1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/interrupt.h> 33 #include <linux/signal.h> 34 #include <linux/completion.h> 35 #include <linux/workqueue.h> 36 #include <linux/slab.h> 37 #include <linux/cpu.h> 38 #include <linux/notifier.h> 39 #include <linux/kthread.h> 40 #include <linux/hardirq.h> 41 #include <linux/mempolicy.h> 42 #include <linux/freezer.h> 43 #include <linux/debug_locks.h> 44 #include <linux/lockdep.h> 45 #include <linux/idr.h> 46 #include <linux/jhash.h> 47 #include <linux/hashtable.h> 48 #include <linux/rculist.h> 49 #include <linux/nodemask.h> 50 #include <linux/moduleparam.h> 51 #include <linux/uaccess.h> 52 #include <linux/sched/isolation.h> 53 #include <linux/sched/debug.h> 54 #include <linux/nmi.h> 55 #include <linux/kvm_para.h> 56 #include <linux/delay.h> 57 #include <linux/irq_work.h> 58 59 #include "workqueue_internal.h" 60 61 enum worker_pool_flags { 62 /* 63 * worker_pool flags 64 * 65 * A bound pool is either associated or disassociated with its CPU. 66 * While associated (!DISASSOCIATED), all workers are bound to the 67 * CPU and none has %WORKER_UNBOUND set and concurrency management 68 * is in effect. 69 * 70 * While DISASSOCIATED, the cpu may be offline and all workers have 71 * %WORKER_UNBOUND set and concurrency management disabled, and may 72 * be executing on any CPU. The pool behaves as an unbound one. 73 * 74 * Note that DISASSOCIATED should be flipped only while holding 75 * wq_pool_attach_mutex to avoid changing binding state while 76 * worker_attach_to_pool() is in progress. 77 * 78 * As there can only be one concurrent BH execution context per CPU, a 79 * BH pool is per-CPU and always DISASSOCIATED. 80 */ 81 POOL_BH = 1 << 0, /* is a BH pool */ 82 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */ 83 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 84 POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */ 85 }; 86 87 enum worker_flags { 88 /* worker flags */ 89 WORKER_DIE = 1 << 1, /* die die die */ 90 WORKER_IDLE = 1 << 2, /* is idle */ 91 WORKER_PREP = 1 << 3, /* preparing to run works */ 92 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 93 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 94 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 95 96 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 97 WORKER_UNBOUND | WORKER_REBOUND, 98 }; 99 100 enum work_cancel_flags { 101 WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */ 102 }; 103 104 enum wq_internal_consts { 105 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 106 107 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 108 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 109 110 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 111 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 112 113 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 114 /* call for help after 10ms 115 (min two ticks) */ 116 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 117 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 118 119 /* 120 * Rescue workers are used only on emergencies and shared by 121 * all cpus. Give MIN_NICE. 122 */ 123 RESCUER_NICE_LEVEL = MIN_NICE, 124 HIGHPRI_NICE_LEVEL = MIN_NICE, 125 126 WQ_NAME_LEN = 32, 127 }; 128 129 /* 130 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and 131 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because 132 * msecs_to_jiffies() can't be an initializer. 133 */ 134 #define BH_WORKER_JIFFIES msecs_to_jiffies(2) 135 #define BH_WORKER_RESTARTS 10 136 137 /* 138 * Structure fields follow one of the following exclusion rules. 139 * 140 * I: Modifiable by initialization/destruction paths and read-only for 141 * everyone else. 142 * 143 * P: Preemption protected. Disabling preemption is enough and should 144 * only be modified and accessed from the local cpu. 145 * 146 * L: pool->lock protected. Access with pool->lock held. 147 * 148 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for 149 * reads. 150 * 151 * K: Only modified by worker while holding pool->lock. Can be safely read by 152 * self, while holding pool->lock or from IRQ context if %current is the 153 * kworker. 154 * 155 * S: Only modified by worker self. 156 * 157 * A: wq_pool_attach_mutex protected. 158 * 159 * PL: wq_pool_mutex protected. 160 * 161 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 162 * 163 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 164 * 165 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 166 * RCU for reads. 167 * 168 * WQ: wq->mutex protected. 169 * 170 * WR: wq->mutex protected for writes. RCU protected for reads. 171 * 172 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read 173 * with READ_ONCE() without locking. 174 * 175 * MD: wq_mayday_lock protected. 176 * 177 * WD: Used internally by the watchdog. 178 */ 179 180 /* struct worker is defined in workqueue_internal.h */ 181 182 struct worker_pool { 183 raw_spinlock_t lock; /* the pool lock */ 184 int cpu; /* I: the associated cpu */ 185 int node; /* I: the associated node ID */ 186 int id; /* I: pool ID */ 187 unsigned int flags; /* L: flags */ 188 189 unsigned long watchdog_ts; /* L: watchdog timestamp */ 190 bool cpu_stall; /* WD: stalled cpu bound pool */ 191 192 /* 193 * The counter is incremented in a process context on the associated CPU 194 * w/ preemption disabled, and decremented or reset in the same context 195 * but w/ pool->lock held. The readers grab pool->lock and are 196 * guaranteed to see if the counter reached zero. 197 */ 198 int nr_running; 199 200 struct list_head worklist; /* L: list of pending works */ 201 202 int nr_workers; /* L: total number of workers */ 203 int nr_idle; /* L: currently idle workers */ 204 205 struct list_head idle_list; /* L: list of idle workers */ 206 struct timer_list idle_timer; /* L: worker idle timeout */ 207 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 208 209 struct timer_list mayday_timer; /* L: SOS timer for workers */ 210 211 /* a workers is either on busy_hash or idle_list, or the manager */ 212 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 213 /* L: hash of busy workers */ 214 215 struct worker *manager; /* L: purely informational */ 216 struct list_head workers; /* A: attached workers */ 217 struct list_head dying_workers; /* A: workers about to die */ 218 struct completion *detach_completion; /* all workers detached */ 219 220 struct ida worker_ida; /* worker IDs for task name */ 221 222 struct workqueue_attrs *attrs; /* I: worker attributes */ 223 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 224 int refcnt; /* PL: refcnt for unbound pools */ 225 226 /* 227 * Destruction of pool is RCU protected to allow dereferences 228 * from get_work_pool(). 229 */ 230 struct rcu_head rcu; 231 }; 232 233 /* 234 * Per-pool_workqueue statistics. These can be monitored using 235 * tools/workqueue/wq_monitor.py. 236 */ 237 enum pool_workqueue_stats { 238 PWQ_STAT_STARTED, /* work items started execution */ 239 PWQ_STAT_COMPLETED, /* work items completed execution */ 240 PWQ_STAT_CPU_TIME, /* total CPU time consumed */ 241 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ 242 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ 243 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */ 244 PWQ_STAT_MAYDAY, /* maydays to rescuer */ 245 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ 246 247 PWQ_NR_STATS, 248 }; 249 250 /* 251 * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT 252 * of work_struct->data are used for flags and the remaining high bits 253 * point to the pwq; thus, pwqs need to be aligned at two's power of the 254 * number of flag bits. 255 */ 256 struct pool_workqueue { 257 struct worker_pool *pool; /* I: the associated pool */ 258 struct workqueue_struct *wq; /* I: the owning workqueue */ 259 int work_color; /* L: current color */ 260 int flush_color; /* L: flushing color */ 261 int refcnt; /* L: reference count */ 262 int nr_in_flight[WORK_NR_COLORS]; 263 /* L: nr of in_flight works */ 264 bool plugged; /* L: execution suspended */ 265 266 /* 267 * nr_active management and WORK_STRUCT_INACTIVE: 268 * 269 * When pwq->nr_active >= max_active, new work item is queued to 270 * pwq->inactive_works instead of pool->worklist and marked with 271 * WORK_STRUCT_INACTIVE. 272 * 273 * All work items marked with WORK_STRUCT_INACTIVE do not participate in 274 * nr_active and all work items in pwq->inactive_works are marked with 275 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are 276 * in pwq->inactive_works. Some of them are ready to run in 277 * pool->worklist or worker->scheduled. Those work itmes are only struct 278 * wq_barrier which is used for flush_work() and should not participate 279 * in nr_active. For non-barrier work item, it is marked with 280 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 281 */ 282 int nr_active; /* L: nr of active works */ 283 struct list_head inactive_works; /* L: inactive works */ 284 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */ 285 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 286 struct list_head mayday_node; /* MD: node on wq->maydays */ 287 288 u64 stats[PWQ_NR_STATS]; 289 290 /* 291 * Release of unbound pwq is punted to a kthread_worker. See put_pwq() 292 * and pwq_release_workfn() for details. pool_workqueue itself is also 293 * RCU protected so that the first pwq can be determined without 294 * grabbing wq->mutex. 295 */ 296 struct kthread_work release_work; 297 struct rcu_head rcu; 298 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT); 299 300 /* 301 * Structure used to wait for workqueue flush. 302 */ 303 struct wq_flusher { 304 struct list_head list; /* WQ: list of flushers */ 305 int flush_color; /* WQ: flush color waiting for */ 306 struct completion done; /* flush completion */ 307 }; 308 309 struct wq_device; 310 311 /* 312 * Unlike in a per-cpu workqueue where max_active limits its concurrency level 313 * on each CPU, in an unbound workqueue, max_active applies to the whole system. 314 * As sharing a single nr_active across multiple sockets can be very expensive, 315 * the counting and enforcement is per NUMA node. 316 * 317 * The following struct is used to enforce per-node max_active. When a pwq wants 318 * to start executing a work item, it should increment ->nr using 319 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over 320 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish 321 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in 322 * round-robin order. 323 */ 324 struct wq_node_nr_active { 325 int max; /* per-node max_active */ 326 atomic_t nr; /* per-node nr_active */ 327 raw_spinlock_t lock; /* nests inside pool locks */ 328 struct list_head pending_pwqs; /* LN: pwqs with inactive works */ 329 }; 330 331 /* 332 * The externally visible workqueue. It relays the issued work items to 333 * the appropriate worker_pool through its pool_workqueues. 334 */ 335 struct workqueue_struct { 336 struct list_head pwqs; /* WR: all pwqs of this wq */ 337 struct list_head list; /* PR: list of all workqueues */ 338 339 struct mutex mutex; /* protects this wq */ 340 int work_color; /* WQ: current work color */ 341 int flush_color; /* WQ: current flush color */ 342 atomic_t nr_pwqs_to_flush; /* flush in progress */ 343 struct wq_flusher *first_flusher; /* WQ: first flusher */ 344 struct list_head flusher_queue; /* WQ: flush waiters */ 345 struct list_head flusher_overflow; /* WQ: flush overflow list */ 346 347 struct list_head maydays; /* MD: pwqs requesting rescue */ 348 struct worker *rescuer; /* MD: rescue worker */ 349 350 int nr_drainers; /* WQ: drain in progress */ 351 352 /* See alloc_workqueue() function comment for info on min/max_active */ 353 int max_active; /* WO: max active works */ 354 int min_active; /* WO: min active works */ 355 int saved_max_active; /* WQ: saved max_active */ 356 int saved_min_active; /* WQ: saved min_active */ 357 358 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 359 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */ 360 361 #ifdef CONFIG_SYSFS 362 struct wq_device *wq_dev; /* I: for sysfs interface */ 363 #endif 364 #ifdef CONFIG_LOCKDEP 365 char *lock_name; 366 struct lock_class_key key; 367 struct lockdep_map lockdep_map; 368 #endif 369 char name[WQ_NAME_LEN]; /* I: workqueue name */ 370 371 /* 372 * Destruction of workqueue_struct is RCU protected to allow walking 373 * the workqueues list without grabbing wq_pool_mutex. 374 * This is used to dump all workqueues from sysrq. 375 */ 376 struct rcu_head rcu; 377 378 /* hot fields used during command issue, aligned to cacheline */ 379 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 380 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */ 381 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */ 382 }; 383 384 /* 385 * Each pod type describes how CPUs should be grouped for unbound workqueues. 386 * See the comment above workqueue_attrs->affn_scope. 387 */ 388 struct wq_pod_type { 389 int nr_pods; /* number of pods */ 390 cpumask_var_t *pod_cpus; /* pod -> cpus */ 391 int *pod_node; /* pod -> node */ 392 int *cpu_pod; /* cpu -> pod */ 393 }; 394 395 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = { 396 [WQ_AFFN_DFL] = "default", 397 [WQ_AFFN_CPU] = "cpu", 398 [WQ_AFFN_SMT] = "smt", 399 [WQ_AFFN_CACHE] = "cache", 400 [WQ_AFFN_NUMA] = "numa", 401 [WQ_AFFN_SYSTEM] = "system", 402 }; 403 404 /* 405 * Per-cpu work items which run for longer than the following threshold are 406 * automatically considered CPU intensive and excluded from concurrency 407 * management to prevent them from noticeably delaying other per-cpu work items. 408 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. 409 * The actual value is initialized in wq_cpu_intensive_thresh_init(). 410 */ 411 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; 412 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); 413 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 414 static unsigned int wq_cpu_intensive_warning_thresh = 4; 415 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644); 416 #endif 417 418 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 419 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 420 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 421 422 static bool wq_online; /* can kworkers be created yet? */ 423 static bool wq_topo_initialized __read_mostly = false; 424 425 static struct kmem_cache *pwq_cache; 426 427 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES]; 428 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE; 429 430 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */ 431 static struct workqueue_attrs *wq_update_pod_attrs_buf; 432 433 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 434 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 435 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 436 /* wait for manager to go away */ 437 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 438 439 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 440 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 441 442 /* PL&A: allowable cpus for unbound wqs and work items */ 443 static cpumask_var_t wq_unbound_cpumask; 444 445 /* PL: user requested unbound cpumask via sysfs */ 446 static cpumask_var_t wq_requested_unbound_cpumask; 447 448 /* PL: isolated cpumask to be excluded from unbound cpumask */ 449 static cpumask_var_t wq_isolated_cpumask; 450 451 /* for further constrain wq_unbound_cpumask by cmdline parameter*/ 452 static struct cpumask wq_cmdline_cpumask __initdata; 453 454 /* CPU where unbound work was last round robin scheduled from this CPU */ 455 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 456 457 /* 458 * Local execution of unbound work items is no longer guaranteed. The 459 * following always forces round-robin CPU selection on unbound work items 460 * to uncover usages which depend on it. 461 */ 462 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 463 static bool wq_debug_force_rr_cpu = true; 464 #else 465 static bool wq_debug_force_rr_cpu = false; 466 #endif 467 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 468 469 /* to raise softirq for the BH worker pools on other CPUs */ 470 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], 471 bh_pool_irq_works); 472 473 /* the BH worker pools */ 474 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 475 bh_worker_pools); 476 477 /* the per-cpu worker pools */ 478 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 479 cpu_worker_pools); 480 481 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 482 483 /* PL: hash of all unbound pools keyed by pool->attrs */ 484 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 485 486 /* I: attributes used when instantiating standard unbound pools on demand */ 487 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 488 489 /* I: attributes used when instantiating ordered pools on demand */ 490 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 491 492 /* 493 * Used to synchronize multiple cancel_sync attempts on the same work item. See 494 * work_grab_pending() and __cancel_work_sync(). 495 */ 496 static DECLARE_WAIT_QUEUE_HEAD(wq_cancel_waitq); 497 498 /* 499 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a 500 * process context while holding a pool lock. Bounce to a dedicated kthread 501 * worker to avoid A-A deadlocks. 502 */ 503 static struct kthread_worker *pwq_release_worker __ro_after_init; 504 505 struct workqueue_struct *system_wq __ro_after_init; 506 EXPORT_SYMBOL(system_wq); 507 struct workqueue_struct *system_highpri_wq __ro_after_init; 508 EXPORT_SYMBOL_GPL(system_highpri_wq); 509 struct workqueue_struct *system_long_wq __ro_after_init; 510 EXPORT_SYMBOL_GPL(system_long_wq); 511 struct workqueue_struct *system_unbound_wq __ro_after_init; 512 EXPORT_SYMBOL_GPL(system_unbound_wq); 513 struct workqueue_struct *system_freezable_wq __ro_after_init; 514 EXPORT_SYMBOL_GPL(system_freezable_wq); 515 struct workqueue_struct *system_power_efficient_wq __ro_after_init; 516 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 517 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init; 518 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 519 struct workqueue_struct *system_bh_wq; 520 EXPORT_SYMBOL_GPL(system_bh_wq); 521 struct workqueue_struct *system_bh_highpri_wq; 522 EXPORT_SYMBOL_GPL(system_bh_highpri_wq); 523 524 static int worker_thread(void *__worker); 525 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 526 static void show_pwq(struct pool_workqueue *pwq); 527 static void show_one_worker_pool(struct worker_pool *pool); 528 529 #define CREATE_TRACE_POINTS 530 #include <trace/events/workqueue.h> 531 532 #define assert_rcu_or_pool_mutex() \ 533 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 534 !lockdep_is_held(&wq_pool_mutex), \ 535 "RCU or wq_pool_mutex should be held") 536 537 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 538 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 539 !lockdep_is_held(&wq->mutex) && \ 540 !lockdep_is_held(&wq_pool_mutex), \ 541 "RCU, wq->mutex or wq_pool_mutex should be held") 542 543 #define for_each_bh_worker_pool(pool, cpu) \ 544 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \ 545 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 546 (pool)++) 547 548 #define for_each_cpu_worker_pool(pool, cpu) \ 549 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 550 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 551 (pool)++) 552 553 /** 554 * for_each_pool - iterate through all worker_pools in the system 555 * @pool: iteration cursor 556 * @pi: integer used for iteration 557 * 558 * This must be called either with wq_pool_mutex held or RCU read 559 * locked. If the pool needs to be used beyond the locking in effect, the 560 * caller is responsible for guaranteeing that the pool stays online. 561 * 562 * The if/else clause exists only for the lockdep assertion and can be 563 * ignored. 564 */ 565 #define for_each_pool(pool, pi) \ 566 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 567 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 568 else 569 570 /** 571 * for_each_pool_worker - iterate through all workers of a worker_pool 572 * @worker: iteration cursor 573 * @pool: worker_pool to iterate workers of 574 * 575 * This must be called with wq_pool_attach_mutex. 576 * 577 * The if/else clause exists only for the lockdep assertion and can be 578 * ignored. 579 */ 580 #define for_each_pool_worker(worker, pool) \ 581 list_for_each_entry((worker), &(pool)->workers, node) \ 582 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 583 else 584 585 /** 586 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 587 * @pwq: iteration cursor 588 * @wq: the target workqueue 589 * 590 * This must be called either with wq->mutex held or RCU read locked. 591 * If the pwq needs to be used beyond the locking in effect, the caller is 592 * responsible for guaranteeing that the pwq stays online. 593 * 594 * The if/else clause exists only for the lockdep assertion and can be 595 * ignored. 596 */ 597 #define for_each_pwq(pwq, wq) \ 598 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 599 lockdep_is_held(&(wq->mutex))) 600 601 #ifdef CONFIG_DEBUG_OBJECTS_WORK 602 603 static const struct debug_obj_descr work_debug_descr; 604 605 static void *work_debug_hint(void *addr) 606 { 607 return ((struct work_struct *) addr)->func; 608 } 609 610 static bool work_is_static_object(void *addr) 611 { 612 struct work_struct *work = addr; 613 614 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 615 } 616 617 /* 618 * fixup_init is called when: 619 * - an active object is initialized 620 */ 621 static bool work_fixup_init(void *addr, enum debug_obj_state state) 622 { 623 struct work_struct *work = addr; 624 625 switch (state) { 626 case ODEBUG_STATE_ACTIVE: 627 cancel_work_sync(work); 628 debug_object_init(work, &work_debug_descr); 629 return true; 630 default: 631 return false; 632 } 633 } 634 635 /* 636 * fixup_free is called when: 637 * - an active object is freed 638 */ 639 static bool work_fixup_free(void *addr, enum debug_obj_state state) 640 { 641 struct work_struct *work = addr; 642 643 switch (state) { 644 case ODEBUG_STATE_ACTIVE: 645 cancel_work_sync(work); 646 debug_object_free(work, &work_debug_descr); 647 return true; 648 default: 649 return false; 650 } 651 } 652 653 static const struct debug_obj_descr work_debug_descr = { 654 .name = "work_struct", 655 .debug_hint = work_debug_hint, 656 .is_static_object = work_is_static_object, 657 .fixup_init = work_fixup_init, 658 .fixup_free = work_fixup_free, 659 }; 660 661 static inline void debug_work_activate(struct work_struct *work) 662 { 663 debug_object_activate(work, &work_debug_descr); 664 } 665 666 static inline void debug_work_deactivate(struct work_struct *work) 667 { 668 debug_object_deactivate(work, &work_debug_descr); 669 } 670 671 void __init_work(struct work_struct *work, int onstack) 672 { 673 if (onstack) 674 debug_object_init_on_stack(work, &work_debug_descr); 675 else 676 debug_object_init(work, &work_debug_descr); 677 } 678 EXPORT_SYMBOL_GPL(__init_work); 679 680 void destroy_work_on_stack(struct work_struct *work) 681 { 682 debug_object_free(work, &work_debug_descr); 683 } 684 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 685 686 void destroy_delayed_work_on_stack(struct delayed_work *work) 687 { 688 destroy_timer_on_stack(&work->timer); 689 debug_object_free(&work->work, &work_debug_descr); 690 } 691 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 692 693 #else 694 static inline void debug_work_activate(struct work_struct *work) { } 695 static inline void debug_work_deactivate(struct work_struct *work) { } 696 #endif 697 698 /** 699 * worker_pool_assign_id - allocate ID and assign it to @pool 700 * @pool: the pool pointer of interest 701 * 702 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 703 * successfully, -errno on failure. 704 */ 705 static int worker_pool_assign_id(struct worker_pool *pool) 706 { 707 int ret; 708 709 lockdep_assert_held(&wq_pool_mutex); 710 711 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 712 GFP_KERNEL); 713 if (ret >= 0) { 714 pool->id = ret; 715 return 0; 716 } 717 return ret; 718 } 719 720 static struct pool_workqueue __rcu ** 721 unbound_pwq_slot(struct workqueue_struct *wq, int cpu) 722 { 723 if (cpu >= 0) 724 return per_cpu_ptr(wq->cpu_pwq, cpu); 725 else 726 return &wq->dfl_pwq; 727 } 728 729 /* @cpu < 0 for dfl_pwq */ 730 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu) 731 { 732 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu), 733 lockdep_is_held(&wq_pool_mutex) || 734 lockdep_is_held(&wq->mutex)); 735 } 736 737 /** 738 * unbound_effective_cpumask - effective cpumask of an unbound workqueue 739 * @wq: workqueue of interest 740 * 741 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which 742 * is masked with wq_unbound_cpumask to determine the effective cpumask. The 743 * default pwq is always mapped to the pool with the current effective cpumask. 744 */ 745 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq) 746 { 747 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask; 748 } 749 750 static unsigned int work_color_to_flags(int color) 751 { 752 return color << WORK_STRUCT_COLOR_SHIFT; 753 } 754 755 static int get_work_color(unsigned long work_data) 756 { 757 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 758 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 759 } 760 761 static int work_next_color(int color) 762 { 763 return (color + 1) % WORK_NR_COLORS; 764 } 765 766 /* 767 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 768 * contain the pointer to the queued pwq. Once execution starts, the flag 769 * is cleared and the high bits contain OFFQ flags and pool ID. 770 * 771 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling() 772 * can be used to set the pwq, pool or clear work->data. These functions should 773 * only be called while the work is owned - ie. while the PENDING bit is set. 774 * 775 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 776 * corresponding to a work. Pool is available once the work has been 777 * queued anywhere after initialization until it is sync canceled. pwq is 778 * available only while the work item is queued. 779 * 780 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 781 * canceled. While being canceled, a work item may have its PENDING set 782 * but stay off timer and worklist for arbitrarily long and nobody should 783 * try to steal the PENDING bit. 784 */ 785 static inline void set_work_data(struct work_struct *work, unsigned long data) 786 { 787 WARN_ON_ONCE(!work_pending(work)); 788 atomic_long_set(&work->data, data | work_static(work)); 789 } 790 791 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 792 unsigned long flags) 793 { 794 set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING | 795 WORK_STRUCT_PWQ | flags); 796 } 797 798 static void set_work_pool_and_keep_pending(struct work_struct *work, 799 int pool_id, unsigned long flags) 800 { 801 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 802 WORK_STRUCT_PENDING | flags); 803 } 804 805 static void set_work_pool_and_clear_pending(struct work_struct *work, 806 int pool_id, unsigned long flags) 807 { 808 /* 809 * The following wmb is paired with the implied mb in 810 * test_and_set_bit(PENDING) and ensures all updates to @work made 811 * here are visible to and precede any updates by the next PENDING 812 * owner. 813 */ 814 smp_wmb(); 815 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 816 flags); 817 /* 818 * The following mb guarantees that previous clear of a PENDING bit 819 * will not be reordered with any speculative LOADS or STORES from 820 * work->current_func, which is executed afterwards. This possible 821 * reordering can lead to a missed execution on attempt to queue 822 * the same @work. E.g. consider this case: 823 * 824 * CPU#0 CPU#1 825 * ---------------------------- -------------------------------- 826 * 827 * 1 STORE event_indicated 828 * 2 queue_work_on() { 829 * 3 test_and_set_bit(PENDING) 830 * 4 } set_..._and_clear_pending() { 831 * 5 set_work_data() # clear bit 832 * 6 smp_mb() 833 * 7 work->current_func() { 834 * 8 LOAD event_indicated 835 * } 836 * 837 * Without an explicit full barrier speculative LOAD on line 8 can 838 * be executed before CPU#0 does STORE on line 1. If that happens, 839 * CPU#0 observes the PENDING bit is still set and new execution of 840 * a @work is not queued in a hope, that CPU#1 will eventually 841 * finish the queued @work. Meanwhile CPU#1 does not see 842 * event_indicated is set, because speculative LOAD was executed 843 * before actual STORE. 844 */ 845 smp_mb(); 846 } 847 848 static inline struct pool_workqueue *work_struct_pwq(unsigned long data) 849 { 850 return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK); 851 } 852 853 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 854 { 855 unsigned long data = atomic_long_read(&work->data); 856 857 if (data & WORK_STRUCT_PWQ) 858 return work_struct_pwq(data); 859 else 860 return NULL; 861 } 862 863 /** 864 * get_work_pool - return the worker_pool a given work was associated with 865 * @work: the work item of interest 866 * 867 * Pools are created and destroyed under wq_pool_mutex, and allows read 868 * access under RCU read lock. As such, this function should be 869 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 870 * 871 * All fields of the returned pool are accessible as long as the above 872 * mentioned locking is in effect. If the returned pool needs to be used 873 * beyond the critical section, the caller is responsible for ensuring the 874 * returned pool is and stays online. 875 * 876 * Return: The worker_pool @work was last associated with. %NULL if none. 877 */ 878 static struct worker_pool *get_work_pool(struct work_struct *work) 879 { 880 unsigned long data = atomic_long_read(&work->data); 881 int pool_id; 882 883 assert_rcu_or_pool_mutex(); 884 885 if (data & WORK_STRUCT_PWQ) 886 return work_struct_pwq(data)->pool; 887 888 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 889 if (pool_id == WORK_OFFQ_POOL_NONE) 890 return NULL; 891 892 return idr_find(&worker_pool_idr, pool_id); 893 } 894 895 /** 896 * get_work_pool_id - return the worker pool ID a given work is associated with 897 * @work: the work item of interest 898 * 899 * Return: The worker_pool ID @work was last associated with. 900 * %WORK_OFFQ_POOL_NONE if none. 901 */ 902 static int get_work_pool_id(struct work_struct *work) 903 { 904 unsigned long data = atomic_long_read(&work->data); 905 906 if (data & WORK_STRUCT_PWQ) 907 return work_struct_pwq(data)->pool->id; 908 909 return data >> WORK_OFFQ_POOL_SHIFT; 910 } 911 912 static void mark_work_canceling(struct work_struct *work) 913 { 914 unsigned long pool_id = get_work_pool_id(work); 915 916 pool_id <<= WORK_OFFQ_POOL_SHIFT; 917 set_work_data(work, pool_id | WORK_STRUCT_PENDING | WORK_OFFQ_CANCELING); 918 } 919 920 static bool work_is_canceling(struct work_struct *work) 921 { 922 unsigned long data = atomic_long_read(&work->data); 923 924 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 925 } 926 927 /* 928 * Policy functions. These define the policies on how the global worker 929 * pools are managed. Unless noted otherwise, these functions assume that 930 * they're being called with pool->lock held. 931 */ 932 933 /* 934 * Need to wake up a worker? Called from anything but currently 935 * running workers. 