1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There is one worker pool for each CPU and 20 * one extra for works which are better served by workers which are 21 * not bound to any specific CPU. 22 * 23 * Please read Documentation/workqueue.txt for details. 24 */ 25 26 #include <linux/export.h> 27 #include <linux/kernel.h> 28 #include <linux/sched.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/completion.h> 32 #include <linux/workqueue.h> 33 #include <linux/slab.h> 34 #include <linux/cpu.h> 35 #include <linux/notifier.h> 36 #include <linux/kthread.h> 37 #include <linux/hardirq.h> 38 #include <linux/mempolicy.h> 39 #include <linux/freezer.h> 40 #include <linux/kallsyms.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 #include <linux/hashtable.h> 45 46 #include "workqueue_internal.h" 47 48 enum { 49 /* 50 * worker_pool flags 51 * 52 * A bound pool is either associated or disassociated with its CPU. 53 * While associated (!DISASSOCIATED), all workers are bound to the 54 * CPU and none has %WORKER_UNBOUND set and concurrency management 55 * is in effect. 56 * 57 * While DISASSOCIATED, the cpu may be offline and all workers have 58 * %WORKER_UNBOUND set and concurrency management disabled, and may 59 * be executing on any CPU. The pool behaves as an unbound one. 60 * 61 * Note that DISASSOCIATED can be flipped only while holding 62 * assoc_mutex to avoid changing binding state while 63 * create_worker() is in progress. 64 */ 65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */ 67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 68 POOL_FREEZING = 1 << 3, /* freeze in progress */ 69 70 /* worker flags */ 71 WORKER_STARTED = 1 << 0, /* started */ 72 WORKER_DIE = 1 << 1, /* die die die */ 73 WORKER_IDLE = 1 << 2, /* is idle */ 74 WORKER_PREP = 1 << 3, /* preparing to run works */ 75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 77 78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND | 79 WORKER_CPU_INTENSIVE, 80 81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 82 83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 84 85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 87 88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 89 /* call for help after 10ms 90 (min two ticks) */ 91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 92 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 93 94 /* 95 * Rescue workers are used only on emergencies and shared by 96 * all cpus. Give -20. 97 */ 98 RESCUER_NICE_LEVEL = -20, 99 HIGHPRI_NICE_LEVEL = -20, 100 }; 101 102 /* 103 * Structure fields follow one of the following exclusion rules. 104 * 105 * I: Modifiable by initialization/destruction paths and read-only for 106 * everyone else. 107 * 108 * P: Preemption protected. Disabling preemption is enough and should 109 * only be modified and accessed from the local cpu. 110 * 111 * L: pool->lock protected. Access with pool->lock held. 112 * 113 * X: During normal operation, modification requires pool->lock and should 114 * be done only from local cpu. Either disabling preemption on local 115 * cpu or grabbing pool->lock is enough for read access. If 116 * POOL_DISASSOCIATED is set, it's identical to L. 117 * 118 * F: wq->flush_mutex protected. 119 * 120 * W: workqueue_lock protected. 121 */ 122 123 /* struct worker is defined in workqueue_internal.h */ 124 125 struct worker_pool { 126 spinlock_t lock; /* the pool lock */ 127 unsigned int cpu; /* I: the associated cpu */ 128 int id; /* I: pool ID */ 129 unsigned int flags; /* X: flags */ 130 131 struct list_head worklist; /* L: list of pending works */ 132 int nr_workers; /* L: total number of workers */ 133 134 /* nr_idle includes the ones off idle_list for rebinding */ 135 int nr_idle; /* L: currently idle ones */ 136 137 struct list_head idle_list; /* X: list of idle workers */ 138 struct timer_list idle_timer; /* L: worker idle timeout */ 139 struct timer_list mayday_timer; /* L: SOS timer for workers */ 140 141 /* workers are chained either in busy_hash or idle_list */ 142 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 143 /* L: hash of busy workers */ 144 145 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */ 146 struct ida worker_ida; /* L: for worker IDs */ 147 148 /* 149 * The current concurrency level. As it's likely to be accessed 150 * from other CPUs during try_to_wake_up(), put it in a separate 151 * cacheline. 152 */ 153 atomic_t nr_running ____cacheline_aligned_in_smp; 154 } ____cacheline_aligned_in_smp; 155 156 /* 157 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 158 * of work_struct->data are used for flags and the remaining high bits 159 * point to the pwq; thus, pwqs need to be aligned at two's power of the 160 * number of flag bits. 161 */ 162 struct pool_workqueue { 163 struct worker_pool *pool; /* I: the associated pool */ 164 struct workqueue_struct *wq; /* I: the owning workqueue */ 165 int work_color; /* L: current color */ 166 int flush_color; /* L: flushing color */ 167 int nr_in_flight[WORK_NR_COLORS]; 168 /* L: nr of in_flight works */ 169 int nr_active; /* L: nr of active works */ 170 int max_active; /* L: max active works */ 171 struct list_head delayed_works; /* L: delayed works */ 172 }; 173 174 /* 175 * Structure used to wait for workqueue flush. 176 */ 177 struct wq_flusher { 178 struct list_head list; /* F: list of flushers */ 179 int flush_color; /* F: flush color waiting for */ 180 struct completion done; /* flush completion */ 181 }; 182 183 /* 184 * All cpumasks are assumed to be always set on UP and thus can't be 185 * used to determine whether there's something to be done. 186 */ 187 #ifdef CONFIG_SMP 188 typedef cpumask_var_t mayday_mask_t; 189 #define mayday_test_and_set_cpu(cpu, mask) \ 190 cpumask_test_and_set_cpu((cpu), (mask)) 191 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask)) 192 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask)) 193 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp)) 194 #define free_mayday_mask(mask) free_cpumask_var((mask)) 195 #else 196 typedef unsigned long mayday_mask_t; 197 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask)) 198 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask)) 199 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask)) 200 #define alloc_mayday_mask(maskp, gfp) true 201 #define free_mayday_mask(mask) do { } while (0) 202 #endif 203 204 /* 205 * The externally visible workqueue abstraction is an array of 206 * per-CPU workqueues: 207 */ 208 struct workqueue_struct { 209 unsigned int flags; /* W: WQ_* flags */ 210 union { 211 struct pool_workqueue __percpu *pcpu; 212 struct pool_workqueue *single; 213 unsigned long v; 214 } pool_wq; /* I: pwq's */ 215 struct list_head list; /* W: list of all workqueues */ 216 217 struct mutex flush_mutex; /* protects wq flushing */ 218 int work_color; /* F: current work color */ 219 int flush_color; /* F: current flush color */ 220 atomic_t nr_pwqs_to_flush; /* flush in progress */ 221 struct wq_flusher *first_flusher; /* F: first flusher */ 222 struct list_head flusher_queue; /* F: flush waiters */ 223 struct list_head flusher_overflow; /* F: flush overflow list */ 224 225 mayday_mask_t mayday_mask; /* cpus requesting rescue */ 226 struct worker *rescuer; /* I: rescue worker */ 227 228 int nr_drainers; /* W: drain in progress */ 229 int saved_max_active; /* W: saved pwq max_active */ 230 #ifdef CONFIG_LOCKDEP 231 struct lockdep_map lockdep_map; 232 #endif 233 char name[]; /* I: workqueue name */ 234 }; 235 236 struct workqueue_struct *system_wq __read_mostly; 237 EXPORT_SYMBOL_GPL(system_wq); 238 struct workqueue_struct *system_highpri_wq __read_mostly; 239 EXPORT_SYMBOL_GPL(system_highpri_wq); 240 struct workqueue_struct *system_long_wq __read_mostly; 241 EXPORT_SYMBOL_GPL(system_long_wq); 242 struct workqueue_struct *system_unbound_wq __read_mostly; 243 EXPORT_SYMBOL_GPL(system_unbound_wq); 244 struct workqueue_struct *system_freezable_wq __read_mostly; 245 EXPORT_SYMBOL_GPL(system_freezable_wq); 246 247 #define CREATE_TRACE_POINTS 248 #include <trace/events/workqueue.h> 249 250 #define for_each_std_worker_pool(pool, cpu) \ 251 for ((pool) = &std_worker_pools(cpu)[0]; \ 252 (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++) 253 254 #define for_each_busy_worker(worker, i, pos, pool) \ 255 hash_for_each(pool->busy_hash, i, pos, worker, hentry) 256 257 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask, 258 unsigned int sw) 259 { 260 if (cpu < nr_cpu_ids) { 261 if (sw & 1) { 262 cpu = cpumask_next(cpu, mask); 263 if (cpu < nr_cpu_ids) 264 return cpu; 265 } 266 if (sw & 2) 267 return WORK_CPU_UNBOUND; 268 } 269 return WORK_CPU_END; 270 } 271 272 static inline int __next_pwq_cpu(int cpu, const struct cpumask *mask, 273 struct workqueue_struct *wq) 274 { 275 return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2); 276 } 277 278 /* 279 * CPU iterators 280 * 281 * An extra cpu number is defined using an invalid cpu number 282 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any 283 * specific CPU. The following iterators are similar to for_each_*_cpu() 284 * iterators but also considers the unbound CPU. 285 * 286 * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND 287 * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND 288 * for_each_pwq_cpu() : possible CPUs for bound workqueues, 289 * WORK_CPU_UNBOUND for unbound workqueues 290 */ 291 #define for_each_wq_cpu(cpu) \ 292 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \ 293 (cpu) < WORK_CPU_END; \ 294 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3)) 295 296 #define for_each_online_wq_cpu(cpu) \ 297 for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \ 298 (cpu) < WORK_CPU_END; \ 299 (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3)) 300 301 #define for_each_pwq_cpu(cpu, wq) \ 302 for ((cpu) = __next_pwq_cpu(-1, cpu_possible_mask, (wq)); \ 303 (cpu) < WORK_CPU_END; \ 304 (cpu) = __next_pwq_cpu((cpu), cpu_possible_mask, (wq))) 305 306 #ifdef CONFIG_DEBUG_OBJECTS_WORK 307 308 static struct debug_obj_descr work_debug_descr; 309 310 static void *work_debug_hint(void *addr) 311 { 312 return ((struct work_struct *) addr)->func; 313 } 314 315 /* 316 * fixup_init is called when: 317 * - an active object is initialized 318 */ 319 static int work_fixup_init(void *addr, enum debug_obj_state state) 320 { 321 struct work_struct *work = addr; 322 323 switch (state) { 324 case ODEBUG_STATE_ACTIVE: 325 cancel_work_sync(work); 326 debug_object_init(work, &work_debug_descr); 327 return 1; 328 default: 329 return 0; 330 } 331 } 332 333 /* 334 * fixup_activate is called when: 335 * - an active object is activated 336 * - an unknown object is activated (might be a statically initialized object) 337 */ 338 static int work_fixup_activate(void *addr, enum debug_obj_state state) 339 { 340 struct work_struct *work = addr; 341 342 switch (state) { 343 344 case ODEBUG_STATE_NOTAVAILABLE: 345 /* 346 * This is not really a fixup. The work struct was 347 * statically initialized. We just make sure that it 348 * is tracked in the object tracker. 349 */ 350 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 351 debug_object_init(work, &work_debug_descr); 352 debug_object_activate(work, &work_debug_descr); 353 return 0; 354 } 355 WARN_ON_ONCE(1); 356 return 0; 357 358 case ODEBUG_STATE_ACTIVE: 359 WARN_ON(1); 360 361 default: 362 return 0; 363 } 364 } 365 366 /* 367 * fixup_free is called when: 368 * - an active object is freed 369 */ 370 static int work_fixup_free(void *addr, enum debug_obj_state state) 371 { 372 struct work_struct *work = addr; 373 374 switch (state) { 375 case ODEBUG_STATE_ACTIVE: 376 cancel_work_sync(work); 377 debug_object_free(work, &work_debug_descr); 378 return 1; 379 default: 380 return 0; 381 } 382 } 383 384 static struct debug_obj_descr work_debug_descr = { 385 .name = "work_struct", 386 .debug_hint = work_debug_hint, 387 .fixup_init = work_fixup_init, 388 .fixup_activate = work_fixup_activate, 389 .fixup_free = work_fixup_free, 390 }; 391 392 static inline void debug_work_activate(struct work_struct *work) 393 { 394 debug_object_activate(work, &work_debug_descr); 395 } 396 397 static inline void debug_work_deactivate(struct work_struct *work) 398 { 399 debug_object_deactivate(work, &work_debug_descr); 400 } 401 402 void __init_work(struct work_struct *work, int onstack) 403 { 404 if (onstack) 405 debug_object_init_on_stack(work, &work_debug_descr); 406 else 407 debug_object_init(work, &work_debug_descr); 408 } 409 EXPORT_SYMBOL_GPL(__init_work); 410 411 void destroy_work_on_stack(struct work_struct *work) 412 { 413 debug_object_free(work, &work_debug_descr); 414 } 415 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 416 417 #else 418 static inline void debug_work_activate(struct work_struct *work) { } 419 static inline void debug_work_deactivate(struct work_struct *work) { } 420 #endif 421 422 /* Serializes the accesses to the list of workqueues. */ 423 static DEFINE_SPINLOCK(workqueue_lock); 424 static LIST_HEAD(workqueues); 425 static bool workqueue_freezing; /* W: have wqs started freezing? */ 426 427 /* 428 * The CPU and unbound standard worker pools. The unbound ones have 429 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set. 430 */ 431 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 432 cpu_std_worker_pools); 433 static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS]; 434 435 /* idr of all pools */ 436 static DEFINE_MUTEX(worker_pool_idr_mutex); 437 static DEFINE_IDR(worker_pool_idr); 438 439 static int worker_thread(void *__worker); 440 441 static struct worker_pool *std_worker_pools(int cpu) 442 { 443 if (cpu != WORK_CPU_UNBOUND) 444 return per_cpu(cpu_std_worker_pools, cpu); 445 else 446 return unbound_std_worker_pools; 447 } 448 449 static int std_worker_pool_pri(struct worker_pool *pool) 450 { 451 return pool - std_worker_pools(pool->cpu); 452 } 453 454 /* allocate ID and assign it to @pool */ 455 static int worker_pool_assign_id(struct worker_pool *pool) 456 { 457 int ret; 458 459 mutex_lock(&worker_pool_idr_mutex); 460 idr_pre_get(&worker_pool_idr, GFP_KERNEL); 461 ret = idr_get_new(&worker_pool_idr, pool, &pool->id); 462 mutex_unlock(&worker_pool_idr_mutex); 463 464 return ret; 465 } 466 467 /* 468 * Lookup worker_pool by id. The idr currently is built during boot and 469 * never modified. Don't worry about locking for now. 470 */ 471 static struct worker_pool *worker_pool_by_id(int pool_id) 472 { 473 return idr_find(&worker_pool_idr, pool_id); 474 } 475 476 static struct worker_pool *get_std_worker_pool(int cpu, bool highpri) 477 { 478 struct worker_pool *pools = std_worker_pools(cpu); 479 480 return &pools[highpri]; 481 } 482 483 static struct pool_workqueue *get_pwq(unsigned int cpu, 484 struct workqueue_struct *wq) 485 { 486 if (!