xref: /linux/kernel/workqueue.c (revision c54ea4918c2b7722d7242ea53271356501988a9b)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There is one worker pool for each CPU and
20  * one extra for works which are better served by workers which are
21  * not bound to any specific CPU.
22  *
23  * Please read Documentation/workqueue.txt for details.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 
45 #include "workqueue_sched.h"
46 
47 enum {
48 	/* global_cwq flags */
49 	GCWQ_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
50 	GCWQ_MANAGING_WORKERS	= 1 << 1,	/* managing workers */
51 	GCWQ_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
52 	GCWQ_FREEZING		= 1 << 3,	/* freeze in progress */
53 	GCWQ_HIGHPRI_PENDING	= 1 << 4,	/* highpri works on queue */
54 
55 	/* worker flags */
56 	WORKER_STARTED		= 1 << 0,	/* started */
57 	WORKER_DIE		= 1 << 1,	/* die die die */
58 	WORKER_IDLE		= 1 << 2,	/* is idle */
59 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
60 	WORKER_ROGUE		= 1 << 4,	/* not bound to any cpu */
61 	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
62 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
63 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
64 
65 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
66 				  WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
67 
68 	/* gcwq->trustee_state */
69 	TRUSTEE_START		= 0,		/* start */
70 	TRUSTEE_IN_CHARGE	= 1,		/* trustee in charge of gcwq */
71 	TRUSTEE_BUTCHER		= 2,		/* butcher workers */
72 	TRUSTEE_RELEASE		= 3,		/* release workers */
73 	TRUSTEE_DONE		= 4,		/* trustee is done */
74 
75 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
76 	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
77 	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
78 
79 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
80 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
81 
82 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
83 						/* call for help after 10ms
84 						   (min two ticks) */
85 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
86 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
87 	TRUSTEE_COOLDOWN	= HZ / 10,	/* for trustee draining */
88 
89 	/*
90 	 * Rescue workers are used only on emergencies and shared by
91 	 * all cpus.  Give -20.
92 	 */
93 	RESCUER_NICE_LEVEL	= -20,
94 };
95 
96 /*
97  * Structure fields follow one of the following exclusion rules.
98  *
99  * I: Modifiable by initialization/destruction paths and read-only for
100  *    everyone else.
101  *
102  * P: Preemption protected.  Disabling preemption is enough and should
103  *    only be modified and accessed from the local cpu.
104  *
105  * L: gcwq->lock protected.  Access with gcwq->lock held.
106  *
107  * X: During normal operation, modification requires gcwq->lock and
108  *    should be done only from local cpu.  Either disabling preemption
109  *    on local cpu or grabbing gcwq->lock is enough for read access.
110  *    If GCWQ_DISASSOCIATED is set, it's identical to L.
111  *
112  * F: wq->flush_mutex protected.
113  *
114  * W: workqueue_lock protected.
115  */
116 
117 struct global_cwq;
118 
119 /*
120  * The poor guys doing the actual heavy lifting.  All on-duty workers
121  * are either serving the manager role, on idle list or on busy hash.
122  */
123 struct worker {
124 	/* on idle list while idle, on busy hash table while busy */
125 	union {
126 		struct list_head	entry;	/* L: while idle */
127 		struct hlist_node	hentry;	/* L: while busy */
128 	};
129 
130 	struct work_struct	*current_work;	/* L: work being processed */
131 	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
132 	struct list_head	scheduled;	/* L: scheduled works */
133 	struct task_struct	*task;		/* I: worker task */
134 	struct global_cwq	*gcwq;		/* I: the associated gcwq */
135 	/* 64 bytes boundary on 64bit, 32 on 32bit */
136 	unsigned long		last_active;	/* L: last active timestamp */
137 	unsigned int		flags;		/* X: flags */
138 	int			id;		/* I: worker id */
139 	struct work_struct	rebind_work;	/* L: rebind worker to cpu */
140 };
141 
142 /*
143  * Global per-cpu workqueue.  There's one and only one for each cpu
144  * and all works are queued and processed here regardless of their
145  * target workqueues.
146  */
147 struct global_cwq {
148 	spinlock_t		lock;		/* the gcwq lock */
149 	struct list_head	worklist;	/* L: list of pending works */
150 	unsigned int		cpu;		/* I: the associated cpu */
151 	unsigned int		flags;		/* L: GCWQ_* flags */
152 
153 	int			nr_workers;	/* L: total number of workers */
154 	int			nr_idle;	/* L: currently idle ones */
155 
156 	/* workers are chained either in the idle_list or busy_hash */
157 	struct list_head	idle_list;	/* X: list of idle workers */
158 	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
159 						/* L: hash of busy workers */
160 
161 	struct timer_list	idle_timer;	/* L: worker idle timeout */
162 	struct timer_list	mayday_timer;	/* L: SOS timer for dworkers */
163 
164 	struct ida		worker_ida;	/* L: for worker IDs */
165 
166 	struct task_struct	*trustee;	/* L: for gcwq shutdown */
167 	unsigned int		trustee_state;	/* L: trustee state */
168 	wait_queue_head_t	trustee_wait;	/* trustee wait */
169 	struct worker		*first_idle;	/* L: first idle worker */
170 } ____cacheline_aligned_in_smp;
171 
172 /*
173  * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
174  * work_struct->data are used for flags and thus cwqs need to be
175  * aligned at two's power of the number of flag bits.
176  */
177 struct cpu_workqueue_struct {
178 	struct global_cwq	*gcwq;		/* I: the associated gcwq */
179 	struct workqueue_struct *wq;		/* I: the owning workqueue */
180 	int			work_color;	/* L: current color */
181 	int			flush_color;	/* L: flushing color */
182 	int			nr_in_flight[WORK_NR_COLORS];
183 						/* L: nr of in_flight works */
184 	int			nr_active;	/* L: nr of active works */
185 	int			max_active;	/* L: max active works */
186 	struct list_head	delayed_works;	/* L: delayed works */
187 };
188 
189 /*
190  * Structure used to wait for workqueue flush.
191  */
192 struct wq_flusher {
193 	struct list_head	list;		/* F: list of flushers */
194 	int			flush_color;	/* F: flush color waiting for */
195 	struct completion	done;		/* flush completion */
196 };
197 
198 /*
199  * All cpumasks are assumed to be always set on UP and thus can't be
200  * used to determine whether there's something to be done.
