1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There is one worker pool for each CPU and 20 * one extra for works which are better served by workers which are 21 * not bound to any specific CPU. 22 * 23 * Please read Documentation/workqueue.txt for details. 24 */ 25 26 #include <linux/export.h> 27 #include <linux/kernel.h> 28 #include <linux/sched.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/completion.h> 32 #include <linux/workqueue.h> 33 #include <linux/slab.h> 34 #include <linux/cpu.h> 35 #include <linux/notifier.h> 36 #include <linux/kthread.h> 37 #include <linux/hardirq.h> 38 #include <linux/mempolicy.h> 39 #include <linux/freezer.h> 40 #include <linux/kallsyms.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 45 #include "workqueue_sched.h" 46 47 enum { 48 /* 49 * global_cwq flags 50 * 51 * A bound gcwq is either associated or disassociated with its CPU. 52 * While associated (!DISASSOCIATED), all workers are bound to the 53 * CPU and none has %WORKER_UNBOUND set and concurrency management 54 * is in effect. 55 * 56 * While DISASSOCIATED, the cpu may be offline and all workers have 57 * %WORKER_UNBOUND set and concurrency management disabled, and may 58 * be executing on any CPU. The gcwq behaves as an unbound one. 59 * 60 * Note that DISASSOCIATED can be flipped only while holding 61 * assoc_mutex of all pools on the gcwq to avoid changing binding 62 * state while create_worker() is in progress. 63 */ 64 GCWQ_DISASSOCIATED = 1 << 0, /* cpu can't serve workers */ 65 GCWQ_FREEZING = 1 << 1, /* freeze in progress */ 66 67 /* pool flags */ 68 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 69 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */ 70 71 /* worker flags */ 72 WORKER_STARTED = 1 << 0, /* started */ 73 WORKER_DIE = 1 << 1, /* die die die */ 74 WORKER_IDLE = 1 << 2, /* is idle */ 75 WORKER_PREP = 1 << 3, /* preparing to run works */ 76 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 77 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 78 79 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND | 80 WORKER_CPU_INTENSIVE, 81 82 NR_WORKER_POOLS = 2, /* # worker pools per gcwq */ 83 84 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 85 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER, 86 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1, 87 88 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 89 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 90 91 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 92 /* call for help after 10ms 93 (min two ticks) */ 94 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 95 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 96 97 /* 98 * Rescue workers are used only on emergencies and shared by 99 * all cpus. Give -20. 100 */ 101 RESCUER_NICE_LEVEL = -20, 102 HIGHPRI_NICE_LEVEL = -20, 103 }; 104 105 /* 106 * Structure fields follow one of the following exclusion rules. 107 * 108 * I: Modifiable by initialization/destruction paths and read-only for 109 * everyone else. 110 * 111 * P: Preemption protected. Disabling preemption is enough and should 112 * only be modified and accessed from the local cpu. 113 * 114 * L: gcwq->lock protected. Access with gcwq->lock held. 115 * 116 * X: During normal operation, modification requires gcwq->lock and 117 * should be done only from local cpu. Either disabling preemption 118 * on local cpu or grabbing gcwq->lock is enough for read access. 119 * If GCWQ_DISASSOCIATED is set, it's identical to L. 120 * 121 * F: wq->flush_mutex protected. 122 * 123 * W: workqueue_lock protected. 124 */ 125 126 struct global_cwq; 127 struct worker_pool; 128 129 /* 130 * The poor guys doing the actual heavy lifting. All on-duty workers 131 * are either serving the manager role, on idle list or on busy hash. 132 */ 133 struct worker { 134 /* on idle list while idle, on busy hash table while busy */ 135 union { 136 struct list_head entry; /* L: while idle */ 137 struct hlist_node hentry; /* L: while busy */ 138 }; 139 140 struct work_struct *current_work; /* L: work being processed */ 141 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */ 142 struct list_head scheduled; /* L: scheduled works */ 143 struct task_struct *task; /* I: worker task */ 144 struct worker_pool *pool; /* I: the associated pool */ 145 /* 64 bytes boundary on 64bit, 32 on 32bit */ 146 unsigned long last_active; /* L: last active timestamp */ 147 unsigned int flags; /* X: flags */ 148 int id; /* I: worker id */ 149 150 /* for rebinding worker to CPU */ 151 struct work_struct rebind_work; /* L: for busy worker */ 152 }; 153 154 struct worker_pool { 155 struct global_cwq *gcwq; /* I: the owning gcwq */ 156 unsigned int flags; /* X: flags */ 157 158 struct list_head worklist; /* L: list of pending works */ 159 int nr_workers; /* L: total number of workers */ 160 161 /* nr_idle includes the ones off idle_list for rebinding */ 162 int nr_idle; /* L: currently idle ones */ 163 164 struct list_head idle_list; /* X: list of idle workers */ 165 struct timer_list idle_timer; /* L: worker idle timeout */ 166 struct timer_list mayday_timer; /* L: SOS timer for workers */ 167 168 struct mutex assoc_mutex; /* protect GCWQ_DISASSOCIATED */ 169 struct ida worker_ida; /* L: for worker IDs */ 170 }; 171 172 /* 173 * Global per-cpu workqueue. There's one and only one for each cpu 174 * and all works are queued and processed here regardless of their 175 * target workqueues. 176 */ 177 struct global_cwq { 178 spinlock_t lock; /* the gcwq lock */ 179 unsigned int cpu; /* I: the associated cpu */ 180 unsigned int flags; /* L: GCWQ_* flags */ 181 182 /* workers are chained either in busy_hash or pool idle_list */ 183 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE]; 184 /* L: hash of busy workers */ 185 186 struct worker_pool pools[NR_WORKER_POOLS]; 187 /* normal and highpri pools */ 188 } ____cacheline_aligned_in_smp; 189 190 /* 191 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of 192 * work_struct->data are used for flags and thus cwqs need to be 193 * aligned at two's power of the number of flag bits. 194 */ 195 struct cpu_workqueue_struct { 196 struct worker_pool *pool; /* I: the associated pool */ 197 struct workqueue_struct *wq; /* I: the owning workqueue */ 198 int work_color; /* L: current color */ 199 int flush_color; /* L: flushing color */ 200 int nr_in_flight[WORK_NR_COLORS]; 201 /* L: nr of in_flight works */ 202 int nr_active; /* L: nr of active works */ 203 int max_active; /* L: max active works */ 204 struct list_head delayed_works; /* L: delayed works */ 205 }; 206 207 /* 208 * Structure used to wait for workqueue flush. 209 */ 210 struct wq_flusher { 211 struct list_head list; /* F: list of flushers */ 212 int flush_color; /* F: flush color waiting for */ 213 struct completion done; /* flush completion */ 214 }; 215 216 /* 217 * All cpumasks are assumed to be always set on UP and thus can't be 218 * used to determine whether there's something to be done. 219 */ 220 #ifdef CONFIG_SMP 221 typedef cpumask_var_t mayday_mask_t; 222 #define mayday_test_and_set_cpu(cpu, mask) \ 223 cpumask_test_and_set_cpu((cpu), (mask)) 224 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask)) 225 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask)) 226 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp)) 227 #define free_mayday_mask(mask) free_cpumask_var((mask)) 228 #else 229 typedef unsigned long mayday_mask_t; 230 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask)) 231 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask)) 232 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask)) 233 #define alloc_mayday_mask(maskp, gfp) true 234 #define free_mayday_mask(mask) do { } while (0) 235 #endif 236 237 /* 238 * The externally visible workqueue abstraction is an array of 239 * per-CPU workqueues: 240 */ 241 struct workqueue_struct { 242 unsigned int flags; /* W: WQ_* flags */ 243 union { 244 struct cpu_workqueue_struct __percpu *pcpu; 245 struct cpu_workqueue_struct *single; 246 unsigned long v; 247 } cpu_wq; /* I: cwq's */ 248 struct list_head list; /* W: list of all workqueues */ 249 250 struct mutex flush_mutex; /* protects wq flushing */ 251 int work_color; /* F: current work color */ 252 int flush_color; /* F: current flush color */ 253 atomic_t nr_cwqs_to_flush; /* flush in progress */ 254 struct wq_flusher *first_flusher; /* F: first flusher */ 255 struct list_head flusher_queue; /* F: flush waiters */ 256 struct list_head flusher_overflow; /* F: flush overflow list */ 257 258 mayday_mask_t mayday_mask; /* cpus requesting rescue */ 259 struct worker *rescuer; /* I: rescue worker */ 260 261 int nr_drainers; /* W: drain in progress */ 262 int saved_max_active; /* W: saved cwq max_active */ 263 #ifdef CONFIG_LOCKDEP 264 struct lockdep_map lockdep_map; 265 #endif 266 char name[]; /* I: workqueue name */ 267 }; 268 269 struct workqueue_struct *system_wq __read_mostly; 270 EXPORT_SYMBOL_GPL(system_wq); 271 struct workqueue_struct *system_highpri_wq __read_mostly; 272 EXPORT_SYMBOL_GPL(system_highpri_wq); 273 struct workqueue_struct *system_long_wq __read_mostly; 274 EXPORT_SYMBOL_GPL(system_long_wq); 275 struct workqueue_struct *system_unbound_wq __read_mostly; 276 EXPORT_SYMBOL_GPL(system_unbound_wq); 277 struct workqueue_struct *system_freezable_wq __read_mostly; 278 EXPORT_SYMBOL_GPL(system_freezable_wq); 279 280 #define CREATE_TRACE_POINTS 281 #include <trace/events/workqueue.h> 282 283 #define for_each_worker_pool(pool, gcwq) \ 284 for ((pool) = &(gcwq)->pools[0]; \ 285 (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++) 286 287 #define for_each_busy_worker(worker, i, pos, gcwq) \ 288 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \ 289 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry) 290 291 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask, 292 unsigned int sw) 293 { 294 if (cpu < nr_cpu_ids) { 295 if (sw & 1) { 296 cpu = cpumask_next(cpu, mask); 297 if (cpu < nr_cpu_ids) 298 return cpu; 299 } 300 if (sw & 2) 301 return WORK_CPU_UNBOUND; 302 } 303 return WORK_CPU_NONE; 304 } 305 306 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask, 307 struct workqueue_struct *wq) 308 { 309 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2); 310 } 311 312 /* 313 * CPU iterators 314 * 315 * An extra gcwq is defined for an invalid cpu number 316 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any 317 * specific CPU. The following iterators are similar to 318 * for_each_*_cpu() iterators but also considers the unbound gcwq. 319 * 320 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND 321 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND 322 * for_each_cwq_cpu() : possible CPUs for bound workqueues, 323 * WORK_CPU_UNBOUND for unbound workqueues 324 */ 325 #define for_each_gcwq_cpu(cpu) \ 326 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \ 327 (cpu) < WORK_CPU_NONE; \ 328 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3)) 329 330 #define for_each_online_gcwq_cpu(cpu) \ 331 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \ 332 (cpu) < WORK_CPU_NONE; \ 333 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3)) 334 335 #define for_each_cwq_cpu(cpu, wq) \ 336 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \ 337 (cpu) < WORK_CPU_NONE; \ 338 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq))) 339 340 #ifdef CONFIG_DEBUG_OBJECTS_WORK 341 342 static struct debug_obj_descr work_debug_descr; 343 344 static void *work_debug_hint(void *addr) 345 { 346 return ((struct work_struct *) addr)->func; 347 } 348 349 /* 350 * fixup_init is called when: 351 * - an active object is initialized 352 */ 353 static int work_fixup_init(void *addr, enum debug_obj_state state) 354 { 355 struct work_struct *work = addr; 356 357 switch (state) { 358 case ODEBUG_STATE_ACTIVE: 359 cancel_work_sync(work); 360 debug_object_init(work, &work_debug_descr); 361 return 1; 362 default: 363 return 0; 364 } 365 } 366 367 /* 368 * fixup_activate is called when: 369 * - an active object is activated 370 * - an unknown object is activated (might be a statically initialized object) 371 */ 372 static int work_fixup_activate(void *addr, enum debug_obj_state state) 373 { 374 struct work_struct *work = addr; 375 376 switch (state) { 377 378 case ODEBUG_STATE_NOTAVAILABLE: 379 /* 380 * This is not really a fixup. The work struct was 381 * statically initialized. We just make sure that it 382 * is tracked in the object tracker. 383 */ 384 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 385 debug_object_init(work, &work_debug_descr); 386 debug_object_activate(work, &work_debug_descr); 387 return 0; 388 } 389 WARN_ON_ONCE(1); 390 return 0; 391 392 case ODEBUG_STATE_ACTIVE: 393 WARN_ON(1); 394 395 default: 396 return 0; 397 } 398 } 399 400 /* 401 * fixup_free is called when: 402 * - an active object is freed 403 */ 404 static int work_fixup_free(void *addr, enum debug_obj_state state) 405 { 406 struct work_struct *work = addr; 407 408 switch (state) { 409 case ODEBUG_STATE_ACTIVE: 410 cancel_work_sync(work); 411 debug_object_free(work, &work_debug_descr); 412 return 1; 413 default: 414 return 0; 415 } 416 } 417 418 static struct debug_obj_descr work_debug_descr = { 419 .name = "work_struct", 420 .debug_hint = work_debug_hint, 421 .fixup_init = work_fixup_init, 422 .fixup_activate = work_fixup_activate, 423 .fixup_free = work_fixup_free, 424 }; 425 426 static inline void debug_work_activate(struct work_struct *work) 427 { 428 debug_object_activate(work, &work_debug_descr); 429 } 430 431 static inline void debug_work_deactivate(struct work_struct *work) 432 { 433 debug_object_deactivate(work, &work_debug_descr); 434 } 435 436 void __init_work(struct work_struct *work, int onstack) 437 { 438 if (onstack) 439 debug_object_init_on_stack(work, &work_debug_descr); 440 else 441 debug_object_init(work, &work_debug_descr); 442 } 443 EXPORT_SYMBOL_GPL(__init_work); 444 445 void destroy_work_on_stack(struct work_struct *work) 446 { 447 debug_object_free(work, &work_debug_descr); 448 } 449 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 450 451 #else 452 static inline void debug_work_activate(struct work_struct *work) { } 453 static inline void debug_work_deactivate(struct work_struct *work) { } 454 #endif 455 456 /* Serializes the accesses to the list of workqueues. */ 457 static DEFINE_SPINLOCK(workqueue_lock); 458 static LIST_HEAD(workqueues); 459 static bool workqueue_freezing; /* W: have wqs started freezing? */ 460 461 /* 462 * The almighty global cpu workqueues. nr_running is the only field 463 * which is expected to be used frequently by other cpus via 464 * try_to_wake_up(). Put it in a separate cacheline. 