xref: /linux/kernel/workqueue.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58 
59 #include "workqueue_internal.h"
60 
61 enum worker_pool_flags {
62 	/*
63 	 * worker_pool flags
64 	 *
65 	 * A bound pool is either associated or disassociated with its CPU.
66 	 * While associated (!DISASSOCIATED), all workers are bound to the
67 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 	 * is in effect.
69 	 *
70 	 * While DISASSOCIATED, the cpu may be offline and all workers have
71 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 	 * be executing on any CPU.  The pool behaves as an unbound one.
73 	 *
74 	 * Note that DISASSOCIATED should be flipped only while holding
75 	 * wq_pool_attach_mutex to avoid changing binding state while
76 	 * worker_attach_to_pool() is in progress.
77 	 *
78 	 * As there can only be one concurrent BH execution context per CPU, a
79 	 * BH pool is per-CPU and always DISASSOCIATED.
80 	 */
81 	POOL_BH			= 1 << 0,	/* is a BH pool */
82 	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
83 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
84 	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
85 };
86 
87 enum worker_flags {
88 	/* worker flags */
89 	WORKER_DIE		= 1 << 1,	/* die die die */
90 	WORKER_IDLE		= 1 << 2,	/* is idle */
91 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
92 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
93 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
94 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
95 
96 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
97 				  WORKER_UNBOUND | WORKER_REBOUND,
98 };
99 
100 enum work_cancel_flags {
101 	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
102 };
103 
104 enum wq_internal_consts {
105 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
106 
107 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
108 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
109 
110 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
111 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
112 
113 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
114 						/* call for help after 10ms
115 						   (min two ticks) */
116 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
117 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
118 
119 	/*
120 	 * Rescue workers are used only on emergencies and shared by
121 	 * all cpus.  Give MIN_NICE.
122 	 */
123 	RESCUER_NICE_LEVEL	= MIN_NICE,
124 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
125 
126 	WQ_NAME_LEN		= 32,
127 };
128 
129 /*
130  * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
131  * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
132  * msecs_to_jiffies() can't be an initializer.
133  */
134 #define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
135 #define BH_WORKER_RESTARTS	10
136 
137 /*
138  * Structure fields follow one of the following exclusion rules.
139  *
140  * I: Modifiable by initialization/destruction paths and read-only for
141  *    everyone else.
142  *
143  * P: Preemption protected.  Disabling preemption is enough and should
144  *    only be modified and accessed from the local cpu.
145  *
146  * L: pool->lock protected.  Access with pool->lock held.
147  *
148  * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
149  *     reads.
150  *
151  * K: Only modified by worker while holding pool->lock. Can be safely read by
152  *    self, while holding pool->lock or from IRQ context if %current is the
153  *    kworker.
154  *
155  * S: Only modified by worker self.
156  *
157  * A: wq_pool_attach_mutex protected.
158  *
159  * PL: wq_pool_mutex protected.
160  *
161  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
162  *
163  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
164  *
165  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
166  *      RCU for reads.
167  *
168  * WQ: wq->mutex protected.
169  *
170  * WR: wq->mutex protected for writes.  RCU protected for reads.
171  *
172  * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
173  *     with READ_ONCE() without locking.
174  *
175  * MD: wq_mayday_lock protected.
176  *
177  * WD: Used internally by the watchdog.
178  */
179 
180 /* struct worker is defined in workqueue_internal.h */
181 
182 struct worker_pool {
183 	raw_spinlock_t		lock;		/* the pool lock */
184 	int			cpu;		/* I: the associated cpu */
185 	int			node;		/* I: the associated node ID */
186 	int			id;		/* I: pool ID */
187 	unsigned int		flags;		/* L: flags */
188 
189 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
190 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
191 
192 	/*
193 	 * The counter is incremented in a process context on the associated CPU
194 	 * w/ preemption disabled, and decremented or reset in the same context
195 	 * but w/ pool->lock held. The readers grab pool->lock and are
196 	 * guaranteed to see if the counter reached zero.
197 	 */
198 	int			nr_running;
199 
200 	struct list_head	worklist;	/* L: list of pending works */
201 
202 	int			nr_workers;	/* L: total number of workers */
203 	int			nr_idle;	/* L: currently idle workers */
204 
205 	struct list_head	idle_list;	/* L: list of idle workers */
206 	struct timer_list	idle_timer;	/* L: worker idle timeout */
207 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
208 
209 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
210 
211 	/* a workers is either on busy_hash or idle_list, or the manager */
212 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
213 						/* L: hash of busy workers */
214 
215 	struct worker		*manager;	/* L: purely informational */
216 	struct list_head	workers;	/* A: attached workers */
217 	struct list_head        dying_workers;  /* A: workers about to die */
218 	struct completion	*detach_completion; /* all workers detached */
219 
220 	struct ida		worker_ida;	/* worker IDs for task name */
221 
222 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
223 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
224 	int			refcnt;		/* PL: refcnt for unbound pools */
225 
226 	/*
227 	 * Destruction of pool is RCU protected to allow dereferences
228 	 * from get_work_pool().
229 	 */
230 	struct rcu_head		rcu;
231 };
232 
233 /*
234  * Per-pool_workqueue statistics. These can be monitored using
235  * tools/workqueue/wq_monitor.py.
236  */
237 enum pool_workqueue_stats {
238 	PWQ_STAT_STARTED,	/* work items started execution */
239 	PWQ_STAT_COMPLETED,	/* work items completed execution */
240 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
241 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
242 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
243 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
244 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
245 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
246 
247 	PWQ_NR_STATS,
248 };
249 
250 /*
251  * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
252  * of work_struct->data are used for flags and the remaining high bits
253  * point to the pwq; thus, pwqs need to be aligned at two's power of the
254  * number of flag bits.
255  */
256 struct pool_workqueue {
257 	struct worker_pool	*pool;		/* I: the associated pool */
258 	struct workqueue_struct *wq;		/* I: the owning workqueue */
259 	int			work_color;	/* L: current color */
260 	int			flush_color;	/* L: flushing color */
261 	int			refcnt;		/* L: reference count */
262 	int			nr_in_flight[WORK_NR_COLORS];
263 						/* L: nr of in_flight works */
264 	bool			plugged;	/* L: execution suspended */
265 
266 	/*
267 	 * nr_active management and WORK_STRUCT_INACTIVE:
268 	 *
269 	 * When pwq->nr_active >= max_active, new work item is queued to
270 	 * pwq->inactive_works instead of pool->worklist and marked with
271 	 * WORK_STRUCT_INACTIVE.
272 	 *
273 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
274 	 * nr_active and all work items in pwq->inactive_works are marked with
275 	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
276 	 * in pwq->inactive_works. Some of them are ready to run in
277 	 * pool->worklist or worker->scheduled. Those work itmes are only struct
278 	 * wq_barrier which is used for flush_work() and should not participate
279 	 * in nr_active. For non-barrier work item, it is marked with
280 	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
281 	 */
282 	int			nr_active;	/* L: nr of active works */
283 	struct list_head	inactive_works;	/* L: inactive works */
284 	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
285 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
286 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
287 
288 	u64			stats[PWQ_NR_STATS];
289 
290 	/*
291 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
292 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
293 	 * RCU protected so that the first pwq can be determined without
294 	 * grabbing wq->mutex.
295 	 */
296 	struct kthread_work	release_work;
297 	struct rcu_head		rcu;
298 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
299 
300 /*
301  * Structure used to wait for workqueue flush.
302  */
303 struct wq_flusher {
304 	struct list_head	list;		/* WQ: list of flushers */
305 	int			flush_color;	/* WQ: flush color waiting for */
306 	struct completion	done;		/* flush completion */
307 };
308 
309 struct wq_device;
310 
311 /*
312  * Unlike in a per-cpu workqueue where max_active limits its concurrency level
313  * on each CPU, in an unbound workqueue, max_active applies to the whole system.
314  * As sharing a single nr_active across multiple sockets can be very expensive,
315  * the counting and enforcement is per NUMA node.
316  *
317  * The following struct is used to enforce per-node max_active. When a pwq wants
318  * to start executing a work item, it should increment ->nr using
319  * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
320  * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
321  * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
322  * round-robin order.
323  */
324 struct wq_node_nr_active {
325 	int			max;		/* per-node max_active */
326 	atomic_t		nr;		/* per-node nr_active */
327 	raw_spinlock_t		lock;		/* nests inside pool locks */
328 	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
329 };
330 
331 /*
332  * The externally visible workqueue.  It relays the issued work items to
333  * the appropriate worker_pool through its pool_workqueues.
334  */
335 struct workqueue_struct {
336 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
337 	struct list_head	list;		/* PR: list of all workqueues */
338 
339 	struct mutex		mutex;		/* protects this wq */
340 	int			work_color;	/* WQ: current work color */
341 	int			flush_color;	/* WQ: current flush color */
342 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
343 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
344 	struct list_head	flusher_queue;	/* WQ: flush waiters */
345 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
346 
347 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
348 	struct worker		*rescuer;	/* MD: rescue worker */
349 
350 	int			nr_drainers;	/* WQ: drain in progress */
351 
352 	/* See alloc_workqueue() function comment for info on min/max_active */
353 	int			max_active;	/* WO: max active works */
354 	int			min_active;	/* WO: min active works */
355 	int			saved_max_active; /* WQ: saved max_active */
356 	int			saved_min_active; /* WQ: saved min_active */
357 
358 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
359 	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
360 
361 #ifdef CONFIG_SYSFS
362 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
363 #endif
364 #ifdef CONFIG_LOCKDEP
365 	char			*lock_name;
366 	struct lock_class_key	key;
367 	struct lockdep_map	lockdep_map;
368 #endif
369 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
370 
371 	/*
372 	 * Destruction of workqueue_struct is RCU protected to allow walking
373 	 * the workqueues list without grabbing wq_pool_mutex.
374 	 * This is used to dump all workqueues from sysrq.
375 	 */
376 	struct rcu_head		rcu;
377 
378 	/* hot fields used during command issue, aligned to cacheline */
379 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
380 	struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
381 	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
382 };
383 
384 /*
385  * Each pod type describes how CPUs should be grouped for unbound workqueues.
386  * See the comment above workqueue_attrs->affn_scope.
387  */
388 struct wq_pod_type {
389 	int			nr_pods;	/* number of pods */
390 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
391 	int			*pod_node;	/* pod -> node */
392 	int			*cpu_pod;	/* cpu -> pod */
393 };
394 
395 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
396 	[WQ_AFFN_DFL]		= "default",
397 	[WQ_AFFN_CPU]		= "cpu",
398 	[WQ_AFFN_SMT]		= "smt",
399 	[WQ_AFFN_CACHE]		= "cache",
400 	[WQ_AFFN_NUMA]		= "numa",
401 	[WQ_AFFN_SYSTEM]	= "system",
402 };
403 
404 /*
405  * Per-cpu work items which run for longer than the following threshold are
406  * automatically considered CPU intensive and excluded from concurrency
407  * management to prevent them from noticeably delaying other per-cpu work items.
408  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
409  * The actual value is initialized in wq_cpu_intensive_thresh_init().
410  */
411 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
412 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
413 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
414 static unsigned int wq_cpu_intensive_warning_thresh = 4;
415 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
416 #endif
417 
418 /* see the comment above the definition of WQ_POWER_EFFICIENT */
419 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
420 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
421 
422 static bool wq_online;			/* can kworkers be created yet? */
423 static bool wq_topo_initialized __read_mostly = false;
424 
425 static struct kmem_cache *pwq_cache;
426 
427 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
428 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
429 
430 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
431 static struct workqueue_attrs *wq_update_pod_attrs_buf;
432 
433 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
434 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
435 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
436 /* wait for manager to go away */
437 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
438 
439 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
440 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
441 
442 /* PL&A: allowable cpus for unbound wqs and work items */
443 static cpumask_var_t wq_unbound_cpumask;
444 
445 /* PL: user requested unbound cpumask via sysfs */
446 static cpumask_var_t wq_requested_unbound_cpumask;
447 
448 /* PL: isolated cpumask to be excluded from unbound cpumask */
449 static cpumask_var_t wq_isolated_cpumask;
450 
451 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
452 static struct cpumask wq_cmdline_cpumask __initdata;
453 
454 /* CPU where unbound work was last round robin scheduled from this CPU */
455 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
456 
457 /*
458  * Local execution of unbound work items is no longer guaranteed.  The
459  * following always forces round-robin CPU selection on unbound work items
460  * to uncover usages which depend on it.
461  */
462 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
463 static bool wq_debug_force_rr_cpu = true;
464 #else
465 static bool wq_debug_force_rr_cpu = false;
466 #endif
467 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
468 
469 /* to raise softirq for the BH worker pools on other CPUs */
470 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS],
471 				     bh_pool_irq_works);
472 
473 /* the BH worker pools */
474 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
475 				     bh_worker_pools);
476 
477 /* the per-cpu worker pools */
478 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
479 				     cpu_worker_pools);
480 
481 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
482 
483 /* PL: hash of all unbound pools keyed by pool->attrs */
484 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
485 
486 /* I: attributes used when instantiating standard unbound pools on demand */
487 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
488 
489 /* I: attributes used when instantiating ordered pools on demand */
490 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
491 
492 /*
493  * Used to synchronize multiple cancel_sync attempts on the same work item. See
494  * work_grab_pending() and __cancel_work_sync().
495  */
496 static DECLARE_WAIT_QUEUE_HEAD(wq_cancel_waitq);
497 
498 /*
499  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
500  * process context while holding a pool lock. Bounce to a dedicated kthread
501  * worker to avoid A-A deadlocks.
502  */
503 static struct kthread_worker *pwq_release_worker __ro_after_init;
504 
505 struct workqueue_struct *system_wq __ro_after_init;
506 EXPORT_SYMBOL(system_wq);
507 struct workqueue_struct *system_highpri_wq __ro_after_init;
508 EXPORT_SYMBOL_GPL(system_highpri_wq);
509 struct workqueue_struct *system_long_wq __ro_after_init;
510 EXPORT_SYMBOL_GPL(system_long_wq);
511 struct workqueue_struct *system_unbound_wq __ro_after_init;
512 EXPORT_SYMBOL_GPL(system_unbound_wq);
513 struct workqueue_struct *system_freezable_wq __ro_after_init;
514 EXPORT_SYMBOL_GPL(system_freezable_wq);
515 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
516 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
517 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
518 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
519 struct workqueue_struct *system_bh_wq;
520 EXPORT_SYMBOL_GPL(system_bh_wq);
521 struct workqueue_struct *system_bh_highpri_wq;
522 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
523 
524 static int worker_thread(void *__worker);
525 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
526 static void show_pwq(struct pool_workqueue *pwq);
527 static void show_one_worker_pool(struct worker_pool *pool);
528 
529 #define CREATE_TRACE_POINTS
530 #include <trace/events/workqueue.h>
531 
532 #define assert_rcu_or_pool_mutex()					\
533 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
534 			 !lockdep_is_held(&wq_pool_mutex),		\
535 			 "RCU or wq_pool_mutex should be held")
536 
537 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
538 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
539 			 !lockdep_is_held(&wq->mutex) &&		\
540 			 !lockdep_is_held(&wq_pool_mutex),		\
541 			 "RCU, wq->mutex or wq_pool_mutex should be held")
542 
543 #define for_each_bh_worker_pool(pool, cpu)				\
544 	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
545 	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
546 	     (pool)++)
547 
548 #define for_each_cpu_worker_pool(pool, cpu)				\
549 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
550 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
551 	     (pool)++)
552 
553 /**
554  * for_each_pool - iterate through all worker_pools in the system
555  * @pool: iteration cursor
556  * @pi: integer used for iteration
557  *
558  * This must be called either with wq_pool_mutex held or RCU read
559  * locked.  If the pool needs to be used beyond the locking in effect, the
560  * caller is responsible for guaranteeing that the pool stays online.
561  *
562  * The if/else clause exists only for the lockdep assertion and can be
563  * ignored.
564  */
565 #define for_each_pool(pool, pi)						\
566 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
567 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
568 		else
569 
570 /**
571  * for_each_pool_worker - iterate through all workers of a worker_pool
572  * @worker: iteration cursor
573  * @pool: worker_pool to iterate workers of
574  *
575  * This must be called with wq_pool_attach_mutex.
576  *
577  * The if/else clause exists only for the lockdep assertion and can be
578  * ignored.
579  */
580 #define for_each_pool_worker(worker, pool)				\
581 	list_for_each_entry((worker), &(pool)->workers, node)		\
582 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
583 		else
584 
585 /**
586  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
587  * @pwq: iteration cursor
588  * @wq: the target workqueue
589  *
590  * This must be called either with wq->mutex held or RCU read locked.
591  * If the pwq needs to be used beyond the locking in effect, the caller is
592  * responsible for guaranteeing that the pwq stays online.
593  *
594  * The if/else clause exists only for the lockdep assertion and can be
595  * ignored.
596  */
597 #define for_each_pwq(pwq, wq)						\
598 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
599 				 lockdep_is_held(&(wq->mutex)))
600 
601 #ifdef CONFIG_DEBUG_OBJECTS_WORK
602 
603 static const struct debug_obj_descr work_debug_descr;
604 
605 static void *work_debug_hint(void *addr)
606 {
607 	return ((struct work_struct *) addr)->func;
608 }
609 
610 static bool work_is_static_object(void *addr)
611 {
612 	struct work_struct *work = addr;
613 
614 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
615 }
616 
617 /*
618  * fixup_init is called when:
619  * - an active object is initialized
620  */
621 static bool work_fixup_init(void *addr, enum debug_obj_state state)
622 {
623 	struct work_struct *work = addr;
624 
625 	switch (state) {
626 	case ODEBUG_STATE_ACTIVE:
627 		cancel_work_sync(work);
628 		debug_object_init(work, &work_debug_descr);
629 		return true;
630 	default:
631 		return false;
632 	}
633 }
634 
635 /*
636  * fixup_free is called when:
637  * - an active object is freed
638  */
639 static bool work_fixup_free(void *addr, enum debug_obj_state state)
640 {
641 	struct work_struct *work = addr;
642 
643 	switch (state) {
644 	case ODEBUG_STATE_ACTIVE:
645 		cancel_work_sync(work);
646 		debug_object_free(work, &work_debug_descr);
647 		return true;
648 	default:
649 		return false;
650 	}
651 }
652 
653 static const struct debug_obj_descr work_debug_descr = {
654 	.name		= "work_struct",
655 	.debug_hint	= work_debug_hint,
656 	.is_static_object = work_is_static_object,
657 	.fixup_init	= work_fixup_init,
658 	.fixup_free	= work_fixup_free,
659 };
660 
661 static inline void debug_work_activate(struct work_struct *work)
662 {
663 	debug_object_activate(work, &work_debug_descr);
664 }
665 
666 static inline void debug_work_deactivate(struct work_struct *work)
667 {
668 	debug_object_deactivate(work, &work_debug_descr);
669 }
670 
671 void __init_work(struct work_struct *work, int onstack)
672 {
673 	if (onstack)
674 		debug_object_init_on_stack(work, &work_debug_descr);
675 	else
676 		debug_object_init(work, &work_debug_descr);
677 }
678 EXPORT_SYMBOL_GPL(__init_work);
679 
680 void destroy_work_on_stack(struct work_struct *work)
681 {
682 	debug_object_free(work, &work_debug_descr);
683 }
684 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
685 
686 void destroy_delayed_work_on_stack(struct delayed_work *work)
687 {
688 	destroy_timer_on_stack(&work->timer);
689 	debug_object_free(&work->work, &work_debug_descr);
690 }
691 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
692 
693 #else
694 static inline void debug_work_activate(struct work_struct *work) { }
695 static inline void debug_work_deactivate(struct work_struct *work) { }
696 #endif
697 
698 /**
699  * worker_pool_assign_id - allocate ID and assign it to @pool
700  * @pool: the pool pointer of interest
701  *
702  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
703  * successfully, -errno on failure.
704  */
705 static int worker_pool_assign_id(struct worker_pool *pool)
706 {
707 	int ret;
708 
709 	lockdep_assert_held(&wq_pool_mutex);
710 
711 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
712 			GFP_KERNEL);
713 	if (ret >= 0) {
714 		pool->id = ret;
715 		return 0;
716 	}
717 	return ret;
718 }
719 
720 static struct pool_workqueue __rcu **
721 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
722 {
723        if (cpu >= 0)
724                return per_cpu_ptr(wq->cpu_pwq, cpu);
725        else
726                return &wq->dfl_pwq;
727 }
728 
729 /* @cpu < 0 for dfl_pwq */
730 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
731 {
732 	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
733 				     lockdep_is_held(&wq_pool_mutex) ||
734 				     lockdep_is_held(&wq->mutex));
735 }
736 
737 /**
738  * unbound_effective_cpumask - effective cpumask of an unbound workqueue
739  * @wq: workqueue of interest
740  *
741  * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
742  * is masked with wq_unbound_cpumask to determine the effective cpumask. The
743  * default pwq is always mapped to the pool with the current effective cpumask.
744  */
745 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
746 {
747 	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
748 }
749 
750 static unsigned int work_color_to_flags(int color)
751 {
752 	return color << WORK_STRUCT_COLOR_SHIFT;
753 }
754 
755 static int get_work_color(unsigned long work_data)
756 {
757 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
758 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
759 }
760 
761 static int work_next_color(int color)
762 {
763 	return (color + 1) % WORK_NR_COLORS;
764 }
765 
766 /*
767  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
768  * contain the pointer to the queued pwq.  Once execution starts, the flag
769  * is cleared and the high bits contain OFFQ flags and pool ID.
770  *
771  * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
772  * can be used to set the pwq, pool or clear work->data. These functions should
773  * only be called while the work is owned - ie. while the PENDING bit is set.
774  *
775  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
776  * corresponding to a work.  Pool is available once the work has been
777  * queued anywhere after initialization until it is sync canceled.  pwq is
778  * available only while the work item is queued.
779  *
780  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
781  * canceled.  While being canceled, a work item may have its PENDING set
782  * but stay off timer and worklist for arbitrarily long and nobody should
783  * try to steal the PENDING bit.
784  */
785 static inline void set_work_data(struct work_struct *work, unsigned long data)
786 {
787 	WARN_ON_ONCE(!work_pending(work));
788 	atomic_long_set(&work->data, data | work_static(work));
789 }
790 
791 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
792 			 unsigned long flags)
793 {
794 	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
795 		      WORK_STRUCT_PWQ | flags);
796 }
797 
798 static void set_work_pool_and_keep_pending(struct work_struct *work,
799 					   int pool_id, unsigned long flags)
800 {
801 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
802 		      WORK_STRUCT_PENDING | flags);
803 }
804 
805 static void set_work_pool_and_clear_pending(struct work_struct *work,
806 					    int pool_id, unsigned long flags)
807 {
808 	/*
809 	 * The following wmb is paired with the implied mb in
810 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
811 	 * here are visible to and precede any updates by the next PENDING
812 	 * owner.
813 	 */
814 	smp_wmb();
815 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
816 		      flags);
817 	/*
818 	 * The following mb guarantees that previous clear of a PENDING bit
819 	 * will not be reordered with any speculative LOADS or STORES from
820 	 * work->current_func, which is executed afterwards.  This possible
821 	 * reordering can lead to a missed execution on attempt to queue
822 	 * the same @work.  E.g. consider this case:
823 	 *
824 	 *   CPU#0                         CPU#1
825 	 *   ----------------------------  --------------------------------
826 	 *
827 	 * 1  STORE event_indicated
828 	 * 2  queue_work_on() {
829 	 * 3    test_and_set_bit(PENDING)
830 	 * 4 }                             set_..._and_clear_pending() {
831 	 * 5                                 set_work_data() # clear bit
832 	 * 6                                 smp_mb()
833 	 * 7                               work->current_func() {
834 	 * 8				      LOAD event_indicated
835 	 *				   }
836 	 *
837 	 * Without an explicit full barrier speculative LOAD on line 8 can
838 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
839 	 * CPU#0 observes the PENDING bit is still set and new execution of
840 	 * a @work is not queued in a hope, that CPU#1 will eventually
841 	 * finish the queued @work.  Meanwhile CPU#1 does not see
842 	 * event_indicated is set, because speculative LOAD was executed
843 	 * before actual STORE.
844 	 */
845 	smp_mb();
846 }
847 
848 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
849 {
850 	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
851 }
852 
853 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
854 {
855 	unsigned long data = atomic_long_read(&work->data);
856 
857 	if (data & WORK_STRUCT_PWQ)
858 		return work_struct_pwq(data);
859 	else
860 		return NULL;
861 }
862 
863 /**
864  * get_work_pool - return the worker_pool a given work was associated with
865  * @work: the work item of interest
866  *
867  * Pools are created and destroyed under wq_pool_mutex, and allows read
868  * access under RCU read lock.  As such, this function should be
869  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
870  *
871  * All fields of the returned pool are accessible as long as the above
872  * mentioned locking is in effect.  If the returned pool needs to be used
873  * beyond the critical section, the caller is responsible for ensuring the
874  * returned pool is and stays online.
875  *
876  * Return: The worker_pool @work was last associated with.  %NULL if none.
877  */
878 static struct worker_pool *get_work_pool(struct work_struct *work)
879 {
880 	unsigned long data = atomic_long_read(&work->data);
881 	int pool_id;
882 
883 	assert_rcu_or_pool_mutex();
884 
885 	if (data & WORK_STRUCT_PWQ)
886 		return work_struct_pwq(data)->pool;
887 
888 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
889 	if (pool_id == WORK_OFFQ_POOL_NONE)
890 		return NULL;
891 
892 	return idr_find(&worker_pool_idr, pool_id);
893 }
894 
895 /**
896  * get_work_pool_id - return the worker pool ID a given work is associated with
897  * @work: the work item of interest
898  *
899  * Return: The worker_pool ID @work was last associated with.
900  * %WORK_OFFQ_POOL_NONE if none.
901  */
902 static int get_work_pool_id(struct work_struct *work)
903 {
904 	unsigned long data = atomic_long_read(&work->data);
905 
906 	if (data & WORK_STRUCT_PWQ)
907 		return work_struct_pwq(data)->pool->id;
908 
909 	return data >> WORK_OFFQ_POOL_SHIFT;
910 }
911 
912 static void mark_work_canceling(struct work_struct *work)
913 {
914 	unsigned long pool_id = get_work_pool_id(work);
915 
916 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
917 	set_work_data(work, pool_id | WORK_STRUCT_PENDING | WORK_OFFQ_CANCELING);
918 }
919 
920 static bool work_is_canceling(struct work_struct *work)
921 {
922 	unsigned long data = atomic_long_read(&work->data);
923 
924 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
925 }
926 
927 /*
928  * Policy functions.  These define the policies on how the global worker
929  * pools are managed.  Unless noted otherwise, these functions assume that
930  * they're being called with pool->lock held.
931  */
932 
933 /*
934  * Need to wake up a worker?  Called from anything but currently
935  * running workers.
936  *
937  * Note that, because unbound workers never contribute to nr_running, this
938  * function will always return %true for unbound pools as long as the
939  * worklist isn't empty.
940  */
941 static bool need_more_worker(struct worker_pool *pool)
942 {
943 	return !list_empty(&pool->worklist) && !pool->nr_running;
944 }
945 
946 /* Can I start working?  Called from busy but !running workers. */
947 static bool may_start_working(struct worker_pool *pool)
948 {
949 	return pool->nr_idle;
950 }
951 
952 /* Do I need to keep working?  Called from currently running workers. */
953 static bool keep_working(struct worker_pool *pool)
954 {
955 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
956 }
957 
958 /* Do we need a new worker?  Called from manager. */
959 static bool need_to_create_worker(struct worker_pool *pool)
960 {
961 	return need_more_worker(pool) && !may_start_working(pool);
962 }
963 
964 /* Do we have too many workers and should some go away? */
965 static bool too_many_workers(struct worker_pool *pool)
966 {
967 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
968 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
969 	int nr_busy = pool->nr_workers - nr_idle;
970 
971 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
972 }
973 
974 /**
975  * worker_set_flags - set worker flags and adjust nr_running accordingly
976  * @worker: self
977  * @flags: flags to set
978  *
979  * Set @flags in @worker->flags and adjust nr_running accordingly.
980  */
981 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
982 {
983 	struct worker_pool *pool = worker->pool;
984 
985 	lockdep_assert_held(&pool->lock);
986 
987 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
988 	if ((flags & WORKER_NOT_RUNNING) &&
989 	    !(worker->flags & WORKER_NOT_RUNNING)) {
990 		pool->nr_running--;
991 	}
992 
993 	worker->flags |= flags;
994 }
995 
996 /**
997  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
998  * @worker: self
999  * @flags: flags to clear
1000  *
1001  * Clear @flags in @worker->flags and adjust nr_running accordingly.
1002  */
1003 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1004 {
1005 	struct worker_pool *pool = worker->pool;
1006 	unsigned int oflags = worker->flags;
1007 
1008 	lockdep_assert_held(&pool->lock);
1009 
1010 	worker->flags &= ~flags;
1011 
1012 	/*
1013 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1014 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1015 	 * of multiple flags, not a single flag.
1016 	 */
1017 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1018 		if (!(worker->flags & WORKER_NOT_RUNNING))
1019 			pool->nr_running++;
1020 }
1021 
1022 /* Return the first idle worker.  Called with pool->lock held. */
1023 static struct worker *first_idle_worker(struct worker_pool *pool)
1024 {
1025 	if (unlikely(list_empty(&pool->idle_list)))
1026 		return NULL;
1027 
1028 	return list_first_entry(&pool->idle_list, struct worker, entry);
1029 }
1030 
1031 /**
1032  * worker_enter_idle - enter idle state
1033  * @worker: worker which is entering idle state
1034  *
1035  * @worker is entering idle state.  Update stats and idle timer if
1036  * necessary.
1037  *
1038  * LOCKING:
1039  * raw_spin_lock_irq(pool->lock).
1040  */
1041 static void worker_enter_idle(struct worker *worker)
1042 {
1043 	struct worker_pool *pool = worker->pool;
1044 
1045 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1046 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1047 			 (worker->hentry.next || worker->hentry.pprev)))
1048 		return;
1049 
1050 	/* can't use worker_set_flags(), also called from create_worker() */
1051 	worker->flags |= WORKER_IDLE;
1052 	pool->nr_idle++;
1053 	worker->last_active = jiffies;
1054 
1055 	/* idle_list is LIFO */
1056 	list_add(&worker->entry, &pool->idle_list);
1057 
1058 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1059 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1060 
1061 	/* Sanity check nr_running. */
1062 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1063 }
1064 
1065 /**
1066  * worker_leave_idle - leave idle state
1067  * @worker: worker which is leaving idle state
1068  *
1069  * @worker is leaving idle state.  Update stats.
1070  *
1071  * LOCKING:
1072  * raw_spin_lock_irq(pool->lock).
1073  */
1074 static void worker_leave_idle(struct worker *worker)
1075 {
1076 	struct worker_pool *pool = worker->pool;
1077 
1078 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1079 		return;
1080 	worker_clr_flags(worker, WORKER_IDLE);
1081 	pool->nr_idle--;
1082 	list_del_init(&worker->entry);
1083 }
1084 
1085 /**
1086  * find_worker_executing_work - find worker which is executing a work
1087  * @pool: pool of interest
1088  * @work: work to find worker for
1089  *
1090  * Find a worker which is executing @work on @pool by searching
1091  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1092  * to match, its current execution should match the address of @work and
1093  * its work function.  This is to avoid unwanted dependency between
1094  * unrelated work executions through a work item being recycled while still
1095  * being executed.
