1 // SPDX-License-Identifier: GPL-2.0-only 2 #include <linux/alloc_tag.h> 3 #include <linux/execmem.h> 4 #include <linux/fs.h> 5 #include <linux/gfp.h> 6 #include <linux/kallsyms.h> 7 #include <linux/module.h> 8 #include <linux/page_ext.h> 9 #include <linux/proc_fs.h> 10 #include <linux/seq_buf.h> 11 #include <linux/seq_file.h> 12 #include <linux/vmalloc.h> 13 #include <linux/kmemleak.h> 14 15 #define ALLOCINFO_FILE_NAME "allocinfo" 16 #define MODULE_ALLOC_TAG_VMAP_SIZE (100000UL * sizeof(struct alloc_tag)) 17 #define SECTION_START(NAME) (CODETAG_SECTION_START_PREFIX NAME) 18 #define SECTION_STOP(NAME) (CODETAG_SECTION_STOP_PREFIX NAME) 19 20 #ifdef CONFIG_MEM_ALLOC_PROFILING_ENABLED_BY_DEFAULT 21 static bool mem_profiling_support = true; 22 #else 23 static bool mem_profiling_support; 24 #endif 25 26 static struct codetag_type *alloc_tag_cttype; 27 28 DEFINE_PER_CPU(struct alloc_tag_counters, _shared_alloc_tag); 29 EXPORT_SYMBOL(_shared_alloc_tag); 30 31 DEFINE_STATIC_KEY_MAYBE(CONFIG_MEM_ALLOC_PROFILING_ENABLED_BY_DEFAULT, 32 mem_alloc_profiling_key); 33 EXPORT_SYMBOL(mem_alloc_profiling_key); 34 35 DEFINE_STATIC_KEY_FALSE(mem_profiling_compressed); 36 37 struct alloc_tag_kernel_section kernel_tags = { NULL, 0 }; 38 unsigned long alloc_tag_ref_mask; 39 int alloc_tag_ref_offs; 40 41 struct allocinfo_private { 42 struct codetag_iterator iter; 43 bool print_header; 44 }; 45 46 static void *allocinfo_start(struct seq_file *m, loff_t *pos) 47 { 48 struct allocinfo_private *priv; 49 struct codetag *ct; 50 loff_t node = *pos; 51 52 priv = kzalloc(sizeof(*priv), GFP_KERNEL); 53 m->private = priv; 54 if (!priv) 55 return NULL; 56 57 priv->print_header = (node == 0); 58 codetag_lock_module_list(alloc_tag_cttype, true); 59 priv->iter = codetag_get_ct_iter(alloc_tag_cttype); 60 while ((ct = codetag_next_ct(&priv->iter)) != NULL && node) 61 node--; 62 63 return ct ? priv : NULL; 64 } 65 66 static void *allocinfo_next(struct seq_file *m, void *arg, loff_t *pos) 67 { 68 struct allocinfo_private *priv = (struct allocinfo_private *)arg; 69 struct codetag *ct = codetag_next_ct(&priv->iter); 70 71 (*pos)++; 72 if (!ct) 73 return NULL; 74 75 return priv; 76 } 77 78 static void allocinfo_stop(struct seq_file *m, void *arg) 79 { 80 struct allocinfo_private *priv = (struct allocinfo_private *)m->private; 81 82 if (priv) { 83 codetag_lock_module_list(alloc_tag_cttype, false); 84 kfree(priv); 85 } 86 } 87 88 static void print_allocinfo_header(struct seq_buf *buf) 89 { 90 /* Output format version, so we can change it. */ 91 seq_buf_printf(buf, "allocinfo - version: 1.0\n"); 92 seq_buf_printf(buf, "# <size> <calls> <tag info>\n"); 93 } 94 95 static void alloc_tag_to_text(struct seq_buf *out, struct codetag *ct) 96 { 97 struct alloc_tag *tag = ct_to_alloc_tag(ct); 98 struct alloc_tag_counters counter = alloc_tag_read(tag); 99 s64 bytes = counter.bytes; 100 101 seq_buf_printf(out, "%12lli %8llu ", bytes, counter.calls); 102 codetag_to_text(out, ct); 103 seq_buf_putc(out, ' '); 104 seq_buf_putc(out, '\n'); 105 } 106 107 static int allocinfo_show(struct seq_file *m, void *arg) 108 { 109 struct allocinfo_private *priv = (struct allocinfo_private *)arg; 110 char *bufp; 111 size_t n = seq_get_buf(m, &bufp); 112 struct seq_buf buf; 113 114 seq_buf_init(&buf, bufp, n); 115 if (priv->print_header) { 116 print_allocinfo_header(&buf); 117 priv->print_header = false; 118 } 119 alloc_tag_to_text(&buf, priv->iter.ct); 