xref: /linux/kernel/workqueue.c (revision cb299ba8b5ef2239429484072fea394cd7581bd7)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There is one worker pool for each CPU and
20  * one extra for works which are better served by workers which are
21  * not bound to any specific CPU.
22  *
23  * Please read Documentation/workqueue.txt for details.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 
45 #include "workqueue_sched.h"
46 
47 enum {
48 	/* global_cwq flags */
49 	GCWQ_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
50 	GCWQ_MANAGING_WORKERS	= 1 << 1,	/* managing workers */
51 	GCWQ_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
52 	GCWQ_FREEZING		= 1 << 3,	/* freeze in progress */
53 	GCWQ_HIGHPRI_PENDING	= 1 << 4,	/* highpri works on queue */
54 
55 	/* worker flags */
56 	WORKER_STARTED		= 1 << 0,	/* started */
57 	WORKER_DIE		= 1 << 1,	/* die die die */
58 	WORKER_IDLE		= 1 << 2,	/* is idle */
59 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
60 	WORKER_ROGUE		= 1 << 4,	/* not bound to any cpu */
61 	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
62 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
63 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
64 
65 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
66 				  WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
67 
68 	/* gcwq->trustee_state */
69 	TRUSTEE_START		= 0,		/* start */
70 	TRUSTEE_IN_CHARGE	= 1,		/* trustee in charge of gcwq */
71 	TRUSTEE_BUTCHER		= 2,		/* butcher workers */
72 	TRUSTEE_RELEASE		= 3,		/* release workers */
73 	TRUSTEE_DONE		= 4,		/* trustee is done */
74 
75 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
76 	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
77 	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
78 
79 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
80 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
81 
82 	MAYDAY_INITIAL_TIMEOUT	= HZ / 100,	/* call for help after 10ms */
83 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
84 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
85 	TRUSTEE_COOLDOWN	= HZ / 10,	/* for trustee draining */
86 
87 	/*
88 	 * Rescue workers are used only on emergencies and shared by
89 	 * all cpus.  Give -20.
90 	 */
91 	RESCUER_NICE_LEVEL	= -20,
92 };
93 
94 /*
95  * Structure fields follow one of the following exclusion rules.
96  *
97  * I: Modifiable by initialization/destruction paths and read-only for
98  *    everyone else.
99  *
100  * P: Preemption protected.  Disabling preemption is enough and should
101  *    only be modified and accessed from the local cpu.
102  *
103  * L: gcwq->lock protected.  Access with gcwq->lock held.
104  *
105  * X: During normal operation, modification requires gcwq->lock and
106  *    should be done only from local cpu.  Either disabling preemption
107  *    on local cpu or grabbing gcwq->lock is enough for read access.
108  *    If GCWQ_DISASSOCIATED is set, it's identical to L.
109  *
110  * F: wq->flush_mutex protected.
111  *
112  * W: workqueue_lock protected.
113  */
114 
115 struct global_cwq;
116 
117 /*
118  * The poor guys doing the actual heavy lifting.  All on-duty workers
119  * are either serving the manager role, on idle list or on busy hash.
120  */
121 struct worker {
122 	/* on idle list while idle, on busy hash table while busy */
123 	union {
124 		struct list_head	entry;	/* L: while idle */
125 		struct hlist_node	hentry;	/* L: while busy */
126 	};
127 
128 	struct work_struct	*current_work;	/* L: work being processed */
129 	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
130 	struct list_head	scheduled;	/* L: scheduled works */
131 	struct task_struct	*task;		/* I: worker task */
132 	struct global_cwq	*gcwq;		/* I: the associated gcwq */
133 	/* 64 bytes boundary on 64bit, 32 on 32bit */
134 	unsigned long		last_active;	/* L: last active timestamp */
135 	unsigned int		flags;		/* X: flags */
136 	int			id;		/* I: worker id */
137 	struct work_struct	rebind_work;	/* L: rebind worker to cpu */
138 };
139 
140 /*
141  * Global per-cpu workqueue.  There's one and only one for each cpu
142  * and all works are queued and processed here regardless of their
143  * target workqueues.
144  */
145 struct global_cwq {
146 	spinlock_t		lock;		/* the gcwq lock */
147 	struct list_head	worklist;	/* L: list of pending works */
148 	unsigned int		cpu;		/* I: the associated cpu */
149 	unsigned int		flags;		/* L: GCWQ_* flags */
150 
151 	int			nr_workers;	/* L: total number of workers */
152 	int			nr_idle;	/* L: currently idle ones */
153 
154 	/* workers are chained either in the idle_list or busy_hash */
155 	struct list_head	idle_list;	/* X: list of idle workers */
156 	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
157 						/* L: hash of busy workers */
158 
159 	struct timer_list	idle_timer;	/* L: worker idle timeout */
160 	struct timer_list	mayday_timer;	/* L: SOS timer for dworkers */
161 
162 	struct ida		worker_ida;	/* L: for worker IDs */
163 
164 	struct task_struct	*trustee;	/* L: for gcwq shutdown */
165 	unsigned int		trustee_state;	/* L: trustee state */
166 	wait_queue_head_t	trustee_wait;	/* trustee wait */
167 	struct worker		*first_idle;	/* L: first idle worker */
168 } ____cacheline_aligned_in_smp;
169 
170 /*
171  * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
172  * work_struct->data are used for flags and thus cwqs need to be
173  * aligned at two's power of the number of flag bits.
174  */
175 struct cpu_workqueue_struct {
176 	struct global_cwq	*gcwq;		/* I: the associated gcwq */
177 	struct workqueue_struct *wq;		/* I: the owning workqueue */
178 	int			work_color;	/* L: current color */
179 	int			flush_color;	/* L: flushing color */
180 	int			nr_in_flight[WORK_NR_COLORS];
181 						/* L: nr of in_flight works */
182 	int			nr_active;	/* L: nr of active works */
183 	int			max_active;	/* L: max active works */
184 	struct list_head	delayed_works;	/* L: delayed works */
185 };
186 
187 /*
188  * Structure used to wait for workqueue flush.
189  */
190 struct wq_flusher {
191 	struct list_head	list;		/* F: list of flushers */
192 	int			flush_color;	/* F: flush color waiting for */
193 	struct completion	done;		/* flush completion */
194 };
195 
196 /*
197  * All cpumasks are assumed to be always set on UP and thus can't be
198  * used to determine whether there's something to be done.
199  */
200 #ifdef CONFIG_SMP
201 typedef cpumask_var_t mayday_mask_t;
202 #define mayday_test_and_set_cpu(cpu, mask)	\
203 	cpumask_test_and_set_cpu((cpu), (mask))
204 #define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
205 #define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
206 #define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
207 #define free_mayday_mask(mask)			free_cpumask_var((mask))
208 #else
209 typedef unsigned long mayday_mask_t;
210 #define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
211 #define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
212 #define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
213 #define alloc_mayday_mask(maskp, gfp)		true
214 #define free_mayday_mask(mask)			do { } while (0)
215 #endif
216 
217 /*
218  * The externally visible workqueue abstraction is an array of
219  * per-CPU workqueues:
220  */
221 struct workqueue_struct {
222 	unsigned int		flags;		/* I: WQ_* flags */
223 	union {
224 		struct cpu_workqueue_struct __percpu	*pcpu;
225 		struct cpu_workqueue_struct		*single;
226 		unsigned long				v;
227 	} cpu_wq;				/* I: cwq's */
228 	struct list_head	list;		/* W: list of all workqueues */
229 
230 	struct mutex		flush_mutex;	/* protects wq flushing */
231 	int			work_color;	/* F: current work color */
232 	int			flush_color;	/* F: current flush color */
233 	atomic_t		nr_cwqs_to_flush; /* flush in progress */
234 	struct wq_flusher	*first_flusher;	/* F: first flusher */
235 	struct list_head	flusher_queue;	/* F: flush waiters */
236 	struct list_head	flusher_overflow; /* F: flush overflow list */
237 
238 	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
239 	struct worker		*rescuer;	/* I: rescue worker */
240 
241 	int			saved_max_active; /* W: saved cwq max_active */
242 	const char		*name;		/* I: workqueue name */
243 #ifdef CONFIG_LOCKDEP
244 	struct lockdep_map	lockdep_map;
245 #endif
246 };
247 
248 struct workqueue_struct *system_wq __read_mostly;
249 struct workqueue_struct *system_long_wq __read_mostly;
250 struct workqueue_struct *system_nrt_wq __read_mostly;
251 struct workqueue_struct *system_unbound_wq __read_mostly;
252 EXPORT_SYMBOL_GPL(system_wq);
253 EXPORT_SYMBOL_GPL(system_long_wq);
254 EXPORT_SYMBOL_GPL(system_nrt_wq);
255 EXPORT_SYMBOL_GPL(system_unbound_wq);
256 
257 #define CREATE_TRACE_POINTS
258 #include <trace/events/workqueue.h>
259 
260 #define for_each_busy_worker(worker, i, pos, gcwq)			\
261 	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
262 		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
263 
264 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
265 				  unsigned int sw)
266 {
267 	if (cpu < nr_cpu_ids) {
268 		if (sw & 1) {
269 			cpu = cpumask_next(cpu, mask);
270 			if (cpu < nr_cpu_ids)
271 				return cpu;
272 		}
273 		if (sw & 2)
274 			return WORK_CPU_UNBOUND;
275 	}
276 	return WORK_CPU_NONE;
277 }
278 
279 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
280 				struct workqueue_struct *wq)
281 {
282 	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
283 }
284 
285 /*
286  * CPU iterators
287  *
288  * An extra gcwq is defined for an invalid cpu number
289  * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
290  * specific CPU.  The following iterators are similar to
291  * for_each_*_cpu() iterators but also considers the unbound gcwq.
292  *
293  * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
294  * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
295  * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
296  *				  WORK_CPU_UNBOUND for unbound workqueues
297  */
298 #define for_each_gcwq_cpu(cpu)						\
299 	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
300 	     (cpu) < WORK_CPU_NONE;					\
301 	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
302 
303 #define for_each_online_gcwq_cpu(cpu)					\
304 	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
305 	     (cpu) < WORK_CPU_NONE;					\
306 	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
307 
308 #define for_each_cwq_cpu(cpu, wq)					\
309 	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
310 	     (cpu) < WORK_CPU_NONE;					\
311 	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
312 
313 #ifdef CONFIG_DEBUG_OBJECTS_WORK
314 
315 static struct debug_obj_descr work_debug_descr;
316 
317 /*
318  * fixup_init is called when:
319  * - an active object is initialized
320  */
321 static int work_fixup_init(void *addr, enum debug_obj_state state)
322 {
323 	struct work_struct *work = addr;
324 
325 	switch (state) {
326 	case ODEBUG_STATE_ACTIVE:
327 		cancel_work_sync(work);
328 		debug_object_init(work, &work_debug_descr);
329 		return 1;
330 	default:
331 		return 0;
332 	}
333 }
334 
335 /*
336  * fixup_activate is called when:
337  * - an active object is activated
338  * - an unknown object is activated (might be a statically initialized object)
339  */
340 static int work_fixup_activate(void *addr, enum debug_obj_state state)
341 {
342 	struct work_struct *work = addr;
343 
344 	switch (state) {
345 
346 	case ODEBUG_STATE_NOTAVAILABLE:
347 		/*
348 		 * This is not really a fixup. The work struct was
349 		 * statically initialized. We just make sure that it
350 		 * is tracked in the object tracker.
351 		 */
352 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
353 			debug_object_init(work, &work_debug_descr);
354 			debug_object_activate(work, &work_debug_descr);
355 			return 0;
356 		}
357 		WARN_ON_ONCE(1);
358 		return 0;
359 
360 	case ODEBUG_STATE_ACTIVE:
361 		WARN_ON(1);
362 
363 	default:
364 		return 0;
365 	}
366 }
367 
368 /*
369  * fixup_free is called when:
370  * - an active object is freed
371  */
372 static int work_fixup_free(void *addr, enum debug_obj_state state)
373 {
374 	struct work_struct *work = addr;
375 
376 	switch (state) {
377 	case ODEBUG_STATE_ACTIVE:
378 		cancel_work_sync(work);
379 		debug_object_free(work, &work_debug_descr);
380 		return 1;
381 	default:
382 		return 0;
383 	}
384 }
385 
386 static struct debug_obj_descr work_debug_descr = {
387 	.name		= "work_struct",
388 	.fixup_init	= work_fixup_init,
389 	.fixup_activate	= work_fixup_activate,
390 	.fixup_free	= work_fixup_free,
391 };
392 
393 static inline void debug_work_activate(struct work_struct *work)
394 {
395 	debug_object_activate(work, &work_debug_descr);
396 }
397 
398 static inline void debug_work_deactivate(struct work_struct *work)
399 {
400 	debug_object_deactivate(work, &work_debug_descr);
401 }
402 
403 void __init_work(struct work_struct *work, int onstack)
404 {
405 	if (onstack)
406 		debug_object_init_on_stack(work, &work_debug_descr);
407 	else
408 		debug_object_init(work, &work_debug_descr);
409 }
410 EXPORT_SYMBOL_GPL(__init_work);
411 
412 void destroy_work_on_stack(struct work_struct *work)
413 {
414 	debug_object_free(work, &work_debug_descr);
415 }
416 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
417 
418 #else
419 static inline void debug_work_activate(struct work_struct *work) { }
420 static inline void debug_work_deactivate(struct work_struct *work) { }
421 #endif
422 
423 /* Serializes the accesses to the list of workqueues. */
424 static DEFINE_SPINLOCK(workqueue_lock);
425 static LIST_HEAD(workqueues);
426 static bool workqueue_freezing;		/* W: have wqs started freezing? */
427 
428 /*
429  * The almighty global cpu workqueues.  nr_running is the only field
430  * which is expected to be used frequently by other cpus via
431  * try_to_wake_up().  Put it in a separate cacheline.
432  */
433 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
434 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
435 
436 /*
437  * Global cpu workqueue and nr_running counter for unbound gcwq.  The
438  * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
439  * workers have WORKER_UNBOUND set.
440  */
441 static struct global_cwq unbound_global_cwq;
442 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0);	/* always 0 */
443 
444 static int worker_thread(void *__worker);
445 
446 static struct global_cwq *get_gcwq(unsigned int cpu)
447 {
448 	if (cpu != WORK_CPU_UNBOUND)
449 		return &per_cpu(global_cwq, cpu);
450 	else
451 		return &unbound_global_cwq;
452 }
453 
454 static atomic_t *get_gcwq_nr_running(unsigned int cpu)
455 {
456 	if (cpu != WORK_CPU_UNBOUND)
457 		return &per_cpu(gcwq_nr_running, cpu);
458 	else
459 		return &unbound_gcwq_nr_running;
460 }
461 
462 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
463 					    struct workqueue_struct *wq)
464 {
465 	if (!(wq->flags & WQ_UNBOUND)) {
466 		if (likely(cpu < nr_cpu_ids)) {
467 #ifdef CONFIG_SMP
468 			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
469 #else
470 			return wq->cpu_wq.single;
471 #endif
472 		}
473 	} else if (likely(cpu == WORK_CPU_UNBOUND))
474 		return wq->cpu_wq.single;
475 	return NULL;
476 }
477 
478 static unsigned int work_color_to_flags(int color)
479 {
480 	return color << WORK_STRUCT_COLOR_SHIFT;
481 }
482 
483 static int get_work_color(struct work_struct *work)
484 {
485 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
486 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
487 }
488 
489 static int work_next_color(int color)
490 {
491 	return (color + 1) % WORK_NR_COLORS;
492 }
493 
494 /*
495  * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
496  * work is on queue.  Once execution starts, WORK_STRUCT_CWQ is
497  * cleared and the work data contains the cpu number it was last on.
