xref: /linux/kernel/workqueue.c (revision f37130533f68711fd6bae2c79950b8e72002bad6)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There is one worker pool for each CPU and
20  * one extra for works which are better served by workers which are
21  * not bound to any specific CPU.
22  *
23  * Please read Documentation/workqueue.txt for details.
24  */
25 
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/hashtable.h>
45 
46 #include "workqueue_internal.h"
47 
48 enum {
49 	/*
50 	 * worker_pool flags
51 	 *
52 	 * A bound pool is either associated or disassociated with its CPU.
53 	 * While associated (!DISASSOCIATED), all workers are bound to the
54 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 	 * is in effect.
56 	 *
57 	 * While DISASSOCIATED, the cpu may be offline and all workers have
58 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
59 	 * be executing on any CPU.  The pool behaves as an unbound one.
60 	 *
61 	 * Note that DISASSOCIATED can be flipped only while holding
62 	 * assoc_mutex to avoid changing binding state while
63 	 * create_worker() is in progress.
64 	 */
65 	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
66 	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
67 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
68 	POOL_FREEZING		= 1 << 3,	/* freeze in progress */
69 
70 	/* worker flags */
71 	WORKER_STARTED		= 1 << 0,	/* started */
72 	WORKER_DIE		= 1 << 1,	/* die die die */
73 	WORKER_IDLE		= 1 << 2,	/* is idle */
74 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
75 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
76 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
77 
78 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_UNBOUND |
79 				  WORKER_CPU_INTENSIVE,
80 
81 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
82 
83 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
84 
85 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
86 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
87 
88 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
89 						/* call for help after 10ms
90 						   (min two ticks) */
91 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
92 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
93 
94 	/*
95 	 * Rescue workers are used only on emergencies and shared by
96 	 * all cpus.  Give -20.
97 	 */
98 	RESCUER_NICE_LEVEL	= -20,
99 	HIGHPRI_NICE_LEVEL	= -20,
100 };
101 
102 /*
103  * Structure fields follow one of the following exclusion rules.
104  *
105  * I: Modifiable by initialization/destruction paths and read-only for
106  *    everyone else.
107  *
108  * P: Preemption protected.  Disabling preemption is enough and should
109  *    only be modified and accessed from the local cpu.
110  *
111  * L: pool->lock protected.  Access with pool->lock held.
112  *
113  * X: During normal operation, modification requires pool->lock and should
114  *    be done only from local cpu.  Either disabling preemption on local
115  *    cpu or grabbing pool->lock is enough for read access.  If
116  *    POOL_DISASSOCIATED is set, it's identical to L.
117  *
118  * F: wq->flush_mutex protected.
119  *
120  * W: workqueue_lock protected.
121  */
122 
123 /* struct worker is defined in workqueue_internal.h */
124 
125 struct worker_pool {
126 	spinlock_t		lock;		/* the pool lock */
127 	unsigned int		cpu;		/* I: the associated cpu */
128 	int			id;		/* I: pool ID */
129 	unsigned int		flags;		/* X: flags */
130 
131 	struct list_head	worklist;	/* L: list of pending works */
132 	int			nr_workers;	/* L: total number of workers */
133 
134 	/* nr_idle includes the ones off idle_list for rebinding */
135 	int			nr_idle;	/* L: currently idle ones */
136 
137 	struct list_head	idle_list;	/* X: list of idle workers */
138 	struct timer_list	idle_timer;	/* L: worker idle timeout */
139 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
140 
141 	/* workers are chained either in busy_hash or idle_list */
142 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
143 						/* L: hash of busy workers */
144 
145 	struct mutex		assoc_mutex;	/* protect POOL_DISASSOCIATED */
146 	struct ida		worker_ida;	/* L: for worker IDs */
147 
148 	/*
149 	 * The current concurrency level.  As it's likely to be accessed
150 	 * from other CPUs during try_to_wake_up(), put it in a separate
151 	 * cacheline.
152 	 */
153 	atomic_t		nr_running ____cacheline_aligned_in_smp;
154 } ____cacheline_aligned_in_smp;
155 
156 /*
157  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
158  * of work_struct->data are used for flags and the remaining high bits
159  * point to the pwq; thus, pwqs need to be aligned at two's power of the
160  * number of flag bits.
161  */
162 struct pool_workqueue {
163 	struct worker_pool	*pool;		/* I: the associated pool */
164 	struct workqueue_struct *wq;		/* I: the owning workqueue */
165 	int			work_color;	/* L: current color */
166 	int			flush_color;	/* L: flushing color */
167 	int			nr_in_flight[WORK_NR_COLORS];
168 						/* L: nr of in_flight works */
169 	int			nr_active;	/* L: nr of active works */
170 	int			max_active;	/* L: max active works */
171 	struct list_head	delayed_works;	/* L: delayed works */
172 };
173 
174 /*
175  * Structure used to wait for workqueue flush.
176  */
177 struct wq_flusher {
178 	struct list_head	list;		/* F: list of flushers */
179 	int			flush_color;	/* F: flush color waiting for */
180 	struct completion	done;		/* flush completion */
181 };
182 
183 /*
184  * All cpumasks are assumed to be always set on UP and thus can't be
185  * used to determine whether there's something to be done.
186  */
187 #ifdef CONFIG_SMP
188 typedef cpumask_var_t mayday_mask_t;
189 #define mayday_test_and_set_cpu(cpu, mask)	\
190 	cpumask_test_and_set_cpu((cpu), (mask))
191 #define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
192 #define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
193 #define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
194 #define free_mayday_mask(mask)			free_cpumask_var((mask))
195 #else
196 typedef unsigned long mayday_mask_t;
197 #define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
198 #define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
199 #define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
200 #define alloc_mayday_mask(maskp, gfp)		true
201 #define free_mayday_mask(mask)			do { } while (0)
202 #endif
203 
204 /*
205  * The externally visible workqueue abstraction is an array of
206  * per-CPU workqueues:
207  */
208 struct workqueue_struct {
209 	unsigned int		flags;		/* W: WQ_* flags */
210 	union {
211 		struct pool_workqueue __percpu		*pcpu;
212 		struct pool_workqueue			*single;
213 		unsigned long				v;
214 	} pool_wq;				/* I: pwq's */
215 	struct list_head	list;		/* W: list of all workqueues */
216 
217 	struct mutex		flush_mutex;	/* protects wq flushing */
218 	int			work_color;	/* F: current work color */
219 	int			flush_color;	/* F: current flush color */
220 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
221 	struct wq_flusher	*first_flusher;	/* F: first flusher */
222 	struct list_head	flusher_queue;	/* F: flush waiters */
223 	struct list_head	flusher_overflow; /* F: flush overflow list */
224 
225 	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
226 	struct worker		*rescuer;	/* I: rescue worker */
227 
228 	int			nr_drainers;	/* W: drain in progress */
229 	int			saved_max_active; /* W: saved pwq max_active */
230 #ifdef CONFIG_LOCKDEP
231 	struct lockdep_map	lockdep_map;
232 #endif
233 	char			name[];		/* I: workqueue name */
234 };
235 
236 struct workqueue_struct *system_wq __read_mostly;
237 EXPORT_SYMBOL_GPL(system_wq);
238 struct workqueue_struct *system_highpri_wq __read_mostly;
239 EXPORT_SYMBOL_GPL(system_highpri_wq);
240 struct workqueue_struct *system_long_wq __read_mostly;
241 EXPORT_SYMBOL_GPL(system_long_wq);
242 struct workqueue_struct *system_unbound_wq __read_mostly;
243 EXPORT_SYMBOL_GPL(system_unbound_wq);
244 struct workqueue_struct *system_freezable_wq __read_mostly;
245 EXPORT_SYMBOL_GPL(system_freezable_wq);
246 
247 #define CREATE_TRACE_POINTS
248 #include <trace/events/workqueue.h>
249 
250 #define for_each_std_worker_pool(pool, cpu)				\
251 	for ((pool) = &std_worker_pools(cpu)[0];			\
252 	     (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
253 
254 #define for_each_busy_worker(worker, i, pos, pool)			\
255 	hash_for_each(pool->busy_hash, i, pos, worker, hentry)
256 
257 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
258 				unsigned int sw)
259 {
260 	if (cpu < nr_cpu_ids) {
261 		if (sw & 1) {
262 			cpu = cpumask_next(cpu, mask);
263 			if (cpu < nr_cpu_ids)
264 				return cpu;
265 		}
266 		if (sw & 2)
267 			return WORK_CPU_UNBOUND;
268 	}
269 	return WORK_CPU_END;
270 }
271 
272 static inline int __next_pwq_cpu(int cpu, const struct cpumask *mask,
273 				 struct workqueue_struct *wq)
274 {
275 	return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
276 }
277 
278 /*
279  * CPU iterators
280  *
281  * An extra cpu number is defined using an invalid cpu number
282  * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
283  * specific CPU.  The following iterators are similar to for_each_*_cpu()
284  * iterators but also considers the unbound CPU.
285  *
286  * for_each_wq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
287  * for_each_online_wq_cpu()	: online CPUs + WORK_CPU_UNBOUND
288  * for_each_pwq_cpu()		: possible CPUs for bound workqueues,
289  *				  WORK_CPU_UNBOUND for unbound workqueues
290  */
291 #define for_each_wq_cpu(cpu)						\
292 	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3);		\
293 	     (cpu) < WORK_CPU_END;					\
294 	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
295 
296 #define for_each_online_wq_cpu(cpu)					\
297 	for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3);		\
298 	     (cpu) < WORK_CPU_END;					\
299 	     (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
300 
301 #define for_each_pwq_cpu(cpu, wq)					\
302 	for ((cpu) = __next_pwq_cpu(-1, cpu_possible_mask, (wq));	\
303 	     (cpu) < WORK_CPU_END;					\
304 	     (cpu) = __next_pwq_cpu((cpu), cpu_possible_mask, (wq)))
305 
306 #ifdef CONFIG_DEBUG_OBJECTS_WORK
307 
308 static struct debug_obj_descr work_debug_descr;
309 
310 static void *work_debug_hint(void *addr)
311 {
312 	return ((struct work_struct *) addr)->func;
313 }
314 
315 /*
316  * fixup_init is called when:
317  * - an active object is initialized
318  */
319 static int work_fixup_init(void *addr, enum debug_obj_state state)
320 {
321 	struct work_struct *work = addr;
322 
323 	switch (state) {
324 	case ODEBUG_STATE_ACTIVE:
325 		cancel_work_sync(work);
326 		debug_object_init(work, &work_debug_descr);
327 		return 1;
328 	default:
329 		return 0;
330 	}
331 }
332 
333 /*
334  * fixup_activate is called when:
335  * - an active object is activated
336  * - an unknown object is activated (might be a statically initialized object)
337  */
338 static int work_fixup_activate(void *addr, enum debug_obj_state state)
339 {
340 	struct work_struct *work = addr;
341 
342 	switch (state) {
343 
344 	case ODEBUG_STATE_NOTAVAILABLE:
345 		/*
346 		 * This is not really a fixup. The work struct was
347 		 * statically initialized. We just make sure that it
348 		 * is tracked in the object tracker.
349 		 */
350 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
351 			debug_object_init(work, &work_debug_descr);
352 			debug_object_activate(work, &work_debug_descr);
353 			return 0;
354 		}
355 		WARN_ON_ONCE(1);
356 		return 0;
357 
358 	case ODEBUG_STATE_ACTIVE:
359 		WARN_ON(1);
360 
361 	default:
362 		return 0;
363 	}
364 }
365 
366 /*
367  * fixup_free is called when:
368  * - an active object is freed
369  */
370 static int work_fixup_free(void *addr, enum debug_obj_state state)
371 {
372 	struct work_struct *work = addr;
373 
374 	switch (state) {
375 	case ODEBUG_STATE_ACTIVE:
376 		cancel_work_sync(work);
377 		debug_object_free(work, &work_debug_descr);
378 		return 1;
379 	default:
380 		return 0;
381 	}
382 }
383 
384 static struct debug_obj_descr work_debug_descr = {
385 	.name		= "work_struct",
386 	.debug_hint	= work_debug_hint,
387 	.fixup_init	= work_fixup_init,
388 	.fixup_activate	= work_fixup_activate,
389 	.fixup_free	= work_fixup_free,
390 };
391 
392 static inline void debug_work_activate(struct work_struct *work)
393 {
394 	debug_object_activate(work, &work_debug_descr);
395 }
396 
397 static inline void debug_work_deactivate(struct work_struct *work)
398 {
399 	debug_object_deactivate(work, &work_debug_descr);
400 }
401 
402 void __init_work(struct work_struct *work, int onstack)
403 {
404 	if (onstack)
405 		debug_object_init_on_stack(work, &work_debug_descr);
406 	else
407 		debug_object_init(work, &work_debug_descr);
408 }
409 EXPORT_SYMBOL_GPL(__init_work);
410 
411 void destroy_work_on_stack(struct work_struct *work)
412 {
413 	debug_object_free(work, &work_debug_descr);
414 }
415 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
416 
417 #else
418 static inline void debug_work_activate(struct work_struct *work) { }
419 static inline void debug_work_deactivate(struct work_struct *work) { }
420 #endif
421 
422 /* Serializes the accesses to the list of workqueues. */
423 static DEFINE_SPINLOCK(workqueue_lock);
424 static LIST_HEAD(workqueues);
425 static bool workqueue_freezing;		/* W: have wqs started freezing? */
426 
427 /*
428  * The CPU and unbound standard worker pools.  The unbound ones have
429  * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
430  */
431 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
432 				     cpu_std_worker_pools);
433 static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
434 
435 /* idr of all pools */
436 static DEFINE_MUTEX(worker_pool_idr_mutex);
437 static DEFINE_IDR(worker_pool_idr);
438 
439 static int worker_thread(void *__worker);
440 
441 static struct worker_pool *std_worker_pools(int cpu)
442 {
443 	if (cpu != WORK_CPU_UNBOUND)
444 		return per_cpu(cpu_std_worker_pools, cpu);
445 	else
446 		return unbound_std_worker_pools;
447 }
448 
449 static int std_worker_pool_pri(struct worker_pool *pool)
450 {
451 	return pool - std_worker_pools(pool->cpu);
452 }
453 
454 /* allocate ID and assign it to @pool */
455 static int worker_pool_assign_id(struct worker_pool *pool)
456 {
457 	int ret;
458 
459 	mutex_lock(&worker_pool_idr_mutex);
460 	idr_pre_get(&worker_pool_idr, GFP_KERNEL);
461 	ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
462 	mutex_unlock(&worker_pool_idr_mutex);
463 
464 	return ret;
465 }
466 
467 /*
468  * Lookup worker_pool by id.  The idr currently is built during boot and
469  * never modified.  Don't worry about locking for now.
470  */
471 static struct worker_pool *worker_pool_by_id(int pool_id)
472 {
473 	return idr_find(&worker_pool_idr, pool_id);
474 }
475 
476 static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
477 {
478 	struct worker_pool *pools = std_worker_pools(cpu);
479 
480 	return &pools[highpri];
481 }
482 
483 static struct pool_workqueue *get_pwq(unsigned int cpu,
484 				      struct workqueue_struct *wq)
485 {
486 	if (!(wq->flags & WQ_UNBOUND)) {
487 		if (likely(cpu < nr_cpu_ids))
488 			return per_cpu_ptr(wq->pool_wq.pcpu, cpu);
489 	} else if (likely(cpu == WORK_CPU_UNBOUND))
490 		return wq->pool_wq.single;
491 	return NULL;
492 }
493 
494 static unsigned int work_color_to_flags(int color)
495 {
496 	return color << WORK_STRUCT_COLOR_SHIFT;
497 }
498 
499 static int get_work_color(struct work_struct *work)
500 {
501 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
502 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
503 }
504 
505 static int work_next_color(int color)
506 {
507 	return (color + 1) % WORK_NR_COLORS;
508 }
509 
510 /*
511  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
512  * contain the pointer to the queued pwq.  Once execution starts, the flag
513  * is cleared and the high bits contain OFFQ flags and pool ID.
