1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/alloc_tag.h> 3 #include <linux/execmem.h> 4 #include <linux/fs.h> 5 #include <linux/gfp.h> 6 #include <linux/kallsyms.h> 7 #include <linux/module.h> 8 #include <linux/page_ext.h> 9 #include <linux/proc_fs.h> 10 #include <linux/seq_buf.h> 11 #include <linux/seq_file.h> 12 #include <linux/vmalloc.h> 13 #include <linux/kmemleak.h> 14 15 #define ALLOCINFO_FILE_NAME "allocinfo" 16 #define MODULE_ALLOC_TAG_VMAP_SIZE (100000UL * sizeof(struct alloc_tag)) 17 #define SECTION_START(NAME) (CODETAG_SECTION_START_PREFIX NAME) 18 #define SECTION_STOP(NAME) (CODETAG_SECTION_STOP_PREFIX NAME) 19 20 #ifdef CONFIG_MEM_ALLOC_PROFILING_ENABLED_BY_DEFAULT 21 static bool mem_profiling_support = true; 22 #else 23 static bool mem_profiling_support; 24 #endif 25 26 static struct codetag_type *alloc_tag_cttype; 27 28 DEFINE_PER_CPU(struct alloc_tag_counters, _shared_alloc_tag); 29 EXPORT_SYMBOL(_shared_alloc_tag); 30 31 DEFINE_STATIC_KEY_MAYBE(CONFIG_MEM_ALLOC_PROFILING_ENABLED_BY_DEFAULT, 32 mem_alloc_profiling_key); 33 EXPORT_SYMBOL(mem_alloc_profiling_key); 34 35 DEFINE_STATIC_KEY_FALSE(mem_profiling_compressed); 36 37 struct alloc_tag_kernel_section kernel_tags = { NULL, 0 }; 38 unsigned long alloc_tag_ref_mask; 39 int alloc_tag_ref_offs; 40 41 struct allocinfo_private { 42 struct codetag_iterator iter; 43 bool print_header; 44 }; 45 46 static void *allocinfo_start(struct seq_file *m, loff_t *pos) 47 { 48 struct allocinfo_private *priv; 49 struct codetag *ct; 50 loff_t node = *pos; 51 52 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 53 m->private = priv; 54 if (!priv) 55 return NULL; 56 57 priv->print_header = (node == 0); 58 codetag_lock_module_list(alloc_tag_cttype, true); 59 priv->iter = codetag_get_ct_iter(alloc_tag_cttype); 60 while ((ct = codetag_next_ct(&priv->iter)) != NULL && node) 61 node--; 62 63 return ct ? priv : NULL; 64 } 65 66 static void *allocinfo_next(struct seq_file *m, void *arg, loff_t *pos) 67 { 68 struct allocinfo_private *priv = (struct allocinfo_private *)arg; 69 struct codetag *ct = codetag_next_ct(&priv->iter); 70 71 (*pos)++; 72 if (!ct) 73 return NULL; 74 75 return priv; 76 } 77 78 static void allocinfo_stop(struct seq_file *m, void *arg) 79 { 80 struct allocinfo_private *priv = (struct allocinfo_private *)m->private; 81 82 if (priv) { 83 codetag_lock_module_list(alloc_tag_cttype, false); 84 kfree(priv); 85 } 86 } 87 88 static void print_allocinfo_header(struct seq_buf *buf) 89 { 90 /* Output format version, so we can change it. */ 91 seq_buf_printf(buf, "allocinfo - version: 1.0\n"); 92 seq_buf_printf(buf, "# <size> <calls> <tag info>\n"); 93 } 94 95 static void alloc_tag_to_text(struct seq_buf *out, struct codetag *ct) 96 { 97 struct alloc_tag *tag = ct_to_alloc_tag(ct); 98 struct alloc_tag_counters counter = alloc_tag_read(tag); 99 s64 bytes = counter.bytes; 100 101 seq_buf_printf(out, "%12lli %8llu ", bytes, counter.calls); 102 codetag_to_text(out, ct); 103 seq_buf_putc(out, ' '); 104 seq_buf_putc(out, '\n'); 105 } 106 107 static int allocinfo_show(struct seq_file *m, void *arg) 108 { 109 struct allocinfo_private *priv = (struct allocinfo_private *)arg; 110 char *bufp; 111 size_t n = seq_get_buf(m, &bufp); 112 struct seq_buf buf; 113 114 seq_buf_init(&buf, bufp, n); 115 if (priv->print_header) { 116 print_allocinfo_header(&buf); 117 priv->print_header = false; 118 } 119 alloc_tag_to_text(&buf, priv->iter.ct); 