498  *
499  * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
500  * cwq, cpu or clear work->data.  These functions should only be
501  * called while the work is owned - ie. while the PENDING bit is set.
502  *
503  * get_work_[g]cwq() can be used to obtain the gcwq or cwq
504  * corresponding to a work.  gcwq is available once the work has been
505  * queued anywhere after initialization.  cwq is available only from
506  * queueing until execution starts.
507  */
508 static inline void set_work_data(struct work_struct *work, unsigned long data,
509 				 unsigned long flags)
510 {
511 	BUG_ON(!work_pending(work));
512 	atomic_long_set(&work->data, data | flags | work_static(work));
513 }
514 
515 static void set_work_cwq(struct work_struct *work,
516 			 struct cpu_workqueue_struct *cwq,
517 			 unsigned long extra_flags)
518 {
519 	set_work_data(work, (unsigned long)cwq,
520 		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
521 }
522 
523 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
524 {
525 	set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
526 }
527 
528 static void clear_work_data(struct work_struct *work)
529 {
530 	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
531 }
532 
533 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
534 {
535 	unsigned long data = atomic_long_read(&work->data);
536 
537 	if (data & WORK_STRUCT_CWQ)
538 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
539 	else
540 		return NULL;
541 }
542 
543 static struct global_cwq *get_work_gcwq(struct work_struct *work)
544 {
545 	unsigned long data = atomic_long_read(&work->data);
546 	unsigned int cpu;
547 
548 	if (data & WORK_STRUCT_CWQ)
549 		return ((struct cpu_workqueue_struct *)
550 			(data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
551 
552 	cpu = data >> WORK_STRUCT_FLAG_BITS;
553 	if (cpu == WORK_CPU_NONE)
554 		return NULL;
555 
556 	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
557 	return get_gcwq(cpu);
558 }
559 
560 /*
561  * Policy functions.  These define the policies on how the global
562  * worker pool is managed.  Unless noted otherwise, these functions
563  * assume that they're being called with gcwq->lock held.
564  */
565 
566 static bool __need_more_worker(struct global_cwq *gcwq)
567 {
568 	return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
569 		gcwq->flags & GCWQ_HIGHPRI_PENDING;
570 }
571 
572 /*
573  * Need to wake up a worker?  Called from anything but currently
574  * running workers.
575  */
576 static bool need_more_worker(struct global_cwq *gcwq)
577 {
578 	return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
579 }
580 
581 /* Can I start working?  Called from busy but !running workers. */
582 static bool may_start_working(struct global_cwq *gcwq)
583 {
584 	return gcwq->nr_idle;
585 }
586 
587 /* Do I need to keep working?  Called from currently running workers. */
588 static bool keep_working(struct global_cwq *gcwq)
589 {
590 	atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
591 
592 	return !list_empty(&gcwq->worklist) &&
593 		(atomic_read(nr_running) <= 1 ||
594 		 gcwq->flags & GCWQ_HIGHPRI_PENDING);
595 }
596 
597 /* Do we need a new worker?  Called from manager. */
598 static bool need_to_create_worker(struct global_cwq *gcwq)
599 {
600 	return need_more_worker(gcwq) && !may_start_working(gcwq);
601 }
602 
603 /* Do I need to be the manager? */
604 static bool need_to_manage_workers(struct global_cwq *gcwq)
605 {
606 	return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
607 }
608 
609 /* Do we have too many workers and should some go away? */
610 static bool too_many_workers(struct global_cwq *gcwq)
611 {
612 	bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
613 	int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
614 	int nr_busy = gcwq->nr_workers - nr_idle;
615 
616 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
617 }
618 
619 /*
620  * Wake up functions.
621  */
622 
623 /* Return the first worker.  Safe with preemption disabled */
624 static struct worker *first_worker(struct global_cwq *gcwq)
625 {
626 	if (unlikely(list_empty(&gcwq->idle_list)))
627 		return NULL;
628 
629 	return list_first_entry(&gcwq->idle_list, struct worker, entry);
630 }
631 
632 /**
633  * wake_up_worker - wake up an idle worker
634  * @gcwq: gcwq to wake worker for
635  *
636  * Wake up the first idle worker of @gcwq.
637  *
638  * CONTEXT:
639  * spin_lock_irq(gcwq->lock).
640  */
641 static void wake_up_worker(struct global_cwq *gcwq)
642 {
643 	struct worker *worker = first_worker(gcwq);
644 
645 	if (likely(worker))
646 		wake_up_process(worker->task);
647 }
648 
649 /**
650  * wq_worker_waking_up - a worker is waking up
651  * @task: task waking up
652  * @cpu: CPU @task is waking up to
653  *
654  * This function is called during try_to_wake_up() when a worker is
655  * being awoken.
656  *
657  * CONTEXT:
658  * spin_lock_irq(rq->lock)
659  */
660 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
661 {
662 	struct worker *worker = kthread_data(task);
663 
664 	if (likely(!(worker->flags & WORKER_NOT_RUNNING)))
665 		atomic_inc(get_gcwq_nr_running(cpu));
666 }
667 
668 /**
669  * wq_worker_sleeping - a worker is going to sleep
670  * @task: task going to sleep
671  * @cpu: CPU in question, must be the current CPU number
672  *
673  * This function is called during schedule() when a busy worker is
674  * going to sleep.  Worker on the same cpu can be woken up by
675  * returning pointer to its task.
676  *
677  * CONTEXT:
678  * spin_lock_irq(rq->lock)
679  *
680  * RETURNS:
681  * Worker task on @cpu to wake up, %NULL if none.
682  */
683 struct task_struct *wq_worker_sleeping(struct task_struct *task,
684 				       unsigned int cpu)
685 {
686 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
687 	struct global_cwq *gcwq = get_gcwq(cpu);
688 	atomic_t *nr_running = get_gcwq_nr_running(cpu);
689 
690 	if (unlikely(worker->flags & WORKER_NOT_RUNNING))
691 		return NULL;
692 
693 	/* this can only happen on the local cpu */
694 	BUG_ON(cpu != raw_smp_processor_id());
695 
696 	/*
697 	 * The counterpart of the following dec_and_test, implied mb,
698 	 * worklist not empty test sequence is in insert_work().
699 	 * Please read comment there.
700 	 *
701 	 * NOT_RUNNING is clear.  This means that trustee is not in
702 	 * charge and we're running on the local cpu w/ rq lock held
703 	 * and preemption disabled, which in turn means that none else
704 	 * could be manipulating idle_list, so dereferencing idle_list
705 	 * without gcwq lock is safe.
706 	 */
707 	if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
708 		to_wakeup = first_worker(gcwq);
709 	return to_wakeup ? to_wakeup->task : NULL;
710 }
711 
712 /**
713  * worker_set_flags - set worker flags and adjust nr_running accordingly
714  * @worker: self
715  * @flags: flags to set
716  * @wakeup: wakeup an idle worker if necessary
717  *
718  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
719  * nr_running becomes zero and @wakeup is %true, an idle worker is
720  * woken up.
721  *
722  * CONTEXT:
723  * spin_lock_irq(gcwq->lock)
724  */
725 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
726 				    bool wakeup)
727 {
728 	struct global_cwq *gcwq = worker->gcwq;
729 
730 	WARN_ON_ONCE(worker->task != current);
731 
732 	/*
733 	 * If transitioning into NOT_RUNNING, adjust nr_running and
734 	 * wake up an idle worker as necessary if requested by
735 	 * @wakeup.
736 	 */
737 	if ((flags & WORKER_NOT_RUNNING) &&
738 	    !(worker->flags & WORKER_NOT_RUNNING)) {
739 		atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
740 
741 		if (wakeup) {
742 			if (atomic_dec_and_test(nr_running) &&
743 			    !list_empty(&gcwq->worklist))
744 				wake_up_worker(gcwq);
745 		} else
746 			atomic_dec(nr_running);
747 	}
748 
749 	worker->flags |= flags;
750 }
751 
752 /**
753  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
754  * @worker: self
755  * @flags: flags to clear
756  *
757  * Clear @flags in @worker->flags and adjust nr_running accordingly.
758  *
759  * CONTEXT:
760  * spin_lock_irq(gcwq->lock)
761  */
762 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
763 {
764 	struct global_cwq *gcwq = worker->gcwq;
765 	unsigned int oflags = worker->flags;
766 
767 	WARN_ON_ONCE(worker->task != current);
768 
769 	worker->flags &= ~flags;
770 
771 	/* if transitioning out of NOT_RUNNING, increment nr_running */
772 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
773 		if (!(worker->flags & WORKER_NOT_RUNNING))
774 			atomic_inc(get_gcwq_nr_running(gcwq->cpu));
775 }
776 
777 /**
778  * busy_worker_head - return the busy hash head for a work
779  * @gcwq: gcwq of interest
780  * @work: work to be hashed
781  *
782  * Return hash head of @gcwq for @work.
783  *
784  * CONTEXT:
785  * spin_lock_irq(gcwq->lock).
786  *
787  * RETURNS:
788  * Pointer to the hash head.
789  */
790 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
791 					   struct work_struct *work)
792 {
793 	const int base_shift = ilog2(sizeof(struct work_struct));
794 	unsigned long v = (unsigned long)work;
795 
796 	/* simple shift and fold hash, do we need something better? */
797 	v >>= base_shift;
798 	v += v >> BUSY_WORKER_HASH_ORDER;
799 	v &= BUSY_WORKER_HASH_MASK;
800 
801 	return &gcwq->busy_hash[v];
802 }
803 
804 /**
805  * __find_worker_executing_work - find worker which is executing a work
806  * @gcwq: gcwq of interest
807  * @bwh: hash head as returned by busy_worker_head()
808  * @work: work to find worker for
809  *
810  * Find a worker which is executing @work on @gcwq.  @bwh should be
811  * the hash head obtained by calling busy_worker_head() with the same
812  * work.
813  *
814  * CONTEXT:
815  * spin_lock_irq(gcwq->lock).
816  *
817  * RETURNS:
818  * Pointer to worker which is executing @work if found, NULL
819  * otherwise.
820  */
821 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
822 						   struct hlist_head *bwh,
823 						   struct work_struct *work)
824 {
825 	struct worker *worker;
826 	struct hlist_node *tmp;
827 
828 	hlist_for_each_entry(worker, tmp, bwh, hentry)
829 		if (worker->current_work == work)
830 			return worker;
831 	return NULL;
832 }
833 
834 /**
835  * find_worker_executing_work - find worker which is executing a work
836  * @gcwq: gcwq of interest
837  * @work: work to find worker for
838  *
839  * Find a worker which is executing @work on @gcwq.  This function is
840  * identical to __find_worker_executing_work() except that this
841  * function calculates @bwh itself.
842  *
843  * CONTEXT:
844  * spin_lock_irq(gcwq->lock).
845  *
846  * RETURNS:
847  * Pointer to worker which is executing @work if found, NULL
848  * otherwise.
849  */
850 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
851 						 struct work_struct *work)
852 {
853 	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
854 					    work);
855 }
856 
857 /**
858  * gcwq_determine_ins_pos - find insertion position
859  * @gcwq: gcwq of interest
860  * @cwq: cwq a work is being queued for
861  *
862  * A work for @cwq is about to be queued on @gcwq, determine insertion
863  * position for the work.  If @cwq is for HIGHPRI wq, the work is
864  * queued at the head of the queue but in FIFO order with respect to
865  * other HIGHPRI works; otherwise, at the end of the queue.  This
866  * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
867  * there are HIGHPRI works pending.
868  *
869  * CONTEXT:
870  * spin_lock_irq(gcwq->lock).
871  *
872  * RETURNS:
873  * Pointer to inserstion position.
874  */
875 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
876 					       struct cpu_workqueue_struct *cwq)
877 {
878 	struct work_struct *twork;
879 
880 	if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
881 		return &gcwq->worklist;
882 
883 	list_for_each_entry(twork, &gcwq->worklist, entry) {
884 		struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
885 
886 		if (!(tcwq->wq->flags & WQ_HIGHPRI))
887 			break;
888 	}
889 
890 	gcwq->flags |= GCWQ_HIGHPRI_PENDING;
891 	return &twork->entry;
892 }
893 
894 /**
895  * insert_work - insert a work into gcwq
896  * @cwq: cwq @work belongs to
897  * @work: work to insert
898  * @head: insertion point
899  * @extra_flags: extra WORK_STRUCT_* flags to set
900  *
901  * Insert @work which belongs to @cwq into @gcwq after @head.
902  * @extra_flags is or'd to work_struct flags.
903  *
904  * CONTEXT:
905  * spin_lock_irq(gcwq->lock).
906  */
907 static void insert_work(struct cpu_workqueue_struct *cwq,
908 			struct work_struct *work, struct list_head *head,
909 			unsigned int extra_flags)
910 {
911 	struct global_cwq *gcwq = cwq->gcwq;
912 
913 	/* we own @work, set data and link */
914 	set_work_cwq(work, cwq, extra_flags);
915 
916 	/*
917 	 * Ensure that we get the right work->data if we see the
918 	 * result of list_add() below, see try_to_grab_pending().
919 	 */
920 	smp_wmb();
921 
922 	list_add_tail(&work->entry, head);
923 
924 	/*
925 	 * Ensure either worker_sched_deactivated() sees the above
926 	 * list_add_tail() or we see zero nr_running to avoid workers
927 	 * lying around lazily while there are works to be processed.
928 	 */
929 	smp_mb();
930 
931 	if (__need_more_worker(gcwq))
932 		wake_up_worker(gcwq);
933 }
934 
935 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
936 			 struct work_struct *work)
937 {
938 	struct global_cwq *gcwq;
939 	struct cpu_workqueue_struct *cwq;
940 	struct list_head *worklist;
941 	unsigned int work_flags;
942 	unsigned long flags;
943 
944 	debug_work_activate(work);
945 
946 	if (WARN_ON_ONCE(wq->flags & WQ_DYING))
947 		return;
948 
949 	/* determine gcwq to use */
950 	if (!(wq->flags & WQ_UNBOUND)) {
951 		struct global_cwq *last_gcwq;
952 
953 		if (unlikely(cpu == WORK_CPU_UNBOUND))
954 			cpu = raw_smp_processor_id();
955 
956 		/*
957 		 * It's multi cpu.  If @wq is non-reentrant and @work
958 		 * was previously on a different cpu, it might still
959 		 * be running there, in which case the work needs to
960 		 * be queued on that cpu to guarantee non-reentrance.