514  *
515  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
516  * and clear_work_data() can be used to set the pwq, pool or clear
517  * work->data.  These functions should only be called while the work is
518  * owned - ie. while the PENDING bit is set.
519  *
520  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
521  * corresponding to a work.  Pool is available once the work has been
522  * queued anywhere after initialization until it is sync canceled.  pwq is
523  * available only while the work item is queued.
524  *
525  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
526  * canceled.  While being canceled, a work item may have its PENDING set
527  * but stay off timer and worklist for arbitrarily long and nobody should
528  * try to steal the PENDING bit.
529  */
530 static inline void set_work_data(struct work_struct *work, unsigned long data,
531 				 unsigned long flags)
532 {
533 	BUG_ON(!work_pending(work));
534 	atomic_long_set(&work->data, data | flags | work_static(work));
535 }
536 
537 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
538 			 unsigned long extra_flags)
539 {
540 	set_work_data(work, (unsigned long)pwq,
541 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
542 }
543 
544 static void set_work_pool_and_keep_pending(struct work_struct *work,
545 					   int pool_id)
546 {
547 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
548 		      WORK_STRUCT_PENDING);
549 }
550 
551 static void set_work_pool_and_clear_pending(struct work_struct *work,
552 					    int pool_id)
553 {
554 	/*
555 	 * The following wmb is paired with the implied mb in
556 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
557 	 * here are visible to and precede any updates by the next PENDING
558 	 * owner.
559 	 */
560 	smp_wmb();
561 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
562 }
563 
564 static void clear_work_data(struct work_struct *work)
565 {
566 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
567 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
568 }
569 
570 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
571 {
572 	unsigned long data = atomic_long_read(&work->data);
573 
574 	if (data & WORK_STRUCT_PWQ)
575 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
576 	else
577 		return NULL;
578 }
579 
580 /**
581  * get_work_pool - return the worker_pool a given work was associated with
582  * @work: the work item of interest
583  *
584  * Return the worker_pool @work was last associated with.  %NULL if none.
585  */
586 static struct worker_pool *get_work_pool(struct work_struct *work)
587 {
588 	unsigned long data = atomic_long_read(&work->data);
589 	struct worker_pool *pool;
590 	int pool_id;
591 
592 	if (data & WORK_STRUCT_PWQ)
593 		return ((struct pool_workqueue *)
594 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
595 
596 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
597 	if (pool_id == WORK_OFFQ_POOL_NONE)
598 		return NULL;
599 
600 	pool = worker_pool_by_id(pool_id);
601 	WARN_ON_ONCE(!pool);
602 	return pool;
603 }
604 
605 /**
606  * get_work_pool_id - return the worker pool ID a given work is associated with
607  * @work: the work item of interest
608  *
609  * Return the worker_pool ID @work was last associated with.
610  * %WORK_OFFQ_POOL_NONE if none.
611  */
612 static int get_work_pool_id(struct work_struct *work)
613 {
614 	unsigned long data = atomic_long_read(&work->data);
615 
616 	if (data & WORK_STRUCT_PWQ)
617 		return ((struct pool_workqueue *)
618 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
619 
620 	return data >> WORK_OFFQ_POOL_SHIFT;
621 }
622 
623 static void mark_work_canceling(struct work_struct *work)
624 {
625 	unsigned long pool_id = get_work_pool_id(work);
626 
627 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
628 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
629 }
630 
631 static bool work_is_canceling(struct work_struct *work)
632 {
633 	unsigned long data = atomic_long_read(&work->data);
634 
635 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
636 }
637 
638 /*
639  * Policy functions.  These define the policies on how the global worker
640  * pools are managed.  Unless noted otherwise, these functions assume that
641  * they're being called with pool->lock held.
642  */
643 
644 static bool __need_more_worker(struct worker_pool *pool)
645 {
646 	return !atomic_read(&pool->nr_running);
647 }
648 
649 /*
650  * Need to wake up a worker?  Called from anything but currently
651  * running workers.
652  *
653  * Note that, because unbound workers never contribute to nr_running, this
654  * function will always return %true for unbound pools as long as the
655  * worklist isn't empty.
656  */
657 static bool need_more_worker(struct worker_pool *pool)
658 {
659 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
660 }
661 
662 /* Can I start working?  Called from busy but !running workers. */
663 static bool may_start_working(struct worker_pool *pool)
664 {
665 	return pool->nr_idle;
666 }
667 
668 /* Do I need to keep working?  Called from currently running workers. */
669 static bool keep_working(struct worker_pool *pool)
670 {
671 	return !list_empty(&pool->worklist) &&
672 		atomic_read(&pool->nr_running) <= 1;
673 }
674 
675 /* Do we need a new worker?  Called from manager. */
676 static bool need_to_create_worker(struct worker_pool *pool)
677 {
678 	return need_more_worker(pool) && !may_start_working(pool);
679 }
680 
681 /* Do I need to be the manager? */
682 static bool need_to_manage_workers(struct worker_pool *pool)
683 {
684 	return need_to_create_worker(pool) ||
685 		(pool->flags & POOL_MANAGE_WORKERS);
686 }
687 
688 /* Do we have too many workers and should some go away? */
689 static bool too_many_workers(struct worker_pool *pool)
690 {
691 	bool managing = pool->flags & POOL_MANAGING_WORKERS;
692 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
693 	int nr_busy = pool->nr_workers - nr_idle;
694 
695 	/*
696 	 * nr_idle and idle_list may disagree if idle rebinding is in
697 	 * progress.  Never return %true if idle_list is empty.
698 	 */
699 	if (list_empty(&pool->idle_list))
700 		return false;
701 
702 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
703 }
704 
705 /*
706  * Wake up functions.
707  */
708 
709 /* Return the first worker.  Safe with preemption disabled */
710 static struct worker *first_worker(struct worker_pool *pool)
711 {
712 	if (unlikely(list_empty(&pool->idle_list)))
713 		return NULL;
714 
715 	return list_first_entry(&pool->idle_list, struct worker, entry);
716 }
717 
718 /**
719  * wake_up_worker - wake up an idle worker
720  * @pool: worker pool to wake worker from
721  *
722  * Wake up the first idle worker of @pool.
723  *
724  * CONTEXT:
725  * spin_lock_irq(pool->lock).
726  */
727 static void wake_up_worker(struct worker_pool *pool)
728 {
729 	struct worker *worker = first_worker(pool);
730 
731 	if (likely(worker))
732 		wake_up_process(worker->task);
733 }
734 
735 /**
736  * wq_worker_waking_up - a worker is waking up
737  * @task: task waking up
738  * @cpu: CPU @task is waking up to
739  *
740  * This function is called during try_to_wake_up() when a worker is
741  * being awoken.
742  *
743  * CONTEXT:
744  * spin_lock_irq(rq->lock)
745  */
746 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
747 {
748 	struct worker *worker = kthread_data(task);
749 
750 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
751 		WARN_ON_ONCE(worker->pool->cpu != cpu);
752 		atomic_inc(&worker->pool->nr_running);
753 	}
754 }
755 
756 /**
757  * wq_worker_sleeping - a worker is going to sleep
758  * @task: task going to sleep
759  * @cpu: CPU in question, must be the current CPU number
760  *
761  * This function is called during schedule() when a busy worker is
762  * going to sleep.  Worker on the same cpu can be woken up by
763  * returning pointer to its task.
764  *
765  * CONTEXT:
766  * spin_lock_irq(rq->lock)
767  *
768  * RETURNS:
769  * Worker task on @cpu to wake up, %NULL if none.
770  */
771 struct task_struct *wq_worker_sleeping(struct task_struct *task,
772 				       unsigned int cpu)
773 {
774 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
775 	struct worker_pool *pool;
776 
777 	/*
778 	 * Rescuers, which may not have all the fields set up like normal
779 	 * workers, also reach here, let's not access anything before
780 	 * checking NOT_RUNNING.
781 	 */
782 	if (worker->flags & WORKER_NOT_RUNNING)
783 		return NULL;
784 
785 	pool = worker->pool;
786 
787 	/* this can only happen on the local cpu */
788 	BUG_ON(cpu != raw_smp_processor_id());
789 
790 	/*
791 	 * The counterpart of the following dec_and_test, implied mb,
792 	 * worklist not empty test sequence is in insert_work().
793 	 * Please read comment there.
794 	 *
795 	 * NOT_RUNNING is clear.  This means that we're bound to and
796 	 * running on the local cpu w/ rq lock held and preemption
797 	 * disabled, which in turn means that none else could be
798 	 * manipulating idle_list, so dereferencing idle_list without pool
799 	 * lock is safe.
800 	 */
801 	if (atomic_dec_and_test(&pool->nr_running) &&
802 	    !list_empty(&pool->worklist))
803 		to_wakeup = first_worker(pool);
804 	return to_wakeup ? to_wakeup->task : NULL;
805 }
806 
807 /**
808  * worker_set_flags - set worker flags and adjust nr_running accordingly
809  * @worker: self
810  * @flags: flags to set
811  * @wakeup: wakeup an idle worker if necessary
812  *
813  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
814  * nr_running becomes zero and @wakeup is %true, an idle worker is
815  * woken up.
816  *
817  * CONTEXT:
818  * spin_lock_irq(pool->lock)
819  */
820 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
821 				    bool wakeup)
822 {
823 	struct worker_pool *pool = worker->pool;
824 
825 	WARN_ON_ONCE(worker->task != current);
826 
827 	/*
828 	 * If transitioning into NOT_RUNNING, adjust nr_running and
829 	 * wake up an idle worker as necessary if requested by
830 	 * @wakeup.
831 	 */
832 	if ((flags & WORKER_NOT_RUNNING) &&
833 	    !(worker->flags & WORKER_NOT_RUNNING)) {
834 		if (wakeup) {
835 			if (atomic_dec_and_test(&pool->nr_running) &&
836 			    !list_empty(&pool->worklist))
837 				wake_up_worker(pool);
838 		} else
839 			atomic_dec(&pool->nr_running);
840 	}
841 
842 	worker->flags |= flags;
843 }
844 
845 /**
846  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
847  * @worker: self
848  * @flags: flags to clear
849  *
850  * Clear @flags in @worker->flags and adjust nr_running accordingly.
851  *
852  * CONTEXT:
853  * spin_lock_irq(pool->lock)
854  */
855 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
856 {
857 	struct worker_pool *pool = worker->pool;
858 	unsigned int oflags = worker->flags;
859 
860 	WARN_ON_ONCE(worker->task != current);
861 
862 	worker->flags &= ~flags;
863 
864 	/*
865 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
866 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
867 	 * of multiple flags, not a single flag.
868 	 */
869 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
870 		if (!(worker->flags & WORKER_NOT_RUNNING))
871 			atomic_inc(&pool->nr_running);
872 }
873 
874 /**
875  * find_worker_executing_work - find worker which is executing a work
876  * @pool: pool of interest
877  * @work: work to find worker for
878  *
879  * Find a worker which is executing @work on @pool by searching
880  * @pool->busy_hash which is keyed by the address of @work.  For a worker
881  * to match, its current execution should match the address of @work and
882  * its work function.  This is to avoid unwanted dependency between
883  * unrelated work executions through a work item being recycled while still
884  * being executed.
885  *
886  * This is a bit tricky.  A work item may be freed once its execution
887  * starts and nothing prevents the freed area from being recycled for
888  * another work item.  If the same work item address ends up being reused
889  * before the original execution finishes, workqueue will identify the
890  * recycled work item as currently executing and make it wait until the
891  * current execution finishes, introducing an unwanted dependency.
892  *
893  * This function checks the work item address, work function and workqueue
894  * to avoid false positives.  Note that this isn't complete as one may
895  * construct a work function which can introduce dependency onto itself
896  * through a recycled work item.  Well, if somebody wants to shoot oneself
897  * in the foot that badly, there's only so much we can do, and if such
898  * deadlock actually occurs, it should be easy to locate the culprit work
899  * function.
900  *
901  * CONTEXT:
902  * spin_lock_irq(pool->lock).
903  *
904  * RETURNS:
905  * Pointer to worker which is executing @work if found, NULL
906  * otherwise.
907  */
908 static struct worker *find_worker_executing_work(struct worker_pool *pool,
909 						 struct work_struct *work)
910 {
911 	struct worker *worker;
912 	struct hlist_node *tmp;
913 
914 	hash_for_each_possible(pool->busy_hash, worker, tmp, hentry,
915 			       (unsigned long)work)
916 		if (worker->current_work == work &&
917 		    worker->current_func == work->func)
918 			return worker;
919 
920 	return NULL;
921 }
922 
923 /**
924  * move_linked_works - move linked works to a list
925  * @work: start of series of works to be scheduled
926  * @head: target list to append @work to
927  * @nextp: out paramter for nested worklist walking
928  *
929  * Schedule linked works starting from @work to @head.  Work series to
930  * be scheduled starts at @work and includes any consecutive work with
931  * WORK_STRUCT_LINKED set in its predecessor.
932  *
933  * If @nextp is not NULL, it's updated to point to the next work of
934  * the last scheduled work.  This allows move_linked_works() to be
935  * nested inside outer list_for_each_entry_safe().
936  *
937  * CONTEXT:
938  * spin_lock_irq(pool->lock).
939  */
940 static void move_linked_works(struct work_struct *work, struct list_head *head,
941 			      struct work_struct **nextp)
942 {
943 	struct work_struct *n;
944 
945 	/*
946 	 * Linked worklist will always end before the end of the list,
947 	 * use NULL for list head.
948 	 */
949 	list_for_each_entry_safe_from(work, n, NULL, entry) {
950 		list_move_tail(&work->entry, head);
951 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
952 			break;
953 	}
954 
955 	/*
956 	 * If we're already inside safe list traversal and have moved
957 	 * multiple works to the scheduled queue, the next position
958 	 * needs to be updated.
959 	 */
960 	if (nextp)
961 		*nextp = n;
962 }
963 
964 static void pwq_activate_delayed_work(struct work_struct *work)
965 {
966 	struct pool_workqueue *pwq = get_work_pwq(work);
967 
968 	trace_workqueue_activate_work(work);
969 	move_linked_works(work, &pwq->pool->worklist, NULL);
970 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
971 	pwq->nr_active++;
972 }
973 
974 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
975 {
976 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
977 						    struct work_struct, entry);
978 
979 	pwq_activate_delayed_work(work);
980 }
981 
982 /**
983  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
984  * @pwq: pwq of interest
985  * @color: color of work which left the queue
986  *
987  * A work either has completed or is removed from pending queue,
988  * decrement nr_in_flight of its pwq and handle workqueue flushing.
989  *
990  * CONTEXT:
991  * spin_lock_irq(pool->lock).
992  */
993 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
994 {
995 	/* ignore uncolored works */
996 	if (color == WORK_NO_COLOR)
997 		return;
998 
999 	pwq->nr_in_flight[color]--;
1000 
1001 	pwq->nr_active--;
1002 	if (!list_empty(&pwq->delayed_works)) {
1003 		/* one down, submit a delayed one */
1004 		if (pwq->nr_active < pwq->max_active)
1005 			pwq_activate_first_delayed(pwq);
1006 	}
1007 
1008 	/* is flush in progress and are we at the flushing tip? */
1009 	if (likely(pwq->flush_color != color))
1010 		return;
1011 
1012 	/* are there still in-flight works? */
1013 	if (pwq->nr_in_flight[color])
1014 		return;
1015 
1016 	/* this pwq is done, clear flush_color */
1017 	pwq->flush_color = -1;
1018 
1019 	/*
1020 	 * If this was the last pwq, wake up the first flusher.  It
1021 	 * will handle the rest.
