1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/nmi.h> 53 #include <linux/kvm_para.h> 54 55 #include "workqueue_internal.h" 56 57 enum { 58 /* 59 * worker_pool flags 60 * 61 * A bound pool is either associated or disassociated with its CPU. 62 * While associated (!DISASSOCIATED), all workers are bound to the 63 * CPU and none has %WORKER_UNBOUND set and concurrency management 64 * is in effect. 65 * 66 * While DISASSOCIATED, the cpu may be offline and all workers have 67 * %WORKER_UNBOUND set and concurrency management disabled, and may 68 * be executing on any CPU. The pool behaves as an unbound one. 69 * 70 * Note that DISASSOCIATED should be flipped only while holding 71 * wq_pool_attach_mutex to avoid changing binding state while 72 * worker_attach_to_pool() is in progress. 73 */ 74 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 75 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 76 77 /* worker flags */ 78 WORKER_DIE = 1 << 1, /* die die die */ 79 WORKER_IDLE = 1 << 2, /* is idle */ 80 WORKER_PREP = 1 << 3, /* preparing to run works */ 81 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 82 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 83 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 84 85 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 86 WORKER_UNBOUND | WORKER_REBOUND, 87 88 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 89 90 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 92 93 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 94 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 95 96 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 97 /* call for help after 10ms 98 (min two ticks) */ 99 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 100 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 101 102 /* 103 * Rescue workers are used only on emergencies and shared by 104 * all cpus. Give MIN_NICE. 105 */ 106 RESCUER_NICE_LEVEL = MIN_NICE, 107 HIGHPRI_NICE_LEVEL = MIN_NICE, 108 109 WQ_NAME_LEN = 24, 110 }; 111 112 /* 113 * Structure fields follow one of the following exclusion rules. 114 * 115 * I: Modifiable by initialization/destruction paths and read-only for 116 * everyone else. 117 * 118 * P: Preemption protected. Disabling preemption is enough and should 119 * only be modified and accessed from the local cpu. 120 * 121 * L: pool->lock protected. Access with pool->lock held. 122 * 123 * X: During normal operation, modification requires pool->lock and should 124 * be done only from local cpu. Either disabling preemption on local 125 * cpu or grabbing pool->lock is enough for read access. If 126 * POOL_DISASSOCIATED is set, it's identical to L. 127 * 128 * A: wq_pool_attach_mutex protected. 129 * 130 * PL: wq_pool_mutex protected. 131 * 132 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 133 * 134 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 135 * 136 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 137 * RCU for reads. 138 * 139 * WQ: wq->mutex protected. 140 * 141 * WR: wq->mutex protected for writes. RCU protected for reads. 142 * 143 * MD: wq_mayday_lock protected. 144 */ 145 146 /* struct worker is defined in workqueue_internal.h */ 147 148 struct worker_pool { 149 raw_spinlock_t lock; /* the pool lock */ 150 int cpu; /* I: the associated cpu */ 151 int node; /* I: the associated node ID */ 152 int id; /* I: pool ID */ 153 unsigned int flags; /* X: flags */ 154 155 unsigned long watchdog_ts; /* L: watchdog timestamp */ 156 157 struct list_head worklist; /* L: list of pending works */ 158 159 int nr_workers; /* L: total number of workers */ 160 int nr_idle; /* L: currently idle workers */ 161 162 struct list_head idle_list; /* X: list of idle workers */ 163 struct timer_list idle_timer; /* L: worker idle timeout */ 164 struct timer_list mayday_timer; /* L: SOS timer for workers */ 165 166 /* a workers is either on busy_hash or idle_list, or the manager */ 167 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 168 /* L: hash of busy workers */ 169 170 struct worker *manager; /* L: purely informational */ 171 struct list_head workers; /* A: attached workers */ 172 struct completion *detach_completion; /* all workers detached */ 173 174 struct ida worker_ida; /* worker IDs for task name */ 175 176 struct workqueue_attrs *attrs; /* I: worker attributes */ 177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 178 int refcnt; /* PL: refcnt for unbound pools */ 179 180 /* 181 * The current concurrency level. As it's likely to be accessed 182 * from other CPUs during try_to_wake_up(), put it in a separate 183 * cacheline. 184 */ 185 atomic_t nr_running ____cacheline_aligned_in_smp; 186 187 /* 188 * Destruction of pool is RCU protected to allow dereferences 189 * from get_work_pool(). 190 */ 191 struct rcu_head rcu; 192 } ____cacheline_aligned_in_smp; 193 194 /* 195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 196 * of work_struct->data are used for flags and the remaining high bits 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the 198 * number of flag bits. 199 */ 200 struct pool_workqueue { 201 struct worker_pool *pool; /* I: the associated pool */ 202 struct workqueue_struct *wq; /* I: the owning workqueue */ 203 int work_color; /* L: current color */ 204 int flush_color; /* L: flushing color */ 205 int refcnt; /* L: reference count */ 206 int nr_in_flight[WORK_NR_COLORS]; 207 /* L: nr of in_flight works */ 208 int nr_active; /* L: nr of active works */ 209 int max_active; /* L: max active works */ 210 struct list_head delayed_works; /* L: delayed works */ 211 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 212 struct list_head mayday_node; /* MD: node on wq->maydays */ 213 214 /* 215 * Release of unbound pwq is punted to system_wq. See put_pwq() 216 * and pwq_unbound_release_workfn() for details. pool_workqueue 217 * itself is also RCU protected so that the first pwq can be 218 * determined without grabbing wq->mutex. 219 */ 220 struct work_struct unbound_release_work; 221 struct rcu_head rcu; 222 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 223 224 /* 225 * Structure used to wait for workqueue flush. 226 */ 227 struct wq_flusher { 228 struct list_head list; /* WQ: list of flushers */ 229 int flush_color; /* WQ: flush color waiting for */ 230 struct completion done; /* flush completion */ 231 }; 232 233 struct wq_device; 234 235 /* 236 * The externally visible workqueue. It relays the issued work items to 237 * the appropriate worker_pool through its pool_workqueues. 238 */ 239 struct workqueue_struct { 240 struct list_head pwqs; /* WR: all pwqs of this wq */ 241 struct list_head list; /* PR: list of all workqueues */ 242 243 struct mutex mutex; /* protects this wq */ 244 int work_color; /* WQ: current work color */ 245 int flush_color; /* WQ: current flush color */ 246 atomic_t nr_pwqs_to_flush; /* flush in progress */ 247 struct wq_flusher *first_flusher; /* WQ: first flusher */ 248 struct list_head flusher_queue; /* WQ: flush waiters */ 249 struct list_head flusher_overflow; /* WQ: flush overflow list */ 250 251 struct list_head maydays; /* MD: pwqs requesting rescue */ 252 struct worker *rescuer; /* MD: rescue worker */ 253 254 int nr_drainers; /* WQ: drain in progress */ 255 int saved_max_active; /* WQ: saved pwq max_active */ 256 257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 259 260 #ifdef CONFIG_SYSFS 261 struct wq_device *wq_dev; /* I: for sysfs interface */ 262 #endif 263 #ifdef CONFIG_LOCKDEP 264 char *lock_name; 265 struct lock_class_key key; 266 struct lockdep_map lockdep_map; 267 #endif 268 char name[WQ_NAME_LEN]; /* I: workqueue name */ 269 270 /* 271 * Destruction of workqueue_struct is RCU protected to allow walking 272 * the workqueues list without grabbing wq_pool_mutex. 273 * This is used to dump all workqueues from sysrq. 274 */ 275 struct rcu_head rcu; 276 277 /* hot fields used during command issue, aligned to cacheline */ 278 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 279 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 280 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 281 }; 282 283 static struct kmem_cache *pwq_cache; 284 285 static cpumask_var_t *wq_numa_possible_cpumask; 286 /* possible CPUs of each node */ 287 288 static bool wq_disable_numa; 289 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 290 291 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 292 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 293 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 294 295 static bool wq_online; /* can kworkers be created yet? */ 296 297 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 298 299 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 300 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 301 302 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 303 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 304 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 305 /* wait for manager to go away */ 306 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 307 308 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 309 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 310 311 /* PL: allowable cpus for unbound wqs and work items */ 312 static cpumask_var_t wq_unbound_cpumask; 313 314 /* CPU where unbound work was last round robin scheduled from this CPU */ 315 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 316 317 /* 318 * Local execution of unbound work items is no longer guaranteed. The 319 * following always forces round-robin CPU selection on unbound work items 320 * to uncover usages which depend on it. 321 */ 322 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 323 static bool wq_debug_force_rr_cpu = true; 324 #else 325 static bool wq_debug_force_rr_cpu = false; 326 #endif 327 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 328 329 /* the per-cpu worker pools */ 330 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 331 332 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 333 334 /* PL: hash of all unbound pools keyed by pool->attrs */ 335 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 336 337 /* I: attributes used when instantiating standard unbound pools on demand */ 338 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 339 340 /* I: attributes used when instantiating ordered pools on demand */ 341 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 342 343 struct workqueue_struct *system_wq __read_mostly; 344 EXPORT_SYMBOL(system_wq); 345 struct workqueue_struct *system_highpri_wq __read_mostly; 346 EXPORT_SYMBOL_GPL(system_highpri_wq); 347 struct workqueue_struct *system_long_wq __read_mostly; 348 EXPORT_SYMBOL_GPL(system_long_wq); 349 struct workqueue_struct *system_unbound_wq __read_mostly; 350 EXPORT_SYMBOL_GPL(system_unbound_wq); 351 struct workqueue_struct *system_freezable_wq __read_mostly; 352 EXPORT_SYMBOL_GPL(system_freezable_wq); 353 struct workqueue_struct *system_power_efficient_wq __read_mostly; 354 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 355 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 356 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 357 358 static int worker_thread(void *__worker); 359 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 360 static void show_pwq(struct pool_workqueue *pwq); 361 362 #define CREATE_TRACE_POINTS 363 #include <trace/events/workqueue.h> 364 365 #define assert_rcu_or_pool_mutex() \ 366 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 367 !lockdep_is_held(&wq_pool_mutex), \ 368 "RCU or wq_pool_mutex should be held") 369 370 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 371 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 372 !lockdep_is_held(&wq->mutex) && \ 373 !lockdep_is_held(&wq_pool_mutex), \ 374 "RCU, wq->mutex or wq_pool_mutex should be held") 375 376 #define for_each_cpu_worker_pool(pool, cpu) \ 377 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 378 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 379 (pool)++) 380 381 /** 382 * for_each_pool - iterate through all worker_pools in the system 383 * @pool: iteration cursor 384 * @pi: integer used for iteration 385 * 386 * This must be called either with wq_pool_mutex held or RCU read 387 * locked. If the pool needs to be used beyond the locking in effect, the 388 * caller is responsible for guaranteeing that the pool stays online. 389 * 390 * The if/else clause exists only for the lockdep assertion and can be 391 * ignored. 392 */ 393 #define for_each_pool(pool, pi) \ 394 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 395 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 396 else 397 398 /** 399 * for_each_pool_worker - iterate through all workers of a worker_pool 400 * @worker: iteration cursor 401 * @pool: worker_pool to iterate workers of 402 * 403 * This must be called with wq_pool_attach_mutex. 404 * 405 * The if/else clause exists only for the lockdep assertion and can be 406 * ignored. 407 */ 408 #define for_each_pool_worker(worker, pool) \ 409 list_for_each_entry((worker), &(pool)->workers, node) \ 410 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 411 else 412 413 /** 414 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 415 * @pwq: iteration cursor 416 * @wq: the target workqueue 417 * 418 * This must be called either with wq->mutex held or RCU read locked. 419 * If the pwq needs to be used beyond the locking in effect, the caller is 420 * responsible for guaranteeing that the pwq stays online. 421 * 422 * The if/else clause exists only for the lockdep assertion and can be 423 * ignored. 424 */ 425 #define for_each_pwq(pwq, wq) \ 426 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 427 lockdep_is_held(&(wq->mutex))) 428 429 #ifdef CONFIG_DEBUG_OBJECTS_WORK 430 431 static const struct debug_obj_descr work_debug_descr; 432 433 static void *work_debug_hint(void *addr) 434 { 435 return ((struct work_struct *) addr)->func; 436 } 437 438 static bool work_is_static_object(void *addr) 439 { 440 struct work_struct *work = addr; 441 442 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 443 } 444 445 /* 446 * fixup_init is called when: 447 * - an active object is initialized 448 */ 449 static bool work_fixup_init(void *addr, enum debug_obj_state state) 450 { 451 struct work_struct *work = addr; 452 453 switch (state) { 454 case ODEBUG_STATE_ACTIVE: 455 cancel_work_sync(work); 456 debug_object_init(work, &work_debug_descr); 457 return true; 458 default: 459 return false; 460 } 461 } 462 463 /* 464 * fixup_free is called when: 465 * - an active object is freed 466 */ 467 static bool work_fixup_free(void *addr, enum debug_obj_state state) 468 { 469 struct work_struct *work = addr; 470 471 switch (state) { 472 case ODEBUG_STATE_ACTIVE: 473 cancel_work_sync(work); 474 debug_object_free(work, &work_debug_descr); 475 return true; 476 default: 477 return false; 478 } 479 } 480 481 static const struct debug_obj_descr work_debug_descr = { 482 .name = "work_struct", 483 .debug_hint = work_debug_hint, 484 .is_static_object = work_is_static_object, 485 .fixup_init = work_fixup_init, 486 .fixup_free = work_fixup_free, 487 }; 488 489 static inline void debug_work_activate(struct work_struct *work) 490 { 491 debug_object_activate(work, &work_debug_descr); 492 } 493 494 static inline void debug_work_deactivate(struct work_struct *work) 495 { 496 debug_object_deactivate(work, &work_debug_descr); 497 } 498 499 void __init_work(struct work_struct *work, int onstack) 500 { 501 if (onstack) 502 debug_object_init_on_stack(work, &work_debug_descr); 503 else 504 debug_object_init(work, &work_debug_descr); 505 } 506 EXPORT_SYMBOL_GPL(__init_work); 507 508 void destroy_work_on_stack(struct work_struct *work) 509 { 510 debug_object_free(work, &work_debug_descr); 511 } 512 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 513 514 void destroy_delayed_work_on_stack(struct delayed_work *work) 515 { 516 destroy_timer_on_stack(&work->timer); 517 debug_object_free(&work->work, &work_debug_descr); 518 } 519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 520 521 #else 522 static inline void debug_work_activate(struct work_struct *work) { } 523 static inline void debug_work_deactivate(struct work_struct *work) { } 524 #endif 525 526 /** 527 * worker_pool_assign_id - allocate ID and assing it to @pool 528 * @pool: the pool pointer of interest 529 * 530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 531 * successfully, -errno on failure. 532 */ 533 static int worker_pool_assign_id(struct worker_pool *pool) 534 { 535 int ret; 536 537 lockdep_assert_held(&wq_pool_mutex); 538 539 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 540 GFP_KERNEL); 541 if (ret >= 0) { 542 pool->id = ret; 543 return 0; 544 } 545 return ret; 546 } 547 548 /** 549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 550 * @wq: the target workqueue 551 * @node: the node ID 552 * 553 * This must be called with any of wq_pool_mutex, wq->mutex or RCU 554 * read locked. 555 * If the pwq needs to be used beyond the locking in effect, the caller is 556 * responsible for guaranteeing that the pwq stays online. 557 * 558 * Return: The unbound pool_workqueue for @node. 559 */ 560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 561 int node) 562 { 563 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 564 565 /* 566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 567 * delayed item is pending. The plan is to keep CPU -> NODE 568 * mapping valid and stable across CPU on/offlines. Once that 569 * happens, this workaround can be removed. 570 */ 571 if (unlikely(node == NUMA_NO_NODE)) 572 return wq->dfl_pwq; 573 574 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 575 } 576 577 static unsigned int work_color_to_flags(int color) 578 { 579 return color << WORK_STRUCT_COLOR_SHIFT; 580 } 581 582 static int get_work_color(struct work_struct *work) 583 { 584 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 585 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 586 } 587 588 static int work_next_color(int color) 589 { 590 return (color + 1) % WORK_NR_COLORS; 591 } 592 593 /* 594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 595 * contain the pointer to the queued pwq. Once execution starts, the flag 596 * is cleared and the high bits contain OFFQ flags and pool ID. 597 * 598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 599 * and clear_work_data() can be used to set the pwq, pool or clear 600 * work->data. These functions should only be called while the work is 601 * owned - ie. while the PENDING bit is set. 602 * 603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 604 * corresponding to a work. Pool is available once the work has been 605 * queued anywhere after initialization until it is sync canceled. pwq is 606 * available only while the work item is queued. 607 * 608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 609 * canceled. While being canceled, a work item may have its PENDING set 610 * but stay off timer and worklist for arbitrarily long and nobody should 611 * try to steal the PENDING bit. 612 */ 613 static inline void set_work_data(struct work_struct *work, unsigned long data, 614 unsigned long flags) 615 { 616 WARN_ON_ONCE(!work_pending(work)); 617 atomic_long_set(&work->data, data | flags | work_static(work)); 618 } 619 620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 621 unsigned long extra_flags) 622 { 623 set_work_data(work, (unsigned long)pwq, 624 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 625 } 626 627 static void set_work_pool_and_keep_pending(struct work_struct *work, 628 int pool_id) 629 { 630 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 631 WORK_STRUCT_PENDING); 632 } 633 634 static void set_work_pool_and_clear_pending(struct work_struct *work, 635 int pool_id) 636 { 637 /* 638 * The following wmb is paired with the implied mb in 639 * test_and_set_bit(PENDING) and ensures all updates to @work made 640 * here are visible to and precede any updates by the next PENDING 641 * owner. 642 */ 643 smp_wmb(); 644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 645 /* 646 * The following mb guarantees that previous clear of a PENDING bit 647 * will not be reordered with any speculative LOADS or STORES from 648 * work->current_func, which is executed afterwards. This possible 649 * reordering can lead to a missed execution on attempt to queue 650 * the same @work. E.g. consider this case: 651 * 652 * CPU#0 CPU#1 653 * ---------------------------- -------------------------------- 654 * 655 * 1 STORE event_indicated 656 * 2 queue_work_on() { 657 * 3 test_and_set_bit(PENDING) 658 * 4 } set_..._and_clear_pending() { 659 * 5 set_work_data() # clear bit 660 * 6 smp_mb() 661 * 7 work->current_func() { 662 * 8 LOAD event_indicated 663 * } 664 * 665 * Without an explicit full barrier speculative LOAD on line 8 can 666 * be executed before CPU#0 does STORE on line 1. If that happens, 667 * CPU#0 observes the PENDING bit is still set and new execution of 668 * a @work is not queued in a hope, that CPU#1 will eventually 669 * finish the queued @work. Meanwhile CPU#1 does not see 670 * event_indicated is set, because speculative LOAD was executed 671 * before actual STORE. 672 */ 673 smp_mb(); 674 } 675 676 static void clear_work_data(struct work_struct *work) 677 { 678 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 679 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 680 } 681 682 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 683 { 684 unsigned long data = atomic_long_read(&work->data); 685 686 if (data & WORK_STRUCT_PWQ) 687 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 688 else 689 return NULL; 690 } 691 692 /** 693 * get_work_pool - return the worker_pool a given work was associated with 694 * @work: the work item of interest 695 * 696 * Pools are created and destroyed under wq_pool_mutex, and allows read 697 * access under RCU read lock. As such, this function should be 698 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 699 * 700 * All fields of the returned pool are accessible as long as the above 701 * mentioned locking is in effect. If the returned pool needs to be used 702 * beyond the critical section, the caller is responsible for ensuring the 703 * returned pool is and stays online. 