1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There is one worker pool for each CPU and 20 * one extra for works which are better served by workers which are 21 * not bound to any specific CPU. 22 * 23 * Please read Documentation/workqueue.txt for details. 24 */ 25 26 #include <linux/module.h> 27 #include <linux/kernel.h> 28 #include <linux/sched.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/completion.h> 32 #include <linux/workqueue.h> 33 #include <linux/slab.h> 34 #include <linux/cpu.h> 35 #include <linux/notifier.h> 36 #include <linux/kthread.h> 37 #include <linux/hardirq.h> 38 #include <linux/mempolicy.h> 39 #include <linux/freezer.h> 40 #include <linux/kallsyms.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 45 #include "workqueue_sched.h" 46 47 enum { 48 /* global_cwq flags */ 49 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 50 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */ 51 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 52 GCWQ_FREEZING = 1 << 3, /* freeze in progress */ 53 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */ 54 55 /* worker flags */ 56 WORKER_STARTED = 1 << 0, /* started */ 57 WORKER_DIE = 1 << 1, /* die die die */ 58 WORKER_IDLE = 1 << 2, /* is idle */ 59 WORKER_PREP = 1 << 3, /* preparing to run works */ 60 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */ 61 WORKER_REBIND = 1 << 5, /* mom is home, come back */ 62 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 63 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 64 65 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND | 66 WORKER_CPU_INTENSIVE | WORKER_UNBOUND, 67 68 /* gcwq->trustee_state */ 69 TRUSTEE_START = 0, /* start */ 70 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */ 71 TRUSTEE_BUTCHER = 2, /* butcher workers */ 72 TRUSTEE_RELEASE = 3, /* release workers */ 73 TRUSTEE_DONE = 4, /* trustee is done */ 74 75 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 76 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER, 77 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1, 78 79 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 80 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 81 82 MAYDAY_INITIAL_TIMEOUT = HZ / 100, /* call for help after 10ms */ 83 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 84 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 85 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */ 86 87 /* 88 * Rescue workers are used only on emergencies and shared by 89 * all cpus. Give -20. 90 */ 91 RESCUER_NICE_LEVEL = -20, 92 }; 93 94 /* 95 * Structure fields follow one of the following exclusion rules. 96 * 97 * I: Modifiable by initialization/destruction paths and read-only for 98 * everyone else. 99 * 100 * P: Preemption protected. Disabling preemption is enough and should 101 * only be modified and accessed from the local cpu. 102 * 103 * L: gcwq->lock protected. Access with gcwq->lock held. 104 * 105 * X: During normal operation, modification requires gcwq->lock and 106 * should be done only from local cpu. Either disabling preemption 107 * on local cpu or grabbing gcwq->lock is enough for read access. 108 * If GCWQ_DISASSOCIATED is set, it's identical to L. 109 * 110 * F: wq->flush_mutex protected. 111 * 112 * W: workqueue_lock protected. 113 */ 114 115 struct global_cwq; 116 117 /* 118 * The poor guys doing the actual heavy lifting. All on-duty workers 119 * are either serving the manager role, on idle list or on busy hash. 120 */ 121 struct worker { 122 /* on idle list while idle, on busy hash table while busy */ 123 union { 124 struct list_head entry; /* L: while idle */ 125 struct hlist_node hentry; /* L: while busy */ 126 }; 127 128 struct work_struct *current_work; /* L: work being processed */ 129 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */ 130 struct list_head scheduled; /* L: scheduled works */ 131 struct task_struct *task; /* I: worker task */ 132 struct global_cwq *gcwq; /* I: the associated gcwq */ 133 /* 64 bytes boundary on 64bit, 32 on 32bit */ 134 unsigned long last_active; /* L: last active timestamp */ 135 unsigned int flags; /* X: flags */ 136 int id; /* I: worker id */ 137 struct work_struct rebind_work; /* L: rebind worker to cpu */ 138 }; 139 140 /* 141 * Global per-cpu workqueue. There's one and only one for each cpu 142 * and all works are queued and processed here regardless of their 143 * target workqueues. 144 */ 145 struct global_cwq { 146 spinlock_t lock; /* the gcwq lock */ 147 struct list_head worklist; /* L: list of pending works */ 148 unsigned int cpu; /* I: the associated cpu */ 149 unsigned int flags; /* L: GCWQ_* flags */ 150 151 int nr_workers; /* L: total number of workers */ 152 int nr_idle; /* L: currently idle ones */ 153 154 /* workers are chained either in the idle_list or busy_hash */ 155 struct list_head idle_list; /* X: list of idle workers */ 156 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE]; 157 /* L: hash of busy workers */ 158 159 struct timer_list idle_timer; /* L: worker idle timeout */ 160 struct timer_list mayday_timer; /* L: SOS timer for dworkers */ 161 162 struct ida worker_ida; /* L: for worker IDs */ 163 164 struct task_struct *trustee; /* L: for gcwq shutdown */ 165 unsigned int trustee_state; /* L: trustee state */ 166 wait_queue_head_t trustee_wait; /* trustee wait */ 167 struct worker *first_idle; /* L: first idle worker */ 168 } ____cacheline_aligned_in_smp; 169 170 /* 171 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of 172 * work_struct->data are used for flags and thus cwqs need to be 173 * aligned at two's power of the number of flag bits. 174 */ 175 struct cpu_workqueue_struct { 176 struct global_cwq *gcwq; /* I: the associated gcwq */ 177 struct workqueue_struct *wq; /* I: the owning workqueue */ 178 int work_color; /* L: current color */ 179 int flush_color; /* L: flushing color */ 180 int nr_in_flight[WORK_NR_COLORS]; 181 /* L: nr of in_flight works */ 182 int nr_active; /* L: nr of active works */ 183 int max_active; /* L: max active works */ 184 struct list_head delayed_works; /* L: delayed works */ 185 }; 186 187 /* 188 * Structure used to wait for workqueue flush. 189 */ 190 struct wq_flusher { 191 struct list_head list; /* F: list of flushers */ 192 int flush_color; /* F: flush color waiting for */ 193 struct completion done; /* flush completion */ 194 }; 195 196 /* 197 * All cpumasks are assumed to be always set on UP and thus can't be 198 * used to determine whether there's something to be done. 199 */ 200 #ifdef CONFIG_SMP 201 typedef cpumask_var_t mayday_mask_t; 202 #define mayday_test_and_set_cpu(cpu, mask) \ 203 cpumask_test_and_set_cpu((cpu), (mask)) 204 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask)) 205 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask)) 206 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp)) 207 #define free_mayday_mask(mask) free_cpumask_var((mask)) 208 #else 209 typedef unsigned long mayday_mask_t; 210 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask)) 211 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask)) 212 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask)) 213 #define alloc_mayday_mask(maskp, gfp) true 214 #define free_mayday_mask(mask) do { } while (0) 215 #endif 216 217 /* 218 * The externally visible workqueue abstraction is an array of 219 * per-CPU workqueues: 220 */ 221 struct workqueue_struct { 222 unsigned int flags; /* I: WQ_* flags */ 223 union { 224 struct cpu_workqueue_struct __percpu *pcpu; 225 struct cpu_workqueue_struct *single; 226 unsigned long v; 227 } cpu_wq; /* I: cwq's */ 228 struct list_head list; /* W: list of all workqueues */ 229 230 struct mutex flush_mutex; /* protects wq flushing */ 231 int work_color; /* F: current work color */ 232 int flush_color; /* F: current flush color */ 233 atomic_t nr_cwqs_to_flush; /* flush in progress */ 234 struct wq_flusher *first_flusher; /* F: first flusher */ 235 struct list_head flusher_queue; /* F: flush waiters */ 236 struct list_head flusher_overflow; /* F: flush overflow list */ 237 238 mayday_mask_t mayday_mask; /* cpus requesting rescue */ 239 struct worker *rescuer; /* I: rescue worker */ 240 241 int saved_max_active; /* W: saved cwq max_active */ 242 const char *name; /* I: workqueue name */ 243 #ifdef CONFIG_LOCKDEP 244 struct lockdep_map lockdep_map; 245 #endif 246 }; 247 248 struct workqueue_struct *system_wq __read_mostly; 249 struct workqueue_struct *system_long_wq __read_mostly; 250 struct workqueue_struct *system_nrt_wq __read_mostly; 251 struct workqueue_struct *system_unbound_wq __read_mostly; 252 EXPORT_SYMBOL_GPL(system_wq); 253 EXPORT_SYMBOL_GPL(system_long_wq); 254 EXPORT_SYMBOL_GPL(system_nrt_wq); 255 EXPORT_SYMBOL_GPL(system_unbound_wq); 256 257 #define CREATE_TRACE_POINTS 258 #include <trace/events/workqueue.h> 259 260 #define for_each_busy_worker(worker, i, pos, gcwq) \ 261 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \ 262 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry) 263 264 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask, 265 unsigned int sw) 266 { 267 if (cpu < nr_cpu_ids) { 268 if (sw & 1) { 269 cpu = cpumask_next(cpu, mask); 270 if (cpu < nr_cpu_ids) 271 return cpu; 272 } 273 if (sw & 2) 274 return WORK_CPU_UNBOUND; 275 } 276 return WORK_CPU_NONE; 277 } 278 279 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask, 280 struct workqueue_struct *wq) 281 { 282 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2); 283 } 284 285 /* 286 * CPU iterators 287 * 288 * An extra gcwq is defined for an invalid cpu number 289 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any 290 * specific CPU. The following iterators are similar to 291 * for_each_*_cpu() iterators but also considers the unbound gcwq. 292 * 293 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND 294 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND 295 * for_each_cwq_cpu() : possible CPUs for bound workqueues, 296 * WORK_CPU_UNBOUND for unbound workqueues 297 */ 298 #define for_each_gcwq_cpu(cpu) \ 299 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \ 300 (cpu) < WORK_CPU_NONE; \ 301 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3)) 302 303 #define for_each_online_gcwq_cpu(cpu) \ 304 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \ 305 (cpu) < WORK_CPU_NONE; \ 306 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3)) 307 308 #define for_each_cwq_cpu(cpu, wq) \ 309 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \ 310 (cpu) < WORK_CPU_NONE; \ 311 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq))) 312 313 #ifdef CONFIG_DEBUG_OBJECTS_WORK 314 315 static struct debug_obj_descr work_debug_descr; 316 317 /* 318 * fixup_init is called when: 319 * - an active object is initialized 320 */ 321 static int work_fixup_init(void *addr, enum debug_obj_state state) 322 { 323 struct work_struct *work = addr; 324 325 switch (state) { 326 case ODEBUG_STATE_ACTIVE: 327 cancel_work_sync(work); 328 debug_object_init(work, &work_debug_descr); 329 return 1; 330 default: 331 return 0; 332 } 333 } 334 335 /* 336 * fixup_activate is called when: 337 * - an active object is activated 338 * - an unknown object is activated (might be a statically initialized object) 339 */ 340 static int work_fixup_activate(void *addr, enum debug_obj_state state) 341 { 342 struct work_struct *work = addr; 343 344 switch (state) { 345 346 case ODEBUG_STATE_NOTAVAILABLE: 347 /* 348 * This is not really a fixup. The work struct was 349 * statically initialized. We just make sure that it 350 * is tracked in the object tracker. 351 */ 352 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 353 debug_object_init(work, &work_debug_descr); 354 debug_object_activate(work, &work_debug_descr); 355 return 0; 356 } 357 WARN_ON_ONCE(1); 358 return 0; 359 360 case ODEBUG_STATE_ACTIVE: 361 WARN_ON(1); 362 363 default: 364 return 0; 365 } 366 } 367 368 /* 369 * fixup_free is called when: 370 * - an active object is freed 371 */ 372 static int work_fixup_free(void *addr, enum debug_obj_state state) 373 { 374 struct work_struct *work = addr; 375 376 switch (state) { 377 case ODEBUG_STATE_ACTIVE: 378 cancel_work_sync(work); 379 debug_object_free(work, &work_debug_descr); 380 return 1; 381 default: 382 return 0; 383 } 384 } 385 386 static struct debug_obj_descr work_debug_descr = { 387 .name = "work_struct", 388 .fixup_init = work_fixup_init, 389 .fixup_activate = work_fixup_activate, 390 .fixup_free = work_fixup_free, 391 }; 392 393 static inline void debug_work_activate(struct work_struct *work) 394 { 395 debug_object_activate(work, &work_debug_descr); 396 } 397 398 static inline void debug_work_deactivate(struct work_struct *work) 399 { 400 debug_object_deactivate(work, &work_debug_descr); 401 } 402 403 void __init_work(struct work_struct *work, int onstack) 404 { 405 if (onstack) 406 debug_object_init_on_stack(work, &work_debug_descr); 407 else 408 debug_object_init(work, &work_debug_descr); 409 } 410 EXPORT_SYMBOL_GPL(__init_work); 411 412 void destroy_work_on_stack(struct work_struct *work) 413 { 414 debug_object_free(work, &work_debug_descr); 415 } 416 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 417 418 #else 419 static inline void debug_work_activate(struct work_struct *work) { } 420 static inline void debug_work_deactivate(struct work_struct *work) { } 421 #endif 422 423 /* Serializes the accesses to the list of workqueues. */ 424 static DEFINE_SPINLOCK(workqueue_lock); 425 static LIST_HEAD(workqueues); 426 static bool workqueue_freezing; /* W: have wqs started freezing? */ 427 428 /* 429 * The almighty global cpu workqueues. nr_running is the only field 430 * which is expected to be used frequently by other cpus via 431 * try_to_wake_up(). Put it in a separate cacheline. 