1022 	 */
1023 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1024 		complete(&pwq->wq->first_flusher->done);
1025 }
1026 
1027 /**
1028  * try_to_grab_pending - steal work item from worklist and disable irq
1029  * @work: work item to steal
1030  * @is_dwork: @work is a delayed_work
1031  * @flags: place to store irq state
1032  *
1033  * Try to grab PENDING bit of @work.  This function can handle @work in any
1034  * stable state - idle, on timer or on worklist.  Return values are
1035  *
1036  *  1		if @work was pending and we successfully stole PENDING
1037  *  0		if @work was idle and we claimed PENDING
1038  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1039  *  -ENOENT	if someone else is canceling @work, this state may persist
1040  *		for arbitrarily long
1041  *
1042  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1043  * interrupted while holding PENDING and @work off queue, irq must be
1044  * disabled on entry.  This, combined with delayed_work->timer being
1045  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1046  *
1047  * On successful return, >= 0, irq is disabled and the caller is
1048  * responsible for releasing it using local_irq_restore(*@flags).
1049  *
1050  * This function is safe to call from any context including IRQ handler.
1051  */
1052 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1053 			       unsigned long *flags)
1054 {
1055 	struct worker_pool *pool;
1056 	struct pool_workqueue *pwq;
1057 
1058 	local_irq_save(*flags);
1059 
1060 	/* try to steal the timer if it exists */
1061 	if (is_dwork) {
1062 		struct delayed_work *dwork = to_delayed_work(work);
1063 
1064 		/*
1065 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1066 		 * guaranteed that the timer is not queued anywhere and not
1067 		 * running on the local CPU.
1068 		 */
1069 		if (likely(del_timer(&dwork->timer)))
1070 			return 1;
1071 	}
1072 
1073 	/* try to claim PENDING the normal way */
1074 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1075 		return 0;
1076 
1077 	/*
1078 	 * The queueing is in progress, or it is already queued. Try to
1079 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1080 	 */
1081 	pool = get_work_pool(work);
1082 	if (!pool)
1083 		goto fail;
1084 
1085 	spin_lock(&pool->lock);
1086 	/*
1087 	 * work->data is guaranteed to point to pwq only while the work
1088 	 * item is queued on pwq->wq, and both updating work->data to point
1089 	 * to pwq on queueing and to pool on dequeueing are done under
1090 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1091 	 * points to pwq which is associated with a locked pool, the work
1092 	 * item is currently queued on that pool.
1093 	 */
1094 	pwq = get_work_pwq(work);
1095 	if (pwq && pwq->pool == pool) {
1096 		debug_work_deactivate(work);
1097 
1098 		/*
1099 		 * A delayed work item cannot be grabbed directly because
1100 		 * it might have linked NO_COLOR work items which, if left
1101 		 * on the delayed_list, will confuse pwq->nr_active
1102 		 * management later on and cause stall.  Make sure the work
1103 		 * item is activated before grabbing.
1104 		 */
1105 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1106 			pwq_activate_delayed_work(work);
1107 
1108 		list_del_init(&work->entry);
1109 		pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1110 
1111 		/* work->data points to pwq iff queued, point to pool */
1112 		set_work_pool_and_keep_pending(work, pool->id);
1113 
1114 		spin_unlock(&pool->lock);
1115 		return 1;
1116 	}
1117 	spin_unlock(&pool->lock);
1118 fail:
1119 	local_irq_restore(*flags);
1120 	if (work_is_canceling(work))
1121 		return -ENOENT;
1122 	cpu_relax();
1123 	return -EAGAIN;
1124 }
1125 
1126 /**
1127  * insert_work - insert a work into a pool
1128  * @pwq: pwq @work belongs to
1129  * @work: work to insert
1130  * @head: insertion point
1131  * @extra_flags: extra WORK_STRUCT_* flags to set
1132  *
1133  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1134  * work_struct flags.
1135  *
1136  * CONTEXT:
1137  * spin_lock_irq(pool->lock).
1138  */
1139 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1140 			struct list_head *head, unsigned int extra_flags)
1141 {
1142 	struct worker_pool *pool = pwq->pool;
1143 
1144 	/* we own @work, set data and link */
1145 	set_work_pwq(work, pwq, extra_flags);
1146 	list_add_tail(&work->entry, head);
1147 
1148 	/*
1149 	 * Ensure either worker_sched_deactivated() sees the above
1150 	 * list_add_tail() or we see zero nr_running to avoid workers
1151 	 * lying around lazily while there are works to be processed.
1152 	 */
1153 	smp_mb();
1154 
1155 	if (__need_more_worker(pool))
1156 		wake_up_worker(pool);
1157 }
1158 
1159 /*
1160  * Test whether @work is being queued from another work executing on the
1161  * same workqueue.
1162  */
1163 static bool is_chained_work(struct workqueue_struct *wq)
1164 {
1165 	struct worker *worker;
1166 
1167 	worker = current_wq_worker();
1168 	/*
1169 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1170 	 * I'm @worker, it's safe to dereference it without locking.
1171 	 */
1172 	return worker && worker->current_pwq->wq == wq;
1173 }
1174 
1175 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1176 			 struct work_struct *work)
1177 {
1178 	struct pool_workqueue *pwq;
1179 	struct list_head *worklist;
1180 	unsigned int work_flags;
1181 	unsigned int req_cpu = cpu;
1182 
1183 	/*
1184 	 * While a work item is PENDING && off queue, a task trying to
1185 	 * steal the PENDING will busy-loop waiting for it to either get
1186 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1187 	 * happen with IRQ disabled.
1188 	 */
1189 	WARN_ON_ONCE(!irqs_disabled());
1190 
1191 	debug_work_activate(work);
1192 
1193 	/* if dying, only works from the same workqueue are allowed */
1194 	if (unlikely(wq->flags & WQ_DRAINING) &&
1195 	    WARN_ON_ONCE(!is_chained_work(wq)))
1196 		return;
1197 
1198 	/* determine the pwq to use */
1199 	if (!(wq->flags & WQ_UNBOUND)) {
1200 		struct worker_pool *last_pool;
1201 
1202 		if (cpu == WORK_CPU_UNBOUND)
1203 			cpu = raw_smp_processor_id();
1204 
1205 		/*
1206 		 * It's multi cpu.  If @work was previously on a different
1207 		 * cpu, it might still be running there, in which case the
1208 		 * work needs to be queued on that cpu to guarantee
1209 		 * non-reentrancy.
1210 		 */
1211 		pwq = get_pwq(cpu, wq);
1212 		last_pool = get_work_pool(work);
1213 
1214 		if (last_pool && last_pool != pwq->pool) {
1215 			struct worker *worker;
1216 
1217 			spin_lock(&last_pool->lock);
1218 
1219 			worker = find_worker_executing_work(last_pool, work);
1220 
1221 			if (worker && worker->current_pwq->wq == wq) {
1222 				pwq = get_pwq(last_pool->cpu, wq);
1223 			} else {
1224 				/* meh... not running there, queue here */
1225 				spin_unlock(&last_pool->lock);
1226 				spin_lock(&pwq->pool->lock);
1227 			}
1228 		} else {
1229 			spin_lock(&pwq->pool->lock);
1230 		}
1231 	} else {
1232 		pwq = get_pwq(WORK_CPU_UNBOUND, wq);
1233 		spin_lock(&pwq->pool->lock);
1234 	}
1235 
1236 	/* pwq determined, queue */
1237 	trace_workqueue_queue_work(req_cpu, pwq, work);
1238 
1239 	if (WARN_ON(!list_empty(&work->entry))) {
1240 		spin_unlock(&pwq->pool->lock);
1241 		return;
1242 	}
1243 
1244 	pwq->nr_in_flight[pwq->work_color]++;
1245 	work_flags = work_color_to_flags(pwq->work_color);
1246 
1247 	if (likely(pwq->nr_active < pwq->max_active)) {
1248 		trace_workqueue_activate_work(work);
1249 		pwq->nr_active++;
1250 		worklist = &pwq->pool->worklist;
1251 	} else {
1252 		work_flags |= WORK_STRUCT_DELAYED;
1253 		worklist = &pwq->delayed_works;
1254 	}
1255 
1256 	insert_work(pwq, work, worklist, work_flags);
1257 
1258 	spin_unlock(&pwq->pool->lock);
1259 }
1260 
1261 /**
1262  * queue_work_on - queue work on specific cpu
1263  * @cpu: CPU number to execute work on
1264  * @wq: workqueue to use
1265  * @work: work to queue
1266  *
1267  * Returns %false if @work was already on a queue, %true otherwise.
1268  *
1269  * We queue the work to a specific CPU, the caller must ensure it
1270  * can't go away.
1271  */
1272 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1273 		   struct work_struct *work)
1274 {
1275 	bool ret = false;
1276 	unsigned long flags;
1277 
1278 	local_irq_save(flags);
1279 
1280 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1281 		__queue_work(cpu, wq, work);
1282 		ret = true;
1283 	}
1284 
1285 	local_irq_restore(flags);
1286 	return ret;
1287 }
1288 EXPORT_SYMBOL_GPL(queue_work_on);
1289 
1290 /**
1291  * queue_work - queue work on a workqueue
1292  * @wq: workqueue to use
1293  * @work: work to queue
1294  *
1295  * Returns %false if @work was already on a queue, %true otherwise.
1296  *
1297  * We queue the work to the CPU on which it was submitted, but if the CPU dies
1298  * it can be processed by another CPU.
1299  */
1300 bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
1301 {
1302 	return queue_work_on(WORK_CPU_UNBOUND, wq, work);
1303 }
1304 EXPORT_SYMBOL_GPL(queue_work);
1305 
1306 void delayed_work_timer_fn(unsigned long __data)
1307 {
1308 	struct delayed_work *dwork = (struct delayed_work *)__data;
1309 
1310 	/* should have been called from irqsafe timer with irq already off */
1311 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1312 }
1313 EXPORT_SYMBOL(delayed_work_timer_fn);
1314 
1315 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1316 				struct delayed_work *dwork, unsigned long delay)
1317 {
1318 	struct timer_list *timer = &dwork->timer;
1319 	struct work_struct *work = &dwork->work;
1320 
1321 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1322 		     timer->data != (unsigned long)dwork);
1323 	WARN_ON_ONCE(timer_pending(timer));
1324 	WARN_ON_ONCE(!list_empty(&work->entry));
1325 
1326 	/*
1327 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1328 	 * both optimization and correctness.  The earliest @timer can
1329 	 * expire is on the closest next tick and delayed_work users depend
1330 	 * on that there's no such delay when @delay is 0.
1331 	 */
1332 	if (!delay) {
1333 		__queue_work(cpu, wq, &dwork->work);
1334 		return;
1335 	}
1336 
1337 	timer_stats_timer_set_start_info(&dwork->timer);
1338 
1339 	dwork->wq = wq;
1340 	dwork->cpu = cpu;
1341 	timer->expires = jiffies + delay;
1342 
1343 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1344 		add_timer_on(timer, cpu);
1345 	else
1346 		add_timer(timer);
1347 }
1348 
1349 /**
1350  * queue_delayed_work_on - queue work on specific CPU after delay
1351  * @cpu: CPU number to execute work on
1352  * @wq: workqueue to use
1353  * @dwork: work to queue
1354  * @delay: number of jiffies to wait before queueing
1355  *
1356  * Returns %false if @work was already on a queue, %true otherwise.  If
1357  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1358  * execution.
1359  */
1360 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1361 			   struct delayed_work *dwork, unsigned long delay)
1362 {
1363 	struct work_struct *work = &dwork->work;
1364 	bool ret = false;
1365 	unsigned long flags;
1366 
1367 	/* read the comment in __queue_work() */
1368 	local_irq_save(flags);
1369 
1370 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1371 		__queue_delayed_work(cpu, wq, dwork, delay);
1372 		ret = true;
1373 	}
1374 
1375 	local_irq_restore(flags);
1376 	return ret;
1377 }
1378 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1379 
1380 /**
1381  * queue_delayed_work - queue work on a workqueue after delay
1382  * @wq: workqueue to use
1383  * @dwork: delayable work to queue
1384  * @delay: number of jiffies to wait before queueing
1385  *
1386  * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
1387  */
1388 bool queue_delayed_work(struct workqueue_struct *wq,
1389 			struct delayed_work *dwork, unsigned long delay)
1390 {
1391 	return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1392 }
1393 EXPORT_SYMBOL_GPL(queue_delayed_work);
1394 
1395 /**
1396  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1397  * @cpu: CPU number to execute work on
1398  * @wq: workqueue to use
1399  * @dwork: work to queue
1400  * @delay: number of jiffies to wait before queueing
1401  *
1402  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1403  * modify @dwork's timer so that it expires after @delay.  If @delay is
1404  * zero, @work is guaranteed to be scheduled immediately regardless of its
1405  * current state.
1406  *
1407  * Returns %false if @dwork was idle and queued, %true if @dwork was
1408  * pending and its timer was modified.
1409  *
1410  * This function is safe to call from any context including IRQ handler.
1411  * See try_to_grab_pending() for details.
1412  */
1413 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1414 			 struct delayed_work *dwork, unsigned long delay)
1415 {
1416 	unsigned long flags;
1417 	int ret;
1418 
1419 	do {
1420 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1421 	} while (unlikely(ret == -EAGAIN));
1422 
1423 	if (likely(ret >= 0)) {
1424 		__queue_delayed_work(cpu, wq, dwork, delay);
1425 		local_irq_restore(flags);
1426 	}
1427 
1428 	/* -ENOENT from try_to_grab_pending() becomes %true */
1429 	return ret;
1430 }
1431 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1432 
1433 /**
1434  * mod_delayed_work - modify delay of or queue a delayed work
1435  * @wq: workqueue to use
1436  * @dwork: work to queue
1437  * @delay: number of jiffies to wait before queueing
1438  *
1439  * mod_delayed_work_on() on local CPU.
1440  */
1441 bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1442 		      unsigned long delay)
1443 {
1444 	return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1445 }
1446 EXPORT_SYMBOL_GPL(mod_delayed_work);
1447 
1448 /**
1449  * worker_enter_idle - enter idle state
1450  * @worker: worker which is entering idle state
1451  *
1452  * @worker is entering idle state.  Update stats and idle timer if
1453  * necessary.
1454  *
1455  * LOCKING:
1456  * spin_lock_irq(pool->lock).
1457  */
1458 static void worker_enter_idle(struct worker *worker)
1459 {
1460 	struct worker_pool *pool = worker->pool;
1461 
1462 	BUG_ON(worker->flags & WORKER_IDLE);
1463 	BUG_ON(!list_empty(&worker->entry) &&
1464 	       (worker->hentry.next || worker->hentry.pprev));
1465 
1466 	/* can't use worker_set_flags(), also called from start_worker() */
1467 	worker->flags |= WORKER_IDLE;
1468 	pool->nr_idle++;
1469 	worker->last_active = jiffies;
1470 
1471 	/* idle_list is LIFO */
1472 	list_add(&worker->entry, &pool->idle_list);
1473 
1474 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1475 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1476 
1477 	/*
1478 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1479 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1480 	 * nr_running, the warning may trigger spuriously.  Check iff
1481 	 * unbind is not in progress.
1482 	 */
1483 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1484 		     pool->nr_workers == pool->nr_idle &&
1485 		     atomic_read(&pool->nr_running));
1486 }
1487 
1488 /**
1489  * worker_leave_idle - leave idle state
1490  * @worker: worker which is leaving idle state
1491  *
1492  * @worker is leaving idle state.  Update stats.
1493  *
1494  * LOCKING:
1495  * spin_lock_irq(pool->lock).