201  */
202 #ifdef CONFIG_SMP
203 typedef cpumask_var_t mayday_mask_t;
204 #define mayday_test_and_set_cpu(cpu, mask)	\
205 	cpumask_test_and_set_cpu((cpu), (mask))
206 #define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
207 #define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
208 #define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
209 #define free_mayday_mask(mask)			free_cpumask_var((mask))
210 #else
211 typedef unsigned long mayday_mask_t;
212 #define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
213 #define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
214 #define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
215 #define alloc_mayday_mask(maskp, gfp)		true
216 #define free_mayday_mask(mask)			do { } while (0)
217 #endif
218 
219 /*
220  * The externally visible workqueue abstraction is an array of
221  * per-CPU workqueues:
222  */
223 struct workqueue_struct {
224 	unsigned int		flags;		/* I: WQ_* flags */
225 	union {
226 		struct cpu_workqueue_struct __percpu	*pcpu;
227 		struct cpu_workqueue_struct		*single;
228 		unsigned long				v;
229 	} cpu_wq;				/* I: cwq's */
230 	struct list_head	list;		/* W: list of all workqueues */
231 
232 	struct mutex		flush_mutex;	/* protects wq flushing */
233 	int			work_color;	/* F: current work color */
234 	int			flush_color;	/* F: current flush color */
235 	atomic_t		nr_cwqs_to_flush; /* flush in progress */
236 	struct wq_flusher	*first_flusher;	/* F: first flusher */
237 	struct list_head	flusher_queue;	/* F: flush waiters */
238 	struct list_head	flusher_overflow; /* F: flush overflow list */
239 
240 	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
241 	struct worker		*rescuer;	/* I: rescue worker */
242 
243 	int			saved_max_active; /* W: saved cwq max_active */
244 	const char		*name;		/* I: workqueue name */
245 #ifdef CONFIG_LOCKDEP
246 	struct lockdep_map	lockdep_map;
247 #endif
248 };
249 
250 struct workqueue_struct *system_wq __read_mostly;
251 struct workqueue_struct *system_long_wq __read_mostly;
252 struct workqueue_struct *system_nrt_wq __read_mostly;
253 struct workqueue_struct *system_unbound_wq __read_mostly;
254 struct workqueue_struct *system_freezable_wq __read_mostly;
255 EXPORT_SYMBOL_GPL(system_wq);
256 EXPORT_SYMBOL_GPL(system_long_wq);
257 EXPORT_SYMBOL_GPL(system_nrt_wq);
258 EXPORT_SYMBOL_GPL(system_unbound_wq);
259 EXPORT_SYMBOL_GPL(system_freezable_wq);
260 
261 #define CREATE_TRACE_POINTS
262 #include <trace/events/workqueue.h>
263 
264 #define for_each_busy_worker(worker, i, pos, gcwq)			\
265 	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
266 		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
267 
268 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
269 				  unsigned int sw)
270 {
271 	if (cpu < nr_cpu_ids) {
272 		if (sw & 1) {
273 			cpu = cpumask_next(cpu, mask);
274 			if (cpu < nr_cpu_ids)
275 				return cpu;
276 		}
277 		if (sw & 2)
278 			return WORK_CPU_UNBOUND;
279 	}
280 	return WORK_CPU_NONE;
281 }
282 
283 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
284 				struct workqueue_struct *wq)
285 {
286 	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
287 }
288 
289 /*
290  * CPU iterators
291  *
292  * An extra gcwq is defined for an invalid cpu number
293  * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
294  * specific CPU.  The following iterators are similar to
295  * for_each_*_cpu() iterators but also considers the unbound gcwq.
296  *
297  * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
298  * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
299  * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
300  *				  WORK_CPU_UNBOUND for unbound workqueues
301  */
302 #define for_each_gcwq_cpu(cpu)						\
303 	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
304 	     (cpu) < WORK_CPU_NONE;					\
305 	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
306 
307 #define for_each_online_gcwq_cpu(cpu)					\
308 	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
309 	     (cpu) < WORK_CPU_NONE;					\
310 	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
311 
312 #define for_each_cwq_cpu(cpu, wq)					\
313 	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
314 	     (cpu) < WORK_CPU_NONE;					\
315 	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
316 
317 #ifdef CONFIG_DEBUG_OBJECTS_WORK
318 
319 static struct debug_obj_descr work_debug_descr;
320 
321 static void *work_debug_hint(void *addr)
322 {
323 	return ((struct work_struct *) addr)->func;
324 }
325 
326 /*
327  * fixup_init is called when:
328  * - an active object is initialized
329  */
330 static int work_fixup_init(void *addr, enum debug_obj_state state)
331 {
332 	struct work_struct *work = addr;
333 
334 	switch (state) {
335 	case ODEBUG_STATE_ACTIVE:
336 		cancel_work_sync(work);
337 		debug_object_init(work, &work_debug_descr);
338 		return 1;
339 	default:
340 		return 0;
341 	}
342 }
343 
344 /*
345  * fixup_activate is called when:
346  * - an active object is activated
347  * - an unknown object is activated (might be a statically initialized object)
348  */
349 static int work_fixup_activate(void *addr, enum debug_obj_state state)
350 {
351 	struct work_struct *work = addr;
352 
353 	switch (state) {
354 
355 	case ODEBUG_STATE_NOTAVAILABLE:
356 		/*
357 		 * This is not really a fixup. The work struct was
358 		 * statically initialized. We just make sure that it
359 		 * is tracked in the object tracker.
360 		 */
361 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
362 			debug_object_init(work, &work_debug_descr);
363 			debug_object_activate(work, &work_debug_descr);
364 			return 0;
365 		}
366 		WARN_ON_ONCE(1);
367 		return 0;
368 
369 	case ODEBUG_STATE_ACTIVE:
370 		WARN_ON(1);
371 
372 	default:
373 		return 0;
374 	}
375 }
376 
377 /*
378  * fixup_free is called when:
379  * - an active object is freed
380  */
381 static int work_fixup_free(void *addr, enum debug_obj_state state)
382 {
383 	struct work_struct *work = addr;
384 
385 	switch (state) {
386 	case ODEBUG_STATE_ACTIVE:
387 		cancel_work_sync(work);
388 		debug_object_free(work, &work_debug_descr);
389 		return 1;
390 	default:
391 		return 0;
392 	}
393 }
394 
395 static struct debug_obj_descr work_debug_descr = {
396 	.name		= "work_struct",
397 	.debug_hint	= work_debug_hint,
398 	.fixup_init	= work_fixup_init,
399 	.fixup_activate	= work_fixup_activate,
400 	.fixup_free	= work_fixup_free,
401 };
402 
403 static inline void debug_work_activate(struct work_struct *work)
404 {
405 	debug_object_activate(work, &work_debug_descr);
406 }
407 
408 static inline void debug_work_deactivate(struct work_struct *work)
409 {
410 	debug_object_deactivate(work, &work_debug_descr);
411 }
412 
413 void __init_work(struct work_struct *work, int onstack)
414 {
415 	if (onstack)
416 		debug_object_init_on_stack(work, &work_debug_descr);
417 	else
418 		debug_object_init(work, &work_debug_descr);
419 }
420 EXPORT_SYMBOL_GPL(__init_work);
421 
422 void destroy_work_on_stack(struct work_struct *work)
423 {
424 	debug_object_free(work, &work_debug_descr);
425 }
426 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
427 
428 #else
429 static inline void debug_work_activate(struct work_struct *work) { }
430 static inline void debug_work_deactivate(struct work_struct *work) { }
431 #endif
432 
433 /* Serializes the accesses to the list of workqueues. */
434 static DEFINE_SPINLOCK(workqueue_lock);
435 static LIST_HEAD(workqueues);
436 static bool workqueue_freezing;		/* W: have wqs started freezing? */
437 
438 /*
439  * The almighty global cpu workqueues.  nr_running is the only field
440  * which is expected to be used frequently by other cpus via
441  * try_to_wake_up().  Put it in a separate cacheline.
442  */
443 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
444 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
445 
446 /*
447  * Global cpu workqueue and nr_running counter for unbound gcwq.  The
448  * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
449  * workers have WORKER_UNBOUND set.
