1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/nmi.h> 53 #include <linux/kvm_para.h> 54 55 #include "workqueue_internal.h" 56 57 enum { 58 /* 59 * worker_pool flags 60 * 61 * A bound pool is either associated or disassociated with its CPU. 62 * While associated (!DISASSOCIATED), all workers are bound to the 63 * CPU and none has %WORKER_UNBOUND set and concurrency management 64 * is in effect. 65 * 66 * While DISASSOCIATED, the cpu may be offline and all workers have 67 * %WORKER_UNBOUND set and concurrency management disabled, and may 68 * be executing on any CPU. The pool behaves as an unbound one. 69 * 70 * Note that DISASSOCIATED should be flipped only while holding 71 * wq_pool_attach_mutex to avoid changing binding state while 72 * worker_attach_to_pool() is in progress. 73 */ 74 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 75 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 76 77 /* worker flags */ 78 WORKER_DIE = 1 << 1, /* die die die */ 79 WORKER_IDLE = 1 << 2, /* is idle */ 80 WORKER_PREP = 1 << 3, /* preparing to run works */ 81 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 82 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 83 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 84 85 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 86 WORKER_UNBOUND | WORKER_REBOUND, 87 88 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 89 90 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 92 93 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 94 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 95 96 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 97 /* call for help after 10ms 98 (min two ticks) */ 99 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 100 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 101 102 /* 103 * Rescue workers are used only on emergencies and shared by 104 * all cpus. Give MIN_NICE. 105 */ 106 RESCUER_NICE_LEVEL = MIN_NICE, 107 HIGHPRI_NICE_LEVEL = MIN_NICE, 108 109 WQ_NAME_LEN = 24, 110 }; 111 112 /* 113 * Structure fields follow one of the following exclusion rules. 114 * 115 * I: Modifiable by initialization/destruction paths and read-only for 116 * everyone else. 117 * 118 * P: Preemption protected. Disabling preemption is enough and should 119 * only be modified and accessed from the local cpu. 120 * 121 * L: pool->lock protected. Access with pool->lock held. 122 * 123 * X: During normal operation, modification requires pool->lock and should 124 * be done only from local cpu. Either disabling preemption on local 125 * cpu or grabbing pool->lock is enough for read access. If 126 * POOL_DISASSOCIATED is set, it's identical to L. 127 * 128 * A: wq_pool_attach_mutex protected. 129 * 130 * PL: wq_pool_mutex protected. 131 * 132 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 133 * 134 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 135 * 136 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 137 * RCU for reads. 138 * 139 * WQ: wq->mutex protected. 140 * 141 * WR: wq->mutex protected for writes. RCU protected for reads. 142 * 143 * MD: wq_mayday_lock protected. 144 */ 145 146 /* struct worker is defined in workqueue_internal.h */ 147 148 struct worker_pool { 149 raw_spinlock_t lock; /* the pool lock */ 150 int cpu; /* I: the associated cpu */ 151 int node; /* I: the associated node ID */ 152 int id; /* I: pool ID */ 153 unsigned int flags; /* X: flags */ 154 155 unsigned long watchdog_ts; /* L: watchdog timestamp */ 156 157 /* 158 * The counter is incremented in a process context on the associated CPU 159 * w/ preemption disabled, and decremented or reset in the same context 160 * but w/ pool->lock held. The readers grab pool->lock and are 161 * guaranteed to see if the counter reached zero. 162 */ 163 int nr_running; 164 165 struct list_head worklist; /* L: list of pending works */ 166 167 int nr_workers; /* L: total number of workers */ 168 int nr_idle; /* L: currently idle workers */ 169 170 struct list_head idle_list; /* L: list of idle workers */ 171 struct timer_list idle_timer; /* L: worker idle timeout */ 172 struct timer_list mayday_timer; /* L: SOS timer for workers */ 173 174 /* a workers is either on busy_hash or idle_list, or the manager */ 175 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 176 /* L: hash of busy workers */ 177 178 struct worker *manager; /* L: purely informational */ 179 struct list_head workers; /* A: attached workers */ 180 struct completion *detach_completion; /* all workers detached */ 181 182 struct ida worker_ida; /* worker IDs for task name */ 183 184 struct workqueue_attrs *attrs; /* I: worker attributes */ 185 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 186 int refcnt; /* PL: refcnt for unbound pools */ 187 188 /* 189 * Destruction of pool is RCU protected to allow dereferences 190 * from get_work_pool(). 191 */ 192 struct rcu_head rcu; 193 }; 194 195 /* 196 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 197 * of work_struct->data are used for flags and the remaining high bits 198 * point to the pwq; thus, pwqs need to be aligned at two's power of the 199 * number of flag bits. 200 */ 201 struct pool_workqueue { 202 struct worker_pool *pool; /* I: the associated pool */ 203 struct workqueue_struct *wq; /* I: the owning workqueue */ 204 int work_color; /* L: current color */ 205 int flush_color; /* L: flushing color */ 206 int refcnt; /* L: reference count */ 207 int nr_in_flight[WORK_NR_COLORS]; 208 /* L: nr of in_flight works */ 209 210 /* 211 * nr_active management and WORK_STRUCT_INACTIVE: 212 * 213 * When pwq->nr_active >= max_active, new work item is queued to 214 * pwq->inactive_works instead of pool->worklist and marked with 215 * WORK_STRUCT_INACTIVE. 216 * 217 * All work items marked with WORK_STRUCT_INACTIVE do not participate 218 * in pwq->nr_active and all work items in pwq->inactive_works are 219 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE 220 * work items are in pwq->inactive_works. Some of them are ready to 221 * run in pool->worklist or worker->scheduled. Those work itmes are 222 * only struct wq_barrier which is used for flush_work() and should 223 * not participate in pwq->nr_active. For non-barrier work item, it 224 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 225 */ 226 int nr_active; /* L: nr of active works */ 227 int max_active; /* L: max active works */ 228 struct list_head inactive_works; /* L: inactive works */ 229 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 230 struct list_head mayday_node; /* MD: node on wq->maydays */ 231 232 /* 233 * Release of unbound pwq is punted to system_wq. See put_pwq() 234 * and pwq_unbound_release_workfn() for details. pool_workqueue 235 * itself is also RCU protected so that the first pwq can be 236 * determined without grabbing wq->mutex. 237 */ 238 struct work_struct unbound_release_work; 239 struct rcu_head rcu; 240 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 241 242 /* 243 * Structure used to wait for workqueue flush. 244 */ 245 struct wq_flusher { 246 struct list_head list; /* WQ: list of flushers */ 247 int flush_color; /* WQ: flush color waiting for */ 248 struct completion done; /* flush completion */ 249 }; 250 251 struct wq_device; 252 253 /* 254 * The externally visible workqueue. It relays the issued work items to 255 * the appropriate worker_pool through its pool_workqueues. 256 */ 257 struct workqueue_struct { 258 struct list_head pwqs; /* WR: all pwqs of this wq */ 259 struct list_head list; /* PR: list of all workqueues */ 260 261 struct mutex mutex; /* protects this wq */ 262 int work_color; /* WQ: current work color */ 263 int flush_color; /* WQ: current flush color */ 264 atomic_t nr_pwqs_to_flush; /* flush in progress */ 265 struct wq_flusher *first_flusher; /* WQ: first flusher */ 266 struct list_head flusher_queue; /* WQ: flush waiters */ 267 struct list_head flusher_overflow; /* WQ: flush overflow list */ 268 269 struct list_head maydays; /* MD: pwqs requesting rescue */ 270 struct worker *rescuer; /* MD: rescue worker */ 271 272 int nr_drainers; /* WQ: drain in progress */ 273 int saved_max_active; /* WQ: saved pwq max_active */ 274 275 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 276 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 277 278 #ifdef CONFIG_SYSFS 279 struct wq_device *wq_dev; /* I: for sysfs interface */ 280 #endif 281 #ifdef CONFIG_LOCKDEP 282 char *lock_name; 283 struct lock_class_key key; 284 struct lockdep_map lockdep_map; 285 #endif 286 char name[WQ_NAME_LEN]; /* I: workqueue name */ 287 288 /* 289 * Destruction of workqueue_struct is RCU protected to allow walking 290 * the workqueues list without grabbing wq_pool_mutex. 291 * This is used to dump all workqueues from sysrq. 292 */ 293 struct rcu_head rcu; 294 295 /* hot fields used during command issue, aligned to cacheline */ 296 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 297 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 298 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 299 }; 300 301 static struct kmem_cache *pwq_cache; 302 303 static cpumask_var_t *wq_numa_possible_cpumask; 304 /* possible CPUs of each node */ 305 306 static bool wq_disable_numa; 307 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 308 309 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 310 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 311 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 312 313 static bool wq_online; /* can kworkers be created yet? */ 314 315 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 316 317 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 318 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 319 320 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 321 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 322 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 323 /* wait for manager to go away */ 324 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 325 326 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 327 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 328 329 /* PL: allowable cpus for unbound wqs and work items */ 330 static cpumask_var_t wq_unbound_cpumask; 331 332 /* CPU where unbound work was last round robin scheduled from this CPU */ 333 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 334 335 /* 336 * Local execution of unbound work items is no longer guaranteed. The 337 * following always forces round-robin CPU selection on unbound work items 338 * to uncover usages which depend on it. 339 */ 340 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 341 static bool wq_debug_force_rr_cpu = true; 342 #else 343 static bool wq_debug_force_rr_cpu = false; 344 #endif 345 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 346 347 /* the per-cpu worker pools */ 348 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 349 350 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 351 352 /* PL: hash of all unbound pools keyed by pool->attrs */ 353 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 354 355 /* I: attributes used when instantiating standard unbound pools on demand */ 356 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 357 358 /* I: attributes used when instantiating ordered pools on demand */ 359 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 360 361 struct workqueue_struct *system_wq __read_mostly; 362 EXPORT_SYMBOL(system_wq); 363 struct workqueue_struct *system_highpri_wq __read_mostly; 364 EXPORT_SYMBOL_GPL(system_highpri_wq); 365 struct workqueue_struct *system_long_wq __read_mostly; 366 EXPORT_SYMBOL_GPL(system_long_wq); 367 struct workqueue_struct *system_unbound_wq __read_mostly; 368 EXPORT_SYMBOL_GPL(system_unbound_wq); 369 struct workqueue_struct *system_freezable_wq __read_mostly; 370 EXPORT_SYMBOL_GPL(system_freezable_wq); 371 struct workqueue_struct *system_power_efficient_wq __read_mostly; 372 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 373 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 374 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 375 376 static int worker_thread(void *__worker); 377 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 378 static void show_pwq(struct pool_workqueue *pwq); 379 static void show_one_worker_pool(struct worker_pool *pool); 380 381 #define CREATE_TRACE_POINTS 382 #include <trace/events/workqueue.h> 383 384 #define assert_rcu_or_pool_mutex() \ 385 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 386 !lockdep_is_held(&wq_pool_mutex), \ 387 "RCU or wq_pool_mutex should be held") 388 389 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 390 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 391 !lockdep_is_held(&wq->mutex) && \ 392 !lockdep_is_held(&wq_pool_mutex), \ 393 "RCU, wq->mutex or wq_pool_mutex should be held") 394 395 #define for_each_cpu_worker_pool(pool, cpu) \ 396 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 397 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 398 (pool)++) 399 400 /** 401 * for_each_pool - iterate through all worker_pools in the system 402 * @pool: iteration cursor 403 * @pi: integer used for iteration 404 * 405 * This must be called either with wq_pool_mutex held or RCU read 406 * locked. If the pool needs to be used beyond the locking in effect, the 407 * caller is responsible for guaranteeing that the pool stays online. 408 * 409 * The if/else clause exists only for the lockdep assertion and can be 410 * ignored. 411 */ 412 #define for_each_pool(pool, pi) \ 413 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 414 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 415 else 416 417 /** 418 * for_each_pool_worker - iterate through all workers of a worker_pool 419 * @worker: iteration cursor 420 * @pool: worker_pool to iterate workers of 421 * 422 * This must be called with wq_pool_attach_mutex. 423 * 424 * The if/else clause exists only for the lockdep assertion and can be 425 * ignored. 426 */ 427 #define for_each_pool_worker(worker, pool) \ 428 list_for_each_entry((worker), &(pool)->workers, node) \ 429 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 430 else 431 432 /** 433 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 434 * @pwq: iteration cursor 435 * @wq: the target workqueue 436 * 437 * This must be called either with wq->mutex held or RCU read locked. 438 * If the pwq needs to be used beyond the locking in effect, the caller is 439 * responsible for guaranteeing that the pwq stays online. 440 * 441 * The if/else clause exists only for the lockdep assertion and can be 442 * ignored. 443 */ 444 #define for_each_pwq(pwq, wq) \ 445 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 446 lockdep_is_held(&(wq->mutex))) 447 448 #ifdef CONFIG_DEBUG_OBJECTS_WORK 449 450 static const struct debug_obj_descr work_debug_descr; 451 452 static void *work_debug_hint(void *addr) 453 { 454 return ((struct work_struct *) addr)->func; 455 } 456 457 static bool work_is_static_object(void *addr) 458 { 459 struct work_struct *work = addr; 460 461 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 462 } 463 464 /* 465 * fixup_init is called when: 466 * - an active object is initialized 467 */ 468 static bool work_fixup_init(void *addr, enum debug_obj_state state) 469 { 470 struct work_struct *work = addr; 471 472 switch (state) { 473 case ODEBUG_STATE_ACTIVE: 474 cancel_work_sync(work); 475 debug_object_init(work, &work_debug_descr); 476 return true; 477 default: 478 return false; 479 } 480 } 481 482 /* 483 * fixup_free is called when: 484 * - an active object is freed 485 */ 486 static bool work_fixup_free(void *addr, enum debug_obj_state state) 487 { 488 struct work_struct *work = addr; 489 490 switch (state) { 491 case ODEBUG_STATE_ACTIVE: 492 cancel_work_sync(work); 493 debug_object_free(work, &work_debug_descr); 494 return true; 495 default: 496 return false; 497 } 498 } 499 500 static const struct debug_obj_descr work_debug_descr = { 501 .name = "work_struct", 502 .debug_hint = work_debug_hint, 503 .is_static_object = work_is_static_object, 504 .fixup_init = work_fixup_init, 505 .fixup_free = work_fixup_free, 506 }; 507 508 static inline void debug_work_activate(struct work_struct *work) 509 { 510 debug_object_activate(work, &work_debug_descr); 511 } 512 513 static inline void debug_work_deactivate(struct work_struct *work) 514 { 515 debug_object_deactivate(work, &work_debug_descr); 516 } 517 518 void __init_work(struct work_struct *work, int onstack) 519 { 520 if (onstack) 521 debug_object_init_on_stack(work, &work_debug_descr); 522 else 523 debug_object_init(work, &work_debug_descr); 524 } 525 EXPORT_SYMBOL_GPL(__init_work); 526 527 void destroy_work_on_stack(struct work_struct *work) 528 { 529 debug_object_free(work, &work_debug_descr); 530 } 531 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 532 533 void destroy_delayed_work_on_stack(struct delayed_work *work) 534 { 535 destroy_timer_on_stack(&work->timer); 536 debug_object_free(&work->work, &work_debug_descr); 537 } 538 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 539 540 #else 541 static inline void debug_work_activate(struct work_struct *work) { } 542 static inline void debug_work_deactivate(struct work_struct *work) { } 543 #endif 544 545 /** 546 * worker_pool_assign_id - allocate ID and assign it to @pool 547 * @pool: the pool pointer of interest 548 * 549 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 550 * successfully, -errno on failure. 551 */ 552 static int worker_pool_assign_id(struct worker_pool *pool) 553 { 554 int ret; 555 556 lockdep_assert_held(&wq_pool_mutex); 557 558 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 559 GFP_KERNEL); 560 if (ret >= 0) { 561 pool->id = ret; 562 return 0; 563 } 564 return ret; 565 } 566 567 /** 568 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 569 * @wq: the target workqueue 570 * @node: the node ID 571 * 572 * This must be called with any of wq_pool_mutex, wq->mutex or RCU 573 * read locked. 574 * If the pwq needs to be used beyond the locking in effect, the caller is 575 * responsible for guaranteeing that the pwq stays online. 576 * 577 * Return: The unbound pool_workqueue for @node. 578 */ 579 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 580 int node) 581 { 582 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 583 584 /* 585 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 586 * delayed item is pending. The plan is to keep CPU -> NODE 587 * mapping valid and stable across CPU on/offlines. Once that 588 * happens, this workaround can be removed. 589 */ 590 if (unlikely(node == NUMA_NO_NODE)) 591 return wq->dfl_pwq; 592 593 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 594 } 595 596 static unsigned int work_color_to_flags(int color) 597 { 598 return color << WORK_STRUCT_COLOR_SHIFT; 599 } 600 601 static int get_work_color(unsigned long work_data) 602 { 603 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 604 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 605 } 606 607 static int work_next_color(int color) 608 { 609 return (color + 1) % WORK_NR_COLORS; 610 } 611 612 /* 613 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 614 * contain the pointer to the queued pwq. Once execution starts, the flag 615 * is cleared and the high bits contain OFFQ flags and pool ID. 616 * 617 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 618 * and clear_work_data() can be used to set the pwq, pool or clear 619 * work->data. These functions should only be called while the work is 620 * owned - ie. while the PENDING bit is set. 621 * 622 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 623 * corresponding to a work. Pool is available once the work has been 624 * queued anywhere after initialization until it is sync canceled. pwq is 625 * available only while the work item is queued. 626 * 627 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 628 * canceled. While being canceled, a work item may have its PENDING set 629 * but stay off timer and worklist for arbitrarily long and nobody should 630 * try to steal the PENDING bit. 631 */ 632 static inline void set_work_data(struct work_struct *work, unsigned long data, 633 unsigned long flags) 634 { 635 WARN_ON_ONCE(!work_pending(work)); 636 atomic_long_set(&work->data, data | flags | work_static(work)); 637 } 638 639 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 640 unsigned long extra_flags) 641 { 642 set_work_data(work, (unsigned long)pwq, 643 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 644 } 645 646 static void set_work_pool_and_keep_pending(struct work_struct *work, 647 int pool_id) 648 { 649 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 650 WORK_STRUCT_PENDING); 651 } 652 653 static void set_work_pool_and_clear_pending(struct work_struct *work, 654 int pool_id) 655 { 656 /* 657 * The following wmb is paired with the implied mb in 658 * test_and_set_bit(PENDING) and ensures all updates to @work made 659 * here are visible to and precede any updates by the next PENDING 660 * owner. 661 */ 662 smp_wmb(); 663 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 664 /* 665 * The following mb guarantees that previous clear of a PENDING bit 666 * will not be reordered with any speculative LOADS or STORES from 667 * work->current_func, which is executed afterwards. This possible 668 * reordering can lead to a missed execution on attempt to queue 669 * the same @work. E.g. consider this case: 670 * 671 * CPU#0 CPU#1 672 * ---------------------------- -------------------------------- 673 * 674 * 1 STORE event_indicated 675 * 2 queue_work_on() { 676 * 3 test_and_set_bit(PENDING) 677 * 4 } set_..._and_clear_pending() { 678 * 5 set_work_data() # clear bit 679 * 6 smp_mb() 680 * 7 work->current_func() { 681 * 8 LOAD event_indicated 682 * } 683 * 684 * Without an explicit full barrier speculative LOAD on line 8 can 685 * be executed before CPU#0 does STORE on line 1. If that happens, 686 * CPU#0 observes the PENDING bit is still set and new execution of 687 * a @work is not queued in a hope, that CPU#1 will eventually 688 * finish the queued @work. Meanwhile CPU#1 does not see 689 * event_indicated is set, because speculative LOAD was executed 690 * before actual STORE. 691 */ 692 smp_mb(); 693 } 694 695 static void clear_work_data(struct work_struct *work) 696 { 697 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 698 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 699 } 700 701 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 702 { 703 unsigned long data = atomic_long_read(&work->data); 704 705 if (data & WORK_STRUCT_PWQ) 706 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 707 else 708 return NULL; 709 } 710 711 /** 712 * get_work_pool - return the worker_pool a given work was associated with 713 * @work: the work item of interest 714 * 715 * Pools are created and destroyed under wq_pool_mutex, and allows read 716 * access under RCU read lock. As such, this function should be 717 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 718 * 719 * All fields of the returned pool are accessible as long as the above 720 * mentioned locking is in effect. If the returned pool needs to be used 721 * beyond the critical section, the caller is responsible for ensuring the 722 * returned pool is and stays online. 