120 seq_commit(m, seq_buf_used(&buf)); 121 return 0; 122 } 123 124 static const struct seq_operations allocinfo_seq_op = { 125 .start = allocinfo_start, 126 .next = allocinfo_next, 127 .stop = allocinfo_stop, 128 .show = allocinfo_show, 129 }; 130 131 size_t alloc_tag_top_users(struct codetag_bytes *tags, size_t count, bool can_sleep) 132 { 133 struct codetag_iterator iter; 134 struct codetag *ct; 135 struct codetag_bytes n; 136 unsigned int i, nr = 0; 137 138 if (can_sleep) 139 codetag_lock_module_list(alloc_tag_cttype, true); 140 else if (!codetag_trylock_module_list(alloc_tag_cttype)) 141 return 0; 142 143 iter = codetag_get_ct_iter(alloc_tag_cttype); 144 while ((ct = codetag_next_ct(&iter))) { 145 struct alloc_tag_counters counter = alloc_tag_read(ct_to_alloc_tag(ct)); 146 147 n.ct = ct; 148 n.bytes = counter.bytes; 149 150 for (i = 0; i < nr; i++) 151 if (n.bytes > tags[i].bytes) 152 break; 153 154 if (i < count) { 155 nr -= nr == count; 156 memmove(&tags[i + 1], 157 &tags[i], 158 sizeof(tags[0]) * (nr - i)); 159 nr++; 160 tags[i] = n; 161 } 162 } 163 164 codetag_lock_module_list(alloc_tag_cttype, false); 165 166 return nr; 167 } 168 169 void pgalloc_tag_split(struct folio *folio, int old_order, int new_order) 170 { 171 int i; 172 struct alloc_tag *tag; 173 unsigned int nr_pages = 1 << new_order; 174 175 if (!mem_alloc_profiling_enabled()) 176 return; 177 178 tag = __pgalloc_tag_get(&folio->page); 179 if (!tag) 180 return; 181 182 for (i = nr_pages; i < (1 << old_order); i += nr_pages) { 183 union pgtag_ref_handle handle; 184 union codetag_ref ref; 185 186 if (get_page_tag_ref(folio_page(folio, i), &ref, &handle)) { 187 /* Set new reference to point to the original tag */ 188 alloc_tag_ref_set(&ref, tag); 189 update_page_tag_ref(handle, &ref); 190 put_page_tag_ref(handle); 191 } 192 } 193 } 194 195 void pgalloc_tag_swap(struct folio *new, struct folio *old) 196 { 197 union pgtag_ref_handle handle_old, handle_new; 198 union codetag_ref ref_old, ref_new; 199 struct alloc_tag *tag_old, *tag_new; 200 201 if (!mem_alloc_profiling_enabled()) 202 return; 203 204 tag_old = __pgalloc_tag_get(&old->page); 205 if (!tag_old) 206 return; 207 tag_new = __pgalloc_tag_get(&new->page); 208 if (!tag_new) 209 return; 210 211 if (!get_page_tag_ref(&old->page, &ref_old, &handle_old)) 212 return; 213 if (!get_page_tag_ref(&new->page, &ref_new, &handle_new)) { 214 put_page_tag_ref(handle_old); 215 return; 216 } 217 218 /* 219 * Clear tag references to avoid debug warning when using 220 * __alloc_tag_ref_set() with non-empty reference. 221 */ 222 set_codetag_empty(&ref_old); 223 set_codetag_empty(&ref_new); 224 225 /* swap tags */ 226 __alloc_tag_ref_set(&ref_old, tag_new); 227 update_page_tag_ref(handle_old, &ref_old); 228 __alloc_tag_ref_set(&ref_new, tag_old); 229 update_page_tag_ref(handle_new, &ref_new); 230 231 put_page_tag_ref(handle_old); 232 put_page_tag_ref(handle_new); 233 } 234 235 static void shutdown_mem_profiling(bool remove_file) 236 { 237 if (mem_alloc_profiling_enabled()) 238 static_branch_disable(&mem_alloc_profiling_key); 239 240 if (!mem_profiling_support) 241 return; 242 243 if (remove_file) 244 remove_proc_entry(ALLOCINFO_FILE_NAME, NULL); 245 mem_profiling_support = false; 246 } 247 248 void __init alloc_tag_sec_init(void) 249 { 250 struct alloc_tag *last_codetag; 251 252 if (!mem_profiling_support) 253 return; 254 255 if (!static_key_enabled(&mem_profiling_compressed)) 