450  */
451 static struct global_cwq unbound_global_cwq;
452 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0);	/* always 0 */
453 
454 static int worker_thread(void *__worker);
455 
456 static struct global_cwq *get_gcwq(unsigned int cpu)
457 {
458 	if (cpu != WORK_CPU_UNBOUND)
459 		return &per_cpu(global_cwq, cpu);
460 	else
461 		return &unbound_global_cwq;
462 }
463 
464 static atomic_t *get_gcwq_nr_running(unsigned int cpu)
465 {
466 	if (cpu != WORK_CPU_UNBOUND)
467 		return &per_cpu(gcwq_nr_running, cpu);
468 	else
469 		return &unbound_gcwq_nr_running;
470 }
471 
472 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
473 					    struct workqueue_struct *wq)
474 {
475 	if (!(wq->flags & WQ_UNBOUND)) {
476 		if (likely(cpu < nr_cpu_ids)) {
477 #ifdef CONFIG_SMP
478 			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
479 #else
480 			return wq->cpu_wq.single;
481 #endif
482 		}
483 	} else if (likely(cpu == WORK_CPU_UNBOUND))
484 		return wq->cpu_wq.single;
485 	return NULL;
486 }
487 
488 static unsigned int work_color_to_flags(int color)
489 {
490 	return color << WORK_STRUCT_COLOR_SHIFT;
491 }
492 
493 static int get_work_color(struct work_struct *work)
494 {
495 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
496 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
497 }
498 
499 static int work_next_color(int color)
500 {
501 	return (color + 1) % WORK_NR_COLORS;
502 }
503 
504 /*
505  * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
506  * work is on queue.  Once execution starts, WORK_STRUCT_CWQ is
507  * cleared and the work data contains the cpu number it was last on.
508  *
509  * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
510  * cwq, cpu or clear work->data.  These functions should only be
511  * called while the work is owned - ie. while the PENDING bit is set.
512  *
513  * get_work_[g]cwq() can be used to obtain the gcwq or cwq
514  * corresponding to a work.  gcwq is available once the work has been
515  * queued anywhere after initialization.  cwq is available only from
516  * queueing until execution starts.
517  */
518 static inline void set_work_data(struct work_struct *work, unsigned long data,
519 				 unsigned long flags)
520 {
521 	BUG_ON(!work_pending(work));
522 	atomic_long_set(&work->data, data | flags | work_static(work));
523 }
524 
525 static void set_work_cwq(struct work_struct *work,
526 			 struct cpu_workqueue_struct *cwq,
527 			 unsigned long extra_flags)
528 {
529 	set_work_data(work, (unsigned long)cwq,
530 		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
531 }
532 
533 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
534 {
535 	set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
536 }
537 
538 static void clear_work_data(struct work_struct *work)
539 {
540 	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
541 }
542 
543 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
544 {
545 	unsigned long data = atomic_long_read(&work->data);
546 
547 	if (data & WORK_STRUCT_CWQ)
548 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
549 	else
550 		return NULL;
551 }
552 
553 static struct global_cwq *get_work_gcwq(struct work_struct *work)
554 {
555 	unsigned long data = atomic_long_read(&work->data);
556 	unsigned int cpu;
557 
558 	if (data & WORK_STRUCT_CWQ)
559 		return ((struct cpu_workqueue_struct *)
560 			(data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
561 
562 	cpu = data >> WORK_STRUCT_FLAG_BITS;
563 	if (cpu == WORK_CPU_NONE)
564 		return NULL;
565 
566 	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
567 	return get_gcwq(cpu);
568 }
569 
570 /*
571  * Policy functions.  These define the policies on how the global
572  * worker pool is managed.  Unless noted otherwise, these functions
573  * assume that they're being called with gcwq->lock held.
574  */
575 
576 static bool __need_more_worker(struct global_cwq *gcwq)
577 {
578 	return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
579 		gcwq->flags & GCWQ_HIGHPRI_PENDING;
580 }
581 
582 /*
583  * Need to wake up a worker?  Called from anything but currently
584  * running workers.
585  */
586 static bool need_more_worker(struct global_cwq *gcwq)
587 {
588 	return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
589 }
590 
591 /* Can I start working?  Called from busy but !running workers. */
592 static bool may_start_working(struct global_cwq *gcwq)
593 {
594 	return gcwq->nr_idle;
595 }
596 
597 /* Do I need to keep working?  Called from currently running workers. */
598 static bool keep_working(struct global_cwq *gcwq)
599 {
600 	atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
601 
602 	return !list_empty(&gcwq->worklist) &&
603 		(atomic_read(nr_running) <= 1 ||
604 		 gcwq->flags & GCWQ_HIGHPRI_PENDING);
605 }
606 
607 /* Do we need a new worker?  Called from manager. */
608 static bool need_to_create_worker(struct global_cwq *gcwq)
609 {
610 	return need_more_worker(gcwq) && !may_start_working(gcwq);
611 }
612 
613 /* Do I need to be the manager? */
614 static bool need_to_manage_workers(struct global_cwq *gcwq)
615 {
616 	return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
617 }
618 
619 /* Do we have too many workers and should some go away? */
620 static bool too_many_workers(struct global_cwq *gcwq)
621 {
622 	bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
623 	int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
624 	int nr_busy = gcwq->nr_workers - nr_idle;
625 
626 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
627 }
628 
629 /*
630  * Wake up functions.
631  */
632 
633 /* Return the first worker.  Safe with preemption disabled */
634 static struct worker *first_worker(struct global_cwq *gcwq)
635 {
636 	if (unlikely(list_empty(&gcwq->idle_list)))
637 		return NULL;
638 
639 	return list_first_entry(&gcwq->idle_list, struct worker, entry);
640 }
641 
642 /**
643  * wake_up_worker - wake up an idle worker
644  * @gcwq: gcwq to wake worker for
645  *
646  * Wake up the first idle worker of @gcwq.
647  *
648  * CONTEXT:
649  * spin_lock_irq(gcwq->lock).
650  */
651 static void wake_up_worker(struct global_cwq *gcwq)
652 {
653 	struct worker *worker = first_worker(gcwq);
654 
655 	if (likely(worker))
656 		wake_up_process(worker->task);
657 }
658 
659 /**
660  * wq_worker_waking_up - a worker is waking up
661  * @task: task waking up
662  * @cpu: CPU @task is waking up to
663  *
664  * This function is called during try_to_wake_up() when a worker is
665  * being awoken.
666  *
667  * CONTEXT:
668  * spin_lock_irq(rq->lock)
669  */
670 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
671 {
672 	struct worker *worker = kthread_data(task);
673 
674 	if (!(worker->flags & WORKER_NOT_RUNNING))
675 		atomic_inc(get_gcwq_nr_running(cpu));
676 }
677 
678 /**
679  * wq_worker_sleeping - a worker is going to sleep
680  * @task: task going to sleep
681  * @cpu: CPU in question, must be the current CPU number
682  *
683  * This function is called during schedule() when a busy worker is
684  * going to sleep.  Worker on the same cpu can be woken up by
685  * returning pointer to its task.
686  *
687  * CONTEXT:
688  * spin_lock_irq(rq->lock)
689  *
690  * RETURNS:
691  * Worker task on @cpu to wake up, %NULL if none.