723 * 724 * Return: The worker_pool @work was last associated with. %NULL if none. 725 */ 726 static struct worker_pool *get_work_pool(struct work_struct *work) 727 { 728 unsigned long data = atomic_long_read(&work->data); 729 int pool_id; 730 731 assert_rcu_or_pool_mutex(); 732 733 if (data & WORK_STRUCT_PWQ) 734 return ((struct pool_workqueue *) 735 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 736 737 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 738 if (pool_id == WORK_OFFQ_POOL_NONE) 739 return NULL; 740 741 return idr_find(&worker_pool_idr, pool_id); 742 } 743 744 /** 745 * get_work_pool_id - return the worker pool ID a given work is associated with 746 * @work: the work item of interest 747 * 748 * Return: The worker_pool ID @work was last associated with. 749 * %WORK_OFFQ_POOL_NONE if none. 750 */ 751 static int get_work_pool_id(struct work_struct *work) 752 { 753 unsigned long data = atomic_long_read(&work->data); 754 755 if (data & WORK_STRUCT_PWQ) 756 return ((struct pool_workqueue *) 757 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 758 759 return data >> WORK_OFFQ_POOL_SHIFT; 760 } 761 762 static void mark_work_canceling(struct work_struct *work) 763 { 764 unsigned long pool_id = get_work_pool_id(work); 765 766 pool_id <<= WORK_OFFQ_POOL_SHIFT; 767 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 768 } 769 770 static bool work_is_canceling(struct work_struct *work) 771 { 772 unsigned long data = atomic_long_read(&work->data); 773 774 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 775 } 776 777 /* 778 * Policy functions. These define the policies on how the global worker 779 * pools are managed. Unless noted otherwise, these functions assume that 780 * they're being called with pool->lock held. 781 */ 782 783 static bool __need_more_worker(struct worker_pool *pool) 784 { 785 return !pool->nr_running; 786 } 787 788 /* 789 * Need to wake up a worker? Called from anything but currently 790 * running workers. 791 * 792 * Note that, because unbound workers never contribute to nr_running, this 793 * function will always return %true for unbound pools as long as the 794 * worklist isn't empty. 795 */ 796 static bool need_more_worker(struct worker_pool *pool) 797 { 798 return !list_empty(&pool->worklist) && __need_more_worker(pool); 799 } 800 801 /* Can I start working? Called from busy but !running workers. */ 802 static bool may_start_working(struct worker_pool *pool) 803 { 804 return pool->nr_idle; 805 } 806 807 /* Do I need to keep working? Called from currently running workers. */ 808 static bool keep_working(struct worker_pool *pool) 809 { 810 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 811 } 812 813 /* Do we need a new worker? Called from manager. */ 814 static bool need_to_create_worker(struct worker_pool *pool) 815 { 816 return need_more_worker(pool) && !may_start_working(pool); 817 } 818 819 /* Do we have too many workers and should some go away? */ 820 static bool too_many_workers(struct worker_pool *pool) 821 { 822 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 823 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 824 int nr_busy = pool->nr_workers - nr_idle; 825 826 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 827 } 828 829 /* 830 * Wake up functions. 831 */ 832 833 /* Return the first idle worker. Called with pool->lock held. */ 834 static struct worker *first_idle_worker(struct worker_pool *pool) 835 { 836 if (unlikely(list_empty(&pool->idle_list))) 837 return NULL; 838 839 return list_first_entry(&pool->idle_list, struct worker, entry); 840 } 841 842 /** 843 * wake_up_worker - wake up an idle worker 844 * @pool: worker pool to wake worker from 845 * 846 * Wake up the first idle worker of @pool. 847 * 848 * CONTEXT: 849 * raw_spin_lock_irq(pool->lock). 850 */ 851 static void wake_up_worker(struct worker_pool *pool) 852 { 853 struct worker *worker = first_idle_worker(pool); 854 855 if (likely(worker)) 856 wake_up_process(worker->task); 857 } 858 859 /** 860 * wq_worker_running - a worker is running again 861 * @task: task waking up 862 * 863 * This function is called when a worker returns from schedule() 864 */ 865 void wq_worker_running(struct task_struct *task) 866 { 867 struct worker *worker = kthread_data(task); 868 869 if (!worker->sleeping) 870 return; 871 872 /* 873 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 874 * and the nr_running increment below, we may ruin the nr_running reset 875 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 876 * pool. Protect against such race. 877 */ 878 preempt_disable(); 879 if (!(worker->flags & WORKER_NOT_RUNNING)) 880 worker->pool->nr_running++; 881 preempt_enable(); 882 worker->sleeping = 0; 883 } 884 885 /** 886 * wq_worker_sleeping - a worker is going to sleep 887 * @task: task going to sleep 888 * 889 * This function is called from schedule() when a busy worker is 890 * going to sleep. 891 */ 892 void wq_worker_sleeping(struct task_struct *task) 893 { 894 struct worker *worker = kthread_data(task); 895 struct worker_pool *pool; 896 897 /* 898 * Rescuers, which may not have all the fields set up like normal 899 * workers, also reach here, let's not access anything before 900 * checking NOT_RUNNING. 901 */ 902 if (worker->flags & WORKER_NOT_RUNNING) 903 return; 904 905 pool = worker->pool; 906 907 /* Return if preempted before wq_worker_running() was reached */ 908 if (worker->sleeping) 909 return; 910 911 worker->sleeping = 1; 912 raw_spin_lock_irq(&pool->lock); 913 914 /* 915 * Recheck in case unbind_workers() preempted us. We don't 916 * want to decrement nr_running after the worker is unbound 917 * and nr_running has been reset. 918 */ 919 if (worker->flags & WORKER_NOT_RUNNING) { 920 raw_spin_unlock_irq(&pool->lock); 921 return; 922 } 923 924 pool->nr_running--; 925 if (need_more_worker(pool)) 926 wake_up_worker(pool); 927 raw_spin_unlock_irq(&pool->lock); 928 } 929 930 /** 931 * wq_worker_last_func - retrieve worker's last work function 932 * @task: Task to retrieve last work function of. 933 * 934 * Determine the last function a worker executed. This is called from 935 * the scheduler to get a worker's last known identity. 936 * 937 * CONTEXT: 938 * raw_spin_lock_irq(rq->lock) 939 * 940 * This function is called during schedule() when a kworker is going 941 * to sleep. It's used by psi to identify aggregation workers during 942 * dequeuing, to allow periodic aggregation to shut-off when that 943 * worker is the last task in the system or cgroup to go to sleep. 944 * 945 * As this function doesn't involve any workqueue-related locking, it 946 * only returns stable values when called from inside the scheduler's 947 * queuing and dequeuing paths, when @task, which must be a kworker, 948 * is guaranteed to not be processing any works. 949 * 950 * Return: 951 * The last work function %current executed as a worker, NULL if it 952 * hasn't executed any work yet. 953 */ 954 work_func_t wq_worker_last_func(struct task_struct *task) 955 { 956 struct worker *worker = kthread_data(task); 957 958 return worker->last_func; 959 } 960 961 /** 962 * worker_set_flags - set worker flags and adjust nr_running accordingly 963 * @worker: self 964 * @flags: flags to set 965 * 966 * Set @flags in @worker->flags and adjust nr_running accordingly. 967 * 968 * CONTEXT: 969 * raw_spin_lock_irq(pool->lock) 970 */ 971 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 972 { 973 struct worker_pool *pool = worker->pool; 974 975 WARN_ON_ONCE(worker->task != current); 976 977 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 978 if ((flags & WORKER_NOT_RUNNING) && 979 !(worker->flags & WORKER_NOT_RUNNING)) { 980 pool->nr_running--; 981 } 982 983 worker->flags |= flags; 984 } 985 986 /** 987 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 988 * @worker: self 989 * @flags: flags to clear 990 * 991 * Clear @flags in @worker->flags and adjust nr_running accordingly. 992 * 993 * CONTEXT: 994 * raw_spin_lock_irq(pool->lock) 995 */ 996 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 997 { 998 struct worker_pool *pool = worker->pool; 999 unsigned int oflags = worker->flags; 1000 1001 WARN_ON_ONCE(worker->task != current); 1002 1003 worker->flags &= ~flags; 1004 1005 /* 1006 * If transitioning out of NOT_RUNNING, increment nr_running. Note 1007 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 1008 * of multiple flags, not a single flag. 1009 */ 1010 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 1011 if (!(worker->flags & WORKER_NOT_RUNNING)) 1012 pool->nr_running++; 1013 } 1014 1015 /** 1016 * find_worker_executing_work - find worker which is executing a work 1017 * @pool: pool of interest 1018 * @work: work to find worker for 1019 * 1020 * Find a worker which is executing @work on @pool by searching 1021 * @pool->busy_hash which is keyed by the address of @work. For a worker 1022 * to match, its current execution should match the address of @work and 1023 * its work function. This is to avoid unwanted dependency between 1024 * unrelated work executions through a work item being recycled while still 1025 * being executed. 1026 * 1027 * This is a bit tricky. A work item may be freed once its execution 1028 * starts and nothing prevents the freed area from being recycled for 1029 * another work item. If the same work item address ends up being reused 1030 * before the original execution finishes, workqueue will identify the 1031 * recycled work item as currently executing and make it wait until the 1032 * current execution finishes, introducing an unwanted dependency. 1033 * 1034 * This function checks the work item address and work function to avoid 1035 * false positives. Note that this isn't complete as one may construct a 1036 * work function which can introduce dependency onto itself through a 1037 * recycled work item. Well, if somebody wants to shoot oneself in the 1038 * foot that badly, there's only so much we can do, and if such deadlock 1039 * actually occurs, it should be easy to locate the culprit work function. 1040 * 1041 * CONTEXT: 1042 * raw_spin_lock_irq(pool->lock). 1043 * 1044 * Return: 1045 * Pointer to worker which is executing @work if found, %NULL 1046 * otherwise. 1047 */ 1048 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1049 struct work_struct *work) 1050 { 1051 struct worker *worker; 1052 1053 hash_for_each_possible(pool->busy_hash, worker, hentry, 1054 (unsigned long)work) 1055 if (worker->current_work == work && 1056 worker->current_func == work->func) 1057 return worker; 1058 1059 return NULL; 1060 } 1061 1062 /** 1063 * move_linked_works - move linked works to a list 1064 * @work: start of series of works to be scheduled 1065 * @head: target list to append @work to 1066 * @nextp: out parameter for nested worklist walking 1067 * 1068 * Schedule linked works starting from @work to @head. Work series to 1069 * be scheduled starts at @work and includes any consecutive work with 1070 * WORK_STRUCT_LINKED set in its predecessor. 1071 * 1072 * If @nextp is not NULL, it's updated to point to the next work of 1073 * the last scheduled work. This allows move_linked_works() to be 1074 * nested inside outer list_for_each_entry_safe(). 1075 * 1076 * CONTEXT: 1077 * raw_spin_lock_irq(pool->lock). 1078 */ 1079 static void move_linked_works(struct work_struct *work, struct list_head *head, 1080 struct work_struct **nextp) 1081 { 1082 struct work_struct *n; 1083 1084 /* 1085 * Linked worklist will always end before the end of the list, 1086 * use NULL for list head. 1087 */ 1088 list_for_each_entry_safe_from(work, n, NULL, entry) { 1089 list_move_tail(&work->entry, head); 1090 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1091 break; 1092 } 1093 1094 /* 1095 * If we're already inside safe list traversal and have moved 1096 * multiple works to the scheduled queue, the next position 1097 * needs to be updated. 1098 */ 1099 if (nextp) 1100 *nextp = n; 1101 } 1102 1103 /** 1104 * get_pwq - get an extra reference on the specified pool_workqueue 1105 * @pwq: pool_workqueue to get 1106 * 1107 * Obtain an extra reference on @pwq. The caller should guarantee that 1108 * @pwq has positive refcnt and be holding the matching pool->lock. 1109 */ 1110 static void get_pwq(struct pool_workqueue *pwq) 1111 { 1112 lockdep_assert_held(&pwq->pool->lock); 1113 WARN_ON_ONCE(pwq->refcnt <= 0); 1114 pwq->refcnt++; 1115 } 1116 1117 /** 1118 * put_pwq - put a pool_workqueue reference 1119 * @pwq: pool_workqueue to put 1120 * 1121 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1122 * destruction. The caller should be holding the matching pool->lock. 1123 */ 1124 static void put_pwq(struct pool_workqueue *pwq) 1125 { 1126 lockdep_assert_held(&pwq->pool->lock); 1127 if (likely(--pwq->refcnt)) 1128 return; 1129 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1130 return; 1131 /* 1132 * @pwq can't be released under pool->lock, bounce to 1133 * pwq_unbound_release_workfn(). This never recurses on the same 1134 * pool->lock as this path is taken only for unbound workqueues and 1135 * the release work item is scheduled on a per-cpu workqueue. To 1136 * avoid lockdep warning, unbound pool->locks are given lockdep 1137 * subclass of 1 in get_unbound_pool(). 1138 */ 1139 schedule_work(&pwq->unbound_release_work); 1140 } 1141 1142 /** 1143 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1144 * @pwq: pool_workqueue to put (can be %NULL) 1145 * 1146 * put_pwq() with locking. This function also allows %NULL @pwq. 1147 */ 1148 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1149 { 1150 if (pwq) { 1151 /* 1152 * As both pwqs and pools are RCU protected, the 1153 * following lock operations are safe. 1154 */ 1155 raw_spin_lock_irq(&pwq->pool->lock); 1156 put_pwq(pwq); 1157 raw_spin_unlock_irq(&pwq->pool->lock); 1158 } 1159 } 1160 1161 static void pwq_activate_inactive_work(struct work_struct *work) 1162 { 1163 struct pool_workqueue *pwq = get_work_pwq(work); 1164 1165 trace_workqueue_activate_work(work); 1166 if (list_empty(&pwq->pool->worklist)) 1167 pwq->pool->watchdog_ts = jiffies; 1168 move_linked_works(work, &pwq->pool->worklist, NULL); 1169 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work)); 1170 pwq->nr_active++; 1171 } 1172 1173 static void pwq_activate_first_inactive(struct pool_workqueue *pwq) 1174 { 1175 struct work_struct *work = list_first_entry(&pwq->inactive_works, 1176 struct work_struct, entry); 1177 1178 pwq_activate_inactive_work(work); 1179 } 1180 1181 /** 1182 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1183 * @pwq: pwq of interest 1184 * @work_data: work_data of work which left the queue 1185 * 1186 * A work either has completed or is removed from pending queue, 1187 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1188 * 1189 * CONTEXT: 1190 * raw_spin_lock_irq(pool->lock). 1191 */ 1192 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1193 { 1194 int color = get_work_color(work_data); 1195 1196 if (!(work_data & WORK_STRUCT_INACTIVE)) { 1197 pwq->nr_active--; 1198 if (!list_empty(&pwq->inactive_works)) { 1199 /* one down, submit an inactive one */ 1200 if (pwq->nr_active < pwq->max_active) 1201 pwq_activate_first_inactive(pwq); 1202 } 1203 } 1204 1205 pwq->nr_in_flight[color]--; 1206 1207 /* is flush in progress and are we at the flushing tip? */ 1208 if (likely(pwq->flush_color != color)) 1209 goto out_put; 1210 1211 /* are there still in-flight works? */ 1212 if (pwq->nr_in_flight[color]) 1213 goto out_put; 1214 1215 /* this pwq is done, clear flush_color */ 1216 pwq->flush_color = -1; 1217 1218 /* 1219 * If this was the last pwq, wake up the first flusher. It 1220 * will handle the rest. 1221 */ 1222 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1223 complete(&pwq->wq->first_flusher->done); 1224 out_put: 1225 put_pwq(pwq); 1226 } 1227 1228 /** 1229 * try_to_grab_pending - steal work item from worklist and disable irq 1230 * @work: work item to steal 1231 * @is_dwork: @work is a delayed_work 1232 * @flags: place to store irq state 1233 * 1234 * Try to grab PENDING bit of @work. This function can handle @work in any 1235 * stable state - idle, on timer or on worklist. 1236 * 1237 * Return: 1238 * 1239 * ======== ================================================================ 1240 * 1 if @work was pending and we successfully stole PENDING 1241 * 0 if @work was idle and we claimed PENDING 1242 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1243 * -ENOENT if someone else is canceling @work, this state may persist 1244 * for arbitrarily long 1245 * ======== ================================================================ 1246 * 1247 * Note: 1248 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1249 * interrupted while holding PENDING and @work off queue, irq must be 1250 * disabled on entry. This, combined with delayed_work->timer being 1251 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1252 * 1253 * On successful return, >= 0, irq is disabled and the caller is 1254 * responsible for releasing it using local_irq_restore(*@flags). 1255 * 1256 * This function is safe to call from any context including IRQ handler. 1257 */ 1258 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1259 unsigned long *flags) 1260 { 1261 struct worker_pool *pool; 1262 struct pool_workqueue *pwq; 1263 1264 local_irq_save(*flags); 1265 1266 /* try to steal the timer if it exists */ 1267 if (is_dwork) { 1268 struct delayed_work *dwork = to_delayed_work(work); 1269 1270 /* 1271 * dwork->timer is irqsafe. If del_timer() fails, it's 1272 * guaranteed that the timer is not queued anywhere and not 1273 * running on the local CPU. 1274 */ 1275 if (likely(del_timer(&dwork->timer))) 1276 return 1; 1277 } 1278 1279 /* try to claim PENDING the normal way */ 1280 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1281 return 0; 1282 1283 rcu_read_lock(); 1284 /* 1285 * The queueing is in progress, or it is already queued. Try to 1286 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1287 */ 1288 pool = get_work_pool(work); 1289 if (!pool) 1290 goto fail; 1291 1292 raw_spin_lock(&pool->lock); 1293 /* 1294 * work->data is guaranteed to point to pwq only while the work 1295 * item is queued on pwq->wq, and both updating work->data to point 1296 * to pwq on queueing and to pool on dequeueing are done under 1297 * pwq->pool->lock. This in turn guarantees that, if work->data 1298 * points to pwq which is associated with a locked pool, the work 1299 * item is currently queued on that pool. 1300 */ 1301 pwq = get_work_pwq(work); 1302 if (pwq && pwq->pool == pool) { 1303 debug_work_deactivate(work); 1304 1305 /* 1306 * A cancelable inactive work item must be in the 1307 * pwq->inactive_works since a queued barrier can't be 1308 * canceled (see the comments in insert_wq_barrier()). 1309 * 1310 * An inactive work item cannot be grabbed directly because 1311 * it might have linked barrier work items which, if left 1312 * on the inactive_works list, will confuse pwq->nr_active 1313 * management later on and cause stall. Make sure the work 1314 * item is activated before grabbing. 1315 */ 1316 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE) 1317 pwq_activate_inactive_work(work); 1318 1319 list_del_init(&work->entry); 1320 pwq_dec_nr_in_flight(pwq, *work_data_bits(work)); 1321 1322 /* work->data points to pwq iff queued, point to pool */ 1323 set_work_pool_and_keep_pending(work, pool->id); 1324 1325 raw_spin_unlock(&pool->lock); 1326 rcu_read_unlock(); 1327 return 1; 1328 } 1329 raw_spin_unlock(&pool->lock); 1330 fail: 1331 rcu_read_unlock(); 1332 local_irq_restore(*flags); 1333 if (work_is_canceling(work)) 1334 return -ENOENT; 1335 cpu_relax(); 1336 return -EAGAIN; 1337 } 1338 1339 /** 1340 * insert_work - insert a work into a pool 1341 * @pwq: pwq @work belongs to 1342 * @work: work to insert 1343 * @head: insertion point 1344 * @extra_flags: extra WORK_STRUCT_* flags to set 1345 * 1346 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1347 * work_struct flags. 1348 * 1349 * CONTEXT: 1350 * raw_spin_lock_irq(pool->lock). 1351 */ 1352 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1353 struct list_head *head, unsigned int extra_flags) 1354 { 1355 struct worker_pool *pool = pwq->pool; 1356 1357 /* record the work call stack in order to print it in KASAN reports */ 1358 kasan_record_aux_stack_noalloc(work); 1359 1360 /* we own @work, set data and link */ 1361 set_work_pwq(work, pwq, extra_flags); 1362 list_add_tail(&work->entry, head); 1363 get_pwq(pwq); 1364 1365 if (__need_more_worker(pool)) 1366 wake_up_worker(pool); 1367 } 1368 1369 /* 1370 * Test whether @work is being queued from another work executing on the 1371 * same workqueue. 1372 */ 1373 static bool is_chained_work(struct workqueue_struct *wq) 1374 { 1375 struct worker *worker; 1376 1377 worker = current_wq_worker(); 1378 /* 1379 * Return %true iff I'm a worker executing a work item on @wq. If 1380 * I'm @worker, it's safe to dereference it without locking. 1381 */ 1382 return worker && worker->current_pwq->wq == wq; 1383 } 1384 1385 /* 1386 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1387 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1388 * avoid perturbing sensitive tasks. 1389 */ 1390 static int wq_select_unbound_cpu(int cpu) 1391 { 1392 static bool printed_dbg_warning; 1393 int new_cpu; 1394 1395 if (likely(!wq_debug_force_rr_cpu)) { 1396 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1397 return cpu; 1398 } else if (!printed_dbg_warning) { 1399 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1400 printed_dbg_warning = true; 1401 } 1402 1403 if (cpumask_empty(wq_unbound_cpumask)) 1404 return cpu; 1405 1406 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1407 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1408 if (unlikely(new_cpu >= nr_cpu_ids)) { 1409 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1410 if (unlikely(new_cpu >= nr_cpu_ids)) 1411 return cpu; 1412 } 1413 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1414 1415 return new_cpu; 1416 } 1417 1418 static void __queue_work(int cpu, struct workqueue_struct *wq, 1419 struct work_struct *work) 1420 { 1421 struct pool_workqueue *pwq; 1422 struct worker_pool *last_pool; 1423 struct list_head *worklist; 1424 unsigned int work_flags; 1425 unsigned int req_cpu = cpu; 1426 1427 /* 1428 * While a work item is PENDING && off queue, a task trying to 1429 * steal the PENDING will busy-loop waiting for it to either get 1430 * queued or lose PENDING. Grabbing PENDING and queueing should 1431 * happen with IRQ disabled. 1432 */ 1433 lockdep_assert_irqs_disabled(); 1434 1435 1436 /* if draining, only works from the same workqueue are allowed */ 1437 if (unlikely(wq->flags & __WQ_DRAINING) && 1438 WARN_ON_ONCE(!is_chained_work(wq))) 1439 return; 1440 rcu_read_lock(); 1441 retry: 1442 /* pwq which will be used unless @work is executing elsewhere */ 1443 if (wq->flags & WQ_UNBOUND) { 1444 if (req_cpu == WORK_CPU_UNBOUND) 1445 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1446 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1447 } else { 1448 if (req_cpu == WORK_CPU_UNBOUND) 1449 cpu = raw_smp_processor_id(); 1450 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1451 } 1452 1453 /* 1454 * If @work was previously on a different pool, it might still be 1455 * running there, in which case the work needs to be queued on that 1456 * pool to guarantee non-reentrancy. 