256 return; 257 258 kernel_tags.first_tag = (struct alloc_tag *)kallsyms_lookup_name( 259 SECTION_START(ALLOC_TAG_SECTION_NAME)); 260 last_codetag = (struct alloc_tag *)kallsyms_lookup_name( 261 SECTION_STOP(ALLOC_TAG_SECTION_NAME)); 262 kernel_tags.count = last_codetag - kernel_tags.first_tag; 263 264 /* Check if kernel tags fit into page flags */ 265 if (kernel_tags.count > (1UL << NR_UNUSED_PAGEFLAG_BITS)) { 266 shutdown_mem_profiling(false); /* allocinfo file does not exist yet */ 267 pr_err("%lu allocation tags cannot be references using %d available page flag bits. Memory allocation profiling is disabled!\n", 268 kernel_tags.count, NR_UNUSED_PAGEFLAG_BITS); 269 return; 270 } 271 272 alloc_tag_ref_offs = (LRU_REFS_PGOFF - NR_UNUSED_PAGEFLAG_BITS); 273 alloc_tag_ref_mask = ((1UL << NR_UNUSED_PAGEFLAG_BITS) - 1); 274 pr_debug("Memory allocation profiling compression is using %d page flag bits!\n", 275 NR_UNUSED_PAGEFLAG_BITS); 276 } 277 278 #ifdef CONFIG_MODULES 279 280 static struct maple_tree mod_area_mt = MTREE_INIT(mod_area_mt, MT_FLAGS_ALLOC_RANGE); 281 static struct vm_struct *vm_module_tags; 282 /* A dummy object used to indicate an unloaded module */ 283 static struct module unloaded_mod; 284 /* A dummy object used to indicate a module prepended area */ 285 static struct module prepend_mod; 286 287 struct alloc_tag_module_section module_tags; 288 289 static inline unsigned long alloc_tag_align(unsigned long val) 290 { 291 if (!static_key_enabled(&mem_profiling_compressed)) { 292 /* No alignment requirements when we are not indexing the tags */ 293 return val; 294 } 295 296 if (val % sizeof(struct alloc_tag) == 0) 297 return val; 298 return ((val / sizeof(struct alloc_tag)) + 1) * sizeof(struct alloc_tag); 299 } 300 301 static bool ensure_alignment(unsigned long align, unsigned int *prepend) 302 { 303 if (!static_key_enabled(&mem_profiling_compressed)) { 304 /* No alignment requirements when we are not indexing the tags */ 305 return true; 306 } 307 308 /* 309 * If alloc_tag size is not a multiple of required alignment, tag 310 * indexing does not work. 311 */ 312 if (!IS_ALIGNED(sizeof(struct alloc_tag), align)) 313 return false; 314 315 /* Ensure prepend consumes multiple of alloc_tag-sized blocks */ 316 if (*prepend) 317 *prepend = alloc_tag_align(*prepend); 318 319 return true; 320 } 321 322 static inline bool tags_addressable(void) 323 { 324 unsigned long tag_idx_count; 325 326 if (!static_key_enabled(&mem_profiling_compressed)) 327 return true; /* with page_ext tags are always addressable */ 328 329 tag_idx_count = CODETAG_ID_FIRST + kernel_tags.count + 330 module_tags.size / sizeof(struct alloc_tag); 331 332 return tag_idx_count < (1UL << NR_UNUSED_PAGEFLAG_BITS); 333 } 334 335 static bool needs_section_mem(struct module *mod, unsigned long size) 336 { 337 if (!mem_profiling_support) 338 return false; 339 340 return size >= sizeof(struct alloc_tag); 341 } 342 343 static bool clean_unused_counters(struct alloc_tag *start_tag, 344 struct alloc_tag *end_tag) 345 { 346 struct alloc_tag *tag; 347 bool ret = true; 348 349 for (tag = start_tag; tag <= end_tag; tag++) { 350 struct alloc_tag_counters counter; 351 352 if (!tag->counters) 353 continue; 354 355 counter = alloc_tag_read(tag); 356 if (!counter.bytes) { 357 free_percpu(tag->counters); 358 tag->counters = NULL; 359 } else { 360 ret = false; 361 } 362 } 363 364 return ret; 365 } 366 367 /* Called with mod_area_mt locked */ 368 static void clean_unused_module_areas_locked(void) 369 { 370 MA_STATE(mas, &mod_area_mt, 0, module_tags.size); 371 struct module *val; 372 373 mas_for_each(&mas, val, module_tags.size) { 374 struct alloc_tag *start_tag; 375 struct alloc_tag *end_tag; 376 377 if (val != &unloaded_mod) 378 continue; 379 380 /* Release area if all tags are unused */ 381 start_tag = (struct alloc_tag *)(module_tags.start_addr + mas.index); 382 end_tag = (struct alloc_tag *)(module_tags.start_addr + mas.last); 383 if (clean_unused_counters(start_tag, end_tag)) 384 mas_erase(&mas); 385 } 386 } 387 388 /* Called with mod_area_mt locked */ 389 static bool find_aligned_area(struct ma_state *mas, unsigned long section_size, 390 unsigned long size, unsigned int prepend, unsigned long align) 391 { 392 bool cleanup_done = false; 393 394 repeat: 395 /* Try finding exact size and hope the start is aligned */ 396 if (!mas_empty_area(mas, 0, section_size - 1, prepend + size)) { 397 if (IS_ALIGNED(mas->index + prepend, align)) 398 return true; 399 400 /* Try finding larger area to align later */ 401 mas_reset(mas); 402 if (!mas_empty_area(mas, 0, section_size - 1, 403 size + prepend + align - 1)) 404 return true; 405 } 406 407 /* No free area, try cleanup stale data and repeat the search once */ 408 if (!cleanup_done) { 409 clean_unused_module_areas_locked(); 410 cleanup_done = true; 411 mas_reset(mas); 412 goto repeat; 413 } 414 415 return false; 416 } 417 418 static int vm_module_tags_populate(void) 419 { 420 unsigned long phys_end = ALIGN_DOWN(module_tags.start_addr, PAGE_SIZE) + 421 (vm_module_tags->nr_pages << PAGE_SHIFT); 422 unsigned long new_end = module_tags.start_addr + module_tags.size; 423 424 if (phys_end < new_end) { 425 struct page **next_page = vm_module_tags->pages + vm_module_tags->nr_pages; 426 unsigned long old_shadow_end = ALIGN(phys_end, MODULE_ALIGN); 427 unsigned long new_shadow_end = ALIGN(new_end, MODULE_ALIGN); 428 unsigned long more_pages; 429 unsigned long nr = 0; 430 431 more_pages = ALIGN(new_end - phys_end, PAGE_SIZE) >> PAGE_SHIFT; 432 while (nr < more_pages) { 433 unsigned long allocated; 434 435 allocated = alloc_pages_bulk_node(GFP_KERNEL | __GFP_NOWARN, 436 NUMA_NO_NODE, more_pages - nr, next_page + nr); 437 438 if (!allocated) 439 break; 440 nr += allocated; 441 } 442 443 if (nr < more_pages || 444 vmap_pages_range(phys_end, phys_end + (nr << PAGE_SHIFT), PAGE_KERNEL, 445 next_page, PAGE_SHIFT) < 0) { 446 /* Clean up and error out */ 447 for (int i = 0; i < nr; i++) 448 __free_page(next_page[i]); 449 return -ENOMEM; 450 } 451 452 vm_module_tags->nr_pages += nr; 453 454 /* 455 * Kasan allocates 1 byte of shadow for every 8 bytes of data. 456 * When kasan_alloc_module_shadow allocates shadow memory, 457 * its unit of allocation is a page. 458 * Therefore, here we need to align to MODULE_ALIGN. 459 */ 460 if (old_shadow_end < new_shadow_end) 461 kasan_alloc_module_shadow((void *)old_shadow_end, 462 new_shadow_end - old_shadow_end, 463 GFP_KERNEL); 464 } 465 466 /* 467 * Mark the pages as accessible, now that they are mapped. 468 * With hardware tag-based KASAN, marking is skipped for 469 * non-VM_ALLOC mappings, see __kasan_unpoison_vmalloc(). 