692  */
693 struct task_struct *wq_worker_sleeping(struct task_struct *task,
694 				       unsigned int cpu)
695 {
696 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
697 	struct global_cwq *gcwq = get_gcwq(cpu);
698 	atomic_t *nr_running = get_gcwq_nr_running(cpu);
699 
700 	if (worker->flags & WORKER_NOT_RUNNING)
701 		return NULL;
702 
703 	/* this can only happen on the local cpu */
704 	BUG_ON(cpu != raw_smp_processor_id());
705 
706 	/*
707 	 * The counterpart of the following dec_and_test, implied mb,
708 	 * worklist not empty test sequence is in insert_work().
709 	 * Please read comment there.
710 	 *
711 	 * NOT_RUNNING is clear.  This means that trustee is not in
712 	 * charge and we're running on the local cpu w/ rq lock held
713 	 * and preemption disabled, which in turn means that none else
714 	 * could be manipulating idle_list, so dereferencing idle_list
715 	 * without gcwq lock is safe.
716 	 */
717 	if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
718 		to_wakeup = first_worker(gcwq);
719 	return to_wakeup ? to_wakeup->task : NULL;
720 }
721 
722 /**
723  * worker_set_flags - set worker flags and adjust nr_running accordingly
724  * @worker: self
725  * @flags: flags to set
726  * @wakeup: wakeup an idle worker if necessary
727  *
728  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
729  * nr_running becomes zero and @wakeup is %true, an idle worker is
730  * woken up.
731  *
732  * CONTEXT:
733  * spin_lock_irq(gcwq->lock)
734  */
735 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
736 				    bool wakeup)
737 {
738 	struct global_cwq *gcwq = worker->gcwq;
739 
740 	WARN_ON_ONCE(worker->task != current);
741 
742 	/*
743 	 * If transitioning into NOT_RUNNING, adjust nr_running and
744 	 * wake up an idle worker as necessary if requested by
745 	 * @wakeup.
746 	 */
747 	if ((flags & WORKER_NOT_RUNNING) &&
748 	    !(worker->flags & WORKER_NOT_RUNNING)) {
749 		atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
750 
751 		if (wakeup) {
752 			if (atomic_dec_and_test(nr_running) &&
753 			    !list_empty(&gcwq->worklist))
754 				wake_up_worker(gcwq);
755 		} else
756 			atomic_dec(nr_running);
757 	}
758 
759 	worker->flags |= flags;
760 }
761 
762 /**
763  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
764  * @worker: self
765  * @flags: flags to clear
766  *
767  * Clear @flags in @worker->flags and adjust nr_running accordingly.
768  *
769  * CONTEXT:
770  * spin_lock_irq(gcwq->lock)
771  */
772 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
773 {
774 	struct global_cwq *gcwq = worker->gcwq;
775 	unsigned int oflags = worker->flags;
776 
777 	WARN_ON_ONCE(worker->task != current);
778 
779 	worker->flags &= ~flags;
780 
781 	/*
782 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
783 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
784 	 * of multiple flags, not a single flag.
785 	 */
786 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
787 		if (!(worker->flags & WORKER_NOT_RUNNING))
788 			atomic_inc(get_gcwq_nr_running(gcwq->cpu));
789 }
790 
791 /**
792  * busy_worker_head - return the busy hash head for a work
793  * @gcwq: gcwq of interest
794  * @work: work to be hashed
795  *
796  * Return hash head of @gcwq for @work.
797  *
798  * CONTEXT:
799  * spin_lock_irq(gcwq->lock).
800  *
801  * RETURNS:
802  * Pointer to the hash head.
803  */
804 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
805 					   struct work_struct *work)
806 {
807 	const int base_shift = ilog2(sizeof(struct work_struct));
808 	unsigned long v = (unsigned long)work;
809 
810 	/* simple shift and fold hash, do we need something better? */
811 	v >>= base_shift;
812 	v += v >> BUSY_WORKER_HASH_ORDER;
813 	v &= BUSY_WORKER_HASH_MASK;
814 
815 	return &gcwq->busy_hash[v];
816 }
817 
818 /**
819  * __find_worker_executing_work - find worker which is executing a work
820  * @gcwq: gcwq of interest
821  * @bwh: hash head as returned by busy_worker_head()
822  * @work: work to find worker for
823  *
824  * Find a worker which is executing @work on @gcwq.  @bwh should be
825  * the hash head obtained by calling busy_worker_head() with the same
826  * work.
827  *
828  * CONTEXT:
829  * spin_lock_irq(gcwq->lock).
830  *
831  * RETURNS:
832  * Pointer to worker which is executing @work if found, NULL
833  * otherwise.
834  */
835 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
836 						   struct hlist_head *bwh,
837 						   struct work_struct *work)
838 {
839 	struct worker *worker;
840 	struct hlist_node *tmp;
841 
842 	hlist_for_each_entry(worker, tmp, bwh, hentry)
843 		if (worker->current_work == work)
844 			return worker;
845 	return NULL;
846 }
847 
848 /**
849  * find_worker_executing_work - find worker which is executing a work
850  * @gcwq: gcwq of interest
851  * @work: work to find worker for
852  *
853  * Find a worker which is executing @work on @gcwq.  This function is
854  * identical to __find_worker_executing_work() except that this
855  * function calculates @bwh itself.
856  *
857  * CONTEXT:
858  * spin_lock_irq(gcwq->lock).
859  *
860  * RETURNS:
861  * Pointer to worker which is executing @work if found, NULL
862  * otherwise.
863  */
864 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
865 						 struct work_struct *work)
866 {
867 	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
868 					    work);
869 }
870 
871 /**
872  * gcwq_determine_ins_pos - find insertion position
873  * @gcwq: gcwq of interest
874  * @cwq: cwq a work is being queued for
875  *
876  * A work for @cwq is about to be queued on @gcwq, determine insertion
877  * position for the work.  If @cwq is for HIGHPRI wq, the work is
878  * queued at the head of the queue but in FIFO order with respect to
879  * other HIGHPRI works; otherwise, at the end of the queue.  This
880  * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
881  * there are HIGHPRI works pending.
882  *
883  * CONTEXT:
884  * spin_lock_irq(gcwq->lock).
885  *
886  * RETURNS:
887  * Pointer to inserstion position.
888  */
889 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
890 					       struct cpu_workqueue_struct *cwq)
891 {
892 	struct work_struct *twork;
893 
894 	if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
895 		return &gcwq->worklist;
896 
897 	list_for_each_entry(twork, &gcwq->worklist, entry) {
898 		struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
899 
900 		if (!(tcwq->wq->flags & WQ_HIGHPRI))
901 			break;
902 	}
903 
904 	gcwq->flags |= GCWQ_HIGHPRI_PENDING;
905 	return &twork->entry;
906 }
907 
908 /**
909  * insert_work - insert a work into gcwq
910  * @cwq: cwq @work belongs to
911  * @work: work to insert
912  * @head: insertion point
913  * @extra_flags: extra WORK_STRUCT_* flags to set
914  *
915  * Insert @work which belongs to @cwq into @gcwq after @head.
916  * @extra_flags is or'd to work_struct flags.
917  *
918  * CONTEXT:
919  * spin_lock_irq(gcwq->lock).
920  */
921 static void insert_work(struct cpu_workqueue_struct *cwq,
922 			struct work_struct *work, struct list_head *head,
923 			unsigned int extra_flags)
924 {
925 	struct global_cwq *gcwq = cwq->gcwq;
926 
927 	/* we own @work, set data and link */
928 	set_work_cwq(work, cwq, extra_flags);
929 
930 	/*
931 	 * Ensure that we get the right work->data if we see the
932 	 * result of list_add() below, see try_to_grab_pending().