704 * 705 * Return: The worker_pool @work was last associated with. %NULL if none. 706 */ 707 static struct worker_pool *get_work_pool(struct work_struct *work) 708 { 709 unsigned long data = atomic_long_read(&work->data); 710 int pool_id; 711 712 assert_rcu_or_pool_mutex(); 713 714 if (data & WORK_STRUCT_PWQ) 715 return ((struct pool_workqueue *) 716 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 717 718 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 719 if (pool_id == WORK_OFFQ_POOL_NONE) 720 return NULL; 721 722 return idr_find(&worker_pool_idr, pool_id); 723 } 724 725 /** 726 * get_work_pool_id - return the worker pool ID a given work is associated with 727 * @work: the work item of interest 728 * 729 * Return: The worker_pool ID @work was last associated with. 730 * %WORK_OFFQ_POOL_NONE if none. 731 */ 732 static int get_work_pool_id(struct work_struct *work) 733 { 734 unsigned long data = atomic_long_read(&work->data); 735 736 if (data & WORK_STRUCT_PWQ) 737 return ((struct pool_workqueue *) 738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 739 740 return data >> WORK_OFFQ_POOL_SHIFT; 741 } 742 743 static void mark_work_canceling(struct work_struct *work) 744 { 745 unsigned long pool_id = get_work_pool_id(work); 746 747 pool_id <<= WORK_OFFQ_POOL_SHIFT; 748 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 749 } 750 751 static bool work_is_canceling(struct work_struct *work) 752 { 753 unsigned long data = atomic_long_read(&work->data); 754 755 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 756 } 757 758 /* 759 * Policy functions. These define the policies on how the global worker 760 * pools are managed. Unless noted otherwise, these functions assume that 761 * they're being called with pool->lock held. 762 */ 763 764 static bool __need_more_worker(struct worker_pool *pool) 765 { 766 return !atomic_read(&pool->nr_running); 767 } 768 769 /* 770 * Need to wake up a worker? Called from anything but currently 771 * running workers. 772 * 773 * Note that, because unbound workers never contribute to nr_running, this 774 * function will always return %true for unbound pools as long as the 775 * worklist isn't empty. 776 */ 777 static bool need_more_worker(struct worker_pool *pool) 778 { 779 return !list_empty(&pool->worklist) && __need_more_worker(pool); 780 } 781 782 /* Can I start working? Called from busy but !running workers. */ 783 static bool may_start_working(struct worker_pool *pool) 784 { 785 return pool->nr_idle; 786 } 787 788 /* Do I need to keep working? Called from currently running workers. */ 789 static bool keep_working(struct worker_pool *pool) 790 { 791 return !list_empty(&pool->worklist) && 792 atomic_read(&pool->nr_running) <= 1; 793 } 794 795 /* Do we need a new worker? Called from manager. */ 796 static bool need_to_create_worker(struct worker_pool *pool) 797 { 798 return need_more_worker(pool) && !may_start_working(pool); 799 } 800 801 /* Do we have too many workers and should some go away? */ 802 static bool too_many_workers(struct worker_pool *pool) 803 { 804 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 805 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 806 int nr_busy = pool->nr_workers - nr_idle; 807 808 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 809 } 810 811 /* 812 * Wake up functions. 813 */ 814 815 /* Return the first idle worker. Safe with preemption disabled */ 816 static struct worker *first_idle_worker(struct worker_pool *pool) 817 { 818 if (unlikely(list_empty(&pool->idle_list))) 819 return NULL; 820 821 return list_first_entry(&pool->idle_list, struct worker, entry); 822 } 823 824 /** 825 * wake_up_worker - wake up an idle worker 826 * @pool: worker pool to wake worker from 827 * 828 * Wake up the first idle worker of @pool. 829 * 830 * CONTEXT: 831 * raw_spin_lock_irq(pool->lock). 832 */ 833 static void wake_up_worker(struct worker_pool *pool) 834 { 835 struct worker *worker = first_idle_worker(pool); 836 837 if (likely(worker)) 838 wake_up_process(worker->task); 839 } 840 841 /** 842 * wq_worker_running - a worker is running again 843 * @task: task waking up 844 * 845 * This function is called when a worker returns from schedule() 846 */ 847 void wq_worker_running(struct task_struct *task) 848 { 849 struct worker *worker = kthread_data(task); 850 851 if (!worker->sleeping) 852 return; 853 if (!(worker->flags & WORKER_NOT_RUNNING)) 854 atomic_inc(&worker->pool->nr_running); 855 worker->sleeping = 0; 856 } 857 858 /** 859 * wq_worker_sleeping - a worker is going to sleep 860 * @task: task going to sleep 861 * 862 * This function is called from schedule() when a busy worker is 863 * going to sleep. Preemption needs to be disabled to protect ->sleeping 864 * assignment. 865 */ 866 void wq_worker_sleeping(struct task_struct *task) 867 { 868 struct worker *next, *worker = kthread_data(task); 869 struct worker_pool *pool; 870 871 /* 872 * Rescuers, which may not have all the fields set up like normal 873 * workers, also reach here, let's not access anything before 874 * checking NOT_RUNNING. 875 */ 876 if (worker->flags & WORKER_NOT_RUNNING) 877 return; 878 879 pool = worker->pool; 880 881 /* Return if preempted before wq_worker_running() was reached */ 882 if (worker->sleeping) 883 return; 884 885 worker->sleeping = 1; 886 raw_spin_lock_irq(&pool->lock); 887 888 /* 889 * The counterpart of the following dec_and_test, implied mb, 890 * worklist not empty test sequence is in insert_work(). 891 * Please read comment there. 892 * 893 * NOT_RUNNING is clear. This means that we're bound to and 894 * running on the local cpu w/ rq lock held and preemption 895 * disabled, which in turn means that none else could be 896 * manipulating idle_list, so dereferencing idle_list without pool 897 * lock is safe. 898 */ 899 if (atomic_dec_and_test(&pool->nr_running) && 900 !list_empty(&pool->worklist)) { 901 next = first_idle_worker(pool); 902 if (next) 903 wake_up_process(next->task); 904 } 905 raw_spin_unlock_irq(&pool->lock); 906 } 907 908 /** 909 * wq_worker_last_func - retrieve worker's last work function 910 * @task: Task to retrieve last work function of. 911 * 912 * Determine the last function a worker executed. This is called from 913 * the scheduler to get a worker's last known identity. 914 * 915 * CONTEXT: 916 * raw_spin_lock_irq(rq->lock) 917 * 918 * This function is called during schedule() when a kworker is going 919 * to sleep. It's used by psi to identify aggregation workers during 920 * dequeuing, to allow periodic aggregation to shut-off when that 921 * worker is the last task in the system or cgroup to go to sleep. 922 * 923 * As this function doesn't involve any workqueue-related locking, it 924 * only returns stable values when called from inside the scheduler's 925 * queuing and dequeuing paths, when @task, which must be a kworker, 926 * is guaranteed to not be processing any works. 927 * 928 * Return: 929 * The last work function %current executed as a worker, NULL if it 930 * hasn't executed any work yet. 931 */ 932 work_func_t wq_worker_last_func(struct task_struct *task) 933 { 934 struct worker *worker = kthread_data(task); 935 936 return worker->last_func; 937 } 938 939 /** 940 * worker_set_flags - set worker flags and adjust nr_running accordingly 941 * @worker: self 942 * @flags: flags to set 943 * 944 * Set @flags in @worker->flags and adjust nr_running accordingly. 945 * 946 * CONTEXT: 947 * raw_spin_lock_irq(pool->lock) 948 */ 949 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 950 { 951 struct worker_pool *pool = worker->pool; 952 953 WARN_ON_ONCE(worker->task != current); 954 955 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 956 if ((flags & WORKER_NOT_RUNNING) && 957 !(worker->flags & WORKER_NOT_RUNNING)) { 958 atomic_dec(&pool->nr_running); 959 } 960 961 worker->flags |= flags; 962 } 963 964 /** 965 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 966 * @worker: self 967 * @flags: flags to clear 968 * 969 * Clear @flags in @worker->flags and adjust nr_running accordingly. 970 * 971 * CONTEXT: 972 * raw_spin_lock_irq(pool->lock) 973 */ 974 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 975 { 976 struct worker_pool *pool = worker->pool; 977 unsigned int oflags = worker->flags; 978 979 WARN_ON_ONCE(worker->task != current); 980 981 worker->flags &= ~flags; 982 983 /* 984 * If transitioning out of NOT_RUNNING, increment nr_running. Note 985 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 986 * of multiple flags, not a single flag. 987 */ 988 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 989 if (!(worker->flags & WORKER_NOT_RUNNING)) 990 atomic_inc(&pool->nr_running); 991 } 992 993 /** 994 * find_worker_executing_work - find worker which is executing a work 995 * @pool: pool of interest 996 * @work: work to find worker for 997 * 998 * Find a worker which is executing @work on @pool by searching 999 * @pool->busy_hash which is keyed by the address of @work. For a worker 1000 * to match, its current execution should match the address of @work and 1001 * its work function. This is to avoid unwanted dependency between 1002 * unrelated work executions through a work item being recycled while still 1003 * being executed. 1004 * 1005 * This is a bit tricky. A work item may be freed once its execution 1006 * starts and nothing prevents the freed area from being recycled for 1007 * another work item. If the same work item address ends up being reused 1008 * before the original execution finishes, workqueue will identify the 1009 * recycled work item as currently executing and make it wait until the 1010 * current execution finishes, introducing an unwanted dependency. 1011 * 1012 * This function checks the work item address and work function to avoid 1013 * false positives. Note that this isn't complete as one may construct a 1014 * work function which can introduce dependency onto itself through a 1015 * recycled work item. Well, if somebody wants to shoot oneself in the 1016 * foot that badly, there's only so much we can do, and if such deadlock 1017 * actually occurs, it should be easy to locate the culprit work function. 1018 * 1019 * CONTEXT: 1020 * raw_spin_lock_irq(pool->lock). 1021 * 1022 * Return: 1023 * Pointer to worker which is executing @work if found, %NULL 1024 * otherwise. 1025 */ 1026 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1027 struct work_struct *work) 1028 { 1029 struct worker *worker; 1030 1031 hash_for_each_possible(pool->busy_hash, worker, hentry, 1032 (unsigned long)work) 1033 if (worker->current_work == work && 1034 worker->current_func == work->func) 1035 return worker; 1036 1037 return NULL; 1038 } 1039 1040 /** 1041 * move_linked_works - move linked works to a list 1042 * @work: start of series of works to be scheduled 1043 * @head: target list to append @work to 1044 * @nextp: out parameter for nested worklist walking 1045 * 1046 * Schedule linked works starting from @work to @head. Work series to 1047 * be scheduled starts at @work and includes any consecutive work with 1048 * WORK_STRUCT_LINKED set in its predecessor. 1049 * 1050 * If @nextp is not NULL, it's updated to point to the next work of 1051 * the last scheduled work. This allows move_linked_works() to be 1052 * nested inside outer list_for_each_entry_safe(). 1053 * 1054 * CONTEXT: 1055 * raw_spin_lock_irq(pool->lock). 1056 */ 1057 static void move_linked_works(struct work_struct *work, struct list_head *head, 1058 struct work_struct **nextp) 1059 { 1060 struct work_struct *n; 1061 1062 /* 1063 * Linked worklist will always end before the end of the list, 1064 * use NULL for list head. 1065 */ 1066 list_for_each_entry_safe_from(work, n, NULL, entry) { 1067 list_move_tail(&work->entry, head); 1068 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1069 break; 1070 } 1071 1072 /* 1073 * If we're already inside safe list traversal and have moved 1074 * multiple works to the scheduled queue, the next position 1075 * needs to be updated. 1076 */ 1077 if (nextp) 1078 *nextp = n; 1079 } 1080 1081 /** 1082 * get_pwq - get an extra reference on the specified pool_workqueue 1083 * @pwq: pool_workqueue to get 1084 * 1085 * Obtain an extra reference on @pwq. The caller should guarantee that 1086 * @pwq has positive refcnt and be holding the matching pool->lock. 1087 */ 1088 static void get_pwq(struct pool_workqueue *pwq) 1089 { 1090 lockdep_assert_held(&pwq->pool->lock); 1091 WARN_ON_ONCE(pwq->refcnt <= 0); 1092 pwq->refcnt++; 1093 } 1094 1095 /** 1096 * put_pwq - put a pool_workqueue reference 1097 * @pwq: pool_workqueue to put 1098 * 1099 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1100 * destruction. The caller should be holding the matching pool->lock. 1101 */ 1102 static void put_pwq(struct pool_workqueue *pwq) 1103 { 1104 lockdep_assert_held(&pwq->pool->lock); 1105 if (likely(--pwq->refcnt)) 1106 return; 1107 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1108 return; 1109 /* 1110 * @pwq can't be released under pool->lock, bounce to 1111 * pwq_unbound_release_workfn(). This never recurses on the same 1112 * pool->lock as this path is taken only for unbound workqueues and 1113 * the release work item is scheduled on a per-cpu workqueue. To 1114 * avoid lockdep warning, unbound pool->locks are given lockdep 1115 * subclass of 1 in get_unbound_pool(). 1116 */ 1117 schedule_work(&pwq->unbound_release_work); 1118 } 1119 1120 /** 1121 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1122 * @pwq: pool_workqueue to put (can be %NULL) 1123 * 1124 * put_pwq() with locking. This function also allows %NULL @pwq. 1125 */ 1126 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1127 { 1128 if (pwq) { 1129 /* 1130 * As both pwqs and pools are RCU protected, the 1131 * following lock operations are safe. 1132 */ 1133 raw_spin_lock_irq(&pwq->pool->lock); 1134 put_pwq(pwq); 1135 raw_spin_unlock_irq(&pwq->pool->lock); 1136 } 1137 } 1138 1139 static void pwq_activate_delayed_work(struct work_struct *work) 1140 { 1141 struct pool_workqueue *pwq = get_work_pwq(work); 1142 1143 trace_workqueue_activate_work(work); 1144 if (list_empty(&pwq->pool->worklist)) 1145 pwq->pool->watchdog_ts = jiffies; 1146 move_linked_works(work, &pwq->pool->worklist, NULL); 1147 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1148 pwq->nr_active++; 1149 } 1150 1151 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1152 { 1153 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1154 struct work_struct, entry); 1155 1156 pwq_activate_delayed_work(work); 1157 } 1158 1159 /** 1160 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1161 * @pwq: pwq of interest 1162 * @color: color of work which left the queue 1163 * 1164 * A work either has completed or is removed from pending queue, 1165 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1166 * 1167 * CONTEXT: 1168 * raw_spin_lock_irq(pool->lock). 1169 */ 1170 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1171 { 1172 /* uncolored work items don't participate in flushing or nr_active */ 1173 if (color == WORK_NO_COLOR) 1174 goto out_put; 1175 1176 pwq->nr_in_flight[color]--; 1177 1178 pwq->nr_active--; 1179 if (!list_empty(&pwq->delayed_works)) { 1180 /* one down, submit a delayed one */ 1181 if (pwq->nr_active < pwq->max_active) 1182 pwq_activate_first_delayed(pwq); 1183 } 1184 1185 /* is flush in progress and are we at the flushing tip? */ 1186 if (likely(pwq->flush_color != color)) 1187 goto out_put; 1188 1189 /* are there still in-flight works? */ 1190 if (pwq->nr_in_flight[color]) 1191 goto out_put; 1192 1193 /* this pwq is done, clear flush_color */ 1194 pwq->flush_color = -1; 1195 1196 /* 1197 * If this was the last pwq, wake up the first flusher. It 1198 * will handle the rest. 1199 */ 1200 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1201 complete(&pwq->wq->first_flusher->done); 1202 out_put: 1203 put_pwq(pwq); 1204 } 1205 1206 /** 1207 * try_to_grab_pending - steal work item from worklist and disable irq 1208 * @work: work item to steal 1209 * @is_dwork: @work is a delayed_work 1210 * @flags: place to store irq state 1211 * 1212 * Try to grab PENDING bit of @work. This function can handle @work in any 1213 * stable state - idle, on timer or on worklist. 1214 * 1215 * Return: 1216 * 1217 * ======== ================================================================ 1218 * 1 if @work was pending and we successfully stole PENDING 1219 * 0 if @work was idle and we claimed PENDING 1220 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1221 * -ENOENT if someone else is canceling @work, this state may persist 1222 * for arbitrarily long 1223 * ======== ================================================================ 1224 * 1225 * Note: 1226 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1227 * interrupted while holding PENDING and @work off queue, irq must be 1228 * disabled on entry. This, combined with delayed_work->timer being 1229 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1230 * 1231 * On successful return, >= 0, irq is disabled and the caller is 1232 * responsible for releasing it using local_irq_restore(*@flags). 1233 * 1234 * This function is safe to call from any context including IRQ handler. 1235 */ 1236 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1237 unsigned long *flags) 1238 { 1239 struct worker_pool *pool; 1240 struct pool_workqueue *pwq; 1241 1242 local_irq_save(*flags); 1243 1244 /* try to steal the timer if it exists */ 1245 if (is_dwork) { 1246 struct delayed_work *dwork = to_delayed_work(work); 1247 1248 /* 1249 * dwork->timer is irqsafe. If del_timer() fails, it's 1250 * guaranteed that the timer is not queued anywhere and not 1251 * running on the local CPU. 1252 */ 1253 if (likely(del_timer(&dwork->timer))) 1254 return 1; 1255 } 1256 1257 /* try to claim PENDING the normal way */ 1258 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1259 return 0; 1260 1261 rcu_read_lock(); 1262 /* 1263 * The queueing is in progress, or it is already queued. Try to 1264 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1265 */ 1266 pool = get_work_pool(work); 1267 if (!pool) 1268 goto fail; 1269 1270 raw_spin_lock(&pool->lock); 1271 /* 1272 * work->data is guaranteed to point to pwq only while the work 1273 * item is queued on pwq->wq, and both updating work->data to point 1274 * to pwq on queueing and to pool on dequeueing are done under 1275 * pwq->pool->lock. This in turn guarantees that, if work->data 1276 * points to pwq which is associated with a locked pool, the work 1277 * item is currently queued on that pool. 1278 */ 1279 pwq = get_work_pwq(work); 1280 if (pwq && pwq->pool == pool) { 1281 debug_work_deactivate(work); 1282 1283 /* 1284 * A delayed work item cannot be grabbed directly because 1285 * it might have linked NO_COLOR work items which, if left 1286 * on the delayed_list, will confuse pwq->nr_active 1287 * management later on and cause stall. Make sure the work 1288 * item is activated before grabbing. 1289 */ 1290 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1291 pwq_activate_delayed_work(work); 1292 1293 list_del_init(&work->entry); 1294 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1295 1296 /* work->data points to pwq iff queued, point to pool */ 1297 set_work_pool_and_keep_pending(work, pool->id); 1298 1299 raw_spin_unlock(&pool->lock); 1300 rcu_read_unlock(); 1301 return 1; 1302 } 1303 raw_spin_unlock(&pool->lock); 1304 fail: 1305 rcu_read_unlock(); 1306 local_irq_restore(*flags); 1307 if (work_is_canceling(work)) 1308 return -ENOENT; 1309 cpu_relax(); 1310 return -EAGAIN; 1311 } 1312 1313 /** 1314 * insert_work - insert a work into a pool 1315 * @pwq: pwq @work belongs to 1316 * @work: work to insert 1317 * @head: insertion point 1318 * @extra_flags: extra WORK_STRUCT_* flags to set 1319 * 1320 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1321 * work_struct flags. 1322 * 1323 * CONTEXT: 1324 * raw_spin_lock_irq(pool->lock). 1325 */ 1326 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1327 struct list_head *head, unsigned int extra_flags) 1328 { 1329 struct worker_pool *pool = pwq->pool; 1330 1331 /* record the work call stack in order to print it in KASAN reports */ 1332 kasan_record_aux_stack(work); 1333 1334 /* we own @work, set data and link */ 1335 set_work_pwq(work, pwq, extra_flags); 1336 list_add_tail(&work->entry, head); 1337 get_pwq(pwq); 1338 1339 /* 1340 * Ensure either wq_worker_sleeping() sees the above 1341 * list_add_tail() or we see zero nr_running to avoid workers lying 1342 * around lazily while there are works to be processed. 1343 */ 1344 smp_mb(); 1345 1346 if (__need_more_worker(pool)) 1347 wake_up_worker(pool); 1348 } 1349 1350 /* 1351 * Test whether @work is being queued from another work executing on the 1352 * same workqueue. 1353 */ 1354 static bool is_chained_work(struct workqueue_struct *wq) 1355 { 1356 struct worker *worker; 1357 1358 worker = current_wq_worker(); 1359 /* 1360 * Return %true iff I'm a worker executing a work item on @wq. If 1361 * I'm @worker, it's safe to dereference it without locking. 1362 */ 1363 return worker && worker->current_pwq->wq == wq; 1364 } 1365 1366 /* 1367 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1368 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1369 * avoid perturbing sensitive tasks. 1370 */ 1371 static int wq_select_unbound_cpu(int cpu) 1372 { 1373 static bool printed_dbg_warning; 1374 int new_cpu; 1375 1376 if (likely(!wq_debug_force_rr_cpu)) { 1377 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1378 return cpu; 1379 } else if (!printed_dbg_warning) { 1380 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1381 printed_dbg_warning = true; 1382 } 1383 1384 if (cpumask_empty(wq_unbound_cpumask)) 1385 return cpu; 1386 1387 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1388 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1389 if (unlikely(new_cpu >= nr_cpu_ids)) { 1390 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1391 if (unlikely(new_cpu >= nr_cpu_ids)) 1392 return cpu; 1393 } 1394 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1395 1396 return new_cpu; 1397 } 1398 1399 static void __queue_work(int cpu, struct workqueue_struct *wq, 1400 struct work_struct *work) 1401 { 1402 struct pool_workqueue *pwq; 1403 struct worker_pool *last_pool; 1404 struct list_head *worklist; 1405 unsigned int work_flags; 1406 unsigned int req_cpu = cpu; 1407 1408 /* 1409 * While a work item is PENDING && off queue, a task trying to 1410 * steal the PENDING will busy-loop waiting for it to either get 1411 * queued or lose PENDING. Grabbing PENDING and queueing should 1412 * happen with IRQ disabled. 1413 */ 1414 lockdep_assert_irqs_disabled(); 1415 1416 1417 /* if draining, only works from the same workqueue are allowed */ 1418 if (unlikely(wq->flags & __WQ_DRAINING) && 1419 WARN_ON_ONCE(!is_chained_work(wq))) 1420 return; 1421 rcu_read_lock(); 1422 retry: 1423 /* pwq which will be used unless @work is executing elsewhere */ 1424 if (wq->flags & WQ_UNBOUND) { 1425 if (req_cpu == WORK_CPU_UNBOUND) 1426 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1427 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1428 } else { 1429 if (req_cpu == WORK_CPU_UNBOUND) 1430 cpu = raw_smp_processor_id(); 1431 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1432 } 1433 1434 /* 1435 * If @work was previously on a different pool, it might still be 1436 * running there, in which case the work needs to be queued on that 1437 * pool to guarantee non-reentrancy. 