120 seq_commit(m, seq_buf_used(&buf)); 121 return 0; 122 } 123 124 static const struct seq_operations allocinfo_seq_op = { 125 .start = allocinfo_start, 126 .next = allocinfo_next, 127 .stop = allocinfo_stop, 128 .show = allocinfo_show, 129 }; 130 131 size_t alloc_tag_top_users(struct codetag_bytes *tags, size_t count, bool can_sleep) 132 { 133 struct codetag_iterator iter; 134 struct codetag *ct; 135 struct codetag_bytes n; 136 unsigned int i, nr = 0; 137 138 if (IS_ERR_OR_NULL(alloc_tag_cttype)) 139 return 0; 140 141 if (can_sleep) 142 codetag_lock_module_list(alloc_tag_cttype, true); 143 else if (!codetag_trylock_module_list(alloc_tag_cttype)) 144 return 0; 145 146 iter = codetag_get_ct_iter(alloc_tag_cttype); 147 while ((ct = codetag_next_ct(&iter))) { 148 struct alloc_tag_counters counter = alloc_tag_read(ct_to_alloc_tag(ct)); 149 150 n.ct = ct; 151 n.bytes = counter.bytes; 152 153 for (i = 0; i < nr; i++) 154 if (n.bytes > tags[i].bytes) 155 break; 156 157 if (i < count) { 158 nr -= nr == count; 159 memmove(&tags[i + 1], 160 &tags[i], 161 sizeof(tags[0]) * (nr - i)); 162 nr++; 163 tags[i] = n; 164 } 165 } 166 167 codetag_lock_module_list(alloc_tag_cttype, false); 168 169 return nr; 170 } 171 172 void pgalloc_tag_split(struct folio *folio, int old_order, int new_order) 173 { 174 int i; 175 struct alloc_tag *tag; 176 unsigned int nr_pages = 1 << new_order; 177 178 if (!mem_alloc_profiling_enabled()) 179 return; 180 181 tag = __pgalloc_tag_get(&folio->page); 182 if (!tag) 183 return; 184 185 for (i = nr_pages; i < (1 << old_order); i += nr_pages) { 186 union pgtag_ref_handle handle; 187 union codetag_ref ref; 188 189 if (get_page_tag_ref(folio_page(folio, i), &ref, &handle)) { 190 /* Set new reference to point to the original tag */ 191 alloc_tag_ref_set(&ref, tag); 192 update_page_tag_ref(handle, &ref); 193 put_page_tag_ref(handle); 194 } 195 } 196 } 197 198 void pgalloc_tag_swap(struct folio *new, struct folio *old) 199 { 200 union pgtag_ref_handle handle_old, handle_new; 201 union codetag_ref ref_old, ref_new; 202 struct alloc_tag *tag_old, *tag_new; 203 204 if (!mem_alloc_profiling_enabled()) 205 return; 206 207 tag_old = __pgalloc_tag_get(&old->page); 208 if (!tag_old) 209 return; 210 tag_new = __pgalloc_tag_get(&new->page); 211 if (!tag_new) 212 return; 213 214 if (!get_page_tag_ref(&old->page, &ref_old, &handle_old)) 215 return; 216 if (!get_page_tag_ref(&new->page, &ref_new, &handle_new)) { 217 put_page_tag_ref(handle_old); 218 return; 219 } 220 221 /* 222 * Clear tag references to avoid debug warning when using 223 * __alloc_tag_ref_set() with non-empty reference. 224 */ 225 set_codetag_empty(&ref_old); 226 set_codetag_empty(&ref_new); 227 228 /* swap tags */ 229 __alloc_tag_ref_set(&ref_old, tag_new); 230 update_page_tag_ref(handle_old, &ref_old); 231 __alloc_tag_ref_set(&ref_new, tag_old); 232 update_page_tag_ref(handle_new, &ref_new); 233 234 put_page_tag_ref(handle_old); 235 put_page_tag_ref(handle_new); 236 } 237 238 static void shutdown_mem_profiling(bool remove_file) 239 { 240 if (mem_alloc_profiling_enabled()) 241 static_branch_disable(&mem_alloc_profiling_key); 242 243 if (!mem_profiling_support) 244 return; 245 246 if (remove_file) 247 remove_proc_entry(ALLOCINFO_FILE_NAME, NULL); 248 mem_profiling_support = false; 249 } 250 251 void __init alloc_tag_sec_init(void) 252 { 253 struct alloc_tag *last_codetag; 254 255 if (!mem_profiling_support) 256 return; 