465 */ 466 static DEFINE_PER_CPU(struct global_cwq, global_cwq); 467 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]); 468 469 /* 470 * Global cpu workqueue and nr_running counter for unbound gcwq. The 471 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its 472 * workers have WORKER_UNBOUND set. 473 */ 474 static struct global_cwq unbound_global_cwq; 475 static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = { 476 [0 ... NR_WORKER_POOLS - 1] = ATOMIC_INIT(0), /* always 0 */ 477 }; 478 479 static int worker_thread(void *__worker); 480 481 static int worker_pool_pri(struct worker_pool *pool) 482 { 483 return pool - pool->gcwq->pools; 484 } 485 486 static struct global_cwq *get_gcwq(unsigned int cpu) 487 { 488 if (cpu != WORK_CPU_UNBOUND) 489 return &per_cpu(global_cwq, cpu); 490 else 491 return &unbound_global_cwq; 492 } 493 494 static atomic_t *get_pool_nr_running(struct worker_pool *pool) 495 { 496 int cpu = pool->gcwq->cpu; 497 int idx = worker_pool_pri(pool); 498 499 if (cpu != WORK_CPU_UNBOUND) 500 return &per_cpu(pool_nr_running, cpu)[idx]; 501 else 502 return &unbound_pool_nr_running[idx]; 503 } 504 505 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu, 506 struct workqueue_struct *wq) 507 { 508 if (!(wq->flags & WQ_UNBOUND)) { 509 if (likely(cpu < nr_cpu_ids)) 510 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu); 511 } else if (likely(cpu == WORK_CPU_UNBOUND)) 512 return wq->cpu_wq.single; 513 return NULL; 514 } 515 516 static unsigned int work_color_to_flags(int color) 517 { 518 return color << WORK_STRUCT_COLOR_SHIFT; 519 } 520 521 static int get_work_color(struct work_struct *work) 522 { 523 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 524 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 525 } 526 527 static int work_next_color(int color) 528 { 529 return (color + 1) % WORK_NR_COLORS; 530 } 531 532 /* 533 * While queued, %WORK_STRUCT_CWQ is set and non flag bits of a work's data 534 * contain the pointer to the queued cwq. Once execution starts, the flag 535 * is cleared and the high bits contain OFFQ flags and CPU number. 536 * 537 * set_work_cwq(), set_work_cpu_and_clear_pending(), mark_work_canceling() 538 * and clear_work_data() can be used to set the cwq, cpu or clear 539 * work->data. These functions should only be called while the work is 540 * owned - ie. while the PENDING bit is set. 541 * 542 * get_work_[g]cwq() can be used to obtain the gcwq or cwq corresponding to 543 * a work. gcwq is available once the work has been queued anywhere after 544 * initialization until it is sync canceled. cwq is available only while 545 * the work item is queued. 546 * 547 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 548 * canceled. While being canceled, a work item may have its PENDING set 549 * but stay off timer and worklist for arbitrarily long and nobody should 550 * try to steal the PENDING bit. 551 */ 552 static inline void set_work_data(struct work_struct *work, unsigned long data, 553 unsigned long flags) 554 { 555 BUG_ON(!work_pending(work)); 556 atomic_long_set(&work->data, data | flags | work_static(work)); 557 } 558 559 static void set_work_cwq(struct work_struct *work, 560 struct cpu_workqueue_struct *cwq, 561 unsigned long extra_flags) 562 { 563 set_work_data(work, (unsigned long)cwq, 564 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags); 565 } 566 567 static void set_work_cpu_and_clear_pending(struct work_struct *work, 568 unsigned int cpu) 569 { 570 /* 571 * The following wmb is paired with the implied mb in 572 * test_and_set_bit(PENDING) and ensures all updates to @work made 573 * here are visible to and precede any updates by the next PENDING 574 * owner. 575 */ 576 smp_wmb(); 577 set_work_data(work, (unsigned long)cpu << WORK_OFFQ_CPU_SHIFT, 0); 578 } 579 580 static void clear_work_data(struct work_struct *work) 581 { 582 smp_wmb(); /* see set_work_cpu_and_clear_pending() */ 583 set_work_data(work, WORK_STRUCT_NO_CPU, 0); 584 } 585 586 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work) 587 { 588 unsigned long data = atomic_long_read(&work->data); 589 590 if (data & WORK_STRUCT_CWQ) 591 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 592 else 593 return NULL; 594 } 595 596 static struct global_cwq *get_work_gcwq(struct work_struct *work) 597 { 598 unsigned long data = atomic_long_read(&work->data); 599 unsigned int cpu; 600 601 if (data & WORK_STRUCT_CWQ) 602 return ((struct cpu_workqueue_struct *) 603 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq; 604 605 cpu = data >> WORK_OFFQ_CPU_SHIFT; 606 if (cpu == WORK_CPU_NONE) 607 return NULL; 608 609 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND); 610 return get_gcwq(cpu); 611 } 612 613 static void mark_work_canceling(struct work_struct *work) 614 { 615 struct global_cwq *gcwq = get_work_gcwq(work); 616 unsigned long cpu = gcwq ? gcwq->cpu : WORK_CPU_NONE; 617 618 set_work_data(work, (cpu << WORK_OFFQ_CPU_SHIFT) | WORK_OFFQ_CANCELING, 619 WORK_STRUCT_PENDING); 620 } 621 622 static bool work_is_canceling(struct work_struct *work) 623 { 624 unsigned long data = atomic_long_read(&work->data); 625 626 return !(data & WORK_STRUCT_CWQ) && (data & WORK_OFFQ_CANCELING); 627 } 628 629 /* 630 * Policy functions. These define the policies on how the global worker 631 * pools are managed. Unless noted otherwise, these functions assume that 632 * they're being called with gcwq->lock held. 633 */ 634 635 static bool __need_more_worker(struct worker_pool *pool) 636 { 637 return !atomic_read(get_pool_nr_running(pool)); 638 } 639 640 /* 641 * Need to wake up a worker? Called from anything but currently 642 * running workers. 643 * 644 * Note that, because unbound workers never contribute to nr_running, this 645 * function will always return %true for unbound gcwq as long as the 646 * worklist isn't empty. 647 */ 648 static bool need_more_worker(struct worker_pool *pool) 649 { 650 return !list_empty(&pool->worklist) && __need_more_worker(pool); 651 } 652 653 /* Can I start working? Called from busy but !running workers. */ 654 static bool may_start_working(struct worker_pool *pool) 655 { 656 return pool->nr_idle; 657 } 658 659 /* Do I need to keep working? Called from currently running workers. */ 660 static bool keep_working(struct worker_pool *pool) 661 { 662 atomic_t *nr_running = get_pool_nr_running(pool); 663 664 return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1; 665 } 666 667 /* Do we need a new worker? Called from manager. */ 668 static bool need_to_create_worker(struct worker_pool *pool) 669 { 670 return need_more_worker(pool) && !may_start_working(pool); 671 } 672 673 /* Do I need to be the manager? */ 674 static bool need_to_manage_workers(struct worker_pool *pool) 675 { 676 return need_to_create_worker(pool) || 677 (pool->flags & POOL_MANAGE_WORKERS); 678 } 679 680 /* Do we have too many workers and should some go away? */ 681 static bool too_many_workers(struct worker_pool *pool) 682 { 683 bool managing = pool->flags & POOL_MANAGING_WORKERS; 684 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 685 int nr_busy = pool->nr_workers - nr_idle; 686 687 /* 688 * nr_idle and idle_list may disagree if idle rebinding is in 689 * progress. Never return %true if idle_list is empty. 690 */ 691 if (list_empty(&pool->idle_list)) 692 return false; 693 694 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 695 } 696 697 /* 698 * Wake up functions. 699 */ 700 701 /* Return the first worker. Safe with preemption disabled */ 702 static struct worker *first_worker(struct worker_pool *pool) 703 { 704 if (unlikely(list_empty(&pool->idle_list))) 705 return NULL; 706 707 return list_first_entry(&pool->idle_list, struct worker, entry); 708 } 709 710 /** 711 * wake_up_worker - wake up an idle worker 712 * @pool: worker pool to wake worker from 713 * 714 * Wake up the first idle worker of @pool. 715 * 716 * CONTEXT: 717 * spin_lock_irq(gcwq->lock). 718 */ 719 static void wake_up_worker(struct worker_pool *pool) 720 { 721 struct worker *worker = first_worker(pool); 722 723 if (likely(worker)) 724 wake_up_process(worker->task); 725 } 726 727 /** 728 * wq_worker_waking_up - a worker is waking up 729 * @task: task waking up 730 * @cpu: CPU @task is waking up to 731 * 732 * This function is called during try_to_wake_up() when a worker is 733 * being awoken. 734 * 735 * CONTEXT: 736 * spin_lock_irq(rq->lock) 737 */ 738 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu) 739 { 740 struct worker *worker = kthread_data(task); 741 742 if (!(worker->flags & WORKER_NOT_RUNNING)) 743 atomic_inc(get_pool_nr_running(worker->pool)); 744 } 745 746 /** 747 * wq_worker_sleeping - a worker is going to sleep 748 * @task: task going to sleep 749 * @cpu: CPU in question, must be the current CPU number 750 * 751 * This function is called during schedule() when a busy worker is 752 * going to sleep. Worker on the same cpu can be woken up by 753 * returning pointer to its task. 754 * 755 * CONTEXT: 756 * spin_lock_irq(rq->lock) 757 * 758 * RETURNS: 759 * Worker task on @cpu to wake up, %NULL if none. 760 */ 761 struct task_struct *wq_worker_sleeping(struct task_struct *task, 762 unsigned int cpu) 763 { 764 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 765 struct worker_pool *pool = worker->pool; 766 atomic_t *nr_running = get_pool_nr_running(pool); 767 768 if (worker->flags & WORKER_NOT_RUNNING) 769 return NULL; 770 771 /* this can only happen on the local cpu */ 772 BUG_ON(cpu != raw_smp_processor_id()); 773 774 /* 775 * The counterpart of the following dec_and_test, implied mb, 776 * worklist not empty test sequence is in insert_work(). 777 * Please read comment there. 778 * 779 * NOT_RUNNING is clear. This means that we're bound to and 780 * running on the local cpu w/ rq lock held and preemption 781 * disabled, which in turn means that none else could be 782 * manipulating idle_list, so dereferencing idle_list without gcwq 783 * lock is safe. 784 */ 785 if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist)) 786 to_wakeup = first_worker(pool); 787 return to_wakeup ? to_wakeup->task : NULL; 788 } 789 790 /** 791 * worker_set_flags - set worker flags and adjust nr_running accordingly 792 * @worker: self 793 * @flags: flags to set 794 * @wakeup: wakeup an idle worker if necessary 795 * 796 * Set @flags in @worker->flags and adjust nr_running accordingly. If 797 * nr_running becomes zero and @wakeup is %true, an idle worker is 798 * woken up. 799 * 800 * CONTEXT: 801 * spin_lock_irq(gcwq->lock) 802 */ 803 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 804 bool wakeup) 805 { 806 struct worker_pool *pool = worker->pool; 807 808 WARN_ON_ONCE(worker->task != current); 809 810 /* 811 * If transitioning into NOT_RUNNING, adjust nr_running and 812 * wake up an idle worker as necessary if requested by 813 * @wakeup. 814 */ 815 if ((flags & WORKER_NOT_RUNNING) && 816 !(worker->flags & WORKER_NOT_RUNNING)) { 817 atomic_t *nr_running = get_pool_nr_running(pool); 818 819 if (wakeup) { 820 if (atomic_dec_and_test(nr_running) && 821 !list_empty(&pool->worklist)) 822 wake_up_worker(pool); 823 } else 824 atomic_dec(nr_running); 825 } 826 827 worker->flags |= flags; 828 } 829 830 /** 831 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 832 * @worker: self 833 * @flags: flags to clear 834 * 835 * Clear @flags in @worker->flags and adjust nr_running accordingly. 836 * 837 * CONTEXT: 838 * spin_lock_irq(gcwq->lock) 839 */ 840 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 841 { 842 struct worker_pool *pool = worker->pool; 843 unsigned int oflags = worker->flags; 844 845 WARN_ON_ONCE(worker->task != current); 846 847 worker->flags &= ~flags; 848 849 /* 850 * If transitioning out of NOT_RUNNING, increment nr_running. Note 851 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 852 * of multiple flags, not a single flag. 853 */ 854 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 855 if (!(worker->flags & WORKER_NOT_RUNNING)) 856 atomic_inc(get_pool_nr_running(pool)); 857 } 858 859 /** 860 * busy_worker_head - return the busy hash head for a work 861 * @gcwq: gcwq of interest 862 * @work: work to be hashed 863 * 864 * Return hash head of @gcwq for @work. 865 * 866 * CONTEXT: 867 * spin_lock_irq(gcwq->lock). 868 * 869 * RETURNS: 870 * Pointer to the hash head. 871 */ 872 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq, 873 struct work_struct *work) 874 { 875 const int base_shift = ilog2(sizeof(struct work_struct)); 876 unsigned long v = (unsigned long)work; 877 878 /* simple shift and fold hash, do we need something better? */ 879 v >>= base_shift; 880 v += v >> BUSY_WORKER_HASH_ORDER; 881 v &= BUSY_WORKER_HASH_MASK; 882 883 return &gcwq->busy_hash[v]; 884 } 885 886 /** 887 * __find_worker_executing_work - find worker which is executing a work 888 * @gcwq: gcwq of interest 889 * @bwh: hash head as returned by busy_worker_head() 890 * @work: work to find worker for 891 * 892 * Find a worker which is executing @work on @gcwq. @bwh should be 893 * the hash head obtained by calling busy_worker_head() with the same 894 * work. 895 * 896 * CONTEXT: 897 * spin_lock_irq(gcwq->lock). 898 * 899 * RETURNS: 900 * Pointer to worker which is executing @work if found, NULL 901 * otherwise. 902 */ 903 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq, 904 struct hlist_head *bwh, 905 struct work_struct *work) 906 { 907 struct worker *worker; 908 struct hlist_node *tmp; 909 910 hlist_for_each_entry(worker, tmp, bwh, hentry) 911 if (worker->current_work == work) 912 return worker; 913 return NULL; 914 } 915 916 /** 917 * find_worker_executing_work - find worker which is executing a work 918 * @gcwq: gcwq of interest 919 * @work: work to find worker for 920 * 921 * Find a worker which is executing @work on @gcwq. This function is 922 * identical to __find_worker_executing_work() except that this 923 * function calculates @bwh itself. 924 * 925 * CONTEXT: 926 * spin_lock_irq(gcwq->lock). 927 * 928 * RETURNS: 929 * Pointer to worker which is executing @work if found, NULL 930 * otherwise. 931 */ 932 static struct worker *find_worker_executing_work(struct global_cwq *gcwq, 933 struct work_struct *work) 934 { 935 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work), 936 work); 937 } 938 939 /** 940 * move_linked_works - move linked works to a list 941 * @work: start of series of works to be scheduled 942 * @head: target list to append @work to 943 * @nextp: out paramter for nested worklist walking 944 * 945 * Schedule linked works starting from @work to @head. Work series to 946 * be scheduled starts at @work and includes any consecutive work with 947 * WORK_STRUCT_LINKED set in its predecessor. 948 * 949 * If @nextp is not NULL, it's updated to point to the next work of 950 * the last scheduled work. This allows move_linked_works() to be 951 * nested inside outer list_for_each_entry_safe(). 952 * 953 * CONTEXT: 954 * spin_lock_irq(gcwq->lock). 955 */ 956 static void move_linked_works(struct work_struct *work, struct list_head *head, 957 struct work_struct **nextp) 958 { 959 struct work_struct *n; 960 961 /* 962 * Linked worklist will always end before the end of the list, 963 * use NULL for list head. 964 */ 965 list_for_each_entry_safe_from(work, n, NULL, entry) { 966 list_move_tail(&work->entry, head); 967 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 968 break; 969 } 970 971 /* 972 * If we're already inside safe list traversal and have moved 973 * multiple works to the scheduled queue, the next position 974 * needs to be updated. 