432 */ 433 static DEFINE_PER_CPU(struct global_cwq, global_cwq); 434 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running); 435 436 /* 437 * Global cpu workqueue and nr_running counter for unbound gcwq. The 438 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its 439 * workers have WORKER_UNBOUND set. 440 */ 441 static struct global_cwq unbound_global_cwq; 442 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */ 443 444 static int worker_thread(void *__worker); 445 446 static struct global_cwq *get_gcwq(unsigned int cpu) 447 { 448 if (cpu != WORK_CPU_UNBOUND) 449 return &per_cpu(global_cwq, cpu); 450 else 451 return &unbound_global_cwq; 452 } 453 454 static atomic_t *get_gcwq_nr_running(unsigned int cpu) 455 { 456 if (cpu != WORK_CPU_UNBOUND) 457 return &per_cpu(gcwq_nr_running, cpu); 458 else 459 return &unbound_gcwq_nr_running; 460 } 461 462 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu, 463 struct workqueue_struct *wq) 464 { 465 if (!(wq->flags & WQ_UNBOUND)) { 466 if (likely(cpu < nr_cpu_ids)) { 467 #ifdef CONFIG_SMP 468 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu); 469 #else 470 return wq->cpu_wq.single; 471 #endif 472 } 473 } else if (likely(cpu == WORK_CPU_UNBOUND)) 474 return wq->cpu_wq.single; 475 return NULL; 476 } 477 478 static unsigned int work_color_to_flags(int color) 479 { 480 return color << WORK_STRUCT_COLOR_SHIFT; 481 } 482 483 static int get_work_color(struct work_struct *work) 484 { 485 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 486 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 487 } 488 489 static int work_next_color(int color) 490 { 491 return (color + 1) % WORK_NR_COLORS; 492 } 493 494 /* 495 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the 496 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is 497 * cleared and the work data contains the cpu number it was last on. 498 * 499 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the 500 * cwq, cpu or clear work->data. These functions should only be 501 * called while the work is owned - ie. while the PENDING bit is set. 502 * 503 * get_work_[g]cwq() can be used to obtain the gcwq or cwq 504 * corresponding to a work. gcwq is available once the work has been 505 * queued anywhere after initialization. cwq is available only from 506 * queueing until execution starts. 507 */ 508 static inline void set_work_data(struct work_struct *work, unsigned long data, 509 unsigned long flags) 510 { 511 BUG_ON(!work_pending(work)); 512 atomic_long_set(&work->data, data | flags | work_static(work)); 513 } 514 515 static void set_work_cwq(struct work_struct *work, 516 struct cpu_workqueue_struct *cwq, 517 unsigned long extra_flags) 518 { 519 set_work_data(work, (unsigned long)cwq, 520 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags); 521 } 522 523 static void set_work_cpu(struct work_struct *work, unsigned int cpu) 524 { 525 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING); 526 } 527 528 static void clear_work_data(struct work_struct *work) 529 { 530 set_work_data(work, WORK_STRUCT_NO_CPU, 0); 531 } 532 533 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work) 534 { 535 unsigned long data = atomic_long_read(&work->data); 536 537 if (data & WORK_STRUCT_CWQ) 538 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 539 else 540 return NULL; 541 } 542 543 static struct global_cwq *get_work_gcwq(struct work_struct *work) 544 { 545 unsigned long data = atomic_long_read(&work->data); 546 unsigned int cpu; 547 548 if (data & WORK_STRUCT_CWQ) 549 return ((struct cpu_workqueue_struct *) 550 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq; 551 552 cpu = data >> WORK_STRUCT_FLAG_BITS; 553 if (cpu == WORK_CPU_NONE) 554 return NULL; 555 556 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND); 557 return get_gcwq(cpu); 558 } 559 560 /* 561 * Policy functions. These define the policies on how the global 562 * worker pool is managed. Unless noted otherwise, these functions 563 * assume that they're being called with gcwq->lock held. 564 */ 565 566 static bool __need_more_worker(struct global_cwq *gcwq) 567 { 568 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) || 569 gcwq->flags & GCWQ_HIGHPRI_PENDING; 570 } 571 572 /* 573 * Need to wake up a worker? Called from anything but currently 574 * running workers. 575 */ 576 static bool need_more_worker(struct global_cwq *gcwq) 577 { 578 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq); 579 } 580 581 /* Can I start working? Called from busy but !running workers. */ 582 static bool may_start_working(struct global_cwq *gcwq) 583 { 584 return gcwq->nr_idle; 585 } 586 587 /* Do I need to keep working? Called from currently running workers. */ 588 static bool keep_working(struct global_cwq *gcwq) 589 { 590 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); 591 592 return !list_empty(&gcwq->worklist) && 593 (atomic_read(nr_running) <= 1 || 594 gcwq->flags & GCWQ_HIGHPRI_PENDING); 595 } 596 597 /* Do we need a new worker? Called from manager. */ 598 static bool need_to_create_worker(struct global_cwq *gcwq) 599 { 600 return need_more_worker(gcwq) && !may_start_working(gcwq); 601 } 602 603 /* Do I need to be the manager? */ 604 static bool need_to_manage_workers(struct global_cwq *gcwq) 605 { 606 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS; 607 } 608 609 /* Do we have too many workers and should some go away? */ 610 static bool too_many_workers(struct global_cwq *gcwq) 611 { 612 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS; 613 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */ 614 int nr_busy = gcwq->nr_workers - nr_idle; 615 616 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 617 } 618 619 /* 620 * Wake up functions. 621 */ 622 623 /* Return the first worker. Safe with preemption disabled */ 624 static struct worker *first_worker(struct global_cwq *gcwq) 625 { 626 if (unlikely(list_empty(&gcwq->idle_list))) 627 return NULL; 628 629 return list_first_entry(&gcwq->idle_list, struct worker, entry); 630 } 631 632 /** 633 * wake_up_worker - wake up an idle worker 634 * @gcwq: gcwq to wake worker for 635 * 636 * Wake up the first idle worker of @gcwq. 637 * 638 * CONTEXT: 639 * spin_lock_irq(gcwq->lock). 640 */ 641 static void wake_up_worker(struct global_cwq *gcwq) 642 { 643 struct worker *worker = first_worker(gcwq); 644 645 if (likely(worker)) 646 wake_up_process(worker->task); 647 } 648 649 /** 650 * wq_worker_waking_up - a worker is waking up 651 * @task: task waking up 652 * @cpu: CPU @task is waking up to 653 * 654 * This function is called during try_to_wake_up() when a worker is 655 * being awoken. 656 * 657 * CONTEXT: 658 * spin_lock_irq(rq->lock) 659 */ 660 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu) 661 { 662 struct worker *worker = kthread_data(task); 663 664 if (likely(!(worker->flags & WORKER_NOT_RUNNING))) 665 atomic_inc(get_gcwq_nr_running(cpu)); 666 } 667 668 /** 669 * wq_worker_sleeping - a worker is going to sleep 670 * @task: task going to sleep 671 * @cpu: CPU in question, must be the current CPU number 672 * 673 * This function is called during schedule() when a busy worker is 674 * going to sleep. Worker on the same cpu can be woken up by 675 * returning pointer to its task. 676 * 677 * CONTEXT: 678 * spin_lock_irq(rq->lock) 679 * 680 * RETURNS: 681 * Worker task on @cpu to wake up, %NULL if none. 682 */ 683 struct task_struct *wq_worker_sleeping(struct task_struct *task, 684 unsigned int cpu) 685 { 686 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 687 struct global_cwq *gcwq = get_gcwq(cpu); 688 atomic_t *nr_running = get_gcwq_nr_running(cpu); 689 690 if (unlikely(worker->flags & WORKER_NOT_RUNNING)) 691 return NULL; 692 693 /* this can only happen on the local cpu */ 694 BUG_ON(cpu != raw_smp_processor_id()); 695 696 /* 697 * The counterpart of the following dec_and_test, implied mb, 698 * worklist not empty test sequence is in insert_work(). 699 * Please read comment there. 700 * 701 * NOT_RUNNING is clear. This means that trustee is not in 702 * charge and we're running on the local cpu w/ rq lock held 703 * and preemption disabled, which in turn means that none else 704 * could be manipulating idle_list, so dereferencing idle_list 705 * without gcwq lock is safe. 706 */ 707 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist)) 708 to_wakeup = first_worker(gcwq); 709 return to_wakeup ? to_wakeup->task : NULL; 710 } 711 712 /** 713 * worker_set_flags - set worker flags and adjust nr_running accordingly 714 * @worker: self 715 * @flags: flags to set 716 * @wakeup: wakeup an idle worker if necessary 717 * 718 * Set @flags in @worker->flags and adjust nr_running accordingly. If 719 * nr_running becomes zero and @wakeup is %true, an idle worker is 720 * woken up. 721 * 722 * CONTEXT: 723 * spin_lock_irq(gcwq->lock) 724 */ 725 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 726 bool wakeup) 727 { 728 struct global_cwq *gcwq = worker->gcwq; 729 730 WARN_ON_ONCE(worker->task != current); 731 732 /* 733 * If transitioning into NOT_RUNNING, adjust nr_running and 734 * wake up an idle worker as necessary if requested by 735 * @wakeup. 736 */ 737 if ((flags & WORKER_NOT_RUNNING) && 738 !(worker->flags & WORKER_NOT_RUNNING)) { 739 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); 740 741 if (wakeup) { 742 if (atomic_dec_and_test(nr_running) && 743 !list_empty(&gcwq->worklist)) 744 wake_up_worker(gcwq); 745 } else 746 atomic_dec(nr_running); 747 } 748 749 worker->flags |= flags; 750 } 751 752 /** 753 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 754 * @worker: self 755 * @flags: flags to clear 756 * 757 * Clear @flags in @worker->flags and adjust nr_running accordingly. 758 * 759 * CONTEXT: 760 * spin_lock_irq(gcwq->lock) 761 */ 762 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 763 { 764 struct global_cwq *gcwq = worker->gcwq; 765 unsigned int oflags = worker->flags; 766 767 WARN_ON_ONCE(worker->task != current); 768 769 worker->flags &= ~flags; 770 771 /* if transitioning out of NOT_RUNNING, increment nr_running */ 772 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 773 if (!(worker->flags & WORKER_NOT_RUNNING)) 774 atomic_inc(get_gcwq_nr_running(gcwq->cpu)); 775 } 776 777 /** 778 * busy_worker_head - return the busy hash head for a work 779 * @gcwq: gcwq of interest 780 * @work: work to be hashed 781 * 782 * Return hash head of @gcwq for @work. 783 * 784 * CONTEXT: 785 * spin_lock_irq(gcwq->lock). 786 * 787 * RETURNS: 788 * Pointer to the hash head. 789 */ 790 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq, 791 struct work_struct *work) 792 { 793 const int base_shift = ilog2(sizeof(struct work_struct)); 794 unsigned long v = (unsigned long)work; 795 796 /* simple shift and fold hash, do we need something better? */ 797 v >>= base_shift; 798 v += v >> BUSY_WORKER_HASH_ORDER; 799 v &= BUSY_WORKER_HASH_MASK; 800 801 return &gcwq->busy_hash[v]; 802 } 803 804 /** 805 * __find_worker_executing_work - find worker which is executing a work 806 * @gcwq: gcwq of interest 807 * @bwh: hash head as returned by busy_worker_head() 808 * @work: work to find worker for 809 * 810 * Find a worker which is executing @work on @gcwq. @bwh should be 811 * the hash head obtained by calling busy_worker_head() with the same 812 * work. 813 * 814 * CONTEXT: 815 * spin_lock_irq(gcwq->lock). 816 * 817 * RETURNS: 818 * Pointer to worker which is executing @work if found, NULL 819 * otherwise. 820 */ 821 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq, 822 struct hlist_head *bwh, 823 struct work_struct *work) 824 { 825 struct worker *worker; 826 struct hlist_node *tmp; 827 828 hlist_for_each_entry(worker, tmp, bwh, hentry) 829 if (worker->current_work == work) 830 return worker; 831 return NULL; 832 } 833 834 /** 835 * find_worker_executing_work - find worker which is executing a work 836 * @gcwq: gcwq of interest 837 * @work: work to find worker for 838 * 839 * Find a worker which is executing @work on @gcwq. This function is 840 * identical to __find_worker_executing_work() except that this 841 * function calculates @bwh itself. 842 * 843 * CONTEXT: 844 * spin_lock_irq(gcwq->lock). 845 * 846 * RETURNS: 847 * Pointer to worker which is executing @work if found, NULL 848 * otherwise. 849 */ 850 static struct worker *find_worker_executing_work(struct global_cwq *gcwq, 851 struct work_struct *work) 852 { 853 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work), 854 work); 855 } 856 857 /** 858 * gcwq_determine_ins_pos - find insertion position 859 * @gcwq: gcwq of interest 860 * @cwq: cwq a work is being queued for 861 * 862 * A work for @cwq is about to be queued on @gcwq, determine insertion 863 * position for the work. If @cwq is for HIGHPRI wq, the work is 864 * queued at the head of the queue but in FIFO order with respect to 865 * other HIGHPRI works; otherwise, at the end of the queue. This 866 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that 867 * there are HIGHPRI works pending. 868 * 869 * CONTEXT: 870 * spin_lock_irq(gcwq->lock). 871 * 872 * RETURNS: 873 * Pointer to inserstion position. 874 */ 875 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq, 876 struct cpu_workqueue_struct *cwq) 877 { 878 struct work_struct *twork; 879 880 if (likely(!(cwq->wq->flags & WQ_HIGHPRI))) 881 return &gcwq->worklist; 882 883 list_for_each_entry(twork, &gcwq->worklist, entry) { 884 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork); 885 886 if (!(tcwq->wq->flags & WQ_HIGHPRI)) 887 break; 888 } 889 890 gcwq->flags |= GCWQ_HIGHPRI_PENDING; 891 return &twork->entry; 892 } 893 894 /** 895 * insert_work - insert a work into gcwq 896 * @cwq: cwq @work belongs to 897 * @work: work to insert 898 * @head: insertion point 899 * @extra_flags: extra WORK_STRUCT_* flags to set 900 * 901 * Insert @work which belongs to @cwq into @gcwq after @head. 902 * @extra_flags is or'd to work_struct flags. 903 * 904 * CONTEXT: 905 * spin_lock_irq(gcwq->lock). 906 */ 907 static void insert_work(struct cpu_workqueue_struct *cwq, 908 struct work_struct *work, struct list_head *head, 909 unsigned int extra_flags) 910 { 911 struct global_cwq *gcwq = cwq->gcwq; 912 913 /* we own @work, set data and link */ 914 set_work_cwq(work, cwq, extra_flags); 915 916 /* 917 * Ensure that we get the right work->data if we see the 918 * result of list_add() below, see try_to_grab_pending(). 