1 /* Generic associative array implementation. 2 * 3 * See Documentation/core-api/assoc_array.rst for information. 4 * 5 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved. 6 * Written by David Howells (dhowells@redhat.com) 7 * 8 * This program is free software; you can redistribute it and/or 9 * modify it under the terms of the GNU General Public Licence 10 * as published by the Free Software Foundation; either version 11 * 2 of the Licence, or (at your option) any later version. 12 */ 13 //#define DEBUG 14 #include <linux/rcupdate.h> 15 #include <linux/slab.h> 16 #include <linux/err.h> 17 #include <linux/assoc_array_priv.h> 18 19 /* 20 * Iterate over an associative array. The caller must hold the RCU read lock 21 * or better. 22 */ 23 static int assoc_array_subtree_iterate(const struct assoc_array_ptr *root, 24 const struct assoc_array_ptr *stop, 25 int (*iterator)(const void *leaf, 26 void *iterator_data), 27 void *iterator_data) 28 { 29 const struct assoc_array_shortcut *shortcut; 30 const struct assoc_array_node *node; 31 const struct assoc_array_ptr *cursor, *ptr, *parent; 32 unsigned long has_meta; 33 int slot, ret; 34 35 cursor = root; 36 37 begin_node: 38 if (assoc_array_ptr_is_shortcut(cursor)) { 39 /* Descend through a shortcut */ 40 shortcut = assoc_array_ptr_to_shortcut(cursor); 41 cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */ 42 } 43 44 node = assoc_array_ptr_to_node(cursor); 45 slot = 0; 46 47 /* We perform two passes of each node. 48 * 49 * The first pass does all the leaves in this node. This means we 50 * don't miss any leaves if the node is split up by insertion whilst 51 * we're iterating over the branches rooted here (we may, however, see 52 * some leaves twice). 53 */ 54 has_meta = 0; 55 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 56 ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ 57 has_meta |= (unsigned long)ptr; 58 if (ptr && assoc_array_ptr_is_leaf(ptr)) { 59 /* We need a barrier between the read of the pointer, 60 * which is supplied by the above READ_ONCE(). 61 */ 62 /* Invoke the callback */ 63 ret = iterator(assoc_array_ptr_to_leaf(ptr), 64 iterator_data); 65 if (ret) 66 return ret; 67 } 68 } 69 70 /* The second pass attends to all the metadata pointers. If we follow 71 * one of these we may find that we don't come back here, but rather go 72 * back to a replacement node with the leaves in a different layout. 73 * 74 * We are guaranteed to make progress, however, as the slot number for 75 * a particular portion of the key space cannot change - and we 76 * continue at the back pointer + 1. 77 */ 78 if (!(has_meta & ASSOC_ARRAY_PTR_META_TYPE)) 79 goto finished_node; 80 slot = 0; 81 82 continue_node: 83 node = assoc_array_ptr_to_node(cursor); 84 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 85 ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ 86 if (assoc_array_ptr_is_meta(ptr)) { 87 cursor = ptr; 88 goto begin_node; 89 } 90 } 91 92 finished_node: 93 /* Move up to the parent (may need to skip back over a shortcut) */ 94 parent = READ_ONCE(node->back_pointer); /* Address dependency. */ 95 slot = node->parent_slot; 96 if (parent == stop) 97 return 0; 98 99 if (assoc_array_ptr_is_shortcut(parent)) { 100 shortcut = assoc_array_ptr_to_shortcut(parent); 101 cursor = parent; 102 parent = READ_ONCE(shortcut->back_pointer); /* Address dependency. */ 103 slot = shortcut->parent_slot; 104 if (parent == stop) 105 return 0; 106 } 107 108 /* Ascend to next slot in parent node */ 109 cursor = parent; 110 slot++; 111 goto continue_node; 112 } 113 114 /** 115 * assoc_array_iterate - Pass all objects in the array to a callback 116 * @array: The array to iterate over. 117 * @iterator: The callback function. 118 * @iterator_data: Private data for the callback function. 119 * 120 * Iterate over all the objects in an associative array. Each one will be 121 * presented to the iterator function. 122 * 123 * If the array is being modified concurrently with the iteration then it is 124 * possible that some objects in the array will be passed to the iterator 125 * callback more than once - though every object should be passed at least 126 * once. If this is undesirable then the caller must lock against modification 127 * for the duration of this function. 128 * 129 * The function will return 0 if no objects were in the array or else it will 130 * return the result of the last iterator function called. Iteration stops 131 * immediately if any call to the iteration function results in a non-zero 132 * return. 133 * 134 * The caller should hold the RCU read lock or better if concurrent 135 * modification is possible. 136 */ 137 int assoc_array_iterate(const struct assoc_array *array, 138 int (*iterator)(const void *object, 139 void *iterator_data), 140 void *iterator_data) 141 { 142 struct assoc_array_ptr *root = READ_ONCE(array->root); /* Address dependency. */ 143 144 if (!root) 145 return 0; 146 return assoc_array_subtree_iterate(root, NULL, iterator, iterator_data); 147 } 148 149 enum assoc_array_walk_status { 150 assoc_array_walk_tree_empty, 151 assoc_array_walk_found_terminal_node, 152 assoc_array_walk_found_wrong_shortcut, 153 }; 154 155 struct assoc_array_walk_result { 156 struct { 157 struct assoc_array_node *node; /* Node in which leaf might be found */ 158 int level; 159 int slot; 160 } terminal_node; 161 struct { 162 struct assoc_array_shortcut *shortcut; 163 int level; 164 int sc_level; 165 unsigned long sc_segments; 166 unsigned long dissimilarity; 167 } wrong_shortcut; 168 }; 169 170 /* 171 * Navigate through the internal tree looking for the closest node to the key. 172 */ 173 static enum assoc_array_walk_status 174 assoc_array_walk(const struct assoc_array *array, 175 const struct assoc_array_ops *ops, 176 const void *index_key, 177 struct assoc_array_walk_result *result) 178 { 179 struct assoc_array_shortcut *shortcut; 180 struct assoc_array_node *node; 181 struct assoc_array_ptr *cursor, *ptr; 182 unsigned long sc_segments, dissimilarity; 183 unsigned long segments; 184 int level, sc_level, next_sc_level; 185 int slot; 186 187 pr_devel("-->%s()\n", __func__); 188 189 cursor = READ_ONCE(array->root); /* Address dependency. */ 190 if (!cursor) 191 return assoc_array_walk_tree_empty; 192 193 level = 0; 194 195 /* Use segments from the key for the new leaf to navigate through the 196 * internal tree, skipping through nodes and shortcuts that are on 197 * route to the destination. Eventually we'll come to a slot that is 198 * either empty or contains a leaf at which point we've found a node in 199 * which the leaf we're looking for might be found or into which it 200 * should be inserted. 201 */ 202 jumped: 203 segments = ops->get_key_chunk(index_key, level); 204 pr_devel("segments[%d]: %lx\n", level, segments); 205 206 if (assoc_array_ptr_is_shortcut(cursor)) 207 goto follow_shortcut; 208 209 consider_node: 210 node = assoc_array_ptr_to_node(cursor); 211 slot = segments >> (level & ASSOC_ARRAY_KEY_CHUNK_MASK); 212 slot &= ASSOC_ARRAY_FAN_MASK; 213 ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ 214 215 pr_devel("consider slot %x [ix=%d type=%lu]\n", 216 slot, level, (unsigned long)ptr & 3); 217 218 if (!assoc_array_ptr_is_meta(ptr)) { 219 /* The node doesn't have a node/shortcut pointer in the slot 220 * corresponding to the index key that we have to follow. 