1457 */ 1458 last_pool = get_work_pool(work); 1459 if (last_pool && last_pool != pwq->pool) { 1460 struct worker *worker; 1461 1462 raw_spin_lock(&last_pool->lock); 1463 1464 worker = find_worker_executing_work(last_pool, work); 1465 1466 if (worker && worker->current_pwq->wq == wq) { 1467 pwq = worker->current_pwq; 1468 } else { 1469 /* meh... not running there, queue here */ 1470 raw_spin_unlock(&last_pool->lock); 1471 raw_spin_lock(&pwq->pool->lock); 1472 } 1473 } else { 1474 raw_spin_lock(&pwq->pool->lock); 1475 } 1476 1477 /* 1478 * pwq is determined and locked. For unbound pools, we could have 1479 * raced with pwq release and it could already be dead. If its 1480 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1481 * without another pwq replacing it in the numa_pwq_tbl or while 1482 * work items are executing on it, so the retrying is guaranteed to 1483 * make forward-progress. 1484 */ 1485 if (unlikely(!pwq->refcnt)) { 1486 if (wq->flags & WQ_UNBOUND) { 1487 raw_spin_unlock(&pwq->pool->lock); 1488 cpu_relax(); 1489 goto retry; 1490 } 1491 /* oops */ 1492 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1493 wq->name, cpu); 1494 } 1495 1496 /* pwq determined, queue */ 1497 trace_workqueue_queue_work(req_cpu, pwq, work); 1498 1499 if (WARN_ON(!list_empty(&work->entry))) 1500 goto out; 1501 1502 pwq->nr_in_flight[pwq->work_color]++; 1503 work_flags = work_color_to_flags(pwq->work_color); 1504 1505 if (likely(pwq->nr_active < pwq->max_active)) { 1506 trace_workqueue_activate_work(work); 1507 pwq->nr_active++; 1508 worklist = &pwq->pool->worklist; 1509 if (list_empty(worklist)) 1510 pwq->pool->watchdog_ts = jiffies; 1511 } else { 1512 work_flags |= WORK_STRUCT_INACTIVE; 1513 worklist = &pwq->inactive_works; 1514 } 1515 1516 debug_work_activate(work); 1517 insert_work(pwq, work, worklist, work_flags); 1518 1519 out: 1520 raw_spin_unlock(&pwq->pool->lock); 1521 rcu_read_unlock(); 1522 } 1523 1524 /** 1525 * queue_work_on - queue work on specific cpu 1526 * @cpu: CPU number to execute work on 1527 * @wq: workqueue to use 1528 * @work: work to queue 1529 * 1530 * We queue the work to a specific CPU, the caller must ensure it 1531 * can't go away. Callers that fail to ensure that the specified 1532 * CPU cannot go away will execute on a randomly chosen CPU. 1533 * 1534 * Return: %false if @work was already on a queue, %true otherwise. 1535 */ 1536 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1537 struct work_struct *work) 1538 { 1539 bool ret = false; 1540 unsigned long flags; 1541 1542 local_irq_save(flags); 1543 1544 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1545 __queue_work(cpu, wq, work); 1546 ret = true; 1547 } 1548 1549 local_irq_restore(flags); 1550 return ret; 1551 } 1552 EXPORT_SYMBOL(queue_work_on); 1553 1554 /** 1555 * workqueue_select_cpu_near - Select a CPU based on NUMA node 1556 * @node: NUMA node ID that we want to select a CPU from 1557 * 1558 * This function will attempt to find a "random" cpu available on a given 1559 * node. If there are no CPUs available on the given node it will return 1560 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1561 * available CPU if we need to schedule this work. 1562 */ 1563 static int workqueue_select_cpu_near(int node) 1564 { 1565 int cpu; 1566 1567 /* No point in doing this if NUMA isn't enabled for workqueues */ 1568 if (!wq_numa_enabled) 1569 return WORK_CPU_UNBOUND; 1570 1571 /* Delay binding to CPU if node is not valid or online */ 1572 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1573 return WORK_CPU_UNBOUND; 1574 1575 /* Use local node/cpu if we are already there */ 1576 cpu = raw_smp_processor_id(); 1577 if (node == cpu_to_node(cpu)) 1578 return cpu; 1579 1580 /* Use "random" otherwise know as "first" online CPU of node */ 1581 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1582 1583 /* If CPU is valid return that, otherwise just defer */ 1584 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1585 } 1586 1587 /** 1588 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1589 * @node: NUMA node that we are targeting the work for 1590 * @wq: workqueue to use 1591 * @work: work to queue 1592 * 1593 * We queue the work to a "random" CPU within a given NUMA node. The basic 1594 * idea here is to provide a way to somehow associate work with a given 1595 * NUMA node. 1596 * 1597 * This function will only make a best effort attempt at getting this onto 1598 * the right NUMA node. If no node is requested or the requested node is 1599 * offline then we just fall back to standard queue_work behavior. 1600 * 1601 * Currently the "random" CPU ends up being the first available CPU in the 1602 * intersection of cpu_online_mask and the cpumask of the node, unless we 1603 * are running on the node. In that case we just use the current CPU. 1604 * 1605 * Return: %false if @work was already on a queue, %true otherwise. 1606 */ 1607 bool queue_work_node(int node, struct workqueue_struct *wq, 1608 struct work_struct *work) 1609 { 1610 unsigned long flags; 1611 bool ret = false; 1612 1613 /* 1614 * This current implementation is specific to unbound workqueues. 1615 * Specifically we only return the first available CPU for a given 1616 * node instead of cycling through individual CPUs within the node. 1617 * 1618 * If this is used with a per-cpu workqueue then the logic in 1619 * workqueue_select_cpu_near would need to be updated to allow for 1620 * some round robin type logic. 1621 */ 1622 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1623 1624 local_irq_save(flags); 1625 1626 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1627 int cpu = workqueue_select_cpu_near(node); 1628 1629 __queue_work(cpu, wq, work); 1630 ret = true; 1631 } 1632 1633 local_irq_restore(flags); 1634 return ret; 1635 } 1636 EXPORT_SYMBOL_GPL(queue_work_node); 1637 1638 void delayed_work_timer_fn(struct timer_list *t) 1639 { 1640 struct delayed_work *dwork = from_timer(dwork, t, timer); 1641 1642 /* should have been called from irqsafe timer with irq already off */ 1643 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1644 } 1645 EXPORT_SYMBOL(delayed_work_timer_fn); 1646 1647 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1648 struct delayed_work *dwork, unsigned long delay) 1649 { 1650 struct timer_list *timer = &dwork->timer; 1651 struct work_struct *work = &dwork->work; 1652 1653 WARN_ON_ONCE(!wq); 1654 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1655 WARN_ON_ONCE(timer_pending(timer)); 1656 WARN_ON_ONCE(!list_empty(&work->entry)); 1657 1658 /* 1659 * If @delay is 0, queue @dwork->work immediately. This is for 1660 * both optimization and correctness. The earliest @timer can 1661 * expire is on the closest next tick and delayed_work users depend 1662 * on that there's no such delay when @delay is 0. 1663 */ 1664 if (!delay) { 1665 __queue_work(cpu, wq, &dwork->work); 1666 return; 1667 } 1668 1669 dwork->wq = wq; 1670 dwork->cpu = cpu; 1671 timer->expires = jiffies + delay; 1672 1673 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1674 add_timer_on(timer, cpu); 1675 else 1676 add_timer(timer); 1677 } 1678 1679 /** 1680 * queue_delayed_work_on - queue work on specific CPU after delay 1681 * @cpu: CPU number to execute work on 1682 * @wq: workqueue to use 1683 * @dwork: work to queue 1684 * @delay: number of jiffies to wait before queueing 1685 * 1686 * Return: %false if @work was already on a queue, %true otherwise. If 1687 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1688 * execution. 1689 */ 1690 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1691 struct delayed_work *dwork, unsigned long delay) 1692 { 1693 struct work_struct *work = &dwork->work; 1694 bool ret = false; 1695 unsigned long flags; 1696 1697 /* read the comment in __queue_work() */ 1698 local_irq_save(flags); 1699 1700 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1701 __queue_delayed_work(cpu, wq, dwork, delay); 1702 ret = true; 1703 } 1704 1705 local_irq_restore(flags); 1706 return ret; 1707 } 1708 EXPORT_SYMBOL(queue_delayed_work_on); 1709 1710 /** 1711 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1712 * @cpu: CPU number to execute work on 1713 * @wq: workqueue to use 1714 * @dwork: work to queue 1715 * @delay: number of jiffies to wait before queueing 1716 * 1717 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1718 * modify @dwork's timer so that it expires after @delay. If @delay is 1719 * zero, @work is guaranteed to be scheduled immediately regardless of its 1720 * current state. 1721 * 1722 * Return: %false if @dwork was idle and queued, %true if @dwork was 1723 * pending and its timer was modified. 1724 * 1725 * This function is safe to call from any context including IRQ handler. 1726 * See try_to_grab_pending() for details. 1727 */ 1728 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1729 struct delayed_work *dwork, unsigned long delay) 1730 { 1731 unsigned long flags; 1732 int ret; 1733 1734 do { 1735 ret = try_to_grab_pending(&dwork->work, true, &flags); 1736 } while (unlikely(ret == -EAGAIN)); 1737 1738 if (likely(ret >= 0)) { 1739 __queue_delayed_work(cpu, wq, dwork, delay); 1740 local_irq_restore(flags); 1741 } 1742 1743 /* -ENOENT from try_to_grab_pending() becomes %true */ 1744 return ret; 1745 } 1746 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1747 1748 static void rcu_work_rcufn(struct rcu_head *rcu) 1749 { 1750 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1751 1752 /* read the comment in __queue_work() */ 1753 local_irq_disable(); 1754 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1755 local_irq_enable(); 1756 } 1757 1758 /** 1759 * queue_rcu_work - queue work after a RCU grace period 1760 * @wq: workqueue to use 1761 * @rwork: work to queue 1762 * 1763 * Return: %false if @rwork was already pending, %true otherwise. Note 1764 * that a full RCU grace period is guaranteed only after a %true return. 1765 * While @rwork is guaranteed to be executed after a %false return, the 1766 * execution may happen before a full RCU grace period has passed. 1767 */ 1768 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1769 { 1770 struct work_struct *work = &rwork->work; 1771 1772 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1773 rwork->wq = wq; 1774 call_rcu(&rwork->rcu, rcu_work_rcufn); 1775 return true; 1776 } 1777 1778 return false; 1779 } 1780 EXPORT_SYMBOL(queue_rcu_work); 1781 1782 /** 1783 * worker_enter_idle - enter idle state 1784 * @worker: worker which is entering idle state 1785 * 1786 * @worker is entering idle state. Update stats and idle timer if 1787 * necessary. 1788 * 1789 * LOCKING: 1790 * raw_spin_lock_irq(pool->lock). 1791 */ 1792 static void worker_enter_idle(struct worker *worker) 1793 { 1794 struct worker_pool *pool = worker->pool; 1795 1796 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1797 WARN_ON_ONCE(!list_empty(&worker->entry) && 1798 (worker->hentry.next || worker->hentry.pprev))) 1799 return; 1800 1801 /* can't use worker_set_flags(), also called from create_worker() */ 1802 worker->flags |= WORKER_IDLE; 1803 pool->nr_idle++; 1804 worker->last_active = jiffies; 1805 1806 /* idle_list is LIFO */ 1807 list_add(&worker->entry, &pool->idle_list); 1808 1809 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1810 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1811 1812 /* Sanity check nr_running. */ 1813 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 1814 } 1815 1816 /** 1817 * worker_leave_idle - leave idle state 1818 * @worker: worker which is leaving idle state 1819 * 1820 * @worker is leaving idle state. Update stats. 1821 * 1822 * LOCKING: 1823 * raw_spin_lock_irq(pool->lock). 1824 */ 1825 static void worker_leave_idle(struct worker *worker) 1826 { 1827 struct worker_pool *pool = worker->pool; 1828 1829 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1830 return; 1831 worker_clr_flags(worker, WORKER_IDLE); 1832 pool->nr_idle--; 1833 list_del_init(&worker->entry); 1834 } 1835 1836 static struct worker *alloc_worker(int node) 1837 { 1838 struct worker *worker; 1839 1840 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1841 if (worker) { 1842 INIT_LIST_HEAD(&worker->entry); 1843 INIT_LIST_HEAD(&worker->scheduled); 1844 INIT_LIST_HEAD(&worker->node); 1845 /* on creation a worker is in !idle && prep state */ 1846 worker->flags = WORKER_PREP; 1847 } 1848 return worker; 1849 } 1850 1851 /** 1852 * worker_attach_to_pool() - attach a worker to a pool 1853 * @worker: worker to be attached 1854 * @pool: the target pool 1855 * 1856 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1857 * cpu-binding of @worker are kept coordinated with the pool across 1858 * cpu-[un]hotplugs. 1859 */ 1860 static void worker_attach_to_pool(struct worker *worker, 1861 struct worker_pool *pool) 1862 { 1863 mutex_lock(&wq_pool_attach_mutex); 1864 1865 /* 1866 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1867 * stable across this function. See the comments above the flag 1868 * definition for details. 1869 */ 1870 if (pool->flags & POOL_DISASSOCIATED) 1871 worker->flags |= WORKER_UNBOUND; 1872 else 1873 kthread_set_per_cpu(worker->task, pool->cpu); 1874 1875 if (worker->rescue_wq) 1876 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1877 1878 list_add_tail(&worker->node, &pool->workers); 1879 worker->pool = pool; 1880 1881 mutex_unlock(&wq_pool_attach_mutex); 1882 } 1883 1884 /** 1885 * worker_detach_from_pool() - detach a worker from its pool 1886 * @worker: worker which is attached to its pool 1887 * 1888 * Undo the attaching which had been done in worker_attach_to_pool(). The 1889 * caller worker shouldn't access to the pool after detached except it has 1890 * other reference to the pool. 1891 */ 1892 static void worker_detach_from_pool(struct worker *worker) 1893 { 1894 struct worker_pool *pool = worker->pool; 1895 struct completion *detach_completion = NULL; 1896 1897 mutex_lock(&wq_pool_attach_mutex); 1898 1899 kthread_set_per_cpu(worker->task, -1); 1900 list_del(&worker->node); 1901 worker->pool = NULL; 1902 1903 if (list_empty(&pool->workers)) 1904 detach_completion = pool->detach_completion; 1905 mutex_unlock(&wq_pool_attach_mutex); 1906 1907 /* clear leftover flags without pool->lock after it is detached */ 1908 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1909 1910 if (detach_completion) 1911 complete(detach_completion); 1912 } 1913 1914 /** 1915 * create_worker - create a new workqueue worker 1916 * @pool: pool the new worker will belong to 1917 * 1918 * Create and start a new worker which is attached to @pool. 1919 * 1920 * CONTEXT: 1921 * Might sleep. Does GFP_KERNEL allocations. 1922 * 1923 * Return: 1924 * Pointer to the newly created worker. 1925 */ 1926 static struct worker *create_worker(struct worker_pool *pool) 1927 { 1928 struct worker *worker; 1929 int id; 1930 char id_buf[16]; 1931 1932 /* ID is needed to determine kthread name */ 1933 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 1934 if (id < 0) 1935 return NULL; 1936 1937 worker = alloc_worker(pool->node); 1938 if (!worker) 1939 goto fail; 1940 1941 worker->id = id; 1942 1943 if (pool->cpu >= 0) 1944 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1945 pool->attrs->nice < 0 ? "H" : ""); 1946 else 1947 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1948 1949 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1950 "kworker/%s", id_buf); 1951 if (IS_ERR(worker->task)) 1952 goto fail; 1953 1954 set_user_nice(worker->task, pool->attrs->nice); 1955 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1956 1957 /* successful, attach the worker to the pool */ 1958 worker_attach_to_pool(worker, pool); 1959 1960 /* start the newly created worker */ 1961 raw_spin_lock_irq(&pool->lock); 1962 worker->pool->nr_workers++; 1963 worker_enter_idle(worker); 1964 wake_up_process(worker->task); 1965 raw_spin_unlock_irq(&pool->lock); 1966 1967 return worker; 1968 1969 fail: 1970 ida_free(&pool->worker_ida, id); 1971 kfree(worker); 1972 return NULL; 1973 } 1974 1975 /** 1976 * destroy_worker - destroy a workqueue worker 1977 * @worker: worker to be destroyed 1978 * 1979 * Destroy @worker and adjust @pool stats accordingly. The worker should 1980 * be idle. 1981 * 1982 * CONTEXT: 1983 * raw_spin_lock_irq(pool->lock). 1984 */ 1985 static void destroy_worker(struct worker *worker) 1986 { 1987 struct worker_pool *pool = worker->pool; 1988 1989 lockdep_assert_held(&pool->lock); 1990 1991 /* sanity check frenzy */ 1992 if (WARN_ON(worker->current_work) || 1993 WARN_ON(!list_empty(&worker->scheduled)) || 1994 WARN_ON(!(worker->flags & WORKER_IDLE))) 1995 return; 1996 1997 pool->nr_workers--; 1998 pool->nr_idle--; 1999 2000 list_del_init(&worker->entry); 2001 worker->flags |= WORKER_DIE; 2002 wake_up_process(worker->task); 2003 } 2004 2005 static void idle_worker_timeout(struct timer_list *t) 2006 { 2007 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2008 2009 raw_spin_lock_irq(&pool->lock); 2010 2011 while (too_many_workers(pool)) { 2012 struct worker *worker; 2013 unsigned long expires; 2014 2015 /* idle_list is kept in LIFO order, check the last one */ 2016 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2017 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2018 2019 if (time_before(jiffies, expires)) { 2020 mod_timer(&pool->idle_timer, expires); 2021 break; 2022 } 2023 2024 destroy_worker(worker); 2025 } 2026 2027 raw_spin_unlock_irq(&pool->lock); 2028 } 2029 2030 static void send_mayday(struct work_struct *work) 2031 { 2032 struct pool_workqueue *pwq = get_work_pwq(work); 2033 struct workqueue_struct *wq = pwq->wq; 2034 2035 lockdep_assert_held(&wq_mayday_lock); 2036 2037 if (!wq->rescuer) 2038 return; 2039 2040 /* mayday mayday mayday */ 2041 if (list_empty(&pwq->mayday_node)) { 2042 /* 2043 * If @pwq is for an unbound wq, its base ref may be put at 2044 * any time due to an attribute change. Pin @pwq until the 2045 * rescuer is done with it. 2046 */ 2047 get_pwq(pwq); 2048 list_add_tail(&pwq->mayday_node, &wq->maydays); 2049 wake_up_process(wq->rescuer->task); 2050 } 2051 } 2052 2053 static void pool_mayday_timeout(struct timer_list *t) 2054 { 2055 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2056 struct work_struct *work; 2057 2058 raw_spin_lock_irq(&pool->lock); 2059 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2060 2061 if (need_to_create_worker(pool)) { 2062 /* 2063 * We've been trying to create a new worker but 2064 * haven't been successful. We might be hitting an 2065 * allocation deadlock. Send distress signals to 2066 * rescuers. 2067 */ 2068 list_for_each_entry(work, &pool->worklist, entry) 2069 send_mayday(work); 2070 } 2071 2072 raw_spin_unlock(&wq_mayday_lock); 2073 raw_spin_unlock_irq(&pool->lock); 2074 2075 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2076 } 2077 2078 /** 2079 * maybe_create_worker - create a new worker if necessary 2080 * @pool: pool to create a new worker for 2081 * 2082 * Create a new worker for @pool if necessary. @pool is guaranteed to 2083 * have at least one idle worker on return from this function. If 2084 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2085 * sent to all rescuers with works scheduled on @pool to resolve 2086 * possible allocation deadlock. 2087 * 2088 * On return, need_to_create_worker() is guaranteed to be %false and 2089 * may_start_working() %true. 2090 * 2091 * LOCKING: 2092 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2093 * multiple times. Does GFP_KERNEL allocations. Called only from 2094 * manager. 2095 */ 2096 static void maybe_create_worker(struct worker_pool *pool) 2097 __releases(&pool->lock) 2098 __acquires(&pool->lock) 2099 { 2100 restart: 2101 raw_spin_unlock_irq(&pool->lock); 2102 2103 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2104 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2105 2106 while (true) { 2107 if (create_worker(pool) || !need_to_create_worker(pool)) 2108 break; 2109 2110 schedule_timeout_interruptible(CREATE_COOLDOWN); 2111 2112 if (!need_to_create_worker(pool)) 2113 break; 2114 } 2115 2116 del_timer_sync(&pool->mayday_timer); 2117 raw_spin_lock_irq(&pool->lock); 2118 /* 2119 * This is necessary even after a new worker was just successfully 2120 * created as @pool->lock was dropped and the new worker might have 2121 * already become busy. 2122 */ 2123 if (need_to_create_worker(pool)) 2124 goto restart; 2125 } 2126 2127 /** 2128 * manage_workers - manage worker pool 2129 * @worker: self 2130 * 2131 * Assume the manager role and manage the worker pool @worker belongs 2132 * to. At any given time, there can be only zero or one manager per 2133 * pool. The exclusion is handled automatically by this function. 2134 * 2135 * The caller can safely start processing works on false return. On 2136 * true return, it's guaranteed that need_to_create_worker() is false 2137 * and may_start_working() is true. 2138 * 2139 * CONTEXT: 2140 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2141 * multiple times. Does GFP_KERNEL allocations. 2142 * 2143 * Return: 2144 * %false if the pool doesn't need management and the caller can safely 2145 * start processing works, %true if management function was performed and 2146 * the conditions that the caller verified before calling the function may 2147 * no longer be true. 2148 */ 2149 static bool manage_workers(struct worker *worker) 2150 { 2151 struct worker_pool *pool = worker->pool; 2152 2153 if (pool->flags & POOL_MANAGER_ACTIVE) 2154 return false; 2155 2156 pool->flags |= POOL_MANAGER_ACTIVE; 2157 pool->manager = worker; 2158 2159 maybe_create_worker(pool); 2160 2161 pool->manager = NULL; 2162 pool->flags &= ~POOL_MANAGER_ACTIVE; 2163 rcuwait_wake_up(&manager_wait); 2164 return true; 2165 } 2166 2167 /** 2168 * process_one_work - process single work 2169 * @worker: self 2170 * @work: work to process 2171 * 2172 * Process @work. This function contains all the logics necessary to 2173 * process a single work including synchronization against and 2174 * interaction with other workers on the same cpu, queueing and 2175 * flushing. As long as context requirement is met, any worker can 2176 * call this function to process a work. 2177 * 2178 * CONTEXT: 2179 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 2180 */ 2181 static void process_one_work(struct worker *worker, struct work_struct *work) 2182 __releases(&pool->lock) 2183 __acquires(&pool->lock) 2184 { 2185 struct pool_workqueue *pwq = get_work_pwq(work); 2186 struct worker_pool *pool = worker->pool; 2187 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2188 unsigned long work_data; 2189 struct worker *collision; 2190 #ifdef CONFIG_LOCKDEP 2191 /* 2192 * It is permissible to free the struct work_struct from 2193 * inside the function that is called from it, this we need to 2194 * take into account for lockdep too. To avoid bogus "held 2195 * lock freed" warnings as well as problems when looking into 2196 * work->lockdep_map, make a copy and use that here. 2197 */ 2198 struct lockdep_map lockdep_map; 2199 2200 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2201 #endif 2202 /* ensure we're on the correct CPU */ 2203 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2204 raw_smp_processor_id() != pool->cpu); 2205 2206 /* 2207 * A single work shouldn't be executed concurrently by 2208 * multiple workers on a single cpu. Check whether anyone is 2209 * already processing the work. If so, defer the work to the 2210 * currently executing one. 2211 */ 2212 collision = find_worker_executing_work(pool, work); 2213 if (unlikely(collision)) { 2214 move_linked_works(work, &collision->scheduled, NULL); 2215 return; 2216 } 2217 2218 /* claim and dequeue */ 2219 debug_work_deactivate(work); 2220 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2221 worker->current_work = work; 2222 worker->current_func = work->func; 2223 worker->current_pwq = pwq; 2224 work_data = *work_data_bits(work); 2225 worker->current_color = get_work_color(work_data); 2226 2227 /* 2228 * Record wq name for cmdline and debug reporting, may get 2229 * overridden through set_worker_desc(). 