919 */ 920 smp_wmb(); 921 922 list_add_tail(&work->entry, head); 923 924 /* 925 * Ensure either worker_sched_deactivated() sees the above 926 * list_add_tail() or we see zero nr_running to avoid workers 927 * lying around lazily while there are works to be processed. 928 */ 929 smp_mb(); 930 931 if (__need_more_worker(gcwq)) 932 wake_up_worker(gcwq); 933 } 934 935 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq, 936 struct work_struct *work) 937 { 938 struct global_cwq *gcwq; 939 struct cpu_workqueue_struct *cwq; 940 struct list_head *worklist; 941 unsigned int work_flags; 942 unsigned long flags; 943 944 debug_work_activate(work); 945 946 if (WARN_ON_ONCE(wq->flags & WQ_DYING)) 947 return; 948 949 /* determine gcwq to use */ 950 if (!(wq->flags & WQ_UNBOUND)) { 951 struct global_cwq *last_gcwq; 952 953 if (unlikely(cpu == WORK_CPU_UNBOUND)) 954 cpu = raw_smp_processor_id(); 955 956 /* 957 * It's multi cpu. If @wq is non-reentrant and @work 958 * was previously on a different cpu, it might still 959 * be running there, in which case the work needs to 960 * be queued on that cpu to guarantee non-reentrance. 961 */ 962 gcwq = get_gcwq(cpu); 963 if (wq->flags & WQ_NON_REENTRANT && 964 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { 965 struct worker *worker; 966 967 spin_lock_irqsave(&last_gcwq->lock, flags); 968 969 worker = find_worker_executing_work(last_gcwq, work); 970 971 if (worker && worker->current_cwq->wq == wq) 972 gcwq = last_gcwq; 973 else { 974 /* meh... not running there, queue here */ 975 spin_unlock_irqrestore(&last_gcwq->lock, flags); 976 spin_lock_irqsave(&gcwq->lock, flags); 977 } 978 } else 979 spin_lock_irqsave(&gcwq->lock, flags); 980 } else { 981 gcwq = get_gcwq(WORK_CPU_UNBOUND); 982 spin_lock_irqsave(&gcwq->lock, flags); 983 } 984 985 /* gcwq determined, get cwq and queue */ 986 cwq = get_cwq(gcwq->cpu, wq); 987 trace_workqueue_queue_work(cpu, cwq, work); 988 989 BUG_ON(!list_empty(&work->entry)); 990 991 cwq->nr_in_flight[cwq->work_color]++; 992 work_flags = work_color_to_flags(cwq->work_color); 993 994 if (likely(cwq->nr_active < cwq->max_active)) { 995 trace_workqueue_activate_work(work); 996 cwq->nr_active++; 997 worklist = gcwq_determine_ins_pos(gcwq, cwq); 998 } else { 999 work_flags |= WORK_STRUCT_DELAYED; 1000 worklist = &cwq->delayed_works; 1001 } 1002 1003 insert_work(cwq, work, worklist, work_flags); 1004 1005 spin_unlock_irqrestore(&gcwq->lock, flags); 1006 } 1007 1008 /** 1009 * queue_work - queue work on a workqueue 1010 * @wq: workqueue to use 1011 * @work: work to queue 1012 * 1013 * Returns 0 if @work was already on a queue, non-zero otherwise. 1014 * 1015 * We queue the work to the CPU on which it was submitted, but if the CPU dies 1016 * it can be processed by another CPU. 1017 */ 1018 int queue_work(struct workqueue_struct *wq, struct work_struct *work) 1019 { 1020 int ret; 1021 1022 ret = queue_work_on(get_cpu(), wq, work); 1023 put_cpu(); 1024 1025 return ret; 1026 } 1027 EXPORT_SYMBOL_GPL(queue_work); 1028 1029 /** 1030 * queue_work_on - queue work on specific cpu 1031 * @cpu: CPU number to execute work on 1032 * @wq: workqueue to use 1033 * @work: work to queue 1034 * 1035 * Returns 0 if @work was already on a queue, non-zero otherwise. 1036 * 1037 * We queue the work to a specific CPU, the caller must ensure it 1038 * can't go away. 1039 */ 1040 int 1041 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work) 1042 { 1043 int ret = 0; 1044 1045 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1046 __queue_work(cpu, wq, work); 1047 ret = 1; 1048 } 1049 return ret; 1050 } 1051 EXPORT_SYMBOL_GPL(queue_work_on); 1052 1053 static void delayed_work_timer_fn(unsigned long __data) 1054 { 1055 struct delayed_work *dwork = (struct delayed_work *)__data; 1056 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work); 1057 1058 __queue_work(smp_processor_id(), cwq->wq, &dwork->work); 1059 } 1060 1061 /** 1062 * queue_delayed_work - queue work on a workqueue after delay 1063 * @wq: workqueue to use 1064 * @dwork: delayable work to queue 1065 * @delay: number of jiffies to wait before queueing 1066 * 1067 * Returns 0 if @work was already on a queue, non-zero otherwise. 1068 */ 1069 int queue_delayed_work(struct workqueue_struct *wq, 1070 struct delayed_work *dwork, unsigned long delay) 1071 { 1072 if (delay == 0) 1073 return queue_work(wq, &dwork->work); 1074 1075 return queue_delayed_work_on(-1, wq, dwork, delay); 1076 } 1077 EXPORT_SYMBOL_GPL(queue_delayed_work); 1078 1079 /** 1080 * queue_delayed_work_on - queue work on specific CPU after delay 1081 * @cpu: CPU number to execute work on 1082 * @wq: workqueue to use 1083 * @dwork: work to queue 1084 * @delay: number of jiffies to wait before queueing 1085 * 1086 * Returns 0 if @work was already on a queue, non-zero otherwise. 1087 */ 1088 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1089 struct delayed_work *dwork, unsigned long delay) 1090 { 1091 int ret = 0; 1092 struct timer_list *timer = &dwork->timer; 1093 struct work_struct *work = &dwork->work; 1094 1095 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1096 unsigned int lcpu; 1097 1098 BUG_ON(timer_pending(timer)); 1099 BUG_ON(!list_empty(&work->entry)); 1100 1101 timer_stats_timer_set_start_info(&dwork->timer); 1102 1103 /* 1104 * This stores cwq for the moment, for the timer_fn. 1105 * Note that the work's gcwq is preserved to allow 1106 * reentrance detection for delayed works. 1107 */ 1108 if (!(wq->flags & WQ_UNBOUND)) { 1109 struct global_cwq *gcwq = get_work_gcwq(work); 1110 1111 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND) 1112 lcpu = gcwq->cpu; 1113 else 1114 lcpu = raw_smp_processor_id(); 1115 } else 1116 lcpu = WORK_CPU_UNBOUND; 1117 1118 set_work_cwq(work, get_cwq(lcpu, wq), 0); 1119 1120 timer->expires = jiffies + delay; 1121 timer->data = (unsigned long)dwork; 1122 timer->function = delayed_work_timer_fn; 1123 1124 if (unlikely(cpu >= 0)) 1125 add_timer_on(timer, cpu); 1126 else 1127 add_timer(timer); 1128 ret = 1; 1129 } 1130 return ret; 1131 } 1132 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 1133 1134 /** 1135 * worker_enter_idle - enter idle state 1136 * @worker: worker which is entering idle state 1137 * 1138 * @worker is entering idle state. Update stats and idle timer if 1139 * necessary. 1140 * 1141 * LOCKING: 1142 * spin_lock_irq(gcwq->lock). 1143 */ 1144 static void worker_enter_idle(struct worker *worker) 1145 { 1146 struct global_cwq *gcwq = worker->gcwq; 1147 1148 BUG_ON(worker->flags & WORKER_IDLE); 1149 BUG_ON(!list_empty(&worker->entry) && 1150 (worker->hentry.next || worker->hentry.pprev)); 1151 1152 /* can't use worker_set_flags(), also called from start_worker() */ 1153 worker->flags |= WORKER_IDLE; 1154 gcwq->nr_idle++; 1155 worker->last_active = jiffies; 1156 1157 /* idle_list is LIFO */ 1158 list_add(&worker->entry, &gcwq->idle_list); 1159 1160 if (likely(!(worker->flags & WORKER_ROGUE))) { 1161 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer)) 1162 mod_timer(&gcwq->idle_timer, 1163 jiffies + IDLE_WORKER_TIMEOUT); 1164 } else 1165 wake_up_all(&gcwq->trustee_wait); 1166 1167 /* sanity check nr_running */ 1168 WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle && 1169 atomic_read(get_gcwq_nr_running(gcwq->cpu))); 1170 } 1171 1172 /** 1173 * worker_leave_idle - leave idle state 1174 * @worker: worker which is leaving idle state 1175 * 1176 * @worker is leaving idle state. Update stats. 1177 * 1178 * LOCKING: 1179 * spin_lock_irq(gcwq->lock). 1180 */ 1181 static void worker_leave_idle(struct worker *worker) 1182 { 1183 struct global_cwq *gcwq = worker->gcwq; 1184 1185 BUG_ON(!(worker->flags & WORKER_IDLE)); 1186 worker_clr_flags(worker, WORKER_IDLE); 1187 gcwq->nr_idle--; 1188 list_del_init(&worker->entry); 1189 } 1190 1191 /** 1192 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq 1193 * @worker: self 1194 * 1195 * Works which are scheduled while the cpu is online must at least be 1196 * scheduled to a worker which is bound to the cpu so that if they are 1197 * flushed from cpu callbacks while cpu is going down, they are 1198 * guaranteed to execute on the cpu. 1199 * 1200 * This function is to be used by rogue workers and rescuers to bind 1201 * themselves to the target cpu and may race with cpu going down or 1202 * coming online. kthread_bind() can't be used because it may put the 1203 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1204 * verbatim as it's best effort and blocking and gcwq may be 1205 * [dis]associated in the meantime. 1206 * 1207 * This function tries set_cpus_allowed() and locks gcwq and verifies 1208 * the binding against GCWQ_DISASSOCIATED which is set during 1209 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters 1210 * idle state or fetches works without dropping lock, it can guarantee 1211 * the scheduling requirement described in the first paragraph. 1212 * 1213 * CONTEXT: 1214 * Might sleep. Called without any lock but returns with gcwq->lock 1215 * held. 1216 * 1217 * RETURNS: 1218 * %true if the associated gcwq is online (@worker is successfully 1219 * bound), %false if offline. 1220 */ 1221 static bool worker_maybe_bind_and_lock(struct worker *worker) 1222 __acquires(&gcwq->lock) 1223 { 1224 struct global_cwq *gcwq = worker->gcwq; 1225 struct task_struct *task = worker->task; 1226 1227 while (true) { 1228 /* 1229 * The following call may fail, succeed or succeed 1230 * without actually migrating the task to the cpu if 1231 * it races with cpu hotunplug operation. Verify 1232 * against GCWQ_DISASSOCIATED. 1233 */ 1234 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) 1235 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu)); 1236 1237 spin_lock_irq(&gcwq->lock); 1238 if (gcwq->flags & GCWQ_DISASSOCIATED) 1239 return false; 1240 if (task_cpu(task) == gcwq->cpu && 1241 cpumask_equal(¤t->cpus_allowed, 1242 get_cpu_mask(gcwq->cpu))) 1243 return true; 1244 spin_unlock_irq(&gcwq->lock); 1245 1246 /* CPU has come up inbetween, retry migration */ 1247 cpu_relax(); 1248 } 1249 } 1250 1251 /* 1252 * Function for worker->rebind_work used to rebind rogue busy workers 1253 * to the associated cpu which is coming back online. This is 1254 * scheduled by cpu up but can race with other cpu hotplug operations 1255 * and may be executed twice without intervening cpu down. 1256 */ 1257 static void worker_rebind_fn(struct work_struct *work) 1258 { 1259 struct worker *worker = container_of(work, struct worker, rebind_work); 1260 struct global_cwq *gcwq = worker->gcwq; 1261 1262 if (worker_maybe_bind_and_lock(worker)) 1263 worker_clr_flags(worker, WORKER_REBIND); 1264 1265 spin_unlock_irq(&gcwq->lock); 1266 } 1267 1268 static struct worker *alloc_worker(void) 1269 { 1270 struct worker *worker; 1271 1272 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1273 if (worker) { 1274 INIT_LIST_HEAD(&worker->entry); 1275 INIT_LIST_HEAD(&worker->scheduled); 1276 INIT_WORK(&worker->rebind_work, worker_rebind_fn); 1277 /* on creation a worker is in !idle && prep state */ 1278 worker->flags = WORKER_PREP; 1279 } 1280 return worker; 1281 } 1282 1283 /** 1284 * create_worker - create a new workqueue worker 1285 * @gcwq: gcwq the new worker will belong to 1286 * @bind: whether to set affinity to @cpu or not 1287 * 1288 * Create a new worker which is bound to @gcwq. The returned worker 1289 * can be started by calling start_worker() or destroyed using 1290 * destroy_worker(). 1291 * 1292 * CONTEXT: 1293 * Might sleep. Does GFP_KERNEL allocations. 1294 * 1295 * RETURNS: 1296 * Pointer to the newly created worker. 1297 */ 1298 static struct worker *create_worker(struct global_cwq *gcwq, bool bind) 1299 { 1300 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND; 1301 struct worker *worker = NULL; 1302 int id = -1; 1303 1304 spin_lock_irq(&gcwq->lock); 1305 while (ida_get_new(&gcwq->worker_ida, &id)) { 1306 spin_unlock_irq(&gcwq->lock); 1307 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL)) 1308 goto fail; 1309 spin_lock_irq(&gcwq->lock); 1310 } 1311 spin_unlock_irq(&gcwq->lock); 1312 1313 worker = alloc_worker(); 1314 if (!worker) 1315 goto fail; 1316 1317 worker->gcwq = gcwq; 1318 worker->id = id; 1319 1320 if (!on_unbound_cpu) 1321 worker->task = kthread_create(worker_thread, worker, 1322 "kworker/%u:%d", gcwq->cpu, id); 1323 else 1324 worker->task = kthread_create(worker_thread, worker, 1325 "kworker/u:%d", id); 1326 if (IS_ERR(worker->task)) 1327 goto fail; 1328 1329 /* 1330 * A rogue worker will become a regular one if CPU comes 1331 * online later on. Make sure every worker has 1332 * PF_THREAD_BOUND set. 1333 */ 1334 if (bind && !on_unbound_cpu) 1335 kthread_bind(worker->task, gcwq->cpu); 1336 else { 1337 worker->task->flags |= PF_THREAD_BOUND; 1338 if (on_unbound_cpu) 1339 worker->flags |= WORKER_UNBOUND; 1340 } 1341 1342 return worker; 1343 fail: 1344 if (id >= 0) { 1345 spin_lock_irq(&gcwq->lock); 1346 ida_remove(&gcwq->worker_ida, id); 1347 spin_unlock_irq(&gcwq->lock); 1348 } 1349 kfree(worker); 1350 return NULL; 1351 } 1352 1353 /** 1354 * start_worker - start a newly created worker 1355 * @worker: worker to start 1356 * 1357 * Make the gcwq aware of @worker and start it. 1358 * 1359 * CONTEXT: 1360 * spin_lock_irq(gcwq->lock). 1361 */ 1362 static void start_worker(struct worker *worker) 1363 { 1364 worker->flags |= WORKER_STARTED; 1365 worker->gcwq->nr_workers++; 1366 worker_enter_idle(worker); 1367 wake_up_process(worker->task); 1368 } 1369 1370 /** 1371 * destroy_worker - destroy a workqueue worker 1372 * @worker: worker to be destroyed 1373 * 1374 * Destroy @worker and adjust @gcwq stats accordingly. 