1096  *
1097  * This is a bit tricky.  A work item may be freed once its execution
1098  * starts and nothing prevents the freed area from being recycled for
1099  * another work item.  If the same work item address ends up being reused
1100  * before the original execution finishes, workqueue will identify the
1101  * recycled work item as currently executing and make it wait until the
1102  * current execution finishes, introducing an unwanted dependency.
1103  *
1104  * This function checks the work item address and work function to avoid
1105  * false positives.  Note that this isn't complete as one may construct a
1106  * work function which can introduce dependency onto itself through a
1107  * recycled work item.  Well, if somebody wants to shoot oneself in the
1108  * foot that badly, there's only so much we can do, and if such deadlock
1109  * actually occurs, it should be easy to locate the culprit work function.
1110  *
1111  * CONTEXT:
1112  * raw_spin_lock_irq(pool->lock).
1113  *
1114  * Return:
1115  * Pointer to worker which is executing @work if found, %NULL
1116  * otherwise.
1117  */
1118 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1119 						 struct work_struct *work)
1120 {
1121 	struct worker *worker;
1122 
1123 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1124 			       (unsigned long)work)
1125 		if (worker->current_work == work &&
1126 		    worker->current_func == work->func)
1127 			return worker;
1128 
1129 	return NULL;
1130 }
1131 
1132 /**
1133  * move_linked_works - move linked works to a list
1134  * @work: start of series of works to be scheduled
1135  * @head: target list to append @work to
1136  * @nextp: out parameter for nested worklist walking
1137  *
1138  * Schedule linked works starting from @work to @head. Work series to be
1139  * scheduled starts at @work and includes any consecutive work with
1140  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1141  * @nextp.
1142  *
1143  * CONTEXT:
1144  * raw_spin_lock_irq(pool->lock).
1145  */
1146 static void move_linked_works(struct work_struct *work, struct list_head *head,
1147 			      struct work_struct **nextp)
1148 {
1149 	struct work_struct *n;
1150 
1151 	/*
1152 	 * Linked worklist will always end before the end of the list,
1153 	 * use NULL for list head.
1154 	 */
1155 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1156 		list_move_tail(&work->entry, head);
1157 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1158 			break;
1159 	}
1160 
1161 	/*
1162 	 * If we're already inside safe list traversal and have moved
1163 	 * multiple works to the scheduled queue, the next position
1164 	 * needs to be updated.
1165 	 */
1166 	if (nextp)
1167 		*nextp = n;
1168 }
1169 
1170 /**
1171  * assign_work - assign a work item and its linked work items to a worker
1172  * @work: work to assign
1173  * @worker: worker to assign to
1174  * @nextp: out parameter for nested worklist walking
1175  *
1176  * Assign @work and its linked work items to @worker. If @work is already being
1177  * executed by another worker in the same pool, it'll be punted there.
1178  *
1179  * If @nextp is not NULL, it's updated to point to the next work of the last
1180  * scheduled work. This allows assign_work() to be nested inside
1181  * list_for_each_entry_safe().
1182  *
1183  * Returns %true if @work was successfully assigned to @worker. %false if @work
1184  * was punted to another worker already executing it.
1185  */
1186 static bool assign_work(struct work_struct *work, struct worker *worker,
1187 			struct work_struct **nextp)
1188 {
1189 	struct worker_pool *pool = worker->pool;
1190 	struct worker *collision;
1191 
1192 	lockdep_assert_held(&pool->lock);
1193 
1194 	/*
1195 	 * A single work shouldn't be executed concurrently by multiple workers.
1196 	 * __queue_work() ensures that @work doesn't jump to a different pool
1197 	 * while still running in the previous pool. Here, we should ensure that
1198 	 * @work is not executed concurrently by multiple workers from the same
1199 	 * pool. Check whether anyone is already processing the work. If so,
1200 	 * defer the work to the currently executing one.
1201 	 */
1202 	collision = find_worker_executing_work(pool, work);
1203 	if (unlikely(collision)) {
1204 		move_linked_works(work, &collision->scheduled, nextp);
1205 		return false;
1206 	}
1207 
1208 	move_linked_works(work, &worker->scheduled, nextp);
1209 	return true;
1210 }
1211 
1212 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1213 {
1214 	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1215 
1216 	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1217 }
1218 
1219 static void kick_bh_pool(struct worker_pool *pool)
1220 {
1221 #ifdef CONFIG_SMP
1222 	/* see drain_dead_softirq_workfn() for BH_DRAINING */
1223 	if (unlikely(pool->cpu != smp_processor_id() &&
1224 		     !(pool->flags & POOL_BH_DRAINING))) {
1225 		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1226 		return;
1227 	}
1228 #endif
1229 	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1230 		raise_softirq_irqoff(HI_SOFTIRQ);
1231 	else
1232 		raise_softirq_irqoff(TASKLET_SOFTIRQ);
1233 }
1234 
1235 /**
1236  * kick_pool - wake up an idle worker if necessary
1237  * @pool: pool to kick
1238  *
1239  * @pool may have pending work items. Wake up worker if necessary. Returns
1240  * whether a worker was woken up.
1241  */
1242 static bool kick_pool(struct worker_pool *pool)
1243 {
1244 	struct worker *worker = first_idle_worker(pool);
1245 	struct task_struct *p;
1246 
1247 	lockdep_assert_held(&pool->lock);
1248 
1249 	if (!need_more_worker(pool) || !worker)
1250 		return false;
1251 
1252 	if (pool->flags & POOL_BH) {
1253 		kick_bh_pool(pool);
1254 		return true;
1255 	}
1256 
1257 	p = worker->task;
1258 
1259 #ifdef CONFIG_SMP
1260 	/*
1261 	 * Idle @worker is about to execute @work and waking up provides an
1262 	 * opportunity to migrate @worker at a lower cost by setting the task's
1263 	 * wake_cpu field. Let's see if we want to move @worker to improve
1264 	 * execution locality.
1265 	 *
1266 	 * We're waking the worker that went idle the latest and there's some
1267 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1268 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1269 	 * optimization and the race window is narrow, let's leave as-is for
1270 	 * now. If this becomes pronounced, we can skip over workers which are
1271 	 * still on cpu when picking an idle worker.
1272 	 *
1273 	 * If @pool has non-strict affinity, @worker might have ended up outside
1274 	 * its affinity scope. Repatriate.
1275 	 */
1276 	if (!pool->attrs->affn_strict &&
1277 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1278 		struct work_struct *work = list_first_entry(&pool->worklist,
1279 						struct work_struct, entry);
1280 		p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask);
1281 		get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1282 	}
1283 #endif
1284 	wake_up_process(p);
1285 	return true;
1286 }
1287 
1288 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1289 
1290 /*
1291  * Concurrency-managed per-cpu work items that hog CPU for longer than
1292  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1293  * which prevents them from stalling other concurrency-managed work items. If a
1294  * work function keeps triggering this mechanism, it's likely that the work item
1295  * should be using an unbound workqueue instead.
1296  *
1297  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1298  * and report them so that they can be examined and converted to use unbound
1299  * workqueues as appropriate. To avoid flooding the console, each violating work
1300  * function is tracked and reported with exponential backoff.
1301  */
1302 #define WCI_MAX_ENTS 128
1303 
1304 struct wci_ent {
1305 	work_func_t		func;
1306 	atomic64_t		cnt;
1307 	struct hlist_node	hash_node;
1308 };
1309 
1310 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1311 static int wci_nr_ents;
1312 static DEFINE_RAW_SPINLOCK(wci_lock);
1313 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1314 
1315 static struct wci_ent *wci_find_ent(work_func_t func)
1316 {
1317 	struct wci_ent *ent;
1318 
1319 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1320 				   (unsigned long)func) {
1321 		if (ent->func == func)
1322 			return ent;
1323 	}
1324 	return NULL;
1325 }
1326 
1327 static void wq_cpu_intensive_report(work_func_t func)
1328 {
1329 	struct wci_ent *ent;
1330 
1331 restart:
1332 	ent = wci_find_ent(func);
1333 	if (ent) {
1334 		u64 cnt;
1335 
1336 		/*
1337 		 * Start reporting from the warning_thresh and back off
1338 		 * exponentially.
1339 		 */
1340 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1341 		if (wq_cpu_intensive_warning_thresh &&
1342 		    cnt >= wq_cpu_intensive_warning_thresh &&
1343 		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1344 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1345 					ent->func, wq_cpu_intensive_thresh_us,
1346 					atomic64_read(&ent->cnt));
1347 		return;
1348 	}
1349 
1350 	/*
1351 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1352 	 * is exhausted, something went really wrong and we probably made enough
1353 	 * noise already.
1354 	 */
1355 	if (wci_nr_ents >= WCI_MAX_ENTS)
1356 		return;
1357 
1358 	raw_spin_lock(&wci_lock);
1359 
1360 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1361 		raw_spin_unlock(&wci_lock);
1362 		return;
1363 	}
1364 
1365 	if (wci_find_ent(func)) {
1366 		raw_spin_unlock(&wci_lock);
1367 		goto restart;
1368 	}
1369 
1370 	ent = &wci_ents[wci_nr_ents++];
1371 	ent->func = func;
1372 	atomic64_set(&ent->cnt, 0);
1373 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1374 
1375 	raw_spin_unlock(&wci_lock);
1376 
1377 	goto restart;
1378 }
1379 
1380 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1381 static void wq_cpu_intensive_report(work_func_t func) {}
1382 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1383 
1384 /**
1385  * wq_worker_running - a worker is running again
1386  * @task: task waking up
1387  *
1388  * This function is called when a worker returns from schedule()
1389  */
1390 void wq_worker_running(struct task_struct *task)
1391 {
1392 	struct worker *worker = kthread_data(task);
1393 
1394 	if (!READ_ONCE(worker->sleeping))
1395 		return;
1396 
1397 	/*
1398 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1399 	 * and the nr_running increment below, we may ruin the nr_running reset
1400 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1401 	 * pool. Protect against such race.
1402 	 */
1403 	preempt_disable();
1404 	if (!(worker->flags & WORKER_NOT_RUNNING))
1405 		worker->pool->nr_running++;
1406 	preempt_enable();
1407 
1408 	/*
1409 	 * CPU intensive auto-detection cares about how long a work item hogged
1410 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1411 	 */
1412 	worker->current_at = worker->task->se.sum_exec_runtime;
1413 
1414 	WRITE_ONCE(worker->sleeping, 0);
1415 }
1416 
1417 /**
1418  * wq_worker_sleeping - a worker is going to sleep
1419  * @task: task going to sleep
1420  *
1421  * This function is called from schedule() when a busy worker is
1422  * going to sleep.
1423  */
1424 void wq_worker_sleeping(struct task_struct *task)
1425 {
1426 	struct worker *worker = kthread_data(task);
1427 	struct worker_pool *pool;
1428 
1429 	/*
1430 	 * Rescuers, which may not have all the fields set up like normal
1431 	 * workers, also reach here, let's not access anything before
1432 	 * checking NOT_RUNNING.
1433 	 */
1434 	if (worker->flags & WORKER_NOT_RUNNING)
1435 		return;
1436 
1437 	pool = worker->pool;
1438 
1439 	/* Return if preempted before wq_worker_running() was reached */
1440 	if (READ_ONCE(worker->sleeping))
1441 		return;
1442 
1443 	WRITE_ONCE(worker->sleeping, 1);
1444 	raw_spin_lock_irq(&pool->lock);
1445 
1446 	/*
1447 	 * Recheck in case unbind_workers() preempted us. We don't
1448 	 * want to decrement nr_running after the worker is unbound
1449 	 * and nr_running has been reset.
1450 	 */
1451 	if (worker->flags & WORKER_NOT_RUNNING) {
1452 		raw_spin_unlock_irq(&pool->lock);
1453 		return;
1454 	}
1455 
1456 	pool->nr_running--;
1457 	if (kick_pool(pool))
1458 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1459 
1460 	raw_spin_unlock_irq(&pool->lock);
1461 }
1462 
1463 /**
1464  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1465  * @task: task currently running
1466  *
1467  * Called from scheduler_tick(). We're in the IRQ context and the current
1468  * worker's fields which follow the 'K' locking rule can be accessed safely.
1469  */
1470 void wq_worker_tick(struct task_struct *task)
1471 {
1472 	struct worker *worker = kthread_data(task);
1473 	struct pool_workqueue *pwq = worker->current_pwq;
1474 	struct worker_pool *pool = worker->pool;
1475 
1476 	if (!pwq)
1477 		return;
1478 
1479 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1480 
1481 	if (!wq_cpu_intensive_thresh_us)
1482 		return;
1483 
1484 	/*
1485 	 * If the current worker is concurrency managed and hogged the CPU for
1486 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1487 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1488 	 *
1489 	 * Set @worker->sleeping means that @worker is in the process of
1490 	 * switching out voluntarily and won't be contributing to
1491 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1492 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1493 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1494 	 * We probably want to make this prettier in the future.
1495 	 */
1496 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1497 	    worker->task->se.sum_exec_runtime - worker->current_at <
1498 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1499 		return;
1500 
1501 	raw_spin_lock(&pool->lock);
1502 
1503 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1504 	wq_cpu_intensive_report(worker->current_func);
1505 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1506 
1507 	if (kick_pool(pool))
1508 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1509 
1510 	raw_spin_unlock(&pool->lock);
1511 }
1512 
1513 /**
1514  * wq_worker_last_func - retrieve worker's last work function
1515  * @task: Task to retrieve last work function of.
1516  *
1517  * Determine the last function a worker executed. This is called from
1518  * the scheduler to get a worker's last known identity.
1519  *
1520  * CONTEXT:
1521  * raw_spin_lock_irq(rq->lock)
1522  *
1523  * This function is called during schedule() when a kworker is going
1524  * to sleep. It's used by psi to identify aggregation workers during
1525  * dequeuing, to allow periodic aggregation to shut-off when that
1526  * worker is the last task in the system or cgroup to go to sleep.
1527  *
1528  * As this function doesn't involve any workqueue-related locking, it
1529  * only returns stable values when called from inside the scheduler's
1530  * queuing and dequeuing paths, when @task, which must be a kworker,
1531  * is guaranteed to not be processing any works.
1532  *
1533  * Return:
1534  * The last work function %current executed as a worker, NULL if it
1535  * hasn't executed any work yet.
1536  */
1537 work_func_t wq_worker_last_func(struct task_struct *task)
1538 {
1539 	struct worker *worker = kthread_data(task);
1540 
1541 	return worker->last_func;
1542 }
1543 
1544 /**
1545  * wq_node_nr_active - Determine wq_node_nr_active to use
1546  * @wq: workqueue of interest
1547  * @node: NUMA node, can be %NUMA_NO_NODE
1548  *
1549  * Determine wq_node_nr_active to use for @wq on @node. Returns:
1550  *
1551  * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1552  *
1553  * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1554  *
1555  * - Otherwise, node_nr_active[@node].
1556  */
1557 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1558 						   int node)
1559 {
1560 	if (!(wq->flags & WQ_UNBOUND))
1561 		return NULL;
1562 
1563 	if (node == NUMA_NO_NODE)
1564 		node = nr_node_ids;
1565 
1566 	return wq->node_nr_active[node];
1567 }
1568 
1569 /**
1570  * wq_update_node_max_active - Update per-node max_actives to use
1571  * @wq: workqueue to update
1572  * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1573  *
1574  * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1575  * distributed among nodes according to the proportions of numbers of online
1576  * cpus. The result is always between @wq->min_active and max_active.
1577  */
1578 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1579 {
1580 	struct cpumask *effective = unbound_effective_cpumask(wq);
1581 	int min_active = READ_ONCE(wq->min_active);
1582 	int max_active = READ_ONCE(wq->max_active);
1583 	int total_cpus, node;
1584 
1585 	lockdep_assert_held(&wq->mutex);
1586 
1587 	if (!wq_topo_initialized)
1588 		return;
1589 
1590 	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1591 		off_cpu = -1;
1592 
1593 	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1594 	if (off_cpu >= 0)
1595 		total_cpus--;
1596 
1597 	for_each_node(node) {
1598 		int node_cpus;
1599 
1600 		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1601 		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1602 			node_cpus--;
1603 
1604 		wq_node_nr_active(wq, node)->max =
1605 			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1606 			      min_active, max_active);
1607 	}
1608 
1609 	wq_node_nr_active(wq, NUMA_NO_NODE)->max = min_active;
1610 }
1611 
1612 /**
1613  * get_pwq - get an extra reference on the specified pool_workqueue
1614  * @pwq: pool_workqueue to get
1615  *
1616  * Obtain an extra reference on @pwq.  The caller should guarantee that
1617  * @pwq has positive refcnt and be holding the matching pool->lock.
1618  */
1619 static void get_pwq(struct pool_workqueue *pwq)
1620 {
1621 	lockdep_assert_held(&pwq->pool->lock);
1622 	WARN_ON_ONCE(pwq->refcnt <= 0);
1623 	pwq->refcnt++;
1624 }
1625 
1626 /**
1627  * put_pwq - put a pool_workqueue reference
1628  * @pwq: pool_workqueue to put
1629  *
1630  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1631  * destruction.  The caller should be holding the matching pool->lock.
1632  */
1633 static void put_pwq(struct pool_workqueue *pwq)
1634 {
1635 	lockdep_assert_held(&pwq->pool->lock);
1636 	if (likely(--pwq->refcnt))
1637 		return;
1638 	/*
1639 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1640 	 * kthread_worker to avoid A-A deadlocks.
1641 	 */
1642 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1643 }
1644 
1645 /**
1646  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1647  * @pwq: pool_workqueue to put (can be %NULL)
1648  *
1649  * put_pwq() with locking.  This function also allows %NULL @pwq.
1650  */
1651 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1652 {
1653 	if (pwq) {
1654 		/*
1655 		 * As both pwqs and pools are RCU protected, the
1656 		 * following lock operations are safe.
1657 		 */
1658 		raw_spin_lock_irq(&pwq->pool->lock);
1659 		put_pwq(pwq);
1660 		raw_spin_unlock_irq(&pwq->pool->lock);
1661 	}
1662 }
1663 
1664 static bool pwq_is_empty(struct pool_workqueue *pwq)
1665 {
1666 	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1667 }
1668 
1669 static void __pwq_activate_work(struct pool_workqueue *pwq,
1670 				struct work_struct *work)
1671 {
1672 	unsigned long *wdb = work_data_bits(work);
1673 
1674 	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1675 	trace_workqueue_activate_work(work);
1676 	if (list_empty(&pwq->pool->worklist))
1677 		pwq->pool->watchdog_ts = jiffies;
1678 	move_linked_works(work, &pwq->pool->worklist, NULL);
1679 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1680 }
1681 
1682 /**
1683  * pwq_activate_work - Activate a work item if inactive
1684  * @pwq: pool_workqueue @work belongs to
1685  * @work: work item to activate
1686  *
1687  * Returns %true if activated. %false if already active.
1688  */
1689 static bool pwq_activate_work(struct pool_workqueue *pwq,
1690 			      struct work_struct *work)
1691 {
1692 	struct worker_pool *pool = pwq->pool;
1693 	struct wq_node_nr_active *nna;
1694 
1695 	lockdep_assert_held(&pool->lock);
1696 
1697 	if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE))
1698 		return false;
1699 
1700 	nna = wq_node_nr_active(pwq->wq, pool->node);
1701 	if (nna)
1702 		atomic_inc(&nna->nr);
1703 
1704 	pwq->nr_active++;
1705 	__pwq_activate_work(pwq, work);
1706 	return true;
1707 }
1708 
1709 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1710 {
1711 	int max = READ_ONCE(nna->max);
1712 
1713 	while (true) {
1714 		int old, tmp;
1715 
1716 		old = atomic_read(&nna->nr);
1717 		if (old >= max)
1718 			return false;
1719 		tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1720 		if (tmp == old)
1721 			return true;
1722 	}
1723 }
1724 
1725 /**
1726  * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1727  * @pwq: pool_workqueue of interest
1728  * @fill: max_active may have increased, try to increase concurrency level
1729  *
1730  * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1731  * successfully obtained. %false otherwise.
1732  */
1733 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1734 {
1735 	struct workqueue_struct *wq = pwq->wq;
1736 	struct worker_pool *pool = pwq->pool;
1737 	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1738 	bool obtained = false;
1739 
1740 	lockdep_assert_held(&pool->lock);
1741 
1742 	if (!nna) {
1743 		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1744 		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1745 		goto out;
1746 	}
1747 
1748 	if (unlikely(pwq->plugged))
1749 		return false;
1750 
1751 	/*
1752 	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1753 	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1754 	 * concurrency level. Don't jump the line.
1755 	 *
1756 	 * We need to ignore the pending test after max_active has increased as
1757 	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1758 	 * increase it. This is indicated by @fill.
1759 	 */
1760 	if (!list_empty(&pwq->pending_node) && likely(!fill))
1761 		goto out;
1762 
1763 	obtained = tryinc_node_nr_active(nna);
1764 	if (obtained)
1765 		goto out;
1766 
1767 	/*
1768 	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1769 	 * and try again. The smp_mb() is paired with the implied memory barrier
1770 	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1771 	 * we see the decremented $nna->nr or they see non-empty
1772 	 * $nna->pending_pwqs.
1773 	 */
1774 	raw_spin_lock(&nna->lock);
1775 
1776 	if (list_empty(&pwq->pending_node))
1777 		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1778 	else if (likely(!fill))
1779 		goto out_unlock;
1780 
1781 	smp_mb();
1782 
1783 	obtained = tryinc_node_nr_active(nna);
1784 
1785 	/*
1786 	 * If @fill, @pwq might have already been pending. Being spuriously
1787 	 * pending in cold paths doesn't affect anything. Let's leave it be.
1788 	 */
1789 	if (obtained && likely(!fill))
1790 		list_del_init(&pwq->pending_node);
1791 
1792 out_unlock:
1793 	raw_spin_unlock(&nna->lock);
1794 out:
1795 	if (obtained)
1796 		pwq->nr_active++;
1797 	return obtained;
1798 }
1799 
1800 /**
1801  * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1802  * @pwq: pool_workqueue of interest
1803  * @fill: max_active may have increased, try to increase concurrency level
1804  *
1805  * Activate the first inactive work item of @pwq if available and allowed by
1806  * max_active limit.
1807  *
1808  * Returns %true if an inactive work item has been activated. %false if no
1809  * inactive work item is found or max_active limit is reached.
1810  */
1811 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1812 {
1813 	struct work_struct *work =
1814 		list_first_entry_or_null(&pwq->inactive_works,
1815 					 struct work_struct, entry);
1816 
1817 	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1818 		__pwq_activate_work(pwq, work);
1819 		return true;
1820 	} else {
1821 		return false;
1822 	}
1823 }
1824 
1825 /**
1826  * unplug_oldest_pwq - unplug the oldest pool_workqueue
1827  * @wq: workqueue_struct where its oldest pwq is to be unplugged
1828  *
1829  * This function should only be called for ordered workqueues where only the
1830  * oldest pwq is unplugged, the others are plugged to suspend execution to
1831  * ensure proper work item ordering::
1832  *
1833  *    dfl_pwq --------------+     [P] - plugged
1834  *                          |
1835  *                          v
1836  *    pwqs -> A -> B [P] -> C [P] (newest)
1837  *            |    |        |
1838  *            1    3        5
1839  *            |    |        |
1840  *            2    4        6
1841  *
1842  * When the oldest pwq is drained and removed, this function should be called
1843  * to unplug the next oldest one to start its work item execution. Note that
1844  * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1845  * the list is the oldest.
1846  */
1847 static void unplug_oldest_pwq(struct workqueue_struct *wq)
1848 {
1849 	struct pool_workqueue *pwq;
1850 
1851 	lockdep_assert_held(&wq->mutex);
1852 
1853 	/* Caller should make sure that pwqs isn't empty before calling */
1854 	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1855 				       pwqs_node);
1856 	raw_spin_lock_irq(&pwq->pool->lock);
1857 	if (pwq->plugged) {
1858 		pwq->plugged = false;
1859 		if (pwq_activate_first_inactive(pwq, true))
1860 			kick_pool(pwq->pool);
1861 	}
1862 	raw_spin_unlock_irq(&pwq->pool->lock);
1863 }
1864 
1865 /**
1866  * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1867  * @nna: wq_node_nr_active to activate a pending pwq for
1868  * @caller_pool: worker_pool the caller is locking
1869  *
1870  * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1871  * @caller_pool may be unlocked and relocked to lock other worker_pools.
1872  */
1873 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1874 				      struct worker_pool *caller_pool)
1875 {
1876 	struct worker_pool *locked_pool = caller_pool;
1877 	struct pool_workqueue *pwq;
1878 	struct work_struct *work;
1879 
1880 	lockdep_assert_held(&caller_pool->lock);
1881 
1882 	raw_spin_lock(&nna->lock);
1883 retry:
1884 	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1885 				       struct pool_workqueue, pending_node);
1886 	if (!pwq)
1887 		goto out_unlock;
1888 
1889 	/*
1890 	 * If @pwq is for a different pool than @locked_pool, we need to lock
1891 	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1892 	 * / lock dance. For that, we also need to release @nna->lock as it's
1893 	 * nested inside pool locks.
1894 	 */
1895 	if (pwq->pool != locked_pool) {
1896 		raw_spin_unlock(&locked_pool->lock);
1897 		locked_pool = pwq->pool;
1898 		if (!raw_spin_trylock(&locked_pool->lock)) {
1899 			raw_spin_unlock(&nna->lock);
1900 			raw_spin_lock(&locked_pool->lock);
1901 			raw_spin_lock(&nna->lock);
1902 			goto retry;
1903 		}
1904 	}
1905 
1906 	/*
1907 	 * $pwq may not have any inactive work items due to e.g. cancellations.
1908 	 * Drop it from pending_pwqs and see if there's another one.
1909 	 */
1910 	work = list_first_entry_or_null(&pwq->inactive_works,
1911 					struct work_struct, entry);
1912 	if (!work) {
1913 		list_del_init(&pwq->pending_node);
1914 		goto retry;
1915 	}
1916 
1917 	/*
1918 	 * Acquire an nr_active count and activate the inactive work item. If
1919 	 * $pwq still has inactive work items, rotate it to the end of the
1920 	 * pending_pwqs so that we round-robin through them. This means that
1921 	 * inactive work items are not activated in queueing order which is fine
1922 	 * given that there has never been any ordering across different pwqs.
1923 	 */
1924 	if (likely(tryinc_node_nr_active(nna))) {
1925 		pwq->nr_active++;
1926 		__pwq_activate_work(pwq, work);
1927 
1928 		if (list_empty(&pwq->inactive_works))
1929 			list_del_init(&pwq->pending_node);
1930 		else
1931 			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1932 
1933 		/* if activating a foreign pool, make sure it's running */
1934 		if (pwq->pool != caller_pool)
1935 			kick_pool(pwq->pool);
1936 	}
1937 
1938 out_unlock:
1939 	raw_spin_unlock(&nna->lock);
1940 	if (locked_pool != caller_pool) {
1941 		raw_spin_unlock(&locked_pool->lock);
1942 		raw_spin_lock(&caller_pool->lock);
1943 	}
1944 }
1945 
1946 /**
1947  * pwq_dec_nr_active - Retire an active count
1948  * @pwq: pool_workqueue of interest
1949  *
1950  * Decrement @pwq's nr_active and try to activate the first inactive work item.
1951  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1952  */
1953 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1954 {
1955 	struct worker_pool *pool = pwq->pool;
1956 	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1957 
1958 	lockdep_assert_held(&pool->lock);
1959 
1960 	/*
1961 	 * @pwq->nr_active should be decremented for both percpu and unbound
1962 	 * workqueues.
1963 	 */
1964 	pwq->nr_active--;
1965 
1966 	/*
1967 	 * For a percpu workqueue, it's simple. Just need to kick the first
1968 	 * inactive work item on @pwq itself.
1969 	 */
1970 	if (!nna) {
1971 		pwq_activate_first_inactive(pwq, false);
1972 		return;
1973 	}
1974 
1975 	/*
1976 	 * If @pwq is for an unbound workqueue, it's more complicated because
1977 	 * multiple pwqs and pools may be sharing the nr_active count. When a
1978 	 * pwq needs to wait for an nr_active count, it puts itself on
1979 	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1980 	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1981 	 * guarantee that either we see non-empty pending_pwqs or they see
1982 	 * decremented $nna->nr.
1983 	 *
1984 	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1985 	 * max_active gets updated. However, it is guaranteed to be equal to or
1986 	 * larger than @pwq->wq->min_active which is above zero unless freezing.
1987 	 * This maintains the forward progress guarantee.
1988 	 */
1989 	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1990 		return;
1991 
1992 	if (!list_empty(&nna->pending_pwqs))
1993 		node_activate_pending_pwq(nna, pool);
1994 }
1995 
1996 /**
1997  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1998  * @pwq: pwq of interest
1999  * @work_data: work_data of work which left the queue
2000  *
2001  * A work either has completed or is removed from pending queue,
2002  * decrement nr_in_flight of its pwq and handle workqueue flushing.
2003  *
2004  * NOTE:
2005  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
2006  * and thus should be called after all other state updates for the in-flight
2007  * work item is complete.
2008  *
2009  * CONTEXT:
2010  * raw_spin_lock_irq(pool->lock).
2011  */
2012 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
2013 {
2014 	int color = get_work_color(work_data);
2015 
2016 	if (!(work_data & WORK_STRUCT_INACTIVE))
2017 		pwq_dec_nr_active(pwq);
2018 
2019 	pwq->nr_in_flight[color]--;
2020 
2021 	/* is flush in progress and are we at the flushing tip? */
2022 	if (likely(pwq->flush_color != color))
2023 		goto out_put;
2024 
2025 	/* are there still in-flight works? */
2026 	if (pwq->nr_in_flight[color])
2027 		goto out_put;
2028 
2029 	/* this pwq is done, clear flush_color */
2030 	pwq->flush_color = -1;
2031 
2032 	/*
2033 	 * If this was the last pwq, wake up the first flusher.  It
2034 	 * will handle the rest.
2035 	 */
2036 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2037 		complete(&pwq->wq->first_flusher->done);
2038 out_put:
2039 	put_pwq(pwq);
2040 }
2041 
2042 /**
2043  * try_to_grab_pending - steal work item from worklist and disable irq
2044  * @work: work item to steal
2045  * @cflags: %WORK_CANCEL_ flags
2046  * @irq_flags: place to store irq state
2047  *
2048  * Try to grab PENDING bit of @work.  This function can handle @work in any
2049  * stable state - idle, on timer or on worklist.
2050  *
2051  * Return:
2052  *
2053  *  ========	================================================================
2054  *  1		if @work was pending and we successfully stole PENDING
2055  *  0		if @work was idle and we claimed PENDING
2056  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
2057  *  -ENOENT	if someone else is canceling @work, this state may persist
2058  *		for arbitrarily long
2059  *  ========	================================================================
2060  *
2061  * Note:
2062  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
2063  * interrupted while holding PENDING and @work off queue, irq must be
2064  * disabled on entry.  This, combined with delayed_work->timer being
2065  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2066  *
2067  * On successful return, >= 0, irq is disabled and the caller is
2068  * responsible for releasing it using local_irq_restore(*@irq_flags).