975 */ 976 if (nextp) 977 *nextp = n; 978 } 979 980 static void cwq_activate_delayed_work(struct work_struct *work) 981 { 982 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 983 984 trace_workqueue_activate_work(work); 985 move_linked_works(work, &cwq->pool->worklist, NULL); 986 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 987 cwq->nr_active++; 988 } 989 990 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq) 991 { 992 struct work_struct *work = list_first_entry(&cwq->delayed_works, 993 struct work_struct, entry); 994 995 cwq_activate_delayed_work(work); 996 } 997 998 /** 999 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight 1000 * @cwq: cwq of interest 1001 * @color: color of work which left the queue 1002 * 1003 * A work either has completed or is removed from pending queue, 1004 * decrement nr_in_flight of its cwq and handle workqueue flushing. 1005 * 1006 * CONTEXT: 1007 * spin_lock_irq(gcwq->lock). 1008 */ 1009 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color) 1010 { 1011 /* ignore uncolored works */ 1012 if (color == WORK_NO_COLOR) 1013 return; 1014 1015 cwq->nr_in_flight[color]--; 1016 1017 cwq->nr_active--; 1018 if (!list_empty(&cwq->delayed_works)) { 1019 /* one down, submit a delayed one */ 1020 if (cwq->nr_active < cwq->max_active) 1021 cwq_activate_first_delayed(cwq); 1022 } 1023 1024 /* is flush in progress and are we at the flushing tip? */ 1025 if (likely(cwq->flush_color != color)) 1026 return; 1027 1028 /* are there still in-flight works? */ 1029 if (cwq->nr_in_flight[color]) 1030 return; 1031 1032 /* this cwq is done, clear flush_color */ 1033 cwq->flush_color = -1; 1034 1035 /* 1036 * If this was the last cwq, wake up the first flusher. It 1037 * will handle the rest. 1038 */ 1039 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush)) 1040 complete(&cwq->wq->first_flusher->done); 1041 } 1042 1043 /** 1044 * try_to_grab_pending - steal work item from worklist and disable irq 1045 * @work: work item to steal 1046 * @is_dwork: @work is a delayed_work 1047 * @flags: place to store irq state 1048 * 1049 * Try to grab PENDING bit of @work. This function can handle @work in any 1050 * stable state - idle, on timer or on worklist. Return values are 1051 * 1052 * 1 if @work was pending and we successfully stole PENDING 1053 * 0 if @work was idle and we claimed PENDING 1054 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1055 * -ENOENT if someone else is canceling @work, this state may persist 1056 * for arbitrarily long 1057 * 1058 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1059 * interrupted while holding PENDING and @work off queue, irq must be 1060 * disabled on entry. This, combined with delayed_work->timer being 1061 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1062 * 1063 * On successful return, >= 0, irq is disabled and the caller is 1064 * responsible for releasing it using local_irq_restore(*@flags). 1065 * 1066 * This function is safe to call from any context including IRQ handler. 1067 */ 1068 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1069 unsigned long *flags) 1070 { 1071 struct global_cwq *gcwq; 1072 1073 local_irq_save(*flags); 1074 1075 /* try to steal the timer if it exists */ 1076 if (is_dwork) { 1077 struct delayed_work *dwork = to_delayed_work(work); 1078 1079 /* 1080 * dwork->timer is irqsafe. If del_timer() fails, it's 1081 * guaranteed that the timer is not queued anywhere and not 1082 * running on the local CPU. 1083 */ 1084 if (likely(del_timer(&dwork->timer))) 1085 return 1; 1086 } 1087 1088 /* try to claim PENDING the normal way */ 1089 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1090 return 0; 1091 1092 /* 1093 * The queueing is in progress, or it is already queued. Try to 1094 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1095 */ 1096 gcwq = get_work_gcwq(work); 1097 if (!gcwq) 1098 goto fail; 1099 1100 spin_lock(&gcwq->lock); 1101 if (!list_empty(&work->entry)) { 1102 /* 1103 * This work is queued, but perhaps we locked the wrong gcwq. 1104 * In that case we must see the new value after rmb(), see 1105 * insert_work()->wmb(). 1106 */ 1107 smp_rmb(); 1108 if (gcwq == get_work_gcwq(work)) { 1109 debug_work_deactivate(work); 1110 1111 /* 1112 * A delayed work item cannot be grabbed directly 1113 * because it might have linked NO_COLOR work items 1114 * which, if left on the delayed_list, will confuse 1115 * cwq->nr_active management later on and cause 1116 * stall. Make sure the work item is activated 1117 * before grabbing. 1118 */ 1119 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1120 cwq_activate_delayed_work(work); 1121 1122 list_del_init(&work->entry); 1123 cwq_dec_nr_in_flight(get_work_cwq(work), 1124 get_work_color(work)); 1125 1126 spin_unlock(&gcwq->lock); 1127 return 1; 1128 } 1129 } 1130 spin_unlock(&gcwq->lock); 1131 fail: 1132 local_irq_restore(*flags); 1133 if (work_is_canceling(work)) 1134 return -ENOENT; 1135 cpu_relax(); 1136 return -EAGAIN; 1137 } 1138 1139 /** 1140 * insert_work - insert a work into gcwq 1141 * @cwq: cwq @work belongs to 1142 * @work: work to insert 1143 * @head: insertion point 1144 * @extra_flags: extra WORK_STRUCT_* flags to set 1145 * 1146 * Insert @work which belongs to @cwq into @gcwq after @head. 1147 * @extra_flags is or'd to work_struct flags. 1148 * 1149 * CONTEXT: 1150 * spin_lock_irq(gcwq->lock). 1151 */ 1152 static void insert_work(struct cpu_workqueue_struct *cwq, 1153 struct work_struct *work, struct list_head *head, 1154 unsigned int extra_flags) 1155 { 1156 struct worker_pool *pool = cwq->pool; 1157 1158 /* we own @work, set data and link */ 1159 set_work_cwq(work, cwq, extra_flags); 1160 1161 /* 1162 * Ensure that we get the right work->data if we see the 1163 * result of list_add() below, see try_to_grab_pending(). 1164 */ 1165 smp_wmb(); 1166 1167 list_add_tail(&work->entry, head); 1168 1169 /* 1170 * Ensure either worker_sched_deactivated() sees the above 1171 * list_add_tail() or we see zero nr_running to avoid workers 1172 * lying around lazily while there are works to be processed. 1173 */ 1174 smp_mb(); 1175 1176 if (__need_more_worker(pool)) 1177 wake_up_worker(pool); 1178 } 1179 1180 /* 1181 * Test whether @work is being queued from another work executing on the 1182 * same workqueue. This is rather expensive and should only be used from 1183 * cold paths. 1184 */ 1185 static bool is_chained_work(struct workqueue_struct *wq) 1186 { 1187 unsigned long flags; 1188 unsigned int cpu; 1189 1190 for_each_gcwq_cpu(cpu) { 1191 struct global_cwq *gcwq = get_gcwq(cpu); 1192 struct worker *worker; 1193 struct hlist_node *pos; 1194 int i; 1195 1196 spin_lock_irqsave(&gcwq->lock, flags); 1197 for_each_busy_worker(worker, i, pos, gcwq) { 1198 if (worker->task != current) 1199 continue; 1200 spin_unlock_irqrestore(&gcwq->lock, flags); 1201 /* 1202 * I'm @worker, no locking necessary. See if @work 1203 * is headed to the same workqueue. 1204 */ 1205 return worker->current_cwq->wq == wq; 1206 } 1207 spin_unlock_irqrestore(&gcwq->lock, flags); 1208 } 1209 return false; 1210 } 1211 1212 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq, 1213 struct work_struct *work) 1214 { 1215 struct global_cwq *gcwq; 1216 struct cpu_workqueue_struct *cwq; 1217 struct list_head *worklist; 1218 unsigned int work_flags; 1219 unsigned int req_cpu = cpu; 1220 1221 /* 1222 * While a work item is PENDING && off queue, a task trying to 1223 * steal the PENDING will busy-loop waiting for it to either get 1224 * queued or lose PENDING. Grabbing PENDING and queueing should 1225 * happen with IRQ disabled. 1226 */ 1227 WARN_ON_ONCE(!irqs_disabled()); 1228 1229 debug_work_activate(work); 1230 1231 /* if dying, only works from the same workqueue are allowed */ 1232 if (unlikely(wq->flags & WQ_DRAINING) && 1233 WARN_ON_ONCE(!is_chained_work(wq))) 1234 return; 1235 1236 /* determine gcwq to use */ 1237 if (!(wq->flags & WQ_UNBOUND)) { 1238 struct global_cwq *last_gcwq; 1239 1240 if (cpu == WORK_CPU_UNBOUND) 1241 cpu = raw_smp_processor_id(); 1242 1243 /* 1244 * It's multi cpu. If @work was previously on a different 1245 * cpu, it might still be running there, in which case the 1246 * work needs to be queued on that cpu to guarantee 1247 * non-reentrancy. 1248 */ 1249 gcwq = get_gcwq(cpu); 1250 last_gcwq = get_work_gcwq(work); 1251 1252 if (last_gcwq && last_gcwq != gcwq) { 1253 struct worker *worker; 1254 1255 spin_lock(&last_gcwq->lock); 1256 1257 worker = find_worker_executing_work(last_gcwq, work); 1258 1259 if (worker && worker->current_cwq->wq == wq) 1260 gcwq = last_gcwq; 1261 else { 1262 /* meh... not running there, queue here */ 1263 spin_unlock(&last_gcwq->lock); 1264 spin_lock(&gcwq->lock); 1265 } 1266 } else { 1267 spin_lock(&gcwq->lock); 1268 } 1269 } else { 1270 gcwq = get_gcwq(WORK_CPU_UNBOUND); 1271 spin_lock(&gcwq->lock); 1272 } 1273 1274 /* gcwq determined, get cwq and queue */ 1275 cwq = get_cwq(gcwq->cpu, wq); 1276 trace_workqueue_queue_work(req_cpu, cwq, work); 1277 1278 if (WARN_ON(!list_empty(&work->entry))) { 1279 spin_unlock(&gcwq->lock); 1280 return; 1281 } 1282 1283 cwq->nr_in_flight[cwq->work_color]++; 1284 work_flags = work_color_to_flags(cwq->work_color); 1285 1286 if (likely(cwq->nr_active < cwq->max_active)) { 1287 trace_workqueue_activate_work(work); 1288 cwq->nr_active++; 1289 worklist = &cwq->pool->worklist; 1290 } else { 1291 work_flags |= WORK_STRUCT_DELAYED; 1292 worklist = &cwq->delayed_works; 1293 } 1294 1295 insert_work(cwq, work, worklist, work_flags); 1296 1297 spin_unlock(&gcwq->lock); 1298 } 1299 1300 /** 1301 * queue_work_on - queue work on specific cpu 1302 * @cpu: CPU number to execute work on 1303 * @wq: workqueue to use 1304 * @work: work to queue 1305 * 1306 * Returns %false if @work was already on a queue, %true otherwise. 1307 * 1308 * We queue the work to a specific CPU, the caller must ensure it 1309 * can't go away. 1310 */ 1311 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1312 struct work_struct *work) 1313 { 1314 bool ret = false; 1315 unsigned long flags; 1316 1317 local_irq_save(flags); 1318 1319 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1320 __queue_work(cpu, wq, work); 1321 ret = true; 1322 } 1323 1324 local_irq_restore(flags); 1325 return ret; 1326 } 1327 EXPORT_SYMBOL_GPL(queue_work_on); 1328 1329 /** 1330 * queue_work - queue work on a workqueue 1331 * @wq: workqueue to use 1332 * @work: work to queue 1333 * 1334 * Returns %false if @work was already on a queue, %true otherwise. 1335 * 1336 * We queue the work to the CPU on which it was submitted, but if the CPU dies 1337 * it can be processed by another CPU. 1338 */ 1339 bool queue_work(struct workqueue_struct *wq, struct work_struct *work) 1340 { 1341 return queue_work_on(WORK_CPU_UNBOUND, wq, work); 1342 } 1343 EXPORT_SYMBOL_GPL(queue_work); 1344 1345 void delayed_work_timer_fn(unsigned long __data) 1346 { 1347 struct delayed_work *dwork = (struct delayed_work *)__data; 1348 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work); 1349 1350 /* should have been called from irqsafe timer with irq already off */ 1351 __queue_work(dwork->cpu, cwq->wq, &dwork->work); 1352 } 1353 EXPORT_SYMBOL_GPL(delayed_work_timer_fn); 1354 1355 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1356 struct delayed_work *dwork, unsigned long delay) 1357 { 1358 struct timer_list *timer = &dwork->timer; 1359 struct work_struct *work = &dwork->work; 1360 unsigned int lcpu; 1361 1362 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1363 timer->data != (unsigned long)dwork); 1364 WARN_ON_ONCE(timer_pending(timer)); 1365 WARN_ON_ONCE(!list_empty(&work->entry)); 1366 1367 /* 1368 * If @delay is 0, queue @dwork->work immediately. This is for 1369 * both optimization and correctness. The earliest @timer can 1370 * expire is on the closest next tick and delayed_work users depend 1371 * on that there's no such delay when @delay is 0. 1372 */ 1373 if (!delay) { 1374 __queue_work(cpu, wq, &dwork->work); 1375 return; 1376 } 1377 1378 timer_stats_timer_set_start_info(&dwork->timer); 1379 1380 /* 1381 * This stores cwq for the moment, for the timer_fn. Note that the 1382 * work's gcwq is preserved to allow reentrance detection for 1383 * delayed works. 1384 */ 1385 if (!(wq->flags & WQ_UNBOUND)) { 1386 struct global_cwq *gcwq = get_work_gcwq(work); 1387 1388 /* 1389 * If we cannot get the last gcwq from @work directly, 1390 * select the last CPU such that it avoids unnecessarily 1391 * triggering non-reentrancy check in __queue_work(). 1392 */ 1393 lcpu = cpu; 1394 if (gcwq) 1395 lcpu = gcwq->cpu; 1396 if (lcpu == WORK_CPU_UNBOUND) 1397 lcpu = raw_smp_processor_id(); 1398 } else { 1399 lcpu = WORK_CPU_UNBOUND; 1400 } 1401 1402 set_work_cwq(work, get_cwq(lcpu, wq), 0); 1403 1404 dwork->cpu = cpu; 1405 timer->expires = jiffies + delay; 1406 1407 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1408 add_timer_on(timer, cpu); 1409 else 1410 add_timer(timer); 1411 } 1412 1413 /** 1414 * queue_delayed_work_on - queue work on specific CPU after delay 1415 * @cpu: CPU number to execute work on 1416 * @wq: workqueue to use 1417 * @dwork: work to queue 1418 * @delay: number of jiffies to wait before queueing 1419 * 1420 * Returns %false if @work was already on a queue, %true otherwise. If 1421 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1422 * execution. 1423 */ 1424 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1425 struct delayed_work *dwork, unsigned long delay) 1426 { 1427 struct work_struct *work = &dwork->work; 1428 bool ret = false; 1429 unsigned long flags; 1430 1431 /* read the comment in __queue_work() */ 1432 local_irq_save(flags); 1433 1434 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1435 __queue_delayed_work(cpu, wq, dwork, delay); 1436 ret = true; 1437 } 1438 1439 local_irq_restore(flags); 1440 return ret; 1441 } 1442 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 1443 1444 /** 1445 * queue_delayed_work - queue work on a workqueue after delay 1446 * @wq: workqueue to use 1447 * @dwork: delayable work to queue 1448 * @delay: number of jiffies to wait before queueing 1449 * 1450 * Equivalent to queue_delayed_work_on() but tries to use the local CPU. 1451 */ 1452 bool queue_delayed_work(struct workqueue_struct *wq, 1453 struct delayed_work *dwork, unsigned long delay) 1454 { 1455 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); 1456 } 1457 EXPORT_SYMBOL_GPL(queue_delayed_work); 1458 1459 /** 1460 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1461 * @cpu: CPU number to execute work on 1462 * @wq: workqueue to use 1463 * @dwork: work to queue 1464 * @delay: number of jiffies to wait before queueing 1465 * 1466 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1467 * modify @dwork's timer so that it expires after @delay. If @delay is 1468 * zero, @work is guaranteed to be scheduled immediately regardless of its 1469 * current state. 