936 * 937 * Note that, because unbound workers never contribute to nr_running, this 938 * function will always return %true for unbound pools as long as the 939 * worklist isn't empty. 940 */ 941 static bool need_more_worker(struct worker_pool *pool) 942 { 943 return !list_empty(&pool->worklist) && !pool->nr_running; 944 } 945 946 /* Can I start working? Called from busy but !running workers. */ 947 static bool may_start_working(struct worker_pool *pool) 948 { 949 return pool->nr_idle; 950 } 951 952 /* Do I need to keep working? Called from currently running workers. */ 953 static bool keep_working(struct worker_pool *pool) 954 { 955 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 956 } 957 958 /* Do we need a new worker? Called from manager. */ 959 static bool need_to_create_worker(struct worker_pool *pool) 960 { 961 return need_more_worker(pool) && !may_start_working(pool); 962 } 963 964 /* Do we have too many workers and should some go away? */ 965 static bool too_many_workers(struct worker_pool *pool) 966 { 967 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 968 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 969 int nr_busy = pool->nr_workers - nr_idle; 970 971 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 972 } 973 974 /** 975 * worker_set_flags - set worker flags and adjust nr_running accordingly 976 * @worker: self 977 * @flags: flags to set 978 * 979 * Set @flags in @worker->flags and adjust nr_running accordingly. 980 */ 981 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 982 { 983 struct worker_pool *pool = worker->pool; 984 985 lockdep_assert_held(&pool->lock); 986 987 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 988 if ((flags & WORKER_NOT_RUNNING) && 989 !(worker->flags & WORKER_NOT_RUNNING)) { 990 pool->nr_running--; 991 } 992 993 worker->flags |= flags; 994 } 995 996 /** 997 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 998 * @worker: self 999 * @flags: flags to clear 1000 * 1001 * Clear @flags in @worker->flags and adjust nr_running accordingly. 1002 */ 1003 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 1004 { 1005 struct worker_pool *pool = worker->pool; 1006 unsigned int oflags = worker->flags; 1007 1008 lockdep_assert_held(&pool->lock); 1009 1010 worker->flags &= ~flags; 1011 1012 /* 1013 * If transitioning out of NOT_RUNNING, increment nr_running. Note 1014 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 1015 * of multiple flags, not a single flag. 1016 */ 1017 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 1018 if (!(worker->flags & WORKER_NOT_RUNNING)) 1019 pool->nr_running++; 1020 } 1021 1022 /* Return the first idle worker. Called with pool->lock held. */ 1023 static struct worker *first_idle_worker(struct worker_pool *pool) 1024 { 1025 if (unlikely(list_empty(&pool->idle_list))) 1026 return NULL; 1027 1028 return list_first_entry(&pool->idle_list, struct worker, entry); 1029 } 1030 1031 /** 1032 * worker_enter_idle - enter idle state 1033 * @worker: worker which is entering idle state 1034 * 1035 * @worker is entering idle state. Update stats and idle timer if 1036 * necessary. 1037 * 1038 * LOCKING: 1039 * raw_spin_lock_irq(pool->lock). 1040 */ 1041 static void worker_enter_idle(struct worker *worker) 1042 { 1043 struct worker_pool *pool = worker->pool; 1044 1045 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1046 WARN_ON_ONCE(!list_empty(&worker->entry) && 1047 (worker->hentry.next || worker->hentry.pprev))) 1048 return; 1049 1050 /* can't use worker_set_flags(), also called from create_worker() */ 1051 worker->flags |= WORKER_IDLE; 1052 pool->nr_idle++; 1053 worker->last_active = jiffies; 1054 1055 /* idle_list is LIFO */ 1056 list_add(&worker->entry, &pool->idle_list); 1057 1058 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1059 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1060 1061 /* Sanity check nr_running. */ 1062 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 1063 } 1064 1065 /** 1066 * worker_leave_idle - leave idle state 1067 * @worker: worker which is leaving idle state 1068 * 1069 * @worker is leaving idle state. Update stats. 1070 * 1071 * LOCKING: 1072 * raw_spin_lock_irq(pool->lock). 1073 */ 1074 static void worker_leave_idle(struct worker *worker) 1075 { 1076 struct worker_pool *pool = worker->pool; 1077 1078 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1079 return; 1080 worker_clr_flags(worker, WORKER_IDLE); 1081 pool->nr_idle--; 1082 list_del_init(&worker->entry); 1083 } 1084 1085 /** 1086 * find_worker_executing_work - find worker which is executing a work 1087 * @pool: pool of interest 1088 * @work: work to find worker for 1089 * 1090 * Find a worker which is executing @work on @pool by searching 1091 * @pool->busy_hash which is keyed by the address of @work. For a worker 1092 * to match, its current execution should match the address of @work and 1093 * its work function. This is to avoid unwanted dependency between 1094 * unrelated work executions through a work item being recycled while still 1095 * being executed. 1096 * 1097 * This is a bit tricky. A work item may be freed once its execution 1098 * starts and nothing prevents the freed area from being recycled for 1099 * another work item. If the same work item address ends up being reused 1100 * before the original execution finishes, workqueue will identify the 1101 * recycled work item as currently executing and make it wait until the 1102 * current execution finishes, introducing an unwanted dependency. 1103 * 1104 * This function checks the work item address and work function to avoid 1105 * false positives. Note that this isn't complete as one may construct a 1106 * work function which can introduce dependency onto itself through a 1107 * recycled work item. Well, if somebody wants to shoot oneself in the 1108 * foot that badly, there's only so much we can do, and if such deadlock 1109 * actually occurs, it should be easy to locate the culprit work function. 1110 * 1111 * CONTEXT: 1112 * raw_spin_lock_irq(pool->lock). 1113 * 1114 * Return: 1115 * Pointer to worker which is executing @work if found, %NULL 1116 * otherwise. 1117 */ 1118 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1119 struct work_struct *work) 1120 { 1121 struct worker *worker; 1122 1123 hash_for_each_possible(pool->busy_hash, worker, hentry, 1124 (unsigned long)work) 1125 if (worker->current_work == work && 1126 worker->current_func == work->func) 1127 return worker; 1128 1129 return NULL; 1130 } 1131 1132 /** 1133 * move_linked_works - move linked works to a list 1134 * @work: start of series of works to be scheduled 1135 * @head: target list to append @work to 1136 * @nextp: out parameter for nested worklist walking 1137 * 1138 * Schedule linked works starting from @work to @head. Work series to be 1139 * scheduled starts at @work and includes any consecutive work with 1140 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on 1141 * @nextp. 1142 * 1143 * CONTEXT: 1144 * raw_spin_lock_irq(pool->lock). 1145 */ 1146 static void move_linked_works(struct work_struct *work, struct list_head *head, 1147 struct work_struct **nextp) 1148 { 1149 struct work_struct *n; 1150 1151 /* 1152 * Linked worklist will always end before the end of the list, 1153 * use NULL for list head. 1154 */ 1155 list_for_each_entry_safe_from(work, n, NULL, entry) { 1156 list_move_tail(&work->entry, head); 1157 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1158 break; 1159 } 1160 1161 /* 1162 * If we're already inside safe list traversal and have moved 1163 * multiple works to the scheduled queue, the next position 1164 * needs to be updated. 1165 */ 1166 if (nextp) 1167 *nextp = n; 1168 } 1169 1170 /** 1171 * assign_work - assign a work item and its linked work items to a worker 1172 * @work: work to assign 1173 * @worker: worker to assign to 1174 * @nextp: out parameter for nested worklist walking 1175 * 1176 * Assign @work and its linked work items to @worker. If @work is already being 1177 * executed by another worker in the same pool, it'll be punted there. 1178 * 1179 * If @nextp is not NULL, it's updated to point to the next work of the last 1180 * scheduled work. This allows assign_work() to be nested inside 1181 * list_for_each_entry_safe(). 1182 * 1183 * Returns %true if @work was successfully assigned to @worker. %false if @work 1184 * was punted to another worker already executing it. 1185 */ 1186 static bool assign_work(struct work_struct *work, struct worker *worker, 1187 struct work_struct **nextp) 1188 { 1189 struct worker_pool *pool = worker->pool; 1190 struct worker *collision; 1191 1192 lockdep_assert_held(&pool->lock); 1193 1194 /* 1195 * A single work shouldn't be executed concurrently by multiple workers. 1196 * __queue_work() ensures that @work doesn't jump to a different pool 1197 * while still running in the previous pool. Here, we should ensure that 1198 * @work is not executed concurrently by multiple workers from the same 1199 * pool. Check whether anyone is already processing the work. If so, 1200 * defer the work to the currently executing one. 1201 */ 1202 collision = find_worker_executing_work(pool, work); 1203 if (unlikely(collision)) { 1204 move_linked_works(work, &collision->scheduled, nextp); 1205 return false; 1206 } 1207 1208 move_linked_works(work, &worker->scheduled, nextp); 1209 return true; 1210 } 1211 1212 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool) 1213 { 1214 int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0; 1215 1216 return &per_cpu(bh_pool_irq_works, pool->cpu)[high]; 1217 } 1218 1219 static void kick_bh_pool(struct worker_pool *pool) 1220 { 1221 #ifdef CONFIG_SMP 1222 /* see drain_dead_softirq_workfn() for BH_DRAINING */ 1223 if (unlikely(pool->cpu != smp_processor_id() && 1224 !(pool->flags & POOL_BH_DRAINING))) { 1225 irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu); 1226 return; 1227 } 1228 #endif 1229 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 1230 raise_softirq_irqoff(HI_SOFTIRQ); 1231 else 1232 raise_softirq_irqoff(TASKLET_SOFTIRQ); 1233 } 1234 1235 /** 1236 * kick_pool - wake up an idle worker if necessary 1237 * @pool: pool to kick 1238 * 1239 * @pool may have pending work items. Wake up worker if necessary. Returns 1240 * whether a worker was woken up. 1241 */ 1242 static bool kick_pool(struct worker_pool *pool) 1243 { 1244 struct worker *worker = first_idle_worker(pool); 1245 struct task_struct *p; 1246 1247 lockdep_assert_held(&pool->lock); 1248 1249 if (!need_more_worker(pool) || !worker) 1250 return false; 1251 1252 if (pool->flags & POOL_BH) { 1253 kick_bh_pool(pool); 1254 return true; 1255 } 1256 1257 p = worker->task; 1258 1259 #ifdef CONFIG_SMP 1260 /* 1261 * Idle @worker is about to execute @work and waking up provides an 1262 * opportunity to migrate @worker at a lower cost by setting the task's 1263 * wake_cpu field. Let's see if we want to move @worker to improve 1264 * execution locality. 1265 * 1266 * We're waking the worker that went idle the latest and there's some 1267 * chance that @worker is marked idle but hasn't gone off CPU yet. If 1268 * so, setting the wake_cpu won't do anything. As this is a best-effort 1269 * optimization and the race window is narrow, let's leave as-is for 1270 * now. If this becomes pronounced, we can skip over workers which are 1271 * still on cpu when picking an idle worker. 1272 * 1273 * If @pool has non-strict affinity, @worker might have ended up outside 1274 * its affinity scope. Repatriate. 1275 */ 1276 if (!pool->attrs->affn_strict && 1277 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) { 1278 struct work_struct *work = list_first_entry(&pool->worklist, 1279 struct work_struct, entry); 1280 p->wake_cpu = cpumask_any_distribute(pool->attrs->__pod_cpumask); 1281 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++; 1282 } 1283 #endif 1284 wake_up_process(p); 1285 return true; 1286 } 1287 1288 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 1289 1290 /* 1291 * Concurrency-managed per-cpu work items that hog CPU for longer than 1292 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, 1293 * which prevents them from stalling other concurrency-managed work items. If a 1294 * work function keeps triggering this mechanism, it's likely that the work item 1295 * should be using an unbound workqueue instead. 1296 * 1297 * wq_cpu_intensive_report() tracks work functions which trigger such conditions 1298 * and report them so that they can be examined and converted to use unbound 1299 * workqueues as appropriate. To avoid flooding the console, each violating work 1300 * function is tracked and reported with exponential backoff. 1301 */ 1302 #define WCI_MAX_ENTS 128 1303 1304 struct wci_ent { 1305 work_func_t func; 1306 atomic64_t cnt; 1307 struct hlist_node hash_node; 1308 }; 1309 1310 static struct wci_ent wci_ents[WCI_MAX_ENTS]; 1311 static int wci_nr_ents; 1312 static DEFINE_RAW_SPINLOCK(wci_lock); 1313 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); 1314 1315 static struct wci_ent *wci_find_ent(work_func_t func) 1316 { 1317 struct wci_ent *ent; 1318 1319 hash_for_each_possible_rcu(wci_hash, ent, hash_node, 1320 (unsigned long)func) { 1321 if (ent->func == func) 1322 return ent; 1323 } 1324 return NULL; 1325 } 1326 1327 static void wq_cpu_intensive_report(work_func_t func) 1328 { 1329 struct wci_ent *ent; 1330 1331 restart: 1332 ent = wci_find_ent(func); 1333 if (ent) { 1334 u64 cnt; 1335 1336 /* 1337 * Start reporting from the warning_thresh and back off 1338 * exponentially. 1339 */ 1340 cnt = atomic64_inc_return_relaxed(&ent->cnt); 1341 if (wq_cpu_intensive_warning_thresh && 1342 cnt >= wq_cpu_intensive_warning_thresh && 1343 is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh)) 1344 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", 1345 ent->func, wq_cpu_intensive_thresh_us, 1346 atomic64_read(&ent->cnt)); 1347 return; 1348 } 1349 1350 /* 1351 * @func is a new violation. Allocate a new entry for it. If wcn_ents[] 1352 * is exhausted, something went really wrong and we probably made enough 1353 * noise already. 1354 */ 1355 if (wci_nr_ents >= WCI_MAX_ENTS) 1356 return; 1357 1358 raw_spin_lock(&wci_lock); 1359 1360 if (wci_nr_ents >= WCI_MAX_ENTS) { 1361 raw_spin_unlock(&wci_lock); 1362 return; 1363 } 1364 1365 if (wci_find_ent(func)) { 1366 raw_spin_unlock(&wci_lock); 1367 goto restart; 1368 } 1369 1370 ent = &wci_ents[wci_nr_ents++]; 1371 ent->func = func; 1372 atomic64_set(&ent->cnt, 0); 1373 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); 1374 1375 raw_spin_unlock(&wci_lock); 1376 1377 goto restart; 1378 } 1379 1380 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1381 static void wq_cpu_intensive_report(work_func_t func) {} 1382 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1383 1384 /** 1385 * wq_worker_running - a worker is running again 1386 * @task: task waking up 1387 * 1388 * This function is called when a worker returns from schedule() 1389 */ 1390 void wq_worker_running(struct task_struct *task) 1391 { 1392 struct worker *worker = kthread_data(task); 1393 1394 if (!READ_ONCE(worker->sleeping)) 1395 return; 1396 1397 /* 1398 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 1399 * and the nr_running increment below, we may ruin the nr_running reset 1400 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 1401 * pool. Protect against such race. 1402 */ 1403 preempt_disable(); 1404 if (!(worker->flags & WORKER_NOT_RUNNING)) 1405 worker->pool->nr_running++; 1406 preempt_enable(); 1407 1408 /* 1409 * CPU intensive auto-detection cares about how long a work item hogged 1410 * CPU without sleeping. Reset the starting timestamp on wakeup. 1411 */ 1412 worker->current_at = worker->task->se.sum_exec_runtime; 1413 1414 WRITE_ONCE(worker->sleeping, 0); 1415 } 1416 1417 /** 1418 * wq_worker_sleeping - a worker is going to sleep 1419 * @task: task going to sleep 1420 * 1421 * This function is called from schedule() when a busy worker is 1422 * going to sleep. 1423 */ 1424 void wq_worker_sleeping(struct task_struct *task) 1425 { 1426 struct worker *worker = kthread_data(task); 1427 struct worker_pool *pool; 1428 1429 /* 1430 * Rescuers, which may not have all the fields set up like normal 1431 * workers, also reach here, let's not access anything before 1432 * checking NOT_RUNNING. 1433 */ 1434 if (worker->flags & WORKER_NOT_RUNNING) 1435 return; 1436 1437 pool = worker->pool; 1438 1439 /* Return if preempted before wq_worker_running() was reached */ 1440 if (READ_ONCE(worker->sleeping)) 1441 return; 1442 1443 WRITE_ONCE(worker->sleeping, 1); 1444 raw_spin_lock_irq(&pool->lock); 1445 1446 /* 1447 * Recheck in case unbind_workers() preempted us. We don't 1448 * want to decrement nr_running after the worker is unbound 1449 * and nr_running has been reset. 1450 */ 1451 if (worker->flags & WORKER_NOT_RUNNING) { 1452 raw_spin_unlock_irq(&pool->lock); 1453 return; 1454 } 1455 1456 pool->nr_running--; 1457 if (kick_pool(pool)) 1458 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1459 1460 raw_spin_unlock_irq(&pool->lock); 1461 } 1462 1463 /** 1464 * wq_worker_tick - a scheduler tick occurred while a kworker is running 1465 * @task: task currently running 1466 * 1467 * Called from scheduler_tick(). We're in the IRQ context and the current 1468 * worker's fields which follow the 'K' locking rule can be accessed safely. 1469 */ 1470 void wq_worker_tick(struct task_struct *task) 1471 { 1472 struct worker *worker = kthread_data(task); 1473 struct pool_workqueue *pwq = worker->current_pwq; 1474 struct worker_pool *pool = worker->pool; 1475 1476 if (!pwq) 1477 return; 1478 1479 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; 1480 1481 if (!wq_cpu_intensive_thresh_us) 1482 return; 1483 1484 /* 1485 * If the current worker is concurrency managed and hogged the CPU for 1486 * longer than wq_cpu_intensive_thresh_us, it's automatically marked 1487 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. 1488 * 1489 * Set @worker->sleeping means that @worker is in the process of 1490 * switching out voluntarily and won't be contributing to 1491 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also 1492 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to 1493 * double decrements. The task is releasing the CPU anyway. Let's skip. 1494 * We probably want to make this prettier in the future. 1495 */ 1496 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || 1497 worker->task->se.sum_exec_runtime - worker->current_at < 1498 wq_cpu_intensive_thresh_us * NSEC_PER_USEC) 1499 return; 1500 1501 raw_spin_lock(&pool->lock); 1502 1503 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1504 wq_cpu_intensive_report(worker->current_func); 1505 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; 1506 1507 if (kick_pool(pool)) 1508 pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1509 1510 raw_spin_unlock(&pool->lock); 1511 } 1512 1513 /** 1514 * wq_worker_last_func - retrieve worker's last work function 1515 * @task: Task to retrieve last work function of. 1516 * 1517 * Determine the last function a worker executed. This is called from 1518 * the scheduler to get a worker's last known identity. 1519 * 1520 * CONTEXT: 1521 * raw_spin_lock_irq(rq->lock) 1522 * 1523 * This function is called during schedule() when a kworker is going 1524 * to sleep. It's used by psi to identify aggregation workers during 1525 * dequeuing, to allow periodic aggregation to shut-off when that 1526 * worker is the last task in the system or cgroup to go to sleep. 1527 * 1528 * As this function doesn't involve any workqueue-related locking, it 1529 * only returns stable values when called from inside the scheduler's 1530 * queuing and dequeuing paths, when @task, which must be a kworker, 1531 * is guaranteed to not be processing any works. 1532 * 1533 * Return: 1534 * The last work function %current executed as a worker, NULL if it 1535 * hasn't executed any work yet. 1536 */ 1537 work_func_t wq_worker_last_func(struct task_struct *task) 1538 { 1539 struct worker *worker = kthread_data(task); 1540 1541 return worker->last_func; 1542 } 1543 1544 /** 1545 * wq_node_nr_active - Determine wq_node_nr_active to use 1546 * @wq: workqueue of interest 1547 * @node: NUMA node, can be %NUMA_NO_NODE 1548 * 1549 * Determine wq_node_nr_active to use for @wq on @node. Returns: 1550 * 1551 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active. 1552 * 1553 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE. 1554 * 1555 * - Otherwise, node_nr_active[@node]. 1556 */ 1557 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq, 1558 int node) 1559 { 1560 if (!(wq->flags & WQ_UNBOUND)) 1561 return NULL; 1562 1563 if (node == NUMA_NO_NODE) 1564 node = nr_node_ids; 1565 1566 return wq->node_nr_active[node]; 1567 } 1568 1569 /** 1570 * wq_update_node_max_active - Update per-node max_actives to use 1571 * @wq: workqueue to update 1572 * @off_cpu: CPU that's going down, -1 if a CPU is not going down 1573 * 1574 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is 1575 * distributed among nodes according to the proportions of numbers of online 1576 * cpus. The result is always between @wq->min_active and max_active. 1577 */ 1578 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu) 1579 { 1580 struct cpumask *effective = unbound_effective_cpumask(wq); 1581 int min_active = READ_ONCE(wq->min_active); 1582 int max_active = READ_ONCE(wq->max_active); 1583 int total_cpus, node; 1584 1585 lockdep_assert_held(&wq->mutex); 1586 1587 if (!wq_topo_initialized) 1588 return; 1589 1590 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective)) 1591 off_cpu = -1; 1592 1593 total_cpus = cpumask_weight_and(effective, cpu_online_mask); 1594 if (off_cpu >= 0) 1595 total_cpus--; 1596 1597 for_each_node(node) { 1598 int node_cpus; 1599 1600 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node)); 1601 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node) 1602 node_cpus--; 1603 1604 wq_node_nr_active(wq, node)->max = 1605 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus), 1606 min_active, max_active); 1607 } 1608 1609 wq_node_nr_active(wq, NUMA_NO_NODE)->max = min_active; 1610 } 1611 1612 /** 1613 * get_pwq - get an extra reference on the specified pool_workqueue 1614 * @pwq: pool_workqueue to get 1615 * 1616 * Obtain an extra reference on @pwq. The caller should guarantee that 1617 * @pwq has positive refcnt and be holding the matching pool->lock. 1618 */ 1619 static void get_pwq(struct pool_workqueue *pwq) 1620 { 1621 lockdep_assert_held(&pwq->pool->lock); 1622 WARN_ON_ONCE(pwq->refcnt <= 0); 1623 pwq->refcnt++; 1624 } 1625 1626 /** 1627 * put_pwq - put a pool_workqueue reference 1628 * @pwq: pool_workqueue to put 1629 * 1630 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1631 * destruction. The caller should be holding the matching pool->lock. 1632 */ 1633 static void put_pwq(struct pool_workqueue *pwq) 1634 { 1635 lockdep_assert_held(&pwq->pool->lock); 1636 if (likely(--pwq->refcnt)) 1637 return; 1638 /* 1639 * @pwq can't be released under pool->lock, bounce to a dedicated 1640 * kthread_worker to avoid A-A deadlocks. 1641 */ 1642 kthread_queue_work(pwq_release_worker, &pwq->release_work); 1643 } 1644 1645 /** 1646 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1647 * @pwq: pool_workqueue to put (can be %NULL) 1648 * 1649 * put_pwq() with locking. This function also allows %NULL @pwq. 1650 */ 1651 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1652 { 1653 if (pwq) { 1654 /* 1655 * As both pwqs and pools are RCU protected, the 1656 * following lock operations are safe. 1657 */ 1658 raw_spin_lock_irq(&pwq->pool->lock); 1659 put_pwq(pwq); 1660 raw_spin_unlock_irq(&pwq->pool->lock); 1661 } 1662 } 1663 1664 static bool pwq_is_empty(struct pool_workqueue *pwq) 1665 { 1666 return !pwq->nr_active && list_empty(&pwq->inactive_works); 1667 } 1668 1669 static void __pwq_activate_work(struct pool_workqueue *pwq, 1670 struct work_struct *work) 1671 { 1672 unsigned long *wdb = work_data_bits(work); 1673 1674 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE)); 1675 trace_workqueue_activate_work(work); 1676 if (list_empty(&pwq->pool->worklist)) 1677 pwq->pool->watchdog_ts = jiffies; 1678 move_linked_works(work, &pwq->pool->worklist, NULL); 1679 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb); 1680 } 1681 1682 /** 1683 * pwq_activate_work - Activate a work item if inactive 1684 * @pwq: pool_workqueue @work belongs to 1685 * @work: work item to activate 1686 * 1687 * Returns %true if activated. %false if already active. 1688 */ 1689 static bool pwq_activate_work(struct pool_workqueue *pwq, 1690 struct work_struct *work) 1691 { 1692 struct worker_pool *pool = pwq->pool; 1693 struct wq_node_nr_active *nna; 1694 1695 lockdep_assert_held(&pool->lock); 1696 1697 if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE)) 1698 return false; 1699 1700 nna = wq_node_nr_active(pwq->wq, pool->node); 1701 if (nna) 1702 atomic_inc(&nna->nr); 1703 1704 pwq->nr_active++; 1705 __pwq_activate_work(pwq, work); 1706 return true; 1707 } 1708 1709 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna) 1710 { 1711 int max = READ_ONCE(nna->max); 1712 1713 while (true) { 1714 int old, tmp; 1715 1716 old = atomic_read(&nna->nr); 1717 if (old >= max) 1718 return false; 1719 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1); 1720 if (tmp == old) 1721 return true; 1722 } 1723 } 1724 1725 /** 1726 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq 1727 * @pwq: pool_workqueue of interest 1728 * @fill: max_active may have increased, try to increase concurrency level 1729 * 1730 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is 1731 * successfully obtained. %false otherwise. 1732 */ 1733 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill) 1734 { 1735 struct workqueue_struct *wq = pwq->wq; 1736 struct worker_pool *pool = pwq->pool; 1737 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node); 1738 bool obtained = false; 1739 1740 lockdep_assert_held(&pool->lock); 1741 1742 if (!nna) { 1743 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */ 1744 obtained = pwq->nr_active < READ_ONCE(wq->max_active); 1745 goto out; 1746 } 1747 1748 if (unlikely(pwq->plugged)) 1749 return false; 1750 1751 /* 1752 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is 1753 * already waiting on $nna, pwq_dec_nr_active() will maintain the 1754 * concurrency level. Don't jump the line. 1755 * 1756 * We need to ignore the pending test after max_active has increased as 1757 * pwq_dec_nr_active() can only maintain the concurrency level but not 1758 * increase it. This is indicated by @fill. 1759 */ 1760 if (!list_empty(&pwq->pending_node) && likely(!fill)) 1761 goto out; 1762 1763 obtained = tryinc_node_nr_active(nna); 1764 if (obtained) 1765 goto out; 1766 1767 /* 1768 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs 1769 * and try again. The smp_mb() is paired with the implied memory barrier 1770 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either 1771 * we see the decremented $nna->nr or they see non-empty 1772 * $nna->pending_pwqs. 1773 */ 1774 raw_spin_lock(&nna->lock); 1775 1776 if (list_empty(&pwq->pending_node)) 1777 list_add_tail(&pwq->pending_node, &nna->pending_pwqs); 1778 else if (likely(!fill)) 1779 goto out_unlock; 1780 1781 smp_mb(); 1782 1783 obtained = tryinc_node_nr_active(nna); 1784 1785 /* 1786 * If @fill, @pwq might have already been pending. Being spuriously 1787 * pending in cold paths doesn't affect anything. Let's leave it be. 1788 */ 1789 if (obtained && likely(!fill)) 1790 list_del_init(&pwq->pending_node); 1791 1792 out_unlock: 1793 raw_spin_unlock(&nna->lock); 1794 out: 1795 if (obtained) 1796 pwq->nr_active++; 1797 return obtained; 1798 } 1799 1800 /** 1801 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq 1802 * @pwq: pool_workqueue of interest 1803 * @fill: max_active may have increased, try to increase concurrency level 1804 * 1805 * Activate the first inactive work item of @pwq if available and allowed by 1806 * max_active limit. 1807 * 1808 * Returns %true if an inactive work item has been activated. %false if no 1809 * inactive work item is found or max_active limit is reached. 1810 */ 1811 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill) 1812 { 1813 struct work_struct *work = 1814 list_first_entry_or_null(&pwq->inactive_works, 1815 struct work_struct, entry); 1816 1817 if (work && pwq_tryinc_nr_active(pwq, fill)) { 1818 __pwq_activate_work(pwq, work); 1819 return true; 1820 } else { 1821 return false; 1822 } 1823 } 1824 1825 /** 1826 * unplug_oldest_pwq - unplug the oldest pool_workqueue 1827 * @wq: workqueue_struct where its oldest pwq is to be unplugged 1828 * 1829 * This function should only be called for ordered workqueues where only the 1830 * oldest pwq is unplugged, the others are plugged to suspend execution to 1831 * ensure proper work item ordering:: 1832 * 1833 * dfl_pwq --------------+ [P] - plugged 1834 * | 1835 * v 1836 * pwqs -> A -> B [P] -> C [P] (newest) 1837 * | | | 1838 * 1 3 5 1839 * | | | 1840 * 2 4 6 1841 * 1842 * When the oldest pwq is drained and removed, this function should be called 1843 * to unplug the next oldest one to start its work item execution. Note that 1844 * pwq's are linked into wq->pwqs with the oldest first, so the first one in 1845 * the list is the oldest. 1846 */ 1847 static void unplug_oldest_pwq(struct workqueue_struct *wq) 1848 { 1849 struct pool_workqueue *pwq; 1850 1851 lockdep_assert_held(&wq->mutex); 1852 1853 /* Caller should make sure that pwqs isn't empty before calling */ 1854 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue, 1855 pwqs_node); 1856 raw_spin_lock_irq(&pwq->pool->lock); 1857 if (pwq->plugged) { 1858 pwq->plugged = false; 1859 if (pwq_activate_first_inactive(pwq, true)) 1860 kick_pool(pwq->pool); 1861 } 1862 raw_spin_unlock_irq(&pwq->pool->lock); 1863 } 1864 1865 /** 1866 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active 1867 * @nna: wq_node_nr_active to activate a pending pwq for 1868 * @caller_pool: worker_pool the caller is locking 1869 * 1870 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked. 1871 * @caller_pool may be unlocked and relocked to lock other worker_pools. 