2069  *
2070  * This function is safe to call from any context including IRQ handler.
2071  */
2072 static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2073 			       unsigned long *irq_flags)
2074 {
2075 	struct worker_pool *pool;
2076 	struct pool_workqueue *pwq;
2077 
2078 	local_irq_save(*irq_flags);
2079 
2080 	/* try to steal the timer if it exists */
2081 	if (cflags & WORK_CANCEL_DELAYED) {
2082 		struct delayed_work *dwork = to_delayed_work(work);
2083 
2084 		/*
2085 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
2086 		 * guaranteed that the timer is not queued anywhere and not
2087 		 * running on the local CPU.
2088 		 */
2089 		if (likely(del_timer(&dwork->timer)))
2090 			return 1;
2091 	}
2092 
2093 	/* try to claim PENDING the normal way */
2094 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2095 		return 0;
2096 
2097 	rcu_read_lock();
2098 	/*
2099 	 * The queueing is in progress, or it is already queued. Try to
2100 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2101 	 */
2102 	pool = get_work_pool(work);
2103 	if (!pool)
2104 		goto fail;
2105 
2106 	raw_spin_lock(&pool->lock);
2107 	/*
2108 	 * work->data is guaranteed to point to pwq only while the work
2109 	 * item is queued on pwq->wq, and both updating work->data to point
2110 	 * to pwq on queueing and to pool on dequeueing are done under
2111 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2112 	 * points to pwq which is associated with a locked pool, the work
2113 	 * item is currently queued on that pool.
2114 	 */
2115 	pwq = get_work_pwq(work);
2116 	if (pwq && pwq->pool == pool) {
2117 		unsigned long work_data;
2118 
2119 		debug_work_deactivate(work);
2120 
2121 		/*
2122 		 * A cancelable inactive work item must be in the
2123 		 * pwq->inactive_works since a queued barrier can't be
2124 		 * canceled (see the comments in insert_wq_barrier()).
2125 		 *
2126 		 * An inactive work item cannot be grabbed directly because
2127 		 * it might have linked barrier work items which, if left
2128 		 * on the inactive_works list, will confuse pwq->nr_active
2129 		 * management later on and cause stall.  Make sure the work
2130 		 * item is activated before grabbing.
2131 		 */
2132 		pwq_activate_work(pwq, work);
2133 
2134 		list_del_init(&work->entry);
2135 
2136 		/*
2137 		 * work->data points to pwq iff queued. Let's point to pool. As
2138 		 * this destroys work->data needed by the next step, stash it.
2139 		 */
2140 		work_data = *work_data_bits(work);
2141 		set_work_pool_and_keep_pending(work, pool->id, 0);
2142 
2143 		/* must be the last step, see the function comment */
2144 		pwq_dec_nr_in_flight(pwq, work_data);
2145 
2146 		raw_spin_unlock(&pool->lock);
2147 		rcu_read_unlock();
2148 		return 1;
2149 	}
2150 	raw_spin_unlock(&pool->lock);
2151 fail:
2152 	rcu_read_unlock();
2153 	local_irq_restore(*irq_flags);
2154 	if (work_is_canceling(work))
2155 		return -ENOENT;
2156 	cpu_relax();
2157 	return -EAGAIN;
2158 }
2159 
2160 struct cwt_wait {
2161 	wait_queue_entry_t	wait;
2162 	struct work_struct	*work;
2163 };
2164 
2165 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2166 {
2167 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2168 
2169 	if (cwait->work != key)
2170 		return 0;
2171 	return autoremove_wake_function(wait, mode, sync, key);
2172 }
2173 
2174 /**
2175  * work_grab_pending - steal work item from worklist and disable irq
2176  * @work: work item to steal
2177  * @cflags: %WORK_CANCEL_ flags
2178  * @irq_flags: place to store IRQ state
2179  *
2180  * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2181  * or on worklist.
2182  *
2183  * Must be called in process context. IRQ is disabled on return with IRQ state
2184  * stored in *@irq_flags. The caller is responsible for re-enabling it using
2185  * local_irq_restore().
2186  *
2187  * Returns %true if @work was pending. %false if idle.
2188  */
2189 static bool work_grab_pending(struct work_struct *work, u32 cflags,
2190 			      unsigned long *irq_flags)
2191 {
2192 	struct cwt_wait cwait;
2193 	int ret;
2194 
2195 	might_sleep();
2196 repeat:
2197 	ret = try_to_grab_pending(work, cflags, irq_flags);
2198 	if (likely(ret >= 0))
2199 		return ret;
2200 	if (ret != -ENOENT)
2201 		goto repeat;
2202 
2203 	/*
2204 	 * Someone is already canceling. Wait for it to finish. flush_work()
2205 	 * doesn't work for PREEMPT_NONE because we may get woken up between
2206 	 * @work's completion and the other canceling task resuming and clearing
2207 	 * CANCELING - flush_work() will return false immediately as @work is no
2208 	 * longer busy, try_to_grab_pending() will return -ENOENT as @work is
2209 	 * still being canceled and the other canceling task won't be able to
2210 	 * clear CANCELING as we're hogging the CPU.
2211 	 *
2212 	 * Let's wait for completion using a waitqueue. As this may lead to the
2213 	 * thundering herd problem, use a custom wake function which matches
2214 	 * @work along with exclusive wait and wakeup.
2215 	 */
2216 	init_wait(&cwait.wait);
2217 	cwait.wait.func = cwt_wakefn;
2218 	cwait.work = work;
2219 
2220 	prepare_to_wait_exclusive(&wq_cancel_waitq, &cwait.wait,
2221 				  TASK_UNINTERRUPTIBLE);
2222 	if (work_is_canceling(work))
2223 		schedule();
2224 	finish_wait(&wq_cancel_waitq, &cwait.wait);
2225 
2226 	goto repeat;
2227 }
2228 
2229 /**
2230  * insert_work - insert a work into a pool
2231  * @pwq: pwq @work belongs to
2232  * @work: work to insert
2233  * @head: insertion point
2234  * @extra_flags: extra WORK_STRUCT_* flags to set
2235  *
2236  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2237  * work_struct flags.
2238  *
2239  * CONTEXT:
2240  * raw_spin_lock_irq(pool->lock).
2241  */
2242 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2243 			struct list_head *head, unsigned int extra_flags)
2244 {
2245 	debug_work_activate(work);
2246 
2247 	/* record the work call stack in order to print it in KASAN reports */
2248 	kasan_record_aux_stack_noalloc(work);
2249 
2250 	/* we own @work, set data and link */
2251 	set_work_pwq(work, pwq, extra_flags);
2252 	list_add_tail(&work->entry, head);
2253 	get_pwq(pwq);
2254 }
2255 
2256 /*
2257  * Test whether @work is being queued from another work executing on the
2258  * same workqueue.
2259  */
2260 static bool is_chained_work(struct workqueue_struct *wq)
2261 {
2262 	struct worker *worker;
2263 
2264 	worker = current_wq_worker();
2265 	/*
2266 	 * Return %true iff I'm a worker executing a work item on @wq.  If
2267 	 * I'm @worker, it's safe to dereference it without locking.
2268 	 */
2269 	return worker && worker->current_pwq->wq == wq;
2270 }
2271 
2272 /*
2273  * When queueing an unbound work item to a wq, prefer local CPU if allowed
2274  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2275  * avoid perturbing sensitive tasks.
2276  */
2277 static int wq_select_unbound_cpu(int cpu)
2278 {
2279 	int new_cpu;
2280 
2281 	if (likely(!wq_debug_force_rr_cpu)) {
2282 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2283 			return cpu;
2284 	} else {
2285 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2286 	}
2287 
2288 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2289 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2290 	if (unlikely(new_cpu >= nr_cpu_ids)) {
2291 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2292 		if (unlikely(new_cpu >= nr_cpu_ids))
2293 			return cpu;
2294 	}
2295 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2296 
2297 	return new_cpu;
2298 }
2299 
2300 static void __queue_work(int cpu, struct workqueue_struct *wq,
2301 			 struct work_struct *work)
2302 {
2303 	struct pool_workqueue *pwq;
2304 	struct worker_pool *last_pool, *pool;
2305 	unsigned int work_flags;
2306 	unsigned int req_cpu = cpu;
2307 
2308 	/*
2309 	 * While a work item is PENDING && off queue, a task trying to
2310 	 * steal the PENDING will busy-loop waiting for it to either get
2311 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2312 	 * happen with IRQ disabled.
2313 	 */
2314 	lockdep_assert_irqs_disabled();
2315 
2316 	/*
2317 	 * For a draining wq, only works from the same workqueue are
2318 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2319 	 * queues a new work item to a wq after destroy_workqueue(wq).
2320 	 */
2321 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2322 		     WARN_ON_ONCE(!is_chained_work(wq))))
2323 		return;
2324 	rcu_read_lock();
2325 retry:
2326 	/* pwq which will be used unless @work is executing elsewhere */
2327 	if (req_cpu == WORK_CPU_UNBOUND) {
2328 		if (wq->flags & WQ_UNBOUND)
2329 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2330 		else
2331 			cpu = raw_smp_processor_id();
2332 	}
2333 
2334 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2335 	pool = pwq->pool;
2336 
2337 	/*
2338 	 * If @work was previously on a different pool, it might still be
2339 	 * running there, in which case the work needs to be queued on that
2340 	 * pool to guarantee non-reentrancy.
2341 	 */
2342 	last_pool = get_work_pool(work);
2343 	if (last_pool && last_pool != pool) {
2344 		struct worker *worker;
2345 
2346 		raw_spin_lock(&last_pool->lock);
2347 
2348 		worker = find_worker_executing_work(last_pool, work);
2349 
2350 		if (worker && worker->current_pwq->wq == wq) {
2351 			pwq = worker->current_pwq;
2352 			pool = pwq->pool;
2353 			WARN_ON_ONCE(pool != last_pool);
2354 		} else {
2355 			/* meh... not running there, queue here */
2356 			raw_spin_unlock(&last_pool->lock);
2357 			raw_spin_lock(&pool->lock);
2358 		}
2359 	} else {
2360 		raw_spin_lock(&pool->lock);
2361 	}
2362 
2363 	/*
2364 	 * pwq is determined and locked. For unbound pools, we could have raced
2365 	 * with pwq release and it could already be dead. If its refcnt is zero,
2366 	 * repeat pwq selection. Note that unbound pwqs never die without
2367 	 * another pwq replacing it in cpu_pwq or while work items are executing
2368 	 * on it, so the retrying is guaranteed to make forward-progress.
2369 	 */
2370 	if (unlikely(!pwq->refcnt)) {
2371 		if (wq->flags & WQ_UNBOUND) {
2372 			raw_spin_unlock(&pool->lock);
2373 			cpu_relax();
2374 			goto retry;
2375 		}
2376 		/* oops */
2377 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2378 			  wq->name, cpu);
2379 	}
2380 
2381 	/* pwq determined, queue */
2382 	trace_workqueue_queue_work(req_cpu, pwq, work);
2383 
2384 	if (WARN_ON(!list_empty(&work->entry)))
2385 		goto out;
2386 
2387 	pwq->nr_in_flight[pwq->work_color]++;
2388 	work_flags = work_color_to_flags(pwq->work_color);
2389 
2390 	/*
2391 	 * Limit the number of concurrently active work items to max_active.
2392 	 * @work must also queue behind existing inactive work items to maintain
2393 	 * ordering when max_active changes. See wq_adjust_max_active().
2394 	 */
2395 	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2396 		if (list_empty(&pool->worklist))
2397 			pool->watchdog_ts = jiffies;
2398 
2399 		trace_workqueue_activate_work(work);
2400 		insert_work(pwq, work, &pool->worklist, work_flags);
2401 		kick_pool(pool);
2402 	} else {
2403 		work_flags |= WORK_STRUCT_INACTIVE;
2404 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2405 	}
2406 
2407 out:
2408 	raw_spin_unlock(&pool->lock);
2409 	rcu_read_unlock();
2410 }
2411 
2412 /**
2413  * queue_work_on - queue work on specific cpu
2414  * @cpu: CPU number to execute work on
2415  * @wq: workqueue to use
2416  * @work: work to queue
2417  *
2418  * We queue the work to a specific CPU, the caller must ensure it
2419  * can't go away.  Callers that fail to ensure that the specified
2420  * CPU cannot go away will execute on a randomly chosen CPU.
2421  * But note well that callers specifying a CPU that never has been
2422  * online will get a splat.
2423  *
2424  * Return: %false if @work was already on a queue, %true otherwise.
2425  */
2426 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2427 		   struct work_struct *work)
2428 {
2429 	bool ret = false;
2430 	unsigned long irq_flags;
2431 
2432 	local_irq_save(irq_flags);
2433 
2434 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2435 		__queue_work(cpu, wq, work);
2436 		ret = true;
2437 	}
2438 
2439 	local_irq_restore(irq_flags);
2440 	return ret;
2441 }
2442 EXPORT_SYMBOL(queue_work_on);
2443 
2444 /**
2445  * select_numa_node_cpu - Select a CPU based on NUMA node
2446  * @node: NUMA node ID that we want to select a CPU from
2447  *
2448  * This function will attempt to find a "random" cpu available on a given
2449  * node. If there are no CPUs available on the given node it will return
2450  * WORK_CPU_UNBOUND indicating that we should just schedule to any
2451  * available CPU if we need to schedule this work.
2452  */
2453 static int select_numa_node_cpu(int node)
2454 {
2455 	int cpu;
2456 
2457 	/* Delay binding to CPU if node is not valid or online */
2458 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2459 		return WORK_CPU_UNBOUND;
2460 
2461 	/* Use local node/cpu if we are already there */
2462 	cpu = raw_smp_processor_id();
2463 	if (node == cpu_to_node(cpu))
2464 		return cpu;
2465 
2466 	/* Use "random" otherwise know as "first" online CPU of node */
2467 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2468 
2469 	/* If CPU is valid return that, otherwise just defer */
2470 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2471 }
2472 
2473 /**
2474  * queue_work_node - queue work on a "random" cpu for a given NUMA node
2475  * @node: NUMA node that we are targeting the work for
2476  * @wq: workqueue to use
2477  * @work: work to queue
2478  *
2479  * We queue the work to a "random" CPU within a given NUMA node. The basic
2480  * idea here is to provide a way to somehow associate work with a given
2481  * NUMA node.
2482  *
2483  * This function will only make a best effort attempt at getting this onto
2484  * the right NUMA node. If no node is requested or the requested node is
2485  * offline then we just fall back to standard queue_work behavior.
2486  *
2487  * Currently the "random" CPU ends up being the first available CPU in the
2488  * intersection of cpu_online_mask and the cpumask of the node, unless we
2489  * are running on the node. In that case we just use the current CPU.
2490  *
2491  * Return: %false if @work was already on a queue, %true otherwise.
2492  */
2493 bool queue_work_node(int node, struct workqueue_struct *wq,
2494 		     struct work_struct *work)
2495 {
2496 	unsigned long irq_flags;
2497 	bool ret = false;
2498 
2499 	/*
2500 	 * This current implementation is specific to unbound workqueues.
2501 	 * Specifically we only return the first available CPU for a given
2502 	 * node instead of cycling through individual CPUs within the node.
2503 	 *
2504 	 * If this is used with a per-cpu workqueue then the logic in
2505 	 * workqueue_select_cpu_near would need to be updated to allow for
2506 	 * some round robin type logic.
2507 	 */
2508 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2509 
2510 	local_irq_save(irq_flags);
2511 
2512 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2513 		int cpu = select_numa_node_cpu(node);
2514 
2515 		__queue_work(cpu, wq, work);
2516 		ret = true;
2517 	}
2518 
2519 	local_irq_restore(irq_flags);
2520 	return ret;
2521 }
2522 EXPORT_SYMBOL_GPL(queue_work_node);
2523 
2524 void delayed_work_timer_fn(struct timer_list *t)
2525 {
2526 	struct delayed_work *dwork = from_timer(dwork, t, timer);
2527 
2528 	/* should have been called from irqsafe timer with irq already off */
2529 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2530 }
2531 EXPORT_SYMBOL(delayed_work_timer_fn);
2532 
2533 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2534 				struct delayed_work *dwork, unsigned long delay)
2535 {
2536 	struct timer_list *timer = &dwork->timer;
2537 	struct work_struct *work = &dwork->work;
2538 
2539 	WARN_ON_ONCE(!wq);
2540 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2541 	WARN_ON_ONCE(timer_pending(timer));
2542 	WARN_ON_ONCE(!list_empty(&work->entry));
2543 
2544 	/*
2545 	 * If @delay is 0, queue @dwork->work immediately.  This is for
2546 	 * both optimization and correctness.  The earliest @timer can
2547 	 * expire is on the closest next tick and delayed_work users depend
2548 	 * on that there's no such delay when @delay is 0.
2549 	 */
2550 	if (!delay) {
2551 		__queue_work(cpu, wq, &dwork->work);
2552 		return;
2553 	}
2554 
2555 	dwork->wq = wq;
2556 	dwork->cpu = cpu;
2557 	timer->expires = jiffies + delay;
2558 
2559 	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2560 		/* If the current cpu is a housekeeping cpu, use it. */
2561 		cpu = smp_processor_id();
2562 		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2563 			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2564 		add_timer_on(timer, cpu);
2565 	} else {
2566 		if (likely(cpu == WORK_CPU_UNBOUND))
2567 			add_timer_global(timer);
2568 		else
2569 			add_timer_on(timer, cpu);
2570 	}
2571 }
2572 
2573 /**
2574  * queue_delayed_work_on - queue work on specific CPU after delay
2575  * @cpu: CPU number to execute work on
2576  * @wq: workqueue to use
2577  * @dwork: work to queue
2578  * @delay: number of jiffies to wait before queueing
2579  *
2580  * Return: %false if @work was already on a queue, %true otherwise.  If
2581  * @delay is zero and @dwork is idle, it will be scheduled for immediate
2582  * execution.
2583  */
2584 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2585 			   struct delayed_work *dwork, unsigned long delay)
2586 {
2587 	struct work_struct *work = &dwork->work;
2588 	bool ret = false;
2589 	unsigned long irq_flags;
2590 
2591 	/* read the comment in __queue_work() */
2592 	local_irq_save(irq_flags);
2593 
2594 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2595 		__queue_delayed_work(cpu, wq, dwork, delay);
2596 		ret = true;
2597 	}
2598 
2599 	local_irq_restore(irq_flags);
2600 	return ret;
2601 }
2602 EXPORT_SYMBOL(queue_delayed_work_on);
2603 
2604 /**
2605  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2606  * @cpu: CPU number to execute work on
2607  * @wq: workqueue to use
2608  * @dwork: work to queue
2609  * @delay: number of jiffies to wait before queueing
2610  *
2611  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2612  * modify @dwork's timer so that it expires after @delay.  If @delay is
2613  * zero, @work is guaranteed to be scheduled immediately regardless of its
2614  * current state.
2615  *
2616  * Return: %false if @dwork was idle and queued, %true if @dwork was
2617  * pending and its timer was modified.
2618  *
2619  * This function is safe to call from any context including IRQ handler.
2620  * See try_to_grab_pending() for details.
2621  */
2622 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2623 			 struct delayed_work *dwork, unsigned long delay)
2624 {
2625 	unsigned long irq_flags;
2626 	int ret;
2627 
2628 	do {
2629 		ret = try_to_grab_pending(&dwork->work, WORK_CANCEL_DELAYED,
2630 					  &irq_flags);
2631 	} while (unlikely(ret == -EAGAIN));
2632 
2633 	if (likely(ret >= 0)) {
2634 		__queue_delayed_work(cpu, wq, dwork, delay);
2635 		local_irq_restore(irq_flags);
2636 	}
2637 
2638 	/* -ENOENT from try_to_grab_pending() becomes %true */
2639 	return ret;
2640 }
2641 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2642 
2643 static void rcu_work_rcufn(struct rcu_head *rcu)
2644 {
2645 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2646 
2647 	/* read the comment in __queue_work() */
2648 	local_irq_disable();
2649 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2650 	local_irq_enable();
2651 }
2652 
2653 /**
2654  * queue_rcu_work - queue work after a RCU grace period
2655  * @wq: workqueue to use
2656  * @rwork: work to queue
2657  *
2658  * Return: %false if @rwork was already pending, %true otherwise.  Note
2659  * that a full RCU grace period is guaranteed only after a %true return.
2660  * While @rwork is guaranteed to be executed after a %false return, the
2661  * execution may happen before a full RCU grace period has passed.
2662  */
2663 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2664 {
2665 	struct work_struct *work = &rwork->work;
2666 
2667 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2668 		rwork->wq = wq;
2669 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2670 		return true;
2671 	}
2672 
2673 	return false;
2674 }
2675 EXPORT_SYMBOL(queue_rcu_work);
2676 
2677 static struct worker *alloc_worker(int node)
2678 {
2679 	struct worker *worker;
2680 
2681 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2682 	if (worker) {
2683 		INIT_LIST_HEAD(&worker->entry);
2684 		INIT_LIST_HEAD(&worker->scheduled);
2685 		INIT_LIST_HEAD(&worker->node);
2686 		/* on creation a worker is in !idle && prep state */
2687 		worker->flags = WORKER_PREP;
2688 	}
2689 	return worker;
2690 }
2691 
2692 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2693 {
2694 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2695 		return pool->attrs->__pod_cpumask;
2696 	else
2697 		return pool->attrs->cpumask;
2698 }
2699 
2700 /**
2701  * worker_attach_to_pool() - attach a worker to a pool
2702  * @worker: worker to be attached
2703  * @pool: the target pool
2704  *
2705  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2706  * cpu-binding of @worker are kept coordinated with the pool across
2707  * cpu-[un]hotplugs.
2708  */
2709 static void worker_attach_to_pool(struct worker *worker,
2710 				  struct worker_pool *pool)
2711 {
2712 	mutex_lock(&wq_pool_attach_mutex);
2713 
2714 	/*
2715 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2716 	 * across this function. See the comments above the flag definition for
2717 	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2718 	 */
2719 	if (pool->flags & POOL_DISASSOCIATED) {
2720 		worker->flags |= WORKER_UNBOUND;
2721 	} else {
2722 		WARN_ON_ONCE(pool->flags & POOL_BH);
2723 		kthread_set_per_cpu(worker->task, pool->cpu);
2724 	}
2725 
2726 	if (worker->rescue_wq)
2727 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2728 
2729 	list_add_tail(&worker->node, &pool->workers);
2730 	worker->pool = pool;
2731 
2732 	mutex_unlock(&wq_pool_attach_mutex);
2733 }
2734 
2735 /**
2736  * worker_detach_from_pool() - detach a worker from its pool
2737  * @worker: worker which is attached to its pool
2738  *
2739  * Undo the attaching which had been done in worker_attach_to_pool().  The
2740  * caller worker shouldn't access to the pool after detached except it has
2741  * other reference to the pool.
2742  */
2743 static void worker_detach_from_pool(struct worker *worker)
2744 {
2745 	struct worker_pool *pool = worker->pool;
2746 	struct completion *detach_completion = NULL;
2747 
2748 	/* there is one permanent BH worker per CPU which should never detach */
2749 	WARN_ON_ONCE(pool->flags & POOL_BH);
2750 
2751 	mutex_lock(&wq_pool_attach_mutex);
2752 
2753 	kthread_set_per_cpu(worker->task, -1);
2754 	list_del(&worker->node);
2755 	worker->pool = NULL;
2756 
2757 	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2758 		detach_completion = pool->detach_completion;
2759 	mutex_unlock(&wq_pool_attach_mutex);
2760 
2761 	/* clear leftover flags without pool->lock after it is detached */
2762 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2763 
2764 	if (detach_completion)
2765 		complete(detach_completion);
2766 }
2767 
2768 /**
2769  * create_worker - create a new workqueue worker
2770  * @pool: pool the new worker will belong to
2771  *
2772  * Create and start a new worker which is attached to @pool.
2773  *
2774  * CONTEXT:
2775  * Might sleep.  Does GFP_KERNEL allocations.
2776  *
2777  * Return:
2778  * Pointer to the newly created worker.
2779  */
2780 static struct worker *create_worker(struct worker_pool *pool)
2781 {
2782 	struct worker *worker;
2783 	int id;
2784 	char id_buf[23];
2785 
2786 	/* ID is needed to determine kthread name */
2787 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2788 	if (id < 0) {
2789 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2790 			    ERR_PTR(id));
2791 		return NULL;
2792 	}
2793 
2794 	worker = alloc_worker(pool->node);
2795 	if (!worker) {
2796 		pr_err_once("workqueue: Failed to allocate a worker\n");
2797 		goto fail;
2798 	}
2799 
2800 	worker->id = id;
2801 
2802 	if (!(pool->flags & POOL_BH)) {
2803 		if (pool->cpu >= 0)
2804 			snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2805 				 pool->attrs->nice < 0  ? "H" : "");
2806 		else
2807 			snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2808 
2809 		worker->task = kthread_create_on_node(worker_thread, worker,
2810 					pool->node, "kworker/%s", id_buf);
2811 		if (IS_ERR(worker->task)) {
2812 			if (PTR_ERR(worker->task) == -EINTR) {
2813 				pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2814 				       id_buf);
2815 			} else {
2816 				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2817 					    worker->task);
2818 			}
2819 			goto fail;
2820 		}
2821 
2822 		set_user_nice(worker->task, pool->attrs->nice);
2823 		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2824 	}
2825 
2826 	/* successful, attach the worker to the pool */
2827 	worker_attach_to_pool(worker, pool);
2828 
2829 	/* start the newly created worker */
2830 	raw_spin_lock_irq(&pool->lock);
2831 
2832 	worker->pool->nr_workers++;
2833 	worker_enter_idle(worker);
2834 
2835 	/*
2836 	 * @worker is waiting on a completion in kthread() and will trigger hung
2837 	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2838 	 * wake it up explicitly.
2839 	 */
2840 	if (worker->task)
2841 		wake_up_process(worker->task);
2842 
2843 	raw_spin_unlock_irq(&pool->lock);
2844 
2845 	return worker;
2846 
2847 fail:
2848 	ida_free(&pool->worker_ida, id);
2849 	kfree(worker);
2850 	return NULL;
2851 }
2852 
2853 static void unbind_worker(struct worker *worker)
2854 {
2855 	lockdep_assert_held(&wq_pool_attach_mutex);
2856 
2857 	kthread_set_per_cpu(worker->task, -1);
2858 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2859 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2860 	else
2861 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2862 }
2863 
2864 static void wake_dying_workers(struct list_head *cull_list)
2865 {
2866 	struct worker *worker, *tmp;
2867 
2868 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2869 		list_del_init(&worker->entry);
2870 		unbind_worker(worker);
2871 		/*
2872 		 * If the worker was somehow already running, then it had to be
2873 		 * in pool->idle_list when set_worker_dying() happened or we
2874 		 * wouldn't have gotten here.
2875 		 *
2876 		 * Thus, the worker must either have observed the WORKER_DIE
2877 		 * flag, or have set its state to TASK_IDLE. Either way, the
2878 		 * below will be observed by the worker and is safe to do
2879 		 * outside of pool->lock.
2880 		 */
2881 		wake_up_process(worker->task);
2882 	}
2883 }
2884 
2885 /**
2886  * set_worker_dying - Tag a worker for destruction
2887  * @worker: worker to be destroyed
2888  * @list: transfer worker away from its pool->idle_list and into list
2889  *
2890  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2891  * should be idle.
2892  *
2893  * CONTEXT:
2894  * raw_spin_lock_irq(pool->lock).
2895  */
2896 static void set_worker_dying(struct worker *worker, struct list_head *list)
2897 {
2898 	struct worker_pool *pool = worker->pool;
2899 
2900 	lockdep_assert_held(&pool->lock);
2901 	lockdep_assert_held(&wq_pool_attach_mutex);
2902 
2903 	/* sanity check frenzy */
2904 	if (WARN_ON(worker->current_work) ||
2905 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2906 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2907 		return;
2908 
2909 	pool->nr_workers--;
2910 	pool->nr_idle--;
2911 
2912 	worker->flags |= WORKER_DIE;
2913 
2914 	list_move(&worker->entry, list);
2915 	list_move(&worker->node, &pool->dying_workers);
2916 }
2917 
2918 /**
2919  * idle_worker_timeout - check if some idle workers can now be deleted.
2920  * @t: The pool's idle_timer that just expired
2921  *
2922  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2923  * worker_leave_idle(), as a worker flicking between idle and active while its
2924  * pool is at the too_many_workers() tipping point would cause too much timer
2925  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2926  * it expire and re-evaluate things from there.
2927  */
2928 static void idle_worker_timeout(struct timer_list *t)
2929 {
2930 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2931 	bool do_cull = false;
2932 
2933 	if (work_pending(&pool->idle_cull_work))
2934 		return;
2935 
2936 	raw_spin_lock_irq(&pool->lock);
2937 
2938 	if (too_many_workers(pool)) {
2939 		struct worker *worker;
2940 		unsigned long expires;
2941 
2942 		/* idle_list is kept in LIFO order, check the last one */
2943 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2944 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2945 		do_cull = !time_before(jiffies, expires);
2946 
2947 		if (!do_cull)
2948 			mod_timer(&pool->idle_timer, expires);
2949 	}
2950 	raw_spin_unlock_irq(&pool->lock);
2951 
2952 	if (do_cull)
2953 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2954 }
2955 
2956 /**
2957  * idle_cull_fn - cull workers that have been idle for too long.
2958  * @work: the pool's work for handling these idle workers
2959  *
2960  * This goes through a pool's idle workers and gets rid of those that have been
2961  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2962  *
2963  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2964  * culled, so this also resets worker affinity. This requires a sleepable
2965  * context, hence the split between timer callback and work item.
2966  */
2967 static void idle_cull_fn(struct work_struct *work)
2968 {
2969 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2970 	LIST_HEAD(cull_list);
2971 
2972 	/*
2973 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2974 	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2975 	 * path. This is required as a previously-preempted worker could run after
2976 	 * set_worker_dying() has happened but before wake_dying_workers() did.
2977 	 */
2978 	mutex_lock(&wq_pool_attach_mutex);
2979 	raw_spin_lock_irq(&pool->lock);
2980 
2981 	while (too_many_workers(pool)) {
2982 		struct worker *worker;
2983 		unsigned long expires;
2984 
2985 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2986 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2987 
2988 		if (time_before(jiffies, expires)) {
2989 			mod_timer(&pool->idle_timer, expires);
2990 			break;
2991 		}
2992 
2993 		set_worker_dying(worker, &cull_list);
2994 	}
2995 
2996 	raw_spin_unlock_irq(&pool->lock);
2997 	wake_dying_workers(&cull_list);
2998 	mutex_unlock(&wq_pool_attach_mutex);
2999 }
3000 
3001 static void send_mayday(struct work_struct *work)
3002 {
3003 	struct pool_workqueue *pwq = get_work_pwq(work);
3004 	struct workqueue_struct *wq = pwq->wq;
3005 
3006 	lockdep_assert_held(&wq_mayday_lock);
3007 
3008 	if (!wq->rescuer)
3009 		return;
3010 
3011 	/* mayday mayday mayday */
3012 	if (list_empty(&pwq->mayday_node)) {
3013 		/*
3014 		 * If @pwq is for an unbound wq, its base ref may be put at
3015 		 * any time due to an attribute change.  Pin @pwq until the
3016 		 * rescuer is done with it.