1438 */ 1439 last_pool = get_work_pool(work); 1440 if (last_pool && last_pool != pwq->pool) { 1441 struct worker *worker; 1442 1443 raw_spin_lock(&last_pool->lock); 1444 1445 worker = find_worker_executing_work(last_pool, work); 1446 1447 if (worker && worker->current_pwq->wq == wq) { 1448 pwq = worker->current_pwq; 1449 } else { 1450 /* meh... not running there, queue here */ 1451 raw_spin_unlock(&last_pool->lock); 1452 raw_spin_lock(&pwq->pool->lock); 1453 } 1454 } else { 1455 raw_spin_lock(&pwq->pool->lock); 1456 } 1457 1458 /* 1459 * pwq is determined and locked. For unbound pools, we could have 1460 * raced with pwq release and it could already be dead. If its 1461 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1462 * without another pwq replacing it in the numa_pwq_tbl or while 1463 * work items are executing on it, so the retrying is guaranteed to 1464 * make forward-progress. 1465 */ 1466 if (unlikely(!pwq->refcnt)) { 1467 if (wq->flags & WQ_UNBOUND) { 1468 raw_spin_unlock(&pwq->pool->lock); 1469 cpu_relax(); 1470 goto retry; 1471 } 1472 /* oops */ 1473 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1474 wq->name, cpu); 1475 } 1476 1477 /* pwq determined, queue */ 1478 trace_workqueue_queue_work(req_cpu, pwq, work); 1479 1480 if (WARN_ON(!list_empty(&work->entry))) 1481 goto out; 1482 1483 pwq->nr_in_flight[pwq->work_color]++; 1484 work_flags = work_color_to_flags(pwq->work_color); 1485 1486 if (likely(pwq->nr_active < pwq->max_active)) { 1487 trace_workqueue_activate_work(work); 1488 pwq->nr_active++; 1489 worklist = &pwq->pool->worklist; 1490 if (list_empty(worklist)) 1491 pwq->pool->watchdog_ts = jiffies; 1492 } else { 1493 work_flags |= WORK_STRUCT_DELAYED; 1494 worklist = &pwq->delayed_works; 1495 } 1496 1497 debug_work_activate(work); 1498 insert_work(pwq, work, worklist, work_flags); 1499 1500 out: 1501 raw_spin_unlock(&pwq->pool->lock); 1502 rcu_read_unlock(); 1503 } 1504 1505 /** 1506 * queue_work_on - queue work on specific cpu 1507 * @cpu: CPU number to execute work on 1508 * @wq: workqueue to use 1509 * @work: work to queue 1510 * 1511 * We queue the work to a specific CPU, the caller must ensure it 1512 * can't go away. 1513 * 1514 * Return: %false if @work was already on a queue, %true otherwise. 1515 */ 1516 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1517 struct work_struct *work) 1518 { 1519 bool ret = false; 1520 unsigned long flags; 1521 1522 local_irq_save(flags); 1523 1524 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1525 __queue_work(cpu, wq, work); 1526 ret = true; 1527 } 1528 1529 local_irq_restore(flags); 1530 return ret; 1531 } 1532 EXPORT_SYMBOL(queue_work_on); 1533 1534 /** 1535 * workqueue_select_cpu_near - Select a CPU based on NUMA node 1536 * @node: NUMA node ID that we want to select a CPU from 1537 * 1538 * This function will attempt to find a "random" cpu available on a given 1539 * node. If there are no CPUs available on the given node it will return 1540 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1541 * available CPU if we need to schedule this work. 1542 */ 1543 static int workqueue_select_cpu_near(int node) 1544 { 1545 int cpu; 1546 1547 /* No point in doing this if NUMA isn't enabled for workqueues */ 1548 if (!wq_numa_enabled) 1549 return WORK_CPU_UNBOUND; 1550 1551 /* Delay binding to CPU if node is not valid or online */ 1552 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1553 return WORK_CPU_UNBOUND; 1554 1555 /* Use local node/cpu if we are already there */ 1556 cpu = raw_smp_processor_id(); 1557 if (node == cpu_to_node(cpu)) 1558 return cpu; 1559 1560 /* Use "random" otherwise know as "first" online CPU of node */ 1561 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1562 1563 /* If CPU is valid return that, otherwise just defer */ 1564 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1565 } 1566 1567 /** 1568 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1569 * @node: NUMA node that we are targeting the work for 1570 * @wq: workqueue to use 1571 * @work: work to queue 1572 * 1573 * We queue the work to a "random" CPU within a given NUMA node. The basic 1574 * idea here is to provide a way to somehow associate work with a given 1575 * NUMA node. 1576 * 1577 * This function will only make a best effort attempt at getting this onto 1578 * the right NUMA node. If no node is requested or the requested node is 1579 * offline then we just fall back to standard queue_work behavior. 1580 * 1581 * Currently the "random" CPU ends up being the first available CPU in the 1582 * intersection of cpu_online_mask and the cpumask of the node, unless we 1583 * are running on the node. In that case we just use the current CPU. 1584 * 1585 * Return: %false if @work was already on a queue, %true otherwise. 1586 */ 1587 bool queue_work_node(int node, struct workqueue_struct *wq, 1588 struct work_struct *work) 1589 { 1590 unsigned long flags; 1591 bool ret = false; 1592 1593 /* 1594 * This current implementation is specific to unbound workqueues. 1595 * Specifically we only return the first available CPU for a given 1596 * node instead of cycling through individual CPUs within the node. 1597 * 1598 * If this is used with a per-cpu workqueue then the logic in 1599 * workqueue_select_cpu_near would need to be updated to allow for 1600 * some round robin type logic. 1601 */ 1602 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1603 1604 local_irq_save(flags); 1605 1606 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1607 int cpu = workqueue_select_cpu_near(node); 1608 1609 __queue_work(cpu, wq, work); 1610 ret = true; 1611 } 1612 1613 local_irq_restore(flags); 1614 return ret; 1615 } 1616 EXPORT_SYMBOL_GPL(queue_work_node); 1617 1618 void delayed_work_timer_fn(struct timer_list *t) 1619 { 1620 struct delayed_work *dwork = from_timer(dwork, t, timer); 1621 1622 /* should have been called from irqsafe timer with irq already off */ 1623 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1624 } 1625 EXPORT_SYMBOL(delayed_work_timer_fn); 1626 1627 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1628 struct delayed_work *dwork, unsigned long delay) 1629 { 1630 struct timer_list *timer = &dwork->timer; 1631 struct work_struct *work = &dwork->work; 1632 1633 WARN_ON_ONCE(!wq); 1634 WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn); 1635 WARN_ON_ONCE(timer_pending(timer)); 1636 WARN_ON_ONCE(!list_empty(&work->entry)); 1637 1638 /* 1639 * If @delay is 0, queue @dwork->work immediately. This is for 1640 * both optimization and correctness. The earliest @timer can 1641 * expire is on the closest next tick and delayed_work users depend 1642 * on that there's no such delay when @delay is 0. 1643 */ 1644 if (!delay) { 1645 __queue_work(cpu, wq, &dwork->work); 1646 return; 1647 } 1648 1649 dwork->wq = wq; 1650 dwork->cpu = cpu; 1651 timer->expires = jiffies + delay; 1652 1653 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1654 add_timer_on(timer, cpu); 1655 else 1656 add_timer(timer); 1657 } 1658 1659 /** 1660 * queue_delayed_work_on - queue work on specific CPU after delay 1661 * @cpu: CPU number to execute work on 1662 * @wq: workqueue to use 1663 * @dwork: work to queue 1664 * @delay: number of jiffies to wait before queueing 1665 * 1666 * Return: %false if @work was already on a queue, %true otherwise. If 1667 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1668 * execution. 1669 */ 1670 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1671 struct delayed_work *dwork, unsigned long delay) 1672 { 1673 struct work_struct *work = &dwork->work; 1674 bool ret = false; 1675 unsigned long flags; 1676 1677 /* read the comment in __queue_work() */ 1678 local_irq_save(flags); 1679 1680 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1681 __queue_delayed_work(cpu, wq, dwork, delay); 1682 ret = true; 1683 } 1684 1685 local_irq_restore(flags); 1686 return ret; 1687 } 1688 EXPORT_SYMBOL(queue_delayed_work_on); 1689 1690 /** 1691 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1692 * @cpu: CPU number to execute work on 1693 * @wq: workqueue to use 1694 * @dwork: work to queue 1695 * @delay: number of jiffies to wait before queueing 1696 * 1697 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1698 * modify @dwork's timer so that it expires after @delay. If @delay is 1699 * zero, @work is guaranteed to be scheduled immediately regardless of its 1700 * current state. 1701 * 1702 * Return: %false if @dwork was idle and queued, %true if @dwork was 1703 * pending and its timer was modified. 1704 * 1705 * This function is safe to call from any context including IRQ handler. 1706 * See try_to_grab_pending() for details. 1707 */ 1708 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1709 struct delayed_work *dwork, unsigned long delay) 1710 { 1711 unsigned long flags; 1712 int ret; 1713 1714 do { 1715 ret = try_to_grab_pending(&dwork->work, true, &flags); 1716 } while (unlikely(ret == -EAGAIN)); 1717 1718 if (likely(ret >= 0)) { 1719 __queue_delayed_work(cpu, wq, dwork, delay); 1720 local_irq_restore(flags); 1721 } 1722 1723 /* -ENOENT from try_to_grab_pending() becomes %true */ 1724 return ret; 1725 } 1726 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1727 1728 static void rcu_work_rcufn(struct rcu_head *rcu) 1729 { 1730 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1731 1732 /* read the comment in __queue_work() */ 1733 local_irq_disable(); 1734 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1735 local_irq_enable(); 1736 } 1737 1738 /** 1739 * queue_rcu_work - queue work after a RCU grace period 1740 * @wq: workqueue to use 1741 * @rwork: work to queue 1742 * 1743 * Return: %false if @rwork was already pending, %true otherwise. Note 1744 * that a full RCU grace period is guaranteed only after a %true return. 1745 * While @rwork is guaranteed to be executed after a %false return, the 1746 * execution may happen before a full RCU grace period has passed. 1747 */ 1748 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1749 { 1750 struct work_struct *work = &rwork->work; 1751 1752 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1753 rwork->wq = wq; 1754 call_rcu(&rwork->rcu, rcu_work_rcufn); 1755 return true; 1756 } 1757 1758 return false; 1759 } 1760 EXPORT_SYMBOL(queue_rcu_work); 1761 1762 /** 1763 * worker_enter_idle - enter idle state 1764 * @worker: worker which is entering idle state 1765 * 1766 * @worker is entering idle state. Update stats and idle timer if 1767 * necessary. 1768 * 1769 * LOCKING: 1770 * raw_spin_lock_irq(pool->lock). 1771 */ 1772 static void worker_enter_idle(struct worker *worker) 1773 { 1774 struct worker_pool *pool = worker->pool; 1775 1776 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1777 WARN_ON_ONCE(!list_empty(&worker->entry) && 1778 (worker->hentry.next || worker->hentry.pprev))) 1779 return; 1780 1781 /* can't use worker_set_flags(), also called from create_worker() */ 1782 worker->flags |= WORKER_IDLE; 1783 pool->nr_idle++; 1784 worker->last_active = jiffies; 1785 1786 /* idle_list is LIFO */ 1787 list_add(&worker->entry, &pool->idle_list); 1788 1789 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1790 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1791 1792 /* 1793 * Sanity check nr_running. Because unbind_workers() releases 1794 * pool->lock between setting %WORKER_UNBOUND and zapping 1795 * nr_running, the warning may trigger spuriously. Check iff 1796 * unbind is not in progress. 1797 */ 1798 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1799 pool->nr_workers == pool->nr_idle && 1800 atomic_read(&pool->nr_running)); 1801 } 1802 1803 /** 1804 * worker_leave_idle - leave idle state 1805 * @worker: worker which is leaving idle state 1806 * 1807 * @worker is leaving idle state. Update stats. 1808 * 1809 * LOCKING: 1810 * raw_spin_lock_irq(pool->lock). 1811 */ 1812 static void worker_leave_idle(struct worker *worker) 1813 { 1814 struct worker_pool *pool = worker->pool; 1815 1816 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1817 return; 1818 worker_clr_flags(worker, WORKER_IDLE); 1819 pool->nr_idle--; 1820 list_del_init(&worker->entry); 1821 } 1822 1823 static struct worker *alloc_worker(int node) 1824 { 1825 struct worker *worker; 1826 1827 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1828 if (worker) { 1829 INIT_LIST_HEAD(&worker->entry); 1830 INIT_LIST_HEAD(&worker->scheduled); 1831 INIT_LIST_HEAD(&worker->node); 1832 /* on creation a worker is in !idle && prep state */ 1833 worker->flags = WORKER_PREP; 1834 } 1835 return worker; 1836 } 1837 1838 /** 1839 * worker_attach_to_pool() - attach a worker to a pool 1840 * @worker: worker to be attached 1841 * @pool: the target pool 1842 * 1843 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1844 * cpu-binding of @worker are kept coordinated with the pool across 1845 * cpu-[un]hotplugs. 1846 */ 1847 static void worker_attach_to_pool(struct worker *worker, 1848 struct worker_pool *pool) 1849 { 1850 mutex_lock(&wq_pool_attach_mutex); 1851 1852 /* 1853 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1854 * stable across this function. See the comments above the flag 1855 * definition for details. 1856 */ 1857 if (pool->flags & POOL_DISASSOCIATED) 1858 worker->flags |= WORKER_UNBOUND; 1859 else 1860 kthread_set_per_cpu(worker->task, pool->cpu); 1861 1862 if (worker->rescue_wq) 1863 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1864 1865 list_add_tail(&worker->node, &pool->workers); 1866 worker->pool = pool; 1867 1868 mutex_unlock(&wq_pool_attach_mutex); 1869 } 1870 1871 /** 1872 * worker_detach_from_pool() - detach a worker from its pool 1873 * @worker: worker which is attached to its pool 1874 * 1875 * Undo the attaching which had been done in worker_attach_to_pool(). The 1876 * caller worker shouldn't access to the pool after detached except it has 1877 * other reference to the pool. 1878 */ 1879 static void worker_detach_from_pool(struct worker *worker) 1880 { 1881 struct worker_pool *pool = worker->pool; 1882 struct completion *detach_completion = NULL; 1883 1884 mutex_lock(&wq_pool_attach_mutex); 1885 1886 kthread_set_per_cpu(worker->task, -1); 1887 list_del(&worker->node); 1888 worker->pool = NULL; 1889 1890 if (list_empty(&pool->workers)) 1891 detach_completion = pool->detach_completion; 1892 mutex_unlock(&wq_pool_attach_mutex); 1893 1894 /* clear leftover flags without pool->lock after it is detached */ 1895 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1896 1897 if (detach_completion) 1898 complete(detach_completion); 1899 } 1900 1901 /** 1902 * create_worker - create a new workqueue worker 1903 * @pool: pool the new worker will belong to 1904 * 1905 * Create and start a new worker which is attached to @pool. 1906 * 1907 * CONTEXT: 1908 * Might sleep. Does GFP_KERNEL allocations. 1909 * 1910 * Return: 1911 * Pointer to the newly created worker. 1912 */ 1913 static struct worker *create_worker(struct worker_pool *pool) 1914 { 1915 struct worker *worker = NULL; 1916 int id = -1; 1917 char id_buf[16]; 1918 1919 /* ID is needed to determine kthread name */ 1920 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1921 if (id < 0) 1922 goto fail; 1923 1924 worker = alloc_worker(pool->node); 1925 if (!worker) 1926 goto fail; 1927 1928 worker->id = id; 1929 1930 if (pool->cpu >= 0) 1931 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1932 pool->attrs->nice < 0 ? "H" : ""); 1933 else 1934 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1935 1936 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1937 "kworker/%s", id_buf); 1938 if (IS_ERR(worker->task)) 1939 goto fail; 1940 1941 set_user_nice(worker->task, pool->attrs->nice); 1942 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1943 1944 /* successful, attach the worker to the pool */ 1945 worker_attach_to_pool(worker, pool); 1946 1947 /* start the newly created worker */ 1948 raw_spin_lock_irq(&pool->lock); 1949 worker->pool->nr_workers++; 1950 worker_enter_idle(worker); 1951 wake_up_process(worker->task); 1952 raw_spin_unlock_irq(&pool->lock); 1953 1954 return worker; 1955 1956 fail: 1957 if (id >= 0) 1958 ida_simple_remove(&pool->worker_ida, id); 1959 kfree(worker); 1960 return NULL; 1961 } 1962 1963 /** 1964 * destroy_worker - destroy a workqueue worker 1965 * @worker: worker to be destroyed 1966 * 1967 * Destroy @worker and adjust @pool stats accordingly. The worker should 1968 * be idle. 1969 * 1970 * CONTEXT: 1971 * raw_spin_lock_irq(pool->lock). 1972 */ 1973 static void destroy_worker(struct worker *worker) 1974 { 1975 struct worker_pool *pool = worker->pool; 1976 1977 lockdep_assert_held(&pool->lock); 1978 1979 /* sanity check frenzy */ 1980 if (WARN_ON(worker->current_work) || 1981 WARN_ON(!list_empty(&worker->scheduled)) || 1982 WARN_ON(!(worker->flags & WORKER_IDLE))) 1983 return; 1984 1985 pool->nr_workers--; 1986 pool->nr_idle--; 1987 1988 list_del_init(&worker->entry); 1989 worker->flags |= WORKER_DIE; 1990 wake_up_process(worker->task); 1991 } 1992 1993 static void idle_worker_timeout(struct timer_list *t) 1994 { 1995 struct worker_pool *pool = from_timer(pool, t, idle_timer); 1996 1997 raw_spin_lock_irq(&pool->lock); 1998 1999 while (too_many_workers(pool)) { 2000 struct worker *worker; 2001 unsigned long expires; 2002 2003 /* idle_list is kept in LIFO order, check the last one */ 2004 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2005 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2006 2007 if (time_before(jiffies, expires)) { 2008 mod_timer(&pool->idle_timer, expires); 2009 break; 2010 } 2011 2012 destroy_worker(worker); 2013 } 2014 2015 raw_spin_unlock_irq(&pool->lock); 2016 } 2017 2018 static void send_mayday(struct work_struct *work) 2019 { 2020 struct pool_workqueue *pwq = get_work_pwq(work); 2021 struct workqueue_struct *wq = pwq->wq; 2022 2023 lockdep_assert_held(&wq_mayday_lock); 2024 2025 if (!wq->rescuer) 2026 return; 2027 2028 /* mayday mayday mayday */ 2029 if (list_empty(&pwq->mayday_node)) { 2030 /* 2031 * If @pwq is for an unbound wq, its base ref may be put at 2032 * any time due to an attribute change. Pin @pwq until the 2033 * rescuer is done with it. 2034 */ 2035 get_pwq(pwq); 2036 list_add_tail(&pwq->mayday_node, &wq->maydays); 2037 wake_up_process(wq->rescuer->task); 2038 } 2039 } 2040 2041 static void pool_mayday_timeout(struct timer_list *t) 2042 { 2043 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2044 struct work_struct *work; 2045 2046 raw_spin_lock_irq(&pool->lock); 2047 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2048 2049 if (need_to_create_worker(pool)) { 2050 /* 2051 * We've been trying to create a new worker but 2052 * haven't been successful. We might be hitting an 2053 * allocation deadlock. Send distress signals to 2054 * rescuers. 2055 */ 2056 list_for_each_entry(work, &pool->worklist, entry) 2057 send_mayday(work); 2058 } 2059 2060 raw_spin_unlock(&wq_mayday_lock); 2061 raw_spin_unlock_irq(&pool->lock); 2062 2063 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2064 } 2065 2066 /** 2067 * maybe_create_worker - create a new worker if necessary 2068 * @pool: pool to create a new worker for 2069 * 2070 * Create a new worker for @pool if necessary. @pool is guaranteed to 2071 * have at least one idle worker on return from this function. If 2072 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2073 * sent to all rescuers with works scheduled on @pool to resolve 2074 * possible allocation deadlock. 2075 * 2076 * On return, need_to_create_worker() is guaranteed to be %false and 2077 * may_start_working() %true. 2078 * 2079 * LOCKING: 2080 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2081 * multiple times. Does GFP_KERNEL allocations. Called only from 2082 * manager. 2083 */ 2084 static void maybe_create_worker(struct worker_pool *pool) 2085 __releases(&pool->lock) 2086 __acquires(&pool->lock) 2087 { 2088 restart: 2089 raw_spin_unlock_irq(&pool->lock); 2090 2091 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2092 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2093 2094 while (true) { 2095 if (create_worker(pool) || !need_to_create_worker(pool)) 2096 break; 2097 2098 schedule_timeout_interruptible(CREATE_COOLDOWN); 2099 2100 if (!need_to_create_worker(pool)) 2101 break; 2102 } 2103 2104 del_timer_sync(&pool->mayday_timer); 2105 raw_spin_lock_irq(&pool->lock); 2106 /* 2107 * This is necessary even after a new worker was just successfully 2108 * created as @pool->lock was dropped and the new worker might have 2109 * already become busy. 2110 */ 2111 if (need_to_create_worker(pool)) 2112 goto restart; 2113 } 2114 2115 /** 2116 * manage_workers - manage worker pool 2117 * @worker: self 2118 * 2119 * Assume the manager role and manage the worker pool @worker belongs 2120 * to. At any given time, there can be only zero or one manager per 2121 * pool. The exclusion is handled automatically by this function. 2122 * 2123 * The caller can safely start processing works on false return. On 2124 * true return, it's guaranteed that need_to_create_worker() is false 2125 * and may_start_working() is true. 2126 * 2127 * CONTEXT: 2128 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2129 * multiple times. Does GFP_KERNEL allocations. 2130 * 2131 * Return: 2132 * %false if the pool doesn't need management and the caller can safely 2133 * start processing works, %true if management function was performed and 2134 * the conditions that the caller verified before calling the function may 2135 * no longer be true. 2136 */ 2137 static bool manage_workers(struct worker *worker) 2138 { 2139 struct worker_pool *pool = worker->pool; 2140 2141 if (pool->flags & POOL_MANAGER_ACTIVE) 2142 return false; 2143 2144 pool->flags |= POOL_MANAGER_ACTIVE; 2145 pool->manager = worker; 2146 2147 maybe_create_worker(pool); 2148 2149 pool->manager = NULL; 2150 pool->flags &= ~POOL_MANAGER_ACTIVE; 2151 rcuwait_wake_up(&manager_wait); 2152 return true; 2153 } 2154 2155 /** 2156 * process_one_work - process single work 2157 * @worker: self 2158 * @work: work to process 2159 * 2160 * Process @work. This function contains all the logics necessary to 2161 * process a single work including synchronization against and 2162 * interaction with other workers on the same cpu, queueing and 2163 * flushing. As long as context requirement is met, any worker can 2164 * call this function to process a work. 2165 * 2166 * CONTEXT: 2167 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 2168 */ 2169 static void process_one_work(struct worker *worker, struct work_struct *work) 2170 __releases(&pool->lock) 2171 __acquires(&pool->lock) 2172 { 2173 struct pool_workqueue *pwq = get_work_pwq(work); 2174 struct worker_pool *pool = worker->pool; 2175 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2176 int work_color; 2177 struct worker *collision; 2178 #ifdef CONFIG_LOCKDEP 2179 /* 2180 * It is permissible to free the struct work_struct from 2181 * inside the function that is called from it, this we need to 2182 * take into account for lockdep too. To avoid bogus "held 2183 * lock freed" warnings as well as problems when looking into 2184 * work->lockdep_map, make a copy and use that here. 2185 */ 2186 struct lockdep_map lockdep_map; 2187 2188 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2189 #endif 2190 /* ensure we're on the correct CPU */ 2191 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2192 raw_smp_processor_id() != pool->cpu); 2193 2194 /* 2195 * A single work shouldn't be executed concurrently by 2196 * multiple workers on a single cpu. Check whether anyone is 2197 * already processing the work. If so, defer the work to the 2198 * currently executing one. 2199 */ 2200 collision = find_worker_executing_work(pool, work); 2201 if (unlikely(collision)) { 2202 move_linked_works(work, &collision->scheduled, NULL); 2203 return; 2204 } 2205 2206 /* claim and dequeue */ 2207 debug_work_deactivate(work); 2208 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2209 worker->current_work = work; 2210 worker->current_func = work->func; 2211 worker->current_pwq = pwq; 2212 work_color = get_work_color(work); 2213 2214 /* 2215 * Record wq name for cmdline and debug reporting, may get 2216 * overridden through set_worker_desc(). 