(wq->flags & WQ_UNBOUND)) { 487 if (likely(cpu < nr_cpu_ids)) 488 return per_cpu_ptr(wq->pool_wq.pcpu, cpu); 489 } else if (likely(cpu == WORK_CPU_UNBOUND)) 490 return wq->pool_wq.single; 491 return NULL; 492 } 493 494 static unsigned int work_color_to_flags(int color) 495 { 496 return color << WORK_STRUCT_COLOR_SHIFT; 497 } 498 499 static int get_work_color(struct work_struct *work) 500 { 501 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 502 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 503 } 504 505 static int work_next_color(int color) 506 { 507 return (color + 1) % WORK_NR_COLORS; 508 } 509 510 /* 511 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 512 * contain the pointer to the queued pwq. Once execution starts, the flag 513 * is cleared and the high bits contain OFFQ flags and pool ID. 514 * 515 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 516 * and clear_work_data() can be used to set the pwq, pool or clear 517 * work->data. These functions should only be called while the work is 518 * owned - ie. while the PENDING bit is set. 519 * 520 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 521 * corresponding to a work. Pool is available once the work has been 522 * queued anywhere after initialization until it is sync canceled. pwq is 523 * available only while the work item is queued. 524 * 525 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 526 * canceled. While being canceled, a work item may have its PENDING set 527 * but stay off timer and worklist for arbitrarily long and nobody should 528 * try to steal the PENDING bit. 529 */ 530 static inline void set_work_data(struct work_struct *work, unsigned long data, 531 unsigned long flags) 532 { 533 BUG_ON(!work_pending(work)); 534 atomic_long_set(&work->data, data | flags | work_static(work)); 535 } 536 537 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 538 unsigned long extra_flags) 539 { 540 set_work_data(work, (unsigned long)pwq, 541 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 542 } 543 544 static void set_work_pool_and_keep_pending(struct work_struct *work, 545 int pool_id) 546 { 547 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 548 WORK_STRUCT_PENDING); 549 } 550 551 static void set_work_pool_and_clear_pending(struct work_struct *work, 552 int pool_id) 553 { 554 /* 555 * The following wmb is paired with the implied mb in 556 * test_and_set_bit(PENDING) and ensures all updates to @work made 557 * here are visible to and precede any updates by the next PENDING 558 * owner. 559 */ 560 smp_wmb(); 561 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 562 } 563 564 static void clear_work_data(struct work_struct *work) 565 { 566 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 567 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 568 } 569 570 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 571 { 572 unsigned long data = atomic_long_read(&work->data); 573 574 if (data & WORK_STRUCT_PWQ) 575 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 576 else 577 return NULL; 578 } 579 580 /** 581 * get_work_pool - return the worker_pool a given work was associated with 582 * @work: the work item of interest 583 * 584 * Return the worker_pool @work was last associated with. %NULL if none. 585 */ 586 static struct worker_pool *get_work_pool(struct work_struct *work) 587 { 588 unsigned long data = atomic_long_read(&work->data); 589 struct worker_pool *pool; 590 int pool_id; 591 592 if (data & WORK_STRUCT_PWQ) 593 return ((struct pool_workqueue *) 594 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 595 596 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 597 if (pool_id == WORK_OFFQ_POOL_NONE) 598 return NULL; 599 600 pool = worker_pool_by_id(pool_id); 601 WARN_ON_ONCE(!pool); 602 return pool; 603 } 604 605 /** 606 * get_work_pool_id - return the worker pool ID a given work is associated with 607 * @work: the work item of interest 608 * 609 * Return the worker_pool ID @work was last associated with. 610 * %WORK_OFFQ_POOL_NONE if none. 611 */ 612 static int get_work_pool_id(struct work_struct *work) 613 { 614 unsigned long data = atomic_long_read(&work->data); 615 616 if (data & WORK_STRUCT_PWQ) 617 return ((struct pool_workqueue *) 618 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 619 620 return data >> WORK_OFFQ_POOL_SHIFT; 621 } 622 623 static void mark_work_canceling(struct work_struct *work) 624 { 625 unsigned long pool_id = get_work_pool_id(work); 626 627 pool_id <<= WORK_OFFQ_POOL_SHIFT; 628 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 629 } 630 631 static bool work_is_canceling(struct work_struct *work) 632 { 633 unsigned long data = atomic_long_read(&work->data); 634 635 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 636 } 637 638 /* 639 * Policy functions. These define the policies on how the global worker 640 * pools are managed. Unless noted otherwise, these functions assume that 641 * they're being called with pool->lock held. 642 */ 643 644 static bool __need_more_worker(struct worker_pool *pool) 645 { 646 return !atomic_read(&pool->nr_running); 647 } 648 649 /* 650 * Need to wake up a worker? Called from anything but currently 651 * running workers. 652 * 653 * Note that, because unbound workers never contribute to nr_running, this 654 * function will always return %true for unbound pools as long as the 655 * worklist isn't empty. 656 */ 657 static bool need_more_worker(struct worker_pool *pool) 658 { 659 return !list_empty(&pool->worklist) && __need_more_worker(pool); 660 } 661 662 /* Can I start working? Called from busy but !running workers. */ 663 static bool may_start_working(struct worker_pool *pool) 664 { 665 return pool->nr_idle; 666 } 667 668 /* Do I need to keep working? Called from currently running workers. */ 669 static bool keep_working(struct worker_pool *pool) 670 { 671 return !list_empty(&pool->worklist) && 672 atomic_read(&pool->nr_running) <= 1; 673 } 674 675 /* Do we need a new worker? Called from manager. */ 676 static bool need_to_create_worker(struct worker_pool *pool) 677 { 678 return need_more_worker(pool) && !may_start_working(pool); 679 } 680 681 /* Do I need to be the manager? */ 682 static bool need_to_manage_workers(struct worker_pool *pool) 683 { 684 return need_to_create_worker(pool) || 685 (pool->flags & POOL_MANAGE_WORKERS); 686 } 687 688 /* Do we have too many workers and should some go away? */ 689 static bool too_many_workers(struct worker_pool *pool) 690 { 691 bool managing = pool->flags & POOL_MANAGING_WORKERS; 692 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 693 int nr_busy = pool->nr_workers - nr_idle; 694 695 /* 696 * nr_idle and idle_list may disagree if idle rebinding is in 697 * progress. Never return %true if idle_list is empty. 698 */ 699 if (list_empty(&pool->idle_list)) 700 return false; 701 702 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 703 } 704 705 /* 706 * Wake up functions. 707 */ 708 709 /* Return the first worker. Safe with preemption disabled */ 710 static struct worker *first_worker(struct worker_pool *pool) 711 { 712 if (unlikely(list_empty(&pool->idle_list))) 713 return NULL; 714 715 return list_first_entry(&pool->idle_list, struct worker, entry); 716 } 717 718 /** 719 * wake_up_worker - wake up an idle worker 720 * @pool: worker pool to wake worker from 721 * 722 * Wake up the first idle worker of @pool. 723 * 724 * CONTEXT: 725 * spin_lock_irq(pool->lock). 726 */ 727 static void wake_up_worker(struct worker_pool *pool) 728 { 729 struct worker *worker = first_worker(pool); 730 731 if (likely(worker)) 732 wake_up_process(worker->task); 733 } 734 735 /** 736 * wq_worker_waking_up - a worker is waking up 737 * @task: task waking up 738 * @cpu: CPU @task is waking up to 739 * 740 * This function is called during try_to_wake_up() when a worker is 741 * being awoken. 742 * 743 * CONTEXT: 744 * spin_lock_irq(rq->lock) 745 */ 746 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu) 747 { 748 struct worker *worker = kthread_data(task); 749 750 if (!(worker->flags & WORKER_NOT_RUNNING)) { 751 WARN_ON_ONCE(worker->pool->cpu != cpu); 752 atomic_inc(&worker->pool->nr_running); 753 } 754 } 755 756 /** 757 * wq_worker_sleeping - a worker is going to sleep 758 * @task: task going to sleep 759 * @cpu: CPU in question, must be the current CPU number 760 * 761 * This function is called during schedule() when a busy worker is 762 * going to sleep. Worker on the same cpu can be woken up by 763 * returning pointer to its task. 764 * 765 * CONTEXT: 766 * spin_lock_irq(rq->lock) 767 * 768 * RETURNS: 769 * Worker task on @cpu to wake up, %NULL if none. 770 */ 771 struct task_struct *wq_worker_sleeping(struct task_struct *task, 772 unsigned int cpu) 773 { 774 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 775 struct worker_pool *pool; 776 777 /* 778 * Rescuers, which may not have all the fields set up like normal 779 * workers, also reach here, let's not access anything before 780 * checking NOT_RUNNING. 781 */ 782 if (worker->flags & WORKER_NOT_RUNNING) 783 return NULL; 784 785 pool = worker->pool; 786 787 /* this can only happen on the local cpu */ 788 BUG_ON(cpu != raw_smp_processor_id()); 789 790 /* 791 * The counterpart of the following dec_and_test, implied mb, 792 * worklist not empty test sequence is in insert_work(). 793 * Please read comment there. 794 * 795 * NOT_RUNNING is clear. This means that we're bound to and 796 * running on the local cpu w/ rq lock held and preemption 797 * disabled, which in turn means that none else could be 798 * manipulating idle_list, so dereferencing idle_list without pool 799 * lock is safe. 800 */ 801 if (atomic_dec_and_test(&pool->nr_running) && 802 !list_empty(&pool->worklist)) 803 to_wakeup = first_worker(pool); 804 return to_wakeup ? to_wakeup->task : NULL; 805 } 806 807 /** 808 * worker_set_flags - set worker flags and adjust nr_running accordingly 809 * @worker: self 810 * @flags: flags to set 811 * @wakeup: wakeup an idle worker if necessary 812 * 813 * Set @flags in @worker->flags and adjust nr_running accordingly. If 814 * nr_running becomes zero and @wakeup is %true, an idle worker is 815 * woken up. 816 * 817 * CONTEXT: 818 * spin_lock_irq(pool->lock) 819 */ 820 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 821 bool wakeup) 822 { 823 struct worker_pool *pool = worker->pool; 824 825 WARN_ON_ONCE(worker->task != current); 826 827 /* 828 * If transitioning into NOT_RUNNING, adjust nr_running and 829 * wake up an idle worker as necessary if requested by 830 * @wakeup. 831 */ 832 if ((flags & WORKER_NOT_RUNNING) && 833 !(worker->flags & WORKER_NOT_RUNNING)) { 834 if (wakeup) { 835 if (atomic_dec_and_test(&pool->nr_running) && 836 !list_empty(&pool->worklist)) 837 wake_up_worker(pool); 838 } else 839 atomic_dec(&pool->nr_running); 840 } 841 842 worker->flags |= flags; 843 } 844 845 /** 846 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 847 * @worker: self 848 * @flags: flags to clear 849 * 850 * Clear @flags in @worker->flags and adjust nr_running accordingly. 851 * 852 * CONTEXT: 853 * spin_lock_irq(pool->lock) 854 */ 855 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 856 { 857 struct worker_pool *pool = worker->pool; 858 unsigned int oflags = worker->flags; 859 860 WARN_ON_ONCE(worker->task != current); 861 862 worker->flags &= ~flags; 863 864 /* 865 * If transitioning out of NOT_RUNNING, increment nr_running. Note 866 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 867 * of multiple flags, not a single flag. 868 */ 869 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 870 if (!(worker->flags & WORKER_NOT_RUNNING)) 871 atomic_inc(&pool->nr_running); 872 } 873 874 /** 875 * find_worker_executing_work - find worker which is executing a work 876 * @pool: pool of interest 877 * @work: work to find worker for 878 * 879 * Find a worker which is executing @work on @pool by searching 880 * @pool->busy_hash which is keyed by the address of @work. For a worker 881 * to match, its current execution should match the address of @work and 882 * its work function. This is to avoid unwanted dependency between 883 * unrelated work executions through a work item being recycled while still 884 * being executed. 885 * 886 * This is a bit tricky. A work item may be freed once its execution 887 * starts and nothing prevents the freed area from being recycled for 888 * another work item. If the same work item address ends up being reused 889 * before the original execution finishes, workqueue will identify the 890 * recycled work item as currently executing and make it wait until the 891 * current execution finishes, introducing an unwanted dependency. 892 * 893 * This function checks the work item address, work function and workqueue 894 * to avoid false positives. Note that this isn't complete as one may 895 * construct a work function which can introduce dependency onto itself 896 * through a recycled work item. Well, if somebody wants to shoot oneself 897 * in the foot that badly, there's only so much we can do, and if such 898 * deadlock actually occurs, it should be easy to locate the culprit work 899 * function. 900 * 901 * CONTEXT: 902 * spin_lock_irq(pool->lock). 903 * 904 * RETURNS: 905 * Pointer to worker which is executing @work if found, NULL 906 * otherwise. 907 */ 908 static struct worker *find_worker_executing_work(struct worker_pool *pool, 909 struct work_struct *work) 910 { 911 struct worker *worker; 912 struct hlist_node *tmp; 913 914 hash_for_each_possible(pool->busy_hash, worker, tmp, hentry, 915 (unsigned long)work) 916 if (worker->current_work == work && 917 worker->current_func == work->func) 918 return worker; 919 920 return NULL; 921 } 922 923 /** 924 * move_linked_works - move linked works to a list 925 * @work: start of series of works to be scheduled 926 * @head: target list to append @work to 927 * @nextp: out paramter for nested worklist walking 928 * 929 * Schedule linked works starting from @work to @head. Work series to 930 * be scheduled starts at @work and includes any consecutive work with 931 * WORK_STRUCT_LINKED set in its predecessor. 932 * 933 * If @nextp is not NULL, it's updated to point to the next work of 934 * the last scheduled work. This allows move_linked_works() to be 935 * nested inside outer list_for_each_entry_safe(). 