3017 		 */
3018 		get_pwq(pwq);
3019 		list_add_tail(&pwq->mayday_node, &wq->maydays);
3020 		wake_up_process(wq->rescuer->task);
3021 		pwq->stats[PWQ_STAT_MAYDAY]++;
3022 	}
3023 }
3024 
3025 static void pool_mayday_timeout(struct timer_list *t)
3026 {
3027 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
3028 	struct work_struct *work;
3029 
3030 	raw_spin_lock_irq(&pool->lock);
3031 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
3032 
3033 	if (need_to_create_worker(pool)) {
3034 		/*
3035 		 * We've been trying to create a new worker but
3036 		 * haven't been successful.  We might be hitting an
3037 		 * allocation deadlock.  Send distress signals to
3038 		 * rescuers.
3039 		 */
3040 		list_for_each_entry(work, &pool->worklist, entry)
3041 			send_mayday(work);
3042 	}
3043 
3044 	raw_spin_unlock(&wq_mayday_lock);
3045 	raw_spin_unlock_irq(&pool->lock);
3046 
3047 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3048 }
3049 
3050 /**
3051  * maybe_create_worker - create a new worker if necessary
3052  * @pool: pool to create a new worker for
3053  *
3054  * Create a new worker for @pool if necessary.  @pool is guaranteed to
3055  * have at least one idle worker on return from this function.  If
3056  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3057  * sent to all rescuers with works scheduled on @pool to resolve
3058  * possible allocation deadlock.
3059  *
3060  * On return, need_to_create_worker() is guaranteed to be %false and
3061  * may_start_working() %true.
3062  *
3063  * LOCKING:
3064  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3065  * multiple times.  Does GFP_KERNEL allocations.  Called only from
3066  * manager.
3067  */
3068 static void maybe_create_worker(struct worker_pool *pool)
3069 __releases(&pool->lock)
3070 __acquires(&pool->lock)
3071 {
3072 restart:
3073 	raw_spin_unlock_irq(&pool->lock);
3074 
3075 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3076 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3077 
3078 	while (true) {
3079 		if (create_worker(pool) || !need_to_create_worker(pool))
3080 			break;
3081 
3082 		schedule_timeout_interruptible(CREATE_COOLDOWN);
3083 
3084 		if (!need_to_create_worker(pool))
3085 			break;
3086 	}
3087 
3088 	del_timer_sync(&pool->mayday_timer);
3089 	raw_spin_lock_irq(&pool->lock);
3090 	/*
3091 	 * This is necessary even after a new worker was just successfully
3092 	 * created as @pool->lock was dropped and the new worker might have
3093 	 * already become busy.
3094 	 */
3095 	if (need_to_create_worker(pool))
3096 		goto restart;
3097 }
3098 
3099 /**
3100  * manage_workers - manage worker pool
3101  * @worker: self
3102  *
3103  * Assume the manager role and manage the worker pool @worker belongs
3104  * to.  At any given time, there can be only zero or one manager per
3105  * pool.  The exclusion is handled automatically by this function.
3106  *
3107  * The caller can safely start processing works on false return.  On
3108  * true return, it's guaranteed that need_to_create_worker() is false
3109  * and may_start_working() is true.
3110  *
3111  * CONTEXT:
3112  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3113  * multiple times.  Does GFP_KERNEL allocations.
3114  *
3115  * Return:
3116  * %false if the pool doesn't need management and the caller can safely
3117  * start processing works, %true if management function was performed and
3118  * the conditions that the caller verified before calling the function may
3119  * no longer be true.
3120  */
3121 static bool manage_workers(struct worker *worker)
3122 {
3123 	struct worker_pool *pool = worker->pool;
3124 
3125 	if (pool->flags & POOL_MANAGER_ACTIVE)
3126 		return false;
3127 
3128 	pool->flags |= POOL_MANAGER_ACTIVE;
3129 	pool->manager = worker;
3130 
3131 	maybe_create_worker(pool);
3132 
3133 	pool->manager = NULL;
3134 	pool->flags &= ~POOL_MANAGER_ACTIVE;
3135 	rcuwait_wake_up(&manager_wait);
3136 	return true;
3137 }
3138 
3139 /**
3140  * process_one_work - process single work
3141  * @worker: self
3142  * @work: work to process
3143  *
3144  * Process @work.  This function contains all the logics necessary to
3145  * process a single work including synchronization against and
3146  * interaction with other workers on the same cpu, queueing and
3147  * flushing.  As long as context requirement is met, any worker can
3148  * call this function to process a work.
3149  *
3150  * CONTEXT:
3151  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3152  */
3153 static void process_one_work(struct worker *worker, struct work_struct *work)
3154 __releases(&pool->lock)
3155 __acquires(&pool->lock)
3156 {
3157 	struct pool_workqueue *pwq = get_work_pwq(work);
3158 	struct worker_pool *pool = worker->pool;
3159 	unsigned long work_data;
3160 	int lockdep_start_depth, rcu_start_depth;
3161 	bool bh_draining = pool->flags & POOL_BH_DRAINING;
3162 #ifdef CONFIG_LOCKDEP
3163 	/*
3164 	 * It is permissible to free the struct work_struct from
3165 	 * inside the function that is called from it, this we need to
3166 	 * take into account for lockdep too.  To avoid bogus "held
3167 	 * lock freed" warnings as well as problems when looking into
3168 	 * work->lockdep_map, make a copy and use that here.
3169 	 */
3170 	struct lockdep_map lockdep_map;
3171 
3172 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3173 #endif
3174 	/* ensure we're on the correct CPU */
3175 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3176 		     raw_smp_processor_id() != pool->cpu);
3177 
3178 	/* claim and dequeue */
3179 	debug_work_deactivate(work);
3180 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3181 	worker->current_work = work;
3182 	worker->current_func = work->func;
3183 	worker->current_pwq = pwq;
3184 	if (worker->task)
3185 		worker->current_at = worker->task->se.sum_exec_runtime;
3186 	work_data = *work_data_bits(work);
3187 	worker->current_color = get_work_color(work_data);
3188 
3189 	/*
3190 	 * Record wq name for cmdline and debug reporting, may get
3191 	 * overridden through set_worker_desc().
3192 	 */
3193 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3194 
3195 	list_del_init(&work->entry);
3196 
3197 	/*
3198 	 * CPU intensive works don't participate in concurrency management.
3199 	 * They're the scheduler's responsibility.  This takes @worker out
3200 	 * of concurrency management and the next code block will chain
3201 	 * execution of the pending work items.
3202 	 */
3203 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3204 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3205 
3206 	/*
3207 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3208 	 * since nr_running would always be >= 1 at this point. This is used to
3209 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3210 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3211 	 */
3212 	kick_pool(pool);
3213 
3214 	/*
3215 	 * Record the last pool and clear PENDING which should be the last
3216 	 * update to @work.  Also, do this inside @pool->lock so that
3217 	 * PENDING and queued state changes happen together while IRQ is
3218 	 * disabled.
3219 	 */
3220 	set_work_pool_and_clear_pending(work, pool->id, 0);
3221 
3222 	pwq->stats[PWQ_STAT_STARTED]++;
3223 	raw_spin_unlock_irq(&pool->lock);
3224 
3225 	rcu_start_depth = rcu_preempt_depth();
3226 	lockdep_start_depth = lockdep_depth(current);
3227 	/* see drain_dead_softirq_workfn() */
3228 	if (!bh_draining)
3229 		lock_map_acquire(&pwq->wq->lockdep_map);
3230 	lock_map_acquire(&lockdep_map);
3231 	/*
3232 	 * Strictly speaking we should mark the invariant state without holding
3233 	 * any locks, that is, before these two lock_map_acquire()'s.
3234 	 *
3235 	 * However, that would result in:
3236 	 *
3237 	 *   A(W1)
3238 	 *   WFC(C)
3239 	 *		A(W1)
3240 	 *		C(C)
3241 	 *
3242 	 * Which would create W1->C->W1 dependencies, even though there is no
3243 	 * actual deadlock possible. There are two solutions, using a
3244 	 * read-recursive acquire on the work(queue) 'locks', but this will then
3245 	 * hit the lockdep limitation on recursive locks, or simply discard
3246 	 * these locks.
3247 	 *
3248 	 * AFAICT there is no possible deadlock scenario between the
3249 	 * flush_work() and complete() primitives (except for single-threaded
3250 	 * workqueues), so hiding them isn't a problem.
3251 	 */
3252 	lockdep_invariant_state(true);
3253 	trace_workqueue_execute_start(work);
3254 	worker->current_func(work);
3255 	/*
3256 	 * While we must be careful to not use "work" after this, the trace
3257 	 * point will only record its address.
3258 	 */
3259 	trace_workqueue_execute_end(work, worker->current_func);
3260 	pwq->stats[PWQ_STAT_COMPLETED]++;
3261 	lock_map_release(&lockdep_map);
3262 	if (!bh_draining)
3263 		lock_map_release(&pwq->wq->lockdep_map);
3264 
3265 	if (unlikely((worker->task && in_atomic()) ||
3266 		     lockdep_depth(current) != lockdep_start_depth ||
3267 		     rcu_preempt_depth() != rcu_start_depth)) {
3268 		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3269 		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3270 		       current->comm, task_pid_nr(current), preempt_count(),
3271 		       lockdep_start_depth, lockdep_depth(current),
3272 		       rcu_start_depth, rcu_preempt_depth(),
3273 		       worker->current_func);
3274 		debug_show_held_locks(current);
3275 		dump_stack();
3276 	}
3277 
3278 	/*
3279 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3280 	 * kernels, where a requeueing work item waiting for something to
3281 	 * happen could deadlock with stop_machine as such work item could
3282 	 * indefinitely requeue itself while all other CPUs are trapped in
3283 	 * stop_machine. At the same time, report a quiescent RCU state so
3284 	 * the same condition doesn't freeze RCU.
3285 	 */
3286 	if (worker->task)
3287 		cond_resched();
3288 
3289 	raw_spin_lock_irq(&pool->lock);
3290 
3291 	/*
3292 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3293 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3294 	 * wq_cpu_intensive_thresh_us. Clear it.
3295 	 */
3296 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3297 
3298 	/* tag the worker for identification in schedule() */
3299 	worker->last_func = worker->current_func;
3300 
3301 	/* we're done with it, release */
3302 	hash_del(&worker->hentry);
3303 	worker->current_work = NULL;
3304 	worker->current_func = NULL;
3305 	worker->current_pwq = NULL;
3306 	worker->current_color = INT_MAX;
3307 
3308 	/* must be the last step, see the function comment */
3309 	pwq_dec_nr_in_flight(pwq, work_data);
3310 }
3311 
3312 /**
3313  * process_scheduled_works - process scheduled works
3314  * @worker: self
3315  *
3316  * Process all scheduled works.  Please note that the scheduled list
3317  * may change while processing a work, so this function repeatedly
3318  * fetches a work from the top and executes it.
3319  *
3320  * CONTEXT:
3321  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3322  * multiple times.
3323  */
3324 static void process_scheduled_works(struct worker *worker)
3325 {
3326 	struct work_struct *work;
3327 	bool first = true;
3328 
3329 	while ((work = list_first_entry_or_null(&worker->scheduled,
3330 						struct work_struct, entry))) {
3331 		if (first) {
3332 			worker->pool->watchdog_ts = jiffies;
3333 			first = false;
3334 		}
3335 		process_one_work(worker, work);
3336 	}
3337 }
3338 
3339 static void set_pf_worker(bool val)
3340 {
3341 	mutex_lock(&wq_pool_attach_mutex);
3342 	if (val)
3343 		current->flags |= PF_WQ_WORKER;
3344 	else
3345 		current->flags &= ~PF_WQ_WORKER;
3346 	mutex_unlock(&wq_pool_attach_mutex);
3347 }
3348 
3349 /**
3350  * worker_thread - the worker thread function
3351  * @__worker: self
3352  *
3353  * The worker thread function.  All workers belong to a worker_pool -
3354  * either a per-cpu one or dynamic unbound one.  These workers process all
3355  * work items regardless of their specific target workqueue.  The only
3356  * exception is work items which belong to workqueues with a rescuer which
3357  * will be explained in rescuer_thread().
3358  *
3359  * Return: 0
3360  */
3361 static int worker_thread(void *__worker)
3362 {
3363 	struct worker *worker = __worker;
3364 	struct worker_pool *pool = worker->pool;
3365 
3366 	/* tell the scheduler that this is a workqueue worker */
3367 	set_pf_worker(true);
3368 woke_up:
3369 	raw_spin_lock_irq(&pool->lock);
3370 
3371 	/* am I supposed to die? */
3372 	if (unlikely(worker->flags & WORKER_DIE)) {
3373 		raw_spin_unlock_irq(&pool->lock);
3374 		set_pf_worker(false);
3375 
3376 		set_task_comm(worker->task, "kworker/dying");
3377 		ida_free(&pool->worker_ida, worker->id);
3378 		worker_detach_from_pool(worker);
3379 		WARN_ON_ONCE(!list_empty(&worker->entry));
3380 		kfree(worker);
3381 		return 0;
3382 	}
3383 
3384 	worker_leave_idle(worker);
3385 recheck:
3386 	/* no more worker necessary? */
3387 	if (!need_more_worker(pool))
3388 		goto sleep;
3389 
3390 	/* do we need to manage? */
3391 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3392 		goto recheck;
3393 
3394 	/*
3395 	 * ->scheduled list can only be filled while a worker is
3396 	 * preparing to process a work or actually processing it.
3397 	 * Make sure nobody diddled with it while I was sleeping.
3398 	 */
3399 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3400 
3401 	/*
3402 	 * Finish PREP stage.  We're guaranteed to have at least one idle
3403 	 * worker or that someone else has already assumed the manager
3404 	 * role.  This is where @worker starts participating in concurrency
3405 	 * management if applicable and concurrency management is restored
3406 	 * after being rebound.  See rebind_workers() for details.
3407 	 */
3408 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3409 
3410 	do {
3411 		struct work_struct *work =
3412 			list_first_entry(&pool->worklist,
3413 					 struct work_struct, entry);
3414 
3415 		if (assign_work(work, worker, NULL))
3416 			process_scheduled_works(worker);
3417 	} while (keep_working(pool));
3418 
3419 	worker_set_flags(worker, WORKER_PREP);
3420 sleep:
3421 	/*
3422 	 * pool->lock is held and there's no work to process and no need to
3423 	 * manage, sleep.  Workers are woken up only while holding
3424 	 * pool->lock or from local cpu, so setting the current state
3425 	 * before releasing pool->lock is enough to prevent losing any
3426 	 * event.
3427 	 */
3428 	worker_enter_idle(worker);
3429 	__set_current_state(TASK_IDLE);
3430 	raw_spin_unlock_irq(&pool->lock);
3431 	schedule();
3432 	goto woke_up;
3433 }
3434 
3435 /**
3436  * rescuer_thread - the rescuer thread function
3437  * @__rescuer: self
3438  *
3439  * Workqueue rescuer thread function.  There's one rescuer for each
3440  * workqueue which has WQ_MEM_RECLAIM set.
3441  *
3442  * Regular work processing on a pool may block trying to create a new
3443  * worker which uses GFP_KERNEL allocation which has slight chance of
3444  * developing into deadlock if some works currently on the same queue
3445  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3446  * the problem rescuer solves.
3447  *
3448  * When such condition is possible, the pool summons rescuers of all
3449  * workqueues which have works queued on the pool and let them process
3450  * those works so that forward progress can be guaranteed.
3451  *
3452  * This should happen rarely.
3453  *
3454  * Return: 0
3455  */
3456 static int rescuer_thread(void *__rescuer)
3457 {
3458 	struct worker *rescuer = __rescuer;
3459 	struct workqueue_struct *wq = rescuer->rescue_wq;
3460 	bool should_stop;
3461 
3462 	set_user_nice(current, RESCUER_NICE_LEVEL);
3463 
3464 	/*
3465 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3466 	 * doesn't participate in concurrency management.
3467 	 */
3468 	set_pf_worker(true);
3469 repeat:
3470 	set_current_state(TASK_IDLE);
3471 
3472 	/*
3473 	 * By the time the rescuer is requested to stop, the workqueue
3474 	 * shouldn't have any work pending, but @wq->maydays may still have
3475 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3476 	 * all the work items before the rescuer got to them.  Go through
3477 	 * @wq->maydays processing before acting on should_stop so that the
3478 	 * list is always empty on exit.
3479 	 */
3480 	should_stop = kthread_should_stop();
3481 
3482 	/* see whether any pwq is asking for help */
3483 	raw_spin_lock_irq(&wq_mayday_lock);
3484 
3485 	while (!list_empty(&wq->maydays)) {
3486 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3487 					struct pool_workqueue, mayday_node);
3488 		struct worker_pool *pool = pwq->pool;
3489 		struct work_struct *work, *n;
3490 
3491 		__set_current_state(TASK_RUNNING);
3492 		list_del_init(&pwq->mayday_node);
3493 
3494 		raw_spin_unlock_irq(&wq_mayday_lock);
3495 
3496 		worker_attach_to_pool(rescuer, pool);
3497 
3498 		raw_spin_lock_irq(&pool->lock);
3499 
3500 		/*
3501 		 * Slurp in all works issued via this workqueue and
3502 		 * process'em.
3503 		 */
3504 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3505 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3506 			if (get_work_pwq(work) == pwq &&
3507 			    assign_work(work, rescuer, &n))
3508 				pwq->stats[PWQ_STAT_RESCUED]++;
3509 		}
3510 
3511 		if (!list_empty(&rescuer->scheduled)) {
3512 			process_scheduled_works(rescuer);
3513 
3514 			/*
3515 			 * The above execution of rescued work items could
3516 			 * have created more to rescue through
3517 			 * pwq_activate_first_inactive() or chained
3518 			 * queueing.  Let's put @pwq back on mayday list so
3519 			 * that such back-to-back work items, which may be
3520 			 * being used to relieve memory pressure, don't
3521 			 * incur MAYDAY_INTERVAL delay inbetween.
3522 			 */
3523 			if (pwq->nr_active && need_to_create_worker(pool)) {
3524 				raw_spin_lock(&wq_mayday_lock);
3525 				/*
3526 				 * Queue iff we aren't racing destruction
3527 				 * and somebody else hasn't queued it already.
3528 				 */
3529 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3530 					get_pwq(pwq);
3531 					list_add_tail(&pwq->mayday_node, &wq->maydays);
3532 				}
3533 				raw_spin_unlock(&wq_mayday_lock);
3534 			}
3535 		}
3536 
3537 		/*
3538 		 * Put the reference grabbed by send_mayday().  @pool won't
3539 		 * go away while we're still attached to it.
3540 		 */
3541 		put_pwq(pwq);
3542 
3543 		/*
3544 		 * Leave this pool. Notify regular workers; otherwise, we end up
3545 		 * with 0 concurrency and stalling the execution.
3546 		 */
3547 		kick_pool(pool);
3548 
3549 		raw_spin_unlock_irq(&pool->lock);
3550 
3551 		worker_detach_from_pool(rescuer);
3552 
3553 		raw_spin_lock_irq(&wq_mayday_lock);
3554 	}
3555 
3556 	raw_spin_unlock_irq(&wq_mayday_lock);
3557 
3558 	if (should_stop) {
3559 		__set_current_state(TASK_RUNNING);
3560 		set_pf_worker(false);
3561 		return 0;
3562 	}
3563 
3564 	/* rescuers should never participate in concurrency management */
3565 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3566 	schedule();
3567 	goto repeat;
3568 }
3569 
3570 static void bh_worker(struct worker *worker)
3571 {
3572 	struct worker_pool *pool = worker->pool;
3573 	int nr_restarts = BH_WORKER_RESTARTS;
3574 	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3575 
3576 	raw_spin_lock_irq(&pool->lock);
3577 	worker_leave_idle(worker);
3578 
3579 	/*
3580 	 * This function follows the structure of worker_thread(). See there for
3581 	 * explanations on each step.
3582 	 */
3583 	if (!need_more_worker(pool))
3584 		goto done;
3585 
3586 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3587 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3588 
3589 	do {
3590 		struct work_struct *work =
3591 			list_first_entry(&pool->worklist,
3592 					 struct work_struct, entry);
3593 
3594 		if (assign_work(work, worker, NULL))
3595 			process_scheduled_works(worker);
3596 	} while (keep_working(pool) &&
3597 		 --nr_restarts && time_before(jiffies, end));
3598 
3599 	worker_set_flags(worker, WORKER_PREP);
3600 done:
3601 	worker_enter_idle(worker);
3602 	kick_pool(pool);
3603 	raw_spin_unlock_irq(&pool->lock);
3604 }
3605 
3606 /*
3607  * TODO: Convert all tasklet users to workqueue and use softirq directly.
3608  *
3609  * This is currently called from tasklet[_hi]action() and thus is also called
3610  * whenever there are tasklets to run. Let's do an early exit if there's nothing
3611  * queued. Once conversion from tasklet is complete, the need_more_worker() test
3612  * can be dropped.
3613  *
3614  * After full conversion, we'll add worker->softirq_action, directly use the
3615  * softirq action and obtain the worker pointer from the softirq_action pointer.
3616  */
3617 void workqueue_softirq_action(bool highpri)
3618 {
3619 	struct worker_pool *pool =
3620 		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3621 	if (need_more_worker(pool))
3622 		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3623 }
3624 
3625 struct wq_drain_dead_softirq_work {
3626 	struct work_struct	work;
3627 	struct worker_pool	*pool;
3628 	struct completion	done;
3629 };
3630 
3631 static void drain_dead_softirq_workfn(struct work_struct *work)
3632 {
3633 	struct wq_drain_dead_softirq_work *dead_work =
3634 		container_of(work, struct wq_drain_dead_softirq_work, work);
3635 	struct worker_pool *pool = dead_work->pool;
3636 	bool repeat;
3637 
3638 	/*
3639 	 * @pool's CPU is dead and we want to execute its still pending work
3640 	 * items from this BH work item which is running on a different CPU. As
3641 	 * its CPU is dead, @pool can't be kicked and, as work execution path
3642 	 * will be nested, a lockdep annotation needs to be suppressed. Mark
3643 	 * @pool with %POOL_BH_DRAINING for the special treatments.
3644 	 */
3645 	raw_spin_lock_irq(&pool->lock);
3646 	pool->flags |= POOL_BH_DRAINING;
3647 	raw_spin_unlock_irq(&pool->lock);
3648 
3649 	bh_worker(list_first_entry(&pool->workers, struct worker, node));
3650 
3651 	raw_spin_lock_irq(&pool->lock);
3652 	pool->flags &= ~POOL_BH_DRAINING;
3653 	repeat = need_more_worker(pool);
3654 	raw_spin_unlock_irq(&pool->lock);
3655 
3656 	/*
3657 	 * bh_worker() might hit consecutive execution limit and bail. If there
3658 	 * still are pending work items, reschedule self and return so that we
3659 	 * don't hog this CPU's BH.
3660 	 */
3661 	if (repeat) {
3662 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3663 			queue_work(system_bh_highpri_wq, work);
3664 		else
3665 			queue_work(system_bh_wq, work);
3666 	} else {
3667 		complete(&dead_work->done);
3668 	}
3669 }
3670 
3671 /*
3672  * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3673  * possible to allocate dead_work per CPU and avoid flushing. However, then we
3674  * have to worry about draining overlapping with CPU coming back online or
3675  * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3676  * on). Let's keep it simple and drain them synchronously. These are BH work
3677  * items which shouldn't be requeued on the same pool. Shouldn't take long.
3678  */
3679 void workqueue_softirq_dead(unsigned int cpu)
3680 {
3681 	int i;
3682 
3683 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3684 		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3685 		struct wq_drain_dead_softirq_work dead_work;
3686 
3687 		if (!need_more_worker(pool))
3688 			continue;
3689 
3690 		INIT_WORK(&dead_work.work, drain_dead_softirq_workfn);
3691 		dead_work.pool = pool;
3692 		init_completion(&dead_work.done);
3693 
3694 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3695 			queue_work(system_bh_highpri_wq, &dead_work.work);
3696 		else
3697 			queue_work(system_bh_wq, &dead_work.work);
3698 
3699 		wait_for_completion(&dead_work.done);
3700 	}
3701 }
3702 
3703 /**
3704  * check_flush_dependency - check for flush dependency sanity
3705  * @target_wq: workqueue being flushed
3706  * @target_work: work item being flushed (NULL for workqueue flushes)
3707  *
3708  * %current is trying to flush the whole @target_wq or @target_work on it.
3709  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3710  * reclaiming memory or running on a workqueue which doesn't have
3711  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3712  * a deadlock.
3713  */
3714 static void check_flush_dependency(struct workqueue_struct *target_wq,
3715 				   struct work_struct *target_work)
3716 {
3717 	work_func_t target_func = target_work ? target_work->func : NULL;
3718 	struct worker *worker;
3719 
3720 	if (target_wq->flags & WQ_MEM_RECLAIM)
3721 		return;
3722 
3723 	worker = current_wq_worker();
3724 
3725 	WARN_ONCE(current->flags & PF_MEMALLOC,
3726 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3727 		  current->pid, current->comm, target_wq->name, target_func);
3728 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3729 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3730 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3731 		  worker->current_pwq->wq->name, worker->current_func,
3732 		  target_wq->name, target_func);
3733 }
3734 
3735 struct wq_barrier {
3736 	struct work_struct	work;
3737 	struct completion	done;
3738 	struct task_struct	*task;	/* purely informational */
3739 };
3740 
3741 static void wq_barrier_func(struct work_struct *work)
3742 {
3743 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3744 	complete(&barr->done);
3745 }
3746 
3747 /**
3748  * insert_wq_barrier - insert a barrier work
3749  * @pwq: pwq to insert barrier into
3750  * @barr: wq_barrier to insert
3751  * @target: target work to attach @barr to
3752  * @worker: worker currently executing @target, NULL if @target is not executing
3753  *
3754  * @barr is linked to @target such that @barr is completed only after
3755  * @target finishes execution.  Please note that the ordering
3756  * guarantee is observed only with respect to @target and on the local
3757  * cpu.
3758  *
3759  * Currently, a queued barrier can't be canceled.  This is because
3760  * try_to_grab_pending() can't determine whether the work to be
3761  * grabbed is at the head of the queue and thus can't clear LINKED
3762  * flag of the previous work while there must be a valid next work
3763  * after a work with LINKED flag set.
3764  *
3765  * Note that when @worker is non-NULL, @target may be modified
3766  * underneath us, so we can't reliably determine pwq from @target.
3767  *
3768  * CONTEXT:
3769  * raw_spin_lock_irq(pool->lock).
3770  */
3771 static void insert_wq_barrier(struct pool_workqueue *pwq,
3772 			      struct wq_barrier *barr,
3773 			      struct work_struct *target, struct worker *worker)
3774 {
3775 	static __maybe_unused struct lock_class_key bh_key, thr_key;
3776 	unsigned int work_flags = 0;
3777 	unsigned int work_color;
3778 	struct list_head *head;
3779 
3780 	/*
3781 	 * debugobject calls are safe here even with pool->lock locked
3782 	 * as we know for sure that this will not trigger any of the
3783 	 * checks and call back into the fixup functions where we
3784 	 * might deadlock.
3785 	 *
3786 	 * BH and threaded workqueues need separate lockdep keys to avoid
3787 	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3788 	 * usage".
3789 	 */
3790 	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3791 			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3792 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3793 
3794 	init_completion_map(&barr->done, &target->lockdep_map);
3795 
3796 	barr->task = current;
3797 
3798 	/* The barrier work item does not participate in nr_active. */
3799 	work_flags |= WORK_STRUCT_INACTIVE;
3800 
3801 	/*
3802 	 * If @target is currently being executed, schedule the
3803 	 * barrier to the worker; otherwise, put it after @target.
3804 	 */
3805 	if (worker) {
3806 		head = worker->scheduled.next;
3807 		work_color = worker->current_color;
3808 	} else {
3809 		unsigned long *bits = work_data_bits(target);
3810 
3811 		head = target->entry.next;
3812 		/* there can already be other linked works, inherit and set */
3813 		work_flags |= *bits & WORK_STRUCT_LINKED;
3814 		work_color = get_work_color(*bits);
3815 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3816 	}
3817 
3818 	pwq->nr_in_flight[work_color]++;
3819 	work_flags |= work_color_to_flags(work_color);
3820 
3821 	insert_work(pwq, &barr->work, head, work_flags);
3822 }
3823 
3824 /**
3825  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3826  * @wq: workqueue being flushed
3827  * @flush_color: new flush color, < 0 for no-op
3828  * @work_color: new work color, < 0 for no-op
3829  *
3830  * Prepare pwqs for workqueue flushing.
3831  *
3832  * If @flush_color is non-negative, flush_color on all pwqs should be
3833  * -1.  If no pwq has in-flight commands at the specified color, all
3834  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3835  * has in flight commands, its pwq->flush_color is set to
3836  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3837  * wakeup logic is armed and %true is returned.
3838  *
3839  * The caller should have initialized @wq->first_flusher prior to
3840  * calling this function with non-negative @flush_color.  If
3841  * @flush_color is negative, no flush color update is done and %false
3842  * is returned.
3843  *
3844  * If @work_color is non-negative, all pwqs should have the same
3845  * work_color which is previous to @work_color and all will be
3846  * advanced to @work_color.
3847  *
3848  * CONTEXT:
3849  * mutex_lock(wq->mutex).
3850  *
3851  * Return:
3852  * %true if @flush_color >= 0 and there's something to flush.  %false
3853  * otherwise.
3854  */
3855 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3856 				      int flush_color, int work_color)
3857 {
3858 	bool wait = false;
3859 	struct pool_workqueue *pwq;
3860 
3861 	if (flush_color >= 0) {
3862 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3863 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3864 	}
3865 
3866 	for_each_pwq(pwq, wq) {
3867 		struct worker_pool *pool = pwq->pool;
3868 
3869 		raw_spin_lock_irq(&pool->lock);
3870 
3871 		if (flush_color >= 0) {
3872 			WARN_ON_ONCE(pwq->flush_color != -1);
3873 
3874 			if (pwq->nr_in_flight[flush_color]) {
3875 				pwq->flush_color = flush_color;
3876 				atomic_inc(&wq->nr_pwqs_to_flush);
3877 				wait = true;
3878 			}
3879 		}
3880 
3881 		if (work_color >= 0) {
3882 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3883 			pwq->work_color = work_color;
3884 		}
3885 
3886 		raw_spin_unlock_irq(&pool->lock);
3887 	}
3888 
3889 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3890 		complete(&wq->first_flusher->done);
3891 
3892 	return wait;
3893 }
3894 
3895 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3896 {
3897 #ifdef CONFIG_LOCKDEP
3898 	if (wq->flags & WQ_BH)
3899 		local_bh_disable();
3900 
3901 	lock_map_acquire(&wq->lockdep_map);
3902 	lock_map_release(&wq->lockdep_map);
3903 
3904 	if (wq->flags & WQ_BH)
3905 		local_bh_enable();
3906 #endif
3907 }
3908 
3909 static void touch_work_lockdep_map(struct work_struct *work,
3910 				   struct workqueue_struct *wq)
3911 {
3912 #ifdef CONFIG_LOCKDEP
3913 	if (wq->flags & WQ_BH)
3914 		local_bh_disable();
3915 
3916 	lock_map_acquire(&work->lockdep_map);
3917 	lock_map_release(&work->lockdep_map);
3918 
3919 	if (wq->flags & WQ_BH)
3920 		local_bh_enable();
3921 #endif
3922 }
3923 
3924 /**
3925  * __flush_workqueue - ensure that any scheduled work has run to completion.