470 */ 471 kasan_unpoison_vmalloc((void *)module_tags.start_addr, 472 new_end - module_tags.start_addr, 473 KASAN_VMALLOC_PROT_NORMAL); 474 475 return 0; 476 } 477 478 static void *reserve_module_tags(struct module *mod, unsigned long size, 479 unsigned int prepend, unsigned long align) 480 { 481 unsigned long section_size = module_tags.end_addr - module_tags.start_addr; 482 MA_STATE(mas, &mod_area_mt, 0, section_size - 1); 483 unsigned long offset; 484 void *ret = NULL; 485 486 /* If no tags return error */ 487 if (size < sizeof(struct alloc_tag)) 488 return ERR_PTR(-EINVAL); 489 490 /* 491 * align is always power of 2, so we can use IS_ALIGNED and ALIGN. 492 * align 0 or 1 means no alignment, to simplify set to 1. 493 */ 494 if (!align) 495 align = 1; 496 497 if (!ensure_alignment(align, &prepend)) { 498 shutdown_mem_profiling(true); 499 pr_err("%s: alignment %lu is incompatible with allocation tag indexing. Memory allocation profiling is disabled!\n", 500 mod->name, align); 501 return ERR_PTR(-EINVAL); 502 } 503 504 mas_lock(&mas); 505 if (!find_aligned_area(&mas, section_size, size, prepend, align)) { 506 ret = ERR_PTR(-ENOMEM); 507 goto unlock; 508 } 509 510 /* Mark found area as reserved */ 511 offset = mas.index; 512 offset += prepend; 513 offset = ALIGN(offset, align); 514 if (offset != mas.index) { 515 unsigned long pad_start = mas.index; 516 517 mas.last = offset - 1; 518 mas_store(&mas, &prepend_mod); 519 if (mas_is_err(&mas)) { 520 ret = ERR_PTR(xa_err(mas.node)); 521 goto unlock; 522 } 523 mas.index = offset; 524 mas.last = offset + size - 1; 525 mas_store(&mas, mod); 526 if (mas_is_err(&mas)) { 527 mas.index = pad_start; 528 mas_erase(&mas); 529 ret = ERR_PTR(xa_err(mas.node)); 530 } 531 } else { 532 mas.last = offset + size - 1; 533 mas_store(&mas, mod); 534 if (mas_is_err(&mas)) 535 ret = ERR_PTR(xa_err(mas.node)); 536 } 537 unlock: 538 mas_unlock(&mas); 539 540 if (IS_ERR(ret)) 541 return ret; 542 543 if (module_tags.size < offset + size) { 544 int grow_res; 545 546 module_tags.size = offset + size; 547 if (mem_alloc_profiling_enabled() && !tags_addressable()) { 548 shutdown_mem_profiling(true); 549 pr_warn("With module %s there are too many tags to fit in %d page flag bits. Memory allocation profiling is disabled!\n", 550 mod->name, NR_UNUSED_PAGEFLAG_BITS); 551 } 552 553 grow_res = vm_module_tags_populate(); 554 if (grow_res) { 555 shutdown_mem_profiling(true); 556 pr_err("Failed to allocate memory for allocation tags in the module %s. Memory allocation profiling is disabled!\n", 557 mod->name); 558 return ERR_PTR(grow_res); 559 } 560 } 561 562 return (struct alloc_tag *)(module_tags.start_addr + offset); 563 } 564 565 static void release_module_tags(struct module *mod, bool used) 566 { 567 MA_STATE(mas, &mod_area_mt, module_tags.size, module_tags.size); 568 struct alloc_tag *start_tag; 569 struct alloc_tag *end_tag; 570 struct module *val; 571 572 mas_lock(&mas); 573 mas_for_each_rev(&mas, val, 0) 574 if (val == mod) 575 break; 576 577 if (!val) /* module not found */ 578 goto out; 579 580 if (!used) 581 goto release_area; 582 583 start_tag = (struct alloc_tag *)(module_tags.start_addr + mas.index); 584 end_tag = (struct alloc_tag *)(module_tags.start_addr + mas.last); 585 if (!clean_unused_counters(start_tag, end_tag)) { 586 struct alloc_tag *tag; 587 588 for (tag = start_tag; tag <= end_tag; tag++) { 589 struct alloc_tag_counters counter; 590 591 if (!tag->counters) 592 continue; 593 594 counter = alloc_tag_read(tag); 595 pr_info("%s:%u module %s func:%s has %llu allocated at module unload\n", 596 tag->ct.filename, tag->ct.lineno, tag->ct.modname, 