936 * 937 * CONTEXT: 938 * spin_lock_irq(pool->lock). 939 */ 940 static void move_linked_works(struct work_struct *work, struct list_head *head, 941 struct work_struct **nextp) 942 { 943 struct work_struct *n; 944 945 /* 946 * Linked worklist will always end before the end of the list, 947 * use NULL for list head. 948 */ 949 list_for_each_entry_safe_from(work, n, NULL, entry) { 950 list_move_tail(&work->entry, head); 951 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 952 break; 953 } 954 955 /* 956 * If we're already inside safe list traversal and have moved 957 * multiple works to the scheduled queue, the next position 958 * needs to be updated. 959 */ 960 if (nextp) 961 *nextp = n; 962 } 963 964 static void pwq_activate_delayed_work(struct work_struct *work) 965 { 966 struct pool_workqueue *pwq = get_work_pwq(work); 967 968 trace_workqueue_activate_work(work); 969 move_linked_works(work, &pwq->pool->worklist, NULL); 970 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 971 pwq->nr_active++; 972 } 973 974 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 975 { 976 struct work_struct *work = list_first_entry(&pwq->delayed_works, 977 struct work_struct, entry); 978 979 pwq_activate_delayed_work(work); 980 } 981 982 /** 983 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 984 * @pwq: pwq of interest 985 * @color: color of work which left the queue 986 * 987 * A work either has completed or is removed from pending queue, 988 * decrement nr_in_flight of its pwq and handle workqueue flushing. 989 * 990 * CONTEXT: 991 * spin_lock_irq(pool->lock). 992 */ 993 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 994 { 995 /* ignore uncolored works */ 996 if (color == WORK_NO_COLOR) 997 return; 998 999 pwq->nr_in_flight[color]--; 1000 1001 pwq->nr_active--; 1002 if (!list_empty(&pwq->delayed_works)) { 1003 /* one down, submit a delayed one */ 1004 if (pwq->nr_active < pwq->max_active) 1005 pwq_activate_first_delayed(pwq); 1006 } 1007 1008 /* is flush in progress and are we at the flushing tip? */ 1009 if (likely(pwq->flush_color != color)) 1010 return; 1011 1012 /* are there still in-flight works? */ 1013 if (pwq->nr_in_flight[color]) 1014 return; 1015 1016 /* this pwq is done, clear flush_color */ 1017 pwq->flush_color = -1; 1018 1019 /* 1020 * If this was the last pwq, wake up the first flusher. It 1021 * will handle the rest. 1022 */ 1023 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1024 complete(&pwq->wq->first_flusher->done); 1025 } 1026 1027 /** 1028 * try_to_grab_pending - steal work item from worklist and disable irq 1029 * @work: work item to steal 1030 * @is_dwork: @work is a delayed_work 1031 * @flags: place to store irq state 1032 * 1033 * Try to grab PENDING bit of @work. This function can handle @work in any 1034 * stable state - idle, on timer or on worklist. Return values are 1035 * 1036 * 1 if @work was pending and we successfully stole PENDING 1037 * 0 if @work was idle and we claimed PENDING 1038 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1039 * -ENOENT if someone else is canceling @work, this state may persist 1040 * for arbitrarily long 1041 * 1042 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1043 * interrupted while holding PENDING and @work off queue, irq must be 1044 * disabled on entry. This, combined with delayed_work->timer being 1045 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1046 * 1047 * On successful return, >= 0, irq is disabled and the caller is 1048 * responsible for releasing it using local_irq_restore(*@flags). 1049 * 1050 * This function is safe to call from any context including IRQ handler. 1051 */ 1052 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1053 unsigned long *flags) 1054 { 1055 struct worker_pool *pool; 1056 struct pool_workqueue *pwq; 1057 1058 local_irq_save(*flags); 1059 1060 /* try to steal the timer if it exists */ 1061 if (is_dwork) { 1062 struct delayed_work *dwork = to_delayed_work(work); 1063 1064 /* 1065 * dwork->timer is irqsafe. If del_timer() fails, it's 1066 * guaranteed that the timer is not queued anywhere and not 1067 * running on the local CPU. 1068 */ 1069 if (likely(del_timer(&dwork->timer))) 1070 return 1; 1071 } 1072 1073 /* try to claim PENDING the normal way */ 1074 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1075 return 0; 1076 1077 /* 1078 * The queueing is in progress, or it is already queued. Try to 1079 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1080 */ 1081 pool = get_work_pool(work); 1082 if (!pool) 1083 goto fail; 1084 1085 spin_lock(&pool->lock); 1086 /* 1087 * work->data is guaranteed to point to pwq only while the work 1088 * item is queued on pwq->wq, and both updating work->data to point 1089 * to pwq on queueing and to pool on dequeueing are done under 1090 * pwq->pool->lock. This in turn guarantees that, if work->data 1091 * points to pwq which is associated with a locked pool, the work 1092 * item is currently queued on that pool. 1093 */ 1094 pwq = get_work_pwq(work); 1095 if (pwq && pwq->pool == pool) { 1096 debug_work_deactivate(work); 1097 1098 /* 1099 * A delayed work item cannot be grabbed directly because 1100 * it might have linked NO_COLOR work items which, if left 1101 * on the delayed_list, will confuse pwq->nr_active 1102 * management later on and cause stall. Make sure the work 1103 * item is activated before grabbing. 1104 */ 1105 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1106 pwq_activate_delayed_work(work); 1107 1108 list_del_init(&work->entry); 1109 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work)); 1110 1111 /* work->data points to pwq iff queued, point to pool */ 1112 set_work_pool_and_keep_pending(work, pool->id); 1113 1114 spin_unlock(&pool->lock); 1115 return 1; 1116 } 1117 spin_unlock(&pool->lock); 1118 fail: 1119 local_irq_restore(*flags); 1120 if (work_is_canceling(work)) 1121 return -ENOENT; 1122 cpu_relax(); 1123 return -EAGAIN; 1124 } 1125 1126 /** 1127 * insert_work - insert a work into a pool 1128 * @pwq: pwq @work belongs to 1129 * @work: work to insert 1130 * @head: insertion point 1131 * @extra_flags: extra WORK_STRUCT_* flags to set 1132 * 1133 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1134 * work_struct flags. 1135 * 1136 * CONTEXT: 1137 * spin_lock_irq(pool->lock). 1138 */ 1139 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1140 struct list_head *head, unsigned int extra_flags) 1141 { 1142 struct worker_pool *pool = pwq->pool; 1143 1144 /* we own @work, set data and link */ 1145 set_work_pwq(work, pwq, extra_flags); 1146 list_add_tail(&work->entry, head); 1147 1148 /* 1149 * Ensure either worker_sched_deactivated() sees the above 1150 * list_add_tail() or we see zero nr_running to avoid workers 1151 * lying around lazily while there are works to be processed. 1152 */ 1153 smp_mb(); 1154 1155 if (__need_more_worker(pool)) 1156 wake_up_worker(pool); 1157 } 1158 1159 /* 1160 * Test whether @work is being queued from another work executing on the 1161 * same workqueue. 1162 */ 1163 static bool is_chained_work(struct workqueue_struct *wq) 1164 { 1165 struct worker *worker; 1166 1167 worker = current_wq_worker(); 1168 /* 1169 * Return %true iff I'm a worker execuing a work item on @wq. If 1170 * I'm @worker, it's safe to dereference it without locking. 1171 */ 1172 return worker && worker->current_pwq->wq == wq; 1173 } 1174 1175 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq, 1176 struct work_struct *work) 1177 { 1178 struct pool_workqueue *pwq; 1179 struct list_head *worklist; 1180 unsigned int work_flags; 1181 unsigned int req_cpu = cpu; 1182 1183 /* 1184 * While a work item is PENDING && off queue, a task trying to 1185 * steal the PENDING will busy-loop waiting for it to either get 1186 * queued or lose PENDING. Grabbing PENDING and queueing should 1187 * happen with IRQ disabled. 1188 */ 1189 WARN_ON_ONCE(!irqs_disabled()); 1190 1191 debug_work_activate(work); 1192 1193 /* if dying, only works from the same workqueue are allowed */ 1194 if (unlikely(wq->flags & WQ_DRAINING) && 1195 WARN_ON_ONCE(!is_chained_work(wq))) 1196 return; 1197 1198 /* determine the pwq to use */ 1199 if (!(wq->flags & WQ_UNBOUND)) { 1200 struct worker_pool *last_pool; 1201 1202 if (cpu == WORK_CPU_UNBOUND) 1203 cpu = raw_smp_processor_id(); 1204 1205 /* 1206 * It's multi cpu. If @work was previously on a different 1207 * cpu, it might still be running there, in which case the 1208 * work needs to be queued on that cpu to guarantee 1209 * non-reentrancy. 1210 */ 1211 pwq = get_pwq(cpu, wq); 1212 last_pool = get_work_pool(work); 1213 1214 if (last_pool && last_pool != pwq->pool) { 1215 struct worker *worker; 1216 1217 spin_lock(&last_pool->lock); 1218 1219 worker = find_worker_executing_work(last_pool, work); 1220 1221 if (worker && worker->current_pwq->wq == wq) { 1222 pwq = get_pwq(last_pool->cpu, wq); 1223 } else { 1224 /* meh... not running there, queue here */ 1225 spin_unlock(&last_pool->lock); 1226 spin_lock(&pwq->pool->lock); 1227 } 1228 } else { 1229 spin_lock(&pwq->pool->lock); 1230 } 1231 } else { 1232 pwq = get_pwq(WORK_CPU_UNBOUND, wq); 1233 spin_lock(&pwq->pool->lock); 1234 } 1235 1236 /* pwq determined, queue */ 1237 trace_workqueue_queue_work(req_cpu, pwq, work); 1238 1239 if (WARN_ON(!list_empty(&work->entry))) { 1240 spin_unlock(&pwq->pool->lock); 1241 return; 1242 } 1243 1244 pwq->nr_in_flight[pwq->work_color]++; 1245 work_flags = work_color_to_flags(pwq->work_color); 1246 1247 if (likely(pwq->nr_active < pwq->max_active)) { 1248 trace_workqueue_activate_work(work); 1249 pwq->nr_active++; 1250 worklist = &pwq->pool->worklist; 1251 } else { 1252 work_flags |= WORK_STRUCT_DELAYED; 1253 worklist = &pwq->delayed_works; 1254 } 1255 1256 insert_work(pwq, work, worklist, work_flags); 1257 1258 spin_unlock(&pwq->pool->lock); 1259 } 1260 1261 /** 1262 * queue_work_on - queue work on specific cpu 1263 * @cpu: CPU number to execute work on 1264 * @wq: workqueue to use 1265 * @work: work to queue 1266 * 1267 * Returns %false if @work was already on a queue, %true otherwise. 1268 * 1269 * We queue the work to a specific CPU, the caller must ensure it 1270 * can't go away. 1271 */ 1272 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1273 struct work_struct *work) 1274 { 1275 bool ret = false; 1276 unsigned long flags; 1277 1278 local_irq_save(flags); 1279 1280 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1281 __queue_work(cpu, wq, work); 1282 ret = true; 1283 } 1284 1285 local_irq_restore(flags); 1286 return ret; 1287 } 1288 EXPORT_SYMBOL_GPL(queue_work_on); 1289 1290 /** 1291 * queue_work - queue work on a workqueue 1292 * @wq: workqueue to use 1293 * @work: work to queue 1294 * 1295 * Returns %false if @work was already on a queue, %true otherwise. 1296 * 1297 * We queue the work to the CPU on which it was submitted, but if the CPU dies 1298 * it can be processed by another CPU. 1299 */ 1300 bool queue_work(struct workqueue_struct *wq, struct work_struct *work) 1301 { 1302 return queue_work_on(WORK_CPU_UNBOUND, wq, work); 1303 } 1304 EXPORT_SYMBOL_GPL(queue_work); 1305 1306 void delayed_work_timer_fn(unsigned long __data) 1307 { 1308 struct delayed_work *dwork = (struct delayed_work *)__data; 1309 1310 /* should have been called from irqsafe timer with irq already off */ 1311 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1312 } 1313 EXPORT_SYMBOL(delayed_work_timer_fn); 1314 1315 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1316 struct delayed_work *dwork, unsigned long delay) 1317 { 1318 struct timer_list *timer = &dwork->timer; 1319 struct work_struct *work = &dwork->work; 1320 1321 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1322 timer->data != (unsigned long)dwork); 1323 WARN_ON_ONCE(timer_pending(timer)); 1324 WARN_ON_ONCE(!list_empty(&work->entry)); 1325 1326 /* 1327 * If @delay is 0, queue @dwork->work immediately. This is for 1328 * both optimization and correctness. The earliest @timer can 1329 * expire is on the closest next tick and delayed_work users depend 1330 * on that there's no such delay when @delay is 0. 1331 */ 1332 if (!delay) { 1333 __queue_work(cpu, wq, &dwork->work); 1334 return; 1335 } 1336 1337 timer_stats_timer_set_start_info(&dwork->timer); 1338 1339 dwork->wq = wq; 1340 dwork->cpu = cpu; 1341 timer->expires = jiffies + delay; 1342 1343 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1344 add_timer_on(timer, cpu); 1345 else 1346 add_timer(timer); 1347 } 1348 1349 /** 1350 * queue_delayed_work_on - queue work on specific CPU after delay 1351 * @cpu: CPU number to execute work on 1352 * @wq: workqueue to use 1353 * @dwork: work to queue 1354 * @delay: number of jiffies to wait before queueing 1355 * 1356 * Returns %false if @work was already on a queue, %true otherwise. If 1357 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1358 * execution. 1359 */ 1360 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1361 struct delayed_work *dwork, unsigned long delay) 1362 { 1363 struct work_struct *work = &dwork->work; 1364 bool ret = false; 1365 unsigned long flags; 1366 1367 /* read the comment in __queue_work() */ 1368 local_irq_save(flags); 1369 1370 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1371 __queue_delayed_work(cpu, wq, dwork, delay); 1372 ret = true; 1373 } 1374 1375 local_irq_restore(flags); 1376 return ret; 1377 } 1378 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 1379 1380 /** 1381 * queue_delayed_work - queue work on a workqueue after delay 1382 * @wq: workqueue to use 1383 * @dwork: delayable work to queue 1384 * @delay: number of jiffies to wait before queueing 1385 * 1386 * Equivalent to queue_delayed_work_on() but tries to use the local CPU. 1387 */ 1388 bool queue_delayed_work(struct workqueue_struct *wq, 1389 struct delayed_work *dwork, unsigned long delay) 1390 { 1391 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); 1392 } 1393 EXPORT_SYMBOL_GPL(queue_delayed_work); 1394 1395 /** 1396 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1397 * @cpu: CPU number to execute work on 1398 * @wq: workqueue to use 1399 * @dwork: work to queue 1400 * @delay: number of jiffies to wait before queueing 1401 * 1402 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1403 * modify @dwork's timer so that it expires after @delay. If @delay is 1404 * zero, @work is guaranteed to be scheduled immediately regardless of its 1405 * current state. 1406 * 1407 * Returns %false if @dwork was idle and queued, %true if @dwork was 1408 * pending and its timer was modified. 1409 * 1410 * This function is safe to call from any context including IRQ handler. 