2217 */ 2218 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2219 2220 list_del_init(&work->entry); 2221 2222 /* 2223 * CPU intensive works don't participate in concurrency management. 2224 * They're the scheduler's responsibility. This takes @worker out 2225 * of concurrency management and the next code block will chain 2226 * execution of the pending work items. 2227 */ 2228 if (unlikely(cpu_intensive)) 2229 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2230 2231 /* 2232 * Wake up another worker if necessary. The condition is always 2233 * false for normal per-cpu workers since nr_running would always 2234 * be >= 1 at this point. This is used to chain execution of the 2235 * pending work items for WORKER_NOT_RUNNING workers such as the 2236 * UNBOUND and CPU_INTENSIVE ones. 2237 */ 2238 if (need_more_worker(pool)) 2239 wake_up_worker(pool); 2240 2241 /* 2242 * Record the last pool and clear PENDING which should be the last 2243 * update to @work. Also, do this inside @pool->lock so that 2244 * PENDING and queued state changes happen together while IRQ is 2245 * disabled. 2246 */ 2247 set_work_pool_and_clear_pending(work, pool->id); 2248 2249 raw_spin_unlock_irq(&pool->lock); 2250 2251 lock_map_acquire(&pwq->wq->lockdep_map); 2252 lock_map_acquire(&lockdep_map); 2253 /* 2254 * Strictly speaking we should mark the invariant state without holding 2255 * any locks, that is, before these two lock_map_acquire()'s. 2256 * 2257 * However, that would result in: 2258 * 2259 * A(W1) 2260 * WFC(C) 2261 * A(W1) 2262 * C(C) 2263 * 2264 * Which would create W1->C->W1 dependencies, even though there is no 2265 * actual deadlock possible. There are two solutions, using a 2266 * read-recursive acquire on the work(queue) 'locks', but this will then 2267 * hit the lockdep limitation on recursive locks, or simply discard 2268 * these locks. 2269 * 2270 * AFAICT there is no possible deadlock scenario between the 2271 * flush_work() and complete() primitives (except for single-threaded 2272 * workqueues), so hiding them isn't a problem. 2273 */ 2274 lockdep_invariant_state(true); 2275 trace_workqueue_execute_start(work); 2276 worker->current_func(work); 2277 /* 2278 * While we must be careful to not use "work" after this, the trace 2279 * point will only record its address. 2280 */ 2281 trace_workqueue_execute_end(work, worker->current_func); 2282 lock_map_release(&lockdep_map); 2283 lock_map_release(&pwq->wq->lockdep_map); 2284 2285 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2286 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2287 " last function: %ps\n", 2288 current->comm, preempt_count(), task_pid_nr(current), 2289 worker->current_func); 2290 debug_show_held_locks(current); 2291 dump_stack(); 2292 } 2293 2294 /* 2295 * The following prevents a kworker from hogging CPU on !PREEMPTION 2296 * kernels, where a requeueing work item waiting for something to 2297 * happen could deadlock with stop_machine as such work item could 2298 * indefinitely requeue itself while all other CPUs are trapped in 2299 * stop_machine. At the same time, report a quiescent RCU state so 2300 * the same condition doesn't freeze RCU. 2301 */ 2302 cond_resched(); 2303 2304 raw_spin_lock_irq(&pool->lock); 2305 2306 /* clear cpu intensive status */ 2307 if (unlikely(cpu_intensive)) 2308 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2309 2310 /* tag the worker for identification in schedule() */ 2311 worker->last_func = worker->current_func; 2312 2313 /* we're done with it, release */ 2314 hash_del(&worker->hentry); 2315 worker->current_work = NULL; 2316 worker->current_func = NULL; 2317 worker->current_pwq = NULL; 2318 pwq_dec_nr_in_flight(pwq, work_color); 2319 } 2320 2321 /** 2322 * process_scheduled_works - process scheduled works 2323 * @worker: self 2324 * 2325 * Process all scheduled works. Please note that the scheduled list 2326 * may change while processing a work, so this function repeatedly 2327 * fetches a work from the top and executes it. 2328 * 2329 * CONTEXT: 2330 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2331 * multiple times. 2332 */ 2333 static void process_scheduled_works(struct worker *worker) 2334 { 2335 while (!list_empty(&worker->scheduled)) { 2336 struct work_struct *work = list_first_entry(&worker->scheduled, 2337 struct work_struct, entry); 2338 process_one_work(worker, work); 2339 } 2340 } 2341 2342 static void set_pf_worker(bool val) 2343 { 2344 mutex_lock(&wq_pool_attach_mutex); 2345 if (val) 2346 current->flags |= PF_WQ_WORKER; 2347 else 2348 current->flags &= ~PF_WQ_WORKER; 2349 mutex_unlock(&wq_pool_attach_mutex); 2350 } 2351 2352 /** 2353 * worker_thread - the worker thread function 2354 * @__worker: self 2355 * 2356 * The worker thread function. All workers belong to a worker_pool - 2357 * either a per-cpu one or dynamic unbound one. These workers process all 2358 * work items regardless of their specific target workqueue. The only 2359 * exception is work items which belong to workqueues with a rescuer which 2360 * will be explained in rescuer_thread(). 2361 * 2362 * Return: 0 2363 */ 2364 static int worker_thread(void *__worker) 2365 { 2366 struct worker *worker = __worker; 2367 struct worker_pool *pool = worker->pool; 2368 2369 /* tell the scheduler that this is a workqueue worker */ 2370 set_pf_worker(true); 2371 woke_up: 2372 raw_spin_lock_irq(&pool->lock); 2373 2374 /* am I supposed to die? */ 2375 if (unlikely(worker->flags & WORKER_DIE)) { 2376 raw_spin_unlock_irq(&pool->lock); 2377 WARN_ON_ONCE(!list_empty(&worker->entry)); 2378 set_pf_worker(false); 2379 2380 set_task_comm(worker->task, "kworker/dying"); 2381 ida_simple_remove(&pool->worker_ida, worker->id); 2382 worker_detach_from_pool(worker); 2383 kfree(worker); 2384 return 0; 2385 } 2386 2387 worker_leave_idle(worker); 2388 recheck: 2389 /* no more worker necessary? */ 2390 if (!need_more_worker(pool)) 2391 goto sleep; 2392 2393 /* do we need to manage? */ 2394 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2395 goto recheck; 2396 2397 /* 2398 * ->scheduled list can only be filled while a worker is 2399 * preparing to process a work or actually processing it. 2400 * Make sure nobody diddled with it while I was sleeping. 2401 */ 2402 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2403 2404 /* 2405 * Finish PREP stage. We're guaranteed to have at least one idle 2406 * worker or that someone else has already assumed the manager 2407 * role. This is where @worker starts participating in concurrency 2408 * management if applicable and concurrency management is restored 2409 * after being rebound. See rebind_workers() for details. 2410 */ 2411 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2412 2413 do { 2414 struct work_struct *work = 2415 list_first_entry(&pool->worklist, 2416 struct work_struct, entry); 2417 2418 pool->watchdog_ts = jiffies; 2419 2420 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2421 /* optimization path, not strictly necessary */ 2422 process_one_work(worker, work); 2423 if (unlikely(!list_empty(&worker->scheduled))) 2424 process_scheduled_works(worker); 2425 } else { 2426 move_linked_works(work, &worker->scheduled, NULL); 2427 process_scheduled_works(worker); 2428 } 2429 } while (keep_working(pool)); 2430 2431 worker_set_flags(worker, WORKER_PREP); 2432 sleep: 2433 /* 2434 * pool->lock is held and there's no work to process and no need to 2435 * manage, sleep. Workers are woken up only while holding 2436 * pool->lock or from local cpu, so setting the current state 2437 * before releasing pool->lock is enough to prevent losing any 2438 * event. 2439 */ 2440 worker_enter_idle(worker); 2441 __set_current_state(TASK_IDLE); 2442 raw_spin_unlock_irq(&pool->lock); 2443 schedule(); 2444 goto woke_up; 2445 } 2446 2447 /** 2448 * rescuer_thread - the rescuer thread function 2449 * @__rescuer: self 2450 * 2451 * Workqueue rescuer thread function. There's one rescuer for each 2452 * workqueue which has WQ_MEM_RECLAIM set. 2453 * 2454 * Regular work processing on a pool may block trying to create a new 2455 * worker which uses GFP_KERNEL allocation which has slight chance of 2456 * developing into deadlock if some works currently on the same queue 2457 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2458 * the problem rescuer solves. 2459 * 2460 * When such condition is possible, the pool summons rescuers of all 2461 * workqueues which have works queued on the pool and let them process 2462 * those works so that forward progress can be guaranteed. 2463 * 2464 * This should happen rarely. 2465 * 2466 * Return: 0 2467 */ 2468 static int rescuer_thread(void *__rescuer) 2469 { 2470 struct worker *rescuer = __rescuer; 2471 struct workqueue_struct *wq = rescuer->rescue_wq; 2472 struct list_head *scheduled = &rescuer->scheduled; 2473 bool should_stop; 2474 2475 set_user_nice(current, RESCUER_NICE_LEVEL); 2476 2477 /* 2478 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2479 * doesn't participate in concurrency management. 2480 */ 2481 set_pf_worker(true); 2482 repeat: 2483 set_current_state(TASK_IDLE); 2484 2485 /* 2486 * By the time the rescuer is requested to stop, the workqueue 2487 * shouldn't have any work pending, but @wq->maydays may still have 2488 * pwq(s) queued. This can happen by non-rescuer workers consuming 2489 * all the work items before the rescuer got to them. Go through 2490 * @wq->maydays processing before acting on should_stop so that the 2491 * list is always empty on exit. 2492 */ 2493 should_stop = kthread_should_stop(); 2494 2495 /* see whether any pwq is asking for help */ 2496 raw_spin_lock_irq(&wq_mayday_lock); 2497 2498 while (!list_empty(&wq->maydays)) { 2499 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2500 struct pool_workqueue, mayday_node); 2501 struct worker_pool *pool = pwq->pool; 2502 struct work_struct *work, *n; 2503 bool first = true; 2504 2505 __set_current_state(TASK_RUNNING); 2506 list_del_init(&pwq->mayday_node); 2507 2508 raw_spin_unlock_irq(&wq_mayday_lock); 2509 2510 worker_attach_to_pool(rescuer, pool); 2511 2512 raw_spin_lock_irq(&pool->lock); 2513 2514 /* 2515 * Slurp in all works issued via this workqueue and 2516 * process'em. 2517 */ 2518 WARN_ON_ONCE(!list_empty(scheduled)); 2519 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2520 if (get_work_pwq(work) == pwq) { 2521 if (first) 2522 pool->watchdog_ts = jiffies; 2523 move_linked_works(work, scheduled, &n); 2524 } 2525 first = false; 2526 } 2527 2528 if (!list_empty(scheduled)) { 2529 process_scheduled_works(rescuer); 2530 2531 /* 2532 * The above execution of rescued work items could 2533 * have created more to rescue through 2534 * pwq_activate_first_delayed() or chained 2535 * queueing. Let's put @pwq back on mayday list so 2536 * that such back-to-back work items, which may be 2537 * being used to relieve memory pressure, don't 2538 * incur MAYDAY_INTERVAL delay inbetween. 2539 */ 2540 if (pwq->nr_active && need_to_create_worker(pool)) { 2541 raw_spin_lock(&wq_mayday_lock); 2542 /* 2543 * Queue iff we aren't racing destruction 2544 * and somebody else hasn't queued it already. 2545 */ 2546 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 2547 get_pwq(pwq); 2548 list_add_tail(&pwq->mayday_node, &wq->maydays); 2549 } 2550 raw_spin_unlock(&wq_mayday_lock); 2551 } 2552 } 2553 2554 /* 2555 * Put the reference grabbed by send_mayday(). @pool won't 2556 * go away while we're still attached to it. 2557 */ 2558 put_pwq(pwq); 2559 2560 /* 2561 * Leave this pool. If need_more_worker() is %true, notify a 2562 * regular worker; otherwise, we end up with 0 concurrency 2563 * and stalling the execution. 2564 */ 2565 if (need_more_worker(pool)) 2566 wake_up_worker(pool); 2567 2568 raw_spin_unlock_irq(&pool->lock); 2569 2570 worker_detach_from_pool(rescuer); 2571 2572 raw_spin_lock_irq(&wq_mayday_lock); 2573 } 2574 2575 raw_spin_unlock_irq(&wq_mayday_lock); 2576 2577 if (should_stop) { 2578 __set_current_state(TASK_RUNNING); 2579 set_pf_worker(false); 2580 return 0; 2581 } 2582 2583 /* rescuers should never participate in concurrency management */ 2584 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2585 schedule(); 2586 goto repeat; 2587 } 2588 2589 /** 2590 * check_flush_dependency - check for flush dependency sanity 2591 * @target_wq: workqueue being flushed 2592 * @target_work: work item being flushed (NULL for workqueue flushes) 2593 * 2594 * %current is trying to flush the whole @target_wq or @target_work on it. 2595 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2596 * reclaiming memory or running on a workqueue which doesn't have 2597 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2598 * a deadlock. 2599 */ 2600 static void check_flush_dependency(struct workqueue_struct *target_wq, 2601 struct work_struct *target_work) 2602 { 2603 work_func_t target_func = target_work ? target_work->func : NULL; 2604 struct worker *worker; 2605 2606 if (target_wq->flags & WQ_MEM_RECLAIM) 2607 return; 2608 2609 worker = current_wq_worker(); 2610 2611 WARN_ONCE(current->flags & PF_MEMALLOC, 2612 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 2613 current->pid, current->comm, target_wq->name, target_func); 2614 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2615 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2616 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 2617 worker->current_pwq->wq->name, worker->current_func, 2618 target_wq->name, target_func); 2619 } 2620 2621 struct wq_barrier { 2622 struct work_struct work; 2623 struct completion done; 2624 struct task_struct *task; /* purely informational */ 2625 }; 2626 2627 static void wq_barrier_func(struct work_struct *work) 2628 { 2629 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2630 complete(&barr->done); 2631 } 2632 2633 /** 2634 * insert_wq_barrier - insert a barrier work 2635 * @pwq: pwq to insert barrier into 2636 * @barr: wq_barrier to insert 2637 * @target: target work to attach @barr to 2638 * @worker: worker currently executing @target, NULL if @target is not executing 2639 * 2640 * @barr is linked to @target such that @barr is completed only after 2641 * @target finishes execution. Please note that the ordering 2642 * guarantee is observed only with respect to @target and on the local 2643 * cpu. 2644 * 2645 * Currently, a queued barrier can't be canceled. This is because 2646 * try_to_grab_pending() can't determine whether the work to be 2647 * grabbed is at the head of the queue and thus can't clear LINKED 2648 * flag of the previous work while there must be a valid next work 2649 * after a work with LINKED flag set. 2650 * 2651 * Note that when @worker is non-NULL, @target may be modified 2652 * underneath us, so we can't reliably determine pwq from @target. 2653 * 2654 * CONTEXT: 2655 * raw_spin_lock_irq(pool->lock). 2656 */ 2657 static void insert_wq_barrier(struct pool_workqueue *pwq, 2658 struct wq_barrier *barr, 2659 struct work_struct *target, struct worker *worker) 2660 { 2661 struct list_head *head; 2662 unsigned int linked = 0; 2663 2664 /* 2665 * debugobject calls are safe here even with pool->lock locked 2666 * as we know for sure that this will not trigger any of the 2667 * checks and call back into the fixup functions where we 2668 * might deadlock. 2669 */ 2670 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2671 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2672 2673 init_completion_map(&barr->done, &target->lockdep_map); 2674 2675 barr->task = current; 2676 2677 /* 2678 * If @target is currently being executed, schedule the 2679 * barrier to the worker; otherwise, put it after @target. 2680 */ 2681 if (worker) 2682 head = worker->scheduled.next; 2683 else { 2684 unsigned long *bits = work_data_bits(target); 2685 2686 head = target->entry.next; 2687 /* there can already be other linked works, inherit and set */ 2688 linked = *bits & WORK_STRUCT_LINKED; 2689 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2690 } 2691 2692 debug_work_activate(&barr->work); 2693 insert_work(pwq, &barr->work, head, 2694 work_color_to_flags(WORK_NO_COLOR) | linked); 2695 } 2696 2697 /** 2698 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2699 * @wq: workqueue being flushed 2700 * @flush_color: new flush color, < 0 for no-op 2701 * @work_color: new work color, < 0 for no-op 2702 * 2703 * Prepare pwqs for workqueue flushing. 2704 * 2705 * If @flush_color is non-negative, flush_color on all pwqs should be 2706 * -1. If no pwq has in-flight commands at the specified color, all 2707 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2708 * has in flight commands, its pwq->flush_color is set to 2709 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2710 * wakeup logic is armed and %true is returned. 2711 * 2712 * The caller should have initialized @wq->first_flusher prior to 2713 * calling this function with non-negative @flush_color. If 2714 * @flush_color is negative, no flush color update is done and %false 2715 * is returned. 2716 * 2717 * If @work_color is non-negative, all pwqs should have the same 2718 * work_color which is previous to @work_color and all will be 2719 * advanced to @work_color. 2720 * 2721 * CONTEXT: 2722 * mutex_lock(wq->mutex). 2723 * 2724 * Return: 2725 * %true if @flush_color >= 0 and there's something to flush. %false 2726 * otherwise. 2727 */ 2728 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2729 int flush_color, int work_color) 2730 { 2731 bool wait = false; 2732 struct pool_workqueue *pwq; 2733 2734 if (flush_color >= 0) { 2735 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2736 atomic_set(&wq->nr_pwqs_to_flush, 1); 2737 } 2738 2739 for_each_pwq(pwq, wq) { 2740 struct worker_pool *pool = pwq->pool; 2741 2742 raw_spin_lock_irq(&pool->lock); 2743 2744 if (flush_color >= 0) { 2745 WARN_ON_ONCE(pwq->flush_color != -1); 2746 2747 if (pwq->nr_in_flight[flush_color]) { 2748 pwq->flush_color = flush_color; 2749 atomic_inc(&wq->nr_pwqs_to_flush); 2750 wait = true; 2751 } 2752 } 2753 2754 if (work_color >= 0) { 2755 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2756 pwq->work_color = work_color; 2757 } 2758 2759 raw_spin_unlock_irq(&pool->lock); 2760 } 2761 2762 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2763 complete(&wq->first_flusher->done); 2764 2765 return wait; 2766 } 2767 2768 /** 2769 * flush_workqueue - ensure that any scheduled work has run to completion. 2770 * @wq: workqueue to flush 2771 * 2772 * This function sleeps until all work items which were queued on entry 2773 * have finished execution, but it is not livelocked by new incoming ones. 2774 */ 2775 void flush_workqueue(struct workqueue_struct *wq) 2776 { 2777 struct wq_flusher this_flusher = { 2778 .list = LIST_HEAD_INIT(this_flusher.list), 2779 .flush_color = -1, 2780 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2781 }; 2782 int next_color; 2783 2784 if (WARN_ON(!wq_online)) 2785 return; 2786 2787 lock_map_acquire(&wq->lockdep_map); 2788 lock_map_release(&wq->lockdep_map); 2789 2790 mutex_lock(&wq->mutex); 2791 2792 /* 2793 * Start-to-wait phase 2794 */ 2795 next_color = work_next_color(wq->work_color); 2796 2797 if (next_color != wq->flush_color) { 2798 /* 2799 * Color space is not full. The current work_color 2800 * becomes our flush_color and work_color is advanced 2801 * by one. 2802 */ 2803 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2804 this_flusher.flush_color = wq->work_color; 2805 wq->work_color = next_color; 2806 2807 if (!wq->first_flusher) { 2808 /* no flush in progress, become the first flusher */ 2809 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2810 2811 wq->first_flusher = &this_flusher; 2812 2813 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2814 wq->work_color)) { 2815 /* nothing to flush, done */ 2816 wq->flush_color = next_color; 2817 wq->first_flusher = NULL; 2818 goto out_unlock; 2819 } 2820 } else { 2821 /* wait in queue */ 2822 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2823 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2824 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2825 } 2826 } else { 2827 /* 2828 * Oops, color space is full, wait on overflow queue. 2829 * The next flush completion will assign us 2830 * flush_color and transfer to flusher_queue. 2831 */ 2832 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2833 } 2834 2835 check_flush_dependency(wq, NULL); 2836 2837 mutex_unlock(&wq->mutex); 2838 2839 wait_for_completion(&this_flusher.done); 2840 2841 /* 2842 * Wake-up-and-cascade phase 2843 * 2844 * First flushers are responsible for cascading flushes and 2845 * handling overflow. Non-first flushers can simply return. 2846 */ 2847 if (READ_ONCE(wq->first_flusher) != &this_flusher) 2848 return; 2849 2850 mutex_lock(&wq->mutex); 2851 2852 /* we might have raced, check again with mutex held */ 2853 if (wq->first_flusher != &this_flusher) 2854 goto out_unlock; 2855 2856 WRITE_ONCE(wq->first_flusher, NULL); 2857 2858 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2859 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2860 2861 while (true) { 2862 struct wq_flusher *next, *tmp; 2863 2864 /* complete all the flushers sharing the current flush color */ 2865 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2866 if (next->flush_color != wq->flush_color) 2867 break; 2868 list_del_init(&next->list); 2869 complete(&next->done); 2870 } 2871 2872 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2873 wq->flush_color != work_next_color(wq->work_color)); 2874 2875 /* this flush_color is finished, advance by one */ 2876 wq->flush_color = work_next_color(wq->flush_color); 2877 2878 /* one color has been freed, handle overflow queue */ 2879 if (!list_empty(&wq->flusher_overflow)) { 2880 /* 2881 * Assign the same color to all overflowed 2882 * flushers, advance work_color and append to 2883 * flusher_queue. This is the start-to-wait 2884 * phase for these overflowed flushers. 