597 tag->ct.function, counter.bytes); 598 } 599 } else { 600 used = false; 601 } 602 release_area: 603 mas_store(&mas, used ? &unloaded_mod : NULL); 604 val = mas_prev_range(&mas, 0); 605 if (val == &prepend_mod) 606 mas_store(&mas, NULL); 607 out: 608 mas_unlock(&mas); 609 } 610 611 static int load_module(struct module *mod, struct codetag *start, struct codetag *stop) 612 { 613 /* Allocate module alloc_tag percpu counters */ 614 struct alloc_tag *start_tag; 615 struct alloc_tag *stop_tag; 616 struct alloc_tag *tag; 617 618 /* percpu counters for core allocations are already statically allocated */ 619 if (!mod) 620 return 0; 621 622 start_tag = ct_to_alloc_tag(start); 623 stop_tag = ct_to_alloc_tag(stop); 624 for (tag = start_tag; tag < stop_tag; tag++) { 625 WARN_ON(tag->counters); 626 tag->counters = alloc_percpu(struct alloc_tag_counters); 627 if (!tag->counters) { 628 while (--tag >= start_tag) { 629 free_percpu(tag->counters); 630 tag->counters = NULL; 631 } 632 pr_err("Failed to allocate memory for allocation tag percpu counters in the module %s\n", 633 mod->name); 634 return -ENOMEM; 635 } 636 637 /* 638 * Avoid a kmemleak false positive. The pointer to the counters is stored 639 * in the alloc_tag section of the module and cannot be directly accessed. 640 */ 641 kmemleak_ignore_percpu(tag->counters); 642 } 643 return 0; 644 } 645 646 static void replace_module(struct module *mod, struct module *new_mod) 647 { 648 MA_STATE(mas, &mod_area_mt, 0, module_tags.size); 649 struct module *val; 650 651 mas_lock(&mas); 652 mas_for_each(&mas, val, module_tags.size) { 653 if (val != mod) 654 continue; 655 656 mas_store_gfp(&mas, new_mod, GFP_KERNEL); 657 break; 658 } 659 mas_unlock(&mas); 660 } 661 662 static int __init alloc_mod_tags_mem(void) 663 { 664 /* Map space to copy allocation tags */ 665 vm_module_tags = execmem_vmap(MODULE_ALLOC_TAG_VMAP_SIZE); 666 if (!vm_module_tags) { 667 pr_err("Failed to map %lu bytes for module allocation tags\n", 668 MODULE_ALLOC_TAG_VMAP_SIZE); 669 module_tags.start_addr = 0; 670 return -ENOMEM; 671 } 672 673 vm_module_tags->pages = kmalloc_array(get_vm_area_size(vm_module_tags) >> PAGE_SHIFT, 674 sizeof(struct page *), GFP_KERNEL | __GFP_ZERO); 675 if (!vm_module_tags->pages) { 676 free_vm_area(vm_module_tags); 677 return -ENOMEM; 678 } 679 680 module_tags.start_addr = (unsigned long)vm_module_tags->addr; 681 module_tags.end_addr = module_tags.start_addr + MODULE_ALLOC_TAG_VMAP_SIZE; 682 /* Ensure the base is alloc_tag aligned when required for indexing */ 683 module_tags.start_addr = alloc_tag_align(module_tags.start_addr); 684 685 return 0; 686 } 687 688 static void __init free_mod_tags_mem(void) 689 { 690 int i; 691 692 module_tags.start_addr = 0; 693 for (i = 0; i < vm_module_tags->nr_pages; i++) 694 __free_page(vm_module_tags->pages[i]); 695 kfree(vm_module_tags->pages); 696 free_vm_area(vm_module_tags); 697 } 698 699 #else /* CONFIG_MODULES */ 700 701 static inline int alloc_mod_tags_mem(void) { return 0; } 702 static inline void free_mod_tags_mem(void) {} 703 704 #endif /* CONFIG_MODULES */ 705 706 /* See: Documentation/mm/allocation-profiling.rst */ 707 static int __init setup_early_mem_profiling(char *str) 708 { 709 bool compressed = false; 710 bool enable; 711 712 if (!str || !str[0]) 713 return -EINVAL; 714 715 if (!strncmp(str, "never", 5)) { 716 enable = false; 717 mem_profiling_support = false; 718 pr_info("Memory allocation profiling is disabled!