1375 * 1376 * CONTEXT: 1377 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1378 */ 1379 static void destroy_worker(struct worker *worker) 1380 { 1381 struct global_cwq *gcwq = worker->gcwq; 1382 int id = worker->id; 1383 1384 /* sanity check frenzy */ 1385 BUG_ON(worker->current_work); 1386 BUG_ON(!list_empty(&worker->scheduled)); 1387 1388 if (worker->flags & WORKER_STARTED) 1389 gcwq->nr_workers--; 1390 if (worker->flags & WORKER_IDLE) 1391 gcwq->nr_idle--; 1392 1393 list_del_init(&worker->entry); 1394 worker->flags |= WORKER_DIE; 1395 1396 spin_unlock_irq(&gcwq->lock); 1397 1398 kthread_stop(worker->task); 1399 kfree(worker); 1400 1401 spin_lock_irq(&gcwq->lock); 1402 ida_remove(&gcwq->worker_ida, id); 1403 } 1404 1405 static void idle_worker_timeout(unsigned long __gcwq) 1406 { 1407 struct global_cwq *gcwq = (void *)__gcwq; 1408 1409 spin_lock_irq(&gcwq->lock); 1410 1411 if (too_many_workers(gcwq)) { 1412 struct worker *worker; 1413 unsigned long expires; 1414 1415 /* idle_list is kept in LIFO order, check the last one */ 1416 worker = list_entry(gcwq->idle_list.prev, struct worker, entry); 1417 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1418 1419 if (time_before(jiffies, expires)) 1420 mod_timer(&gcwq->idle_timer, expires); 1421 else { 1422 /* it's been idle for too long, wake up manager */ 1423 gcwq->flags |= GCWQ_MANAGE_WORKERS; 1424 wake_up_worker(gcwq); 1425 } 1426 } 1427 1428 spin_unlock_irq(&gcwq->lock); 1429 } 1430 1431 static bool send_mayday(struct work_struct *work) 1432 { 1433 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1434 struct workqueue_struct *wq = cwq->wq; 1435 unsigned int cpu; 1436 1437 if (!(wq->flags & WQ_RESCUER)) 1438 return false; 1439 1440 /* mayday mayday mayday */ 1441 cpu = cwq->gcwq->cpu; 1442 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */ 1443 if (cpu == WORK_CPU_UNBOUND) 1444 cpu = 0; 1445 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask)) 1446 wake_up_process(wq->rescuer->task); 1447 return true; 1448 } 1449 1450 static void gcwq_mayday_timeout(unsigned long __gcwq) 1451 { 1452 struct global_cwq *gcwq = (void *)__gcwq; 1453 struct work_struct *work; 1454 1455 spin_lock_irq(&gcwq->lock); 1456 1457 if (need_to_create_worker(gcwq)) { 1458 /* 1459 * We've been trying to create a new worker but 1460 * haven't been successful. We might be hitting an 1461 * allocation deadlock. Send distress signals to 1462 * rescuers. 1463 */ 1464 list_for_each_entry(work, &gcwq->worklist, entry) 1465 send_mayday(work); 1466 } 1467 1468 spin_unlock_irq(&gcwq->lock); 1469 1470 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL); 1471 } 1472 1473 /** 1474 * maybe_create_worker - create a new worker if necessary 1475 * @gcwq: gcwq to create a new worker for 1476 * 1477 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to 1478 * have at least one idle worker on return from this function. If 1479 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1480 * sent to all rescuers with works scheduled on @gcwq to resolve 1481 * possible allocation deadlock. 1482 * 1483 * On return, need_to_create_worker() is guaranteed to be false and 1484 * may_start_working() true. 1485 * 1486 * LOCKING: 1487 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1488 * multiple times. Does GFP_KERNEL allocations. Called only from 1489 * manager. 1490 * 1491 * RETURNS: 1492 * false if no action was taken and gcwq->lock stayed locked, true 1493 * otherwise. 1494 */ 1495 static bool maybe_create_worker(struct global_cwq *gcwq) 1496 __releases(&gcwq->lock) 1497 __acquires(&gcwq->lock) 1498 { 1499 if (!need_to_create_worker(gcwq)) 1500 return false; 1501 restart: 1502 spin_unlock_irq(&gcwq->lock); 1503 1504 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1505 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1506 1507 while (true) { 1508 struct worker *worker; 1509 1510 worker = create_worker(gcwq, true); 1511 if (worker) { 1512 del_timer_sync(&gcwq->mayday_timer); 1513 spin_lock_irq(&gcwq->lock); 1514 start_worker(worker); 1515 BUG_ON(need_to_create_worker(gcwq)); 1516 return true; 1517 } 1518 1519 if (!need_to_create_worker(gcwq)) 1520 break; 1521 1522 __set_current_state(TASK_INTERRUPTIBLE); 1523 schedule_timeout(CREATE_COOLDOWN); 1524 1525 if (!need_to_create_worker(gcwq)) 1526 break; 1527 } 1528 1529 del_timer_sync(&gcwq->mayday_timer); 1530 spin_lock_irq(&gcwq->lock); 1531 if (need_to_create_worker(gcwq)) 1532 goto restart; 1533 return true; 1534 } 1535 1536 /** 1537 * maybe_destroy_worker - destroy workers which have been idle for a while 1538 * @gcwq: gcwq to destroy workers for 1539 * 1540 * Destroy @gcwq workers which have been idle for longer than 1541 * IDLE_WORKER_TIMEOUT. 1542 * 1543 * LOCKING: 1544 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1545 * multiple times. Called only from manager. 1546 * 1547 * RETURNS: 1548 * false if no action was taken and gcwq->lock stayed locked, true 1549 * otherwise. 1550 */ 1551 static bool maybe_destroy_workers(struct global_cwq *gcwq) 1552 { 1553 bool ret = false; 1554 1555 while (too_many_workers(gcwq)) { 1556 struct worker *worker; 1557 unsigned long expires; 1558 1559 worker = list_entry(gcwq->idle_list.prev, struct worker, entry); 1560 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1561 1562 if (time_before(jiffies, expires)) { 1563 mod_timer(&gcwq->idle_timer, expires); 1564 break; 1565 } 1566 1567 destroy_worker(worker); 1568 ret = true; 1569 } 1570 1571 return ret; 1572 } 1573 1574 /** 1575 * manage_workers - manage worker pool 1576 * @worker: self 1577 * 1578 * Assume the manager role and manage gcwq worker pool @worker belongs 1579 * to. At any given time, there can be only zero or one manager per 1580 * gcwq. The exclusion is handled automatically by this function. 1581 * 1582 * The caller can safely start processing works on false return. On 1583 * true return, it's guaranteed that need_to_create_worker() is false 1584 * and may_start_working() is true. 1585 * 1586 * CONTEXT: 1587 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1588 * multiple times. Does GFP_KERNEL allocations. 1589 * 1590 * RETURNS: 1591 * false if no action was taken and gcwq->lock stayed locked, true if 1592 * some action was taken. 1593 */ 1594 static bool manage_workers(struct worker *worker) 1595 { 1596 struct global_cwq *gcwq = worker->gcwq; 1597 bool ret = false; 1598 1599 if (gcwq->flags & GCWQ_MANAGING_WORKERS) 1600 return ret; 1601 1602 gcwq->flags &= ~GCWQ_MANAGE_WORKERS; 1603 gcwq->flags |= GCWQ_MANAGING_WORKERS; 1604 1605 /* 1606 * Destroy and then create so that may_start_working() is true 1607 * on return. 1608 */ 1609 ret |= maybe_destroy_workers(gcwq); 1610 ret |= maybe_create_worker(gcwq); 1611 1612 gcwq->flags &= ~GCWQ_MANAGING_WORKERS; 1613 1614 /* 1615 * The trustee might be waiting to take over the manager 1616 * position, tell it we're done. 1617 */ 1618 if (unlikely(gcwq->trustee)) 1619 wake_up_all(&gcwq->trustee_wait); 1620 1621 return ret; 1622 } 1623 1624 /** 1625 * move_linked_works - move linked works to a list 1626 * @work: start of series of works to be scheduled 1627 * @head: target list to append @work to 1628 * @nextp: out paramter for nested worklist walking 1629 * 1630 * Schedule linked works starting from @work to @head. Work series to 1631 * be scheduled starts at @work and includes any consecutive work with 1632 * WORK_STRUCT_LINKED set in its predecessor. 1633 * 1634 * If @nextp is not NULL, it's updated to point to the next work of 1635 * the last scheduled work. This allows move_linked_works() to be 1636 * nested inside outer list_for_each_entry_safe(). 1637 * 1638 * CONTEXT: 1639 * spin_lock_irq(gcwq->lock). 1640 */ 1641 static void move_linked_works(struct work_struct *work, struct list_head *head, 1642 struct work_struct **nextp) 1643 { 1644 struct work_struct *n; 1645 1646 /* 1647 * Linked worklist will always end before the end of the list, 1648 * use NULL for list head. 1649 */ 1650 list_for_each_entry_safe_from(work, n, NULL, entry) { 1651 list_move_tail(&work->entry, head); 1652 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1653 break; 1654 } 1655 1656 /* 1657 * If we're already inside safe list traversal and have moved 1658 * multiple works to the scheduled queue, the next position 1659 * needs to be updated. 1660 */ 1661 if (nextp) 1662 *nextp = n; 1663 } 1664 1665 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq) 1666 { 1667 struct work_struct *work = list_first_entry(&cwq->delayed_works, 1668 struct work_struct, entry); 1669 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq); 1670 1671 trace_workqueue_activate_work(work); 1672 move_linked_works(work, pos, NULL); 1673 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1674 cwq->nr_active++; 1675 } 1676 1677 /** 1678 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight 1679 * @cwq: cwq of interest 1680 * @color: color of work which left the queue 1681 * @delayed: for a delayed work 1682 * 1683 * A work either has completed or is removed from pending queue, 1684 * decrement nr_in_flight of its cwq and handle workqueue flushing. 1685 * 1686 * CONTEXT: 1687 * spin_lock_irq(gcwq->lock). 1688 */ 1689 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color, 1690 bool delayed) 1691 { 1692 /* ignore uncolored works */ 1693 if (color == WORK_NO_COLOR) 1694 return; 1695 1696 cwq->nr_in_flight[color]--; 1697 1698 if (!delayed) { 1699 cwq->nr_active--; 1700 if (!list_empty(&cwq->delayed_works)) { 1701 /* one down, submit a delayed one */ 1702 if (cwq->nr_active < cwq->max_active) 1703 cwq_activate_first_delayed(cwq); 1704 } 1705 } 1706 1707 /* is flush in progress and are we at the flushing tip? */ 1708 if (likely(cwq->flush_color != color)) 1709 return; 1710 1711 /* are there still in-flight works? */ 1712 if (cwq->nr_in_flight[color]) 1713 return; 1714 1715 /* this cwq is done, clear flush_color */ 1716 cwq->flush_color = -1; 1717 1718 /* 1719 * If this was the last cwq, wake up the first flusher. It 1720 * will handle the rest. 1721 */ 1722 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush)) 1723 complete(&cwq->wq->first_flusher->done); 1724 } 1725 1726 /** 1727 * process_one_work - process single work 1728 * @worker: self 1729 * @work: work to process 1730 * 1731 * Process @work. This function contains all the logics necessary to 1732 * process a single work including synchronization against and 1733 * interaction with other workers on the same cpu, queueing and 1734 * flushing. As long as context requirement is met, any worker can 1735 * call this function to process a work. 1736 * 1737 * CONTEXT: 1738 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1739 */ 1740 static void process_one_work(struct worker *worker, struct work_struct *work) 1741 __releases(&gcwq->lock) 1742 __acquires(&gcwq->lock) 1743 { 1744 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1745 struct global_cwq *gcwq = cwq->gcwq; 1746 struct hlist_head *bwh = busy_worker_head(gcwq, work); 1747 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE; 1748 work_func_t f = work->func; 1749 int work_color; 1750 struct worker *collision; 1751 #ifdef CONFIG_LOCKDEP 1752 /* 1753 * It is permissible to free the struct work_struct from 1754 * inside the function that is called from it, this we need to 1755 * take into account for lockdep too. To avoid bogus "held 1756 * lock freed" warnings as well as problems when looking into 1757 * work->lockdep_map, make a copy and use that here. 1758 */ 1759 struct lockdep_map lockdep_map = work->lockdep_map; 1760 #endif 1761 /* 1762 * A single work shouldn't be executed concurrently by 1763 * multiple workers on a single cpu. Check whether anyone is 1764 * already processing the work. If so, defer the work to the 1765 * currently executing one. 1766 */ 1767 collision = __find_worker_executing_work(gcwq, bwh, work); 1768 if (unlikely(collision)) { 1769 move_linked_works(work, &collision->scheduled, NULL); 1770 return; 1771 } 1772 1773 /* claim and process */ 1774 debug_work_deactivate(work); 1775 hlist_add_head(&worker->hentry, bwh); 1776 worker->current_work = work; 1777 worker->current_cwq = cwq; 1778 work_color = get_work_color(work); 1779 1780 /* record the current cpu number in the work data and dequeue */ 1781 set_work_cpu(work, gcwq->cpu); 1782 list_del_init(&work->entry); 1783 1784 /* 1785 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI, 1786 * wake up another worker; otherwise, clear HIGHPRI_PENDING. 1787 */ 1788 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) { 1789 struct work_struct *nwork = list_first_entry(&gcwq->worklist, 1790 struct work_struct, entry); 1791 1792 if (!list_empty(&gcwq->worklist) && 1793 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI) 1794 wake_up_worker(gcwq); 1795 else 1796 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING; 1797 } 1798 1799 /* 1800 * CPU intensive works don't participate in concurrency 1801 * management. They're the scheduler's responsibility. 1802 */ 1803 if (unlikely(cpu_intensive)) 1804 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 1805 1806 spin_unlock_irq(&gcwq->lock); 1807 1808 work_clear_pending(work); 1809 lock_map_acquire(&cwq->wq->lockdep_map); 1810 lock_map_acquire(&lockdep_map); 1811 trace_workqueue_execute_start(work); 1812 f(work); 1813 /* 1814 * While we must be careful to not use "work" after this, the trace 1815 * point will only record its address. 1816 */ 1817 trace_workqueue_execute_end(work); 1818 lock_map_release(&lockdep_map); 1819 lock_map_release(&cwq->wq->lockdep_map); 1820 1821 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 1822 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " 1823 "%s/0x%08x/%d\n", 1824 current->comm, preempt_count(), task_pid_nr(current)); 1825 printk(KERN_ERR " last function: "); 1826 print_symbol("%s\n", (unsigned long)f); 1827 debug_show_held_locks(current); 1828 dump_stack(); 1829 } 1830 1831 spin_lock_irq(&gcwq->lock); 1832 1833 /* clear cpu intensive status */ 1834 if (unlikely(cpu_intensive)) 1835 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 1836 1837 /* we're done with it, release */ 1838 hlist_del_init(&worker->hentry); 1839 worker->current_work = NULL; 1840 worker->current_cwq = NULL; 1841 cwq_dec_nr_in_flight(cwq, work_color, false); 1842 } 1843 1844 /** 1845 * process_scheduled_works - process scheduled works 1846 * @worker: self 1847 * 1848 * Process all scheduled works. Please note that the scheduled list 1849 * may change while processing a work, so this function repeatedly 1850 * fetches a work from the top and executes it. 1851 * 1852 * CONTEXT: 1853 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1854 * multiple times. 