2885 */ 2886 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2887 tmp->flush_color = wq->work_color; 2888 2889 wq->work_color = work_next_color(wq->work_color); 2890 2891 list_splice_tail_init(&wq->flusher_overflow, 2892 &wq->flusher_queue); 2893 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2894 } 2895 2896 if (list_empty(&wq->flusher_queue)) { 2897 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2898 break; 2899 } 2900 2901 /* 2902 * Need to flush more colors. Make the next flusher 2903 * the new first flusher and arm pwqs. 2904 */ 2905 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2906 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2907 2908 list_del_init(&next->list); 2909 wq->first_flusher = next; 2910 2911 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2912 break; 2913 2914 /* 2915 * Meh... this color is already done, clear first 2916 * flusher and repeat cascading. 2917 */ 2918 wq->first_flusher = NULL; 2919 } 2920 2921 out_unlock: 2922 mutex_unlock(&wq->mutex); 2923 } 2924 EXPORT_SYMBOL(flush_workqueue); 2925 2926 /** 2927 * drain_workqueue - drain a workqueue 2928 * @wq: workqueue to drain 2929 * 2930 * Wait until the workqueue becomes empty. While draining is in progress, 2931 * only chain queueing is allowed. IOW, only currently pending or running 2932 * work items on @wq can queue further work items on it. @wq is flushed 2933 * repeatedly until it becomes empty. The number of flushing is determined 2934 * by the depth of chaining and should be relatively short. Whine if it 2935 * takes too long. 2936 */ 2937 void drain_workqueue(struct workqueue_struct *wq) 2938 { 2939 unsigned int flush_cnt = 0; 2940 struct pool_workqueue *pwq; 2941 2942 /* 2943 * __queue_work() needs to test whether there are drainers, is much 2944 * hotter than drain_workqueue() and already looks at @wq->flags. 2945 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2946 */ 2947 mutex_lock(&wq->mutex); 2948 if (!wq->nr_drainers++) 2949 wq->flags |= __WQ_DRAINING; 2950 mutex_unlock(&wq->mutex); 2951 reflush: 2952 flush_workqueue(wq); 2953 2954 mutex_lock(&wq->mutex); 2955 2956 for_each_pwq(pwq, wq) { 2957 bool drained; 2958 2959 raw_spin_lock_irq(&pwq->pool->lock); 2960 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2961 raw_spin_unlock_irq(&pwq->pool->lock); 2962 2963 if (drained) 2964 continue; 2965 2966 if (++flush_cnt == 10 || 2967 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2968 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 2969 wq->name, __func__, flush_cnt); 2970 2971 mutex_unlock(&wq->mutex); 2972 goto reflush; 2973 } 2974 2975 if (!--wq->nr_drainers) 2976 wq->flags &= ~__WQ_DRAINING; 2977 mutex_unlock(&wq->mutex); 2978 } 2979 EXPORT_SYMBOL_GPL(drain_workqueue); 2980 2981 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2982 bool from_cancel) 2983 { 2984 struct worker *worker = NULL; 2985 struct worker_pool *pool; 2986 struct pool_workqueue *pwq; 2987 2988 might_sleep(); 2989 2990 rcu_read_lock(); 2991 pool = get_work_pool(work); 2992 if (!pool) { 2993 rcu_read_unlock(); 2994 return false; 2995 } 2996 2997 raw_spin_lock_irq(&pool->lock); 2998 /* see the comment in try_to_grab_pending() with the same code */ 2999 pwq = get_work_pwq(work); 3000 if (pwq) { 3001 if (unlikely(pwq->pool != pool)) 3002 goto already_gone; 3003 } else { 3004 worker = find_worker_executing_work(pool, work); 3005 if (!worker) 3006 goto already_gone; 3007 pwq = worker->current_pwq; 3008 } 3009 3010 check_flush_dependency(pwq->wq, work); 3011 3012 insert_wq_barrier(pwq, barr, work, worker); 3013 raw_spin_unlock_irq(&pool->lock); 3014 3015 /* 3016 * Force a lock recursion deadlock when using flush_work() inside a 3017 * single-threaded or rescuer equipped workqueue. 3018 * 3019 * For single threaded workqueues the deadlock happens when the work 3020 * is after the work issuing the flush_work(). For rescuer equipped 3021 * workqueues the deadlock happens when the rescuer stalls, blocking 3022 * forward progress. 3023 */ 3024 if (!from_cancel && 3025 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3026 lock_map_acquire(&pwq->wq->lockdep_map); 3027 lock_map_release(&pwq->wq->lockdep_map); 3028 } 3029 rcu_read_unlock(); 3030 return true; 3031 already_gone: 3032 raw_spin_unlock_irq(&pool->lock); 3033 rcu_read_unlock(); 3034 return false; 3035 } 3036 3037 static bool __flush_work(struct work_struct *work, bool from_cancel) 3038 { 3039 struct wq_barrier barr; 3040 3041 if (WARN_ON(!wq_online)) 3042 return false; 3043 3044 if (WARN_ON(!work->func)) 3045 return false; 3046 3047 if (!from_cancel) { 3048 lock_map_acquire(&work->lockdep_map); 3049 lock_map_release(&work->lockdep_map); 3050 } 3051 3052 if (start_flush_work(work, &barr, from_cancel)) { 3053 wait_for_completion(&barr.done); 3054 destroy_work_on_stack(&barr.work); 3055 return true; 3056 } else { 3057 return false; 3058 } 3059 } 3060 3061 /** 3062 * flush_work - wait for a work to finish executing the last queueing instance 3063 * @work: the work to flush 3064 * 3065 * Wait until @work has finished execution. @work is guaranteed to be idle 3066 * on return if it hasn't been requeued since flush started. 3067 * 3068 * Return: 3069 * %true if flush_work() waited for the work to finish execution, 3070 * %false if it was already idle. 3071 */ 3072 bool flush_work(struct work_struct *work) 3073 { 3074 return __flush_work(work, false); 3075 } 3076 EXPORT_SYMBOL_GPL(flush_work); 3077 3078 struct cwt_wait { 3079 wait_queue_entry_t wait; 3080 struct work_struct *work; 3081 }; 3082 3083 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3084 { 3085 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3086 3087 if (cwait->work != key) 3088 return 0; 3089 return autoremove_wake_function(wait, mode, sync, key); 3090 } 3091 3092 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3093 { 3094 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3095 unsigned long flags; 3096 int ret; 3097 3098 do { 3099 ret = try_to_grab_pending(work, is_dwork, &flags); 3100 /* 3101 * If someone else is already canceling, wait for it to 3102 * finish. flush_work() doesn't work for PREEMPT_NONE 3103 * because we may get scheduled between @work's completion 3104 * and the other canceling task resuming and clearing 3105 * CANCELING - flush_work() will return false immediately 3106 * as @work is no longer busy, try_to_grab_pending() will 3107 * return -ENOENT as @work is still being canceled and the 3108 * other canceling task won't be able to clear CANCELING as 3109 * we're hogging the CPU. 3110 * 3111 * Let's wait for completion using a waitqueue. As this 3112 * may lead to the thundering herd problem, use a custom 3113 * wake function which matches @work along with exclusive 3114 * wait and wakeup. 3115 */ 3116 if (unlikely(ret == -ENOENT)) { 3117 struct cwt_wait cwait; 3118 3119 init_wait(&cwait.wait); 3120 cwait.wait.func = cwt_wakefn; 3121 cwait.work = work; 3122 3123 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3124 TASK_UNINTERRUPTIBLE); 3125 if (work_is_canceling(work)) 3126 schedule(); 3127 finish_wait(&cancel_waitq, &cwait.wait); 3128 } 3129 } while (unlikely(ret < 0)); 3130 3131 /* tell other tasks trying to grab @work to back off */ 3132 mark_work_canceling(work); 3133 local_irq_restore(flags); 3134 3135 /* 3136 * This allows canceling during early boot. We know that @work 3137 * isn't executing. 3138 */ 3139 if (wq_online) 3140 __flush_work(work, true); 3141 3142 clear_work_data(work); 3143 3144 /* 3145 * Paired with prepare_to_wait() above so that either 3146 * waitqueue_active() is visible here or !work_is_canceling() is 3147 * visible there. 3148 */ 3149 smp_mb(); 3150 if (waitqueue_active(&cancel_waitq)) 3151 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3152 3153 return ret; 3154 } 3155 3156 /** 3157 * cancel_work_sync - cancel a work and wait for it to finish 3158 * @work: the work to cancel 3159 * 3160 * Cancel @work and wait for its execution to finish. This function 3161 * can be used even if the work re-queues itself or migrates to 3162 * another workqueue. On return from this function, @work is 3163 * guaranteed to be not pending or executing on any CPU. 3164 * 3165 * cancel_work_sync(&delayed_work->work) must not be used for 3166 * delayed_work's. Use cancel_delayed_work_sync() instead. 3167 * 3168 * The caller must ensure that the workqueue on which @work was last 3169 * queued can't be destroyed before this function returns. 3170 * 3171 * Return: 3172 * %true if @work was pending, %false otherwise. 3173 */ 3174 bool cancel_work_sync(struct work_struct *work) 3175 { 3176 return __cancel_work_timer(work, false); 3177 } 3178 EXPORT_SYMBOL_GPL(cancel_work_sync); 3179 3180 /** 3181 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3182 * @dwork: the delayed work to flush 3183 * 3184 * Delayed timer is cancelled and the pending work is queued for 3185 * immediate execution. Like flush_work(), this function only 3186 * considers the last queueing instance of @dwork. 3187 * 3188 * Return: 3189 * %true if flush_work() waited for the work to finish execution, 3190 * %false if it was already idle. 3191 */ 3192 bool flush_delayed_work(struct delayed_work *dwork) 3193 { 3194 local_irq_disable(); 3195 if (del_timer_sync(&dwork->timer)) 3196 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3197 local_irq_enable(); 3198 return flush_work(&dwork->work); 3199 } 3200 EXPORT_SYMBOL(flush_delayed_work); 3201 3202 /** 3203 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3204 * @rwork: the rcu work to flush 3205 * 3206 * Return: 3207 * %true if flush_rcu_work() waited for the work to finish execution, 3208 * %false if it was already idle. 3209 */ 3210 bool flush_rcu_work(struct rcu_work *rwork) 3211 { 3212 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3213 rcu_barrier(); 3214 flush_work(&rwork->work); 3215 return true; 3216 } else { 3217 return flush_work(&rwork->work); 3218 } 3219 } 3220 EXPORT_SYMBOL(flush_rcu_work); 3221 3222 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3223 { 3224 unsigned long flags; 3225 int ret; 3226 3227 do { 3228 ret = try_to_grab_pending(work, is_dwork, &flags); 3229 } while (unlikely(ret == -EAGAIN)); 3230 3231 if (unlikely(ret < 0)) 3232 return false; 3233 3234 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3235 local_irq_restore(flags); 3236 return ret; 3237 } 3238 3239 /** 3240 * cancel_delayed_work - cancel a delayed work 3241 * @dwork: delayed_work to cancel 3242 * 3243 * Kill off a pending delayed_work. 3244 * 3245 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3246 * pending. 3247 * 3248 * Note: 3249 * The work callback function may still be running on return, unless 3250 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3251 * use cancel_delayed_work_sync() to wait on it. 3252 * 3253 * This function is safe to call from any context including IRQ handler. 3254 */ 3255 bool cancel_delayed_work(struct delayed_work *dwork) 3256 { 3257 return __cancel_work(&dwork->work, true); 3258 } 3259 EXPORT_SYMBOL(cancel_delayed_work); 3260 3261 /** 3262 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3263 * @dwork: the delayed work cancel 3264 * 3265 * This is cancel_work_sync() for delayed works. 3266 * 3267 * Return: 3268 * %true if @dwork was pending, %false otherwise. 3269 */ 3270 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3271 { 3272 return __cancel_work_timer(&dwork->work, true); 3273 } 3274 EXPORT_SYMBOL(cancel_delayed_work_sync); 3275 3276 /** 3277 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3278 * @func: the function to call 3279 * 3280 * schedule_on_each_cpu() executes @func on each online CPU using the 3281 * system workqueue and blocks until all CPUs have completed. 3282 * schedule_on_each_cpu() is very slow. 3283 * 3284 * Return: 3285 * 0 on success, -errno on failure. 3286 */ 3287 int schedule_on_each_cpu(work_func_t func) 3288 { 3289 int cpu; 3290 struct work_struct __percpu *works; 3291 3292 works = alloc_percpu(struct work_struct); 3293 if (!works) 3294 return -ENOMEM; 3295 3296 get_online_cpus(); 3297 3298 for_each_online_cpu(cpu) { 3299 struct work_struct *work = per_cpu_ptr(works, cpu); 3300 3301 INIT_WORK(work, func); 3302 schedule_work_on(cpu, work); 3303 } 3304 3305 for_each_online_cpu(cpu) 3306 flush_work(per_cpu_ptr(works, cpu)); 3307 3308 put_online_cpus(); 3309 free_percpu(works); 3310 return 0; 3311 } 3312 3313 /** 3314 * execute_in_process_context - reliably execute the routine with user context 3315 * @fn: the function to execute 3316 * @ew: guaranteed storage for the execute work structure (must 3317 * be available when the work executes) 3318 * 3319 * Executes the function immediately if process context is available, 3320 * otherwise schedules the function for delayed execution. 3321 * 3322 * Return: 0 - function was executed 3323 * 1 - function was scheduled for execution 3324 */ 3325 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3326 { 3327 if (!in_interrupt()) { 3328 fn(&ew->work); 3329 return 0; 3330 } 3331 3332 INIT_WORK(&ew->work, fn); 3333 schedule_work(&ew->work); 3334 3335 return 1; 3336 } 3337 EXPORT_SYMBOL_GPL(execute_in_process_context); 3338 3339 /** 3340 * free_workqueue_attrs - free a workqueue_attrs 3341 * @attrs: workqueue_attrs to free 3342 * 3343 * Undo alloc_workqueue_attrs(). 3344 */ 3345 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3346 { 3347 if (attrs) { 3348 free_cpumask_var(attrs->cpumask); 3349 kfree(attrs); 3350 } 3351 } 3352 3353 /** 3354 * alloc_workqueue_attrs - allocate a workqueue_attrs 3355 * 3356 * Allocate a new workqueue_attrs, initialize with default settings and 3357 * return it. 3358 * 3359 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3360 */ 3361 struct workqueue_attrs *alloc_workqueue_attrs(void) 3362 { 3363 struct workqueue_attrs *attrs; 3364 3365 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 3366 if (!attrs) 3367 goto fail; 3368 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 3369 goto fail; 3370 3371 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3372 return attrs; 3373 fail: 3374 free_workqueue_attrs(attrs); 3375 return NULL; 3376 } 3377 3378 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3379 const struct workqueue_attrs *from) 3380 { 3381 to->nice = from->nice; 3382 cpumask_copy(to->cpumask, from->cpumask); 3383 /* 3384 * Unlike hash and equality test, this function doesn't ignore 3385 * ->no_numa as it is used for both pool and wq attrs. Instead, 3386 * get_unbound_pool() explicitly clears ->no_numa after copying. 3387 */ 3388 to->no_numa = from->no_numa; 3389 } 3390 3391 /* hash value of the content of @attr */ 3392 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3393 { 3394 u32 hash = 0; 3395 3396 hash = jhash_1word(attrs->nice, hash); 3397 hash = jhash(cpumask_bits(attrs->cpumask), 3398 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3399 return hash; 3400 } 3401 3402 /* content equality test */ 3403 static bool wqattrs_equal(const struct workqueue_attrs *a, 3404 const struct workqueue_attrs *b) 3405 { 3406 if (a->nice != b->nice) 3407 return false; 3408 if (!cpumask_equal(a->cpumask, b->cpumask)) 3409 return false; 3410 return true; 3411 } 3412 3413 /** 3414 * init_worker_pool - initialize a newly zalloc'd worker_pool 3415 * @pool: worker_pool to initialize 3416 * 3417 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3418 * 3419 * Return: 0 on success, -errno on failure. Even on failure, all fields 3420 * inside @pool proper are initialized and put_unbound_pool() can be called 3421 * on @pool safely to release it. 3422 */ 3423 static int init_worker_pool(struct worker_pool *pool) 3424 { 3425 raw_spin_lock_init(&pool->lock); 3426 pool->id = -1; 3427 pool->cpu = -1; 3428 pool->node = NUMA_NO_NODE; 3429 pool->flags |= POOL_DISASSOCIATED; 3430 pool->watchdog_ts = jiffies; 3431 INIT_LIST_HEAD(&pool->worklist); 3432 INIT_LIST_HEAD(&pool->idle_list); 3433 hash_init(pool->busy_hash); 3434 3435 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3436 3437 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3438 3439 INIT_LIST_HEAD(&pool->workers); 3440 3441 ida_init(&pool->worker_ida); 3442 INIT_HLIST_NODE(&pool->hash_node); 3443 pool->refcnt = 1; 3444 3445 /* shouldn't fail above this point */ 3446 pool->attrs = alloc_workqueue_attrs(); 3447 if (!pool->attrs) 3448 return -ENOMEM; 3449 return 0; 3450 } 3451 3452 #ifdef CONFIG_LOCKDEP 3453 static void wq_init_lockdep(struct workqueue_struct *wq) 3454 { 3455 char *lock_name; 3456 3457 lockdep_register_key(&wq->key); 3458 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3459 if (!lock_name) 3460 lock_name = wq->name; 3461 3462 wq->lock_name = lock_name; 3463 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3464 } 3465 3466 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3467 { 3468 lockdep_unregister_key(&wq->key); 3469 } 3470 3471 static void wq_free_lockdep(struct workqueue_struct *wq) 3472 { 3473 if (wq->lock_name != wq->name) 3474 kfree(wq->lock_name); 3475 } 3476 #else 3477 static void wq_init_lockdep(struct workqueue_struct *wq) 3478 { 3479 } 3480 3481 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3482 { 3483 } 3484 3485 static void wq_free_lockdep(struct workqueue_struct *wq) 3486 { 3487 } 3488 #endif 3489 3490 static void rcu_free_wq(struct rcu_head *rcu) 3491 { 3492 struct workqueue_struct *wq = 3493 container_of(rcu, struct workqueue_struct, rcu); 3494 3495 wq_free_lockdep(wq); 3496 3497 if (!(wq->flags & WQ_UNBOUND)) 3498 free_percpu(wq->cpu_pwqs); 3499 else 3500 free_workqueue_attrs(wq->unbound_attrs); 3501 3502 kfree(wq); 3503 } 3504 3505 static void rcu_free_pool(struct rcu_head *rcu) 3506 { 3507 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3508 3509 ida_destroy(&pool->worker_ida); 3510 free_workqueue_attrs(pool->attrs); 3511 kfree(pool); 3512 } 3513 3514 /* This returns with the lock held on success (pool manager is inactive). */ 3515 static bool wq_manager_inactive(struct worker_pool *pool) 3516 { 3517 raw_spin_lock_irq(&pool->lock); 3518 3519 if (pool->flags & POOL_MANAGER_ACTIVE) { 3520 raw_spin_unlock_irq(&pool->lock); 3521 return false; 3522 } 3523 return true; 3524 } 3525 3526 /** 3527 * put_unbound_pool - put a worker_pool 3528 * @pool: worker_pool to put 3529 * 3530 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 3531 * safe manner. get_unbound_pool() calls this function on its failure path 3532 * and this function should be able to release pools which went through, 3533 * successfully or not, init_worker_pool(). 3534 * 3535 * Should be called with wq_pool_mutex held. 3536 */ 3537 static void put_unbound_pool(struct worker_pool *pool) 3538 { 3539 DECLARE_COMPLETION_ONSTACK(detach_completion); 3540 struct worker *worker; 3541 3542 lockdep_assert_held(&wq_pool_mutex); 3543 3544 if (--pool->refcnt) 3545 return; 3546 3547 /* sanity checks */ 3548 if (WARN_ON(!(pool->cpu < 0)) || 3549 WARN_ON(!list_empty(&pool->worklist))) 3550 return; 3551 3552 /* release id and unhash */ 3553 if (pool->id >= 0) 3554 idr_remove(&worker_pool_idr, pool->id); 3555 hash_del(&pool->hash_node); 3556 3557 /* 3558 * Become the manager and destroy all workers. This prevents 3559 * @pool's workers from blocking on attach_mutex. We're the last 3560 * manager and @pool gets freed with the flag set. 3561 * Because of how wq_manager_inactive() works, we will hold the 3562 * spinlock after a successful wait. 3563 */ 3564 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool), 3565 TASK_UNINTERRUPTIBLE); 3566 pool->flags |= POOL_MANAGER_ACTIVE; 3567 3568 while ((worker = first_idle_worker(pool))) 3569 destroy_worker(worker); 3570 WARN_ON(pool->nr_workers || pool->nr_idle); 3571 raw_spin_unlock_irq(&pool->lock); 3572 3573 mutex_lock(&wq_pool_attach_mutex); 3574 if (!list_empty(&pool->workers)) 3575 pool->detach_completion = &detach_completion; 3576 mutex_unlock(&wq_pool_attach_mutex); 3577 3578 if (pool->detach_completion) 3579 wait_for_completion(pool->detach_completion); 3580 3581 /* shut down the timers */ 3582 del_timer_sync(&pool->idle_timer); 3583 del_timer_sync(&pool->mayday_timer); 3584 3585 /* RCU protected to allow dereferences from get_work_pool() */ 3586 call_rcu(&pool->rcu, rcu_free_pool); 3587 } 3588 3589 /** 3590 * get_unbound_pool - get a worker_pool with the specified attributes 3591 * @attrs: the attributes of the worker_pool to get 3592 * 3593 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3594 * reference count and return it. If there already is a matching 3595 * worker_pool, it will be used; otherwise, this function attempts to 3596 * create a new one. 3597 * 3598 * Should be called with wq_pool_mutex held. 3599 * 3600 * Return: On success, a worker_pool with the same attributes as @attrs. 3601 * On failure, %NULL. 3602 */ 3603 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3604 { 3605 u32 hash = wqattrs_hash(attrs); 3606 struct worker_pool *pool; 3607 int node; 3608 int target_node = NUMA_NO_NODE; 3609 3610 lockdep_assert_held(&wq_pool_mutex); 3611 3612 /* do we already have a matching pool? */ 3613 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3614 if (wqattrs_equal(pool->attrs, attrs)) { 3615 pool->refcnt++; 3616 return pool; 3617 } 3618 } 3619 3620 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3621 if (wq_numa_enabled) { 3622 for_each_node(node) { 3623 if (cpumask_subset(attrs->cpumask, 3624 wq_numa_possible_cpumask[node])) { 3625 target_node = node; 3626 break; 3627 } 3628 } 3629 } 3630 3631 /* nope, create a new one */ 3632 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3633 if (!pool || init_worker_pool(pool) < 0) 3634 goto fail; 3635 3636 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3637 copy_workqueue_attrs(pool->attrs, attrs); 3638 pool->node = target_node; 3639 3640 /* 3641 * no_numa isn't a worker_pool attribute, always clear it. See 3642 * 'struct workqueue_attrs' comments for detail. 3643 */ 3644 pool->attrs->no_numa = false; 3645 3646 if (worker_pool_assign_id(pool) < 0) 3647 goto fail; 3648 3649 /* create and start the initial worker */ 3650 if (wq_online && !create_worker(pool)) 3651 goto fail; 3652 3653 /* install */ 3654 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3655 3656 return pool; 3657 fail: 3658 if (pool) 3659 put_unbound_pool(pool); 3660 return NULL; 3661 } 3662 3663 static void rcu_free_pwq(struct rcu_head *rcu) 3664 { 3665 kmem_cache_free(pwq_cache, 3666 container_of(rcu, struct pool_workqueue, rcu)); 3667 } 3668 3669 /* 3670 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3671 * and needs to be destroyed. 