1872 */ 1873 static void node_activate_pending_pwq(struct wq_node_nr_active *nna, 1874 struct worker_pool *caller_pool) 1875 { 1876 struct worker_pool *locked_pool = caller_pool; 1877 struct pool_workqueue *pwq; 1878 struct work_struct *work; 1879 1880 lockdep_assert_held(&caller_pool->lock); 1881 1882 raw_spin_lock(&nna->lock); 1883 retry: 1884 pwq = list_first_entry_or_null(&nna->pending_pwqs, 1885 struct pool_workqueue, pending_node); 1886 if (!pwq) 1887 goto out_unlock; 1888 1889 /* 1890 * If @pwq is for a different pool than @locked_pool, we need to lock 1891 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock 1892 * / lock dance. For that, we also need to release @nna->lock as it's 1893 * nested inside pool locks. 1894 */ 1895 if (pwq->pool != locked_pool) { 1896 raw_spin_unlock(&locked_pool->lock); 1897 locked_pool = pwq->pool; 1898 if (!raw_spin_trylock(&locked_pool->lock)) { 1899 raw_spin_unlock(&nna->lock); 1900 raw_spin_lock(&locked_pool->lock); 1901 raw_spin_lock(&nna->lock); 1902 goto retry; 1903 } 1904 } 1905 1906 /* 1907 * $pwq may not have any inactive work items due to e.g. cancellations. 1908 * Drop it from pending_pwqs and see if there's another one. 1909 */ 1910 work = list_first_entry_or_null(&pwq->inactive_works, 1911 struct work_struct, entry); 1912 if (!work) { 1913 list_del_init(&pwq->pending_node); 1914 goto retry; 1915 } 1916 1917 /* 1918 * Acquire an nr_active count and activate the inactive work item. If 1919 * $pwq still has inactive work items, rotate it to the end of the 1920 * pending_pwqs so that we round-robin through them. This means that 1921 * inactive work items are not activated in queueing order which is fine 1922 * given that there has never been any ordering across different pwqs. 1923 */ 1924 if (likely(tryinc_node_nr_active(nna))) { 1925 pwq->nr_active++; 1926 __pwq_activate_work(pwq, work); 1927 1928 if (list_empty(&pwq->inactive_works)) 1929 list_del_init(&pwq->pending_node); 1930 else 1931 list_move_tail(&pwq->pending_node, &nna->pending_pwqs); 1932 1933 /* if activating a foreign pool, make sure it's running */ 1934 if (pwq->pool != caller_pool) 1935 kick_pool(pwq->pool); 1936 } 1937 1938 out_unlock: 1939 raw_spin_unlock(&nna->lock); 1940 if (locked_pool != caller_pool) { 1941 raw_spin_unlock(&locked_pool->lock); 1942 raw_spin_lock(&caller_pool->lock); 1943 } 1944 } 1945 1946 /** 1947 * pwq_dec_nr_active - Retire an active count 1948 * @pwq: pool_workqueue of interest 1949 * 1950 * Decrement @pwq's nr_active and try to activate the first inactive work item. 1951 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock. 1952 */ 1953 static void pwq_dec_nr_active(struct pool_workqueue *pwq) 1954 { 1955 struct worker_pool *pool = pwq->pool; 1956 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node); 1957 1958 lockdep_assert_held(&pool->lock); 1959 1960 /* 1961 * @pwq->nr_active should be decremented for both percpu and unbound 1962 * workqueues. 1963 */ 1964 pwq->nr_active--; 1965 1966 /* 1967 * For a percpu workqueue, it's simple. Just need to kick the first 1968 * inactive work item on @pwq itself. 1969 */ 1970 if (!nna) { 1971 pwq_activate_first_inactive(pwq, false); 1972 return; 1973 } 1974 1975 /* 1976 * If @pwq is for an unbound workqueue, it's more complicated because 1977 * multiple pwqs and pools may be sharing the nr_active count. When a 1978 * pwq needs to wait for an nr_active count, it puts itself on 1979 * $nna->pending_pwqs. The following atomic_dec_return()'s implied 1980 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to 1981 * guarantee that either we see non-empty pending_pwqs or they see 1982 * decremented $nna->nr. 1983 * 1984 * $nna->max may change as CPUs come online/offline and @pwq->wq's 1985 * max_active gets updated. However, it is guaranteed to be equal to or 1986 * larger than @pwq->wq->min_active which is above zero unless freezing. 1987 * This maintains the forward progress guarantee. 1988 */ 1989 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max)) 1990 return; 1991 1992 if (!list_empty(&nna->pending_pwqs)) 1993 node_activate_pending_pwq(nna, pool); 1994 } 1995 1996 /** 1997 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1998 * @pwq: pwq of interest 1999 * @work_data: work_data of work which left the queue 2000 * 2001 * A work either has completed or is removed from pending queue, 2002 * decrement nr_in_flight of its pwq and handle workqueue flushing. 2003 * 2004 * NOTE: 2005 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock 2006 * and thus should be called after all other state updates for the in-flight 2007 * work item is complete. 2008 * 2009 * CONTEXT: 2010 * raw_spin_lock_irq(pool->lock). 2011 */ 2012 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 2013 { 2014 int color = get_work_color(work_data); 2015 2016 if (!(work_data & WORK_STRUCT_INACTIVE)) 2017 pwq_dec_nr_active(pwq); 2018 2019 pwq->nr_in_flight[color]--; 2020 2021 /* is flush in progress and are we at the flushing tip? */ 2022 if (likely(pwq->flush_color != color)) 2023 goto out_put; 2024 2025 /* are there still in-flight works? */ 2026 if (pwq->nr_in_flight[color]) 2027 goto out_put; 2028 2029 /* this pwq is done, clear flush_color */ 2030 pwq->flush_color = -1; 2031 2032 /* 2033 * If this was the last pwq, wake up the first flusher. It 2034 * will handle the rest. 2035 */ 2036 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 2037 complete(&pwq->wq->first_flusher->done); 2038 out_put: 2039 put_pwq(pwq); 2040 } 2041 2042 /** 2043 * try_to_grab_pending - steal work item from worklist and disable irq 2044 * @work: work item to steal 2045 * @cflags: %WORK_CANCEL_ flags 2046 * @irq_flags: place to store irq state 2047 * 2048 * Try to grab PENDING bit of @work. This function can handle @work in any 2049 * stable state - idle, on timer or on worklist. 2050 * 2051 * Return: 2052 * 2053 * ======== ================================================================ 2054 * 1 if @work was pending and we successfully stole PENDING 2055 * 0 if @work was idle and we claimed PENDING 2056 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 2057 * -ENOENT if someone else is canceling @work, this state may persist 2058 * for arbitrarily long 2059 * ======== ================================================================ 2060 * 2061 * Note: 2062 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 2063 * interrupted while holding PENDING and @work off queue, irq must be 2064 * disabled on entry. This, combined with delayed_work->timer being 2065 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 2066 * 2067 * On successful return, >= 0, irq is disabled and the caller is 2068 * responsible for releasing it using local_irq_restore(*@irq_flags). 2069 * 2070 * This function is safe to call from any context including IRQ handler. 2071 */ 2072 static int try_to_grab_pending(struct work_struct *work, u32 cflags, 2073 unsigned long *irq_flags) 2074 { 2075 struct worker_pool *pool; 2076 struct pool_workqueue *pwq; 2077 2078 local_irq_save(*irq_flags); 2079 2080 /* try to steal the timer if it exists */ 2081 if (cflags & WORK_CANCEL_DELAYED) { 2082 struct delayed_work *dwork = to_delayed_work(work); 2083 2084 /* 2085 * dwork->timer is irqsafe. If del_timer() fails, it's 2086 * guaranteed that the timer is not queued anywhere and not 2087 * running on the local CPU. 2088 */ 2089 if (likely(del_timer(&dwork->timer))) 2090 return 1; 2091 } 2092 2093 /* try to claim PENDING the normal way */ 2094 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2095 return 0; 2096 2097 rcu_read_lock(); 2098 /* 2099 * The queueing is in progress, or it is already queued. Try to 2100 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2101 */ 2102 pool = get_work_pool(work); 2103 if (!pool) 2104 goto fail; 2105 2106 raw_spin_lock(&pool->lock); 2107 /* 2108 * work->data is guaranteed to point to pwq only while the work 2109 * item is queued on pwq->wq, and both updating work->data to point 2110 * to pwq on queueing and to pool on dequeueing are done under 2111 * pwq->pool->lock. This in turn guarantees that, if work->data 2112 * points to pwq which is associated with a locked pool, the work 2113 * item is currently queued on that pool. 2114 */ 2115 pwq = get_work_pwq(work); 2116 if (pwq && pwq->pool == pool) { 2117 unsigned long work_data; 2118 2119 debug_work_deactivate(work); 2120 2121 /* 2122 * A cancelable inactive work item must be in the 2123 * pwq->inactive_works since a queued barrier can't be 2124 * canceled (see the comments in insert_wq_barrier()). 2125 * 2126 * An inactive work item cannot be grabbed directly because 2127 * it might have linked barrier work items which, if left 2128 * on the inactive_works list, will confuse pwq->nr_active 2129 * management later on and cause stall. Make sure the work 2130 * item is activated before grabbing. 2131 */ 2132 pwq_activate_work(pwq, work); 2133 2134 list_del_init(&work->entry); 2135 2136 /* 2137 * work->data points to pwq iff queued. Let's point to pool. As 2138 * this destroys work->data needed by the next step, stash it. 2139 */ 2140 work_data = *work_data_bits(work); 2141 set_work_pool_and_keep_pending(work, pool->id, 0); 2142 2143 /* must be the last step, see the function comment */ 2144 pwq_dec_nr_in_flight(pwq, work_data); 2145 2146 raw_spin_unlock(&pool->lock); 2147 rcu_read_unlock(); 2148 return 1; 2149 } 2150 raw_spin_unlock(&pool->lock); 2151 fail: 2152 rcu_read_unlock(); 2153 local_irq_restore(*irq_flags); 2154 if (work_is_canceling(work)) 2155 return -ENOENT; 2156 cpu_relax(); 2157 return -EAGAIN; 2158 } 2159 2160 struct cwt_wait { 2161 wait_queue_entry_t wait; 2162 struct work_struct *work; 2163 }; 2164 2165 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 2166 { 2167 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 2168 2169 if (cwait->work != key) 2170 return 0; 2171 return autoremove_wake_function(wait, mode, sync, key); 2172 } 2173 2174 /** 2175 * work_grab_pending - steal work item from worklist and disable irq 2176 * @work: work item to steal 2177 * @cflags: %WORK_CANCEL_ flags 2178 * @irq_flags: place to store IRQ state 2179 * 2180 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer 2181 * or on worklist. 2182 * 2183 * Must be called in process context. IRQ is disabled on return with IRQ state 2184 * stored in *@irq_flags. The caller is responsible for re-enabling it using 2185 * local_irq_restore(). 2186 * 2187 * Returns %true if @work was pending. %false if idle. 2188 */ 2189 static bool work_grab_pending(struct work_struct *work, u32 cflags, 2190 unsigned long *irq_flags) 2191 { 2192 struct cwt_wait cwait; 2193 int ret; 2194 2195 might_sleep(); 2196 repeat: 2197 ret = try_to_grab_pending(work, cflags, irq_flags); 2198 if (likely(ret >= 0)) 2199 return ret; 2200 if (ret != -ENOENT) 2201 goto repeat; 2202 2203 /* 2204 * Someone is already canceling. Wait for it to finish. flush_work() 2205 * doesn't work for PREEMPT_NONE because we may get woken up between 2206 * @work's completion and the other canceling task resuming and clearing 2207 * CANCELING - flush_work() will return false immediately as @work is no 2208 * longer busy, try_to_grab_pending() will return -ENOENT as @work is 2209 * still being canceled and the other canceling task won't be able to 2210 * clear CANCELING as we're hogging the CPU. 2211 * 2212 * Let's wait for completion using a waitqueue. As this may lead to the 2213 * thundering herd problem, use a custom wake function which matches 2214 * @work along with exclusive wait and wakeup. 2215 */ 2216 init_wait(&cwait.wait); 2217 cwait.wait.func = cwt_wakefn; 2218 cwait.work = work; 2219 2220 prepare_to_wait_exclusive(&wq_cancel_waitq, &cwait.wait, 2221 TASK_UNINTERRUPTIBLE); 2222 if (work_is_canceling(work)) 2223 schedule(); 2224 finish_wait(&wq_cancel_waitq, &cwait.wait); 2225 2226 goto repeat; 2227 } 2228 2229 /** 2230 * insert_work - insert a work into a pool 2231 * @pwq: pwq @work belongs to 2232 * @work: work to insert 2233 * @head: insertion point 2234 * @extra_flags: extra WORK_STRUCT_* flags to set 2235 * 2236 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 2237 * work_struct flags. 2238 * 2239 * CONTEXT: 2240 * raw_spin_lock_irq(pool->lock). 2241 */ 2242 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 2243 struct list_head *head, unsigned int extra_flags) 2244 { 2245 debug_work_activate(work); 2246 2247 /* record the work call stack in order to print it in KASAN reports */ 2248 kasan_record_aux_stack_noalloc(work); 2249 2250 /* we own @work, set data and link */ 2251 set_work_pwq(work, pwq, extra_flags); 2252 list_add_tail(&work->entry, head); 2253 get_pwq(pwq); 2254 } 2255 2256 /* 2257 * Test whether @work is being queued from another work executing on the 2258 * same workqueue. 2259 */ 2260 static bool is_chained_work(struct workqueue_struct *wq) 2261 { 2262 struct worker *worker; 2263 2264 worker = current_wq_worker(); 2265 /* 2266 * Return %true iff I'm a worker executing a work item on @wq. If 2267 * I'm @worker, it's safe to dereference it without locking. 2268 */ 2269 return worker && worker->current_pwq->wq == wq; 2270 } 2271 2272 /* 2273 * When queueing an unbound work item to a wq, prefer local CPU if allowed 2274 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 2275 * avoid perturbing sensitive tasks. 2276 */ 2277 static int wq_select_unbound_cpu(int cpu) 2278 { 2279 int new_cpu; 2280 2281 if (likely(!wq_debug_force_rr_cpu)) { 2282 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 2283 return cpu; 2284 } else { 2285 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 2286 } 2287 2288 new_cpu = __this_cpu_read(wq_rr_cpu_last); 2289 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 2290 if (unlikely(new_cpu >= nr_cpu_ids)) { 2291 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 2292 if (unlikely(new_cpu >= nr_cpu_ids)) 2293 return cpu; 2294 } 2295 __this_cpu_write(wq_rr_cpu_last, new_cpu); 2296 2297 return new_cpu; 2298 } 2299 2300 static void __queue_work(int cpu, struct workqueue_struct *wq, 2301 struct work_struct *work) 2302 { 2303 struct pool_workqueue *pwq; 2304 struct worker_pool *last_pool, *pool; 2305 unsigned int work_flags; 2306 unsigned int req_cpu = cpu; 2307 2308 /* 2309 * While a work item is PENDING && off queue, a task trying to 2310 * steal the PENDING will busy-loop waiting for it to either get 2311 * queued or lose PENDING. Grabbing PENDING and queueing should 2312 * happen with IRQ disabled. 2313 */ 2314 lockdep_assert_irqs_disabled(); 2315 2316 /* 2317 * For a draining wq, only works from the same workqueue are 2318 * allowed. The __WQ_DESTROYING helps to spot the issue that 2319 * queues a new work item to a wq after destroy_workqueue(wq). 2320 */ 2321 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 2322 WARN_ON_ONCE(!is_chained_work(wq)))) 2323 return; 2324 rcu_read_lock(); 2325 retry: 2326 /* pwq which will be used unless @work is executing elsewhere */ 2327 if (req_cpu == WORK_CPU_UNBOUND) { 2328 if (wq->flags & WQ_UNBOUND) 2329 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 2330 else 2331 cpu = raw_smp_processor_id(); 2332 } 2333 2334 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu)); 2335 pool = pwq->pool; 2336 2337 /* 2338 * If @work was previously on a different pool, it might still be 2339 * running there, in which case the work needs to be queued on that 2340 * pool to guarantee non-reentrancy. 2341 */ 2342 last_pool = get_work_pool(work); 2343 if (last_pool && last_pool != pool) { 2344 struct worker *worker; 2345 2346 raw_spin_lock(&last_pool->lock); 2347 2348 worker = find_worker_executing_work(last_pool, work); 2349 2350 if (worker && worker->current_pwq->wq == wq) { 2351 pwq = worker->current_pwq; 2352 pool = pwq->pool; 2353 WARN_ON_ONCE(pool != last_pool); 2354 } else { 2355 /* meh... not running there, queue here */ 2356 raw_spin_unlock(&last_pool->lock); 2357 raw_spin_lock(&pool->lock); 2358 } 2359 } else { 2360 raw_spin_lock(&pool->lock); 2361 } 2362 2363 /* 2364 * pwq is determined and locked. For unbound pools, we could have raced 2365 * with pwq release and it could already be dead. If its refcnt is zero, 2366 * repeat pwq selection. Note that unbound pwqs never die without 2367 * another pwq replacing it in cpu_pwq or while work items are executing 2368 * on it, so the retrying is guaranteed to make forward-progress. 2369 */ 2370 if (unlikely(!pwq->refcnt)) { 2371 if (wq->flags & WQ_UNBOUND) { 2372 raw_spin_unlock(&pool->lock); 2373 cpu_relax(); 2374 goto retry; 2375 } 2376 /* oops */ 2377 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 2378 wq->name, cpu); 2379 } 2380 2381 /* pwq determined, queue */ 2382 trace_workqueue_queue_work(req_cpu, pwq, work); 2383 2384 if (WARN_ON(!list_empty(&work->entry))) 2385 goto out; 2386 2387 pwq->nr_in_flight[pwq->work_color]++; 2388 work_flags = work_color_to_flags(pwq->work_color); 2389 2390 /* 2391 * Limit the number of concurrently active work items to max_active. 2392 * @work must also queue behind existing inactive work items to maintain 2393 * ordering when max_active changes. See wq_adjust_max_active(). 2394 */ 2395 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) { 2396 if (list_empty(&pool->worklist)) 2397 pool->watchdog_ts = jiffies; 2398 2399 trace_workqueue_activate_work(work); 2400 insert_work(pwq, work, &pool->worklist, work_flags); 2401 kick_pool(pool); 2402 } else { 2403 work_flags |= WORK_STRUCT_INACTIVE; 2404 insert_work(pwq, work, &pwq->inactive_works, work_flags); 2405 } 2406 2407 out: 2408 raw_spin_unlock(&pool->lock); 2409 rcu_read_unlock(); 2410 } 2411 2412 /** 2413 * queue_work_on - queue work on specific cpu 2414 * @cpu: CPU number to execute work on 2415 * @wq: workqueue to use 2416 * @work: work to queue 2417 * 2418 * We queue the work to a specific CPU, the caller must ensure it 2419 * can't go away. Callers that fail to ensure that the specified 2420 * CPU cannot go away will execute on a randomly chosen CPU. 2421 * But note well that callers specifying a CPU that never has been 2422 * online will get a splat. 2423 * 2424 * Return: %false if @work was already on a queue, %true otherwise. 2425 */ 2426 bool queue_work_on(int cpu, struct workqueue_struct *wq, 2427 struct work_struct *work) 2428 { 2429 bool ret = false; 2430 unsigned long irq_flags; 2431 2432 local_irq_save(irq_flags); 2433 2434 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 2435 __queue_work(cpu, wq, work); 2436 ret = true; 2437 } 2438 2439 local_irq_restore(irq_flags); 2440 return ret; 2441 } 2442 EXPORT_SYMBOL(queue_work_on); 2443 2444 /** 2445 * select_numa_node_cpu - Select a CPU based on NUMA node 2446 * @node: NUMA node ID that we want to select a CPU from 2447 * 2448 * This function will attempt to find a "random" cpu available on a given 2449 * node. If there are no CPUs available on the given node it will return 2450 * WORK_CPU_UNBOUND indicating that we should just schedule to any 2451 * available CPU if we need to schedule this work. 2452 */ 2453 static int select_numa_node_cpu(int node) 2454 { 2455 int cpu; 2456 2457 /* Delay binding to CPU if node is not valid or online */ 2458 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 2459 return WORK_CPU_UNBOUND; 2460 2461 /* Use local node/cpu if we are already there */ 2462 cpu = raw_smp_processor_id(); 2463 if (node == cpu_to_node(cpu)) 2464 return cpu; 2465 2466 /* Use "random" otherwise know as "first" online CPU of node */ 2467 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 2468 2469 /* If CPU is valid return that, otherwise just defer */ 2470 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 2471 } 2472 2473 /** 2474 * queue_work_node - queue work on a "random" cpu for a given NUMA node 2475 * @node: NUMA node that we are targeting the work for 2476 * @wq: workqueue to use 2477 * @work: work to queue 2478 * 2479 * We queue the work to a "random" CPU within a given NUMA node. The basic 2480 * idea here is to provide a way to somehow associate work with a given 2481 * NUMA node. 2482 * 2483 * This function will only make a best effort attempt at getting this onto 2484 * the right NUMA node. If no node is requested or the requested node is 2485 * offline then we just fall back to standard queue_work behavior. 2486 * 2487 * Currently the "random" CPU ends up being the first available CPU in the 2488 * intersection of cpu_online_mask and the cpumask of the node, unless we 2489 * are running on the node. In that case we just use the current CPU. 2490 * 2491 * Return: %false if @work was already on a queue, %true otherwise. 2492 */ 2493 bool queue_work_node(int node, struct workqueue_struct *wq, 2494 struct work_struct *work) 2495 { 2496 unsigned long irq_flags; 2497 bool ret = false; 2498 2499 /* 2500 * This current implementation is specific to unbound workqueues. 2501 * Specifically we only return the first available CPU for a given 2502 * node instead of cycling through individual CPUs within the node. 2503 * 2504 * If this is used with a per-cpu workqueue then the logic in 2505 * workqueue_select_cpu_near would need to be updated to allow for 2506 * some round robin type logic. 2507 */ 2508 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 2509 2510 local_irq_save(irq_flags); 2511 2512 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 2513 int cpu = select_numa_node_cpu(node); 2514 2515 __queue_work(cpu, wq, work); 2516 ret = true; 2517 } 2518 2519 local_irq_restore(irq_flags); 2520 return ret; 2521 } 2522 EXPORT_SYMBOL_GPL(queue_work_node); 2523 2524 void delayed_work_timer_fn(struct timer_list *t) 2525 { 2526 struct delayed_work *dwork = from_timer(dwork, t, timer); 2527 2528 /* should have been called from irqsafe timer with irq already off */ 2529 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2530 } 2531 EXPORT_SYMBOL(delayed_work_timer_fn); 2532 2533 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 2534 struct delayed_work *dwork, unsigned long delay) 2535 { 2536 struct timer_list *timer = &dwork->timer; 2537 struct work_struct *work = &dwork->work; 2538 2539 WARN_ON_ONCE(!wq); 2540 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 2541 WARN_ON_ONCE(timer_pending(timer)); 2542 WARN_ON_ONCE(!list_empty(&work->entry)); 2543 2544 /* 2545 * If @delay is 0, queue @dwork->work immediately. This is for 2546 * both optimization and correctness. The earliest @timer can 2547 * expire is on the closest next tick and delayed_work users depend 2548 * on that there's no such delay when @delay is 0. 2549 */ 2550 if (!delay) { 2551 __queue_work(cpu, wq, &dwork->work); 2552 return; 2553 } 2554 2555 dwork->wq = wq; 2556 dwork->cpu = cpu; 2557 timer->expires = jiffies + delay; 2558 2559 if (housekeeping_enabled(HK_TYPE_TIMER)) { 2560 /* If the current cpu is a housekeeping cpu, use it. */ 2561 cpu = smp_processor_id(); 2562 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER)) 2563 cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 2564 add_timer_on(timer, cpu); 2565 } else { 2566 if (likely(cpu == WORK_CPU_UNBOUND)) 2567 add_timer_global(timer); 2568 else 2569 add_timer_on(timer, cpu); 2570 } 2571 } 2572 2573 /** 2574 * queue_delayed_work_on - queue work on specific CPU after delay 2575 * @cpu: CPU number to execute work on 2576 * @wq: workqueue to use 2577 * @dwork: work to queue 2578 * @delay: number of jiffies to wait before queueing 2579 * 2580 * Return: %false if @work was already on a queue, %true otherwise. If 2581 * @delay is zero and @dwork is idle, it will be scheduled for immediate 2582 * execution. 2583 */ 2584 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 2585 struct delayed_work *dwork, unsigned long delay) 2586 { 2587 struct work_struct *work = &dwork->work; 2588 bool ret = false; 2589 unsigned long irq_flags; 2590 2591 /* read the comment in __queue_work() */ 2592 local_irq_save(irq_flags); 2593 2594 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 2595 __queue_delayed_work(cpu, wq, dwork, delay); 2596 ret = true; 2597 } 2598 2599 local_irq_restore(irq_flags); 2600 return ret; 2601 } 2602 EXPORT_SYMBOL(queue_delayed_work_on); 2603 2604 /** 2605 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 2606 * @cpu: CPU number to execute work on 2607 * @wq: workqueue to use 2608 * @dwork: work to queue 2609 * @delay: number of jiffies to wait before queueing 2610 * 2611 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 2612 * modify @dwork's timer so that it expires after @delay. If @delay is 2613 * zero, @work is guaranteed to be scheduled immediately regardless of its 2614 * current state. 2615 * 2616 * Return: %false if @dwork was idle and queued, %true if @dwork was 2617 * pending and its timer was modified. 2618 * 2619 * This function is safe to call from any context including IRQ handler. 2620 * See try_to_grab_pending() for details. 2621 */ 2622 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 2623 struct delayed_work *dwork, unsigned long delay) 2624 { 2625 unsigned long irq_flags; 2626 int ret; 2627 2628 do { 2629 ret = try_to_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, 2630 &irq_flags); 2631 } while (unlikely(ret == -EAGAIN)); 2632 2633 if (likely(ret >= 0)) { 2634 __queue_delayed_work(cpu, wq, dwork, delay); 2635 local_irq_restore(irq_flags); 2636 } 2637 2638 /* -ENOENT from try_to_grab_pending() becomes %true */ 2639 return ret; 2640 } 2641 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 2642 2643 static void rcu_work_rcufn(struct rcu_head *rcu) 2644 { 2645 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 2646 2647 /* read the comment in __queue_work() */ 2648 local_irq_disable(); 2649 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 2650 local_irq_enable(); 2651 } 2652 2653 /** 2654 * queue_rcu_work - queue work after a RCU grace period 2655 * @wq: workqueue to use 2656 * @rwork: work to queue 2657 * 2658 * Return: %false if @rwork was already pending, %true otherwise. Note 2659 * that a full RCU grace period is guaranteed only after a %true return. 2660 * While @rwork is guaranteed to be executed after a %false return, the 2661 * execution may happen before a full RCU grace period has passed. 2662 */ 2663 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 2664 { 2665 struct work_struct *work = &rwork->work; 2666 2667 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 2668 rwork->wq = wq; 2669 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 2670 return true; 2671 } 2672 2673 return false; 2674 } 2675 EXPORT_SYMBOL(queue_rcu_work); 2676 2677 static struct worker *alloc_worker(int node) 2678 { 2679 struct worker *worker; 2680 2681 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 2682 if (worker) { 2683 INIT_LIST_HEAD(&worker->entry); 2684 INIT_LIST_HEAD(&worker->scheduled); 2685 INIT_LIST_HEAD(&worker->node); 2686 /* on creation a worker is in !idle && prep state */ 2687 worker->flags = WORKER_PREP; 2688 } 2689 return worker; 2690 } 2691 2692 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool) 2693 { 2694 if (pool->cpu < 0 && pool->attrs->affn_strict) 2695 return pool->attrs->__pod_cpumask; 2696 else 2697 return pool->attrs->cpumask; 2698 } 2699 2700 /** 2701 * worker_attach_to_pool() - attach a worker to a pool 2702 * @worker: worker to be attached 2703 * @pool: the target pool 2704 * 2705 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 2706 * cpu-binding of @worker are kept coordinated with the pool across 2707 * cpu-[un]hotplugs. 2708 */ 2709 static void worker_attach_to_pool(struct worker *worker, 2710 struct worker_pool *pool) 2711 { 2712 mutex_lock(&wq_pool_attach_mutex); 2713 2714 /* 2715 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable 2716 * across this function. See the comments above the flag definition for 2717 * details. BH workers are, while per-CPU, always DISASSOCIATED. 2718 */ 2719 if (pool->flags & POOL_DISASSOCIATED) { 2720 worker->flags |= WORKER_UNBOUND; 2721 } else { 2722 WARN_ON_ONCE(pool->flags & POOL_BH); 2723 kthread_set_per_cpu(worker->task, pool->cpu); 2724 } 2725 2726 if (worker->rescue_wq) 2727 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool)); 2728 2729 list_add_tail(&worker->node, &pool->workers); 2730 worker->pool = pool; 2731 2732 mutex_unlock(&wq_pool_attach_mutex); 2733 } 2734 2735 /** 2736 * worker_detach_from_pool() - detach a worker from its pool 2737 * @worker: worker which is attached to its pool 2738 * 2739 * Undo the attaching which had been done in worker_attach_to_pool(). The 2740 * caller worker shouldn't access to the pool after detached except it has 2741 * other reference to the pool. 2742 */ 2743 static void worker_detach_from_pool(struct worker *worker) 2744 { 2745 struct worker_pool *pool = worker->pool; 2746 struct completion *detach_completion = NULL; 2747 2748 /* there is one permanent BH worker per CPU which should never detach */ 2749 WARN_ON_ONCE(pool->flags & POOL_BH); 2750 2751 mutex_lock(&wq_pool_attach_mutex); 2752 2753 kthread_set_per_cpu(worker->task, -1); 2754 list_del(&worker->node); 2755 worker->pool = NULL; 2756 2757 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers)) 2758 detach_completion = pool->detach_completion; 2759 mutex_unlock(&wq_pool_attach_mutex); 2760 2761 /* clear leftover flags without pool->lock after it is detached */ 2762 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 2763 2764 if (detach_completion) 2765 complete(detach_completion); 2766 } 2767 2768 /** 2769 * create_worker - create a new workqueue worker 2770 * @pool: pool the new worker will belong to 2771 * 2772 * Create and start a new worker which is attached to @pool. 2773 * 2774 * CONTEXT: 2775 * Might sleep. Does GFP_KERNEL allocations. 2776 * 2777 * Return: 2778 * Pointer to the newly created worker. 2779 */ 2780 static struct worker *create_worker(struct worker_pool *pool) 2781 { 2782 struct worker *worker; 2783 int id; 2784 char id_buf[23]; 2785 2786 /* ID is needed to determine kthread name */ 2787 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 2788 if (id < 0) { 2789 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 2790 ERR_PTR(id)); 2791 return NULL; 2792 } 2793 2794 worker = alloc_worker(pool->node); 2795 if (!worker) { 2796 pr_err_once("workqueue: Failed to allocate a worker\n"); 2797 goto fail; 2798 } 2799 2800 worker->id = id; 2801 2802 if (!