1496  */
1497 static void worker_leave_idle(struct worker *worker)
1498 {
1499 	struct worker_pool *pool = worker->pool;
1500 
1501 	BUG_ON(!(worker->flags & WORKER_IDLE));
1502 	worker_clr_flags(worker, WORKER_IDLE);
1503 	pool->nr_idle--;
1504 	list_del_init(&worker->entry);
1505 }
1506 
1507 /**
1508  * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool
1509  * @worker: self
1510  *
1511  * Works which are scheduled while the cpu is online must at least be
1512  * scheduled to a worker which is bound to the cpu so that if they are
1513  * flushed from cpu callbacks while cpu is going down, they are
1514  * guaranteed to execute on the cpu.
1515  *
1516  * This function is to be used by rogue workers and rescuers to bind
1517  * themselves to the target cpu and may race with cpu going down or
1518  * coming online.  kthread_bind() can't be used because it may put the
1519  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1520  * verbatim as it's best effort and blocking and pool may be
1521  * [dis]associated in the meantime.
1522  *
1523  * This function tries set_cpus_allowed() and locks pool and verifies the
1524  * binding against %POOL_DISASSOCIATED which is set during
1525  * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1526  * enters idle state or fetches works without dropping lock, it can
1527  * guarantee the scheduling requirement described in the first paragraph.
1528  *
1529  * CONTEXT:
1530  * Might sleep.  Called without any lock but returns with pool->lock
1531  * held.
1532  *
1533  * RETURNS:
1534  * %true if the associated pool is online (@worker is successfully
1535  * bound), %false if offline.
1536  */
1537 static bool worker_maybe_bind_and_lock(struct worker *worker)
1538 __acquires(&pool->lock)
1539 {
1540 	struct worker_pool *pool = worker->pool;
1541 	struct task_struct *task = worker->task;
1542 
1543 	while (true) {
1544 		/*
1545 		 * The following call may fail, succeed or succeed
1546 		 * without actually migrating the task to the cpu if
1547 		 * it races with cpu hotunplug operation.  Verify
1548 		 * against POOL_DISASSOCIATED.
1549 		 */
1550 		if (!(pool->flags & POOL_DISASSOCIATED))
1551 			set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu));
1552 
1553 		spin_lock_irq(&pool->lock);
1554 		if (pool->flags & POOL_DISASSOCIATED)
1555 			return false;
1556 		if (task_cpu(task) == pool->cpu &&
1557 		    cpumask_equal(&current->cpus_allowed,
1558 				  get_cpu_mask(pool->cpu)))
1559 			return true;
1560 		spin_unlock_irq(&pool->lock);
1561 
1562 		/*
1563 		 * We've raced with CPU hot[un]plug.  Give it a breather
1564 		 * and retry migration.  cond_resched() is required here;
1565 		 * otherwise, we might deadlock against cpu_stop trying to
1566 		 * bring down the CPU on non-preemptive kernel.
1567 		 */
1568 		cpu_relax();
1569 		cond_resched();
1570 	}
1571 }
1572 
1573 /*
1574  * Rebind an idle @worker to its CPU.  worker_thread() will test
1575  * list_empty(@worker->entry) before leaving idle and call this function.
1576  */
1577 static void idle_worker_rebind(struct worker *worker)
1578 {
1579 	/* CPU may go down again inbetween, clear UNBOUND only on success */
1580 	if (worker_maybe_bind_and_lock(worker))
1581 		worker_clr_flags(worker, WORKER_UNBOUND);
1582 
1583 	/* rebind complete, become available again */
1584 	list_add(&worker->entry, &worker->pool->idle_list);
1585 	spin_unlock_irq(&worker->pool->lock);
1586 }
1587 
1588 /*
1589  * Function for @worker->rebind.work used to rebind unbound busy workers to
1590  * the associated cpu which is coming back online.  This is scheduled by
1591  * cpu up but can race with other cpu hotplug operations and may be
1592  * executed twice without intervening cpu down.
1593  */
1594 static void busy_worker_rebind_fn(struct work_struct *work)
1595 {
1596 	struct worker *worker = container_of(work, struct worker, rebind_work);
1597 
1598 	if (worker_maybe_bind_and_lock(worker))
1599 		worker_clr_flags(worker, WORKER_UNBOUND);
1600 
1601 	spin_unlock_irq(&worker->pool->lock);
1602 }
1603 
1604 /**
1605  * rebind_workers - rebind all workers of a pool to the associated CPU
1606  * @pool: pool of interest
1607  *
1608  * @pool->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1609  * is different for idle and busy ones.
1610  *
1611  * Idle ones will be removed from the idle_list and woken up.  They will
1612  * add themselves back after completing rebind.  This ensures that the
1613  * idle_list doesn't contain any unbound workers when re-bound busy workers
1614  * try to perform local wake-ups for concurrency management.
1615  *
1616  * Busy workers can rebind after they finish their current work items.
1617  * Queueing the rebind work item at the head of the scheduled list is
1618  * enough.  Note that nr_running will be properly bumped as busy workers
1619  * rebind.
1620  *
1621  * On return, all non-manager workers are scheduled for rebind - see
1622  * manage_workers() for the manager special case.  Any idle worker
1623  * including the manager will not appear on @idle_list until rebind is
1624  * complete, making local wake-ups safe.
1625  */
1626 static void rebind_workers(struct worker_pool *pool)
1627 {
1628 	struct worker *worker, *n;
1629 	struct hlist_node *pos;
1630 	int i;
1631 
1632 	lockdep_assert_held(&pool->assoc_mutex);
1633 	lockdep_assert_held(&pool->lock);
1634 
1635 	/* dequeue and kick idle ones */
1636 	list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1637 		/*
1638 		 * idle workers should be off @pool->idle_list until rebind
1639 		 * is complete to avoid receiving premature local wake-ups.
1640 		 */
1641 		list_del_init(&worker->entry);
1642 
1643 		/*
1644 		 * worker_thread() will see the above dequeuing and call
1645 		 * idle_worker_rebind().
1646 		 */
1647 		wake_up_process(worker->task);
1648 	}
1649 
1650 	/* rebind busy workers */
1651 	for_each_busy_worker(worker, i, pos, pool) {
1652 		struct work_struct *rebind_work = &worker->rebind_work;
1653 		struct workqueue_struct *wq;
1654 
1655 		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1656 				     work_data_bits(rebind_work)))
1657 			continue;
1658 
1659 		debug_work_activate(rebind_work);
1660 
1661 		/*
1662 		 * wq doesn't really matter but let's keep @worker->pool
1663 		 * and @pwq->pool consistent for sanity.
1664 		 */
1665 		if (std_worker_pool_pri(worker->pool))
1666 			wq = system_highpri_wq;
1667 		else
1668 			wq = system_wq;
1669 
1670 		insert_work(get_pwq(pool->cpu, wq), rebind_work,
1671 			    worker->scheduled.next,
1672 			    work_color_to_flags(WORK_NO_COLOR));
1673 	}
1674 }
1675 
1676 static struct worker *alloc_worker(void)
1677 {
1678 	struct worker *worker;
1679 
1680 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1681 	if (worker) {
1682 		INIT_LIST_HEAD(&worker->entry);
1683 		INIT_LIST_HEAD(&worker->scheduled);
1684 		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1685 		/* on creation a worker is in !idle && prep state */
1686 		worker->flags = WORKER_PREP;
1687 	}
1688 	return worker;
1689 }
1690 
1691 /**
1692  * create_worker - create a new workqueue worker
1693  * @pool: pool the new worker will belong to
1694  *
1695  * Create a new worker which is bound to @pool.  The returned worker
1696  * can be started by calling start_worker() or destroyed using
1697  * destroy_worker().
1698  *
1699  * CONTEXT:
1700  * Might sleep.  Does GFP_KERNEL allocations.
1701  *
1702  * RETURNS:
1703  * Pointer to the newly created worker.
1704  */
1705 static struct worker *create_worker(struct worker_pool *pool)
1706 {
1707 	const char *pri = std_worker_pool_pri(pool) ? "H" : "";
1708 	struct worker *worker = NULL;
1709 	int id = -1;
1710 
1711 	spin_lock_irq(&pool->lock);
1712 	while (ida_get_new(&pool->worker_ida, &id)) {
1713 		spin_unlock_irq(&pool->lock);
1714 		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1715 			goto fail;
1716 		spin_lock_irq(&pool->lock);
1717 	}
1718 	spin_unlock_irq(&pool->lock);
1719 
1720 	worker = alloc_worker();
1721 	if (!worker)
1722 		goto fail;
1723 
1724 	worker->pool = pool;
1725 	worker->id = id;
1726 
1727 	if (pool->cpu != WORK_CPU_UNBOUND)
1728 		worker->task = kthread_create_on_node(worker_thread,
1729 					worker, cpu_to_node(pool->cpu),
1730 					"kworker/%u:%d%s", pool->cpu, id, pri);
1731 	else
1732 		worker->task = kthread_create(worker_thread, worker,
1733 					      "kworker/u:%d%s", id, pri);
1734 	if (IS_ERR(worker->task))
1735 		goto fail;
1736 
1737 	if (std_worker_pool_pri(pool))
1738 		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1739 
1740 	/*
1741 	 * Determine CPU binding of the new worker depending on
1742 	 * %POOL_DISASSOCIATED.  The caller is responsible for ensuring the
1743 	 * flag remains stable across this function.  See the comments
1744 	 * above the flag definition for details.
1745 	 *
1746 	 * As an unbound worker may later become a regular one if CPU comes
1747 	 * online, make sure every worker has %PF_THREAD_BOUND set.
1748 	 */
1749 	if (!(pool->flags & POOL_DISASSOCIATED)) {
1750 		kthread_bind(worker->task, pool->cpu);
1751 	} else {
1752 		worker->task->flags |= PF_THREAD_BOUND;
1753 		worker->flags |= WORKER_UNBOUND;
1754 	}
1755 
1756 	return worker;
1757 fail:
1758 	if (id >= 0) {
1759 		spin_lock_irq(&pool->lock);
1760 		ida_remove(&pool->worker_ida, id);
1761 		spin_unlock_irq(&pool->lock);
1762 	}
1763 	kfree(worker);
1764 	return NULL;
1765 }
1766 
1767 /**
1768  * start_worker - start a newly created worker
1769  * @worker: worker to start
1770  *
1771  * Make the pool aware of @worker and start it.
1772  *
1773  * CONTEXT:
1774  * spin_lock_irq(pool->lock).
1775  */
1776 static void start_worker(struct worker *worker)
1777 {
1778 	worker->flags |= WORKER_STARTED;
1779 	worker->pool->nr_workers++;
1780 	worker_enter_idle(worker);
1781 	wake_up_process(worker->task);
1782 }
1783 
1784 /**
1785  * destroy_worker - destroy a workqueue worker
1786  * @worker: worker to be destroyed
1787  *
1788  * Destroy @worker and adjust @pool stats accordingly.
1789  *
1790  * CONTEXT:
1791  * spin_lock_irq(pool->lock) which is released and regrabbed.
1792  */
1793 static void destroy_worker(struct worker *worker)
1794 {
1795 	struct worker_pool *pool = worker->pool;
1796 	int id = worker->id;
1797 
1798 	/* sanity check frenzy */
1799 	BUG_ON(worker->current_work);
1800 	BUG_ON(!list_empty(&worker->scheduled));
1801 
1802 	if (worker->flags & WORKER_STARTED)
1803 		pool->nr_workers--;
1804 	if (worker->flags & WORKER_IDLE)
1805 		pool->nr_idle--;
1806 
1807 	list_del_init(&worker->entry);
1808 	worker->flags |= WORKER_DIE;
1809 
1810 	spin_unlock_irq(&pool->lock);
1811 
1812 	kthread_stop(worker->task);
1813 	kfree(worker);
1814 
1815 	spin_lock_irq(&pool->lock);
1816 	ida_remove(&pool->worker_ida, id);
1817 }
1818 
1819 static void idle_worker_timeout(unsigned long __pool)
1820 {
1821 	struct worker_pool *pool = (void *)__pool;
1822 
1823 	spin_lock_irq(&pool->lock);
1824 
1825 	if (too_many_workers(pool)) {
1826 		struct worker *worker;
1827 		unsigned long expires;
1828 
1829 		/* idle_list is kept in LIFO order, check the last one */
1830 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1831 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1832 
1833 		if (time_before(jiffies, expires))
1834 			mod_timer(&pool->idle_timer, expires);
1835 		else {
1836 			/* it's been idle for too long, wake up manager */
1837 			pool->flags |= POOL_MANAGE_WORKERS;
1838 			wake_up_worker(pool);
1839 		}
1840 	}
1841 
1842 	spin_unlock_irq(&pool->lock);
1843 }
1844 
1845 static bool send_mayday(struct work_struct *work)
1846 {
1847 	struct pool_workqueue *pwq = get_work_pwq(work);
1848 	struct workqueue_struct *wq = pwq->wq;
1849 	unsigned int cpu;
1850 
1851 	if (!(wq->flags & WQ_RESCUER))
1852 		return false;
1853 
1854 	/* mayday mayday mayday */
1855 	cpu = pwq->pool->cpu;
1856 	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1857 	if (cpu == WORK_CPU_UNBOUND)
1858 		cpu = 0;
1859 	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1860 		wake_up_process(wq->rescuer->task);
1861 	return true;
1862 }
1863 
1864 static void pool_mayday_timeout(unsigned long __pool)
1865 {
1866 	struct worker_pool *pool = (void *)__pool;
1867 	struct work_struct *work;
1868 
1869 	spin_lock_irq(&pool->lock);
1870 
1871 	if (need_to_create_worker(pool)) {
1872 		/*
1873 		 * We've been trying to create a new worker but
1874 		 * haven't been successful.  We might be hitting an
1875 		 * allocation deadlock.  Send distress signals to
1876 		 * rescuers.
1877 		 */
1878 		list_for_each_entry(work, &pool->worklist, entry)
1879 			send_mayday(work);
1880 	}
1881 
1882 	spin_unlock_irq(&pool->lock);
1883 
1884 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1885 }
1886 
1887 /**
1888  * maybe_create_worker - create a new worker if necessary
1889  * @pool: pool to create a new worker for
1890  *
1891  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1892  * have at least one idle worker on return from this function.  If
1893  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1894  * sent to all rescuers with works scheduled on @pool to resolve
1895  * possible allocation deadlock.
1896  *
1897  * On return, need_to_create_worker() is guaranteed to be false and
1898  * may_start_working() true.
1899  *
1900  * LOCKING:
1901  * spin_lock_irq(pool->lock) which may be released and regrabbed
1902  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1903  * manager.
1904  *
1905  * RETURNS:
1906  * false if no action was taken and pool->lock stayed locked, true
1907  * otherwise.
1908  */
1909 static bool maybe_create_worker(struct worker_pool *pool)
1910 __releases(&pool->lock)
1911 __acquires(&pool->lock)
1912 {
1913 	if (!need_to_create_worker(pool))
1914 		return false;
1915 restart:
1916 	spin_unlock_irq(&pool->lock);
1917 
1918 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1919 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1920 
1921 	while (true) {
1922 		struct worker *worker;
1923 
1924 		worker = create_worker(pool);
1925 		if (worker) {
1926 			del_timer_sync(&pool->mayday_timer);
1927 			spin_lock_irq(&pool->lock);
1928 			start_worker(worker);
1929 			BUG_ON(need_to_create_worker(pool));
1930 			return true;
1931 		}
1932 
1933 		if (!need_to_create_worker(pool))
1934 			break;
1935 
1936 		__set_current_state(TASK_INTERRUPTIBLE);
1937 		schedule_timeout(CREATE_COOLDOWN);
1938 
1939 		if (!need_to_create_worker(pool))
1940 			break;
1941 	}
1942 
1943 	del_timer_sync(&pool->mayday_timer);
1944 	spin_lock_irq(&pool->lock);
1945 	if (need_to_create_worker(pool))
1946 		goto restart;
1947 	return true;
1948 }
1949 
1950 /**
1951  * maybe_destroy_worker - destroy workers which have been idle for a while
1952  * @pool: pool to destroy workers for
1953  *
1954  * Destroy @pool workers which have been idle for longer than
1955  * IDLE_WORKER_TIMEOUT.