933 	 */
934 	smp_wmb();
935 
936 	list_add_tail(&work->entry, head);
937 
938 	/*
939 	 * Ensure either worker_sched_deactivated() sees the above
940 	 * list_add_tail() or we see zero nr_running to avoid workers
941 	 * lying around lazily while there are works to be processed.
942 	 */
943 	smp_mb();
944 
945 	if (__need_more_worker(gcwq))
946 		wake_up_worker(gcwq);
947 }
948 
949 /*
950  * Test whether @work is being queued from another work executing on the
951  * same workqueue.  This is rather expensive and should only be used from
952  * cold paths.
953  */
954 static bool is_chained_work(struct workqueue_struct *wq)
955 {
956 	unsigned long flags;
957 	unsigned int cpu;
958 
959 	for_each_gcwq_cpu(cpu) {
960 		struct global_cwq *gcwq = get_gcwq(cpu);
961 		struct worker *worker;
962 		struct hlist_node *pos;
963 		int i;
964 
965 		spin_lock_irqsave(&gcwq->lock, flags);
966 		for_each_busy_worker(worker, i, pos, gcwq) {
967 			if (worker->task != current)
968 				continue;
969 			spin_unlock_irqrestore(&gcwq->lock, flags);
970 			/*
971 			 * I'm @worker, no locking necessary.  See if @work
972 			 * is headed to the same workqueue.
973 			 */
974 			return worker->current_cwq->wq == wq;
975 		}
976 		spin_unlock_irqrestore(&gcwq->lock, flags);
977 	}
978 	return false;
979 }
980 
981 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
982 			 struct work_struct *work)
983 {
984 	struct global_cwq *gcwq;
985 	struct cpu_workqueue_struct *cwq;
986 	struct list_head *worklist;
987 	unsigned int work_flags;
988 	unsigned long flags;
989 
990 	debug_work_activate(work);
991 
992 	/* if dying, only works from the same workqueue are allowed */
993 	if (unlikely(wq->flags & WQ_DYING) &&
994 	    WARN_ON_ONCE(!is_chained_work(wq)))
995 		return;
996 
997 	/* determine gcwq to use */
998 	if (!(wq->flags & WQ_UNBOUND)) {
999 		struct global_cwq *last_gcwq;
1000 
1001 		if (unlikely(cpu == WORK_CPU_UNBOUND))
1002 			cpu = raw_smp_processor_id();
1003 
1004 		/*
1005 		 * It's multi cpu.  If @wq is non-reentrant and @work
1006 		 * was previously on a different cpu, it might still
1007 		 * be running there, in which case the work needs to
1008 		 * be queued on that cpu to guarantee non-reentrance.
1009 		 */
1010 		gcwq = get_gcwq(cpu);
1011 		if (wq->flags & WQ_NON_REENTRANT &&
1012 		    (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1013 			struct worker *worker;
1014 
1015 			spin_lock_irqsave(&last_gcwq->lock, flags);
1016 
1017 			worker = find_worker_executing_work(last_gcwq, work);
1018 
1019 			if (worker && worker->current_cwq->wq == wq)
1020 				gcwq = last_gcwq;
1021 			else {
1022 				/* meh... not running there, queue here */
1023 				spin_unlock_irqrestore(&last_gcwq->lock, flags);
1024 				spin_lock_irqsave(&gcwq->lock, flags);
1025 			}
1026 		} else
1027 			spin_lock_irqsave(&gcwq->lock, flags);
1028 	} else {
1029 		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1030 		spin_lock_irqsave(&gcwq->lock, flags);
1031 	}
1032 
1033 	/* gcwq determined, get cwq and queue */
1034 	cwq = get_cwq(gcwq->cpu, wq);
1035 	trace_workqueue_queue_work(cpu, cwq, work);
1036 
1037 	BUG_ON(!list_empty(&work->entry));
1038 
1039 	cwq->nr_in_flight[cwq->work_color]++;
1040 	work_flags = work_color_to_flags(cwq->work_color);
1041 
1042 	if (likely(cwq->nr_active < cwq->max_active)) {
1043 		trace_workqueue_activate_work(work);
1044 		cwq->nr_active++;
1045 		worklist = gcwq_determine_ins_pos(gcwq, cwq);
1046 	} else {
1047 		work_flags |= WORK_STRUCT_DELAYED;
1048 		worklist = &cwq->delayed_works;
1049 	}
1050 
1051 	insert_work(cwq, work, worklist, work_flags);
1052 
1053 	spin_unlock_irqrestore(&gcwq->lock, flags);
1054 }
1055 
1056 /**
1057  * queue_work - queue work on a workqueue
1058  * @wq: workqueue to use
1059  * @work: work to queue
1060  *
1061  * Returns 0 if @work was already on a queue, non-zero otherwise.
1062  *
1063  * We queue the work to the CPU on which it was submitted, but if the CPU dies
1064  * it can be processed by another CPU.
1065  */
1066 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1067 {
1068 	int ret;
1069 
1070 	ret = queue_work_on(get_cpu(), wq, work);
1071 	put_cpu();
1072 
1073 	return ret;
1074 }
1075 EXPORT_SYMBOL_GPL(queue_work);
1076 
1077 /**
1078  * queue_work_on - queue work on specific cpu
1079  * @cpu: CPU number to execute work on
1080  * @wq: workqueue to use
1081  * @work: work to queue
1082  *
1083  * Returns 0 if @work was already on a queue, non-zero otherwise.
1084  *
1085  * We queue the work to a specific CPU, the caller must ensure it
1086  * can't go away.
1087  */
1088 int
1089 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1090 {
1091 	int ret = 0;
1092 
1093 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1094 		__queue_work(cpu, wq, work);
1095 		ret = 1;
1096 	}
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL_GPL(queue_work_on);
1100 
1101 static void delayed_work_timer_fn(unsigned long __data)
1102 {
1103 	struct delayed_work *dwork = (struct delayed_work *)__data;
1104 	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1105 
1106 	__queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1107 }
1108 
1109 /**
1110  * queue_delayed_work - queue work on a workqueue after delay
1111  * @wq: workqueue to use
1112  * @dwork: delayable work to queue
1113  * @delay: number of jiffies to wait before queueing
1114  *
1115  * Returns 0 if @work was already on a queue, non-zero otherwise.
1116  */
1117 int queue_delayed_work(struct workqueue_struct *wq,
1118 			struct delayed_work *dwork, unsigned long delay)
1119 {
1120 	if (delay == 0)
1121 		return queue_work(wq, &dwork->work);
1122 
1123 	return queue_delayed_work_on(-1, wq, dwork, delay);
1124 }
1125 EXPORT_SYMBOL_GPL(queue_delayed_work);
1126 
1127 /**
1128  * queue_delayed_work_on - queue work on specific CPU after delay
1129  * @cpu: CPU number to execute work on
1130  * @wq: workqueue to use
1131  * @dwork: work to queue
1132  * @delay: number of jiffies to wait before queueing
1133  *
1134  * Returns 0 if @work was already on a queue, non-zero otherwise.