2230 */ 2231 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2232 2233 list_del_init(&work->entry); 2234 2235 /* 2236 * CPU intensive works don't participate in concurrency management. 2237 * They're the scheduler's responsibility. This takes @worker out 2238 * of concurrency management and the next code block will chain 2239 * execution of the pending work items. 2240 */ 2241 if (unlikely(cpu_intensive)) 2242 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2243 2244 /* 2245 * Wake up another worker if necessary. The condition is always 2246 * false for normal per-cpu workers since nr_running would always 2247 * be >= 1 at this point. This is used to chain execution of the 2248 * pending work items for WORKER_NOT_RUNNING workers such as the 2249 * UNBOUND and CPU_INTENSIVE ones. 2250 */ 2251 if (need_more_worker(pool)) 2252 wake_up_worker(pool); 2253 2254 /* 2255 * Record the last pool and clear PENDING which should be the last 2256 * update to @work. Also, do this inside @pool->lock so that 2257 * PENDING and queued state changes happen together while IRQ is 2258 * disabled. 2259 */ 2260 set_work_pool_and_clear_pending(work, pool->id); 2261 2262 raw_spin_unlock_irq(&pool->lock); 2263 2264 lock_map_acquire(&pwq->wq->lockdep_map); 2265 lock_map_acquire(&lockdep_map); 2266 /* 2267 * Strictly speaking we should mark the invariant state without holding 2268 * any locks, that is, before these two lock_map_acquire()'s. 2269 * 2270 * However, that would result in: 2271 * 2272 * A(W1) 2273 * WFC(C) 2274 * A(W1) 2275 * C(C) 2276 * 2277 * Which would create W1->C->W1 dependencies, even though there is no 2278 * actual deadlock possible. There are two solutions, using a 2279 * read-recursive acquire on the work(queue) 'locks', but this will then 2280 * hit the lockdep limitation on recursive locks, or simply discard 2281 * these locks. 2282 * 2283 * AFAICT there is no possible deadlock scenario between the 2284 * flush_work() and complete() primitives (except for single-threaded 2285 * workqueues), so hiding them isn't a problem. 2286 */ 2287 lockdep_invariant_state(true); 2288 trace_workqueue_execute_start(work); 2289 worker->current_func(work); 2290 /* 2291 * While we must be careful to not use "work" after this, the trace 2292 * point will only record its address. 2293 */ 2294 trace_workqueue_execute_end(work, worker->current_func); 2295 lock_map_release(&lockdep_map); 2296 lock_map_release(&pwq->wq->lockdep_map); 2297 2298 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2299 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2300 " last function: %ps\n", 2301 current->comm, preempt_count(), task_pid_nr(current), 2302 worker->current_func); 2303 debug_show_held_locks(current); 2304 dump_stack(); 2305 } 2306 2307 /* 2308 * The following prevents a kworker from hogging CPU on !PREEMPTION 2309 * kernels, where a requeueing work item waiting for something to 2310 * happen could deadlock with stop_machine as such work item could 2311 * indefinitely requeue itself while all other CPUs are trapped in 2312 * stop_machine. At the same time, report a quiescent RCU state so 2313 * the same condition doesn't freeze RCU. 2314 */ 2315 cond_resched(); 2316 2317 raw_spin_lock_irq(&pool->lock); 2318 2319 /* clear cpu intensive status */ 2320 if (unlikely(cpu_intensive)) 2321 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2322 2323 /* tag the worker for identification in schedule() */ 2324 worker->last_func = worker->current_func; 2325 2326 /* we're done with it, release */ 2327 hash_del(&worker->hentry); 2328 worker->current_work = NULL; 2329 worker->current_func = NULL; 2330 worker->current_pwq = NULL; 2331 worker->current_color = INT_MAX; 2332 pwq_dec_nr_in_flight(pwq, work_data); 2333 } 2334 2335 /** 2336 * process_scheduled_works - process scheduled works 2337 * @worker: self 2338 * 2339 * Process all scheduled works. Please note that the scheduled list 2340 * may change while processing a work, so this function repeatedly 2341 * fetches a work from the top and executes it. 2342 * 2343 * CONTEXT: 2344 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2345 * multiple times. 2346 */ 2347 static void process_scheduled_works(struct worker *worker) 2348 { 2349 while (!list_empty(&worker->scheduled)) { 2350 struct work_struct *work = list_first_entry(&worker->scheduled, 2351 struct work_struct, entry); 2352 process_one_work(worker, work); 2353 } 2354 } 2355 2356 static void set_pf_worker(bool val) 2357 { 2358 mutex_lock(&wq_pool_attach_mutex); 2359 if (val) 2360 current->flags |= PF_WQ_WORKER; 2361 else 2362 current->flags &= ~PF_WQ_WORKER; 2363 mutex_unlock(&wq_pool_attach_mutex); 2364 } 2365 2366 /** 2367 * worker_thread - the worker thread function 2368 * @__worker: self 2369 * 2370 * The worker thread function. All workers belong to a worker_pool - 2371 * either a per-cpu one or dynamic unbound one. These workers process all 2372 * work items regardless of their specific target workqueue. The only 2373 * exception is work items which belong to workqueues with a rescuer which 2374 * will be explained in rescuer_thread(). 2375 * 2376 * Return: 0 2377 */ 2378 static int worker_thread(void *__worker) 2379 { 2380 struct worker *worker = __worker; 2381 struct worker_pool *pool = worker->pool; 2382 2383 /* tell the scheduler that this is a workqueue worker */ 2384 set_pf_worker(true); 2385 woke_up: 2386 raw_spin_lock_irq(&pool->lock); 2387 2388 /* am I supposed to die? */ 2389 if (unlikely(worker->flags & WORKER_DIE)) { 2390 raw_spin_unlock_irq(&pool->lock); 2391 WARN_ON_ONCE(!list_empty(&worker->entry)); 2392 set_pf_worker(false); 2393 2394 set_task_comm(worker->task, "kworker/dying"); 2395 ida_free(&pool->worker_ida, worker->id); 2396 worker_detach_from_pool(worker); 2397 kfree(worker); 2398 return 0; 2399 } 2400 2401 worker_leave_idle(worker); 2402 recheck: 2403 /* no more worker necessary? */ 2404 if (!need_more_worker(pool)) 2405 goto sleep; 2406 2407 /* do we need to manage? */ 2408 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2409 goto recheck; 2410 2411 /* 2412 * ->scheduled list can only be filled while a worker is 2413 * preparing to process a work or actually processing it. 2414 * Make sure nobody diddled with it while I was sleeping. 2415 */ 2416 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2417 2418 /* 2419 * Finish PREP stage. We're guaranteed to have at least one idle 2420 * worker or that someone else has already assumed the manager 2421 * role. This is where @worker starts participating in concurrency 2422 * management if applicable and concurrency management is restored 2423 * after being rebound. See rebind_workers() for details. 2424 */ 2425 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2426 2427 do { 2428 struct work_struct *work = 2429 list_first_entry(&pool->worklist, 2430 struct work_struct, entry); 2431 2432 pool->watchdog_ts = jiffies; 2433 2434 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2435 /* optimization path, not strictly necessary */ 2436 process_one_work(worker, work); 2437 if (unlikely(!list_empty(&worker->scheduled))) 2438 process_scheduled_works(worker); 2439 } else { 2440 move_linked_works(work, &worker->scheduled, NULL); 2441 process_scheduled_works(worker); 2442 } 2443 } while (keep_working(pool)); 2444 2445 worker_set_flags(worker, WORKER_PREP); 2446 sleep: 2447 /* 2448 * pool->lock is held and there's no work to process and no need to 2449 * manage, sleep. Workers are woken up only while holding 2450 * pool->lock or from local cpu, so setting the current state 2451 * before releasing pool->lock is enough to prevent losing any 2452 * event. 2453 */ 2454 worker_enter_idle(worker); 2455 __set_current_state(TASK_IDLE); 2456 raw_spin_unlock_irq(&pool->lock); 2457 schedule(); 2458 goto woke_up; 2459 } 2460 2461 /** 2462 * rescuer_thread - the rescuer thread function 2463 * @__rescuer: self 2464 * 2465 * Workqueue rescuer thread function. There's one rescuer for each 2466 * workqueue which has WQ_MEM_RECLAIM set. 2467 * 2468 * Regular work processing on a pool may block trying to create a new 2469 * worker which uses GFP_KERNEL allocation which has slight chance of 2470 * developing into deadlock if some works currently on the same queue 2471 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2472 * the problem rescuer solves. 2473 * 2474 * When such condition is possible, the pool summons rescuers of all 2475 * workqueues which have works queued on the pool and let them process 2476 * those works so that forward progress can be guaranteed. 2477 * 2478 * This should happen rarely. 2479 * 2480 * Return: 0 2481 */ 2482 static int rescuer_thread(void *__rescuer) 2483 { 2484 struct worker *rescuer = __rescuer; 2485 struct workqueue_struct *wq = rescuer->rescue_wq; 2486 struct list_head *scheduled = &rescuer->scheduled; 2487 bool should_stop; 2488 2489 set_user_nice(current, RESCUER_NICE_LEVEL); 2490 2491 /* 2492 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2493 * doesn't participate in concurrency management. 2494 */ 2495 set_pf_worker(true); 2496 repeat: 2497 set_current_state(TASK_IDLE); 2498 2499 /* 2500 * By the time the rescuer is requested to stop, the workqueue 2501 * shouldn't have any work pending, but @wq->maydays may still have 2502 * pwq(s) queued. This can happen by non-rescuer workers consuming 2503 * all the work items before the rescuer got to them. Go through 2504 * @wq->maydays processing before acting on should_stop so that the 2505 * list is always empty on exit. 2506 */ 2507 should_stop = kthread_should_stop(); 2508 2509 /* see whether any pwq is asking for help */ 2510 raw_spin_lock_irq(&wq_mayday_lock); 2511 2512 while (!list_empty(&wq->maydays)) { 2513 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2514 struct pool_workqueue, mayday_node); 2515 struct worker_pool *pool = pwq->pool; 2516 struct work_struct *work, *n; 2517 bool first = true; 2518 2519 __set_current_state(TASK_RUNNING); 2520 list_del_init(&pwq->mayday_node); 2521 2522 raw_spin_unlock_irq(&wq_mayday_lock); 2523 2524 worker_attach_to_pool(rescuer, pool); 2525 2526 raw_spin_lock_irq(&pool->lock); 2527 2528 /* 2529 * Slurp in all works issued via this workqueue and 2530 * process'em. 2531 */ 2532 WARN_ON_ONCE(!list_empty(scheduled)); 2533 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2534 if (get_work_pwq(work) == pwq) { 2535 if (first) 2536 pool->watchdog_ts = jiffies; 2537 move_linked_works(work, scheduled, &n); 2538 } 2539 first = false; 2540 } 2541 2542 if (!list_empty(scheduled)) { 2543 process_scheduled_works(rescuer); 2544 2545 /* 2546 * The above execution of rescued work items could 2547 * have created more to rescue through 2548 * pwq_activate_first_inactive() or chained 2549 * queueing. Let's put @pwq back on mayday list so 2550 * that such back-to-back work items, which may be 2551 * being used to relieve memory pressure, don't 2552 * incur MAYDAY_INTERVAL delay inbetween. 2553 */ 2554 if (pwq->nr_active && need_to_create_worker(pool)) { 2555 raw_spin_lock(&wq_mayday_lock); 2556 /* 2557 * Queue iff we aren't racing destruction 2558 * and somebody else hasn't queued it already. 2559 */ 2560 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 2561 get_pwq(pwq); 2562 list_add_tail(&pwq->mayday_node, &wq->maydays); 2563 } 2564 raw_spin_unlock(&wq_mayday_lock); 2565 } 2566 } 2567 2568 /* 2569 * Put the reference grabbed by send_mayday(). @pool won't 2570 * go away while we're still attached to it. 2571 */ 2572 put_pwq(pwq); 2573 2574 /* 2575 * Leave this pool. If need_more_worker() is %true, notify a 2576 * regular worker; otherwise, we end up with 0 concurrency 2577 * and stalling the execution. 2578 */ 2579 if (need_more_worker(pool)) 2580 wake_up_worker(pool); 2581 2582 raw_spin_unlock_irq(&pool->lock); 2583 2584 worker_detach_from_pool(rescuer); 2585 2586 raw_spin_lock_irq(&wq_mayday_lock); 2587 } 2588 2589 raw_spin_unlock_irq(&wq_mayday_lock); 2590 2591 if (should_stop) { 2592 __set_current_state(TASK_RUNNING); 2593 set_pf_worker(false); 2594 return 0; 2595 } 2596 2597 /* rescuers should never participate in concurrency management */ 2598 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2599 schedule(); 2600 goto repeat; 2601 } 2602 2603 /** 2604 * check_flush_dependency - check for flush dependency sanity 2605 * @target_wq: workqueue being flushed 2606 * @target_work: work item being flushed (NULL for workqueue flushes) 2607 * 2608 * %current is trying to flush the whole @target_wq or @target_work on it. 2609 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2610 * reclaiming memory or running on a workqueue which doesn't have 2611 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2612 * a deadlock. 2613 */ 2614 static void check_flush_dependency(struct workqueue_struct *target_wq, 2615 struct work_struct *target_work) 2616 { 2617 work_func_t target_func = target_work ? target_work->func : NULL; 2618 struct worker *worker; 2619 2620 if (target_wq->flags & WQ_MEM_RECLAIM) 2621 return; 2622 2623 worker = current_wq_worker(); 2624 2625 WARN_ONCE(current->flags & PF_MEMALLOC, 2626 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 2627 current->pid, current->comm, target_wq->name, target_func); 2628 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2629 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2630 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 2631 worker->current_pwq->wq->name, worker->current_func, 2632 target_wq->name, target_func); 2633 } 2634 2635 struct wq_barrier { 2636 struct work_struct work; 2637 struct completion done; 2638 struct task_struct *task; /* purely informational */ 2639 }; 2640 2641 static void wq_barrier_func(struct work_struct *work) 2642 { 2643 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2644 complete(&barr->done); 2645 } 2646 2647 /** 2648 * insert_wq_barrier - insert a barrier work 2649 * @pwq: pwq to insert barrier into 2650 * @barr: wq_barrier to insert 2651 * @target: target work to attach @barr to 2652 * @worker: worker currently executing @target, NULL if @target is not executing 2653 * 2654 * @barr is linked to @target such that @barr is completed only after 2655 * @target finishes execution. Please note that the ordering 2656 * guarantee is observed only with respect to @target and on the local 2657 * cpu. 2658 * 2659 * Currently, a queued barrier can't be canceled. This is because 2660 * try_to_grab_pending() can't determine whether the work to be 2661 * grabbed is at the head of the queue and thus can't clear LINKED 2662 * flag of the previous work while there must be a valid next work 2663 * after a work with LINKED flag set. 2664 * 2665 * Note that when @worker is non-NULL, @target may be modified 2666 * underneath us, so we can't reliably determine pwq from @target. 2667 * 2668 * CONTEXT: 2669 * raw_spin_lock_irq(pool->lock). 2670 */ 2671 static void insert_wq_barrier(struct pool_workqueue *pwq, 2672 struct wq_barrier *barr, 2673 struct work_struct *target, struct worker *worker) 2674 { 2675 unsigned int work_flags = 0; 2676 unsigned int work_color; 2677 struct list_head *head; 2678 2679 /* 2680 * debugobject calls are safe here even with pool->lock locked 2681 * as we know for sure that this will not trigger any of the 2682 * checks and call back into the fixup functions where we 2683 * might deadlock. 2684 */ 2685 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2686 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2687 2688 init_completion_map(&barr->done, &target->lockdep_map); 2689 2690 barr->task = current; 2691 2692 /* The barrier work item does not participate in pwq->nr_active. */ 2693 work_flags |= WORK_STRUCT_INACTIVE; 2694 2695 /* 2696 * If @target is currently being executed, schedule the 2697 * barrier to the worker; otherwise, put it after @target. 2698 */ 2699 if (worker) { 2700 head = worker->scheduled.next; 2701 work_color = worker->current_color; 2702 } else { 2703 unsigned long *bits = work_data_bits(target); 2704 2705 head = target->entry.next; 2706 /* there can already be other linked works, inherit and set */ 2707 work_flags |= *bits & WORK_STRUCT_LINKED; 2708 work_color = get_work_color(*bits); 2709 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2710 } 2711 2712 pwq->nr_in_flight[work_color]++; 2713 work_flags |= work_color_to_flags(work_color); 2714 2715 debug_work_activate(&barr->work); 2716 insert_work(pwq, &barr->work, head, work_flags); 2717 } 2718 2719 /** 2720 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2721 * @wq: workqueue being flushed 2722 * @flush_color: new flush color, < 0 for no-op 2723 * @work_color: new work color, < 0 for no-op 2724 * 2725 * Prepare pwqs for workqueue flushing. 2726 * 2727 * If @flush_color is non-negative, flush_color on all pwqs should be 2728 * -1. If no pwq has in-flight commands at the specified color, all 2729 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2730 * has in flight commands, its pwq->flush_color is set to 2731 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2732 * wakeup logic is armed and %true is returned. 2733 * 2734 * The caller should have initialized @wq->first_flusher prior to 2735 * calling this function with non-negative @flush_color. If 2736 * @flush_color is negative, no flush color update is done and %false 2737 * is returned. 2738 * 2739 * If @work_color is non-negative, all pwqs should have the same 2740 * work_color which is previous to @work_color and all will be 2741 * advanced to @work_color. 2742 * 2743 * CONTEXT: 2744 * mutex_lock(wq->mutex). 2745 * 2746 * Return: 2747 * %true if @flush_color >= 0 and there's something to flush. %false 2748 * otherwise. 2749 */ 2750 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2751 int flush_color, int work_color) 2752 { 2753 bool wait = false; 2754 struct pool_workqueue *pwq; 2755 2756 if (flush_color >= 0) { 2757 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2758 atomic_set(&wq->nr_pwqs_to_flush, 1); 2759 } 2760 2761 for_each_pwq(pwq, wq) { 2762 struct worker_pool *pool = pwq->pool; 2763 2764 raw_spin_lock_irq(&pool->lock); 2765 2766 if (flush_color >= 0) { 2767 WARN_ON_ONCE(pwq->flush_color != -1); 2768 2769 if (pwq->nr_in_flight[flush_color]) { 2770 pwq->flush_color = flush_color; 2771 atomic_inc(&wq->nr_pwqs_to_flush); 2772 wait = true; 2773 } 2774 } 2775 2776 if (work_color >= 0) { 2777 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2778 pwq->work_color = work_color; 2779 } 2780 2781 raw_spin_unlock_irq(&pool->lock); 2782 } 2783 2784 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2785 complete(&wq->first_flusher->done); 2786 2787 return wait; 2788 } 2789 2790 /** 2791 * __flush_workqueue - ensure that any scheduled work has run to completion. 2792 * @wq: workqueue to flush 2793 * 2794 * This function sleeps until all work items which were queued on entry 2795 * have finished execution, but it is not livelocked by new incoming ones. 2796 */ 2797 void __flush_workqueue(struct workqueue_struct *wq) 2798 { 2799 struct wq_flusher this_flusher = { 2800 .list = LIST_HEAD_INIT(this_flusher.list), 2801 .flush_color = -1, 2802 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2803 }; 2804 int next_color; 2805 2806 if (WARN_ON(!wq_online)) 2807 return; 2808 2809 lock_map_acquire(&wq->lockdep_map); 2810 lock_map_release(&wq->lockdep_map); 2811 2812 mutex_lock(&wq->mutex); 2813 2814 /* 2815 * Start-to-wait phase 2816 */ 2817 next_color = work_next_color(wq->work_color); 2818 2819 if (next_color != wq->flush_color) { 2820 /* 2821 * Color space is not full. The current work_color 2822 * becomes our flush_color and work_color is advanced 2823 * by one. 2824 */ 2825 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2826 this_flusher.flush_color = wq->work_color; 2827 wq->work_color = next_color; 2828 2829 if (!wq->first_flusher) { 2830 /* no flush in progress, become the first flusher */ 2831 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2832 2833 wq->first_flusher = &this_flusher; 2834 2835 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2836 wq->work_color)) { 2837 /* nothing to flush, done */ 2838 wq->flush_color = next_color; 2839 wq->first_flusher = NULL; 2840 goto out_unlock; 2841 } 2842 } else { 2843 /* wait in queue */ 2844 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2845 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2846 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2847 } 2848 } else { 2849 /* 2850 * Oops, color space is full, wait on overflow queue. 2851 * The next flush completion will assign us 2852 * flush_color and transfer to flusher_queue. 2853 */ 2854 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2855 } 2856 2857 check_flush_dependency(wq, NULL); 2858 2859 mutex_unlock(&wq->mutex); 2860 2861 wait_for_completion(&this_flusher.done); 2862 2863 /* 2864 * Wake-up-and-cascade phase 2865 * 2866 * First flushers are responsible for cascading flushes and 2867 * handling overflow. Non-first flushers can simply return. 2868 */ 2869 if (READ_ONCE(wq->first_flusher) != &this_flusher) 2870 return; 2871 2872 mutex_lock(&wq->mutex); 2873 2874 /* we might have raced, check again with mutex held */ 2875 if (wq->first_flusher != &this_flusher) 2876 goto out_unlock; 2877 2878 WRITE_ONCE(wq->first_flusher, NULL); 2879 2880 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2881 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2882 2883 while (true) { 2884 struct wq_flusher *next, *tmp; 2885 2886 /* complete all the flushers sharing the current flush color */ 2887 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2888 if (next->flush_color != wq->flush_color) 2889 break; 2890 list_del_init(&next->list); 2891 complete(&next->done); 2892 } 2893 2894 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2895 wq->flush_color != work_next_color(wq->work_color)); 2896 2897 /* this flush_color is finished, advance by one */ 2898 wq->flush_color = work_next_color(wq->flush_color); 2899 2900 /* one color has been freed, handle overflow queue */ 2901 if (!list_empty(&wq->flusher_overflow)) { 2902 /* 2903 * Assign the same color to all overflowed 2904 * flushers, advance work_color and append to 2905 * flusher_queue. This is the start-to-wait 2906 * phase for these overflowed flushers. 