1956  *
1957  * LOCKING:
1958  * spin_lock_irq(pool->lock) which may be released and regrabbed
1959  * multiple times.  Called only from manager.
1960  *
1961  * RETURNS:
1962  * false if no action was taken and pool->lock stayed locked, true
1963  * otherwise.
1964  */
1965 static bool maybe_destroy_workers(struct worker_pool *pool)
1966 {
1967 	bool ret = false;
1968 
1969 	while (too_many_workers(pool)) {
1970 		struct worker *worker;
1971 		unsigned long expires;
1972 
1973 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1974 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1975 
1976 		if (time_before(jiffies, expires)) {
1977 			mod_timer(&pool->idle_timer, expires);
1978 			break;
1979 		}
1980 
1981 		destroy_worker(worker);
1982 		ret = true;
1983 	}
1984 
1985 	return ret;
1986 }
1987 
1988 /**
1989  * manage_workers - manage worker pool
1990  * @worker: self
1991  *
1992  * Assume the manager role and manage the worker pool @worker belongs
1993  * to.  At any given time, there can be only zero or one manager per
1994  * pool.  The exclusion is handled automatically by this function.
1995  *
1996  * The caller can safely start processing works on false return.  On
1997  * true return, it's guaranteed that need_to_create_worker() is false
1998  * and may_start_working() is true.
1999  *
2000  * CONTEXT:
2001  * spin_lock_irq(pool->lock) which may be released and regrabbed
2002  * multiple times.  Does GFP_KERNEL allocations.
2003  *
2004  * RETURNS:
2005  * spin_lock_irq(pool->lock) which may be released and regrabbed
2006  * multiple times.  Does GFP_KERNEL allocations.
2007  */
2008 static bool manage_workers(struct worker *worker)
2009 {
2010 	struct worker_pool *pool = worker->pool;
2011 	bool ret = false;
2012 
2013 	if (pool->flags & POOL_MANAGING_WORKERS)
2014 		return ret;
2015 
2016 	pool->flags |= POOL_MANAGING_WORKERS;
2017 
2018 	/*
2019 	 * To simplify both worker management and CPU hotplug, hold off
2020 	 * management while hotplug is in progress.  CPU hotplug path can't
2021 	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2022 	 * lead to idle worker depletion (all become busy thinking someone
2023 	 * else is managing) which in turn can result in deadlock under
2024 	 * extreme circumstances.  Use @pool->assoc_mutex to synchronize
2025 	 * manager against CPU hotplug.
2026 	 *
2027 	 * assoc_mutex would always be free unless CPU hotplug is in
2028 	 * progress.  trylock first without dropping @pool->lock.
2029 	 */
2030 	if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
2031 		spin_unlock_irq(&pool->lock);
2032 		mutex_lock(&pool->assoc_mutex);
2033 		/*
2034 		 * CPU hotplug could have happened while we were waiting
2035 		 * for assoc_mutex.  Hotplug itself can't handle us
2036 		 * because manager isn't either on idle or busy list, and
2037 		 * @pool's state and ours could have deviated.
2038 		 *
2039 		 * As hotplug is now excluded via assoc_mutex, we can
2040 		 * simply try to bind.  It will succeed or fail depending
2041 		 * on @pool's current state.  Try it and adjust
2042 		 * %WORKER_UNBOUND accordingly.
2043 		 */
2044 		if (worker_maybe_bind_and_lock(worker))
2045 			worker->flags &= ~WORKER_UNBOUND;
2046 		else
2047 			worker->flags |= WORKER_UNBOUND;
2048 
2049 		ret = true;
2050 	}
2051 
2052 	pool->flags &= ~POOL_MANAGE_WORKERS;
2053 
2054 	/*
2055 	 * Destroy and then create so that may_start_working() is true
2056 	 * on return.
2057 	 */
2058 	ret |= maybe_destroy_workers(pool);
2059 	ret |= maybe_create_worker(pool);
2060 
2061 	pool->flags &= ~POOL_MANAGING_WORKERS;
2062 	mutex_unlock(&pool->assoc_mutex);
2063 	return ret;
2064 }
2065 
2066 /**
2067  * process_one_work - process single work
2068  * @worker: self
2069  * @work: work to process
2070  *
2071  * Process @work.  This function contains all the logics necessary to
2072  * process a single work including synchronization against and
2073  * interaction with other workers on the same cpu, queueing and
2074  * flushing.  As long as context requirement is met, any worker can
2075  * call this function to process a work.
2076  *
2077  * CONTEXT:
2078  * spin_lock_irq(pool->lock) which is released and regrabbed.
2079  */
2080 static void process_one_work(struct worker *worker, struct work_struct *work)
2081 __releases(&pool->lock)
2082 __acquires(&pool->lock)
2083 {
2084 	struct pool_workqueue *pwq = get_work_pwq(work);
2085 	struct worker_pool *pool = worker->pool;
2086 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2087 	int work_color;
2088 	struct worker *collision;
2089 #ifdef CONFIG_LOCKDEP
2090 	/*
2091 	 * It is permissible to free the struct work_struct from
2092 	 * inside the function that is called from it, this we need to
2093 	 * take into account for lockdep too.  To avoid bogus "held
2094 	 * lock freed" warnings as well as problems when looking into
2095 	 * work->lockdep_map, make a copy and use that here.
2096 	 */
2097 	struct lockdep_map lockdep_map;
2098 
2099 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2100 #endif
2101 	/*
2102 	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
2103 	 * necessary to avoid spurious warnings from rescuers servicing the
2104 	 * unbound or a disassociated pool.
2105 	 */
2106 	WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2107 		     !(pool->flags & POOL_DISASSOCIATED) &&
2108 		     raw_smp_processor_id() != pool->cpu);
2109 
2110 	/*
2111 	 * A single work shouldn't be executed concurrently by
2112 	 * multiple workers on a single cpu.  Check whether anyone is
2113 	 * already processing the work.  If so, defer the work to the
2114 	 * currently executing one.
2115 	 */
2116 	collision = find_worker_executing_work(pool, work);
2117 	if (unlikely(collision)) {
2118 		move_linked_works(work, &collision->scheduled, NULL);
2119 		return;
2120 	}
2121 
2122 	/* claim and dequeue */
2123 	debug_work_deactivate(work);
2124 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2125 	worker->current_work = work;
2126 	worker->current_func = work->func;
2127 	worker->current_pwq = pwq;
2128 	work_color = get_work_color(work);
2129 
2130 	list_del_init(&work->entry);
2131 
2132 	/*
2133 	 * CPU intensive works don't participate in concurrency
2134 	 * management.  They're the scheduler's responsibility.
2135 	 */
2136 	if (unlikely(cpu_intensive))
2137 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2138 
2139 	/*
2140 	 * Unbound pool isn't concurrency managed and work items should be
2141 	 * executed ASAP.  Wake up another worker if necessary.
2142 	 */
2143 	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2144 		wake_up_worker(pool);
2145 
2146 	/*
2147 	 * Record the last pool and clear PENDING which should be the last
2148 	 * update to @work.  Also, do this inside @pool->lock so that
2149 	 * PENDING and queued state changes happen together while IRQ is
2150 	 * disabled.
2151 	 */
2152 	set_work_pool_and_clear_pending(work, pool->id);
2153 
2154 	spin_unlock_irq(&pool->lock);
2155 
2156 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2157 	lock_map_acquire(&lockdep_map);
2158 	trace_workqueue_execute_start(work);
2159 	worker->current_func(work);
2160 	/*
2161 	 * While we must be careful to not use "work" after this, the trace
2162 	 * point will only record its address.
2163 	 */
2164 	trace_workqueue_execute_end(work);
2165 	lock_map_release(&lockdep_map);
2166 	lock_map_release(&pwq->wq->lockdep_map);
2167 
2168 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2169 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2170 		       "     last function: %pf\n",
2171 		       current->comm, preempt_count(), task_pid_nr(current),
2172 		       worker->current_func);
2173 		debug_show_held_locks(current);
2174 		dump_stack();
2175 	}
2176 
2177 	spin_lock_irq(&pool->lock);
2178 
2179 	/* clear cpu intensive status */
2180 	if (unlikely(cpu_intensive))
2181 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2182 
2183 	/* we're done with it, release */
2184 	hash_del(&worker->hentry);
2185 	worker->current_work = NULL;
2186 	worker->current_func = NULL;
2187 	worker->current_pwq = NULL;
2188 	pwq_dec_nr_in_flight(pwq, work_color);
2189 }
2190 
2191 /**
2192  * process_scheduled_works - process scheduled works
2193  * @worker: self
2194  *
2195  * Process all scheduled works.  Please note that the scheduled list
2196  * may change while processing a work, so this function repeatedly
2197  * fetches a work from the top and executes it.
2198  *
2199  * CONTEXT:
2200  * spin_lock_irq(pool->lock) which may be released and regrabbed
2201  * multiple times.
2202  */
2203 static void process_scheduled_works(struct worker *worker)
2204 {
2205 	while (!list_empty(&worker->scheduled)) {
2206 		struct work_struct *work = list_first_entry(&worker->scheduled,
2207 						struct work_struct, entry);
2208 		process_one_work(worker, work);
2209 	}
2210 }
2211 
2212 /**
2213  * worker_thread - the worker thread function
2214  * @__worker: self
2215  *
2216  * The worker thread function.  There are NR_CPU_WORKER_POOLS dynamic pools
2217  * of these per each cpu.  These workers process all works regardless of
2218  * their specific target workqueue.  The only exception is works which
2219  * belong to workqueues with a rescuer which will be explained in
2220  * rescuer_thread().
2221  */
2222 static int worker_thread(void *__worker)
2223 {
2224 	struct worker *worker = __worker;
2225 	struct worker_pool *pool = worker->pool;
2226 
2227 	/* tell the scheduler that this is a workqueue worker */
2228 	worker->task->flags |= PF_WQ_WORKER;
2229 woke_up:
2230 	spin_lock_irq(&pool->lock);
2231 
2232 	/* we are off idle list if destruction or rebind is requested */
2233 	if (unlikely(list_empty(&worker->entry))) {
2234 		spin_unlock_irq(&pool->lock);
2235 
2236 		/* if DIE is set, destruction is requested */
2237 		if (worker->flags & WORKER_DIE) {
2238 			worker->task->flags &= ~PF_WQ_WORKER;
2239 			return 0;
2240 		}
2241 
2242 		/* otherwise, rebind */
2243 		idle_worker_rebind(worker);
2244 		goto woke_up;
2245 	}
2246 
2247 	worker_leave_idle(worker);
2248 recheck:
2249 	/* no more worker necessary? */
2250 	if (!need_more_worker(pool))
2251 		goto sleep;
2252 
2253 	/* do we need to manage? */
2254 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2255 		goto recheck;
2256 
2257 	/*
2258 	 * ->scheduled list can only be filled while a worker is
2259 	 * preparing to process a work or actually processing it.
2260 	 * Make sure nobody diddled with it while I was sleeping.
2261 	 */
2262 	BUG_ON(!list_empty(&worker->scheduled));
2263 
2264 	/*
2265 	 * When control reaches this point, we're guaranteed to have
2266 	 * at least one idle worker or that someone else has already
2267 	 * assumed the manager role.
2268 	 */
2269 	worker_clr_flags(worker, WORKER_PREP);
2270 
2271 	do {
2272 		struct work_struct *work =
2273 			list_first_entry(&pool->worklist,
2274 					 struct work_struct, entry);
2275 
2276 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2277 			/* optimization path, not strictly necessary */
2278 			process_one_work(worker, work);
2279 			if (unlikely(!list_empty(&worker->scheduled)))
2280 				process_scheduled_works(worker);
2281 		} else {
2282 			move_linked_works(work, &worker->scheduled, NULL);
2283 			process_scheduled_works(worker);
2284 		}
2285 	} while (keep_working(pool));
2286 
2287 	worker_set_flags(worker, WORKER_PREP, false);
2288 sleep:
2289 	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2290 		goto recheck;
2291 
2292 	/*
2293 	 * pool->lock is held and there's no work to process and no need to
2294 	 * manage, sleep.  Workers are woken up only while holding
2295 	 * pool->lock or from local cpu, so setting the current state
2296 	 * before releasing pool->lock is enough to prevent losing any
2297 	 * event.
2298 	 */
2299 	worker_enter_idle(worker);
2300 	__set_current_state(TASK_INTERRUPTIBLE);
2301 	spin_unlock_irq(&pool->lock);
2302 	schedule();
2303 	goto woke_up;
2304 }
2305 
2306 /**
2307  * rescuer_thread - the rescuer thread function
2308  * @__rescuer: self
2309  *
2310  * Workqueue rescuer thread function.  There's one rescuer for each
2311  * workqueue which has WQ_RESCUER set.
2312  *
2313  * Regular work processing on a pool may block trying to create a new
2314  * worker which uses GFP_KERNEL allocation which has slight chance of
2315  * developing into deadlock if some works currently on the same queue
2316  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2317  * the problem rescuer solves.
2318  *
2319  * When such condition is possible, the pool summons rescuers of all
2320  * workqueues which have works queued on the pool and let them process
2321  * those works so that forward progress can be guaranteed.
2322  *
2323  * This should happen rarely.
2324  */
2325 static int rescuer_thread(void *__rescuer)
2326 {
2327 	struct worker *rescuer = __rescuer;
2328 	struct workqueue_struct *wq = rescuer->rescue_wq;
2329 	struct list_head *scheduled = &rescuer->scheduled;
2330 	bool is_unbound = wq->flags & WQ_UNBOUND;
2331 	unsigned int cpu;
2332 
2333 	set_user_nice(current, RESCUER_NICE_LEVEL);
2334 
2335 	/*
2336 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2337 	 * doesn't participate in concurrency management.
2338 	 */
2339 	rescuer->task->flags |= PF_WQ_WORKER;
2340 repeat:
2341 	set_current_state(TASK_INTERRUPTIBLE);
2342 
2343 	if (kthread_should_stop()) {
2344 		__set_current_state(TASK_RUNNING);
2345 		rescuer->task->flags &= ~PF_WQ_WORKER;
2346 		return 0;
2347 	}
2348 
2349 	/*
2350 	 * See whether any cpu is asking for help.  Unbounded
2351 	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2352 	 */
2353 	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2354 		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2355 		struct pool_workqueue *pwq = get_pwq(tcpu, wq);
2356 		struct worker_pool *pool = pwq->pool;
2357 		struct work_struct *work, *n;
2358 
2359 		__set_current_state(TASK_RUNNING);
2360 		mayday_clear_cpu(cpu, wq->mayday_mask);
2361 
2362 		/* migrate to the target cpu if possible */
2363 		rescuer->pool = pool;
2364 		worker_maybe_bind_and_lock(rescuer);
2365 
2366 		/*
2367 		 * Slurp in all works issued via this workqueue and
2368 		 * process'em.
2369 		 */
2370 		BUG_ON(!list_empty(&rescuer->scheduled));
2371 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2372 			if (get_work_pwq(work) == pwq)
2373 				move_linked_works(work, scheduled, &n);
2374 
2375 		process_scheduled_works(rescuer);
2376 
2377 		/*
2378 		 * Leave this pool.  If keep_working() is %true, notify a
2379 		 * regular worker; otherwise, we end up with 0 concurrency
2380 		 * and stalling the execution.