961 		 */
962 		gcwq = get_gcwq(cpu);
963 		if (wq->flags & WQ_NON_REENTRANT &&
964 		    (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
965 			struct worker *worker;
966 
967 			spin_lock_irqsave(&last_gcwq->lock, flags);
968 
969 			worker = find_worker_executing_work(last_gcwq, work);
970 
971 			if (worker && worker->current_cwq->wq == wq)
972 				gcwq = last_gcwq;
973 			else {
974 				/* meh... not running there, queue here */
975 				spin_unlock_irqrestore(&last_gcwq->lock, flags);
976 				spin_lock_irqsave(&gcwq->lock, flags);
977 			}
978 		} else
979 			spin_lock_irqsave(&gcwq->lock, flags);
980 	} else {
981 		gcwq = get_gcwq(WORK_CPU_UNBOUND);
982 		spin_lock_irqsave(&gcwq->lock, flags);
983 	}
984 
985 	/* gcwq determined, get cwq and queue */
986 	cwq = get_cwq(gcwq->cpu, wq);
987 	trace_workqueue_queue_work(cpu, cwq, work);
988 
989 	BUG_ON(!list_empty(&work->entry));
990 
991 	cwq->nr_in_flight[cwq->work_color]++;
992 	work_flags = work_color_to_flags(cwq->work_color);
993 
994 	if (likely(cwq->nr_active < cwq->max_active)) {
995 		trace_workqueue_activate_work(work);
996 		cwq->nr_active++;
997 		worklist = gcwq_determine_ins_pos(gcwq, cwq);
998 	} else {
999 		work_flags |= WORK_STRUCT_DELAYED;
1000 		worklist = &cwq->delayed_works;
1001 	}
1002 
1003 	insert_work(cwq, work, worklist, work_flags);
1004 
1005 	spin_unlock_irqrestore(&gcwq->lock, flags);
1006 }
1007 
1008 /**
1009  * queue_work - queue work on a workqueue
1010  * @wq: workqueue to use
1011  * @work: work to queue
1012  *
1013  * Returns 0 if @work was already on a queue, non-zero otherwise.
1014  *
1015  * We queue the work to the CPU on which it was submitted, but if the CPU dies
1016  * it can be processed by another CPU.
1017  */
1018 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1019 {
1020 	int ret;
1021 
1022 	ret = queue_work_on(get_cpu(), wq, work);
1023 	put_cpu();
1024 
1025 	return ret;
1026 }
1027 EXPORT_SYMBOL_GPL(queue_work);
1028 
1029 /**
1030  * queue_work_on - queue work on specific cpu
1031  * @cpu: CPU number to execute work on
1032  * @wq: workqueue to use
1033  * @work: work to queue
1034  *
1035  * Returns 0 if @work was already on a queue, non-zero otherwise.
1036  *
1037  * We queue the work to a specific CPU, the caller must ensure it
1038  * can't go away.
1039  */
1040 int
1041 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1042 {
1043 	int ret = 0;
1044 
1045 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1046 		__queue_work(cpu, wq, work);
1047 		ret = 1;
1048 	}
1049 	return ret;
1050 }
1051 EXPORT_SYMBOL_GPL(queue_work_on);
1052 
1053 static void delayed_work_timer_fn(unsigned long __data)
1054 {
1055 	struct delayed_work *dwork = (struct delayed_work *)__data;
1056 	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1057 
1058 	__queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1059 }
1060 
1061 /**
1062  * queue_delayed_work - queue work on a workqueue after delay
1063  * @wq: workqueue to use
1064  * @dwork: delayable work to queue
1065  * @delay: number of jiffies to wait before queueing
1066  *
1067  * Returns 0 if @work was already on a queue, non-zero otherwise.
1068  */
1069 int queue_delayed_work(struct workqueue_struct *wq,
1070 			struct delayed_work *dwork, unsigned long delay)
1071 {
1072 	if (delay == 0)
1073 		return queue_work(wq, &dwork->work);
1074 
1075 	return queue_delayed_work_on(-1, wq, dwork, delay);
1076 }
1077 EXPORT_SYMBOL_GPL(queue_delayed_work);
1078 
1079 /**
1080  * queue_delayed_work_on - queue work on specific CPU after delay
1081  * @cpu: CPU number to execute work on
1082  * @wq: workqueue to use
1083  * @dwork: work to queue
1084  * @delay: number of jiffies to wait before queueing
1085  *
1086  * Returns 0 if @work was already on a queue, non-zero otherwise.
1087  */
1088 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1089 			struct delayed_work *dwork, unsigned long delay)
1090 {
1091 	int ret = 0;
1092 	struct timer_list *timer = &dwork->timer;
1093 	struct work_struct *work = &dwork->work;
1094 
1095 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1096 		unsigned int lcpu;
1097 
1098 		BUG_ON(timer_pending(timer));
1099 		BUG_ON(!list_empty(&work->entry));
1100 
1101 		timer_stats_timer_set_start_info(&dwork->timer);
1102 
1103 		/*
1104 		 * This stores cwq for the moment, for the timer_fn.
1105 		 * Note that the work's gcwq is preserved to allow
1106 		 * reentrance detection for delayed works.
1107 		 */
1108 		if (!(wq->flags & WQ_UNBOUND)) {
1109 			struct global_cwq *gcwq = get_work_gcwq(work);
1110 
1111 			if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1112 				lcpu = gcwq->cpu;
1113 			else
1114 				lcpu = raw_smp_processor_id();
1115 		} else
1116 			lcpu = WORK_CPU_UNBOUND;
1117 
1118 		set_work_cwq(work, get_cwq(lcpu, wq), 0);
1119 
1120 		timer->expires = jiffies + delay;
1121 		timer->data = (unsigned long)dwork;
1122 		timer->function = delayed_work_timer_fn;
1123 
1124 		if (unlikely(cpu >= 0))
1125 			add_timer_on(timer, cpu);
1126 		else
1127 			add_timer(timer);
1128 		ret = 1;
1129 	}
1130 	return ret;
1131 }
1132 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1133 
1134 /**
1135  * worker_enter_idle - enter idle state
1136  * @worker: worker which is entering idle state
1137  *
1138  * @worker is entering idle state.  Update stats and idle timer if
1139  * necessary.
1140  *
1141  * LOCKING:
1142  * spin_lock_irq(gcwq->lock).
1143  */
1144 static void worker_enter_idle(struct worker *worker)
1145 {
1146 	struct global_cwq *gcwq = worker->gcwq;
1147 
1148 	BUG_ON(worker->flags & WORKER_IDLE);
1149 	BUG_ON(!list_empty(&worker->entry) &&
1150 	       (worker->hentry.next || worker->hentry.pprev));
1151 
1152 	/* can't use worker_set_flags(), also called from start_worker() */
1153 	worker->flags |= WORKER_IDLE;
1154 	gcwq->nr_idle++;
1155 	worker->last_active = jiffies;
1156 
1157 	/* idle_list is LIFO */
1158 	list_add(&worker->entry, &gcwq->idle_list);
1159 
1160 	if (likely(!(worker->flags & WORKER_ROGUE))) {
1161 		if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1162 			mod_timer(&gcwq->idle_timer,
1163 				  jiffies + IDLE_WORKER_TIMEOUT);
1164 	} else
1165 		wake_up_all(&gcwq->trustee_wait);
1166 
1167 	/* sanity check nr_running */
1168 	WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
1169 		     atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1170 }
1171 
1172 /**
1173  * worker_leave_idle - leave idle state
1174  * @worker: worker which is leaving idle state
1175  *
1176  * @worker is leaving idle state.  Update stats.
1177  *
1178  * LOCKING:
1179  * spin_lock_irq(gcwq->lock).
1180  */
1181 static void worker_leave_idle(struct worker *worker)
1182 {
1183 	struct global_cwq *gcwq = worker->gcwq;
1184 
1185 	BUG_ON(!(worker->flags & WORKER_IDLE));
1186 	worker_clr_flags(worker, WORKER_IDLE);
1187 	gcwq->nr_idle--;
1188 	list_del_init(&worker->entry);
1189 }
1190 
1191 /**
1192  * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1193  * @worker: self
1194  *
1195  * Works which are scheduled while the cpu is online must at least be
1196  * scheduled to a worker which is bound to the cpu so that if they are
1197  * flushed from cpu callbacks while cpu is going down, they are
1198  * guaranteed to execute on the cpu.
1199  *
1200  * This function is to be used by rogue workers and rescuers to bind
1201  * themselves to the target cpu and may race with cpu going down or
1202  * coming online.  kthread_bind() can't be used because it may put the
1203  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1204  * verbatim as it's best effort and blocking and gcwq may be
1205  * [dis]associated in the meantime.
1206  *
1207  * This function tries set_cpus_allowed() and locks gcwq and verifies
1208  * the binding against GCWQ_DISASSOCIATED which is set during
1209  * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1210  * idle state or fetches works without dropping lock, it can guarantee
1211  * the scheduling requirement described in the first paragraph.
1212  *
1213  * CONTEXT:
1214  * Might sleep.  Called without any lock but returns with gcwq->lock
1215  * held.
1216  *
1217  * RETURNS:
1218  * %true if the associated gcwq is online (@worker is successfully
1219  * bound), %false if offline.
1220  */
1221 static bool worker_maybe_bind_and_lock(struct worker *worker)
1222 __acquires(&gcwq->lock)
1223 {
1224 	struct global_cwq *gcwq = worker->gcwq;
1225 	struct task_struct *task = worker->task;
1226 
1227 	while (true) {
1228 		/*
1229 		 * The following call may fail, succeed or succeed
1230 		 * without actually migrating the task to the cpu if
1231 		 * it races with cpu hotunplug operation.  Verify
1232 		 * against GCWQ_DISASSOCIATED.
1233 		 */
1234 		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1235 			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1236 
1237 		spin_lock_irq(&gcwq->lock);
1238 		if (gcwq->flags & GCWQ_DISASSOCIATED)
1239 			return false;
1240 		if (task_cpu(task) == gcwq->cpu &&
1241 		    cpumask_equal(&current->cpus_allowed,
1242 				  get_cpu_mask(gcwq->cpu)))
1243 			return true;
1244 		spin_unlock_irq(&gcwq->lock);
1245 
1246 		/* CPU has come up inbetween, retry migration */
1247 		cpu_relax();
1248 	}
1249 }
1250 
1251 /*
1252  * Function for worker->rebind_work used to rebind rogue busy workers
1253  * to the associated cpu which is coming back online.  This is
1254  * scheduled by cpu up but can race with other cpu hotplug operations
1255  * and may be executed twice without intervening cpu down.
1256  */
1257 static void worker_rebind_fn(struct work_struct *work)
1258 {
1259 	struct worker *worker = container_of(work, struct worker, rebind_work);
1260 	struct global_cwq *gcwq = worker->gcwq;
1261 
1262 	if (worker_maybe_bind_and_lock(worker))
1263 		worker_clr_flags(worker, WORKER_REBIND);
1264 
1265 	spin_unlock_irq(&gcwq->lock);
1266 }
1267 
1268 static struct worker *alloc_worker(void)
1269 {
1270 	struct worker *worker;
1271 
1272 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1273 	if (worker) {
1274 		INIT_LIST_HEAD(&worker->entry);
1275 		INIT_LIST_HEAD(&worker->scheduled);
1276 		INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1277 		/* on creation a worker is in !idle && prep state */
1278 		worker->flags = WORKER_PREP;
1279 	}
1280 	return worker;
1281 }
1282 
1283 /**
1284  * create_worker - create a new workqueue worker
1285  * @gcwq: gcwq the new worker will belong to
1286  * @bind: whether to set affinity to @cpu or not
1287  *
1288  * Create a new worker which is bound to @gcwq.  The returned worker
1289  * can be started by calling start_worker() or destroyed using
1290  * destroy_worker().
1291  *
1292  * CONTEXT:
1293  * Might sleep.  Does GFP_KERNEL allocations.
1294  *
1295  * RETURNS:
1296  * Pointer to the newly created worker.
1297  */
1298 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1299 {
1300 	bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1301 	struct worker *worker = NULL;
1302 	int id = -1;
1303 
1304 	spin_lock_irq(&gcwq->lock);
1305 	while (ida_get_new(&gcwq->worker_ida, &id)) {
1306 		spin_unlock_irq(&gcwq->lock);
1307 		if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1308 			goto fail;
1309 		spin_lock_irq(&gcwq->lock);
1310 	}
1311 	spin_unlock_irq(&gcwq->lock);
1312 
1313 	worker = alloc_worker();
1314 	if (!worker)
1315 		goto fail;
1316 
1317 	worker->gcwq = gcwq;
1318 	worker->id = id;
1319 
1320 	if (!on_unbound_cpu)
1321 		worker->task = kthread_create(worker_thread, worker,
1322 					      "kworker/%u:%d", gcwq->cpu, id);
1323 	else
1324 		worker->task = kthread_create(worker_thread, worker,
1325 					      "kworker/u:%d", id);
1326 	if (IS_ERR(worker->task))
1327 		goto fail;
1328 
1329 	/*
1330 	 * A rogue worker will become a regular one if CPU comes
1331 	 * online later on.  Make sure every worker has
1332 	 * PF_THREAD_BOUND set.
1333 	 */
1334 	if (bind && !on_unbound_cpu)
1335 		kthread_bind(worker->task, gcwq->cpu);
1336 	else {
1337 		worker->task->flags |= PF_THREAD_BOUND;
1338 		if (on_unbound_cpu)
1339 			worker->flags |= WORKER_UNBOUND;
1340 	}
1341 
1342 	return worker;
1343 fail:
1344 	if (id >= 0) {
1345 		spin_lock_irq(&gcwq->lock);
1346 		ida_remove(&gcwq->worker_ida, id);
1347 		spin_unlock_irq(&gcwq->lock);
1348 	}
1349 	kfree(worker);
1350 	return NULL;
1351 }
1352 
1353 /**
1354  * start_worker - start a newly created worker
1355  * @worker: worker to start
1356  *
1357  * Make the gcwq aware of @worker and start it.
1358  *
1359  * CONTEXT:
1360  * spin_lock_irq(gcwq->lock).
1361  */
1362 static void start_worker(struct worker *worker)
1363 {
1364 	worker->flags |= WORKER_STARTED;
1365 	worker->gcwq->nr_workers++;
1366 	worker_enter_idle(worker);
1367 	wake_up_process(worker->task);
1368 }
1369 
1370 /**
1371  * destroy_worker - destroy a workqueue worker
1372  * @worker: worker to be destroyed
1373  *
1374  * Destroy @worker and adjust @gcwq stats accordingly.
1375  *
1376  * CONTEXT:
1377  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1378  */
1379 static void destroy_worker(struct worker *worker)
1380 {
1381 	struct global_cwq *gcwq = worker->gcwq;
1382 	int id = worker->id;
1383 
1384 	/* sanity check frenzy */
1385 	BUG_ON(worker->current_work);
1386 	BUG_ON(!list_empty(&worker->scheduled));
1387 
1388 	if (worker->flags & WORKER_STARTED)
1389 		gcwq->nr_workers--;
1390 	if (worker->flags & WORKER_IDLE)
1391 		gcwq->nr_idle--;
1392 
1393 	list_del_init(&worker->entry);
1394 	worker->flags |= WORKER_DIE;
1395 
1396 	spin_unlock_irq(&gcwq->lock);
1397 
1398 	kthread_stop(worker->task);
1399 	kfree(worker);
1400 
1401 	spin_lock_irq(&gcwq->lock);
1402 	ida_remove(&gcwq->worker_ida, id);
1403 }
1404 
1405 static void idle_worker_timeout(unsigned long __gcwq)
1406 {
1407 	struct global_cwq *gcwq = (void *)__gcwq;
1408 
1409 	spin_lock_irq(&gcwq->lock);
1410 
1411 	if (too_many_workers(gcwq)) {
1412 		struct worker *worker;
1413 		unsigned long expires;
1414 
1415 		/* idle_list is kept in LIFO order, check the last one */
1416 		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1417 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1418 
1419 		if (time_before(jiffies, expires))
1420 			mod_timer(&gcwq->idle_timer, expires);
1421 		else {
1422 			/* it's been idle for too long, wake up manager */
1423 			gcwq->flags |= GCWQ_MANAGE_WORKERS;
1424 			wake_up_worker(gcwq);
1425 		}
1426 	}
1427 
1428 	spin_unlock_irq(&gcwq->lock);
1429 }
1430 
1431 static bool send_mayday(struct work_struct *work)
1432 {
1433 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1434 	struct workqueue_struct *wq = cwq->wq;
1435 	unsigned int cpu;
1436 
1437 	if (!(wq->flags & WQ_RESCUER))
1438 		return false;
1439 
1440 	/* mayday mayday mayday */
1441 	cpu = cwq->gcwq->cpu;
1442 	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1443 	if (cpu == WORK_CPU_UNBOUND)
1444 		cpu = 0;
1445 	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1446 		wake_up_process(wq->rescuer->task);
1447 	return true;
1448 }
1449 
1450 static void gcwq_mayday_timeout(unsigned long __gcwq)
1451 {
1452 	struct global_cwq *gcwq = (void *)__gcwq;
1453 	struct work_struct *work;
1454 
1455 	spin_lock_irq(&gcwq->lock);
1456 
1457 	if (need_to_create_worker(gcwq)) {
1458 		/*
1459 		 * We've been trying to create a new worker but
1460 		 * haven't been successful.  We might be hitting an
1461 		 * allocation deadlock.  Send distress signals to
1462 		 * rescuers.