3926  * @wq: workqueue to flush
3927  *
3928  * This function sleeps until all work items which were queued on entry
3929  * have finished execution, but it is not livelocked by new incoming ones.
3930  */
3931 void __flush_workqueue(struct workqueue_struct *wq)
3932 {
3933 	struct wq_flusher this_flusher = {
3934 		.list = LIST_HEAD_INIT(this_flusher.list),
3935 		.flush_color = -1,
3936 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3937 	};
3938 	int next_color;
3939 
3940 	if (WARN_ON(!wq_online))
3941 		return;
3942 
3943 	touch_wq_lockdep_map(wq);
3944 
3945 	mutex_lock(&wq->mutex);
3946 
3947 	/*
3948 	 * Start-to-wait phase
3949 	 */
3950 	next_color = work_next_color(wq->work_color);
3951 
3952 	if (next_color != wq->flush_color) {
3953 		/*
3954 		 * Color space is not full.  The current work_color
3955 		 * becomes our flush_color and work_color is advanced
3956 		 * by one.
3957 		 */
3958 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3959 		this_flusher.flush_color = wq->work_color;
3960 		wq->work_color = next_color;
3961 
3962 		if (!wq->first_flusher) {
3963 			/* no flush in progress, become the first flusher */
3964 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3965 
3966 			wq->first_flusher = &this_flusher;
3967 
3968 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3969 						       wq->work_color)) {
3970 				/* nothing to flush, done */
3971 				wq->flush_color = next_color;
3972 				wq->first_flusher = NULL;
3973 				goto out_unlock;
3974 			}
3975 		} else {
3976 			/* wait in queue */
3977 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3978 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3979 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3980 		}
3981 	} else {
3982 		/*
3983 		 * Oops, color space is full, wait on overflow queue.
3984 		 * The next flush completion will assign us
3985 		 * flush_color and transfer to flusher_queue.
3986 		 */
3987 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3988 	}
3989 
3990 	check_flush_dependency(wq, NULL);
3991 
3992 	mutex_unlock(&wq->mutex);
3993 
3994 	wait_for_completion(&this_flusher.done);
3995 
3996 	/*
3997 	 * Wake-up-and-cascade phase
3998 	 *
3999 	 * First flushers are responsible for cascading flushes and
4000 	 * handling overflow.  Non-first flushers can simply return.
4001 	 */
4002 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
4003 		return;
4004 
4005 	mutex_lock(&wq->mutex);
4006 
4007 	/* we might have raced, check again with mutex held */
4008 	if (wq->first_flusher != &this_flusher)
4009 		goto out_unlock;
4010 
4011 	WRITE_ONCE(wq->first_flusher, NULL);
4012 
4013 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
4014 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4015 
4016 	while (true) {
4017 		struct wq_flusher *next, *tmp;
4018 
4019 		/* complete all the flushers sharing the current flush color */
4020 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
4021 			if (next->flush_color != wq->flush_color)
4022 				break;
4023 			list_del_init(&next->list);
4024 			complete(&next->done);
4025 		}
4026 
4027 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4028 			     wq->flush_color != work_next_color(wq->work_color));
4029 
4030 		/* this flush_color is finished, advance by one */
4031 		wq->flush_color = work_next_color(wq->flush_color);
4032 
4033 		/* one color has been freed, handle overflow queue */
4034 		if (!list_empty(&wq->flusher_overflow)) {
4035 			/*
4036 			 * Assign the same color to all overflowed
4037 			 * flushers, advance work_color and append to
4038 			 * flusher_queue.  This is the start-to-wait
4039 			 * phase for these overflowed flushers.
4040 			 */
4041 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
4042 				tmp->flush_color = wq->work_color;
4043 
4044 			wq->work_color = work_next_color(wq->work_color);
4045 
4046 			list_splice_tail_init(&wq->flusher_overflow,
4047 					      &wq->flusher_queue);
4048 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4049 		}
4050 
4051 		if (list_empty(&wq->flusher_queue)) {
4052 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
4053 			break;
4054 		}
4055 
4056 		/*
4057 		 * Need to flush more colors.  Make the next flusher
4058 		 * the new first flusher and arm pwqs.
4059 		 */
4060 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
4061 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
4062 
4063 		list_del_init(&next->list);
4064 		wq->first_flusher = next;
4065 
4066 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4067 			break;
4068 
4069 		/*
4070 		 * Meh... this color is already done, clear first
4071 		 * flusher and repeat cascading.
4072 		 */
4073 		wq->first_flusher = NULL;
4074 	}
4075 
4076 out_unlock:
4077 	mutex_unlock(&wq->mutex);
4078 }
4079 EXPORT_SYMBOL(__flush_workqueue);
4080 
4081 /**
4082  * drain_workqueue - drain a workqueue
4083  * @wq: workqueue to drain
4084  *
4085  * Wait until the workqueue becomes empty.  While draining is in progress,
4086  * only chain queueing is allowed.  IOW, only currently pending or running
4087  * work items on @wq can queue further work items on it.  @wq is flushed
4088  * repeatedly until it becomes empty.  The number of flushing is determined
4089  * by the depth of chaining and should be relatively short.  Whine if it
4090  * takes too long.
4091  */
4092 void drain_workqueue(struct workqueue_struct *wq)
4093 {
4094 	unsigned int flush_cnt = 0;
4095 	struct pool_workqueue *pwq;
4096 
4097 	/*
4098 	 * __queue_work() needs to test whether there are drainers, is much
4099 	 * hotter than drain_workqueue() and already looks at @wq->flags.
4100 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4101 	 */
4102 	mutex_lock(&wq->mutex);
4103 	if (!wq->nr_drainers++)
4104 		wq->flags |= __WQ_DRAINING;
4105 	mutex_unlock(&wq->mutex);
4106 reflush:
4107 	__flush_workqueue(wq);
4108 
4109 	mutex_lock(&wq->mutex);
4110 
4111 	for_each_pwq(pwq, wq) {
4112 		bool drained;
4113 
4114 		raw_spin_lock_irq(&pwq->pool->lock);
4115 		drained = pwq_is_empty(pwq);
4116 		raw_spin_unlock_irq(&pwq->pool->lock);
4117 
4118 		if (drained)
4119 			continue;
4120 
4121 		if (++flush_cnt == 10 ||
4122 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4123 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4124 				wq->name, __func__, flush_cnt);
4125 
4126 		mutex_unlock(&wq->mutex);
4127 		goto reflush;
4128 	}
4129 
4130 	if (!--wq->nr_drainers)
4131 		wq->flags &= ~__WQ_DRAINING;
4132 	mutex_unlock(&wq->mutex);
4133 }
4134 EXPORT_SYMBOL_GPL(drain_workqueue);
4135 
4136 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4137 			     bool from_cancel)
4138 {
4139 	struct worker *worker = NULL;
4140 	struct worker_pool *pool;
4141 	struct pool_workqueue *pwq;
4142 	struct workqueue_struct *wq;
4143 
4144 	might_sleep();
4145 
4146 	rcu_read_lock();
4147 	pool = get_work_pool(work);
4148 	if (!pool) {
4149 		rcu_read_unlock();
4150 		return false;
4151 	}
4152 
4153 	raw_spin_lock_irq(&pool->lock);
4154 	/* see the comment in try_to_grab_pending() with the same code */
4155 	pwq = get_work_pwq(work);
4156 	if (pwq) {
4157 		if (unlikely(pwq->pool != pool))
4158 			goto already_gone;
4159 	} else {
4160 		worker = find_worker_executing_work(pool, work);
4161 		if (!worker)
4162 			goto already_gone;
4163 		pwq = worker->current_pwq;
4164 	}
4165 
4166 	wq = pwq->wq;
4167 	check_flush_dependency(wq, work);
4168 
4169 	insert_wq_barrier(pwq, barr, work, worker);
4170 	raw_spin_unlock_irq(&pool->lock);
4171 
4172 	touch_work_lockdep_map(work, wq);
4173 
4174 	/*
4175 	 * Force a lock recursion deadlock when using flush_work() inside a
4176 	 * single-threaded or rescuer equipped workqueue.
4177 	 *
4178 	 * For single threaded workqueues the deadlock happens when the work
4179 	 * is after the work issuing the flush_work(). For rescuer equipped
4180 	 * workqueues the deadlock happens when the rescuer stalls, blocking
4181 	 * forward progress.
4182 	 */
4183 	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4184 		touch_wq_lockdep_map(wq);
4185 
4186 	rcu_read_unlock();
4187 	return true;
4188 already_gone:
4189 	raw_spin_unlock_irq(&pool->lock);
4190 	rcu_read_unlock();
4191 	return false;
4192 }
4193 
4194 static bool __flush_work(struct work_struct *work, bool from_cancel)
4195 {
4196 	struct wq_barrier barr;
4197 
4198 	if (WARN_ON(!wq_online))
4199 		return false;
4200 
4201 	if (WARN_ON(!work->func))
4202 		return false;
4203 
4204 	if (start_flush_work(work, &barr, from_cancel)) {
4205 		wait_for_completion(&barr.done);
4206 		destroy_work_on_stack(&barr.work);
4207 		return true;
4208 	} else {
4209 		return false;
4210 	}
4211 }
4212 
4213 /**
4214  * flush_work - wait for a work to finish executing the last queueing instance
4215  * @work: the work to flush
4216  *
4217  * Wait until @work has finished execution.  @work is guaranteed to be idle
4218  * on return if it hasn't been requeued since flush started.
4219  *
4220  * Return:
4221  * %true if flush_work() waited for the work to finish execution,
4222  * %false if it was already idle.
4223  */
4224 bool flush_work(struct work_struct *work)
4225 {
4226 	return __flush_work(work, false);
4227 }
4228 EXPORT_SYMBOL_GPL(flush_work);
4229 
4230 /**
4231  * flush_delayed_work - wait for a dwork to finish executing the last queueing
4232  * @dwork: the delayed work to flush
4233  *
4234  * Delayed timer is cancelled and the pending work is queued for
4235  * immediate execution.  Like flush_work(), this function only
4236  * considers the last queueing instance of @dwork.
4237  *
4238  * Return:
4239  * %true if flush_work() waited for the work to finish execution,
4240  * %false if it was already idle.
4241  */
4242 bool flush_delayed_work(struct delayed_work *dwork)
4243 {
4244 	local_irq_disable();
4245 	if (del_timer_sync(&dwork->timer))
4246 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4247 	local_irq_enable();
4248 	return flush_work(&dwork->work);
4249 }
4250 EXPORT_SYMBOL(flush_delayed_work);
4251 
4252 /**
4253  * flush_rcu_work - wait for a rwork to finish executing the last queueing
4254  * @rwork: the rcu work to flush
4255  *
4256  * Return:
4257  * %true if flush_rcu_work() waited for the work to finish execution,
4258  * %false if it was already idle.
4259  */
4260 bool flush_rcu_work(struct rcu_work *rwork)
4261 {
4262 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4263 		rcu_barrier();
4264 		flush_work(&rwork->work);
4265 		return true;
4266 	} else {
4267 		return flush_work(&rwork->work);
4268 	}
4269 }
4270 EXPORT_SYMBOL(flush_rcu_work);
4271 
4272 static bool __cancel_work(struct work_struct *work, u32 cflags)
4273 {
4274 	unsigned long irq_flags;
4275 	int ret;
4276 
4277 	do {
4278 		ret = try_to_grab_pending(work, cflags, &irq_flags);
4279 	} while (unlikely(ret == -EAGAIN));
4280 
4281 	if (unlikely(ret < 0))
4282 		return false;
4283 
4284 	set_work_pool_and_clear_pending(work, get_work_pool_id(work), 0);
4285 	local_irq_restore(irq_flags);
4286 	return ret;
4287 }
4288 
4289 static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4290 {
4291 	unsigned long irq_flags;
4292 	bool ret;
4293 
4294 	/* claim @work and tell other tasks trying to grab @work to back off */
4295 	ret = work_grab_pending(work, cflags, &irq_flags);
4296 	mark_work_canceling(work);
4297 	local_irq_restore(irq_flags);
4298 
4299 	/*
4300 	 * Skip __flush_work() during early boot when we know that @work isn't
4301 	 * executing. This allows canceling during early boot.
4302 	 */
4303 	if (wq_online)
4304 		__flush_work(work, true);
4305 
4306 	/*
4307 	 * smp_mb() at the end of set_work_pool_and_clear_pending() is paired
4308 	 * with prepare_to_wait() above so that either waitqueue_active() is
4309 	 * visible here or !work_is_canceling() is visible there.
4310 	 */
4311 	set_work_pool_and_clear_pending(work, WORK_OFFQ_POOL_NONE, 0);
4312 
4313 	if (waitqueue_active(&wq_cancel_waitq))
4314 		__wake_up(&wq_cancel_waitq, TASK_NORMAL, 1, work);
4315 
4316 	return ret;
4317 }
4318 
4319 /*
4320  * See cancel_delayed_work()
4321  */
4322 bool cancel_work(struct work_struct *work)
4323 {
4324 	return __cancel_work(work, 0);
4325 }
4326 EXPORT_SYMBOL(cancel_work);
4327 
4328 /**
4329  * cancel_work_sync - cancel a work and wait for it to finish
4330  * @work: the work to cancel
4331  *
4332  * Cancel @work and wait for its execution to finish.  This function
4333  * can be used even if the work re-queues itself or migrates to
4334  * another workqueue.  On return from this function, @work is
4335  * guaranteed to be not pending or executing on any CPU.
4336  *
4337  * cancel_work_sync(&delayed_work->work) must not be used for
4338  * delayed_work's.  Use cancel_delayed_work_sync() instead.
4339  *
4340  * The caller must ensure that the workqueue on which @work was last
4341  * queued can't be destroyed before this function returns.
4342  *
4343  * Return:
4344  * %true if @work was pending, %false otherwise.
4345  */
4346 bool cancel_work_sync(struct work_struct *work)
4347 {
4348 	return __cancel_work_sync(work, 0);
4349 }
4350 EXPORT_SYMBOL_GPL(cancel_work_sync);
4351 
4352 /**
4353  * cancel_delayed_work - cancel a delayed work
4354  * @dwork: delayed_work to cancel
4355  *
4356  * Kill off a pending delayed_work.
4357  *
4358  * Return: %true if @dwork was pending and canceled; %false if it wasn't
4359  * pending.
4360  *
4361  * Note:
4362  * The work callback function may still be running on return, unless
4363  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4364  * use cancel_delayed_work_sync() to wait on it.
4365  *
4366  * This function is safe to call from any context including IRQ handler.
4367  */
4368 bool cancel_delayed_work(struct delayed_work *dwork)
4369 {
4370 	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4371 }
4372 EXPORT_SYMBOL(cancel_delayed_work);
4373 
4374 /**
4375  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4376  * @dwork: the delayed work cancel
4377  *
4378  * This is cancel_work_sync() for delayed works.
4379  *
4380  * Return:
4381  * %true if @dwork was pending, %false otherwise.
4382  */
4383 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4384 {
4385 	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4386 }
4387 EXPORT_SYMBOL(cancel_delayed_work_sync);
4388 
4389 /**
4390  * schedule_on_each_cpu - execute a function synchronously on each online CPU
4391  * @func: the function to call
4392  *
4393  * schedule_on_each_cpu() executes @func on each online CPU using the
4394  * system workqueue and blocks until all CPUs have completed.
4395  * schedule_on_each_cpu() is very slow.
4396  *
4397  * Return:
4398  * 0 on success, -errno on failure.
4399  */
4400 int schedule_on_each_cpu(work_func_t func)
4401 {
4402 	int cpu;
4403 	struct work_struct __percpu *works;
4404 
4405 	works = alloc_percpu(struct work_struct);
4406 	if (!works)
4407 		return -ENOMEM;
4408 
4409 	cpus_read_lock();
4410 
4411 	for_each_online_cpu(cpu) {
4412 		struct work_struct *work = per_cpu_ptr(works, cpu);
4413 
4414 		INIT_WORK(work, func);
4415 		schedule_work_on(cpu, work);
4416 	}
4417 
4418 	for_each_online_cpu(cpu)
4419 		flush_work(per_cpu_ptr(works, cpu));
4420 
4421 	cpus_read_unlock();
4422 	free_percpu(works);
4423 	return 0;
4424 }
4425 
4426 /**
4427  * execute_in_process_context - reliably execute the routine with user context
4428  * @fn:		the function to execute
4429  * @ew:		guaranteed storage for the execute work structure (must
4430  *		be available when the work executes)
4431  *
4432  * Executes the function immediately if process context is available,
4433  * otherwise schedules the function for delayed execution.
4434  *
4435  * Return:	0 - function was executed
4436  *		1 - function was scheduled for execution
4437  */
4438 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4439 {
4440 	if (!in_interrupt()) {
4441 		fn(&ew->work);
4442 		return 0;
4443 	}
4444 
4445 	INIT_WORK(&ew->work, fn);
4446 	schedule_work(&ew->work);
4447 
4448 	return 1;
4449 }
4450 EXPORT_SYMBOL_GPL(execute_in_process_context);
4451 
4452 /**
4453  * free_workqueue_attrs - free a workqueue_attrs
4454  * @attrs: workqueue_attrs to free
4455  *
4456  * Undo alloc_workqueue_attrs().
4457  */
4458 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4459 {
4460 	if (attrs) {
4461 		free_cpumask_var(attrs->cpumask);
4462 		free_cpumask_var(attrs->__pod_cpumask);
4463 		kfree(attrs);
4464 	}
4465 }
4466 
4467 /**
4468  * alloc_workqueue_attrs - allocate a workqueue_attrs
4469  *
4470  * Allocate a new workqueue_attrs, initialize with default settings and
4471  * return it.
4472  *
4473  * Return: The allocated new workqueue_attr on success. %NULL on failure.
4474  */
4475 struct workqueue_attrs *alloc_workqueue_attrs(void)
4476 {
4477 	struct workqueue_attrs *attrs;
4478 
4479 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4480 	if (!attrs)
4481 		goto fail;
4482 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4483 		goto fail;
4484 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4485 		goto fail;
4486 
4487 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4488 	attrs->affn_scope = WQ_AFFN_DFL;
4489 	return attrs;
4490 fail:
4491 	free_workqueue_attrs(attrs);
4492 	return NULL;
4493 }
4494 
4495 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4496 				 const struct workqueue_attrs *from)
4497 {
4498 	to->nice = from->nice;
4499 	cpumask_copy(to->cpumask, from->cpumask);
4500 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4501 	to->affn_strict = from->affn_strict;
4502 
4503 	/*
4504 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4505 	 * fields as copying is used for both pool and wq attrs. Instead,
4506 	 * get_unbound_pool() explicitly clears the fields.
4507 	 */
4508 	to->affn_scope = from->affn_scope;
4509 	to->ordered = from->ordered;
4510 }
4511 
4512 /*
4513  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4514  * comments in 'struct workqueue_attrs' definition.
4515  */
4516 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4517 {
4518 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4519 	attrs->ordered = false;
4520 }
4521 
4522 /* hash value of the content of @attr */
4523 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4524 {
4525 	u32 hash = 0;
4526 
4527 	hash = jhash_1word(attrs->nice, hash);
4528 	hash = jhash(cpumask_bits(attrs->cpumask),
4529 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4530 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4531 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4532 	hash = jhash_1word(attrs->affn_strict, hash);
4533 	return hash;
4534 }
4535 
4536 /* content equality test */
4537 static bool wqattrs_equal(const struct workqueue_attrs *a,
4538 			  const struct workqueue_attrs *b)
4539 {
4540 	if (a->nice != b->nice)
4541 		return false;
4542 	if (!cpumask_equal(a->cpumask, b->cpumask))
4543 		return false;
4544 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4545 		return false;
4546 	if (a->affn_strict != b->affn_strict)
4547 		return false;
4548 	return true;
4549 }
4550 
4551 /* Update @attrs with actually available CPUs */
4552 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4553 				      const cpumask_t *unbound_cpumask)
4554 {
4555 	/*
4556 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4557 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4558 	 * @unbound_cpumask.
4559 	 */
4560 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4561 	if (unlikely(cpumask_empty(attrs->cpumask)))
4562 		cpumask_copy(attrs->cpumask, unbound_cpumask);
4563 }
4564 
4565 /* find wq_pod_type to use for @attrs */
4566 static const struct wq_pod_type *
4567 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4568 {
4569 	enum wq_affn_scope scope;
4570 	struct wq_pod_type *pt;
4571 
4572 	/* to synchronize access to wq_affn_dfl */
4573 	lockdep_assert_held(&wq_pool_mutex);
4574 
4575 	if (attrs->affn_scope == WQ_AFFN_DFL)
4576 		scope = wq_affn_dfl;
4577 	else
4578 		scope = attrs->affn_scope;
4579 
4580 	pt = &wq_pod_types[scope];
4581 
4582 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4583 	    likely(pt->nr_pods))
4584 		return pt;
4585 
4586 	/*
4587 	 * Before workqueue_init_topology(), only SYSTEM is available which is
4588 	 * initialized in workqueue_init_early().
4589 	 */
4590 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4591 	BUG_ON(!pt->nr_pods);
4592 	return pt;
4593 }
4594 
4595 /**
4596  * init_worker_pool - initialize a newly zalloc'd worker_pool
4597  * @pool: worker_pool to initialize
4598  *
4599  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4600  *
4601  * Return: 0 on success, -errno on failure.  Even on failure, all fields
4602  * inside @pool proper are initialized and put_unbound_pool() can be called
4603  * on @pool safely to release it.
4604  */
4605 static int init_worker_pool(struct worker_pool *pool)
4606 {
4607 	raw_spin_lock_init(&pool->lock);
4608 	pool->id = -1;
4609 	pool->cpu = -1;
4610 	pool->node = NUMA_NO_NODE;
4611 	pool->flags |= POOL_DISASSOCIATED;
4612 	pool->watchdog_ts = jiffies;
4613 	INIT_LIST_HEAD(&pool->worklist);
4614 	INIT_LIST_HEAD(&pool->idle_list);
4615 	hash_init(pool->busy_hash);
4616 
4617 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4618 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4619 
4620 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4621 
4622 	INIT_LIST_HEAD(&pool->workers);
4623 	INIT_LIST_HEAD(&pool->dying_workers);
4624 
4625 	ida_init(&pool->worker_ida);
4626 	INIT_HLIST_NODE(&pool->hash_node);
4627 	pool->refcnt = 1;
4628 
4629 	/* shouldn't fail above this point */
4630 	pool->attrs = alloc_workqueue_attrs();
4631 	if (!pool->attrs)
4632 		return -ENOMEM;
4633 
4634 	wqattrs_clear_for_pool(pool->attrs);
4635 
4636 	return 0;
4637 }
4638 
4639 #ifdef CONFIG_LOCKDEP
4640 static void wq_init_lockdep(struct workqueue_struct *wq)
4641 {
4642 	char *lock_name;
4643 
4644 	lockdep_register_key(&wq->key);
4645 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4646 	if (!lock_name)
4647 		lock_name = wq->name;
4648 
4649 	wq->lock_name = lock_name;
4650 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
4651 }
4652 
4653 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4654 {
4655 	lockdep_unregister_key(&wq->key);
4656 }
4657 
4658 static void wq_free_lockdep(struct workqueue_struct *wq)
4659 {
4660 	if (wq->lock_name != wq->name)
4661 		kfree(wq->lock_name);
4662 }
4663 #else
4664 static void wq_init_lockdep(struct workqueue_struct *wq)
4665 {
4666 }
4667 
4668 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4669 {
4670 }
4671 
4672 static void wq_free_lockdep(struct workqueue_struct *wq)
4673 {
4674 }
4675 #endif
4676 
4677 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4678 {
4679 	int node;
4680 
4681 	for_each_node(node) {
4682 		kfree(nna_ar[node]);
4683 		nna_ar[node] = NULL;
4684 	}
4685 
4686 	kfree(nna_ar[nr_node_ids]);
4687 	nna_ar[nr_node_ids] = NULL;
4688 }
4689 
4690 static void init_node_nr_active(struct wq_node_nr_active *nna)
4691 {
4692 	nna->max = WQ_DFL_MIN_ACTIVE;
4693 	atomic_set(&nna->nr, 0);
4694 	raw_spin_lock_init(&nna->lock);
4695 	INIT_LIST_HEAD(&nna->pending_pwqs);
4696 }
4697 
4698 /*
4699  * Each node's nr_active counter will be accessed mostly from its own node and
4700  * should be allocated in the node.
4701  */
4702 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4703 {
4704 	struct wq_node_nr_active *nna;
4705 	int node;
4706 
4707 	for_each_node(node) {
4708 		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4709 		if (!nna)
4710 			goto err_free;
4711 		init_node_nr_active(nna);
4712 		nna_ar[node] = nna;
4713 	}
4714 
4715 	/* [nr_node_ids] is used as the fallback */
4716 	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4717 	if (!nna)
4718 		goto err_free;
4719 	init_node_nr_active(nna);
4720 	nna_ar[nr_node_ids] = nna;
4721 
4722 	return 0;
4723 
4724 err_free:
4725 	free_node_nr_active(nna_ar);
4726 	return -ENOMEM;
4727 }
4728 
4729 static void rcu_free_wq(struct rcu_head *rcu)
4730 {
4731 	struct workqueue_struct *wq =
4732 		container_of(rcu, struct workqueue_struct, rcu);
4733 
4734 	if (wq->flags & WQ_UNBOUND)
4735 		free_node_nr_active(wq->node_nr_active);
4736 
4737 	wq_free_lockdep(wq);
4738 	free_percpu(wq->cpu_pwq);
4739 	free_workqueue_attrs(wq->unbound_attrs);
4740 	kfree(wq);
4741 }
4742 
4743 static void rcu_free_pool(struct rcu_head *rcu)
4744 {
4745 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4746 
4747 	ida_destroy(&pool->worker_ida);
4748 	free_workqueue_attrs(pool->attrs);
4749 	kfree(pool);
4750 }
4751 
4752 /**
4753  * put_unbound_pool - put a worker_pool
4754  * @pool: worker_pool to put
4755  *
4756  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4757  * safe manner.  get_unbound_pool() calls this function on its failure path
4758  * and this function should be able to release pools which went through,
4759  * successfully or not, init_worker_pool().
4760  *
4761  * Should be called with wq_pool_mutex held.
4762  */
4763 static void put_unbound_pool(struct worker_pool *pool)
4764 {
4765 	DECLARE_COMPLETION_ONSTACK(detach_completion);
4766 	struct worker *worker;
4767 	LIST_HEAD(cull_list);
4768 
4769 	lockdep_assert_held(&wq_pool_mutex);
4770 
4771 	if (--pool->refcnt)
4772 		return;
4773 
4774 	/* sanity checks */
4775 	if (WARN_ON(!(pool->cpu < 0)) ||
4776 	    WARN_ON(!list_empty(&pool->worklist)))
4777 		return;
4778 
4779 	/* release id and unhash */
4780 	if (pool->id >= 0)
4781 		idr_remove(&worker_pool_idr, pool->id);
4782 	hash_del(&pool->hash_node);
4783 
4784 	/*
4785 	 * Become the manager and destroy all workers.  This prevents
4786 	 * @pool's workers from blocking on attach_mutex.  We're the last
4787 	 * manager and @pool gets freed with the flag set.
4788 	 *
4789 	 * Having a concurrent manager is quite unlikely to happen as we can
4790 	 * only get here with
4791 	 *   pwq->refcnt == pool->refcnt == 0
4792 	 * which implies no work queued to the pool, which implies no worker can
4793 	 * become the manager. However a worker could have taken the role of
4794 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4795 	 * drops pool->lock
4796 	 */
4797 	while (true) {
4798 		rcuwait_wait_event(&manager_wait,
4799 				   !(pool->flags & POOL_MANAGER_ACTIVE),
4800 				   TASK_UNINTERRUPTIBLE);
4801 
4802 		mutex_lock(&wq_pool_attach_mutex);
4803 		raw_spin_lock_irq(&pool->lock);
4804 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4805 			pool->flags |= POOL_MANAGER_ACTIVE;
4806 			break;
4807 		}
4808 		raw_spin_unlock_irq(&pool->lock);
4809 		mutex_unlock(&wq_pool_attach_mutex);
4810 	}
4811 
4812 	while ((worker = first_idle_worker(pool)))
4813 		set_worker_dying(worker, &cull_list);
4814 	WARN_ON(pool->nr_workers || pool->nr_idle);
4815 	raw_spin_unlock_irq(&pool->lock);
4816 
4817 	wake_dying_workers(&cull_list);
4818 
4819 	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
4820 		pool->detach_completion = &detach_completion;
4821 	mutex_unlock(&wq_pool_attach_mutex);
4822 
4823 	if (pool->detach_completion)
4824 		wait_for_completion(pool->detach_completion);
4825 
4826 	/* shut down the timers */
4827 	del_timer_sync(&pool->idle_timer);
4828 	cancel_work_sync(&pool->idle_cull_work);
4829 	del_timer_sync(&pool->mayday_timer);
4830 
4831 	/* RCU protected to allow dereferences from get_work_pool() */
4832 	call_rcu(&pool->rcu, rcu_free_pool);
4833 }
4834 
4835 /**
4836  * get_unbound_pool - get a worker_pool with the specified attributes
4837  * @attrs: the attributes of the worker_pool to get
4838  *
4839  * Obtain a worker_pool which has the same attributes as @attrs, bump the
4840  * reference count and return it.  If there already is a matching
4841  * worker_pool, it will be used; otherwise, this function attempts to
4842  * create a new one.
4843  *
4844  * Should be called with wq_pool_mutex held.
4845  *
4846  * Return: On success, a worker_pool with the same attributes as @attrs.
4847  * On failure, %NULL.
4848  */
4849 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4850 {
4851 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4852 	u32 hash = wqattrs_hash(attrs);
4853 	struct worker_pool *pool;
4854 	int pod, node = NUMA_NO_NODE;
4855 
4856 	lockdep_assert_held(&wq_pool_mutex);
4857 
4858 	/* do we already have a matching pool? */
4859 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4860 		if (wqattrs_equal(pool->attrs, attrs)) {
4861 			pool->refcnt++;
4862 			return pool;
4863 		}
4864 	}
4865 
4866 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4867 	for (pod = 0; pod < pt->nr_pods; pod++) {
4868 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4869 			node = pt->pod_node[pod];
4870 			break;
4871 		}
4872 	}
4873 
4874 	/* nope, create a new one */
4875 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
4876 	if (!pool || init_worker_pool(pool) < 0)
4877 		goto fail;
4878 
4879 	pool->node = node;
4880 	copy_workqueue_attrs(pool->attrs, attrs);
4881 	wqattrs_clear_for_pool(pool->attrs);
4882 
4883 	if (worker_pool_assign_id(pool) < 0)
4884 		goto fail;
4885 
4886 	/* create and start the initial worker */
4887 	if (wq_online && !create_worker(pool))
4888 		goto fail;
4889 
4890 	/* install */
4891 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
4892 
4893 	return pool;
4894 fail:
4895 	if (pool)
4896 		put_unbound_pool(pool);
4897 	return NULL;
4898 }
4899 
4900 static void rcu_free_pwq(struct rcu_head *rcu)
4901 {
4902 	kmem_cache_free(pwq_cache,
4903 			container_of(rcu, struct pool_workqueue, rcu));
4904 }
4905 
4906 /*
4907  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4908  * refcnt and needs to be destroyed.
