1446 	for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) {
1447 		ptr = edit->new_meta[i];
1448 		if (ptr) {
1449 			if (assoc_array_ptr_is_node(ptr))
1450 				kfree(assoc_array_ptr_to_node(ptr));
1451 			else
1452 				kfree(assoc_array_ptr_to_shortcut(ptr));
1453 		}
1454 	}
1455 	kfree(edit);
1456 }
1457 
1458 /**
1459  * assoc_array_gc - Garbage collect an associative array.
1460  * @array: The array to clean.
1461  * @ops: The operations to use.
1462  * @iterator: A callback function to pass judgement on each object.
1463  * @iterator_data: Private data for the callback function.
1464  *
1465  * Collect garbage from an associative array and pack down the internal tree to
1466  * save memory.
1467  *
1468  * The iterator function is asked to pass judgement upon each object in the
1469  * array.  If it returns false, the object is discard and if it returns true,
1470  * the object is kept.  If it returns true, it must increment the object's
1471  * usage count (or whatever it needs to do to retain it) before returning.
1472  *
1473  * This function returns 0 if successful or -ENOMEM if out of memory.  In the
1474  * latter case, the array is not changed.
1475  *
1476  * The caller should lock against other modifications and must continue to hold
1477  * the lock until assoc_array_apply_edit() has been called.
1478  *
1479  * Accesses to the tree may take place concurrently with this function,
1480  * provided they hold the RCU read lock.
1481  */
1482 int assoc_array_gc(struct assoc_array *array,
1483 		   const struct assoc_array_ops *ops,
1484 		   bool (*iterator)(void *object, void *iterator_data),
1485 		   void *iterator_data)
1486 {
1487 	struct assoc_array_shortcut *shortcut, *new_s;
1488 	struct assoc_array_node *node, *new_n;
1489 	struct assoc_array_edit *edit;
1490 	struct assoc_array_ptr *cursor, *ptr;
1491 	struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp;
1492 	unsigned long nr_leaves_on_tree;
1493 	int keylen, slot, nr_free, next_slot, i;
1494 
1495 	pr_devel("-->%s()\n", __func__);
1496 
1497 	if (!array->root)
1498 		return 0;
1499 
1500 	edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL);
1501 	if (!edit)
1502 		return -ENOMEM;
1503 	edit->array = array;
1504 	edit->ops = ops;
1505 	edit->ops_for_excised_subtree = ops;
1506 	edit->set[0].ptr = &array->root;
1507 	edit->excised_subtree = array->root;
1508 
1509 	new_root = new_parent = NULL;
1510 	new_ptr_pp = &new_root;
1511 	cursor = array->root;
1512 
1513 descend:
1514 	/* If this point is a shortcut, then we need to duplicate it and
1515 	 * advance the target cursor.
1516 	 */
1517 	if (assoc_array_ptr_is_shortcut(cursor)) {
1518 		shortcut = assoc_array_ptr_to_shortcut(cursor);
1519 		keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE);
1520 		keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT;
1521 		new_s = kmalloc(sizeof(struct assoc_array_shortcut) +
1522 				keylen * sizeof(unsigned long), GFP_KERNEL);
1523 		if (!new_s)
1524 			goto enomem;
1525 		pr_devel("dup shortcut %p -> %p\n", shortcut, new_s);
1526 		memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) +
1527 					 keylen * sizeof(unsigned long)));
1528 		new_s->back_pointer = new_parent;
1529 		new_s->parent_slot = shortcut->parent_slot;
1530 		*new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s);
1531 		new_ptr_pp = &new_s->next_node;
1532 		cursor = shortcut->next_node;
1533 	}
1534 
1535 	/* Duplicate the node at this position */
1536 	node = assoc_array_ptr_to_node(cursor);
1537 	new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL);
1538 	if (!new_n)
1539 		goto enomem;
1540 	pr_devel("dup node %p -> %p\n", node, new_n);
1541 	new_n->back_pointer = new_parent;
1542 	new_n->parent_slot = node->parent_slot;
1543 	*new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n);
1544 	new_ptr_pp = NULL;
1545 	slot = 0;
1546 
1547 continue_node:
1548 	/* Filter across any leaves and gc any subtrees */
1549 	for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1550 		ptr = node->slots[slot];
1551 		if (!ptr)
1552 			continue;
1553 
1554 		if (assoc_array_ptr_is_leaf(ptr)) {
1555 			if (iterator(assoc_array_ptr_to_leaf(ptr),
1556 				     iterator_data))
1557 				/* The iterator will have done any reference
1558 				 * counting on the object for us.