3672 */ 3673 static void pwq_unbound_release_workfn(struct work_struct *work) 3674 { 3675 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3676 unbound_release_work); 3677 struct workqueue_struct *wq = pwq->wq; 3678 struct worker_pool *pool = pwq->pool; 3679 bool is_last; 3680 3681 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3682 return; 3683 3684 mutex_lock(&wq->mutex); 3685 list_del_rcu(&pwq->pwqs_node); 3686 is_last = list_empty(&wq->pwqs); 3687 mutex_unlock(&wq->mutex); 3688 3689 mutex_lock(&wq_pool_mutex); 3690 put_unbound_pool(pool); 3691 mutex_unlock(&wq_pool_mutex); 3692 3693 call_rcu(&pwq->rcu, rcu_free_pwq); 3694 3695 /* 3696 * If we're the last pwq going away, @wq is already dead and no one 3697 * is gonna access it anymore. Schedule RCU free. 3698 */ 3699 if (is_last) { 3700 wq_unregister_lockdep(wq); 3701 call_rcu(&wq->rcu, rcu_free_wq); 3702 } 3703 } 3704 3705 /** 3706 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3707 * @pwq: target pool_workqueue 3708 * 3709 * If @pwq isn't freezing, set @pwq->max_active to the associated 3710 * workqueue's saved_max_active and activate delayed work items 3711 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3712 */ 3713 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3714 { 3715 struct workqueue_struct *wq = pwq->wq; 3716 bool freezable = wq->flags & WQ_FREEZABLE; 3717 unsigned long flags; 3718 3719 /* for @wq->saved_max_active */ 3720 lockdep_assert_held(&wq->mutex); 3721 3722 /* fast exit for non-freezable wqs */ 3723 if (!freezable && pwq->max_active == wq->saved_max_active) 3724 return; 3725 3726 /* this function can be called during early boot w/ irq disabled */ 3727 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 3728 3729 /* 3730 * During [un]freezing, the caller is responsible for ensuring that 3731 * this function is called at least once after @workqueue_freezing 3732 * is updated and visible. 3733 */ 3734 if (!freezable || !workqueue_freezing) { 3735 bool kick = false; 3736 3737 pwq->max_active = wq->saved_max_active; 3738 3739 while (!list_empty(&pwq->delayed_works) && 3740 pwq->nr_active < pwq->max_active) { 3741 pwq_activate_first_delayed(pwq); 3742 kick = true; 3743 } 3744 3745 /* 3746 * Need to kick a worker after thawed or an unbound wq's 3747 * max_active is bumped. In realtime scenarios, always kicking a 3748 * worker will cause interference on the isolated cpu cores, so 3749 * let's kick iff work items were activated. 3750 */ 3751 if (kick) 3752 wake_up_worker(pwq->pool); 3753 } else { 3754 pwq->max_active = 0; 3755 } 3756 3757 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 3758 } 3759 3760 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3761 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3762 struct worker_pool *pool) 3763 { 3764 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3765 3766 memset(pwq, 0, sizeof(*pwq)); 3767 3768 pwq->pool = pool; 3769 pwq->wq = wq; 3770 pwq->flush_color = -1; 3771 pwq->refcnt = 1; 3772 INIT_LIST_HEAD(&pwq->delayed_works); 3773 INIT_LIST_HEAD(&pwq->pwqs_node); 3774 INIT_LIST_HEAD(&pwq->mayday_node); 3775 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3776 } 3777 3778 /* sync @pwq with the current state of its associated wq and link it */ 3779 static void link_pwq(struct pool_workqueue *pwq) 3780 { 3781 struct workqueue_struct *wq = pwq->wq; 3782 3783 lockdep_assert_held(&wq->mutex); 3784 3785 /* may be called multiple times, ignore if already linked */ 3786 if (!list_empty(&pwq->pwqs_node)) 3787 return; 3788 3789 /* set the matching work_color */ 3790 pwq->work_color = wq->work_color; 3791 3792 /* sync max_active to the current setting */ 3793 pwq_adjust_max_active(pwq); 3794 3795 /* link in @pwq */ 3796 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3797 } 3798 3799 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3800 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3801 const struct workqueue_attrs *attrs) 3802 { 3803 struct worker_pool *pool; 3804 struct pool_workqueue *pwq; 3805 3806 lockdep_assert_held(&wq_pool_mutex); 3807 3808 pool = get_unbound_pool(attrs); 3809 if (!pool) 3810 return NULL; 3811 3812 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3813 if (!pwq) { 3814 put_unbound_pool(pool); 3815 return NULL; 3816 } 3817 3818 init_pwq(pwq, wq, pool); 3819 return pwq; 3820 } 3821 3822 /** 3823 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3824 * @attrs: the wq_attrs of the default pwq of the target workqueue 3825 * @node: the target NUMA node 3826 * @cpu_going_down: if >= 0, the CPU to consider as offline 3827 * @cpumask: outarg, the resulting cpumask 3828 * 3829 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3830 * @cpu_going_down is >= 0, that cpu is considered offline during 3831 * calculation. The result is stored in @cpumask. 3832 * 3833 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3834 * enabled and @node has online CPUs requested by @attrs, the returned 3835 * cpumask is the intersection of the possible CPUs of @node and 3836 * @attrs->cpumask. 3837 * 3838 * The caller is responsible for ensuring that the cpumask of @node stays 3839 * stable. 3840 * 3841 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3842 * %false if equal. 3843 */ 3844 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3845 int cpu_going_down, cpumask_t *cpumask) 3846 { 3847 if (!wq_numa_enabled || attrs->no_numa) 3848 goto use_dfl; 3849 3850 /* does @node have any online CPUs @attrs wants? */ 3851 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3852 if (cpu_going_down >= 0) 3853 cpumask_clear_cpu(cpu_going_down, cpumask); 3854 3855 if (cpumask_empty(cpumask)) 3856 goto use_dfl; 3857 3858 /* yeap, return possible CPUs in @node that @attrs wants */ 3859 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3860 3861 if (cpumask_empty(cpumask)) { 3862 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3863 "possible intersect\n"); 3864 return false; 3865 } 3866 3867 return !cpumask_equal(cpumask, attrs->cpumask); 3868 3869 use_dfl: 3870 cpumask_copy(cpumask, attrs->cpumask); 3871 return false; 3872 } 3873 3874 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3875 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3876 int node, 3877 struct pool_workqueue *pwq) 3878 { 3879 struct pool_workqueue *old_pwq; 3880 3881 lockdep_assert_held(&wq_pool_mutex); 3882 lockdep_assert_held(&wq->mutex); 3883 3884 /* link_pwq() can handle duplicate calls */ 3885 link_pwq(pwq); 3886 3887 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3888 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3889 return old_pwq; 3890 } 3891 3892 /* context to store the prepared attrs & pwqs before applying */ 3893 struct apply_wqattrs_ctx { 3894 struct workqueue_struct *wq; /* target workqueue */ 3895 struct workqueue_attrs *attrs; /* attrs to apply */ 3896 struct list_head list; /* queued for batching commit */ 3897 struct pool_workqueue *dfl_pwq; 3898 struct pool_workqueue *pwq_tbl[]; 3899 }; 3900 3901 /* free the resources after success or abort */ 3902 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3903 { 3904 if (ctx) { 3905 int node; 3906 3907 for_each_node(node) 3908 put_pwq_unlocked(ctx->pwq_tbl[node]); 3909 put_pwq_unlocked(ctx->dfl_pwq); 3910 3911 free_workqueue_attrs(ctx->attrs); 3912 3913 kfree(ctx); 3914 } 3915 } 3916 3917 /* allocate the attrs and pwqs for later installation */ 3918 static struct apply_wqattrs_ctx * 3919 apply_wqattrs_prepare(struct workqueue_struct *wq, 3920 const struct workqueue_attrs *attrs) 3921 { 3922 struct apply_wqattrs_ctx *ctx; 3923 struct workqueue_attrs *new_attrs, *tmp_attrs; 3924 int node; 3925 3926 lockdep_assert_held(&wq_pool_mutex); 3927 3928 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 3929 3930 new_attrs = alloc_workqueue_attrs(); 3931 tmp_attrs = alloc_workqueue_attrs(); 3932 if (!ctx || !new_attrs || !tmp_attrs) 3933 goto out_free; 3934 3935 /* 3936 * Calculate the attrs of the default pwq. 3937 * If the user configured cpumask doesn't overlap with the 3938 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3939 */ 3940 copy_workqueue_attrs(new_attrs, attrs); 3941 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3942 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3943 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3944 3945 /* 3946 * We may create multiple pwqs with differing cpumasks. Make a 3947 * copy of @new_attrs which will be modified and used to obtain 3948 * pools. 3949 */ 3950 copy_workqueue_attrs(tmp_attrs, new_attrs); 3951 3952 /* 3953 * If something goes wrong during CPU up/down, we'll fall back to 3954 * the default pwq covering whole @attrs->cpumask. Always create 3955 * it even if we don't use it immediately. 3956 */ 3957 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3958 if (!ctx->dfl_pwq) 3959 goto out_free; 3960 3961 for_each_node(node) { 3962 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3963 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3964 if (!ctx->pwq_tbl[node]) 3965 goto out_free; 3966 } else { 3967 ctx->dfl_pwq->refcnt++; 3968 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3969 } 3970 } 3971 3972 /* save the user configured attrs and sanitize it. */ 3973 copy_workqueue_attrs(new_attrs, attrs); 3974 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3975 ctx->attrs = new_attrs; 3976 3977 ctx->wq = wq; 3978 free_workqueue_attrs(tmp_attrs); 3979 return ctx; 3980 3981 out_free: 3982 free_workqueue_attrs(tmp_attrs); 3983 free_workqueue_attrs(new_attrs); 3984 apply_wqattrs_cleanup(ctx); 3985 return NULL; 3986 } 3987 3988 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3989 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3990 { 3991 int node; 3992 3993 /* all pwqs have been created successfully, let's install'em */ 3994 mutex_lock(&ctx->wq->mutex); 3995 3996 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3997 3998 /* save the previous pwq and install the new one */ 3999 for_each_node(node) 4000 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 4001 ctx->pwq_tbl[node]); 4002 4003 /* @dfl_pwq might not have been used, ensure it's linked */ 4004 link_pwq(ctx->dfl_pwq); 4005 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 4006 4007 mutex_unlock(&ctx->wq->mutex); 4008 } 4009 4010 static void apply_wqattrs_lock(void) 4011 { 4012 /* CPUs should stay stable across pwq creations and installations */ 4013 get_online_cpus(); 4014 mutex_lock(&wq_pool_mutex); 4015 } 4016 4017 static void apply_wqattrs_unlock(void) 4018 { 4019 mutex_unlock(&wq_pool_mutex); 4020 put_online_cpus(); 4021 } 4022 4023 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 4024 const struct workqueue_attrs *attrs) 4025 { 4026 struct apply_wqattrs_ctx *ctx; 4027 4028 /* only unbound workqueues can change attributes */ 4029 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 4030 return -EINVAL; 4031 4032 /* creating multiple pwqs breaks ordering guarantee */ 4033 if (!list_empty(&wq->pwqs)) { 4034 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4035 return -EINVAL; 4036 4037 wq->flags &= ~__WQ_ORDERED; 4038 } 4039 4040 ctx = apply_wqattrs_prepare(wq, attrs); 4041 if (!ctx) 4042 return -ENOMEM; 4043 4044 /* the ctx has been prepared successfully, let's commit it */ 4045 apply_wqattrs_commit(ctx); 4046 apply_wqattrs_cleanup(ctx); 4047 4048 return 0; 4049 } 4050 4051 /** 4052 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4053 * @wq: the target workqueue 4054 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4055 * 4056 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 4057 * machines, this function maps a separate pwq to each NUMA node with 4058 * possibles CPUs in @attrs->cpumask so that work items are affine to the 4059 * NUMA node it was issued on. Older pwqs are released as in-flight work 4060 * items finish. Note that a work item which repeatedly requeues itself 4061 * back-to-back will stay on its current pwq. 4062 * 4063 * Performs GFP_KERNEL allocations. 4064 * 4065 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus(). 4066 * 4067 * Return: 0 on success and -errno on failure. 4068 */ 4069 int apply_workqueue_attrs(struct workqueue_struct *wq, 4070 const struct workqueue_attrs *attrs) 4071 { 4072 int ret; 4073 4074 lockdep_assert_cpus_held(); 4075 4076 mutex_lock(&wq_pool_mutex); 4077 ret = apply_workqueue_attrs_locked(wq, attrs); 4078 mutex_unlock(&wq_pool_mutex); 4079 4080 return ret; 4081 } 4082 4083 /** 4084 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4085 * @wq: the target workqueue 4086 * @cpu: the CPU coming up or going down 4087 * @online: whether @cpu is coming up or going down 4088 * 4089 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4090 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4091 * @wq accordingly. 4092 * 4093 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4094 * falls back to @wq->dfl_pwq which may not be optimal but is always 4095 * correct. 4096 * 4097 * Note that when the last allowed CPU of a NUMA node goes offline for a 4098 * workqueue with a cpumask spanning multiple nodes, the workers which were 4099 * already executing the work items for the workqueue will lose their CPU 4100 * affinity and may execute on any CPU. This is similar to how per-cpu 4101 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4102 * affinity, it's the user's responsibility to flush the work item from 4103 * CPU_DOWN_PREPARE. 4104 */ 4105 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4106 bool online) 4107 { 4108 int node = cpu_to_node(cpu); 4109 int cpu_off = online ? -1 : cpu; 4110 struct pool_workqueue *old_pwq = NULL, *pwq; 4111 struct workqueue_attrs *target_attrs; 4112 cpumask_t *cpumask; 4113 4114 lockdep_assert_held(&wq_pool_mutex); 4115 4116 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 4117 wq->unbound_attrs->no_numa) 4118 return; 4119 4120 /* 4121 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4122 * Let's use a preallocated one. The following buf is protected by 4123 * CPU hotplug exclusion. 4124 */ 4125 target_attrs = wq_update_unbound_numa_attrs_buf; 4126 cpumask = target_attrs->cpumask; 4127 4128 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4129 pwq = unbound_pwq_by_node(wq, node); 4130 4131 /* 4132 * Let's determine what needs to be done. If the target cpumask is 4133 * different from the default pwq's, we need to compare it to @pwq's 4134 * and create a new one if they don't match. If the target cpumask 4135 * equals the default pwq's, the default pwq should be used. 4136 */ 4137 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4138 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4139 return; 4140 } else { 4141 goto use_dfl_pwq; 4142 } 4143 4144 /* create a new pwq */ 4145 pwq = alloc_unbound_pwq(wq, target_attrs); 4146 if (!pwq) { 4147 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4148 wq->name); 4149 goto use_dfl_pwq; 4150 } 4151 4152 /* Install the new pwq. */ 4153 mutex_lock(&wq->mutex); 4154 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4155 goto out_unlock; 4156 4157 use_dfl_pwq: 4158 mutex_lock(&wq->mutex); 4159 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock); 4160 get_pwq(wq->dfl_pwq); 4161 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4162 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4163 out_unlock: 4164 mutex_unlock(&wq->mutex); 4165 put_pwq_unlocked(old_pwq); 4166 } 4167 4168 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4169 { 4170 bool highpri = wq->flags & WQ_HIGHPRI; 4171 int cpu, ret; 4172 4173 if (!(wq->flags & WQ_UNBOUND)) { 4174 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4175 if (!wq->cpu_pwqs) 4176 return -ENOMEM; 4177 4178 for_each_possible_cpu(cpu) { 4179 struct pool_workqueue *pwq = 4180 per_cpu_ptr(wq->cpu_pwqs, cpu); 4181 struct worker_pool *cpu_pools = 4182 per_cpu(cpu_worker_pools, cpu); 4183 4184 init_pwq(pwq, wq, &cpu_pools[highpri]); 4185 4186 mutex_lock(&wq->mutex); 4187 link_pwq(pwq); 4188 mutex_unlock(&wq->mutex); 4189 } 4190 return 0; 4191 } 4192 4193 get_online_cpus(); 4194 if (wq->flags & __WQ_ORDERED) { 4195 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4196 /* there should only be single pwq for ordering guarantee */ 4197 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4198 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4199 "ordering guarantee broken for workqueue %s\n", wq->name); 4200 } else { 4201 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4202 } 4203 put_online_cpus(); 4204 4205 return ret; 4206 } 4207 4208 static int wq_clamp_max_active(int max_active, unsigned int flags, 4209 const char *name) 4210 { 4211 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4212 4213 if (max_active < 1 || max_active > lim) 4214 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4215 max_active, name, 1, lim); 4216 4217 return clamp_val(max_active, 1, lim); 4218 } 4219 4220 /* 4221 * Workqueues which may be used during memory reclaim should have a rescuer 4222 * to guarantee forward progress. 4223 */ 4224 static int init_rescuer(struct workqueue_struct *wq) 4225 { 4226 struct worker *rescuer; 4227 int ret; 4228 4229 if (!(wq->flags & WQ_MEM_RECLAIM)) 4230 return 0; 4231 4232 rescuer = alloc_worker(NUMA_NO_NODE); 4233 if (!rescuer) 4234 return -ENOMEM; 4235 4236 rescuer->rescue_wq = wq; 4237 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4238 if (IS_ERR(rescuer->task)) { 4239 ret = PTR_ERR(rescuer->task); 4240 kfree(rescuer); 4241 return ret; 4242 } 4243 4244 wq->rescuer = rescuer; 4245 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4246 wake_up_process(rescuer->task); 4247 4248 return 0; 4249 } 4250 4251 __printf(1, 4) 4252 struct workqueue_struct *alloc_workqueue(const char *fmt, 4253 unsigned int flags, 4254 int max_active, ...) 4255 { 4256 size_t tbl_size = 0; 4257 va_list args; 4258 struct workqueue_struct *wq; 4259 struct pool_workqueue *pwq; 4260 4261 /* 4262 * Unbound && max_active == 1 used to imply ordered, which is no 4263 * longer the case on NUMA machines due to per-node pools. While 4264 * alloc_ordered_workqueue() is the right way to create an ordered 4265 * workqueue, keep the previous behavior to avoid subtle breakages 4266 * on NUMA. 4267 */ 4268 if ((flags & WQ_UNBOUND) && max_active == 1) 4269 flags |= __WQ_ORDERED; 4270 4271 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4272 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4273 flags |= WQ_UNBOUND; 4274 4275 /* allocate wq and format name */ 4276 if (flags & WQ_UNBOUND) 4277 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4278 4279 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4280 if (!wq) 4281 return NULL; 4282 4283 if (flags & WQ_UNBOUND) { 4284 wq->unbound_attrs = alloc_workqueue_attrs(); 4285 if (!wq->unbound_attrs) 4286 goto err_free_wq; 4287 } 4288 4289 va_start(args, max_active); 4290 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4291 va_end(args); 4292 4293 max_active = max_active ?: WQ_DFL_ACTIVE; 4294 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4295 4296 /* init wq */ 4297 wq->flags = flags; 4298 wq->saved_max_active = max_active; 4299 mutex_init(&wq->mutex); 4300 atomic_set(&wq->nr_pwqs_to_flush, 0); 4301 INIT_LIST_HEAD(&wq->pwqs); 4302 INIT_LIST_HEAD(&wq->flusher_queue); 4303 INIT_LIST_HEAD(&wq->flusher_overflow); 4304 INIT_LIST_HEAD(&wq->maydays); 4305 4306 wq_init_lockdep(wq); 4307 INIT_LIST_HEAD(&wq->list); 4308 4309 if (alloc_and_link_pwqs(wq) < 0) 4310 goto err_unreg_lockdep; 4311 4312 if (wq_online && init_rescuer(wq) < 0) 4313 goto err_destroy; 4314 4315 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4316 goto err_destroy; 4317 4318 /* 4319 * wq_pool_mutex protects global freeze state and workqueues list. 4320 * Grab it, adjust max_active and add the new @wq to workqueues 4321 * list. 4322 */ 4323 mutex_lock(&wq_pool_mutex); 4324 4325 mutex_lock(&wq->mutex); 4326 for_each_pwq(pwq, wq) 4327 pwq_adjust_max_active(pwq); 4328 mutex_unlock(&wq->mutex); 4329 4330 list_add_tail_rcu(&wq->list, &workqueues); 4331 4332 mutex_unlock(&wq_pool_mutex); 4333 4334 return wq; 4335 4336 err_unreg_lockdep: 4337 wq_unregister_lockdep(wq); 4338 wq_free_lockdep(wq); 4339 err_free_wq: 4340 free_workqueue_attrs(wq->unbound_attrs); 4341 kfree(wq); 4342 return NULL; 4343 err_destroy: 4344 destroy_workqueue(wq); 4345 return NULL; 4346 } 4347 EXPORT_SYMBOL_GPL(alloc_workqueue); 4348 4349 static bool pwq_busy(struct pool_workqueue *pwq) 4350 { 4351 int i; 4352 4353 for (i = 0; i < WORK_NR_COLORS; i++) 4354 if (pwq->nr_in_flight[i]) 4355 return true; 4356 4357 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1)) 4358 return true; 4359 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4360 return true; 4361 4362 return false; 4363 } 4364 4365 /** 4366 * destroy_workqueue - safely terminate a workqueue 4367 * @wq: target workqueue 4368 * 4369 * Safely destroy a workqueue. All work currently pending will be done first. 4370 */ 4371 void destroy_workqueue(struct workqueue_struct *wq) 4372 { 4373 struct pool_workqueue *pwq; 4374 int node; 4375 4376 /* 4377 * Remove it from sysfs first so that sanity check failure doesn't 4378 * lead to sysfs name conflicts. 4379 */ 4380 workqueue_sysfs_unregister(wq); 4381 4382 /* drain it before proceeding with destruction */ 4383 drain_workqueue(wq); 4384 4385 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 4386 if (wq->rescuer) { 4387 struct worker *rescuer = wq->rescuer; 4388 4389 /* this prevents new queueing */ 4390 raw_spin_lock_irq(&wq_mayday_lock); 4391 wq->rescuer = NULL; 4392 raw_spin_unlock_irq(&wq_mayday_lock); 4393 4394 /* rescuer will empty maydays list before exiting */ 4395 kthread_stop(rescuer->task); 4396 kfree(rescuer); 4397 } 4398 4399 /* 4400 * Sanity checks - grab all the locks so that we wait for all 4401 * in-flight operations which may do put_pwq(). 4402 */ 4403 mutex_lock(&wq_pool_mutex); 4404 mutex_lock(&wq->mutex); 4405 for_each_pwq(pwq, wq) { 4406 raw_spin_lock_irq(&pwq->pool->lock); 4407 if (WARN_ON(pwq_busy(pwq))) { 4408 pr_warn("%s: %s has the following busy pwq\n", 4409 __func__, wq->name); 4410 show_pwq(pwq); 4411 raw_spin_unlock_irq(&pwq->pool->lock); 4412 mutex_unlock(&wq->mutex); 4413 mutex_unlock(&wq_pool_mutex); 4414 show_workqueue_state(); 4415 return; 4416 } 4417 raw_spin_unlock_irq(&pwq->pool->lock); 4418 } 4419 mutex_unlock(&wq->mutex); 4420 4421 /* 4422 * wq list is used to freeze wq, remove from list after 4423 * flushing is complete in case freeze races us. 4424 */ 4425 list_del_rcu(&wq->list); 4426 mutex_unlock(&wq_pool_mutex); 4427 4428 if (!(wq->flags & WQ_UNBOUND)) { 4429 wq_unregister_lockdep(wq); 4430 /* 4431 * The base ref is never dropped on per-cpu pwqs. Directly 4432 * schedule RCU free. 4433 */ 4434 call_rcu(&wq->rcu, rcu_free_wq); 4435 } else { 4436 /* 4437 * We're the sole accessor of @wq at this point. Directly 4438 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4439 * @wq will be freed when the last pwq is released. 4440 */ 4441 for_each_node(node) { 4442 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4443 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4444 put_pwq_unlocked(pwq); 4445 } 4446 4447 /* 4448 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4449 * put. Don't access it afterwards. 4450 */ 4451 pwq = wq->dfl_pwq; 4452 wq->dfl_pwq = NULL; 4453 put_pwq_unlocked(pwq); 4454 } 4455 } 4456 EXPORT_SYMBOL_GPL(destroy_workqueue); 4457 4458 /** 4459 * workqueue_set_max_active - adjust max_active of a workqueue 4460 * @wq: target workqueue 4461 * @max_active: new max_active value. 4462 * 4463 * Set max_active of @wq to @max_active. 4464 * 4465 * CONTEXT: 4466 * Don't call from IRQ context. 