2381 		 */
2382 		if (keep_working(pool))
2383 			wake_up_worker(pool);
2384 
2385 		spin_unlock_irq(&pool->lock);
2386 	}
2387 
2388 	/* rescuers should never participate in concurrency management */
2389 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2390 	schedule();
2391 	goto repeat;
2392 }
2393 
2394 struct wq_barrier {
2395 	struct work_struct	work;
2396 	struct completion	done;
2397 };
2398 
2399 static void wq_barrier_func(struct work_struct *work)
2400 {
2401 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2402 	complete(&barr->done);
2403 }
2404 
2405 /**
2406  * insert_wq_barrier - insert a barrier work
2407  * @pwq: pwq to insert barrier into
2408  * @barr: wq_barrier to insert
2409  * @target: target work to attach @barr to
2410  * @worker: worker currently executing @target, NULL if @target is not executing
2411  *
2412  * @barr is linked to @target such that @barr is completed only after
2413  * @target finishes execution.  Please note that the ordering
2414  * guarantee is observed only with respect to @target and on the local
2415  * cpu.
2416  *
2417  * Currently, a queued barrier can't be canceled.  This is because
2418  * try_to_grab_pending() can't determine whether the work to be
2419  * grabbed is at the head of the queue and thus can't clear LINKED
2420  * flag of the previous work while there must be a valid next work
2421  * after a work with LINKED flag set.
2422  *
2423  * Note that when @worker is non-NULL, @target may be modified
2424  * underneath us, so we can't reliably determine pwq from @target.
2425  *
2426  * CONTEXT:
2427  * spin_lock_irq(pool->lock).
2428  */
2429 static void insert_wq_barrier(struct pool_workqueue *pwq,
2430 			      struct wq_barrier *barr,
2431 			      struct work_struct *target, struct worker *worker)
2432 {
2433 	struct list_head *head;
2434 	unsigned int linked = 0;
2435 
2436 	/*
2437 	 * debugobject calls are safe here even with pool->lock locked
2438 	 * as we know for sure that this will not trigger any of the
2439 	 * checks and call back into the fixup functions where we
2440 	 * might deadlock.
2441 	 */
2442 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2443 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2444 	init_completion(&barr->done);
2445 
2446 	/*
2447 	 * If @target is currently being executed, schedule the
2448 	 * barrier to the worker; otherwise, put it after @target.
2449 	 */
2450 	if (worker)
2451 		head = worker->scheduled.next;
2452 	else {
2453 		unsigned long *bits = work_data_bits(target);
2454 
2455 		head = target->entry.next;
2456 		/* there can already be other linked works, inherit and set */
2457 		linked = *bits & WORK_STRUCT_LINKED;
2458 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2459 	}
2460 
2461 	debug_work_activate(&barr->work);
2462 	insert_work(pwq, &barr->work, head,
2463 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2464 }
2465 
2466 /**
2467  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2468  * @wq: workqueue being flushed
2469  * @flush_color: new flush color, < 0 for no-op
2470  * @work_color: new work color, < 0 for no-op
2471  *
2472  * Prepare pwqs for workqueue flushing.
2473  *
2474  * If @flush_color is non-negative, flush_color on all pwqs should be
2475  * -1.  If no pwq has in-flight commands at the specified color, all
2476  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2477  * has in flight commands, its pwq->flush_color is set to
2478  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2479  * wakeup logic is armed and %true is returned.
2480  *
2481  * The caller should have initialized @wq->first_flusher prior to
2482  * calling this function with non-negative @flush_color.  If
2483  * @flush_color is negative, no flush color update is done and %false
2484  * is returned.
2485  *
2486  * If @work_color is non-negative, all pwqs should have the same
2487  * work_color which is previous to @work_color and all will be
2488  * advanced to @work_color.
2489  *
2490  * CONTEXT:
2491  * mutex_lock(wq->flush_mutex).
2492  *
2493  * RETURNS:
2494  * %true if @flush_color >= 0 and there's something to flush.  %false
2495  * otherwise.
2496  */
2497 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2498 				      int flush_color, int work_color)
2499 {
2500 	bool wait = false;
2501 	unsigned int cpu;
2502 
2503 	if (flush_color >= 0) {
2504 		BUG_ON(atomic_read(&wq->nr_pwqs_to_flush));
2505 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2506 	}
2507 
2508 	for_each_pwq_cpu(cpu, wq) {
2509 		struct pool_workqueue *pwq = get_pwq(cpu, wq);
2510 		struct worker_pool *pool = pwq->pool;
2511 
2512 		spin_lock_irq(&pool->lock);
2513 
2514 		if (flush_color >= 0) {
2515 			BUG_ON(pwq->flush_color != -1);
2516 
2517 			if (pwq->nr_in_flight[flush_color]) {
2518 				pwq->flush_color = flush_color;
2519 				atomic_inc(&wq->nr_pwqs_to_flush);
2520 				wait = true;
2521 			}
2522 		}
2523 
2524 		if (work_color >= 0) {
2525 			BUG_ON(work_color != work_next_color(pwq->work_color));
2526 			pwq->work_color = work_color;
2527 		}
2528 
2529 		spin_unlock_irq(&pool->lock);
2530 	}
2531 
2532 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2533 		complete(&wq->first_flusher->done);
2534 
2535 	return wait;
2536 }
2537 
2538 /**
2539  * flush_workqueue - ensure that any scheduled work has run to completion.
2540  * @wq: workqueue to flush
2541  *
2542  * Forces execution of the workqueue and blocks until its completion.
2543  * This is typically used in driver shutdown handlers.
2544  *
2545  * We sleep until all works which were queued on entry have been handled,
2546  * but we are not livelocked by new incoming ones.
2547  */
2548 void flush_workqueue(struct workqueue_struct *wq)
2549 {
2550 	struct wq_flusher this_flusher = {
2551 		.list = LIST_HEAD_INIT(this_flusher.list),
2552 		.flush_color = -1,
2553 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2554 	};
2555 	int next_color;
2556 
2557 	lock_map_acquire(&wq->lockdep_map);
2558 	lock_map_release(&wq->lockdep_map);
2559 
2560 	mutex_lock(&wq->flush_mutex);
2561 
2562 	/*
2563 	 * Start-to-wait phase
2564 	 */
2565 	next_color = work_next_color(wq->work_color);
2566 
2567 	if (next_color != wq->flush_color) {
2568 		/*
2569 		 * Color space is not full.  The current work_color
2570 		 * becomes our flush_color and work_color is advanced
2571 		 * by one.
2572 		 */
2573 		BUG_ON(!list_empty(&wq->flusher_overflow));
2574 		this_flusher.flush_color = wq->work_color;
2575 		wq->work_color = next_color;
2576 
2577 		if (!wq->first_flusher) {
2578 			/* no flush in progress, become the first flusher */
2579 			BUG_ON(wq->flush_color != this_flusher.flush_color);
2580 
2581 			wq->first_flusher = &this_flusher;
2582 
2583 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2584 						       wq->work_color)) {
2585 				/* nothing to flush, done */
2586 				wq->flush_color = next_color;
2587 				wq->first_flusher = NULL;
2588 				goto out_unlock;
2589 			}
2590 		} else {
2591 			/* wait in queue */
2592 			BUG_ON(wq->flush_color == this_flusher.flush_color);
2593 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2594 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2595 		}
2596 	} else {
2597 		/*
2598 		 * Oops, color space is full, wait on overflow queue.
2599 		 * The next flush completion will assign us
2600 		 * flush_color and transfer to flusher_queue.
2601 		 */
2602 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2603 	}
2604 
2605 	mutex_unlock(&wq->flush_mutex);
2606 
2607 	wait_for_completion(&this_flusher.done);
2608 
2609 	/*
2610 	 * Wake-up-and-cascade phase
2611 	 *
2612 	 * First flushers are responsible for cascading flushes and
2613 	 * handling overflow.  Non-first flushers can simply return.
2614 	 */
2615 	if (wq->first_flusher != &this_flusher)
2616 		return;
2617 
2618 	mutex_lock(&wq->flush_mutex);
2619 
2620 	/* we might have raced, check again with mutex held */
2621 	if (wq->first_flusher != &this_flusher)
2622 		goto out_unlock;
2623 
2624 	wq->first_flusher = NULL;
2625 
2626 	BUG_ON(!list_empty(&this_flusher.list));
2627 	BUG_ON(wq->flush_color != this_flusher.flush_color);
2628 
2629 	while (true) {
2630 		struct wq_flusher *next, *tmp;
2631 
2632 		/* complete all the flushers sharing the current flush color */
2633 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2634 			if (next->flush_color != wq->flush_color)
2635 				break;
2636 			list_del_init(&next->list);
2637 			complete(&next->done);
2638 		}
2639 
2640 		BUG_ON(!list_empty(&wq->flusher_overflow) &&
2641 		       wq->flush_color != work_next_color(wq->work_color));
2642 
2643 		/* this flush_color is finished, advance by one */
2644 		wq->flush_color = work_next_color(wq->flush_color);
2645 
2646 		/* one color has been freed, handle overflow queue */
2647 		if (!list_empty(&wq->flusher_overflow)) {
2648 			/*
2649 			 * Assign the same color to all overflowed
2650 			 * flushers, advance work_color and append to
2651 			 * flusher_queue.  This is the start-to-wait
2652 			 * phase for these overflowed flushers.
2653 			 */
2654 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2655 				tmp->flush_color = wq->work_color;
2656 
2657 			wq->work_color = work_next_color(wq->work_color);
2658 
2659 			list_splice_tail_init(&wq->flusher_overflow,
2660 					      &wq->flusher_queue);
2661 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2662 		}
2663 
2664 		if (list_empty(&wq->flusher_queue)) {
2665 			BUG_ON(wq->flush_color != wq->work_color);
2666 			break;
2667 		}
2668 
2669 		/*
2670 		 * Need to flush more colors.  Make the next flusher
2671 		 * the new first flusher and arm pwqs.
2672 		 */
2673 		BUG_ON(wq->flush_color == wq->work_color);
2674 		BUG_ON(wq->flush_color != next->flush_color);
2675 
2676 		list_del_init(&next->list);
2677 		wq->first_flusher = next;
2678 
2679 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2680 			break;
2681 
2682 		/*
2683 		 * Meh... this color is already done, clear first
2684 		 * flusher and repeat cascading.
2685 		 */
2686 		wq->first_flusher = NULL;
2687 	}
2688 
2689 out_unlock:
2690 	mutex_unlock(&wq->flush_mutex);
2691 }
2692 EXPORT_SYMBOL_GPL(flush_workqueue);
2693 
2694 /**
2695  * drain_workqueue - drain a workqueue
2696  * @wq: workqueue to drain
2697  *
2698  * Wait until the workqueue becomes empty.  While draining is in progress,
2699  * only chain queueing is allowed.  IOW, only currently pending or running
2700  * work items on @wq can queue further work items on it.  @wq is flushed
2701  * repeatedly until it becomes empty.  The number of flushing is detemined
2702  * by the depth of chaining and should be relatively short.  Whine if it
2703  * takes too long.
2704  */
2705 void drain_workqueue(struct workqueue_struct *wq)
2706 {
2707 	unsigned int flush_cnt = 0;
2708 	unsigned int cpu;
2709 
2710 	/*
2711 	 * __queue_work() needs to test whether there are drainers, is much
2712 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2713 	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2714 	 */
2715 	spin_lock(&workqueue_lock);
2716 	if (!wq->nr_drainers++)
2717 		wq->flags |= WQ_DRAINING;
2718 	spin_unlock(&workqueue_lock);
2719 reflush:
2720 	flush_workqueue(wq);
2721 
2722 	for_each_pwq_cpu(cpu, wq) {
2723 		struct pool_workqueue *pwq = get_pwq(cpu, wq);
2724 		bool drained;
2725 
2726 		spin_lock_irq(&pwq->pool->lock);
2727 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2728 		spin_unlock_irq(&pwq->pool->lock);
2729 
2730 		if (drained)
2731 			continue;
2732 
2733 		if (++flush_cnt == 10 ||
2734 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2735 			pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2736 				wq->name, flush_cnt);
2737 		goto reflush;
2738 	}
2739 
2740 	spin_lock(&workqueue_lock);
2741 	if (!--wq->nr_drainers)
2742 		wq->flags &= ~WQ_DRAINING;
2743 	spin_unlock(&workqueue_lock);
2744 }
2745 EXPORT_SYMBOL_GPL(drain_workqueue);
2746 
2747 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2748 {
2749 	struct worker *worker = NULL;
2750 	struct worker_pool *pool;
2751 	struct pool_workqueue *pwq;
2752 
2753 	might_sleep();
2754 	pool = get_work_pool(work);
2755 	if (!pool)
2756 		return false;
2757 
2758 	spin_lock_irq(&pool->lock);
2759 	/* see the comment in try_to_grab_pending() with the same code */
2760 	pwq = get_work_pwq(work);
2761 	if (pwq) {
2762 		if (unlikely(pwq->pool != pool))
2763 			goto already_gone;
2764 	} else {
2765 		worker = find_worker_executing_work(pool, work);
2766 		if (!worker)
2767 			goto already_gone;
2768 		pwq = worker->current_pwq;
2769 	}
2770 
2771 	insert_wq_barrier(pwq, barr, work, worker);
2772 	spin_unlock_irq(&pool->lock);
2773 
2774 	/*
2775 	 * If @max_active is 1 or rescuer is in use, flushing another work
2776 	 * item on the same workqueue may lead to deadlock.  Make sure the
2777 	 * flusher is not running on the same workqueue by verifying write
2778 	 * access.
2779 	 */
2780 	if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
2781 		lock_map_acquire(&pwq->wq->lockdep_map);
2782 	else
2783 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2784 	lock_map_release(&pwq->wq->lockdep_map);
2785 
2786 	return true;
2787 already_gone:
2788 	spin_unlock_irq(&pool->lock);
2789 	return false;
2790 }
2791 
2792 /**
2793  * flush_work - wait for a work to finish executing the last queueing instance
2794  * @work: the work to flush
2795  *
2796  * Wait until @work has finished execution.  @work is guaranteed to be idle
2797  * on return if it hasn't been requeued since flush started.
2798  *
2799  * RETURNS:
2800  * %true if flush_work() waited for the work to finish execution,
2801  * %false if it was already idle.
2802  */
2803 bool flush_work(struct work_struct *work)
2804 {
2805 	struct wq_barrier barr;
2806 
2807 	lock_map_acquire(&work->lockdep_map);
2808 	lock_map_release(&work->lockdep_map);
2809 
2810 	if (start_flush_work(work, &barr)) {
2811 		wait_for_completion(&barr.done);
2812 		destroy_work_on_stack(&barr.work);
2813 		return true;
2814 	} else {
2815 		return false;
2816 	}
2817 }
2818 EXPORT_SYMBOL_GPL(flush_work);
2819 
2820 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2821 {
2822 	unsigned long flags;
2823 	int ret;
2824 
2825 	do {
2826 		ret = try_to_grab_pending(work, is_dwork, &flags);
2827 		/*
2828 		 * If someone else is canceling, wait for the same event it
2829 		 * would be waiting for before retrying.
2830 		 */
2831 		if (unlikely(ret == -ENOENT))
2832 			flush_work(work);
2833 	} while (unlikely(ret < 0));
2834 
2835 	/* tell other tasks trying to grab @work to back off */
2836 	mark_work_canceling(work);
2837 	local_irq_restore(flags);
2838 
2839 	flush_work(work);
2840 	clear_work_data(work);
2841 	return ret;
2842 }
2843 
2844 /**
2845  * cancel_work_sync - cancel a work and wait for it to finish
2846  * @work: the work to cancel
2847  *
2848  * Cancel @work and wait for its execution to finish.  This function
2849  * can be used even if the work re-queues itself or migrates to
2850  * another workqueue.  On return from this function, @work is
2851  * guaranteed to be not pending or executing on any CPU.