1559 				 */
1560 				new_n->slots[slot] = ptr;
1561 			continue;
1562 		}
1563 
1564 		new_ptr_pp = &new_n->slots[slot];
1565 		cursor = ptr;
1566 		goto descend;
1567 	}
1568 
1569 	pr_devel("-- compress node %p --\n", new_n);
1570 
1571 	/* Count up the number of empty slots in this node and work out the
1572 	 * subtree leaf count.
1573 	 */
1574 	new_n->nr_leaves_on_branch = 0;
1575 	nr_free = 0;
1576 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1577 		ptr = new_n->slots[slot];
1578 		if (!ptr)
1579 			nr_free++;
1580 		else if (assoc_array_ptr_is_leaf(ptr))
1581 			new_n->nr_leaves_on_branch++;
1582 	}
1583 	pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch);
1584 
1585 	/* See what we can fold in */
1586 	next_slot = 0;
1587 	for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) {
1588 		struct assoc_array_shortcut *s;
1589 		struct assoc_array_node *child;
1590 
1591 		ptr = new_n->slots[slot];
1592 		if (!ptr || assoc_array_ptr_is_leaf(ptr))
1593 			continue;
1594 
1595 		s = NULL;
1596 		if (assoc_array_ptr_is_shortcut(ptr)) {
1597 			s = assoc_array_ptr_to_shortcut(ptr);
1598 			ptr = s->next_node;
1599 		}
1600 
1601 		child = assoc_array_ptr_to_node(ptr);
1602 		new_n->nr_leaves_on_branch += child->nr_leaves_on_branch;
1603 
1604 		if (child->nr_leaves_on_branch <= nr_free + 1) {
1605 			/* Fold the child node into this one */
1606 			pr_devel("[%d] fold node %lu/%d [nx %d]\n",
1607 				 slot, child->nr_leaves_on_branch, nr_free + 1,
1608 				 next_slot);
1609 
1610 			/* We would already have reaped an intervening shortcut
1611 			 * on the way back up the tree.
1612 			 */
1613 			BUG_ON(s);
1614 
1615 			new_n->slots[slot] = NULL;
1616 			nr_free++;
1617 			if (slot < next_slot)
1618 				next_slot = slot;
1619 			for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) {
1620 				struct assoc_array_ptr *p = child->slots[i];
1621 				if (!p)
1622 					continue;
1623 				BUG_ON(assoc_array_ptr_is_meta(p));
1624 				while (new_n->slots[next_slot])
1625 					next_slot++;
1626 				BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT);
1627 				new_n->slots[next_slot++] = p;
1628 				nr_free--;
1629 			}
1630 			kfree(child);
1631 		} else {
1632 			pr_devel("[%d] retain node %lu/%d [nx %d]\n",
1633 				 slot, child->nr_leaves_on_branch, nr_free + 1,
1634 				 next_slot);
1635 		}
1636 	}
1637 
1638 	pr_devel("after: %lu\n", new_n->nr_leaves_on_branch);
1639 
1640 	nr_leaves_on_tree = new_n->nr_leaves_on_branch;
1641 
1642 	/* Excise this node if it is singly occupied by a shortcut */
1643 	if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) {
1644 		for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++)
1645 			if ((ptr = new_n->slots[slot]))
1646 				break;
1647 
1648 		if (assoc_array_ptr_is_meta(ptr) &&
1649 		    assoc_array_ptr_is_shortcut(ptr)) {
1650 			pr_devel("excise node %p with 1 shortcut\n", new_n);