1470 * 1471 * Returns %false if @dwork was idle and queued, %true if @dwork was 1472 * pending and its timer was modified. 1473 * 1474 * This function is safe to call from any context including IRQ handler. 1475 * See try_to_grab_pending() for details. 1476 */ 1477 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1478 struct delayed_work *dwork, unsigned long delay) 1479 { 1480 unsigned long flags; 1481 int ret; 1482 1483 do { 1484 ret = try_to_grab_pending(&dwork->work, true, &flags); 1485 } while (unlikely(ret == -EAGAIN)); 1486 1487 if (likely(ret >= 0)) { 1488 __queue_delayed_work(cpu, wq, dwork, delay); 1489 local_irq_restore(flags); 1490 } 1491 1492 /* -ENOENT from try_to_grab_pending() becomes %true */ 1493 return ret; 1494 } 1495 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1496 1497 /** 1498 * mod_delayed_work - modify delay of or queue a delayed work 1499 * @wq: workqueue to use 1500 * @dwork: work to queue 1501 * @delay: number of jiffies to wait before queueing 1502 * 1503 * mod_delayed_work_on() on local CPU. 1504 */ 1505 bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, 1506 unsigned long delay) 1507 { 1508 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay); 1509 } 1510 EXPORT_SYMBOL_GPL(mod_delayed_work); 1511 1512 /** 1513 * worker_enter_idle - enter idle state 1514 * @worker: worker which is entering idle state 1515 * 1516 * @worker is entering idle state. Update stats and idle timer if 1517 * necessary. 1518 * 1519 * LOCKING: 1520 * spin_lock_irq(gcwq->lock). 1521 */ 1522 static void worker_enter_idle(struct worker *worker) 1523 { 1524 struct worker_pool *pool = worker->pool; 1525 struct global_cwq *gcwq = pool->gcwq; 1526 1527 BUG_ON(worker->flags & WORKER_IDLE); 1528 BUG_ON(!list_empty(&worker->entry) && 1529 (worker->hentry.next || worker->hentry.pprev)); 1530 1531 /* can't use worker_set_flags(), also called from start_worker() */ 1532 worker->flags |= WORKER_IDLE; 1533 pool->nr_idle++; 1534 worker->last_active = jiffies; 1535 1536 /* idle_list is LIFO */ 1537 list_add(&worker->entry, &pool->idle_list); 1538 1539 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1540 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1541 1542 /* 1543 * Sanity check nr_running. Because gcwq_unbind_fn() releases 1544 * gcwq->lock between setting %WORKER_UNBOUND and zapping 1545 * nr_running, the warning may trigger spuriously. Check iff 1546 * unbind is not in progress. 1547 */ 1548 WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) && 1549 pool->nr_workers == pool->nr_idle && 1550 atomic_read(get_pool_nr_running(pool))); 1551 } 1552 1553 /** 1554 * worker_leave_idle - leave idle state 1555 * @worker: worker which is leaving idle state 1556 * 1557 * @worker is leaving idle state. Update stats. 1558 * 1559 * LOCKING: 1560 * spin_lock_irq(gcwq->lock). 1561 */ 1562 static void worker_leave_idle(struct worker *worker) 1563 { 1564 struct worker_pool *pool = worker->pool; 1565 1566 BUG_ON(!(worker->flags & WORKER_IDLE)); 1567 worker_clr_flags(worker, WORKER_IDLE); 1568 pool->nr_idle--; 1569 list_del_init(&worker->entry); 1570 } 1571 1572 /** 1573 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq 1574 * @worker: self 1575 * 1576 * Works which are scheduled while the cpu is online must at least be 1577 * scheduled to a worker which is bound to the cpu so that if they are 1578 * flushed from cpu callbacks while cpu is going down, they are 1579 * guaranteed to execute on the cpu. 1580 * 1581 * This function is to be used by rogue workers and rescuers to bind 1582 * themselves to the target cpu and may race with cpu going down or 1583 * coming online. kthread_bind() can't be used because it may put the 1584 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1585 * verbatim as it's best effort and blocking and gcwq may be 1586 * [dis]associated in the meantime. 1587 * 1588 * This function tries set_cpus_allowed() and locks gcwq and verifies the 1589 * binding against %GCWQ_DISASSOCIATED which is set during 1590 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker 1591 * enters idle state or fetches works without dropping lock, it can 1592 * guarantee the scheduling requirement described in the first paragraph. 1593 * 1594 * CONTEXT: 1595 * Might sleep. Called without any lock but returns with gcwq->lock 1596 * held. 1597 * 1598 * RETURNS: 1599 * %true if the associated gcwq is online (@worker is successfully 1600 * bound), %false if offline. 1601 */ 1602 static bool worker_maybe_bind_and_lock(struct worker *worker) 1603 __acquires(&gcwq->lock) 1604 { 1605 struct global_cwq *gcwq = worker->pool->gcwq; 1606 struct task_struct *task = worker->task; 1607 1608 while (true) { 1609 /* 1610 * The following call may fail, succeed or succeed 1611 * without actually migrating the task to the cpu if 1612 * it races with cpu hotunplug operation. Verify 1613 * against GCWQ_DISASSOCIATED. 1614 */ 1615 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) 1616 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu)); 1617 1618 spin_lock_irq(&gcwq->lock); 1619 if (gcwq->flags & GCWQ_DISASSOCIATED) 1620 return false; 1621 if (task_cpu(task) == gcwq->cpu && 1622 cpumask_equal(¤t->cpus_allowed, 1623 get_cpu_mask(gcwq->cpu))) 1624 return true; 1625 spin_unlock_irq(&gcwq->lock); 1626 1627 /* 1628 * We've raced with CPU hot[un]plug. Give it a breather 1629 * and retry migration. cond_resched() is required here; 1630 * otherwise, we might deadlock against cpu_stop trying to 1631 * bring down the CPU on non-preemptive kernel. 1632 */ 1633 cpu_relax(); 1634 cond_resched(); 1635 } 1636 } 1637 1638 /* 1639 * Rebind an idle @worker to its CPU. worker_thread() will test 1640 * list_empty(@worker->entry) before leaving idle and call this function. 1641 */ 1642 static void idle_worker_rebind(struct worker *worker) 1643 { 1644 struct global_cwq *gcwq = worker->pool->gcwq; 1645 1646 /* CPU may go down again inbetween, clear UNBOUND only on success */ 1647 if (worker_maybe_bind_and_lock(worker)) 1648 worker_clr_flags(worker, WORKER_UNBOUND); 1649 1650 /* rebind complete, become available again */ 1651 list_add(&worker->entry, &worker->pool->idle_list); 1652 spin_unlock_irq(&gcwq->lock); 1653 } 1654 1655 /* 1656 * Function for @worker->rebind.work used to rebind unbound busy workers to 1657 * the associated cpu which is coming back online. This is scheduled by 1658 * cpu up but can race with other cpu hotplug operations and may be 1659 * executed twice without intervening cpu down. 1660 */ 1661 static void busy_worker_rebind_fn(struct work_struct *work) 1662 { 1663 struct worker *worker = container_of(work, struct worker, rebind_work); 1664 struct global_cwq *gcwq = worker->pool->gcwq; 1665 1666 if (worker_maybe_bind_and_lock(worker)) 1667 worker_clr_flags(worker, WORKER_UNBOUND); 1668 1669 spin_unlock_irq(&gcwq->lock); 1670 } 1671 1672 /** 1673 * rebind_workers - rebind all workers of a gcwq to the associated CPU 1674 * @gcwq: gcwq of interest 1675 * 1676 * @gcwq->cpu is coming online. Rebind all workers to the CPU. Rebinding 1677 * is different for idle and busy ones. 1678 * 1679 * Idle ones will be removed from the idle_list and woken up. They will 1680 * add themselves back after completing rebind. This ensures that the 1681 * idle_list doesn't contain any unbound workers when re-bound busy workers 1682 * try to perform local wake-ups for concurrency management. 1683 * 1684 * Busy workers can rebind after they finish their current work items. 1685 * Queueing the rebind work item at the head of the scheduled list is 1686 * enough. Note that nr_running will be properly bumped as busy workers 1687 * rebind. 1688 * 1689 * On return, all non-manager workers are scheduled for rebind - see 1690 * manage_workers() for the manager special case. Any idle worker 1691 * including the manager will not appear on @idle_list until rebind is 1692 * complete, making local wake-ups safe. 1693 */ 1694 static void rebind_workers(struct global_cwq *gcwq) 1695 { 1696 struct worker_pool *pool; 1697 struct worker *worker, *n; 1698 struct hlist_node *pos; 1699 int i; 1700 1701 lockdep_assert_held(&gcwq->lock); 1702 1703 for_each_worker_pool(pool, gcwq) 1704 lockdep_assert_held(&pool->assoc_mutex); 1705 1706 /* dequeue and kick idle ones */ 1707 for_each_worker_pool(pool, gcwq) { 1708 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) { 1709 /* 1710 * idle workers should be off @pool->idle_list 1711 * until rebind is complete to avoid receiving 1712 * premature local wake-ups. 1713 */ 1714 list_del_init(&worker->entry); 1715 1716 /* 1717 * worker_thread() will see the above dequeuing 1718 * and call idle_worker_rebind(). 1719 */ 1720 wake_up_process(worker->task); 1721 } 1722 } 1723 1724 /* rebind busy workers */ 1725 for_each_busy_worker(worker, i, pos, gcwq) { 1726 struct work_struct *rebind_work = &worker->rebind_work; 1727 struct workqueue_struct *wq; 1728 1729 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT, 1730 work_data_bits(rebind_work))) 1731 continue; 1732 1733 debug_work_activate(rebind_work); 1734 1735 /* 1736 * wq doesn't really matter but let's keep @worker->pool 1737 * and @cwq->pool consistent for sanity. 1738 */ 1739 if (worker_pool_pri(worker->pool)) 1740 wq = system_highpri_wq; 1741 else 1742 wq = system_wq; 1743 1744 insert_work(get_cwq(gcwq->cpu, wq), rebind_work, 1745 worker->scheduled.next, 1746 work_color_to_flags(WORK_NO_COLOR)); 1747 } 1748 } 1749 1750 static struct worker *alloc_worker(void) 1751 { 1752 struct worker *worker; 1753 1754 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1755 if (worker) { 1756 INIT_LIST_HEAD(&worker->entry); 1757 INIT_LIST_HEAD(&worker->scheduled); 1758 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn); 1759 /* on creation a worker is in !idle && prep state */ 1760 worker->flags = WORKER_PREP; 1761 } 1762 return worker; 1763 } 1764 1765 /** 1766 * create_worker - create a new workqueue worker 1767 * @pool: pool the new worker will belong to 1768 * 1769 * Create a new worker which is bound to @pool. The returned worker 1770 * can be started by calling start_worker() or destroyed using 1771 * destroy_worker(). 1772 * 1773 * CONTEXT: 1774 * Might sleep. Does GFP_KERNEL allocations. 1775 * 1776 * RETURNS: 1777 * Pointer to the newly created worker. 1778 */ 1779 static struct worker *create_worker(struct worker_pool *pool) 1780 { 1781 struct global_cwq *gcwq = pool->gcwq; 1782 const char *pri = worker_pool_pri(pool) ? "H" : ""; 1783 struct worker *worker = NULL; 1784 int id = -1; 1785 1786 spin_lock_irq(&gcwq->lock); 1787 while (ida_get_new(&pool->worker_ida, &id)) { 1788 spin_unlock_irq(&gcwq->lock); 1789 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL)) 1790 goto fail; 1791 spin_lock_irq(&gcwq->lock); 1792 } 1793 spin_unlock_irq(&gcwq->lock); 1794 1795 worker = alloc_worker(); 1796 if (!worker) 1797 goto fail; 1798 1799 worker->pool = pool; 1800 worker->id = id; 1801 1802 if (gcwq->cpu != WORK_CPU_UNBOUND) 1803 worker->task = kthread_create_on_node(worker_thread, 1804 worker, cpu_to_node(gcwq->cpu), 1805 "kworker/%u:%d%s", gcwq->cpu, id, pri); 1806 else 1807 worker->task = kthread_create(worker_thread, worker, 1808 "kworker/u:%d%s", id, pri); 1809 if (IS_ERR(worker->task)) 1810 goto fail; 1811 1812 if (worker_pool_pri(pool)) 1813 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL); 1814 1815 /* 1816 * Determine CPU binding of the new worker depending on 1817 * %GCWQ_DISASSOCIATED. The caller is responsible for ensuring the 1818 * flag remains stable across this function. See the comments 1819 * above the flag definition for details. 1820 * 1821 * As an unbound worker may later become a regular one if CPU comes 1822 * online, make sure every worker has %PF_THREAD_BOUND set. 1823 */ 1824 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) { 1825 kthread_bind(worker->task, gcwq->cpu); 1826 } else { 1827 worker->task->flags |= PF_THREAD_BOUND; 1828 worker->flags |= WORKER_UNBOUND; 1829 } 1830 1831 return worker; 1832 fail: 1833 if (id >= 0) { 1834 spin_lock_irq(&gcwq->lock); 1835 ida_remove(&pool->worker_ida, id); 1836 spin_unlock_irq(&gcwq->lock); 1837 } 1838 kfree(worker); 1839 return NULL; 1840 } 1841 1842 /** 1843 * start_worker - start a newly created worker 1844 * @worker: worker to start 1845 * 1846 * Make the gcwq aware of @worker and start it. 1847 * 1848 * CONTEXT: 1849 * spin_lock_irq(gcwq->lock). 1850 */ 1851 static void start_worker(struct worker *worker) 1852 { 1853 worker->flags |= WORKER_STARTED; 1854 worker->pool->nr_workers++; 1855 worker_enter_idle(worker); 1856 wake_up_process(worker->task); 1857 } 1858 1859 /** 1860 * destroy_worker - destroy a workqueue worker 1861 * @worker: worker to be destroyed 1862 * 1863 * Destroy @worker and adjust @gcwq stats accordingly. 1864 * 1865 * CONTEXT: 1866 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1867 */ 1868 static void destroy_worker(struct worker *worker) 1869 { 1870 struct worker_pool *pool = worker->pool; 1871 struct global_cwq *gcwq = pool->gcwq; 1872 int id = worker->id; 1873 1874 /* sanity check frenzy */ 1875 BUG_ON(worker->current_work); 1876 BUG_ON(!list_empty(&worker->scheduled)); 1877 1878 if (worker->flags & WORKER_STARTED) 1879 pool->nr_workers--; 1880 if (worker->flags & WORKER_IDLE) 1881 pool->nr_idle--; 1882 1883 list_del_init(&worker->entry); 1884 worker->flags |= WORKER_DIE; 1885 1886 spin_unlock_irq(&gcwq->lock); 1887 1888 kthread_stop(worker->task); 1889 kfree(worker); 1890 1891 spin_lock_irq(&gcwq->lock); 1892 ida_remove(&pool->worker_ida, id); 1893 } 1894 1895 static void idle_worker_timeout(unsigned long __pool) 1896 { 1897 struct worker_pool *pool = (void *)__pool; 1898 struct global_cwq *gcwq = pool->gcwq; 1899 1900 spin_lock_irq(&gcwq->lock); 1901 1902 if (too_many_workers(pool)) { 1903 struct worker *worker; 1904 unsigned long expires; 1905 1906 /* idle_list is kept in LIFO order, check the last one */ 1907 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1908 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1909 1910 if (time_before(jiffies, expires)) 1911 mod_timer(&pool->idle_timer, expires); 1912 else { 1913 /* it's been idle for too long, wake up manager */ 1914 pool->flags |= POOL_MANAGE_WORKERS; 1915 wake_up_worker(pool); 1916 } 1917 } 1918 1919 spin_unlock_irq(&gcwq->lock); 1920 } 1921 1922 static bool send_mayday(struct work_struct *work) 1923 { 1924 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1925 struct workqueue_struct *wq = cwq->wq; 1926 unsigned int cpu; 1927 1928 if (!