1411 * See try_to_grab_pending() for details. 1412 */ 1413 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1414 struct delayed_work *dwork, unsigned long delay) 1415 { 1416 unsigned long flags; 1417 int ret; 1418 1419 do { 1420 ret = try_to_grab_pending(&dwork->work, true, &flags); 1421 } while (unlikely(ret == -EAGAIN)); 1422 1423 if (likely(ret >= 0)) { 1424 __queue_delayed_work(cpu, wq, dwork, delay); 1425 local_irq_restore(flags); 1426 } 1427 1428 /* -ENOENT from try_to_grab_pending() becomes %true */ 1429 return ret; 1430 } 1431 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1432 1433 /** 1434 * mod_delayed_work - modify delay of or queue a delayed work 1435 * @wq: workqueue to use 1436 * @dwork: work to queue 1437 * @delay: number of jiffies to wait before queueing 1438 * 1439 * mod_delayed_work_on() on local CPU. 1440 */ 1441 bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, 1442 unsigned long delay) 1443 { 1444 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); 1445 } 1446 EXPORT_SYMBOL_GPL(mod_delayed_work); 1447 1448 /** 1449 * worker_enter_idle - enter idle state 1450 * @worker: worker which is entering idle state 1451 * 1452 * @worker is entering idle state. Update stats and idle timer if 1453 * necessary. 1454 * 1455 * LOCKING: 1456 * spin_lock_irq(pool->lock). 1457 */ 1458 static void worker_enter_idle(struct worker *worker) 1459 { 1460 struct worker_pool *pool = worker->pool; 1461 1462 BUG_ON(worker->flags & WORKER_IDLE); 1463 BUG_ON(!list_empty(&worker->entry) && 1464 (worker->hentry.next || worker->hentry.pprev)); 1465 1466 /* can't use worker_set_flags(), also called from start_worker() */ 1467 worker->flags |= WORKER_IDLE; 1468 pool->nr_idle++; 1469 worker->last_active = jiffies; 1470 1471 /* idle_list is LIFO */ 1472 list_add(&worker->entry, &pool->idle_list); 1473 1474 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1475 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1476 1477 /* 1478 * Sanity check nr_running. Because wq_unbind_fn() releases 1479 * pool->lock between setting %WORKER_UNBOUND and zapping 1480 * nr_running, the warning may trigger spuriously. Check iff 1481 * unbind is not in progress. 1482 */ 1483 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1484 pool->nr_workers == pool->nr_idle && 1485 atomic_read(&pool->nr_running)); 1486 } 1487 1488 /** 1489 * worker_leave_idle - leave idle state 1490 * @worker: worker which is leaving idle state 1491 * 1492 * @worker is leaving idle state. Update stats. 1493 * 1494 * LOCKING: 1495 * spin_lock_irq(pool->lock). 1496 */ 1497 static void worker_leave_idle(struct worker *worker) 1498 { 1499 struct worker_pool *pool = worker->pool; 1500 1501 BUG_ON(!(worker->flags & WORKER_IDLE)); 1502 worker_clr_flags(worker, WORKER_IDLE); 1503 pool->nr_idle--; 1504 list_del_init(&worker->entry); 1505 } 1506 1507 /** 1508 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool 1509 * @worker: self 1510 * 1511 * Works which are scheduled while the cpu is online must at least be 1512 * scheduled to a worker which is bound to the cpu so that if they are 1513 * flushed from cpu callbacks while cpu is going down, they are 1514 * guaranteed to execute on the cpu. 1515 * 1516 * This function is to be used by rogue workers and rescuers to bind 1517 * themselves to the target cpu and may race with cpu going down or 1518 * coming online. kthread_bind() can't be used because it may put the 1519 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1520 * verbatim as it's best effort and blocking and pool may be 1521 * [dis]associated in the meantime. 1522 * 1523 * This function tries set_cpus_allowed() and locks pool and verifies the 1524 * binding against %POOL_DISASSOCIATED which is set during 1525 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker 1526 * enters idle state or fetches works without dropping lock, it can 1527 * guarantee the scheduling requirement described in the first paragraph. 1528 * 1529 * CONTEXT: 1530 * Might sleep. Called without any lock but returns with pool->lock 1531 * held. 1532 * 1533 * RETURNS: 1534 * %true if the associated pool is online (@worker is successfully 1535 * bound), %false if offline. 1536 */ 1537 static bool worker_maybe_bind_and_lock(struct worker *worker) 1538 __acquires(&pool->lock) 1539 { 1540 struct worker_pool *pool = worker->pool; 1541 struct task_struct *task = worker->task; 1542 1543 while (true) { 1544 /* 1545 * The following call may fail, succeed or succeed 1546 * without actually migrating the task to the cpu if 1547 * it races with cpu hotunplug operation. Verify 1548 * against POOL_DISASSOCIATED. 1549 */ 1550 if (!(pool->flags & POOL_DISASSOCIATED)) 1551 set_cpus_allowed_ptr(task, get_cpu_mask(pool->cpu)); 1552 1553 spin_lock_irq(&pool->lock); 1554 if (pool->flags & POOL_DISASSOCIATED) 1555 return false; 1556 if (task_cpu(task) == pool->cpu && 1557 cpumask_equal(¤t->cpus_allowed, 1558 get_cpu_mask(pool->cpu))) 1559 return true; 1560 spin_unlock_irq(&pool->lock); 1561 1562 /* 1563 * We've raced with CPU hot[un]plug. Give it a breather 1564 * and retry migration. cond_resched() is required here; 1565 * otherwise, we might deadlock against cpu_stop trying to 1566 * bring down the CPU on non-preemptive kernel. 1567 */ 1568 cpu_relax(); 1569 cond_resched(); 1570 } 1571 } 1572 1573 /* 1574 * Rebind an idle @worker to its CPU. worker_thread() will test 1575 * list_empty(@worker->entry) before leaving idle and call this function. 1576 */ 1577 static void idle_worker_rebind(struct worker *worker) 1578 { 1579 /* CPU may go down again inbetween, clear UNBOUND only on success */ 1580 if (worker_maybe_bind_and_lock(worker)) 1581 worker_clr_flags(worker, WORKER_UNBOUND); 1582 1583 /* rebind complete, become available again */ 1584 list_add(&worker->entry, &worker->pool->idle_list); 1585 spin_unlock_irq(&worker->pool->lock); 1586 } 1587 1588 /* 1589 * Function for @worker->rebind.work used to rebind unbound busy workers to 1590 * the associated cpu which is coming back online. This is scheduled by 1591 * cpu up but can race with other cpu hotplug operations and may be 1592 * executed twice without intervening cpu down. 1593 */ 1594 static void busy_worker_rebind_fn(struct work_struct *work) 1595 { 1596 struct worker *worker = container_of(work, struct worker, rebind_work); 1597 1598 if (worker_maybe_bind_and_lock(worker)) 1599 worker_clr_flags(worker, WORKER_UNBOUND); 1600 1601 spin_unlock_irq(&worker->pool->lock); 1602 } 1603 1604 /** 1605 * rebind_workers - rebind all workers of a pool to the associated CPU 1606 * @pool: pool of interest 1607 * 1608 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding 1609 * is different for idle and busy ones. 1610 * 1611 * Idle ones will be removed from the idle_list and woken up. They will 1612 * add themselves back after completing rebind. This ensures that the 1613 * idle_list doesn't contain any unbound workers when re-bound busy workers 1614 * try to perform local wake-ups for concurrency management. 1615 * 1616 * Busy workers can rebind after they finish their current work items. 1617 * Queueing the rebind work item at the head of the scheduled list is 1618 * enough. Note that nr_running will be properly bumped as busy workers 1619 * rebind. 1620 * 1621 * On return, all non-manager workers are scheduled for rebind - see 1622 * manage_workers() for the manager special case. Any idle worker 1623 * including the manager will not appear on @idle_list until rebind is 1624 * complete, making local wake-ups safe. 1625 */ 1626 static void rebind_workers(struct worker_pool *pool) 1627 { 1628 struct worker *worker, *n; 1629 struct hlist_node *pos; 1630 int i; 1631 1632 lockdep_assert_held(&pool->assoc_mutex); 1633 lockdep_assert_held(&pool->lock); 1634 1635 /* dequeue and kick idle ones */ 1636 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) { 1637 /* 1638 * idle workers should be off @pool->idle_list until rebind 1639 * is complete to avoid receiving premature local wake-ups. 1640 */ 1641 list_del_init(&worker->entry); 1642 1643 /* 1644 * worker_thread() will see the above dequeuing and call 1645 * idle_worker_rebind(). 1646 */ 1647 wake_up_process(worker->task); 1648 } 1649 1650 /* rebind busy workers */ 1651 for_each_busy_worker(worker, i, pos, pool) { 1652 struct work_struct *rebind_work = &worker->rebind_work; 1653 struct workqueue_struct *wq; 1654 1655 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT, 1656 work_data_bits(rebind_work))) 1657 continue; 1658 1659 debug_work_activate(rebind_work); 1660 1661 /* 1662 * wq doesn't really matter but let's keep @worker->pool 1663 * and @pwq->pool consistent for sanity. 1664 */ 1665 if (std_worker_pool_pri(worker->pool)) 1666 wq = system_highpri_wq; 1667 else 1668 wq = system_wq; 1669 1670 insert_work(get_pwq(pool->cpu, wq), rebind_work, 1671 worker->scheduled.next, 1672 work_color_to_flags(WORK_NO_COLOR)); 1673 } 1674 } 1675 1676 static struct worker *alloc_worker(void) 1677 { 1678 struct worker *worker; 1679 1680 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1681 if (worker) { 1682 INIT_LIST_HEAD(&worker->entry); 1683 INIT_LIST_HEAD(&worker->scheduled); 1684 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn); 1685 /* on creation a worker is in !idle && prep state */ 1686 worker->flags = WORKER_PREP; 1687 } 1688 return worker; 1689 } 1690 1691 /** 1692 * create_worker - create a new workqueue worker 1693 * @pool: pool the new worker will belong to 1694 * 1695 * Create a new worker which is bound to @pool. The returned worker 1696 * can be started by calling start_worker() or destroyed using 1697 * destroy_worker(). 1698 * 1699 * CONTEXT: 1700 * Might sleep. Does GFP_KERNEL allocations. 1701 * 1702 * RETURNS: 1703 * Pointer to the newly created worker. 1704 */ 1705 static struct worker *create_worker(struct worker_pool *pool) 1706 { 1707 const char *pri = std_worker_pool_pri(pool) ? "H" : ""; 1708 struct worker *worker = NULL; 1709 int id = -1; 1710 1711 spin_lock_irq(&pool->lock); 1712 while (ida_get_new(&pool->worker_ida, &id)) { 1713 spin_unlock_irq(&pool->lock); 1714 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL)) 1715 goto fail; 1716 spin_lock_irq(&pool->lock); 1717 } 1718 spin_unlock_irq(&pool->lock); 1719 1720 worker = alloc_worker(); 1721 if (!worker) 1722 goto fail; 1723 1724 worker->pool = pool; 1725 worker->id = id; 1726 1727 if (pool->cpu != WORK_CPU_UNBOUND) 1728 worker->task = kthread_create_on_node(worker_thread, 1729 worker, cpu_to_node(pool->cpu), 1730 "kworker/%u:%d%s", pool->cpu, id, pri); 1731 else 1732 worker->task = kthread_create(worker_thread, worker, 1733 "kworker/u:%d%s", id, pri); 1734 if (IS_ERR(worker->task)) 1735 goto fail; 1736 1737 if (std_worker_pool_pri(pool)) 1738 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL); 1739 1740 /* 1741 * Determine CPU binding of the new worker depending on 1742 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the 1743 * flag remains stable across this function. See the comments 1744 * above the flag definition for details. 1745 * 1746 * As an unbound worker may later become a regular one if CPU comes 1747 * online, make sure every worker has %PF_THREAD_BOUND set. 1748 */ 1749 if (!(pool->flags & POOL_DISASSOCIATED)) { 1750 kthread_bind(worker->task, pool->cpu); 1751 } else { 1752 worker->task->flags |= PF_THREAD_BOUND; 1753 worker->flags |= WORKER_UNBOUND; 1754 } 1755 1756 return worker; 1757 fail: 1758 if (id >= 0) { 1759 spin_lock_irq(&pool->lock); 1760 ida_remove(&pool->worker_ida, id); 1761 spin_unlock_irq(&pool->lock); 1762 } 1763 kfree(worker); 1764 return NULL; 1765 } 1766 1767 /** 1768 * start_worker - start a newly created worker 1769 * @worker: worker to start 1770 * 1771 * Make the pool aware of @worker and start it. 1772 * 1773 * CONTEXT: 1774 * spin_lock_irq(pool->lock). 1775 */ 1776 static void start_worker(struct worker *worker) 1777 { 1778 worker->flags |= WORKER_STARTED; 1779 worker->pool->nr_workers++; 1780 worker_enter_idle(worker); 1781 wake_up_process(worker->task); 1782 } 1783 1784 /** 1785 * destroy_worker - destroy a workqueue worker 1786 * @worker: worker to be destroyed 1787 * 1788 * Destroy @worker and adjust @pool stats accordingly. 1789 * 1790 * CONTEXT: 1791 * spin_lock_irq(pool->lock) which is released and regrabbed. 1792 */ 1793 static void destroy_worker(struct worker *worker) 1794 { 1795 struct worker_pool *pool = worker->pool; 1796 int id = worker->id; 1797 1798 /* sanity check frenzy */ 1799 BUG_ON(worker->current_work); 1800 BUG_ON(!list_empty(&worker->scheduled)); 1801 1802 if (worker->flags & WORKER_STARTED) 1803 pool->nr_workers--; 1804 if (worker->flags & WORKER_IDLE) 1805 pool->nr_idle--; 1806 1807 list_del_init(&worker->entry); 1808 worker->flags |= WORKER_DIE; 1809 1810 spin_unlock_irq(&pool->lock); 1811 1812 kthread_stop(worker->task); 1813 kfree(worker); 1814 1815 spin_lock_irq(&pool->lock); 1816 ida_remove(&pool->worker_ida, id); 1817 } 1818 1819 static void idle_worker_timeout(unsigned long __pool) 1820 { 1821 struct worker_pool *pool = (void *)__pool; 1822 1823 spin_lock_irq(&pool->lock); 1824 1825 if (too_many_workers(pool)) { 1826 struct worker *worker; 1827 unsigned long expires; 1828 1829 /* idle_list is kept in LIFO order, check the last one */ 1830 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1831 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1832 1833 if (time_before(jiffies, expires)) 1834 mod_timer(&pool->idle_timer, expires); 1835 else { 1836 /* it's been idle for too long, wake up manager */ 1837 pool->flags |= POOL_MANAGE_WORKERS; 1838 wake_up_worker(pool); 1839 } 1840 } 1841 1842 spin_unlock_irq(&pool->lock); 1843 } 1844 1845 static bool send_mayday(struct work_struct *work) 1846 { 1847 struct pool_workqueue *pwq = get_work_pwq(work); 1848 struct workqueue_struct *wq = pwq->wq; 1849 unsigned int cpu; 1850 1851 if (!(wq->flags & WQ_RESCUER)) 1852 return false; 1853 1854 /* mayday mayday mayday */ 1855 cpu = pwq->pool->cpu; 1856 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */ 1857 if (cpu == WORK_CPU_UNBOUND) 1858 cpu = 0; 1859 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask)) 1860 wake_up_process(wq->rescuer->task); 1861 return true; 1862 } 1863 1864 static void pool_mayday_timeout(unsigned long __pool) 1865 { 1866 struct worker_pool *pool = (void *)__pool; 1867 struct work_struct *work; 1868 1869 spin_lock_irq(&pool->lock); 1870 1871 if (need_to_create_worker(pool)) { 1872 /* 1873 * We've been trying to create a new worker but 1874 * haven't been successful. We might be hitting an 1875 * allocation deadlock. Send distress signals to 1876 * rescuers. 