1855 */ 1856 static void process_scheduled_works(struct worker *worker) 1857 { 1858 while (!list_empty(&worker->scheduled)) { 1859 struct work_struct *work = list_first_entry(&worker->scheduled, 1860 struct work_struct, entry); 1861 process_one_work(worker, work); 1862 } 1863 } 1864 1865 /** 1866 * worker_thread - the worker thread function 1867 * @__worker: self 1868 * 1869 * The gcwq worker thread function. There's a single dynamic pool of 1870 * these per each cpu. These workers process all works regardless of 1871 * their specific target workqueue. The only exception is works which 1872 * belong to workqueues with a rescuer which will be explained in 1873 * rescuer_thread(). 1874 */ 1875 static int worker_thread(void *__worker) 1876 { 1877 struct worker *worker = __worker; 1878 struct global_cwq *gcwq = worker->gcwq; 1879 1880 /* tell the scheduler that this is a workqueue worker */ 1881 worker->task->flags |= PF_WQ_WORKER; 1882 woke_up: 1883 spin_lock_irq(&gcwq->lock); 1884 1885 /* DIE can be set only while we're idle, checking here is enough */ 1886 if (worker->flags & WORKER_DIE) { 1887 spin_unlock_irq(&gcwq->lock); 1888 worker->task->flags &= ~PF_WQ_WORKER; 1889 return 0; 1890 } 1891 1892 worker_leave_idle(worker); 1893 recheck: 1894 /* no more worker necessary? */ 1895 if (!need_more_worker(gcwq)) 1896 goto sleep; 1897 1898 /* do we need to manage? */ 1899 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker)) 1900 goto recheck; 1901 1902 /* 1903 * ->scheduled list can only be filled while a worker is 1904 * preparing to process a work or actually processing it. 1905 * Make sure nobody diddled with it while I was sleeping. 1906 */ 1907 BUG_ON(!list_empty(&worker->scheduled)); 1908 1909 /* 1910 * When control reaches this point, we're guaranteed to have 1911 * at least one idle worker or that someone else has already 1912 * assumed the manager role. 1913 */ 1914 worker_clr_flags(worker, WORKER_PREP); 1915 1916 do { 1917 struct work_struct *work = 1918 list_first_entry(&gcwq->worklist, 1919 struct work_struct, entry); 1920 1921 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 1922 /* optimization path, not strictly necessary */ 1923 process_one_work(worker, work); 1924 if (unlikely(!list_empty(&worker->scheduled))) 1925 process_scheduled_works(worker); 1926 } else { 1927 move_linked_works(work, &worker->scheduled, NULL); 1928 process_scheduled_works(worker); 1929 } 1930 } while (keep_working(gcwq)); 1931 1932 worker_set_flags(worker, WORKER_PREP, false); 1933 sleep: 1934 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker)) 1935 goto recheck; 1936 1937 /* 1938 * gcwq->lock is held and there's no work to process and no 1939 * need to manage, sleep. Workers are woken up only while 1940 * holding gcwq->lock or from local cpu, so setting the 1941 * current state before releasing gcwq->lock is enough to 1942 * prevent losing any event. 1943 */ 1944 worker_enter_idle(worker); 1945 __set_current_state(TASK_INTERRUPTIBLE); 1946 spin_unlock_irq(&gcwq->lock); 1947 schedule(); 1948 goto woke_up; 1949 } 1950 1951 /** 1952 * rescuer_thread - the rescuer thread function 1953 * @__wq: the associated workqueue 1954 * 1955 * Workqueue rescuer thread function. There's one rescuer for each 1956 * workqueue which has WQ_RESCUER set. 1957 * 1958 * Regular work processing on a gcwq may block trying to create a new 1959 * worker which uses GFP_KERNEL allocation which has slight chance of 1960 * developing into deadlock if some works currently on the same queue 1961 * need to be processed to satisfy the GFP_KERNEL allocation. This is 1962 * the problem rescuer solves. 1963 * 1964 * When such condition is possible, the gcwq summons rescuers of all 1965 * workqueues which have works queued on the gcwq and let them process 1966 * those works so that forward progress can be guaranteed. 1967 * 1968 * This should happen rarely. 1969 */ 1970 static int rescuer_thread(void *__wq) 1971 { 1972 struct workqueue_struct *wq = __wq; 1973 struct worker *rescuer = wq->rescuer; 1974 struct list_head *scheduled = &rescuer->scheduled; 1975 bool is_unbound = wq->flags & WQ_UNBOUND; 1976 unsigned int cpu; 1977 1978 set_user_nice(current, RESCUER_NICE_LEVEL); 1979 repeat: 1980 set_current_state(TASK_INTERRUPTIBLE); 1981 1982 if (kthread_should_stop()) 1983 return 0; 1984 1985 /* 1986 * See whether any cpu is asking for help. Unbounded 1987 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND. 1988 */ 1989 for_each_mayday_cpu(cpu, wq->mayday_mask) { 1990 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu; 1991 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq); 1992 struct global_cwq *gcwq = cwq->gcwq; 1993 struct work_struct *work, *n; 1994 1995 __set_current_state(TASK_RUNNING); 1996 mayday_clear_cpu(cpu, wq->mayday_mask); 1997 1998 /* migrate to the target cpu if possible */ 1999 rescuer->gcwq = gcwq; 2000 worker_maybe_bind_and_lock(rescuer); 2001 2002 /* 2003 * Slurp in all works issued via this workqueue and 2004 * process'em. 2005 */ 2006 BUG_ON(!list_empty(&rescuer->scheduled)); 2007 list_for_each_entry_safe(work, n, &gcwq->worklist, entry) 2008 if (get_work_cwq(work) == cwq) 2009 move_linked_works(work, scheduled, &n); 2010 2011 process_scheduled_works(rescuer); 2012 spin_unlock_irq(&gcwq->lock); 2013 } 2014 2015 schedule(); 2016 goto repeat; 2017 } 2018 2019 struct wq_barrier { 2020 struct work_struct work; 2021 struct completion done; 2022 }; 2023 2024 static void wq_barrier_func(struct work_struct *work) 2025 { 2026 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2027 complete(&barr->done); 2028 } 2029 2030 /** 2031 * insert_wq_barrier - insert a barrier work 2032 * @cwq: cwq to insert barrier into 2033 * @barr: wq_barrier to insert 2034 * @target: target work to attach @barr to 2035 * @worker: worker currently executing @target, NULL if @target is not executing 2036 * 2037 * @barr is linked to @target such that @barr is completed only after 2038 * @target finishes execution. Please note that the ordering 2039 * guarantee is observed only with respect to @target and on the local 2040 * cpu. 2041 * 2042 * Currently, a queued barrier can't be canceled. This is because 2043 * try_to_grab_pending() can't determine whether the work to be 2044 * grabbed is at the head of the queue and thus can't clear LINKED 2045 * flag of the previous work while there must be a valid next work 2046 * after a work with LINKED flag set. 2047 * 2048 * Note that when @worker is non-NULL, @target may be modified 2049 * underneath us, so we can't reliably determine cwq from @target. 2050 * 2051 * CONTEXT: 2052 * spin_lock_irq(gcwq->lock). 2053 */ 2054 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, 2055 struct wq_barrier *barr, 2056 struct work_struct *target, struct worker *worker) 2057 { 2058 struct list_head *head; 2059 unsigned int linked = 0; 2060 2061 /* 2062 * debugobject calls are safe here even with gcwq->lock locked 2063 * as we know for sure that this will not trigger any of the 2064 * checks and call back into the fixup functions where we 2065 * might deadlock. 2066 */ 2067 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2068 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2069 init_completion(&barr->done); 2070 2071 /* 2072 * If @target is currently being executed, schedule the 2073 * barrier to the worker; otherwise, put it after @target. 2074 */ 2075 if (worker) 2076 head = worker->scheduled.next; 2077 else { 2078 unsigned long *bits = work_data_bits(target); 2079 2080 head = target->entry.next; 2081 /* there can already be other linked works, inherit and set */ 2082 linked = *bits & WORK_STRUCT_LINKED; 2083 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2084 } 2085 2086 debug_work_activate(&barr->work); 2087 insert_work(cwq, &barr->work, head, 2088 work_color_to_flags(WORK_NO_COLOR) | linked); 2089 } 2090 2091 /** 2092 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing 2093 * @wq: workqueue being flushed 2094 * @flush_color: new flush color, < 0 for no-op 2095 * @work_color: new work color, < 0 for no-op 2096 * 2097 * Prepare cwqs for workqueue flushing. 2098 * 2099 * If @flush_color is non-negative, flush_color on all cwqs should be 2100 * -1. If no cwq has in-flight commands at the specified color, all 2101 * cwq->flush_color's stay at -1 and %false is returned. If any cwq 2102 * has in flight commands, its cwq->flush_color is set to 2103 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq 2104 * wakeup logic is armed and %true is returned. 2105 * 2106 * The caller should have initialized @wq->first_flusher prior to 2107 * calling this function with non-negative @flush_color. If 2108 * @flush_color is negative, no flush color update is done and %false 2109 * is returned. 2110 * 2111 * If @work_color is non-negative, all cwqs should have the same 2112 * work_color which is previous to @work_color and all will be 2113 * advanced to @work_color. 2114 * 2115 * CONTEXT: 2116 * mutex_lock(wq->flush_mutex). 2117 * 2118 * RETURNS: 2119 * %true if @flush_color >= 0 and there's something to flush. %false 2120 * otherwise. 2121 */ 2122 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq, 2123 int flush_color, int work_color) 2124 { 2125 bool wait = false; 2126 unsigned int cpu; 2127 2128 if (flush_color >= 0) { 2129 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush)); 2130 atomic_set(&wq->nr_cwqs_to_flush, 1); 2131 } 2132 2133 for_each_cwq_cpu(cpu, wq) { 2134 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2135 struct global_cwq *gcwq = cwq->gcwq; 2136 2137 spin_lock_irq(&gcwq->lock); 2138 2139 if (flush_color >= 0) { 2140 BUG_ON(cwq->flush_color != -1); 2141 2142 if (cwq->nr_in_flight[flush_color]) { 2143 cwq->flush_color = flush_color; 2144 atomic_inc(&wq->nr_cwqs_to_flush); 2145 wait = true; 2146 } 2147 } 2148 2149 if (work_color >= 0) { 2150 BUG_ON(work_color != work_next_color(cwq->work_color)); 2151 cwq->work_color = work_color; 2152 } 2153 2154 spin_unlock_irq(&gcwq->lock); 2155 } 2156 2157 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush)) 2158 complete(&wq->first_flusher->done); 2159 2160 return wait; 2161 } 2162 2163 /** 2164 * flush_workqueue - ensure that any scheduled work has run to completion. 2165 * @wq: workqueue to flush 2166 * 2167 * Forces execution of the workqueue and blocks until its completion. 2168 * This is typically used in driver shutdown handlers. 2169 * 2170 * We sleep until all works which were queued on entry have been handled, 2171 * but we are not livelocked by new incoming ones. 2172 */ 2173 void flush_workqueue(struct workqueue_struct *wq) 2174 { 2175 struct wq_flusher this_flusher = { 2176 .list = LIST_HEAD_INIT(this_flusher.list), 2177 .flush_color = -1, 2178 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2179 }; 2180 int next_color; 2181 2182 lock_map_acquire(&wq->lockdep_map); 2183 lock_map_release(&wq->lockdep_map); 2184 2185 mutex_lock(&wq->flush_mutex); 2186 2187 /* 2188 * Start-to-wait phase 2189 */ 2190 next_color = work_next_color(wq->work_color); 2191 2192 if (next_color != wq->flush_color) { 2193 /* 2194 * Color space is not full. The current work_color 2195 * becomes our flush_color and work_color is advanced 2196 * by one. 2197 */ 2198 BUG_ON(!list_empty(&wq->flusher_overflow)); 2199 this_flusher.flush_color = wq->work_color; 2200 wq->work_color = next_color; 2201 2202 if (!wq->first_flusher) { 2203 /* no flush in progress, become the first flusher */ 2204 BUG_ON(wq->flush_color != this_flusher.flush_color); 2205 2206 wq->first_flusher = &this_flusher; 2207 2208 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color, 2209 wq->work_color)) { 2210 /* nothing to flush, done */ 2211 wq->flush_color = next_color; 2212 wq->first_flusher = NULL; 2213 goto out_unlock; 2214 } 2215 } else { 2216 /* wait in queue */ 2217 BUG_ON(wq->flush_color == this_flusher.flush_color); 2218 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2219 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2220 } 2221 } else { 2222 /* 2223 * Oops, color space is full, wait on overflow queue. 2224 * The next flush completion will assign us 2225 * flush_color and transfer to flusher_queue. 2226 */ 2227 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2228 } 2229 2230 mutex_unlock(&wq->flush_mutex); 2231 2232 wait_for_completion(&this_flusher.done); 2233 2234 /* 2235 * Wake-up-and-cascade phase 2236 * 2237 * First flushers are responsible for cascading flushes and 2238 * handling overflow. Non-first flushers can simply return. 2239 */ 2240 if (wq->first_flusher != &this_flusher) 2241 return; 2242 2243 mutex_lock(&wq->flush_mutex); 2244 2245 /* we might have raced, check again with mutex held */ 2246 if (wq->first_flusher != &this_flusher) 2247 goto out_unlock; 2248 2249 wq->first_flusher = NULL; 2250 2251 BUG_ON(!list_empty(&this_flusher.list)); 2252 BUG_ON(wq->flush_color != this_flusher.flush_color); 2253 2254 while (true) { 2255 struct wq_flusher *next, *tmp; 2256 2257 /* complete all the flushers sharing the current flush color */ 2258 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2259 if (next->flush_color != wq->flush_color) 2260 break; 2261 list_del_init(&next->list); 2262 complete(&next->done); 2263 } 2264 2265 BUG_ON(!list_empty(&wq->flusher_overflow) && 2266 wq->flush_color != work_next_color(wq->work_color)); 2267 2268 /* this flush_color is finished, advance by one */ 2269 wq->flush_color = work_next_color(wq->flush_color); 2270 2271 /* one color has been freed, handle overflow queue */ 2272 if (!list_empty(&wq->flusher_overflow)) { 2273 /* 2274 * Assign the same color to all overflowed 2275 * flushers, advance work_color and append to 2276 * flusher_queue. This is the start-to-wait 2277 * phase for these overflowed flushers. 