(wq->flags & WQ_RESCUER)) 1929 return false; 1930 1931 /* mayday mayday mayday */ 1932 cpu = cwq->pool->gcwq->cpu; 1933 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */ 1934 if (cpu == WORK_CPU_UNBOUND) 1935 cpu = 0; 1936 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask)) 1937 wake_up_process(wq->rescuer->task); 1938 return true; 1939 } 1940 1941 static void gcwq_mayday_timeout(unsigned long __pool) 1942 { 1943 struct worker_pool *pool = (void *)__pool; 1944 struct global_cwq *gcwq = pool->gcwq; 1945 struct work_struct *work; 1946 1947 spin_lock_irq(&gcwq->lock); 1948 1949 if (need_to_create_worker(pool)) { 1950 /* 1951 * We've been trying to create a new worker but 1952 * haven't been successful. We might be hitting an 1953 * allocation deadlock. Send distress signals to 1954 * rescuers. 1955 */ 1956 list_for_each_entry(work, &pool->worklist, entry) 1957 send_mayday(work); 1958 } 1959 1960 spin_unlock_irq(&gcwq->lock); 1961 1962 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1963 } 1964 1965 /** 1966 * maybe_create_worker - create a new worker if necessary 1967 * @pool: pool to create a new worker for 1968 * 1969 * Create a new worker for @pool if necessary. @pool is guaranteed to 1970 * have at least one idle worker on return from this function. If 1971 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1972 * sent to all rescuers with works scheduled on @pool to resolve 1973 * possible allocation deadlock. 1974 * 1975 * On return, need_to_create_worker() is guaranteed to be false and 1976 * may_start_working() true. 1977 * 1978 * LOCKING: 1979 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1980 * multiple times. Does GFP_KERNEL allocations. Called only from 1981 * manager. 1982 * 1983 * RETURNS: 1984 * false if no action was taken and gcwq->lock stayed locked, true 1985 * otherwise. 1986 */ 1987 static bool maybe_create_worker(struct worker_pool *pool) 1988 __releases(&gcwq->lock) 1989 __acquires(&gcwq->lock) 1990 { 1991 struct global_cwq *gcwq = pool->gcwq; 1992 1993 if (!need_to_create_worker(pool)) 1994 return false; 1995 restart: 1996 spin_unlock_irq(&gcwq->lock); 1997 1998 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1999 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2000 2001 while (true) { 2002 struct worker *worker; 2003 2004 worker = create_worker(pool); 2005 if (worker) { 2006 del_timer_sync(&pool->mayday_timer); 2007 spin_lock_irq(&gcwq->lock); 2008 start_worker(worker); 2009 BUG_ON(need_to_create_worker(pool)); 2010 return true; 2011 } 2012 2013 if (!need_to_create_worker(pool)) 2014 break; 2015 2016 __set_current_state(TASK_INTERRUPTIBLE); 2017 schedule_timeout(CREATE_COOLDOWN); 2018 2019 if (!need_to_create_worker(pool)) 2020 break; 2021 } 2022 2023 del_timer_sync(&pool->mayday_timer); 2024 spin_lock_irq(&gcwq->lock); 2025 if (need_to_create_worker(pool)) 2026 goto restart; 2027 return true; 2028 } 2029 2030 /** 2031 * maybe_destroy_worker - destroy workers which have been idle for a while 2032 * @pool: pool to destroy workers for 2033 * 2034 * Destroy @pool workers which have been idle for longer than 2035 * IDLE_WORKER_TIMEOUT. 2036 * 2037 * LOCKING: 2038 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 2039 * multiple times. Called only from manager. 2040 * 2041 * RETURNS: 2042 * false if no action was taken and gcwq->lock stayed locked, true 2043 * otherwise. 2044 */ 2045 static bool maybe_destroy_workers(struct worker_pool *pool) 2046 { 2047 bool ret = false; 2048 2049 while (too_many_workers(pool)) { 2050 struct worker *worker; 2051 unsigned long expires; 2052 2053 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2054 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2055 2056 if (time_before(jiffies, expires)) { 2057 mod_timer(&pool->idle_timer, expires); 2058 break; 2059 } 2060 2061 destroy_worker(worker); 2062 ret = true; 2063 } 2064 2065 return ret; 2066 } 2067 2068 /** 2069 * manage_workers - manage worker pool 2070 * @worker: self 2071 * 2072 * Assume the manager role and manage gcwq worker pool @worker belongs 2073 * to. At any given time, there can be only zero or one manager per 2074 * gcwq. The exclusion is handled automatically by this function. 2075 * 2076 * The caller can safely start processing works on false return. On 2077 * true return, it's guaranteed that need_to_create_worker() is false 2078 * and may_start_working() is true. 2079 * 2080 * CONTEXT: 2081 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 2082 * multiple times. Does GFP_KERNEL allocations. 2083 * 2084 * RETURNS: 2085 * false if no action was taken and gcwq->lock stayed locked, true if 2086 * some action was taken. 2087 */ 2088 static bool manage_workers(struct worker *worker) 2089 { 2090 struct worker_pool *pool = worker->pool; 2091 bool ret = false; 2092 2093 if (pool->flags & POOL_MANAGING_WORKERS) 2094 return ret; 2095 2096 pool->flags |= POOL_MANAGING_WORKERS; 2097 2098 /* 2099 * To simplify both worker management and CPU hotplug, hold off 2100 * management while hotplug is in progress. CPU hotplug path can't 2101 * grab %POOL_MANAGING_WORKERS to achieve this because that can 2102 * lead to idle worker depletion (all become busy thinking someone 2103 * else is managing) which in turn can result in deadlock under 2104 * extreme circumstances. Use @pool->assoc_mutex to synchronize 2105 * manager against CPU hotplug. 2106 * 2107 * assoc_mutex would always be free unless CPU hotplug is in 2108 * progress. trylock first without dropping @gcwq->lock. 2109 */ 2110 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) { 2111 spin_unlock_irq(&pool->gcwq->lock); 2112 mutex_lock(&pool->assoc_mutex); 2113 /* 2114 * CPU hotplug could have happened while we were waiting 2115 * for assoc_mutex. Hotplug itself can't handle us 2116 * because manager isn't either on idle or busy list, and 2117 * @gcwq's state and ours could have deviated. 2118 * 2119 * As hotplug is now excluded via assoc_mutex, we can 2120 * simply try to bind. It will succeed or fail depending 2121 * on @gcwq's current state. Try it and adjust 2122 * %WORKER_UNBOUND accordingly. 2123 */ 2124 if (worker_maybe_bind_and_lock(worker)) 2125 worker->flags &= ~WORKER_UNBOUND; 2126 else 2127 worker->flags |= WORKER_UNBOUND; 2128 2129 ret = true; 2130 } 2131 2132 pool->flags &= ~POOL_MANAGE_WORKERS; 2133 2134 /* 2135 * Destroy and then create so that may_start_working() is true 2136 * on return. 2137 */ 2138 ret |= maybe_destroy_workers(pool); 2139 ret |= maybe_create_worker(pool); 2140 2141 pool->flags &= ~POOL_MANAGING_WORKERS; 2142 mutex_unlock(&pool->assoc_mutex); 2143 return ret; 2144 } 2145 2146 /** 2147 * process_one_work - process single work 2148 * @worker: self 2149 * @work: work to process 2150 * 2151 * Process @work. This function contains all the logics necessary to 2152 * process a single work including synchronization against and 2153 * interaction with other workers on the same cpu, queueing and 2154 * flushing. As long as context requirement is met, any worker can 2155 * call this function to process a work. 2156 * 2157 * CONTEXT: 2158 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 2159 */ 2160 static void process_one_work(struct worker *worker, struct work_struct *work) 2161 __releases(&gcwq->lock) 2162 __acquires(&gcwq->lock) 2163 { 2164 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 2165 struct worker_pool *pool = worker->pool; 2166 struct global_cwq *gcwq = pool->gcwq; 2167 struct hlist_head *bwh = busy_worker_head(gcwq, work); 2168 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE; 2169 work_func_t f = work->func; 2170 int work_color; 2171 struct worker *collision; 2172 #ifdef CONFIG_LOCKDEP 2173 /* 2174 * It is permissible to free the struct work_struct from 2175 * inside the function that is called from it, this we need to 2176 * take into account for lockdep too. To avoid bogus "held 2177 * lock freed" warnings as well as problems when looking into 2178 * work->lockdep_map, make a copy and use that here. 2179 */ 2180 struct lockdep_map lockdep_map; 2181 2182 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2183 #endif 2184 /* 2185 * Ensure we're on the correct CPU. DISASSOCIATED test is 2186 * necessary to avoid spurious warnings from rescuers servicing the 2187 * unbound or a disassociated gcwq. 2188 */ 2189 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) && 2190 !(gcwq->flags & GCWQ_DISASSOCIATED) && 2191 raw_smp_processor_id() != gcwq->cpu); 2192 2193 /* 2194 * A single work shouldn't be executed concurrently by 2195 * multiple workers on a single cpu. Check whether anyone is 2196 * already processing the work. If so, defer the work to the 2197 * currently executing one. 2198 */ 2199 collision = __find_worker_executing_work(gcwq, bwh, work); 2200 if (unlikely(collision)) { 2201 move_linked_works(work, &collision->scheduled, NULL); 2202 return; 2203 } 2204 2205 /* claim and dequeue */ 2206 debug_work_deactivate(work); 2207 hlist_add_head(&worker->hentry, bwh); 2208 worker->current_work = work; 2209 worker->current_cwq = cwq; 2210 work_color = get_work_color(work); 2211 2212 list_del_init(&work->entry); 2213 2214 /* 2215 * CPU intensive works don't participate in concurrency 2216 * management. They're the scheduler's responsibility. 2217 */ 2218 if (unlikely(cpu_intensive)) 2219 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 2220 2221 /* 2222 * Unbound gcwq isn't concurrency managed and work items should be 2223 * executed ASAP. Wake up another worker if necessary. 2224 */ 2225 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool)) 2226 wake_up_worker(pool); 2227 2228 /* 2229 * Record the last CPU and clear PENDING which should be the last 2230 * update to @work. Also, do this inside @gcwq->lock so that 2231 * PENDING and queued state changes happen together while IRQ is 2232 * disabled. 2233 */ 2234 set_work_cpu_and_clear_pending(work, gcwq->cpu); 2235 2236 spin_unlock_irq(&gcwq->lock); 2237 2238 lock_map_acquire_read(&cwq->wq->lockdep_map); 2239 lock_map_acquire(&lockdep_map); 2240 trace_workqueue_execute_start(work); 2241 f(work); 2242 /* 2243 * While we must be careful to not use "work" after this, the trace 2244 * point will only record its address. 2245 */ 2246 trace_workqueue_execute_end(work); 2247 lock_map_release(&lockdep_map); 2248 lock_map_release(&cwq->wq->lockdep_map); 2249 2250 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2251 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2252 " last function: %pf\n", 2253 current->comm, preempt_count(), task_pid_nr(current), f); 2254 debug_show_held_locks(current); 2255 dump_stack(); 2256 } 2257 2258 spin_lock_irq(&gcwq->lock); 2259 2260 /* clear cpu intensive status */ 2261 if (unlikely(cpu_intensive)) 2262 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2263 2264 /* we're done with it, release */ 2265 hlist_del_init(&worker->hentry); 2266 worker->current_work = NULL; 2267 worker->current_cwq = NULL; 2268 cwq_dec_nr_in_flight(cwq, work_color); 2269 } 2270 2271 /** 2272 * process_scheduled_works - process scheduled works 2273 * @worker: self 2274 * 2275 * Process all scheduled works. Please note that the scheduled list 2276 * may change while processing a work, so this function repeatedly 2277 * fetches a work from the top and executes it. 2278 * 2279 * CONTEXT: 2280 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 2281 * multiple times. 2282 */ 2283 static void process_scheduled_works(struct worker *worker) 2284 { 2285 while (!list_empty(&worker->scheduled)) { 2286 struct work_struct *work = list_first_entry(&worker->scheduled, 2287 struct work_struct, entry); 2288 process_one_work(worker, work); 2289 } 2290 } 2291 2292 /** 2293 * worker_thread - the worker thread function 2294 * @__worker: self 2295 * 2296 * The gcwq worker thread function. There's a single dynamic pool of 2297 * these per each cpu. These workers process all works regardless of 2298 * their specific target workqueue. The only exception is works which 2299 * belong to workqueues with a rescuer which will be explained in 2300 * rescuer_thread(). 2301 */ 2302 static int worker_thread(void *__worker) 2303 { 2304 struct worker *worker = __worker; 2305 struct worker_pool *pool = worker->pool; 2306 struct global_cwq *gcwq = pool->gcwq; 2307 2308 /* tell the scheduler that this is a workqueue worker */ 2309 worker->task->flags |= PF_WQ_WORKER; 2310 woke_up: 2311 spin_lock_irq(&gcwq->lock); 2312 2313 /* we are off idle list if destruction or rebind is requested */ 2314 if (unlikely(list_empty(&worker->entry))) { 2315 spin_unlock_irq(&gcwq->lock); 2316 2317 /* if DIE is set, destruction is requested */ 2318 if (worker->flags & WORKER_DIE) { 2319 worker->task->flags &= ~PF_WQ_WORKER; 2320 return 0; 2321 } 2322 2323 /* otherwise, rebind */ 2324 idle_worker_rebind(worker); 2325 goto woke_up; 2326 } 2327 2328 worker_leave_idle(worker); 2329 recheck: 2330 /* no more worker necessary? */ 2331 if (!need_more_worker(pool)) 2332 goto sleep; 2333 2334 /* do we need to manage? */ 2335 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2336 goto recheck; 2337 2338 /* 2339 * ->scheduled list can only be filled while a worker is 2340 * preparing to process a work or actually processing it. 2341 * Make sure nobody diddled with it while I was sleeping. 2342 */ 2343 BUG_ON(!list_empty(&worker->scheduled)); 2344 2345 /* 2346 * When control reaches this point, we're guaranteed to have 2347 * at least one idle worker or that someone else has already 2348 * assumed the manager role. 2349 */ 2350 worker_clr_flags(worker, WORKER_PREP); 2351 2352 do { 2353 struct work_struct *work = 2354 list_first_entry(&pool->worklist, 2355 struct work_struct, entry); 2356 2357 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2358 /* optimization path, not strictly necessary */ 2359 process_one_work(worker, work); 2360 if (unlikely(!list_empty(&worker->scheduled))) 2361 process_scheduled_works(worker); 2362 } else { 2363 move_linked_works(work, &worker->scheduled, NULL); 2364 process_scheduled_works(worker); 2365 } 2366 } while (keep_working(pool)); 2367 2368 worker_set_flags(worker, WORKER_PREP, false); 2369 sleep: 2370 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker)) 2371 goto recheck; 2372 2373 /* 2374 * gcwq->lock is held and there's no work to process and no 2375 * need to manage, sleep. Workers are woken up only while 2376 * holding gcwq->lock or from local cpu, so setting the 2377 * current state before releasing gcwq->lock is enough to 2378 * prevent losing any event. 2379 */ 2380 worker_enter_idle(worker); 2381 __set_current_state(TASK_INTERRUPTIBLE); 2382 spin_unlock_irq(&gcwq->lock); 2383 schedule(); 2384 goto woke_up; 2385 } 2386 2387 /** 2388 * rescuer_thread - the rescuer thread function 2389 * @__wq: the associated workqueue 2390 * 2391 * Workqueue rescuer thread function. There's one rescuer for each 2392 * workqueue which has WQ_RESCUER set. 2393 * 2394 * Regular work processing on a gcwq may block trying to create a new 2395 * worker which uses GFP_KERNEL allocation which has slight chance of 2396 * developing into deadlock if some works currently on the same queue 2397 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2398 * the problem rescuer solves. 