1877 */ 1878 list_for_each_entry(work, &pool->worklist, entry) 1879 send_mayday(work); 1880 } 1881 1882 spin_unlock_irq(&pool->lock); 1883 1884 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1885 } 1886 1887 /** 1888 * maybe_create_worker - create a new worker if necessary 1889 * @pool: pool to create a new worker for 1890 * 1891 * Create a new worker for @pool if necessary. @pool is guaranteed to 1892 * have at least one idle worker on return from this function. If 1893 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1894 * sent to all rescuers with works scheduled on @pool to resolve 1895 * possible allocation deadlock. 1896 * 1897 * On return, need_to_create_worker() is guaranteed to be false and 1898 * may_start_working() true. 1899 * 1900 * LOCKING: 1901 * spin_lock_irq(pool->lock) which may be released and regrabbed 1902 * multiple times. Does GFP_KERNEL allocations. Called only from 1903 * manager. 1904 * 1905 * RETURNS: 1906 * false if no action was taken and pool->lock stayed locked, true 1907 * otherwise. 1908 */ 1909 static bool maybe_create_worker(struct worker_pool *pool) 1910 __releases(&pool->lock) 1911 __acquires(&pool->lock) 1912 { 1913 if (!need_to_create_worker(pool)) 1914 return false; 1915 restart: 1916 spin_unlock_irq(&pool->lock); 1917 1918 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1919 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1920 1921 while (true) { 1922 struct worker *worker; 1923 1924 worker = create_worker(pool); 1925 if (worker) { 1926 del_timer_sync(&pool->mayday_timer); 1927 spin_lock_irq(&pool->lock); 1928 start_worker(worker); 1929 BUG_ON(need_to_create_worker(pool)); 1930 return true; 1931 } 1932 1933 if (!need_to_create_worker(pool)) 1934 break; 1935 1936 __set_current_state(TASK_INTERRUPTIBLE); 1937 schedule_timeout(CREATE_COOLDOWN); 1938 1939 if (!need_to_create_worker(pool)) 1940 break; 1941 } 1942 1943 del_timer_sync(&pool->mayday_timer); 1944 spin_lock_irq(&pool->lock); 1945 if (need_to_create_worker(pool)) 1946 goto restart; 1947 return true; 1948 } 1949 1950 /** 1951 * maybe_destroy_worker - destroy workers which have been idle for a while 1952 * @pool: pool to destroy workers for 1953 * 1954 * Destroy @pool workers which have been idle for longer than 1955 * IDLE_WORKER_TIMEOUT. 1956 * 1957 * LOCKING: 1958 * spin_lock_irq(pool->lock) which may be released and regrabbed 1959 * multiple times. Called only from manager. 1960 * 1961 * RETURNS: 1962 * false if no action was taken and pool->lock stayed locked, true 1963 * otherwise. 1964 */ 1965 static bool maybe_destroy_workers(struct worker_pool *pool) 1966 { 1967 bool ret = false; 1968 1969 while (too_many_workers(pool)) { 1970 struct worker *worker; 1971 unsigned long expires; 1972 1973 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1974 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1975 1976 if (time_before(jiffies, expires)) { 1977 mod_timer(&pool->idle_timer, expires); 1978 break; 1979 } 1980 1981 destroy_worker(worker); 1982 ret = true; 1983 } 1984 1985 return ret; 1986 } 1987 1988 /** 1989 * manage_workers - manage worker pool 1990 * @worker: self 1991 * 1992 * Assume the manager role and manage the worker pool @worker belongs 1993 * to. At any given time, there can be only zero or one manager per 1994 * pool. The exclusion is handled automatically by this function. 1995 * 1996 * The caller can safely start processing works on false return. On 1997 * true return, it's guaranteed that need_to_create_worker() is false 1998 * and may_start_working() is true. 1999 * 2000 * CONTEXT: 2001 * spin_lock_irq(pool->lock) which may be released and regrabbed 2002 * multiple times. Does GFP_KERNEL allocations. 2003 * 2004 * RETURNS: 2005 * spin_lock_irq(pool->lock) which may be released and regrabbed 2006 * multiple times. Does GFP_KERNEL allocations. 2007 */ 2008 static bool manage_workers(struct worker *worker) 2009 { 2010 struct worker_pool *pool = worker->pool; 2011 bool ret = false; 2012 2013 if (pool->flags & POOL_MANAGING_WORKERS) 2014 return ret; 2015 2016 pool->flags |= POOL_MANAGING_WORKERS; 2017 2018 /* 2019 * To simplify both worker management and CPU hotplug, hold off 2020 * management while hotplug is in progress. CPU hotplug path can't 2021 * grab %POOL_MANAGING_WORKERS to achieve this because that can 2022 * lead to idle worker depletion (all become busy thinking someone 2023 * else is managing) which in turn can result in deadlock under 2024 * extreme circumstances. Use @pool->assoc_mutex to synchronize 2025 * manager against CPU hotplug. 2026 * 2027 * assoc_mutex would always be free unless CPU hotplug is in 2028 * progress. trylock first without dropping @pool->lock. 2029 */ 2030 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) { 2031 spin_unlock_irq(&pool->lock); 2032 mutex_lock(&pool->assoc_mutex); 2033 /* 2034 * CPU hotplug could have happened while we were waiting 2035 * for assoc_mutex. Hotplug itself can't handle us 2036 * because manager isn't either on idle or busy list, and 2037 * @pool's state and ours could have deviated. 2038 * 2039 * As hotplug is now excluded via assoc_mutex, we can 2040 * simply try to bind. It will succeed or fail depending 2041 * on @pool's current state. Try it and adjust 2042 * %WORKER_UNBOUND accordingly. 2043 */ 2044 if (worker_maybe_bind_and_lock(worker)) 2045 worker->flags &= ~WORKER_UNBOUND; 2046 else 2047 worker->flags |= WORKER_UNBOUND; 2048 2049 ret = true; 2050 } 2051 2052 pool->flags &= ~POOL_MANAGE_WORKERS; 2053 2054 /* 2055 * Destroy and then create so that may_start_working() is true 2056 * on return. 2057 */ 2058 ret |= maybe_destroy_workers(pool); 2059 ret |= maybe_create_worker(pool); 2060 2061 pool->flags &= ~POOL_MANAGING_WORKERS; 2062 mutex_unlock(&pool->assoc_mutex); 2063 return ret; 2064 } 2065 2066 /** 2067 * process_one_work - process single work 2068 * @worker: self 2069 * @work: work to process 2070 * 2071 * Process @work. This function contains all the logics necessary to 2072 * process a single work including synchronization against and 2073 * interaction with other workers on the same cpu, queueing and 2074 * flushing. As long as context requirement is met, any worker can 2075 * call this function to process a work. 2076 * 2077 * CONTEXT: 2078 * spin_lock_irq(pool->lock) which is released and regrabbed. 2079 */ 2080 static void process_one_work(struct worker *worker, struct work_struct *work) 2081 __releases(&pool->lock) 2082 __acquires(&pool->lock) 2083 { 2084 struct pool_workqueue *pwq = get_work_pwq(work); 2085 struct worker_pool *pool = worker->pool; 2086 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2087 int work_color; 2088 struct worker *collision; 2089 #ifdef CONFIG_LOCKDEP 2090 /* 2091 * It is permissible to free the struct work_struct from 2092 * inside the function that is called from it, this we need to 2093 * take into account for lockdep too. To avoid bogus "held 2094 * lock freed" warnings as well as problems when looking into 2095 * work->lockdep_map, make a copy and use that here. 2096 */ 2097 struct lockdep_map lockdep_map; 2098 2099 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2100 #endif 2101 /* 2102 * Ensure we're on the correct CPU. DISASSOCIATED test is 2103 * necessary to avoid spurious warnings from rescuers servicing the 2104 * unbound or a disassociated pool. 2105 */ 2106 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) && 2107 !(pool->flags & POOL_DISASSOCIATED) && 2108 raw_smp_processor_id() != pool->cpu); 2109 2110 /* 2111 * A single work shouldn't be executed concurrently by 2112 * multiple workers on a single cpu. Check whether anyone is 2113 * already processing the work. If so, defer the work to the 2114 * currently executing one. 2115 */ 2116 collision = find_worker_executing_work(pool, work); 2117 if (unlikely(collision)) { 2118 move_linked_works(work, &collision->scheduled, NULL); 2119 return; 2120 } 2121 2122 /* claim and dequeue */ 2123 debug_work_deactivate(work); 2124 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2125 worker->current_work = work; 2126 worker->current_func = work->func; 2127 worker->current_pwq = pwq; 2128 work_color = get_work_color(work); 2129 2130 list_del_init(&work->entry); 2131 2132 /* 2133 * CPU intensive works don't participate in concurrency 2134 * management. They're the scheduler's responsibility. 2135 */ 2136 if (unlikely(cpu_intensive)) 2137 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 2138 2139 /* 2140 * Unbound pool isn't concurrency managed and work items should be 2141 * executed ASAP. Wake up another worker if necessary. 2142 */ 2143 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool)) 2144 wake_up_worker(pool); 2145 2146 /* 2147 * Record the last pool and clear PENDING which should be the last 2148 * update to @work. Also, do this inside @pool->lock so that 2149 * PENDING and queued state changes happen together while IRQ is 2150 * disabled. 2151 */ 2152 set_work_pool_and_clear_pending(work, pool->id); 2153 2154 spin_unlock_irq(&pool->lock); 2155 2156 lock_map_acquire_read(&pwq->wq->lockdep_map); 2157 lock_map_acquire(&lockdep_map); 2158 trace_workqueue_execute_start(work); 2159 worker->current_func(work); 2160 /* 2161 * While we must be careful to not use "work" after this, the trace 2162 * point will only record its address. 2163 */ 2164 trace_workqueue_execute_end(work); 2165 lock_map_release(&lockdep_map); 2166 lock_map_release(&pwq->wq->lockdep_map); 2167 2168 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2169 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2170 " last function: %pf\n", 2171 current->comm, preempt_count(), task_pid_nr(current), 2172 worker->current_func); 2173 debug_show_held_locks(current); 2174 dump_stack(); 2175 } 2176 2177 spin_lock_irq(&pool->lock); 2178 2179 /* clear cpu intensive status */ 2180 if (unlikely(cpu_intensive)) 2181 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2182 2183 /* we're done with it, release */ 2184 hash_del(&worker->hentry); 2185 worker->current_work = NULL; 2186 worker->current_func = NULL; 2187 worker->current_pwq = NULL; 2188 pwq_dec_nr_in_flight(pwq, work_color); 2189 } 2190 2191 /** 2192 * process_scheduled_works - process scheduled works 2193 * @worker: self 2194 * 2195 * Process all scheduled works. Please note that the scheduled list 2196 * may change while processing a work, so this function repeatedly 2197 * fetches a work from the top and executes it. 2198 * 2199 * CONTEXT: 2200 * spin_lock_irq(pool->lock) which may be released and regrabbed 2201 * multiple times. 2202 */ 2203 static void process_scheduled_works(struct worker *worker) 2204 { 2205 while (!list_empty(&worker->scheduled)) { 2206 struct work_struct *work = list_first_entry(&worker->scheduled, 2207 struct work_struct, entry); 2208 process_one_work(worker, work); 2209 } 2210 } 2211 2212 /** 2213 * worker_thread - the worker thread function 2214 * @__worker: self 2215 * 2216 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools 2217 * of these per each cpu. These workers process all works regardless of 2218 * their specific target workqueue. The only exception is works which 2219 * belong to workqueues with a rescuer which will be explained in 2220 * rescuer_thread(). 2221 */ 2222 static int worker_thread(void *__worker) 2223 { 2224 struct worker *worker = __worker; 2225 struct worker_pool *pool = worker->pool; 2226 2227 /* tell the scheduler that this is a workqueue worker */ 2228 worker->task->flags |= PF_WQ_WORKER; 2229 woke_up: 2230 spin_lock_irq(&pool->lock); 2231 2232 /* we are off idle list if destruction or rebind is requested */ 2233 if (unlikely(list_empty(&worker->entry))) { 2234 spin_unlock_irq(&pool->lock); 2235 2236 /* if DIE is set, destruction is requested */ 2237 if (worker->flags & WORKER_DIE) { 2238 worker->task->flags &= ~PF_WQ_WORKER; 2239 return 0; 2240 } 2241 2242 /* otherwise, rebind */ 2243 idle_worker_rebind(worker); 2244 goto woke_up; 2245 } 2246 2247 worker_leave_idle(worker); 2248 recheck: 2249 /* no more worker necessary? */ 2250 if (!need_more_worker(pool)) 2251 goto sleep; 2252 2253 /* do we need to manage? */ 2254 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2255 goto recheck; 2256 2257 /* 2258 * ->scheduled list can only be filled while a worker is 2259 * preparing to process a work or actually processing it. 2260 * Make sure nobody diddled with it while I was sleeping. 2261 */ 2262 BUG_ON(!list_empty(&worker->scheduled)); 2263 2264 /* 2265 * When control reaches this point, we're guaranteed to have 2266 * at least one idle worker or that someone else has already 2267 * assumed the manager role. 2268 */ 2269 worker_clr_flags(worker, WORKER_PREP); 2270 2271 do { 2272 struct work_struct *work = 2273 list_first_entry(&pool->worklist, 2274 struct work_struct, entry); 2275 2276 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2277 /* optimization path, not strictly necessary */ 2278 process_one_work(worker, work); 2279 if (unlikely(!list_empty(&worker->scheduled))) 2280 process_scheduled_works(worker); 2281 } else { 2282 move_linked_works(work, &worker->scheduled, NULL); 2283 process_scheduled_works(worker); 2284 } 2285 } while (keep_working(pool)); 2286 2287 worker_set_flags(worker, WORKER_PREP, false); 2288 sleep: 2289 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker)) 2290 goto recheck; 2291 2292 /* 2293 * pool->lock is held and there's no work to process and no need to 2294 * manage, sleep. Workers are woken up only while holding 2295 * pool->lock or from local cpu, so setting the current state 2296 * before releasing pool->lock is enough to prevent losing any 2297 * event. 2298 */ 2299 worker_enter_idle(worker); 2300 __set_current_state(TASK_INTERRUPTIBLE); 2301 spin_unlock_irq(&pool->lock); 2302 schedule(); 2303 goto woke_up; 2304 } 2305 2306 /** 2307 * rescuer_thread - the rescuer thread function 2308 * @__rescuer: self 2309 * 2310 * Workqueue rescuer thread function. There's one rescuer for each 2311 * workqueue which has WQ_RESCUER set. 2312 * 2313 * Regular work processing on a pool may block trying to create a new 2314 * worker which uses GFP_KERNEL allocation which has slight chance of 2315 * developing into deadlock if some works currently on the same queue 2316 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2317 * the problem rescuer solves. 2318 * 2319 * When such condition is possible, the pool summons rescuers of all 2320 * workqueues which have works queued on the pool and let them process 2321 * those works so that forward progress can be guaranteed. 