2907 */ 2908 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2909 tmp->flush_color = wq->work_color; 2910 2911 wq->work_color = work_next_color(wq->work_color); 2912 2913 list_splice_tail_init(&wq->flusher_overflow, 2914 &wq->flusher_queue); 2915 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2916 } 2917 2918 if (list_empty(&wq->flusher_queue)) { 2919 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2920 break; 2921 } 2922 2923 /* 2924 * Need to flush more colors. Make the next flusher 2925 * the new first flusher and arm pwqs. 2926 */ 2927 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2928 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2929 2930 list_del_init(&next->list); 2931 wq->first_flusher = next; 2932 2933 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2934 break; 2935 2936 /* 2937 * Meh... this color is already done, clear first 2938 * flusher and repeat cascading. 2939 */ 2940 wq->first_flusher = NULL; 2941 } 2942 2943 out_unlock: 2944 mutex_unlock(&wq->mutex); 2945 } 2946 EXPORT_SYMBOL(__flush_workqueue); 2947 2948 /** 2949 * drain_workqueue - drain a workqueue 2950 * @wq: workqueue to drain 2951 * 2952 * Wait until the workqueue becomes empty. While draining is in progress, 2953 * only chain queueing is allowed. IOW, only currently pending or running 2954 * work items on @wq can queue further work items on it. @wq is flushed 2955 * repeatedly until it becomes empty. The number of flushing is determined 2956 * by the depth of chaining and should be relatively short. Whine if it 2957 * takes too long. 2958 */ 2959 void drain_workqueue(struct workqueue_struct *wq) 2960 { 2961 unsigned int flush_cnt = 0; 2962 struct pool_workqueue *pwq; 2963 2964 /* 2965 * __queue_work() needs to test whether there are drainers, is much 2966 * hotter than drain_workqueue() and already looks at @wq->flags. 2967 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2968 */ 2969 mutex_lock(&wq->mutex); 2970 if (!wq->nr_drainers++) 2971 wq->flags |= __WQ_DRAINING; 2972 mutex_unlock(&wq->mutex); 2973 reflush: 2974 __flush_workqueue(wq); 2975 2976 mutex_lock(&wq->mutex); 2977 2978 for_each_pwq(pwq, wq) { 2979 bool drained; 2980 2981 raw_spin_lock_irq(&pwq->pool->lock); 2982 drained = !pwq->nr_active && list_empty(&pwq->inactive_works); 2983 raw_spin_unlock_irq(&pwq->pool->lock); 2984 2985 if (drained) 2986 continue; 2987 2988 if (++flush_cnt == 10 || 2989 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2990 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 2991 wq->name, __func__, flush_cnt); 2992 2993 mutex_unlock(&wq->mutex); 2994 goto reflush; 2995 } 2996 2997 if (!--wq->nr_drainers) 2998 wq->flags &= ~__WQ_DRAINING; 2999 mutex_unlock(&wq->mutex); 3000 } 3001 EXPORT_SYMBOL_GPL(drain_workqueue); 3002 3003 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 3004 bool from_cancel) 3005 { 3006 struct worker *worker = NULL; 3007 struct worker_pool *pool; 3008 struct pool_workqueue *pwq; 3009 3010 might_sleep(); 3011 3012 rcu_read_lock(); 3013 pool = get_work_pool(work); 3014 if (!pool) { 3015 rcu_read_unlock(); 3016 return false; 3017 } 3018 3019 raw_spin_lock_irq(&pool->lock); 3020 /* see the comment in try_to_grab_pending() with the same code */ 3021 pwq = get_work_pwq(work); 3022 if (pwq) { 3023 if (unlikely(pwq->pool != pool)) 3024 goto already_gone; 3025 } else { 3026 worker = find_worker_executing_work(pool, work); 3027 if (!worker) 3028 goto already_gone; 3029 pwq = worker->current_pwq; 3030 } 3031 3032 check_flush_dependency(pwq->wq, work); 3033 3034 insert_wq_barrier(pwq, barr, work, worker); 3035 raw_spin_unlock_irq(&pool->lock); 3036 3037 /* 3038 * Force a lock recursion deadlock when using flush_work() inside a 3039 * single-threaded or rescuer equipped workqueue. 3040 * 3041 * For single threaded workqueues the deadlock happens when the work 3042 * is after the work issuing the flush_work(). For rescuer equipped 3043 * workqueues the deadlock happens when the rescuer stalls, blocking 3044 * forward progress. 3045 */ 3046 if (!from_cancel && 3047 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3048 lock_map_acquire(&pwq->wq->lockdep_map); 3049 lock_map_release(&pwq->wq->lockdep_map); 3050 } 3051 rcu_read_unlock(); 3052 return true; 3053 already_gone: 3054 raw_spin_unlock_irq(&pool->lock); 3055 rcu_read_unlock(); 3056 return false; 3057 } 3058 3059 static bool __flush_work(struct work_struct *work, bool from_cancel) 3060 { 3061 struct wq_barrier barr; 3062 3063 if (WARN_ON(!wq_online)) 3064 return false; 3065 3066 if (WARN_ON(!work->func)) 3067 return false; 3068 3069 lock_map_acquire(&work->lockdep_map); 3070 lock_map_release(&work->lockdep_map); 3071 3072 if (start_flush_work(work, &barr, from_cancel)) { 3073 wait_for_completion(&barr.done); 3074 destroy_work_on_stack(&barr.work); 3075 return true; 3076 } else { 3077 return false; 3078 } 3079 } 3080 3081 /** 3082 * flush_work - wait for a work to finish executing the last queueing instance 3083 * @work: the work to flush 3084 * 3085 * Wait until @work has finished execution. @work is guaranteed to be idle 3086 * on return if it hasn't been requeued since flush started. 3087 * 3088 * Return: 3089 * %true if flush_work() waited for the work to finish execution, 3090 * %false if it was already idle. 3091 */ 3092 bool flush_work(struct work_struct *work) 3093 { 3094 return __flush_work(work, false); 3095 } 3096 EXPORT_SYMBOL_GPL(flush_work); 3097 3098 struct cwt_wait { 3099 wait_queue_entry_t wait; 3100 struct work_struct *work; 3101 }; 3102 3103 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3104 { 3105 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3106 3107 if (cwait->work != key) 3108 return 0; 3109 return autoremove_wake_function(wait, mode, sync, key); 3110 } 3111 3112 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3113 { 3114 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3115 unsigned long flags; 3116 int ret; 3117 3118 do { 3119 ret = try_to_grab_pending(work, is_dwork, &flags); 3120 /* 3121 * If someone else is already canceling, wait for it to 3122 * finish. flush_work() doesn't work for PREEMPT_NONE 3123 * because we may get scheduled between @work's completion 3124 * and the other canceling task resuming and clearing 3125 * CANCELING - flush_work() will return false immediately 3126 * as @work is no longer busy, try_to_grab_pending() will 3127 * return -ENOENT as @work is still being canceled and the 3128 * other canceling task won't be able to clear CANCELING as 3129 * we're hogging the CPU. 3130 * 3131 * Let's wait for completion using a waitqueue. As this 3132 * may lead to the thundering herd problem, use a custom 3133 * wake function which matches @work along with exclusive 3134 * wait and wakeup. 3135 */ 3136 if (unlikely(ret == -ENOENT)) { 3137 struct cwt_wait cwait; 3138 3139 init_wait(&cwait.wait); 3140 cwait.wait.func = cwt_wakefn; 3141 cwait.work = work; 3142 3143 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3144 TASK_UNINTERRUPTIBLE); 3145 if (work_is_canceling(work)) 3146 schedule(); 3147 finish_wait(&cancel_waitq, &cwait.wait); 3148 } 3149 } while (unlikely(ret < 0)); 3150 3151 /* tell other tasks trying to grab @work to back off */ 3152 mark_work_canceling(work); 3153 local_irq_restore(flags); 3154 3155 /* 3156 * This allows canceling during early boot. We know that @work 3157 * isn't executing. 3158 */ 3159 if (wq_online) 3160 __flush_work(work, true); 3161 3162 clear_work_data(work); 3163 3164 /* 3165 * Paired with prepare_to_wait() above so that either 3166 * waitqueue_active() is visible here or !work_is_canceling() is 3167 * visible there. 3168 */ 3169 smp_mb(); 3170 if (waitqueue_active(&cancel_waitq)) 3171 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3172 3173 return ret; 3174 } 3175 3176 /** 3177 * cancel_work_sync - cancel a work and wait for it to finish 3178 * @work: the work to cancel 3179 * 3180 * Cancel @work and wait for its execution to finish. This function 3181 * can be used even if the work re-queues itself or migrates to 3182 * another workqueue. On return from this function, @work is 3183 * guaranteed to be not pending or executing on any CPU. 3184 * 3185 * cancel_work_sync(&delayed_work->work) must not be used for 3186 * delayed_work's. Use cancel_delayed_work_sync() instead. 3187 * 3188 * The caller must ensure that the workqueue on which @work was last 3189 * queued can't be destroyed before this function returns. 3190 * 3191 * Return: 3192 * %true if @work was pending, %false otherwise. 3193 */ 3194 bool cancel_work_sync(struct work_struct *work) 3195 { 3196 return __cancel_work_timer(work, false); 3197 } 3198 EXPORT_SYMBOL_GPL(cancel_work_sync); 3199 3200 /** 3201 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3202 * @dwork: the delayed work to flush 3203 * 3204 * Delayed timer is cancelled and the pending work is queued for 3205 * immediate execution. Like flush_work(), this function only 3206 * considers the last queueing instance of @dwork. 3207 * 3208 * Return: 3209 * %true if flush_work() waited for the work to finish execution, 3210 * %false if it was already idle. 3211 */ 3212 bool flush_delayed_work(struct delayed_work *dwork) 3213 { 3214 local_irq_disable(); 3215 if (del_timer_sync(&dwork->timer)) 3216 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3217 local_irq_enable(); 3218 return flush_work(&dwork->work); 3219 } 3220 EXPORT_SYMBOL(flush_delayed_work); 3221 3222 /** 3223 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3224 * @rwork: the rcu work to flush 3225 * 3226 * Return: 3227 * %true if flush_rcu_work() waited for the work to finish execution, 3228 * %false if it was already idle. 3229 */ 3230 bool flush_rcu_work(struct rcu_work *rwork) 3231 { 3232 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3233 rcu_barrier(); 3234 flush_work(&rwork->work); 3235 return true; 3236 } else { 3237 return flush_work(&rwork->work); 3238 } 3239 } 3240 EXPORT_SYMBOL(flush_rcu_work); 3241 3242 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3243 { 3244 unsigned long flags; 3245 int ret; 3246 3247 do { 3248 ret = try_to_grab_pending(work, is_dwork, &flags); 3249 } while (unlikely(ret == -EAGAIN)); 3250 3251 if (unlikely(ret < 0)) 3252 return false; 3253 3254 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3255 local_irq_restore(flags); 3256 return ret; 3257 } 3258 3259 /* 3260 * See cancel_delayed_work() 3261 */ 3262 bool cancel_work(struct work_struct *work) 3263 { 3264 return __cancel_work(work, false); 3265 } 3266 EXPORT_SYMBOL(cancel_work); 3267 3268 /** 3269 * cancel_delayed_work - cancel a delayed work 3270 * @dwork: delayed_work to cancel 3271 * 3272 * Kill off a pending delayed_work. 3273 * 3274 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3275 * pending. 3276 * 3277 * Note: 3278 * The work callback function may still be running on return, unless 3279 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3280 * use cancel_delayed_work_sync() to wait on it. 3281 * 3282 * This function is safe to call from any context including IRQ handler. 3283 */ 3284 bool cancel_delayed_work(struct delayed_work *dwork) 3285 { 3286 return __cancel_work(&dwork->work, true); 3287 } 3288 EXPORT_SYMBOL(cancel_delayed_work); 3289 3290 /** 3291 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3292 * @dwork: the delayed work cancel 3293 * 3294 * This is cancel_work_sync() for delayed works. 3295 * 3296 * Return: 3297 * %true if @dwork was pending, %false otherwise. 3298 */ 3299 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3300 { 3301 return __cancel_work_timer(&dwork->work, true); 3302 } 3303 EXPORT_SYMBOL(cancel_delayed_work_sync); 3304 3305 /** 3306 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3307 * @func: the function to call 3308 * 3309 * schedule_on_each_cpu() executes @func on each online CPU using the 3310 * system workqueue and blocks until all CPUs have completed. 3311 * schedule_on_each_cpu() is very slow. 3312 * 3313 * Return: 3314 * 0 on success, -errno on failure. 3315 */ 3316 int schedule_on_each_cpu(work_func_t func) 3317 { 3318 int cpu; 3319 struct work_struct __percpu *works; 3320 3321 works = alloc_percpu(struct work_struct); 3322 if (!works) 3323 return -ENOMEM; 3324 3325 cpus_read_lock(); 3326 3327 for_each_online_cpu(cpu) { 3328 struct work_struct *work = per_cpu_ptr(works, cpu); 3329 3330 INIT_WORK(work, func); 3331 schedule_work_on(cpu, work); 3332 } 3333 3334 for_each_online_cpu(cpu) 3335 flush_work(per_cpu_ptr(works, cpu)); 3336 3337 cpus_read_unlock(); 3338 free_percpu(works); 3339 return 0; 3340 } 3341 3342 /** 3343 * execute_in_process_context - reliably execute the routine with user context 3344 * @fn: the function to execute 3345 * @ew: guaranteed storage for the execute work structure (must 3346 * be available when the work executes) 3347 * 3348 * Executes the function immediately if process context is available, 3349 * otherwise schedules the function for delayed execution. 3350 * 3351 * Return: 0 - function was executed 3352 * 1 - function was scheduled for execution 3353 */ 3354 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3355 { 3356 if (!in_interrupt()) { 3357 fn(&ew->work); 3358 return 0; 3359 } 3360 3361 INIT_WORK(&ew->work, fn); 3362 schedule_work(&ew->work); 3363 3364 return 1; 3365 } 3366 EXPORT_SYMBOL_GPL(execute_in_process_context); 3367 3368 /** 3369 * free_workqueue_attrs - free a workqueue_attrs 3370 * @attrs: workqueue_attrs to free 3371 * 3372 * Undo alloc_workqueue_attrs(). 3373 */ 3374 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3375 { 3376 if (attrs) { 3377 free_cpumask_var(attrs->cpumask); 3378 kfree(attrs); 3379 } 3380 } 3381 3382 /** 3383 * alloc_workqueue_attrs - allocate a workqueue_attrs 3384 * 3385 * Allocate a new workqueue_attrs, initialize with default settings and 3386 * return it. 3387 * 3388 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3389 */ 3390 struct workqueue_attrs *alloc_workqueue_attrs(void) 3391 { 3392 struct workqueue_attrs *attrs; 3393 3394 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 3395 if (!attrs) 3396 goto fail; 3397 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 3398 goto fail; 3399 3400 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3401 return attrs; 3402 fail: 3403 free_workqueue_attrs(attrs); 3404 return NULL; 3405 } 3406 3407 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3408 const struct workqueue_attrs *from) 3409 { 3410 to->nice = from->nice; 3411 cpumask_copy(to->cpumask, from->cpumask); 3412 /* 3413 * Unlike hash and equality test, this function doesn't ignore 3414 * ->no_numa as it is used for both pool and wq attrs. Instead, 3415 * get_unbound_pool() explicitly clears ->no_numa after copying. 3416 */ 3417 to->no_numa = from->no_numa; 3418 } 3419 3420 /* hash value of the content of @attr */ 3421 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3422 { 3423 u32 hash = 0; 3424 3425 hash = jhash_1word(attrs->nice, hash); 3426 hash = jhash(cpumask_bits(attrs->cpumask), 3427 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3428 return hash; 3429 } 3430 3431 /* content equality test */ 3432 static bool wqattrs_equal(const struct workqueue_attrs *a, 3433 const struct workqueue_attrs *b) 3434 { 3435 if (a->nice != b->nice) 3436 return false; 3437 if (!cpumask_equal(a->cpumask, b->cpumask)) 3438 return false; 3439 return true; 3440 } 3441 3442 /** 3443 * init_worker_pool - initialize a newly zalloc'd worker_pool 3444 * @pool: worker_pool to initialize 3445 * 3446 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3447 * 3448 * Return: 0 on success, -errno on failure. Even on failure, all fields 3449 * inside @pool proper are initialized and put_unbound_pool() can be called 3450 * on @pool safely to release it. 3451 */ 3452 static int init_worker_pool(struct worker_pool *pool) 3453 { 3454 raw_spin_lock_init(&pool->lock); 3455 pool->id = -1; 3456 pool->cpu = -1; 3457 pool->node = NUMA_NO_NODE; 3458 pool->flags |= POOL_DISASSOCIATED; 3459 pool->watchdog_ts = jiffies; 3460 INIT_LIST_HEAD(&pool->worklist); 3461 INIT_LIST_HEAD(&pool->idle_list); 3462 hash_init(pool->busy_hash); 3463 3464 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3465 3466 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3467 3468 INIT_LIST_HEAD(&pool->workers); 3469 3470 ida_init(&pool->worker_ida); 3471 INIT_HLIST_NODE(&pool->hash_node); 3472 pool->refcnt = 1; 3473 3474 /* shouldn't fail above this point */ 3475 pool->attrs = alloc_workqueue_attrs(); 3476 if (!pool->attrs) 3477 return -ENOMEM; 3478 return 0; 3479 } 3480 3481 #ifdef CONFIG_LOCKDEP 3482 static void wq_init_lockdep(struct workqueue_struct *wq) 3483 { 3484 char *lock_name; 3485 3486 lockdep_register_key(&wq->key); 3487 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3488 if (!lock_name) 3489 lock_name = wq->name; 3490 3491 wq->lock_name = lock_name; 3492 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3493 } 3494 3495 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3496 { 3497 lockdep_unregister_key(&wq->key); 3498 } 3499 3500 static void wq_free_lockdep(struct workqueue_struct *wq) 3501 { 3502 if (wq->lock_name != wq->name) 3503 kfree(wq->lock_name); 3504 } 3505 #else 3506 static void wq_init_lockdep(struct workqueue_struct *wq) 3507 { 3508 } 3509 3510 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3511 { 3512 } 3513 3514 static void wq_free_lockdep(struct workqueue_struct *wq) 3515 { 3516 } 3517 #endif 3518 3519 static void rcu_free_wq(struct rcu_head *rcu) 3520 { 3521 struct workqueue_struct *wq = 3522 container_of(rcu, struct workqueue_struct, rcu); 3523 3524 wq_free_lockdep(wq); 3525 3526 if (!(wq->flags & WQ_UNBOUND)) 3527 free_percpu(wq->cpu_pwqs); 3528 else 3529 free_workqueue_attrs(wq->unbound_attrs); 3530 3531 kfree(wq); 3532 } 3533 3534 static void rcu_free_pool(struct rcu_head *rcu) 3535 { 3536 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3537 3538 ida_destroy(&pool->worker_ida); 3539 free_workqueue_attrs(pool->attrs); 3540 kfree(pool); 3541 } 3542 3543 /* This returns with the lock held on success (pool manager is inactive). */ 3544 static bool wq_manager_inactive(struct worker_pool *pool) 3545 { 3546 raw_spin_lock_irq(&pool->lock); 3547 3548 if (pool->flags & POOL_MANAGER_ACTIVE) { 3549 raw_spin_unlock_irq(&pool->lock); 3550 return false; 3551 } 3552 return true; 3553 } 3554 3555 /** 3556 * put_unbound_pool - put a worker_pool 3557 * @pool: worker_pool to put 3558 * 3559 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 3560 * safe manner. get_unbound_pool() calls this function on its failure path 3561 * and this function should be able to release pools which went through, 3562 * successfully or not, init_worker_pool(). 3563 * 3564 * Should be called with wq_pool_mutex held. 3565 */ 3566 static void put_unbound_pool(struct worker_pool *pool) 3567 { 3568 DECLARE_COMPLETION_ONSTACK(detach_completion); 3569 struct worker *worker; 3570 3571 lockdep_assert_held(&wq_pool_mutex); 3572 3573 if (--pool->refcnt) 3574 return; 3575 3576 /* sanity checks */ 3577 if (WARN_ON(!(pool->cpu < 0)) || 3578 WARN_ON(!list_empty(&pool->worklist))) 3579 return; 3580 3581 /* release id and unhash */ 3582 if (pool->id >= 0) 3583 idr_remove(&worker_pool_idr, pool->id); 3584 hash_del(&pool->hash_node); 3585 3586 /* 3587 * Become the manager and destroy all workers. This prevents 3588 * @pool's workers from blocking on attach_mutex. We're the last 3589 * manager and @pool gets freed with the flag set. 3590 * Because of how wq_manager_inactive() works, we will hold the 3591 * spinlock after a successful wait. 3592 */ 3593 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool), 3594 TASK_UNINTERRUPTIBLE); 3595 pool->flags |= POOL_MANAGER_ACTIVE; 3596 3597 while ((worker = first_idle_worker(pool))) 3598 destroy_worker(worker); 3599 WARN_ON(pool->nr_workers || pool->nr_idle); 3600 raw_spin_unlock_irq(&pool->lock); 3601 3602 mutex_lock(&wq_pool_attach_mutex); 3603 if (!list_empty(&pool->workers)) 3604 pool->detach_completion = &detach_completion; 3605 mutex_unlock(&wq_pool_attach_mutex); 3606 3607 if (pool->detach_completion) 3608 wait_for_completion(pool->detach_completion); 3609 3610 /* shut down the timers */ 3611 del_timer_sync(&pool->idle_timer); 3612 del_timer_sync(&pool->mayday_timer); 3613 3614 /* RCU protected to allow dereferences from get_work_pool() */ 3615 call_rcu(&pool->rcu, rcu_free_pool); 3616 } 3617 3618 /** 3619 * get_unbound_pool - get a worker_pool with the specified attributes 3620 * @attrs: the attributes of the worker_pool to get 3621 * 3622 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3623 * reference count and return it. If there already is a matching 3624 * worker_pool, it will be used; otherwise, this function attempts to 3625 * create a new one. 3626 * 3627 * Should be called with wq_pool_mutex held. 3628 * 3629 * Return: On success, a worker_pool with the same attributes as @attrs. 3630 * On failure, %NULL. 3631 */ 3632 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3633 { 3634 u32 hash = wqattrs_hash(attrs); 3635 struct worker_pool *pool; 3636 int node; 3637 int target_node = NUMA_NO_NODE; 3638 3639 lockdep_assert_held(&wq_pool_mutex); 3640 3641 /* do we already have a matching pool? */ 3642 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3643 if (wqattrs_equal(pool->attrs, attrs)) { 3644 pool->refcnt++; 3645 return pool; 3646 } 3647 } 3648 3649 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3650 if (wq_numa_enabled) { 3651 for_each_node(node) { 3652 if (cpumask_subset(attrs->cpumask, 3653 wq_numa_possible_cpumask[node])) { 3654 target_node = node; 3655 break; 3656 } 3657 } 3658 } 3659 3660 /* nope, create a new one */ 3661 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3662 if (!pool || init_worker_pool(pool) < 0) 3663 goto fail; 3664 3665 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3666 copy_workqueue_attrs(pool->attrs, attrs); 3667 pool->node = target_node; 3668 3669 /* 3670 * no_numa isn't a worker_pool attribute, always clear it. See 3671 * 'struct workqueue_attrs' comments for detail. 3672 */ 3673 pool->attrs->no_numa = false; 3674 3675 if (worker_pool_assign_id(pool) < 0) 3676 goto fail; 3677 3678 /* create and start the initial worker */ 3679 if (wq_online && !create_worker(pool)) 3680 goto fail; 3681 3682 /* install */ 3683 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3684 3685 return pool; 3686 fail: 3687 if (pool) 3688 put_unbound_pool(pool); 3689 return NULL; 3690 } 3691 3692 static void rcu_free_pwq(struct rcu_head *rcu) 3693 { 3694 kmem_cache_free(pwq_cache, 3695 container_of(rcu, struct pool_workqueue, rcu)); 3696 } 3697 3698 /* 3699 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3700 * and needs to be destroyed. 3701 */ 3702 static void pwq_unbound_release_workfn(struct work_struct *work) 3703 { 3704 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3705 unbound_release_work); 3706 struct workqueue_struct *wq = pwq->wq; 3707 struct worker_pool *pool = pwq->pool; 3708 bool is_last = false; 3709 3710 /* 3711 * when @pwq is not linked, it doesn't hold any reference to the 3712 * @wq, and @wq is invalid to access. 