2852  *
2853  * cancel_work_sync(&delayed_work->work) must not be used for
2854  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2855  *
2856  * The caller must ensure that the workqueue on which @work was last
2857  * queued can't be destroyed before this function returns.
2858  *
2859  * RETURNS:
2860  * %true if @work was pending, %false otherwise.
2861  */
2862 bool cancel_work_sync(struct work_struct *work)
2863 {
2864 	return __cancel_work_timer(work, false);
2865 }
2866 EXPORT_SYMBOL_GPL(cancel_work_sync);
2867 
2868 /**
2869  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2870  * @dwork: the delayed work to flush
2871  *
2872  * Delayed timer is cancelled and the pending work is queued for
2873  * immediate execution.  Like flush_work(), this function only
2874  * considers the last queueing instance of @dwork.
2875  *
2876  * RETURNS:
2877  * %true if flush_work() waited for the work to finish execution,
2878  * %false if it was already idle.
2879  */
2880 bool flush_delayed_work(struct delayed_work *dwork)
2881 {
2882 	local_irq_disable();
2883 	if (del_timer_sync(&dwork->timer))
2884 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2885 	local_irq_enable();
2886 	return flush_work(&dwork->work);
2887 }
2888 EXPORT_SYMBOL(flush_delayed_work);
2889 
2890 /**
2891  * cancel_delayed_work - cancel a delayed work
2892  * @dwork: delayed_work to cancel
2893  *
2894  * Kill off a pending delayed_work.  Returns %true if @dwork was pending
2895  * and canceled; %false if wasn't pending.  Note that the work callback
2896  * function may still be running on return, unless it returns %true and the
2897  * work doesn't re-arm itself.  Explicitly flush or use
2898  * cancel_delayed_work_sync() to wait on it.
2899  *
2900  * This function is safe to call from any context including IRQ handler.
2901  */
2902 bool cancel_delayed_work(struct delayed_work *dwork)
2903 {
2904 	unsigned long flags;
2905 	int ret;
2906 
2907 	do {
2908 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2909 	} while (unlikely(ret == -EAGAIN));
2910 
2911 	if (unlikely(ret < 0))
2912 		return false;
2913 
2914 	set_work_pool_and_clear_pending(&dwork->work,
2915 					get_work_pool_id(&dwork->work));
2916 	local_irq_restore(flags);
2917 	return ret;
2918 }
2919 EXPORT_SYMBOL(cancel_delayed_work);
2920 
2921 /**
2922  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2923  * @dwork: the delayed work cancel
2924  *
2925  * This is cancel_work_sync() for delayed works.
2926  *
2927  * RETURNS:
2928  * %true if @dwork was pending, %false otherwise.
2929  */
2930 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2931 {
2932 	return __cancel_work_timer(&dwork->work, true);
2933 }
2934 EXPORT_SYMBOL(cancel_delayed_work_sync);
2935 
2936 /**
2937  * schedule_work_on - put work task on a specific cpu
2938  * @cpu: cpu to put the work task on
2939  * @work: job to be done
2940  *
2941  * This puts a job on a specific cpu
2942  */
2943 bool schedule_work_on(int cpu, struct work_struct *work)
2944 {
2945 	return queue_work_on(cpu, system_wq, work);
2946 }
2947 EXPORT_SYMBOL(schedule_work_on);
2948 
2949 /**
2950  * schedule_work - put work task in global workqueue
2951  * @work: job to be done
2952  *
2953  * Returns %false if @work was already on the kernel-global workqueue and
2954  * %true otherwise.
2955  *
2956  * This puts a job in the kernel-global workqueue if it was not already
2957  * queued and leaves it in the same position on the kernel-global
2958  * workqueue otherwise.
2959  */
2960 bool schedule_work(struct work_struct *work)
2961 {
2962 	return queue_work(system_wq, work);
2963 }
2964 EXPORT_SYMBOL(schedule_work);
2965 
2966 /**
2967  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2968  * @cpu: cpu to use
2969  * @dwork: job to be done
2970  * @delay: number of jiffies to wait
2971  *
2972  * After waiting for a given time this puts a job in the kernel-global
2973  * workqueue on the specified CPU.
2974  */
2975 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2976 			      unsigned long delay)
2977 {
2978 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2979 }
2980 EXPORT_SYMBOL(schedule_delayed_work_on);
2981 
2982 /**
2983  * schedule_delayed_work - put work task in global workqueue after delay
2984  * @dwork: job to be done
2985  * @delay: number of jiffies to wait or 0 for immediate execution
2986  *
2987  * After waiting for a given time this puts a job in the kernel-global
2988  * workqueue.
2989  */
2990 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
2991 {
2992 	return queue_delayed_work(system_wq, dwork, delay);
2993 }
2994 EXPORT_SYMBOL(schedule_delayed_work);
2995 
2996 /**
2997  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2998  * @func: the function to call
2999  *
3000  * schedule_on_each_cpu() executes @func on each online CPU using the
3001  * system workqueue and blocks until all CPUs have completed.
3002  * schedule_on_each_cpu() is very slow.
3003  *
3004  * RETURNS:
3005  * 0 on success, -errno on failure.
3006  */
3007 int schedule_on_each_cpu(work_func_t func)
3008 {
3009 	int cpu;
3010 	struct work_struct __percpu *works;
3011 
3012 	works = alloc_percpu(struct work_struct);
3013 	if (!works)
3014 		return -ENOMEM;
3015 
3016 	get_online_cpus();
3017 
3018 	for_each_online_cpu(cpu) {
3019 		struct work_struct *work = per_cpu_ptr(works, cpu);
3020 
3021 		INIT_WORK(work, func);
3022 		schedule_work_on(cpu, work);
3023 	}
3024 
3025 	for_each_online_cpu(cpu)
3026 		flush_work(per_cpu_ptr(works, cpu));
3027 
3028 	put_online_cpus();
3029 	free_percpu(works);
3030 	return 0;
3031 }
3032 
3033 /**
3034  * flush_scheduled_work - ensure that any scheduled work has run to completion.
3035  *
3036  * Forces execution of the kernel-global workqueue and blocks until its
3037  * completion.
3038  *
3039  * Think twice before calling this function!  It's very easy to get into
3040  * trouble if you don't take great care.  Either of the following situations
3041  * will lead to deadlock:
3042  *
3043  *	One of the work items currently on the workqueue needs to acquire
3044  *	a lock held by your code or its caller.
3045  *
3046  *	Your code is running in the context of a work routine.
3047  *
3048  * They will be detected by lockdep when they occur, but the first might not
3049  * occur very often.  It depends on what work items are on the workqueue and
3050  * what locks they need, which you have no control over.
3051  *
3052  * In most situations flushing the entire workqueue is overkill; you merely
3053  * need to know that a particular work item isn't queued and isn't running.
3054  * In such cases you should use cancel_delayed_work_sync() or
3055  * cancel_work_sync() instead.
3056  */
3057 void flush_scheduled_work(void)
3058 {
3059 	flush_workqueue(system_wq);
3060 }
3061 EXPORT_SYMBOL(flush_scheduled_work);
3062 
3063 /**
3064  * execute_in_process_context - reliably execute the routine with user context
3065  * @fn:		the function to execute
3066  * @ew:		guaranteed storage for the execute work structure (must
3067  *		be available when the work executes)
3068  *
3069  * Executes the function immediately if process context is available,
3070  * otherwise schedules the function for delayed execution.
3071  *
3072  * Returns:	0 - function was executed
3073  *		1 - function was scheduled for execution
3074  */
3075 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3076 {
3077 	if (!in_interrupt()) {
3078 		fn(&ew->work);
3079 		return 0;
3080 	}
3081 
3082 	INIT_WORK(&ew->work, fn);
3083 	schedule_work(&ew->work);
3084 
3085 	return 1;
3086 }
3087 EXPORT_SYMBOL_GPL(execute_in_process_context);
3088 
3089 int keventd_up(void)
3090 {
3091 	return system_wq != NULL;
3092 }
3093 
3094 static int alloc_pwqs(struct workqueue_struct *wq)
3095 {
3096 	/*
3097 	 * pwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3098 	 * Make sure that the alignment isn't lower than that of
3099 	 * unsigned long long.
3100 	 */
3101 	const size_t size = sizeof(struct pool_workqueue);
3102 	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3103 				   __alignof__(unsigned long long));
3104 
3105 	if (!(wq->flags & WQ_UNBOUND))
3106 		wq->pool_wq.pcpu = __alloc_percpu(size, align);
3107 	else {
3108 		void *ptr;
3109 
3110 		/*
3111 		 * Allocate enough room to align pwq and put an extra
3112 		 * pointer at the end pointing back to the originally
3113 		 * allocated pointer which will be used for free.
3114 		 */
3115 		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3116 		if (ptr) {
3117 			wq->pool_wq.single = PTR_ALIGN(ptr, align);
3118 			*(void **)(wq->pool_wq.single + 1) = ptr;
3119 		}
3120 	}
3121 
3122 	/* just in case, make sure it's actually aligned */
3123 	BUG_ON(!IS_ALIGNED(wq->pool_wq.v, align));
3124 	return wq->pool_wq.v ? 0 : -ENOMEM;
3125 }
3126 
3127 static void free_pwqs(struct workqueue_struct *wq)
3128 {
3129 	if (!(wq->flags & WQ_UNBOUND))
3130 		free_percpu(wq->pool_wq.pcpu);
3131 	else if (wq->pool_wq.single) {
3132 		/* the pointer to free is stored right after the pwq */
3133 		kfree(*(void **)(wq->pool_wq.single + 1));
3134 	}
3135 }
3136 
3137 static int wq_clamp_max_active(int max_active, unsigned int flags,
3138 			       const char *name)
3139 {
3140 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3141 
3142 	if (max_active < 1 || max_active > lim)
3143 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3144 			max_active, name, 1, lim);
3145 
3146 	return clamp_val(max_active, 1, lim);
3147 }
3148 
3149 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3150 					       unsigned int flags,
3151 					       int max_active,
3152 					       struct lock_class_key *key,
3153 					       const char *lock_name, ...)
3154 {
3155 	va_list args, args1;
3156 	struct workqueue_struct *wq;
3157 	unsigned int cpu;
3158 	size_t namelen;
3159 
3160 	/* determine namelen, allocate wq and format name */
3161 	va_start(args, lock_name);
3162 	va_copy(args1, args);
3163 	namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3164 
3165 	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3166 	if (!wq)
3167 		goto err;
3168 
3169 	vsnprintf(wq->name, namelen, fmt, args1);
3170 	va_end(args);
3171 	va_end(args1);
3172 
3173 	/*
3174 	 * Workqueues which may be used during memory reclaim should
3175 	 * have a rescuer to guarantee forward progress.
3176 	 */
3177 	if (flags & WQ_MEM_RECLAIM)
3178 		flags |= WQ_RESCUER;
3179 
3180 	max_active = max_active ?: WQ_DFL_ACTIVE;
3181 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3182 
3183 	/* init wq */
3184 	wq->flags = flags;
3185 	wq->saved_max_active = max_active;
3186 	mutex_init(&wq->flush_mutex);
3187 	atomic_set(&wq->nr_pwqs_to_flush, 0);
3188 	INIT_LIST_HEAD(&wq->flusher_queue);
3189 	INIT_LIST_HEAD(&wq->flusher_overflow);
3190 
3191 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3192 	INIT_LIST_HEAD(&wq->list);
3193 
3194 	if (alloc_pwqs(wq) < 0)
3195 		goto err;
3196 
3197 	for_each_pwq_cpu(cpu, wq) {
3198 		struct pool_workqueue *pwq = get_pwq(cpu, wq);
3199 
3200 		BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3201 		pwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
3202 		pwq->wq = wq;
3203 		pwq->flush_color = -1;
3204 		pwq->max_active = max_active;
3205 		INIT_LIST_HEAD(&pwq->delayed_works);
3206 	}
3207 
3208 	if (flags & WQ_RESCUER) {
3209 		struct worker *rescuer;
3210 
3211 		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3212 			goto err;
3213 
3214 		wq->rescuer = rescuer = alloc_worker();
3215 		if (!rescuer)
3216 			goto err;
3217 
3218 		rescuer->rescue_wq = wq;
3219 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3220 					       wq->name);
3221 		if (IS_ERR(rescuer->task))
3222 			goto err;
3223 
3224 		rescuer->task->flags |= PF_THREAD_BOUND;
3225 		wake_up_process(rescuer->task);
3226 	}
3227 
3228 	/*
3229 	 * workqueue_lock protects global freeze state and workqueues
3230 	 * list.  Grab it, set max_active accordingly and add the new
3231 	 * workqueue to workqueues list.
3232 	 */
3233 	spin_lock(&workqueue_lock);
3234 
3235 	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3236 		for_each_pwq_cpu(cpu, wq)
3237 			get_pwq(cpu, wq)->max_active = 0;
3238 
3239 	list_add(&wq->list, &workqueues);
3240 
3241 	spin_unlock(&workqueue_lock);
3242 
3243 	return wq;
3244 err:
3245 	if (wq) {
3246 		free_pwqs(wq);
3247 		free_mayday_mask(wq->mayday_mask);
3248 		kfree(wq->rescuer);
3249 		kfree(wq);
3250 	}
3251 	return NULL;
3252 }
3253 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3254 
3255 /**
3256  * destroy_workqueue - safely terminate a workqueue
3257  * @wq: target workqueue
3258  *
3259  * Safely destroy a workqueue. All work currently pending will be done first.
3260  */
3261 void destroy_workqueue(struct workqueue_struct *wq)
3262 {
3263 	unsigned int cpu;
3264 
3265 	/* drain it before proceeding with destruction */
3266 	drain_workqueue(wq);
3267 
3268 	/*
3269 	 * wq list is used to freeze wq, remove from list after
3270 	 * flushing is complete in case freeze races us.
3271 	 */
3272 	spin_lock(&workqueue_lock);
3273 	list_del(&wq->list);
3274 	spin_unlock(&workqueue_lock);
3275 
3276 	/* sanity check */
3277 	for_each_pwq_cpu(cpu, wq) {
3278 		struct pool_workqueue *pwq = get_pwq(cpu, wq);
3279 		int i;
3280 
3281 		for (i = 0; i < WORK_NR_COLORS; i++)
3282 			BUG_ON(pwq->nr_in_flight[i]);
3283 		BUG_ON(pwq->nr_active);
3284 		BUG_ON(!list_empty(&pwq->delayed_works));
3285 	}
3286 
3287 	if (wq->flags & WQ_RESCUER) {
3288 		kthread_stop(wq->rescuer->task);
3289 		free_mayday_mask(wq->mayday_mask);
3290 		kfree(wq->rescuer);
3291 	}
3292 
3293 	free_pwqs(wq);
3294 	kfree(wq);
3295 }
3296 EXPORT_SYMBOL_GPL(destroy_workqueue);
3297 
3298 /**
3299  * pwq_set_max_active - adjust max_active of a pwq
3300  * @pwq: target pool_workqueue
3301  * @max_active: new max_active value.
3302  *
3303  * Set @pwq->max_active to @max_active and activate delayed works if
3304  * increased.
3305  *
3306  * CONTEXT:
3307  * spin_lock_irq(pool->lock).
3308  */
3309 static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
3310 {
3311 	pwq->max_active = max_active;
3312 
3313 	while (!list_empty(&pwq->delayed_works) &&
3314 	       pwq->nr_active < pwq->max_active)
3315 		pwq_activate_first_delayed(pwq);
3316 }
3317 
3318 /**
3319  * workqueue_set_max_active - adjust max_active of a workqueue
3320  * @wq: target workqueue
3321  * @max_active: new max_active value.
3322  *
3323  * Set max_active of @wq to @max_active.
3324  *
3325  * CONTEXT:
3326  * Don't call from IRQ context.