221 */ 222 result->terminal_node.node = node; 223 result->terminal_node.level = level; 224 result->terminal_node.slot = slot; 225 pr_devel("<--%s() = terminal_node\n", __func__); 226 return assoc_array_walk_found_terminal_node; 227 } 228 229 if (assoc_array_ptr_is_node(ptr)) { 230 /* There is a pointer to a node in the slot corresponding to 231 * this index key segment, so we need to follow it. 232 */ 233 cursor = ptr; 234 level += ASSOC_ARRAY_LEVEL_STEP; 235 if ((level & ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) 236 goto consider_node; 237 goto jumped; 238 } 239 240 /* There is a shortcut in the slot corresponding to the index key 241 * segment. We follow the shortcut if its partial index key matches 242 * this leaf's. Otherwise we need to split the shortcut. 243 */ 244 cursor = ptr; 245 follow_shortcut: 246 shortcut = assoc_array_ptr_to_shortcut(cursor); 247 pr_devel("shortcut to %d\n", shortcut->skip_to_level); 248 sc_level = level + ASSOC_ARRAY_LEVEL_STEP; 249 BUG_ON(sc_level > shortcut->skip_to_level); 250 251 do { 252 /* Check the leaf against the shortcut's index key a word at a 253 * time, trimming the final word (the shortcut stores the index 254 * key completely from the root to the shortcut's target). 255 */ 256 if ((sc_level & ASSOC_ARRAY_KEY_CHUNK_MASK) == 0) 257 segments = ops->get_key_chunk(index_key, sc_level); 258 259 sc_segments = shortcut->index_key[sc_level >> ASSOC_ARRAY_KEY_CHUNK_SHIFT]; 260 dissimilarity = segments ^ sc_segments; 261 262 if (round_up(sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE) > shortcut->skip_to_level) { 263 /* Trim segments that are beyond the shortcut */ 264 int shift = shortcut->skip_to_level & ASSOC_ARRAY_KEY_CHUNK_MASK; 265 dissimilarity &= ~(ULONG_MAX << shift); 266 next_sc_level = shortcut->skip_to_level; 267 } else { 268 next_sc_level = sc_level + ASSOC_ARRAY_KEY_CHUNK_SIZE; 269 next_sc_level = round_down(next_sc_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); 270 } 271 272 if (dissimilarity != 0) { 273 /* This shortcut points elsewhere */ 274 result->wrong_shortcut.shortcut = shortcut; 275 result->wrong_shortcut.level = level; 276 result->wrong_shortcut.sc_level = sc_level; 277 result->wrong_shortcut.sc_segments = sc_segments; 278 result->wrong_shortcut.dissimilarity = dissimilarity; 279 return assoc_array_walk_found_wrong_shortcut; 280 } 281 282 sc_level = next_sc_level; 283 } while (sc_level < shortcut->skip_to_level); 284 285 /* The shortcut matches the leaf's index to this point. */ 286 cursor = READ_ONCE(shortcut->next_node); /* Address dependency. */ 287 if (((level ^ sc_level) & ~ASSOC_ARRAY_KEY_CHUNK_MASK) != 0) { 288 level = sc_level; 289 goto jumped; 290 } else { 291 level = sc_level; 292 goto consider_node; 293 } 294 } 295 296 /** 297 * assoc_array_find - Find an object by index key 298 * @array: The associative array to search. 299 * @ops: The operations to use. 300 * @index_key: The key to the object. 301 * 302 * Find an object in an associative array by walking through the internal tree 303 * to the node that should contain the object and then searching the leaves 304 * there. NULL is returned if the requested object was not found in the array. 305 * 306 * The caller must hold the RCU read lock or better. 307 */ 308 void *assoc_array_find(const struct assoc_array *array, 309 const struct assoc_array_ops *ops, 310 const void *index_key) 311 { 312 struct assoc_array_walk_result result; 313 const struct assoc_array_node *node; 314 const struct assoc_array_ptr *ptr; 315 const void *leaf; 316 int slot; 317 318 if (assoc_array_walk(array, ops, index_key, &result) != 319 assoc_array_walk_found_terminal_node) 320 return NULL; 321 322 node = result.terminal_node.node; 323 324 /* If the target key is available to us, it's has to be pointed to by 325 * the terminal node. 326 */ 327 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 328 ptr = READ_ONCE(node->slots[slot]); /* Address dependency. */ 329 if (ptr && assoc_array_ptr_is_leaf(ptr)) { 330 /* We need a barrier between the read of the pointer 331 * and dereferencing the pointer - but only if we are 332 * actually going to dereference it. 333 */ 334 leaf = assoc_array_ptr_to_leaf(ptr); 335 if (ops->compare_object(leaf, index_key)) 336 return (void *)leaf; 337 } 338 } 339 340 return NULL; 341 } 342 343 /* 344 * Destructively iterate over an associative array. The caller must prevent 345 * other simultaneous accesses. 346 */ 347 static void assoc_array_destroy_subtree(struct assoc_array_ptr *root, 348 const struct assoc_array_ops *ops) 349 { 350 struct assoc_array_shortcut *shortcut; 351 struct assoc_array_node *node; 352 struct assoc_array_ptr *cursor, *parent = NULL; 353 int slot = -1; 354 355 pr_devel("-->%s()\n", __func__); 356 357 cursor = root; 358 if (!cursor) { 359 pr_devel("empty\n"); 360 return; 361 } 362 363 move_to_meta: 364 if (assoc_array_ptr_is_shortcut(cursor)) { 365 /* Descend through a shortcut */ 366 pr_devel("[%d] shortcut\n", slot); 367 BUG_ON(!assoc_array_ptr_is_shortcut(cursor)); 368 shortcut = assoc_array_ptr_to_shortcut(cursor); 369 BUG_ON(shortcut->back_pointer != parent); 370 BUG_ON(slot != -1 && shortcut->parent_slot != slot); 371 parent = cursor; 372 cursor = shortcut->next_node; 373 slot = -1; 374 BUG_ON(!assoc_array_ptr_is_node(cursor)); 375 } 376 377 pr_devel("[%d] node\n", slot); 378 node = assoc_array_ptr_to_node(cursor); 379 BUG_ON(node->back_pointer != parent); 380 BUG_ON(slot != -1 && node->parent_slot != slot); 381 slot = 0; 382 383 continue_node: 384 pr_devel("Node %p [back=%p]\n", node, node->back_pointer); 385 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 386 struct assoc_array_ptr *ptr = node->slots[slot]; 387 if (!ptr) 388 continue; 389 if (assoc_array_ptr_is_meta(ptr)) { 390 parent = cursor; 391 cursor = ptr; 392 goto move_to_meta; 393 } 394 395 if (ops) { 396 pr_devel("[%d] free leaf\n", slot); 397 ops->free_object(assoc_array_ptr_to_leaf(ptr)); 398 } 399 } 400 401 parent = node->back_pointer; 402 slot = node->parent_slot; 403 pr_devel("free node\n"); 404 kfree(node); 405 if (!parent) 406 return; /* Done */ 407 408 /* Move back up to the parent (may need to free a shortcut on 409 * the way up) */ 410 if (assoc_array_ptr_is_shortcut(parent)) { 411 shortcut = assoc_array_ptr_to_shortcut(parent); 412 BUG_ON(shortcut->next_node != cursor); 413 cursor = parent; 414 parent = shortcut->back_pointer; 415 slot = shortcut->parent_slot; 416 pr_devel("free shortcut\n"); 417 kfree(shortcut); 418 if (!parent) 419 return; 420 421 BUG_ON(!assoc_array_ptr_is_node(parent)); 422 } 423 424 /* Ascend to next slot in parent node */ 425 pr_devel("ascend to %p[%d]\n", parent, slot); 426 cursor = parent; 427 node = assoc_array_ptr_to_node(cursor); 428 slot++; 429 goto continue_node; 430 } 431 432 /** 433 * assoc_array_destroy - Destroy an associative array 434 * @array: The array to destroy. 435 * @ops: The operations to use. 436 * 437 * Discard all metadata and free all objects in an associative array. The 438 * array will be empty and ready to use again upon completion. This function 439 * cannot fail. 440 * 441 * The caller must prevent all other accesses whilst this takes place as no 442 * attempt is made to adjust pointers gracefully to permit RCU readlock-holding 443 * accesses to continue. On the other hand, no memory allocation is required. 