(pool->flags & POOL_BH)) { 2803 if (pool->cpu >= 0) 2804 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 2805 pool->attrs->nice < 0 ? "H" : ""); 2806 else 2807 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 2808 2809 worker->task = kthread_create_on_node(worker_thread, worker, 2810 pool->node, "kworker/%s", id_buf); 2811 if (IS_ERR(worker->task)) { 2812 if (PTR_ERR(worker->task) == -EINTR) { 2813 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n", 2814 id_buf); 2815 } else { 2816 pr_err_once("workqueue: Failed to create a worker thread: %pe", 2817 worker->task); 2818 } 2819 goto fail; 2820 } 2821 2822 set_user_nice(worker->task, pool->attrs->nice); 2823 kthread_bind_mask(worker->task, pool_allowed_cpus(pool)); 2824 } 2825 2826 /* successful, attach the worker to the pool */ 2827 worker_attach_to_pool(worker, pool); 2828 2829 /* start the newly created worker */ 2830 raw_spin_lock_irq(&pool->lock); 2831 2832 worker->pool->nr_workers++; 2833 worker_enter_idle(worker); 2834 2835 /* 2836 * @worker is waiting on a completion in kthread() and will trigger hung 2837 * check if not woken up soon. As kick_pool() is noop if @pool is empty, 2838 * wake it up explicitly. 2839 */ 2840 if (worker->task) 2841 wake_up_process(worker->task); 2842 2843 raw_spin_unlock_irq(&pool->lock); 2844 2845 return worker; 2846 2847 fail: 2848 ida_free(&pool->worker_ida, id); 2849 kfree(worker); 2850 return NULL; 2851 } 2852 2853 static void unbind_worker(struct worker *worker) 2854 { 2855 lockdep_assert_held(&wq_pool_attach_mutex); 2856 2857 kthread_set_per_cpu(worker->task, -1); 2858 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 2859 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 2860 else 2861 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2862 } 2863 2864 static void wake_dying_workers(struct list_head *cull_list) 2865 { 2866 struct worker *worker, *tmp; 2867 2868 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2869 list_del_init(&worker->entry); 2870 unbind_worker(worker); 2871 /* 2872 * If the worker was somehow already running, then it had to be 2873 * in pool->idle_list when set_worker_dying() happened or we 2874 * wouldn't have gotten here. 2875 * 2876 * Thus, the worker must either have observed the WORKER_DIE 2877 * flag, or have set its state to TASK_IDLE. Either way, the 2878 * below will be observed by the worker and is safe to do 2879 * outside of pool->lock. 2880 */ 2881 wake_up_process(worker->task); 2882 } 2883 } 2884 2885 /** 2886 * set_worker_dying - Tag a worker for destruction 2887 * @worker: worker to be destroyed 2888 * @list: transfer worker away from its pool->idle_list and into list 2889 * 2890 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2891 * should be idle. 2892 * 2893 * CONTEXT: 2894 * raw_spin_lock_irq(pool->lock). 2895 */ 2896 static void set_worker_dying(struct worker *worker, struct list_head *list) 2897 { 2898 struct worker_pool *pool = worker->pool; 2899 2900 lockdep_assert_held(&pool->lock); 2901 lockdep_assert_held(&wq_pool_attach_mutex); 2902 2903 /* sanity check frenzy */ 2904 if (WARN_ON(worker->current_work) || 2905 WARN_ON(!list_empty(&worker->scheduled)) || 2906 WARN_ON(!(worker->flags & WORKER_IDLE))) 2907 return; 2908 2909 pool->nr_workers--; 2910 pool->nr_idle--; 2911 2912 worker->flags |= WORKER_DIE; 2913 2914 list_move(&worker->entry, list); 2915 list_move(&worker->node, &pool->dying_workers); 2916 } 2917 2918 /** 2919 * idle_worker_timeout - check if some idle workers can now be deleted. 2920 * @t: The pool's idle_timer that just expired 2921 * 2922 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2923 * worker_leave_idle(), as a worker flicking between idle and active while its 2924 * pool is at the too_many_workers() tipping point would cause too much timer 2925 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2926 * it expire and re-evaluate things from there. 2927 */ 2928 static void idle_worker_timeout(struct timer_list *t) 2929 { 2930 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2931 bool do_cull = false; 2932 2933 if (work_pending(&pool->idle_cull_work)) 2934 return; 2935 2936 raw_spin_lock_irq(&pool->lock); 2937 2938 if (too_many_workers(pool)) { 2939 struct worker *worker; 2940 unsigned long expires; 2941 2942 /* idle_list is kept in LIFO order, check the last one */ 2943 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2944 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2945 do_cull = !time_before(jiffies, expires); 2946 2947 if (!do_cull) 2948 mod_timer(&pool->idle_timer, expires); 2949 } 2950 raw_spin_unlock_irq(&pool->lock); 2951 2952 if (do_cull) 2953 queue_work(system_unbound_wq, &pool->idle_cull_work); 2954 } 2955 2956 /** 2957 * idle_cull_fn - cull workers that have been idle for too long. 2958 * @work: the pool's work for handling these idle workers 2959 * 2960 * This goes through a pool's idle workers and gets rid of those that have been 2961 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2962 * 2963 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2964 * culled, so this also resets worker affinity. This requires a sleepable 2965 * context, hence the split between timer callback and work item. 2966 */ 2967 static void idle_cull_fn(struct work_struct *work) 2968 { 2969 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2970 LIST_HEAD(cull_list); 2971 2972 /* 2973 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2974 * cannot proceed beyong worker_detach_from_pool() in its self-destruct 2975 * path. This is required as a previously-preempted worker could run after 2976 * set_worker_dying() has happened but before wake_dying_workers() did. 2977 */ 2978 mutex_lock(&wq_pool_attach_mutex); 2979 raw_spin_lock_irq(&pool->lock); 2980 2981 while (too_many_workers(pool)) { 2982 struct worker *worker; 2983 unsigned long expires; 2984 2985 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2986 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2987 2988 if (time_before(jiffies, expires)) { 2989 mod_timer(&pool->idle_timer, expires); 2990 break; 2991 } 2992 2993 set_worker_dying(worker, &cull_list); 2994 } 2995 2996 raw_spin_unlock_irq(&pool->lock); 2997 wake_dying_workers(&cull_list); 2998 mutex_unlock(&wq_pool_attach_mutex); 2999 } 3000 3001 static void send_mayday(struct work_struct *work) 3002 { 3003 struct pool_workqueue *pwq = get_work_pwq(work); 3004 struct workqueue_struct *wq = pwq->wq; 3005 3006 lockdep_assert_held(&wq_mayday_lock); 3007 3008 if (!wq->rescuer) 3009 return; 3010 3011 /* mayday mayday mayday */ 3012 if (list_empty(&pwq->mayday_node)) { 3013 /* 3014 * If @pwq is for an unbound wq, its base ref may be put at 3015 * any time due to an attribute change. Pin @pwq until the 3016 * rescuer is done with it. 3017 */ 3018 get_pwq(pwq); 3019 list_add_tail(&pwq->mayday_node, &wq->maydays); 3020 wake_up_process(wq->rescuer->task); 3021 pwq->stats[PWQ_STAT_MAYDAY]++; 3022 } 3023 } 3024 3025 static void pool_mayday_timeout(struct timer_list *t) 3026 { 3027 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 3028 struct work_struct *work; 3029 3030 raw_spin_lock_irq(&pool->lock); 3031 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 3032 3033 if (need_to_create_worker(pool)) { 3034 /* 3035 * We've been trying to create a new worker but 3036 * haven't been successful. We might be hitting an 3037 * allocation deadlock. Send distress signals to 3038 * rescuers. 3039 */ 3040 list_for_each_entry(work, &pool->worklist, entry) 3041 send_mayday(work); 3042 } 3043 3044 raw_spin_unlock(&wq_mayday_lock); 3045 raw_spin_unlock_irq(&pool->lock); 3046 3047 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 3048 } 3049 3050 /** 3051 * maybe_create_worker - create a new worker if necessary 3052 * @pool: pool to create a new worker for 3053 * 3054 * Create a new worker for @pool if necessary. @pool is guaranteed to 3055 * have at least one idle worker on return from this function. If 3056 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 3057 * sent to all rescuers with works scheduled on @pool to resolve 3058 * possible allocation deadlock. 3059 * 3060 * On return, need_to_create_worker() is guaranteed to be %false and 3061 * may_start_working() %true. 3062 * 3063 * LOCKING: 3064 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3065 * multiple times. Does GFP_KERNEL allocations. Called only from 3066 * manager. 3067 */ 3068 static void maybe_create_worker(struct worker_pool *pool) 3069 __releases(&pool->lock) 3070 __acquires(&pool->lock) 3071 { 3072 restart: 3073 raw_spin_unlock_irq(&pool->lock); 3074 3075 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 3076 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 3077 3078 while (true) { 3079 if (create_worker(pool) || !need_to_create_worker(pool)) 3080 break; 3081 3082 schedule_timeout_interruptible(CREATE_COOLDOWN); 3083 3084 if (!need_to_create_worker(pool)) 3085 break; 3086 } 3087 3088 del_timer_sync(&pool->mayday_timer); 3089 raw_spin_lock_irq(&pool->lock); 3090 /* 3091 * This is necessary even after a new worker was just successfully 3092 * created as @pool->lock was dropped and the new worker might have 3093 * already become busy. 3094 */ 3095 if (need_to_create_worker(pool)) 3096 goto restart; 3097 } 3098 3099 /** 3100 * manage_workers - manage worker pool 3101 * @worker: self 3102 * 3103 * Assume the manager role and manage the worker pool @worker belongs 3104 * to. At any given time, there can be only zero or one manager per 3105 * pool. The exclusion is handled automatically by this function. 3106 * 3107 * The caller can safely start processing works on false return. On 3108 * true return, it's guaranteed that need_to_create_worker() is false 3109 * and may_start_working() is true. 3110 * 3111 * CONTEXT: 3112 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3113 * multiple times. Does GFP_KERNEL allocations. 3114 * 3115 * Return: 3116 * %false if the pool doesn't need management and the caller can safely 3117 * start processing works, %true if management function was performed and 3118 * the conditions that the caller verified before calling the function may 3119 * no longer be true. 3120 */ 3121 static bool manage_workers(struct worker *worker) 3122 { 3123 struct worker_pool *pool = worker->pool; 3124 3125 if (pool->flags & POOL_MANAGER_ACTIVE) 3126 return false; 3127 3128 pool->flags |= POOL_MANAGER_ACTIVE; 3129 pool->manager = worker; 3130 3131 maybe_create_worker(pool); 3132 3133 pool->manager = NULL; 3134 pool->flags &= ~POOL_MANAGER_ACTIVE; 3135 rcuwait_wake_up(&manager_wait); 3136 return true; 3137 } 3138 3139 /** 3140 * process_one_work - process single work 3141 * @worker: self 3142 * @work: work to process 3143 * 3144 * Process @work. This function contains all the logics necessary to 3145 * process a single work including synchronization against and 3146 * interaction with other workers on the same cpu, queueing and 3147 * flushing. As long as context requirement is met, any worker can 3148 * call this function to process a work. 3149 * 3150 * CONTEXT: 3151 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 3152 */ 3153 static void process_one_work(struct worker *worker, struct work_struct *work) 3154 __releases(&pool->lock) 3155 __acquires(&pool->lock) 3156 { 3157 struct pool_workqueue *pwq = get_work_pwq(work); 3158 struct worker_pool *pool = worker->pool; 3159 unsigned long work_data; 3160 int lockdep_start_depth, rcu_start_depth; 3161 bool bh_draining = pool->flags & POOL_BH_DRAINING; 3162 #ifdef CONFIG_LOCKDEP 3163 /* 3164 * It is permissible to free the struct work_struct from 3165 * inside the function that is called from it, this we need to 3166 * take into account for lockdep too. To avoid bogus "held 3167 * lock freed" warnings as well as problems when looking into 3168 * work->lockdep_map, make a copy and use that here. 3169 */ 3170 struct lockdep_map lockdep_map; 3171 3172 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 3173 #endif 3174 /* ensure we're on the correct CPU */ 3175 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 3176 raw_smp_processor_id() != pool->cpu); 3177 3178 /* claim and dequeue */ 3179 debug_work_deactivate(work); 3180 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 3181 worker->current_work = work; 3182 worker->current_func = work->func; 3183 worker->current_pwq = pwq; 3184 if (worker->task) 3185 worker->current_at = worker->task->se.sum_exec_runtime; 3186 work_data = *work_data_bits(work); 3187 worker->current_color = get_work_color(work_data); 3188 3189 /* 3190 * Record wq name for cmdline and debug reporting, may get 3191 * overridden through set_worker_desc(). 3192 */ 3193 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 3194 3195 list_del_init(&work->entry); 3196 3197 /* 3198 * CPU intensive works don't participate in concurrency management. 3199 * They're the scheduler's responsibility. This takes @worker out 3200 * of concurrency management and the next code block will chain 3201 * execution of the pending work items. 3202 */ 3203 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) 3204 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 3205 3206 /* 3207 * Kick @pool if necessary. It's always noop for per-cpu worker pools 3208 * since nr_running would always be >= 1 at this point. This is used to 3209 * chain execution of the pending work items for WORKER_NOT_RUNNING 3210 * workers such as the UNBOUND and CPU_INTENSIVE ones. 3211 */ 3212 kick_pool(pool); 3213 3214 /* 3215 * Record the last pool and clear PENDING which should be the last 3216 * update to @work. Also, do this inside @pool->lock so that 3217 * PENDING and queued state changes happen together while IRQ is 3218 * disabled. 3219 */ 3220 set_work_pool_and_clear_pending(work, pool->id, 0); 3221 3222 pwq->stats[PWQ_STAT_STARTED]++; 3223 raw_spin_unlock_irq(&pool->lock); 3224 3225 rcu_start_depth = rcu_preempt_depth(); 3226 lockdep_start_depth = lockdep_depth(current); 3227 /* see drain_dead_softirq_workfn() */ 3228 if (!bh_draining) 3229 lock_map_acquire(&pwq->wq->lockdep_map); 3230 lock_map_acquire(&lockdep_map); 3231 /* 3232 * Strictly speaking we should mark the invariant state without holding 3233 * any locks, that is, before these two lock_map_acquire()'s. 3234 * 3235 * However, that would result in: 3236 * 3237 * A(W1) 3238 * WFC(C) 3239 * A(W1) 3240 * C(C) 3241 * 3242 * Which would create W1->C->W1 dependencies, even though there is no 3243 * actual deadlock possible. There are two solutions, using a 3244 * read-recursive acquire on the work(queue) 'locks', but this will then 3245 * hit the lockdep limitation on recursive locks, or simply discard 3246 * these locks. 3247 * 3248 * AFAICT there is no possible deadlock scenario between the 3249 * flush_work() and complete() primitives (except for single-threaded 3250 * workqueues), so hiding them isn't a problem. 3251 */ 3252 lockdep_invariant_state(true); 3253 trace_workqueue_execute_start(work); 3254 worker->current_func(work); 3255 /* 3256 * While we must be careful to not use "work" after this, the trace 3257 * point will only record its address. 3258 */ 3259 trace_workqueue_execute_end(work, worker->current_func); 3260 pwq->stats[PWQ_STAT_COMPLETED]++; 3261 lock_map_release(&lockdep_map); 3262 if (!bh_draining) 3263 lock_map_release(&pwq->wq->lockdep_map); 3264 3265 if (unlikely((worker->task && in_atomic()) || 3266 lockdep_depth(current) != lockdep_start_depth || 3267 rcu_preempt_depth() != rcu_start_depth)) { 3268 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n" 3269 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n", 3270 current->comm, task_pid_nr(current), preempt_count(), 3271 lockdep_start_depth, lockdep_depth(current), 3272 rcu_start_depth, rcu_preempt_depth(), 3273 worker->current_func); 3274 debug_show_held_locks(current); 3275 dump_stack(); 3276 } 3277 3278 /* 3279 * The following prevents a kworker from hogging CPU on !PREEMPTION 3280 * kernels, where a requeueing work item waiting for something to 3281 * happen could deadlock with stop_machine as such work item could 3282 * indefinitely requeue itself while all other CPUs are trapped in 3283 * stop_machine. At the same time, report a quiescent RCU state so 3284 * the same condition doesn't freeze RCU. 3285 */ 3286 if (worker->task) 3287 cond_resched(); 3288 3289 raw_spin_lock_irq(&pool->lock); 3290 3291 /* 3292 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked 3293 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than 3294 * wq_cpu_intensive_thresh_us. Clear it. 3295 */ 3296 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 3297 3298 /* tag the worker for identification in schedule() */ 3299 worker->last_func = worker->current_func; 3300 3301 /* we're done with it, release */ 3302 hash_del(&worker->hentry); 3303 worker->current_work = NULL; 3304 worker->current_func = NULL; 3305 worker->current_pwq = NULL; 3306 worker->current_color = INT_MAX; 3307 3308 /* must be the last step, see the function comment */ 3309 pwq_dec_nr_in_flight(pwq, work_data); 3310 } 3311 3312 /** 3313 * process_scheduled_works - process scheduled works 3314 * @worker: self 3315 * 3316 * Process all scheduled works. Please note that the scheduled list 3317 * may change while processing a work, so this function repeatedly 3318 * fetches a work from the top and executes it. 3319 * 3320 * CONTEXT: 3321 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3322 * multiple times. 3323 */ 3324 static void process_scheduled_works(struct worker *worker) 3325 { 3326 struct work_struct *work; 3327 bool first = true; 3328 3329 while ((work = list_first_entry_or_null(&worker->scheduled, 3330 struct work_struct, entry))) { 3331 if (first) { 3332 worker->pool->watchdog_ts = jiffies; 3333 first = false; 3334 } 3335 process_one_work(worker, work); 3336 } 3337 } 3338 3339 static void set_pf_worker(bool val) 3340 { 3341 mutex_lock(&wq_pool_attach_mutex); 3342 if (val) 3343 current->flags |= PF_WQ_WORKER; 3344 else 3345 current->flags &= ~PF_WQ_WORKER; 3346 mutex_unlock(&wq_pool_attach_mutex); 3347 } 3348 3349 /** 3350 * worker_thread - the worker thread function 3351 * @__worker: self 3352 * 3353 * The worker thread function. All workers belong to a worker_pool - 3354 * either a per-cpu one or dynamic unbound one. These workers process all 3355 * work items regardless of their specific target workqueue. The only 3356 * exception is work items which belong to workqueues with a rescuer which 3357 * will be explained in rescuer_thread(). 3358 * 3359 * Return: 0 3360 */ 3361 static int worker_thread(void *__worker) 3362 { 3363 struct worker *worker = __worker; 3364 struct worker_pool *pool = worker->pool; 3365 3366 /* tell the scheduler that this is a workqueue worker */ 3367 set_pf_worker(true); 3368 woke_up: 3369 raw_spin_lock_irq(&pool->lock); 3370 3371 /* am I supposed to die? */ 3372 if (unlikely(worker->flags & WORKER_DIE)) { 3373 raw_spin_unlock_irq(&pool->lock); 3374 set_pf_worker(false); 3375 3376 set_task_comm(worker->task, "kworker/dying"); 3377 ida_free(&pool->worker_ida, worker->id); 3378 worker_detach_from_pool(worker); 3379 WARN_ON_ONCE(!list_empty(&worker->entry)); 3380 kfree(worker); 3381 return 0; 3382 } 3383 3384 worker_leave_idle(worker); 3385 recheck: 3386 /* no more worker necessary? */ 3387 if (!need_more_worker(pool)) 3388 goto sleep; 3389 3390 /* do we need to manage? */ 3391 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 3392 goto recheck; 3393 3394 /* 3395 * ->scheduled list can only be filled while a worker is 3396 * preparing to process a work or actually processing it. 3397 * Make sure nobody diddled with it while I was sleeping. 3398 */ 3399 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3400 3401 /* 3402 * Finish PREP stage. We're guaranteed to have at least one idle 3403 * worker or that someone else has already assumed the manager 3404 * role. This is where @worker starts participating in concurrency 3405 * management if applicable and concurrency management is restored 3406 * after being rebound. See rebind_workers() for details. 3407 */ 3408 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3409 3410 do { 3411 struct work_struct *work = 3412 list_first_entry(&pool->worklist, 3413 struct work_struct, entry); 3414 3415 if (assign_work(work, worker, NULL)) 3416 process_scheduled_works(worker); 3417 } while (keep_working(pool)); 3418 3419 worker_set_flags(worker, WORKER_PREP); 3420 sleep: 3421 /* 3422 * pool->lock is held and there's no work to process and no need to 3423 * manage, sleep. Workers are woken up only while holding 3424 * pool->lock or from local cpu, so setting the current state 3425 * before releasing pool->lock is enough to prevent losing any 3426 * event. 3427 */ 3428 worker_enter_idle(worker); 3429 __set_current_state(TASK_IDLE); 3430 raw_spin_unlock_irq(&pool->lock); 3431 schedule(); 3432 goto woke_up; 3433 } 3434 3435 /** 3436 * rescuer_thread - the rescuer thread function 3437 * @__rescuer: self 3438 * 3439 * Workqueue rescuer thread function. There's one rescuer for each 3440 * workqueue which has WQ_MEM_RECLAIM set. 3441 * 3442 * Regular work processing on a pool may block trying to create a new 3443 * worker which uses GFP_KERNEL allocation which has slight chance of 3444 * developing into deadlock if some works currently on the same queue 3445 * need to be processed to satisfy the GFP_KERNEL allocation. This is 3446 * the problem rescuer solves. 3447 * 3448 * When such condition is possible, the pool summons rescuers of all 3449 * workqueues which have works queued on the pool and let them process 3450 * those works so that forward progress can be guaranteed. 3451 * 3452 * This should happen rarely. 3453 * 3454 * Return: 0 3455 */ 3456 static int rescuer_thread(void *__rescuer) 3457 { 3458 struct worker *rescuer = __rescuer; 3459 struct workqueue_struct *wq = rescuer->rescue_wq; 3460 bool should_stop; 3461 3462 set_user_nice(current, RESCUER_NICE_LEVEL); 3463 3464 /* 3465 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 3466 * doesn't participate in concurrency management. 3467 */ 3468 set_pf_worker(true); 3469 repeat: 3470 set_current_state(TASK_IDLE); 3471 3472 /* 3473 * By the time the rescuer is requested to stop, the workqueue 3474 * shouldn't have any work pending, but @wq->maydays may still have 3475 * pwq(s) queued. This can happen by non-rescuer workers consuming 3476 * all the work items before the rescuer got to them. Go through 3477 * @wq->maydays processing before acting on should_stop so that the 3478 * list is always empty on exit. 3479 */ 3480 should_stop = kthread_should_stop(); 3481 3482 /* see whether any pwq is asking for help */ 3483 raw_spin_lock_irq(&wq_mayday_lock); 3484 3485 while (!list_empty(&wq->maydays)) { 3486 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 3487 struct pool_workqueue, mayday_node); 3488 struct worker_pool *pool = pwq->pool; 3489 struct work_struct *work, *n; 3490 3491 __set_current_state(TASK_RUNNING); 3492 list_del_init(&pwq->mayday_node); 3493 3494 raw_spin_unlock_irq(&wq_mayday_lock); 3495 3496 worker_attach_to_pool(rescuer, pool); 3497 3498 raw_spin_lock_irq(&pool->lock); 3499 3500 /* 3501 * Slurp in all works issued via this workqueue and 3502 * process'em. 3503 */ 3504 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 3505 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 3506 if (get_work_pwq(work) == pwq && 3507 assign_work(work, rescuer, &n)) 3508 pwq->stats[PWQ_STAT_RESCUED]++; 3509 } 3510 3511 if (!list_empty(&rescuer->scheduled)) { 3512 process_scheduled_works(rescuer); 3513 3514 /* 3515 * The above execution of rescued work items could 3516 * have created more to rescue through 3517 * pwq_activate_first_inactive() or chained 3518 * queueing. Let's put @pwq back on mayday list so 3519 * that such back-to-back work items, which may be 3520 * being used to relieve memory pressure, don't 3521 * incur MAYDAY_INTERVAL delay inbetween. 3522 */ 3523 if (pwq->nr_active && need_to_create_worker(pool)) { 3524 raw_spin_lock(&wq_mayday_lock); 3525 /* 3526 * Queue iff we aren't racing destruction 3527 * and somebody else hasn't queued it already. 3528 */ 3529 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 3530 get_pwq(pwq); 3531 list_add_tail(&pwq->mayday_node, &wq->maydays); 3532 } 3533 raw_spin_unlock(&wq_mayday_lock); 3534 } 3535 } 3536 3537 /* 3538 * Put the reference grabbed by send_mayday(). @pool won't 3539 * go away while we're still attached to it. 3540 */ 3541 put_pwq(pwq); 3542 3543 /* 3544 * Leave this pool. Notify regular workers; otherwise, we end up 3545 * with 0 concurrency and stalling the execution. 3546 */ 3547 kick_pool(pool); 3548 3549 raw_spin_unlock_irq(&pool->lock); 3550 3551 worker_detach_from_pool(rescuer); 3552 3553 raw_spin_lock_irq(&wq_mayday_lock); 3554 } 3555 3556 raw_spin_unlock_irq(&wq_mayday_lock); 3557 3558 if (should_stop) { 3559 __set_current_state(TASK_RUNNING); 3560 set_pf_worker(false); 3561 return 0; 3562 } 3563 3564 /* rescuers should never participate in concurrency management */ 3565 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 3566 schedule(); 3567 goto repeat; 3568 } 3569 3570 static void bh_worker(struct worker *worker) 3571 { 3572 struct worker_pool *pool = worker->pool; 3573 int nr_restarts = BH_WORKER_RESTARTS; 3574 unsigned long end = jiffies + BH_WORKER_JIFFIES; 3575 3576 raw_spin_lock_irq(&pool->lock); 3577 worker_leave_idle(worker); 3578 3579 /* 3580 * This function follows the structure of worker_thread(). See there for 3581 * explanations on each step. 3582 */ 3583 if (!need_more_worker(pool)) 3584 goto done; 3585 3586 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3587 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3588 3589 do { 3590 struct work_struct *work = 3591 list_first_entry(&pool->worklist, 3592 struct work_struct, entry); 3593 3594 if (assign_work(work, worker, NULL)) 3595 process_scheduled_works(worker); 3596 } while (keep_working(pool) && 3597 --nr_restarts && time_before(jiffies, end)); 3598 3599 worker_set_flags(worker, WORKER_PREP); 3600 done: 3601 worker_enter_idle(worker); 3602 kick_pool(pool); 3603 raw_spin_unlock_irq(&pool->lock); 3604 } 3605 3606 /* 3607 * TODO: Convert all tasklet users to workqueue and use softirq directly. 3608 * 3609 * This is currently called from tasklet[_hi]action() and thus is also called 3610 * whenever there are tasklets to run. Let's do an early exit if there's nothing 3611 * queued. Once conversion from tasklet is complete, the need_more_worker() test 3612 * can be dropped. 3613 * 3614 * After full conversion, we'll add worker->softirq_action, directly use the 3615 * softirq action and obtain the worker pointer from the softirq_action pointer. 3616 */ 3617 void workqueue_softirq_action(bool highpri) 3618 { 3619 struct worker_pool *pool = 3620 &per_cpu(bh_worker_pools, smp_processor_id())[highpri]; 3621 if (need_more_worker(pool)) 3622 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3623 } 3624 3625 struct wq_drain_dead_softirq_work { 3626 struct work_struct work; 3627 struct worker_pool *pool; 3628 struct completion done; 3629 }; 3630 3631 static void drain_dead_softirq_workfn(struct work_struct *work) 3632 { 3633 struct wq_drain_dead_softirq_work *dead_work = 3634 container_of(work, struct wq_drain_dead_softirq_work, work); 3635 struct worker_pool *pool = dead_work->pool; 3636 bool repeat; 3637 3638 /* 3639 * @pool's CPU is dead and we want to execute its still pending work 3640 * items from this BH work item which is running on a different CPU. As 3641 * its CPU is dead, @pool can't be kicked and, as work execution path 3642 * will be nested, a lockdep annotation needs to be suppressed. Mark 3643 * @pool with %POOL_BH_DRAINING for the special treatments. 3644 */ 3645 raw_spin_lock_irq(&pool->lock); 3646 pool->flags |= POOL_BH_DRAINING; 3647 raw_spin_unlock_irq(&pool->lock); 3648 3649 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3650 3651 raw_spin_lock_irq(&pool->lock); 3652 pool->flags &= ~POOL_BH_DRAINING; 3653 repeat = need_more_worker(pool); 3654 raw_spin_unlock_irq(&pool->lock); 3655 3656 /* 3657 * bh_worker() might hit consecutive execution limit and bail. If there 3658 * still are pending work items, reschedule self and return so that we 3659 * don't hog this CPU's BH. 3660 */ 3661 if (repeat) { 3662 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3663 queue_work(system_bh_highpri_wq, work); 3664 else 3665 queue_work(system_bh_wq, work); 3666 } else { 3667 complete(&dead_work->done); 3668 } 3669 } 3670 3671 /* 3672 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's 3673 * possible to allocate dead_work per CPU and avoid flushing. However, then we 3674 * have to worry about draining overlapping with CPU coming back online or 3675 * nesting (one CPU's dead_work queued on another CPU which is also dead and so 3676 * on). Let's keep it simple and drain them synchronously. These are BH work 3677 * items which shouldn't be requeued on the same pool. Shouldn't take long. 3678 */ 3679 void workqueue_softirq_dead(unsigned int cpu) 3680 { 3681 int i; 3682 3683 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 3684 struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i]; 3685 struct wq_drain_dead_softirq_work dead_work; 3686 3687 if (!need_more_worker(pool)) 3688 continue; 3689 3690 INIT_WORK(&dead_work.work, drain_dead_softirq_workfn); 3691 dead_work.pool = pool; 3692 init_completion(&dead_work.done); 3693 3694 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3695 queue_work(system_bh_highpri_wq, &dead_work.work); 3696 else 3697 queue_work(system_bh_wq, &dead_work.work); 3698 3699 wait_for_completion(&dead_work.done); 3700 } 3701 } 3702 3703 /** 3704 * check_flush_dependency - check for flush dependency sanity 3705 * @target_wq: workqueue being flushed 3706 * @target_work: work item being flushed (NULL for workqueue flushes) 3707 * 3708 * %current is trying to flush the whole @target_wq or @target_work on it. 3709 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 3710 * reclaiming memory or running on a workqueue which doesn't have 3711 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 3712 * a deadlock. 