257 258 if (!static_key_enabled(&mem_profiling_compressed)) 259 return; 260 261 kernel_tags.first_tag = (struct alloc_tag *)kallsyms_lookup_name( 262 SECTION_START(ALLOC_TAG_SECTION_NAME)); 263 last_codetag = (struct alloc_tag *)kallsyms_lookup_name( 264 SECTION_STOP(ALLOC_TAG_SECTION_NAME)); 265 kernel_tags.count = last_codetag - kernel_tags.first_tag; 266 267 /* Check if kernel tags fit into page flags */ 268 if (kernel_tags.count > (1UL << NR_UNUSED_PAGEFLAG_BITS)) { 269 shutdown_mem_profiling(false); /* allocinfo file does not exist yet */ 270 pr_err("%lu allocation tags cannot be references using %d available page flag bits. Memory allocation profiling is disabled!\n", 271 kernel_tags.count, NR_UNUSED_PAGEFLAG_BITS); 272 return; 273 } 274 275 alloc_tag_ref_offs = (LRU_REFS_PGOFF - NR_UNUSED_PAGEFLAG_BITS); 276 alloc_tag_ref_mask = ((1UL << NR_UNUSED_PAGEFLAG_BITS) - 1); 277 pr_debug("Memory allocation profiling compression is using %d page flag bits!\n", 278 NR_UNUSED_PAGEFLAG_BITS); 279 } 280 281 #ifdef CONFIG_MODULES 282 283 static struct maple_tree mod_area_mt = MTREE_INIT(mod_area_mt, MT_FLAGS_ALLOC_RANGE); 284 static struct vm_struct *vm_module_tags; 285 /* A dummy object used to indicate an unloaded module */ 286 static struct module unloaded_mod; 287 /* A dummy object used to indicate a module prepended area */ 288 static struct module prepend_mod; 289 290 struct alloc_tag_module_section module_tags; 291 292 static inline unsigned long alloc_tag_align(unsigned long val) 293 { 294 if (!static_key_enabled(&mem_profiling_compressed)) { 295 /* No alignment requirements when we are not indexing the tags */ 296 return val; 297 } 298 299 if (val % sizeof(struct alloc_tag) == 0) 300 return val; 301 return ((val / sizeof(struct alloc_tag)) + 1) * sizeof(struct alloc_tag); 302 } 303 304 static bool ensure_alignment(unsigned long align, unsigned int *prepend) 305 { 306 if (!static_key_enabled(&mem_profiling_compressed)) { 307 /* No alignment requirements when we are not indexing the tags */ 308 return true; 309 } 310 311 /* 312 * If alloc_tag size is not a multiple of required alignment, tag 313 * indexing does not work. 314 */ 315 if (!IS_ALIGNED(sizeof(struct alloc_tag), align)) 316 return false; 317 318 /* Ensure prepend consumes multiple of alloc_tag-sized blocks */ 319 if (*prepend) 320 *prepend = alloc_tag_align(*prepend); 321 322 return true; 323 } 324 325 static inline bool tags_addressable(void) 326 { 327 unsigned long tag_idx_count; 328 329 if (!static_key_enabled(&mem_profiling_compressed)) 330 return true; /* with page_ext tags are always addressable */ 331 332 tag_idx_count = CODETAG_ID_FIRST + kernel_tags.count + 333 module_tags.size / sizeof(struct alloc_tag); 334 335 return tag_idx_count < (1UL << NR_UNUSED_PAGEFLAG_BITS); 336 } 337 338 static bool needs_section_mem(struct module *mod, unsigned long size) 339 { 340 if (!mem_profiling_support) 341 return false; 342 343 return size >= sizeof(struct alloc_tag); 344 } 345 346 static bool clean_unused_counters(struct alloc_tag *start_tag, 347 struct alloc_tag *end_tag) 348 { 349 struct alloc_tag *tag; 350 bool ret = true; 351 352 for (tag = start_tag; tag <= end_tag; tag++) { 353 struct alloc_tag_counters counter; 354 355 if (!tag->counters) 356 continue; 357 358 counter = alloc_tag_read(tag); 359 if (!counter.bytes) { 360 free_percpu(tag->counters); 361 tag->counters = NULL; 362 } else { 363 ret = false; 364 } 365 } 366 367 return ret; 368 } 369 370 /* Called with mod_area_mt locked */ 371 static void clean_unused_module_areas_locked(void) 372 { 373 MA_STATE(mas, &mod_area_mt, 0, module_tags.size); 374 struct module *val; 375 376 mas_for_each(&mas, val, module_tags.size) { 377 struct alloc_tag *start_tag; 378 struct alloc_tag *end_tag; 379 380 if (val != &unloaded_mod) 381 continue; 382 383 /* Release area if all tags are unused */ 384 start_tag = (struct alloc_tag *)(module_tags.start_addr + mas.index); 385 end_tag = (struct alloc_tag *)(module_tags.start_addr + mas.last); 386 if (clean_unused_counters(start_tag, end_tag)) 387 mas_erase(&mas); 388 } 389 } 390 391 /* Called with mod_area_mt locked */ 392 static bool find_aligned_area(struct ma_state *mas, unsigned long section_size, 393 unsigned long size, unsigned int prepend, unsigned long align) 394 { 395 bool cleanup_done = false; 396 397 repeat: 398 /* Try finding exact size and hope the start is aligned */ 399 if (!mas_empty_area(mas, 0, section_size - 1, prepend + size)) { 400 if (IS_ALIGNED(mas->index + prepend, align)) 401 return true; 402 403 /* Try finding larger area to align later */ 404 mas_reset(mas); 405 if (!mas_empty_area(mas, 0, section_size - 1, 406 size + prepend + align - 1)) 407 return true; 408 } 409 410 /* No free area, try cleanup stale data and repeat the search once */ 411 if (!cleanup_done) { 412 clean_unused_module_areas_locked(); 413 cleanup_done = true; 414 mas_reset(mas); 415 goto repeat; 416 } 417 418 return false; 419 } 420 421 static int vm_module_tags_populate(void) 422 { 423 unsigned long phys_end = ALIGN_DOWN(module_tags.start_addr, PAGE_SIZE) + 424 (vm_module_tags->nr_pages << PAGE_SHIFT); 425 unsigned long new_end = module_tags.start_addr + module_tags.size; 426 427 if (phys_end < new_end) { 428 struct page **next_page = vm_module_tags->pages + vm_module_tags->nr_pages; 429 unsigned long old_shadow_end = ALIGN(phys_end, MODULE_ALIGN); 430 unsigned long new_shadow_end = ALIGN(new_end, MODULE_ALIGN); 431 unsigned long more_pages; 432 unsigned long nr = 0; 433 434 more_pages = ALIGN(new_end - phys_end, PAGE_SIZE) >> PAGE_SHIFT; 435 while (nr < more_pages) { 436 unsigned long allocated; 437 438 allocated = alloc_pages_bulk_node(GFP_KERNEL | __GFP_NOWARN, 439 NUMA_NO_NODE, more_pages - nr, next_page + nr); 440 441 if (!allocated) 442 break; 443 nr += allocated; 444 } 445 446 if (nr < more_pages || 447 vmap_pages_range(phys_end, phys_end + (nr << PAGE_SHIFT), PAGE_KERNEL, 448 next_page, PAGE_SHIFT) < 0) { 449 /* Clean up and error out */ 450 for (int i = 0; i < nr; i++) 451 __free_page(next_page[i]); 452 return -ENOMEM; 453 } 454 455 vm_module_tags->nr_pages += nr; 456 457 /* 458 * Kasan allocates 1 byte of shadow for every 8 bytes of data. 459 * When kasan_alloc_module_shadow allocates shadow memory, 460 * its unit of allocation is a page. 461 * Therefore, here we need to align to MODULE_ALIGN. 462 */ 463 if (old_shadow_end < new_shadow_end) 464 kasan_alloc_module_shadow((void *)old_shadow_end, 465 new_shadow_end - old_shadow_end, 466 GFP_KERNEL); 467 } 468 469 /* 470 * Mark the pages as accessible, now that they are mapped. 