4467 */ 4468 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4469 { 4470 struct pool_workqueue *pwq; 4471 4472 /* disallow meddling with max_active for ordered workqueues */ 4473 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4474 return; 4475 4476 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4477 4478 mutex_lock(&wq->mutex); 4479 4480 wq->flags &= ~__WQ_ORDERED; 4481 wq->saved_max_active = max_active; 4482 4483 for_each_pwq(pwq, wq) 4484 pwq_adjust_max_active(pwq); 4485 4486 mutex_unlock(&wq->mutex); 4487 } 4488 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4489 4490 /** 4491 * current_work - retrieve %current task's work struct 4492 * 4493 * Determine if %current task is a workqueue worker and what it's working on. 4494 * Useful to find out the context that the %current task is running in. 4495 * 4496 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4497 */ 4498 struct work_struct *current_work(void) 4499 { 4500 struct worker *worker = current_wq_worker(); 4501 4502 return worker ? worker->current_work : NULL; 4503 } 4504 EXPORT_SYMBOL(current_work); 4505 4506 /** 4507 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4508 * 4509 * Determine whether %current is a workqueue rescuer. Can be used from 4510 * work functions to determine whether it's being run off the rescuer task. 4511 * 4512 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4513 */ 4514 bool current_is_workqueue_rescuer(void) 4515 { 4516 struct worker *worker = current_wq_worker(); 4517 4518 return worker && worker->rescue_wq; 4519 } 4520 4521 /** 4522 * workqueue_congested - test whether a workqueue is congested 4523 * @cpu: CPU in question 4524 * @wq: target workqueue 4525 * 4526 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4527 * no synchronization around this function and the test result is 4528 * unreliable and only useful as advisory hints or for debugging. 4529 * 4530 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4531 * Note that both per-cpu and unbound workqueues may be associated with 4532 * multiple pool_workqueues which have separate congested states. A 4533 * workqueue being congested on one CPU doesn't mean the workqueue is also 4534 * contested on other CPUs / NUMA nodes. 4535 * 4536 * Return: 4537 * %true if congested, %false otherwise. 4538 */ 4539 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4540 { 4541 struct pool_workqueue *pwq; 4542 bool ret; 4543 4544 rcu_read_lock(); 4545 preempt_disable(); 4546 4547 if (cpu == WORK_CPU_UNBOUND) 4548 cpu = smp_processor_id(); 4549 4550 if (!(wq->flags & WQ_UNBOUND)) 4551 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4552 else 4553 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4554 4555 ret = !list_empty(&pwq->delayed_works); 4556 preempt_enable(); 4557 rcu_read_unlock(); 4558 4559 return ret; 4560 } 4561 EXPORT_SYMBOL_GPL(workqueue_congested); 4562 4563 /** 4564 * work_busy - test whether a work is currently pending or running 4565 * @work: the work to be tested 4566 * 4567 * Test whether @work is currently pending or running. There is no 4568 * synchronization around this function and the test result is 4569 * unreliable and only useful as advisory hints or for debugging. 4570 * 4571 * Return: 4572 * OR'd bitmask of WORK_BUSY_* bits. 4573 */ 4574 unsigned int work_busy(struct work_struct *work) 4575 { 4576 struct worker_pool *pool; 4577 unsigned long flags; 4578 unsigned int ret = 0; 4579 4580 if (work_pending(work)) 4581 ret |= WORK_BUSY_PENDING; 4582 4583 rcu_read_lock(); 4584 pool = get_work_pool(work); 4585 if (pool) { 4586 raw_spin_lock_irqsave(&pool->lock, flags); 4587 if (find_worker_executing_work(pool, work)) 4588 ret |= WORK_BUSY_RUNNING; 4589 raw_spin_unlock_irqrestore(&pool->lock, flags); 4590 } 4591 rcu_read_unlock(); 4592 4593 return ret; 4594 } 4595 EXPORT_SYMBOL_GPL(work_busy); 4596 4597 /** 4598 * set_worker_desc - set description for the current work item 4599 * @fmt: printf-style format string 4600 * @...: arguments for the format string 4601 * 4602 * This function can be called by a running work function to describe what 4603 * the work item is about. If the worker task gets dumped, this 4604 * information will be printed out together to help debugging. The 4605 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4606 */ 4607 void set_worker_desc(const char *fmt, ...) 4608 { 4609 struct worker *worker = current_wq_worker(); 4610 va_list args; 4611 4612 if (worker) { 4613 va_start(args, fmt); 4614 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4615 va_end(args); 4616 } 4617 } 4618 EXPORT_SYMBOL_GPL(set_worker_desc); 4619 4620 /** 4621 * print_worker_info - print out worker information and description 4622 * @log_lvl: the log level to use when printing 4623 * @task: target task 4624 * 4625 * If @task is a worker and currently executing a work item, print out the 4626 * name of the workqueue being serviced and worker description set with 4627 * set_worker_desc() by the currently executing work item. 4628 * 4629 * This function can be safely called on any task as long as the 4630 * task_struct itself is accessible. While safe, this function isn't 4631 * synchronized and may print out mixups or garbages of limited length. 4632 */ 4633 void print_worker_info(const char *log_lvl, struct task_struct *task) 4634 { 4635 work_func_t *fn = NULL; 4636 char name[WQ_NAME_LEN] = { }; 4637 char desc[WORKER_DESC_LEN] = { }; 4638 struct pool_workqueue *pwq = NULL; 4639 struct workqueue_struct *wq = NULL; 4640 struct worker *worker; 4641 4642 if (!(task->flags & PF_WQ_WORKER)) 4643 return; 4644 4645 /* 4646 * This function is called without any synchronization and @task 4647 * could be in any state. Be careful with dereferences. 4648 */ 4649 worker = kthread_probe_data(task); 4650 4651 /* 4652 * Carefully copy the associated workqueue's workfn, name and desc. 4653 * Keep the original last '\0' in case the original is garbage. 4654 */ 4655 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 4656 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 4657 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 4658 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 4659 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 4660 4661 if (fn || name[0] || desc[0]) { 4662 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 4663 if (strcmp(name, desc)) 4664 pr_cont(" (%s)", desc); 4665 pr_cont("\n"); 4666 } 4667 } 4668 4669 static void pr_cont_pool_info(struct worker_pool *pool) 4670 { 4671 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4672 if (pool->node != NUMA_NO_NODE) 4673 pr_cont(" node=%d", pool->node); 4674 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4675 } 4676 4677 static void pr_cont_work(bool comma, struct work_struct *work) 4678 { 4679 if (work->func == wq_barrier_func) { 4680 struct wq_barrier *barr; 4681 4682 barr = container_of(work, struct wq_barrier, work); 4683 4684 pr_cont("%s BAR(%d)", comma ? "," : "", 4685 task_pid_nr(barr->task)); 4686 } else { 4687 pr_cont("%s %ps", comma ? "," : "", work->func); 4688 } 4689 } 4690 4691 static void show_pwq(struct pool_workqueue *pwq) 4692 { 4693 struct worker_pool *pool = pwq->pool; 4694 struct work_struct *work; 4695 struct worker *worker; 4696 bool has_in_flight = false, has_pending = false; 4697 int bkt; 4698 4699 pr_info(" pwq %d:", pool->id); 4700 pr_cont_pool_info(pool); 4701 4702 pr_cont(" active=%d/%d refcnt=%d%s\n", 4703 pwq->nr_active, pwq->max_active, pwq->refcnt, 4704 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4705 4706 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4707 if (worker->current_pwq == pwq) { 4708 has_in_flight = true; 4709 break; 4710 } 4711 } 4712 if (has_in_flight) { 4713 bool comma = false; 4714 4715 pr_info(" in-flight:"); 4716 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4717 if (worker->current_pwq != pwq) 4718 continue; 4719 4720 pr_cont("%s %d%s:%ps", comma ? "," : "", 4721 task_pid_nr(worker->task), 4722 worker->rescue_wq ? "(RESCUER)" : "", 4723 worker->current_func); 4724 list_for_each_entry(work, &worker->scheduled, entry) 4725 pr_cont_work(false, work); 4726 comma = true; 4727 } 4728 pr_cont("\n"); 4729 } 4730 4731 list_for_each_entry(work, &pool->worklist, entry) { 4732 if (get_work_pwq(work) == pwq) { 4733 has_pending = true; 4734 break; 4735 } 4736 } 4737 if (has_pending) { 4738 bool comma = false; 4739 4740 pr_info(" pending:"); 4741 list_for_each_entry(work, &pool->worklist, entry) { 4742 if (get_work_pwq(work) != pwq) 4743 continue; 4744 4745 pr_cont_work(comma, work); 4746 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4747 } 4748 pr_cont("\n"); 4749 } 4750 4751 if (!list_empty(&pwq->delayed_works)) { 4752 bool comma = false; 4753 4754 pr_info(" delayed:"); 4755 list_for_each_entry(work, &pwq->delayed_works, entry) { 4756 pr_cont_work(comma, work); 4757 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4758 } 4759 pr_cont("\n"); 4760 } 4761 } 4762 4763 /** 4764 * show_workqueue_state - dump workqueue state 4765 * 4766 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4767 * all busy workqueues and pools. 4768 */ 4769 void show_workqueue_state(void) 4770 { 4771 struct workqueue_struct *wq; 4772 struct worker_pool *pool; 4773 unsigned long flags; 4774 int pi; 4775 4776 rcu_read_lock(); 4777 4778 pr_info("Showing busy workqueues and worker pools:\n"); 4779 4780 list_for_each_entry_rcu(wq, &workqueues, list) { 4781 struct pool_workqueue *pwq; 4782 bool idle = true; 4783 4784 for_each_pwq(pwq, wq) { 4785 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4786 idle = false; 4787 break; 4788 } 4789 } 4790 if (idle) 4791 continue; 4792 4793 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4794 4795 for_each_pwq(pwq, wq) { 4796 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 4797 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4798 show_pwq(pwq); 4799 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 4800 /* 4801 * We could be printing a lot from atomic context, e.g. 4802 * sysrq-t -> show_workqueue_state(). Avoid triggering 4803 * hard lockup. 4804 */ 4805 touch_nmi_watchdog(); 4806 } 4807 } 4808 4809 for_each_pool(pool, pi) { 4810 struct worker *worker; 4811 bool first = true; 4812 4813 raw_spin_lock_irqsave(&pool->lock, flags); 4814 if (pool->nr_workers == pool->nr_idle) 4815 goto next_pool; 4816 4817 pr_info("pool %d:", pool->id); 4818 pr_cont_pool_info(pool); 4819 pr_cont(" hung=%us workers=%d", 4820 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4821 pool->nr_workers); 4822 if (pool->manager) 4823 pr_cont(" manager: %d", 4824 task_pid_nr(pool->manager->task)); 4825 list_for_each_entry(worker, &pool->idle_list, entry) { 4826 pr_cont(" %s%d", first ? "idle: " : "", 4827 task_pid_nr(worker->task)); 4828 first = false; 4829 } 4830 pr_cont("\n"); 4831 next_pool: 4832 raw_spin_unlock_irqrestore(&pool->lock, flags); 4833 /* 4834 * We could be printing a lot from atomic context, e.g. 4835 * sysrq-t -> show_workqueue_state(). Avoid triggering 4836 * hard lockup. 4837 */ 4838 touch_nmi_watchdog(); 4839 } 4840 4841 rcu_read_unlock(); 4842 } 4843 4844 /* used to show worker information through /proc/PID/{comm,stat,status} */ 4845 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 4846 { 4847 int off; 4848 4849 /* always show the actual comm */ 4850 off = strscpy(buf, task->comm, size); 4851 if (off < 0) 4852 return; 4853 4854 /* stabilize PF_WQ_WORKER and worker pool association */ 4855 mutex_lock(&wq_pool_attach_mutex); 4856 4857 if (task->flags & PF_WQ_WORKER) { 4858 struct worker *worker = kthread_data(task); 4859 struct worker_pool *pool = worker->pool; 4860 4861 if (pool) { 4862 raw_spin_lock_irq(&pool->lock); 4863 /* 4864 * ->desc tracks information (wq name or 4865 * set_worker_desc()) for the latest execution. If 4866 * current, prepend '+', otherwise '-'. 4867 */ 4868 if (worker->desc[0] != '\0') { 4869 if (worker->current_work) 4870 scnprintf(buf + off, size - off, "+%s", 4871 worker->desc); 4872 else 4873 scnprintf(buf + off, size - off, "-%s", 4874 worker->desc); 4875 } 4876 raw_spin_unlock_irq(&pool->lock); 4877 } 4878 } 4879 4880 mutex_unlock(&wq_pool_attach_mutex); 4881 } 4882 4883 #ifdef CONFIG_SMP 4884 4885 /* 4886 * CPU hotplug. 4887 * 4888 * There are two challenges in supporting CPU hotplug. Firstly, there 4889 * are a lot of assumptions on strong associations among work, pwq and 4890 * pool which make migrating pending and scheduled works very 4891 * difficult to implement without impacting hot paths. Secondly, 4892 * worker pools serve mix of short, long and very long running works making 4893 * blocked draining impractical. 4894 * 4895 * This is solved by allowing the pools to be disassociated from the CPU 4896 * running as an unbound one and allowing it to be reattached later if the 4897 * cpu comes back online. 4898 */ 4899 4900 static void unbind_workers(int cpu) 4901 { 4902 struct worker_pool *pool; 4903 struct worker *worker; 4904 4905 for_each_cpu_worker_pool(pool, cpu) { 4906 mutex_lock(&wq_pool_attach_mutex); 4907 raw_spin_lock_irq(&pool->lock); 4908 4909 /* 4910 * We've blocked all attach/detach operations. Make all workers 4911 * unbound and set DISASSOCIATED. Before this, all workers 4912 * except for the ones which are still executing works from 4913 * before the last CPU down must be on the cpu. After 4914 * this, they may become diasporas. 4915 */ 4916 for_each_pool_worker(worker, pool) 4917 worker->flags |= WORKER_UNBOUND; 4918 4919 pool->flags |= POOL_DISASSOCIATED; 4920 4921 raw_spin_unlock_irq(&pool->lock); 4922 4923 for_each_pool_worker(worker, pool) { 4924 kthread_set_per_cpu(worker->task, -1); 4925 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 4926 } 4927 4928 mutex_unlock(&wq_pool_attach_mutex); 4929 4930 /* 4931 * Call schedule() so that we cross rq->lock and thus can 4932 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4933 * This is necessary as scheduler callbacks may be invoked 4934 * from other cpus. 4935 */ 4936 schedule(); 4937 4938 /* 4939 * Sched callbacks are disabled now. Zap nr_running. 4940 * After this, nr_running stays zero and need_more_worker() 4941 * and keep_working() are always true as long as the 4942 * worklist is not empty. This pool now behaves as an 4943 * unbound (in terms of concurrency management) pool which 4944 * are served by workers tied to the pool. 4945 */ 4946 atomic_set(&pool->nr_running, 0); 4947 4948 /* 4949 * With concurrency management just turned off, a busy 4950 * worker blocking could lead to lengthy stalls. Kick off 4951 * unbound chain execution of currently pending work items. 4952 */ 4953 raw_spin_lock_irq(&pool->lock); 4954 wake_up_worker(pool); 4955 raw_spin_unlock_irq(&pool->lock); 4956 } 4957 } 4958 4959 /** 4960 * rebind_workers - rebind all workers of a pool to the associated CPU 4961 * @pool: pool of interest 4962 * 4963 * @pool->cpu is coming online. Rebind all workers to the CPU. 4964 */ 4965 static void rebind_workers(struct worker_pool *pool) 4966 { 4967 struct worker *worker; 4968 4969 lockdep_assert_held(&wq_pool_attach_mutex); 4970 4971 /* 4972 * Restore CPU affinity of all workers. As all idle workers should 4973 * be on the run-queue of the associated CPU before any local 4974 * wake-ups for concurrency management happen, restore CPU affinity 4975 * of all workers first and then clear UNBOUND. As we're called 4976 * from CPU_ONLINE, the following shouldn't fail. 4977 */ 4978 for_each_pool_worker(worker, pool) { 4979 kthread_set_per_cpu(worker->task, pool->cpu); 4980 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4981 pool->attrs->cpumask) < 0); 4982 } 4983 4984 raw_spin_lock_irq(&pool->lock); 4985 4986 pool->flags &= ~POOL_DISASSOCIATED; 4987 4988 for_each_pool_worker(worker, pool) { 4989 unsigned int worker_flags = worker->flags; 4990 4991 /* 4992 * A bound idle worker should actually be on the runqueue 4993 * of the associated CPU for local wake-ups targeting it to 4994 * work. Kick all idle workers so that they migrate to the 4995 * associated CPU. Doing this in the same loop as 4996 * replacing UNBOUND with REBOUND is safe as no worker will 4997 * be bound before @pool->lock is released. 4998 */ 4999 if (worker_flags & WORKER_IDLE) 5000 wake_up_process(worker->task); 5001 5002 /* 5003 * We want to clear UNBOUND but can't directly call 5004 * worker_clr_flags() or adjust nr_running. Atomically 5005 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 5006 * @worker will clear REBOUND using worker_clr_flags() when 5007 * it initiates the next execution cycle thus restoring 5008 * concurrency management. Note that when or whether 5009 * @worker clears REBOUND doesn't affect correctness. 5010 * 5011 * WRITE_ONCE() is necessary because @worker->flags may be 5012 * tested without holding any lock in 5013 * wq_worker_running(). Without it, NOT_RUNNING test may 5014 * fail incorrectly leading to premature concurrency 5015 * management operations. 5016 */ 5017 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 5018 worker_flags |= WORKER_REBOUND; 5019 worker_flags &= ~WORKER_UNBOUND; 5020 WRITE_ONCE(worker->flags, worker_flags); 5021 } 5022 5023 raw_spin_unlock_irq(&pool->lock); 5024 } 5025 5026 /** 5027 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 5028 * @pool: unbound pool of interest 5029 * @cpu: the CPU which is coming up 5030 * 5031 * An unbound pool may end up with a cpumask which doesn't have any online 5032 * CPUs. When a worker of such pool get scheduled, the scheduler resets 5033 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 5034 * online CPU before, cpus_allowed of all its workers should be restored. 5035 */ 5036 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 5037 { 5038 static cpumask_t cpumask; 5039 struct worker *worker; 5040 5041 lockdep_assert_held(&wq_pool_attach_mutex); 5042 5043 /* is @cpu allowed for @pool? */ 5044 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 5045 return; 5046 5047 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 5048 5049 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 5050 for_each_pool_worker(worker, pool) 5051 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 5052 } 5053 5054 int workqueue_prepare_cpu(unsigned int cpu) 5055 { 5056 struct worker_pool *pool; 5057 5058 for_each_cpu_worker_pool(pool, cpu) { 5059 if (pool->nr_workers) 5060 continue; 5061 if (!create_worker(pool)) 5062 return -ENOMEM; 5063 } 5064 return 0; 5065 } 5066 5067 int workqueue_online_cpu(unsigned int cpu) 5068 { 5069 struct worker_pool *pool; 5070 struct workqueue_struct *wq; 5071 int pi; 5072 5073 mutex_lock(&wq_pool_mutex); 5074 5075 for_each_pool(pool, pi) { 5076 mutex_lock(&wq_pool_attach_mutex); 5077 5078 if (pool->cpu == cpu) 5079 rebind_workers(pool); 5080 else if (pool->cpu < 0) 5081 restore_unbound_workers_cpumask(pool, cpu); 5082 5083 mutex_unlock(&wq_pool_attach_mutex); 5084 } 5085 5086 /* update NUMA affinity of unbound workqueues */ 5087 list_for_each_entry(wq, &workqueues, list) 5088 wq_update_unbound_numa(wq, cpu, true); 5089 5090 mutex_unlock(&wq_pool_mutex); 5091 return 0; 5092 } 5093 5094 int workqueue_offline_cpu(unsigned int cpu) 5095 { 5096 struct workqueue_struct *wq; 5097 5098 /* unbinding per-cpu workers should happen on the local CPU */ 5099 if (WARN_ON(cpu != smp_processor_id())) 5100 return -1; 5101 5102 unbind_workers(cpu); 5103 5104 /* update NUMA affinity of unbound workqueues */ 5105 mutex_lock(&wq_pool_mutex); 5106 list_for_each_entry(wq, &workqueues, list) 5107 wq_update_unbound_numa(wq, cpu, false); 5108 mutex_unlock(&wq_pool_mutex); 5109 5110 return 0; 5111 } 5112 5113 struct work_for_cpu { 5114 struct work_struct work; 5115 long (*fn)(void *); 5116 void *arg; 5117 long ret; 5118 }; 5119 5120 static void work_for_cpu_fn(struct work_struct *work) 5121 { 5122 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5123 5124 wfc->ret = wfc->fn(wfc->arg); 5125 } 5126 5127 /** 5128 * work_on_cpu - run a function in thread context on a particular cpu 5129 * @cpu: the cpu to run on 5130 * @fn: the function to run 5131 * @arg: the function arg 5132 * 5133 * It is up to the caller to ensure that the cpu doesn't go offline. 5134 * The caller must not hold any locks which would prevent @fn from completing. 5135 * 5136 * Return: The value @fn returns. 5137 */ 5138 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 5139 { 5140 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5141 5142 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 5143 schedule_work_on(cpu, &wfc.work); 5144 flush_work(&wfc.work); 5145 destroy_work_on_stack(&wfc.work); 5146 return wfc.ret; 5147 } 5148 EXPORT_SYMBOL_GPL(work_on_cpu); 5149 5150 /** 5151 * work_on_cpu_safe - run a function in thread context on a particular cpu 5152 * @cpu: the cpu to run on 5153 * @fn: the function to run 5154 * @arg: the function argument 5155 * 5156 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5157 * any locks which would prevent @fn from completing. 5158 * 5159 * Return: The value @fn returns. 5160 */ 5161 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 5162 { 5163 long ret = -ENODEV; 5164 5165 get_online_cpus(); 5166 if (cpu_online(cpu)) 5167 ret = work_on_cpu(cpu, fn, arg); 5168 put_online_cpus(); 5169 return ret; 5170 } 5171 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 5172 #endif /* CONFIG_SMP */ 5173 5174 #ifdef CONFIG_FREEZER 5175 5176 /** 5177 * freeze_workqueues_begin - begin freezing workqueues 5178 * 5179 * Start freezing workqueues. After this function returns, all freezable 5180 * workqueues will queue new works to their delayed_works list instead of 5181 * pool->worklist. 5182 * 5183 * CONTEXT: 5184 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5185 */ 5186 void freeze_workqueues_begin(void) 5187 { 5188 struct workqueue_struct *wq; 5189 struct pool_workqueue *pwq; 5190 5191 mutex_lock(&wq_pool_mutex); 5192 5193 WARN_ON_ONCE(workqueue_freezing); 5194 workqueue_freezing = true; 5195 5196 list_for_each_entry(wq, &workqueues, list) { 5197 mutex_lock(&wq->mutex); 5198 for_each_pwq(pwq, wq) 5199 pwq_adjust_max_active(pwq); 5200 mutex_unlock(&wq->mutex); 5201 } 5202 5203 mutex_unlock(&wq_pool_mutex); 5204 } 5205 5206 /** 5207 * freeze_workqueues_busy - are freezable workqueues still busy? 5208 * 5209 * Check whether freezing is complete. This function must be called 5210 * between freeze_workqueues_begin() and thaw_workqueues(). 5211 * 5212 * CONTEXT: 5213 * Grabs and releases wq_pool_mutex. 5214 * 5215 * Return: 5216 * %true if some freezable workqueues are still busy. %false if freezing 5217 * is complete. 5218 */ 5219 bool freeze_workqueues_busy(void) 5220 { 5221 bool busy = false; 5222 struct workqueue_struct *wq; 5223 struct pool_workqueue *pwq; 5224 5225 mutex_lock(&wq_pool_mutex); 5226 5227 WARN_ON_ONCE(!workqueue_freezing); 5228 5229 list_for_each_entry(wq, &workqueues, list) { 5230 if (!(wq->flags & WQ_FREEZABLE)) 5231 continue; 5232 /* 5233 * nr_active is monotonically decreasing. It's safe 5234 * to peek without lock. 5235 */ 5236 rcu_read_lock(); 5237 for_each_pwq(pwq, wq) { 5238 WARN_ON_ONCE(pwq->nr_active < 0); 5239 if (pwq->nr_active) { 5240 busy = true; 5241 rcu_read_unlock(); 5242 goto out_unlock; 5243 } 5244 } 5245 rcu_read_unlock(); 5246 } 5247 out_unlock: 5248 mutex_unlock(&wq_pool_mutex); 5249 return busy; 5250 } 5251 5252 /** 5253 * thaw_workqueues - thaw workqueues 5254 * 5255 * Thaw workqueues. Normal queueing is restored and all collected 5256 * frozen works are transferred to their respective pool worklists. 