1463 		 */
1464 		list_for_each_entry(work, &gcwq->worklist, entry)
1465 			send_mayday(work);
1466 	}
1467 
1468 	spin_unlock_irq(&gcwq->lock);
1469 
1470 	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1471 }
1472 
1473 /**
1474  * maybe_create_worker - create a new worker if necessary
1475  * @gcwq: gcwq to create a new worker for
1476  *
1477  * Create a new worker for @gcwq if necessary.  @gcwq is guaranteed to
1478  * have at least one idle worker on return from this function.  If
1479  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1480  * sent to all rescuers with works scheduled on @gcwq to resolve
1481  * possible allocation deadlock.
1482  *
1483  * On return, need_to_create_worker() is guaranteed to be false and
1484  * may_start_working() true.
1485  *
1486  * LOCKING:
1487  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1488  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1489  * manager.
1490  *
1491  * RETURNS:
1492  * false if no action was taken and gcwq->lock stayed locked, true
1493  * otherwise.
1494  */
1495 static bool maybe_create_worker(struct global_cwq *gcwq)
1496 __releases(&gcwq->lock)
1497 __acquires(&gcwq->lock)
1498 {
1499 	if (!need_to_create_worker(gcwq))
1500 		return false;
1501 restart:
1502 	spin_unlock_irq(&gcwq->lock);
1503 
1504 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1505 	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1506 
1507 	while (true) {
1508 		struct worker *worker;
1509 
1510 		worker = create_worker(gcwq, true);
1511 		if (worker) {
1512 			del_timer_sync(&gcwq->mayday_timer);
1513 			spin_lock_irq(&gcwq->lock);
1514 			start_worker(worker);
1515 			BUG_ON(need_to_create_worker(gcwq));
1516 			return true;
1517 		}
1518 
1519 		if (!need_to_create_worker(gcwq))
1520 			break;
1521 
1522 		__set_current_state(TASK_INTERRUPTIBLE);
1523 		schedule_timeout(CREATE_COOLDOWN);
1524 
1525 		if (!need_to_create_worker(gcwq))
1526 			break;
1527 	}
1528 
1529 	del_timer_sync(&gcwq->mayday_timer);
1530 	spin_lock_irq(&gcwq->lock);
1531 	if (need_to_create_worker(gcwq))
1532 		goto restart;
1533 	return true;
1534 }
1535 
1536 /**
1537  * maybe_destroy_worker - destroy workers which have been idle for a while
1538  * @gcwq: gcwq to destroy workers for
1539  *
1540  * Destroy @gcwq workers which have been idle for longer than
1541  * IDLE_WORKER_TIMEOUT.
1542  *
1543  * LOCKING:
1544  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1545  * multiple times.  Called only from manager.
1546  *
1547  * RETURNS:
1548  * false if no action was taken and gcwq->lock stayed locked, true
1549  * otherwise.
1550  */
1551 static bool maybe_destroy_workers(struct global_cwq *gcwq)
1552 {
1553 	bool ret = false;
1554 
1555 	while (too_many_workers(gcwq)) {
1556 		struct worker *worker;
1557 		unsigned long expires;
1558 
1559 		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1560 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1561 
1562 		if (time_before(jiffies, expires)) {
1563 			mod_timer(&gcwq->idle_timer, expires);
1564 			break;
1565 		}
1566 
1567 		destroy_worker(worker);
1568 		ret = true;
1569 	}
1570 
1571 	return ret;
1572 }
1573 
1574 /**
1575  * manage_workers - manage worker pool
1576  * @worker: self
1577  *
1578  * Assume the manager role and manage gcwq worker pool @worker belongs
1579  * to.  At any given time, there can be only zero or one manager per
1580  * gcwq.  The exclusion is handled automatically by this function.
1581  *
1582  * The caller can safely start processing works on false return.  On
1583  * true return, it's guaranteed that need_to_create_worker() is false
1584  * and may_start_working() is true.
1585  *
1586  * CONTEXT:
1587  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1588  * multiple times.  Does GFP_KERNEL allocations.
1589  *
1590  * RETURNS:
1591  * false if no action was taken and gcwq->lock stayed locked, true if
1592  * some action was taken.
1593  */
1594 static bool manage_workers(struct worker *worker)
1595 {
1596 	struct global_cwq *gcwq = worker->gcwq;
1597 	bool ret = false;
1598 
1599 	if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1600 		return ret;
1601 
1602 	gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1603 	gcwq->flags |= GCWQ_MANAGING_WORKERS;
1604 
1605 	/*
1606 	 * Destroy and then create so that may_start_working() is true
1607 	 * on return.
1608 	 */
1609 	ret |= maybe_destroy_workers(gcwq);
1610 	ret |= maybe_create_worker(gcwq);
1611 
1612 	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1613 
1614 	/*
1615 	 * The trustee might be waiting to take over the manager
1616 	 * position, tell it we're done.
1617 	 */
1618 	if (unlikely(gcwq->trustee))
1619 		wake_up_all(&gcwq->trustee_wait);
1620 
1621 	return ret;
1622 }
1623 
1624 /**
1625  * move_linked_works - move linked works to a list
1626  * @work: start of series of works to be scheduled
1627  * @head: target list to append @work to
1628  * @nextp: out paramter for nested worklist walking
1629  *
1630  * Schedule linked works starting from @work to @head.  Work series to
1631  * be scheduled starts at @work and includes any consecutive work with
1632  * WORK_STRUCT_LINKED set in its predecessor.
1633  *
1634  * If @nextp is not NULL, it's updated to point to the next work of
1635  * the last scheduled work.  This allows move_linked_works() to be
1636  * nested inside outer list_for_each_entry_safe().
1637  *
1638  * CONTEXT:
1639  * spin_lock_irq(gcwq->lock).
1640  */
1641 static void move_linked_works(struct work_struct *work, struct list_head *head,
1642 			      struct work_struct **nextp)
1643 {
1644 	struct work_struct *n;
1645 
1646 	/*
1647 	 * Linked worklist will always end before the end of the list,
1648 	 * use NULL for list head.
1649 	 */
1650 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1651 		list_move_tail(&work->entry, head);
1652 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1653 			break;
1654 	}
1655 
1656 	/*
1657 	 * If we're already inside safe list traversal and have moved
1658 	 * multiple works to the scheduled queue, the next position
1659 	 * needs to be updated.
1660 	 */
1661 	if (nextp)
1662 		*nextp = n;
1663 }
1664 
1665 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1666 {
1667 	struct work_struct *work = list_first_entry(&cwq->delayed_works,
1668 						    struct work_struct, entry);
1669 	struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1670 
1671 	trace_workqueue_activate_work(work);
1672 	move_linked_works(work, pos, NULL);
1673 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1674 	cwq->nr_active++;
1675 }
1676 
1677 /**
1678  * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1679  * @cwq: cwq of interest
1680  * @color: color of work which left the queue
1681  * @delayed: for a delayed work
1682  *
1683  * A work either has completed or is removed from pending queue,
1684  * decrement nr_in_flight of its cwq and handle workqueue flushing.
1685  *
1686  * CONTEXT:
1687  * spin_lock_irq(gcwq->lock).
1688  */
1689 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1690 				 bool delayed)
1691 {
1692 	/* ignore uncolored works */
1693 	if (color == WORK_NO_COLOR)
1694 		return;
1695 
1696 	cwq->nr_in_flight[color]--;
1697 
1698 	if (!delayed) {
1699 		cwq->nr_active--;
1700 		if (!list_empty(&cwq->delayed_works)) {
1701 			/* one down, submit a delayed one */
1702 			if (cwq->nr_active < cwq->max_active)
1703 				cwq_activate_first_delayed(cwq);
1704 		}
1705 	}
1706 
1707 	/* is flush in progress and are we at the flushing tip? */
1708 	if (likely(cwq->flush_color != color))
1709 		return;
1710 
1711 	/* are there still in-flight works? */
1712 	if (cwq->nr_in_flight[color])
1713 		return;
1714 
1715 	/* this cwq is done, clear flush_color */
1716 	cwq->flush_color = -1;
1717 
1718 	/*
1719 	 * If this was the last cwq, wake up the first flusher.  It
1720 	 * will handle the rest.
1721 	 */
1722 	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1723 		complete(&cwq->wq->first_flusher->done);
1724 }
1725 
1726 /**
1727  * process_one_work - process single work
1728  * @worker: self
1729  * @work: work to process
1730  *
1731  * Process @work.  This function contains all the logics necessary to
1732  * process a single work including synchronization against and
1733  * interaction with other workers on the same cpu, queueing and
1734  * flushing.  As long as context requirement is met, any worker can
1735  * call this function to process a work.
1736  *
1737  * CONTEXT:
1738  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1739  */
1740 static void process_one_work(struct worker *worker, struct work_struct *work)
1741 __releases(&gcwq->lock)
1742 __acquires(&gcwq->lock)
1743 {
1744 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1745 	struct global_cwq *gcwq = cwq->gcwq;
1746 	struct hlist_head *bwh = busy_worker_head(gcwq, work);
1747 	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1748 	work_func_t f = work->func;
1749 	int work_color;
1750 	struct worker *collision;
1751 #ifdef CONFIG_LOCKDEP
1752 	/*
1753 	 * It is permissible to free the struct work_struct from
1754 	 * inside the function that is called from it, this we need to
1755 	 * take into account for lockdep too.  To avoid bogus "held
1756 	 * lock freed" warnings as well as problems when looking into
1757 	 * work->lockdep_map, make a copy and use that here.
1758 	 */
1759 	struct lockdep_map lockdep_map = work->lockdep_map;
1760 #endif
1761 	/*
1762 	 * A single work shouldn't be executed concurrently by
1763 	 * multiple workers on a single cpu.  Check whether anyone is
1764 	 * already processing the work.  If so, defer the work to the
1765 	 * currently executing one.
1766 	 */
1767 	collision = __find_worker_executing_work(gcwq, bwh, work);
1768 	if (unlikely(collision)) {
1769 		move_linked_works(work, &collision->scheduled, NULL);
1770 		return;
1771 	}
1772 
1773 	/* claim and process */
1774 	debug_work_deactivate(work);
1775 	hlist_add_head(&worker->hentry, bwh);
1776 	worker->current_work = work;
1777 	worker->current_cwq = cwq;
1778 	work_color = get_work_color(work);
1779 
1780 	/* record the current cpu number in the work data and dequeue */
1781 	set_work_cpu(work, gcwq->cpu);
1782 	list_del_init(&work->entry);
1783 
1784 	/*
1785 	 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1786 	 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1787 	 */
1788 	if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1789 		struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1790 						struct work_struct, entry);
1791 
1792 		if (!list_empty(&gcwq->worklist) &&
1793 		    get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1794 			wake_up_worker(gcwq);
1795 		else
1796 			gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1797 	}
1798 
1799 	/*
1800 	 * CPU intensive works don't participate in concurrency
1801 	 * management.  They're the scheduler's responsibility.
1802 	 */
1803 	if (unlikely(cpu_intensive))
1804 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1805 
1806 	spin_unlock_irq(&gcwq->lock);
1807 
1808 	work_clear_pending(work);
1809 	lock_map_acquire(&cwq->wq->lockdep_map);
1810 	lock_map_acquire(&lockdep_map);
1811 	trace_workqueue_execute_start(work);
1812 	f(work);
1813 	/*
1814 	 * While we must be careful to not use "work" after this, the trace
1815 	 * point will only record its address.
1816 	 */
1817 	trace_workqueue_execute_end(work);
1818 	lock_map_release(&lockdep_map);
1819 	lock_map_release(&cwq->wq->lockdep_map);
1820 
1821 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1822 		printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1823 		       "%s/0x%08x/%d\n",
1824 		       current->comm, preempt_count(), task_pid_nr(current));
1825 		printk(KERN_ERR "    last function: ");
1826 		print_symbol("%s\n", (unsigned long)f);
1827 		debug_show_held_locks(current);
1828 		dump_stack();
1829 	}
1830 
1831 	spin_lock_irq(&gcwq->lock);
1832 
1833 	/* clear cpu intensive status */
1834 	if (unlikely(cpu_intensive))
1835 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1836 
1837 	/* we're done with it, release */
1838 	hlist_del_init(&worker->hentry);
1839 	worker->current_work = NULL;
1840 	worker->current_cwq = NULL;
1841 	cwq_dec_nr_in_flight(cwq, work_color, false);
1842 }
1843 
1844 /**
1845  * process_scheduled_works - process scheduled works
1846  * @worker: self
1847  *
1848  * Process all scheduled works.  Please note that the scheduled list
1849  * may change while processing a work, so this function repeatedly
1850  * fetches a work from the top and executes it.
1851  *
1852  * CONTEXT:
1853  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1854  * multiple times.
1855  */
1856 static void process_scheduled_works(struct worker *worker)
1857 {
1858 	while (!list_empty(&worker->scheduled)) {
1859 		struct work_struct *work = list_first_entry(&worker->scheduled,
1860 						struct work_struct, entry);
1861 		process_one_work(worker, work);
1862 	}
1863 }
1864 
1865 /**
1866  * worker_thread - the worker thread function
1867  * @__worker: self
1868  *
1869  * The gcwq worker thread function.  There's a single dynamic pool of
1870  * these per each cpu.  These workers process all works regardless of
1871  * their specific target workqueue.  The only exception is works which
1872  * belong to workqueues with a rescuer which will be explained in
1873  * rescuer_thread().
1874  */
1875 static int worker_thread(void *__worker)
1876 {
1877 	struct worker *worker = __worker;
1878 	struct global_cwq *gcwq = worker->gcwq;
1879 
1880 	/* tell the scheduler that this is a workqueue worker */
1881 	worker->task->flags |= PF_WQ_WORKER;
1882 woke_up:
1883 	spin_lock_irq(&gcwq->lock);
1884 
1885 	/* DIE can be set only while we're idle, checking here is enough */
1886 	if (worker->flags & WORKER_DIE) {
1887 		spin_unlock_irq(&gcwq->lock);
1888 		worker->task->flags &= ~PF_WQ_WORKER;
1889 		return 0;
1890 	}
1891 
1892 	worker_leave_idle(worker);
1893 recheck:
1894 	/* no more worker necessary? */
1895 	if (!need_more_worker(gcwq))
1896 		goto sleep;
1897 
1898 	/* do we need to manage? */
1899 	if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1900 		goto recheck;
1901 
1902 	/*
1903 	 * ->scheduled list can only be filled while a worker is
1904 	 * preparing to process a work or actually processing it.
1905 	 * Make sure nobody diddled with it while I was sleeping.