444 */ 445 void assoc_array_destroy(struct assoc_array *array, 446 const struct assoc_array_ops *ops) 447 { 448 assoc_array_destroy_subtree(array->root, ops); 449 array->root = NULL; 450 } 451 452 /* 453 * Handle insertion into an empty tree. 454 */ 455 static bool assoc_array_insert_in_empty_tree(struct assoc_array_edit *edit) 456 { 457 struct assoc_array_node *new_n0; 458 459 pr_devel("-->%s()\n", __func__); 460 461 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); 462 if (!new_n0) 463 return false; 464 465 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); 466 edit->leaf_p = &new_n0->slots[0]; 467 edit->adjust_count_on = new_n0; 468 edit->set[0].ptr = &edit->array->root; 469 edit->set[0].to = assoc_array_node_to_ptr(new_n0); 470 471 pr_devel("<--%s() = ok [no root]\n", __func__); 472 return true; 473 } 474 475 /* 476 * Handle insertion into a terminal node. 477 */ 478 static bool assoc_array_insert_into_terminal_node(struct assoc_array_edit *edit, 479 const struct assoc_array_ops *ops, 480 const void *index_key, 481 struct assoc_array_walk_result *result) 482 { 483 struct assoc_array_shortcut *shortcut, *new_s0; 484 struct assoc_array_node *node, *new_n0, *new_n1, *side; 485 struct assoc_array_ptr *ptr; 486 unsigned long dissimilarity, base_seg, blank; 487 size_t keylen; 488 bool have_meta; 489 int level, diff; 490 int slot, next_slot, free_slot, i, j; 491 492 node = result->terminal_node.node; 493 level = result->terminal_node.level; 494 edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = result->terminal_node.slot; 495 496 pr_devel("-->%s()\n", __func__); 497 498 /* We arrived at a node which doesn't have an onward node or shortcut 499 * pointer that we have to follow. This means that (a) the leaf we 500 * want must go here (either by insertion or replacement) or (b) we 501 * need to split this node and insert in one of the fragments. 502 */ 503 free_slot = -1; 504 505 /* Firstly, we have to check the leaves in this node to see if there's 506 * a matching one we should replace in place. 507 */ 508 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { 509 ptr = node->slots[i]; 510 if (!ptr) { 511 free_slot = i; 512 continue; 513 } 514 if (assoc_array_ptr_is_leaf(ptr) && 515 ops->compare_object(assoc_array_ptr_to_leaf(ptr), 516 index_key)) { 517 pr_devel("replace in slot %d\n", i); 518 edit->leaf_p = &node->slots[i]; 519 edit->dead_leaf = node->slots[i]; 520 pr_devel("<--%s() = ok [replace]\n", __func__); 521 return true; 522 } 523 } 524 525 /* If there is a free slot in this node then we can just insert the 526 * leaf here. 527 */ 528 if (free_slot >= 0) { 529 pr_devel("insert in free slot %d\n", free_slot); 530 edit->leaf_p = &node->slots[free_slot]; 531 edit->adjust_count_on = node; 532 pr_devel("<--%s() = ok [insert]\n", __func__); 533 return true; 534 } 535 536 /* The node has no spare slots - so we're either going to have to split 537 * it or insert another node before it. 538 * 539 * Whatever, we're going to need at least two new nodes - so allocate 540 * those now. We may also need a new shortcut, but we deal with that 541 * when we need it. 542 */ 543 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); 544 if (!new_n0) 545 return false; 546 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); 547 new_n1 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); 548 if (!new_n1) 549 return false; 550 edit->new_meta[1] = assoc_array_node_to_ptr(new_n1); 551 552 /* We need to find out how similar the leaves are. */ 553 pr_devel("no spare slots\n"); 554 have_meta = false; 555 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { 556 ptr = node->slots[i]; 557 if (assoc_array_ptr_is_meta(ptr)) { 558 edit->segment_cache[i] = 0xff; 559 have_meta = true; 560 continue; 561 } 562 base_seg = ops->get_object_key_chunk( 563 assoc_array_ptr_to_leaf(ptr), level); 564 base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; 565 edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK; 566 } 567 568 if (have_meta) { 569 pr_devel("have meta\n"); 570 goto split_node; 571 } 572 573 /* The node contains only leaves */ 574 dissimilarity = 0; 575 base_seg = edit->segment_cache[0]; 576 for (i = 1; i < ASSOC_ARRAY_FAN_OUT; i++) 577 dissimilarity |= edit->segment_cache[i] ^ base_seg; 578 579 pr_devel("only leaves; dissimilarity=%lx\n", dissimilarity); 580 581 if ((dissimilarity & ASSOC_ARRAY_FAN_MASK) == 0) { 582 /* The old leaves all cluster in the same slot. We will need 583 * to insert a shortcut if the new node wants to cluster with them. 584 */ 585 if ((edit->segment_cache[ASSOC_ARRAY_FAN_OUT] ^ base_seg) == 0) 586 goto all_leaves_cluster_together; 587 588 /* Otherwise all the old leaves cluster in the same slot, but 589 * the new leaf wants to go into a different slot - so we 590 * create a new node (n0) to hold the new leaf and a pointer to 591 * a new node (n1) holding all the old leaves. 592 * 593 * This can be done by falling through to the node splitting 594 * path. 595 */ 596 pr_devel("present leaves cluster but not new leaf\n"); 597 } 598 599 split_node: 600 pr_devel("split node\n"); 601 602 /* We need to split the current node. The node must contain anything 603 * from a single leaf (in the one leaf case, this leaf will cluster 604 * with the new leaf) and the rest meta-pointers, to all leaves, some 605 * of which may cluster. 606 * 607 * It won't contain the case in which all the current leaves plus the 608 * new leaves want to cluster in the same slot. 609 * 610 * We need to expel at least two leaves out of a set consisting of the 611 * leaves in the node and the new leaf. The current meta pointers can 612 * just be copied as they shouldn't cluster with any of the leaves. 613 * 614 * We need a new node (n0) to replace the current one and a new node to 615 * take the expelled nodes (n1). 616 */ 617 edit->set[0].to = assoc_array_node_to_ptr(new_n0); 618 new_n0->back_pointer = node->back_pointer; 619 new_n0->parent_slot = node->parent_slot; 620 new_n1->back_pointer = assoc_array_node_to_ptr(new_n0); 621 new_n1->parent_slot = -1; /* Need to calculate this */ 622 623 do_split_node: 624 pr_devel("do_split_node\n"); 625 626 new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch; 627 new_n1->nr_leaves_on_branch = 0; 628 629 /* Begin by finding two matching leaves. There have to be at least two 630 * that match - even if there are meta pointers - because any leaf that 631 * would match a slot with a meta pointer in it must be somewhere 632 * behind that meta pointer and cannot be here. Further, given N 633 * remaining leaf slots, we now have N+1 leaves to go in them. 634 */ 635 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { 636 slot = edit->segment_cache[i]; 637 if (slot != 0xff) 638 for (j = i + 1; j < ASSOC_ARRAY_FAN_OUT + 1; j++) 639 if (edit->segment_cache[j] == slot) 640 goto found_slot_for_multiple_occupancy; 641 } 642 found_slot_for_multiple_occupancy: 643 pr_devel("same slot: %x %x [%02x]\n", i, j, slot); 644 BUG_ON(i >= ASSOC_ARRAY_FAN_OUT); 645 BUG_ON(j >= ASSOC_ARRAY_FAN_OUT + 1); 646 BUG_ON(slot >= ASSOC_ARRAY_FAN_OUT); 647 648 new_n1->parent_slot = slot; 649 650 /* Metadata pointers cannot change slot */ 651 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) 652 if (assoc_array_ptr_is_meta(node->slots[i])) 653 new_n0->slots[i] = node->slots[i]; 654 else 655 new_n0->slots[i] = NULL; 656 BUG_ON(new_n0->slots[slot] != NULL); 657 new_n0->slots[slot] = assoc_array_node_to_ptr(new_n1); 658 659 /* Filter the leaf pointers between the new nodes */ 660 free_slot = -1; 661 next_slot = 0; 662 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { 663 if (assoc_array_ptr_is_meta(node->slots[i])) 664 continue; 665 if (edit->segment_cache[i] == slot) { 666 new_n1->slots[next_slot++] = node->slots[i]; 667 new_n1->nr_leaves_on_branch++; 668 } else { 669 do { 670 free_slot++; 671 } while (new_n0->slots[free_slot] != NULL); 672 new_n0->slots[free_slot] = node->slots[i]; 673 } 674 } 675 676 pr_devel("filtered: f=%x n=%x\n", free_slot, next_slot); 677 678 if (edit->segment_cache[ASSOC_ARRAY_FAN_OUT] != slot) { 679 do { 680 free_slot++; 681 } while (new_n0->slots[free_slot] != NULL); 682 edit->leaf_p = &new_n0->slots[free_slot]; 683 edit->adjust_count_on = new_n0; 684 } else { 685 edit->leaf_p = &new_n1->slots[next_slot++]; 686 edit->adjust_count_on = new_n1; 687 } 688 689 BUG_ON(next_slot <= 1); 690 691 edit->set_backpointers_to = assoc_array_node_to_ptr(new_n0); 692 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { 693 if (edit->segment_cache[i] == 0xff) { 694 ptr = node->slots[i]; 695 BUG_ON(assoc_array_ptr_is_leaf(ptr)); 696 if (assoc_array_ptr_is_node(ptr)) { 697 side = assoc_array_ptr_to_node(ptr); 698 edit->set_backpointers[i] = &side->back_pointer; 699 } else { 700 shortcut = assoc_array_ptr_to_shortcut(ptr); 701 edit->set_backpointers[i] = &shortcut->back_pointer; 702 } 703 } 704 } 705 706 ptr = node->back_pointer; 707 if (!ptr) 708 edit->set[0].ptr = &edit->array->root; 709 else if (assoc_array_ptr_is_node(ptr)) 710 edit->set[0].ptr = &assoc_array_ptr_to_node(ptr)->slots[node->parent_slot]; 711 else 712 edit->set[0].ptr = &assoc_array_ptr_to_shortcut(ptr)->next_node; 713 edit->excised_meta[0] = assoc_array_node_to_ptr(node); 714 pr_devel("<--%s() = ok [split node]\n", __func__); 715 return true; 716 717 all_leaves_cluster_together: 718 /* All the leaves, new and old, want to cluster together in this node 719 * in the same slot, so we have to replace this node with a shortcut to 720 * skip over the identical parts of the key and then place a pair of 721 * nodes, one inside the other, at the end of the shortcut and 722 * distribute the keys between them. 723 * 724 * Firstly we need to work out where the leaves start diverging as a 725 * bit position into their keys so that we know how big the shortcut 726 * needs to be. 727 * 728 * We only need to make a single pass of N of the N+1 leaves because if 729 * any keys differ between themselves at bit X then at least one of 730 * them must also differ with the base key at bit X or before. 731 */ 732 pr_devel("all leaves cluster together\n"); 733 diff = INT_MAX; 734 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { 735 int x = ops->diff_objects(assoc_array_ptr_to_leaf(node->slots[i]), 736 index_key); 737 if (x < diff) { 738 BUG_ON(x < 0); 739 diff = x; 740 } 741 } 742 BUG_ON(diff == INT_MAX); 743 BUG_ON(diff < level + ASSOC_ARRAY_LEVEL_STEP); 744 745 keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE); 746 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; 747 748 new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) + 749 keylen * sizeof(unsigned long), GFP_KERNEL); 750 if (!new_s0) 751 return false; 752 edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s0); 753 754 edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0); 755 new_s0->back_pointer = node->back_pointer; 756 new_s0->parent_slot = node->parent_slot; 757 new_s0->next_node = assoc_array_node_to_ptr(new_n0); 758 new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0); 759 new_n0->parent_slot = 0; 760 new_n1->back_pointer = assoc_array_node_to_ptr(new_n0); 761 new_n1->parent_slot = -1; /* Need to calculate this */ 762 763 new_s0->skip_to_level = level = diff & ~ASSOC_ARRAY_LEVEL_STEP_MASK; 764 pr_devel("skip_to_level = %d [diff %d]\n", level, diff); 765 BUG_ON(level <= 0); 766 767 for (i = 0; i < keylen; i++) 768 new_s0->index_key[i] = 769 ops->get_key_chunk(index_key, i * ASSOC_ARRAY_KEY_CHUNK_SIZE); 770 771 if (level & ASSOC_ARRAY_KEY_CHUNK_MASK) { 772 blank = ULONG_MAX << (level & ASSOC_ARRAY_KEY_CHUNK_MASK); 773 pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, level, blank); 774 new_s0->index_key[keylen - 1] &= ~blank; 775 } 776 777 /* This now reduces to a node splitting exercise for which we'll need 778 * to regenerate the disparity table. 779 */ 780 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { 781 ptr = node->slots[i]; 782 base_seg = ops->get_object_key_chunk(assoc_array_ptr_to_leaf(ptr), 783 level); 784 base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; 785 edit->segment_cache[i] = base_seg & ASSOC_ARRAY_FAN_MASK; 786 } 787 788 base_seg = ops->get_key_chunk(index_key, level); 789 base_seg >>= level & ASSOC_ARRAY_KEY_CHUNK_MASK; 790 edit->segment_cache[ASSOC_ARRAY_FAN_OUT] = base_seg & ASSOC_ARRAY_FAN_MASK; 791 goto do_split_node; 792 } 793 794 /* 795 * Handle insertion into the middle of a shortcut. 796 */ 797 static bool assoc_array_insert_mid_shortcut(struct assoc_array_edit *edit, 798 const struct assoc_array_ops *ops, 799 struct assoc_array_walk_result *result) 800 { 801 struct assoc_array_shortcut *shortcut, *new_s0, *new_s1; 802 struct assoc_array_node *node, *new_n0, *side; 803 unsigned long sc_segments, dissimilarity, blank; 804 size_t keylen; 805 int level, sc_level, diff; 806 int sc_slot; 807 808 shortcut = result->wrong_shortcut.shortcut; 809 level = result->wrong_shortcut.level; 810 sc_level = result->wrong_shortcut.sc_level; 811 sc_segments = result->wrong_shortcut.sc_segments; 812 dissimilarity = result->wrong_shortcut.dissimilarity; 813 814 pr_devel("-->%s(ix=%d dis=%lx scix=%d)\n", 815 __func__, level, dissimilarity, sc_level); 816 817 /* We need to split a shortcut and insert a node between the two 818 * pieces. Zero-length pieces will be dispensed with entirely. 819 * 820 * First of all, we need to find out in which level the first 821 * difference was. 822 */ 823 diff = __ffs(dissimilarity); 824 diff &= ~ASSOC_ARRAY_LEVEL_STEP_MASK; 825 diff += sc_level & ~ASSOC_ARRAY_KEY_CHUNK_MASK; 826 pr_devel("diff=%d\n", diff); 827 828 if (!shortcut->back_pointer) { 829 edit->set[0].ptr = &edit->array->root; 830 } else if (assoc_array_ptr_is_node(shortcut->back_pointer)) { 831 node = assoc_array_ptr_to_node(shortcut->back_pointer); 832 edit->set[0].ptr = &node->slots[shortcut->parent_slot]; 833 } else { 834 BUG(); 835 } 836 837 edit->excised_meta[0] = assoc_array_shortcut_to_ptr(shortcut); 838 839 /* Create a new node now since we're going to need it anyway */ 840 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); 841 if (!new_n0) 842 return false; 843 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); 844 edit->adjust_count_on = new_n0; 845 846 /* Insert a new shortcut before the new node if this segment isn't of 847 * zero length - otherwise we just connect the new node directly to the 848 * parent. 