3713 */ 3714 static void check_flush_dependency(struct workqueue_struct *target_wq, 3715 struct work_struct *target_work) 3716 { 3717 work_func_t target_func = target_work ? target_work->func : NULL; 3718 struct worker *worker; 3719 3720 if (target_wq->flags & WQ_MEM_RECLAIM) 3721 return; 3722 3723 worker = current_wq_worker(); 3724 3725 WARN_ONCE(current->flags & PF_MEMALLOC, 3726 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 3727 current->pid, current->comm, target_wq->name, target_func); 3728 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 3729 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 3730 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 3731 worker->current_pwq->wq->name, worker->current_func, 3732 target_wq->name, target_func); 3733 } 3734 3735 struct wq_barrier { 3736 struct work_struct work; 3737 struct completion done; 3738 struct task_struct *task; /* purely informational */ 3739 }; 3740 3741 static void wq_barrier_func(struct work_struct *work) 3742 { 3743 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 3744 complete(&barr->done); 3745 } 3746 3747 /** 3748 * insert_wq_barrier - insert a barrier work 3749 * @pwq: pwq to insert barrier into 3750 * @barr: wq_barrier to insert 3751 * @target: target work to attach @barr to 3752 * @worker: worker currently executing @target, NULL if @target is not executing 3753 * 3754 * @barr is linked to @target such that @barr is completed only after 3755 * @target finishes execution. Please note that the ordering 3756 * guarantee is observed only with respect to @target and on the local 3757 * cpu. 3758 * 3759 * Currently, a queued barrier can't be canceled. This is because 3760 * try_to_grab_pending() can't determine whether the work to be 3761 * grabbed is at the head of the queue and thus can't clear LINKED 3762 * flag of the previous work while there must be a valid next work 3763 * after a work with LINKED flag set. 3764 * 3765 * Note that when @worker is non-NULL, @target may be modified 3766 * underneath us, so we can't reliably determine pwq from @target. 3767 * 3768 * CONTEXT: 3769 * raw_spin_lock_irq(pool->lock). 3770 */ 3771 static void insert_wq_barrier(struct pool_workqueue *pwq, 3772 struct wq_barrier *barr, 3773 struct work_struct *target, struct worker *worker) 3774 { 3775 static __maybe_unused struct lock_class_key bh_key, thr_key; 3776 unsigned int work_flags = 0; 3777 unsigned int work_color; 3778 struct list_head *head; 3779 3780 /* 3781 * debugobject calls are safe here even with pool->lock locked 3782 * as we know for sure that this will not trigger any of the 3783 * checks and call back into the fixup functions where we 3784 * might deadlock. 3785 * 3786 * BH and threaded workqueues need separate lockdep keys to avoid 3787 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} 3788 * usage". 3789 */ 3790 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func, 3791 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key); 3792 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 3793 3794 init_completion_map(&barr->done, &target->lockdep_map); 3795 3796 barr->task = current; 3797 3798 /* The barrier work item does not participate in nr_active. */ 3799 work_flags |= WORK_STRUCT_INACTIVE; 3800 3801 /* 3802 * If @target is currently being executed, schedule the 3803 * barrier to the worker; otherwise, put it after @target. 3804 */ 3805 if (worker) { 3806 head = worker->scheduled.next; 3807 work_color = worker->current_color; 3808 } else { 3809 unsigned long *bits = work_data_bits(target); 3810 3811 head = target->entry.next; 3812 /* there can already be other linked works, inherit and set */ 3813 work_flags |= *bits & WORK_STRUCT_LINKED; 3814 work_color = get_work_color(*bits); 3815 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 3816 } 3817 3818 pwq->nr_in_flight[work_color]++; 3819 work_flags |= work_color_to_flags(work_color); 3820 3821 insert_work(pwq, &barr->work, head, work_flags); 3822 } 3823 3824 /** 3825 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 3826 * @wq: workqueue being flushed 3827 * @flush_color: new flush color, < 0 for no-op 3828 * @work_color: new work color, < 0 for no-op 3829 * 3830 * Prepare pwqs for workqueue flushing. 3831 * 3832 * If @flush_color is non-negative, flush_color on all pwqs should be 3833 * -1. If no pwq has in-flight commands at the specified color, all 3834 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 3835 * has in flight commands, its pwq->flush_color is set to 3836 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 3837 * wakeup logic is armed and %true is returned. 3838 * 3839 * The caller should have initialized @wq->first_flusher prior to 3840 * calling this function with non-negative @flush_color. If 3841 * @flush_color is negative, no flush color update is done and %false 3842 * is returned. 3843 * 3844 * If @work_color is non-negative, all pwqs should have the same 3845 * work_color which is previous to @work_color and all will be 3846 * advanced to @work_color. 3847 * 3848 * CONTEXT: 3849 * mutex_lock(wq->mutex). 3850 * 3851 * Return: 3852 * %true if @flush_color >= 0 and there's something to flush. %false 3853 * otherwise. 3854 */ 3855 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 3856 int flush_color, int work_color) 3857 { 3858 bool wait = false; 3859 struct pool_workqueue *pwq; 3860 3861 if (flush_color >= 0) { 3862 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 3863 atomic_set(&wq->nr_pwqs_to_flush, 1); 3864 } 3865 3866 for_each_pwq(pwq, wq) { 3867 struct worker_pool *pool = pwq->pool; 3868 3869 raw_spin_lock_irq(&pool->lock); 3870 3871 if (flush_color >= 0) { 3872 WARN_ON_ONCE(pwq->flush_color != -1); 3873 3874 if (pwq->nr_in_flight[flush_color]) { 3875 pwq->flush_color = flush_color; 3876 atomic_inc(&wq->nr_pwqs_to_flush); 3877 wait = true; 3878 } 3879 } 3880 3881 if (work_color >= 0) { 3882 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 3883 pwq->work_color = work_color; 3884 } 3885 3886 raw_spin_unlock_irq(&pool->lock); 3887 } 3888 3889 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 3890 complete(&wq->first_flusher->done); 3891 3892 return wait; 3893 } 3894 3895 static void touch_wq_lockdep_map(struct workqueue_struct *wq) 3896 { 3897 #ifdef CONFIG_LOCKDEP 3898 if (wq->flags & WQ_BH) 3899 local_bh_disable(); 3900 3901 lock_map_acquire(&wq->lockdep_map); 3902 lock_map_release(&wq->lockdep_map); 3903 3904 if (wq->flags & WQ_BH) 3905 local_bh_enable(); 3906 #endif 3907 } 3908 3909 static void touch_work_lockdep_map(struct work_struct *work, 3910 struct workqueue_struct *wq) 3911 { 3912 #ifdef CONFIG_LOCKDEP 3913 if (wq->flags & WQ_BH) 3914 local_bh_disable(); 3915 3916 lock_map_acquire(&work->lockdep_map); 3917 lock_map_release(&work->lockdep_map); 3918 3919 if (wq->flags & WQ_BH) 3920 local_bh_enable(); 3921 #endif 3922 } 3923 3924 /** 3925 * __flush_workqueue - ensure that any scheduled work has run to completion. 3926 * @wq: workqueue to flush 3927 * 3928 * This function sleeps until all work items which were queued on entry 3929 * have finished execution, but it is not livelocked by new incoming ones. 3930 */ 3931 void __flush_workqueue(struct workqueue_struct *wq) 3932 { 3933 struct wq_flusher this_flusher = { 3934 .list = LIST_HEAD_INIT(this_flusher.list), 3935 .flush_color = -1, 3936 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 3937 }; 3938 int next_color; 3939 3940 if (WARN_ON(!wq_online)) 3941 return; 3942 3943 touch_wq_lockdep_map(wq); 3944 3945 mutex_lock(&wq->mutex); 3946 3947 /* 3948 * Start-to-wait phase 3949 */ 3950 next_color = work_next_color(wq->work_color); 3951 3952 if (next_color != wq->flush_color) { 3953 /* 3954 * Color space is not full. The current work_color 3955 * becomes our flush_color and work_color is advanced 3956 * by one. 3957 */ 3958 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 3959 this_flusher.flush_color = wq->work_color; 3960 wq->work_color = next_color; 3961 3962 if (!wq->first_flusher) { 3963 /* no flush in progress, become the first flusher */ 3964 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3965 3966 wq->first_flusher = &this_flusher; 3967 3968 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 3969 wq->work_color)) { 3970 /* nothing to flush, done */ 3971 wq->flush_color = next_color; 3972 wq->first_flusher = NULL; 3973 goto out_unlock; 3974 } 3975 } else { 3976 /* wait in queue */ 3977 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 3978 list_add_tail(&this_flusher.list, &wq->flusher_queue); 3979 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3980 } 3981 } else { 3982 /* 3983 * Oops, color space is full, wait on overflow queue. 3984 * The next flush completion will assign us 3985 * flush_color and transfer to flusher_queue. 3986 */ 3987 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 3988 } 3989 3990 check_flush_dependency(wq, NULL); 3991 3992 mutex_unlock(&wq->mutex); 3993 3994 wait_for_completion(&this_flusher.done); 3995 3996 /* 3997 * Wake-up-and-cascade phase 3998 * 3999 * First flushers are responsible for cascading flushes and 4000 * handling overflow. Non-first flushers can simply return. 4001 */ 4002 if (READ_ONCE(wq->first_flusher) != &this_flusher) 4003 return; 4004 4005 mutex_lock(&wq->mutex); 4006 4007 /* we might have raced, check again with mutex held */ 4008 if (wq->first_flusher != &this_flusher) 4009 goto out_unlock; 4010 4011 WRITE_ONCE(wq->first_flusher, NULL); 4012 4013 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 4014 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 4015 4016 while (true) { 4017 struct wq_flusher *next, *tmp; 4018 4019 /* complete all the flushers sharing the current flush color */ 4020 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 4021 if (next->flush_color != wq->flush_color) 4022 break; 4023 list_del_init(&next->list); 4024 complete(&next->done); 4025 } 4026 4027 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 4028 wq->flush_color != work_next_color(wq->work_color)); 4029 4030 /* this flush_color is finished, advance by one */ 4031 wq->flush_color = work_next_color(wq->flush_color); 4032 4033 /* one color has been freed, handle overflow queue */ 4034 if (!list_empty(&wq->flusher_overflow)) { 4035 /* 4036 * Assign the same color to all overflowed 4037 * flushers, advance work_color and append to 4038 * flusher_queue. This is the start-to-wait 4039 * phase for these overflowed flushers. 4040 */ 4041 list_for_each_entry(tmp, &wq->flusher_overflow, list) 4042 tmp->flush_color = wq->work_color; 4043 4044 wq->work_color = work_next_color(wq->work_color); 4045 4046 list_splice_tail_init(&wq->flusher_overflow, 4047 &wq->flusher_queue); 4048 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 4049 } 4050 4051 if (list_empty(&wq->flusher_queue)) { 4052 WARN_ON_ONCE(wq->flush_color != wq->work_color); 4053 break; 4054 } 4055 4056 /* 4057 * Need to flush more colors. Make the next flusher 4058 * the new first flusher and arm pwqs. 4059 */ 4060 WARN_ON_ONCE(wq->flush_color == wq->work_color); 4061 WARN_ON_ONCE(wq->flush_color != next->flush_color); 4062 4063 list_del_init(&next->list); 4064 wq->first_flusher = next; 4065 4066 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 4067 break; 4068 4069 /* 4070 * Meh... this color is already done, clear first 4071 * flusher and repeat cascading. 4072 */ 4073 wq->first_flusher = NULL; 4074 } 4075 4076 out_unlock: 4077 mutex_unlock(&wq->mutex); 4078 } 4079 EXPORT_SYMBOL(__flush_workqueue); 4080 4081 /** 4082 * drain_workqueue - drain a workqueue 4083 * @wq: workqueue to drain 4084 * 4085 * Wait until the workqueue becomes empty. While draining is in progress, 4086 * only chain queueing is allowed. IOW, only currently pending or running 4087 * work items on @wq can queue further work items on it. @wq is flushed 4088 * repeatedly until it becomes empty. The number of flushing is determined 4089 * by the depth of chaining and should be relatively short. Whine if it 4090 * takes too long. 4091 */ 4092 void drain_workqueue(struct workqueue_struct *wq) 4093 { 4094 unsigned int flush_cnt = 0; 4095 struct pool_workqueue *pwq; 4096 4097 /* 4098 * __queue_work() needs to test whether there are drainers, is much 4099 * hotter than drain_workqueue() and already looks at @wq->flags. 4100 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 4101 */ 4102 mutex_lock(&wq->mutex); 4103 if (!wq->nr_drainers++) 4104 wq->flags |= __WQ_DRAINING; 4105 mutex_unlock(&wq->mutex); 4106 reflush: 4107 __flush_workqueue(wq); 4108 4109 mutex_lock(&wq->mutex); 4110 4111 for_each_pwq(pwq, wq) { 4112 bool drained; 4113 4114 raw_spin_lock_irq(&pwq->pool->lock); 4115 drained = pwq_is_empty(pwq); 4116 raw_spin_unlock_irq(&pwq->pool->lock); 4117 4118 if (drained) 4119 continue; 4120 4121 if (++flush_cnt == 10 || 4122 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 4123 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 4124 wq->name, __func__, flush_cnt); 4125 4126 mutex_unlock(&wq->mutex); 4127 goto reflush; 4128 } 4129 4130 if (!--wq->nr_drainers) 4131 wq->flags &= ~__WQ_DRAINING; 4132 mutex_unlock(&wq->mutex); 4133 } 4134 EXPORT_SYMBOL_GPL(drain_workqueue); 4135 4136 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 4137 bool from_cancel) 4138 { 4139 struct worker *worker = NULL; 4140 struct worker_pool *pool; 4141 struct pool_workqueue *pwq; 4142 struct workqueue_struct *wq; 4143 4144 might_sleep(); 4145 4146 rcu_read_lock(); 4147 pool = get_work_pool(work); 4148 if (!pool) { 4149 rcu_read_unlock(); 4150 return false; 4151 } 4152 4153 raw_spin_lock_irq(&pool->lock); 4154 /* see the comment in try_to_grab_pending() with the same code */ 4155 pwq = get_work_pwq(work); 4156 if (pwq) { 4157 if (unlikely(pwq->pool != pool)) 4158 goto already_gone; 4159 } else { 4160 worker = find_worker_executing_work(pool, work); 4161 if (!worker) 4162 goto already_gone; 4163 pwq = worker->current_pwq; 4164 } 4165 4166 wq = pwq->wq; 4167 check_flush_dependency(wq, work); 4168 4169 insert_wq_barrier(pwq, barr, work, worker); 4170 raw_spin_unlock_irq(&pool->lock); 4171 4172 touch_work_lockdep_map(work, wq); 4173 4174 /* 4175 * Force a lock recursion deadlock when using flush_work() inside a 4176 * single-threaded or rescuer equipped workqueue. 4177 * 4178 * For single threaded workqueues the deadlock happens when the work 4179 * is after the work issuing the flush_work(). For rescuer equipped 4180 * workqueues the deadlock happens when the rescuer stalls, blocking 4181 * forward progress. 4182 */ 4183 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer)) 4184 touch_wq_lockdep_map(wq); 4185 4186 rcu_read_unlock(); 4187 return true; 4188 already_gone: 4189 raw_spin_unlock_irq(&pool->lock); 4190 rcu_read_unlock(); 4191 return false; 4192 } 4193 4194 static bool __flush_work(struct work_struct *work, bool from_cancel) 4195 { 4196 struct wq_barrier barr; 4197 4198 if (WARN_ON(!wq_online)) 4199 return false; 4200 4201 if (WARN_ON(!work->func)) 4202 return false; 4203 4204 if (start_flush_work(work, &barr, from_cancel)) { 4205 wait_for_completion(&barr.done); 4206 destroy_work_on_stack(&barr.work); 4207 return true; 4208 } else { 4209 return false; 4210 } 4211 } 4212 4213 /** 4214 * flush_work - wait for a work to finish executing the last queueing instance 4215 * @work: the work to flush 4216 * 4217 * Wait until @work has finished execution. @work is guaranteed to be idle 4218 * on return if it hasn't been requeued since flush started. 4219 * 4220 * Return: 4221 * %true if flush_work() waited for the work to finish execution, 4222 * %false if it was already idle. 4223 */ 4224 bool flush_work(struct work_struct *work) 4225 { 4226 return __flush_work(work, false); 4227 } 4228 EXPORT_SYMBOL_GPL(flush_work); 4229 4230 /** 4231 * flush_delayed_work - wait for a dwork to finish executing the last queueing 4232 * @dwork: the delayed work to flush 4233 * 4234 * Delayed timer is cancelled and the pending work is queued for 4235 * immediate execution. Like flush_work(), this function only 4236 * considers the last queueing instance of @dwork. 4237 * 4238 * Return: 4239 * %true if flush_work() waited for the work to finish execution, 4240 * %false if it was already idle. 4241 */ 4242 bool flush_delayed_work(struct delayed_work *dwork) 4243 { 4244 local_irq_disable(); 4245 if (del_timer_sync(&dwork->timer)) 4246 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 4247 local_irq_enable(); 4248 return flush_work(&dwork->work); 4249 } 4250 EXPORT_SYMBOL(flush_delayed_work); 4251 4252 /** 4253 * flush_rcu_work - wait for a rwork to finish executing the last queueing 4254 * @rwork: the rcu work to flush 4255 * 4256 * Return: 4257 * %true if flush_rcu_work() waited for the work to finish execution, 4258 * %false if it was already idle. 4259 */ 4260 bool flush_rcu_work(struct rcu_work *rwork) 4261 { 4262 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 4263 rcu_barrier(); 4264 flush_work(&rwork->work); 4265 return true; 4266 } else { 4267 return flush_work(&rwork->work); 4268 } 4269 } 4270 EXPORT_SYMBOL(flush_rcu_work); 4271 4272 static bool __cancel_work(struct work_struct *work, u32 cflags) 4273 { 4274 unsigned long irq_flags; 4275 int ret; 4276 4277 do { 4278 ret = try_to_grab_pending(work, cflags, &irq_flags); 4279 } while (unlikely(ret == -EAGAIN)); 4280 4281 if (unlikely(ret < 0)) 4282 return false; 4283 4284 set_work_pool_and_clear_pending(work, get_work_pool_id(work), 0); 4285 local_irq_restore(irq_flags); 4286 return ret; 4287 } 4288 4289 static bool __cancel_work_sync(struct work_struct *work, u32 cflags) 4290 { 4291 unsigned long irq_flags; 4292 bool ret; 4293 4294 /* claim @work and tell other tasks trying to grab @work to back off */ 4295 ret = work_grab_pending(work, cflags, &irq_flags); 4296 mark_work_canceling(work); 4297 local_irq_restore(irq_flags); 4298 4299 /* 4300 * Skip __flush_work() during early boot when we know that @work isn't 4301 * executing. This allows canceling during early boot. 4302 */ 4303 if (wq_online) 4304 __flush_work(work, true); 4305 4306 /* 4307 * smp_mb() at the end of set_work_pool_and_clear_pending() is paired 4308 * with prepare_to_wait() above so that either waitqueue_active() is 4309 * visible here or !work_is_canceling() is visible there. 4310 */ 4311 set_work_pool_and_clear_pending(work, WORK_OFFQ_POOL_NONE, 0); 4312 4313 if (waitqueue_active(&wq_cancel_waitq)) 4314 __wake_up(&wq_cancel_waitq, TASK_NORMAL, 1, work); 4315 4316 return ret; 4317 } 4318 4319 /* 4320 * See cancel_delayed_work() 4321 */ 4322 bool cancel_work(struct work_struct *work) 4323 { 4324 return __cancel_work(work, 0); 4325 } 4326 EXPORT_SYMBOL(cancel_work); 4327 4328 /** 4329 * cancel_work_sync - cancel a work and wait for it to finish 4330 * @work: the work to cancel 4331 * 4332 * Cancel @work and wait for its execution to finish. This function 4333 * can be used even if the work re-queues itself or migrates to 4334 * another workqueue. On return from this function, @work is 4335 * guaranteed to be not pending or executing on any CPU. 4336 * 4337 * cancel_work_sync(&delayed_work->work) must not be used for 4338 * delayed_work's. Use cancel_delayed_work_sync() instead. 4339 * 4340 * The caller must ensure that the workqueue on which @work was last 4341 * queued can't be destroyed before this function returns. 4342 * 4343 * Return: 4344 * %true if @work was pending, %false otherwise. 4345 */ 4346 bool cancel_work_sync(struct work_struct *work) 4347 { 4348 return __cancel_work_sync(work, 0); 4349 } 4350 EXPORT_SYMBOL_GPL(cancel_work_sync); 4351 4352 /** 4353 * cancel_delayed_work - cancel a delayed work 4354 * @dwork: delayed_work to cancel 4355 * 4356 * Kill off a pending delayed_work. 4357 * 4358 * Return: %true if @dwork was pending and canceled; %false if it wasn't 4359 * pending. 4360 * 4361 * Note: 4362 * The work callback function may still be running on return, unless 4363 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 4364 * use cancel_delayed_work_sync() to wait on it. 4365 * 4366 * This function is safe to call from any context including IRQ handler. 4367 */ 4368 bool cancel_delayed_work(struct delayed_work *dwork) 4369 { 4370 return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED); 4371 } 4372 EXPORT_SYMBOL(cancel_delayed_work); 4373 4374 /** 4375 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 4376 * @dwork: the delayed work cancel 4377 * 4378 * This is cancel_work_sync() for delayed works. 4379 * 4380 * Return: 4381 * %true if @dwork was pending, %false otherwise. 4382 */ 4383 bool cancel_delayed_work_sync(struct delayed_work *dwork) 4384 { 4385 return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED); 4386 } 4387 EXPORT_SYMBOL(cancel_delayed_work_sync); 4388 4389 /** 4390 * schedule_on_each_cpu - execute a function synchronously on each online CPU 4391 * @func: the function to call 4392 * 4393 * schedule_on_each_cpu() executes @func on each online CPU using the 4394 * system workqueue and blocks until all CPUs have completed. 4395 * schedule_on_each_cpu() is very slow. 4396 * 4397 * Return: 4398 * 0 on success, -errno on failure. 4399 */ 4400 int schedule_on_each_cpu(work_func_t func) 4401 { 4402 int cpu; 4403 struct work_struct __percpu *works; 4404 4405 works = alloc_percpu(struct work_struct); 4406 if (!works) 4407 return -ENOMEM; 4408 4409 cpus_read_lock(); 4410 4411 for_each_online_cpu(cpu) { 4412 struct work_struct *work = per_cpu_ptr(works, cpu); 4413 4414 INIT_WORK(work, func); 4415 schedule_work_on(cpu, work); 4416 } 4417 4418 for_each_online_cpu(cpu) 4419 flush_work(per_cpu_ptr(works, cpu)); 4420 4421 cpus_read_unlock(); 4422 free_percpu(works); 4423 return 0; 4424 } 4425 4426 /** 4427 * execute_in_process_context - reliably execute the routine with user context 4428 * @fn: the function to execute 4429 * @ew: guaranteed storage for the execute work structure (must 4430 * be available when the work executes) 4431 * 4432 * Executes the function immediately if process context is available, 4433 * otherwise schedules the function for delayed execution. 4434 * 4435 * Return: 0 - function was executed 4436 * 1 - function was scheduled for execution 4437 */ 4438 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 4439 { 4440 if (!in_interrupt()) { 4441 fn(&ew->work); 4442 return 0; 4443 } 4444 4445 INIT_WORK(&ew->work, fn); 4446 schedule_work(&ew->work); 4447 4448 return 1; 4449 } 4450 EXPORT_SYMBOL_GPL(execute_in_process_context); 4451 4452 /** 4453 * free_workqueue_attrs - free a workqueue_attrs 4454 * @attrs: workqueue_attrs to free 4455 * 4456 * Undo alloc_workqueue_attrs(). 4457 */ 4458 void free_workqueue_attrs(struct workqueue_attrs *attrs) 4459 { 4460 if (attrs) { 4461 free_cpumask_var(attrs->cpumask); 4462 free_cpumask_var(attrs->__pod_cpumask); 4463 kfree(attrs); 4464 } 4465 } 4466 4467 /** 4468 * alloc_workqueue_attrs - allocate a workqueue_attrs 4469 * 4470 * Allocate a new workqueue_attrs, initialize with default settings and 4471 * return it. 4472 * 4473 * Return: The allocated new workqueue_attr on success. %NULL on failure. 4474 */ 4475 struct workqueue_attrs *alloc_workqueue_attrs(void) 4476 { 4477 struct workqueue_attrs *attrs; 4478 4479 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 4480 if (!attrs) 4481 goto fail; 4482 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 4483 goto fail; 4484 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL)) 4485 goto fail; 4486 4487 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4488 attrs->affn_scope = WQ_AFFN_DFL; 4489 return attrs; 4490 fail: 4491 free_workqueue_attrs(attrs); 4492 return NULL; 4493 } 4494 4495 static void copy_workqueue_attrs(struct workqueue_attrs *to, 4496 const struct workqueue_attrs *from) 4497 { 4498 to->nice = from->nice; 4499 cpumask_copy(to->cpumask, from->cpumask); 4500 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask); 4501 to->affn_strict = from->affn_strict; 4502 4503 /* 4504 * Unlike hash and equality test, copying shouldn't ignore wq-only 4505 * fields as copying is used for both pool and wq attrs. Instead, 4506 * get_unbound_pool() explicitly clears the fields. 4507 */ 4508 to->affn_scope = from->affn_scope; 4509 to->ordered = from->ordered; 4510 } 4511 4512 /* 4513 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the 4514 * comments in 'struct workqueue_attrs' definition. 4515 */ 4516 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs) 4517 { 4518 attrs->affn_scope = WQ_AFFN_NR_TYPES; 4519 attrs->ordered = false; 4520 } 4521 4522 /* hash value of the content of @attr */ 4523 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 4524 { 4525 u32 hash = 0; 4526 4527 hash = jhash_1word(attrs->nice, hash); 4528 hash = jhash(cpumask_bits(attrs->cpumask), 4529 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4530 hash = jhash(cpumask_bits(attrs->__pod_cpumask), 4531 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4532 hash = jhash_1word(attrs->affn_strict, hash); 4533 return hash; 4534 } 4535 4536 /* content equality test */ 4537 static bool wqattrs_equal(const struct workqueue_attrs *a, 4538 const struct workqueue_attrs *b) 4539 { 4540 if (a->nice != b->nice) 4541 return false; 4542 if (!cpumask_equal(a->cpumask, b->cpumask)) 4543 return false; 4544 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask)) 4545 return false; 4546 if (a->affn_strict != b->affn_strict) 4547 return false; 4548 return true; 4549 } 4550 4551 /* Update @attrs with actually available CPUs */ 4552 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs, 4553 const cpumask_t *unbound_cpumask) 4554 { 4555 /* 4556 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If 4557 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to 4558 * @unbound_cpumask. 4559 */ 4560 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask); 4561 if (unlikely(cpumask_empty(attrs->cpumask))) 4562 cpumask_copy(attrs->cpumask, unbound_cpumask); 4563 } 4564 4565 /* find wq_pod_type to use for @attrs */ 4566 static const struct wq_pod_type * 4567 wqattrs_pod_type(const struct workqueue_attrs *attrs) 4568 { 4569 enum wq_affn_scope scope; 4570 struct wq_pod_type *pt; 4571 4572 /* to synchronize access to wq_affn_dfl */ 4573 lockdep_assert_held(&wq_pool_mutex); 4574 4575 if (attrs->affn_scope == WQ_AFFN_DFL) 4576 scope = wq_affn_dfl; 4577 else 4578 scope = attrs->affn_scope; 4579 4580 pt = &wq_pod_types[scope]; 4581 4582 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) && 4583 likely(pt->nr_pods)) 4584 return pt; 4585 4586 /* 4587 * Before workqueue_init_topology(), only SYSTEM is available which is 4588 * initialized in workqueue_init_early(). 4589 */ 4590 pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 4591 BUG_ON(!pt->nr_pods); 4592 return pt; 4593 } 4594 4595 /** 4596 * init_worker_pool - initialize a newly zalloc'd worker_pool 4597 * @pool: worker_pool to initialize 4598 * 4599 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 4600 * 4601 * Return: 0 on success, -errno on failure. Even on failure, all fields 4602 * inside @pool proper are initialized and put_unbound_pool() can be called 4603 * on @pool safely to release it. 4604 */ 4605 static int init_worker_pool(struct worker_pool *pool) 4606 { 4607 raw_spin_lock_init(&pool->lock); 4608 pool->id = -1; 4609 pool->cpu = -1; 4610 pool->node = NUMA_NO_NODE; 4611 pool->flags |= POOL_DISASSOCIATED; 4612 pool->watchdog_ts = jiffies; 4613 INIT_LIST_HEAD(&pool->worklist); 4614 INIT_LIST_HEAD(&pool->idle_list); 4615 hash_init(pool->busy_hash); 4616 4617 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 4618 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 4619 4620 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 4621 4622 INIT_LIST_HEAD(&pool->workers); 4623 INIT_LIST_HEAD(&pool->dying_workers); 4624 4625 ida_init(&pool->worker_ida); 4626 INIT_HLIST_NODE(&pool->hash_node); 4627 pool->refcnt = 1; 4628 4629 /* shouldn't fail above this point */ 4630 pool->attrs = alloc_workqueue_attrs(); 4631 if (!pool->attrs) 4632 return -ENOMEM; 4633 4634 wqattrs_clear_for_pool(pool->attrs); 4635 4636 return 0; 4637 } 4638 4639 #ifdef CONFIG_LOCKDEP 4640 static void wq_init_lockdep(struct workqueue_struct *wq) 4641 { 4642 char *lock_name; 4643 4644 lockdep_register_key(&wq->key); 4645 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 4646 if (!lock_name) 4647 lock_name = wq->name; 4648 4649 wq->lock_name = lock_name; 4650 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 4651 } 4652 4653 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4654 { 4655 lockdep_unregister_key(&wq->key); 4656 } 4657 4658 static void wq_free_lockdep(struct workqueue_struct *wq) 4659 { 4660 if (wq->lock_name != wq->name) 4661 kfree(wq->lock_name); 4662 } 4663 #else 4664 static void wq_init_lockdep(struct workqueue_struct *wq) 4665 { 4666 } 4667 4668 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4669 { 4670 } 4671 4672 static void wq_free_lockdep(struct workqueue_struct *wq) 4673 { 4674 } 4675 #endif 4676 4677 static void free_node_nr_active(struct wq_node_nr_active **nna_ar) 4678 { 4679 int node; 4680 4681 for_each_node(node) { 4682 kfree(nna_ar[node]); 4683 nna_ar[node] = NULL; 4684 } 4685 4686 kfree(nna_ar[nr_node_ids]); 4687 nna_ar[nr_node_ids] = NULL; 4688 } 4689 4690 static void init_node_nr_active(struct wq_node_nr_active *nna) 4691 { 4692 nna->max = WQ_DFL_MIN_ACTIVE; 4693 atomic_set(&nna->nr, 0); 4694 raw_spin_lock_init(&nna->lock); 4695 INIT_LIST_HEAD(&nna->pending_pwqs); 4696 } 4697 4698 /* 4699 * Each node's nr_active counter will be accessed mostly from its own node and 4700 * should be allocated in the node. 4701 */ 4702 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar) 4703 { 4704 struct wq_node_nr_active *nna; 4705 int node; 4706 4707 for_each_node(node) { 4708 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node); 4709 if (!nna) 4710 goto err_free; 4711 init_node_nr_active(nna); 4712 nna_ar[node] = nna; 4713 } 4714 4715 /* [nr_node_ids] is used as the fallback */ 4716 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE); 4717 if (!nna) 4718 goto err_free; 4719 init_node_nr_active(nna); 4720 nna_ar[nr_node_ids] = nna; 4721 4722 return 0; 4723 4724 err_free: 4725 free_node_nr_active(nna_ar); 4726 return -ENOMEM; 4727 } 4728 4729 static void rcu_free_wq(struct rcu_head *rcu) 4730 { 4731 struct workqueue_struct *wq = 4732 container_of(rcu, struct workqueue_struct, rcu); 4733 4734 if (wq->flags & WQ_UNBOUND) 4735 free_node_nr_active(wq->node_nr_active); 4736 4737 wq_free_lockdep(wq); 4738 free_percpu(wq->cpu_pwq); 4739 free_workqueue_attrs(wq->unbound_attrs); 4740 kfree(wq); 4741 } 4742 4743 static void rcu_free_pool(struct rcu_head *rcu) 4744 { 4745 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 4746 4747 ida_destroy(&pool->worker_ida); 4748 free_workqueue_attrs(pool->attrs); 4749 kfree(pool); 4750 } 4751 4752 /** 4753 * put_unbound_pool - put a worker_pool 4754 * @pool: worker_pool to put 4755 * 4756 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 4757 * safe manner. get_unbound_pool() calls this function on its failure path 4758 * and this function should be able to release pools which went through, 4759 * successfully or not, init_worker_pool(). 4760 * 4761 * Should be called with wq_pool_mutex held. 4762 */ 4763 static void put_unbound_pool(struct worker_pool *pool) 4764 { 4765 DECLARE_COMPLETION_ONSTACK(detach_completion); 4766 struct worker *worker; 4767 LIST_HEAD(cull_list); 4768 4769 lockdep_assert_held(&wq_pool_mutex); 4770 4771 if (--pool->refcnt) 4772 return; 4773 4774 /* sanity checks */ 4775 if (WARN_ON(!