1906 	 */
1907 	BUG_ON(!list_empty(&worker->scheduled));
1908 
1909 	/*
1910 	 * When control reaches this point, we're guaranteed to have
1911 	 * at least one idle worker or that someone else has already
1912 	 * assumed the manager role.
1913 	 */
1914 	worker_clr_flags(worker, WORKER_PREP);
1915 
1916 	do {
1917 		struct work_struct *work =
1918 			list_first_entry(&gcwq->worklist,
1919 					 struct work_struct, entry);
1920 
1921 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1922 			/* optimization path, not strictly necessary */
1923 			process_one_work(worker, work);
1924 			if (unlikely(!list_empty(&worker->scheduled)))
1925 				process_scheduled_works(worker);
1926 		} else {
1927 			move_linked_works(work, &worker->scheduled, NULL);
1928 			process_scheduled_works(worker);
1929 		}
1930 	} while (keep_working(gcwq));
1931 
1932 	worker_set_flags(worker, WORKER_PREP, false);
1933 sleep:
1934 	if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1935 		goto recheck;
1936 
1937 	/*
1938 	 * gcwq->lock is held and there's no work to process and no
1939 	 * need to manage, sleep.  Workers are woken up only while
1940 	 * holding gcwq->lock or from local cpu, so setting the
1941 	 * current state before releasing gcwq->lock is enough to
1942 	 * prevent losing any event.
1943 	 */
1944 	worker_enter_idle(worker);
1945 	__set_current_state(TASK_INTERRUPTIBLE);
1946 	spin_unlock_irq(&gcwq->lock);
1947 	schedule();
1948 	goto woke_up;
1949 }
1950 
1951 /**
1952  * rescuer_thread - the rescuer thread function
1953  * @__wq: the associated workqueue
1954  *
1955  * Workqueue rescuer thread function.  There's one rescuer for each
1956  * workqueue which has WQ_RESCUER set.
1957  *
1958  * Regular work processing on a gcwq may block trying to create a new
1959  * worker which uses GFP_KERNEL allocation which has slight chance of
1960  * developing into deadlock if some works currently on the same queue
1961  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
1962  * the problem rescuer solves.
1963  *
1964  * When such condition is possible, the gcwq summons rescuers of all
1965  * workqueues which have works queued on the gcwq and let them process
1966  * those works so that forward progress can be guaranteed.
1967  *
1968  * This should happen rarely.
1969  */
1970 static int rescuer_thread(void *__wq)
1971 {
1972 	struct workqueue_struct *wq = __wq;
1973 	struct worker *rescuer = wq->rescuer;
1974 	struct list_head *scheduled = &rescuer->scheduled;
1975 	bool is_unbound = wq->flags & WQ_UNBOUND;
1976 	unsigned int cpu;
1977 
1978 	set_user_nice(current, RESCUER_NICE_LEVEL);
1979 repeat:
1980 	set_current_state(TASK_INTERRUPTIBLE);
1981 
1982 	if (kthread_should_stop())
1983 		return 0;
1984 
1985 	/*
1986 	 * See whether any cpu is asking for help.  Unbounded
1987 	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
1988 	 */
1989 	for_each_mayday_cpu(cpu, wq->mayday_mask) {
1990 		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
1991 		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
1992 		struct global_cwq *gcwq = cwq->gcwq;
1993 		struct work_struct *work, *n;
1994 
1995 		__set_current_state(TASK_RUNNING);
1996 		mayday_clear_cpu(cpu, wq->mayday_mask);
1997 
1998 		/* migrate to the target cpu if possible */
1999 		rescuer->gcwq = gcwq;
2000 		worker_maybe_bind_and_lock(rescuer);
2001 
2002 		/*
2003 		 * Slurp in all works issued via this workqueue and
2004 		 * process'em.
2005 		 */
2006 		BUG_ON(!list_empty(&rescuer->scheduled));
2007 		list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2008 			if (get_work_cwq(work) == cwq)
2009 				move_linked_works(work, scheduled, &n);
2010 
2011 		process_scheduled_works(rescuer);
2012 		spin_unlock_irq(&gcwq->lock);
2013 	}
2014 
2015 	schedule();
2016 	goto repeat;
2017 }
2018 
2019 struct wq_barrier {
2020 	struct work_struct	work;
2021 	struct completion	done;
2022 };
2023 
2024 static void wq_barrier_func(struct work_struct *work)
2025 {
2026 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2027 	complete(&barr->done);
2028 }
2029 
2030 /**
2031  * insert_wq_barrier - insert a barrier work
2032  * @cwq: cwq to insert barrier into
2033  * @barr: wq_barrier to insert
2034  * @target: target work to attach @barr to
2035  * @worker: worker currently executing @target, NULL if @target is not executing
2036  *
2037  * @barr is linked to @target such that @barr is completed only after
2038  * @target finishes execution.  Please note that the ordering
2039  * guarantee is observed only with respect to @target and on the local
2040  * cpu.
2041  *
2042  * Currently, a queued barrier can't be canceled.  This is because
2043  * try_to_grab_pending() can't determine whether the work to be
2044  * grabbed is at the head of the queue and thus can't clear LINKED
2045  * flag of the previous work while there must be a valid next work
2046  * after a work with LINKED flag set.
2047  *
2048  * Note that when @worker is non-NULL, @target may be modified
2049  * underneath us, so we can't reliably determine cwq from @target.
2050  *
2051  * CONTEXT:
2052  * spin_lock_irq(gcwq->lock).
2053  */
2054 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2055 			      struct wq_barrier *barr,
2056 			      struct work_struct *target, struct worker *worker)
2057 {
2058 	struct list_head *head;
2059 	unsigned int linked = 0;
2060 
2061 	/*
2062 	 * debugobject calls are safe here even with gcwq->lock locked
2063 	 * as we know for sure that this will not trigger any of the
2064 	 * checks and call back into the fixup functions where we
2065 	 * might deadlock.
2066 	 */
2067 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2068 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2069 	init_completion(&barr->done);
2070 
2071 	/*
2072 	 * If @target is currently being executed, schedule the
2073 	 * barrier to the worker; otherwise, put it after @target.
2074 	 */
2075 	if (worker)
2076 		head = worker->scheduled.next;
2077 	else {
2078 		unsigned long *bits = work_data_bits(target);
2079 
2080 		head = target->entry.next;
2081 		/* there can already be other linked works, inherit and set */
2082 		linked = *bits & WORK_STRUCT_LINKED;
2083 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2084 	}
2085 
2086 	debug_work_activate(&barr->work);
2087 	insert_work(cwq, &barr->work, head,
2088 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2089 }
2090 
2091 /**
2092  * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2093  * @wq: workqueue being flushed
2094  * @flush_color: new flush color, < 0 for no-op
2095  * @work_color: new work color, < 0 for no-op
2096  *
2097  * Prepare cwqs for workqueue flushing.
2098  *
2099  * If @flush_color is non-negative, flush_color on all cwqs should be
2100  * -1.  If no cwq has in-flight commands at the specified color, all
2101  * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
2102  * has in flight commands, its cwq->flush_color is set to
2103  * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2104  * wakeup logic is armed and %true is returned.
2105  *
2106  * The caller should have initialized @wq->first_flusher prior to
2107  * calling this function with non-negative @flush_color.  If
2108  * @flush_color is negative, no flush color update is done and %false
2109  * is returned.
2110  *
2111  * If @work_color is non-negative, all cwqs should have the same
2112  * work_color which is previous to @work_color and all will be
2113  * advanced to @work_color.
2114  *
2115  * CONTEXT:
2116  * mutex_lock(wq->flush_mutex).
2117  *
2118  * RETURNS:
2119  * %true if @flush_color >= 0 and there's something to flush.  %false
2120  * otherwise.
2121  */
2122 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2123 				      int flush_color, int work_color)
2124 {
2125 	bool wait = false;
2126 	unsigned int cpu;
2127 
2128 	if (flush_color >= 0) {
2129 		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2130 		atomic_set(&wq->nr_cwqs_to_flush, 1);
2131 	}
2132 
2133 	for_each_cwq_cpu(cpu, wq) {
2134 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2135 		struct global_cwq *gcwq = cwq->gcwq;
2136 
2137 		spin_lock_irq(&gcwq->lock);
2138 
2139 		if (flush_color >= 0) {
2140 			BUG_ON(cwq->flush_color != -1);
2141 
2142 			if (cwq->nr_in_flight[flush_color]) {
2143 				cwq->flush_color = flush_color;
2144 				atomic_inc(&wq->nr_cwqs_to_flush);
2145 				wait = true;
2146 			}
2147 		}
2148 
2149 		if (work_color >= 0) {
2150 			BUG_ON(work_color != work_next_color(cwq->work_color));
2151 			cwq->work_color = work_color;
2152 		}
2153 
2154 		spin_unlock_irq(&gcwq->lock);
2155 	}
2156 
2157 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2158 		complete(&wq->first_flusher->done);
2159 
2160 	return wait;
2161 }
2162 
2163 /**
2164  * flush_workqueue - ensure that any scheduled work has run to completion.
2165  * @wq: workqueue to flush
2166  *
2167  * Forces execution of the workqueue and blocks until its completion.
2168  * This is typically used in driver shutdown handlers.
2169  *
2170  * We sleep until all works which were queued on entry have been handled,
2171  * but we are not livelocked by new incoming ones.
2172  */
2173 void flush_workqueue(struct workqueue_struct *wq)
2174 {
2175 	struct wq_flusher this_flusher = {
2176 		.list = LIST_HEAD_INIT(this_flusher.list),
2177 		.flush_color = -1,
2178 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2179 	};
2180 	int next_color;
2181 
2182 	lock_map_acquire(&wq->lockdep_map);
2183 	lock_map_release(&wq->lockdep_map);
2184 
2185 	mutex_lock(&wq->flush_mutex);
2186 
2187 	/*
2188 	 * Start-to-wait phase
2189 	 */
2190 	next_color = work_next_color(wq->work_color);
2191 
2192 	if (next_color != wq->flush_color) {
2193 		/*
2194 		 * Color space is not full.  The current work_color
2195 		 * becomes our flush_color and work_color is advanced
2196 		 * by one.
2197 		 */
2198 		BUG_ON(!list_empty(&wq->flusher_overflow));
2199 		this_flusher.flush_color = wq->work_color;
2200 		wq->work_color = next_color;
2201 
2202 		if (!wq->first_flusher) {
2203 			/* no flush in progress, become the first flusher */
2204 			BUG_ON(wq->flush_color != this_flusher.flush_color);
2205 
2206 			wq->first_flusher = &this_flusher;
2207 
2208 			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2209 						       wq->work_color)) {
2210 				/* nothing to flush, done */
2211 				wq->flush_color = next_color;
2212 				wq->first_flusher = NULL;
2213 				goto out_unlock;
2214 			}
2215 		} else {
2216 			/* wait in queue */
2217 			BUG_ON(wq->flush_color == this_flusher.flush_color);
2218 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2219 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2220 		}
2221 	} else {
2222 		/*
2223 		 * Oops, color space is full, wait on overflow queue.
2224 		 * The next flush completion will assign us
2225 		 * flush_color and transfer to flusher_queue.
2226 		 */
2227 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2228 	}
2229 
2230 	mutex_unlock(&wq->flush_mutex);
2231 
2232 	wait_for_completion(&this_flusher.done);
2233 
2234 	/*
2235 	 * Wake-up-and-cascade phase
2236 	 *
2237 	 * First flushers are responsible for cascading flushes and
2238 	 * handling overflow.  Non-first flushers can simply return.
2239 	 */
2240 	if (wq->first_flusher != &this_flusher)
2241 		return;
2242 
2243 	mutex_lock(&wq->flush_mutex);
2244 
2245 	/* we might have raced, check again with mutex held */
2246 	if (wq->first_flusher != &this_flusher)
2247 		goto out_unlock;
2248 
2249 	wq->first_flusher = NULL;
2250 
2251 	BUG_ON(!list_empty(&this_flusher.list));
2252 	BUG_ON(wq->flush_color != this_flusher.flush_color);
2253 
2254 	while (true) {
2255 		struct wq_flusher *next, *tmp;
2256 
2257 		/* complete all the flushers sharing the current flush color */
2258 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2259 			if (next->flush_color != wq->flush_color)
2260 				break;
2261 			list_del_init(&next->list);
2262 			complete(&next->done);
2263 		}
2264 
2265 		BUG_ON(!list_empty(&wq->flusher_overflow) &&
2266 		       wq->flush_color != work_next_color(wq->work_color));
2267 
2268 		/* this flush_color is finished, advance by one */
2269 		wq->flush_color = work_next_color(wq->flush_color);
2270 
2271 		/* one color has been freed, handle overflow queue */
2272 		if (!list_empty(&wq->flusher_overflow)) {
2273 			/*
2274 			 * Assign the same color to all overflowed
2275 			 * flushers, advance work_color and append to
2276 			 * flusher_queue.  This is the start-to-wait
2277 			 * phase for these overflowed flushers.
2278 			 */
2279 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2280 				tmp->flush_color = wq->work_color;
2281 
2282 			wq->work_color = work_next_color(wq->work_color);
2283 
2284 			list_splice_tail_init(&wq->flusher_overflow,
2285 					      &wq->flusher_queue);
2286 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2287 		}
2288 
2289 		if (list_empty(&wq->flusher_queue)) {
2290 			BUG_ON(wq->flush_color != wq->work_color);
2291 			break;
2292 		}
2293 
2294 		/*
2295 		 * Need to flush more colors.  Make the next flusher
2296 		 * the new first flusher and arm cwqs.
2297 		 */
2298 		BUG_ON(wq->flush_color == wq->work_color);
2299 		BUG_ON(wq->flush_color != next->flush_color);
2300 
2301 		list_del_init(&next->list);
2302 		wq->first_flusher = next;
2303 
2304 		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2305 			break;
2306 
2307 		/*
2308 		 * Meh... this color is already done, clear first
2309 		 * flusher and repeat cascading.
2310 		 */
2311 		wq->first_flusher = NULL;
2312 	}
2313 
2314 out_unlock:
2315 	mutex_unlock(&wq->flush_mutex);
2316 }
2317 EXPORT_SYMBOL_GPL(flush_workqueue);
2318 
2319 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2320 			     bool wait_executing)
2321 {
2322 	struct worker *worker = NULL;
2323 	struct global_cwq *gcwq;
2324 	struct cpu_workqueue_struct *cwq;
2325 
2326 	might_sleep();
2327 	gcwq = get_work_gcwq(work);
2328 	if (!gcwq)
2329 		return false;
2330 
2331 	spin_lock_irq(&gcwq->lock);
2332 	if (!list_empty(&work->entry)) {
2333 		/*
2334 		 * See the comment near try_to_grab_pending()->smp_rmb().
2335 		 * If it was re-queued to a different gcwq under us, we
2336 		 * are not going to wait.
2337 		 */
2338 		smp_rmb();
2339 		cwq = get_work_cwq(work);
2340 		if (unlikely(!cwq || gcwq != cwq->gcwq))
2341 			goto already_gone;
2342 	} else if (wait_executing) {
2343 		worker = find_worker_executing_work(gcwq, work);
2344 		if (!worker)
2345 			goto already_gone;
2346 		cwq = worker->current_cwq;
2347 	} else
2348 		goto already_gone;
2349 
2350 	insert_wq_barrier(cwq, barr, work, worker);
2351 	spin_unlock_irq(&gcwq->lock);
2352 
2353 	lock_map_acquire(&cwq->wq->lockdep_map);
2354 	lock_map_release(&cwq->wq->lockdep_map);
2355 	return true;
2356 already_gone:
2357 	spin_unlock_irq(&gcwq->lock);
2358 	return false;
2359 }
2360 
2361 /**
2362  * flush_work - wait for a work to finish executing the last queueing instance
2363  * @work: the work to flush
2364  *
2365  * Wait until @work has finished execution.  This function considers
2366  * only the last queueing instance of @work.  If @work has been
2367  * enqueued across different CPUs on a non-reentrant workqueue or on
2368  * multiple workqueues, @work might still be executing on return on
2369  * some of the CPUs from earlier queueing.