4909  */
4910 static void pwq_release_workfn(struct kthread_work *work)
4911 {
4912 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
4913 						  release_work);
4914 	struct workqueue_struct *wq = pwq->wq;
4915 	struct worker_pool *pool = pwq->pool;
4916 	bool is_last = false;
4917 
4918 	/*
4919 	 * When @pwq is not linked, it doesn't hold any reference to the
4920 	 * @wq, and @wq is invalid to access.
4921 	 */
4922 	if (!list_empty(&pwq->pwqs_node)) {
4923 		mutex_lock(&wq->mutex);
4924 		list_del_rcu(&pwq->pwqs_node);
4925 		is_last = list_empty(&wq->pwqs);
4926 
4927 		/*
4928 		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
4929 		 */
4930 		if (!is_last && (wq->flags & __WQ_ORDERED))
4931 			unplug_oldest_pwq(wq);
4932 
4933 		mutex_unlock(&wq->mutex);
4934 	}
4935 
4936 	if (wq->flags & WQ_UNBOUND) {
4937 		mutex_lock(&wq_pool_mutex);
4938 		put_unbound_pool(pool);
4939 		mutex_unlock(&wq_pool_mutex);
4940 	}
4941 
4942 	if (!list_empty(&pwq->pending_node)) {
4943 		struct wq_node_nr_active *nna =
4944 			wq_node_nr_active(pwq->wq, pwq->pool->node);
4945 
4946 		raw_spin_lock_irq(&nna->lock);
4947 		list_del_init(&pwq->pending_node);
4948 		raw_spin_unlock_irq(&nna->lock);
4949 	}
4950 
4951 	call_rcu(&pwq->rcu, rcu_free_pwq);
4952 
4953 	/*
4954 	 * If we're the last pwq going away, @wq is already dead and no one
4955 	 * is gonna access it anymore.  Schedule RCU free.
4956 	 */
4957 	if (is_last) {
4958 		wq_unregister_lockdep(wq);
4959 		call_rcu(&wq->rcu, rcu_free_wq);
4960 	}
4961 }
4962 
4963 /* initialize newly allocated @pwq which is associated with @wq and @pool */
4964 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4965 		     struct worker_pool *pool)
4966 {
4967 	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
4968 
4969 	memset(pwq, 0, sizeof(*pwq));
4970 
4971 	pwq->pool = pool;
4972 	pwq->wq = wq;
4973 	pwq->flush_color = -1;
4974 	pwq->refcnt = 1;
4975 	INIT_LIST_HEAD(&pwq->inactive_works);
4976 	INIT_LIST_HEAD(&pwq->pending_node);
4977 	INIT_LIST_HEAD(&pwq->pwqs_node);
4978 	INIT_LIST_HEAD(&pwq->mayday_node);
4979 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
4980 }
4981 
4982 /* sync @pwq with the current state of its associated wq and link it */
4983 static void link_pwq(struct pool_workqueue *pwq)
4984 {
4985 	struct workqueue_struct *wq = pwq->wq;
4986 
4987 	lockdep_assert_held(&wq->mutex);
4988 
4989 	/* may be called multiple times, ignore if already linked */
4990 	if (!list_empty(&pwq->pwqs_node))
4991 		return;
4992 
4993 	/* set the matching work_color */
4994 	pwq->work_color = wq->work_color;
4995 
4996 	/* link in @pwq */
4997 	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
4998 }
4999 
5000 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
5001 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5002 					const struct workqueue_attrs *attrs)
5003 {
5004 	struct worker_pool *pool;
5005 	struct pool_workqueue *pwq;
5006 
5007 	lockdep_assert_held(&wq_pool_mutex);
5008 
5009 	pool = get_unbound_pool(attrs);
5010 	if (!pool)
5011 		return NULL;
5012 
5013 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5014 	if (!pwq) {
5015 		put_unbound_pool(pool);
5016 		return NULL;
5017 	}
5018 
5019 	init_pwq(pwq, wq, pool);
5020 	return pwq;
5021 }
5022 
5023 /**
5024  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5025  * @attrs: the wq_attrs of the default pwq of the target workqueue
5026  * @cpu: the target CPU
5027  * @cpu_going_down: if >= 0, the CPU to consider as offline
5028  *
5029  * Calculate the cpumask a workqueue with @attrs should use on @pod. If
5030  * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
5031  * The result is stored in @attrs->__pod_cpumask.
5032  *
5033  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5034  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5035  * intersection of the possible CPUs of @pod and @attrs->cpumask.
5036  *
5037  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5038  */
5039 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
5040 				int cpu_going_down)
5041 {
5042 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5043 	int pod = pt->cpu_pod[cpu];
5044 
5045 	/* does @pod have any online CPUs @attrs wants? */
5046 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5047 	cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
5048 	if (cpu_going_down >= 0)
5049 		cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
5050 
5051 	if (cpumask_empty(attrs->__pod_cpumask)) {
5052 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5053 		return;
5054 	}
5055 
5056 	/* yeap, return possible CPUs in @pod that @attrs wants */
5057 	cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
5058 
5059 	if (cpumask_empty(attrs->__pod_cpumask))
5060 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
5061 				"possible intersect\n");
5062 }
5063 
5064 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
5065 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5066 					int cpu, struct pool_workqueue *pwq)
5067 {
5068 	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5069 	struct pool_workqueue *old_pwq;
5070 
5071 	lockdep_assert_held(&wq_pool_mutex);
5072 	lockdep_assert_held(&wq->mutex);
5073 
5074 	/* link_pwq() can handle duplicate calls */
5075 	link_pwq(pwq);
5076 
5077 	old_pwq = rcu_access_pointer(*slot);
5078 	rcu_assign_pointer(*slot, pwq);
5079 	return old_pwq;
5080 }
5081 
5082 /* context to store the prepared attrs & pwqs before applying */
5083 struct apply_wqattrs_ctx {
5084 	struct workqueue_struct	*wq;		/* target workqueue */
5085 	struct workqueue_attrs	*attrs;		/* attrs to apply */
5086 	struct list_head	list;		/* queued for batching commit */
5087 	struct pool_workqueue	*dfl_pwq;
5088 	struct pool_workqueue	*pwq_tbl[];
5089 };
5090 
5091 /* free the resources after success or abort */
5092 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5093 {
5094 	if (ctx) {
5095 		int cpu;
5096 
5097 		for_each_possible_cpu(cpu)
5098 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5099 		put_pwq_unlocked(ctx->dfl_pwq);
5100 
5101 		free_workqueue_attrs(ctx->attrs);
5102 
5103 		kfree(ctx);
5104 	}
5105 }
5106 
5107 /* allocate the attrs and pwqs for later installation */
5108 static struct apply_wqattrs_ctx *
5109 apply_wqattrs_prepare(struct workqueue_struct *wq,
5110 		      const struct workqueue_attrs *attrs,
5111 		      const cpumask_var_t unbound_cpumask)
5112 {
5113 	struct apply_wqattrs_ctx *ctx;
5114 	struct workqueue_attrs *new_attrs;
5115 	int cpu;
5116 
5117 	lockdep_assert_held(&wq_pool_mutex);
5118 
5119 	if (WARN_ON(attrs->affn_scope < 0 ||
5120 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5121 		return ERR_PTR(-EINVAL);
5122 
5123 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5124 
5125 	new_attrs = alloc_workqueue_attrs();
5126 	if (!ctx || !new_attrs)
5127 		goto out_free;
5128 
5129 	/*
5130 	 * If something goes wrong during CPU up/down, we'll fall back to
5131 	 * the default pwq covering whole @attrs->cpumask.  Always create
5132 	 * it even if we don't use it immediately.
5133 	 */
5134 	copy_workqueue_attrs(new_attrs, attrs);
5135 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5136 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5137 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5138 	if (!ctx->dfl_pwq)
5139 		goto out_free;
5140 
5141 	for_each_possible_cpu(cpu) {
5142 		if (new_attrs->ordered) {
5143 			ctx->dfl_pwq->refcnt++;
5144 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5145 		} else {
5146 			wq_calc_pod_cpumask(new_attrs, cpu, -1);
5147 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5148 			if (!ctx->pwq_tbl[cpu])
5149 				goto out_free;
5150 		}
5151 	}
5152 
5153 	/* save the user configured attrs and sanitize it. */
5154 	copy_workqueue_attrs(new_attrs, attrs);
5155 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5156 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5157 	ctx->attrs = new_attrs;
5158 
5159 	/*
5160 	 * For initialized ordered workqueues, there should only be one pwq
5161 	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5162 	 * of newly queued work items until execution of older work items in
5163 	 * the old pwq's have completed.
5164 	 */
5165 	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5166 		ctx->dfl_pwq->plugged = true;
5167 
5168 	ctx->wq = wq;
5169 	return ctx;
5170 
5171 out_free:
5172 	free_workqueue_attrs(new_attrs);
5173 	apply_wqattrs_cleanup(ctx);
5174 	return ERR_PTR(-ENOMEM);
5175 }
5176 
5177 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
5178 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5179 {
5180 	int cpu;
5181 
5182 	/* all pwqs have been created successfully, let's install'em */
5183 	mutex_lock(&ctx->wq->mutex);
5184 
5185 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5186 
5187 	/* save the previous pwqs and install the new ones */
5188 	for_each_possible_cpu(cpu)
5189 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5190 							ctx->pwq_tbl[cpu]);
5191 	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5192 
5193 	/* update node_nr_active->max */
5194 	wq_update_node_max_active(ctx->wq, -1);
5195 
5196 	/* rescuer needs to respect wq cpumask changes */
5197 	if (ctx->wq->rescuer)
5198 		set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5199 				     unbound_effective_cpumask(ctx->wq));
5200 
5201 	mutex_unlock(&ctx->wq->mutex);
5202 }
5203 
5204 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5205 					const struct workqueue_attrs *attrs)
5206 {
5207 	struct apply_wqattrs_ctx *ctx;
5208 
5209 	/* only unbound workqueues can change attributes */
5210 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5211 		return -EINVAL;
5212 
5213 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5214 	if (IS_ERR(ctx))
5215 		return PTR_ERR(ctx);
5216 
5217 	/* the ctx has been prepared successfully, let's commit it */
5218 	apply_wqattrs_commit(ctx);
5219 	apply_wqattrs_cleanup(ctx);
5220 
5221 	return 0;
5222 }
5223 
5224 /**
5225  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5226  * @wq: the target workqueue
5227  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5228  *
5229  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5230  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5231  * work items are affine to the pod it was issued on. Older pwqs are released as
5232  * in-flight work items finish. Note that a work item which repeatedly requeues
5233  * itself back-to-back will stay on its current pwq.
5234  *
5235  * Performs GFP_KERNEL allocations.
5236  *
5237  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
5238  *
5239  * Return: 0 on success and -errno on failure.
5240  */
5241 int apply_workqueue_attrs(struct workqueue_struct *wq,
5242 			  const struct workqueue_attrs *attrs)
5243 {
5244 	int ret;
5245 
5246 	lockdep_assert_cpus_held();
5247 
5248 	mutex_lock(&wq_pool_mutex);
5249 	ret = apply_workqueue_attrs_locked(wq, attrs);
5250 	mutex_unlock(&wq_pool_mutex);
5251 
5252 	return ret;
5253 }
5254 
5255 /**
5256  * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
5257  * @wq: the target workqueue
5258  * @cpu: the CPU to update pool association for
5259  * @hotplug_cpu: the CPU coming up or going down
5260  * @online: whether @cpu is coming up or going down
5261  *
5262  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5263  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update pod affinity of
5264  * @wq accordingly.
5265  *
5266  *
5267  * If pod affinity can't be adjusted due to memory allocation failure, it falls
5268  * back to @wq->dfl_pwq which may not be optimal but is always correct.
5269  *
5270  * Note that when the last allowed CPU of a pod goes offline for a workqueue
5271  * with a cpumask spanning multiple pods, the workers which were already
5272  * executing the work items for the workqueue will lose their CPU affinity and
5273  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5274  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5275  * responsibility to flush the work item from CPU_DOWN_PREPARE.
5276  */
5277 static void wq_update_pod(struct workqueue_struct *wq, int cpu,
5278 			  int hotplug_cpu, bool online)
5279 {
5280 	int off_cpu = online ? -1 : hotplug_cpu;
5281 	struct pool_workqueue *old_pwq = NULL, *pwq;
5282 	struct workqueue_attrs *target_attrs;
5283 
5284 	lockdep_assert_held(&wq_pool_mutex);
5285 
5286 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5287 		return;
5288 
5289 	/*
5290 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5291 	 * Let's use a preallocated one.  The following buf is protected by
5292 	 * CPU hotplug exclusion.
5293 	 */
5294 	target_attrs = wq_update_pod_attrs_buf;
5295 
5296 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5297 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5298 
5299 	/* nothing to do if the target cpumask matches the current pwq */
5300 	wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
5301 	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5302 		return;
5303 
5304 	/* create a new pwq */
5305 	pwq = alloc_unbound_pwq(wq, target_attrs);
5306 	if (!pwq) {
5307 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5308 			wq->name);
5309 		goto use_dfl_pwq;
5310 	}
5311 
5312 	/* Install the new pwq. */
5313 	mutex_lock(&wq->mutex);
5314 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5315 	goto out_unlock;
5316 
5317 use_dfl_pwq:
5318 	mutex_lock(&wq->mutex);
5319 	pwq = unbound_pwq(wq, -1);
5320 	raw_spin_lock_irq(&pwq->pool->lock);
5321 	get_pwq(pwq);
5322 	raw_spin_unlock_irq(&pwq->pool->lock);
5323 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5324 out_unlock:
5325 	mutex_unlock(&wq->mutex);
5326 	put_pwq_unlocked(old_pwq);
5327 }
5328 
5329 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5330 {
5331 	bool highpri = wq->flags & WQ_HIGHPRI;
5332 	int cpu, ret;
5333 
5334 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5335 	if (!wq->cpu_pwq)
5336 		goto enomem;
5337 
5338 	if (!(wq->flags & WQ_UNBOUND)) {
5339 		for_each_possible_cpu(cpu) {
5340 			struct pool_workqueue **pwq_p;
5341 			struct worker_pool __percpu *pools;
5342 			struct worker_pool *pool;
5343 
5344 			if (wq->flags & WQ_BH)
5345 				pools = bh_worker_pools;
5346 			else
5347 				pools = cpu_worker_pools;
5348 
5349 			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5350 			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5351 
5352 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5353 						       pool->node);
5354 			if (!*pwq_p)
5355 				goto enomem;
5356 
5357 			init_pwq(*pwq_p, wq, pool);
5358 
5359 			mutex_lock(&wq->mutex);
5360 			link_pwq(*pwq_p);
5361 			mutex_unlock(&wq->mutex);
5362 		}
5363 		return 0;
5364 	}
5365 
5366 	cpus_read_lock();
5367 	if (wq->flags & __WQ_ORDERED) {
5368 		struct pool_workqueue *dfl_pwq;
5369 
5370 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
5371 		/* there should only be single pwq for ordering guarantee */
5372 		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5373 		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5374 			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5375 		     "ordering guarantee broken for workqueue %s\n", wq->name);
5376 	} else {
5377 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
5378 	}
5379 	cpus_read_unlock();
5380 
5381 	/* for unbound pwq, flush the pwq_release_worker ensures that the
5382 	 * pwq_release_workfn() completes before calling kfree(wq).
5383 	 */
5384 	if (ret)
5385 		kthread_flush_worker(pwq_release_worker);
5386 
5387 	return ret;
5388 
5389 enomem:
5390 	if (wq->cpu_pwq) {
5391 		for_each_possible_cpu(cpu) {
5392 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5393 
5394 			if (pwq)
5395 				kmem_cache_free(pwq_cache, pwq);
5396 		}
5397 		free_percpu(wq->cpu_pwq);
5398 		wq->cpu_pwq = NULL;
5399 	}
5400 	return -ENOMEM;
5401 }
5402 
5403 static int wq_clamp_max_active(int max_active, unsigned int flags,
5404 			       const char *name)
5405 {
5406 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5407 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5408 			max_active, name, 1, WQ_MAX_ACTIVE);
5409 
5410 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5411 }
5412 
5413 /*
5414  * Workqueues which may be used during memory reclaim should have a rescuer
5415  * to guarantee forward progress.
5416  */
5417 static int init_rescuer(struct workqueue_struct *wq)
5418 {
5419 	struct worker *rescuer;
5420 	int ret;
5421 
5422 	if (!(wq->flags & WQ_MEM_RECLAIM))
5423 		return 0;
5424 
5425 	rescuer = alloc_worker(NUMA_NO_NODE);
5426 	if (!rescuer) {
5427 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5428 		       wq->name);
5429 		return -ENOMEM;
5430 	}
5431 
5432 	rescuer->rescue_wq = wq;
5433 	rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
5434 	if (IS_ERR(rescuer->task)) {
5435 		ret = PTR_ERR(rescuer->task);
5436 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5437 		       wq->name, ERR_PTR(ret));
5438 		kfree(rescuer);
5439 		return ret;
5440 	}
5441 
5442 	wq->rescuer = rescuer;
5443 	if (wq->flags & WQ_UNBOUND)
5444 		kthread_bind_mask(rescuer->task, wq_unbound_cpumask);
5445 	else
5446 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5447 	wake_up_process(rescuer->task);
5448 
5449 	return 0;
5450 }
5451 
5452 /**
5453  * wq_adjust_max_active - update a wq's max_active to the current setting
5454  * @wq: target workqueue
5455  *
5456  * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5457  * activate inactive work items accordingly. If @wq is freezing, clear
5458  * @wq->max_active to zero.
5459  */
5460 static void wq_adjust_max_active(struct workqueue_struct *wq)
5461 {
5462 	bool activated;
5463 	int new_max, new_min;
5464 
5465 	lockdep_assert_held(&wq->mutex);
5466 
5467 	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5468 		new_max = 0;
5469 		new_min = 0;
5470 	} else {
5471 		new_max = wq->saved_max_active;
5472 		new_min = wq->saved_min_active;
5473 	}
5474 
5475 	if (wq->max_active == new_max && wq->min_active == new_min)
5476 		return;
5477 
5478 	/*
5479 	 * Update @wq->max/min_active and then kick inactive work items if more
5480 	 * active work items are allowed. This doesn't break work item ordering
5481 	 * because new work items are always queued behind existing inactive
5482 	 * work items if there are any.
5483 	 */
5484 	WRITE_ONCE(wq->max_active, new_max);
5485 	WRITE_ONCE(wq->min_active, new_min);
5486 
5487 	if (wq->flags & WQ_UNBOUND)
5488 		wq_update_node_max_active(wq, -1);
5489 
5490 	if (new_max == 0)
5491 		return;
5492 
5493 	/*
5494 	 * Round-robin through pwq's activating the first inactive work item
5495 	 * until max_active is filled.
5496 	 */
5497 	do {
5498 		struct pool_workqueue *pwq;
5499 
5500 		activated = false;
5501 		for_each_pwq(pwq, wq) {
5502 			unsigned long irq_flags;
5503 
5504 			/* can be called during early boot w/ irq disabled */
5505 			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5506 			if (pwq_activate_first_inactive(pwq, true)) {
5507 				activated = true;
5508 				kick_pool(pwq->pool);
5509 			}
5510 			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5511 		}
5512 	} while (activated);
5513 }
5514 
5515 __printf(1, 4)
5516 struct workqueue_struct *alloc_workqueue(const char *fmt,
5517 					 unsigned int flags,
5518 					 int max_active, ...)
5519 {
5520 	va_list args;
5521 	struct workqueue_struct *wq;
5522 	size_t wq_size;
5523 	int name_len;
5524 
5525 	if (flags & WQ_BH) {
5526 		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5527 			return NULL;
5528 		if (WARN_ON_ONCE(max_active))
5529 			return NULL;
5530 	}
5531 
5532 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5533 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5534 		flags |= WQ_UNBOUND;
5535 
5536 	/* allocate wq and format name */
5537 	if (flags & WQ_UNBOUND)
5538 		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5539 	else
5540 		wq_size = sizeof(*wq);
5541 
5542 	wq = kzalloc(wq_size, GFP_KERNEL);
5543 	if (!wq)
5544 		return NULL;
5545 
5546 	if (flags & WQ_UNBOUND) {
5547 		wq->unbound_attrs = alloc_workqueue_attrs();
5548 		if (!wq->unbound_attrs)
5549 			goto err_free_wq;
5550 	}
5551 
5552 	va_start(args, max_active);
5553 	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5554 	va_end(args);
5555 
5556 	if (name_len >= WQ_NAME_LEN)
5557 		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5558 			     wq->name);
5559 
5560 	if (flags & WQ_BH) {
5561 		/*
5562 		 * BH workqueues always share a single execution context per CPU
5563 		 * and don't impose any max_active limit.
5564 		 */
5565 		max_active = INT_MAX;
5566 	} else {
5567 		max_active = max_active ?: WQ_DFL_ACTIVE;
5568 		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5569 	}
5570 
5571 	/* init wq */
5572 	wq->flags = flags;
5573 	wq->max_active = max_active;
5574 	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5575 	wq->saved_max_active = wq->max_active;
5576 	wq->saved_min_active = wq->min_active;
5577 	mutex_init(&wq->mutex);
5578 	atomic_set(&wq->nr_pwqs_to_flush, 0);
5579 	INIT_LIST_HEAD(&wq->pwqs);
5580 	INIT_LIST_HEAD(&wq->flusher_queue);
5581 	INIT_LIST_HEAD(&wq->flusher_overflow);
5582 	INIT_LIST_HEAD(&wq->maydays);
5583 
5584 	wq_init_lockdep(wq);
5585 	INIT_LIST_HEAD(&wq->list);
5586 
5587 	if (flags & WQ_UNBOUND) {
5588 		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5589 			goto err_unreg_lockdep;
5590 	}
5591 
5592 	if (alloc_and_link_pwqs(wq) < 0)
5593 		goto err_free_node_nr_active;
5594 
5595 	if (wq_online && init_rescuer(wq) < 0)
5596 		goto err_destroy;
5597 
5598 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5599 		goto err_destroy;
5600 
5601 	/*
5602 	 * wq_pool_mutex protects global freeze state and workqueues list.
5603 	 * Grab it, adjust max_active and add the new @wq to workqueues
5604 	 * list.
5605 	 */
5606 	mutex_lock(&wq_pool_mutex);
5607 
5608 	mutex_lock(&wq->mutex);
5609 	wq_adjust_max_active(wq);
5610 	mutex_unlock(&wq->mutex);
5611 
5612 	list_add_tail_rcu(&wq->list, &workqueues);
5613 
5614 	mutex_unlock(&wq_pool_mutex);
5615 
5616 	return wq;
5617 
5618 err_free_node_nr_active:
5619 	if (wq->flags & WQ_UNBOUND)
5620 		free_node_nr_active(wq->node_nr_active);
5621 err_unreg_lockdep:
5622 	wq_unregister_lockdep(wq);
5623 	wq_free_lockdep(wq);
5624 err_free_wq:
5625 	free_workqueue_attrs(wq->unbound_attrs);
5626 	kfree(wq);
5627 	return NULL;
5628 err_destroy:
5629 	destroy_workqueue(wq);
5630 	return NULL;
5631 }
5632 EXPORT_SYMBOL_GPL(alloc_workqueue);
5633 
5634 static bool pwq_busy(struct pool_workqueue *pwq)
5635 {
5636 	int i;
5637 
5638 	for (i = 0; i < WORK_NR_COLORS; i++)
5639 		if (pwq->nr_in_flight[i])
5640 			return true;
5641 
5642 	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5643 		return true;
5644 	if (!pwq_is_empty(pwq))
5645 		return true;
5646 
5647 	return false;
5648 }
5649 
5650 /**
5651  * destroy_workqueue - safely terminate a workqueue
5652  * @wq: target workqueue
5653  *
5654  * Safely destroy a workqueue. All work currently pending will be done first.
5655  */
5656 void destroy_workqueue(struct workqueue_struct *wq)
5657 {
5658 	struct pool_workqueue *pwq;
5659 	int cpu;
5660 
5661 	/*
5662 	 * Remove it from sysfs first so that sanity check failure doesn't
5663 	 * lead to sysfs name conflicts.
5664 	 */
5665 	workqueue_sysfs_unregister(wq);
5666 
5667 	/* mark the workqueue destruction is in progress */
5668 	mutex_lock(&wq->mutex);
5669 	wq->flags |= __WQ_DESTROYING;
5670 	mutex_unlock(&wq->mutex);
5671 
5672 	/* drain it before proceeding with destruction */
5673 	drain_workqueue(wq);
5674 
5675 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5676 	if (wq->rescuer) {
5677 		struct worker *rescuer = wq->rescuer;
5678 
5679 		/* this prevents new queueing */
5680 		raw_spin_lock_irq(&wq_mayday_lock);
5681 		wq->rescuer = NULL;
5682 		raw_spin_unlock_irq(&wq_mayday_lock);
5683 
5684 		/* rescuer will empty maydays list before exiting */
5685 		kthread_stop(rescuer->task);
5686 		kfree(rescuer);
5687 	}
5688 
5689 	/*
5690 	 * Sanity checks - grab all the locks so that we wait for all
5691 	 * in-flight operations which may do put_pwq().
5692 	 */
5693 	mutex_lock(&wq_pool_mutex);
5694 	mutex_lock(&wq->mutex);
5695 	for_each_pwq(pwq, wq) {
5696 		raw_spin_lock_irq(&pwq->pool->lock);
5697 		if (WARN_ON(pwq_busy(pwq))) {
5698 			pr_warn("%s: %s has the following busy pwq\n",
5699 				__func__, wq->name);
5700 			show_pwq(pwq);
5701 			raw_spin_unlock_irq(&pwq->pool->lock);
5702 			mutex_unlock(&wq->mutex);
5703 			mutex_unlock(&wq_pool_mutex);
5704 			show_one_workqueue(wq);
5705 			return;
5706 		}
5707 		raw_spin_unlock_irq(&pwq->pool->lock);
5708 	}
5709 	mutex_unlock(&wq->mutex);
5710 
5711 	/*
5712 	 * wq list is used to freeze wq, remove from list after
5713 	 * flushing is complete in case freeze races us.
5714 	 */
5715 	list_del_rcu(&wq->list);
5716 	mutex_unlock(&wq_pool_mutex);
5717 
5718 	/*
5719 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5720 	 * to put the base refs. @wq will be auto-destroyed from the last
5721 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5722 	 */
5723 	rcu_read_lock();
5724 
5725 	for_each_possible_cpu(cpu) {
5726 		put_pwq_unlocked(unbound_pwq(wq, cpu));
5727 		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5728 	}
5729 
5730 	put_pwq_unlocked(unbound_pwq(wq, -1));
5731 	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5732 
5733 	rcu_read_unlock();
5734 }
5735 EXPORT_SYMBOL_GPL(destroy_workqueue);
5736 
5737 /**
5738  * workqueue_set_max_active - adjust max_active of a workqueue
5739  * @wq: target workqueue
5740  * @max_active: new max_active value.
5741  *
5742  * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5743  * comment.
5744  *
5745  * CONTEXT:
5746  * Don't call from IRQ context.
5747  */
5748 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5749 {
5750 	/* max_active doesn't mean anything for BH workqueues */
5751 	if (WARN_ON(wq->flags & WQ_BH))
5752 		return;
5753 	/* disallow meddling with max_active for ordered workqueues */
5754 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5755 		return;
5756 
5757 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5758 
5759 	mutex_lock(&wq->mutex);
5760 
5761 	wq->saved_max_active = max_active;
5762 	if (wq->flags & WQ_UNBOUND)
5763 		wq->saved_min_active = min(wq->saved_min_active, max_active);
5764 
5765 	wq_adjust_max_active(wq);
5766 
5767 	mutex_unlock(&wq->mutex);
5768 }
5769 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5770 
5771 /**
5772  * workqueue_set_min_active - adjust min_active of an unbound workqueue
5773  * @wq: target unbound workqueue
5774  * @min_active: new min_active value
5775  *
5776  * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5777  * unbound workqueue is not guaranteed to be able to process max_active
5778  * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5779  * able to process min_active number of interdependent work items which is
5780  * %WQ_DFL_MIN_ACTIVE by default.
5781  *
5782  * Use this function to adjust the min_active value between 0 and the current
5783  * max_active.
5784  */
5785 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5786 {
5787 	/* min_active is only meaningful for non-ordered unbound workqueues */
5788 	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5789 		    WQ_UNBOUND))
5790 		return;
5791 
5792 	mutex_lock(&wq->mutex);
5793 	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5794 	wq_adjust_max_active(wq);
5795 	mutex_unlock(&wq->mutex);
5796 }
5797 
5798 /**
5799  * current_work - retrieve %current task's work struct
5800  *
5801  * Determine if %current task is a workqueue worker and what it's working on.
5802  * Useful to find out the context that the %current task is running in.
5803  *
5804  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5805  */
5806 struct work_struct *current_work(void)
5807 {
5808 	struct worker *worker = current_wq_worker();
5809 
5810 	return worker ? worker->current_work : NULL;
5811 }
5812 EXPORT_SYMBOL(current_work);
5813 
5814 /**
5815  * current_is_workqueue_rescuer - is %current workqueue rescuer?
5816  *
5817  * Determine whether %current is a workqueue rescuer.  Can be used from
5818  * work functions to determine whether it's being run off the rescuer task.
5819  *
5820  * Return: %true if %current is a workqueue rescuer. %false otherwise.
5821  */
5822 bool current_is_workqueue_rescuer(void)
5823 {
5824 	struct worker *worker = current_wq_worker();
5825 
5826 	return worker && worker->rescue_wq;
5827 }
5828 
5829 /**
5830  * workqueue_congested - test whether a workqueue is congested
5831  * @cpu: CPU in question
5832  * @wq: target workqueue
5833  *
5834  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
5835  * no synchronization around this function and the test result is
5836  * unreliable and only useful as advisory hints or for debugging.
5837  *
5838  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
5839  *
5840  * With the exception of ordered workqueues, all workqueues have per-cpu
5841  * pool_workqueues, each with its own congested state. A workqueue being
5842  * congested on one CPU doesn't mean that the workqueue is contested on any
5843  * other CPUs.
5844  *
5845  * Return:
5846  * %true if congested, %false otherwise.