(pool->cpu < 0)) || 4776 WARN_ON(!list_empty(&pool->worklist))) 4777 return; 4778 4779 /* release id and unhash */ 4780 if (pool->id >= 0) 4781 idr_remove(&worker_pool_idr, pool->id); 4782 hash_del(&pool->hash_node); 4783 4784 /* 4785 * Become the manager and destroy all workers. This prevents 4786 * @pool's workers from blocking on attach_mutex. We're the last 4787 * manager and @pool gets freed with the flag set. 4788 * 4789 * Having a concurrent manager is quite unlikely to happen as we can 4790 * only get here with 4791 * pwq->refcnt == pool->refcnt == 0 4792 * which implies no work queued to the pool, which implies no worker can 4793 * become the manager. However a worker could have taken the role of 4794 * manager before the refcnts dropped to 0, since maybe_create_worker() 4795 * drops pool->lock 4796 */ 4797 while (true) { 4798 rcuwait_wait_event(&manager_wait, 4799 !(pool->flags & POOL_MANAGER_ACTIVE), 4800 TASK_UNINTERRUPTIBLE); 4801 4802 mutex_lock(&wq_pool_attach_mutex); 4803 raw_spin_lock_irq(&pool->lock); 4804 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 4805 pool->flags |= POOL_MANAGER_ACTIVE; 4806 break; 4807 } 4808 raw_spin_unlock_irq(&pool->lock); 4809 mutex_unlock(&wq_pool_attach_mutex); 4810 } 4811 4812 while ((worker = first_idle_worker(pool))) 4813 set_worker_dying(worker, &cull_list); 4814 WARN_ON(pool->nr_workers || pool->nr_idle); 4815 raw_spin_unlock_irq(&pool->lock); 4816 4817 wake_dying_workers(&cull_list); 4818 4819 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers)) 4820 pool->detach_completion = &detach_completion; 4821 mutex_unlock(&wq_pool_attach_mutex); 4822 4823 if (pool->detach_completion) 4824 wait_for_completion(pool->detach_completion); 4825 4826 /* shut down the timers */ 4827 del_timer_sync(&pool->idle_timer); 4828 cancel_work_sync(&pool->idle_cull_work); 4829 del_timer_sync(&pool->mayday_timer); 4830 4831 /* RCU protected to allow dereferences from get_work_pool() */ 4832 call_rcu(&pool->rcu, rcu_free_pool); 4833 } 4834 4835 /** 4836 * get_unbound_pool - get a worker_pool with the specified attributes 4837 * @attrs: the attributes of the worker_pool to get 4838 * 4839 * Obtain a worker_pool which has the same attributes as @attrs, bump the 4840 * reference count and return it. If there already is a matching 4841 * worker_pool, it will be used; otherwise, this function attempts to 4842 * create a new one. 4843 * 4844 * Should be called with wq_pool_mutex held. 4845 * 4846 * Return: On success, a worker_pool with the same attributes as @attrs. 4847 * On failure, %NULL. 4848 */ 4849 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 4850 { 4851 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA]; 4852 u32 hash = wqattrs_hash(attrs); 4853 struct worker_pool *pool; 4854 int pod, node = NUMA_NO_NODE; 4855 4856 lockdep_assert_held(&wq_pool_mutex); 4857 4858 /* do we already have a matching pool? */ 4859 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 4860 if (wqattrs_equal(pool->attrs, attrs)) { 4861 pool->refcnt++; 4862 return pool; 4863 } 4864 } 4865 4866 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */ 4867 for (pod = 0; pod < pt->nr_pods; pod++) { 4868 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) { 4869 node = pt->pod_node[pod]; 4870 break; 4871 } 4872 } 4873 4874 /* nope, create a new one */ 4875 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node); 4876 if (!pool || init_worker_pool(pool) < 0) 4877 goto fail; 4878 4879 pool->node = node; 4880 copy_workqueue_attrs(pool->attrs, attrs); 4881 wqattrs_clear_for_pool(pool->attrs); 4882 4883 if (worker_pool_assign_id(pool) < 0) 4884 goto fail; 4885 4886 /* create and start the initial worker */ 4887 if (wq_online && !create_worker(pool)) 4888 goto fail; 4889 4890 /* install */ 4891 hash_add(unbound_pool_hash, &pool->hash_node, hash); 4892 4893 return pool; 4894 fail: 4895 if (pool) 4896 put_unbound_pool(pool); 4897 return NULL; 4898 } 4899 4900 static void rcu_free_pwq(struct rcu_head *rcu) 4901 { 4902 kmem_cache_free(pwq_cache, 4903 container_of(rcu, struct pool_workqueue, rcu)); 4904 } 4905 4906 /* 4907 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero 4908 * refcnt and needs to be destroyed. 4909 */ 4910 static void pwq_release_workfn(struct kthread_work *work) 4911 { 4912 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 4913 release_work); 4914 struct workqueue_struct *wq = pwq->wq; 4915 struct worker_pool *pool = pwq->pool; 4916 bool is_last = false; 4917 4918 /* 4919 * When @pwq is not linked, it doesn't hold any reference to the 4920 * @wq, and @wq is invalid to access. 4921 */ 4922 if (!list_empty(&pwq->pwqs_node)) { 4923 mutex_lock(&wq->mutex); 4924 list_del_rcu(&pwq->pwqs_node); 4925 is_last = list_empty(&wq->pwqs); 4926 4927 /* 4928 * For ordered workqueue with a plugged dfl_pwq, restart it now. 4929 */ 4930 if (!is_last && (wq->flags & __WQ_ORDERED)) 4931 unplug_oldest_pwq(wq); 4932 4933 mutex_unlock(&wq->mutex); 4934 } 4935 4936 if (wq->flags & WQ_UNBOUND) { 4937 mutex_lock(&wq_pool_mutex); 4938 put_unbound_pool(pool); 4939 mutex_unlock(&wq_pool_mutex); 4940 } 4941 4942 if (!list_empty(&pwq->pending_node)) { 4943 struct wq_node_nr_active *nna = 4944 wq_node_nr_active(pwq->wq, pwq->pool->node); 4945 4946 raw_spin_lock_irq(&nna->lock); 4947 list_del_init(&pwq->pending_node); 4948 raw_spin_unlock_irq(&nna->lock); 4949 } 4950 4951 call_rcu(&pwq->rcu, rcu_free_pwq); 4952 4953 /* 4954 * If we're the last pwq going away, @wq is already dead and no one 4955 * is gonna access it anymore. Schedule RCU free. 4956 */ 4957 if (is_last) { 4958 wq_unregister_lockdep(wq); 4959 call_rcu(&wq->rcu, rcu_free_wq); 4960 } 4961 } 4962 4963 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 4964 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 4965 struct worker_pool *pool) 4966 { 4967 BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK); 4968 4969 memset(pwq, 0, sizeof(*pwq)); 4970 4971 pwq->pool = pool; 4972 pwq->wq = wq; 4973 pwq->flush_color = -1; 4974 pwq->refcnt = 1; 4975 INIT_LIST_HEAD(&pwq->inactive_works); 4976 INIT_LIST_HEAD(&pwq->pending_node); 4977 INIT_LIST_HEAD(&pwq->pwqs_node); 4978 INIT_LIST_HEAD(&pwq->mayday_node); 4979 kthread_init_work(&pwq->release_work, pwq_release_workfn); 4980 } 4981 4982 /* sync @pwq with the current state of its associated wq and link it */ 4983 static void link_pwq(struct pool_workqueue *pwq) 4984 { 4985 struct workqueue_struct *wq = pwq->wq; 4986 4987 lockdep_assert_held(&wq->mutex); 4988 4989 /* may be called multiple times, ignore if already linked */ 4990 if (!list_empty(&pwq->pwqs_node)) 4991 return; 4992 4993 /* set the matching work_color */ 4994 pwq->work_color = wq->work_color; 4995 4996 /* link in @pwq */ 4997 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs); 4998 } 4999 5000 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 5001 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 5002 const struct workqueue_attrs *attrs) 5003 { 5004 struct worker_pool *pool; 5005 struct pool_workqueue *pwq; 5006 5007 lockdep_assert_held(&wq_pool_mutex); 5008 5009 pool = get_unbound_pool(attrs); 5010 if (!pool) 5011 return NULL; 5012 5013 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 5014 if (!pwq) { 5015 put_unbound_pool(pool); 5016 return NULL; 5017 } 5018 5019 init_pwq(pwq, wq, pool); 5020 return pwq; 5021 } 5022 5023 /** 5024 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod 5025 * @attrs: the wq_attrs of the default pwq of the target workqueue 5026 * @cpu: the target CPU 5027 * @cpu_going_down: if >= 0, the CPU to consider as offline 5028 * 5029 * Calculate the cpumask a workqueue with @attrs should use on @pod. If 5030 * @cpu_going_down is >= 0, that cpu is considered offline during calculation. 5031 * The result is stored in @attrs->__pod_cpumask. 5032 * 5033 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled 5034 * and @pod has online CPUs requested by @attrs, the returned cpumask is the 5035 * intersection of the possible CPUs of @pod and @attrs->cpumask. 5036 * 5037 * The caller is responsible for ensuring that the cpumask of @pod stays stable. 5038 */ 5039 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu, 5040 int cpu_going_down) 5041 { 5042 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 5043 int pod = pt->cpu_pod[cpu]; 5044 5045 /* does @pod have any online CPUs @attrs wants? */ 5046 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask); 5047 cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask); 5048 if (cpu_going_down >= 0) 5049 cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask); 5050 5051 if (cpumask_empty(attrs->__pod_cpumask)) { 5052 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask); 5053 return; 5054 } 5055 5056 /* yeap, return possible CPUs in @pod that @attrs wants */ 5057 cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]); 5058 5059 if (cpumask_empty(attrs->__pod_cpumask)) 5060 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 5061 "possible intersect\n"); 5062 } 5063 5064 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */ 5065 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq, 5066 int cpu, struct pool_workqueue *pwq) 5067 { 5068 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu); 5069 struct pool_workqueue *old_pwq; 5070 5071 lockdep_assert_held(&wq_pool_mutex); 5072 lockdep_assert_held(&wq->mutex); 5073 5074 /* link_pwq() can handle duplicate calls */ 5075 link_pwq(pwq); 5076 5077 old_pwq = rcu_access_pointer(*slot); 5078 rcu_assign_pointer(*slot, pwq); 5079 return old_pwq; 5080 } 5081 5082 /* context to store the prepared attrs & pwqs before applying */ 5083 struct apply_wqattrs_ctx { 5084 struct workqueue_struct *wq; /* target workqueue */ 5085 struct workqueue_attrs *attrs; /* attrs to apply */ 5086 struct list_head list; /* queued for batching commit */ 5087 struct pool_workqueue *dfl_pwq; 5088 struct pool_workqueue *pwq_tbl[]; 5089 }; 5090 5091 /* free the resources after success or abort */ 5092 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 5093 { 5094 if (ctx) { 5095 int cpu; 5096 5097 for_each_possible_cpu(cpu) 5098 put_pwq_unlocked(ctx->pwq_tbl[cpu]); 5099 put_pwq_unlocked(ctx->dfl_pwq); 5100 5101 free_workqueue_attrs(ctx->attrs); 5102 5103 kfree(ctx); 5104 } 5105 } 5106 5107 /* allocate the attrs and pwqs for later installation */ 5108 static struct apply_wqattrs_ctx * 5109 apply_wqattrs_prepare(struct workqueue_struct *wq, 5110 const struct workqueue_attrs *attrs, 5111 const cpumask_var_t unbound_cpumask) 5112 { 5113 struct apply_wqattrs_ctx *ctx; 5114 struct workqueue_attrs *new_attrs; 5115 int cpu; 5116 5117 lockdep_assert_held(&wq_pool_mutex); 5118 5119 if (WARN_ON(attrs->affn_scope < 0 || 5120 attrs->affn_scope >= WQ_AFFN_NR_TYPES)) 5121 return ERR_PTR(-EINVAL); 5122 5123 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL); 5124 5125 new_attrs = alloc_workqueue_attrs(); 5126 if (!ctx || !new_attrs) 5127 goto out_free; 5128 5129 /* 5130 * If something goes wrong during CPU up/down, we'll fall back to 5131 * the default pwq covering whole @attrs->cpumask. Always create 5132 * it even if we don't use it immediately. 5133 */ 5134 copy_workqueue_attrs(new_attrs, attrs); 5135 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask); 5136 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5137 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 5138 if (!ctx->dfl_pwq) 5139 goto out_free; 5140 5141 for_each_possible_cpu(cpu) { 5142 if (new_attrs->ordered) { 5143 ctx->dfl_pwq->refcnt++; 5144 ctx->pwq_tbl[cpu] = ctx->dfl_pwq; 5145 } else { 5146 wq_calc_pod_cpumask(new_attrs, cpu, -1); 5147 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs); 5148 if (!ctx->pwq_tbl[cpu]) 5149 goto out_free; 5150 } 5151 } 5152 5153 /* save the user configured attrs and sanitize it. */ 5154 copy_workqueue_attrs(new_attrs, attrs); 5155 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 5156 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5157 ctx->attrs = new_attrs; 5158 5159 /* 5160 * For initialized ordered workqueues, there should only be one pwq 5161 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution 5162 * of newly queued work items until execution of older work items in 5163 * the old pwq's have completed. 5164 */ 5165 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)) 5166 ctx->dfl_pwq->plugged = true; 5167 5168 ctx->wq = wq; 5169 return ctx; 5170 5171 out_free: 5172 free_workqueue_attrs(new_attrs); 5173 apply_wqattrs_cleanup(ctx); 5174 return ERR_PTR(-ENOMEM); 5175 } 5176 5177 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 5178 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 5179 { 5180 int cpu; 5181 5182 /* all pwqs have been created successfully, let's install'em */ 5183 mutex_lock(&ctx->wq->mutex); 5184 5185 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 5186 5187 /* save the previous pwqs and install the new ones */ 5188 for_each_possible_cpu(cpu) 5189 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu, 5190 ctx->pwq_tbl[cpu]); 5191 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq); 5192 5193 /* update node_nr_active->max */ 5194 wq_update_node_max_active(ctx->wq, -1); 5195 5196 /* rescuer needs to respect wq cpumask changes */ 5197 if (ctx->wq->rescuer) 5198 set_cpus_allowed_ptr(ctx->wq->rescuer->task, 5199 unbound_effective_cpumask(ctx->wq)); 5200 5201 mutex_unlock(&ctx->wq->mutex); 5202 } 5203 5204 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 5205 const struct workqueue_attrs *attrs) 5206 { 5207 struct apply_wqattrs_ctx *ctx; 5208 5209 /* only unbound workqueues can change attributes */ 5210 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 5211 return -EINVAL; 5212 5213 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 5214 if (IS_ERR(ctx)) 5215 return PTR_ERR(ctx); 5216 5217 /* the ctx has been prepared successfully, let's commit it */ 5218 apply_wqattrs_commit(ctx); 5219 apply_wqattrs_cleanup(ctx); 5220 5221 return 0; 5222 } 5223 5224 /** 5225 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 5226 * @wq: the target workqueue 5227 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 5228 * 5229 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps 5230 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that 5231 * work items are affine to the pod it was issued on. Older pwqs are released as 5232 * in-flight work items finish. Note that a work item which repeatedly requeues 5233 * itself back-to-back will stay on its current pwq. 5234 * 5235 * Performs GFP_KERNEL allocations. 5236 * 5237 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). 5238 * 5239 * Return: 0 on success and -errno on failure. 5240 */ 5241 int apply_workqueue_attrs(struct workqueue_struct *wq, 5242 const struct workqueue_attrs *attrs) 5243 { 5244 int ret; 5245 5246 lockdep_assert_cpus_held(); 5247 5248 mutex_lock(&wq_pool_mutex); 5249 ret = apply_workqueue_attrs_locked(wq, attrs); 5250 mutex_unlock(&wq_pool_mutex); 5251 5252 return ret; 5253 } 5254 5255 /** 5256 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug 5257 * @wq: the target workqueue 5258 * @cpu: the CPU to update pool association for 5259 * @hotplug_cpu: the CPU coming up or going down 5260 * @online: whether @cpu is coming up or going down 5261 * 5262 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 5263 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of 5264 * @wq accordingly. 5265 * 5266 * 5267 * If pod affinity can't be adjusted due to memory allocation failure, it falls 5268 * back to @wq->dfl_pwq which may not be optimal but is always correct. 5269 * 5270 * Note that when the last allowed CPU of a pod goes offline for a workqueue 5271 * with a cpumask spanning multiple pods, the workers which were already 5272 * executing the work items for the workqueue will lose their CPU affinity and 5273 * may execute on any CPU. This is similar to how per-cpu workqueues behave on 5274 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's 5275 * responsibility to flush the work item from CPU_DOWN_PREPARE. 5276 */ 5277 static void wq_update_pod(struct workqueue_struct *wq, int cpu, 5278 int hotplug_cpu, bool online) 5279 { 5280 int off_cpu = online ? -1 : hotplug_cpu; 5281 struct pool_workqueue *old_pwq = NULL, *pwq; 5282 struct workqueue_attrs *target_attrs; 5283 5284 lockdep_assert_held(&wq_pool_mutex); 5285 5286 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered) 5287 return; 5288 5289 /* 5290 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 5291 * Let's use a preallocated one. The following buf is protected by 5292 * CPU hotplug exclusion. 5293 */ 5294 target_attrs = wq_update_pod_attrs_buf; 5295 5296 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 5297 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask); 5298 5299 /* nothing to do if the target cpumask matches the current pwq */ 5300 wq_calc_pod_cpumask(target_attrs, cpu, off_cpu); 5301 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs)) 5302 return; 5303 5304 /* create a new pwq */ 5305 pwq = alloc_unbound_pwq(wq, target_attrs); 5306 if (!pwq) { 5307 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n", 5308 wq->name); 5309 goto use_dfl_pwq; 5310 } 5311 5312 /* Install the new pwq. */ 5313 mutex_lock(&wq->mutex); 5314 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5315 goto out_unlock; 5316 5317 use_dfl_pwq: 5318 mutex_lock(&wq->mutex); 5319 pwq = unbound_pwq(wq, -1); 5320 raw_spin_lock_irq(&pwq->pool->lock); 5321 get_pwq(pwq); 5322 raw_spin_unlock_irq(&pwq->pool->lock); 5323 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5324 out_unlock: 5325 mutex_unlock(&wq->mutex); 5326 put_pwq_unlocked(old_pwq); 5327 } 5328 5329 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 5330 { 5331 bool highpri = wq->flags & WQ_HIGHPRI; 5332 int cpu, ret; 5333 5334 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *); 5335 if (!wq->cpu_pwq) 5336 goto enomem; 5337 5338 if (!(wq->flags & WQ_UNBOUND)) { 5339 for_each_possible_cpu(cpu) { 5340 struct pool_workqueue **pwq_p; 5341 struct worker_pool __percpu *pools; 5342 struct worker_pool *pool; 5343 5344 if (wq->flags & WQ_BH) 5345 pools = bh_worker_pools; 5346 else 5347 pools = cpu_worker_pools; 5348 5349 pool = &(per_cpu_ptr(pools, cpu)[highpri]); 5350 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu); 5351 5352 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, 5353 pool->node); 5354 if (!*pwq_p) 5355 goto enomem; 5356 5357 init_pwq(*pwq_p, wq, pool); 5358 5359 mutex_lock(&wq->mutex); 5360 link_pwq(*pwq_p); 5361 mutex_unlock(&wq->mutex); 5362 } 5363 return 0; 5364 } 5365 5366 cpus_read_lock(); 5367 if (wq->flags & __WQ_ORDERED) { 5368 struct pool_workqueue *dfl_pwq; 5369 5370 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 5371 /* there should only be single pwq for ordering guarantee */ 5372 dfl_pwq = rcu_access_pointer(wq->dfl_pwq); 5373 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node || 5374 wq->pwqs.prev != &dfl_pwq->pwqs_node), 5375 "ordering guarantee broken for workqueue %s\n", wq->name); 5376 } else { 5377 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 5378 } 5379 cpus_read_unlock(); 5380 5381 /* for unbound pwq, flush the pwq_release_worker ensures that the 5382 * pwq_release_workfn() completes before calling kfree(wq). 5383 */ 5384 if (ret) 5385 kthread_flush_worker(pwq_release_worker); 5386 5387 return ret; 5388 5389 enomem: 5390 if (wq->cpu_pwq) { 5391 for_each_possible_cpu(cpu) { 5392 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5393 5394 if (pwq) 5395 kmem_cache_free(pwq_cache, pwq); 5396 } 5397 free_percpu(wq->cpu_pwq); 5398 wq->cpu_pwq = NULL; 5399 } 5400 return -ENOMEM; 5401 } 5402 5403 static int wq_clamp_max_active(int max_active, unsigned int flags, 5404 const char *name) 5405 { 5406 if (max_active < 1 || max_active > WQ_MAX_ACTIVE) 5407 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 5408 max_active, name, 1, WQ_MAX_ACTIVE); 5409 5410 return clamp_val(max_active, 1, WQ_MAX_ACTIVE); 5411 } 5412 5413 /* 5414 * Workqueues which may be used during memory reclaim should have a rescuer 5415 * to guarantee forward progress. 5416 */ 5417 static int init_rescuer(struct workqueue_struct *wq) 5418 { 5419 struct worker *rescuer; 5420 int ret; 5421 5422 if (!(wq->flags & WQ_MEM_RECLAIM)) 5423 return 0; 5424 5425 rescuer = alloc_worker(NUMA_NO_NODE); 5426 if (!rescuer) { 5427 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 5428 wq->name); 5429 return -ENOMEM; 5430 } 5431 5432 rescuer->rescue_wq = wq; 5433 rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name); 5434 if (IS_ERR(rescuer->task)) { 5435 ret = PTR_ERR(rescuer->task); 5436 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 5437 wq->name, ERR_PTR(ret)); 5438 kfree(rescuer); 5439 return ret; 5440 } 5441 5442 wq->rescuer = rescuer; 5443 if (wq->flags & WQ_UNBOUND) 5444 kthread_bind_mask(rescuer->task, wq_unbound_cpumask); 5445 else 5446 kthread_bind_mask(rescuer->task, cpu_possible_mask); 5447 wake_up_process(rescuer->task); 5448 5449 return 0; 5450 } 5451 5452 /** 5453 * wq_adjust_max_active - update a wq's max_active to the current setting 5454 * @wq: target workqueue 5455 * 5456 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and 5457 * activate inactive work items accordingly. If @wq is freezing, clear 5458 * @wq->max_active to zero. 5459 */ 5460 static void wq_adjust_max_active(struct workqueue_struct *wq) 5461 { 5462 bool activated; 5463 int new_max, new_min; 5464 5465 lockdep_assert_held(&wq->mutex); 5466 5467 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) { 5468 new_max = 0; 5469 new_min = 0; 5470 } else { 5471 new_max = wq->saved_max_active; 5472 new_min = wq->saved_min_active; 5473 } 5474 5475 if (wq->max_active == new_max && wq->min_active == new_min) 5476 return; 5477 5478 /* 5479 * Update @wq->max/min_active and then kick inactive work items if more 5480 * active work items are allowed. This doesn't break work item ordering 5481 * because new work items are always queued behind existing inactive 5482 * work items if there are any. 5483 */ 5484 WRITE_ONCE(wq->max_active, new_max); 5485 WRITE_ONCE(wq->min_active, new_min); 5486 5487 if (wq->flags & WQ_UNBOUND) 5488 wq_update_node_max_active(wq, -1); 5489 5490 if (new_max == 0) 5491 return; 5492 5493 /* 5494 * Round-robin through pwq's activating the first inactive work item 5495 * until max_active is filled. 5496 */ 5497 do { 5498 struct pool_workqueue *pwq; 5499 5500 activated = false; 5501 for_each_pwq(pwq, wq) { 5502 unsigned long irq_flags; 5503 5504 /* can be called during early boot w/ irq disabled */ 5505 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 5506 if (pwq_activate_first_inactive(pwq, true)) { 5507 activated = true; 5508 kick_pool(pwq->pool); 5509 } 5510 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 5511 } 5512 } while (activated); 5513 } 5514 5515 __printf(1, 4) 5516 struct workqueue_struct *alloc_workqueue(const char *fmt, 5517 unsigned int flags, 5518 int max_active, ...) 5519 { 5520 va_list args; 5521 struct workqueue_struct *wq; 5522 size_t wq_size; 5523 int name_len; 5524 5525 if (flags & WQ_BH) { 5526 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS)) 5527 return NULL; 5528 if (WARN_ON_ONCE(max_active)) 5529 return NULL; 5530 } 5531 5532 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 5533 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 5534 flags |= WQ_UNBOUND; 5535 5536 /* allocate wq and format name */ 5537 if (flags & WQ_UNBOUND) 5538 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1); 5539 else 5540 wq_size = sizeof(*wq); 5541 5542 wq = kzalloc(wq_size, GFP_KERNEL); 5543 if (!wq) 5544 return NULL; 5545 5546 if (flags & WQ_UNBOUND) { 5547 wq->unbound_attrs = alloc_workqueue_attrs(); 5548 if (!wq->unbound_attrs) 5549 goto err_free_wq; 5550 } 5551 5552 va_start(args, max_active); 5553 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args); 5554 va_end(args); 5555 5556 if (name_len >= WQ_NAME_LEN) 5557 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n", 5558 wq->name); 5559 5560 if (flags & WQ_BH) { 5561 /* 5562 * BH workqueues always share a single execution context per CPU 5563 * and don't impose any max_active limit. 5564 */ 5565 max_active = INT_MAX; 5566 } else { 5567 max_active = max_active ?: WQ_DFL_ACTIVE; 5568 max_active = wq_clamp_max_active(max_active, flags, wq->name); 5569 } 5570 5571 /* init wq */ 5572 wq->flags = flags; 5573 wq->max_active = max_active; 5574 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE); 5575 wq->saved_max_active = wq->max_active; 5576 wq->saved_min_active = wq->min_active; 5577 mutex_init(&wq->mutex); 5578 atomic_set(&wq->nr_pwqs_to_flush, 0); 5579 INIT_LIST_HEAD(&wq->pwqs); 5580 INIT_LIST_HEAD(&wq->flusher_queue); 5581 INIT_LIST_HEAD(&wq->flusher_overflow); 5582 INIT_LIST_HEAD(&wq->maydays); 5583 5584 wq_init_lockdep(wq); 5585 INIT_LIST_HEAD(&wq->list); 5586 5587 if (flags & WQ_UNBOUND) { 5588 if (alloc_node_nr_active(wq->node_nr_active) < 0) 5589 goto err_unreg_lockdep; 5590 } 5591 5592 if (alloc_and_link_pwqs(wq) < 0) 5593 goto err_free_node_nr_active; 5594 5595 if (wq_online && init_rescuer(wq) < 0) 5596 goto err_destroy; 5597 5598 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 5599 goto err_destroy; 5600 5601 /* 5602 * wq_pool_mutex protects global freeze state and workqueues list. 5603 * Grab it, adjust max_active and add the new @wq to workqueues 5604 * list. 5605 */ 5606 mutex_lock(&wq_pool_mutex); 5607 5608 mutex_lock(&wq->mutex); 5609 wq_adjust_max_active(wq); 5610 mutex_unlock(&wq->mutex); 5611 5612 list_add_tail_rcu(&wq->list, &workqueues); 5613 5614 mutex_unlock(&wq_pool_mutex); 5615 5616 return wq; 5617 5618 err_free_node_nr_active: 5619 if (wq->flags & WQ_UNBOUND) 5620 free_node_nr_active(wq->node_nr_active); 5621 err_unreg_lockdep: 5622 wq_unregister_lockdep(wq); 5623 wq_free_lockdep(wq); 5624 err_free_wq: 5625 free_workqueue_attrs(wq->unbound_attrs); 5626 kfree(wq); 5627 return NULL; 5628 err_destroy: 5629 destroy_workqueue(wq); 5630 return NULL; 5631 } 5632 EXPORT_SYMBOL_GPL(alloc_workqueue); 5633 5634 static bool pwq_busy(struct pool_workqueue *pwq) 5635 { 5636 int i; 5637 5638 for (i = 0; i < WORK_NR_COLORS; i++) 5639 if (pwq->nr_in_flight[i]) 5640 return true; 5641 5642 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1)) 5643 return true; 5644 if (!pwq_is_empty(pwq)) 5645 return true; 5646 5647 return false; 5648 } 5649 5650 /** 5651 * destroy_workqueue - safely terminate a workqueue 5652 * @wq: target workqueue 5653 * 5654 * Safely destroy a workqueue. All work currently pending will be done first. 5655 */ 5656 void destroy_workqueue(struct workqueue_struct *wq) 5657 { 5658 struct pool_workqueue *pwq; 5659 int cpu; 5660 5661 /* 5662 * Remove it from sysfs first so that sanity check failure doesn't 5663 * lead to sysfs name conflicts. 5664 */ 5665 workqueue_sysfs_unregister(wq); 5666 5667 /* mark the workqueue destruction is in progress */ 5668 mutex_lock(&wq->mutex); 5669 wq->flags |= __WQ_DESTROYING; 5670 mutex_unlock(&wq->mutex); 5671 5672 /* drain it before proceeding with destruction */ 5673 drain_workqueue(wq); 5674 5675 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 5676 if (wq->rescuer) { 5677 struct worker *rescuer = wq->rescuer; 5678 5679 /* this prevents new queueing */ 5680 raw_spin_lock_irq(&wq_mayday_lock); 5681 wq->rescuer = NULL; 5682 raw_spin_unlock_irq(&wq_mayday_lock); 5683 5684 /* rescuer will empty maydays list before exiting */ 5685 kthread_stop(rescuer->task); 5686 kfree(rescuer); 5687 } 5688 5689 /* 5690 * Sanity checks - grab all the locks so that we wait for all 5691 * in-flight operations which may do put_pwq(). 5692 */ 5693 mutex_lock(&wq_pool_mutex); 5694 mutex_lock(&wq->mutex); 5695 for_each_pwq(pwq, wq) { 5696 raw_spin_lock_irq(&pwq->pool->lock); 5697 if (WARN_ON(pwq_busy(pwq))) { 5698 pr_warn("%s: %s has the following busy pwq\n", 5699 __func__, wq->name); 5700 show_pwq(pwq); 5701 raw_spin_unlock_irq(&pwq->pool->lock); 5702 mutex_unlock(&wq->mutex); 5703 mutex_unlock(&wq_pool_mutex); 5704 show_one_workqueue(wq); 5705 return; 5706 } 5707 raw_spin_unlock_irq(&pwq->pool->lock); 5708 } 5709 mutex_unlock(&wq->mutex); 5710 5711 /* 5712 * wq list is used to freeze wq, remove from list after 5713 * flushing is complete in case freeze races us. 5714 */ 5715 list_del_rcu(&wq->list); 5716 mutex_unlock(&wq_pool_mutex); 5717 5718 /* 5719 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq 5720 * to put the base refs. @wq will be auto-destroyed from the last 5721 * pwq_put. RCU read lock prevents @wq from going away from under us. 5722 */ 5723 rcu_read_lock(); 5724 5725 for_each_possible_cpu(cpu) { 5726 put_pwq_unlocked(unbound_pwq(wq, cpu)); 5727 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL); 5728 } 5729 5730 put_pwq_unlocked(unbound_pwq(wq, -1)); 5731 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL); 5732 5733 rcu_read_unlock(); 5734 } 5735 EXPORT_SYMBOL_GPL(destroy_workqueue); 5736 5737 /** 5738 * workqueue_set_max_active - adjust max_active of a workqueue 5739 * @wq: target workqueue 5740 * @max_active: new max_active value. 5741 * 5742 * Set max_active of @wq to @max_active. See the alloc_workqueue() function 5743 * comment. 5744 * 5745 * CONTEXT: 5746 * Don't call from IRQ context. 5747 */ 5748 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 5749 { 5750 /* max_active doesn't mean anything for BH workqueues */ 5751 if (WARN_ON(wq->flags & WQ_BH)) 5752 return; 5753 /* disallow meddling with max_active for ordered workqueues */ 5754 if (WARN_ON(wq->flags & __WQ_ORDERED)) 5755 return; 5756 5757 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 5758 5759 mutex_lock(&wq->mutex); 5760 5761 wq->saved_max_active = max_active; 5762 if (wq->flags & WQ_UNBOUND) 5763 wq->saved_min_active = min(wq->saved_min_active, max_active); 5764 5765 wq_adjust_max_active(wq); 5766 5767 mutex_unlock(&wq->mutex); 5768 } 5769 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 5770 5771 /** 5772 * workqueue_set_min_active - adjust min_active of an unbound workqueue 5773 * @wq: target unbound workqueue 5774 * @min_active: new min_active value 5775 * 5776 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an 5777 * unbound workqueue is not guaranteed to be able to process max_active 5778 * interdependent work items. Instead, an unbound workqueue is guaranteed to be 5779 * able to process min_active number of interdependent work items which is 5780 * %WQ_DFL_MIN_ACTIVE by default. 5781 * 5782 * Use this function to adjust the min_active value between 0 and the current 5783 * max_active. 