2370  *
2371  * If @work was queued only on a non-reentrant, ordered or unbound
2372  * workqueue, @work is guaranteed to be idle on return if it hasn't
2373  * been requeued since flush started.
2374  *
2375  * RETURNS:
2376  * %true if flush_work() waited for the work to finish execution,
2377  * %false if it was already idle.
2378  */
2379 bool flush_work(struct work_struct *work)
2380 {
2381 	struct wq_barrier barr;
2382 
2383 	if (start_flush_work(work, &barr, true)) {
2384 		wait_for_completion(&barr.done);
2385 		destroy_work_on_stack(&barr.work);
2386 		return true;
2387 	} else
2388 		return false;
2389 }
2390 EXPORT_SYMBOL_GPL(flush_work);
2391 
2392 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2393 {
2394 	struct wq_barrier barr;
2395 	struct worker *worker;
2396 
2397 	spin_lock_irq(&gcwq->lock);
2398 
2399 	worker = find_worker_executing_work(gcwq, work);
2400 	if (unlikely(worker))
2401 		insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2402 
2403 	spin_unlock_irq(&gcwq->lock);
2404 
2405 	if (unlikely(worker)) {
2406 		wait_for_completion(&barr.done);
2407 		destroy_work_on_stack(&barr.work);
2408 		return true;
2409 	} else
2410 		return false;
2411 }
2412 
2413 static bool wait_on_work(struct work_struct *work)
2414 {
2415 	bool ret = false;
2416 	int cpu;
2417 
2418 	might_sleep();
2419 
2420 	lock_map_acquire(&work->lockdep_map);
2421 	lock_map_release(&work->lockdep_map);
2422 
2423 	for_each_gcwq_cpu(cpu)
2424 		ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2425 	return ret;
2426 }
2427 
2428 /**
2429  * flush_work_sync - wait until a work has finished execution
2430  * @work: the work to flush
2431  *
2432  * Wait until @work has finished execution.  On return, it's
2433  * guaranteed that all queueing instances of @work which happened
2434  * before this function is called are finished.  In other words, if
2435  * @work hasn't been requeued since this function was called, @work is
2436  * guaranteed to be idle on return.
2437  *
2438  * RETURNS:
2439  * %true if flush_work_sync() waited for the work to finish execution,
2440  * %false if it was already idle.
2441  */
2442 bool flush_work_sync(struct work_struct *work)
2443 {
2444 	struct wq_barrier barr;
2445 	bool pending, waited;
2446 
2447 	/* we'll wait for executions separately, queue barr only if pending */
2448 	pending = start_flush_work(work, &barr, false);
2449 
2450 	/* wait for executions to finish */
2451 	waited = wait_on_work(work);
2452 
2453 	/* wait for the pending one */
2454 	if (pending) {
2455 		wait_for_completion(&barr.done);
2456 		destroy_work_on_stack(&barr.work);
2457 	}
2458 
2459 	return pending || waited;
2460 }
2461 EXPORT_SYMBOL_GPL(flush_work_sync);
2462 
2463 /*
2464  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2465  * so this work can't be re-armed in any way.
2466  */
2467 static int try_to_grab_pending(struct work_struct *work)
2468 {
2469 	struct global_cwq *gcwq;
2470 	int ret = -1;
2471 
2472 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2473 		return 0;
2474 
2475 	/*
2476 	 * The queueing is in progress, or it is already queued. Try to
2477 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2478 	 */
2479 	gcwq = get_work_gcwq(work);
2480 	if (!gcwq)
2481 		return ret;
2482 
2483 	spin_lock_irq(&gcwq->lock);
2484 	if (!list_empty(&work->entry)) {
2485 		/*
2486 		 * This work is queued, but perhaps we locked the wrong gcwq.
2487 		 * In that case we must see the new value after rmb(), see
2488 		 * insert_work()->wmb().
2489 		 */
2490 		smp_rmb();
2491 		if (gcwq == get_work_gcwq(work)) {
2492 			debug_work_deactivate(work);
2493 			list_del_init(&work->entry);
2494 			cwq_dec_nr_in_flight(get_work_cwq(work),
2495 				get_work_color(work),
2496 				*work_data_bits(work) & WORK_STRUCT_DELAYED);
2497 			ret = 1;
2498 		}
2499 	}
2500 	spin_unlock_irq(&gcwq->lock);
2501 
2502 	return ret;
2503 }
2504 
2505 static bool __cancel_work_timer(struct work_struct *work,
2506 				struct timer_list* timer)
2507 {
2508 	int ret;
2509 
2510 	do {
2511 		ret = (timer && likely(del_timer(timer)));
2512 		if (!ret)
2513 			ret = try_to_grab_pending(work);
2514 		wait_on_work(work);
2515 	} while (unlikely(ret < 0));
2516 
2517 	clear_work_data(work);
2518 	return ret;
2519 }
2520 
2521 /**
2522  * cancel_work_sync - cancel a work and wait for it to finish
2523  * @work: the work to cancel
2524  *
2525  * Cancel @work and wait for its execution to finish.  This function
2526  * can be used even if the work re-queues itself or migrates to
2527  * another workqueue.  On return from this function, @work is
2528  * guaranteed to be not pending or executing on any CPU.
2529  *
2530  * cancel_work_sync(&delayed_work->work) must not be used for
2531  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2532  *
2533  * The caller must ensure that the workqueue on which @work was last
2534  * queued can't be destroyed before this function returns.
2535  *
2536  * RETURNS:
2537  * %true if @work was pending, %false otherwise.
2538  */
2539 bool cancel_work_sync(struct work_struct *work)
2540 {
2541 	return __cancel_work_timer(work, NULL);
2542 }
2543 EXPORT_SYMBOL_GPL(cancel_work_sync);
2544 
2545 /**
2546  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2547  * @dwork: the delayed work to flush
2548  *
2549  * Delayed timer is cancelled and the pending work is queued for
2550  * immediate execution.  Like flush_work(), this function only
2551  * considers the last queueing instance of @dwork.
2552  *
2553  * RETURNS:
2554  * %true if flush_work() waited for the work to finish execution,
2555  * %false if it was already idle.
2556  */
2557 bool flush_delayed_work(struct delayed_work *dwork)
2558 {
2559 	if (del_timer_sync(&dwork->timer))
2560 		__queue_work(raw_smp_processor_id(),
2561 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2562 	return flush_work(&dwork->work);
2563 }
2564 EXPORT_SYMBOL(flush_delayed_work);
2565 
2566 /**
2567  * flush_delayed_work_sync - wait for a dwork to finish
2568  * @dwork: the delayed work to flush
2569  *
2570  * Delayed timer is cancelled and the pending work is queued for
2571  * execution immediately.  Other than timer handling, its behavior
2572  * is identical to flush_work_sync().
2573  *
2574  * RETURNS:
2575  * %true if flush_work_sync() waited for the work to finish execution,
2576  * %false if it was already idle.
2577  */
2578 bool flush_delayed_work_sync(struct delayed_work *dwork)
2579 {
2580 	if (del_timer_sync(&dwork->timer))
2581 		__queue_work(raw_smp_processor_id(),
2582 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2583 	return flush_work_sync(&dwork->work);
2584 }
2585 EXPORT_SYMBOL(flush_delayed_work_sync);
2586 
2587 /**
2588  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2589  * @dwork: the delayed work cancel
2590  *
2591  * This is cancel_work_sync() for delayed works.
2592  *
2593  * RETURNS:
2594  * %true if @dwork was pending, %false otherwise.
2595  */
2596 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2597 {
2598 	return __cancel_work_timer(&dwork->work, &dwork->timer);
2599 }
2600 EXPORT_SYMBOL(cancel_delayed_work_sync);
2601 
2602 /**
2603  * schedule_work - put work task in global workqueue
2604  * @work: job to be done
2605  *
2606  * Returns zero if @work was already on the kernel-global workqueue and
2607  * non-zero otherwise.
2608  *
2609  * This puts a job in the kernel-global workqueue if it was not already
2610  * queued and leaves it in the same position on the kernel-global
2611  * workqueue otherwise.
2612  */
2613 int schedule_work(struct work_struct *work)
2614 {
2615 	return queue_work(system_wq, work);
2616 }
2617 EXPORT_SYMBOL(schedule_work);
2618 
2619 /*
2620  * schedule_work_on - put work task on a specific cpu
2621  * @cpu: cpu to put the work task on
2622  * @work: job to be done
2623  *
2624  * This puts a job on a specific cpu
2625  */
2626 int schedule_work_on(int cpu, struct work_struct *work)
2627 {
2628 	return queue_work_on(cpu, system_wq, work);
2629 }
2630 EXPORT_SYMBOL(schedule_work_on);
2631 
2632 /**
2633  * schedule_delayed_work - put work task in global workqueue after delay
2634  * @dwork: job to be done
2635  * @delay: number of jiffies to wait or 0 for immediate execution
2636  *
2637  * After waiting for a given time this puts a job in the kernel-global
2638  * workqueue.
2639  */
2640 int schedule_delayed_work(struct delayed_work *dwork,
2641 					unsigned long delay)
2642 {
2643 	return queue_delayed_work(system_wq, dwork, delay);
2644 }
2645 EXPORT_SYMBOL(schedule_delayed_work);
2646 
2647 /**
2648  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2649  * @cpu: cpu to use
2650  * @dwork: job to be done
2651  * @delay: number of jiffies to wait
2652  *
2653  * After waiting for a given time this puts a job in the kernel-global
2654  * workqueue on the specified CPU.
2655  */
2656 int schedule_delayed_work_on(int cpu,
2657 			struct delayed_work *dwork, unsigned long delay)
2658 {
2659 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2660 }
2661 EXPORT_SYMBOL(schedule_delayed_work_on);
2662 
2663 /**
2664  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2665  * @func: the function to call
2666  *
2667  * schedule_on_each_cpu() executes @func on each online CPU using the
2668  * system workqueue and blocks until all CPUs have completed.
2669  * schedule_on_each_cpu() is very slow.
2670  *
2671  * RETURNS:
2672  * 0 on success, -errno on failure.
2673  */
2674 int schedule_on_each_cpu(work_func_t func)
2675 {
2676 	int cpu;
2677 	struct work_struct __percpu *works;
2678 
2679 	works = alloc_percpu(struct work_struct);
2680 	if (!works)
2681 		return -ENOMEM;
2682 
2683 	get_online_cpus();
2684 
2685 	for_each_online_cpu(cpu) {
2686 		struct work_struct *work = per_cpu_ptr(works, cpu);
2687 
2688 		INIT_WORK(work, func);
2689 		schedule_work_on(cpu, work);
2690 	}
2691 
2692 	for_each_online_cpu(cpu)
2693 		flush_work(per_cpu_ptr(works, cpu));
2694 
2695 	put_online_cpus();
2696 	free_percpu(works);
2697 	return 0;
2698 }
2699 
2700 /**
2701  * flush_scheduled_work - ensure that any scheduled work has run to completion.
2702  *
2703  * Forces execution of the kernel-global workqueue and blocks until its
2704  * completion.
2705  *
2706  * Think twice before calling this function!  It's very easy to get into
2707  * trouble if you don't take great care.  Either of the following situations
2708  * will lead to deadlock:
2709  *
2710  *	One of the work items currently on the workqueue needs to acquire
2711  *	a lock held by your code or its caller.
2712  *
2713  *	Your code is running in the context of a work routine.
2714  *
2715  * They will be detected by lockdep when they occur, but the first might not
2716  * occur very often.  It depends on what work items are on the workqueue and
2717  * what locks they need, which you have no control over.
2718  *
2719  * In most situations flushing the entire workqueue is overkill; you merely
2720  * need to know that a particular work item isn't queued and isn't running.
2721  * In such cases you should use cancel_delayed_work_sync() or
2722  * cancel_work_sync() instead.
2723  */
2724 void flush_scheduled_work(void)
2725 {
2726 	flush_workqueue(system_wq);
2727 }
2728 EXPORT_SYMBOL(flush_scheduled_work);
2729 
2730 /**
2731  * execute_in_process_context - reliably execute the routine with user context
2732  * @fn:		the function to execute
2733  * @ew:		guaranteed storage for the execute work structure (must
2734  *		be available when the work executes)
2735  *
2736  * Executes the function immediately if process context is available,
2737  * otherwise schedules the function for delayed execution.
2738  *
2739  * Returns:	0 - function was executed
2740  *		1 - function was scheduled for execution
2741  */
2742 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2743 {
2744 	if (!in_interrupt()) {
2745 		fn(&ew->work);
2746 		return 0;
2747 	}
2748 
2749 	INIT_WORK(&ew->work, fn);
2750 	schedule_work(&ew->work);
2751 
2752 	return 1;
2753 }
2754 EXPORT_SYMBOL_GPL(execute_in_process_context);
2755 
2756 int keventd_up(void)
2757 {
2758 	return system_wq != NULL;
2759 }
2760 
2761 static int alloc_cwqs(struct workqueue_struct *wq)
2762 {
2763 	/*
2764 	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2765 	 * Make sure that the alignment isn't lower than that of
2766 	 * unsigned long long.
2767 	 */
2768 	const size_t size = sizeof(struct cpu_workqueue_struct);
2769 	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2770 				   __alignof__(unsigned long long));
2771 #ifdef CONFIG_SMP
2772 	bool percpu = !(wq->flags & WQ_UNBOUND);
2773 #else
2774 	bool percpu = false;
2775 #endif
2776 
2777 	if (percpu)
2778 		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2779 	else {
2780 		void *ptr;
2781 
2782 		/*
2783 		 * Allocate enough room to align cwq and put an extra
2784 		 * pointer at the end pointing back to the originally
2785 		 * allocated pointer which will be used for free.
2786 		 */
2787 		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2788 		if (ptr) {
2789 			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2790 			*(void **)(wq->cpu_wq.single + 1) = ptr;
2791 		}
2792 	}
2793 
2794 	/* just in case, make sure it's actually aligned
2795 	 * - this is affected by PERCPU() alignment in vmlinux.lds.S
2796 	 */
2797 	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2798 	return wq->cpu_wq.v ? 0 : -ENOMEM;
2799 }
2800 
2801 static void free_cwqs(struct workqueue_struct *wq)
2802 {
2803 #ifdef CONFIG_SMP
2804 	bool percpu = !(wq->flags & WQ_UNBOUND);
2805 #else
2806 	bool percpu = false;
2807 #endif
2808 
2809 	if (percpu)
2810 		free_percpu(wq->cpu_wq.pcpu);
2811 	else if (wq->cpu_wq.single) {
2812 		/* the pointer to free is stored right after the cwq */
2813 		kfree(*(void **)(wq->cpu_wq.single + 1));
2814 	}
2815 }
2816 
2817 static int wq_clamp_max_active(int max_active, unsigned int flags,
2818 			       const char *name)
2819 {
2820 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2821 
2822 	if (max_active < 1 || max_active > lim)
2823 		printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2824 		       "is out of range, clamping between %d and %d\n",
2825 		       max_active, name, 1, lim);
2826 
2827 	return clamp_val(max_active, 1, lim);
2828 }
2829 
2830 struct workqueue_struct *__alloc_workqueue_key(const char *name,
2831 					       unsigned int flags,
2832 					       int max_active,
2833 					       struct lock_class_key *key,
2834 					       const char *lock_name)
2835 {
2836 	struct workqueue_struct *wq;
2837 	unsigned int cpu;
2838 
2839 	/*
2840 	 * Workqueues which may be used during memory reclaim should
2841 	 * have a rescuer to guarantee forward progress.