471 * With hardware tag-based KASAN, marking is skipped for 472 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 473 */ 474 kasan_unpoison_vmalloc((void *)module_tags.start_addr, 475 new_end - module_tags.start_addr, 476 KASAN_VMALLOC_PROT_NORMAL); 477 478 return 0; 479 } 480 481 static void *reserve_module_tags(struct module *mod, unsigned long size, 482 unsigned int prepend, unsigned long align) 483 { 484 unsigned long section_size = module_tags.end_addr - module_tags.start_addr; 485 MA_STATE(mas, &mod_area_mt, 0, section_size - 1); 486 unsigned long offset; 487 void *ret = NULL; 488 489 /* If no tags return error */ 490 if (size < sizeof(struct alloc_tag)) 491 return ERR_PTR(-EINVAL); 492 493 /* 494 * align is always power of 2, so we can use IS_ALIGNED and ALIGN. 495 * align 0 or 1 means no alignment, to simplify set to 1. 496 */ 497 if (!align) 498 align = 1; 499 500 if (!ensure_alignment(align, &prepend)) { 501 shutdown_mem_profiling(true); 502 pr_err("%s: alignment %lu is incompatible with allocation tag indexing. Memory allocation profiling is disabled!\n", 503 mod->name, align); 504 return ERR_PTR(-EINVAL); 505 } 506 507 mas_lock(&mas); 508 if (!find_aligned_area(&mas, section_size, size, prepend, align)) { 509 ret = ERR_PTR(-ENOMEM); 510 goto unlock; 511 } 512 513 /* Mark found area as reserved */ 514 offset = mas.index; 515 offset += prepend; 516 offset = ALIGN(offset, align); 517 if (offset != mas.index) { 518 unsigned long pad_start = mas.index; 519 520 mas.last = offset - 1; 521 mas_store(&mas, &prepend_mod); 522 if (mas_is_err(&mas)) { 523 ret = ERR_PTR(xa_err(mas.node)); 524 goto unlock; 525 } 526 mas.index = offset; 527 mas.last = offset + size - 1; 528 mas_store(&mas, mod); 529 if (mas_is_err(&mas)) { 530 mas.index = pad_start; 531 mas_erase(&mas); 532 ret = ERR_PTR(xa_err(mas.node)); 533 } 534 } else { 535 mas.last = offset + size - 1; 536 mas_store(&mas, mod); 537 if (mas_is_err(&mas)) 538 ret = ERR_PTR(xa_err(mas.node)); 539 } 540 unlock: 541 mas_unlock(&mas); 542 543 if (IS_ERR(ret)) 544 return ret; 545 546 if (module_tags.size < offset + size) { 547 int grow_res; 548 549 module_tags.size = offset + size; 550 if (mem_alloc_profiling_enabled() && !tags_addressable()) { 551 shutdown_mem_profiling(true); 552 pr_warn("With module %s there are too many tags to fit in %d page flag bits. Memory allocation profiling is disabled!\n", 553 mod->name, NR_UNUSED_PAGEFLAG_BITS); 554 } 555 556 grow_res = vm_module_tags_populate(); 557 if (grow_res) { 558 shutdown_mem_profiling(true); 559 pr_err("Failed to allocate memory for allocation tags in the module %s. Memory allocation profiling is disabled!\n", 560 mod->name); 561 return ERR_PTR(grow_res); 562 } 563 } 564 565 return (struct alloc_tag *)(module_tags.start_addr + offset); 566 } 567 568 static void release_module_tags(struct module *mod, bool used) 569 { 570 MA_STATE(mas, &mod_area_mt, module_tags.size, module_tags.size); 571 struct alloc_tag *start_tag; 572 struct alloc_tag *end_tag; 573 struct module *val; 574 575 mas_lock(&mas); 576 mas_for_each_rev(&mas, val, 0) 577 if (val == mod) 578 break; 579 580 if (!val) /* module not found */ 581 goto out; 582 583 if (!used) 584 goto release_area; 585 586 start_tag = (struct alloc_tag *)(module_tags.start_addr + mas.index); 587 end_tag = (struct alloc_tag *)(module_tags.start_addr + mas.last); 588 if (!clean_unused_counters(start_tag, end_tag)) { 589 struct alloc_tag *tag; 590 591 for (tag = start_tag; tag <= end_tag; tag++) { 592 struct alloc_tag_counters counter; 593 594 if (!tag->counters) 595 continue; 596 597 counter = alloc_tag_read(tag); 598 pr_info("%s:%u module %s func:%s has %llu allocated at module unload\n", 599 