1651 			new_s = assoc_array_ptr_to_shortcut(ptr);
1652 			new_parent = new_n->back_pointer;
1653 			slot = new_n->parent_slot;
1654 			kfree(new_n);
1655 			if (!new_parent) {
1656 				new_s->back_pointer = NULL;
1657 				new_s->parent_slot = 0;
1658 				new_root = ptr;
1659 				goto gc_complete;
1660 			}
1661 
1662 			if (assoc_array_ptr_is_shortcut(new_parent)) {
1663 				/* We can discard any preceding shortcut also */
1664 				struct assoc_array_shortcut *s =
1665 					assoc_array_ptr_to_shortcut(new_parent);
1666 
1667 				pr_devel("excise preceding shortcut\n");
1668 
1669 				new_parent = new_s->back_pointer = s->back_pointer;
1670 				slot = new_s->parent_slot = s->parent_slot;
1671 				kfree(s);
1672 				if (!new_parent) {
1673 					new_s->back_pointer = NULL;
1674 					new_s->parent_slot = 0;
1675 					new_root = ptr;
1676 					goto gc_complete;
1677 				}
1678 			}
1679 
1680 			new_s->back_pointer = new_parent;
1681 			new_s->parent_slot = slot;
1682 			new_n = assoc_array_ptr_to_node(new_parent);
1683 			new_n->slots[slot] = ptr;
1684 			goto ascend_old_tree;
1685 		}
1686 	}
1687 
1688 	/* Excise any shortcuts we might encounter that point to nodes that
1689 	 * only contain leaves.
1690 	 */
1691 	ptr = new_n->back_pointer;
1692 	if (!ptr)
1693 		goto gc_complete;
1694 
1695 	if (assoc_array_ptr_is_shortcut(ptr)) {
1696 		new_s = assoc_array_ptr_to_shortcut(ptr);
1697 		new_parent = new_s->back_pointer;
1698 		slot = new_s->parent_slot;
1699 
1700 		if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) {
1701 			struct assoc_array_node *n;
1702 
1703 			pr_devel("excise shortcut\n");
1704 			new_n->back_pointer = new_parent;
1705 			new_n->parent_slot = slot;
1706 			kfree(new_s);
1707 			if (!new_parent) {
1708 				new_root = assoc_array_node_to_ptr(new_n);
1709 				goto gc_complete;
1710 			}
1711 
1712 			n = assoc_array_ptr_to_node(new_parent);
1713 			n->slots[slot] = assoc_array_node_to_ptr(new_n);
1714 		}
1715 	} else {
1716 		new_parent = ptr;
1717 	}
1718 	new_n = assoc_array_ptr_to_node(new_parent);
1719 
1720 ascend_old_tree:
1721 	ptr = node->back_pointer;
1722 	if (assoc_array_ptr_is_shortcut(ptr)) {
1723 		shortcut = assoc_array_ptr_to_shortcut(ptr);
1724 		slot = shortcut->parent_slot;
1725 		cursor = shortcut->back_pointer;
1726 		if (!cursor)
1727 			goto gc_complete;
1728 	} else {
1729 		slot = node->parent_slot;
1730 		cursor = ptr;
1731 	}
1732 	BUG_ON(!cursor);
1733 	node = assoc_array_ptr_to_node(cursor);
1734 	slot++;
1735 	goto continue_node;
1736 
1737 gc_complete:
1738 	edit->set[0].to = new_root;
1739 	assoc_array_apply_edit(edit);
1740 	array->nr_leaves_on_tree = nr_leaves_on_tree;
1741 	return 0;
1742 
1743 enomem:
1744 	pr_devel("enomem\n");
1745 	assoc_array_destroy_subtree(new_root, edit->ops);
1746 	kfree(edit);
1747 	return -ENOMEM;
1748 }
1749