2842 	 */
2843 	if (flags & WQ_MEM_RECLAIM)
2844 		flags |= WQ_RESCUER;
2845 
2846 	/*
2847 	 * Unbound workqueues aren't concurrency managed and should be
2848 	 * dispatched to workers immediately.
2849 	 */
2850 	if (flags & WQ_UNBOUND)
2851 		flags |= WQ_HIGHPRI;
2852 
2853 	max_active = max_active ?: WQ_DFL_ACTIVE;
2854 	max_active = wq_clamp_max_active(max_active, flags, name);
2855 
2856 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
2857 	if (!wq)
2858 		goto err;
2859 
2860 	wq->flags = flags;
2861 	wq->saved_max_active = max_active;
2862 	mutex_init(&wq->flush_mutex);
2863 	atomic_set(&wq->nr_cwqs_to_flush, 0);
2864 	INIT_LIST_HEAD(&wq->flusher_queue);
2865 	INIT_LIST_HEAD(&wq->flusher_overflow);
2866 
2867 	wq->name = name;
2868 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
2869 	INIT_LIST_HEAD(&wq->list);
2870 
2871 	if (alloc_cwqs(wq) < 0)
2872 		goto err;
2873 
2874 	for_each_cwq_cpu(cpu, wq) {
2875 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2876 		struct global_cwq *gcwq = get_gcwq(cpu);
2877 
2878 		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
2879 		cwq->gcwq = gcwq;
2880 		cwq->wq = wq;
2881 		cwq->flush_color = -1;
2882 		cwq->max_active = max_active;
2883 		INIT_LIST_HEAD(&cwq->delayed_works);
2884 	}
2885 
2886 	if (flags & WQ_RESCUER) {
2887 		struct worker *rescuer;
2888 
2889 		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
2890 			goto err;
2891 
2892 		wq->rescuer = rescuer = alloc_worker();
2893 		if (!rescuer)
2894 			goto err;
2895 
2896 		rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
2897 		if (IS_ERR(rescuer->task))
2898 			goto err;
2899 
2900 		rescuer->task->flags |= PF_THREAD_BOUND;
2901 		wake_up_process(rescuer->task);
2902 	}
2903 
2904 	/*
2905 	 * workqueue_lock protects global freeze state and workqueues
2906 	 * list.  Grab it, set max_active accordingly and add the new
2907 	 * workqueue to workqueues list.
2908 	 */
2909 	spin_lock(&workqueue_lock);
2910 
2911 	if (workqueue_freezing && wq->flags & WQ_FREEZEABLE)
2912 		for_each_cwq_cpu(cpu, wq)
2913 			get_cwq(cpu, wq)->max_active = 0;
2914 
2915 	list_add(&wq->list, &workqueues);
2916 
2917 	spin_unlock(&workqueue_lock);
2918 
2919 	return wq;
2920 err:
2921 	if (wq) {
2922 		free_cwqs(wq);
2923 		free_mayday_mask(wq->mayday_mask);
2924 		kfree(wq->rescuer);
2925 		kfree(wq);
2926 	}
2927 	return NULL;
2928 }
2929 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
2930 
2931 /**
2932  * destroy_workqueue - safely terminate a workqueue
2933  * @wq: target workqueue
2934  *
2935  * Safely destroy a workqueue. All work currently pending will be done first.
2936  */
2937 void destroy_workqueue(struct workqueue_struct *wq)
2938 {
2939 	unsigned int cpu;
2940 
2941 	wq->flags |= WQ_DYING;
2942 	flush_workqueue(wq);
2943 
2944 	/*
2945 	 * wq list is used to freeze wq, remove from list after
2946 	 * flushing is complete in case freeze races us.
2947 	 */
2948 	spin_lock(&workqueue_lock);
2949 	list_del(&wq->list);
2950 	spin_unlock(&workqueue_lock);
2951 
2952 	/* sanity check */
2953 	for_each_cwq_cpu(cpu, wq) {
2954 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2955 		int i;
2956 
2957 		for (i = 0; i < WORK_NR_COLORS; i++)
2958 			BUG_ON(cwq->nr_in_flight[i]);
2959 		BUG_ON(cwq->nr_active);
2960 		BUG_ON(!list_empty(&cwq->delayed_works));
2961 	}
2962 
2963 	if (wq->flags & WQ_RESCUER) {
2964 		kthread_stop(wq->rescuer->task);
2965 		free_mayday_mask(wq->mayday_mask);
2966 		kfree(wq->rescuer);
2967 	}
2968 
2969 	free_cwqs(wq);
2970 	kfree(wq);
2971 }
2972 EXPORT_SYMBOL_GPL(destroy_workqueue);
2973 
2974 /**
2975  * workqueue_set_max_active - adjust max_active of a workqueue
2976  * @wq: target workqueue
2977  * @max_active: new max_active value.
2978  *
2979  * Set max_active of @wq to @max_active.
2980  *
2981  * CONTEXT:
2982  * Don't call from IRQ context.
2983  */
2984 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
2985 {
2986 	unsigned int cpu;
2987 
2988 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
2989 
2990 	spin_lock(&workqueue_lock);
2991 
2992 	wq->saved_max_active = max_active;
2993 
2994 	for_each_cwq_cpu(cpu, wq) {
2995 		struct global_cwq *gcwq = get_gcwq(cpu);
2996 
2997 		spin_lock_irq(&gcwq->lock);
2998 
2999 		if (!(wq->flags & WQ_FREEZEABLE) ||
3000 		    !(gcwq->flags & GCWQ_FREEZING))
3001 			get_cwq(gcwq->cpu, wq)->max_active = max_active;
3002 
3003 		spin_unlock_irq(&gcwq->lock);
3004 	}
3005 
3006 	spin_unlock(&workqueue_lock);
3007 }
3008 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3009 
3010 /**
3011  * workqueue_congested - test whether a workqueue is congested
3012  * @cpu: CPU in question
3013  * @wq: target workqueue
3014  *
3015  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
3016  * no synchronization around this function and the test result is
3017  * unreliable and only useful as advisory hints or for debugging.
3018  *
3019  * RETURNS:
3020  * %true if congested, %false otherwise.
3021  */
3022 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3023 {
3024 	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3025 
3026 	return !list_empty(&cwq->delayed_works);
3027 }
3028 EXPORT_SYMBOL_GPL(workqueue_congested);
3029 
3030 /**
3031  * work_cpu - return the last known associated cpu for @work
3032  * @work: the work of interest
3033  *
3034  * RETURNS:
3035  * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3036  */
3037 unsigned int work_cpu(struct work_struct *work)
3038 {
3039 	struct global_cwq *gcwq = get_work_gcwq(work);
3040 
3041 	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3042 }
3043 EXPORT_SYMBOL_GPL(work_cpu);
3044 
3045 /**
3046  * work_busy - test whether a work is currently pending or running
3047  * @work: the work to be tested
3048  *
3049  * Test whether @work is currently pending or running.  There is no
3050  * synchronization around this function and the test result is
3051  * unreliable and only useful as advisory hints or for debugging.
3052  * Especially for reentrant wqs, the pending state might hide the
3053  * running state.
3054  *
3055  * RETURNS:
3056  * OR'd bitmask of WORK_BUSY_* bits.
3057  */
3058 unsigned int work_busy(struct work_struct *work)
3059 {
3060 	struct global_cwq *gcwq = get_work_gcwq(work);
3061 	unsigned long flags;
3062 	unsigned int ret = 0;
3063 
3064 	if (!gcwq)
3065 		return false;
3066 
3067 	spin_lock_irqsave(&gcwq->lock, flags);
3068 
3069 	if (work_pending(work))
3070 		ret |= WORK_BUSY_PENDING;
3071 	if (find_worker_executing_work(gcwq, work))
3072 		ret |= WORK_BUSY_RUNNING;
3073 
3074 	spin_unlock_irqrestore(&gcwq->lock, flags);
3075 
3076 	return ret;
3077 }
3078 EXPORT_SYMBOL_GPL(work_busy);
3079 
3080 /*
3081  * CPU hotplug.
3082  *
3083  * There are two challenges in supporting CPU hotplug.  Firstly, there
3084  * are a lot of assumptions on strong associations among work, cwq and
3085  * gcwq which make migrating pending and scheduled works very
3086  * difficult to implement without impacting hot paths.  Secondly,
3087  * gcwqs serve mix of short, long and very long running works making
3088  * blocked draining impractical.
3089  *
3090  * This is solved by allowing a gcwq to be detached from CPU, running
3091  * it with unbound (rogue) workers and allowing it to be reattached
3092  * later if the cpu comes back online.  A separate thread is created
3093  * to govern a gcwq in such state and is called the trustee of the
3094  * gcwq.
3095  *
3096  * Trustee states and their descriptions.
3097  *
3098  * START	Command state used on startup.  On CPU_DOWN_PREPARE, a
3099  *		new trustee is started with this state.
3100  *
3101  * IN_CHARGE	Once started, trustee will enter this state after
3102  *		assuming the manager role and making all existing
3103  *		workers rogue.  DOWN_PREPARE waits for trustee to
3104  *		enter this state.  After reaching IN_CHARGE, trustee
3105  *		tries to execute the pending worklist until it's empty
3106  *		and the state is set to BUTCHER, or the state is set
3107  *		to RELEASE.
3108  *
3109  * BUTCHER	Command state which is set by the cpu callback after
3110  *		the cpu has went down.  Once this state is set trustee
3111  *		knows that there will be no new works on the worklist
3112  *		and once the worklist is empty it can proceed to
3113  *		killing idle workers.
3114  *
3115  * RELEASE	Command state which is set by the cpu callback if the
3116  *		cpu down has been canceled or it has come online
3117  *		again.  After recognizing this state, trustee stops
3118  *		trying to drain or butcher and clears ROGUE, rebinds
3119  *		all remaining workers back to the cpu and releases
3120  *		manager role.
3121  *
3122  * DONE		Trustee will enter this state after BUTCHER or RELEASE
3123  *		is complete.
3124  *
3125  *          trustee                 CPU                draining
3126  *         took over                down               complete
3127  * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3128  *                        |                     |                  ^
3129  *                        | CPU is back online  v   return workers |
3130  *                         ----------------> RELEASE --------------
3131  */
3132 
3133 /**
3134  * trustee_wait_event_timeout - timed event wait for trustee
3135  * @cond: condition to wait for
3136  * @timeout: timeout in jiffies
3137  *
3138  * wait_event_timeout() for trustee to use.  Handles locking and
3139  * checks for RELEASE request.
3140  *
3141  * CONTEXT:
3142  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3143  * multiple times.  To be used by trustee.
3144  *
3145  * RETURNS:
3146  * Positive indicating left time if @cond is satisfied, 0 if timed
3147  * out, -1 if canceled.
3148  */
3149 #define trustee_wait_event_timeout(cond, timeout) ({			\
3150 	long __ret = (timeout);						\
3151 	while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) &&	\
3152 	       __ret) {							\
3153 		spin_unlock_irq(&gcwq->lock);				\
3154 		__wait_event_timeout(gcwq->trustee_wait, (cond) ||	\
3155 			(gcwq->trustee_state == TRUSTEE_RELEASE),	\
3156 			__ret);						\
3157 		spin_lock_irq(&gcwq->lock);				\
3158 	}								\
3159 	gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret);		\
3160 })
3161 
3162 /**
3163  * trustee_wait_event - event wait for trustee
3164  * @cond: condition to wait for
3165  *
3166  * wait_event() for trustee to use.  Automatically handles locking and
3167  * checks for CANCEL request.
3168  *
3169  * CONTEXT:
3170  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3171  * multiple times.  To be used by trustee.
3172  *
3173  * RETURNS:
3174  * 0 if @cond is satisfied, -1 if canceled.
3175  */
3176 #define trustee_wait_event(cond) ({					\
3177 	long __ret1;							\
3178 	__ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3179 	__ret1 < 0 ? -1 : 0;						\
3180 })
3181 
3182 static int __cpuinit trustee_thread(void *__gcwq)
3183 {
3184 	struct global_cwq *gcwq = __gcwq;
3185 	struct worker *worker;
3186 	struct work_struct *work;
3187 	struct hlist_node *pos;
3188 	long rc;
3189 	int i;
3190 
3191 	BUG_ON(gcwq->cpu != smp_processor_id());
3192 
3193 	spin_lock_irq(&gcwq->lock);
3194 	/*
3195 	 * Claim the manager position and make all workers rogue.
3196 	 * Trustee must be bound to the target cpu and can't be
3197 	 * cancelled.
3198 	 */
3199 	BUG_ON(gcwq->cpu != smp_processor_id());
3200 	rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3201 	BUG_ON(rc < 0);
3202 
3203 	gcwq->flags |= GCWQ_MANAGING_WORKERS;
3204 
3205 	list_for_each_entry(worker, &gcwq->idle_list, entry)
3206 		worker->flags |= WORKER_ROGUE;
3207 
3208 	for_each_busy_worker(worker, i, pos, gcwq)
3209 		worker->flags |= WORKER_ROGUE;
3210 
3211 	/*
3212 	 * Call schedule() so that we cross rq->lock and thus can
3213 	 * guarantee sched callbacks see the rogue flag.  This is
3214 	 * necessary as scheduler callbacks may be invoked from other
3215 	 * cpus.
3216 	 */
3217 	spin_unlock_irq(&gcwq->lock);
3218 	schedule();
3219 	spin_lock_irq(&gcwq->lock);
3220 
3221 	/*
3222 	 * Sched callbacks are disabled now.  Zap nr_running.  After
3223 	 * this, nr_running stays zero and need_more_worker() and
3224 	 * keep_working() are always true as long as the worklist is
3225 	 * not empty.
3226 	 */
3227 	atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3228 
3229 	spin_unlock_irq(&gcwq->lock);
3230 	del_timer_sync(&gcwq->idle_timer);
3231 	spin_lock_irq(&gcwq->lock);
3232 
3233 	/*
3234 	 * We're now in charge.  Notify and proceed to drain.  We need
3235 	 * to keep the gcwq running during the whole CPU down
3236 	 * procedure as other cpu hotunplug callbacks may need to
3237 	 * flush currently running tasks.
3238 	 */
3239 	gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3240 	wake_up_all(&gcwq->trustee_wait);
3241 
3242 	/*
3243 	 * The original cpu is in the process of dying and may go away
3244 	 * anytime now.  When that happens, we and all workers would
3245 	 * be migrated to other cpus.  Try draining any left work.  We
3246 	 * want to get it over with ASAP - spam rescuers, wake up as
3247 	 * many idlers as necessary and create new ones till the
3248 	 * worklist is empty.  Note that if the gcwq is frozen, there
3249 	 * may be frozen works in freezeable cwqs.  Don't declare
3250 	 * completion while frozen.