849 */ 850 level += ASSOC_ARRAY_LEVEL_STEP; 851 if (diff > level) { 852 pr_devel("pre-shortcut %d...%d\n", level, diff); 853 keylen = round_up(diff, ASSOC_ARRAY_KEY_CHUNK_SIZE); 854 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; 855 856 new_s0 = kzalloc(sizeof(struct assoc_array_shortcut) + 857 keylen * sizeof(unsigned long), GFP_KERNEL); 858 if (!new_s0) 859 return false; 860 edit->new_meta[1] = assoc_array_shortcut_to_ptr(new_s0); 861 edit->set[0].to = assoc_array_shortcut_to_ptr(new_s0); 862 new_s0->back_pointer = shortcut->back_pointer; 863 new_s0->parent_slot = shortcut->parent_slot; 864 new_s0->next_node = assoc_array_node_to_ptr(new_n0); 865 new_s0->skip_to_level = diff; 866 867 new_n0->back_pointer = assoc_array_shortcut_to_ptr(new_s0); 868 new_n0->parent_slot = 0; 869 870 memcpy(new_s0->index_key, shortcut->index_key, 871 keylen * sizeof(unsigned long)); 872 873 blank = ULONG_MAX << (diff & ASSOC_ARRAY_KEY_CHUNK_MASK); 874 pr_devel("blank off [%zu] %d: %lx\n", keylen - 1, diff, blank); 875 new_s0->index_key[keylen - 1] &= ~blank; 876 } else { 877 pr_devel("no pre-shortcut\n"); 878 edit->set[0].to = assoc_array_node_to_ptr(new_n0); 879 new_n0->back_pointer = shortcut->back_pointer; 880 new_n0->parent_slot = shortcut->parent_slot; 881 } 882 883 side = assoc_array_ptr_to_node(shortcut->next_node); 884 new_n0->nr_leaves_on_branch = side->nr_leaves_on_branch; 885 886 /* We need to know which slot in the new node is going to take a 887 * metadata pointer. 888 */ 889 sc_slot = sc_segments >> (diff & ASSOC_ARRAY_KEY_CHUNK_MASK); 890 sc_slot &= ASSOC_ARRAY_FAN_MASK; 891 892 pr_devel("new slot %lx >> %d -> %d\n", 893 sc_segments, diff & ASSOC_ARRAY_KEY_CHUNK_MASK, sc_slot); 894 895 /* Determine whether we need to follow the new node with a replacement 896 * for the current shortcut. We could in theory reuse the current 897 * shortcut if its parent slot number doesn't change - but that's a 898 * 1-in-16 chance so not worth expending the code upon. 899 */ 900 level = diff + ASSOC_ARRAY_LEVEL_STEP; 901 if (level < shortcut->skip_to_level) { 902 pr_devel("post-shortcut %d...%d\n", level, shortcut->skip_to_level); 903 keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); 904 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; 905 906 new_s1 = kzalloc(sizeof(struct assoc_array_shortcut) + 907 keylen * sizeof(unsigned long), GFP_KERNEL); 908 if (!new_s1) 909 return false; 910 edit->new_meta[2] = assoc_array_shortcut_to_ptr(new_s1); 911 912 new_s1->back_pointer = assoc_array_node_to_ptr(new_n0); 913 new_s1->parent_slot = sc_slot; 914 new_s1->next_node = shortcut->next_node; 915 new_s1->skip_to_level = shortcut->skip_to_level; 916 917 new_n0->slots[sc_slot] = assoc_array_shortcut_to_ptr(new_s1); 918 919 memcpy(new_s1->index_key, shortcut->index_key, 920 keylen * sizeof(unsigned long)); 921 922 edit->set[1].ptr = &side->back_pointer; 923 edit->set[1].to = assoc_array_shortcut_to_ptr(new_s1); 924 } else { 925 pr_devel("no post-shortcut\n"); 926 927 /* We don't have to replace the pointed-to node as long as we 928 * use memory barriers to make sure the parent slot number is 929 * changed before the back pointer (the parent slot number is 930 * irrelevant to the old parent shortcut). 931 */ 932 new_n0->slots[sc_slot] = shortcut->next_node; 933 edit->set_parent_slot[0].p = &side->parent_slot; 934 edit->set_parent_slot[0].to = sc_slot; 935 edit->set[1].ptr = &side->back_pointer; 936 edit->set[1].to = assoc_array_node_to_ptr(new_n0); 937 } 938 939 /* Install the new leaf in a spare slot in the new node. */ 940 if (sc_slot == 0) 941 edit->leaf_p = &new_n0->slots[1]; 942 else 943 edit->leaf_p = &new_n0->slots[0]; 944 945 pr_devel("<--%s() = ok [split shortcut]\n", __func__); 946 return edit; 947 } 948 949 /** 950 * assoc_array_insert - Script insertion of an object into an associative array 951 * @array: The array to insert into. 952 * @ops: The operations to use. 953 * @index_key: The key to insert at. 954 * @object: The object to insert. 955 * 956 * Precalculate and preallocate a script for the insertion or replacement of an 957 * object in an associative array. This results in an edit script that can 958 * either be applied or cancelled. 959 * 960 * The function returns a pointer to an edit script or -ENOMEM. 961 * 962 * The caller should lock against other modifications and must continue to hold 963 * the lock until assoc_array_apply_edit() has been called. 964 * 965 * Accesses to the tree may take place concurrently with this function, 966 * provided they hold the RCU read lock. 967 */ 968 struct assoc_array_edit *assoc_array_insert(struct assoc_array *array, 969 const struct assoc_array_ops *ops, 970 const void *index_key, 971 void *object) 972 { 973 struct assoc_array_walk_result result; 974 struct assoc_array_edit *edit; 975 976 pr_devel("-->%s()\n", __func__); 977 978 /* The leaf pointer we're given must not have the bottom bit set as we 979 * use those for type-marking the pointer. NULL pointers are also not 980 * allowed as they indicate an empty slot but we have to allow them 981 * here as they can be updated later. 982 */ 983 BUG_ON(assoc_array_ptr_is_meta(object)); 984 985 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); 986 if (!edit) 987 return ERR_PTR(-ENOMEM); 988 edit->array = array; 989 edit->ops = ops; 990 edit->leaf = assoc_array_leaf_to_ptr(object); 991 edit->adjust_count_by = 1; 992 993 switch (assoc_array_walk(array, ops, index_key, &result)) { 994 case assoc_array_walk_tree_empty: 995 /* Allocate a root node if there isn't one yet */ 996 if (!assoc_array_insert_in_empty_tree(edit)) 997 goto enomem; 998 return edit; 999 1000 case assoc_array_walk_found_terminal_node: 1001 /* We found a node that doesn't have a node/shortcut pointer in 1002 * the slot corresponding to the index key that we have to 1003 * follow. 1004 */ 1005 if (!assoc_array_insert_into_terminal_node(edit, ops, index_key, 1006 &result)) 1007 goto enomem; 1008 return edit; 1009 1010 case assoc_array_walk_found_wrong_shortcut: 1011 /* We found a shortcut that didn't match our key in a slot we 1012 * needed to follow. 1013 */ 1014 if (!assoc_array_insert_mid_shortcut(edit, ops, &result)) 1015 goto enomem; 1016 return edit; 1017 } 1018 1019 enomem: 1020 /* Clean up after an out of memory error */ 1021 pr_devel("enomem\n"); 1022 assoc_array_cancel_edit(edit); 1023 return ERR_PTR(-ENOMEM); 1024 } 1025 1026 /** 1027 * assoc_array_insert_set_object - Set the new object pointer in an edit script 1028 * @edit: The edit script to modify. 1029 * @object: The object pointer to set. 1030 * 1031 * Change the object to be inserted in an edit script. The object pointed to 1032 * by the old object is not freed. This must be done prior to applying the 1033 * script. 1034 */ 1035 void assoc_array_insert_set_object(struct assoc_array_edit *edit, void *object) 1036 { 1037 BUG_ON(!object); 1038 edit->leaf = assoc_array_leaf_to_ptr(object); 1039 } 1040 1041 struct assoc_array_delete_collapse_context { 1042 struct assoc_array_node *node; 1043 const void *skip_leaf; 1044 int slot; 1045 }; 1046 1047 /* 1048 * Subtree collapse to node iterator. 