2278 */ 2279 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2280 tmp->flush_color = wq->work_color; 2281 2282 wq->work_color = work_next_color(wq->work_color); 2283 2284 list_splice_tail_init(&wq->flusher_overflow, 2285 &wq->flusher_queue); 2286 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2287 } 2288 2289 if (list_empty(&wq->flusher_queue)) { 2290 BUG_ON(wq->flush_color != wq->work_color); 2291 break; 2292 } 2293 2294 /* 2295 * Need to flush more colors. Make the next flusher 2296 * the new first flusher and arm cwqs. 2297 */ 2298 BUG_ON(wq->flush_color == wq->work_color); 2299 BUG_ON(wq->flush_color != next->flush_color); 2300 2301 list_del_init(&next->list); 2302 wq->first_flusher = next; 2303 2304 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1)) 2305 break; 2306 2307 /* 2308 * Meh... this color is already done, clear first 2309 * flusher and repeat cascading. 2310 */ 2311 wq->first_flusher = NULL; 2312 } 2313 2314 out_unlock: 2315 mutex_unlock(&wq->flush_mutex); 2316 } 2317 EXPORT_SYMBOL_GPL(flush_workqueue); 2318 2319 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2320 bool wait_executing) 2321 { 2322 struct worker *worker = NULL; 2323 struct global_cwq *gcwq; 2324 struct cpu_workqueue_struct *cwq; 2325 2326 might_sleep(); 2327 gcwq = get_work_gcwq(work); 2328 if (!gcwq) 2329 return false; 2330 2331 spin_lock_irq(&gcwq->lock); 2332 if (!list_empty(&work->entry)) { 2333 /* 2334 * See the comment near try_to_grab_pending()->smp_rmb(). 2335 * If it was re-queued to a different gcwq under us, we 2336 * are not going to wait. 2337 */ 2338 smp_rmb(); 2339 cwq = get_work_cwq(work); 2340 if (unlikely(!cwq || gcwq != cwq->gcwq)) 2341 goto already_gone; 2342 } else if (wait_executing) { 2343 worker = find_worker_executing_work(gcwq, work); 2344 if (!worker) 2345 goto already_gone; 2346 cwq = worker->current_cwq; 2347 } else 2348 goto already_gone; 2349 2350 insert_wq_barrier(cwq, barr, work, worker); 2351 spin_unlock_irq(&gcwq->lock); 2352 2353 lock_map_acquire(&cwq->wq->lockdep_map); 2354 lock_map_release(&cwq->wq->lockdep_map); 2355 return true; 2356 already_gone: 2357 spin_unlock_irq(&gcwq->lock); 2358 return false; 2359 } 2360 2361 /** 2362 * flush_work - wait for a work to finish executing the last queueing instance 2363 * @work: the work to flush 2364 * 2365 * Wait until @work has finished execution. This function considers 2366 * only the last queueing instance of @work. If @work has been 2367 * enqueued across different CPUs on a non-reentrant workqueue or on 2368 * multiple workqueues, @work might still be executing on return on 2369 * some of the CPUs from earlier queueing. 2370 * 2371 * If @work was queued only on a non-reentrant, ordered or unbound 2372 * workqueue, @work is guaranteed to be idle on return if it hasn't 2373 * been requeued since flush started. 2374 * 2375 * RETURNS: 2376 * %true if flush_work() waited for the work to finish execution, 2377 * %false if it was already idle. 2378 */ 2379 bool flush_work(struct work_struct *work) 2380 { 2381 struct wq_barrier barr; 2382 2383 if (start_flush_work(work, &barr, true)) { 2384 wait_for_completion(&barr.done); 2385 destroy_work_on_stack(&barr.work); 2386 return true; 2387 } else 2388 return false; 2389 } 2390 EXPORT_SYMBOL_GPL(flush_work); 2391 2392 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work) 2393 { 2394 struct wq_barrier barr; 2395 struct worker *worker; 2396 2397 spin_lock_irq(&gcwq->lock); 2398 2399 worker = find_worker_executing_work(gcwq, work); 2400 if (unlikely(worker)) 2401 insert_wq_barrier(worker->current_cwq, &barr, work, worker); 2402 2403 spin_unlock_irq(&gcwq->lock); 2404 2405 if (unlikely(worker)) { 2406 wait_for_completion(&barr.done); 2407 destroy_work_on_stack(&barr.work); 2408 return true; 2409 } else 2410 return false; 2411 } 2412 2413 static bool wait_on_work(struct work_struct *work) 2414 { 2415 bool ret = false; 2416 int cpu; 2417 2418 might_sleep(); 2419 2420 lock_map_acquire(&work->lockdep_map); 2421 lock_map_release(&work->lockdep_map); 2422 2423 for_each_gcwq_cpu(cpu) 2424 ret |= wait_on_cpu_work(get_gcwq(cpu), work); 2425 return ret; 2426 } 2427 2428 /** 2429 * flush_work_sync - wait until a work has finished execution 2430 * @work: the work to flush 2431 * 2432 * Wait until @work has finished execution. On return, it's 2433 * guaranteed that all queueing instances of @work which happened 2434 * before this function is called are finished. In other words, if 2435 * @work hasn't been requeued since this function was called, @work is 2436 * guaranteed to be idle on return. 2437 * 2438 * RETURNS: 2439 * %true if flush_work_sync() waited for the work to finish execution, 2440 * %false if it was already idle. 2441 */ 2442 bool flush_work_sync(struct work_struct *work) 2443 { 2444 struct wq_barrier barr; 2445 bool pending, waited; 2446 2447 /* we'll wait for executions separately, queue barr only if pending */ 2448 pending = start_flush_work(work, &barr, false); 2449 2450 /* wait for executions to finish */ 2451 waited = wait_on_work(work); 2452 2453 /* wait for the pending one */ 2454 if (pending) { 2455 wait_for_completion(&barr.done); 2456 destroy_work_on_stack(&barr.work); 2457 } 2458 2459 return pending || waited; 2460 } 2461 EXPORT_SYMBOL_GPL(flush_work_sync); 2462 2463 /* 2464 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit, 2465 * so this work can't be re-armed in any way. 2466 */ 2467 static int try_to_grab_pending(struct work_struct *work) 2468 { 2469 struct global_cwq *gcwq; 2470 int ret = -1; 2471 2472 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2473 return 0; 2474 2475 /* 2476 * The queueing is in progress, or it is already queued. Try to 2477 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2478 */ 2479 gcwq = get_work_gcwq(work); 2480 if (!gcwq) 2481 return ret; 2482 2483 spin_lock_irq(&gcwq->lock); 2484 if (!list_empty(&work->entry)) { 2485 /* 2486 * This work is queued, but perhaps we locked the wrong gcwq. 2487 * In that case we must see the new value after rmb(), see 2488 * insert_work()->wmb(). 2489 */ 2490 smp_rmb(); 2491 if (gcwq == get_work_gcwq(work)) { 2492 debug_work_deactivate(work); 2493 list_del_init(&work->entry); 2494 cwq_dec_nr_in_flight(get_work_cwq(work), 2495 get_work_color(work), 2496 *work_data_bits(work) & WORK_STRUCT_DELAYED); 2497 ret = 1; 2498 } 2499 } 2500 spin_unlock_irq(&gcwq->lock); 2501 2502 return ret; 2503 } 2504 2505 static bool __cancel_work_timer(struct work_struct *work, 2506 struct timer_list* timer) 2507 { 2508 int ret; 2509 2510 do { 2511 ret = (timer && likely(del_timer(timer))); 2512 if (!ret) 2513 ret = try_to_grab_pending(work); 2514 wait_on_work(work); 2515 } while (unlikely(ret < 0)); 2516 2517 clear_work_data(work); 2518 return ret; 2519 } 2520 2521 /** 2522 * cancel_work_sync - cancel a work and wait for it to finish 2523 * @work: the work to cancel 2524 * 2525 * Cancel @work and wait for its execution to finish. This function 2526 * can be used even if the work re-queues itself or migrates to 2527 * another workqueue. On return from this function, @work is 2528 * guaranteed to be not pending or executing on any CPU. 2529 * 2530 * cancel_work_sync(&delayed_work->work) must not be used for 2531 * delayed_work's. Use cancel_delayed_work_sync() instead. 2532 * 2533 * The caller must ensure that the workqueue on which @work was last 2534 * queued can't be destroyed before this function returns. 2535 * 2536 * RETURNS: 2537 * %true if @work was pending, %false otherwise. 2538 */ 2539 bool cancel_work_sync(struct work_struct *work) 2540 { 2541 return __cancel_work_timer(work, NULL); 2542 } 2543 EXPORT_SYMBOL_GPL(cancel_work_sync); 2544 2545 /** 2546 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2547 * @dwork: the delayed work to flush 2548 * 2549 * Delayed timer is cancelled and the pending work is queued for 2550 * immediate execution. Like flush_work(), this function only 2551 * considers the last queueing instance of @dwork. 2552 * 2553 * RETURNS: 2554 * %true if flush_work() waited for the work to finish execution, 2555 * %false if it was already idle. 2556 */ 2557 bool flush_delayed_work(struct delayed_work *dwork) 2558 { 2559 if (del_timer_sync(&dwork->timer)) 2560 __queue_work(raw_smp_processor_id(), 2561 get_work_cwq(&dwork->work)->wq, &dwork->work); 2562 return flush_work(&dwork->work); 2563 } 2564 EXPORT_SYMBOL(flush_delayed_work); 2565 2566 /** 2567 * flush_delayed_work_sync - wait for a dwork to finish 2568 * @dwork: the delayed work to flush 2569 * 2570 * Delayed timer is cancelled and the pending work is queued for 2571 * execution immediately. Other than timer handling, its behavior 2572 * is identical to flush_work_sync(). 2573 * 2574 * RETURNS: 2575 * %true if flush_work_sync() waited for the work to finish execution, 2576 * %false if it was already idle. 2577 */ 2578 bool flush_delayed_work_sync(struct delayed_work *dwork) 2579 { 2580 if (del_timer_sync(&dwork->timer)) 2581 __queue_work(raw_smp_processor_id(), 2582 get_work_cwq(&dwork->work)->wq, &dwork->work); 2583 return flush_work_sync(&dwork->work); 2584 } 2585 EXPORT_SYMBOL(flush_delayed_work_sync); 2586 2587 /** 2588 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2589 * @dwork: the delayed work cancel 2590 * 2591 * This is cancel_work_sync() for delayed works. 2592 * 2593 * RETURNS: 2594 * %true if @dwork was pending, %false otherwise. 2595 */ 2596 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2597 { 2598 return __cancel_work_timer(&dwork->work, &dwork->timer); 2599 } 2600 EXPORT_SYMBOL(cancel_delayed_work_sync); 2601 2602 /** 2603 * schedule_work - put work task in global workqueue 2604 * @work: job to be done 2605 * 2606 * Returns zero if @work was already on the kernel-global workqueue and 2607 * non-zero otherwise. 2608 * 2609 * This puts a job in the kernel-global workqueue if it was not already 2610 * queued and leaves it in the same position on the kernel-global 2611 * workqueue otherwise. 2612 */ 2613 int schedule_work(struct work_struct *work) 2614 { 2615 return queue_work(system_wq, work); 2616 } 2617 EXPORT_SYMBOL(schedule_work); 2618 2619 /* 2620 * schedule_work_on - put work task on a specific cpu 2621 * @cpu: cpu to put the work task on 2622 * @work: job to be done 2623 * 2624 * This puts a job on a specific cpu 2625 */ 2626 int schedule_work_on(int cpu, struct work_struct *work) 2627 { 2628 return queue_work_on(cpu, system_wq, work); 2629 } 2630 EXPORT_SYMBOL(schedule_work_on); 2631 2632 /** 2633 * schedule_delayed_work - put work task in global workqueue after delay 2634 * @dwork: job to be done 2635 * @delay: number of jiffies to wait or 0 for immediate execution 2636 * 2637 * After waiting for a given time this puts a job in the kernel-global 2638 * workqueue. 2639 */ 2640 int schedule_delayed_work(struct delayed_work *dwork, 2641 unsigned long delay) 2642 { 2643 return queue_delayed_work(system_wq, dwork, delay); 2644 } 2645 EXPORT_SYMBOL(schedule_delayed_work); 2646 2647 /** 2648 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 2649 * @cpu: cpu to use 2650 * @dwork: job to be done 2651 * @delay: number of jiffies to wait 2652 * 2653 * After waiting for a given time this puts a job in the kernel-global 2654 * workqueue on the specified CPU. 2655 */ 2656 int schedule_delayed_work_on(int cpu, 2657 struct delayed_work *dwork, unsigned long delay) 2658 { 2659 return queue_delayed_work_on(cpu, system_wq, dwork, delay); 2660 } 2661 EXPORT_SYMBOL(schedule_delayed_work_on); 2662 2663 /** 2664 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2665 * @func: the function to call 2666 * 2667 * schedule_on_each_cpu() executes @func on each online CPU using the 2668 * system workqueue and blocks until all CPUs have completed. 2669 * schedule_on_each_cpu() is very slow. 2670 * 2671 * RETURNS: 2672 * 0 on success, -errno on failure. 2673 */ 2674 int schedule_on_each_cpu(work_func_t func) 2675 { 2676 int cpu; 2677 struct work_struct __percpu *works; 2678 2679 works = alloc_percpu(struct work_struct); 2680 if (!works) 2681 return -ENOMEM; 2682 2683 get_online_cpus(); 2684 2685 for_each_online_cpu(cpu) { 2686 struct work_struct *work = per_cpu_ptr(works, cpu); 2687 2688 INIT_WORK(work, func); 2689 schedule_work_on(cpu, work); 2690 } 2691 2692 for_each_online_cpu(cpu) 2693 flush_work(per_cpu_ptr(works, cpu)); 2694 2695 put_online_cpus(); 2696 free_percpu(works); 2697 return 0; 2698 } 2699 2700 /** 2701 * flush_scheduled_work - ensure that any scheduled work has run to completion. 2702 * 2703 * Forces execution of the kernel-global workqueue and blocks until its 2704 * completion. 2705 * 2706 * Think twice before calling this function! It's very easy to get into 2707 * trouble if you don't take great care. Either of the following situations 2708 * will lead to deadlock: 2709 * 2710 * One of the work items currently on the workqueue needs to acquire 2711 * a lock held by your code or its caller. 2712 * 2713 * Your code is running in the context of a work routine. 2714 * 2715 * They will be detected by lockdep when they occur, but the first might not 2716 * occur very often. It depends on what work items are on the workqueue and 2717 * what locks they need, which you have no control over. 2718 * 2719 * In most situations flushing the entire workqueue is overkill; you merely 2720 * need to know that a particular work item isn't queued and isn't running. 2721 * In such cases you should use cancel_delayed_work_sync() or 2722 * cancel_work_sync() instead. 2723 */ 2724 void flush_scheduled_work(void) 2725 { 2726 flush_workqueue(system_wq); 2727 } 2728 EXPORT_SYMBOL(flush_scheduled_work); 2729 2730 /** 2731 * execute_in_process_context - reliably execute the routine with user context 2732 * @fn: the function to execute 2733 * @ew: guaranteed storage for the execute work structure (must 2734 * be available when the work executes) 2735 * 2736 * Executes the function immediately if process context is available, 2737 * otherwise schedules the function for delayed execution. 