2322 * 2323 * This should happen rarely. 2324 */ 2325 static int rescuer_thread(void *__rescuer) 2326 { 2327 struct worker *rescuer = __rescuer; 2328 struct workqueue_struct *wq = rescuer->rescue_wq; 2329 struct list_head *scheduled = &rescuer->scheduled; 2330 bool is_unbound = wq->flags & WQ_UNBOUND; 2331 unsigned int cpu; 2332 2333 set_user_nice(current, RESCUER_NICE_LEVEL); 2334 2335 /* 2336 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2337 * doesn't participate in concurrency management. 2338 */ 2339 rescuer->task->flags |= PF_WQ_WORKER; 2340 repeat: 2341 set_current_state(TASK_INTERRUPTIBLE); 2342 2343 if (kthread_should_stop()) { 2344 __set_current_state(TASK_RUNNING); 2345 rescuer->task->flags &= ~PF_WQ_WORKER; 2346 return 0; 2347 } 2348 2349 /* 2350 * See whether any cpu is asking for help. Unbounded 2351 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND. 2352 */ 2353 for_each_mayday_cpu(cpu, wq->mayday_mask) { 2354 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu; 2355 struct pool_workqueue *pwq = get_pwq(tcpu, wq); 2356 struct worker_pool *pool = pwq->pool; 2357 struct work_struct *work, *n; 2358 2359 __set_current_state(TASK_RUNNING); 2360 mayday_clear_cpu(cpu, wq->mayday_mask); 2361 2362 /* migrate to the target cpu if possible */ 2363 rescuer->pool = pool; 2364 worker_maybe_bind_and_lock(rescuer); 2365 2366 /* 2367 * Slurp in all works issued via this workqueue and 2368 * process'em. 2369 */ 2370 BUG_ON(!list_empty(&rescuer->scheduled)); 2371 list_for_each_entry_safe(work, n, &pool->worklist, entry) 2372 if (get_work_pwq(work) == pwq) 2373 move_linked_works(work, scheduled, &n); 2374 2375 process_scheduled_works(rescuer); 2376 2377 /* 2378 * Leave this pool. If keep_working() is %true, notify a 2379 * regular worker; otherwise, we end up with 0 concurrency 2380 * and stalling the execution. 2381 */ 2382 if (keep_working(pool)) 2383 wake_up_worker(pool); 2384 2385 spin_unlock_irq(&pool->lock); 2386 } 2387 2388 /* rescuers should never participate in concurrency management */ 2389 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2390 schedule(); 2391 goto repeat; 2392 } 2393 2394 struct wq_barrier { 2395 struct work_struct work; 2396 struct completion done; 2397 }; 2398 2399 static void wq_barrier_func(struct work_struct *work) 2400 { 2401 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2402 complete(&barr->done); 2403 } 2404 2405 /** 2406 * insert_wq_barrier - insert a barrier work 2407 * @pwq: pwq to insert barrier into 2408 * @barr: wq_barrier to insert 2409 * @target: target work to attach @barr to 2410 * @worker: worker currently executing @target, NULL if @target is not executing 2411 * 2412 * @barr is linked to @target such that @barr is completed only after 2413 * @target finishes execution. Please note that the ordering 2414 * guarantee is observed only with respect to @target and on the local 2415 * cpu. 2416 * 2417 * Currently, a queued barrier can't be canceled. This is because 2418 * try_to_grab_pending() can't determine whether the work to be 2419 * grabbed is at the head of the queue and thus can't clear LINKED 2420 * flag of the previous work while there must be a valid next work 2421 * after a work with LINKED flag set. 2422 * 2423 * Note that when @worker is non-NULL, @target may be modified 2424 * underneath us, so we can't reliably determine pwq from @target. 2425 * 2426 * CONTEXT: 2427 * spin_lock_irq(pool->lock). 2428 */ 2429 static void insert_wq_barrier(struct pool_workqueue *pwq, 2430 struct wq_barrier *barr, 2431 struct work_struct *target, struct worker *worker) 2432 { 2433 struct list_head *head; 2434 unsigned int linked = 0; 2435 2436 /* 2437 * debugobject calls are safe here even with pool->lock locked 2438 * as we know for sure that this will not trigger any of the 2439 * checks and call back into the fixup functions where we 2440 * might deadlock. 2441 */ 2442 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2443 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2444 init_completion(&barr->done); 2445 2446 /* 2447 * If @target is currently being executed, schedule the 2448 * barrier to the worker; otherwise, put it after @target. 2449 */ 2450 if (worker) 2451 head = worker->scheduled.next; 2452 else { 2453 unsigned long *bits = work_data_bits(target); 2454 2455 head = target->entry.next; 2456 /* there can already be other linked works, inherit and set */ 2457 linked = *bits & WORK_STRUCT_LINKED; 2458 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2459 } 2460 2461 debug_work_activate(&barr->work); 2462 insert_work(pwq, &barr->work, head, 2463 work_color_to_flags(WORK_NO_COLOR) | linked); 2464 } 2465 2466 /** 2467 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2468 * @wq: workqueue being flushed 2469 * @flush_color: new flush color, < 0 for no-op 2470 * @work_color: new work color, < 0 for no-op 2471 * 2472 * Prepare pwqs for workqueue flushing. 2473 * 2474 * If @flush_color is non-negative, flush_color on all pwqs should be 2475 * -1. If no pwq has in-flight commands at the specified color, all 2476 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2477 * has in flight commands, its pwq->flush_color is set to 2478 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2479 * wakeup logic is armed and %true is returned. 2480 * 2481 * The caller should have initialized @wq->first_flusher prior to 2482 * calling this function with non-negative @flush_color. If 2483 * @flush_color is negative, no flush color update is done and %false 2484 * is returned. 2485 * 2486 * If @work_color is non-negative, all pwqs should have the same 2487 * work_color which is previous to @work_color and all will be 2488 * advanced to @work_color. 2489 * 2490 * CONTEXT: 2491 * mutex_lock(wq->flush_mutex). 2492 * 2493 * RETURNS: 2494 * %true if @flush_color >= 0 and there's something to flush. %false 2495 * otherwise. 2496 */ 2497 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2498 int flush_color, int work_color) 2499 { 2500 bool wait = false; 2501 unsigned int cpu; 2502 2503 if (flush_color >= 0) { 2504 BUG_ON(atomic_read(&wq->nr_pwqs_to_flush)); 2505 atomic_set(&wq->nr_pwqs_to_flush, 1); 2506 } 2507 2508 for_each_pwq_cpu(cpu, wq) { 2509 struct pool_workqueue *pwq = get_pwq(cpu, wq); 2510 struct worker_pool *pool = pwq->pool; 2511 2512 spin_lock_irq(&pool->lock); 2513 2514 if (flush_color >= 0) { 2515 BUG_ON(pwq->flush_color != -1); 2516 2517 if (pwq->nr_in_flight[flush_color]) { 2518 pwq->flush_color = flush_color; 2519 atomic_inc(&wq->nr_pwqs_to_flush); 2520 wait = true; 2521 } 2522 } 2523 2524 if (work_color >= 0) { 2525 BUG_ON(work_color != work_next_color(pwq->work_color)); 2526 pwq->work_color = work_color; 2527 } 2528 2529 spin_unlock_irq(&pool->lock); 2530 } 2531 2532 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2533 complete(&wq->first_flusher->done); 2534 2535 return wait; 2536 } 2537 2538 /** 2539 * flush_workqueue - ensure that any scheduled work has run to completion. 2540 * @wq: workqueue to flush 2541 * 2542 * Forces execution of the workqueue and blocks until its completion. 2543 * This is typically used in driver shutdown handlers. 2544 * 2545 * We sleep until all works which were queued on entry have been handled, 2546 * but we are not livelocked by new incoming ones. 2547 */ 2548 void flush_workqueue(struct workqueue_struct *wq) 2549 { 2550 struct wq_flusher this_flusher = { 2551 .list = LIST_HEAD_INIT(this_flusher.list), 2552 .flush_color = -1, 2553 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2554 }; 2555 int next_color; 2556 2557 lock_map_acquire(&wq->lockdep_map); 2558 lock_map_release(&wq->lockdep_map); 2559 2560 mutex_lock(&wq->flush_mutex); 2561 2562 /* 2563 * Start-to-wait phase 2564 */ 2565 next_color = work_next_color(wq->work_color); 2566 2567 if (next_color != wq->flush_color) { 2568 /* 2569 * Color space is not full. The current work_color 2570 * becomes our flush_color and work_color is advanced 2571 * by one. 2572 */ 2573 BUG_ON(!list_empty(&wq->flusher_overflow)); 2574 this_flusher.flush_color = wq->work_color; 2575 wq->work_color = next_color; 2576 2577 if (!wq->first_flusher) { 2578 /* no flush in progress, become the first flusher */ 2579 BUG_ON(wq->flush_color != this_flusher.flush_color); 2580 2581 wq->first_flusher = &this_flusher; 2582 2583 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2584 wq->work_color)) { 2585 /* nothing to flush, done */ 2586 wq->flush_color = next_color; 2587 wq->first_flusher = NULL; 2588 goto out_unlock; 2589 } 2590 } else { 2591 /* wait in queue */ 2592 BUG_ON(wq->flush_color == this_flusher.flush_color); 2593 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2594 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2595 } 2596 } else { 2597 /* 2598 * Oops, color space is full, wait on overflow queue. 2599 * The next flush completion will assign us 2600 * flush_color and transfer to flusher_queue. 2601 */ 2602 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2603 } 2604 2605 mutex_unlock(&wq->flush_mutex); 2606 2607 wait_for_completion(&this_flusher.done); 2608 2609 /* 2610 * Wake-up-and-cascade phase 2611 * 2612 * First flushers are responsible for cascading flushes and 2613 * handling overflow. Non-first flushers can simply return. 2614 */ 2615 if (wq->first_flusher != &this_flusher) 2616 return; 2617 2618 mutex_lock(&wq->flush_mutex); 2619 2620 /* we might have raced, check again with mutex held */ 2621 if (wq->first_flusher != &this_flusher) 2622 goto out_unlock; 2623 2624 wq->first_flusher = NULL; 2625 2626 BUG_ON(!list_empty(&this_flusher.list)); 2627 BUG_ON(wq->flush_color != this_flusher.flush_color); 2628 2629 while (true) { 2630 struct wq_flusher *next, *tmp; 2631 2632 /* complete all the flushers sharing the current flush color */ 2633 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2634 if (next->flush_color != wq->flush_color) 2635 break; 2636 list_del_init(&next->list); 2637 complete(&next->done); 2638 } 2639 2640 BUG_ON(!list_empty(&wq->flusher_overflow) && 2641 wq->flush_color != work_next_color(wq->work_color)); 2642 2643 /* this flush_color is finished, advance by one */ 2644 wq->flush_color = work_next_color(wq->flush_color); 2645 2646 /* one color has been freed, handle overflow queue */ 2647 if (!list_empty(&wq->flusher_overflow)) { 2648 /* 2649 * Assign the same color to all overflowed 2650 * flushers, advance work_color and append to 2651 * flusher_queue. This is the start-to-wait 2652 * phase for these overflowed flushers. 2653 */ 2654 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2655 tmp->flush_color = wq->work_color; 2656 2657 wq->work_color = work_next_color(wq->work_color); 2658 2659 list_splice_tail_init(&wq->flusher_overflow, 2660 &wq->flusher_queue); 2661 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2662 } 2663 2664 if (list_empty(&wq->flusher_queue)) { 2665 BUG_ON(wq->flush_color != wq->work_color); 2666 break; 2667 } 2668 2669 /* 2670 * Need to flush more colors. Make the next flusher 2671 * the new first flusher and arm pwqs. 2672 */ 2673 BUG_ON(wq->flush_color == wq->work_color); 2674 BUG_ON(wq->flush_color != next->flush_color); 2675 2676 list_del_init(&next->list); 2677 wq->first_flusher = next; 2678 2679 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2680 break; 2681 2682 /* 2683 * Meh... this color is already done, clear first 2684 * flusher and repeat cascading. 2685 */ 2686 wq->first_flusher = NULL; 2687 } 2688 2689 out_unlock: 2690 mutex_unlock(&wq->flush_mutex); 2691 } 2692 EXPORT_SYMBOL_GPL(flush_workqueue); 2693 2694 /** 2695 * drain_workqueue - drain a workqueue 2696 * @wq: workqueue to drain 2697 * 2698 * Wait until the workqueue becomes empty. While draining is in progress, 2699 * only chain queueing is allowed. IOW, only currently pending or running 2700 * work items on @wq can queue further work items on it. @wq is flushed 2701 * repeatedly until it becomes empty. The number of flushing is detemined 2702 * by the depth of chaining and should be relatively short. Whine if it 2703 * takes too long. 2704 */ 2705 void drain_workqueue(struct workqueue_struct *wq) 2706 { 2707 unsigned int flush_cnt = 0; 2708 unsigned int cpu; 2709 2710 /* 2711 * __queue_work() needs to test whether there are drainers, is much 2712 * hotter than drain_workqueue() and already looks at @wq->flags. 2713 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers. 2714 */ 2715 spin_lock(&workqueue_lock); 2716 if (!wq->nr_drainers++) 2717 wq->flags |= WQ_DRAINING; 2718 spin_unlock(&workqueue_lock); 2719 reflush: 2720 flush_workqueue(wq); 2721 2722 for_each_pwq_cpu(cpu, wq) { 2723 struct pool_workqueue *pwq = get_pwq(cpu, wq); 2724 bool drained; 2725 2726 spin_lock_irq(&pwq->pool->lock); 2727 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2728 spin_unlock_irq(&pwq->pool->lock); 2729 2730 if (drained) 2731 continue; 2732 2733 if (++flush_cnt == 10 || 2734 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2735 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n", 2736 wq->name, flush_cnt); 2737 goto reflush; 2738 } 2739 2740 spin_lock(&workqueue_lock); 2741 if (!--wq->nr_drainers) 2742 wq->flags &= ~WQ_DRAINING; 2743 spin_unlock(&workqueue_lock); 2744 } 2745 EXPORT_SYMBOL_GPL(drain_workqueue); 2746 2747 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2748 { 2749 struct worker *worker = NULL; 2750 struct worker_pool *pool; 2751 struct pool_workqueue *pwq; 2752 2753 might_sleep(); 2754 pool = get_work_pool(work); 2755 if (!pool) 2756 return false; 2757 2758 spin_lock_irq(&pool->lock); 2759 /* see the comment in try_to_grab_pending() with the same code */ 2760 pwq = get_work_pwq(work); 2761 if (pwq) { 2762 if (unlikely(pwq->pool != pool)) 2763 goto already_gone; 2764 } else { 2765 worker = find_worker_executing_work(pool, work); 2766 if (!worker) 2767 goto already_gone; 2768 pwq = worker->current_pwq; 2769 } 2770 2771 insert_wq_barrier(pwq, barr, work, worker); 2772 spin_unlock_irq(&pool->lock); 2773 2774 /* 2775 * If @max_active is 1 or rescuer is in use, flushing another work 2776 * item on the same workqueue may lead to deadlock. Make sure the 2777 * flusher is not running on the same workqueue by verifying write 2778 * access. 