1049 */ 1050 static int assoc_array_delete_collapse_iterator(const void *leaf, 1051 void *iterator_data) 1052 { 1053 struct assoc_array_delete_collapse_context *collapse = iterator_data; 1054 1055 if (leaf == collapse->skip_leaf) 1056 return 0; 1057 1058 BUG_ON(collapse->slot >= ASSOC_ARRAY_FAN_OUT); 1059 1060 collapse->node->slots[collapse->slot++] = assoc_array_leaf_to_ptr(leaf); 1061 return 0; 1062 } 1063 1064 /** 1065 * assoc_array_delete - Script deletion of an object from an associative array 1066 * @array: The array to search. 1067 * @ops: The operations to use. 1068 * @index_key: The key to the object. 1069 * 1070 * Precalculate and preallocate a script for the deletion of an object from an 1071 * associative array. This results in an edit script that can either be 1072 * applied or cancelled. 1073 * 1074 * The function returns a pointer to an edit script if the object was found, 1075 * NULL if the object was not found or -ENOMEM. 1076 * 1077 * The caller should lock against other modifications and must continue to hold 1078 * the lock until assoc_array_apply_edit() has been called. 1079 * 1080 * Accesses to the tree may take place concurrently with this function, 1081 * provided they hold the RCU read lock. 1082 */ 1083 struct assoc_array_edit *assoc_array_delete(struct assoc_array *array, 1084 const struct assoc_array_ops *ops, 1085 const void *index_key) 1086 { 1087 struct assoc_array_delete_collapse_context collapse; 1088 struct assoc_array_walk_result result; 1089 struct assoc_array_node *node, *new_n0; 1090 struct assoc_array_edit *edit; 1091 struct assoc_array_ptr *ptr; 1092 bool has_meta; 1093 int slot, i; 1094 1095 pr_devel("-->%s()\n", __func__); 1096 1097 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); 1098 if (!edit) 1099 return ERR_PTR(-ENOMEM); 1100 edit->array = array; 1101 edit->ops = ops; 1102 edit->adjust_count_by = -1; 1103 1104 switch (assoc_array_walk(array, ops, index_key, &result)) { 1105 case assoc_array_walk_found_terminal_node: 1106 /* We found a node that should contain the leaf we've been 1107 * asked to remove - *if* it's in the tree. 1108 */ 1109 pr_devel("terminal_node\n"); 1110 node = result.terminal_node.node; 1111 1112 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 1113 ptr = node->slots[slot]; 1114 if (ptr && 1115 assoc_array_ptr_is_leaf(ptr) && 1116 ops->compare_object(assoc_array_ptr_to_leaf(ptr), 1117 index_key)) 1118 goto found_leaf; 1119 } 1120 /* fall through */ 1121 case assoc_array_walk_tree_empty: 1122 case assoc_array_walk_found_wrong_shortcut: 1123 default: 1124 assoc_array_cancel_edit(edit); 1125 pr_devel("not found\n"); 1126 return NULL; 1127 } 1128 1129 found_leaf: 1130 BUG_ON(array->nr_leaves_on_tree <= 0); 1131 1132 /* In the simplest form of deletion we just clear the slot and release 1133 * the leaf after a suitable interval. 1134 */ 1135 edit->dead_leaf = node->slots[slot]; 1136 edit->set[0].ptr = &node->slots[slot]; 1137 edit->set[0].to = NULL; 1138 edit->adjust_count_on = node; 1139 1140 /* If that concludes erasure of the last leaf, then delete the entire 1141 * internal array. 1142 */ 1143 if (array->nr_leaves_on_tree == 1) { 1144 edit->set[1].ptr = &array->root; 1145 edit->set[1].to = NULL; 1146 edit->adjust_count_on = NULL; 1147 edit->excised_subtree = array->root; 1148 pr_devel("all gone\n"); 1149 return edit; 1150 } 1151 1152 /* However, we'd also like to clear up some metadata blocks if we 1153 * possibly can. 1154 * 1155 * We go for a simple algorithm of: if this node has FAN_OUT or fewer 1156 * leaves in it, then attempt to collapse it - and attempt to 1157 * recursively collapse up the tree. 1158 * 1159 * We could also try and collapse in partially filled subtrees to take 1160 * up space in this node. 1161 */ 1162 if (node->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) { 1163 struct assoc_array_node *parent, *grandparent; 1164 struct assoc_array_ptr *ptr; 1165 1166 /* First of all, we need to know if this node has metadata so 1167 * that we don't try collapsing if all the leaves are already 1168 * here. 1169 */ 1170 has_meta = false; 1171 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { 1172 ptr = node->slots[i]; 1173 if (assoc_array_ptr_is_meta(ptr)) { 1174 has_meta = true; 1175 break; 1176 } 1177 } 1178 1179 pr_devel("leaves: %ld [m=%d]\n", 1180 node->nr_leaves_on_branch - 1, has_meta); 1181 1182 /* Look further up the tree to see if we can collapse this node 1183 * into a more proximal node too. 1184 */ 1185 parent = node; 1186 collapse_up: 1187 pr_devel("collapse subtree: %ld\n", parent->nr_leaves_on_branch); 1188 1189 ptr = parent->back_pointer; 1190 if (!ptr) 1191 goto do_collapse; 1192 if (assoc_array_ptr_is_shortcut(ptr)) { 1193 struct assoc_array_shortcut *s = assoc_array_ptr_to_shortcut(ptr); 1194 ptr = s->back_pointer; 1195 if (!ptr) 1196 goto do_collapse; 1197 } 1198 1199 grandparent = assoc_array_ptr_to_node(ptr); 1200 if (grandparent->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT + 1) { 1201 parent = grandparent; 1202 goto collapse_up; 1203 } 1204 1205 do_collapse: 1206 /* There's no point collapsing if the original node has no meta 1207 * pointers to discard and if we didn't merge into one of that 1208 * node's ancestry. 1209 */ 1210 if (has_meta || parent != node) { 1211 node = parent; 1212 1213 /* Create a new node to collapse into */ 1214 new_n0 = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); 1215 if (!new_n0) 1216 goto enomem; 1217 edit->new_meta[0] = assoc_array_node_to_ptr(new_n0); 1218 1219 new_n0->back_pointer = node->back_pointer; 1220 new_n0->parent_slot = node->parent_slot; 1221 new_n0->nr_leaves_on_branch = node->nr_leaves_on_branch; 1222 edit->adjust_count_on = new_n0; 1223 1224 collapse.node = new_n0; 1225 collapse.skip_leaf = assoc_array_ptr_to_leaf(edit->dead_leaf); 1226 collapse.slot = 0; 1227 assoc_array_subtree_iterate(assoc_array_node_to_ptr(node), 1228 node->back_pointer, 1229 assoc_array_delete_collapse_iterator, 1230 &collapse); 1231 pr_devel("collapsed %d,%lu\n", collapse.slot, new_n0->nr_leaves_on_branch); 1232 BUG_ON(collapse.slot != new_n0->nr_leaves_on_branch - 1); 1233 1234 if (!node->back_pointer) { 1235 edit->set[1].ptr = &array->root; 1236 } else if (assoc_array_ptr_is_leaf(node->back_pointer)) { 1237 BUG(); 1238 } else if (assoc_array_ptr_is_node(node->back_pointer)) { 1239 struct assoc_array_node *p = 1240 assoc_array_ptr_to_node(node->back_pointer); 1241 edit->set[1].ptr = &p->slots[node->parent_slot]; 1242 } else if (assoc_array_ptr_is_shortcut(node->back_pointer)) { 1243 struct assoc_array_shortcut *s = 1244 assoc_array_ptr_to_shortcut(node->back_pointer); 1245 edit->set[1].ptr = &s->next_node; 1246 } 1247 edit->set[1].to = assoc_array_node_to_ptr(new_n0); 1248 edit->excised_subtree = assoc_array_node_to_ptr(node); 1249 } 1250 } 1251 1252 return edit; 1253 1254 enomem: 1255 /* Clean up after an out of memory error */ 1256 pr_devel("enomem\n"); 1257 assoc_array_cancel_edit(edit); 1258 return ERR_PTR(-ENOMEM); 1259 } 1260 1261 /** 1262 * assoc_array_clear - Script deletion of all objects from an associative array 1263 * @array: The array to clear. 