3713 */ 3714 if (!list_empty(&pwq->pwqs_node)) { 3715 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3716 return; 3717 3718 mutex_lock(&wq->mutex); 3719 list_del_rcu(&pwq->pwqs_node); 3720 is_last = list_empty(&wq->pwqs); 3721 mutex_unlock(&wq->mutex); 3722 } 3723 3724 mutex_lock(&wq_pool_mutex); 3725 put_unbound_pool(pool); 3726 mutex_unlock(&wq_pool_mutex); 3727 3728 call_rcu(&pwq->rcu, rcu_free_pwq); 3729 3730 /* 3731 * If we're the last pwq going away, @wq is already dead and no one 3732 * is gonna access it anymore. Schedule RCU free. 3733 */ 3734 if (is_last) { 3735 wq_unregister_lockdep(wq); 3736 call_rcu(&wq->rcu, rcu_free_wq); 3737 } 3738 } 3739 3740 /** 3741 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3742 * @pwq: target pool_workqueue 3743 * 3744 * If @pwq isn't freezing, set @pwq->max_active to the associated 3745 * workqueue's saved_max_active and activate inactive work items 3746 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3747 */ 3748 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3749 { 3750 struct workqueue_struct *wq = pwq->wq; 3751 bool freezable = wq->flags & WQ_FREEZABLE; 3752 unsigned long flags; 3753 3754 /* for @wq->saved_max_active */ 3755 lockdep_assert_held(&wq->mutex); 3756 3757 /* fast exit for non-freezable wqs */ 3758 if (!freezable && pwq->max_active == wq->saved_max_active) 3759 return; 3760 3761 /* this function can be called during early boot w/ irq disabled */ 3762 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 3763 3764 /* 3765 * During [un]freezing, the caller is responsible for ensuring that 3766 * this function is called at least once after @workqueue_freezing 3767 * is updated and visible. 3768 */ 3769 if (!freezable || !workqueue_freezing) { 3770 bool kick = false; 3771 3772 pwq->max_active = wq->saved_max_active; 3773 3774 while (!list_empty(&pwq->inactive_works) && 3775 pwq->nr_active < pwq->max_active) { 3776 pwq_activate_first_inactive(pwq); 3777 kick = true; 3778 } 3779 3780 /* 3781 * Need to kick a worker after thawed or an unbound wq's 3782 * max_active is bumped. In realtime scenarios, always kicking a 3783 * worker will cause interference on the isolated cpu cores, so 3784 * let's kick iff work items were activated. 3785 */ 3786 if (kick) 3787 wake_up_worker(pwq->pool); 3788 } else { 3789 pwq->max_active = 0; 3790 } 3791 3792 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 3793 } 3794 3795 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 3796 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3797 struct worker_pool *pool) 3798 { 3799 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3800 3801 memset(pwq, 0, sizeof(*pwq)); 3802 3803 pwq->pool = pool; 3804 pwq->wq = wq; 3805 pwq->flush_color = -1; 3806 pwq->refcnt = 1; 3807 INIT_LIST_HEAD(&pwq->inactive_works); 3808 INIT_LIST_HEAD(&pwq->pwqs_node); 3809 INIT_LIST_HEAD(&pwq->mayday_node); 3810 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3811 } 3812 3813 /* sync @pwq with the current state of its associated wq and link it */ 3814 static void link_pwq(struct pool_workqueue *pwq) 3815 { 3816 struct workqueue_struct *wq = pwq->wq; 3817 3818 lockdep_assert_held(&wq->mutex); 3819 3820 /* may be called multiple times, ignore if already linked */ 3821 if (!list_empty(&pwq->pwqs_node)) 3822 return; 3823 3824 /* set the matching work_color */ 3825 pwq->work_color = wq->work_color; 3826 3827 /* sync max_active to the current setting */ 3828 pwq_adjust_max_active(pwq); 3829 3830 /* link in @pwq */ 3831 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3832 } 3833 3834 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3835 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3836 const struct workqueue_attrs *attrs) 3837 { 3838 struct worker_pool *pool; 3839 struct pool_workqueue *pwq; 3840 3841 lockdep_assert_held(&wq_pool_mutex); 3842 3843 pool = get_unbound_pool(attrs); 3844 if (!pool) 3845 return NULL; 3846 3847 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3848 if (!pwq) { 3849 put_unbound_pool(pool); 3850 return NULL; 3851 } 3852 3853 init_pwq(pwq, wq, pool); 3854 return pwq; 3855 } 3856 3857 /** 3858 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3859 * @attrs: the wq_attrs of the default pwq of the target workqueue 3860 * @node: the target NUMA node 3861 * @cpu_going_down: if >= 0, the CPU to consider as offline 3862 * @cpumask: outarg, the resulting cpumask 3863 * 3864 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3865 * @cpu_going_down is >= 0, that cpu is considered offline during 3866 * calculation. The result is stored in @cpumask. 3867 * 3868 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3869 * enabled and @node has online CPUs requested by @attrs, the returned 3870 * cpumask is the intersection of the possible CPUs of @node and 3871 * @attrs->cpumask. 3872 * 3873 * The caller is responsible for ensuring that the cpumask of @node stays 3874 * stable. 3875 * 3876 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3877 * %false if equal. 3878 */ 3879 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3880 int cpu_going_down, cpumask_t *cpumask) 3881 { 3882 if (!wq_numa_enabled || attrs->no_numa) 3883 goto use_dfl; 3884 3885 /* does @node have any online CPUs @attrs wants? */ 3886 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3887 if (cpu_going_down >= 0) 3888 cpumask_clear_cpu(cpu_going_down, cpumask); 3889 3890 if (cpumask_empty(cpumask)) 3891 goto use_dfl; 3892 3893 /* yeap, return possible CPUs in @node that @attrs wants */ 3894 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3895 3896 if (cpumask_empty(cpumask)) { 3897 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3898 "possible intersect\n"); 3899 return false; 3900 } 3901 3902 return !cpumask_equal(cpumask, attrs->cpumask); 3903 3904 use_dfl: 3905 cpumask_copy(cpumask, attrs->cpumask); 3906 return false; 3907 } 3908 3909 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3910 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3911 int node, 3912 struct pool_workqueue *pwq) 3913 { 3914 struct pool_workqueue *old_pwq; 3915 3916 lockdep_assert_held(&wq_pool_mutex); 3917 lockdep_assert_held(&wq->mutex); 3918 3919 /* link_pwq() can handle duplicate calls */ 3920 link_pwq(pwq); 3921 3922 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3923 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3924 return old_pwq; 3925 } 3926 3927 /* context to store the prepared attrs & pwqs before applying */ 3928 struct apply_wqattrs_ctx { 3929 struct workqueue_struct *wq; /* target workqueue */ 3930 struct workqueue_attrs *attrs; /* attrs to apply */ 3931 struct list_head list; /* queued for batching commit */ 3932 struct pool_workqueue *dfl_pwq; 3933 struct pool_workqueue *pwq_tbl[]; 3934 }; 3935 3936 /* free the resources after success or abort */ 3937 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3938 { 3939 if (ctx) { 3940 int node; 3941 3942 for_each_node(node) 3943 put_pwq_unlocked(ctx->pwq_tbl[node]); 3944 put_pwq_unlocked(ctx->dfl_pwq); 3945 3946 free_workqueue_attrs(ctx->attrs); 3947 3948 kfree(ctx); 3949 } 3950 } 3951 3952 /* allocate the attrs and pwqs for later installation */ 3953 static struct apply_wqattrs_ctx * 3954 apply_wqattrs_prepare(struct workqueue_struct *wq, 3955 const struct workqueue_attrs *attrs) 3956 { 3957 struct apply_wqattrs_ctx *ctx; 3958 struct workqueue_attrs *new_attrs, *tmp_attrs; 3959 int node; 3960 3961 lockdep_assert_held(&wq_pool_mutex); 3962 3963 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 3964 3965 new_attrs = alloc_workqueue_attrs(); 3966 tmp_attrs = alloc_workqueue_attrs(); 3967 if (!ctx || !new_attrs || !tmp_attrs) 3968 goto out_free; 3969 3970 /* 3971 * Calculate the attrs of the default pwq. 3972 * If the user configured cpumask doesn't overlap with the 3973 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3974 */ 3975 copy_workqueue_attrs(new_attrs, attrs); 3976 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3977 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3978 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3979 3980 /* 3981 * We may create multiple pwqs with differing cpumasks. Make a 3982 * copy of @new_attrs which will be modified and used to obtain 3983 * pools. 3984 */ 3985 copy_workqueue_attrs(tmp_attrs, new_attrs); 3986 3987 /* 3988 * If something goes wrong during CPU up/down, we'll fall back to 3989 * the default pwq covering whole @attrs->cpumask. Always create 3990 * it even if we don't use it immediately. 3991 */ 3992 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3993 if (!ctx->dfl_pwq) 3994 goto out_free; 3995 3996 for_each_node(node) { 3997 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3998 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3999 if (!ctx->pwq_tbl[node]) 4000 goto out_free; 4001 } else { 4002 ctx->dfl_pwq->refcnt++; 4003 ctx->pwq_tbl[node] = ctx->dfl_pwq; 4004 } 4005 } 4006 4007 /* save the user configured attrs and sanitize it. */ 4008 copy_workqueue_attrs(new_attrs, attrs); 4009 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 4010 ctx->attrs = new_attrs; 4011 4012 ctx->wq = wq; 4013 free_workqueue_attrs(tmp_attrs); 4014 return ctx; 4015 4016 out_free: 4017 free_workqueue_attrs(tmp_attrs); 4018 free_workqueue_attrs(new_attrs); 4019 apply_wqattrs_cleanup(ctx); 4020 return NULL; 4021 } 4022 4023 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 4024 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 4025 { 4026 int node; 4027 4028 /* all pwqs have been created successfully, let's install'em */ 4029 mutex_lock(&ctx->wq->mutex); 4030 4031 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 4032 4033 /* save the previous pwq and install the new one */ 4034 for_each_node(node) 4035 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 4036 ctx->pwq_tbl[node]); 4037 4038 /* @dfl_pwq might not have been used, ensure it's linked */ 4039 link_pwq(ctx->dfl_pwq); 4040 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 4041 4042 mutex_unlock(&ctx->wq->mutex); 4043 } 4044 4045 static void apply_wqattrs_lock(void) 4046 { 4047 /* CPUs should stay stable across pwq creations and installations */ 4048 cpus_read_lock(); 4049 mutex_lock(&wq_pool_mutex); 4050 } 4051 4052 static void apply_wqattrs_unlock(void) 4053 { 4054 mutex_unlock(&wq_pool_mutex); 4055 cpus_read_unlock(); 4056 } 4057 4058 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 4059 const struct workqueue_attrs *attrs) 4060 { 4061 struct apply_wqattrs_ctx *ctx; 4062 4063 /* only unbound workqueues can change attributes */ 4064 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 4065 return -EINVAL; 4066 4067 /* creating multiple pwqs breaks ordering guarantee */ 4068 if (!list_empty(&wq->pwqs)) { 4069 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4070 return -EINVAL; 4071 4072 wq->flags &= ~__WQ_ORDERED; 4073 } 4074 4075 ctx = apply_wqattrs_prepare(wq, attrs); 4076 if (!ctx) 4077 return -ENOMEM; 4078 4079 /* the ctx has been prepared successfully, let's commit it */ 4080 apply_wqattrs_commit(ctx); 4081 apply_wqattrs_cleanup(ctx); 4082 4083 return 0; 4084 } 4085 4086 /** 4087 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4088 * @wq: the target workqueue 4089 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4090 * 4091 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 4092 * machines, this function maps a separate pwq to each NUMA node with 4093 * possibles CPUs in @attrs->cpumask so that work items are affine to the 4094 * NUMA node it was issued on. Older pwqs are released as in-flight work 4095 * items finish. Note that a work item which repeatedly requeues itself 4096 * back-to-back will stay on its current pwq. 4097 * 4098 * Performs GFP_KERNEL allocations. 4099 * 4100 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). 4101 * 4102 * Return: 0 on success and -errno on failure. 4103 */ 4104 int apply_workqueue_attrs(struct workqueue_struct *wq, 4105 const struct workqueue_attrs *attrs) 4106 { 4107 int ret; 4108 4109 lockdep_assert_cpus_held(); 4110 4111 mutex_lock(&wq_pool_mutex); 4112 ret = apply_workqueue_attrs_locked(wq, attrs); 4113 mutex_unlock(&wq_pool_mutex); 4114 4115 return ret; 4116 } 4117 4118 /** 4119 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4120 * @wq: the target workqueue 4121 * @cpu: the CPU coming up or going down 4122 * @online: whether @cpu is coming up or going down 4123 * 4124 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4125 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4126 * @wq accordingly. 4127 * 4128 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4129 * falls back to @wq->dfl_pwq which may not be optimal but is always 4130 * correct. 4131 * 4132 * Note that when the last allowed CPU of a NUMA node goes offline for a 4133 * workqueue with a cpumask spanning multiple nodes, the workers which were 4134 * already executing the work items for the workqueue will lose their CPU 4135 * affinity and may execute on any CPU. This is similar to how per-cpu 4136 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4137 * affinity, it's the user's responsibility to flush the work item from 4138 * CPU_DOWN_PREPARE. 4139 */ 4140 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4141 bool online) 4142 { 4143 int node = cpu_to_node(cpu); 4144 int cpu_off = online ? -1 : cpu; 4145 struct pool_workqueue *old_pwq = NULL, *pwq; 4146 struct workqueue_attrs *target_attrs; 4147 cpumask_t *cpumask; 4148 4149 lockdep_assert_held(&wq_pool_mutex); 4150 4151 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 4152 wq->unbound_attrs->no_numa) 4153 return; 4154 4155 /* 4156 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4157 * Let's use a preallocated one. The following buf is protected by 4158 * CPU hotplug exclusion. 4159 */ 4160 target_attrs = wq_update_unbound_numa_attrs_buf; 4161 cpumask = target_attrs->cpumask; 4162 4163 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4164 pwq = unbound_pwq_by_node(wq, node); 4165 4166 /* 4167 * Let's determine what needs to be done. If the target cpumask is 4168 * different from the default pwq's, we need to compare it to @pwq's 4169 * and create a new one if they don't match. If the target cpumask 4170 * equals the default pwq's, the default pwq should be used. 4171 */ 4172 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4173 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4174 return; 4175 } else { 4176 goto use_dfl_pwq; 4177 } 4178 4179 /* create a new pwq */ 4180 pwq = alloc_unbound_pwq(wq, target_attrs); 4181 if (!pwq) { 4182 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4183 wq->name); 4184 goto use_dfl_pwq; 4185 } 4186 4187 /* Install the new pwq. */ 4188 mutex_lock(&wq->mutex); 4189 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4190 goto out_unlock; 4191 4192 use_dfl_pwq: 4193 mutex_lock(&wq->mutex); 4194 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock); 4195 get_pwq(wq->dfl_pwq); 4196 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4197 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4198 out_unlock: 4199 mutex_unlock(&wq->mutex); 4200 put_pwq_unlocked(old_pwq); 4201 } 4202 4203 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4204 { 4205 bool highpri = wq->flags & WQ_HIGHPRI; 4206 int cpu, ret; 4207 4208 if (!(wq->flags & WQ_UNBOUND)) { 4209 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4210 if (!wq->cpu_pwqs) 4211 return -ENOMEM; 4212 4213 for_each_possible_cpu(cpu) { 4214 struct pool_workqueue *pwq = 4215 per_cpu_ptr(wq->cpu_pwqs, cpu); 4216 struct worker_pool *cpu_pools = 4217 per_cpu(cpu_worker_pools, cpu); 4218 4219 init_pwq(pwq, wq, &cpu_pools[highpri]); 4220 4221 mutex_lock(&wq->mutex); 4222 link_pwq(pwq); 4223 mutex_unlock(&wq->mutex); 4224 } 4225 return 0; 4226 } 4227 4228 cpus_read_lock(); 4229 if (wq->flags & __WQ_ORDERED) { 4230 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4231 /* there should only be single pwq for ordering guarantee */ 4232 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4233 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4234 "ordering guarantee broken for workqueue %s\n", wq->name); 4235 } else { 4236 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4237 } 4238 cpus_read_unlock(); 4239 4240 return ret; 4241 } 4242 4243 static int wq_clamp_max_active(int max_active, unsigned int flags, 4244 const char *name) 4245 { 4246 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4247 4248 if (max_active < 1 || max_active > lim) 4249 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4250 max_active, name, 1, lim); 4251 4252 return clamp_val(max_active, 1, lim); 4253 } 4254 4255 /* 4256 * Workqueues which may be used during memory reclaim should have a rescuer 4257 * to guarantee forward progress. 4258 */ 4259 static int init_rescuer(struct workqueue_struct *wq) 4260 { 4261 struct worker *rescuer; 4262 int ret; 4263 4264 if (!(wq->flags & WQ_MEM_RECLAIM)) 4265 return 0; 4266 4267 rescuer = alloc_worker(NUMA_NO_NODE); 4268 if (!rescuer) 4269 return -ENOMEM; 4270 4271 rescuer->rescue_wq = wq; 4272 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4273 if (IS_ERR(rescuer->task)) { 4274 ret = PTR_ERR(rescuer->task); 4275 kfree(rescuer); 4276 return ret; 4277 } 4278 4279 wq->rescuer = rescuer; 4280 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4281 wake_up_process(rescuer->task); 4282 4283 return 0; 4284 } 4285 4286 __printf(1, 4) 4287 struct workqueue_struct *alloc_workqueue(const char *fmt, 4288 unsigned int flags, 4289 int max_active, ...) 4290 { 4291 size_t tbl_size = 0; 4292 va_list args; 4293 struct workqueue_struct *wq; 4294 struct pool_workqueue *pwq; 4295 4296 /* 4297 * Unbound && max_active == 1 used to imply ordered, which is no 4298 * longer the case on NUMA machines due to per-node pools. While 4299 * alloc_ordered_workqueue() is the right way to create an ordered 4300 * workqueue, keep the previous behavior to avoid subtle breakages 4301 * on NUMA. 4302 */ 4303 if ((flags & WQ_UNBOUND) && max_active == 1) 4304 flags |= __WQ_ORDERED; 4305 4306 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4307 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4308 flags |= WQ_UNBOUND; 4309 4310 /* allocate wq and format name */ 4311 if (flags & WQ_UNBOUND) 4312 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4313 4314 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4315 if (!wq) 4316 return NULL; 4317 4318 if (flags & WQ_UNBOUND) { 4319 wq->unbound_attrs = alloc_workqueue_attrs(); 4320 if (!wq->unbound_attrs) 4321 goto err_free_wq; 4322 } 4323 4324 va_start(args, max_active); 4325 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4326 va_end(args); 4327 4328 max_active = max_active ?: WQ_DFL_ACTIVE; 4329 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4330 4331 /* init wq */ 4332 wq->flags = flags; 4333 wq->saved_max_active = max_active; 4334 mutex_init(&wq->mutex); 4335 atomic_set(&wq->nr_pwqs_to_flush, 0); 4336 INIT_LIST_HEAD(&wq->pwqs); 4337 INIT_LIST_HEAD(&wq->flusher_queue); 4338 INIT_LIST_HEAD(&wq->flusher_overflow); 4339 INIT_LIST_HEAD(&wq->maydays); 4340 4341 wq_init_lockdep(wq); 4342 INIT_LIST_HEAD(&wq->list); 4343 4344 if (alloc_and_link_pwqs(wq) < 0) 4345 goto err_unreg_lockdep; 4346 4347 if (wq_online && init_rescuer(wq) < 0) 4348 goto err_destroy; 4349 4350 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4351 goto err_destroy; 4352 4353 /* 4354 * wq_pool_mutex protects global freeze state and workqueues list. 4355 * Grab it, adjust max_active and add the new @wq to workqueues 4356 * list. 4357 */ 4358 mutex_lock(&wq_pool_mutex); 4359 4360 mutex_lock(&wq->mutex); 4361 for_each_pwq(pwq, wq) 4362 pwq_adjust_max_active(pwq); 4363 mutex_unlock(&wq->mutex); 4364 4365 list_add_tail_rcu(&wq->list, &workqueues); 4366 4367 mutex_unlock(&wq_pool_mutex); 4368 4369 return wq; 4370 4371 err_unreg_lockdep: 4372 wq_unregister_lockdep(wq); 4373 wq_free_lockdep(wq); 4374 err_free_wq: 4375 free_workqueue_attrs(wq->unbound_attrs); 4376 kfree(wq); 4377 return NULL; 4378 err_destroy: 4379 destroy_workqueue(wq); 4380 return NULL; 4381 } 4382 EXPORT_SYMBOL_GPL(alloc_workqueue); 4383 4384 static bool pwq_busy(struct pool_workqueue *pwq) 4385 { 4386 int i; 4387 4388 for (i = 0; i < WORK_NR_COLORS; i++) 4389 if (pwq->nr_in_flight[i]) 4390 return true; 4391 4392 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1)) 4393 return true; 4394 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) 4395 return true; 4396 4397 return false; 4398 } 4399 4400 /** 4401 * destroy_workqueue - safely terminate a workqueue 4402 * @wq: target workqueue 4403 * 4404 * Safely destroy a workqueue. All work currently pending will be done first. 4405 */ 4406 void destroy_workqueue(struct workqueue_struct *wq) 4407 { 4408 struct pool_workqueue *pwq; 4409 int node; 4410 4411 /* 4412 * Remove it from sysfs first so that sanity check failure doesn't 4413 * lead to sysfs name conflicts. 4414 */ 4415 workqueue_sysfs_unregister(wq); 4416 4417 /* drain it before proceeding with destruction */ 4418 drain_workqueue(wq); 4419 4420 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 4421 if (wq->rescuer) { 4422 struct worker *rescuer = wq->rescuer; 4423 4424 /* this prevents new queueing */ 4425 raw_spin_lock_irq(&wq_mayday_lock); 4426 wq->rescuer = NULL; 4427 raw_spin_unlock_irq(&wq_mayday_lock); 4428 4429 /* rescuer will empty maydays list before exiting */ 4430 kthread_stop(rescuer->task); 4431 kfree(rescuer); 4432 } 4433 4434 /* 4435 * Sanity checks - grab all the locks so that we wait for all 4436 * in-flight operations which may do put_pwq(). 4437 */ 4438 mutex_lock(&wq_pool_mutex); 4439 mutex_lock(&wq->mutex); 4440 for_each_pwq(pwq, wq) { 4441 raw_spin_lock_irq(&pwq->pool->lock); 4442 if (WARN_ON(pwq_busy(pwq))) { 4443 pr_warn("%s: %s has the following busy pwq\n", 4444 __func__, wq->name); 4445 show_pwq(pwq); 4446 raw_spin_unlock_irq(&pwq->pool->lock); 4447 mutex_unlock(&wq->mutex); 4448 mutex_unlock(&wq_pool_mutex); 4449 show_one_workqueue(wq); 4450 return; 4451 } 4452 raw_spin_unlock_irq(&pwq->pool->lock); 4453 } 4454 mutex_unlock(&wq->mutex); 4455 4456 /* 4457 * wq list is used to freeze wq, remove from list after 4458 * flushing is complete in case freeze races us. 4459 */ 4460 list_del_rcu(&wq->list); 4461 mutex_unlock(&wq_pool_mutex); 4462 4463 if (!(wq->flags & WQ_UNBOUND)) { 4464 wq_unregister_lockdep(wq); 4465 /* 4466 * The base ref is never dropped on per-cpu pwqs. Directly 4467 * schedule RCU free. 4468 */ 4469 call_rcu(&wq->rcu, rcu_free_wq); 4470 } else { 4471 /* 4472 * We're the sole accessor of @wq at this point. Directly 4473 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4474 * @wq will be freed when the last pwq is released. 4475 */ 4476 for_each_node(node) { 4477 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4478 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4479 put_pwq_unlocked(pwq); 4480 } 4481 4482 /* 4483 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4484 * put. Don't access it afterwards. 4485 */ 4486 pwq = wq->dfl_pwq; 4487 wq->dfl_pwq = NULL; 4488 put_pwq_unlocked(pwq); 4489 } 4490 } 4491 EXPORT_SYMBOL_GPL(destroy_workqueue); 4492 4493 /** 4494 * workqueue_set_max_active - adjust max_active of a workqueue 4495 * @wq: target workqueue 4496 * @max_active: new max_active value. 4497 * 4498 * Set max_active of @wq to @max_active. 4499 * 4500 * CONTEXT: 4501 * Don't call from IRQ context. 