5784 */ 5785 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active) 5786 { 5787 /* min_active is only meaningful for non-ordered unbound workqueues */ 5788 if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) != 5789 WQ_UNBOUND)) 5790 return; 5791 5792 mutex_lock(&wq->mutex); 5793 wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active); 5794 wq_adjust_max_active(wq); 5795 mutex_unlock(&wq->mutex); 5796 } 5797 5798 /** 5799 * current_work - retrieve %current task's work struct 5800 * 5801 * Determine if %current task is a workqueue worker and what it's working on. 5802 * Useful to find out the context that the %current task is running in. 5803 * 5804 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 5805 */ 5806 struct work_struct *current_work(void) 5807 { 5808 struct worker *worker = current_wq_worker(); 5809 5810 return worker ? worker->current_work : NULL; 5811 } 5812 EXPORT_SYMBOL(current_work); 5813 5814 /** 5815 * current_is_workqueue_rescuer - is %current workqueue rescuer? 5816 * 5817 * Determine whether %current is a workqueue rescuer. Can be used from 5818 * work functions to determine whether it's being run off the rescuer task. 5819 * 5820 * Return: %true if %current is a workqueue rescuer. %false otherwise. 5821 */ 5822 bool current_is_workqueue_rescuer(void) 5823 { 5824 struct worker *worker = current_wq_worker(); 5825 5826 return worker && worker->rescue_wq; 5827 } 5828 5829 /** 5830 * workqueue_congested - test whether a workqueue is congested 5831 * @cpu: CPU in question 5832 * @wq: target workqueue 5833 * 5834 * Test whether @wq's cpu workqueue for @cpu is congested. There is 5835 * no synchronization around this function and the test result is 5836 * unreliable and only useful as advisory hints or for debugging. 5837 * 5838 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 5839 * 5840 * With the exception of ordered workqueues, all workqueues have per-cpu 5841 * pool_workqueues, each with its own congested state. A workqueue being 5842 * congested on one CPU doesn't mean that the workqueue is contested on any 5843 * other CPUs. 5844 * 5845 * Return: 5846 * %true if congested, %false otherwise. 5847 */ 5848 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 5849 { 5850 struct pool_workqueue *pwq; 5851 bool ret; 5852 5853 rcu_read_lock(); 5854 preempt_disable(); 5855 5856 if (cpu == WORK_CPU_UNBOUND) 5857 cpu = smp_processor_id(); 5858 5859 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5860 ret = !list_empty(&pwq->inactive_works); 5861 5862 preempt_enable(); 5863 rcu_read_unlock(); 5864 5865 return ret; 5866 } 5867 EXPORT_SYMBOL_GPL(workqueue_congested); 5868 5869 /** 5870 * work_busy - test whether a work is currently pending or running 5871 * @work: the work to be tested 5872 * 5873 * Test whether @work is currently pending or running. There is no 5874 * synchronization around this function and the test result is 5875 * unreliable and only useful as advisory hints or for debugging. 5876 * 5877 * Return: 5878 * OR'd bitmask of WORK_BUSY_* bits. 5879 */ 5880 unsigned int work_busy(struct work_struct *work) 5881 { 5882 struct worker_pool *pool; 5883 unsigned long irq_flags; 5884 unsigned int ret = 0; 5885 5886 if (work_pending(work)) 5887 ret |= WORK_BUSY_PENDING; 5888 5889 rcu_read_lock(); 5890 pool = get_work_pool(work); 5891 if (pool) { 5892 raw_spin_lock_irqsave(&pool->lock, irq_flags); 5893 if (find_worker_executing_work(pool, work)) 5894 ret |= WORK_BUSY_RUNNING; 5895 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 5896 } 5897 rcu_read_unlock(); 5898 5899 return ret; 5900 } 5901 EXPORT_SYMBOL_GPL(work_busy); 5902 5903 /** 5904 * set_worker_desc - set description for the current work item 5905 * @fmt: printf-style format string 5906 * @...: arguments for the format string 5907 * 5908 * This function can be called by a running work function to describe what 5909 * the work item is about. If the worker task gets dumped, this 5910 * information will be printed out together to help debugging. The 5911 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 5912 */ 5913 void set_worker_desc(const char *fmt, ...) 5914 { 5915 struct worker *worker = current_wq_worker(); 5916 va_list args; 5917 5918 if (worker) { 5919 va_start(args, fmt); 5920 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 5921 va_end(args); 5922 } 5923 } 5924 EXPORT_SYMBOL_GPL(set_worker_desc); 5925 5926 /** 5927 * print_worker_info - print out worker information and description 5928 * @log_lvl: the log level to use when printing 5929 * @task: target task 5930 * 5931 * If @task is a worker and currently executing a work item, print out the 5932 * name of the workqueue being serviced and worker description set with 5933 * set_worker_desc() by the currently executing work item. 5934 * 5935 * This function can be safely called on any task as long as the 5936 * task_struct itself is accessible. While safe, this function isn't 5937 * synchronized and may print out mixups or garbages of limited length. 5938 */ 5939 void print_worker_info(const char *log_lvl, struct task_struct *task) 5940 { 5941 work_func_t *fn = NULL; 5942 char name[WQ_NAME_LEN] = { }; 5943 char desc[WORKER_DESC_LEN] = { }; 5944 struct pool_workqueue *pwq = NULL; 5945 struct workqueue_struct *wq = NULL; 5946 struct worker *worker; 5947 5948 if (!(task->flags & PF_WQ_WORKER)) 5949 return; 5950 5951 /* 5952 * This function is called without any synchronization and @task 5953 * could be in any state. Be careful with dereferences. 5954 */ 5955 worker = kthread_probe_data(task); 5956 5957 /* 5958 * Carefully copy the associated workqueue's workfn, name and desc. 5959 * Keep the original last '\0' in case the original is garbage. 5960 */ 5961 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 5962 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 5963 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 5964 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 5965 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 5966 5967 if (fn || name[0] || desc[0]) { 5968 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 5969 if (strcmp(name, desc)) 5970 pr_cont(" (%s)", desc); 5971 pr_cont("\n"); 5972 } 5973 } 5974 5975 static void pr_cont_pool_info(struct worker_pool *pool) 5976 { 5977 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 5978 if (pool->node != NUMA_NO_NODE) 5979 pr_cont(" node=%d", pool->node); 5980 pr_cont(" flags=0x%x", pool->flags); 5981 if (pool->flags & POOL_BH) 5982 pr_cont(" bh%s", 5983 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 5984 else 5985 pr_cont(" nice=%d", pool->attrs->nice); 5986 } 5987 5988 static void pr_cont_worker_id(struct worker *worker) 5989 { 5990 struct worker_pool *pool = worker->pool; 5991 5992 if (pool->flags & WQ_BH) 5993 pr_cont("bh%s", 5994 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 5995 else 5996 pr_cont("%d%s", task_pid_nr(worker->task), 5997 worker->rescue_wq ? "(RESCUER)" : ""); 5998 } 5999 6000 struct pr_cont_work_struct { 6001 bool comma; 6002 work_func_t func; 6003 long ctr; 6004 }; 6005 6006 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 6007 { 6008 if (!pcwsp->ctr) 6009 goto out_record; 6010 if (func == pcwsp->func) { 6011 pcwsp->ctr++; 6012 return; 6013 } 6014 if (pcwsp->ctr == 1) 6015 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 6016 else 6017 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 6018 pcwsp->ctr = 0; 6019 out_record: 6020 if ((long)func == -1L) 6021 return; 6022 pcwsp->comma = comma; 6023 pcwsp->func = func; 6024 pcwsp->ctr = 1; 6025 } 6026 6027 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 6028 { 6029 if (work->func == wq_barrier_func) { 6030 struct wq_barrier *barr; 6031 6032 barr = container_of(work, struct wq_barrier, work); 6033 6034 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6035 pr_cont("%s BAR(%d)", comma ? "," : "", 6036 task_pid_nr(barr->task)); 6037 } else { 6038 if (!comma) 6039 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6040 pr_cont_work_flush(comma, work->func, pcwsp); 6041 } 6042 } 6043 6044 static void show_pwq(struct pool_workqueue *pwq) 6045 { 6046 struct pr_cont_work_struct pcws = { .ctr = 0, }; 6047 struct worker_pool *pool = pwq->pool; 6048 struct work_struct *work; 6049 struct worker *worker; 6050 bool has_in_flight = false, has_pending = false; 6051 int bkt; 6052 6053 pr_info(" pwq %d:", pool->id); 6054 pr_cont_pool_info(pool); 6055 6056 pr_cont(" active=%d refcnt=%d%s\n", 6057 pwq->nr_active, pwq->refcnt, 6058 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 6059 6060 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6061 if (worker->current_pwq == pwq) { 6062 has_in_flight = true; 6063 break; 6064 } 6065 } 6066 if (has_in_flight) { 6067 bool comma = false; 6068 6069 pr_info(" in-flight:"); 6070 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6071 if (worker->current_pwq != pwq) 6072 continue; 6073 6074 pr_cont(" %s", comma ? "," : ""); 6075 pr_cont_worker_id(worker); 6076 pr_cont(":%ps", worker->current_func); 6077 list_for_each_entry(work, &worker->scheduled, entry) 6078 pr_cont_work(false, work, &pcws); 6079 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6080 comma = true; 6081 } 6082 pr_cont("\n"); 6083 } 6084 6085 list_for_each_entry(work, &pool->worklist, entry) { 6086 if (get_work_pwq(work) == pwq) { 6087 has_pending = true; 6088 break; 6089 } 6090 } 6091 if (has_pending) { 6092 bool comma = false; 6093 6094 pr_info(" pending:"); 6095 list_for_each_entry(work, &pool->worklist, entry) { 6096 if (get_work_pwq(work) != pwq) 6097 continue; 6098 6099 pr_cont_work(comma, work, &pcws); 6100 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6101 } 6102 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6103 pr_cont("\n"); 6104 } 6105 6106 if (!list_empty(&pwq->inactive_works)) { 6107 bool comma = false; 6108 6109 pr_info(" inactive:"); 6110 list_for_each_entry(work, &pwq->inactive_works, entry) { 6111 pr_cont_work(comma, work, &pcws); 6112 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6113 } 6114 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6115 pr_cont("\n"); 6116 } 6117 } 6118 6119 /** 6120 * show_one_workqueue - dump state of specified workqueue 6121 * @wq: workqueue whose state will be printed 6122 */ 6123 void show_one_workqueue(struct workqueue_struct *wq) 6124 { 6125 struct pool_workqueue *pwq; 6126 bool idle = true; 6127 unsigned long irq_flags; 6128 6129 for_each_pwq(pwq, wq) { 6130 if (!pwq_is_empty(pwq)) { 6131 idle = false; 6132 break; 6133 } 6134 } 6135 if (idle) /* Nothing to print for idle workqueue */ 6136 return; 6137 6138 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 6139 6140 for_each_pwq(pwq, wq) { 6141 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 6142 if (!pwq_is_empty(pwq)) { 6143 /* 6144 * Defer printing to avoid deadlocks in console 6145 * drivers that queue work while holding locks 6146 * also taken in their write paths. 6147 */ 6148 printk_deferred_enter(); 6149 show_pwq(pwq); 6150 printk_deferred_exit(); 6151 } 6152 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 6153 /* 6154 * We could be printing a lot from atomic context, e.g. 6155 * sysrq-t -> show_all_workqueues(). Avoid triggering 6156 * hard lockup. 6157 */ 6158 touch_nmi_watchdog(); 6159 } 6160 6161 } 6162 6163 /** 6164 * show_one_worker_pool - dump state of specified worker pool 6165 * @pool: worker pool whose state will be printed 6166 */ 6167 static void show_one_worker_pool(struct worker_pool *pool) 6168 { 6169 struct worker *worker; 6170 bool first = true; 6171 unsigned long irq_flags; 6172 unsigned long hung = 0; 6173 6174 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6175 if (pool->nr_workers == pool->nr_idle) 6176 goto next_pool; 6177 6178 /* How long the first pending work is waiting for a worker. */ 6179 if (!list_empty(&pool->worklist)) 6180 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 6181 6182 /* 6183 * Defer printing to avoid deadlocks in console drivers that 6184 * queue work while holding locks also taken in their write 6185 * paths. 6186 */ 6187 printk_deferred_enter(); 6188 pr_info("pool %d:", pool->id); 6189 pr_cont_pool_info(pool); 6190 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 6191 if (pool->manager) 6192 pr_cont(" manager: %d", 6193 task_pid_nr(pool->manager->task)); 6194 list_for_each_entry(worker, &pool->idle_list, entry) { 6195 pr_cont(" %s", first ? "idle: " : ""); 6196 pr_cont_worker_id(worker); 6197 first = false; 6198 } 6199 pr_cont("\n"); 6200 printk_deferred_exit(); 6201 next_pool: 6202 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6203 /* 6204 * We could be printing a lot from atomic context, e.g. 6205 * sysrq-t -> show_all_workqueues(). Avoid triggering 6206 * hard lockup. 6207 */ 6208 touch_nmi_watchdog(); 6209 6210 } 6211 6212 /** 6213 * show_all_workqueues - dump workqueue state 6214 * 6215 * Called from a sysrq handler and prints out all busy workqueues and pools. 6216 */ 6217 void show_all_workqueues(void) 6218 { 6219 struct workqueue_struct *wq; 6220 struct worker_pool *pool; 6221 int pi; 6222 6223 rcu_read_lock(); 6224 6225 pr_info("Showing busy workqueues and worker pools:\n"); 6226 6227 list_for_each_entry_rcu(wq, &workqueues, list) 6228 show_one_workqueue(wq); 6229 6230 for_each_pool(pool, pi) 6231 show_one_worker_pool(pool); 6232 6233 rcu_read_unlock(); 6234 } 6235 6236 /** 6237 * show_freezable_workqueues - dump freezable workqueue state 6238 * 6239 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 6240 * still busy. 6241 */ 6242 void show_freezable_workqueues(void) 6243 { 6244 struct workqueue_struct *wq; 6245 6246 rcu_read_lock(); 6247 6248 pr_info("Showing freezable workqueues that are still busy:\n"); 6249 6250 list_for_each_entry_rcu(wq, &workqueues, list) { 6251 if (!(wq->flags & WQ_FREEZABLE)) 6252 continue; 6253 show_one_workqueue(wq); 6254 } 6255 6256 rcu_read_unlock(); 6257 } 6258 6259 /* used to show worker information through /proc/PID/{comm,stat,status} */ 6260 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 6261 { 6262 int off; 6263 6264 /* always show the actual comm */ 6265 off = strscpy(buf, task->comm, size); 6266 if (off < 0) 6267 return; 6268 6269 /* stabilize PF_WQ_WORKER and worker pool association */ 6270 mutex_lock(&wq_pool_attach_mutex); 6271 6272 if (task->flags & PF_WQ_WORKER) { 6273 struct worker *worker = kthread_data(task); 6274 struct worker_pool *pool = worker->pool; 6275 6276 if (pool) { 6277 raw_spin_lock_irq(&pool->lock); 6278 /* 6279 * ->desc tracks information (wq name or 6280 * set_worker_desc()) for the latest execution. If 6281 * current, prepend '+', otherwise '-'. 6282 */ 6283 if (worker->desc[0] != '\0') { 6284 if (worker->current_work) 6285 scnprintf(buf + off, size - off, "+%s", 6286 worker->desc); 6287 else 6288 scnprintf(buf + off, size - off, "-%s", 6289 worker->desc); 6290 } 6291 raw_spin_unlock_irq(&pool->lock); 6292 } 6293 } 6294 6295 mutex_unlock(&wq_pool_attach_mutex); 6296 } 6297 6298 #ifdef CONFIG_SMP 6299 6300 /* 6301 * CPU hotplug. 6302 * 6303 * There are two challenges in supporting CPU hotplug. Firstly, there 6304 * are a lot of assumptions on strong associations among work, pwq and 6305 * pool which make migrating pending and scheduled works very 6306 * difficult to implement without impacting hot paths. Secondly, 6307 * worker pools serve mix of short, long and very long running works making 6308 * blocked draining impractical. 6309 * 6310 * This is solved by allowing the pools to be disassociated from the CPU 6311 * running as an unbound one and allowing it to be reattached later if the 6312 * cpu comes back online. 6313 */ 6314 6315 static void unbind_workers(int cpu) 6316 { 6317 struct worker_pool *pool; 6318 struct worker *worker; 6319 6320 for_each_cpu_worker_pool(pool, cpu) { 6321 mutex_lock(&wq_pool_attach_mutex); 6322 raw_spin_lock_irq(&pool->lock); 6323 6324 /* 6325 * We've blocked all attach/detach operations. Make all workers 6326 * unbound and set DISASSOCIATED. Before this, all workers 6327 * must be on the cpu. After this, they may become diasporas. 6328 * And the preemption disabled section in their sched callbacks 6329 * are guaranteed to see WORKER_UNBOUND since the code here 6330 * is on the same cpu. 6331 */ 6332 for_each_pool_worker(worker, pool) 6333 worker->flags |= WORKER_UNBOUND; 6334 6335 pool->flags |= POOL_DISASSOCIATED; 6336 6337 /* 6338 * The handling of nr_running in sched callbacks are disabled 6339 * now. Zap nr_running. After this, nr_running stays zero and 6340 * need_more_worker() and keep_working() are always true as 6341 * long as the worklist is not empty. This pool now behaves as 6342 * an unbound (in terms of concurrency management) pool which 6343 * are served by workers tied to the pool. 6344 */ 6345 pool->nr_running = 0; 6346 6347 /* 6348 * With concurrency management just turned off, a busy 6349 * worker blocking could lead to lengthy stalls. Kick off 6350 * unbound chain execution of currently pending work items. 6351 */ 6352 kick_pool(pool); 6353 6354 raw_spin_unlock_irq(&pool->lock); 6355 6356 for_each_pool_worker(worker, pool) 6357 unbind_worker(worker); 6358 6359 mutex_unlock(&wq_pool_attach_mutex); 6360 } 6361 } 6362 6363 /** 6364 * rebind_workers - rebind all workers of a pool to the associated CPU 6365 * @pool: pool of interest 6366 * 6367 * @pool->cpu is coming online. Rebind all workers to the CPU. 6368 */ 6369 static void rebind_workers(struct worker_pool *pool) 6370 { 6371 struct worker *worker; 6372 6373 lockdep_assert_held(&wq_pool_attach_mutex); 6374 6375 /* 6376 * Restore CPU affinity of all workers. As all idle workers should 6377 * be on the run-queue of the associated CPU before any local 6378 * wake-ups for concurrency management happen, restore CPU affinity 6379 * of all workers first and then clear UNBOUND. As we're called 6380 * from CPU_ONLINE, the following shouldn't fail. 6381 */ 6382 for_each_pool_worker(worker, pool) { 6383 kthread_set_per_cpu(worker->task, pool->cpu); 6384 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 6385 pool_allowed_cpus(pool)) < 0); 6386 } 6387 6388 raw_spin_lock_irq(&pool->lock); 6389 6390 pool->flags &= ~POOL_DISASSOCIATED; 6391 6392 for_each_pool_worker(worker, pool) { 6393 unsigned int worker_flags = worker->flags; 6394 6395 /* 6396 * We want to clear UNBOUND but can't directly call 6397 * worker_clr_flags() or adjust nr_running. Atomically 6398 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 6399 * @worker will clear REBOUND using worker_clr_flags() when 6400 * it initiates the next execution cycle thus restoring 6401 * concurrency management. Note that when or whether 6402 * @worker clears REBOUND doesn't affect correctness. 6403 * 6404 * WRITE_ONCE() is necessary because @worker->flags may be 6405 * tested without holding any lock in 6406 * wq_worker_running(). Without it, NOT_RUNNING test may 6407 * fail incorrectly leading to premature concurrency 6408 * management operations. 6409 */ 6410 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 6411 worker_flags |= WORKER_REBOUND; 6412 worker_flags &= ~WORKER_UNBOUND; 6413 WRITE_ONCE(worker->flags, worker_flags); 6414 } 6415 6416 raw_spin_unlock_irq(&pool->lock); 6417 } 6418 6419 /** 6420 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 6421 * @pool: unbound pool of interest 6422 * @cpu: the CPU which is coming up 6423 * 6424 * An unbound pool may end up with a cpumask which doesn't have any online 6425 * CPUs. When a worker of such pool get scheduled, the scheduler resets 6426 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 6427 * online CPU before, cpus_allowed of all its workers should be restored. 6428 */ 6429 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 6430 { 6431 static cpumask_t cpumask; 6432 struct worker *worker; 6433 6434 lockdep_assert_held(&wq_pool_attach_mutex); 6435 6436 /* is @cpu allowed for @pool? */ 6437 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 6438 return; 6439 6440 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 6441 6442 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 6443 for_each_pool_worker(worker, pool) 6444 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 6445 } 6446 6447 int workqueue_prepare_cpu(unsigned int cpu) 6448 { 6449 struct worker_pool *pool; 6450 6451 for_each_cpu_worker_pool(pool, cpu) { 6452 if (pool->nr_workers) 6453 continue; 6454 if (!create_worker(pool)) 6455 return -ENOMEM; 6456 } 6457 return 0; 6458 } 6459 6460 int workqueue_online_cpu(unsigned int cpu) 6461 { 6462 struct worker_pool *pool; 6463 struct workqueue_struct *wq; 6464 int pi; 6465 6466 mutex_lock(&wq_pool_mutex); 6467 6468 for_each_pool(pool, pi) { 6469 /* BH pools aren't affected by hotplug */ 6470 if (pool->flags & POOL_BH) 6471 continue; 6472 6473 mutex_lock(&wq_pool_attach_mutex); 6474 if (pool->cpu == cpu) 6475 rebind_workers(pool); 6476 else if (pool->cpu < 0) 6477 restore_unbound_workers_cpumask(pool, cpu); 6478 mutex_unlock(&wq_pool_attach_mutex); 6479 } 6480 6481 /* update pod affinity of unbound workqueues */ 6482 list_for_each_entry(wq, &workqueues, list) { 6483 struct workqueue_attrs *attrs = wq->unbound_attrs; 6484 6485 if (attrs) { 6486 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6487 int tcpu; 6488 6489 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6490 wq_update_pod(wq, tcpu, cpu, true); 6491 6492 mutex_lock(&wq->mutex); 6493 wq_update_node_max_active(wq, -1); 6494 mutex_unlock(&wq->mutex); 6495 } 6496 } 6497 6498 mutex_unlock(&wq_pool_mutex); 6499 return 0; 6500 } 6501 6502 int workqueue_offline_cpu(unsigned int cpu) 6503 { 6504 struct workqueue_struct *wq; 6505 6506 /* unbinding per-cpu workers should happen on the local CPU */ 6507 if (WARN_ON(cpu != smp_processor_id())) 6508 return -1; 6509 6510 unbind_workers(cpu); 6511 6512 /* update pod affinity of unbound workqueues */ 6513 mutex_lock(&wq_pool_mutex); 6514 list_for_each_entry(wq, &workqueues, list) { 6515 struct workqueue_attrs *attrs = wq->unbound_attrs; 6516 6517 if (attrs) { 6518 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6519 int tcpu; 6520 6521 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6522 wq_update_pod(wq, tcpu, cpu, false); 6523 6524 mutex_lock(&wq->mutex); 6525 wq_update_node_max_active(wq, cpu); 6526 mutex_unlock(&wq->mutex); 6527 } 6528 } 6529 mutex_unlock(&wq_pool_mutex); 6530 6531 return 0; 6532 } 6533 6534 struct work_for_cpu { 6535 struct work_struct work; 6536 long (*fn)(void *); 6537 void *arg; 6538 long ret; 6539 }; 6540 6541 static void work_for_cpu_fn(struct work_struct *work) 6542 { 6543 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 6544 6545 wfc->ret = wfc->fn(wfc->arg); 6546 } 6547 6548 /** 6549 * work_on_cpu_key - run a function in thread context on a particular cpu 6550 * @cpu: the cpu to run on 6551 * @fn: the function to run 6552 * @arg: the function arg 6553 * @key: The lock class key for lock debugging purposes 6554 * 6555 * It is up to the caller to ensure that the cpu doesn't go offline. 6556 * The caller must not hold any locks which would prevent @fn from completing. 6557 * 6558 * Return: The value @fn returns. 6559 */ 6560 long work_on_cpu_key(int cpu, long (*fn)(void *), 6561 void *arg, struct lock_class_key *key) 6562 { 6563 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 6564 6565 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key); 6566 schedule_work_on(cpu, &wfc.work); 6567 flush_work(&wfc.work); 6568 destroy_work_on_stack(&wfc.work); 6569 return wfc.ret; 6570 } 6571 EXPORT_SYMBOL_GPL(work_on_cpu_key); 6572 6573 /** 6574 * work_on_cpu_safe_key - run a function in thread context on a particular cpu 6575 * @cpu: the cpu to run on 6576 * @fn: the function to run 6577 * @arg: the function argument 6578 * @key: The lock class key for lock debugging purposes 6579 * 6580 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 6581 * any locks which would prevent @fn from completing. 6582 * 6583 * Return: The value @fn returns. 6584 */ 6585 long work_on_cpu_safe_key(int cpu, long (*fn)(void *), 6586 void *arg, struct lock_class_key *key) 6587 { 6588 long ret = -ENODEV; 6589 6590 cpus_read_lock(); 6591 if (cpu_online(cpu)) 6592 ret = work_on_cpu_key(cpu, fn, arg, key); 6593 cpus_read_unlock(); 6594 return ret; 6595 } 6596 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key); 6597 #endif /* CONFIG_SMP */ 6598 6599 #ifdef CONFIG_FREEZER 6600 6601 /** 6602 * freeze_workqueues_begin - begin freezing workqueues 6603 * 6604 * Start freezing workqueues. After this function returns, all freezable 6605 * workqueues will queue new works to their inactive_works list instead of 6606 * pool->worklist. 6607 * 6608 * CONTEXT: 6609 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6610 */ 6611 void freeze_workqueues_begin(void) 6612 { 6613 struct workqueue_struct *wq; 6614 6615 mutex_lock(&wq_pool_mutex); 6616 6617 WARN_ON_ONCE(workqueue_freezing); 6618 workqueue_freezing = true; 6619 6620 list_for_each_entry(wq, &workqueues, list) { 6621 mutex_lock(&wq->mutex); 6622 wq_adjust_max_active(wq); 6623 mutex_unlock(&wq->mutex); 6624 } 6625 6626 mutex_unlock(&wq_pool_mutex); 6627 } 6628 6629 /** 6630 * freeze_workqueues_busy - are freezable workqueues still busy? 6631 * 6632 * Check whether freezing is complete. This function must be called 6633 * between freeze_workqueues_begin() and thaw_workqueues(). 6634 * 6635 * CONTEXT: 6636 * Grabs and releases wq_pool_mutex. 6637 * 6638 * Return: 6639 * %true if some freezable workqueues are still busy. %false if freezing 6640 * is complete. 6641 */ 6642 bool freeze_workqueues_busy(void) 6643 { 6644 bool busy = false; 6645 struct workqueue_struct *wq; 6646 struct pool_workqueue *pwq; 6647 6648 mutex_lock(&wq_pool_mutex); 6649 6650 WARN_ON_ONCE(!workqueue_freezing); 6651 6652 list_for_each_entry(wq, &workqueues, list) { 6653 if (!(wq->flags & WQ_FREEZABLE)) 6654 continue; 6655 /* 6656 * nr_active is monotonically decreasing. It's safe 6657 * to peek without lock. 6658 */ 6659 rcu_read_lock(); 6660 for_each_pwq(pwq, wq) { 6661 WARN_ON_ONCE(pwq->nr_active < 0); 6662 if (pwq->nr_active) { 6663 busy = true; 6664 rcu_read_unlock(); 6665 goto out_unlock; 6666 } 6667 } 6668 rcu_read_unlock(); 6669 } 6670 out_unlock: 6671 mutex_unlock(&wq_pool_mutex); 6672 return busy; 6673 } 6674 6675 /** 6676 * thaw_workqueues - thaw workqueues 6677 * 6678 * Thaw workqueues. Normal queueing is restored and all collected 6679 * frozen works are transferred to their respective pool worklists. 6680 * 6681 * CONTEXT: 6682 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6683 */ 6684 void thaw_workqueues(void) 6685 { 6686 struct workqueue_struct *wq; 6687 6688 mutex_lock(&wq_pool_mutex); 6689 6690 if (!workqueue_freezing) 6691 goto out_unlock; 6692 6693 workqueue_freezing = false; 6694 6695 /* restore max_active and repopulate worklist */ 6696 list_for_each_entry(wq, &workqueues, list) { 6697 mutex_lock(&wq->mutex); 6698 wq_adjust_max_active(wq); 6699 mutex_unlock(&wq->mutex); 6700 } 6701 6702 out_unlock: 6703 mutex_unlock(&wq_pool_mutex); 6704 } 6705 #endif /* CONFIG_FREEZER */ 6706 6707 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 6708 { 6709 LIST_HEAD(ctxs); 6710 int ret = 0; 6711 struct workqueue_struct *wq; 6712 struct apply_wqattrs_ctx *ctx, *n; 6713 6714 lockdep_assert_held(&wq_pool_mutex); 6715 6716 list_for_each_entry(wq, &workqueues, list) { 6717 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING)) 6718 continue; 6719 6720 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 6721 if (IS_ERR(ctx)) { 6722 ret = PTR_ERR(ctx); 6723 break; 6724 } 6725 6726 list_add_tail(&ctx->list, &ctxs); 6727 } 6728 6729 list_for_each_entry_safe(ctx, n, &ctxs, list) { 6730 if (!ret) 6731 apply_wqattrs_commit(ctx); 6732 apply_wqattrs_cleanup(ctx); 6733 } 6734 6735 if (!ret) { 6736 mutex_lock(&wq_pool_attach_mutex); 6737 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 6738 mutex_unlock(&wq_pool_attach_mutex); 6739 } 6740 return ret; 6741 } 6742 6743 /** 6744 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask 6745 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask 6746 * 6747 * This function can be called from cpuset code to provide a set of isolated 6748 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold 6749 * either cpus_read_lock or cpus_write_lock. 6750 */ 6751 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask) 6752 { 6753 cpumask_var_t cpumask; 6754 int ret = 0; 6755 6756 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 6757 return -ENOMEM; 6758 6759 lockdep_assert_cpus_held(); 6760 mutex_lock(&wq_pool_mutex); 6761 6762 /* Save the current isolated cpumask & export it via sysfs */ 6763 cpumask_copy(wq_isolated_cpumask, exclude_cpumask); 6764 6765 /* 6766 * If the operation fails, it will fall back to 6767 * wq_requested_unbound_cpumask which is initially set to 6768 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten 6769 * by any subsequent write to workqueue/cpumask sysfs file. 6770 */ 6771 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask)) 6772 cpumask_copy(cpumask, wq_requested_unbound_cpumask); 6773 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 6774 ret = workqueue_apply_unbound_cpumask(cpumask); 6775 6776 mutex_unlock(&wq_pool_mutex); 6777 free_cpumask_var(cpumask); 6778 return ret; 6779 } 6780 6781 static int parse_affn_scope(const char *val) 6782 { 6783 int i; 6784 6785 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) { 6786 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i]))) 6787 return i; 6788 } 6789 return -EINVAL; 6790 } 6791 6792 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp) 6793 { 6794 struct workqueue_struct *wq; 6795 int affn, cpu; 6796 6797 affn = parse_affn_scope(val); 6798 if (affn < 0) 6799 return affn; 6800 if (affn == WQ_AFFN_DFL) 6801 return -EINVAL; 6802 6803 cpus_read_lock(); 6804 mutex_lock(&wq_pool_mutex); 6805 6806 wq_affn_dfl = affn; 6807 6808 list_for_each_entry(wq, &workqueues, list) { 6809 for_each_online_cpu(cpu) { 6810 wq_update_pod(wq, cpu, cpu, true); 6811 } 6812 } 6813 6814 mutex_unlock(&wq_pool_mutex); 6815 cpus_read_unlock(); 6816 6817 return 0; 6818 } 6819 6820 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp) 6821 { 6822 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]); 6823 } 6824 6825 static const struct kernel_param_ops wq_affn_dfl_ops = { 6826 .set = wq_affn_dfl_set, 6827 .get = wq_affn_dfl_get, 6828 }; 6829 6830 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644); 6831 6832 #ifdef CONFIG_SYSFS 6833 /* 6834 * Workqueues with WQ_SYSFS flag set is visible to userland via 6835 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 6836 * following attributes. 6837 * 6838 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 6839 * max_active RW int : maximum number of in-flight work items 6840 * 6841 * Unbound workqueues have the following extra attributes. 