5847  */
5848 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
5849 {
5850 	struct pool_workqueue *pwq;
5851 	bool ret;
5852 
5853 	rcu_read_lock();
5854 	preempt_disable();
5855 
5856 	if (cpu == WORK_CPU_UNBOUND)
5857 		cpu = smp_processor_id();
5858 
5859 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5860 	ret = !list_empty(&pwq->inactive_works);
5861 
5862 	preempt_enable();
5863 	rcu_read_unlock();
5864 
5865 	return ret;
5866 }
5867 EXPORT_SYMBOL_GPL(workqueue_congested);
5868 
5869 /**
5870  * work_busy - test whether a work is currently pending or running
5871  * @work: the work to be tested
5872  *
5873  * Test whether @work is currently pending or running.  There is no
5874  * synchronization around this function and the test result is
5875  * unreliable and only useful as advisory hints or for debugging.
5876  *
5877  * Return:
5878  * OR'd bitmask of WORK_BUSY_* bits.
5879  */
5880 unsigned int work_busy(struct work_struct *work)
5881 {
5882 	struct worker_pool *pool;
5883 	unsigned long irq_flags;
5884 	unsigned int ret = 0;
5885 
5886 	if (work_pending(work))
5887 		ret |= WORK_BUSY_PENDING;
5888 
5889 	rcu_read_lock();
5890 	pool = get_work_pool(work);
5891 	if (pool) {
5892 		raw_spin_lock_irqsave(&pool->lock, irq_flags);
5893 		if (find_worker_executing_work(pool, work))
5894 			ret |= WORK_BUSY_RUNNING;
5895 		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
5896 	}
5897 	rcu_read_unlock();
5898 
5899 	return ret;
5900 }
5901 EXPORT_SYMBOL_GPL(work_busy);
5902 
5903 /**
5904  * set_worker_desc - set description for the current work item
5905  * @fmt: printf-style format string
5906  * @...: arguments for the format string
5907  *
5908  * This function can be called by a running work function to describe what
5909  * the work item is about.  If the worker task gets dumped, this
5910  * information will be printed out together to help debugging.  The
5911  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
5912  */
5913 void set_worker_desc(const char *fmt, ...)
5914 {
5915 	struct worker *worker = current_wq_worker();
5916 	va_list args;
5917 
5918 	if (worker) {
5919 		va_start(args, fmt);
5920 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
5921 		va_end(args);
5922 	}
5923 }
5924 EXPORT_SYMBOL_GPL(set_worker_desc);
5925 
5926 /**
5927  * print_worker_info - print out worker information and description
5928  * @log_lvl: the log level to use when printing
5929  * @task: target task
5930  *
5931  * If @task is a worker and currently executing a work item, print out the
5932  * name of the workqueue being serviced and worker description set with
5933  * set_worker_desc() by the currently executing work item.
5934  *
5935  * This function can be safely called on any task as long as the
5936  * task_struct itself is accessible.  While safe, this function isn't
5937  * synchronized and may print out mixups or garbages of limited length.
5938  */
5939 void print_worker_info(const char *log_lvl, struct task_struct *task)
5940 {
5941 	work_func_t *fn = NULL;
5942 	char name[WQ_NAME_LEN] = { };
5943 	char desc[WORKER_DESC_LEN] = { };
5944 	struct pool_workqueue *pwq = NULL;
5945 	struct workqueue_struct *wq = NULL;
5946 	struct worker *worker;
5947 
5948 	if (!(task->flags & PF_WQ_WORKER))
5949 		return;
5950 
5951 	/*
5952 	 * This function is called without any synchronization and @task
5953 	 * could be in any state.  Be careful with dereferences.
5954 	 */
5955 	worker = kthread_probe_data(task);
5956 
5957 	/*
5958 	 * Carefully copy the associated workqueue's workfn, name and desc.
5959 	 * Keep the original last '\0' in case the original is garbage.
5960 	 */
5961 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5962 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5963 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5964 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5965 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
5966 
5967 	if (fn || name[0] || desc[0]) {
5968 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
5969 		if (strcmp(name, desc))
5970 			pr_cont(" (%s)", desc);
5971 		pr_cont("\n");
5972 	}
5973 }
5974 
5975 static void pr_cont_pool_info(struct worker_pool *pool)
5976 {
5977 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5978 	if (pool->node != NUMA_NO_NODE)
5979 		pr_cont(" node=%d", pool->node);
5980 	pr_cont(" flags=0x%x", pool->flags);
5981 	if (pool->flags & POOL_BH)
5982 		pr_cont(" bh%s",
5983 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
5984 	else
5985 		pr_cont(" nice=%d", pool->attrs->nice);
5986 }
5987 
5988 static void pr_cont_worker_id(struct worker *worker)
5989 {
5990 	struct worker_pool *pool = worker->pool;
5991 
5992 	if (pool->flags & WQ_BH)
5993 		pr_cont("bh%s",
5994 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
5995 	else
5996 		pr_cont("%d%s", task_pid_nr(worker->task),
5997 			worker->rescue_wq ? "(RESCUER)" : "");
5998 }
5999 
6000 struct pr_cont_work_struct {
6001 	bool comma;
6002 	work_func_t func;
6003 	long ctr;
6004 };
6005 
6006 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6007 {
6008 	if (!pcwsp->ctr)
6009 		goto out_record;
6010 	if (func == pcwsp->func) {
6011 		pcwsp->ctr++;
6012 		return;
6013 	}
6014 	if (pcwsp->ctr == 1)
6015 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6016 	else
6017 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6018 	pcwsp->ctr = 0;
6019 out_record:
6020 	if ((long)func == -1L)
6021 		return;
6022 	pcwsp->comma = comma;
6023 	pcwsp->func = func;
6024 	pcwsp->ctr = 1;
6025 }
6026 
6027 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6028 {
6029 	if (work->func == wq_barrier_func) {
6030 		struct wq_barrier *barr;
6031 
6032 		barr = container_of(work, struct wq_barrier, work);
6033 
6034 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6035 		pr_cont("%s BAR(%d)", comma ? "," : "",
6036 			task_pid_nr(barr->task));
6037 	} else {
6038 		if (!comma)
6039 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6040 		pr_cont_work_flush(comma, work->func, pcwsp);
6041 	}
6042 }
6043 
6044 static void show_pwq(struct pool_workqueue *pwq)
6045 {
6046 	struct pr_cont_work_struct pcws = { .ctr = 0, };
6047 	struct worker_pool *pool = pwq->pool;
6048 	struct work_struct *work;
6049 	struct worker *worker;
6050 	bool has_in_flight = false, has_pending = false;
6051 	int bkt;
6052 
6053 	pr_info("  pwq %d:", pool->id);
6054 	pr_cont_pool_info(pool);
6055 
6056 	pr_cont(" active=%d refcnt=%d%s\n",
6057 		pwq->nr_active, pwq->refcnt,
6058 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6059 
6060 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6061 		if (worker->current_pwq == pwq) {
6062 			has_in_flight = true;
6063 			break;
6064 		}
6065 	}
6066 	if (has_in_flight) {
6067 		bool comma = false;
6068 
6069 		pr_info("    in-flight:");
6070 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6071 			if (worker->current_pwq != pwq)
6072 				continue;
6073 
6074 			pr_cont(" %s", comma ? "," : "");
6075 			pr_cont_worker_id(worker);
6076 			pr_cont(":%ps", worker->current_func);
6077 			list_for_each_entry(work, &worker->scheduled, entry)
6078 				pr_cont_work(false, work, &pcws);
6079 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6080 			comma = true;
6081 		}
6082 		pr_cont("\n");
6083 	}
6084 
6085 	list_for_each_entry(work, &pool->worklist, entry) {
6086 		if (get_work_pwq(work) == pwq) {
6087 			has_pending = true;
6088 			break;
6089 		}
6090 	}
6091 	if (has_pending) {
6092 		bool comma = false;
6093 
6094 		pr_info("    pending:");
6095 		list_for_each_entry(work, &pool->worklist, entry) {
6096 			if (get_work_pwq(work) != pwq)
6097 				continue;
6098 
6099 			pr_cont_work(comma, work, &pcws);
6100 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6101 		}
6102 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6103 		pr_cont("\n");
6104 	}
6105 
6106 	if (!list_empty(&pwq->inactive_works)) {
6107 		bool comma = false;
6108 
6109 		pr_info("    inactive:");
6110 		list_for_each_entry(work, &pwq->inactive_works, entry) {
6111 			pr_cont_work(comma, work, &pcws);
6112 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6113 		}
6114 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6115 		pr_cont("\n");
6116 	}
6117 }
6118 
6119 /**
6120  * show_one_workqueue - dump state of specified workqueue
6121  * @wq: workqueue whose state will be printed
6122  */
6123 void show_one_workqueue(struct workqueue_struct *wq)
6124 {
6125 	struct pool_workqueue *pwq;
6126 	bool idle = true;
6127 	unsigned long irq_flags;
6128 
6129 	for_each_pwq(pwq, wq) {
6130 		if (!pwq_is_empty(pwq)) {
6131 			idle = false;
6132 			break;
6133 		}
6134 	}
6135 	if (idle) /* Nothing to print for idle workqueue */
6136 		return;
6137 
6138 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6139 
6140 	for_each_pwq(pwq, wq) {
6141 		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6142 		if (!pwq_is_empty(pwq)) {
6143 			/*
6144 			 * Defer printing to avoid deadlocks in console
6145 			 * drivers that queue work while holding locks
6146 			 * also taken in their write paths.
6147 			 */
6148 			printk_deferred_enter();
6149 			show_pwq(pwq);
6150 			printk_deferred_exit();
6151 		}
6152 		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6153 		/*
6154 		 * We could be printing a lot from atomic context, e.g.
6155 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
6156 		 * hard lockup.
6157 		 */
6158 		touch_nmi_watchdog();
6159 	}
6160 
6161 }
6162 
6163 /**
6164  * show_one_worker_pool - dump state of specified worker pool
6165  * @pool: worker pool whose state will be printed
6166  */
6167 static void show_one_worker_pool(struct worker_pool *pool)
6168 {
6169 	struct worker *worker;
6170 	bool first = true;
6171 	unsigned long irq_flags;
6172 	unsigned long hung = 0;
6173 
6174 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
6175 	if (pool->nr_workers == pool->nr_idle)
6176 		goto next_pool;
6177 
6178 	/* How long the first pending work is waiting for a worker. */
6179 	if (!list_empty(&pool->worklist))
6180 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6181 
6182 	/*
6183 	 * Defer printing to avoid deadlocks in console drivers that
6184 	 * queue work while holding locks also taken in their write
6185 	 * paths.
6186 	 */
6187 	printk_deferred_enter();
6188 	pr_info("pool %d:", pool->id);
6189 	pr_cont_pool_info(pool);
6190 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6191 	if (pool->manager)
6192 		pr_cont(" manager: %d",
6193 			task_pid_nr(pool->manager->task));
6194 	list_for_each_entry(worker, &pool->idle_list, entry) {
6195 		pr_cont(" %s", first ? "idle: " : "");
6196 		pr_cont_worker_id(worker);
6197 		first = false;
6198 	}
6199 	pr_cont("\n");
6200 	printk_deferred_exit();
6201 next_pool:
6202 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6203 	/*
6204 	 * We could be printing a lot from atomic context, e.g.
6205 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
6206 	 * hard lockup.
6207 	 */
6208 	touch_nmi_watchdog();
6209 
6210 }
6211 
6212 /**
6213  * show_all_workqueues - dump workqueue state
6214  *
6215  * Called from a sysrq handler and prints out all busy workqueues and pools.
6216  */
6217 void show_all_workqueues(void)
6218 {
6219 	struct workqueue_struct *wq;
6220 	struct worker_pool *pool;
6221 	int pi;
6222 
6223 	rcu_read_lock();
6224 
6225 	pr_info("Showing busy workqueues and worker pools:\n");
6226 
6227 	list_for_each_entry_rcu(wq, &workqueues, list)
6228 		show_one_workqueue(wq);
6229 
6230 	for_each_pool(pool, pi)
6231 		show_one_worker_pool(pool);
6232 
6233 	rcu_read_unlock();
6234 }
6235 
6236 /**
6237  * show_freezable_workqueues - dump freezable workqueue state
6238  *
6239  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6240  * still busy.
6241  */
6242 void show_freezable_workqueues(void)
6243 {
6244 	struct workqueue_struct *wq;
6245 
6246 	rcu_read_lock();
6247 
6248 	pr_info("Showing freezable workqueues that are still busy:\n");
6249 
6250 	list_for_each_entry_rcu(wq, &workqueues, list) {
6251 		if (!(wq->flags & WQ_FREEZABLE))
6252 			continue;
6253 		show_one_workqueue(wq);
6254 	}
6255 
6256 	rcu_read_unlock();
6257 }
6258 
6259 /* used to show worker information through /proc/PID/{comm,stat,status} */
6260 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6261 {
6262 	int off;
6263 
6264 	/* always show the actual comm */
6265 	off = strscpy(buf, task->comm, size);
6266 	if (off < 0)
6267 		return;
6268 
6269 	/* stabilize PF_WQ_WORKER and worker pool association */
6270 	mutex_lock(&wq_pool_attach_mutex);
6271 
6272 	if (task->flags & PF_WQ_WORKER) {
6273 		struct worker *worker = kthread_data(task);
6274 		struct worker_pool *pool = worker->pool;
6275 
6276 		if (pool) {
6277 			raw_spin_lock_irq(&pool->lock);
6278 			/*
6279 			 * ->desc tracks information (wq name or
6280 			 * set_worker_desc()) for the latest execution.  If
6281 			 * current, prepend '+', otherwise '-'.
6282 			 */
6283 			if (worker->desc[0] != '\0') {
6284 				if (worker->current_work)
6285 					scnprintf(buf + off, size - off, "+%s",
6286 						  worker->desc);
6287 				else
6288 					scnprintf(buf + off, size - off, "-%s",
6289 						  worker->desc);
6290 			}
6291 			raw_spin_unlock_irq(&pool->lock);
6292 		}
6293 	}
6294 
6295 	mutex_unlock(&wq_pool_attach_mutex);
6296 }
6297 
6298 #ifdef CONFIG_SMP
6299 
6300 /*
6301  * CPU hotplug.
6302  *
6303  * There are two challenges in supporting CPU hotplug.  Firstly, there
6304  * are a lot of assumptions on strong associations among work, pwq and
6305  * pool which make migrating pending and scheduled works very
6306  * difficult to implement without impacting hot paths.  Secondly,
6307  * worker pools serve mix of short, long and very long running works making
6308  * blocked draining impractical.
6309  *
6310  * This is solved by allowing the pools to be disassociated from the CPU
6311  * running as an unbound one and allowing it to be reattached later if the
6312  * cpu comes back online.
6313  */
6314 
6315 static void unbind_workers(int cpu)
6316 {
6317 	struct worker_pool *pool;
6318 	struct worker *worker;
6319 
6320 	for_each_cpu_worker_pool(pool, cpu) {
6321 		mutex_lock(&wq_pool_attach_mutex);
6322 		raw_spin_lock_irq(&pool->lock);
6323 
6324 		/*
6325 		 * We've blocked all attach/detach operations. Make all workers
6326 		 * unbound and set DISASSOCIATED.  Before this, all workers
6327 		 * must be on the cpu.  After this, they may become diasporas.
6328 		 * And the preemption disabled section in their sched callbacks
6329 		 * are guaranteed to see WORKER_UNBOUND since the code here
6330 		 * is on the same cpu.
6331 		 */
6332 		for_each_pool_worker(worker, pool)
6333 			worker->flags |= WORKER_UNBOUND;
6334 
6335 		pool->flags |= POOL_DISASSOCIATED;
6336 
6337 		/*
6338 		 * The handling of nr_running in sched callbacks are disabled
6339 		 * now.  Zap nr_running.  After this, nr_running stays zero and
6340 		 * need_more_worker() and keep_working() are always true as
6341 		 * long as the worklist is not empty.  This pool now behaves as
6342 		 * an unbound (in terms of concurrency management) pool which
6343 		 * are served by workers tied to the pool.
6344 		 */
6345 		pool->nr_running = 0;
6346 
6347 		/*
6348 		 * With concurrency management just turned off, a busy
6349 		 * worker blocking could lead to lengthy stalls.  Kick off
6350 		 * unbound chain execution of currently pending work items.
6351 		 */
6352 		kick_pool(pool);
6353 
6354 		raw_spin_unlock_irq(&pool->lock);
6355 
6356 		for_each_pool_worker(worker, pool)
6357 			unbind_worker(worker);
6358 
6359 		mutex_unlock(&wq_pool_attach_mutex);
6360 	}
6361 }
6362 
6363 /**
6364  * rebind_workers - rebind all workers of a pool to the associated CPU
6365  * @pool: pool of interest
6366  *
6367  * @pool->cpu is coming online.  Rebind all workers to the CPU.
6368  */
6369 static void rebind_workers(struct worker_pool *pool)
6370 {
6371 	struct worker *worker;
6372 
6373 	lockdep_assert_held(&wq_pool_attach_mutex);
6374 
6375 	/*
6376 	 * Restore CPU affinity of all workers.  As all idle workers should
6377 	 * be on the run-queue of the associated CPU before any local
6378 	 * wake-ups for concurrency management happen, restore CPU affinity
6379 	 * of all workers first and then clear UNBOUND.  As we're called
6380 	 * from CPU_ONLINE, the following shouldn't fail.
6381 	 */
6382 	for_each_pool_worker(worker, pool) {
6383 		kthread_set_per_cpu(worker->task, pool->cpu);
6384 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6385 						  pool_allowed_cpus(pool)) < 0);
6386 	}
6387 
6388 	raw_spin_lock_irq(&pool->lock);
6389 
6390 	pool->flags &= ~POOL_DISASSOCIATED;
6391 
6392 	for_each_pool_worker(worker, pool) {
6393 		unsigned int worker_flags = worker->flags;
6394 
6395 		/*
6396 		 * We want to clear UNBOUND but can't directly call
6397 		 * worker_clr_flags() or adjust nr_running.  Atomically
6398 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6399 		 * @worker will clear REBOUND using worker_clr_flags() when
6400 		 * it initiates the next execution cycle thus restoring
6401 		 * concurrency management.  Note that when or whether
6402 		 * @worker clears REBOUND doesn't affect correctness.
6403 		 *
6404 		 * WRITE_ONCE() is necessary because @worker->flags may be
6405 		 * tested without holding any lock in
6406 		 * wq_worker_running().  Without it, NOT_RUNNING test may
6407 		 * fail incorrectly leading to premature concurrency
6408 		 * management operations.
6409 		 */
6410 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6411 		worker_flags |= WORKER_REBOUND;
6412 		worker_flags &= ~WORKER_UNBOUND;
6413 		WRITE_ONCE(worker->flags, worker_flags);
6414 	}
6415 
6416 	raw_spin_unlock_irq(&pool->lock);
6417 }
6418 
6419 /**
6420  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6421  * @pool: unbound pool of interest
6422  * @cpu: the CPU which is coming up
6423  *
6424  * An unbound pool may end up with a cpumask which doesn't have any online
6425  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6426  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6427  * online CPU before, cpus_allowed of all its workers should be restored.
6428  */
6429 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6430 {
6431 	static cpumask_t cpumask;
6432 	struct worker *worker;
6433 
6434 	lockdep_assert_held(&wq_pool_attach_mutex);
6435 
6436 	/* is @cpu allowed for @pool? */
6437 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6438 		return;
6439 
6440 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6441 
6442 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6443 	for_each_pool_worker(worker, pool)
6444 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6445 }
6446 
6447 int workqueue_prepare_cpu(unsigned int cpu)
6448 {
6449 	struct worker_pool *pool;
6450 
6451 	for_each_cpu_worker_pool(pool, cpu) {
6452 		if (pool->nr_workers)
6453 			continue;
6454 		if (!create_worker(pool))
6455 			return -ENOMEM;
6456 	}
6457 	return 0;
6458 }
6459 
6460 int workqueue_online_cpu(unsigned int cpu)
6461 {
6462 	struct worker_pool *pool;
6463 	struct workqueue_struct *wq;
6464 	int pi;
6465 
6466 	mutex_lock(&wq_pool_mutex);
6467 
6468 	for_each_pool(pool, pi) {
6469 		/* BH pools aren't affected by hotplug */
6470 		if (pool->flags & POOL_BH)
6471 			continue;
6472 
6473 		mutex_lock(&wq_pool_attach_mutex);
6474 		if (pool->cpu == cpu)
6475 			rebind_workers(pool);
6476 		else if (pool->cpu < 0)
6477 			restore_unbound_workers_cpumask(pool, cpu);
6478 		mutex_unlock(&wq_pool_attach_mutex);
6479 	}
6480 
6481 	/* update pod affinity of unbound workqueues */
6482 	list_for_each_entry(wq, &workqueues, list) {
6483 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6484 
6485 		if (attrs) {
6486 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6487 			int tcpu;
6488 
6489 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6490 				wq_update_pod(wq, tcpu, cpu, true);
6491 
6492 			mutex_lock(&wq->mutex);
6493 			wq_update_node_max_active(wq, -1);
6494 			mutex_unlock(&wq->mutex);
6495 		}
6496 	}
6497 
6498 	mutex_unlock(&wq_pool_mutex);
6499 	return 0;
6500 }
6501 
6502 int workqueue_offline_cpu(unsigned int cpu)
6503 {
6504 	struct workqueue_struct *wq;
6505 
6506 	/* unbinding per-cpu workers should happen on the local CPU */
6507 	if (WARN_ON(cpu != smp_processor_id()))
6508 		return -1;
6509 
6510 	unbind_workers(cpu);
6511 
6512 	/* update pod affinity of unbound workqueues */
6513 	mutex_lock(&wq_pool_mutex);
6514 	list_for_each_entry(wq, &workqueues, list) {
6515 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6516 
6517 		if (attrs) {
6518 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6519 			int tcpu;
6520 
6521 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6522 				wq_update_pod(wq, tcpu, cpu, false);
6523 
6524 			mutex_lock(&wq->mutex);
6525 			wq_update_node_max_active(wq, cpu);
6526 			mutex_unlock(&wq->mutex);
6527 		}
6528 	}
6529 	mutex_unlock(&wq_pool_mutex);
6530 
6531 	return 0;
6532 }
6533 
6534 struct work_for_cpu {
6535 	struct work_struct work;
6536 	long (*fn)(void *);
6537 	void *arg;
6538 	long ret;
6539 };
6540 
6541 static void work_for_cpu_fn(struct work_struct *work)
6542 {
6543 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6544 
6545 	wfc->ret = wfc->fn(wfc->arg);
6546 }
6547 
6548 /**
6549  * work_on_cpu_key - run a function in thread context on a particular cpu
6550  * @cpu: the cpu to run on
6551  * @fn: the function to run
6552  * @arg: the function arg
6553  * @key: The lock class key for lock debugging purposes
6554  *
6555  * It is up to the caller to ensure that the cpu doesn't go offline.
6556  * The caller must not hold any locks which would prevent @fn from completing.
6557  *
6558  * Return: The value @fn returns.
6559  */
6560 long work_on_cpu_key(int cpu, long (*fn)(void *),
6561 		     void *arg, struct lock_class_key *key)
6562 {
6563 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6564 
6565 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6566 	schedule_work_on(cpu, &wfc.work);
6567 	flush_work(&wfc.work);
6568 	destroy_work_on_stack(&wfc.work);
6569 	return wfc.ret;
6570 }
6571 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6572 
6573 /**
6574  * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6575  * @cpu: the cpu to run on
6576  * @fn:  the function to run
6577  * @arg: the function argument
6578  * @key: The lock class key for lock debugging purposes
6579  *
6580  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6581  * any locks which would prevent @fn from completing.
6582  *
6583  * Return: The value @fn returns.
6584  */
6585 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6586 			  void *arg, struct lock_class_key *key)
6587 {
6588 	long ret = -ENODEV;
6589 
6590 	cpus_read_lock();
6591 	if (cpu_online(cpu))
6592 		ret = work_on_cpu_key(cpu, fn, arg, key);
6593 	cpus_read_unlock();
6594 	return ret;
6595 }
6596 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6597 #endif /* CONFIG_SMP */
6598 
6599 #ifdef CONFIG_FREEZER
6600 
6601 /**
6602  * freeze_workqueues_begin - begin freezing workqueues
6603  *
6604  * Start freezing workqueues.  After this function returns, all freezable
6605  * workqueues will queue new works to their inactive_works list instead of
6606  * pool->worklist.
6607  *
6608  * CONTEXT:
6609  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6610  */
6611 void freeze_workqueues_begin(void)
6612 {
6613 	struct workqueue_struct *wq;
6614 
6615 	mutex_lock(&wq_pool_mutex);
6616 
6617 	WARN_ON_ONCE(workqueue_freezing);
6618 	workqueue_freezing = true;
6619 
6620 	list_for_each_entry(wq, &workqueues, list) {
6621 		mutex_lock(&wq->mutex);
6622 		wq_adjust_max_active(wq);
6623 		mutex_unlock(&wq->mutex);
6624 	}
6625 
6626 	mutex_unlock(&wq_pool_mutex);
6627 }
6628 
6629 /**
6630  * freeze_workqueues_busy - are freezable workqueues still busy?
6631  *
6632  * Check whether freezing is complete.  This function must be called
6633  * between freeze_workqueues_begin() and thaw_workqueues().
6634  *
6635  * CONTEXT:
6636  * Grabs and releases wq_pool_mutex.
6637  *
6638  * Return:
6639  * %true if some freezable workqueues are still busy.  %false if freezing
6640  * is complete.
6641  */
6642 bool freeze_workqueues_busy(void)
6643 {
6644 	bool busy = false;
6645 	struct workqueue_struct *wq;
6646 	struct pool_workqueue *pwq;
6647 
6648 	mutex_lock(&wq_pool_mutex);
6649 
6650 	WARN_ON_ONCE(!workqueue_freezing);
6651 
6652 	list_for_each_entry(wq, &workqueues, list) {
6653 		if (!(wq->flags & WQ_FREEZABLE))
6654 			continue;
6655 		/*
6656 		 * nr_active is monotonically decreasing.  It's safe
6657 		 * to peek without lock.
6658 		 */
6659 		rcu_read_lock();
6660 		for_each_pwq(pwq, wq) {
6661 			WARN_ON_ONCE(pwq->nr_active < 0);
6662 			if (pwq->nr_active) {
6663 				busy = true;
6664 				rcu_read_unlock();
6665 				goto out_unlock;
6666 			}
6667 		}
6668 		rcu_read_unlock();
6669 	}
6670 out_unlock:
6671 	mutex_unlock(&wq_pool_mutex);
6672 	return busy;
6673 }
6674 
6675 /**
6676  * thaw_workqueues - thaw workqueues
6677  *
6678  * Thaw workqueues.  Normal queueing is restored and all collected
6679  * frozen works are transferred to their respective pool worklists.
6680  *
6681  * CONTEXT:
6682  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6683  */
6684 void thaw_workqueues(void)
6685 {
6686 	struct workqueue_struct *wq;
6687 
6688 	mutex_lock(&wq_pool_mutex);
6689 
6690 	if (!workqueue_freezing)
6691 		goto out_unlock;
6692 
6693 	workqueue_freezing = false;
6694 
6695 	/* restore max_active and repopulate worklist */
6696 	list_for_each_entry(wq, &workqueues, list) {
6697 		mutex_lock(&wq->mutex);
6698 		wq_adjust_max_active(wq);
6699 		mutex_unlock(&wq->mutex);
6700 	}
6701 
6702 out_unlock:
6703 	mutex_unlock(&wq_pool_mutex);
6704 }
6705 #endif /* CONFIG_FREEZER */
6706 
6707 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6708 {
6709 	LIST_HEAD(ctxs);
6710 	int ret = 0;
6711 	struct workqueue_struct *wq;
6712 	struct apply_wqattrs_ctx *ctx, *n;
6713 
6714 	lockdep_assert_held(&wq_pool_mutex);
6715 
6716 	list_for_each_entry(wq, &workqueues, list) {
6717 		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6718 			continue;
6719 
6720 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6721 		if (IS_ERR(ctx)) {
6722 			ret = PTR_ERR(ctx);
6723 			break;
6724 		}
6725 
6726 		list_add_tail(&ctx->list, &ctxs);
6727 	}
6728 
6729 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6730 		if (!ret)
6731 			apply_wqattrs_commit(ctx);
6732 		apply_wqattrs_cleanup(ctx);
6733 	}
6734 
6735 	if (!ret) {
6736 		mutex_lock(&wq_pool_attach_mutex);
6737 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6738 		mutex_unlock(&wq_pool_attach_mutex);
6739 	}
6740 	return ret;
6741 }
6742 
6743 /**
6744  * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6745  * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6746  *
6747  * This function can be called from cpuset code to provide a set of isolated
6748  * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
6749  * either cpus_read_lock or cpus_write_lock.
6750  */
6751 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6752 {
6753 	cpumask_var_t cpumask;
6754 	int ret = 0;
6755 
6756 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6757 		return -ENOMEM;
6758 
6759 	lockdep_assert_cpus_held();
6760 	mutex_lock(&wq_pool_mutex);
6761 
6762 	/* Save the current isolated cpumask & export it via sysfs */
6763 	cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6764 
6765 	/*
6766 	 * If the operation fails, it will fall back to
6767 	 * wq_requested_unbound_cpumask which is initially set to
6768 	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6769 	 * by any subsequent write to workqueue/cpumask sysfs file.
6770 	 */
6771 	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6772 		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6773 	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6774 		ret = workqueue_apply_unbound_cpumask(cpumask);
6775 
6776 	mutex_unlock(&wq_pool_mutex);
6777 	free_cpumask_var(cpumask);
6778 	return ret;
6779 }
6780 
6781 static int parse_affn_scope(const char *val)
6782 {
6783 	int i;
6784 
6785 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6786 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6787 			return i;
6788 	}
6789 	return -EINVAL;
6790 }
6791 
6792 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6793 {
6794 	struct workqueue_struct *wq;
6795 	int affn, cpu;
6796 
6797 	affn = parse_affn_scope(val);
6798 	if (affn < 0)
6799 		return affn;
6800 	if (affn == WQ_AFFN_DFL)
6801 		return -EINVAL;
6802 
6803 	cpus_read_lock();
6804 	mutex_lock(&wq_pool_mutex);
6805 
6806 	wq_affn_dfl = affn;
6807 
6808 	list_for_each_entry(wq, &workqueues, list) {
6809 		for_each_online_cpu(cpu) {
6810 			wq_update_pod(wq, cpu, cpu, true);
6811 		}
6812 	}
6813 
6814 	mutex_unlock(&wq_pool_mutex);
6815 	cpus_read_unlock();
6816 
6817 	return 0;
6818 }
6819 
6820 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6821 {
6822 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6823 }
6824 
6825 static const struct kernel_param_ops wq_affn_dfl_ops = {
6826 	.set	= wq_affn_dfl_set,
6827 	.get	= wq_affn_dfl_get,
6828 };
6829 
6830 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6831 
6832 #ifdef CONFIG_SYSFS
6833 /*
6834  * Workqueues with WQ_SYSFS flag set is visible to userland via
6835  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
6836  * following attributes.
6837  *
6838  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
6839  *  max_active		RW int	: maximum number of in-flight work items
6840  *
6841  * Unbound workqueues have the following extra attributes.