2399 * 2400 * When such condition is possible, the gcwq summons rescuers of all 2401 * workqueues which have works queued on the gcwq and let them process 2402 * those works so that forward progress can be guaranteed. 2403 * 2404 * This should happen rarely. 2405 */ 2406 static int rescuer_thread(void *__wq) 2407 { 2408 struct workqueue_struct *wq = __wq; 2409 struct worker *rescuer = wq->rescuer; 2410 struct list_head *scheduled = &rescuer->scheduled; 2411 bool is_unbound = wq->flags & WQ_UNBOUND; 2412 unsigned int cpu; 2413 2414 set_user_nice(current, RESCUER_NICE_LEVEL); 2415 repeat: 2416 set_current_state(TASK_INTERRUPTIBLE); 2417 2418 if (kthread_should_stop()) { 2419 __set_current_state(TASK_RUNNING); 2420 return 0; 2421 } 2422 2423 /* 2424 * See whether any cpu is asking for help. Unbounded 2425 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND. 2426 */ 2427 for_each_mayday_cpu(cpu, wq->mayday_mask) { 2428 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu; 2429 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq); 2430 struct worker_pool *pool = cwq->pool; 2431 struct global_cwq *gcwq = pool->gcwq; 2432 struct work_struct *work, *n; 2433 2434 __set_current_state(TASK_RUNNING); 2435 mayday_clear_cpu(cpu, wq->mayday_mask); 2436 2437 /* migrate to the target cpu if possible */ 2438 rescuer->pool = pool; 2439 worker_maybe_bind_and_lock(rescuer); 2440 2441 /* 2442 * Slurp in all works issued via this workqueue and 2443 * process'em. 2444 */ 2445 BUG_ON(!list_empty(&rescuer->scheduled)); 2446 list_for_each_entry_safe(work, n, &pool->worklist, entry) 2447 if (get_work_cwq(work) == cwq) 2448 move_linked_works(work, scheduled, &n); 2449 2450 process_scheduled_works(rescuer); 2451 2452 /* 2453 * Leave this gcwq. If keep_working() is %true, notify a 2454 * regular worker; otherwise, we end up with 0 concurrency 2455 * and stalling the execution. 2456 */ 2457 if (keep_working(pool)) 2458 wake_up_worker(pool); 2459 2460 spin_unlock_irq(&gcwq->lock); 2461 } 2462 2463 schedule(); 2464 goto repeat; 2465 } 2466 2467 struct wq_barrier { 2468 struct work_struct work; 2469 struct completion done; 2470 }; 2471 2472 static void wq_barrier_func(struct work_struct *work) 2473 { 2474 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2475 complete(&barr->done); 2476 } 2477 2478 /** 2479 * insert_wq_barrier - insert a barrier work 2480 * @cwq: cwq to insert barrier into 2481 * @barr: wq_barrier to insert 2482 * @target: target work to attach @barr to 2483 * @worker: worker currently executing @target, NULL if @target is not executing 2484 * 2485 * @barr is linked to @target such that @barr is completed only after 2486 * @target finishes execution. Please note that the ordering 2487 * guarantee is observed only with respect to @target and on the local 2488 * cpu. 2489 * 2490 * Currently, a queued barrier can't be canceled. This is because 2491 * try_to_grab_pending() can't determine whether the work to be 2492 * grabbed is at the head of the queue and thus can't clear LINKED 2493 * flag of the previous work while there must be a valid next work 2494 * after a work with LINKED flag set. 2495 * 2496 * Note that when @worker is non-NULL, @target may be modified 2497 * underneath us, so we can't reliably determine cwq from @target. 2498 * 2499 * CONTEXT: 2500 * spin_lock_irq(gcwq->lock). 2501 */ 2502 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, 2503 struct wq_barrier *barr, 2504 struct work_struct *target, struct worker *worker) 2505 { 2506 struct list_head *head; 2507 unsigned int linked = 0; 2508 2509 /* 2510 * debugobject calls are safe here even with gcwq->lock locked 2511 * as we know for sure that this will not trigger any of the 2512 * checks and call back into the fixup functions where we 2513 * might deadlock. 2514 */ 2515 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2516 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2517 init_completion(&barr->done); 2518 2519 /* 2520 * If @target is currently being executed, schedule the 2521 * barrier to the worker; otherwise, put it after @target. 2522 */ 2523 if (worker) 2524 head = worker->scheduled.next; 2525 else { 2526 unsigned long *bits = work_data_bits(target); 2527 2528 head = target->entry.next; 2529 /* there can already be other linked works, inherit and set */ 2530 linked = *bits & WORK_STRUCT_LINKED; 2531 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2532 } 2533 2534 debug_work_activate(&barr->work); 2535 insert_work(cwq, &barr->work, head, 2536 work_color_to_flags(WORK_NO_COLOR) | linked); 2537 } 2538 2539 /** 2540 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing 2541 * @wq: workqueue being flushed 2542 * @flush_color: new flush color, < 0 for no-op 2543 * @work_color: new work color, < 0 for no-op 2544 * 2545 * Prepare cwqs for workqueue flushing. 2546 * 2547 * If @flush_color is non-negative, flush_color on all cwqs should be 2548 * -1. If no cwq has in-flight commands at the specified color, all 2549 * cwq->flush_color's stay at -1 and %false is returned. If any cwq 2550 * has in flight commands, its cwq->flush_color is set to 2551 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq 2552 * wakeup logic is armed and %true is returned. 2553 * 2554 * The caller should have initialized @wq->first_flusher prior to 2555 * calling this function with non-negative @flush_color. If 2556 * @flush_color is negative, no flush color update is done and %false 2557 * is returned. 2558 * 2559 * If @work_color is non-negative, all cwqs should have the same 2560 * work_color which is previous to @work_color and all will be 2561 * advanced to @work_color. 2562 * 2563 * CONTEXT: 2564 * mutex_lock(wq->flush_mutex). 2565 * 2566 * RETURNS: 2567 * %true if @flush_color >= 0 and there's something to flush. %false 2568 * otherwise. 2569 */ 2570 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq, 2571 int flush_color, int work_color) 2572 { 2573 bool wait = false; 2574 unsigned int cpu; 2575 2576 if (flush_color >= 0) { 2577 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush)); 2578 atomic_set(&wq->nr_cwqs_to_flush, 1); 2579 } 2580 2581 for_each_cwq_cpu(cpu, wq) { 2582 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2583 struct global_cwq *gcwq = cwq->pool->gcwq; 2584 2585 spin_lock_irq(&gcwq->lock); 2586 2587 if (flush_color >= 0) { 2588 BUG_ON(cwq->flush_color != -1); 2589 2590 if (cwq->nr_in_flight[flush_color]) { 2591 cwq->flush_color = flush_color; 2592 atomic_inc(&wq->nr_cwqs_to_flush); 2593 wait = true; 2594 } 2595 } 2596 2597 if (work_color >= 0) { 2598 BUG_ON(work_color != work_next_color(cwq->work_color)); 2599 cwq->work_color = work_color; 2600 } 2601 2602 spin_unlock_irq(&gcwq->lock); 2603 } 2604 2605 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush)) 2606 complete(&wq->first_flusher->done); 2607 2608 return wait; 2609 } 2610 2611 /** 2612 * flush_workqueue - ensure that any scheduled work has run to completion. 2613 * @wq: workqueue to flush 2614 * 2615 * Forces execution of the workqueue and blocks until its completion. 2616 * This is typically used in driver shutdown handlers. 2617 * 2618 * We sleep until all works which were queued on entry have been handled, 2619 * but we are not livelocked by new incoming ones. 2620 */ 2621 void flush_workqueue(struct workqueue_struct *wq) 2622 { 2623 struct wq_flusher this_flusher = { 2624 .list = LIST_HEAD_INIT(this_flusher.list), 2625 .flush_color = -1, 2626 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2627 }; 2628 int next_color; 2629 2630 lock_map_acquire(&wq->lockdep_map); 2631 lock_map_release(&wq->lockdep_map); 2632 2633 mutex_lock(&wq->flush_mutex); 2634 2635 /* 2636 * Start-to-wait phase 2637 */ 2638 next_color = work_next_color(wq->work_color); 2639 2640 if (next_color != wq->flush_color) { 2641 /* 2642 * Color space is not full. The current work_color 2643 * becomes our flush_color and work_color is advanced 2644 * by one. 2645 */ 2646 BUG_ON(!list_empty(&wq->flusher_overflow)); 2647 this_flusher.flush_color = wq->work_color; 2648 wq->work_color = next_color; 2649 2650 if (!wq->first_flusher) { 2651 /* no flush in progress, become the first flusher */ 2652 BUG_ON(wq->flush_color != this_flusher.flush_color); 2653 2654 wq->first_flusher = &this_flusher; 2655 2656 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color, 2657 wq->work_color)) { 2658 /* nothing to flush, done */ 2659 wq->flush_color = next_color; 2660 wq->first_flusher = NULL; 2661 goto out_unlock; 2662 } 2663 } else { 2664 /* wait in queue */ 2665 BUG_ON(wq->flush_color == this_flusher.flush_color); 2666 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2667 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2668 } 2669 } else { 2670 /* 2671 * Oops, color space is full, wait on overflow queue. 2672 * The next flush completion will assign us 2673 * flush_color and transfer to flusher_queue. 2674 */ 2675 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2676 } 2677 2678 mutex_unlock(&wq->flush_mutex); 2679 2680 wait_for_completion(&this_flusher.done); 2681 2682 /* 2683 * Wake-up-and-cascade phase 2684 * 2685 * First flushers are responsible for cascading flushes and 2686 * handling overflow. Non-first flushers can simply return. 2687 */ 2688 if (wq->first_flusher != &this_flusher) 2689 return; 2690 2691 mutex_lock(&wq->flush_mutex); 2692 2693 /* we might have raced, check again with mutex held */ 2694 if (wq->first_flusher != &this_flusher) 2695 goto out_unlock; 2696 2697 wq->first_flusher = NULL; 2698 2699 BUG_ON(!list_empty(&this_flusher.list)); 2700 BUG_ON(wq->flush_color != this_flusher.flush_color); 2701 2702 while (true) { 2703 struct wq_flusher *next, *tmp; 2704 2705 /* complete all the flushers sharing the current flush color */ 2706 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2707 if (next->flush_color != wq->flush_color) 2708 break; 2709 list_del_init(&next->list); 2710 complete(&next->done); 2711 } 2712 2713 BUG_ON(!list_empty(&wq->flusher_overflow) && 2714 wq->flush_color != work_next_color(wq->work_color)); 2715 2716 /* this flush_color is finished, advance by one */ 2717 wq->flush_color = work_next_color(wq->flush_color); 2718 2719 /* one color has been freed, handle overflow queue */ 2720 if (!list_empty(&wq->flusher_overflow)) { 2721 /* 2722 * Assign the same color to all overflowed 2723 * flushers, advance work_color and append to 2724 * flusher_queue. This is the start-to-wait 2725 * phase for these overflowed flushers. 2726 */ 2727 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2728 tmp->flush_color = wq->work_color; 2729 2730 wq->work_color = work_next_color(wq->work_color); 2731 2732 list_splice_tail_init(&wq->flusher_overflow, 2733 &wq->flusher_queue); 2734 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2735 } 2736 2737 if (list_empty(&wq->flusher_queue)) { 2738 BUG_ON(wq->flush_color != wq->work_color); 2739 break; 2740 } 2741 2742 /* 2743 * Need to flush more colors. Make the next flusher 2744 * the new first flusher and arm cwqs. 2745 */ 2746 BUG_ON(wq->flush_color == wq->work_color); 2747 BUG_ON(wq->flush_color != next->flush_color); 2748 2749 list_del_init(&next->list); 2750 wq->first_flusher = next; 2751 2752 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1)) 2753 break; 2754 2755 /* 2756 * Meh... this color is already done, clear first 2757 * flusher and repeat cascading. 2758 */ 2759 wq->first_flusher = NULL; 2760 } 2761 2762 out_unlock: 2763 mutex_unlock(&wq->flush_mutex); 2764 } 2765 EXPORT_SYMBOL_GPL(flush_workqueue); 2766 2767 /** 2768 * drain_workqueue - drain a workqueue 2769 * @wq: workqueue to drain 2770 * 2771 * Wait until the workqueue becomes empty. While draining is in progress, 2772 * only chain queueing is allowed. IOW, only currently pending or running 2773 * work items on @wq can queue further work items on it. @wq is flushed 2774 * repeatedly until it becomes empty. The number of flushing is detemined 2775 * by the depth of chaining and should be relatively short. Whine if it 2776 * takes too long. 2777 */ 2778 void drain_workqueue(struct workqueue_struct *wq) 2779 { 2780 unsigned int flush_cnt = 0; 2781 unsigned int cpu; 2782 2783 /* 2784 * __queue_work() needs to test whether there are drainers, is much 2785 * hotter than drain_workqueue() and already looks at @wq->flags. 2786 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers. 2787 */ 2788 spin_lock(&workqueue_lock); 2789 if (!wq->nr_drainers++) 2790 wq->flags |= WQ_DRAINING; 2791 spin_unlock(&workqueue_lock); 2792 reflush: 2793 flush_workqueue(wq); 2794 2795 for_each_cwq_cpu(cpu, wq) { 2796 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2797 bool drained; 2798 2799 spin_lock_irq(&cwq->pool->gcwq->lock); 2800 drained = !cwq->nr_active && list_empty(&cwq->delayed_works); 2801 spin_unlock_irq(&cwq->pool->gcwq->lock); 2802 2803 if (drained) 2804 continue; 2805 2806 if (++flush_cnt == 10 || 2807 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2808 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n", 2809 wq->name, flush_cnt); 2810 goto reflush; 2811 } 2812 2813 spin_lock(&workqueue_lock); 2814 if (!--wq->nr_drainers) 2815 wq->flags &= ~WQ_DRAINING; 2816 spin_unlock(&workqueue_lock); 2817 } 2818 EXPORT_SYMBOL_GPL(drain_workqueue); 2819 2820 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2821 { 2822 struct worker *worker = NULL; 2823 struct global_cwq *gcwq; 2824 struct cpu_workqueue_struct *cwq; 2825 2826 might_sleep(); 2827 gcwq = get_work_gcwq(work); 2828 if (!gcwq) 2829 return false; 2830 2831 spin_lock_irq(&gcwq->lock); 2832 if (!list_empty(&work->entry)) { 2833 /* 2834 * See the comment near try_to_grab_pending()->smp_rmb(). 2835 * If it was re-queued to a different gcwq under us, we 2836 * are not going to wait. 2837 */ 2838 smp_rmb(); 2839 cwq = get_work_cwq(work); 2840 if (unlikely(!cwq || gcwq != cwq->pool->gcwq)) 2841 goto already_gone; 2842 } else { 2843 worker = find_worker_executing_work(gcwq, work); 2844 if (!worker) 2845 goto already_gone; 2846 cwq = worker->current_cwq; 2847 } 2848 2849 insert_wq_barrier(cwq, barr, work, worker); 2850 spin_unlock_irq(&gcwq->lock); 2851 2852 /* 2853 * If @max_active is 1 or rescuer is in use, flushing another work 2854 * item on the same workqueue may lead to deadlock. Make sure the 2855 * flusher is not running on the same workqueue by verifying write 2856 * access. 2857 */ 2858 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER) 2859 lock_map_acquire(&cwq->wq->lockdep_map); 2860 else 2861 lock_map_acquire_read(&cwq->wq->lockdep_map); 2862 lock_map_release(&cwq->wq->lockdep_map); 2863 2864 return true; 2865 already_gone: 2866 spin_unlock_irq(&gcwq->lock); 2867 return false; 2868 } 2869 2870 /** 2871 * flush_work - wait for a work to finish executing the last queueing instance 2872 * @work: the work to flush 2873 * 2874 * Wait until @work has finished execution. @work is guaranteed to be idle 2875 * on return if it hasn't been requeued since flush started. 