2779 */ 2780 if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER) 2781 lock_map_acquire(&pwq->wq->lockdep_map); 2782 else 2783 lock_map_acquire_read(&pwq->wq->lockdep_map); 2784 lock_map_release(&pwq->wq->lockdep_map); 2785 2786 return true; 2787 already_gone: 2788 spin_unlock_irq(&pool->lock); 2789 return false; 2790 } 2791 2792 /** 2793 * flush_work - wait for a work to finish executing the last queueing instance 2794 * @work: the work to flush 2795 * 2796 * Wait until @work has finished execution. @work is guaranteed to be idle 2797 * on return if it hasn't been requeued since flush started. 2798 * 2799 * RETURNS: 2800 * %true if flush_work() waited for the work to finish execution, 2801 * %false if it was already idle. 2802 */ 2803 bool flush_work(struct work_struct *work) 2804 { 2805 struct wq_barrier barr; 2806 2807 lock_map_acquire(&work->lockdep_map); 2808 lock_map_release(&work->lockdep_map); 2809 2810 if (start_flush_work(work, &barr)) { 2811 wait_for_completion(&barr.done); 2812 destroy_work_on_stack(&barr.work); 2813 return true; 2814 } else { 2815 return false; 2816 } 2817 } 2818 EXPORT_SYMBOL_GPL(flush_work); 2819 2820 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2821 { 2822 unsigned long flags; 2823 int ret; 2824 2825 do { 2826 ret = try_to_grab_pending(work, is_dwork, &flags); 2827 /* 2828 * If someone else is canceling, wait for the same event it 2829 * would be waiting for before retrying. 2830 */ 2831 if (unlikely(ret == -ENOENT)) 2832 flush_work(work); 2833 } while (unlikely(ret < 0)); 2834 2835 /* tell other tasks trying to grab @work to back off */ 2836 mark_work_canceling(work); 2837 local_irq_restore(flags); 2838 2839 flush_work(work); 2840 clear_work_data(work); 2841 return ret; 2842 } 2843 2844 /** 2845 * cancel_work_sync - cancel a work and wait for it to finish 2846 * @work: the work to cancel 2847 * 2848 * Cancel @work and wait for its execution to finish. This function 2849 * can be used even if the work re-queues itself or migrates to 2850 * another workqueue. On return from this function, @work is 2851 * guaranteed to be not pending or executing on any CPU. 2852 * 2853 * cancel_work_sync(&delayed_work->work) must not be used for 2854 * delayed_work's. Use cancel_delayed_work_sync() instead. 2855 * 2856 * The caller must ensure that the workqueue on which @work was last 2857 * queued can't be destroyed before this function returns. 2858 * 2859 * RETURNS: 2860 * %true if @work was pending, %false otherwise. 2861 */ 2862 bool cancel_work_sync(struct work_struct *work) 2863 { 2864 return __cancel_work_timer(work, false); 2865 } 2866 EXPORT_SYMBOL_GPL(cancel_work_sync); 2867 2868 /** 2869 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2870 * @dwork: the delayed work to flush 2871 * 2872 * Delayed timer is cancelled and the pending work is queued for 2873 * immediate execution. Like flush_work(), this function only 2874 * considers the last queueing instance of @dwork. 2875 * 2876 * RETURNS: 2877 * %true if flush_work() waited for the work to finish execution, 2878 * %false if it was already idle. 2879 */ 2880 bool flush_delayed_work(struct delayed_work *dwork) 2881 { 2882 local_irq_disable(); 2883 if (del_timer_sync(&dwork->timer)) 2884 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2885 local_irq_enable(); 2886 return flush_work(&dwork->work); 2887 } 2888 EXPORT_SYMBOL(flush_delayed_work); 2889 2890 /** 2891 * cancel_delayed_work - cancel a delayed work 2892 * @dwork: delayed_work to cancel 2893 * 2894 * Kill off a pending delayed_work. Returns %true if @dwork was pending 2895 * and canceled; %false if wasn't pending. Note that the work callback 2896 * function may still be running on return, unless it returns %true and the 2897 * work doesn't re-arm itself. Explicitly flush or use 2898 * cancel_delayed_work_sync() to wait on it. 2899 * 2900 * This function is safe to call from any context including IRQ handler. 2901 */ 2902 bool cancel_delayed_work(struct delayed_work *dwork) 2903 { 2904 unsigned long flags; 2905 int ret; 2906 2907 do { 2908 ret = try_to_grab_pending(&dwork->work, true, &flags); 2909 } while (unlikely(ret == -EAGAIN)); 2910 2911 if (unlikely(ret < 0)) 2912 return false; 2913 2914 set_work_pool_and_clear_pending(&dwork->work, 2915 get_work_pool_id(&dwork->work)); 2916 local_irq_restore(flags); 2917 return ret; 2918 } 2919 EXPORT_SYMBOL(cancel_delayed_work); 2920 2921 /** 2922 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2923 * @dwork: the delayed work cancel 2924 * 2925 * This is cancel_work_sync() for delayed works. 2926 * 2927 * RETURNS: 2928 * %true if @dwork was pending, %false otherwise. 2929 */ 2930 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2931 { 2932 return __cancel_work_timer(&dwork->work, true); 2933 } 2934 EXPORT_SYMBOL(cancel_delayed_work_sync); 2935 2936 /** 2937 * schedule_work_on - put work task on a specific cpu 2938 * @cpu: cpu to put the work task on 2939 * @work: job to be done 2940 * 2941 * This puts a job on a specific cpu 2942 */ 2943 bool schedule_work_on(int cpu, struct work_struct *work) 2944 { 2945 return queue_work_on(cpu, system_wq, work); 2946 } 2947 EXPORT_SYMBOL(schedule_work_on); 2948 2949 /** 2950 * schedule_work - put work task in global workqueue 2951 * @work: job to be done 2952 * 2953 * Returns %false if @work was already on the kernel-global workqueue and 2954 * %true otherwise. 2955 * 2956 * This puts a job in the kernel-global workqueue if it was not already 2957 * queued and leaves it in the same position on the kernel-global 2958 * workqueue otherwise. 2959 */ 2960 bool schedule_work(struct work_struct *work) 2961 { 2962 return queue_work(system_wq, work); 2963 } 2964 EXPORT_SYMBOL(schedule_work); 2965 2966 /** 2967 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 2968 * @cpu: cpu to use 2969 * @dwork: job to be done 2970 * @delay: number of jiffies to wait 2971 * 2972 * After waiting for a given time this puts a job in the kernel-global 2973 * workqueue on the specified CPU. 2974 */ 2975 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 2976 unsigned long delay) 2977 { 2978 return queue_delayed_work_on(cpu, system_wq, dwork, delay); 2979 } 2980 EXPORT_SYMBOL(schedule_delayed_work_on); 2981 2982 /** 2983 * schedule_delayed_work - put work task in global workqueue after delay 2984 * @dwork: job to be done 2985 * @delay: number of jiffies to wait or 0 for immediate execution 2986 * 2987 * After waiting for a given time this puts a job in the kernel-global 2988 * workqueue. 2989 */ 2990 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay) 2991 { 2992 return queue_delayed_work(system_wq, dwork, delay); 2993 } 2994 EXPORT_SYMBOL(schedule_delayed_work); 2995 2996 /** 2997 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2998 * @func: the function to call 2999 * 3000 * schedule_on_each_cpu() executes @func on each online CPU using the 3001 * system workqueue and blocks until all CPUs have completed. 3002 * schedule_on_each_cpu() is very slow. 3003 * 3004 * RETURNS: 3005 * 0 on success, -errno on failure. 3006 */ 3007 int schedule_on_each_cpu(work_func_t func) 3008 { 3009 int cpu; 3010 struct work_struct __percpu *works; 3011 3012 works = alloc_percpu(struct work_struct); 3013 if (!works) 3014 return -ENOMEM; 3015 3016 get_online_cpus(); 3017 3018 for_each_online_cpu(cpu) { 3019 struct work_struct *work = per_cpu_ptr(works, cpu); 3020 3021 INIT_WORK(work, func); 3022 schedule_work_on(cpu, work); 3023 } 3024 3025 for_each_online_cpu(cpu) 3026 flush_work(per_cpu_ptr(works, cpu)); 3027 3028 put_online_cpus(); 3029 free_percpu(works); 3030 return 0; 3031 } 3032 3033 /** 3034 * flush_scheduled_work - ensure that any scheduled work has run to completion. 3035 * 3036 * Forces execution of the kernel-global workqueue and blocks until its 3037 * completion. 3038 * 3039 * Think twice before calling this function! It's very easy to get into 3040 * trouble if you don't take great care. Either of the following situations 3041 * will lead to deadlock: 3042 * 3043 * One of the work items currently on the workqueue needs to acquire 3044 * a lock held by your code or its caller. 3045 * 3046 * Your code is running in the context of a work routine. 3047 * 3048 * They will be detected by lockdep when they occur, but the first might not 3049 * occur very often. It depends on what work items are on the workqueue and 3050 * what locks they need, which you have no control over. 3051 * 3052 * In most situations flushing the entire workqueue is overkill; you merely 3053 * need to know that a particular work item isn't queued and isn't running. 3054 * In such cases you should use cancel_delayed_work_sync() or 3055 * cancel_work_sync() instead. 3056 */ 3057 void flush_scheduled_work(void) 3058 { 3059 flush_workqueue(system_wq); 3060 } 3061 EXPORT_SYMBOL(flush_scheduled_work); 3062 3063 /** 3064 * execute_in_process_context - reliably execute the routine with user context 3065 * @fn: the function to execute 3066 * @ew: guaranteed storage for the execute work structure (must 3067 * be available when the work executes) 3068 * 3069 * Executes the function immediately if process context is available, 3070 * otherwise schedules the function for delayed execution. 3071 * 3072 * Returns: 0 - function was executed 3073 * 1 - function was scheduled for execution 3074 */ 3075 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3076 { 3077 if (!in_interrupt()) { 3078 fn(&ew->work); 3079 return 0; 3080 } 3081 3082 INIT_WORK(&ew->work, fn); 3083 schedule_work(&ew->work); 3084 3085 return 1; 3086 } 3087 EXPORT_SYMBOL_GPL(execute_in_process_context); 3088 3089 int keventd_up(void) 3090 { 3091 return system_wq != NULL; 3092 } 3093 3094 static int alloc_pwqs(struct workqueue_struct *wq) 3095 { 3096 /* 3097 * pwqs are forced aligned according to WORK_STRUCT_FLAG_BITS. 3098 * Make sure that the alignment isn't lower than that of 3099 * unsigned long long. 3100 */ 3101 const size_t size = sizeof(struct pool_workqueue); 3102 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS, 3103 __alignof__(unsigned long long)); 3104 3105 if (!(wq->flags & WQ_UNBOUND)) 3106 wq->pool_wq.pcpu = __alloc_percpu(size, align); 3107 else { 3108 void *ptr; 3109 3110 /* 3111 * Allocate enough room to align pwq and put an extra 3112 * pointer at the end pointing back to the originally 3113 * allocated pointer which will be used for free. 3114 */ 3115 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL); 3116 if (ptr) { 3117 wq->pool_wq.single = PTR_ALIGN(ptr, align); 3118 *(void **)(wq->pool_wq.single + 1) = ptr; 3119 } 3120 } 3121 3122 /* just in case, make sure it's actually aligned */ 3123 BUG_ON(!IS_ALIGNED(wq->pool_wq.v, align)); 3124 return wq->pool_wq.v ? 0 : -ENOMEM; 3125 } 3126 3127 static void free_pwqs(struct workqueue_struct *wq) 3128 { 3129 if (!(wq->flags & WQ_UNBOUND)) 3130 free_percpu(wq->pool_wq.pcpu); 3131 else if (wq->pool_wq.single) { 3132 /* the pointer to free is stored right after the pwq */ 3133 kfree(*(void **)(wq->pool_wq.single + 1)); 3134 } 3135 } 3136 3137 static int wq_clamp_max_active(int max_active, unsigned int flags, 3138 const char *name) 3139 { 3140 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 3141 3142 if (max_active < 1 || max_active > lim) 3143 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 3144 max_active, name, 1, lim); 3145 3146 return clamp_val(max_active, 1, lim); 3147 } 3148 3149 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 3150 unsigned int flags, 3151 int max_active, 3152 struct lock_class_key *key, 3153 const char *lock_name, ...) 3154 { 3155 va_list args, args1; 3156 struct workqueue_struct *wq; 3157 unsigned int cpu; 3158 size_t namelen; 3159 3160 /* determine namelen, allocate wq and format name */ 3161 va_start(args, lock_name); 3162 va_copy(args1, args); 3163 namelen = vsnprintf(NULL, 0, fmt, args) + 1; 3164 3165 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL); 3166 if (!wq) 3167 goto err; 3168 3169 vsnprintf(wq->name, namelen, fmt, args1); 3170 va_end(args); 3171 va_end(args1); 3172 3173 /* 3174 * Workqueues which may be used during memory reclaim should 3175 * have a rescuer to guarantee forward progress. 3176 */ 3177 if (flags & WQ_MEM_RECLAIM) 3178 flags |= WQ_RESCUER; 3179 3180 max_active = max_active ?: WQ_DFL_ACTIVE; 3181 max_active = wq_clamp_max_active(max_active, flags, wq->name); 3182 3183 /* init wq */ 3184 wq->flags = flags; 3185 wq->saved_max_active = max_active; 3186 mutex_init(&wq->flush_mutex); 3187 atomic_set(&wq->nr_pwqs_to_flush, 0); 3188 INIT_LIST_HEAD(&wq->flusher_queue); 3189 INIT_LIST_HEAD(&wq->flusher_overflow); 3190 3191 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 3192 INIT_LIST_HEAD(&wq->list); 3193 3194 if (alloc_pwqs(wq) < 0) 3195 goto err; 3196 3197 for_each_pwq_cpu(cpu, wq) { 3198 struct pool_workqueue *pwq = get_pwq(cpu, wq); 3199 3200 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3201 pwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI); 3202 pwq->wq = wq; 3203 pwq->flush_color = -1; 3204 pwq->max_active = max_active; 3205 INIT_LIST_HEAD(&pwq->delayed_works); 3206 } 3207 3208 if (flags & WQ_RESCUER) { 3209 struct worker *rescuer; 3210 3211 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL)) 3212 goto err; 3213 3214 wq->rescuer = rescuer = alloc_worker(); 3215 if (!rescuer) 3216 goto err; 3217 3218 rescuer->rescue_wq = wq; 3219 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 3220 wq->name); 3221 if (IS_ERR(rescuer->task)) 3222 goto err; 3223 3224 rescuer->task->flags |= PF_THREAD_BOUND; 3225 wake_up_process(rescuer->task); 3226 } 3227 3228 /* 3229 * workqueue_lock protects global freeze state and workqueues 3230 * list. Grab it, set max_active accordingly and add the new 3231 * workqueue to workqueues list. 3232 */ 3233 spin_lock(&workqueue_lock); 3234 3235 if (workqueue_freezing && wq->flags & WQ_FREEZABLE) 3236 for_each_pwq_cpu(cpu, wq) 3237 get_pwq(cpu, wq)->max_active = 0; 3238 3239 list_add(&wq->list, &workqueues); 3240 3241 spin_unlock(&workqueue_lock); 3242 3243 return wq; 3244 err: 3245 if (wq) { 3246 free_pwqs(wq); 3247 free_mayday_mask(wq->mayday_mask); 3248 kfree(wq->rescuer); 3249 kfree(wq); 3250 } 3251 return NULL; 3252 } 3253 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 3254 3255 /** 3256 * destroy_workqueue - safely terminate a workqueue 3257 * @wq: target workqueue 3258 * 3259 * Safely destroy a workqueue. All work currently pending will be done first. 