1135  */
1136 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1137 			struct delayed_work *dwork, unsigned long delay)
1138 {
1139 	int ret = 0;
1140 	struct timer_list *timer = &dwork->timer;
1141 	struct work_struct *work = &dwork->work;
1142 
1143 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1144 		unsigned int lcpu;
1145 
1146 		BUG_ON(timer_pending(timer));
1147 		BUG_ON(!list_empty(&work->entry));
1148 
1149 		timer_stats_timer_set_start_info(&dwork->timer);
1150 
1151 		/*
1152 		 * This stores cwq for the moment, for the timer_fn.
1153 		 * Note that the work's gcwq is preserved to allow
1154 		 * reentrance detection for delayed works.
1155 		 */
1156 		if (!(wq->flags & WQ_UNBOUND)) {
1157 			struct global_cwq *gcwq = get_work_gcwq(work);
1158 
1159 			if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1160 				lcpu = gcwq->cpu;
1161 			else
1162 				lcpu = raw_smp_processor_id();
1163 		} else
1164 			lcpu = WORK_CPU_UNBOUND;
1165 
1166 		set_work_cwq(work, get_cwq(lcpu, wq), 0);
1167 
1168 		timer->expires = jiffies + delay;
1169 		timer->data = (unsigned long)dwork;
1170 		timer->function = delayed_work_timer_fn;
1171 
1172 		if (unlikely(cpu >= 0))
1173 			add_timer_on(timer, cpu);
1174 		else
1175 			add_timer(timer);
1176 		ret = 1;
1177 	}
1178 	return ret;
1179 }
1180 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1181 
1182 /**
1183  * worker_enter_idle - enter idle state
1184  * @worker: worker which is entering idle state
1185  *
1186  * @worker is entering idle state.  Update stats and idle timer if
1187  * necessary.
1188  *
1189  * LOCKING:
1190  * spin_lock_irq(gcwq->lock).
1191  */
1192 static void worker_enter_idle(struct worker *worker)
1193 {
1194 	struct global_cwq *gcwq = worker->gcwq;
1195 
1196 	BUG_ON(worker->flags & WORKER_IDLE);
1197 	BUG_ON(!list_empty(&worker->entry) &&
1198 	       (worker->hentry.next || worker->hentry.pprev));
1199 
1200 	/* can't use worker_set_flags(), also called from start_worker() */
1201 	worker->flags |= WORKER_IDLE;
1202 	gcwq->nr_idle++;
1203 	worker->last_active = jiffies;
1204 
1205 	/* idle_list is LIFO */
1206 	list_add(&worker->entry, &gcwq->idle_list);
1207 
1208 	if (likely(!(worker->flags & WORKER_ROGUE))) {
1209 		if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1210 			mod_timer(&gcwq->idle_timer,
1211 				  jiffies + IDLE_WORKER_TIMEOUT);
1212 	} else
1213 		wake_up_all(&gcwq->trustee_wait);
1214 
1215 	/* sanity check nr_running */
1216 	WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
1217 		     atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1218 }
1219 
1220 /**
1221  * worker_leave_idle - leave idle state
1222  * @worker: worker which is leaving idle state
1223  *
1224  * @worker is leaving idle state.  Update stats.
1225  *
1226  * LOCKING:
1227  * spin_lock_irq(gcwq->lock).
1228  */
1229 static void worker_leave_idle(struct worker *worker)
1230 {
1231 	struct global_cwq *gcwq = worker->gcwq;
1232 
1233 	BUG_ON(!(worker->flags & WORKER_IDLE));
1234 	worker_clr_flags(worker, WORKER_IDLE);
1235 	gcwq->nr_idle--;
1236 	list_del_init(&worker->entry);
1237 }
1238 
1239 /**
1240  * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1241  * @worker: self
1242  *
1243  * Works which are scheduled while the cpu is online must at least be
1244  * scheduled to a worker which is bound to the cpu so that if they are
1245  * flushed from cpu callbacks while cpu is going down, they are
1246  * guaranteed to execute on the cpu.
1247  *
1248  * This function is to be used by rogue workers and rescuers to bind
1249  * themselves to the target cpu and may race with cpu going down or
1250  * coming online.  kthread_bind() can't be used because it may put the
1251  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1252  * verbatim as it's best effort and blocking and gcwq may be
1253  * [dis]associated in the meantime.
1254  *
1255  * This function tries set_cpus_allowed() and locks gcwq and verifies
1256  * the binding against GCWQ_DISASSOCIATED which is set during
1257  * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1258  * idle state or fetches works without dropping lock, it can guarantee
1259  * the scheduling requirement described in the first paragraph.
1260  *
1261  * CONTEXT:
1262  * Might sleep.  Called without any lock but returns with gcwq->lock
1263  * held.
1264  *
1265  * RETURNS:
1266  * %true if the associated gcwq is online (@worker is successfully
1267  * bound), %false if offline.
1268  */
1269 static bool worker_maybe_bind_and_lock(struct worker *worker)
1270 __acquires(&gcwq->lock)
1271 {
1272 	struct global_cwq *gcwq = worker->gcwq;
1273 	struct task_struct *task = worker->task;
1274 
1275 	while (true) {
1276 		/*
1277 		 * The following call may fail, succeed or succeed
1278 		 * without actually migrating the task to the cpu if
1279 		 * it races with cpu hotunplug operation.  Verify
1280 		 * against GCWQ_DISASSOCIATED.
1281 		 */
1282 		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1283 			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1284 
1285 		spin_lock_irq(&gcwq->lock);
1286 		if (gcwq->flags & GCWQ_DISASSOCIATED)
1287 			return false;
1288 		if (task_cpu(task) == gcwq->cpu &&
1289 		    cpumask_equal(&current->cpus_allowed,
1290 				  get_cpu_mask(gcwq->cpu)))
1291 			return true;
1292 		spin_unlock_irq(&gcwq->lock);
1293 
1294 		/* CPU has come up inbetween, retry migration */
1295 		cpu_relax();
1296 	}
1297 }
1298 
1299 /*
1300  * Function for worker->rebind_work used to rebind rogue busy workers
1301  * to the associated cpu which is coming back online.  This is
1302  * scheduled by cpu up but can race with other cpu hotplug operations
1303  * and may be executed twice without intervening cpu down.
1304  */
1305 static void worker_rebind_fn(struct work_struct *work)
1306 {
1307 	struct worker *worker = container_of(work, struct worker, rebind_work);
1308 	struct global_cwq *gcwq = worker->gcwq;
1309 
1310 	if (worker_maybe_bind_and_lock(worker))
1311 		worker_clr_flags(worker, WORKER_REBIND);
1312 
1313 	spin_unlock_irq(&gcwq->lock);
1314 }
1315 
1316 static struct worker *alloc_worker(void)
1317 {
1318 	struct worker *worker;
1319 
1320 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1321 	if (worker) {
1322 		INIT_LIST_HEAD(&worker->entry);
1323 		INIT_LIST_HEAD(&worker->scheduled);
1324 		INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1325 		/* on creation a worker is in !idle && prep state */
1326 		worker->flags = WORKER_PREP;
1327 	}
1328 	return worker;
1329 }
1330 
1331 /**
1332  * create_worker - create a new workqueue worker
1333  * @gcwq: gcwq the new worker will belong to
1334  * @bind: whether to set affinity to @cpu or not
1335  *
1336  * Create a new worker which is bound to @gcwq.  The returned worker
1337  * can be started by calling start_worker() or destroyed using
1338  * destroy_worker().