1264 * @ops: The operations to use. 1265 * 1266 * Precalculate and preallocate a script for the deletion of all the objects 1267 * from an associative array. This results in an edit script that can either 1268 * be applied or cancelled. 1269 * 1270 * The function returns a pointer to an edit script if there are objects to be 1271 * deleted, NULL if there are no objects in the array or -ENOMEM. 1272 * 1273 * The caller should lock against other modifications and must continue to hold 1274 * the lock until assoc_array_apply_edit() has been called. 1275 * 1276 * Accesses to the tree may take place concurrently with this function, 1277 * provided they hold the RCU read lock. 1278 */ 1279 struct assoc_array_edit *assoc_array_clear(struct assoc_array *array, 1280 const struct assoc_array_ops *ops) 1281 { 1282 struct assoc_array_edit *edit; 1283 1284 pr_devel("-->%s()\n", __func__); 1285 1286 if (!array->root) 1287 return NULL; 1288 1289 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); 1290 if (!edit) 1291 return ERR_PTR(-ENOMEM); 1292 edit->array = array; 1293 edit->ops = ops; 1294 edit->set[1].ptr = &array->root; 1295 edit->set[1].to = NULL; 1296 edit->excised_subtree = array->root; 1297 edit->ops_for_excised_subtree = ops; 1298 pr_devel("all gone\n"); 1299 return edit; 1300 } 1301 1302 /* 1303 * Handle the deferred destruction after an applied edit. 1304 */ 1305 static void assoc_array_rcu_cleanup(struct rcu_head *head) 1306 { 1307 struct assoc_array_edit *edit = 1308 container_of(head, struct assoc_array_edit, rcu); 1309 int i; 1310 1311 pr_devel("-->%s()\n", __func__); 1312 1313 if (edit->dead_leaf) 1314 edit->ops->free_object(assoc_array_ptr_to_leaf(edit->dead_leaf)); 1315 for (i = 0; i < ARRAY_SIZE(edit->excised_meta); i++) 1316 if (edit->excised_meta[i]) 1317 kfree(assoc_array_ptr_to_node(edit->excised_meta[i])); 1318 1319 if (edit->excised_subtree) { 1320 BUG_ON(assoc_array_ptr_is_leaf(edit->excised_subtree)); 1321 if (assoc_array_ptr_is_node(edit->excised_subtree)) { 1322 struct assoc_array_node *n = 1323 assoc_array_ptr_to_node(edit->excised_subtree); 1324 n->back_pointer = NULL; 1325 } else { 1326 struct assoc_array_shortcut *s = 1327 assoc_array_ptr_to_shortcut(edit->excised_subtree); 1328 s->back_pointer = NULL; 1329 } 1330 assoc_array_destroy_subtree(edit->excised_subtree, 1331 edit->ops_for_excised_subtree); 1332 } 1333 1334 kfree(edit); 1335 } 1336 1337 /** 1338 * assoc_array_apply_edit - Apply an edit script to an associative array 1339 * @edit: The script to apply. 1340 * 1341 * Apply an edit script to an associative array to effect an insertion, 1342 * deletion or clearance. As the edit script includes preallocated memory, 1343 * this is guaranteed not to fail. 1344 * 1345 * The edit script, dead objects and dead metadata will be scheduled for 1346 * destruction after an RCU grace period to permit those doing read-only 1347 * accesses on the array to continue to do so under the RCU read lock whilst 1348 * the edit is taking place. 1349 */ 1350 void assoc_array_apply_edit(struct assoc_array_edit *edit) 1351 { 1352 struct assoc_array_shortcut *shortcut; 1353 struct assoc_array_node *node; 1354 struct assoc_array_ptr *ptr; 1355 int i; 1356 1357 pr_devel("-->%s()\n", __func__); 1358 1359 smp_wmb(); 1360 if (edit->leaf_p) 1361 *edit->leaf_p = edit->leaf; 1362 1363 smp_wmb(); 1364 for (i = 0; i < ARRAY_SIZE(edit->set_parent_slot); i++) 1365 if (edit->set_parent_slot[i].p) 1366 *edit->set_parent_slot[i].p = edit->set_parent_slot[i].to; 1367 1368 smp_wmb(); 1369 for (i = 0; i < ARRAY_SIZE(edit->set_backpointers); i++) 1370 if (edit->set_backpointers[i]) 1371 *edit->set_backpointers[i] = edit->set_backpointers_to; 1372 1373 smp_wmb(); 1374 for (i = 0; i < ARRAY_SIZE(edit->set); i++) 1375 if (edit->set[i].ptr) 1376 *edit->set[i].ptr = edit->set[i].to; 1377 1378 if (edit->array->root == NULL) { 1379 edit->array->nr_leaves_on_tree = 0; 1380 } else if (edit->adjust_count_on) { 1381 node = edit->adjust_count_on; 1382 for (;;) { 1383 node->nr_leaves_on_branch += edit->adjust_count_by; 1384 1385 ptr = node->back_pointer; 1386 if (!ptr) 1387 break; 1388 if (assoc_array_ptr_is_shortcut(ptr)) { 1389 shortcut = assoc_array_ptr_to_shortcut(ptr); 1390 ptr = shortcut->back_pointer; 1391 if (!ptr) 1392 break; 1393 } 1394 BUG_ON(!assoc_array_ptr_is_node(ptr)); 1395 node = assoc_array_ptr_to_node(ptr); 1396 } 1397 1398 edit->array->nr_leaves_on_tree += edit->adjust_count_by; 1399 } 1400 1401 call_rcu(&edit->rcu, assoc_array_rcu_cleanup); 1402 } 1403 1404 /** 1405 * assoc_array_cancel_edit - Discard an edit script. 1406 * @edit: The script to discard. 1407 * 1408 * Free an edit script and all the preallocated data it holds without making 1409 * any changes to the associative array it was intended for. 1410 * 1411 * NOTE! In the case of an insertion script, this does _not_ release the leaf 1412 * that was to be inserted. That is left to the caller. 1413 */ 1414 void assoc_array_cancel_edit(struct assoc_array_edit *edit) 1415 { 1416 struct assoc_array_ptr *ptr; 1417 int i; 1418 1419 pr_devel("-->%s()\n", __func__); 1420 1421 /* Clean up after an out of memory error */ 1422 for (i = 0; i < ARRAY_SIZE(edit->new_meta); i++) { 1423 ptr = edit->new_meta[i]; 1424 if (ptr) { 1425 if (assoc_array_ptr_is_node(ptr)) 1426 kfree(assoc_array_ptr_to_node(ptr)); 1427 else 1428 kfree(assoc_array_ptr_to_shortcut(ptr)); 1429 } 1430 } 1431 kfree(edit); 1432 } 1433 1434 /** 1435 * assoc_array_gc - Garbage collect an associative array. 1436 * @array: The array to clean. 1437 * @ops: The operations to use. 1438 * @iterator: A callback function to pass judgement on each object. 1439 * @iterator_data: Private data for the callback function. 1440 * 1441 * Collect garbage from an associative array and pack down the internal tree to 1442 * save memory. 1443 * 1444 * The iterator function is asked to pass judgement upon each object in the 1445 * array. If it returns false, the object is discard and if it returns true, 1446 * the object is kept. If it returns true, it must increment the object's 1447 * usage count (or whatever it needs to do to retain it) before returning. 1448 * 1449 * This function returns 0 if successful or -ENOMEM if out of memory. In the 1450 * latter case, the array is not changed. 1451 * 1452 * The caller should lock against other modifications and must continue to hold 1453 * the lock until assoc_array_apply_edit() has been called. 1454 * 1455 * Accesses to the tree may take place concurrently with this function, 1456 * provided they hold the RCU read lock. 1457 */ 1458 int assoc_array_gc(struct assoc_array *array, 1459 const struct assoc_array_ops *ops, 1460 bool (*iterator)(void *object, void *iterator_data), 1461 void *iterator_data) 1462 { 1463 struct assoc_array_shortcut *shortcut, *new_s; 1464 struct assoc_array_node *node, *new_n; 1465 struct assoc_array_edit *edit; 1466 struct assoc_array_ptr *cursor, *ptr; 1467 struct assoc_array_ptr *new_root, *new_parent, **new_ptr_pp; 1468 unsigned long nr_leaves_on_tree; 1469 int keylen, slot, nr_free, next_slot, i; 1470 1471 pr_devel("-->%s()\n", __func__); 1472 1473 if (!array->root) 1474 return 0; 1475 1476 edit = kzalloc(sizeof(struct assoc_array_edit), GFP_KERNEL); 1477 if (!edit) 1478 return -ENOMEM; 1479 edit->array = array; 1480 edit->ops = ops; 1481 edit->ops_for_excised_subtree = ops; 1482 edit->set[0].ptr = &array->root; 1483 edit->excised_subtree = array->root; 1484 1485 new_root = new_parent = NULL; 1486 new_ptr_pp = &new_root; 1487 cursor = array->root; 1488 1489 descend: 1490 /* If this point is a shortcut, then we need to duplicate it and 1491 * advance the target cursor. 