3327  */
3328 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3329 {
3330 	unsigned int cpu;
3331 
3332 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3333 
3334 	spin_lock(&workqueue_lock);
3335 
3336 	wq->saved_max_active = max_active;
3337 
3338 	for_each_pwq_cpu(cpu, wq) {
3339 		struct pool_workqueue *pwq = get_pwq(cpu, wq);
3340 		struct worker_pool *pool = pwq->pool;
3341 
3342 		spin_lock_irq(&pool->lock);
3343 
3344 		if (!(wq->flags & WQ_FREEZABLE) ||
3345 		    !(pool->flags & POOL_FREEZING))
3346 			pwq_set_max_active(pwq, max_active);
3347 
3348 		spin_unlock_irq(&pool->lock);
3349 	}
3350 
3351 	spin_unlock(&workqueue_lock);
3352 }
3353 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3354 
3355 /**
3356  * workqueue_congested - test whether a workqueue is congested
3357  * @cpu: CPU in question
3358  * @wq: target workqueue
3359  *
3360  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
3361  * no synchronization around this function and the test result is
3362  * unreliable and only useful as advisory hints or for debugging.
3363  *
3364  * RETURNS:
3365  * %true if congested, %false otherwise.
3366  */
3367 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3368 {
3369 	struct pool_workqueue *pwq = get_pwq(cpu, wq);
3370 
3371 	return !list_empty(&pwq->delayed_works);
3372 }
3373 EXPORT_SYMBOL_GPL(workqueue_congested);
3374 
3375 /**
3376  * work_busy - test whether a work is currently pending or running
3377  * @work: the work to be tested
3378  *
3379  * Test whether @work is currently pending or running.  There is no
3380  * synchronization around this function and the test result is
3381  * unreliable and only useful as advisory hints or for debugging.
3382  *
3383  * RETURNS:
3384  * OR'd bitmask of WORK_BUSY_* bits.
3385  */
3386 unsigned int work_busy(struct work_struct *work)
3387 {
3388 	struct worker_pool *pool = get_work_pool(work);
3389 	unsigned long flags;
3390 	unsigned int ret = 0;
3391 
3392 	if (work_pending(work))
3393 		ret |= WORK_BUSY_PENDING;
3394 
3395 	if (pool) {
3396 		spin_lock_irqsave(&pool->lock, flags);
3397 		if (find_worker_executing_work(pool, work))
3398 			ret |= WORK_BUSY_RUNNING;
3399 		spin_unlock_irqrestore(&pool->lock, flags);
3400 	}
3401 
3402 	return ret;
3403 }
3404 EXPORT_SYMBOL_GPL(work_busy);
3405 
3406 /*
3407  * CPU hotplug.
3408  *
3409  * There are two challenges in supporting CPU hotplug.  Firstly, there
3410  * are a lot of assumptions on strong associations among work, pwq and
3411  * pool which make migrating pending and scheduled works very
3412  * difficult to implement without impacting hot paths.  Secondly,
3413  * worker pools serve mix of short, long and very long running works making
3414  * blocked draining impractical.
3415  *
3416  * This is solved by allowing the pools to be disassociated from the CPU
3417  * running as an unbound one and allowing it to be reattached later if the
3418  * cpu comes back online.
3419  */
3420 
3421 static void wq_unbind_fn(struct work_struct *work)
3422 {
3423 	int cpu = smp_processor_id();
3424 	struct worker_pool *pool;
3425 	struct worker *worker;
3426 	struct hlist_node *pos;
3427 	int i;
3428 
3429 	for_each_std_worker_pool(pool, cpu) {
3430 		BUG_ON(cpu != smp_processor_id());
3431 
3432 		mutex_lock(&pool->assoc_mutex);
3433 		spin_lock_irq(&pool->lock);
3434 
3435 		/*
3436 		 * We've claimed all manager positions.  Make all workers
3437 		 * unbound and set DISASSOCIATED.  Before this, all workers
3438 		 * except for the ones which are still executing works from
3439 		 * before the last CPU down must be on the cpu.  After
3440 		 * this, they may become diasporas.
3441 		 */
3442 		list_for_each_entry(worker, &pool->idle_list, entry)
3443 			worker->flags |= WORKER_UNBOUND;
3444 
3445 		for_each_busy_worker(worker, i, pos, pool)
3446 			worker->flags |= WORKER_UNBOUND;
3447 
3448 		pool->flags |= POOL_DISASSOCIATED;
3449 
3450 		spin_unlock_irq(&pool->lock);
3451 		mutex_unlock(&pool->assoc_mutex);
3452 	}
3453 
3454 	/*
3455 	 * Call schedule() so that we cross rq->lock and thus can guarantee
3456 	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
3457 	 * as scheduler callbacks may be invoked from other cpus.
3458 	 */
3459 	schedule();
3460 
3461 	/*
3462 	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
3463 	 * nr_running stays zero and need_more_worker() and keep_working()
3464 	 * are always true as long as the worklist is not empty.  Pools on
3465 	 * @cpu now behave as unbound (in terms of concurrency management)
3466 	 * pools which are served by workers tied to the CPU.
3467 	 *
3468 	 * On return from this function, the current worker would trigger
3469 	 * unbound chain execution of pending work items if other workers
3470 	 * didn't already.
3471 	 */
3472 	for_each_std_worker_pool(pool, cpu)
3473 		atomic_set(&pool->nr_running, 0);
3474 }
3475 
3476 /*
3477  * Workqueues should be brought up before normal priority CPU notifiers.
3478  * This will be registered high priority CPU notifier.
3479  */
3480 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3481 					       unsigned long action,
3482 					       void *hcpu)
3483 {
3484 	unsigned int cpu = (unsigned long)hcpu;
3485 	struct worker_pool *pool;
3486 
3487 	switch (action & ~CPU_TASKS_FROZEN) {
3488 	case CPU_UP_PREPARE:
3489 		for_each_std_worker_pool(pool, cpu) {
3490 			struct worker *worker;
3491 
3492 			if (pool->nr_workers)
3493 				continue;
3494 
3495 			worker = create_worker(pool);
3496 			if (!worker)
3497 				return NOTIFY_BAD;
3498 
3499 			spin_lock_irq(&pool->lock);
3500 			start_worker(worker);
3501 			spin_unlock_irq(&pool->lock);
3502 		}
3503 		break;
3504 
3505 	case CPU_DOWN_FAILED:
3506 	case CPU_ONLINE:
3507 		for_each_std_worker_pool(pool, cpu) {
3508 			mutex_lock(&pool->assoc_mutex);
3509 			spin_lock_irq(&pool->lock);
3510 
3511 			pool->flags &= ~POOL_DISASSOCIATED;
3512 			rebind_workers(pool);
3513 
3514 			spin_unlock_irq(&pool->lock);
3515 			mutex_unlock(&pool->assoc_mutex);
3516 		}
3517 		break;
3518 	}
3519 	return NOTIFY_OK;
3520 }
3521 
3522 /*
3523  * Workqueues should be brought down after normal priority CPU notifiers.
3524  * This will be registered as low priority CPU notifier.
3525  */
3526 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3527 						 unsigned long action,
3528 						 void *hcpu)
3529 {
3530 	unsigned int cpu = (unsigned long)hcpu;
3531 	struct work_struct unbind_work;
3532 
3533 	switch (action & ~CPU_TASKS_FROZEN) {
3534 	case CPU_DOWN_PREPARE:
3535 		/* unbinding should happen on the local CPU */
3536 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
3537 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
3538 		flush_work(&unbind_work);
3539 		break;
3540 	}
3541 	return NOTIFY_OK;
3542 }
3543 
3544 #ifdef CONFIG_SMP
3545 
3546 struct work_for_cpu {
3547 	struct work_struct work;
3548 	long (*fn)(void *);
3549 	void *arg;
3550 	long ret;
3551 };
3552 
3553 static void work_for_cpu_fn(struct work_struct *work)
3554 {
3555 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3556 
3557 	wfc->ret = wfc->fn(wfc->arg);
3558 }
3559 
3560 /**
3561  * work_on_cpu - run a function in user context on a particular cpu
3562  * @cpu: the cpu to run on
3563  * @fn: the function to run
3564  * @arg: the function arg
3565  *
3566  * This will return the value @fn returns.
3567  * It is up to the caller to ensure that the cpu doesn't go offline.
3568  * The caller must not hold any locks which would prevent @fn from completing.
3569  */
3570 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3571 {
3572 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3573 
3574 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3575 	schedule_work_on(cpu, &wfc.work);
3576 	flush_work(&wfc.work);
3577 	return wfc.ret;
3578 }
3579 EXPORT_SYMBOL_GPL(work_on_cpu);
3580 #endif /* CONFIG_SMP */
3581 
3582 #ifdef CONFIG_FREEZER
3583 
3584 /**
3585  * freeze_workqueues_begin - begin freezing workqueues
3586  *
3587  * Start freezing workqueues.  After this function returns, all freezable
3588  * workqueues will queue new works to their frozen_works list instead of
3589  * pool->worklist.
3590  *
3591  * CONTEXT:
3592  * Grabs and releases workqueue_lock and pool->lock's.
3593  */
3594 void freeze_workqueues_begin(void)
3595 {
3596 	unsigned int cpu;
3597 
3598 	spin_lock(&workqueue_lock);
3599 
3600 	BUG_ON(workqueue_freezing);
3601 	workqueue_freezing = true;
3602 
3603 	for_each_wq_cpu(cpu) {
3604 		struct worker_pool *pool;
3605 		struct workqueue_struct *wq;
3606 
3607 		for_each_std_worker_pool(pool, cpu) {
3608 			spin_lock_irq(&pool->lock);
3609 
3610 			WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3611 			pool->flags |= POOL_FREEZING;
3612 
3613 			list_for_each_entry(wq, &workqueues, list) {
3614 				struct pool_workqueue *pwq = get_pwq(cpu, wq);
3615 
3616 				if (pwq && pwq->pool == pool &&
3617 				    (wq->flags & WQ_FREEZABLE))
3618 					pwq->max_active = 0;
3619 			}
3620 
3621 			spin_unlock_irq(&pool->lock);
3622 		}
3623 	}
3624 
3625 	spin_unlock(&workqueue_lock);
3626 }
3627 
3628 /**
3629  * freeze_workqueues_busy - are freezable workqueues still busy?
3630  *
3631  * Check whether freezing is complete.  This function must be called
3632  * between freeze_workqueues_begin() and thaw_workqueues().
3633  *
3634  * CONTEXT:
3635  * Grabs and releases workqueue_lock.
3636  *
3637  * RETURNS:
3638  * %true if some freezable workqueues are still busy.  %false if freezing
3639  * is complete.
3640  */
3641 bool freeze_workqueues_busy(void)
3642 {
3643 	unsigned int cpu;
3644 	bool busy = false;
3645 
3646 	spin_lock(&workqueue_lock);
3647 
3648 	BUG_ON(!workqueue_freezing);
3649 
3650 	for_each_wq_cpu(cpu) {
3651 		struct workqueue_struct *wq;
3652 		/*
3653 		 * nr_active is monotonically decreasing.  It's safe
3654 		 * to peek without lock.
3655 		 */
3656 		list_for_each_entry(wq, &workqueues, list) {
3657 			struct pool_workqueue *pwq = get_pwq(cpu, wq);
3658 
3659 			if (!pwq || !(wq->flags & WQ_FREEZABLE))
3660 				continue;
3661 
3662 			BUG_ON(pwq->nr_active < 0);
3663 			if (pwq->nr_active) {
3664 				busy = true;
3665 				goto out_unlock;
3666 			}
3667 		}
3668 	}
3669 out_unlock:
3670 	spin_unlock(&workqueue_lock);
3671 	return busy;
3672 }
3673 
3674 /**
3675  * thaw_workqueues - thaw workqueues
3676  *
3677  * Thaw workqueues.  Normal queueing is restored and all collected
3678  * frozen works are transferred to their respective pool worklists.
3679  *
3680  * CONTEXT:
3681  * Grabs and releases workqueue_lock and pool->lock's.
3682  */
3683 void thaw_workqueues(void)
3684 {
3685 	unsigned int cpu;
3686 
3687 	spin_lock(&workqueue_lock);
3688 
3689 	if (!workqueue_freezing)
3690 		goto out_unlock;
3691 
3692 	for_each_wq_cpu(cpu) {
3693 		struct worker_pool *pool;
3694 		struct workqueue_struct *wq;
3695 
3696 		for_each_std_worker_pool(pool, cpu) {
3697 			spin_lock_irq(&pool->lock);
3698 
3699 			WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3700 			pool->flags &= ~POOL_FREEZING;
3701 
3702 			list_for_each_entry(wq, &workqueues, list) {
3703 				struct pool_workqueue *pwq = get_pwq(cpu, wq);
3704 
3705 				if (!pwq || pwq->pool != pool ||
3706 				    !(wq->flags & WQ_FREEZABLE))
3707 					continue;
3708 
3709 				/* restore max_active and repopulate worklist */
3710 				pwq_set_max_active(pwq, wq->saved_max_active);
3711 			}
3712 
3713 			wake_up_worker(pool);
3714 
3715 			spin_unlock_irq(&pool->lock);
3716 		}
3717 	}
3718 
3719 	workqueue_freezing = false;
3720 out_unlock:
3721 	spin_unlock(&workqueue_lock);
3722 }
3723 #endif /* CONFIG_FREEZER */
3724 
3725 static int __init init_workqueues(void)
3726 {
3727 	unsigned int cpu;
3728 
3729 	/* make sure we have enough bits for OFFQ pool ID */
3730 	BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
3731 		     WORK_CPU_END * NR_STD_WORKER_POOLS);
3732 
3733 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3734 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3735 
3736 	/* initialize CPU pools */
3737 	for_each_wq_cpu(cpu) {
3738 		struct worker_pool *pool;
3739 
3740 		for_each_std_worker_pool(pool, cpu) {
3741 			spin_lock_init(&pool->lock);
3742 			pool->cpu = cpu;
3743 			pool->flags |= POOL_DISASSOCIATED;
3744 			INIT_LIST_HEAD(&pool->worklist);
3745 			INIT_LIST_HEAD(&pool->idle_list);
3746 			hash_init(pool->busy_hash);
3747 
3748 			init_timer_deferrable(&pool->idle_timer);
3749 			pool->idle_timer.function = idle_worker_timeout;
3750 			pool->idle_timer.data = (unsigned long)pool;
3751 
3752 			setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3753 				    (unsigned long)pool);
3754 
3755 			mutex_init(&pool->assoc_mutex);
3756 			ida_init(&pool->worker_ida);
3757 
3758 			/* alloc pool ID */
3759 			BUG_ON(worker_pool_assign_id(pool));
3760 		}
3761 	}
3762 
3763 	/* create the initial worker */
3764 	for_each_online_wq_cpu(cpu) {
3765 		struct worker_pool *pool;
3766 
3767 		for_each_std_worker_pool(pool, cpu) {
3768 			struct worker *worker;
3769 
3770 			if (cpu != WORK_CPU_UNBOUND)
3771 				pool->flags &= ~POOL_DISASSOCIATED;
3772 
3773 			worker = create_worker(pool);
3774 			BUG_ON(!worker);
3775 			spin_lock_irq(&pool->lock);
3776 			start_worker(worker);
3777 			spin_unlock_irq(&pool->lock);
3778 		}
3779 	}
3780 
3781 	system_wq = alloc_workqueue("events", 0, 0);
3782 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
3783 	system_long_wq = alloc_workqueue("events_long", 0, 0);
3784 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3785 					    WQ_UNBOUND_MAX_ACTIVE);
3786 	system_freezable_wq = alloc_workqueue("events_freezable",
3787 					      WQ_FREEZABLE, 0);
3788 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
3789 	       !system_unbound_wq || !system_freezable_wq);
3790 	return 0;
3791 }
3792 early_initcall(init_workqueues);
3793