4502 */ 4503 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4504 { 4505 struct pool_workqueue *pwq; 4506 4507 /* disallow meddling with max_active for ordered workqueues */ 4508 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4509 return; 4510 4511 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4512 4513 mutex_lock(&wq->mutex); 4514 4515 wq->flags &= ~__WQ_ORDERED; 4516 wq->saved_max_active = max_active; 4517 4518 for_each_pwq(pwq, wq) 4519 pwq_adjust_max_active(pwq); 4520 4521 mutex_unlock(&wq->mutex); 4522 } 4523 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4524 4525 /** 4526 * current_work - retrieve %current task's work struct 4527 * 4528 * Determine if %current task is a workqueue worker and what it's working on. 4529 * Useful to find out the context that the %current task is running in. 4530 * 4531 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4532 */ 4533 struct work_struct *current_work(void) 4534 { 4535 struct worker *worker = current_wq_worker(); 4536 4537 return worker ? worker->current_work : NULL; 4538 } 4539 EXPORT_SYMBOL(current_work); 4540 4541 /** 4542 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4543 * 4544 * Determine whether %current is a workqueue rescuer. Can be used from 4545 * work functions to determine whether it's being run off the rescuer task. 4546 * 4547 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4548 */ 4549 bool current_is_workqueue_rescuer(void) 4550 { 4551 struct worker *worker = current_wq_worker(); 4552 4553 return worker && worker->rescue_wq; 4554 } 4555 4556 /** 4557 * workqueue_congested - test whether a workqueue is congested 4558 * @cpu: CPU in question 4559 * @wq: target workqueue 4560 * 4561 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4562 * no synchronization around this function and the test result is 4563 * unreliable and only useful as advisory hints or for debugging. 4564 * 4565 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4566 * Note that both per-cpu and unbound workqueues may be associated with 4567 * multiple pool_workqueues which have separate congested states. A 4568 * workqueue being congested on one CPU doesn't mean the workqueue is also 4569 * contested on other CPUs / NUMA nodes. 4570 * 4571 * Return: 4572 * %true if congested, %false otherwise. 4573 */ 4574 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4575 { 4576 struct pool_workqueue *pwq; 4577 bool ret; 4578 4579 rcu_read_lock(); 4580 preempt_disable(); 4581 4582 if (cpu == WORK_CPU_UNBOUND) 4583 cpu = smp_processor_id(); 4584 4585 if (!(wq->flags & WQ_UNBOUND)) 4586 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4587 else 4588 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4589 4590 ret = !list_empty(&pwq->inactive_works); 4591 preempt_enable(); 4592 rcu_read_unlock(); 4593 4594 return ret; 4595 } 4596 EXPORT_SYMBOL_GPL(workqueue_congested); 4597 4598 /** 4599 * work_busy - test whether a work is currently pending or running 4600 * @work: the work to be tested 4601 * 4602 * Test whether @work is currently pending or running. There is no 4603 * synchronization around this function and the test result is 4604 * unreliable and only useful as advisory hints or for debugging. 4605 * 4606 * Return: 4607 * OR'd bitmask of WORK_BUSY_* bits. 4608 */ 4609 unsigned int work_busy(struct work_struct *work) 4610 { 4611 struct worker_pool *pool; 4612 unsigned long flags; 4613 unsigned int ret = 0; 4614 4615 if (work_pending(work)) 4616 ret |= WORK_BUSY_PENDING; 4617 4618 rcu_read_lock(); 4619 pool = get_work_pool(work); 4620 if (pool) { 4621 raw_spin_lock_irqsave(&pool->lock, flags); 4622 if (find_worker_executing_work(pool, work)) 4623 ret |= WORK_BUSY_RUNNING; 4624 raw_spin_unlock_irqrestore(&pool->lock, flags); 4625 } 4626 rcu_read_unlock(); 4627 4628 return ret; 4629 } 4630 EXPORT_SYMBOL_GPL(work_busy); 4631 4632 /** 4633 * set_worker_desc - set description for the current work item 4634 * @fmt: printf-style format string 4635 * @...: arguments for the format string 4636 * 4637 * This function can be called by a running work function to describe what 4638 * the work item is about. If the worker task gets dumped, this 4639 * information will be printed out together to help debugging. The 4640 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4641 */ 4642 void set_worker_desc(const char *fmt, ...) 4643 { 4644 struct worker *worker = current_wq_worker(); 4645 va_list args; 4646 4647 if (worker) { 4648 va_start(args, fmt); 4649 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4650 va_end(args); 4651 } 4652 } 4653 EXPORT_SYMBOL_GPL(set_worker_desc); 4654 4655 /** 4656 * print_worker_info - print out worker information and description 4657 * @log_lvl: the log level to use when printing 4658 * @task: target task 4659 * 4660 * If @task is a worker and currently executing a work item, print out the 4661 * name of the workqueue being serviced and worker description set with 4662 * set_worker_desc() by the currently executing work item. 4663 * 4664 * This function can be safely called on any task as long as the 4665 * task_struct itself is accessible. While safe, this function isn't 4666 * synchronized and may print out mixups or garbages of limited length. 4667 */ 4668 void print_worker_info(const char *log_lvl, struct task_struct *task) 4669 { 4670 work_func_t *fn = NULL; 4671 char name[WQ_NAME_LEN] = { }; 4672 char desc[WORKER_DESC_LEN] = { }; 4673 struct pool_workqueue *pwq = NULL; 4674 struct workqueue_struct *wq = NULL; 4675 struct worker *worker; 4676 4677 if (!(task->flags & PF_WQ_WORKER)) 4678 return; 4679 4680 /* 4681 * This function is called without any synchronization and @task 4682 * could be in any state. Be careful with dereferences. 4683 */ 4684 worker = kthread_probe_data(task); 4685 4686 /* 4687 * Carefully copy the associated workqueue's workfn, name and desc. 4688 * Keep the original last '\0' in case the original is garbage. 4689 */ 4690 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 4691 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 4692 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 4693 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 4694 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 4695 4696 if (fn || name[0] || desc[0]) { 4697 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 4698 if (strcmp(name, desc)) 4699 pr_cont(" (%s)", desc); 4700 pr_cont("\n"); 4701 } 4702 } 4703 4704 static void pr_cont_pool_info(struct worker_pool *pool) 4705 { 4706 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4707 if (pool->node != NUMA_NO_NODE) 4708 pr_cont(" node=%d", pool->node); 4709 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4710 } 4711 4712 static void pr_cont_work(bool comma, struct work_struct *work) 4713 { 4714 if (work->func == wq_barrier_func) { 4715 struct wq_barrier *barr; 4716 4717 barr = container_of(work, struct wq_barrier, work); 4718 4719 pr_cont("%s BAR(%d)", comma ? "," : "", 4720 task_pid_nr(barr->task)); 4721 } else { 4722 pr_cont("%s %ps", comma ? "," : "", work->func); 4723 } 4724 } 4725 4726 static void show_pwq(struct pool_workqueue *pwq) 4727 { 4728 struct worker_pool *pool = pwq->pool; 4729 struct work_struct *work; 4730 struct worker *worker; 4731 bool has_in_flight = false, has_pending = false; 4732 int bkt; 4733 4734 pr_info(" pwq %d:", pool->id); 4735 pr_cont_pool_info(pool); 4736 4737 pr_cont(" active=%d/%d refcnt=%d%s\n", 4738 pwq->nr_active, pwq->max_active, pwq->refcnt, 4739 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4740 4741 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4742 if (worker->current_pwq == pwq) { 4743 has_in_flight = true; 4744 break; 4745 } 4746 } 4747 if (has_in_flight) { 4748 bool comma = false; 4749 4750 pr_info(" in-flight:"); 4751 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4752 if (worker->current_pwq != pwq) 4753 continue; 4754 4755 pr_cont("%s %d%s:%ps", comma ? "," : "", 4756 task_pid_nr(worker->task), 4757 worker->rescue_wq ? "(RESCUER)" : "", 4758 worker->current_func); 4759 list_for_each_entry(work, &worker->scheduled, entry) 4760 pr_cont_work(false, work); 4761 comma = true; 4762 } 4763 pr_cont("\n"); 4764 } 4765 4766 list_for_each_entry(work, &pool->worklist, entry) { 4767 if (get_work_pwq(work) == pwq) { 4768 has_pending = true; 4769 break; 4770 } 4771 } 4772 if (has_pending) { 4773 bool comma = false; 4774 4775 pr_info(" pending:"); 4776 list_for_each_entry(work, &pool->worklist, entry) { 4777 if (get_work_pwq(work) != pwq) 4778 continue; 4779 4780 pr_cont_work(comma, work); 4781 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4782 } 4783 pr_cont("\n"); 4784 } 4785 4786 if (!list_empty(&pwq->inactive_works)) { 4787 bool comma = false; 4788 4789 pr_info(" inactive:"); 4790 list_for_each_entry(work, &pwq->inactive_works, entry) { 4791 pr_cont_work(comma, work); 4792 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4793 } 4794 pr_cont("\n"); 4795 } 4796 } 4797 4798 /** 4799 * show_one_workqueue - dump state of specified workqueue 4800 * @wq: workqueue whose state will be printed 4801 */ 4802 void show_one_workqueue(struct workqueue_struct *wq) 4803 { 4804 struct pool_workqueue *pwq; 4805 bool idle = true; 4806 unsigned long flags; 4807 4808 for_each_pwq(pwq, wq) { 4809 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 4810 idle = false; 4811 break; 4812 } 4813 } 4814 if (idle) /* Nothing to print for idle workqueue */ 4815 return; 4816 4817 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4818 4819 for_each_pwq(pwq, wq) { 4820 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 4821 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 4822 /* 4823 * Defer printing to avoid deadlocks in console 4824 * drivers that queue work while holding locks 4825 * also taken in their write paths. 4826 */ 4827 printk_deferred_enter(); 4828 show_pwq(pwq); 4829 printk_deferred_exit(); 4830 } 4831 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 4832 /* 4833 * We could be printing a lot from atomic context, e.g. 4834 * sysrq-t -> show_all_workqueues(). Avoid triggering 4835 * hard lockup. 4836 */ 4837 touch_nmi_watchdog(); 4838 } 4839 4840 } 4841 4842 /** 4843 * show_one_worker_pool - dump state of specified worker pool 4844 * @pool: worker pool whose state will be printed 4845 */ 4846 static void show_one_worker_pool(struct worker_pool *pool) 4847 { 4848 struct worker *worker; 4849 bool first = true; 4850 unsigned long flags; 4851 4852 raw_spin_lock_irqsave(&pool->lock, flags); 4853 if (pool->nr_workers == pool->nr_idle) 4854 goto next_pool; 4855 /* 4856 * Defer printing to avoid deadlocks in console drivers that 4857 * queue work while holding locks also taken in their write 4858 * paths. 4859 */ 4860 printk_deferred_enter(); 4861 pr_info("pool %d:", pool->id); 4862 pr_cont_pool_info(pool); 4863 pr_cont(" hung=%us workers=%d", 4864 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4865 pool->nr_workers); 4866 if (pool->manager) 4867 pr_cont(" manager: %d", 4868 task_pid_nr(pool->manager->task)); 4869 list_for_each_entry(worker, &pool->idle_list, entry) { 4870 pr_cont(" %s%d", first ? "idle: " : "", 4871 task_pid_nr(worker->task)); 4872 first = false; 4873 } 4874 pr_cont("\n"); 4875 printk_deferred_exit(); 4876 next_pool: 4877 raw_spin_unlock_irqrestore(&pool->lock, flags); 4878 /* 4879 * We could be printing a lot from atomic context, e.g. 4880 * sysrq-t -> show_all_workqueues(). Avoid triggering 4881 * hard lockup. 4882 */ 4883 touch_nmi_watchdog(); 4884 4885 } 4886 4887 /** 4888 * show_all_workqueues - dump workqueue state 4889 * 4890 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4891 * all busy workqueues and pools. 4892 */ 4893 void show_all_workqueues(void) 4894 { 4895 struct workqueue_struct *wq; 4896 struct worker_pool *pool; 4897 int pi; 4898 4899 rcu_read_lock(); 4900 4901 pr_info("Showing busy workqueues and worker pools:\n"); 4902 4903 list_for_each_entry_rcu(wq, &workqueues, list) 4904 show_one_workqueue(wq); 4905 4906 for_each_pool(pool, pi) 4907 show_one_worker_pool(pool); 4908 4909 rcu_read_unlock(); 4910 } 4911 4912 /* used to show worker information through /proc/PID/{comm,stat,status} */ 4913 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 4914 { 4915 int off; 4916 4917 /* always show the actual comm */ 4918 off = strscpy(buf, task->comm, size); 4919 if (off < 0) 4920 return; 4921 4922 /* stabilize PF_WQ_WORKER and worker pool association */ 4923 mutex_lock(&wq_pool_attach_mutex); 4924 4925 if (task->flags & PF_WQ_WORKER) { 4926 struct worker *worker = kthread_data(task); 4927 struct worker_pool *pool = worker->pool; 4928 4929 if (pool) { 4930 raw_spin_lock_irq(&pool->lock); 4931 /* 4932 * ->desc tracks information (wq name or 4933 * set_worker_desc()) for the latest execution. If 4934 * current, prepend '+', otherwise '-'. 4935 */ 4936 if (worker->desc[0] != '\0') { 4937 if (worker->current_work) 4938 scnprintf(buf + off, size - off, "+%s", 4939 worker->desc); 4940 else 4941 scnprintf(buf + off, size - off, "-%s", 4942 worker->desc); 4943 } 4944 raw_spin_unlock_irq(&pool->lock); 4945 } 4946 } 4947 4948 mutex_unlock(&wq_pool_attach_mutex); 4949 } 4950 4951 #ifdef CONFIG_SMP 4952 4953 /* 4954 * CPU hotplug. 4955 * 4956 * There are two challenges in supporting CPU hotplug. Firstly, there 4957 * are a lot of assumptions on strong associations among work, pwq and 4958 * pool which make migrating pending and scheduled works very 4959 * difficult to implement without impacting hot paths. Secondly, 4960 * worker pools serve mix of short, long and very long running works making 4961 * blocked draining impractical. 4962 * 4963 * This is solved by allowing the pools to be disassociated from the CPU 4964 * running as an unbound one and allowing it to be reattached later if the 4965 * cpu comes back online. 4966 */ 4967 4968 static void unbind_workers(int cpu) 4969 { 4970 struct worker_pool *pool; 4971 struct worker *worker; 4972 4973 for_each_cpu_worker_pool(pool, cpu) { 4974 mutex_lock(&wq_pool_attach_mutex); 4975 raw_spin_lock_irq(&pool->lock); 4976 4977 /* 4978 * We've blocked all attach/detach operations. Make all workers 4979 * unbound and set DISASSOCIATED. Before this, all workers 4980 * must be on the cpu. After this, they may become diasporas. 4981 * And the preemption disabled section in their sched callbacks 4982 * are guaranteed to see WORKER_UNBOUND since the code here 4983 * is on the same cpu. 4984 */ 4985 for_each_pool_worker(worker, pool) 4986 worker->flags |= WORKER_UNBOUND; 4987 4988 pool->flags |= POOL_DISASSOCIATED; 4989 4990 /* 4991 * The handling of nr_running in sched callbacks are disabled 4992 * now. Zap nr_running. After this, nr_running stays zero and 4993 * need_more_worker() and keep_working() are always true as 4994 * long as the worklist is not empty. This pool now behaves as 4995 * an unbound (in terms of concurrency management) pool which 4996 * are served by workers tied to the pool. 4997 */ 4998 pool->nr_running = 0; 4999 5000 /* 5001 * With concurrency management just turned off, a busy 5002 * worker blocking could lead to lengthy stalls. Kick off 5003 * unbound chain execution of currently pending work items. 5004 */ 5005 wake_up_worker(pool); 5006 5007 raw_spin_unlock_irq(&pool->lock); 5008 5009 for_each_pool_worker(worker, pool) { 5010 kthread_set_per_cpu(worker->task, -1); 5011 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 5012 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 5013 else 5014 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 5015 } 5016 5017 mutex_unlock(&wq_pool_attach_mutex); 5018 } 5019 } 5020 5021 /** 5022 * rebind_workers - rebind all workers of a pool to the associated CPU 5023 * @pool: pool of interest 5024 * 5025 * @pool->cpu is coming online. Rebind all workers to the CPU. 5026 */ 5027 static void rebind_workers(struct worker_pool *pool) 5028 { 5029 struct worker *worker; 5030 5031 lockdep_assert_held(&wq_pool_attach_mutex); 5032 5033 /* 5034 * Restore CPU affinity of all workers. As all idle workers should 5035 * be on the run-queue of the associated CPU before any local 5036 * wake-ups for concurrency management happen, restore CPU affinity 5037 * of all workers first and then clear UNBOUND. As we're called 5038 * from CPU_ONLINE, the following shouldn't fail. 5039 */ 5040 for_each_pool_worker(worker, pool) { 5041 kthread_set_per_cpu(worker->task, pool->cpu); 5042 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 5043 pool->attrs->cpumask) < 0); 5044 } 5045 5046 raw_spin_lock_irq(&pool->lock); 5047 5048 pool->flags &= ~POOL_DISASSOCIATED; 5049 5050 for_each_pool_worker(worker, pool) { 5051 unsigned int worker_flags = worker->flags; 5052 5053 /* 5054 * We want to clear UNBOUND but can't directly call 5055 * worker_clr_flags() or adjust nr_running. Atomically 5056 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 5057 * @worker will clear REBOUND using worker_clr_flags() when 5058 * it initiates the next execution cycle thus restoring 5059 * concurrency management. Note that when or whether 5060 * @worker clears REBOUND doesn't affect correctness. 5061 * 5062 * WRITE_ONCE() is necessary because @worker->flags may be 5063 * tested without holding any lock in 5064 * wq_worker_running(). Without it, NOT_RUNNING test may 5065 * fail incorrectly leading to premature concurrency 5066 * management operations. 5067 */ 5068 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 5069 worker_flags |= WORKER_REBOUND; 5070 worker_flags &= ~WORKER_UNBOUND; 5071 WRITE_ONCE(worker->flags, worker_flags); 5072 } 5073 5074 raw_spin_unlock_irq(&pool->lock); 5075 } 5076 5077 /** 5078 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 5079 * @pool: unbound pool of interest 5080 * @cpu: the CPU which is coming up 5081 * 5082 * An unbound pool may end up with a cpumask which doesn't have any online 5083 * CPUs. When a worker of such pool get scheduled, the scheduler resets 5084 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 5085 * online CPU before, cpus_allowed of all its workers should be restored. 5086 */ 5087 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 5088 { 5089 static cpumask_t cpumask; 5090 struct worker *worker; 5091 5092 lockdep_assert_held(&wq_pool_attach_mutex); 5093 5094 /* is @cpu allowed for @pool? */ 5095 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 5096 return; 5097 5098 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 5099 5100 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 5101 for_each_pool_worker(worker, pool) 5102 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 5103 } 5104 5105 int workqueue_prepare_cpu(unsigned int cpu) 5106 { 5107 struct worker_pool *pool; 5108 5109 for_each_cpu_worker_pool(pool, cpu) { 5110 if (pool->nr_workers) 5111 continue; 5112 if (!create_worker(pool)) 5113 return -ENOMEM; 5114 } 5115 return 0; 5116 } 5117 5118 int workqueue_online_cpu(unsigned int cpu) 5119 { 5120 struct worker_pool *pool; 5121 struct workqueue_struct *wq; 5122 int pi; 5123 5124 mutex_lock(&wq_pool_mutex); 5125 5126 for_each_pool(pool, pi) { 5127 mutex_lock(&wq_pool_attach_mutex); 5128 5129 if (pool->cpu == cpu) 5130 rebind_workers(pool); 5131 else if (pool->cpu < 0) 5132 restore_unbound_workers_cpumask(pool, cpu); 5133 5134 mutex_unlock(&wq_pool_attach_mutex); 5135 } 5136 5137 /* update NUMA affinity of unbound workqueues */ 5138 list_for_each_entry(wq, &workqueues, list) 5139 wq_update_unbound_numa(wq, cpu, true); 5140 5141 mutex_unlock(&wq_pool_mutex); 5142 return 0; 5143 } 5144 5145 int workqueue_offline_cpu(unsigned int cpu) 5146 { 5147 struct workqueue_struct *wq; 5148 5149 /* unbinding per-cpu workers should happen on the local CPU */ 5150 if (WARN_ON(cpu != smp_processor_id())) 5151 return -1; 5152 5153 unbind_workers(cpu); 5154 5155 /* update NUMA affinity of unbound workqueues */ 5156 mutex_lock(&wq_pool_mutex); 5157 list_for_each_entry(wq, &workqueues, list) 5158 wq_update_unbound_numa(wq, cpu, false); 5159 mutex_unlock(&wq_pool_mutex); 5160 5161 return 0; 5162 } 5163 5164 struct work_for_cpu { 5165 struct work_struct work; 5166 long (*fn)(void *); 5167 void *arg; 5168 long ret; 5169 }; 5170 5171 static void work_for_cpu_fn(struct work_struct *work) 5172 { 5173 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5174 5175 wfc->ret = wfc->fn(wfc->arg); 5176 } 5177 5178 /** 5179 * work_on_cpu - run a function in thread context on a particular cpu 5180 * @cpu: the cpu to run on 5181 * @fn: the function to run 5182 * @arg: the function arg 5183 * 5184 * It is up to the caller to ensure that the cpu doesn't go offline. 5185 * The caller must not hold any locks which would prevent @fn from completing. 5186 * 5187 * Return: The value @fn returns. 5188 */ 5189 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 5190 { 5191 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5192 5193 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 5194 schedule_work_on(cpu, &wfc.work); 5195 flush_work(&wfc.work); 5196 destroy_work_on_stack(&wfc.work); 5197 return wfc.ret; 5198 } 5199 EXPORT_SYMBOL_GPL(work_on_cpu); 5200 5201 /** 5202 * work_on_cpu_safe - run a function in thread context on a particular cpu 5203 * @cpu: the cpu to run on 5204 * @fn: the function to run 5205 * @arg: the function argument 5206 * 5207 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5208 * any locks which would prevent @fn from completing. 5209 * 5210 * Return: The value @fn returns. 5211 */ 5212 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 5213 { 5214 long ret = -ENODEV; 5215 5216 cpus_read_lock(); 5217 if (cpu_online(cpu)) 5218 ret = work_on_cpu(cpu, fn, arg); 5219 cpus_read_unlock(); 5220 return ret; 5221 } 5222 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 5223 #endif /* CONFIG_SMP */ 5224 5225 #ifdef CONFIG_FREEZER 5226 5227 /** 5228 * freeze_workqueues_begin - begin freezing workqueues 5229 * 5230 * Start freezing workqueues. After this function returns, all freezable 5231 * workqueues will queue new works to their inactive_works list instead of 5232 * pool->worklist. 5233 * 5234 * CONTEXT: 5235 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5236 */ 5237 void freeze_workqueues_begin(void) 5238 { 5239 struct workqueue_struct *wq; 5240 struct pool_workqueue *pwq; 5241 5242 mutex_lock(&wq_pool_mutex); 5243 5244 WARN_ON_ONCE(workqueue_freezing); 5245 workqueue_freezing = true; 5246 5247 list_for_each_entry(wq, &workqueues, list) { 5248 mutex_lock(&wq->mutex); 5249 for_each_pwq(pwq, wq) 5250 pwq_adjust_max_active(pwq); 5251 mutex_unlock(&wq->mutex); 5252 } 5253 5254 mutex_unlock(&wq_pool_mutex); 5255 } 5256 5257 /** 5258 * freeze_workqueues_busy - are freezable workqueues still busy? 5259 * 5260 * Check whether freezing is complete. This function must be called 5261 * between freeze_workqueues_begin() and thaw_workqueues(). 5262 * 5263 * CONTEXT: 5264 * Grabs and releases wq_pool_mutex. 5265 * 5266 * Return: 5267 * %true if some freezable workqueues are still busy. %false if freezing 5268 * is complete. 5269 */ 5270 bool freeze_workqueues_busy(void) 5271 { 5272 bool busy = false; 5273 struct workqueue_struct *wq; 5274 struct pool_workqueue *pwq; 5275 5276 mutex_lock(&wq_pool_mutex); 5277 5278 WARN_ON_ONCE(!workqueue_freezing); 5279 5280 list_for_each_entry(wq, &workqueues, list) { 5281 if (!(wq->flags & WQ_FREEZABLE)) 5282 continue; 5283 /* 5284 * nr_active is monotonically decreasing. It's safe 5285 * to peek without lock. 5286 */ 5287 rcu_read_lock(); 5288 for_each_pwq(pwq, wq) { 5289 WARN_ON_ONCE(pwq->nr_active < 0); 5290 if (pwq->nr_active) { 5291 busy = true; 5292 rcu_read_unlock(); 5293 goto out_unlock; 5294 } 5295 } 5296 rcu_read_unlock(); 5297 } 5298 out_unlock: 5299 mutex_unlock(&wq_pool_mutex); 5300 return busy; 5301 } 5302 5303 /** 5304 * thaw_workqueues - thaw workqueues 5305 * 5306 * Thaw workqueues. Normal queueing is restored and all collected 5307 * frozen works are transferred to their respective pool worklists. 