1492 */ 1493 if (assoc_array_ptr_is_shortcut(cursor)) { 1494 shortcut = assoc_array_ptr_to_shortcut(cursor); 1495 keylen = round_up(shortcut->skip_to_level, ASSOC_ARRAY_KEY_CHUNK_SIZE); 1496 keylen >>= ASSOC_ARRAY_KEY_CHUNK_SHIFT; 1497 new_s = kmalloc(sizeof(struct assoc_array_shortcut) + 1498 keylen * sizeof(unsigned long), GFP_KERNEL); 1499 if (!new_s) 1500 goto enomem; 1501 pr_devel("dup shortcut %p -> %p\n", shortcut, new_s); 1502 memcpy(new_s, shortcut, (sizeof(struct assoc_array_shortcut) + 1503 keylen * sizeof(unsigned long))); 1504 new_s->back_pointer = new_parent; 1505 new_s->parent_slot = shortcut->parent_slot; 1506 *new_ptr_pp = new_parent = assoc_array_shortcut_to_ptr(new_s); 1507 new_ptr_pp = &new_s->next_node; 1508 cursor = shortcut->next_node; 1509 } 1510 1511 /* Duplicate the node at this position */ 1512 node = assoc_array_ptr_to_node(cursor); 1513 new_n = kzalloc(sizeof(struct assoc_array_node), GFP_KERNEL); 1514 if (!new_n) 1515 goto enomem; 1516 pr_devel("dup node %p -> %p\n", node, new_n); 1517 new_n->back_pointer = new_parent; 1518 new_n->parent_slot = node->parent_slot; 1519 *new_ptr_pp = new_parent = assoc_array_node_to_ptr(new_n); 1520 new_ptr_pp = NULL; 1521 slot = 0; 1522 1523 continue_node: 1524 /* Filter across any leaves and gc any subtrees */ 1525 for (; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 1526 ptr = node->slots[slot]; 1527 if (!ptr) 1528 continue; 1529 1530 if (assoc_array_ptr_is_leaf(ptr)) { 1531 if (iterator(assoc_array_ptr_to_leaf(ptr), 1532 iterator_data)) 1533 /* The iterator will have done any reference 1534 * counting on the object for us. 1535 */ 1536 new_n->slots[slot] = ptr; 1537 continue; 1538 } 1539 1540 new_ptr_pp = &new_n->slots[slot]; 1541 cursor = ptr; 1542 goto descend; 1543 } 1544 1545 pr_devel("-- compress node %p --\n", new_n); 1546 1547 /* Count up the number of empty slots in this node and work out the 1548 * subtree leaf count. 1549 */ 1550 new_n->nr_leaves_on_branch = 0; 1551 nr_free = 0; 1552 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 1553 ptr = new_n->slots[slot]; 1554 if (!ptr) 1555 nr_free++; 1556 else if (assoc_array_ptr_is_leaf(ptr)) 1557 new_n->nr_leaves_on_branch++; 1558 } 1559 pr_devel("free=%d, leaves=%lu\n", nr_free, new_n->nr_leaves_on_branch); 1560 1561 /* See what we can fold in */ 1562 next_slot = 0; 1563 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) { 1564 struct assoc_array_shortcut *s; 1565 struct assoc_array_node *child; 1566 1567 ptr = new_n->slots[slot]; 1568 if (!ptr || assoc_array_ptr_is_leaf(ptr)) 1569 continue; 1570 1571 s = NULL; 1572 if (assoc_array_ptr_is_shortcut(ptr)) { 1573 s = assoc_array_ptr_to_shortcut(ptr); 1574 ptr = s->next_node; 1575 } 1576 1577 child = assoc_array_ptr_to_node(ptr); 1578 new_n->nr_leaves_on_branch += child->nr_leaves_on_branch; 1579 1580 if (child->nr_leaves_on_branch <= nr_free + 1) { 1581 /* Fold the child node into this one */ 1582 pr_devel("[%d] fold node %lu/%d [nx %d]\n", 1583 slot, child->nr_leaves_on_branch, nr_free + 1, 1584 next_slot); 1585 1586 /* We would already have reaped an intervening shortcut 1587 * on the way back up the tree. 1588 */ 1589 BUG_ON(s); 1590 1591 new_n->slots[slot] = NULL; 1592 nr_free++; 1593 if (slot < next_slot) 1594 next_slot = slot; 1595 for (i = 0; i < ASSOC_ARRAY_FAN_OUT; i++) { 1596 struct assoc_array_ptr *p = child->slots[i]; 1597 if (!p) 1598 continue; 1599 BUG_ON(assoc_array_ptr_is_meta(p)); 1600 while (new_n->slots[next_slot]) 1601 next_slot++; 1602 BUG_ON(next_slot >= ASSOC_ARRAY_FAN_OUT); 1603 new_n->slots[next_slot++] = p; 1604 nr_free--; 1605 } 1606 kfree(child); 1607 } else { 1608 pr_devel("[%d] retain node %lu/%d [nx %d]\n", 1609 slot, child->nr_leaves_on_branch, nr_free + 1, 1610 next_slot); 1611 } 1612 } 1613 1614 pr_devel("after: %lu\n", new_n->nr_leaves_on_branch); 1615 1616 nr_leaves_on_tree = new_n->nr_leaves_on_branch; 1617 1618 /* Excise this node if it is singly occupied by a shortcut */ 1619 if (nr_free == ASSOC_ARRAY_FAN_OUT - 1) { 1620 for (slot = 0; slot < ASSOC_ARRAY_FAN_OUT; slot++) 1621 if ((ptr = new_n->slots[slot])) 1622 break; 1623 1624 if (assoc_array_ptr_is_meta(ptr) && 1625 assoc_array_ptr_is_shortcut(ptr)) { 1626 pr_devel("excise node %p with 1 shortcut\n", new_n); 1627 new_s = assoc_array_ptr_to_shortcut(ptr); 1628 new_parent = new_n->back_pointer; 1629 slot = new_n->parent_slot; 1630 kfree(new_n); 1631 if (!new_parent) { 1632 new_s->back_pointer = NULL; 1633 new_s->parent_slot = 0; 1634 new_root = ptr; 1635 goto gc_complete; 1636 } 1637 1638 if (assoc_array_ptr_is_shortcut(new_parent)) { 1639 /* We can discard any preceding shortcut also */ 1640 struct assoc_array_shortcut *s = 1641 assoc_array_ptr_to_shortcut(new_parent); 1642 1643 pr_devel("excise preceding shortcut\n"); 1644 1645 new_parent = new_s->back_pointer = s->back_pointer; 1646 slot = new_s->parent_slot = s->parent_slot; 1647 kfree(s); 1648 if (!new_parent) { 1649 new_s->back_pointer = NULL; 1650 new_s->parent_slot = 0; 1651 new_root = ptr; 1652 goto gc_complete; 1653 } 1654 } 1655 1656 new_s->back_pointer = new_parent; 1657 new_s->parent_slot = slot; 1658 new_n = assoc_array_ptr_to_node(new_parent); 1659 new_n->slots[slot] = ptr; 1660 goto ascend_old_tree; 1661 } 1662 } 1663 1664 /* Excise any shortcuts we might encounter that point to nodes that 1665 * only contain leaves. 1666 */ 1667 ptr = new_n->back_pointer; 1668 if (!ptr) 1669 goto gc_complete; 1670 1671 if (assoc_array_ptr_is_shortcut(ptr)) { 1672 new_s = assoc_array_ptr_to_shortcut(ptr); 1673 new_parent = new_s->back_pointer; 1674 slot = new_s->parent_slot; 1675 1676 if (new_n->nr_leaves_on_branch <= ASSOC_ARRAY_FAN_OUT) { 1677 struct assoc_array_node *n; 1678 1679 pr_devel("excise shortcut\n"); 1680 new_n->back_pointer = new_parent; 1681 new_n->parent_slot = slot; 1682 kfree(new_s); 1683 if (!new_parent) { 1684 new_root = assoc_array_node_to_ptr(new_n); 1685 goto gc_complete; 1686 } 1687 1688 n = assoc_array_ptr_to_node(new_parent); 1689 n->slots[slot] = assoc_array_node_to_ptr(new_n); 1690 } 1691 } else { 1692 new_parent = ptr; 1693 } 1694 new_n = assoc_array_ptr_to_node(new_parent); 1695 1696 ascend_old_tree: 1697 ptr = node->back_pointer; 1698 if (assoc_array_ptr_is_shortcut(ptr)) { 1699 shortcut = assoc_array_ptr_to_shortcut(ptr); 1700 slot = shortcut->parent_slot; 1701 cursor = shortcut->back_pointer; 1702 if (!cursor) 1703 goto gc_complete; 1704 } else { 1705 slot = node->parent_slot; 1706 cursor = ptr; 1707 } 1708 BUG_ON(!cursor); 1709 node = assoc_array_ptr_to_node(cursor); 1710 slot++; 1711 goto continue_node; 1712 1713 gc_complete: 1714 edit->set[0].to = new_root; 1715 assoc_array_apply_edit(edit); 1716 array->nr_leaves_on_tree = nr_leaves_on_tree; 1717 return 0; 1718 1719 enomem: 1720 pr_devel("enomem\n"); 1721 assoc_array_destroy_subtree(new_root, edit->ops); 1722 kfree(edit); 1723 return -ENOMEM; 1724 } 1725