1339  *
1340  * CONTEXT:
1341  * Might sleep.  Does GFP_KERNEL allocations.
1342  *
1343  * RETURNS:
1344  * Pointer to the newly created worker.
1345  */
1346 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1347 {
1348 	bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1349 	struct worker *worker = NULL;
1350 	int id = -1;
1351 
1352 	spin_lock_irq(&gcwq->lock);
1353 	while (ida_get_new(&gcwq->worker_ida, &id)) {
1354 		spin_unlock_irq(&gcwq->lock);
1355 		if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1356 			goto fail;
1357 		spin_lock_irq(&gcwq->lock);
1358 	}
1359 	spin_unlock_irq(&gcwq->lock);
1360 
1361 	worker = alloc_worker();
1362 	if (!worker)
1363 		goto fail;
1364 
1365 	worker->gcwq = gcwq;
1366 	worker->id = id;
1367 
1368 	if (!on_unbound_cpu)
1369 		worker->task = kthread_create(worker_thread, worker,
1370 					      "kworker/%u:%d", gcwq->cpu, id);
1371 	else
1372 		worker->task = kthread_create(worker_thread, worker,
1373 					      "kworker/u:%d", id);
1374 	if (IS_ERR(worker->task))
1375 		goto fail;
1376 
1377 	/*
1378 	 * A rogue worker will become a regular one if CPU comes
1379 	 * online later on.  Make sure every worker has
1380 	 * PF_THREAD_BOUND set.
1381 	 */
1382 	if (bind && !on_unbound_cpu)
1383 		kthread_bind(worker->task, gcwq->cpu);
1384 	else {
1385 		worker->task->flags |= PF_THREAD_BOUND;
1386 		if (on_unbound_cpu)
1387 			worker->flags |= WORKER_UNBOUND;
1388 	}
1389 
1390 	return worker;
1391 fail:
1392 	if (id >= 0) {
1393 		spin_lock_irq(&gcwq->lock);
1394 		ida_remove(&gcwq->worker_ida, id);
1395 		spin_unlock_irq(&gcwq->lock);
1396 	}
1397 	kfree(worker);
1398 	return NULL;
1399 }
1400 
1401 /**
1402  * start_worker - start a newly created worker
1403  * @worker: worker to start
1404  *
1405  * Make the gcwq aware of @worker and start it.
1406  *
1407  * CONTEXT:
1408  * spin_lock_irq(gcwq->lock).
1409  */
1410 static void start_worker(struct worker *worker)
1411 {
1412 	worker->flags |= WORKER_STARTED;
1413 	worker->gcwq->nr_workers++;
1414 	worker_enter_idle(worker);
1415 	wake_up_process(worker->task);
1416 }
1417 
1418 /**
1419  * destroy_worker - destroy a workqueue worker
1420  * @worker: worker to be destroyed
1421  *
1422  * Destroy @worker and adjust @gcwq stats accordingly.
1423  *
1424  * CONTEXT:
1425  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1426  */
1427 static void destroy_worker(struct worker *worker)
1428 {
1429 	struct global_cwq *gcwq = worker->gcwq;
1430 	int id = worker->id;
1431 
1432 	/* sanity check frenzy */
1433 	BUG_ON(worker->current_work);
1434 	BUG_ON(!list_empty(&worker->scheduled));
1435 
1436 	if (worker->flags & WORKER_STARTED)
1437 		gcwq->nr_workers--;
1438 	if (worker->flags & WORKER_IDLE)
1439 		gcwq->nr_idle--;
1440 
1441 	list_del_init(&worker->entry);
1442 	worker->flags |= WORKER_DIE;
1443 
1444 	spin_unlock_irq(&gcwq->lock);
1445 
1446 	kthread_stop(worker->task);
1447 	kfree(worker);
1448 
1449 	spin_lock_irq(&gcwq->lock);
1450 	ida_remove(&gcwq->worker_ida, id);
1451 }
1452 
1453 static void idle_worker_timeout(unsigned long __gcwq)
1454 {
1455 	struct global_cwq *gcwq = (void *)__gcwq;
1456 
1457 	spin_lock_irq(&gcwq->lock);
1458 
1459 	if (too_many_workers(gcwq)) {
1460 		struct worker *worker;
1461 		unsigned long expires;
1462 
1463 		/* idle_list is kept in LIFO order, check the last one */
1464 		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1465 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1466 
1467 		if (time_before(jiffies, expires))
1468 			mod_timer(&gcwq->idle_timer, expires);
1469 		else {
1470 			/* it's been idle for too long, wake up manager */
1471 			gcwq->flags |= GCWQ_MANAGE_WORKERS;
1472 			wake_up_worker(gcwq);
1473 		}
1474 	}
1475 
1476 	spin_unlock_irq(&gcwq->lock);
1477 }
1478 
1479 static bool send_mayday(struct work_struct *work)
1480 {
1481 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1482 	struct workqueue_struct *wq = cwq->wq;
1483 	unsigned int cpu;
1484 
1485 	if (!(wq->flags & WQ_RESCUER))
1486 		return false;
1487 
1488 	/* mayday mayday mayday */
1489 	cpu = cwq->gcwq->cpu;
1490 	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1491 	if (cpu == WORK_CPU_UNBOUND)
1492 		cpu = 0;
1493 	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1494 		wake_up_process(wq->rescuer->task);
1495 	return true;
1496 }
1497 
1498 static void gcwq_mayday_timeout(unsigned long __gcwq)
1499 {
1500 	struct global_cwq *gcwq = (void *)__gcwq;
1501 	struct work_struct *work;
1502 
1503 	spin_lock_irq(&gcwq->lock);
1504 
1505 	if (need_to_create_worker(gcwq)) {
1506 		/*
1507 		 * We've been trying to create a new worker but
1508 		 * haven't been successful.  We might be hitting an
1509 		 * allocation deadlock.  Send distress signals to
1510 		 * rescuers.
1511 		 */
1512 		list_for_each_entry(work, &gcwq->worklist, entry)
1513 			send_mayday(work);
1514 	}
1515 
1516 	spin_unlock_irq(&gcwq->lock);
1517 
1518 	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1519 }
1520 
1521 /**
1522  * maybe_create_worker - create a new worker if necessary
1523  * @gcwq: gcwq to create a new worker for
1524  *
1525  * Create a new worker for @gcwq if necessary.  @gcwq is guaranteed to
1526  * have at least one idle worker on return from this function.  If
1527  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1528  * sent to all rescuers with works scheduled on @gcwq to resolve
1529  * possible allocation deadlock.
1530  *
1531  * On return, need_to_create_worker() is guaranteed to be false and
1532  * may_start_working() true.
1533  *
1534  * LOCKING:
1535  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1536  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1537  * manager.
1538  *
1539  * RETURNS:
1540  * false if no action was taken and gcwq->lock stayed locked, true
1541  * otherwise.