tag->ct.filename, tag->ct.lineno, tag->ct.modname, 600 tag->ct.function, counter.bytes); 601 } 602 } else { 603 used = false; 604 } 605 release_area: 606 mas_store(&mas, used ? &unloaded_mod : NULL); 607 val = mas_prev_range(&mas, 0); 608 if (val == &prepend_mod) 609 mas_store(&mas, NULL); 610 out: 611 mas_unlock(&mas); 612 } 613 614 static int load_module(struct module *mod, struct codetag *start, struct codetag *stop) 615 { 616 /* Allocate module alloc_tag percpu counters */ 617 struct alloc_tag *start_tag; 618 struct alloc_tag *stop_tag; 619 struct alloc_tag *tag; 620 621 /* percpu counters for core allocations are already statically allocated */ 622 if (!mod) 623 return 0; 624 625 start_tag = ct_to_alloc_tag(start); 626 stop_tag = ct_to_alloc_tag(stop); 627 for (tag = start_tag; tag < stop_tag; tag++) { 628 WARN_ON(tag->counters); 629 tag->counters = alloc_percpu(struct alloc_tag_counters); 630 if (!tag->counters) { 631 while (--tag >= start_tag) { 632 free_percpu(tag->counters); 633 tag->counters = NULL; 634 } 635 pr_err("Failed to allocate memory for allocation tag percpu counters in the module %s\n", 636 mod->name); 637 return -ENOMEM; 638 } 639 640 /* 641 * Avoid a kmemleak false positive. The pointer to the counters is stored 642 * in the alloc_tag section of the module and cannot be directly accessed. 643 */ 644 kmemleak_ignore_percpu(tag->counters); 645 } 646 return 0; 647 } 648 649 static void replace_module(struct module *mod, struct module *new_mod) 650 { 651 MA_STATE(mas, &mod_area_mt, 0, module_tags.size); 652 struct module *val; 653 654 mas_lock(&mas); 655 mas_for_each(&mas, val, module_tags.size) { 656 if (val != mod) 657 continue; 658 659 mas_store_gfp(&mas, new_mod, GFP_KERNEL); 660 break; 661 } 662 mas_unlock(&mas); 663 } 664 665 static int __init alloc_mod_tags_mem(void) 666 { 667 /* Map space to copy allocation tags */ 668 vm_module_tags = execmem_vmap(MODULE_ALLOC_TAG_VMAP_SIZE); 669 if (!vm_module_tags) { 670 pr_err("Failed to map %lu bytes for module allocation tags\n", 671 MODULE_ALLOC_TAG_VMAP_SIZE); 672 module_tags.start_addr = 0; 673 return -ENOMEM; 674 } 675 676 vm_module_tags->pages = kmalloc_array(get_vm_area_size(vm_module_tags) >> PAGE_SHIFT, 677 sizeof(struct page *), GFP_KERNEL | __GFP_ZERO); 678 if (!vm_module_tags->pages) { 679 free_vm_area(vm_module_tags); 680 return -ENOMEM; 681 } 682 683 module_tags.start_addr = (unsigned long)vm_module_tags->addr; 684 module_tags.end_addr = module_tags.start_addr + MODULE_ALLOC_TAG_VMAP_SIZE; 685 /* Ensure the base is alloc_tag aligned when required for indexing */ 686 module_tags.start_addr = alloc_tag_align(module_tags.start_addr); 687 688 return 0; 689 } 690 691 static void __init free_mod_tags_mem(void) 692 { 693 int i; 694 695 module_tags.start_addr = 0; 696 for (i = 0; i < vm_module_tags->nr_pages; i++) 697 __free_page(vm_module_tags->pages[i]); 698 kfree(vm_module_tags->pages); 699 free_vm_area(vm_module_tags); 700 } 701 702 #else /* CONFIG_MODULES */ 703 704 static inline int alloc_mod_tags_mem(void) { return 0; } 705 static inline void free_mod_tags_mem(void) {} 706 707 #endif /* CONFIG_MODULES */ 708 709 /* See: Documentation/mm/allocation-profiling.rst */ 710 static int __init setup_early_mem_profiling(char *str) 711 { 712 bool compressed = false; 713 bool enable; 714 715 if (!str || !str[0]) 716 return -EINVAL; 717 718 if (!strncmp(str, "never", 5)) { 719 enable = false; 720 mem_profiling_support = false; 721 pr_info("Memory allocation profiling is disabled!