2738 * 2739 * Returns: 0 - function was executed 2740 * 1 - function was scheduled for execution 2741 */ 2742 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 2743 { 2744 if (!in_interrupt()) { 2745 fn(&ew->work); 2746 return 0; 2747 } 2748 2749 INIT_WORK(&ew->work, fn); 2750 schedule_work(&ew->work); 2751 2752 return 1; 2753 } 2754 EXPORT_SYMBOL_GPL(execute_in_process_context); 2755 2756 int keventd_up(void) 2757 { 2758 return system_wq != NULL; 2759 } 2760 2761 static int alloc_cwqs(struct workqueue_struct *wq) 2762 { 2763 /* 2764 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS. 2765 * Make sure that the alignment isn't lower than that of 2766 * unsigned long long. 2767 */ 2768 const size_t size = sizeof(struct cpu_workqueue_struct); 2769 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS, 2770 __alignof__(unsigned long long)); 2771 #ifdef CONFIG_SMP 2772 bool percpu = !(wq->flags & WQ_UNBOUND); 2773 #else 2774 bool percpu = false; 2775 #endif 2776 2777 if (percpu) 2778 wq->cpu_wq.pcpu = __alloc_percpu(size, align); 2779 else { 2780 void *ptr; 2781 2782 /* 2783 * Allocate enough room to align cwq and put an extra 2784 * pointer at the end pointing back to the originally 2785 * allocated pointer which will be used for free. 2786 */ 2787 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL); 2788 if (ptr) { 2789 wq->cpu_wq.single = PTR_ALIGN(ptr, align); 2790 *(void **)(wq->cpu_wq.single + 1) = ptr; 2791 } 2792 } 2793 2794 /* just in case, make sure it's actually aligned 2795 * - this is affected by PERCPU() alignment in vmlinux.lds.S 2796 */ 2797 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align)); 2798 return wq->cpu_wq.v ? 0 : -ENOMEM; 2799 } 2800 2801 static void free_cwqs(struct workqueue_struct *wq) 2802 { 2803 #ifdef CONFIG_SMP 2804 bool percpu = !(wq->flags & WQ_UNBOUND); 2805 #else 2806 bool percpu = false; 2807 #endif 2808 2809 if (percpu) 2810 free_percpu(wq->cpu_wq.pcpu); 2811 else if (wq->cpu_wq.single) { 2812 /* the pointer to free is stored right after the cwq */ 2813 kfree(*(void **)(wq->cpu_wq.single + 1)); 2814 } 2815 } 2816 2817 static int wq_clamp_max_active(int max_active, unsigned int flags, 2818 const char *name) 2819 { 2820 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 2821 2822 if (max_active < 1 || max_active > lim) 2823 printk(KERN_WARNING "workqueue: max_active %d requested for %s " 2824 "is out of range, clamping between %d and %d\n", 2825 max_active, name, 1, lim); 2826 2827 return clamp_val(max_active, 1, lim); 2828 } 2829 2830 struct workqueue_struct *__alloc_workqueue_key(const char *name, 2831 unsigned int flags, 2832 int max_active, 2833 struct lock_class_key *key, 2834 const char *lock_name) 2835 { 2836 struct workqueue_struct *wq; 2837 unsigned int cpu; 2838 2839 /* 2840 * Workqueues which may be used during memory reclaim should 2841 * have a rescuer to guarantee forward progress. 2842 */ 2843 if (flags & WQ_MEM_RECLAIM) 2844 flags |= WQ_RESCUER; 2845 2846 /* 2847 * Unbound workqueues aren't concurrency managed and should be 2848 * dispatched to workers immediately. 2849 */ 2850 if (flags & WQ_UNBOUND) 2851 flags |= WQ_HIGHPRI; 2852 2853 max_active = max_active ?: WQ_DFL_ACTIVE; 2854 max_active = wq_clamp_max_active(max_active, flags, name); 2855 2856 wq = kzalloc(sizeof(*wq), GFP_KERNEL); 2857 if (!wq) 2858 goto err; 2859 2860 wq->flags = flags; 2861 wq->saved_max_active = max_active; 2862 mutex_init(&wq->flush_mutex); 2863 atomic_set(&wq->nr_cwqs_to_flush, 0); 2864 INIT_LIST_HEAD(&wq->flusher_queue); 2865 INIT_LIST_HEAD(&wq->flusher_overflow); 2866 2867 wq->name = name; 2868 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 2869 INIT_LIST_HEAD(&wq->list); 2870 2871 if (alloc_cwqs(wq) < 0) 2872 goto err; 2873 2874 for_each_cwq_cpu(cpu, wq) { 2875 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2876 struct global_cwq *gcwq = get_gcwq(cpu); 2877 2878 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK); 2879 cwq->gcwq = gcwq; 2880 cwq->wq = wq; 2881 cwq->flush_color = -1; 2882 cwq->max_active = max_active; 2883 INIT_LIST_HEAD(&cwq->delayed_works); 2884 } 2885 2886 if (flags & WQ_RESCUER) { 2887 struct worker *rescuer; 2888 2889 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL)) 2890 goto err; 2891 2892 wq->rescuer = rescuer = alloc_worker(); 2893 if (!rescuer) 2894 goto err; 2895 2896 rescuer->task = kthread_create(rescuer_thread, wq, "%s", name); 2897 if (IS_ERR(rescuer->task)) 2898 goto err; 2899 2900 rescuer->task->flags |= PF_THREAD_BOUND; 2901 wake_up_process(rescuer->task); 2902 } 2903 2904 /* 2905 * workqueue_lock protects global freeze state and workqueues 2906 * list. Grab it, set max_active accordingly and add the new 2907 * workqueue to workqueues list. 2908 */ 2909 spin_lock(&workqueue_lock); 2910 2911 if (workqueue_freezing && wq->flags & WQ_FREEZEABLE) 2912 for_each_cwq_cpu(cpu, wq) 2913 get_cwq(cpu, wq)->max_active = 0; 2914 2915 list_add(&wq->list, &workqueues); 2916 2917 spin_unlock(&workqueue_lock); 2918 2919 return wq; 2920 err: 2921 if (wq) { 2922 free_cwqs(wq); 2923 free_mayday_mask(wq->mayday_mask); 2924 kfree(wq->rescuer); 2925 kfree(wq); 2926 } 2927 return NULL; 2928 } 2929 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 2930 2931 /** 2932 * destroy_workqueue - safely terminate a workqueue 2933 * @wq: target workqueue 2934 * 2935 * Safely destroy a workqueue. All work currently pending will be done first. 2936 */ 2937 void destroy_workqueue(struct workqueue_struct *wq) 2938 { 2939 unsigned int cpu; 2940 2941 wq->flags |= WQ_DYING; 2942 flush_workqueue(wq); 2943 2944 /* 2945 * wq list is used to freeze wq, remove from list after 2946 * flushing is complete in case freeze races us. 2947 */ 2948 spin_lock(&workqueue_lock); 2949 list_del(&wq->list); 2950 spin_unlock(&workqueue_lock); 2951 2952 /* sanity check */ 2953 for_each_cwq_cpu(cpu, wq) { 2954 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2955 int i; 2956 2957 for (i = 0; i < WORK_NR_COLORS; i++) 2958 BUG_ON(cwq->nr_in_flight[i]); 2959 BUG_ON(cwq->nr_active); 2960 BUG_ON(!list_empty(&cwq->delayed_works)); 2961 } 2962 2963 if (wq->flags & WQ_RESCUER) { 2964 kthread_stop(wq->rescuer->task); 2965 free_mayday_mask(wq->mayday_mask); 2966 kfree(wq->rescuer); 2967 } 2968 2969 free_cwqs(wq); 2970 kfree(wq); 2971 } 2972 EXPORT_SYMBOL_GPL(destroy_workqueue); 2973 2974 /** 2975 * workqueue_set_max_active - adjust max_active of a workqueue 2976 * @wq: target workqueue 2977 * @max_active: new max_active value. 2978 * 2979 * Set max_active of @wq to @max_active. 2980 * 2981 * CONTEXT: 2982 * Don't call from IRQ context. 2983 */ 2984 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 2985 { 2986 unsigned int cpu; 2987 2988 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 2989 2990 spin_lock(&workqueue_lock); 2991 2992 wq->saved_max_active = max_active; 2993 2994 for_each_cwq_cpu(cpu, wq) { 2995 struct global_cwq *gcwq = get_gcwq(cpu); 2996 2997 spin_lock_irq(&gcwq->lock); 2998 2999 if (!(wq->flags & WQ_FREEZEABLE) || 3000 !(gcwq->flags & GCWQ_FREEZING)) 3001 get_cwq(gcwq->cpu, wq)->max_active = max_active; 3002 3003 spin_unlock_irq(&gcwq->lock); 3004 } 3005 3006 spin_unlock(&workqueue_lock); 3007 } 3008 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 3009 3010 /** 3011 * workqueue_congested - test whether a workqueue is congested 3012 * @cpu: CPU in question 3013 * @wq: target workqueue 3014 * 3015 * Test whether @wq's cpu workqueue for @cpu is congested. There is 3016 * no synchronization around this function and the test result is 3017 * unreliable and only useful as advisory hints or for debugging. 3018 * 3019 * RETURNS: 3020 * %true if congested, %false otherwise. 3021 */ 3022 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq) 3023 { 3024 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3025 3026 return !list_empty(&cwq->delayed_works); 3027 } 3028 EXPORT_SYMBOL_GPL(workqueue_congested); 3029 3030 /** 3031 * work_cpu - return the last known associated cpu for @work 3032 * @work: the work of interest 3033 * 3034 * RETURNS: 3035 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise. 3036 */ 3037 unsigned int work_cpu(struct work_struct *work) 3038 { 3039 struct global_cwq *gcwq = get_work_gcwq(work); 3040 3041 return gcwq ? gcwq->cpu : WORK_CPU_NONE; 3042 } 3043 EXPORT_SYMBOL_GPL(work_cpu); 3044 3045 /** 3046 * work_busy - test whether a work is currently pending or running 3047 * @work: the work to be tested 3048 * 3049 * Test whether @work is currently pending or running. There is no 3050 * synchronization around this function and the test result is 3051 * unreliable and only useful as advisory hints or for debugging. 3052 * Especially for reentrant wqs, the pending state might hide the 3053 * running state. 3054 * 3055 * RETURNS: 3056 * OR'd bitmask of WORK_BUSY_* bits. 3057 */ 3058 unsigned int work_busy(struct work_struct *work) 3059 { 3060 struct global_cwq *gcwq = get_work_gcwq(work); 3061 unsigned long flags; 3062 unsigned int ret = 0; 3063 3064 if (!gcwq) 3065 return false; 3066 3067 spin_lock_irqsave(&gcwq->lock, flags); 3068 3069 if (work_pending(work)) 3070 ret |= WORK_BUSY_PENDING; 3071 if (find_worker_executing_work(gcwq, work)) 3072 ret |= WORK_BUSY_RUNNING; 3073 3074 spin_unlock_irqrestore(&gcwq->lock, flags); 3075 3076 return ret; 3077 } 3078 EXPORT_SYMBOL_GPL(work_busy); 3079 3080 /* 3081 * CPU hotplug. 3082 * 3083 * There are two challenges in supporting CPU hotplug. Firstly, there 3084 * are a lot of assumptions on strong associations among work, cwq and 3085 * gcwq which make migrating pending and scheduled works very 3086 * difficult to implement without impacting hot paths. Secondly, 3087 * gcwqs serve mix of short, long and very long running works making 3088 * blocked draining impractical. 3089 * 3090 * This is solved by allowing a gcwq to be detached from CPU, running 3091 * it with unbound (rogue) workers and allowing it to be reattached 3092 * later if the cpu comes back online. A separate thread is created 3093 * to govern a gcwq in such state and is called the trustee of the 3094 * gcwq. 3095 * 3096 * Trustee states and their descriptions. 3097 * 3098 * START Command state used on startup. On CPU_DOWN_PREPARE, a 3099 * new trustee is started with this state. 3100 * 3101 * IN_CHARGE Once started, trustee will enter this state after 3102 * assuming the manager role and making all existing 3103 * workers rogue. DOWN_PREPARE waits for trustee to 3104 * enter this state. After reaching IN_CHARGE, trustee 3105 * tries to execute the pending worklist until it's empty 3106 * and the state is set to BUTCHER, or the state is set 3107 * to RELEASE. 3108 * 3109 * BUTCHER Command state which is set by the cpu callback after 3110 * the cpu has went down. Once this state is set trustee 3111 * knows that there will be no new works on the worklist 3112 * and once the worklist is empty it can proceed to 3113 * killing idle workers. 3114 * 3115 * RELEASE Command state which is set by the cpu callback if the 3116 * cpu down has been canceled or it has come online 3117 * again. After recognizing this state, trustee stops 3118 * trying to drain or butcher and clears ROGUE, rebinds 3119 * all remaining workers back to the cpu and releases 3120 * manager role. 3121 * 3122 * DONE Trustee will enter this state after BUTCHER or RELEASE 3123 * is complete. 3124 * 3125 * trustee CPU draining 3126 * took over down complete 3127 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE 3128 * | | ^ 3129 * | CPU is back online v return workers | 3130 * ----------------> RELEASE -------------- 3131 */ 3132 3133 /** 3134 * trustee_wait_event_timeout - timed event wait for trustee 3135 * @cond: condition to wait for 3136 * @timeout: timeout in jiffies 3137 * 3138 * wait_event_timeout() for trustee to use. Handles locking and 3139 * checks for RELEASE request. 3140 * 3141 * CONTEXT: 3142 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3143 * multiple times. To be used by trustee. 3144 * 3145 * RETURNS: 3146 * Positive indicating left time if @cond is satisfied, 0 if timed 3147 * out, -1 if canceled. 3148 */ 3149 #define trustee_wait_event_timeout(cond, timeout) ({ \ 3150 long __ret = (timeout); \ 3151 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \ 3152 __ret) { \ 3153 spin_unlock_irq(&gcwq->lock); \ 3154 __wait_event_timeout(gcwq->trustee_wait, (cond) || \ 3155 (gcwq->trustee_state == TRUSTEE_RELEASE), \ 3156 __ret); \ 3157 spin_lock_irq(&gcwq->lock); \ 3158 } \ 3159 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \ 3160 }) 3161 3162 /** 3163 * trustee_wait_event - event wait for trustee 3164 * @cond: condition to wait for 3165 * 3166 * wait_event() for trustee to use. Automatically handles locking and 3167 * checks for CANCEL request. 3168 * 3169 * CONTEXT: 3170 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3171 * multiple times. To be used by trustee. 3172 * 3173 * RETURNS: 3174 * 0 if @cond is satisfied, -1 if canceled. 3175 */ 3176 #define trustee_wait_event(cond) ({ \ 3177 long __ret1; \ 3178 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\ 3179 __ret1 < 0 ? -1 : 0; \ 3180 }) 3181 3182 static int __cpuinit trustee_thread(void *__gcwq) 3183 { 3184 struct global_cwq *gcwq = __gcwq; 3185 struct worker *worker; 3186 struct work_struct *work; 3187 struct hlist_node *pos; 3188 long rc; 3189 int i; 3190 3191 BUG_ON(gcwq->cpu != smp_processor_id()); 3192 3193 spin_lock_irq(&gcwq->lock); 3194 /* 3195 * Claim the manager position and make all workers rogue. 3196 * Trustee must be bound to the target cpu and can't be 3197 * cancelled. 3198 */ 3199 BUG_ON(gcwq->cpu != smp_processor_id()); 3200 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS)); 3201 BUG_ON(rc < 0); 3202 3203 gcwq->flags |= GCWQ_MANAGING_WORKERS; 3204 3205 list_for_each_entry(worker, &gcwq->idle_list, entry) 3206 worker->flags |= WORKER_ROGUE; 3207 3208 for_each_busy_worker(worker, i, pos, gcwq) 3209 worker->flags |= WORKER_ROGUE; 3210 3211 /* 3212 * Call schedule() so that we cross rq->lock and thus can 3213 * guarantee sched callbacks see the rogue flag. This is 3214 * necessary as scheduler callbacks may be invoked from other 3215 * cpus. 3216 */ 3217 spin_unlock_irq(&gcwq->lock); 3218 schedule(); 3219 spin_lock_irq(&gcwq->lock); 3220 3221 /* 3222 * Sched callbacks are disabled now. Zap nr_running. After 3223 * this, nr_running stays zero and need_more_worker() and 3224 * keep_working() are always true as long as the worklist is 3225 * not empty. 