\n"); 719 } else { 720 char *token = strsep(&str, ","); 721 722 if (kstrtobool(token, &enable)) 723 return -EINVAL; 724 725 if (str) { 726 727 if (strcmp(str, "compressed")) 728 return -EINVAL; 729 730 compressed = true; 731 } 732 mem_profiling_support = true; 733 pr_info("Memory allocation profiling is enabled %s compression and is turned %s!\n", 734 compressed ? "with" : "without", enable ? "on" : "off"); 735 } 736 737 if (enable != mem_alloc_profiling_enabled()) { 738 if (enable) 739 static_branch_enable(&mem_alloc_profiling_key); 740 else 741 static_branch_disable(&mem_alloc_profiling_key); 742 } 743 if (compressed != static_key_enabled(&mem_profiling_compressed)) { 744 if (compressed) 745 static_branch_enable(&mem_profiling_compressed); 746 else 747 static_branch_disable(&mem_profiling_compressed); 748 } 749 750 return 0; 751 } 752 early_param("sysctl.vm.mem_profiling", setup_early_mem_profiling); 753 754 static __init bool need_page_alloc_tagging(void) 755 { 756 if (static_key_enabled(&mem_profiling_compressed)) 757 return false; 758 759 return mem_profiling_support; 760 } 761 762 static __init void init_page_alloc_tagging(void) 763 { 764 } 765 766 struct page_ext_operations page_alloc_tagging_ops = { 767 .size = sizeof(union codetag_ref), 768 .need = need_page_alloc_tagging, 769 .init = init_page_alloc_tagging, 770 }; 771 EXPORT_SYMBOL(page_alloc_tagging_ops); 772 773 #ifdef CONFIG_SYSCTL 774 static struct ctl_table memory_allocation_profiling_sysctls[] = { 775 { 776 .procname = "mem_profiling", 777 .data = &mem_alloc_profiling_key, 778 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG 779 .mode = 0444, 780 #else 781 .mode = 0644, 782 #endif 783 .proc_handler = proc_do_static_key, 784 }, 785 }; 786 787 static void __init sysctl_init(void) 788 { 789 if (!mem_profiling_support) 790 memory_allocation_profiling_sysctls[0].mode = 0444; 791 792 register_sysctl_init("vm", memory_allocation_profiling_sysctls); 793 } 794 #else /* CONFIG_SYSCTL */ 795 static inline void sysctl_init(void) {} 796 #endif /* CONFIG_SYSCTL */ 797 798 static int __init alloc_tag_init(void) 799 { 800 const struct codetag_type_desc desc = { 801 .section = ALLOC_TAG_SECTION_NAME, 802 .tag_size = sizeof(struct alloc_tag), 803 #ifdef CONFIG_MODULES 804 .needs_section_mem = needs_section_mem, 805 .alloc_section_mem = reserve_module_tags, 806 .free_section_mem = release_module_tags, 807 .module_load = load_module, 808 .module_replaced = replace_module, 809 #endif 810 }; 811 int res; 812 813 sysctl_init(); 814 815 if (!mem_profiling_support) { 816 pr_info("Memory allocation profiling is not supported!\n"); 817 return 0; 818 } 819 820 if (!proc_create_seq(ALLOCINFO_FILE_NAME, 0400, NULL, &allocinfo_seq_op)) { 821 pr_err("Failed to create %s file\n", ALLOCINFO_FILE_NAME); 822 shutdown_mem_profiling(false); 823 return -ENOMEM; 824 } 825 826 res = alloc_mod_tags_mem(); 827 if (res) { 828 pr_err("Failed to reserve address space for module tags, errno = %d\n", res); 829 shutdown_mem_profiling(true); 830 return res; 831 } 832 833 alloc_tag_cttype = codetag_register_type(&desc); 834 if (IS_ERR(alloc_tag_cttype)) { 835 pr_err("Allocation tags registration failed, errno = %ld\n", PTR_ERR(alloc_tag_cttype)); 836 free_mod_tags_mem(); 837 shutdown_mem_profiling(true); 838 return PTR_ERR(alloc_tag_cttype); 839 } 840 841 return 0; 842 } 843 module_init(alloc_tag_init); 844