5308 * 5309 * CONTEXT: 5310 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5311 */ 5312 void thaw_workqueues(void) 5313 { 5314 struct workqueue_struct *wq; 5315 struct pool_workqueue *pwq; 5316 5317 mutex_lock(&wq_pool_mutex); 5318 5319 if (!workqueue_freezing) 5320 goto out_unlock; 5321 5322 workqueue_freezing = false; 5323 5324 /* restore max_active and repopulate worklist */ 5325 list_for_each_entry(wq, &workqueues, list) { 5326 mutex_lock(&wq->mutex); 5327 for_each_pwq(pwq, wq) 5328 pwq_adjust_max_active(pwq); 5329 mutex_unlock(&wq->mutex); 5330 } 5331 5332 out_unlock: 5333 mutex_unlock(&wq_pool_mutex); 5334 } 5335 #endif /* CONFIG_FREEZER */ 5336 5337 static int workqueue_apply_unbound_cpumask(void) 5338 { 5339 LIST_HEAD(ctxs); 5340 int ret = 0; 5341 struct workqueue_struct *wq; 5342 struct apply_wqattrs_ctx *ctx, *n; 5343 5344 lockdep_assert_held(&wq_pool_mutex); 5345 5346 list_for_each_entry(wq, &workqueues, list) { 5347 if (!(wq->flags & WQ_UNBOUND)) 5348 continue; 5349 /* creating multiple pwqs breaks ordering guarantee */ 5350 if (wq->flags & __WQ_ORDERED) 5351 continue; 5352 5353 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 5354 if (!ctx) { 5355 ret = -ENOMEM; 5356 break; 5357 } 5358 5359 list_add_tail(&ctx->list, &ctxs); 5360 } 5361 5362 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5363 if (!ret) 5364 apply_wqattrs_commit(ctx); 5365 apply_wqattrs_cleanup(ctx); 5366 } 5367 5368 return ret; 5369 } 5370 5371 /** 5372 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5373 * @cpumask: the cpumask to set 5374 * 5375 * The low-level workqueues cpumask is a global cpumask that limits 5376 * the affinity of all unbound workqueues. This function check the @cpumask 5377 * and apply it to all unbound workqueues and updates all pwqs of them. 5378 * 5379 * Return: 0 - Success 5380 * -EINVAL - Invalid @cpumask 5381 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5382 */ 5383 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5384 { 5385 int ret = -EINVAL; 5386 cpumask_var_t saved_cpumask; 5387 5388 /* 5389 * Not excluding isolated cpus on purpose. 5390 * If the user wishes to include them, we allow that. 5391 */ 5392 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5393 if (!cpumask_empty(cpumask)) { 5394 apply_wqattrs_lock(); 5395 if (cpumask_equal(cpumask, wq_unbound_cpumask)) { 5396 ret = 0; 5397 goto out_unlock; 5398 } 5399 5400 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) { 5401 ret = -ENOMEM; 5402 goto out_unlock; 5403 } 5404 5405 /* save the old wq_unbound_cpumask. */ 5406 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 5407 5408 /* update wq_unbound_cpumask at first and apply it to wqs. */ 5409 cpumask_copy(wq_unbound_cpumask, cpumask); 5410 ret = workqueue_apply_unbound_cpumask(); 5411 5412 /* restore the wq_unbound_cpumask when failed. */ 5413 if (ret < 0) 5414 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5415 5416 free_cpumask_var(saved_cpumask); 5417 out_unlock: 5418 apply_wqattrs_unlock(); 5419 } 5420 5421 return ret; 5422 } 5423 5424 #ifdef CONFIG_SYSFS 5425 /* 5426 * Workqueues with WQ_SYSFS flag set is visible to userland via 5427 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5428 * following attributes. 5429 * 5430 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5431 * max_active RW int : maximum number of in-flight work items 5432 * 5433 * Unbound workqueues have the following extra attributes. 5434 * 5435 * pool_ids RO int : the associated pool IDs for each node 5436 * nice RW int : nice value of the workers 5437 * cpumask RW mask : bitmask of allowed CPUs for the workers 5438 * numa RW bool : whether enable NUMA affinity 5439 */ 5440 struct wq_device { 5441 struct workqueue_struct *wq; 5442 struct device dev; 5443 }; 5444 5445 static struct workqueue_struct *dev_to_wq(struct device *dev) 5446 { 5447 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5448 5449 return wq_dev->wq; 5450 } 5451 5452 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5453 char *buf) 5454 { 5455 struct workqueue_struct *wq = dev_to_wq(dev); 5456 5457 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5458 } 5459 static DEVICE_ATTR_RO(per_cpu); 5460 5461 static ssize_t max_active_show(struct device *dev, 5462 struct device_attribute *attr, char *buf) 5463 { 5464 struct workqueue_struct *wq = dev_to_wq(dev); 5465 5466 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5467 } 5468 5469 static ssize_t max_active_store(struct device *dev, 5470 struct device_attribute *attr, const char *buf, 5471 size_t count) 5472 { 5473 struct workqueue_struct *wq = dev_to_wq(dev); 5474 int val; 5475 5476 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5477 return -EINVAL; 5478 5479 workqueue_set_max_active(wq, val); 5480 return count; 5481 } 5482 static DEVICE_ATTR_RW(max_active); 5483 5484 static struct attribute *wq_sysfs_attrs[] = { 5485 &dev_attr_per_cpu.attr, 5486 &dev_attr_max_active.attr, 5487 NULL, 5488 }; 5489 ATTRIBUTE_GROUPS(wq_sysfs); 5490 5491 static ssize_t wq_pool_ids_show(struct device *dev, 5492 struct device_attribute *attr, char *buf) 5493 { 5494 struct workqueue_struct *wq = dev_to_wq(dev); 5495 const char *delim = ""; 5496 int node, written = 0; 5497 5498 cpus_read_lock(); 5499 rcu_read_lock(); 5500 for_each_node(node) { 5501 written += scnprintf(buf + written, PAGE_SIZE - written, 5502 "%s%d:%d", delim, node, 5503 unbound_pwq_by_node(wq, node)->pool->id); 5504 delim = " "; 5505 } 5506 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5507 rcu_read_unlock(); 5508 cpus_read_unlock(); 5509 5510 return written; 5511 } 5512 5513 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5514 char *buf) 5515 { 5516 struct workqueue_struct *wq = dev_to_wq(dev); 5517 int written; 5518 5519 mutex_lock(&wq->mutex); 5520 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5521 mutex_unlock(&wq->mutex); 5522 5523 return written; 5524 } 5525 5526 /* prepare workqueue_attrs for sysfs store operations */ 5527 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5528 { 5529 struct workqueue_attrs *attrs; 5530 5531 lockdep_assert_held(&wq_pool_mutex); 5532 5533 attrs = alloc_workqueue_attrs(); 5534 if (!attrs) 5535 return NULL; 5536 5537 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5538 return attrs; 5539 } 5540 5541 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5542 const char *buf, size_t count) 5543 { 5544 struct workqueue_struct *wq = dev_to_wq(dev); 5545 struct workqueue_attrs *attrs; 5546 int ret = -ENOMEM; 5547 5548 apply_wqattrs_lock(); 5549 5550 attrs = wq_sysfs_prep_attrs(wq); 5551 if (!attrs) 5552 goto out_unlock; 5553 5554 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5555 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5556 ret = apply_workqueue_attrs_locked(wq, attrs); 5557 else 5558 ret = -EINVAL; 5559 5560 out_unlock: 5561 apply_wqattrs_unlock(); 5562 free_workqueue_attrs(attrs); 5563 return ret ?: count; 5564 } 5565 5566 static ssize_t wq_cpumask_show(struct device *dev, 5567 struct device_attribute *attr, char *buf) 5568 { 5569 struct workqueue_struct *wq = dev_to_wq(dev); 5570 int written; 5571 5572 mutex_lock(&wq->mutex); 5573 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5574 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5575 mutex_unlock(&wq->mutex); 5576 return written; 5577 } 5578 5579 static ssize_t wq_cpumask_store(struct device *dev, 5580 struct device_attribute *attr, 5581 const char *buf, size_t count) 5582 { 5583 struct workqueue_struct *wq = dev_to_wq(dev); 5584 struct workqueue_attrs *attrs; 5585 int ret = -ENOMEM; 5586 5587 apply_wqattrs_lock(); 5588 5589 attrs = wq_sysfs_prep_attrs(wq); 5590 if (!attrs) 5591 goto out_unlock; 5592 5593 ret = cpumask_parse(buf, attrs->cpumask); 5594 if (!ret) 5595 ret = apply_workqueue_attrs_locked(wq, attrs); 5596 5597 out_unlock: 5598 apply_wqattrs_unlock(); 5599 free_workqueue_attrs(attrs); 5600 return ret ?: count; 5601 } 5602 5603 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5604 char *buf) 5605 { 5606 struct workqueue_struct *wq = dev_to_wq(dev); 5607 int written; 5608 5609 mutex_lock(&wq->mutex); 5610 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5611 !wq->unbound_attrs->no_numa); 5612 mutex_unlock(&wq->mutex); 5613 5614 return written; 5615 } 5616 5617 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5618 const char *buf, size_t count) 5619 { 5620 struct workqueue_struct *wq = dev_to_wq(dev); 5621 struct workqueue_attrs *attrs; 5622 int v, ret = -ENOMEM; 5623 5624 apply_wqattrs_lock(); 5625 5626 attrs = wq_sysfs_prep_attrs(wq); 5627 if (!attrs) 5628 goto out_unlock; 5629 5630 ret = -EINVAL; 5631 if (sscanf(buf, "%d", &v) == 1) { 5632 attrs->no_numa = !v; 5633 ret = apply_workqueue_attrs_locked(wq, attrs); 5634 } 5635 5636 out_unlock: 5637 apply_wqattrs_unlock(); 5638 free_workqueue_attrs(attrs); 5639 return ret ?: count; 5640 } 5641 5642 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5643 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5644 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5645 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5646 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5647 __ATTR_NULL, 5648 }; 5649 5650 static struct bus_type wq_subsys = { 5651 .name = "workqueue", 5652 .dev_groups = wq_sysfs_groups, 5653 }; 5654 5655 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5656 struct device_attribute *attr, char *buf) 5657 { 5658 int written; 5659 5660 mutex_lock(&wq_pool_mutex); 5661 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5662 cpumask_pr_args(wq_unbound_cpumask)); 5663 mutex_unlock(&wq_pool_mutex); 5664 5665 return written; 5666 } 5667 5668 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5669 struct device_attribute *attr, const char *buf, size_t count) 5670 { 5671 cpumask_var_t cpumask; 5672 int ret; 5673 5674 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5675 return -ENOMEM; 5676 5677 ret = cpumask_parse(buf, cpumask); 5678 if (!ret) 5679 ret = workqueue_set_unbound_cpumask(cpumask); 5680 5681 free_cpumask_var(cpumask); 5682 return ret ? ret : count; 5683 } 5684 5685 static struct device_attribute wq_sysfs_cpumask_attr = 5686 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5687 wq_unbound_cpumask_store); 5688 5689 static int __init wq_sysfs_init(void) 5690 { 5691 int err; 5692 5693 err = subsys_virtual_register(&wq_subsys, NULL); 5694 if (err) 5695 return err; 5696 5697 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5698 } 5699 core_initcall(wq_sysfs_init); 5700 5701 static void wq_device_release(struct device *dev) 5702 { 5703 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5704 5705 kfree(wq_dev); 5706 } 5707 5708 /** 5709 * workqueue_sysfs_register - make a workqueue visible in sysfs 5710 * @wq: the workqueue to register 5711 * 5712 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5713 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5714 * which is the preferred method. 5715 * 5716 * Workqueue user should use this function directly iff it wants to apply 5717 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5718 * apply_workqueue_attrs() may race against userland updating the 5719 * attributes. 5720 * 5721 * Return: 0 on success, -errno on failure. 5722 */ 5723 int workqueue_sysfs_register(struct workqueue_struct *wq) 5724 { 5725 struct wq_device *wq_dev; 5726 int ret; 5727 5728 /* 5729 * Adjusting max_active or creating new pwqs by applying 5730 * attributes breaks ordering guarantee. Disallow exposing ordered 5731 * workqueues. 5732 */ 5733 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5734 return -EINVAL; 5735 5736 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5737 if (!wq_dev) 5738 return -ENOMEM; 5739 5740 wq_dev->wq = wq; 5741 wq_dev->dev.bus = &wq_subsys; 5742 wq_dev->dev.release = wq_device_release; 5743 dev_set_name(&wq_dev->dev, "%s", wq->name); 5744 5745 /* 5746 * unbound_attrs are created separately. Suppress uevent until 5747 * everything is ready. 5748 */ 5749 dev_set_uevent_suppress(&wq_dev->dev, true); 5750 5751 ret = device_register(&wq_dev->dev); 5752 if (ret) { 5753 put_device(&wq_dev->dev); 5754 wq->wq_dev = NULL; 5755 return ret; 5756 } 5757 5758 if (wq->flags & WQ_UNBOUND) { 5759 struct device_attribute *attr; 5760 5761 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5762 ret = device_create_file(&wq_dev->dev, attr); 5763 if (ret) { 5764 device_unregister(&wq_dev->dev); 5765 wq->wq_dev = NULL; 5766 return ret; 5767 } 5768 } 5769 } 5770 5771 dev_set_uevent_suppress(&wq_dev->dev, false); 5772 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5773 return 0; 5774 } 5775 5776 /** 5777 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5778 * @wq: the workqueue to unregister 5779 * 5780 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5781 */ 5782 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5783 { 5784 struct wq_device *wq_dev = wq->wq_dev; 5785 5786 if (!wq->wq_dev) 5787 return; 5788 5789 wq->wq_dev = NULL; 5790 device_unregister(&wq_dev->dev); 5791 } 5792 #else /* CONFIG_SYSFS */ 5793 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5794 #endif /* CONFIG_SYSFS */ 5795 5796 /* 5797 * Workqueue watchdog. 5798 * 5799 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5800 * flush dependency, a concurrency managed work item which stays RUNNING 5801 * indefinitely. Workqueue stalls can be very difficult to debug as the 5802 * usual warning mechanisms don't trigger and internal workqueue state is 5803 * largely opaque. 5804 * 5805 * Workqueue watchdog monitors all worker pools periodically and dumps 5806 * state if some pools failed to make forward progress for a while where 5807 * forward progress is defined as the first item on ->worklist changing. 5808 * 5809 * This mechanism is controlled through the kernel parameter 5810 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5811 * corresponding sysfs parameter file. 5812 */ 5813 #ifdef CONFIG_WQ_WATCHDOG 5814 5815 static unsigned long wq_watchdog_thresh = 30; 5816 static struct timer_list wq_watchdog_timer; 5817 5818 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5819 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5820 5821 static void wq_watchdog_reset_touched(void) 5822 { 5823 int cpu; 5824 5825 wq_watchdog_touched = jiffies; 5826 for_each_possible_cpu(cpu) 5827 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5828 } 5829 5830 static void wq_watchdog_timer_fn(struct timer_list *unused) 5831 { 5832 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5833 bool lockup_detected = false; 5834 unsigned long now = jiffies; 5835 struct worker_pool *pool; 5836 int pi; 5837 5838 if (!thresh) 5839 return; 5840 5841 rcu_read_lock(); 5842 5843 for_each_pool(pool, pi) { 5844 unsigned long pool_ts, touched, ts; 5845 5846 if (list_empty(&pool->worklist)) 5847 continue; 5848 5849 /* 5850 * If a virtual machine is stopped by the host it can look to 5851 * the watchdog like a stall. 5852 */ 5853 kvm_check_and_clear_guest_paused(); 5854 5855 /* get the latest of pool and touched timestamps */ 5856 if (pool->cpu >= 0) 5857 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 5858 else 5859 touched = READ_ONCE(wq_watchdog_touched); 5860 pool_ts = READ_ONCE(pool->watchdog_ts); 5861 5862 if (time_after(pool_ts, touched)) 5863 ts = pool_ts; 5864 else 5865 ts = touched; 5866 5867 /* did we stall? */ 5868 if (time_after(now, ts + thresh)) { 5869 lockup_detected = true; 5870 pr_emerg("BUG: workqueue lockup - pool"); 5871 pr_cont_pool_info(pool); 5872 pr_cont(" stuck for %us!\n", 5873 jiffies_to_msecs(now - pool_ts) / 1000); 5874 } 5875 } 5876 5877 rcu_read_unlock(); 5878 5879 if (lockup_detected) 5880 show_all_workqueues(); 5881 5882 wq_watchdog_reset_touched(); 5883 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5884 } 5885 5886 notrace void wq_watchdog_touch(int cpu) 5887 { 5888 if (cpu >= 0) 5889 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5890 5891 wq_watchdog_touched = jiffies; 5892 } 5893 5894 static void wq_watchdog_set_thresh(unsigned long thresh) 5895 { 5896 wq_watchdog_thresh = 0; 5897 del_timer_sync(&wq_watchdog_timer); 5898 5899 if (thresh) { 5900 wq_watchdog_thresh = thresh; 5901 wq_watchdog_reset_touched(); 5902 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5903 } 5904 } 5905 5906 static int wq_watchdog_param_set_thresh(const char *val, 5907 const struct kernel_param *kp) 5908 { 5909 unsigned long thresh; 5910 int ret; 5911 5912 ret = kstrtoul(val, 0, &thresh); 5913 if (ret) 5914 return ret; 5915 5916 if (system_wq) 5917 wq_watchdog_set_thresh(thresh); 5918 else 5919 wq_watchdog_thresh = thresh; 5920 5921 return 0; 5922 } 5923 5924 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5925 .set = wq_watchdog_param_set_thresh, 5926 .get = param_get_ulong, 5927 }; 5928 5929 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5930 0644); 5931 5932 static void wq_watchdog_init(void) 5933 { 5934 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5935 wq_watchdog_set_thresh(wq_watchdog_thresh); 5936 } 5937 5938 #else /* CONFIG_WQ_WATCHDOG */ 5939 5940 static inline void wq_watchdog_init(void) { } 5941 5942 #endif /* CONFIG_WQ_WATCHDOG */ 5943 5944 static void __init wq_numa_init(void) 5945 { 5946 cpumask_var_t *tbl; 5947 int node, cpu; 5948 5949 if (num_possible_nodes() <= 1) 5950 return; 5951 5952 if (wq_disable_numa) { 5953 pr_info("workqueue: NUMA affinity support disabled\n"); 5954 return; 5955 } 5956 5957 for_each_possible_cpu(cpu) { 5958 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) { 5959 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5960 return; 5961 } 5962 } 5963 5964 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(); 5965 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5966 5967 /* 5968 * We want masks of possible CPUs of each node which isn't readily 5969 * available. Build one from cpu_to_node() which should have been 5970 * fully initialized by now. 5971 */ 5972 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 5973 BUG_ON(!tbl); 5974 5975 for_each_node(node) 5976 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5977 node_online(node) ? node : NUMA_NO_NODE)); 5978 5979 for_each_possible_cpu(cpu) { 5980 node = cpu_to_node(cpu); 5981 cpumask_set_cpu(cpu, tbl[node]); 5982 } 5983 5984 wq_numa_possible_cpumask = tbl; 5985 wq_numa_enabled = true; 5986 } 5987 5988 /** 5989 * workqueue_init_early - early init for workqueue subsystem 5990 * 5991 * This is the first half of two-staged workqueue subsystem initialization 5992 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5993 * idr are up. It sets up all the data structures and system workqueues 5994 * and allows early boot code to create workqueues and queue/cancel work 5995 * items. Actual work item execution starts only after kthreads can be 5996 * created and scheduled right before early initcalls. 5997 */ 5998 void __init workqueue_init_early(void) 5999 { 6000 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 6001 int i, cpu; 6002 6003 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 6004 6005 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 6006 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ)); 6007 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN)); 6008 6009 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 6010 6011 /* initialize CPU pools */ 6012 for_each_possible_cpu(cpu) { 6013 struct worker_pool *pool; 6014 6015 i = 0; 6016 for_each_cpu_worker_pool(pool, cpu) { 6017 BUG_ON(init_worker_pool(pool)); 6018 pool->cpu = cpu; 6019 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 6020 pool->attrs->nice = std_nice[i++]; 6021 pool->node = cpu_to_node(cpu); 6022 6023 /* alloc pool ID */ 6024 mutex_lock(&wq_pool_mutex); 6025 BUG_ON(worker_pool_assign_id(pool)); 6026 mutex_unlock(&wq_pool_mutex); 6027 } 6028 } 6029 6030 /* create default unbound and ordered wq attrs */ 6031 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 6032 struct workqueue_attrs *attrs; 6033 6034 BUG_ON(!(attrs = alloc_workqueue_attrs())); 6035 attrs->nice = std_nice[i]; 6036 unbound_std_wq_attrs[i] = attrs; 6037 6038 /* 6039 * An ordered wq should have only one pwq as ordering is 6040 * guaranteed by max_active which is enforced by pwqs. 6041 * Turn off NUMA so that dfl_pwq is used for all nodes. 6042 */ 6043 BUG_ON(!(attrs = alloc_workqueue_attrs())); 6044 attrs->nice = std_nice[i]; 6045 attrs->no_numa = true; 6046 ordered_wq_attrs[i] = attrs; 6047 } 6048 6049 system_wq = alloc_workqueue("events", 0, 0); 6050 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 6051 system_long_wq = alloc_workqueue("events_long", 0, 0); 6052 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 6053 WQ_UNBOUND_MAX_ACTIVE); 6054 system_freezable_wq = alloc_workqueue("events_freezable", 6055 WQ_FREEZABLE, 0); 6056 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 6057 WQ_POWER_EFFICIENT, 0); 6058 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 6059 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 6060 0); 6061 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 6062 !system_unbound_wq || !system_freezable_wq || 6063 !system_power_efficient_wq || 6064 !system_freezable_power_efficient_wq); 6065 } 6066 6067 /** 6068 * workqueue_init - bring workqueue subsystem fully online 6069 * 6070 * This is the latter half of two-staged workqueue subsystem initialization 6071 * and invoked as soon as kthreads can be created and scheduled. 6072 * Workqueues have been created and work items queued on them, but there 6073 * are no kworkers executing the work items yet. Populate the worker pools 6074 * with the initial workers and enable future kworker creations. 6075 */ 6076 void __init workqueue_init(void) 6077 { 6078 struct workqueue_struct *wq; 6079 struct worker_pool *pool; 6080 int cpu, bkt; 6081 6082 /* 6083 * It'd be simpler to initialize NUMA in workqueue_init_early() but 6084 * CPU to node mapping may not be available that early on some 6085 * archs such as power and arm64. As per-cpu pools created 6086 * previously could be missing node hint and unbound pools NUMA 6087 * affinity, fix them up. 6088 * 6089 * Also, while iterating workqueues, create rescuers if requested. 6090 */ 6091 wq_numa_init(); 6092 6093 mutex_lock(&wq_pool_mutex); 6094 6095 for_each_possible_cpu(cpu) { 6096 for_each_cpu_worker_pool(pool, cpu) { 6097 pool->node = cpu_to_node(cpu); 6098 } 6099 } 6100 6101 list_for_each_entry(wq, &workqueues, list) { 6102 wq_update_unbound_numa(wq, smp_processor_id(), true); 6103 WARN(init_rescuer(wq), 6104 "workqueue: failed to create early rescuer for %s", 6105 wq->name); 6106 } 6107 6108 mutex_unlock(&wq_pool_mutex); 6109 6110 /* create the initial workers */ 6111 for_each_online_cpu(cpu) { 6112 for_each_cpu_worker_pool(pool, cpu) { 6113 pool->flags &= ~POOL_DISASSOCIATED; 6114 BUG_ON(!create_worker(pool)); 6115 } 6116 } 6117 6118 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 6119 BUG_ON(!create_worker(pool)); 6120 6121 wq_online = true; 6122 wq_watchdog_init(); 6123 } 6124 6125 /* 6126 * Despite the naming, this is a no-op function which is here only for avoiding 6127 * link error. Since compile-time warning may fail to catch, we will need to 6128 * emit run-time warning from __flush_workqueue(). 6129 */ 6130 void __warn_flushing_systemwide_wq(void) { } 6131 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 6132