\n"); 722 } else { 723 char *token = strsep(&str, ","); 724 725 if (kstrtobool(token, &enable)) 726 return -EINVAL; 727 728 if (str) { 729 730 if (strcmp(str, "compressed")) 731 return -EINVAL; 732 733 compressed = true; 734 } 735 mem_profiling_support = true; 736 pr_info("Memory allocation profiling is enabled %s compression and is turned %s!\n", 737 compressed ? "with" : "without", enable ? "on" : "off"); 738 } 739 740 if (enable != mem_alloc_profiling_enabled()) { 741 if (enable) 742 static_branch_enable(&mem_alloc_profiling_key); 743 else 744 static_branch_disable(&mem_alloc_profiling_key); 745 } 746 if (compressed != static_key_enabled(&mem_profiling_compressed)) { 747 if (compressed) 748 static_branch_enable(&mem_profiling_compressed); 749 else 750 static_branch_disable(&mem_profiling_compressed); 751 } 752 753 return 0; 754 } 755 early_param("sysctl.vm.mem_profiling", setup_early_mem_profiling); 756 757 static __init bool need_page_alloc_tagging(void) 758 { 759 if (static_key_enabled(&mem_profiling_compressed)) 760 return false; 761 762 return mem_profiling_support; 763 } 764 765 static __init void init_page_alloc_tagging(void) 766 { 767 } 768 769 struct page_ext_operations page_alloc_tagging_ops = { 770 .size = sizeof(union codetag_ref), 771 .need = need_page_alloc_tagging, 772 .init = init_page_alloc_tagging, 773 }; 774 EXPORT_SYMBOL(page_alloc_tagging_ops); 775 776 #ifdef CONFIG_SYSCTL 777 static struct ctl_table memory_allocation_profiling_sysctls[] = { 778 { 779 .procname = "mem_profiling", 780 .data = &mem_alloc_profiling_key, 781 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG 782 .mode = 0444, 783 #else 784 .mode = 0644, 785 #endif 786 .proc_handler = proc_do_static_key, 787 }, 788 }; 789 790 static void __init sysctl_init(void) 791 { 792 if (!mem_profiling_support) 793 memory_allocation_profiling_sysctls[0].mode = 0444; 794 795 register_sysctl_init("vm", memory_allocation_profiling_sysctls); 796 } 797 #else /* CONFIG_SYSCTL */ 798 static inline void sysctl_init(void) {} 799 #endif /* CONFIG_SYSCTL */ 800 801 static int __init alloc_tag_init(void) 802 { 803 const struct codetag_type_desc desc = { 804 .section = ALLOC_TAG_SECTION_NAME, 805 .tag_size = sizeof(struct alloc_tag), 806 #ifdef CONFIG_MODULES 807 .needs_section_mem = needs_section_mem, 808 .alloc_section_mem = reserve_module_tags, 809 .free_section_mem = release_module_tags, 810 .module_load = load_module, 811 .module_replaced = replace_module, 812 #endif 813 }; 814 int res; 815 816 sysctl_init(); 817 818 if (!mem_profiling_support) { 819 pr_info("Memory allocation profiling is not supported!\n"); 820 return 0; 821 } 822 823 if (!proc_create_seq(ALLOCINFO_FILE_NAME, 0400, NULL, &allocinfo_seq_op)) { 824 pr_err("Failed to create %s file\n", ALLOCINFO_FILE_NAME); 825 shutdown_mem_profiling(false); 826 return -ENOMEM; 827 } 828 829 res = alloc_mod_tags_mem(); 830 if (res) { 831 pr_err("Failed to reserve address space for module tags, errno = %d\n", res); 832 shutdown_mem_profiling(true); 833 return res; 834 } 835 836 alloc_tag_cttype = codetag_register_type(&desc); 837 if (IS_ERR(alloc_tag_cttype)) { 838 pr_err("Allocation tags registration failed, errno = %ld\n", PTR_ERR(alloc_tag_cttype)); 839 free_mod_tags_mem(); 840 shutdown_mem_profiling(true); 841 return PTR_ERR(alloc_tag_cttype); 842 } 843 844 return 0; 845 } 846 module_init(alloc_tag_init); 847