3251 	 */
3252 	while (gcwq->nr_workers != gcwq->nr_idle ||
3253 	       gcwq->flags & GCWQ_FREEZING ||
3254 	       gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3255 		int nr_works = 0;
3256 
3257 		list_for_each_entry(work, &gcwq->worklist, entry) {
3258 			send_mayday(work);
3259 			nr_works++;
3260 		}
3261 
3262 		list_for_each_entry(worker, &gcwq->idle_list, entry) {
3263 			if (!nr_works--)
3264 				break;
3265 			wake_up_process(worker->task);
3266 		}
3267 
3268 		if (need_to_create_worker(gcwq)) {
3269 			spin_unlock_irq(&gcwq->lock);
3270 			worker = create_worker(gcwq, false);
3271 			spin_lock_irq(&gcwq->lock);
3272 			if (worker) {
3273 				worker->flags |= WORKER_ROGUE;
3274 				start_worker(worker);
3275 			}
3276 		}
3277 
3278 		/* give a breather */
3279 		if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3280 			break;
3281 	}
3282 
3283 	/*
3284 	 * Either all works have been scheduled and cpu is down, or
3285 	 * cpu down has already been canceled.  Wait for and butcher
3286 	 * all workers till we're canceled.
3287 	 */
3288 	do {
3289 		rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3290 		while (!list_empty(&gcwq->idle_list))
3291 			destroy_worker(list_first_entry(&gcwq->idle_list,
3292 							struct worker, entry));
3293 	} while (gcwq->nr_workers && rc >= 0);
3294 
3295 	/*
3296 	 * At this point, either draining has completed and no worker
3297 	 * is left, or cpu down has been canceled or the cpu is being
3298 	 * brought back up.  There shouldn't be any idle one left.
3299 	 * Tell the remaining busy ones to rebind once it finishes the
3300 	 * currently scheduled works by scheduling the rebind_work.
3301 	 */
3302 	WARN_ON(!list_empty(&gcwq->idle_list));
3303 
3304 	for_each_busy_worker(worker, i, pos, gcwq) {
3305 		struct work_struct *rebind_work = &worker->rebind_work;
3306 
3307 		/*
3308 		 * Rebind_work may race with future cpu hotplug
3309 		 * operations.  Use a separate flag to mark that
3310 		 * rebinding is scheduled.
3311 		 */
3312 		worker->flags |= WORKER_REBIND;
3313 		worker->flags &= ~WORKER_ROGUE;
3314 
3315 		/* queue rebind_work, wq doesn't matter, use the default one */
3316 		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3317 				     work_data_bits(rebind_work)))
3318 			continue;
3319 
3320 		debug_work_activate(rebind_work);
3321 		insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3322 			    worker->scheduled.next,
3323 			    work_color_to_flags(WORK_NO_COLOR));
3324 	}
3325 
3326 	/* relinquish manager role */
3327 	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3328 
3329 	/* notify completion */
3330 	gcwq->trustee = NULL;
3331 	gcwq->trustee_state = TRUSTEE_DONE;
3332 	wake_up_all(&gcwq->trustee_wait);
3333 	spin_unlock_irq(&gcwq->lock);
3334 	return 0;
3335 }
3336 
3337 /**
3338  * wait_trustee_state - wait for trustee to enter the specified state
3339  * @gcwq: gcwq the trustee of interest belongs to
3340  * @state: target state to wait for
3341  *
3342  * Wait for the trustee to reach @state.  DONE is already matched.
3343  *
3344  * CONTEXT:
3345  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3346  * multiple times.  To be used by cpu_callback.
3347  */
3348 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3349 __releases(&gcwq->lock)
3350 __acquires(&gcwq->lock)
3351 {
3352 	if (!(gcwq->trustee_state == state ||
3353 	      gcwq->trustee_state == TRUSTEE_DONE)) {
3354 		spin_unlock_irq(&gcwq->lock);
3355 		__wait_event(gcwq->trustee_wait,
3356 			     gcwq->trustee_state == state ||
3357 			     gcwq->trustee_state == TRUSTEE_DONE);
3358 		spin_lock_irq(&gcwq->lock);
3359 	}
3360 }
3361 
3362 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3363 						unsigned long action,
3364 						void *hcpu)
3365 {
3366 	unsigned int cpu = (unsigned long)hcpu;
3367 	struct global_cwq *gcwq = get_gcwq(cpu);
3368 	struct task_struct *new_trustee = NULL;
3369 	struct worker *uninitialized_var(new_worker);
3370 	unsigned long flags;
3371 
3372 	action &= ~CPU_TASKS_FROZEN;
3373 
3374 	switch (action) {
3375 	case CPU_DOWN_PREPARE:
3376 		new_trustee = kthread_create(trustee_thread, gcwq,
3377 					     "workqueue_trustee/%d\n", cpu);
3378 		if (IS_ERR(new_trustee))
3379 			return notifier_from_errno(PTR_ERR(new_trustee));
3380 		kthread_bind(new_trustee, cpu);
3381 		/* fall through */
3382 	case CPU_UP_PREPARE:
3383 		BUG_ON(gcwq->first_idle);
3384 		new_worker = create_worker(gcwq, false);
3385 		if (!new_worker) {
3386 			if (new_trustee)
3387 				kthread_stop(new_trustee);
3388 			return NOTIFY_BAD;
3389 		}
3390 	}
3391 
3392 	/* some are called w/ irq disabled, don't disturb irq status */
3393 	spin_lock_irqsave(&gcwq->lock, flags);
3394 
3395 	switch (action) {
3396 	case CPU_DOWN_PREPARE:
3397 		/* initialize trustee and tell it to acquire the gcwq */
3398 		BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3399 		gcwq->trustee = new_trustee;
3400 		gcwq->trustee_state = TRUSTEE_START;
3401 		wake_up_process(gcwq->trustee);
3402 		wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3403 		/* fall through */
3404 	case CPU_UP_PREPARE:
3405 		BUG_ON(gcwq->first_idle);
3406 		gcwq->first_idle = new_worker;
3407 		break;
3408 
3409 	case CPU_DYING:
3410 		/*
3411 		 * Before this, the trustee and all workers except for
3412 		 * the ones which are still executing works from
3413 		 * before the last CPU down must be on the cpu.  After
3414 		 * this, they'll all be diasporas.
3415 		 */
3416 		gcwq->flags |= GCWQ_DISASSOCIATED;
3417 		break;
3418 
3419 	case CPU_POST_DEAD:
3420 		gcwq->trustee_state = TRUSTEE_BUTCHER;
3421 		/* fall through */
3422 	case CPU_UP_CANCELED:
3423 		destroy_worker(gcwq->first_idle);
3424 		gcwq->first_idle = NULL;
3425 		break;
3426 
3427 	case CPU_DOWN_FAILED:
3428 	case CPU_ONLINE:
3429 		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3430 		if (gcwq->trustee_state != TRUSTEE_DONE) {
3431 			gcwq->trustee_state = TRUSTEE_RELEASE;
3432 			wake_up_process(gcwq->trustee);
3433 			wait_trustee_state(gcwq, TRUSTEE_DONE);
3434 		}
3435 
3436 		/*
3437 		 * Trustee is done and there might be no worker left.
3438 		 * Put the first_idle in and request a real manager to
3439 		 * take a look.
3440 		 */
3441 		spin_unlock_irq(&gcwq->lock);
3442 		kthread_bind(gcwq->first_idle->task, cpu);
3443 		spin_lock_irq(&gcwq->lock);
3444 		gcwq->flags |= GCWQ_MANAGE_WORKERS;
3445 		start_worker(gcwq->first_idle);
3446 		gcwq->first_idle = NULL;
3447 		break;
3448 	}
3449 
3450 	spin_unlock_irqrestore(&gcwq->lock, flags);
3451 
3452 	return notifier_from_errno(0);
3453 }
3454 
3455 #ifdef CONFIG_SMP
3456 
3457 struct work_for_cpu {
3458 	struct completion completion;
3459 	long (*fn)(void *);
3460 	void *arg;
3461 	long ret;
3462 };
3463 
3464 static int do_work_for_cpu(void *_wfc)
3465 {
3466 	struct work_for_cpu *wfc = _wfc;
3467 	wfc->ret = wfc->fn(wfc->arg);
3468 	complete(&wfc->completion);
3469 	return 0;
3470 }
3471 
3472 /**
3473  * work_on_cpu - run a function in user context on a particular cpu
3474  * @cpu: the cpu to run on
3475  * @fn: the function to run
3476  * @arg: the function arg
3477  *
3478  * This will return the value @fn returns.
3479  * It is up to the caller to ensure that the cpu doesn't go offline.
3480  * The caller must not hold any locks which would prevent @fn from completing.
3481  */
3482 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3483 {
3484 	struct task_struct *sub_thread;
3485 	struct work_for_cpu wfc = {
3486 		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3487 		.fn = fn,
3488 		.arg = arg,
3489 	};
3490 
3491 	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3492 	if (IS_ERR(sub_thread))
3493 		return PTR_ERR(sub_thread);
3494 	kthread_bind(sub_thread, cpu);
3495 	wake_up_process(sub_thread);
3496 	wait_for_completion(&wfc.completion);
3497 	return wfc.ret;
3498 }
3499 EXPORT_SYMBOL_GPL(work_on_cpu);
3500 #endif /* CONFIG_SMP */
3501 
3502 #ifdef CONFIG_FREEZER
3503 
3504 /**
3505  * freeze_workqueues_begin - begin freezing workqueues
3506  *
3507  * Start freezing workqueues.  After this function returns, all
3508  * freezeable workqueues will queue new works to their frozen_works
3509  * list instead of gcwq->worklist.
3510  *
3511  * CONTEXT:
3512  * Grabs and releases workqueue_lock and gcwq->lock's.
3513  */
3514 void freeze_workqueues_begin(void)
3515 {
3516 	unsigned int cpu;
3517 
3518 	spin_lock(&workqueue_lock);
3519 
3520 	BUG_ON(workqueue_freezing);
3521 	workqueue_freezing = true;
3522 
3523 	for_each_gcwq_cpu(cpu) {
3524 		struct global_cwq *gcwq = get_gcwq(cpu);
3525 		struct workqueue_struct *wq;
3526 
3527 		spin_lock_irq(&gcwq->lock);
3528 
3529 		BUG_ON(gcwq->flags & GCWQ_FREEZING);
3530 		gcwq->flags |= GCWQ_FREEZING;
3531 
3532 		list_for_each_entry(wq, &workqueues, list) {
3533 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3534 
3535 			if (cwq && wq->flags & WQ_FREEZEABLE)
3536 				cwq->max_active = 0;
3537 		}
3538 
3539 		spin_unlock_irq(&gcwq->lock);
3540 	}
3541 
3542 	spin_unlock(&workqueue_lock);
3543 }
3544 
3545 /**
3546  * freeze_workqueues_busy - are freezeable workqueues still busy?
3547  *
3548  * Check whether freezing is complete.  This function must be called
3549  * between freeze_workqueues_begin() and thaw_workqueues().
3550  *
3551  * CONTEXT:
3552  * Grabs and releases workqueue_lock.
3553  *
3554  * RETURNS:
3555  * %true if some freezeable workqueues are still busy.  %false if
3556  * freezing is complete.
3557  */
3558 bool freeze_workqueues_busy(void)
3559 {
3560 	unsigned int cpu;
3561 	bool busy = false;
3562 
3563 	spin_lock(&workqueue_lock);
3564 
3565 	BUG_ON(!workqueue_freezing);
3566 
3567 	for_each_gcwq_cpu(cpu) {
3568 		struct workqueue_struct *wq;
3569 		/*
3570 		 * nr_active is monotonically decreasing.  It's safe
3571 		 * to peek without lock.
3572 		 */
3573 		list_for_each_entry(wq, &workqueues, list) {
3574 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3575 
3576 			if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3577 				continue;
3578 
3579 			BUG_ON(cwq->nr_active < 0);
3580 			if (cwq->nr_active) {
3581 				busy = true;
3582 				goto out_unlock;
3583 			}
3584 		}
3585 	}
3586 out_unlock:
3587 	spin_unlock(&workqueue_lock);
3588 	return busy;
3589 }
3590 
3591 /**
3592  * thaw_workqueues - thaw workqueues
3593  *
3594  * Thaw workqueues.  Normal queueing is restored and all collected
3595  * frozen works are transferred to their respective gcwq worklists.
3596  *
3597  * CONTEXT:
3598  * Grabs and releases workqueue_lock and gcwq->lock's.
3599  */
3600 void thaw_workqueues(void)
3601 {
3602 	unsigned int cpu;
3603 
3604 	spin_lock(&workqueue_lock);
3605 
3606 	if (!workqueue_freezing)
3607 		goto out_unlock;
3608 
3609 	for_each_gcwq_cpu(cpu) {
3610 		struct global_cwq *gcwq = get_gcwq(cpu);
3611 		struct workqueue_struct *wq;
3612 
3613 		spin_lock_irq(&gcwq->lock);
3614 
3615 		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3616 		gcwq->flags &= ~GCWQ_FREEZING;
3617 
3618 		list_for_each_entry(wq, &workqueues, list) {
3619 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3620 
3621 			if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3622 				continue;
3623 
3624 			/* restore max_active and repopulate worklist */
3625 			cwq->max_active = wq->saved_max_active;
3626 
3627 			while (!list_empty(&cwq->delayed_works) &&
3628 			       cwq->nr_active < cwq->max_active)
3629 				cwq_activate_first_delayed(cwq);
3630 		}
3631 
3632 		wake_up_worker(gcwq);
3633 
3634 		spin_unlock_irq(&gcwq->lock);
3635 	}
3636 
3637 	workqueue_freezing = false;
3638 out_unlock:
3639 	spin_unlock(&workqueue_lock);
3640 }
3641 #endif /* CONFIG_FREEZER */
3642 
3643 static int __init init_workqueues(void)
3644 {
3645 	unsigned int cpu;
3646 	int i;
3647 
3648 	cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
3649 
3650 	/* initialize gcwqs */
3651 	for_each_gcwq_cpu(cpu) {
3652 		struct global_cwq *gcwq = get_gcwq(cpu);
3653 
3654 		spin_lock_init(&gcwq->lock);
3655 		INIT_LIST_HEAD(&gcwq->worklist);
3656 		gcwq->cpu = cpu;
3657 		gcwq->flags |= GCWQ_DISASSOCIATED;
3658 
3659 		INIT_LIST_HEAD(&gcwq->idle_list);
3660 		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3661 			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3662 
3663 		init_timer_deferrable(&gcwq->idle_timer);
3664 		gcwq->idle_timer.function = idle_worker_timeout;
3665 		gcwq->idle_timer.data = (unsigned long)gcwq;
3666 
3667 		setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3668 			    (unsigned long)gcwq);
3669 
3670 		ida_init(&gcwq->worker_ida);
3671 
3672 		gcwq->trustee_state = TRUSTEE_DONE;
3673 		init_waitqueue_head(&gcwq->trustee_wait);
3674 	}
3675 
3676 	/* create the initial worker */
3677 	for_each_online_gcwq_cpu(cpu) {
3678 		struct global_cwq *gcwq = get_gcwq(cpu);
3679 		struct worker *worker;
3680 
3681 		if (cpu != WORK_CPU_UNBOUND)
3682 			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3683 		worker = create_worker(gcwq, true);
3684 		BUG_ON(!worker);
3685 		spin_lock_irq(&gcwq->lock);
3686 		start_worker(worker);
3687 		spin_unlock_irq(&gcwq->lock);
3688 	}
3689 
3690 	system_wq = alloc_workqueue("events", 0, 0);
3691 	system_long_wq = alloc_workqueue("events_long", 0, 0);
3692 	system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3693 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3694 					    WQ_UNBOUND_MAX_ACTIVE);
3695 	BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq);
3696 	return 0;
3697 }
3698 early_initcall(init_workqueues);
3699