3226 */ 3227 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0); 3228 3229 spin_unlock_irq(&gcwq->lock); 3230 del_timer_sync(&gcwq->idle_timer); 3231 spin_lock_irq(&gcwq->lock); 3232 3233 /* 3234 * We're now in charge. Notify and proceed to drain. We need 3235 * to keep the gcwq running during the whole CPU down 3236 * procedure as other cpu hotunplug callbacks may need to 3237 * flush currently running tasks. 3238 */ 3239 gcwq->trustee_state = TRUSTEE_IN_CHARGE; 3240 wake_up_all(&gcwq->trustee_wait); 3241 3242 /* 3243 * The original cpu is in the process of dying and may go away 3244 * anytime now. When that happens, we and all workers would 3245 * be migrated to other cpus. Try draining any left work. We 3246 * want to get it over with ASAP - spam rescuers, wake up as 3247 * many idlers as necessary and create new ones till the 3248 * worklist is empty. Note that if the gcwq is frozen, there 3249 * may be frozen works in freezeable cwqs. Don't declare 3250 * completion while frozen. 3251 */ 3252 while (gcwq->nr_workers != gcwq->nr_idle || 3253 gcwq->flags & GCWQ_FREEZING || 3254 gcwq->trustee_state == TRUSTEE_IN_CHARGE) { 3255 int nr_works = 0; 3256 3257 list_for_each_entry(work, &gcwq->worklist, entry) { 3258 send_mayday(work); 3259 nr_works++; 3260 } 3261 3262 list_for_each_entry(worker, &gcwq->idle_list, entry) { 3263 if (!nr_works--) 3264 break; 3265 wake_up_process(worker->task); 3266 } 3267 3268 if (need_to_create_worker(gcwq)) { 3269 spin_unlock_irq(&gcwq->lock); 3270 worker = create_worker(gcwq, false); 3271 spin_lock_irq(&gcwq->lock); 3272 if (worker) { 3273 worker->flags |= WORKER_ROGUE; 3274 start_worker(worker); 3275 } 3276 } 3277 3278 /* give a breather */ 3279 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0) 3280 break; 3281 } 3282 3283 /* 3284 * Either all works have been scheduled and cpu is down, or 3285 * cpu down has already been canceled. Wait for and butcher 3286 * all workers till we're canceled. 3287 */ 3288 do { 3289 rc = trustee_wait_event(!list_empty(&gcwq->idle_list)); 3290 while (!list_empty(&gcwq->idle_list)) 3291 destroy_worker(list_first_entry(&gcwq->idle_list, 3292 struct worker, entry)); 3293 } while (gcwq->nr_workers && rc >= 0); 3294 3295 /* 3296 * At this point, either draining has completed and no worker 3297 * is left, or cpu down has been canceled or the cpu is being 3298 * brought back up. There shouldn't be any idle one left. 3299 * Tell the remaining busy ones to rebind once it finishes the 3300 * currently scheduled works by scheduling the rebind_work. 3301 */ 3302 WARN_ON(!list_empty(&gcwq->idle_list)); 3303 3304 for_each_busy_worker(worker, i, pos, gcwq) { 3305 struct work_struct *rebind_work = &worker->rebind_work; 3306 3307 /* 3308 * Rebind_work may race with future cpu hotplug 3309 * operations. Use a separate flag to mark that 3310 * rebinding is scheduled. 3311 */ 3312 worker->flags |= WORKER_REBIND; 3313 worker->flags &= ~WORKER_ROGUE; 3314 3315 /* queue rebind_work, wq doesn't matter, use the default one */ 3316 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT, 3317 work_data_bits(rebind_work))) 3318 continue; 3319 3320 debug_work_activate(rebind_work); 3321 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work, 3322 worker->scheduled.next, 3323 work_color_to_flags(WORK_NO_COLOR)); 3324 } 3325 3326 /* relinquish manager role */ 3327 gcwq->flags &= ~GCWQ_MANAGING_WORKERS; 3328 3329 /* notify completion */ 3330 gcwq->trustee = NULL; 3331 gcwq->trustee_state = TRUSTEE_DONE; 3332 wake_up_all(&gcwq->trustee_wait); 3333 spin_unlock_irq(&gcwq->lock); 3334 return 0; 3335 } 3336 3337 /** 3338 * wait_trustee_state - wait for trustee to enter the specified state 3339 * @gcwq: gcwq the trustee of interest belongs to 3340 * @state: target state to wait for 3341 * 3342 * Wait for the trustee to reach @state. DONE is already matched. 3343 * 3344 * CONTEXT: 3345 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3346 * multiple times. To be used by cpu_callback. 3347 */ 3348 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state) 3349 __releases(&gcwq->lock) 3350 __acquires(&gcwq->lock) 3351 { 3352 if (!(gcwq->trustee_state == state || 3353 gcwq->trustee_state == TRUSTEE_DONE)) { 3354 spin_unlock_irq(&gcwq->lock); 3355 __wait_event(gcwq->trustee_wait, 3356 gcwq->trustee_state == state || 3357 gcwq->trustee_state == TRUSTEE_DONE); 3358 spin_lock_irq(&gcwq->lock); 3359 } 3360 } 3361 3362 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, 3363 unsigned long action, 3364 void *hcpu) 3365 { 3366 unsigned int cpu = (unsigned long)hcpu; 3367 struct global_cwq *gcwq = get_gcwq(cpu); 3368 struct task_struct *new_trustee = NULL; 3369 struct worker *uninitialized_var(new_worker); 3370 unsigned long flags; 3371 3372 action &= ~CPU_TASKS_FROZEN; 3373 3374 switch (action) { 3375 case CPU_DOWN_PREPARE: 3376 new_trustee = kthread_create(trustee_thread, gcwq, 3377 "workqueue_trustee/%d\n", cpu); 3378 if (IS_ERR(new_trustee)) 3379 return notifier_from_errno(PTR_ERR(new_trustee)); 3380 kthread_bind(new_trustee, cpu); 3381 /* fall through */ 3382 case CPU_UP_PREPARE: 3383 BUG_ON(gcwq->first_idle); 3384 new_worker = create_worker(gcwq, false); 3385 if (!new_worker) { 3386 if (new_trustee) 3387 kthread_stop(new_trustee); 3388 return NOTIFY_BAD; 3389 } 3390 } 3391 3392 /* some are called w/ irq disabled, don't disturb irq status */ 3393 spin_lock_irqsave(&gcwq->lock, flags); 3394 3395 switch (action) { 3396 case CPU_DOWN_PREPARE: 3397 /* initialize trustee and tell it to acquire the gcwq */ 3398 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE); 3399 gcwq->trustee = new_trustee; 3400 gcwq->trustee_state = TRUSTEE_START; 3401 wake_up_process(gcwq->trustee); 3402 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE); 3403 /* fall through */ 3404 case CPU_UP_PREPARE: 3405 BUG_ON(gcwq->first_idle); 3406 gcwq->first_idle = new_worker; 3407 break; 3408 3409 case CPU_DYING: 3410 /* 3411 * Before this, the trustee and all workers except for 3412 * the ones which are still executing works from 3413 * before the last CPU down must be on the cpu. After 3414 * this, they'll all be diasporas. 3415 */ 3416 gcwq->flags |= GCWQ_DISASSOCIATED; 3417 break; 3418 3419 case CPU_POST_DEAD: 3420 gcwq->trustee_state = TRUSTEE_BUTCHER; 3421 /* fall through */ 3422 case CPU_UP_CANCELED: 3423 destroy_worker(gcwq->first_idle); 3424 gcwq->first_idle = NULL; 3425 break; 3426 3427 case CPU_DOWN_FAILED: 3428 case CPU_ONLINE: 3429 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3430 if (gcwq->trustee_state != TRUSTEE_DONE) { 3431 gcwq->trustee_state = TRUSTEE_RELEASE; 3432 wake_up_process(gcwq->trustee); 3433 wait_trustee_state(gcwq, TRUSTEE_DONE); 3434 } 3435 3436 /* 3437 * Trustee is done and there might be no worker left. 3438 * Put the first_idle in and request a real manager to 3439 * take a look. 3440 */ 3441 spin_unlock_irq(&gcwq->lock); 3442 kthread_bind(gcwq->first_idle->task, cpu); 3443 spin_lock_irq(&gcwq->lock); 3444 gcwq->flags |= GCWQ_MANAGE_WORKERS; 3445 start_worker(gcwq->first_idle); 3446 gcwq->first_idle = NULL; 3447 break; 3448 } 3449 3450 spin_unlock_irqrestore(&gcwq->lock, flags); 3451 3452 return notifier_from_errno(0); 3453 } 3454 3455 #ifdef CONFIG_SMP 3456 3457 struct work_for_cpu { 3458 struct completion completion; 3459 long (*fn)(void *); 3460 void *arg; 3461 long ret; 3462 }; 3463 3464 static int do_work_for_cpu(void *_wfc) 3465 { 3466 struct work_for_cpu *wfc = _wfc; 3467 wfc->ret = wfc->fn(wfc->arg); 3468 complete(&wfc->completion); 3469 return 0; 3470 } 3471 3472 /** 3473 * work_on_cpu - run a function in user context on a particular cpu 3474 * @cpu: the cpu to run on 3475 * @fn: the function to run 3476 * @arg: the function arg 3477 * 3478 * This will return the value @fn returns. 3479 * It is up to the caller to ensure that the cpu doesn't go offline. 3480 * The caller must not hold any locks which would prevent @fn from completing. 3481 */ 3482 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) 3483 { 3484 struct task_struct *sub_thread; 3485 struct work_for_cpu wfc = { 3486 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion), 3487 .fn = fn, 3488 .arg = arg, 3489 }; 3490 3491 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu"); 3492 if (IS_ERR(sub_thread)) 3493 return PTR_ERR(sub_thread); 3494 kthread_bind(sub_thread, cpu); 3495 wake_up_process(sub_thread); 3496 wait_for_completion(&wfc.completion); 3497 return wfc.ret; 3498 } 3499 EXPORT_SYMBOL_GPL(work_on_cpu); 3500 #endif /* CONFIG_SMP */ 3501 3502 #ifdef CONFIG_FREEZER 3503 3504 /** 3505 * freeze_workqueues_begin - begin freezing workqueues 3506 * 3507 * Start freezing workqueues. After this function returns, all 3508 * freezeable workqueues will queue new works to their frozen_works 3509 * list instead of gcwq->worklist. 3510 * 3511 * CONTEXT: 3512 * Grabs and releases workqueue_lock and gcwq->lock's. 3513 */ 3514 void freeze_workqueues_begin(void) 3515 { 3516 unsigned int cpu; 3517 3518 spin_lock(&workqueue_lock); 3519 3520 BUG_ON(workqueue_freezing); 3521 workqueue_freezing = true; 3522 3523 for_each_gcwq_cpu(cpu) { 3524 struct global_cwq *gcwq = get_gcwq(cpu); 3525 struct workqueue_struct *wq; 3526 3527 spin_lock_irq(&gcwq->lock); 3528 3529 BUG_ON(gcwq->flags & GCWQ_FREEZING); 3530 gcwq->flags |= GCWQ_FREEZING; 3531 3532 list_for_each_entry(wq, &workqueues, list) { 3533 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3534 3535 if (cwq && wq->flags & WQ_FREEZEABLE) 3536 cwq->max_active = 0; 3537 } 3538 3539 spin_unlock_irq(&gcwq->lock); 3540 } 3541 3542 spin_unlock(&workqueue_lock); 3543 } 3544 3545 /** 3546 * freeze_workqueues_busy - are freezeable workqueues still busy? 3547 * 3548 * Check whether freezing is complete. This function must be called 3549 * between freeze_workqueues_begin() and thaw_workqueues(). 3550 * 3551 * CONTEXT: 3552 * Grabs and releases workqueue_lock. 3553 * 3554 * RETURNS: 3555 * %true if some freezeable workqueues are still busy. %false if 3556 * freezing is complete. 3557 */ 3558 bool freeze_workqueues_busy(void) 3559 { 3560 unsigned int cpu; 3561 bool busy = false; 3562 3563 spin_lock(&workqueue_lock); 3564 3565 BUG_ON(!workqueue_freezing); 3566 3567 for_each_gcwq_cpu(cpu) { 3568 struct workqueue_struct *wq; 3569 /* 3570 * nr_active is monotonically decreasing. It's safe 3571 * to peek without lock. 3572 */ 3573 list_for_each_entry(wq, &workqueues, list) { 3574 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3575 3576 if (!cwq || !(wq->flags & WQ_FREEZEABLE)) 3577 continue; 3578 3579 BUG_ON(cwq->nr_active < 0); 3580 if (cwq->nr_active) { 3581 busy = true; 3582 goto out_unlock; 3583 } 3584 } 3585 } 3586 out_unlock: 3587 spin_unlock(&workqueue_lock); 3588 return busy; 3589 } 3590 3591 /** 3592 * thaw_workqueues - thaw workqueues 3593 * 3594 * Thaw workqueues. Normal queueing is restored and all collected 3595 * frozen works are transferred to their respective gcwq worklists. 3596 * 3597 * CONTEXT: 3598 * Grabs and releases workqueue_lock and gcwq->lock's. 3599 */ 3600 void thaw_workqueues(void) 3601 { 3602 unsigned int cpu; 3603 3604 spin_lock(&workqueue_lock); 3605 3606 if (!workqueue_freezing) 3607 goto out_unlock; 3608 3609 for_each_gcwq_cpu(cpu) { 3610 struct global_cwq *gcwq = get_gcwq(cpu); 3611 struct workqueue_struct *wq; 3612 3613 spin_lock_irq(&gcwq->lock); 3614 3615 BUG_ON(!(gcwq->flags & GCWQ_FREEZING)); 3616 gcwq->flags &= ~GCWQ_FREEZING; 3617 3618 list_for_each_entry(wq, &workqueues, list) { 3619 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3620 3621 if (!cwq || !(wq->flags & WQ_FREEZEABLE)) 3622 continue; 3623 3624 /* restore max_active and repopulate worklist */ 3625 cwq->max_active = wq->saved_max_active; 3626 3627 while (!list_empty(&cwq->delayed_works) && 3628 cwq->nr_active < cwq->max_active) 3629 cwq_activate_first_delayed(cwq); 3630 } 3631 3632 wake_up_worker(gcwq); 3633 3634 spin_unlock_irq(&gcwq->lock); 3635 } 3636 3637 workqueue_freezing = false; 3638 out_unlock: 3639 spin_unlock(&workqueue_lock); 3640 } 3641 #endif /* CONFIG_FREEZER */ 3642 3643 static int __init init_workqueues(void) 3644 { 3645 unsigned int cpu; 3646 int i; 3647 3648 cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE); 3649 3650 /* initialize gcwqs */ 3651 for_each_gcwq_cpu(cpu) { 3652 struct global_cwq *gcwq = get_gcwq(cpu); 3653 3654 spin_lock_init(&gcwq->lock); 3655 INIT_LIST_HEAD(&gcwq->worklist); 3656 gcwq->cpu = cpu; 3657 gcwq->flags |= GCWQ_DISASSOCIATED; 3658 3659 INIT_LIST_HEAD(&gcwq->idle_list); 3660 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) 3661 INIT_HLIST_HEAD(&gcwq->busy_hash[i]); 3662 3663 init_timer_deferrable(&gcwq->idle_timer); 3664 gcwq->idle_timer.function = idle_worker_timeout; 3665 gcwq->idle_timer.data = (unsigned long)gcwq; 3666 3667 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout, 3668 (unsigned long)gcwq); 3669 3670 ida_init(&gcwq->worker_ida); 3671 3672 gcwq->trustee_state = TRUSTEE_DONE; 3673 init_waitqueue_head(&gcwq->trustee_wait); 3674 } 3675 3676 /* create the initial worker */ 3677 for_each_online_gcwq_cpu(cpu) { 3678 struct global_cwq *gcwq = get_gcwq(cpu); 3679 struct worker *worker; 3680 3681 if (cpu != WORK_CPU_UNBOUND) 3682 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3683 worker = create_worker(gcwq, true); 3684 BUG_ON(!worker); 3685 spin_lock_irq(&gcwq->lock); 3686 start_worker(worker); 3687 spin_unlock_irq(&gcwq->lock); 3688 } 3689 3690 system_wq = alloc_workqueue("events", 0, 0); 3691 system_long_wq = alloc_workqueue("events_long", 0, 0); 3692 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0); 3693 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 3694 WQ_UNBOUND_MAX_ACTIVE); 3695 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq); 3696 return 0; 3697 } 3698 early_initcall(init_workqueues); 3699