2876 * 2877 * RETURNS: 2878 * %true if flush_work() waited for the work to finish execution, 2879 * %false if it was already idle. 2880 */ 2881 bool flush_work(struct work_struct *work) 2882 { 2883 struct wq_barrier barr; 2884 2885 lock_map_acquire(&work->lockdep_map); 2886 lock_map_release(&work->lockdep_map); 2887 2888 if (start_flush_work(work, &barr)) { 2889 wait_for_completion(&barr.done); 2890 destroy_work_on_stack(&barr.work); 2891 return true; 2892 } else { 2893 return false; 2894 } 2895 } 2896 EXPORT_SYMBOL_GPL(flush_work); 2897 2898 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2899 { 2900 unsigned long flags; 2901 int ret; 2902 2903 do { 2904 ret = try_to_grab_pending(work, is_dwork, &flags); 2905 /* 2906 * If someone else is canceling, wait for the same event it 2907 * would be waiting for before retrying. 2908 */ 2909 if (unlikely(ret == -ENOENT)) 2910 flush_work(work); 2911 } while (unlikely(ret < 0)); 2912 2913 /* tell other tasks trying to grab @work to back off */ 2914 mark_work_canceling(work); 2915 local_irq_restore(flags); 2916 2917 flush_work(work); 2918 clear_work_data(work); 2919 return ret; 2920 } 2921 2922 /** 2923 * cancel_work_sync - cancel a work and wait for it to finish 2924 * @work: the work to cancel 2925 * 2926 * Cancel @work and wait for its execution to finish. This function 2927 * can be used even if the work re-queues itself or migrates to 2928 * another workqueue. On return from this function, @work is 2929 * guaranteed to be not pending or executing on any CPU. 2930 * 2931 * cancel_work_sync(&delayed_work->work) must not be used for 2932 * delayed_work's. Use cancel_delayed_work_sync() instead. 2933 * 2934 * The caller must ensure that the workqueue on which @work was last 2935 * queued can't be destroyed before this function returns. 2936 * 2937 * RETURNS: 2938 * %true if @work was pending, %false otherwise. 2939 */ 2940 bool cancel_work_sync(struct work_struct *work) 2941 { 2942 return __cancel_work_timer(work, false); 2943 } 2944 EXPORT_SYMBOL_GPL(cancel_work_sync); 2945 2946 /** 2947 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2948 * @dwork: the delayed work to flush 2949 * 2950 * Delayed timer is cancelled and the pending work is queued for 2951 * immediate execution. Like flush_work(), this function only 2952 * considers the last queueing instance of @dwork. 2953 * 2954 * RETURNS: 2955 * %true if flush_work() waited for the work to finish execution, 2956 * %false if it was already idle. 2957 */ 2958 bool flush_delayed_work(struct delayed_work *dwork) 2959 { 2960 local_irq_disable(); 2961 if (del_timer_sync(&dwork->timer)) 2962 __queue_work(dwork->cpu, 2963 get_work_cwq(&dwork->work)->wq, &dwork->work); 2964 local_irq_enable(); 2965 return flush_work(&dwork->work); 2966 } 2967 EXPORT_SYMBOL(flush_delayed_work); 2968 2969 /** 2970 * cancel_delayed_work - cancel a delayed work 2971 * @dwork: delayed_work to cancel 2972 * 2973 * Kill off a pending delayed_work. Returns %true if @dwork was pending 2974 * and canceled; %false if wasn't pending. Note that the work callback 2975 * function may still be running on return, unless it returns %true and the 2976 * work doesn't re-arm itself. Explicitly flush or use 2977 * cancel_delayed_work_sync() to wait on it. 2978 * 2979 * This function is safe to call from any context including IRQ handler. 2980 */ 2981 bool cancel_delayed_work(struct delayed_work *dwork) 2982 { 2983 unsigned long flags; 2984 int ret; 2985 2986 do { 2987 ret = try_to_grab_pending(&dwork->work, true, &flags); 2988 } while (unlikely(ret == -EAGAIN)); 2989 2990 if (unlikely(ret < 0)) 2991 return false; 2992 2993 set_work_cpu_and_clear_pending(&dwork->work, work_cpu(&dwork->work)); 2994 local_irq_restore(flags); 2995 return ret; 2996 } 2997 EXPORT_SYMBOL(cancel_delayed_work); 2998 2999 /** 3000 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3001 * @dwork: the delayed work cancel 3002 * 3003 * This is cancel_work_sync() for delayed works. 3004 * 3005 * RETURNS: 3006 * %true if @dwork was pending, %false otherwise. 3007 */ 3008 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3009 { 3010 return __cancel_work_timer(&dwork->work, true); 3011 } 3012 EXPORT_SYMBOL(cancel_delayed_work_sync); 3013 3014 /** 3015 * schedule_work_on - put work task on a specific cpu 3016 * @cpu: cpu to put the work task on 3017 * @work: job to be done 3018 * 3019 * This puts a job on a specific cpu 3020 */ 3021 bool schedule_work_on(int cpu, struct work_struct *work) 3022 { 3023 return queue_work_on(cpu, system_wq, work); 3024 } 3025 EXPORT_SYMBOL(schedule_work_on); 3026 3027 /** 3028 * schedule_work - put work task in global workqueue 3029 * @work: job to be done 3030 * 3031 * Returns %false if @work was already on the kernel-global workqueue and 3032 * %true otherwise. 3033 * 3034 * This puts a job in the kernel-global workqueue if it was not already 3035 * queued and leaves it in the same position on the kernel-global 3036 * workqueue otherwise. 3037 */ 3038 bool schedule_work(struct work_struct *work) 3039 { 3040 return queue_work(system_wq, work); 3041 } 3042 EXPORT_SYMBOL(schedule_work); 3043 3044 /** 3045 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 3046 * @cpu: cpu to use 3047 * @dwork: job to be done 3048 * @delay: number of jiffies to wait 3049 * 3050 * After waiting for a given time this puts a job in the kernel-global 3051 * workqueue on the specified CPU. 3052 */ 3053 bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 3054 unsigned long delay) 3055 { 3056 return queue_delayed_work_on(cpu, system_wq, dwork, delay); 3057 } 3058 EXPORT_SYMBOL(schedule_delayed_work_on); 3059 3060 /** 3061 * schedule_delayed_work - put work task in global workqueue after delay 3062 * @dwork: job to be done 3063 * @delay: number of jiffies to wait or 0 for immediate execution 3064 * 3065 * After waiting for a given time this puts a job in the kernel-global 3066 * workqueue. 3067 */ 3068 bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay) 3069 { 3070 return queue_delayed_work(system_wq, dwork, delay); 3071 } 3072 EXPORT_SYMBOL(schedule_delayed_work); 3073 3074 /** 3075 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3076 * @func: the function to call 3077 * 3078 * schedule_on_each_cpu() executes @func on each online CPU using the 3079 * system workqueue and blocks until all CPUs have completed. 3080 * schedule_on_each_cpu() is very slow. 3081 * 3082 * RETURNS: 3083 * 0 on success, -errno on failure. 3084 */ 3085 int schedule_on_each_cpu(work_func_t func) 3086 { 3087 int cpu; 3088 struct work_struct __percpu *works; 3089 3090 works = alloc_percpu(struct work_struct); 3091 if (!works) 3092 return -ENOMEM; 3093 3094 get_online_cpus(); 3095 3096 for_each_online_cpu(cpu) { 3097 struct work_struct *work = per_cpu_ptr(works, cpu); 3098 3099 INIT_WORK(work, func); 3100 schedule_work_on(cpu, work); 3101 } 3102 3103 for_each_online_cpu(cpu) 3104 flush_work(per_cpu_ptr(works, cpu)); 3105 3106 put_online_cpus(); 3107 free_percpu(works); 3108 return 0; 3109 } 3110 3111 /** 3112 * flush_scheduled_work - ensure that any scheduled work has run to completion. 3113 * 3114 * Forces execution of the kernel-global workqueue and blocks until its 3115 * completion. 3116 * 3117 * Think twice before calling this function! It's very easy to get into 3118 * trouble if you don't take great care. Either of the following situations 3119 * will lead to deadlock: 3120 * 3121 * One of the work items currently on the workqueue needs to acquire 3122 * a lock held by your code or its caller. 3123 * 3124 * Your code is running in the context of a work routine. 3125 * 3126 * They will be detected by lockdep when they occur, but the first might not 3127 * occur very often. It depends on what work items are on the workqueue and 3128 * what locks they need, which you have no control over. 3129 * 3130 * In most situations flushing the entire workqueue is overkill; you merely 3131 * need to know that a particular work item isn't queued and isn't running. 3132 * In such cases you should use cancel_delayed_work_sync() or 3133 * cancel_work_sync() instead. 3134 */ 3135 void flush_scheduled_work(void) 3136 { 3137 flush_workqueue(system_wq); 3138 } 3139 EXPORT_SYMBOL(flush_scheduled_work); 3140 3141 /** 3142 * execute_in_process_context - reliably execute the routine with user context 3143 * @fn: the function to execute 3144 * @ew: guaranteed storage for the execute work structure (must 3145 * be available when the work executes) 3146 * 3147 * Executes the function immediately if process context is available, 3148 * otherwise schedules the function for delayed execution. 3149 * 3150 * Returns: 0 - function was executed 3151 * 1 - function was scheduled for execution 3152 */ 3153 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3154 { 3155 if (!in_interrupt()) { 3156 fn(&ew->work); 3157 return 0; 3158 } 3159 3160 INIT_WORK(&ew->work, fn); 3161 schedule_work(&ew->work); 3162 3163 return 1; 3164 } 3165 EXPORT_SYMBOL_GPL(execute_in_process_context); 3166 3167 int keventd_up(void) 3168 { 3169 return system_wq != NULL; 3170 } 3171 3172 static int alloc_cwqs(struct workqueue_struct *wq) 3173 { 3174 /* 3175 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS. 3176 * Make sure that the alignment isn't lower than that of 3177 * unsigned long long. 3178 */ 3179 const size_t size = sizeof(struct cpu_workqueue_struct); 3180 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS, 3181 __alignof__(unsigned long long)); 3182 3183 if (!(wq->flags & WQ_UNBOUND)) 3184 wq->cpu_wq.pcpu = __alloc_percpu(size, align); 3185 else { 3186 void *ptr; 3187 3188 /* 3189 * Allocate enough room to align cwq and put an extra 3190 * pointer at the end pointing back to the originally 3191 * allocated pointer which will be used for free. 3192 */ 3193 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL); 3194 if (ptr) { 3195 wq->cpu_wq.single = PTR_ALIGN(ptr, align); 3196 *(void **)(wq->cpu_wq.single + 1) = ptr; 3197 } 3198 } 3199 3200 /* just in case, make sure it's actually aligned */ 3201 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align)); 3202 return wq->cpu_wq.v ? 0 : -ENOMEM; 3203 } 3204 3205 static void free_cwqs(struct workqueue_struct *wq) 3206 { 3207 if (!(wq->flags & WQ_UNBOUND)) 3208 free_percpu(wq->cpu_wq.pcpu); 3209 else if (wq->cpu_wq.single) { 3210 /* the pointer to free is stored right after the cwq */ 3211 kfree(*(void **)(wq->cpu_wq.single + 1)); 3212 } 3213 } 3214 3215 static int wq_clamp_max_active(int max_active, unsigned int flags, 3216 const char *name) 3217 { 3218 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 3219 3220 if (max_active < 1 || max_active > lim) 3221 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 3222 max_active, name, 1, lim); 3223 3224 return clamp_val(max_active, 1, lim); 3225 } 3226 3227 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 3228 unsigned int flags, 3229 int max_active, 3230 struct lock_class_key *key, 3231 const char *lock_name, ...) 3232 { 3233 va_list args, args1; 3234 struct workqueue_struct *wq; 3235 unsigned int cpu; 3236 size_t namelen; 3237 3238 /* determine namelen, allocate wq and format name */ 3239 va_start(args, lock_name); 3240 va_copy(args1, args); 3241 namelen = vsnprintf(NULL, 0, fmt, args) + 1; 3242 3243 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL); 3244 if (!wq) 3245 goto err; 3246 3247 vsnprintf(wq->name, namelen, fmt, args1); 3248 va_end(args); 3249 va_end(args1); 3250 3251 /* 3252 * Workqueues which may be used during memory reclaim should 3253 * have a rescuer to guarantee forward progress. 3254 */ 3255 if (flags & WQ_MEM_RECLAIM) 3256 flags |= WQ_RESCUER; 3257 3258 max_active = max_active ?: WQ_DFL_ACTIVE; 3259 max_active = wq_clamp_max_active(max_active, flags, wq->name); 3260 3261 /* init wq */ 3262 wq->flags = flags; 3263 wq->saved_max_active = max_active; 3264 mutex_init(&wq->flush_mutex); 3265 atomic_set(&wq->nr_cwqs_to_flush, 0); 3266 INIT_LIST_HEAD(&wq->flusher_queue); 3267 INIT_LIST_HEAD(&wq->flusher_overflow); 3268 3269 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 3270 INIT_LIST_HEAD(&wq->list); 3271 3272 if (alloc_cwqs(wq) < 0) 3273 goto err; 3274 3275 for_each_cwq_cpu(cpu, wq) { 3276 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3277 struct global_cwq *gcwq = get_gcwq(cpu); 3278 int pool_idx = (bool)(flags & WQ_HIGHPRI); 3279 3280 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK); 3281 cwq->pool = &gcwq->pools[pool_idx]; 3282 cwq->wq = wq; 3283 cwq->flush_color = -1; 3284 cwq->max_active = max_active; 3285 INIT_LIST_HEAD(&cwq->delayed_works); 3286 } 3287 3288 if (flags & WQ_RESCUER) { 3289 struct worker *rescuer; 3290 3291 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL)) 3292 goto err; 3293 3294 wq->rescuer = rescuer = alloc_worker(); 3295 if (!rescuer) 3296 goto err; 3297 3298 rescuer->task = kthread_create(rescuer_thread, wq, "%s", 3299 wq->name); 3300 if (IS_ERR(rescuer->task)) 3301 goto err; 3302 3303 rescuer->task->flags |= PF_THREAD_BOUND; 3304 wake_up_process(rescuer->task); 3305 } 3306 3307 /* 3308 * workqueue_lock protects global freeze state and workqueues 3309 * list. Grab it, set max_active accordingly and add the new 3310 * workqueue to workqueues list. 3311 */ 3312 spin_lock(&workqueue_lock); 3313 3314 if (workqueue_freezing && wq->flags & WQ_FREEZABLE) 3315 for_each_cwq_cpu(cpu, wq) 3316 get_cwq(cpu, wq)->max_active = 0; 3317 3318 list_add(&wq->list, &workqueues); 3319 3320 spin_unlock(&workqueue_lock); 3321 3322 return wq; 3323 err: 3324 if (wq) { 3325 free_cwqs(wq); 3326 free_mayday_mask(wq->mayday_mask); 3327 kfree(wq->rescuer); 3328 kfree(wq); 3329 } 3330 return NULL; 3331 } 3332 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 3333 3334 /** 3335 * destroy_workqueue - safely terminate a workqueue 3336 * @wq: target workqueue 3337 * 3338 * Safely destroy a workqueue. All work currently pending will be done first. 3339 */ 3340 void destroy_workqueue(struct workqueue_struct *wq) 3341 { 3342 unsigned int cpu; 3343 3344 /* drain it before proceeding with destruction */ 3345 drain_workqueue(wq); 3346 3347 /* 3348 * wq list is used to freeze wq, remove from list after 3349 * flushing is complete in case freeze races us. 3350 */ 3351 spin_lock(&workqueue_lock); 3352 list_del(&wq->list); 3353 spin_unlock(&workqueue_lock); 3354 3355 /* sanity check */ 3356 for_each_cwq_cpu(cpu, wq) { 3357 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3358 int i; 3359 3360 for (i = 0; i < WORK_NR_COLORS; i++) 3361 BUG_ON(cwq->nr_in_flight[i]); 3362 BUG_ON(cwq->nr_active); 3363 BUG_ON(!list_empty(&cwq->delayed_works)); 3364 } 3365 3366 if (wq->flags & WQ_RESCUER) { 3367 kthread_stop(wq->rescuer->task); 3368 free_mayday_mask(wq->mayday_mask); 3369 kfree(wq->rescuer); 3370 } 3371 3372 free_cwqs(wq); 3373 kfree(wq); 3374 } 3375 EXPORT_SYMBOL_GPL(destroy_workqueue); 3376 3377 /** 3378 * cwq_set_max_active - adjust max_active of a cwq 3379 * @cwq: target cpu_workqueue_struct 3380 * @max_active: new max_active value. 