3260 */ 3261 void destroy_workqueue(struct workqueue_struct *wq) 3262 { 3263 unsigned int cpu; 3264 3265 /* drain it before proceeding with destruction */ 3266 drain_workqueue(wq); 3267 3268 /* 3269 * wq list is used to freeze wq, remove from list after 3270 * flushing is complete in case freeze races us. 3271 */ 3272 spin_lock(&workqueue_lock); 3273 list_del(&wq->list); 3274 spin_unlock(&workqueue_lock); 3275 3276 /* sanity check */ 3277 for_each_pwq_cpu(cpu, wq) { 3278 struct pool_workqueue *pwq = get_pwq(cpu, wq); 3279 int i; 3280 3281 for (i = 0; i < WORK_NR_COLORS; i++) 3282 BUG_ON(pwq->nr_in_flight[i]); 3283 BUG_ON(pwq->nr_active); 3284 BUG_ON(!list_empty(&pwq->delayed_works)); 3285 } 3286 3287 if (wq->flags & WQ_RESCUER) { 3288 kthread_stop(wq->rescuer->task); 3289 free_mayday_mask(wq->mayday_mask); 3290 kfree(wq->rescuer); 3291 } 3292 3293 free_pwqs(wq); 3294 kfree(wq); 3295 } 3296 EXPORT_SYMBOL_GPL(destroy_workqueue); 3297 3298 /** 3299 * pwq_set_max_active - adjust max_active of a pwq 3300 * @pwq: target pool_workqueue 3301 * @max_active: new max_active value. 3302 * 3303 * Set @pwq->max_active to @max_active and activate delayed works if 3304 * increased. 3305 * 3306 * CONTEXT: 3307 * spin_lock_irq(pool->lock). 3308 */ 3309 static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active) 3310 { 3311 pwq->max_active = max_active; 3312 3313 while (!list_empty(&pwq->delayed_works) && 3314 pwq->nr_active < pwq->max_active) 3315 pwq_activate_first_delayed(pwq); 3316 } 3317 3318 /** 3319 * workqueue_set_max_active - adjust max_active of a workqueue 3320 * @wq: target workqueue 3321 * @max_active: new max_active value. 3322 * 3323 * Set max_active of @wq to @max_active. 3324 * 3325 * CONTEXT: 3326 * Don't call from IRQ context. 3327 */ 3328 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 3329 { 3330 unsigned int cpu; 3331 3332 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 3333 3334 spin_lock(&workqueue_lock); 3335 3336 wq->saved_max_active = max_active; 3337 3338 for_each_pwq_cpu(cpu, wq) { 3339 struct pool_workqueue *pwq = get_pwq(cpu, wq); 3340 struct worker_pool *pool = pwq->pool; 3341 3342 spin_lock_irq(&pool->lock); 3343 3344 if (!(wq->flags & WQ_FREEZABLE) || 3345 !(pool->flags & POOL_FREEZING)) 3346 pwq_set_max_active(pwq, max_active); 3347 3348 spin_unlock_irq(&pool->lock); 3349 } 3350 3351 spin_unlock(&workqueue_lock); 3352 } 3353 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 3354 3355 /** 3356 * workqueue_congested - test whether a workqueue is congested 3357 * @cpu: CPU in question 3358 * @wq: target workqueue 3359 * 3360 * Test whether @wq's cpu workqueue for @cpu is congested. There is 3361 * no synchronization around this function and the test result is 3362 * unreliable and only useful as advisory hints or for debugging. 3363 * 3364 * RETURNS: 3365 * %true if congested, %false otherwise. 3366 */ 3367 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq) 3368 { 3369 struct pool_workqueue *pwq = get_pwq(cpu, wq); 3370 3371 return !list_empty(&pwq->delayed_works); 3372 } 3373 EXPORT_SYMBOL_GPL(workqueue_congested); 3374 3375 /** 3376 * work_busy - test whether a work is currently pending or running 3377 * @work: the work to be tested 3378 * 3379 * Test whether @work is currently pending or running. There is no 3380 * synchronization around this function and the test result is 3381 * unreliable and only useful as advisory hints or for debugging. 3382 * 3383 * RETURNS: 3384 * OR'd bitmask of WORK_BUSY_* bits. 3385 */ 3386 unsigned int work_busy(struct work_struct *work) 3387 { 3388 struct worker_pool *pool = get_work_pool(work); 3389 unsigned long flags; 3390 unsigned int ret = 0; 3391 3392 if (work_pending(work)) 3393 ret |= WORK_BUSY_PENDING; 3394 3395 if (pool) { 3396 spin_lock_irqsave(&pool->lock, flags); 3397 if (find_worker_executing_work(pool, work)) 3398 ret |= WORK_BUSY_RUNNING; 3399 spin_unlock_irqrestore(&pool->lock, flags); 3400 } 3401 3402 return ret; 3403 } 3404 EXPORT_SYMBOL_GPL(work_busy); 3405 3406 /* 3407 * CPU hotplug. 3408 * 3409 * There are two challenges in supporting CPU hotplug. Firstly, there 3410 * are a lot of assumptions on strong associations among work, pwq and 3411 * pool which make migrating pending and scheduled works very 3412 * difficult to implement without impacting hot paths. Secondly, 3413 * worker pools serve mix of short, long and very long running works making 3414 * blocked draining impractical. 3415 * 3416 * This is solved by allowing the pools to be disassociated from the CPU 3417 * running as an unbound one and allowing it to be reattached later if the 3418 * cpu comes back online. 3419 */ 3420 3421 static void wq_unbind_fn(struct work_struct *work) 3422 { 3423 int cpu = smp_processor_id(); 3424 struct worker_pool *pool; 3425 struct worker *worker; 3426 struct hlist_node *pos; 3427 int i; 3428 3429 for_each_std_worker_pool(pool, cpu) { 3430 BUG_ON(cpu != smp_processor_id()); 3431 3432 mutex_lock(&pool->assoc_mutex); 3433 spin_lock_irq(&pool->lock); 3434 3435 /* 3436 * We've claimed all manager positions. Make all workers 3437 * unbound and set DISASSOCIATED. Before this, all workers 3438 * except for the ones which are still executing works from 3439 * before the last CPU down must be on the cpu. After 3440 * this, they may become diasporas. 3441 */ 3442 list_for_each_entry(worker, &pool->idle_list, entry) 3443 worker->flags |= WORKER_UNBOUND; 3444 3445 for_each_busy_worker(worker, i, pos, pool) 3446 worker->flags |= WORKER_UNBOUND; 3447 3448 pool->flags |= POOL_DISASSOCIATED; 3449 3450 spin_unlock_irq(&pool->lock); 3451 mutex_unlock(&pool->assoc_mutex); 3452 } 3453 3454 /* 3455 * Call schedule() so that we cross rq->lock and thus can guarantee 3456 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary 3457 * as scheduler callbacks may be invoked from other cpus. 3458 */ 3459 schedule(); 3460 3461 /* 3462 * Sched callbacks are disabled now. Zap nr_running. After this, 3463 * nr_running stays zero and need_more_worker() and keep_working() 3464 * are always true as long as the worklist is not empty. Pools on 3465 * @cpu now behave as unbound (in terms of concurrency management) 3466 * pools which are served by workers tied to the CPU. 3467 * 3468 * On return from this function, the current worker would trigger 3469 * unbound chain execution of pending work items if other workers 3470 * didn't already. 3471 */ 3472 for_each_std_worker_pool(pool, cpu) 3473 atomic_set(&pool->nr_running, 0); 3474 } 3475 3476 /* 3477 * Workqueues should be brought up before normal priority CPU notifiers. 3478 * This will be registered high priority CPU notifier. 3479 */ 3480 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb, 3481 unsigned long action, 3482 void *hcpu) 3483 { 3484 unsigned int cpu = (unsigned long)hcpu; 3485 struct worker_pool *pool; 3486 3487 switch (action & ~CPU_TASKS_FROZEN) { 3488 case CPU_UP_PREPARE: 3489 for_each_std_worker_pool(pool, cpu) { 3490 struct worker *worker; 3491 3492 if (pool->nr_workers) 3493 continue; 3494 3495 worker = create_worker(pool); 3496 if (!worker) 3497 return NOTIFY_BAD; 3498 3499 spin_lock_irq(&pool->lock); 3500 start_worker(worker); 3501 spin_unlock_irq(&pool->lock); 3502 } 3503 break; 3504 3505 case CPU_DOWN_FAILED: 3506 case CPU_ONLINE: 3507 for_each_std_worker_pool(pool, cpu) { 3508 mutex_lock(&pool->assoc_mutex); 3509 spin_lock_irq(&pool->lock); 3510 3511 pool->flags &= ~POOL_DISASSOCIATED; 3512 rebind_workers(pool); 3513 3514 spin_unlock_irq(&pool->lock); 3515 mutex_unlock(&pool->assoc_mutex); 3516 } 3517 break; 3518 } 3519 return NOTIFY_OK; 3520 } 3521 3522 /* 3523 * Workqueues should be brought down after normal priority CPU notifiers. 3524 * This will be registered as low priority CPU notifier. 3525 */ 3526 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb, 3527 unsigned long action, 3528 void *hcpu) 3529 { 3530 unsigned int cpu = (unsigned long)hcpu; 3531 struct work_struct unbind_work; 3532 3533 switch (action & ~CPU_TASKS_FROZEN) { 3534 case CPU_DOWN_PREPARE: 3535 /* unbinding should happen on the local CPU */ 3536 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 3537 queue_work_on(cpu, system_highpri_wq, &unbind_work); 3538 flush_work(&unbind_work); 3539 break; 3540 } 3541 return NOTIFY_OK; 3542 } 3543 3544 #ifdef CONFIG_SMP 3545 3546 struct work_for_cpu { 3547 struct work_struct work; 3548 long (*fn)(void *); 3549 void *arg; 3550 long ret; 3551 }; 3552 3553 static void work_for_cpu_fn(struct work_struct *work) 3554 { 3555 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 3556 3557 wfc->ret = wfc->fn(wfc->arg); 3558 } 3559 3560 /** 3561 * work_on_cpu - run a function in user context on a particular cpu 3562 * @cpu: the cpu to run on 3563 * @fn: the function to run 3564 * @arg: the function arg 3565 * 3566 * This will return the value @fn returns. 3567 * It is up to the caller to ensure that the cpu doesn't go offline. 3568 * The caller must not hold any locks which would prevent @fn from completing. 3569 */ 3570 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) 3571 { 3572 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 3573 3574 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 3575 schedule_work_on(cpu, &wfc.work); 3576 flush_work(&wfc.work); 3577 return wfc.ret; 3578 } 3579 EXPORT_SYMBOL_GPL(work_on_cpu); 3580 #endif /* CONFIG_SMP */ 3581 3582 #ifdef CONFIG_FREEZER 3583 3584 /** 3585 * freeze_workqueues_begin - begin freezing workqueues 3586 * 3587 * Start freezing workqueues. After this function returns, all freezable 3588 * workqueues will queue new works to their frozen_works list instead of 3589 * pool->worklist. 3590 * 3591 * CONTEXT: 3592 * Grabs and releases workqueue_lock and pool->lock's. 3593 */ 3594 void freeze_workqueues_begin(void) 3595 { 3596 unsigned int cpu; 3597 3598 spin_lock(&workqueue_lock); 3599 3600 BUG_ON(workqueue_freezing); 3601 workqueue_freezing = true; 3602 3603 for_each_wq_cpu(cpu) { 3604 struct worker_pool *pool; 3605 struct workqueue_struct *wq; 3606 3607 for_each_std_worker_pool(pool, cpu) { 3608 spin_lock_irq(&pool->lock); 3609 3610 WARN_ON_ONCE(pool->flags & POOL_FREEZING); 3611 pool->flags |= POOL_FREEZING; 3612 3613 list_for_each_entry(wq, &workqueues, list) { 3614 struct pool_workqueue *pwq = get_pwq(cpu, wq); 3615 3616 if (pwq && pwq->pool == pool && 3617 (wq->flags & WQ_FREEZABLE)) 3618 pwq->max_active = 0; 3619 } 3620 3621 spin_unlock_irq(&pool->lock); 3622 } 3623 } 3624 3625 spin_unlock(&workqueue_lock); 3626 } 3627 3628 /** 3629 * freeze_workqueues_busy - are freezable workqueues still busy? 3630 * 3631 * Check whether freezing is complete. This function must be called 3632 * between freeze_workqueues_begin() and thaw_workqueues(). 3633 * 3634 * CONTEXT: 3635 * Grabs and releases workqueue_lock. 3636 * 3637 * RETURNS: 3638 * %true if some freezable workqueues are still busy. %false if freezing 3639 * is complete. 3640 */ 3641 bool freeze_workqueues_busy(void) 3642 { 3643 unsigned int cpu; 3644 bool busy = false; 3645 3646 spin_lock(&workqueue_lock); 3647 3648 BUG_ON(!workqueue_freezing); 3649 3650 for_each_wq_cpu(cpu) { 3651 struct workqueue_struct *wq; 3652 /* 3653 * nr_active is monotonically decreasing. It's safe 3654 * to peek without lock. 3655 */ 3656 list_for_each_entry(wq, &workqueues, list) { 3657 struct pool_workqueue *pwq = get_pwq(cpu, wq); 3658 3659 if (!pwq || !(wq->flags & WQ_FREEZABLE)) 3660 continue; 3661 3662 BUG_ON(pwq->nr_active < 0); 3663 if (pwq->nr_active) { 3664 busy = true; 3665 goto out_unlock; 3666 } 3667 } 3668 } 3669 out_unlock: 3670 spin_unlock(&workqueue_lock); 3671 return busy; 3672 } 3673 3674 /** 3675 * thaw_workqueues - thaw workqueues 3676 * 3677 * Thaw workqueues. Normal queueing is restored and all collected 3678 * frozen works are transferred to their respective pool worklists. 3679 * 3680 * CONTEXT: 3681 * Grabs and releases workqueue_lock and pool->lock's. 3682 */ 3683 void thaw_workqueues(void) 3684 { 3685 unsigned int cpu; 3686 3687 spin_lock(&workqueue_lock); 3688 3689 if (!workqueue_freezing) 3690 goto out_unlock; 3691 3692 for_each_wq_cpu(cpu) { 3693 struct worker_pool *pool; 3694 struct workqueue_struct *wq; 3695 3696 for_each_std_worker_pool(pool, cpu) { 3697 spin_lock_irq(&pool->lock); 3698 3699 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING)); 3700 pool->flags &= ~POOL_FREEZING; 3701 3702 list_for_each_entry(wq, &workqueues, list) { 3703 struct pool_workqueue *pwq = get_pwq(cpu, wq); 3704 3705 if (!pwq || pwq->pool != pool || 3706 !(wq->flags & WQ_FREEZABLE)) 3707 continue; 3708 3709 /* restore max_active and repopulate worklist */ 3710 pwq_set_max_active(pwq, wq->saved_max_active); 3711 } 3712 3713 wake_up_worker(pool); 3714 3715 spin_unlock_irq(&pool->lock); 3716 } 3717 } 3718 3719 workqueue_freezing = false; 3720 out_unlock: 3721 spin_unlock(&workqueue_lock); 3722 } 3723 #endif /* CONFIG_FREEZER */ 3724 3725 static int __init init_workqueues(void) 3726 { 3727 unsigned int cpu; 3728 3729 /* make sure we have enough bits for OFFQ pool ID */ 3730 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) < 3731 WORK_CPU_END * NR_STD_WORKER_POOLS); 3732 3733 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 3734 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 3735 3736 /* initialize CPU pools */ 3737 for_each_wq_cpu(cpu) { 3738 struct worker_pool *pool; 3739 3740 for_each_std_worker_pool(pool, cpu) { 3741 spin_lock_init(&pool->lock); 3742 pool->cpu = cpu; 3743 pool->flags |= POOL_DISASSOCIATED; 3744 INIT_LIST_HEAD(&pool->worklist); 3745 INIT_LIST_HEAD(&pool->idle_list); 3746 hash_init(pool->busy_hash); 3747 3748 init_timer_deferrable(&pool->idle_timer); 3749 pool->idle_timer.function = idle_worker_timeout; 3750 pool->idle_timer.data = (unsigned long)pool; 3751 3752 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3753 (unsigned long)pool); 3754 3755 mutex_init(&pool->assoc_mutex); 3756 ida_init(&pool->worker_ida); 3757 3758 /* alloc pool ID */ 3759 BUG_ON(worker_pool_assign_id(pool)); 3760 } 3761 } 3762 3763 /* create the initial worker */ 3764 for_each_online_wq_cpu(cpu) { 3765 struct worker_pool *pool; 3766 3767 for_each_std_worker_pool(pool, cpu) { 3768 struct worker *worker; 3769 3770 if (cpu != WORK_CPU_UNBOUND) 3771 pool->flags &= ~POOL_DISASSOCIATED; 3772 3773 worker = create_worker(pool); 3774 BUG_ON(!worker); 3775 spin_lock_irq(&pool->lock); 3776 start_worker(worker); 3777 spin_unlock_irq(&pool->lock); 3778 } 3779 } 3780 3781 system_wq = alloc_workqueue("events", 0, 0); 3782 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 3783 system_long_wq = alloc_workqueue("events_long", 0, 0); 3784 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 3785 WQ_UNBOUND_MAX_ACTIVE); 3786 system_freezable_wq = alloc_workqueue("events_freezable", 3787 WQ_FREEZABLE, 0); 3788 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 3789 !system_unbound_wq || !system_freezable_wq); 3790 return 0; 3791 } 3792 early_initcall(init_workqueues); 3793