6842 * 6843 * nice RW int : nice value of the workers 6844 * cpumask RW mask : bitmask of allowed CPUs for the workers 6845 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none) 6846 * affinity_strict RW bool : worker CPU affinity is strict 6847 */ 6848 struct wq_device { 6849 struct workqueue_struct *wq; 6850 struct device dev; 6851 }; 6852 6853 static struct workqueue_struct *dev_to_wq(struct device *dev) 6854 { 6855 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 6856 6857 return wq_dev->wq; 6858 } 6859 6860 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 6861 char *buf) 6862 { 6863 struct workqueue_struct *wq = dev_to_wq(dev); 6864 6865 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 6866 } 6867 static DEVICE_ATTR_RO(per_cpu); 6868 6869 static ssize_t max_active_show(struct device *dev, 6870 struct device_attribute *attr, char *buf) 6871 { 6872 struct workqueue_struct *wq = dev_to_wq(dev); 6873 6874 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 6875 } 6876 6877 static ssize_t max_active_store(struct device *dev, 6878 struct device_attribute *attr, const char *buf, 6879 size_t count) 6880 { 6881 struct workqueue_struct *wq = dev_to_wq(dev); 6882 int val; 6883 6884 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 6885 return -EINVAL; 6886 6887 workqueue_set_max_active(wq, val); 6888 return count; 6889 } 6890 static DEVICE_ATTR_RW(max_active); 6891 6892 static struct attribute *wq_sysfs_attrs[] = { 6893 &dev_attr_per_cpu.attr, 6894 &dev_attr_max_active.attr, 6895 NULL, 6896 }; 6897 ATTRIBUTE_GROUPS(wq_sysfs); 6898 6899 static void apply_wqattrs_lock(void) 6900 { 6901 /* CPUs should stay stable across pwq creations and installations */ 6902 cpus_read_lock(); 6903 mutex_lock(&wq_pool_mutex); 6904 } 6905 6906 static void apply_wqattrs_unlock(void) 6907 { 6908 mutex_unlock(&wq_pool_mutex); 6909 cpus_read_unlock(); 6910 } 6911 6912 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 6913 char *buf) 6914 { 6915 struct workqueue_struct *wq = dev_to_wq(dev); 6916 int written; 6917 6918 mutex_lock(&wq->mutex); 6919 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 6920 mutex_unlock(&wq->mutex); 6921 6922 return written; 6923 } 6924 6925 /* prepare workqueue_attrs for sysfs store operations */ 6926 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 6927 { 6928 struct workqueue_attrs *attrs; 6929 6930 lockdep_assert_held(&wq_pool_mutex); 6931 6932 attrs = alloc_workqueue_attrs(); 6933 if (!attrs) 6934 return NULL; 6935 6936 copy_workqueue_attrs(attrs, wq->unbound_attrs); 6937 return attrs; 6938 } 6939 6940 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 6941 const char *buf, size_t count) 6942 { 6943 struct workqueue_struct *wq = dev_to_wq(dev); 6944 struct workqueue_attrs *attrs; 6945 int ret = -ENOMEM; 6946 6947 apply_wqattrs_lock(); 6948 6949 attrs = wq_sysfs_prep_attrs(wq); 6950 if (!attrs) 6951 goto out_unlock; 6952 6953 if (sscanf(buf, "%d", &attrs->nice) == 1 && 6954 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 6955 ret = apply_workqueue_attrs_locked(wq, attrs); 6956 else 6957 ret = -EINVAL; 6958 6959 out_unlock: 6960 apply_wqattrs_unlock(); 6961 free_workqueue_attrs(attrs); 6962 return ret ?: count; 6963 } 6964 6965 static ssize_t wq_cpumask_show(struct device *dev, 6966 struct device_attribute *attr, char *buf) 6967 { 6968 struct workqueue_struct *wq = dev_to_wq(dev); 6969 int written; 6970 6971 mutex_lock(&wq->mutex); 6972 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 6973 cpumask_pr_args(wq->unbound_attrs->cpumask)); 6974 mutex_unlock(&wq->mutex); 6975 return written; 6976 } 6977 6978 static ssize_t wq_cpumask_store(struct device *dev, 6979 struct device_attribute *attr, 6980 const char *buf, size_t count) 6981 { 6982 struct workqueue_struct *wq = dev_to_wq(dev); 6983 struct workqueue_attrs *attrs; 6984 int ret = -ENOMEM; 6985 6986 apply_wqattrs_lock(); 6987 6988 attrs = wq_sysfs_prep_attrs(wq); 6989 if (!attrs) 6990 goto out_unlock; 6991 6992 ret = cpumask_parse(buf, attrs->cpumask); 6993 if (!ret) 6994 ret = apply_workqueue_attrs_locked(wq, attrs); 6995 6996 out_unlock: 6997 apply_wqattrs_unlock(); 6998 free_workqueue_attrs(attrs); 6999 return ret ?: count; 7000 } 7001 7002 static ssize_t wq_affn_scope_show(struct device *dev, 7003 struct device_attribute *attr, char *buf) 7004 { 7005 struct workqueue_struct *wq = dev_to_wq(dev); 7006 int written; 7007 7008 mutex_lock(&wq->mutex); 7009 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL) 7010 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n", 7011 wq_affn_names[WQ_AFFN_DFL], 7012 wq_affn_names[wq_affn_dfl]); 7013 else 7014 written = scnprintf(buf, PAGE_SIZE, "%s\n", 7015 wq_affn_names[wq->unbound_attrs->affn_scope]); 7016 mutex_unlock(&wq->mutex); 7017 7018 return written; 7019 } 7020 7021 static ssize_t wq_affn_scope_store(struct device *dev, 7022 struct device_attribute *attr, 7023 const char *buf, size_t count) 7024 { 7025 struct workqueue_struct *wq = dev_to_wq(dev); 7026 struct workqueue_attrs *attrs; 7027 int affn, ret = -ENOMEM; 7028 7029 affn = parse_affn_scope(buf); 7030 if (affn < 0) 7031 return affn; 7032 7033 apply_wqattrs_lock(); 7034 attrs = wq_sysfs_prep_attrs(wq); 7035 if (attrs) { 7036 attrs->affn_scope = affn; 7037 ret = apply_workqueue_attrs_locked(wq, attrs); 7038 } 7039 apply_wqattrs_unlock(); 7040 free_workqueue_attrs(attrs); 7041 return ret ?: count; 7042 } 7043 7044 static ssize_t wq_affinity_strict_show(struct device *dev, 7045 struct device_attribute *attr, char *buf) 7046 { 7047 struct workqueue_struct *wq = dev_to_wq(dev); 7048 7049 return scnprintf(buf, PAGE_SIZE, "%d\n", 7050 wq->unbound_attrs->affn_strict); 7051 } 7052 7053 static ssize_t wq_affinity_strict_store(struct device *dev, 7054 struct device_attribute *attr, 7055 const char *buf, size_t count) 7056 { 7057 struct workqueue_struct *wq = dev_to_wq(dev); 7058 struct workqueue_attrs *attrs; 7059 int v, ret = -ENOMEM; 7060 7061 if (sscanf(buf, "%d", &v) != 1) 7062 return -EINVAL; 7063 7064 apply_wqattrs_lock(); 7065 attrs = wq_sysfs_prep_attrs(wq); 7066 if (attrs) { 7067 attrs->affn_strict = (bool)v; 7068 ret = apply_workqueue_attrs_locked(wq, attrs); 7069 } 7070 apply_wqattrs_unlock(); 7071 free_workqueue_attrs(attrs); 7072 return ret ?: count; 7073 } 7074 7075 static struct device_attribute wq_sysfs_unbound_attrs[] = { 7076 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 7077 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 7078 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store), 7079 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store), 7080 __ATTR_NULL, 7081 }; 7082 7083 static const struct bus_type wq_subsys = { 7084 .name = "workqueue", 7085 .dev_groups = wq_sysfs_groups, 7086 }; 7087 7088 /** 7089 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 7090 * @cpumask: the cpumask to set 7091 * 7092 * The low-level workqueues cpumask is a global cpumask that limits 7093 * the affinity of all unbound workqueues. This function check the @cpumask 7094 * and apply it to all unbound workqueues and updates all pwqs of them. 7095 * 7096 * Return: 0 - Success 7097 * -EINVAL - Invalid @cpumask 7098 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 7099 */ 7100 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 7101 { 7102 int ret = -EINVAL; 7103 7104 /* 7105 * Not excluding isolated cpus on purpose. 7106 * If the user wishes to include them, we allow that. 7107 */ 7108 cpumask_and(cpumask, cpumask, cpu_possible_mask); 7109 if (!cpumask_empty(cpumask)) { 7110 apply_wqattrs_lock(); 7111 cpumask_copy(wq_requested_unbound_cpumask, cpumask); 7112 if (cpumask_equal(cpumask, wq_unbound_cpumask)) { 7113 ret = 0; 7114 goto out_unlock; 7115 } 7116 7117 ret = workqueue_apply_unbound_cpumask(cpumask); 7118 7119 out_unlock: 7120 apply_wqattrs_unlock(); 7121 } 7122 7123 return ret; 7124 } 7125 7126 static ssize_t __wq_cpumask_show(struct device *dev, 7127 struct device_attribute *attr, char *buf, cpumask_var_t mask) 7128 { 7129 int written; 7130 7131 mutex_lock(&wq_pool_mutex); 7132 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 7133 mutex_unlock(&wq_pool_mutex); 7134 7135 return written; 7136 } 7137 7138 static ssize_t wq_unbound_cpumask_show(struct device *dev, 7139 struct device_attribute *attr, char *buf) 7140 { 7141 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask); 7142 } 7143 7144 static ssize_t wq_requested_cpumask_show(struct device *dev, 7145 struct device_attribute *attr, char *buf) 7146 { 7147 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask); 7148 } 7149 7150 static ssize_t wq_isolated_cpumask_show(struct device *dev, 7151 struct device_attribute *attr, char *buf) 7152 { 7153 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask); 7154 } 7155 7156 static ssize_t wq_unbound_cpumask_store(struct device *dev, 7157 struct device_attribute *attr, const char *buf, size_t count) 7158 { 7159 cpumask_var_t cpumask; 7160 int ret; 7161 7162 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 7163 return -ENOMEM; 7164 7165 ret = cpumask_parse(buf, cpumask); 7166 if (!ret) 7167 ret = workqueue_set_unbound_cpumask(cpumask); 7168 7169 free_cpumask_var(cpumask); 7170 return ret ? ret : count; 7171 } 7172 7173 static struct device_attribute wq_sysfs_cpumask_attrs[] = { 7174 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 7175 wq_unbound_cpumask_store), 7176 __ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL), 7177 __ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL), 7178 __ATTR_NULL, 7179 }; 7180 7181 static int __init wq_sysfs_init(void) 7182 { 7183 struct device *dev_root; 7184 int err; 7185 7186 err = subsys_virtual_register(&wq_subsys, NULL); 7187 if (err) 7188 return err; 7189 7190 dev_root = bus_get_dev_root(&wq_subsys); 7191 if (dev_root) { 7192 struct device_attribute *attr; 7193 7194 for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) { 7195 err = device_create_file(dev_root, attr); 7196 if (err) 7197 break; 7198 } 7199 put_device(dev_root); 7200 } 7201 return err; 7202 } 7203 core_initcall(wq_sysfs_init); 7204 7205 static void wq_device_release(struct device *dev) 7206 { 7207 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 7208 7209 kfree(wq_dev); 7210 } 7211 7212 /** 7213 * workqueue_sysfs_register - make a workqueue visible in sysfs 7214 * @wq: the workqueue to register 7215 * 7216 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 7217 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 7218 * which is the preferred method. 7219 * 7220 * Workqueue user should use this function directly iff it wants to apply 7221 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 7222 * apply_workqueue_attrs() may race against userland updating the 7223 * attributes. 7224 * 7225 * Return: 0 on success, -errno on failure. 7226 */ 7227 int workqueue_sysfs_register(struct workqueue_struct *wq) 7228 { 7229 struct wq_device *wq_dev; 7230 int ret; 7231 7232 /* 7233 * Adjusting max_active breaks ordering guarantee. Disallow exposing 7234 * ordered workqueues. 7235 */ 7236 if (WARN_ON(wq->flags & __WQ_ORDERED)) 7237 return -EINVAL; 7238 7239 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 7240 if (!wq_dev) 7241 return -ENOMEM; 7242 7243 wq_dev->wq = wq; 7244 wq_dev->dev.bus = &wq_subsys; 7245 wq_dev->dev.release = wq_device_release; 7246 dev_set_name(&wq_dev->dev, "%s", wq->name); 7247 7248 /* 7249 * unbound_attrs are created separately. Suppress uevent until 7250 * everything is ready. 7251 */ 7252 dev_set_uevent_suppress(&wq_dev->dev, true); 7253 7254 ret = device_register(&wq_dev->dev); 7255 if (ret) { 7256 put_device(&wq_dev->dev); 7257 wq->wq_dev = NULL; 7258 return ret; 7259 } 7260 7261 if (wq->flags & WQ_UNBOUND) { 7262 struct device_attribute *attr; 7263 7264 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 7265 ret = device_create_file(&wq_dev->dev, attr); 7266 if (ret) { 7267 device_unregister(&wq_dev->dev); 7268 wq->wq_dev = NULL; 7269 return ret; 7270 } 7271 } 7272 } 7273 7274 dev_set_uevent_suppress(&wq_dev->dev, false); 7275 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 7276 return 0; 7277 } 7278 7279 /** 7280 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 7281 * @wq: the workqueue to unregister 7282 * 7283 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 7284 */ 7285 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 7286 { 7287 struct wq_device *wq_dev = wq->wq_dev; 7288 7289 if (!wq->wq_dev) 7290 return; 7291 7292 wq->wq_dev = NULL; 7293 device_unregister(&wq_dev->dev); 7294 } 7295 #else /* CONFIG_SYSFS */ 7296 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 7297 #endif /* CONFIG_SYSFS */ 7298 7299 /* 7300 * Workqueue watchdog. 7301 * 7302 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 7303 * flush dependency, a concurrency managed work item which stays RUNNING 7304 * indefinitely. Workqueue stalls can be very difficult to debug as the 7305 * usual warning mechanisms don't trigger and internal workqueue state is 7306 * largely opaque. 7307 * 7308 * Workqueue watchdog monitors all worker pools periodically and dumps 7309 * state if some pools failed to make forward progress for a while where 7310 * forward progress is defined as the first item on ->worklist changing. 7311 * 7312 * This mechanism is controlled through the kernel parameter 7313 * "workqueue.watchdog_thresh" which can be updated at runtime through the 7314 * corresponding sysfs parameter file. 7315 */ 7316 #ifdef CONFIG_WQ_WATCHDOG 7317 7318 static unsigned long wq_watchdog_thresh = 30; 7319 static struct timer_list wq_watchdog_timer; 7320 7321 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 7322 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 7323 7324 /* 7325 * Show workers that might prevent the processing of pending work items. 7326 * The only candidates are CPU-bound workers in the running state. 7327 * Pending work items should be handled by another idle worker 7328 * in all other situations. 7329 */ 7330 static void show_cpu_pool_hog(struct worker_pool *pool) 7331 { 7332 struct worker *worker; 7333 unsigned long irq_flags; 7334 int bkt; 7335 7336 raw_spin_lock_irqsave(&pool->lock, irq_flags); 7337 7338 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 7339 if (task_is_running(worker->task)) { 7340 /* 7341 * Defer printing to avoid deadlocks in console 7342 * drivers that queue work while holding locks 7343 * also taken in their write paths. 7344 */ 7345 printk_deferred_enter(); 7346 7347 pr_info("pool %d:\n", pool->id); 7348 sched_show_task(worker->task); 7349 7350 printk_deferred_exit(); 7351 } 7352 } 7353 7354 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 7355 } 7356 7357 static void show_cpu_pools_hogs(void) 7358 { 7359 struct worker_pool *pool; 7360 int pi; 7361 7362 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 7363 7364 rcu_read_lock(); 7365 7366 for_each_pool(pool, pi) { 7367 if (pool->cpu_stall) 7368 show_cpu_pool_hog(pool); 7369 7370 } 7371 7372 rcu_read_unlock(); 7373 } 7374 7375 static void wq_watchdog_reset_touched(void) 7376 { 7377 int cpu; 7378 7379 wq_watchdog_touched = jiffies; 7380 for_each_possible_cpu(cpu) 7381 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 7382 } 7383 7384 static void wq_watchdog_timer_fn(struct timer_list *unused) 7385 { 7386 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7387 bool lockup_detected = false; 7388 bool cpu_pool_stall = false; 7389 unsigned long now = jiffies; 7390 struct worker_pool *pool; 7391 int pi; 7392 7393 if (!thresh) 7394 return; 7395 7396 rcu_read_lock(); 7397 7398 for_each_pool(pool, pi) { 7399 unsigned long pool_ts, touched, ts; 7400 7401 pool->cpu_stall = false; 7402 if (list_empty(&pool->worklist)) 7403 continue; 7404 7405 /* 7406 * If a virtual machine is stopped by the host it can look to 7407 * the watchdog like a stall. 7408 */ 7409 kvm_check_and_clear_guest_paused(); 7410 7411 /* get the latest of pool and touched timestamps */ 7412 if (pool->cpu >= 0) 7413 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 7414 else 7415 touched = READ_ONCE(wq_watchdog_touched); 7416 pool_ts = READ_ONCE(pool->watchdog_ts); 7417 7418 if (time_after(pool_ts, touched)) 7419 ts = pool_ts; 7420 else 7421 ts = touched; 7422 7423 /* did we stall? */ 7424 if (time_after(now, ts + thresh)) { 7425 lockup_detected = true; 7426 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) { 7427 pool->cpu_stall = true; 7428 cpu_pool_stall = true; 7429 } 7430 pr_emerg("BUG: workqueue lockup - pool"); 7431 pr_cont_pool_info(pool); 7432 pr_cont(" stuck for %us!\n", 7433 jiffies_to_msecs(now - pool_ts) / 1000); 7434 } 7435 7436 7437 } 7438 7439 rcu_read_unlock(); 7440 7441 if (lockup_detected) 7442 show_all_workqueues(); 7443 7444 if (cpu_pool_stall) 7445 show_cpu_pools_hogs(); 7446 7447 wq_watchdog_reset_touched(); 7448 mod_timer(&wq_watchdog_timer, jiffies + thresh); 7449 } 7450 7451 notrace void wq_watchdog_touch(int cpu) 7452 { 7453 if (cpu >= 0) 7454 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 7455 7456 wq_watchdog_touched = jiffies; 7457 } 7458 7459 static void wq_watchdog_set_thresh(unsigned long thresh) 7460 { 7461 wq_watchdog_thresh = 0; 7462 del_timer_sync(&wq_watchdog_timer); 7463 7464 if (thresh) { 7465 wq_watchdog_thresh = thresh; 7466 wq_watchdog_reset_touched(); 7467 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 7468 } 7469 } 7470 7471 static int wq_watchdog_param_set_thresh(const char *val, 7472 const struct kernel_param *kp) 7473 { 7474 unsigned long thresh; 7475 int ret; 7476 7477 ret = kstrtoul(val, 0, &thresh); 7478 if (ret) 7479 return ret; 7480 7481 if (system_wq) 7482 wq_watchdog_set_thresh(thresh); 7483 else 7484 wq_watchdog_thresh = thresh; 7485 7486 return 0; 7487 } 7488 7489 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 7490 .set = wq_watchdog_param_set_thresh, 7491 .get = param_get_ulong, 7492 }; 7493 7494 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 7495 0644); 7496 7497 static void wq_watchdog_init(void) 7498 { 7499 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 7500 wq_watchdog_set_thresh(wq_watchdog_thresh); 7501 } 7502 7503 #else /* CONFIG_WQ_WATCHDOG */ 7504 7505 static inline void wq_watchdog_init(void) { } 7506 7507 #endif /* CONFIG_WQ_WATCHDOG */ 7508 7509 static void bh_pool_kick_normal(struct irq_work *irq_work) 7510 { 7511 raise_softirq_irqoff(TASKLET_SOFTIRQ); 7512 } 7513 7514 static void bh_pool_kick_highpri(struct irq_work *irq_work) 7515 { 7516 raise_softirq_irqoff(HI_SOFTIRQ); 7517 } 7518 7519 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask) 7520 { 7521 if (!cpumask_intersects(wq_unbound_cpumask, mask)) { 7522 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n", 7523 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask)); 7524 return; 7525 } 7526 7527 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask); 7528 } 7529 7530 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice) 7531 { 7532 BUG_ON(init_worker_pool(pool)); 7533 pool->cpu = cpu; 7534 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 7535 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu)); 7536 pool->attrs->nice = nice; 7537 pool->attrs->affn_strict = true; 7538 pool->node = cpu_to_node(cpu); 7539 7540 /* alloc pool ID */ 7541 mutex_lock(&wq_pool_mutex); 7542 BUG_ON(worker_pool_assign_id(pool)); 7543 mutex_unlock(&wq_pool_mutex); 7544 } 7545 7546 /** 7547 * workqueue_init_early - early init for workqueue subsystem 7548 * 7549 * This is the first step of three-staged workqueue subsystem initialization and 7550 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are 7551 * up. It sets up all the data structures and system workqueues and allows early 7552 * boot code to create workqueues and queue/cancel work items. Actual work item 7553 * execution starts only after kthreads can be created and scheduled right 7554 * before early initcalls. 7555 */ 7556 void __init workqueue_init_early(void) 7557 { 7558 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 7559 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 7560 void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal, 7561 bh_pool_kick_highpri }; 7562 int i, cpu; 7563 7564 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 7565 7566 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 7567 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL)); 7568 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL)); 7569 7570 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 7571 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ)); 7572 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN)); 7573 if (!cpumask_empty(&wq_cmdline_cpumask)) 7574 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask); 7575 7576 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask); 7577 7578 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 7579 7580 wq_update_pod_attrs_buf = alloc_workqueue_attrs(); 7581 BUG_ON(!wq_update_pod_attrs_buf); 7582 7583 /* 7584 * If nohz_full is enabled, set power efficient workqueue as unbound. 7585 * This allows workqueue items to be moved to HK CPUs. 7586 */ 7587 if (housekeeping_enabled(HK_TYPE_TICK)) 7588 wq_power_efficient = true; 7589 7590 /* initialize WQ_AFFN_SYSTEM pods */ 7591 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7592 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL); 7593 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7594 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod); 7595 7596 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE)); 7597 7598 pt->nr_pods = 1; 7599 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask); 7600 pt->pod_node[0] = NUMA_NO_NODE; 7601 pt->cpu_pod[0] = 0; 7602 7603 /* initialize BH and CPU pools */ 7604 for_each_possible_cpu(cpu) { 7605 struct worker_pool *pool; 7606 7607 i = 0; 7608 for_each_bh_worker_pool(pool, cpu) { 7609 init_cpu_worker_pool(pool, cpu, std_nice[i]); 7610 pool->flags |= POOL_BH; 7611 init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]); 7612 i++; 7613 } 7614 7615 i = 0; 7616 for_each_cpu_worker_pool(pool, cpu) 7617 init_cpu_worker_pool(pool, cpu, std_nice[i++]); 7618 } 7619 7620 /* create default unbound and ordered wq attrs */ 7621 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 7622 struct workqueue_attrs *attrs; 7623 7624 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7625 attrs->nice = std_nice[i]; 7626 unbound_std_wq_attrs[i] = attrs; 7627 7628 /* 7629 * An ordered wq should have only one pwq as ordering is 7630 * guaranteed by max_active which is enforced by pwqs. 7631 */ 7632 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7633 attrs->nice = std_nice[i]; 7634 attrs->ordered = true; 7635 ordered_wq_attrs[i] = attrs; 7636 } 7637 7638 system_wq = alloc_workqueue("events", 0, 0); 7639 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 7640 system_long_wq = alloc_workqueue("events_long", 0, 0); 7641 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 7642 WQ_MAX_ACTIVE); 7643 system_freezable_wq = alloc_workqueue("events_freezable", 7644 WQ_FREEZABLE, 0); 7645 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 7646 WQ_POWER_EFFICIENT, 0); 7647 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient", 7648 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 7649 0); 7650 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0); 7651 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri", 7652 WQ_BH | WQ_HIGHPRI, 0); 7653 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 7654 !system_unbound_wq || !system_freezable_wq || 7655 !system_power_efficient_wq || 7656 !system_freezable_power_efficient_wq || 7657 !system_bh_wq || !system_bh_highpri_wq); 7658 } 7659 7660 static void __init wq_cpu_intensive_thresh_init(void) 7661 { 7662 unsigned long thresh; 7663 unsigned long bogo; 7664 7665 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release"); 7666 BUG_ON(IS_ERR(pwq_release_worker)); 7667 7668 /* if the user set it to a specific value, keep it */ 7669 if (wq_cpu_intensive_thresh_us != ULONG_MAX) 7670 return; 7671 7672 /* 7673 * The default of 10ms is derived from the fact that most modern (as of 7674 * 2023) processors can do a lot in 10ms and that it's just below what 7675 * most consider human-perceivable. However, the kernel also runs on a 7676 * lot slower CPUs including microcontrollers where the threshold is way 7677 * too low. 7678 * 7679 * Let's scale up the threshold upto 1 second if BogoMips is below 4000. 7680 * This is by no means accurate but it doesn't have to be. The mechanism 7681 * is still useful even when the threshold is fully scaled up. Also, as 7682 * the reports would usually be applicable to everyone, some machines 7683 * operating on longer thresholds won't significantly diminish their 7684 * usefulness. 7685 */ 7686 thresh = 10 * USEC_PER_MSEC; 7687 7688 /* see init/calibrate.c for lpj -> BogoMIPS calculation */ 7689 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); 7690 if (bogo < 4000) 7691 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); 7692 7693 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n", 7694 loops_per_jiffy, bogo, thresh); 7695 7696 wq_cpu_intensive_thresh_us = thresh; 7697 } 7698 7699 /** 7700 * workqueue_init - bring workqueue subsystem fully online 7701 * 7702 * This is the second step of three-staged workqueue subsystem initialization 7703 * and invoked as soon as kthreads can be created and scheduled. Workqueues have 7704 * been created and work items queued on them, but there are no kworkers 7705 * executing the work items yet. Populate the worker pools with the initial 7706 * workers and enable future kworker creations. 7707 */ 7708 void __init workqueue_init(void) 7709 { 7710 struct workqueue_struct *wq; 7711 struct worker_pool *pool; 7712 int cpu, bkt; 7713 7714 wq_cpu_intensive_thresh_init(); 7715 7716 mutex_lock(&wq_pool_mutex); 7717 7718 /* 7719 * Per-cpu pools created earlier could be missing node hint. Fix them 7720 * up. Also, create a rescuer for workqueues that requested it. 7721 */ 7722 for_each_possible_cpu(cpu) { 7723 for_each_bh_worker_pool(pool, cpu) 7724 pool->node = cpu_to_node(cpu); 7725 for_each_cpu_worker_pool(pool, cpu) 7726 pool->node = cpu_to_node(cpu); 7727 } 7728 7729 list_for_each_entry(wq, &workqueues, list) { 7730 WARN(init_rescuer(wq), 7731 "workqueue: failed to create early rescuer for %s", 7732 wq->name); 7733 } 7734 7735 mutex_unlock(&wq_pool_mutex); 7736 7737 /* 7738 * Create the initial workers. A BH pool has one pseudo worker that 7739 * represents the shared BH execution context and thus doesn't get 7740 * affected by hotplug events. Create the BH pseudo workers for all 7741 * possible CPUs here. 7742 */ 7743 for_each_possible_cpu(cpu) 7744 for_each_bh_worker_pool(pool, cpu) 7745 BUG_ON(!create_worker(pool)); 7746 7747 for_each_online_cpu(cpu) { 7748 for_each_cpu_worker_pool(pool, cpu) { 7749 pool->flags &= ~POOL_DISASSOCIATED; 7750 BUG_ON(!create_worker(pool)); 7751 } 7752 } 7753 7754 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 7755 BUG_ON(!create_worker(pool)); 7756 7757 wq_online = true; 7758 wq_watchdog_init(); 7759 } 7760 7761 /* 7762 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to 7763 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique 7764 * and consecutive pod ID. The rest of @pt is initialized accordingly. 7765 */ 7766 static void __init init_pod_type(struct wq_pod_type *pt, 7767 bool (*cpus_share_pod)(int, int)) 7768 { 7769 int cur, pre, cpu, pod; 7770 7771 pt->nr_pods = 0; 7772 7773 /* init @pt->cpu_pod[] according to @cpus_share_pod() */ 7774 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7775 BUG_ON(!pt->cpu_pod); 7776 7777 for_each_possible_cpu(cur) { 7778 for_each_possible_cpu(pre) { 7779 if (pre >= cur) { 7780 pt->cpu_pod[cur] = pt->nr_pods++; 7781 break; 7782 } 7783 if (cpus_share_pod(cur, pre)) { 7784 pt->cpu_pod[cur] = pt->cpu_pod[pre]; 7785 break; 7786 } 7787 } 7788 } 7789 7790 /* init the rest to match @pt->cpu_pod[] */ 7791 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7792 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL); 7793 BUG_ON(!pt->pod_cpus || !pt->pod_node); 7794 7795 for (pod = 0; pod < pt->nr_pods; pod++) 7796 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL)); 7797 7798 for_each_possible_cpu(cpu) { 7799 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]); 7800 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu); 7801 } 7802 } 7803 7804 static bool __init cpus_dont_share(int cpu0, int cpu1) 7805 { 7806 return false; 7807 } 7808 7809 static bool __init cpus_share_smt(int cpu0, int cpu1) 7810 { 7811 #ifdef CONFIG_SCHED_SMT 7812 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1)); 7813 #else 7814 return false; 7815 #endif 7816 } 7817 7818 static bool __init cpus_share_numa(int cpu0, int cpu1) 7819 { 7820 return cpu_to_node(cpu0) == cpu_to_node(cpu1); 7821 } 7822 7823 /** 7824 * workqueue_init_topology - initialize CPU pods for unbound workqueues 7825 * 7826 * This is the third step of three-staged workqueue subsystem initialization and 7827 * invoked after SMP and topology information are fully initialized. It 7828 * initializes the unbound CPU pods accordingly. 7829 */ 7830 void __init workqueue_init_topology(void) 7831 { 7832 struct workqueue_struct *wq; 7833 int cpu; 7834 7835 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share); 7836 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt); 7837 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache); 7838 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa); 7839 7840 wq_topo_initialized = true; 7841 7842 mutex_lock(&wq_pool_mutex); 7843 7844 /* 7845 * Workqueues allocated earlier would have all CPUs sharing the default 7846 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU 7847 * combinations to apply per-pod sharing. 7848 */ 7849 list_for_each_entry(wq, &workqueues, list) { 7850 for_each_online_cpu(cpu) 7851 wq_update_pod(wq, cpu, cpu, true); 7852 if (wq->flags & WQ_UNBOUND) { 7853 mutex_lock(&wq->mutex); 7854 wq_update_node_max_active(wq, -1); 7855 mutex_unlock(&wq->mutex); 7856 } 7857 } 7858 7859 mutex_unlock(&wq_pool_mutex); 7860 } 7861 7862 void __warn_flushing_systemwide_wq(void) 7863 { 7864 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n"); 7865 dump_stack(); 7866 } 7867 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 7868 7869 static int __init workqueue_unbound_cpus_setup(char *str) 7870 { 7871 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) { 7872 cpumask_clear(&wq_cmdline_cpumask); 7873 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n"); 7874 } 7875 7876 return 1; 7877 } 7878 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup); 7879