3381 * 3382 * Set @cwq->max_active to @max_active and activate delayed works if 3383 * increased. 3384 * 3385 * CONTEXT: 3386 * spin_lock_irq(gcwq->lock). 3387 */ 3388 static void cwq_set_max_active(struct cpu_workqueue_struct *cwq, int max_active) 3389 { 3390 cwq->max_active = max_active; 3391 3392 while (!list_empty(&cwq->delayed_works) && 3393 cwq->nr_active < cwq->max_active) 3394 cwq_activate_first_delayed(cwq); 3395 } 3396 3397 /** 3398 * workqueue_set_max_active - adjust max_active of a workqueue 3399 * @wq: target workqueue 3400 * @max_active: new max_active value. 3401 * 3402 * Set max_active of @wq to @max_active. 3403 * 3404 * CONTEXT: 3405 * Don't call from IRQ context. 3406 */ 3407 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 3408 { 3409 unsigned int cpu; 3410 3411 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 3412 3413 spin_lock(&workqueue_lock); 3414 3415 wq->saved_max_active = max_active; 3416 3417 for_each_cwq_cpu(cpu, wq) { 3418 struct global_cwq *gcwq = get_gcwq(cpu); 3419 3420 spin_lock_irq(&gcwq->lock); 3421 3422 if (!(wq->flags & WQ_FREEZABLE) || 3423 !(gcwq->flags & GCWQ_FREEZING)) 3424 cwq_set_max_active(get_cwq(gcwq->cpu, wq), max_active); 3425 3426 spin_unlock_irq(&gcwq->lock); 3427 } 3428 3429 spin_unlock(&workqueue_lock); 3430 } 3431 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 3432 3433 /** 3434 * workqueue_congested - test whether a workqueue is congested 3435 * @cpu: CPU in question 3436 * @wq: target workqueue 3437 * 3438 * Test whether @wq's cpu workqueue for @cpu is congested. There is 3439 * no synchronization around this function and the test result is 3440 * unreliable and only useful as advisory hints or for debugging. 3441 * 3442 * RETURNS: 3443 * %true if congested, %false otherwise. 3444 */ 3445 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq) 3446 { 3447 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3448 3449 return !list_empty(&cwq->delayed_works); 3450 } 3451 EXPORT_SYMBOL_GPL(workqueue_congested); 3452 3453 /** 3454 * work_cpu - return the last known associated cpu for @work 3455 * @work: the work of interest 3456 * 3457 * RETURNS: 3458 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise. 3459 */ 3460 unsigned int work_cpu(struct work_struct *work) 3461 { 3462 struct global_cwq *gcwq = get_work_gcwq(work); 3463 3464 return gcwq ? gcwq->cpu : WORK_CPU_NONE; 3465 } 3466 EXPORT_SYMBOL_GPL(work_cpu); 3467 3468 /** 3469 * work_busy - test whether a work is currently pending or running 3470 * @work: the work to be tested 3471 * 3472 * Test whether @work is currently pending or running. There is no 3473 * synchronization around this function and the test result is 3474 * unreliable and only useful as advisory hints or for debugging. 3475 * Especially for reentrant wqs, the pending state might hide the 3476 * running state. 3477 * 3478 * RETURNS: 3479 * OR'd bitmask of WORK_BUSY_* bits. 3480 */ 3481 unsigned int work_busy(struct work_struct *work) 3482 { 3483 struct global_cwq *gcwq = get_work_gcwq(work); 3484 unsigned long flags; 3485 unsigned int ret = 0; 3486 3487 if (!gcwq) 3488 return false; 3489 3490 spin_lock_irqsave(&gcwq->lock, flags); 3491 3492 if (work_pending(work)) 3493 ret |= WORK_BUSY_PENDING; 3494 if (find_worker_executing_work(gcwq, work)) 3495 ret |= WORK_BUSY_RUNNING; 3496 3497 spin_unlock_irqrestore(&gcwq->lock, flags); 3498 3499 return ret; 3500 } 3501 EXPORT_SYMBOL_GPL(work_busy); 3502 3503 /* 3504 * CPU hotplug. 3505 * 3506 * There are two challenges in supporting CPU hotplug. Firstly, there 3507 * are a lot of assumptions on strong associations among work, cwq and 3508 * gcwq which make migrating pending and scheduled works very 3509 * difficult to implement without impacting hot paths. Secondly, 3510 * gcwqs serve mix of short, long and very long running works making 3511 * blocked draining impractical. 3512 * 3513 * This is solved by allowing a gcwq to be disassociated from the CPU 3514 * running as an unbound one and allowing it to be reattached later if the 3515 * cpu comes back online. 3516 */ 3517 3518 /* claim manager positions of all pools */ 3519 static void gcwq_claim_assoc_and_lock(struct global_cwq *gcwq) 3520 { 3521 struct worker_pool *pool; 3522 3523 for_each_worker_pool(pool, gcwq) 3524 mutex_lock_nested(&pool->assoc_mutex, pool - gcwq->pools); 3525 spin_lock_irq(&gcwq->lock); 3526 } 3527 3528 /* release manager positions */ 3529 static void gcwq_release_assoc_and_unlock(struct global_cwq *gcwq) 3530 { 3531 struct worker_pool *pool; 3532 3533 spin_unlock_irq(&gcwq->lock); 3534 for_each_worker_pool(pool, gcwq) 3535 mutex_unlock(&pool->assoc_mutex); 3536 } 3537 3538 static void gcwq_unbind_fn(struct work_struct *work) 3539 { 3540 struct global_cwq *gcwq = get_gcwq(smp_processor_id()); 3541 struct worker_pool *pool; 3542 struct worker *worker; 3543 struct hlist_node *pos; 3544 int i; 3545 3546 BUG_ON(gcwq->cpu != smp_processor_id()); 3547 3548 gcwq_claim_assoc_and_lock(gcwq); 3549 3550 /* 3551 * We've claimed all manager positions. Make all workers unbound 3552 * and set DISASSOCIATED. Before this, all workers except for the 3553 * ones which are still executing works from before the last CPU 3554 * down must be on the cpu. After this, they may become diasporas. 3555 */ 3556 for_each_worker_pool(pool, gcwq) 3557 list_for_each_entry(worker, &pool->idle_list, entry) 3558 worker->flags |= WORKER_UNBOUND; 3559 3560 for_each_busy_worker(worker, i, pos, gcwq) 3561 worker->flags |= WORKER_UNBOUND; 3562 3563 gcwq->flags |= GCWQ_DISASSOCIATED; 3564 3565 gcwq_release_assoc_and_unlock(gcwq); 3566 3567 /* 3568 * Call schedule() so that we cross rq->lock and thus can guarantee 3569 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary 3570 * as scheduler callbacks may be invoked from other cpus. 3571 */ 3572 schedule(); 3573 3574 /* 3575 * Sched callbacks are disabled now. Zap nr_running. After this, 3576 * nr_running stays zero and need_more_worker() and keep_working() 3577 * are always true as long as the worklist is not empty. @gcwq now 3578 * behaves as unbound (in terms of concurrency management) gcwq 3579 * which is served by workers tied to the CPU. 3580 * 3581 * On return from this function, the current worker would trigger 3582 * unbound chain execution of pending work items if other workers 3583 * didn't already. 3584 */ 3585 for_each_worker_pool(pool, gcwq) 3586 atomic_set(get_pool_nr_running(pool), 0); 3587 } 3588 3589 /* 3590 * Workqueues should be brought up before normal priority CPU notifiers. 3591 * This will be registered high priority CPU notifier. 3592 */ 3593 static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb, 3594 unsigned long action, 3595 void *hcpu) 3596 { 3597 unsigned int cpu = (unsigned long)hcpu; 3598 struct global_cwq *gcwq = get_gcwq(cpu); 3599 struct worker_pool *pool; 3600 3601 switch (action & ~CPU_TASKS_FROZEN) { 3602 case CPU_UP_PREPARE: 3603 for_each_worker_pool(pool, gcwq) { 3604 struct worker *worker; 3605 3606 if (pool->nr_workers) 3607 continue; 3608 3609 worker = create_worker(pool); 3610 if (!worker) 3611 return NOTIFY_BAD; 3612 3613 spin_lock_irq(&gcwq->lock); 3614 start_worker(worker); 3615 spin_unlock_irq(&gcwq->lock); 3616 } 3617 break; 3618 3619 case CPU_DOWN_FAILED: 3620 case CPU_ONLINE: 3621 gcwq_claim_assoc_and_lock(gcwq); 3622 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3623 rebind_workers(gcwq); 3624 gcwq_release_assoc_and_unlock(gcwq); 3625 break; 3626 } 3627 return NOTIFY_OK; 3628 } 3629 3630 /* 3631 * Workqueues should be brought down after normal priority CPU notifiers. 3632 * This will be registered as low priority CPU notifier. 3633 */ 3634 static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb, 3635 unsigned long action, 3636 void *hcpu) 3637 { 3638 unsigned int cpu = (unsigned long)hcpu; 3639 struct work_struct unbind_work; 3640 3641 switch (action & ~CPU_TASKS_FROZEN) { 3642 case CPU_DOWN_PREPARE: 3643 /* unbinding should happen on the local CPU */ 3644 INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn); 3645 queue_work_on(cpu, system_highpri_wq, &unbind_work); 3646 flush_work(&unbind_work); 3647 break; 3648 } 3649 return NOTIFY_OK; 3650 } 3651 3652 #ifdef CONFIG_SMP 3653 3654 struct work_for_cpu { 3655 struct work_struct work; 3656 long (*fn)(void *); 3657 void *arg; 3658 long ret; 3659 }; 3660 3661 static void work_for_cpu_fn(struct work_struct *work) 3662 { 3663 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 3664 3665 wfc->ret = wfc->fn(wfc->arg); 3666 } 3667 3668 /** 3669 * work_on_cpu - run a function in user context on a particular cpu 3670 * @cpu: the cpu to run on 3671 * @fn: the function to run 3672 * @arg: the function arg 3673 * 3674 * This will return the value @fn returns. 3675 * It is up to the caller to ensure that the cpu doesn't go offline. 3676 * The caller must not hold any locks which would prevent @fn from completing. 3677 */ 3678 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) 3679 { 3680 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 3681 3682 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 3683 schedule_work_on(cpu, &wfc.work); 3684 flush_work(&wfc.work); 3685 return wfc.ret; 3686 } 3687 EXPORT_SYMBOL_GPL(work_on_cpu); 3688 #endif /* CONFIG_SMP */ 3689 3690 #ifdef CONFIG_FREEZER 3691 3692 /** 3693 * freeze_workqueues_begin - begin freezing workqueues 3694 * 3695 * Start freezing workqueues. After this function returns, all freezable 3696 * workqueues will queue new works to their frozen_works list instead of 3697 * gcwq->worklist. 3698 * 3699 * CONTEXT: 3700 * Grabs and releases workqueue_lock and gcwq->lock's. 3701 */ 3702 void freeze_workqueues_begin(void) 3703 { 3704 unsigned int cpu; 3705 3706 spin_lock(&workqueue_lock); 3707 3708 BUG_ON(workqueue_freezing); 3709 workqueue_freezing = true; 3710 3711 for_each_gcwq_cpu(cpu) { 3712 struct global_cwq *gcwq = get_gcwq(cpu); 3713 struct workqueue_struct *wq; 3714 3715 spin_lock_irq(&gcwq->lock); 3716 3717 BUG_ON(gcwq->flags & GCWQ_FREEZING); 3718 gcwq->flags |= GCWQ_FREEZING; 3719 3720 list_for_each_entry(wq, &workqueues, list) { 3721 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3722 3723 if (cwq && wq->flags & WQ_FREEZABLE) 3724 cwq->max_active = 0; 3725 } 3726 3727 spin_unlock_irq(&gcwq->lock); 3728 } 3729 3730 spin_unlock(&workqueue_lock); 3731 } 3732 3733 /** 3734 * freeze_workqueues_busy - are freezable workqueues still busy? 3735 * 3736 * Check whether freezing is complete. This function must be called 3737 * between freeze_workqueues_begin() and thaw_workqueues(). 3738 * 3739 * CONTEXT: 3740 * Grabs and releases workqueue_lock. 3741 * 3742 * RETURNS: 3743 * %true if some freezable workqueues are still busy. %false if freezing 3744 * is complete. 3745 */ 3746 bool freeze_workqueues_busy(void) 3747 { 3748 unsigned int cpu; 3749 bool busy = false; 3750 3751 spin_lock(&workqueue_lock); 3752 3753 BUG_ON(!workqueue_freezing); 3754 3755 for_each_gcwq_cpu(cpu) { 3756 struct workqueue_struct *wq; 3757 /* 3758 * nr_active is monotonically decreasing. It's safe 3759 * to peek without lock. 3760 */ 3761 list_for_each_entry(wq, &workqueues, list) { 3762 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3763 3764 if (!cwq || !(wq->flags & WQ_FREEZABLE)) 3765 continue; 3766 3767 BUG_ON(cwq->nr_active < 0); 3768 if (cwq->nr_active) { 3769 busy = true; 3770 goto out_unlock; 3771 } 3772 } 3773 } 3774 out_unlock: 3775 spin_unlock(&workqueue_lock); 3776 return busy; 3777 } 3778 3779 /** 3780 * thaw_workqueues - thaw workqueues 3781 * 3782 * Thaw workqueues. Normal queueing is restored and all collected 3783 * frozen works are transferred to their respective gcwq worklists. 3784 * 3785 * CONTEXT: 3786 * Grabs and releases workqueue_lock and gcwq->lock's. 3787 */ 3788 void thaw_workqueues(void) 3789 { 3790 unsigned int cpu; 3791 3792 spin_lock(&workqueue_lock); 3793 3794 if (!workqueue_freezing) 3795 goto out_unlock; 3796 3797 for_each_gcwq_cpu(cpu) { 3798 struct global_cwq *gcwq = get_gcwq(cpu); 3799 struct worker_pool *pool; 3800 struct workqueue_struct *wq; 3801 3802 spin_lock_irq(&gcwq->lock); 3803 3804 BUG_ON(!(gcwq->flags & GCWQ_FREEZING)); 3805 gcwq->flags &= ~GCWQ_FREEZING; 3806 3807 list_for_each_entry(wq, &workqueues, list) { 3808 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3809 3810 if (!cwq || !(wq->flags & WQ_FREEZABLE)) 3811 continue; 3812 3813 /* restore max_active and repopulate worklist */ 3814 cwq_set_max_active(cwq, wq->saved_max_active); 3815 } 3816 3817 for_each_worker_pool(pool, gcwq) 3818 wake_up_worker(pool); 3819 3820 spin_unlock_irq(&gcwq->lock); 3821 } 3822 3823 workqueue_freezing = false; 3824 out_unlock: 3825 spin_unlock(&workqueue_lock); 3826 } 3827 #endif /* CONFIG_FREEZER */ 3828 3829 static int __init init_workqueues(void) 3830 { 3831 unsigned int cpu; 3832 int i; 3833 3834 /* make sure we have enough bits for OFFQ CPU number */ 3835 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_CPU_SHIFT)) < 3836 WORK_CPU_LAST); 3837 3838 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 3839 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 3840 3841 /* initialize gcwqs */ 3842 for_each_gcwq_cpu(cpu) { 3843 struct global_cwq *gcwq = get_gcwq(cpu); 3844 struct worker_pool *pool; 3845 3846 spin_lock_init(&gcwq->lock); 3847 gcwq->cpu = cpu; 3848 gcwq->flags |= GCWQ_DISASSOCIATED; 3849 3850 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) 3851 INIT_HLIST_HEAD(&gcwq->busy_hash[i]); 3852 3853 for_each_worker_pool(pool, gcwq) { 3854 pool->gcwq = gcwq; 3855 INIT_LIST_HEAD(&pool->worklist); 3856 INIT_LIST_HEAD(&pool->idle_list); 3857 3858 init_timer_deferrable(&pool->idle_timer); 3859 pool->idle_timer.function = idle_worker_timeout; 3860 pool->idle_timer.data = (unsigned long)pool; 3861 3862 setup_timer(&pool->mayday_timer, gcwq_mayday_timeout, 3863 (unsigned long)pool); 3864 3865 mutex_init(&pool->assoc_mutex); 3866 ida_init(&pool->worker_ida); 3867 } 3868 } 3869 3870 /* create the initial worker */ 3871 for_each_online_gcwq_cpu(cpu) { 3872 struct global_cwq *gcwq = get_gcwq(cpu); 3873 struct worker_pool *pool; 3874 3875 if (cpu != WORK_CPU_UNBOUND) 3876 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3877 3878 for_each_worker_pool(pool, gcwq) { 3879 struct worker *worker; 3880 3881 worker = create_worker(pool); 3882 BUG_ON(!worker); 3883 spin_lock_irq(&gcwq->lock); 3884 start_worker(worker); 3885 spin_unlock_irq(&gcwq->lock); 3886 } 3887 } 3888 3889 system_wq = alloc_workqueue("events", 0, 0); 3890 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 3891 system_long_wq = alloc_workqueue("events_long", 0, 0); 3892 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 3893 WQ_UNBOUND_MAX_ACTIVE); 3894 system_freezable_wq = alloc_workqueue("events_freezable", 3895 WQ_FREEZABLE, 0); 3896 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 3897 !system_unbound_wq || !system_freezable_wq); 3898 return 0; 3899 } 3900 early_initcall(init_workqueues); 3901