6842  *
6843  *  nice		RW int	: nice value of the workers
6844  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
6845  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
6846  *  affinity_strict	RW bool : worker CPU affinity is strict
6847  */
6848 struct wq_device {
6849 	struct workqueue_struct		*wq;
6850 	struct device			dev;
6851 };
6852 
6853 static struct workqueue_struct *dev_to_wq(struct device *dev)
6854 {
6855 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6856 
6857 	return wq_dev->wq;
6858 }
6859 
6860 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6861 			    char *buf)
6862 {
6863 	struct workqueue_struct *wq = dev_to_wq(dev);
6864 
6865 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6866 }
6867 static DEVICE_ATTR_RO(per_cpu);
6868 
6869 static ssize_t max_active_show(struct device *dev,
6870 			       struct device_attribute *attr, char *buf)
6871 {
6872 	struct workqueue_struct *wq = dev_to_wq(dev);
6873 
6874 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
6875 }
6876 
6877 static ssize_t max_active_store(struct device *dev,
6878 				struct device_attribute *attr, const char *buf,
6879 				size_t count)
6880 {
6881 	struct workqueue_struct *wq = dev_to_wq(dev);
6882 	int val;
6883 
6884 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
6885 		return -EINVAL;
6886 
6887 	workqueue_set_max_active(wq, val);
6888 	return count;
6889 }
6890 static DEVICE_ATTR_RW(max_active);
6891 
6892 static struct attribute *wq_sysfs_attrs[] = {
6893 	&dev_attr_per_cpu.attr,
6894 	&dev_attr_max_active.attr,
6895 	NULL,
6896 };
6897 ATTRIBUTE_GROUPS(wq_sysfs);
6898 
6899 static void apply_wqattrs_lock(void)
6900 {
6901 	/* CPUs should stay stable across pwq creations and installations */
6902 	cpus_read_lock();
6903 	mutex_lock(&wq_pool_mutex);
6904 }
6905 
6906 static void apply_wqattrs_unlock(void)
6907 {
6908 	mutex_unlock(&wq_pool_mutex);
6909 	cpus_read_unlock();
6910 }
6911 
6912 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
6913 			    char *buf)
6914 {
6915 	struct workqueue_struct *wq = dev_to_wq(dev);
6916 	int written;
6917 
6918 	mutex_lock(&wq->mutex);
6919 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
6920 	mutex_unlock(&wq->mutex);
6921 
6922 	return written;
6923 }
6924 
6925 /* prepare workqueue_attrs for sysfs store operations */
6926 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
6927 {
6928 	struct workqueue_attrs *attrs;
6929 
6930 	lockdep_assert_held(&wq_pool_mutex);
6931 
6932 	attrs = alloc_workqueue_attrs();
6933 	if (!attrs)
6934 		return NULL;
6935 
6936 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
6937 	return attrs;
6938 }
6939 
6940 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6941 			     const char *buf, size_t count)
6942 {
6943 	struct workqueue_struct *wq = dev_to_wq(dev);
6944 	struct workqueue_attrs *attrs;
6945 	int ret = -ENOMEM;
6946 
6947 	apply_wqattrs_lock();
6948 
6949 	attrs = wq_sysfs_prep_attrs(wq);
6950 	if (!attrs)
6951 		goto out_unlock;
6952 
6953 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6954 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
6955 		ret = apply_workqueue_attrs_locked(wq, attrs);
6956 	else
6957 		ret = -EINVAL;
6958 
6959 out_unlock:
6960 	apply_wqattrs_unlock();
6961 	free_workqueue_attrs(attrs);
6962 	return ret ?: count;
6963 }
6964 
6965 static ssize_t wq_cpumask_show(struct device *dev,
6966 			       struct device_attribute *attr, char *buf)
6967 {
6968 	struct workqueue_struct *wq = dev_to_wq(dev);
6969 	int written;
6970 
6971 	mutex_lock(&wq->mutex);
6972 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6973 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
6974 	mutex_unlock(&wq->mutex);
6975 	return written;
6976 }
6977 
6978 static ssize_t wq_cpumask_store(struct device *dev,
6979 				struct device_attribute *attr,
6980 				const char *buf, size_t count)
6981 {
6982 	struct workqueue_struct *wq = dev_to_wq(dev);
6983 	struct workqueue_attrs *attrs;
6984 	int ret = -ENOMEM;
6985 
6986 	apply_wqattrs_lock();
6987 
6988 	attrs = wq_sysfs_prep_attrs(wq);
6989 	if (!attrs)
6990 		goto out_unlock;
6991 
6992 	ret = cpumask_parse(buf, attrs->cpumask);
6993 	if (!ret)
6994 		ret = apply_workqueue_attrs_locked(wq, attrs);
6995 
6996 out_unlock:
6997 	apply_wqattrs_unlock();
6998 	free_workqueue_attrs(attrs);
6999 	return ret ?: count;
7000 }
7001 
7002 static ssize_t wq_affn_scope_show(struct device *dev,
7003 				  struct device_attribute *attr, char *buf)
7004 {
7005 	struct workqueue_struct *wq = dev_to_wq(dev);
7006 	int written;
7007 
7008 	mutex_lock(&wq->mutex);
7009 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7010 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7011 				    wq_affn_names[WQ_AFFN_DFL],
7012 				    wq_affn_names[wq_affn_dfl]);
7013 	else
7014 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
7015 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
7016 	mutex_unlock(&wq->mutex);
7017 
7018 	return written;
7019 }
7020 
7021 static ssize_t wq_affn_scope_store(struct device *dev,
7022 				   struct device_attribute *attr,
7023 				   const char *buf, size_t count)
7024 {
7025 	struct workqueue_struct *wq = dev_to_wq(dev);
7026 	struct workqueue_attrs *attrs;
7027 	int affn, ret = -ENOMEM;
7028 
7029 	affn = parse_affn_scope(buf);
7030 	if (affn < 0)
7031 		return affn;
7032 
7033 	apply_wqattrs_lock();
7034 	attrs = wq_sysfs_prep_attrs(wq);
7035 	if (attrs) {
7036 		attrs->affn_scope = affn;
7037 		ret = apply_workqueue_attrs_locked(wq, attrs);
7038 	}
7039 	apply_wqattrs_unlock();
7040 	free_workqueue_attrs(attrs);
7041 	return ret ?: count;
7042 }
7043 
7044 static ssize_t wq_affinity_strict_show(struct device *dev,
7045 				       struct device_attribute *attr, char *buf)
7046 {
7047 	struct workqueue_struct *wq = dev_to_wq(dev);
7048 
7049 	return scnprintf(buf, PAGE_SIZE, "%d\n",
7050 			 wq->unbound_attrs->affn_strict);
7051 }
7052 
7053 static ssize_t wq_affinity_strict_store(struct device *dev,
7054 					struct device_attribute *attr,
7055 					const char *buf, size_t count)
7056 {
7057 	struct workqueue_struct *wq = dev_to_wq(dev);
7058 	struct workqueue_attrs *attrs;
7059 	int v, ret = -ENOMEM;
7060 
7061 	if (sscanf(buf, "%d", &v) != 1)
7062 		return -EINVAL;
7063 
7064 	apply_wqattrs_lock();
7065 	attrs = wq_sysfs_prep_attrs(wq);
7066 	if (attrs) {
7067 		attrs->affn_strict = (bool)v;
7068 		ret = apply_workqueue_attrs_locked(wq, attrs);
7069 	}
7070 	apply_wqattrs_unlock();
7071 	free_workqueue_attrs(attrs);
7072 	return ret ?: count;
7073 }
7074 
7075 static struct device_attribute wq_sysfs_unbound_attrs[] = {
7076 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7077 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7078 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7079 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7080 	__ATTR_NULL,
7081 };
7082 
7083 static struct bus_type wq_subsys = {
7084 	.name				= "workqueue",
7085 	.dev_groups			= wq_sysfs_groups,
7086 };
7087 
7088 /**
7089  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7090  *  @cpumask: the cpumask to set
7091  *
7092  *  The low-level workqueues cpumask is a global cpumask that limits
7093  *  the affinity of all unbound workqueues.  This function check the @cpumask
7094  *  and apply it to all unbound workqueues and updates all pwqs of them.
7095  *
7096  *  Return:	0	- Success
7097  *		-EINVAL	- Invalid @cpumask
7098  *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
7099  */
7100 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7101 {
7102 	int ret = -EINVAL;
7103 
7104 	/*
7105 	 * Not excluding isolated cpus on purpose.
7106 	 * If the user wishes to include them, we allow that.
7107 	 */
7108 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
7109 	if (!cpumask_empty(cpumask)) {
7110 		apply_wqattrs_lock();
7111 		cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7112 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
7113 			ret = 0;
7114 			goto out_unlock;
7115 		}
7116 
7117 		ret = workqueue_apply_unbound_cpumask(cpumask);
7118 
7119 out_unlock:
7120 		apply_wqattrs_unlock();
7121 	}
7122 
7123 	return ret;
7124 }
7125 
7126 static ssize_t __wq_cpumask_show(struct device *dev,
7127 		struct device_attribute *attr, char *buf, cpumask_var_t mask)
7128 {
7129 	int written;
7130 
7131 	mutex_lock(&wq_pool_mutex);
7132 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7133 	mutex_unlock(&wq_pool_mutex);
7134 
7135 	return written;
7136 }
7137 
7138 static ssize_t wq_unbound_cpumask_show(struct device *dev,
7139 		struct device_attribute *attr, char *buf)
7140 {
7141 	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7142 }
7143 
7144 static ssize_t wq_requested_cpumask_show(struct device *dev,
7145 		struct device_attribute *attr, char *buf)
7146 {
7147 	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7148 }
7149 
7150 static ssize_t wq_isolated_cpumask_show(struct device *dev,
7151 		struct device_attribute *attr, char *buf)
7152 {
7153 	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7154 }
7155 
7156 static ssize_t wq_unbound_cpumask_store(struct device *dev,
7157 		struct device_attribute *attr, const char *buf, size_t count)
7158 {
7159 	cpumask_var_t cpumask;
7160 	int ret;
7161 
7162 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7163 		return -ENOMEM;
7164 
7165 	ret = cpumask_parse(buf, cpumask);
7166 	if (!ret)
7167 		ret = workqueue_set_unbound_cpumask(cpumask);
7168 
7169 	free_cpumask_var(cpumask);
7170 	return ret ? ret : count;
7171 }
7172 
7173 static struct device_attribute wq_sysfs_cpumask_attrs[] = {
7174 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
7175 	       wq_unbound_cpumask_store),
7176 	__ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL),
7177 	__ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL),
7178 	__ATTR_NULL,
7179 };
7180 
7181 static int __init wq_sysfs_init(void)
7182 {
7183 	struct device *dev_root;
7184 	int err;
7185 
7186 	err = subsys_virtual_register(&wq_subsys, NULL);
7187 	if (err)
7188 		return err;
7189 
7190 	dev_root = bus_get_dev_root(&wq_subsys);
7191 	if (dev_root) {
7192 		struct device_attribute *attr;
7193 
7194 		for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) {
7195 			err = device_create_file(dev_root, attr);
7196 			if (err)
7197 				break;
7198 		}
7199 		put_device(dev_root);
7200 	}
7201 	return err;
7202 }
7203 core_initcall(wq_sysfs_init);
7204 
7205 static void wq_device_release(struct device *dev)
7206 {
7207 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7208 
7209 	kfree(wq_dev);
7210 }
7211 
7212 /**
7213  * workqueue_sysfs_register - make a workqueue visible in sysfs
7214  * @wq: the workqueue to register
7215  *
7216  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7217  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7218  * which is the preferred method.
7219  *
7220  * Workqueue user should use this function directly iff it wants to apply
7221  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7222  * apply_workqueue_attrs() may race against userland updating the
7223  * attributes.
7224  *
7225  * Return: 0 on success, -errno on failure.
7226  */
7227 int workqueue_sysfs_register(struct workqueue_struct *wq)
7228 {
7229 	struct wq_device *wq_dev;
7230 	int ret;
7231 
7232 	/*
7233 	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
7234 	 * ordered workqueues.
7235 	 */
7236 	if (WARN_ON(wq->flags & __WQ_ORDERED))
7237 		return -EINVAL;
7238 
7239 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7240 	if (!wq_dev)
7241 		return -ENOMEM;
7242 
7243 	wq_dev->wq = wq;
7244 	wq_dev->dev.bus = &wq_subsys;
7245 	wq_dev->dev.release = wq_device_release;
7246 	dev_set_name(&wq_dev->dev, "%s", wq->name);
7247 
7248 	/*
7249 	 * unbound_attrs are created separately.  Suppress uevent until
7250 	 * everything is ready.
7251 	 */
7252 	dev_set_uevent_suppress(&wq_dev->dev, true);
7253 
7254 	ret = device_register(&wq_dev->dev);
7255 	if (ret) {
7256 		put_device(&wq_dev->dev);
7257 		wq->wq_dev = NULL;
7258 		return ret;
7259 	}
7260 
7261 	if (wq->flags & WQ_UNBOUND) {
7262 		struct device_attribute *attr;
7263 
7264 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7265 			ret = device_create_file(&wq_dev->dev, attr);
7266 			if (ret) {
7267 				device_unregister(&wq_dev->dev);
7268 				wq->wq_dev = NULL;
7269 				return ret;
7270 			}
7271 		}
7272 	}
7273 
7274 	dev_set_uevent_suppress(&wq_dev->dev, false);
7275 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7276 	return 0;
7277 }
7278 
7279 /**
7280  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7281  * @wq: the workqueue to unregister
7282  *
7283  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7284  */
7285 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7286 {
7287 	struct wq_device *wq_dev = wq->wq_dev;
7288 
7289 	if (!wq->wq_dev)
7290 		return;
7291 
7292 	wq->wq_dev = NULL;
7293 	device_unregister(&wq_dev->dev);
7294 }
7295 #else	/* CONFIG_SYSFS */
7296 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7297 #endif	/* CONFIG_SYSFS */
7298 
7299 /*
7300  * Workqueue watchdog.
7301  *
7302  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7303  * flush dependency, a concurrency managed work item which stays RUNNING
7304  * indefinitely.  Workqueue stalls can be very difficult to debug as the
7305  * usual warning mechanisms don't trigger and internal workqueue state is
7306  * largely opaque.
7307  *
7308  * Workqueue watchdog monitors all worker pools periodically and dumps
7309  * state if some pools failed to make forward progress for a while where
7310  * forward progress is defined as the first item on ->worklist changing.
7311  *
7312  * This mechanism is controlled through the kernel parameter
7313  * "workqueue.watchdog_thresh" which can be updated at runtime through the
7314  * corresponding sysfs parameter file.
7315  */
7316 #ifdef CONFIG_WQ_WATCHDOG
7317 
7318 static unsigned long wq_watchdog_thresh = 30;
7319 static struct timer_list wq_watchdog_timer;
7320 
7321 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7322 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7323 
7324 /*
7325  * Show workers that might prevent the processing of pending work items.
7326  * The only candidates are CPU-bound workers in the running state.
7327  * Pending work items should be handled by another idle worker
7328  * in all other situations.
7329  */
7330 static void show_cpu_pool_hog(struct worker_pool *pool)
7331 {
7332 	struct worker *worker;
7333 	unsigned long irq_flags;
7334 	int bkt;
7335 
7336 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
7337 
7338 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7339 		if (task_is_running(worker->task)) {
7340 			/*
7341 			 * Defer printing to avoid deadlocks in console
7342 			 * drivers that queue work while holding locks
7343 			 * also taken in their write paths.
7344 			 */
7345 			printk_deferred_enter();
7346 
7347 			pr_info("pool %d:\n", pool->id);
7348 			sched_show_task(worker->task);
7349 
7350 			printk_deferred_exit();
7351 		}
7352 	}
7353 
7354 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7355 }
7356 
7357 static void show_cpu_pools_hogs(void)
7358 {
7359 	struct worker_pool *pool;
7360 	int pi;
7361 
7362 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7363 
7364 	rcu_read_lock();
7365 
7366 	for_each_pool(pool, pi) {
7367 		if (pool->cpu_stall)
7368 			show_cpu_pool_hog(pool);
7369 
7370 	}
7371 
7372 	rcu_read_unlock();
7373 }
7374 
7375 static void wq_watchdog_reset_touched(void)
7376 {
7377 	int cpu;
7378 
7379 	wq_watchdog_touched = jiffies;
7380 	for_each_possible_cpu(cpu)
7381 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7382 }
7383 
7384 static void wq_watchdog_timer_fn(struct timer_list *unused)
7385 {
7386 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7387 	bool lockup_detected = false;
7388 	bool cpu_pool_stall = false;
7389 	unsigned long now = jiffies;
7390 	struct worker_pool *pool;
7391 	int pi;
7392 
7393 	if (!thresh)
7394 		return;
7395 
7396 	rcu_read_lock();
7397 
7398 	for_each_pool(pool, pi) {
7399 		unsigned long pool_ts, touched, ts;
7400 
7401 		pool->cpu_stall = false;
7402 		if (list_empty(&pool->worklist))
7403 			continue;
7404 
7405 		/*
7406 		 * If a virtual machine is stopped by the host it can look to
7407 		 * the watchdog like a stall.
7408 		 */
7409 		kvm_check_and_clear_guest_paused();
7410 
7411 		/* get the latest of pool and touched timestamps */
7412 		if (pool->cpu >= 0)
7413 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7414 		else
7415 			touched = READ_ONCE(wq_watchdog_touched);
7416 		pool_ts = READ_ONCE(pool->watchdog_ts);
7417 
7418 		if (time_after(pool_ts, touched))
7419 			ts = pool_ts;
7420 		else
7421 			ts = touched;
7422 
7423 		/* did we stall? */
7424 		if (time_after(now, ts + thresh)) {
7425 			lockup_detected = true;
7426 			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7427 				pool->cpu_stall = true;
7428 				cpu_pool_stall = true;
7429 			}
7430 			pr_emerg("BUG: workqueue lockup - pool");
7431 			pr_cont_pool_info(pool);
7432 			pr_cont(" stuck for %us!\n",
7433 				jiffies_to_msecs(now - pool_ts) / 1000);
7434 		}
7435 
7436 
7437 	}
7438 
7439 	rcu_read_unlock();
7440 
7441 	if (lockup_detected)
7442 		show_all_workqueues();
7443 
7444 	if (cpu_pool_stall)
7445 		show_cpu_pools_hogs();
7446 
7447 	wq_watchdog_reset_touched();
7448 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7449 }
7450 
7451 notrace void wq_watchdog_touch(int cpu)
7452 {
7453 	if (cpu >= 0)
7454 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7455 
7456 	wq_watchdog_touched = jiffies;
7457 }
7458 
7459 static void wq_watchdog_set_thresh(unsigned long thresh)
7460 {
7461 	wq_watchdog_thresh = 0;
7462 	del_timer_sync(&wq_watchdog_timer);
7463 
7464 	if (thresh) {
7465 		wq_watchdog_thresh = thresh;
7466 		wq_watchdog_reset_touched();
7467 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7468 	}
7469 }
7470 
7471 static int wq_watchdog_param_set_thresh(const char *val,
7472 					const struct kernel_param *kp)
7473 {
7474 	unsigned long thresh;
7475 	int ret;
7476 
7477 	ret = kstrtoul(val, 0, &thresh);
7478 	if (ret)
7479 		return ret;
7480 
7481 	if (system_wq)
7482 		wq_watchdog_set_thresh(thresh);
7483 	else
7484 		wq_watchdog_thresh = thresh;
7485 
7486 	return 0;
7487 }
7488 
7489 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7490 	.set	= wq_watchdog_param_set_thresh,
7491 	.get	= param_get_ulong,
7492 };
7493 
7494 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7495 		0644);
7496 
7497 static void wq_watchdog_init(void)
7498 {
7499 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7500 	wq_watchdog_set_thresh(wq_watchdog_thresh);
7501 }
7502 
7503 #else	/* CONFIG_WQ_WATCHDOG */
7504 
7505 static inline void wq_watchdog_init(void) { }
7506 
7507 #endif	/* CONFIG_WQ_WATCHDOG */
7508 
7509 static void bh_pool_kick_normal(struct irq_work *irq_work)
7510 {
7511 	raise_softirq_irqoff(TASKLET_SOFTIRQ);
7512 }
7513 
7514 static void bh_pool_kick_highpri(struct irq_work *irq_work)
7515 {
7516 	raise_softirq_irqoff(HI_SOFTIRQ);
7517 }
7518 
7519 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7520 {
7521 	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7522 		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7523 			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7524 		return;
7525 	}
7526 
7527 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7528 }
7529 
7530 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7531 {
7532 	BUG_ON(init_worker_pool(pool));
7533 	pool->cpu = cpu;
7534 	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7535 	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7536 	pool->attrs->nice = nice;
7537 	pool->attrs->affn_strict = true;
7538 	pool->node = cpu_to_node(cpu);
7539 
7540 	/* alloc pool ID */
7541 	mutex_lock(&wq_pool_mutex);
7542 	BUG_ON(worker_pool_assign_id(pool));
7543 	mutex_unlock(&wq_pool_mutex);
7544 }
7545 
7546 /**
7547  * workqueue_init_early - early init for workqueue subsystem
7548  *
7549  * This is the first step of three-staged workqueue subsystem initialization and
7550  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7551  * up. It sets up all the data structures and system workqueues and allows early
7552  * boot code to create workqueues and queue/cancel work items. Actual work item
7553  * execution starts only after kthreads can be created and scheduled right
7554  * before early initcalls.
7555  */
7556 void __init workqueue_init_early(void)
7557 {
7558 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7559 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7560 	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7561 						       bh_pool_kick_highpri };
7562 	int i, cpu;
7563 
7564 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7565 
7566 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7567 	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7568 	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7569 
7570 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7571 	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7572 	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7573 	if (!cpumask_empty(&wq_cmdline_cpumask))
7574 		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7575 
7576 	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7577 
7578 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7579 
7580 	wq_update_pod_attrs_buf = alloc_workqueue_attrs();
7581 	BUG_ON(!wq_update_pod_attrs_buf);
7582 
7583 	/*
7584 	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7585 	 * This allows workqueue items to be moved to HK CPUs.
7586 	 */
7587 	if (housekeeping_enabled(HK_TYPE_TICK))
7588 		wq_power_efficient = true;
7589 
7590 	/* initialize WQ_AFFN_SYSTEM pods */
7591 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7592 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7593 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7594 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7595 
7596 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7597 
7598 	pt->nr_pods = 1;
7599 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7600 	pt->pod_node[0] = NUMA_NO_NODE;
7601 	pt->cpu_pod[0] = 0;
7602 
7603 	/* initialize BH and CPU pools */
7604 	for_each_possible_cpu(cpu) {
7605 		struct worker_pool *pool;
7606 
7607 		i = 0;
7608 		for_each_bh_worker_pool(pool, cpu) {
7609 			init_cpu_worker_pool(pool, cpu, std_nice[i]);
7610 			pool->flags |= POOL_BH;
7611 			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7612 			i++;
7613 		}
7614 
7615 		i = 0;
7616 		for_each_cpu_worker_pool(pool, cpu)
7617 			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7618 	}
7619 
7620 	/* create default unbound and ordered wq attrs */
7621 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7622 		struct workqueue_attrs *attrs;
7623 
7624 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7625 		attrs->nice = std_nice[i];
7626 		unbound_std_wq_attrs[i] = attrs;
7627 
7628 		/*
7629 		 * An ordered wq should have only one pwq as ordering is
7630 		 * guaranteed by max_active which is enforced by pwqs.
7631 		 */
7632 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7633 		attrs->nice = std_nice[i];
7634 		attrs->ordered = true;
7635 		ordered_wq_attrs[i] = attrs;
7636 	}
7637 
7638 	system_wq = alloc_workqueue("events", 0, 0);
7639 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7640 	system_long_wq = alloc_workqueue("events_long", 0, 0);
7641 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7642 					    WQ_MAX_ACTIVE);
7643 	system_freezable_wq = alloc_workqueue("events_freezable",
7644 					      WQ_FREEZABLE, 0);
7645 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7646 					      WQ_POWER_EFFICIENT, 0);
7647 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7648 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7649 					      0);
7650 	system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7651 	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7652 					       WQ_BH | WQ_HIGHPRI, 0);
7653 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7654 	       !system_unbound_wq || !system_freezable_wq ||
7655 	       !system_power_efficient_wq ||
7656 	       !system_freezable_power_efficient_wq ||
7657 	       !system_bh_wq || !system_bh_highpri_wq);
7658 }
7659 
7660 static void __init wq_cpu_intensive_thresh_init(void)
7661 {
7662 	unsigned long thresh;
7663 	unsigned long bogo;
7664 
7665 	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7666 	BUG_ON(IS_ERR(pwq_release_worker));
7667 
7668 	/* if the user set it to a specific value, keep it */
7669 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7670 		return;
7671 
7672 	/*
7673 	 * The default of 10ms is derived from the fact that most modern (as of
7674 	 * 2023) processors can do a lot in 10ms and that it's just below what
7675 	 * most consider human-perceivable. However, the kernel also runs on a
7676 	 * lot slower CPUs including microcontrollers where the threshold is way
7677 	 * too low.
7678 	 *
7679 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7680 	 * This is by no means accurate but it doesn't have to be. The mechanism
7681 	 * is still useful even when the threshold is fully scaled up. Also, as
7682 	 * the reports would usually be applicable to everyone, some machines
7683 	 * operating on longer thresholds won't significantly diminish their
7684 	 * usefulness.
7685 	 */
7686 	thresh = 10 * USEC_PER_MSEC;
7687 
7688 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7689 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7690 	if (bogo < 4000)
7691 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7692 
7693 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7694 		 loops_per_jiffy, bogo, thresh);
7695 
7696 	wq_cpu_intensive_thresh_us = thresh;
7697 }
7698 
7699 /**
7700  * workqueue_init - bring workqueue subsystem fully online
7701  *
7702  * This is the second step of three-staged workqueue subsystem initialization
7703  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7704  * been created and work items queued on them, but there are no kworkers
7705  * executing the work items yet. Populate the worker pools with the initial
7706  * workers and enable future kworker creations.
7707  */
7708 void __init workqueue_init(void)
7709 {
7710 	struct workqueue_struct *wq;
7711 	struct worker_pool *pool;
7712 	int cpu, bkt;
7713 
7714 	wq_cpu_intensive_thresh_init();
7715 
7716 	mutex_lock(&wq_pool_mutex);
7717 
7718 	/*
7719 	 * Per-cpu pools created earlier could be missing node hint. Fix them
7720 	 * up. Also, create a rescuer for workqueues that requested it.
7721 	 */
7722 	for_each_possible_cpu(cpu) {
7723 		for_each_bh_worker_pool(pool, cpu)
7724 			pool->node = cpu_to_node(cpu);
7725 		for_each_cpu_worker_pool(pool, cpu)
7726 			pool->node = cpu_to_node(cpu);
7727 	}
7728 
7729 	list_for_each_entry(wq, &workqueues, list) {
7730 		WARN(init_rescuer(wq),
7731 		     "workqueue: failed to create early rescuer for %s",
7732 		     wq->name);
7733 	}
7734 
7735 	mutex_unlock(&wq_pool_mutex);
7736 
7737 	/*
7738 	 * Create the initial workers. A BH pool has one pseudo worker that
7739 	 * represents the shared BH execution context and thus doesn't get
7740 	 * affected by hotplug events. Create the BH pseudo workers for all
7741 	 * possible CPUs here.
7742 	 */
7743 	for_each_possible_cpu(cpu)
7744 		for_each_bh_worker_pool(pool, cpu)
7745 			BUG_ON(!create_worker(pool));
7746 
7747 	for_each_online_cpu(cpu) {
7748 		for_each_cpu_worker_pool(pool, cpu) {
7749 			pool->flags &= ~POOL_DISASSOCIATED;
7750 			BUG_ON(!create_worker(pool));
7751 		}
7752 	}
7753 
7754 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7755 		BUG_ON(!create_worker(pool));
7756 
7757 	wq_online = true;
7758 	wq_watchdog_init();
7759 }
7760 
7761 /*
7762  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7763  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7764  * and consecutive pod ID. The rest of @pt is initialized accordingly.
7765  */
7766 static void __init init_pod_type(struct wq_pod_type *pt,
7767 				 bool (*cpus_share_pod)(int, int))
7768 {
7769 	int cur, pre, cpu, pod;
7770 
7771 	pt->nr_pods = 0;
7772 
7773 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7774 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7775 	BUG_ON(!pt->cpu_pod);
7776 
7777 	for_each_possible_cpu(cur) {
7778 		for_each_possible_cpu(pre) {
7779 			if (pre >= cur) {
7780 				pt->cpu_pod[cur] = pt->nr_pods++;
7781 				break;
7782 			}
7783 			if (cpus_share_pod(cur, pre)) {
7784 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7785 				break;
7786 			}
7787 		}
7788 	}
7789 
7790 	/* init the rest to match @pt->cpu_pod[] */
7791 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7792 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7793 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
7794 
7795 	for (pod = 0; pod < pt->nr_pods; pod++)
7796 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7797 
7798 	for_each_possible_cpu(cpu) {
7799 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7800 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7801 	}
7802 }
7803 
7804 static bool __init cpus_dont_share(int cpu0, int cpu1)
7805 {
7806 	return false;
7807 }
7808 
7809 static bool __init cpus_share_smt(int cpu0, int cpu1)
7810 {
7811 #ifdef CONFIG_SCHED_SMT
7812 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7813 #else
7814 	return false;
7815 #endif
7816 }
7817 
7818 static bool __init cpus_share_numa(int cpu0, int cpu1)
7819 {
7820 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7821 }
7822 
7823 /**
7824  * workqueue_init_topology - initialize CPU pods for unbound workqueues
7825  *
7826  * This is the third step of three-staged workqueue subsystem initialization and
7827  * invoked after SMP and topology information are fully initialized. It
7828  * initializes the unbound CPU pods accordingly.
7829  */
7830 void __init workqueue_init_topology(void)
7831 {
7832 	struct workqueue_struct *wq;
7833 	int cpu;
7834 
7835 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7836 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7837 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
7838 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
7839 
7840 	wq_topo_initialized = true;
7841 
7842 	mutex_lock(&wq_pool_mutex);
7843 
7844 	/*
7845 	 * Workqueues allocated earlier would have all CPUs sharing the default
7846 	 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
7847 	 * combinations to apply per-pod sharing.
7848 	 */
7849 	list_for_each_entry(wq, &workqueues, list) {
7850 		for_each_online_cpu(cpu)
7851 			wq_update_pod(wq, cpu, cpu, true);
7852 		if (wq->flags & WQ_UNBOUND) {
7853 			mutex_lock(&wq->mutex);
7854 			wq_update_node_max_active(wq, -1);
7855 			mutex_unlock(&wq->mutex);
7856 		}
7857 	}
7858 
7859 	mutex_unlock(&wq_pool_mutex);
7860 }
7861 
7862 void __warn_flushing_systemwide_wq(void)
7863 {
7864 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
7865 	dump_stack();
7866 }
7867 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
7868 
7869 static int __init workqueue_unbound_cpus_setup(char *str)
7870 {
7871 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
7872 		cpumask_clear(&wq_cmdline_cpumask);
7873 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
7874 	}
7875 
7876 	return 1;
7877 }
7878 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
7879