5257 * 5258 * CONTEXT: 5259 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5260 */ 5261 void thaw_workqueues(void) 5262 { 5263 struct workqueue_struct *wq; 5264 struct pool_workqueue *pwq; 5265 5266 mutex_lock(&wq_pool_mutex); 5267 5268 if (!workqueue_freezing) 5269 goto out_unlock; 5270 5271 workqueue_freezing = false; 5272 5273 /* restore max_active and repopulate worklist */ 5274 list_for_each_entry(wq, &workqueues, list) { 5275 mutex_lock(&wq->mutex); 5276 for_each_pwq(pwq, wq) 5277 pwq_adjust_max_active(pwq); 5278 mutex_unlock(&wq->mutex); 5279 } 5280 5281 out_unlock: 5282 mutex_unlock(&wq_pool_mutex); 5283 } 5284 #endif /* CONFIG_FREEZER */ 5285 5286 static int workqueue_apply_unbound_cpumask(void) 5287 { 5288 LIST_HEAD(ctxs); 5289 int ret = 0; 5290 struct workqueue_struct *wq; 5291 struct apply_wqattrs_ctx *ctx, *n; 5292 5293 lockdep_assert_held(&wq_pool_mutex); 5294 5295 list_for_each_entry(wq, &workqueues, list) { 5296 if (!(wq->flags & WQ_UNBOUND)) 5297 continue; 5298 /* creating multiple pwqs breaks ordering guarantee */ 5299 if (wq->flags & __WQ_ORDERED) 5300 continue; 5301 5302 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 5303 if (!ctx) { 5304 ret = -ENOMEM; 5305 break; 5306 } 5307 5308 list_add_tail(&ctx->list, &ctxs); 5309 } 5310 5311 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5312 if (!ret) 5313 apply_wqattrs_commit(ctx); 5314 apply_wqattrs_cleanup(ctx); 5315 } 5316 5317 return ret; 5318 } 5319 5320 /** 5321 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5322 * @cpumask: the cpumask to set 5323 * 5324 * The low-level workqueues cpumask is a global cpumask that limits 5325 * the affinity of all unbound workqueues. This function check the @cpumask 5326 * and apply it to all unbound workqueues and updates all pwqs of them. 5327 * 5328 * Retun: 0 - Success 5329 * -EINVAL - Invalid @cpumask 5330 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5331 */ 5332 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5333 { 5334 int ret = -EINVAL; 5335 cpumask_var_t saved_cpumask; 5336 5337 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 5338 return -ENOMEM; 5339 5340 /* 5341 * Not excluding isolated cpus on purpose. 5342 * If the user wishes to include them, we allow that. 5343 */ 5344 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5345 if (!cpumask_empty(cpumask)) { 5346 apply_wqattrs_lock(); 5347 5348 /* save the old wq_unbound_cpumask. */ 5349 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 5350 5351 /* update wq_unbound_cpumask at first and apply it to wqs. */ 5352 cpumask_copy(wq_unbound_cpumask, cpumask); 5353 ret = workqueue_apply_unbound_cpumask(); 5354 5355 /* restore the wq_unbound_cpumask when failed. */ 5356 if (ret < 0) 5357 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5358 5359 apply_wqattrs_unlock(); 5360 } 5361 5362 free_cpumask_var(saved_cpumask); 5363 return ret; 5364 } 5365 5366 #ifdef CONFIG_SYSFS 5367 /* 5368 * Workqueues with WQ_SYSFS flag set is visible to userland via 5369 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5370 * following attributes. 5371 * 5372 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5373 * max_active RW int : maximum number of in-flight work items 5374 * 5375 * Unbound workqueues have the following extra attributes. 5376 * 5377 * pool_ids RO int : the associated pool IDs for each node 5378 * nice RW int : nice value of the workers 5379 * cpumask RW mask : bitmask of allowed CPUs for the workers 5380 * numa RW bool : whether enable NUMA affinity 5381 */ 5382 struct wq_device { 5383 struct workqueue_struct *wq; 5384 struct device dev; 5385 }; 5386 5387 static struct workqueue_struct *dev_to_wq(struct device *dev) 5388 { 5389 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5390 5391 return wq_dev->wq; 5392 } 5393 5394 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5395 char *buf) 5396 { 5397 struct workqueue_struct *wq = dev_to_wq(dev); 5398 5399 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5400 } 5401 static DEVICE_ATTR_RO(per_cpu); 5402 5403 static ssize_t max_active_show(struct device *dev, 5404 struct device_attribute *attr, char *buf) 5405 { 5406 struct workqueue_struct *wq = dev_to_wq(dev); 5407 5408 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5409 } 5410 5411 static ssize_t max_active_store(struct device *dev, 5412 struct device_attribute *attr, const char *buf, 5413 size_t count) 5414 { 5415 struct workqueue_struct *wq = dev_to_wq(dev); 5416 int val; 5417 5418 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5419 return -EINVAL; 5420 5421 workqueue_set_max_active(wq, val); 5422 return count; 5423 } 5424 static DEVICE_ATTR_RW(max_active); 5425 5426 static struct attribute *wq_sysfs_attrs[] = { 5427 &dev_attr_per_cpu.attr, 5428 &dev_attr_max_active.attr, 5429 NULL, 5430 }; 5431 ATTRIBUTE_GROUPS(wq_sysfs); 5432 5433 static ssize_t wq_pool_ids_show(struct device *dev, 5434 struct device_attribute *attr, char *buf) 5435 { 5436 struct workqueue_struct *wq = dev_to_wq(dev); 5437 const char *delim = ""; 5438 int node, written = 0; 5439 5440 get_online_cpus(); 5441 rcu_read_lock(); 5442 for_each_node(node) { 5443 written += scnprintf(buf + written, PAGE_SIZE - written, 5444 "%s%d:%d", delim, node, 5445 unbound_pwq_by_node(wq, node)->pool->id); 5446 delim = " "; 5447 } 5448 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5449 rcu_read_unlock(); 5450 put_online_cpus(); 5451 5452 return written; 5453 } 5454 5455 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5456 char *buf) 5457 { 5458 struct workqueue_struct *wq = dev_to_wq(dev); 5459 int written; 5460 5461 mutex_lock(&wq->mutex); 5462 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5463 mutex_unlock(&wq->mutex); 5464 5465 return written; 5466 } 5467 5468 /* prepare workqueue_attrs for sysfs store operations */ 5469 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5470 { 5471 struct workqueue_attrs *attrs; 5472 5473 lockdep_assert_held(&wq_pool_mutex); 5474 5475 attrs = alloc_workqueue_attrs(); 5476 if (!attrs) 5477 return NULL; 5478 5479 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5480 return attrs; 5481 } 5482 5483 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5484 const char *buf, size_t count) 5485 { 5486 struct workqueue_struct *wq = dev_to_wq(dev); 5487 struct workqueue_attrs *attrs; 5488 int ret = -ENOMEM; 5489 5490 apply_wqattrs_lock(); 5491 5492 attrs = wq_sysfs_prep_attrs(wq); 5493 if (!attrs) 5494 goto out_unlock; 5495 5496 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5497 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5498 ret = apply_workqueue_attrs_locked(wq, attrs); 5499 else 5500 ret = -EINVAL; 5501 5502 out_unlock: 5503 apply_wqattrs_unlock(); 5504 free_workqueue_attrs(attrs); 5505 return ret ?: count; 5506 } 5507 5508 static ssize_t wq_cpumask_show(struct device *dev, 5509 struct device_attribute *attr, char *buf) 5510 { 5511 struct workqueue_struct *wq = dev_to_wq(dev); 5512 int written; 5513 5514 mutex_lock(&wq->mutex); 5515 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5516 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5517 mutex_unlock(&wq->mutex); 5518 return written; 5519 } 5520 5521 static ssize_t wq_cpumask_store(struct device *dev, 5522 struct device_attribute *attr, 5523 const char *buf, size_t count) 5524 { 5525 struct workqueue_struct *wq = dev_to_wq(dev); 5526 struct workqueue_attrs *attrs; 5527 int ret = -ENOMEM; 5528 5529 apply_wqattrs_lock(); 5530 5531 attrs = wq_sysfs_prep_attrs(wq); 5532 if (!attrs) 5533 goto out_unlock; 5534 5535 ret = cpumask_parse(buf, attrs->cpumask); 5536 if (!ret) 5537 ret = apply_workqueue_attrs_locked(wq, attrs); 5538 5539 out_unlock: 5540 apply_wqattrs_unlock(); 5541 free_workqueue_attrs(attrs); 5542 return ret ?: count; 5543 } 5544 5545 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5546 char *buf) 5547 { 5548 struct workqueue_struct *wq = dev_to_wq(dev); 5549 int written; 5550 5551 mutex_lock(&wq->mutex); 5552 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5553 !wq->unbound_attrs->no_numa); 5554 mutex_unlock(&wq->mutex); 5555 5556 return written; 5557 } 5558 5559 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5560 const char *buf, size_t count) 5561 { 5562 struct workqueue_struct *wq = dev_to_wq(dev); 5563 struct workqueue_attrs *attrs; 5564 int v, ret = -ENOMEM; 5565 5566 apply_wqattrs_lock(); 5567 5568 attrs = wq_sysfs_prep_attrs(wq); 5569 if (!attrs) 5570 goto out_unlock; 5571 5572 ret = -EINVAL; 5573 if (sscanf(buf, "%d", &v) == 1) { 5574 attrs->no_numa = !v; 5575 ret = apply_workqueue_attrs_locked(wq, attrs); 5576 } 5577 5578 out_unlock: 5579 apply_wqattrs_unlock(); 5580 free_workqueue_attrs(attrs); 5581 return ret ?: count; 5582 } 5583 5584 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5585 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5586 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5587 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5588 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5589 __ATTR_NULL, 5590 }; 5591 5592 static struct bus_type wq_subsys = { 5593 .name = "workqueue", 5594 .dev_groups = wq_sysfs_groups, 5595 }; 5596 5597 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5598 struct device_attribute *attr, char *buf) 5599 { 5600 int written; 5601 5602 mutex_lock(&wq_pool_mutex); 5603 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5604 cpumask_pr_args(wq_unbound_cpumask)); 5605 mutex_unlock(&wq_pool_mutex); 5606 5607 return written; 5608 } 5609 5610 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5611 struct device_attribute *attr, const char *buf, size_t count) 5612 { 5613 cpumask_var_t cpumask; 5614 int ret; 5615 5616 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5617 return -ENOMEM; 5618 5619 ret = cpumask_parse(buf, cpumask); 5620 if (!ret) 5621 ret = workqueue_set_unbound_cpumask(cpumask); 5622 5623 free_cpumask_var(cpumask); 5624 return ret ? ret : count; 5625 } 5626 5627 static struct device_attribute wq_sysfs_cpumask_attr = 5628 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5629 wq_unbound_cpumask_store); 5630 5631 static int __init wq_sysfs_init(void) 5632 { 5633 int err; 5634 5635 err = subsys_virtual_register(&wq_subsys, NULL); 5636 if (err) 5637 return err; 5638 5639 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5640 } 5641 core_initcall(wq_sysfs_init); 5642 5643 static void wq_device_release(struct device *dev) 5644 { 5645 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5646 5647 kfree(wq_dev); 5648 } 5649 5650 /** 5651 * workqueue_sysfs_register - make a workqueue visible in sysfs 5652 * @wq: the workqueue to register 5653 * 5654 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5655 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5656 * which is the preferred method. 5657 * 5658 * Workqueue user should use this function directly iff it wants to apply 5659 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5660 * apply_workqueue_attrs() may race against userland updating the 5661 * attributes. 5662 * 5663 * Return: 0 on success, -errno on failure. 5664 */ 5665 int workqueue_sysfs_register(struct workqueue_struct *wq) 5666 { 5667 struct wq_device *wq_dev; 5668 int ret; 5669 5670 /* 5671 * Adjusting max_active or creating new pwqs by applying 5672 * attributes breaks ordering guarantee. Disallow exposing ordered 5673 * workqueues. 5674 */ 5675 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5676 return -EINVAL; 5677 5678 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5679 if (!wq_dev) 5680 return -ENOMEM; 5681 5682 wq_dev->wq = wq; 5683 wq_dev->dev.bus = &wq_subsys; 5684 wq_dev->dev.release = wq_device_release; 5685 dev_set_name(&wq_dev->dev, "%s", wq->name); 5686 5687 /* 5688 * unbound_attrs are created separately. Suppress uevent until 5689 * everything is ready. 5690 */ 5691 dev_set_uevent_suppress(&wq_dev->dev, true); 5692 5693 ret = device_register(&wq_dev->dev); 5694 if (ret) { 5695 put_device(&wq_dev->dev); 5696 wq->wq_dev = NULL; 5697 return ret; 5698 } 5699 5700 if (wq->flags & WQ_UNBOUND) { 5701 struct device_attribute *attr; 5702 5703 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5704 ret = device_create_file(&wq_dev->dev, attr); 5705 if (ret) { 5706 device_unregister(&wq_dev->dev); 5707 wq->wq_dev = NULL; 5708 return ret; 5709 } 5710 } 5711 } 5712 5713 dev_set_uevent_suppress(&wq_dev->dev, false); 5714 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5715 return 0; 5716 } 5717 5718 /** 5719 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5720 * @wq: the workqueue to unregister 5721 * 5722 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5723 */ 5724 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5725 { 5726 struct wq_device *wq_dev = wq->wq_dev; 5727 5728 if (!wq->wq_dev) 5729 return; 5730 5731 wq->wq_dev = NULL; 5732 device_unregister(&wq_dev->dev); 5733 } 5734 #else /* CONFIG_SYSFS */ 5735 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5736 #endif /* CONFIG_SYSFS */ 5737 5738 /* 5739 * Workqueue watchdog. 5740 * 5741 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5742 * flush dependency, a concurrency managed work item which stays RUNNING 5743 * indefinitely. Workqueue stalls can be very difficult to debug as the 5744 * usual warning mechanisms don't trigger and internal workqueue state is 5745 * largely opaque. 5746 * 5747 * Workqueue watchdog monitors all worker pools periodically and dumps 5748 * state if some pools failed to make forward progress for a while where 5749 * forward progress is defined as the first item on ->worklist changing. 5750 * 5751 * This mechanism is controlled through the kernel parameter 5752 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5753 * corresponding sysfs parameter file. 5754 */ 5755 #ifdef CONFIG_WQ_WATCHDOG 5756 5757 static unsigned long wq_watchdog_thresh = 30; 5758 static struct timer_list wq_watchdog_timer; 5759 5760 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5761 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5762 5763 static void wq_watchdog_reset_touched(void) 5764 { 5765 int cpu; 5766 5767 wq_watchdog_touched = jiffies; 5768 for_each_possible_cpu(cpu) 5769 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5770 } 5771 5772 static void wq_watchdog_timer_fn(struct timer_list *unused) 5773 { 5774 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5775 bool lockup_detected = false; 5776 unsigned long now = jiffies; 5777 struct worker_pool *pool; 5778 int pi; 5779 5780 if (!thresh) 5781 return; 5782 5783 rcu_read_lock(); 5784 5785 for_each_pool(pool, pi) { 5786 unsigned long pool_ts, touched, ts; 5787 5788 if (list_empty(&pool->worklist)) 5789 continue; 5790 5791 /* 5792 * If a virtual machine is stopped by the host it can look to 5793 * the watchdog like a stall. 5794 */ 5795 kvm_check_and_clear_guest_paused(); 5796 5797 /* get the latest of pool and touched timestamps */ 5798 if (pool->cpu >= 0) 5799 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 5800 else 5801 touched = READ_ONCE(wq_watchdog_touched); 5802 pool_ts = READ_ONCE(pool->watchdog_ts); 5803 5804 if (time_after(pool_ts, touched)) 5805 ts = pool_ts; 5806 else 5807 ts = touched; 5808 5809 /* did we stall? */ 5810 if (time_after(now, ts + thresh)) { 5811 lockup_detected = true; 5812 pr_emerg("BUG: workqueue lockup - pool"); 5813 pr_cont_pool_info(pool); 5814 pr_cont(" stuck for %us!\n", 5815 jiffies_to_msecs(now - pool_ts) / 1000); 5816 } 5817 } 5818 5819 rcu_read_unlock(); 5820 5821 if (lockup_detected) 5822 show_workqueue_state(); 5823 5824 wq_watchdog_reset_touched(); 5825 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5826 } 5827 5828 notrace void wq_watchdog_touch(int cpu) 5829 { 5830 if (cpu >= 0) 5831 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5832 5833 wq_watchdog_touched = jiffies; 5834 } 5835 5836 static void wq_watchdog_set_thresh(unsigned long thresh) 5837 { 5838 wq_watchdog_thresh = 0; 5839 del_timer_sync(&wq_watchdog_timer); 5840 5841 if (thresh) { 5842 wq_watchdog_thresh = thresh; 5843 wq_watchdog_reset_touched(); 5844 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5845 } 5846 } 5847 5848 static int wq_watchdog_param_set_thresh(const char *val, 5849 const struct kernel_param *kp) 5850 { 5851 unsigned long thresh; 5852 int ret; 5853 5854 ret = kstrtoul(val, 0, &thresh); 5855 if (ret) 5856 return ret; 5857 5858 if (system_wq) 5859 wq_watchdog_set_thresh(thresh); 5860 else 5861 wq_watchdog_thresh = thresh; 5862 5863 return 0; 5864 } 5865 5866 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5867 .set = wq_watchdog_param_set_thresh, 5868 .get = param_get_ulong, 5869 }; 5870 5871 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5872 0644); 5873 5874 static void wq_watchdog_init(void) 5875 { 5876 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5877 wq_watchdog_set_thresh(wq_watchdog_thresh); 5878 } 5879 5880 #else /* CONFIG_WQ_WATCHDOG */ 5881 5882 static inline void wq_watchdog_init(void) { } 5883 5884 #endif /* CONFIG_WQ_WATCHDOG */ 5885 5886 static void __init wq_numa_init(void) 5887 { 5888 cpumask_var_t *tbl; 5889 int node, cpu; 5890 5891 if (num_possible_nodes() <= 1) 5892 return; 5893 5894 if (wq_disable_numa) { 5895 pr_info("workqueue: NUMA affinity support disabled\n"); 5896 return; 5897 } 5898 5899 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(); 5900 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5901 5902 /* 5903 * We want masks of possible CPUs of each node which isn't readily 5904 * available. Build one from cpu_to_node() which should have been 5905 * fully initialized by now. 5906 */ 5907 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 5908 BUG_ON(!tbl); 5909 5910 for_each_node(node) 5911 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5912 node_online(node) ? node : NUMA_NO_NODE)); 5913 5914 for_each_possible_cpu(cpu) { 5915 node = cpu_to_node(cpu); 5916 if (WARN_ON(node == NUMA_NO_NODE)) { 5917 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5918 /* happens iff arch is bonkers, let's just proceed */ 5919 return; 5920 } 5921 cpumask_set_cpu(cpu, tbl[node]); 5922 } 5923 5924 wq_numa_possible_cpumask = tbl; 5925 wq_numa_enabled = true; 5926 } 5927 5928 /** 5929 * workqueue_init_early - early init for workqueue subsystem 5930 * 5931 * This is the first half of two-staged workqueue subsystem initialization 5932 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5933 * idr are up. It sets up all the data structures and system workqueues 5934 * and allows early boot code to create workqueues and queue/cancel work 5935 * items. Actual work item execution starts only after kthreads can be 5936 * created and scheduled right before early initcalls. 5937 */ 5938 void __init workqueue_init_early(void) 5939 { 5940 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5941 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 5942 int i, cpu; 5943 5944 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5945 5946 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5947 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags)); 5948 5949 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5950 5951 /* initialize CPU pools */ 5952 for_each_possible_cpu(cpu) { 5953 struct worker_pool *pool; 5954 5955 i = 0; 5956 for_each_cpu_worker_pool(pool, cpu) { 5957 BUG_ON(init_worker_pool(pool)); 5958 pool->cpu = cpu; 5959 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5960 pool->attrs->nice = std_nice[i++]; 5961 pool->node = cpu_to_node(cpu); 5962 5963 /* alloc pool ID */ 5964 mutex_lock(&wq_pool_mutex); 5965 BUG_ON(worker_pool_assign_id(pool)); 5966 mutex_unlock(&wq_pool_mutex); 5967 } 5968 } 5969 5970 /* create default unbound and ordered wq attrs */ 5971 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5972 struct workqueue_attrs *attrs; 5973 5974 BUG_ON(!(attrs = alloc_workqueue_attrs())); 5975 attrs->nice = std_nice[i]; 5976 unbound_std_wq_attrs[i] = attrs; 5977 5978 /* 5979 * An ordered wq should have only one pwq as ordering is 5980 * guaranteed by max_active which is enforced by pwqs. 5981 * Turn off NUMA so that dfl_pwq is used for all nodes. 5982 */ 5983 BUG_ON(!(attrs = alloc_workqueue_attrs())); 5984 attrs->nice = std_nice[i]; 5985 attrs->no_numa = true; 5986 ordered_wq_attrs[i] = attrs; 5987 } 5988 5989 system_wq = alloc_workqueue("events", 0, 0); 5990 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5991 system_long_wq = alloc_workqueue("events_long", 0, 0); 5992 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5993 WQ_UNBOUND_MAX_ACTIVE); 5994 system_freezable_wq = alloc_workqueue("events_freezable", 5995 WQ_FREEZABLE, 0); 5996 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5997 WQ_POWER_EFFICIENT, 0); 5998 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5999 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 6000 0); 6001 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 6002 !system_unbound_wq || !system_freezable_wq || 6003 !system_power_efficient_wq || 6004 !system_freezable_power_efficient_wq); 6005 } 6006 6007 /** 6008 * workqueue_init - bring workqueue subsystem fully online 6009 * 6010 * This is the latter half of two-staged workqueue subsystem initialization 6011 * and invoked as soon as kthreads can be created and scheduled. 6012 * Workqueues have been created and work items queued on them, but there 6013 * are no kworkers executing the work items yet. Populate the worker pools 6014 * with the initial workers and enable future kworker creations. 6015 */ 6016 void __init workqueue_init(void) 6017 { 6018 struct workqueue_struct *wq; 6019 struct worker_pool *pool; 6020 int cpu, bkt; 6021 6022 /* 6023 * It'd be simpler to initialize NUMA in workqueue_init_early() but 6024 * CPU to node mapping may not be available that early on some 6025 * archs such as power and arm64. As per-cpu pools created 6026 * previously could be missing node hint and unbound pools NUMA 6027 * affinity, fix them up. 6028 * 6029 * Also, while iterating workqueues, create rescuers if requested. 6030 */ 6031 wq_numa_init(); 6032 6033 mutex_lock(&wq_pool_mutex); 6034 6035 for_each_possible_cpu(cpu) { 6036 for_each_cpu_worker_pool(pool, cpu) { 6037 pool->node = cpu_to_node(cpu); 6038 } 6039 } 6040 6041 list_for_each_entry(wq, &workqueues, list) { 6042 wq_update_unbound_numa(wq, smp_processor_id(), true); 6043 WARN(init_rescuer(wq), 6044 "workqueue: failed to create early rescuer for %s", 6045 wq->name); 6046 } 6047 6048 mutex_unlock(&wq_pool_mutex); 6049 6050 /* create the initial workers */ 6051 for_each_online_cpu(cpu) { 6052 for_each_cpu_worker_pool(pool, cpu) { 6053 pool->flags &= ~POOL_DISASSOCIATED; 6054 BUG_ON(!create_worker(pool)); 6055 } 6056 } 6057 6058 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 6059 BUG_ON(!create_worker(pool)); 6060 6061 wq_online = true; 6062 wq_watchdog_init(); 6063 } 6064