1542  */
1543 static bool maybe_create_worker(struct global_cwq *gcwq)
1544 __releases(&gcwq->lock)
1545 __acquires(&gcwq->lock)
1546 {
1547 	if (!need_to_create_worker(gcwq))
1548 		return false;
1549 restart:
1550 	spin_unlock_irq(&gcwq->lock);
1551 
1552 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1553 	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1554 
1555 	while (true) {
1556 		struct worker *worker;
1557 
1558 		worker = create_worker(gcwq, true);
1559 		if (worker) {
1560 			del_timer_sync(&gcwq->mayday_timer);
1561 			spin_lock_irq(&gcwq->lock);
1562 			start_worker(worker);
1563 			BUG_ON(need_to_create_worker(gcwq));
1564 			return true;
1565 		}
1566 
1567 		if (!need_to_create_worker(gcwq))
1568 			break;
1569 
1570 		__set_current_state(TASK_INTERRUPTIBLE);
1571 		schedule_timeout(CREATE_COOLDOWN);
1572 
1573 		if (!need_to_create_worker(gcwq))
1574 			break;
1575 	}
1576 
1577 	del_timer_sync(&gcwq->mayday_timer);
1578 	spin_lock_irq(&gcwq->lock);
1579 	if (need_to_create_worker(gcwq))
1580 		goto restart;
1581 	return true;
1582 }
1583 
1584 /**
1585  * maybe_destroy_worker - destroy workers which have been idle for a while
1586  * @gcwq: gcwq to destroy workers for
1587  *
1588  * Destroy @gcwq workers which have been idle for longer than
1589  * IDLE_WORKER_TIMEOUT.
1590  *
1591  * LOCKING:
1592  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1593  * multiple times.  Called only from manager.
1594  *
1595  * RETURNS:
1596  * false if no action was taken and gcwq->lock stayed locked, true
1597  * otherwise.
1598  */
1599 static bool maybe_destroy_workers(struct global_cwq *gcwq)
1600 {
1601 	bool ret = false;
1602 
1603 	while (too_many_workers(gcwq)) {
1604 		struct worker *worker;
1605 		unsigned long expires;
1606 
1607 		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1608 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1609 
1610 		if (time_before(jiffies, expires)) {
1611 			mod_timer(&gcwq->idle_timer, expires);
1612 			break;
1613 		}
1614 
1615 		destroy_worker(worker);
1616 		ret = true;
1617 	}
1618 
1619 	return ret;
1620 }
1621 
1622 /**
1623  * manage_workers - manage worker pool
1624  * @worker: self
1625  *
1626  * Assume the manager role and manage gcwq worker pool @worker belongs
1627  * to.  At any given time, there can be only zero or one manager per
1628  * gcwq.  The exclusion is handled automatically by this function.
1629  *
1630  * The caller can safely start processing works on false return.  On
1631  * true return, it's guaranteed that need_to_create_worker() is false
1632  * and may_start_working() is true.
1633  *
1634  * CONTEXT:
1635  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1636  * multiple times.  Does GFP_KERNEL allocations.
1637  *
1638  * RETURNS:
1639  * false if no action was taken and gcwq->lock stayed locked, true if
1640  * some action was taken.
1641  */
1642 static bool manage_workers(struct worker *worker)
1643 {
1644 	struct global_cwq *gcwq = worker->gcwq;
1645 	bool ret = false;
1646 
1647 	if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1648 		return ret;
1649 
1650 	gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1651 	gcwq->flags |= GCWQ_MANAGING_WORKERS;
1652 
1653 	/*
1654 	 * Destroy and then create so that may_start_working() is true
1655 	 * on return.
1656 	 */
1657 	ret |= maybe_destroy_workers(gcwq);
1658 	ret |= maybe_create_worker(gcwq);
1659 
1660 	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1661 
1662 	/*
1663 	 * The trustee might be waiting to take over the manager
1664 	 * position, tell it we're done.
1665 	 */
1666 	if (unlikely(gcwq->trustee))
1667 		wake_up_all(&gcwq->trustee_wait);
1668 
1669 	return ret;
1670 }
1671 
1672 /**
1673  * move_linked_works - move linked works to a list
1674  * @work: start of series of works to be scheduled
1675  * @head: target list to append @work to
1676  * @nextp: out paramter for nested worklist walking
1677  *
1678  * Schedule linked works starting from @work to @head.  Work series to
1679  * be scheduled starts at @work and includes any consecutive work with
1680  * WORK_STRUCT_LINKED set in its predecessor.
1681  *
1682  * If @nextp is not NULL, it's updated to point to the next work of
1683  * the last scheduled work.  This allows move_linked_works() to be
1684  * nested inside outer list_for_each_entry_safe().
1685  *
1686  * CONTEXT:
1687  * spin_lock_irq(gcwq->lock).
1688  */
1689 static void move_linked_works(struct work_struct *work, struct list_head *head,
1690 			      struct work_struct **nextp)
1691 {
1692 	struct work_struct *n;
1693 
1694 	/*
1695 	 * Linked worklist will always end before the end of the list,
1696 	 * use NULL for list head.
1697 	 */
1698 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1699 		list_move_tail(&work->entry, head);
1700 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1701 			break;
1702 	}
1703 
1704 	/*
1705 	 * If we're already inside safe list traversal and have moved
1706 	 * multiple works to the scheduled queue, the next position
1707 	 * needs to be updated.
1708 	 */
1709 	if (nextp)
1710 		*nextp = n;
1711 }
1712 
1713 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1714 {
1715 	struct work_struct *work = list_first_entry(&cwq->delayed_works,
1716 						    struct work_struct, entry);
1717 	struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1718 
1719 	trace_workqueue_activate_work(work);
1720 	move_linked_works(work, pos, NULL);
1721 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1722 	cwq->nr_active++;
1723 }
1724 
1725 /**
1726  * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1727  * @cwq: cwq of interest
1728  * @color: color of work which left the queue
1729  * @delayed: for a delayed work
1730  *
1731  * A work either has completed or is removed from pending queue,
1732  * decrement nr_in_flight of its cwq and handle workqueue flushing.
1733  *
1734  * CONTEXT:
1735  * spin_lock_irq(gcwq->lock).
1736  */
1737 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1738 				 bool delayed)
1739 {
1740 	/* ignore uncolored works */
1741 	if (color == WORK_NO_COLOR)
1742 		return;
1743 
1744 	cwq->nr_in_flight[color]--;
1745 
1746 	if (!delayed) {
1747 		cwq->nr_active--;
1748 		if (!list_empty(&cwq->delayed_works)) {
1749 			/* one down, submit a delayed one */
1750 			if (cwq->nr_active < cwq->max_active)
1751 				cwq_activate_first_delayed(cwq);
1752 		}
1753 	}
1754 
1755 	/* is flush in progress and are we at the flushing tip? */
1756 	if (likely(cwq->flush_color != color))
1757 		return;
1758 
1759 	/* are there still in-flight works? */
1760 	if (cwq->nr_in_flight[color])
1761 		return;
1762 
1763 	/* this cwq is done, clear flush_color */
1764 	cwq->flush_color = -1;
1765 
1766 	/*
1767 	 * If this was the last cwq, wake up the first flusher.  It
1768 	 * will handle the rest.
1769 	 */
1770 	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1771 		complete(&cwq->wq->first_flusher->done);
1772 }
1773 
1774 /**
1775  * process_one_work - process single work
1776  * @worker: self
1777  * @work: work to process
1778  *
1779  * Process @work.  This function contains all the logics necessary to
1780  * process a single work including synchronization against and
1781  * interaction with other workers on the same cpu, queueing and
1782  * flushing.  As long as context requirement is met, any worker can
1783  * call this function to process a work.
1784  *
1785  * CONTEXT:
1786  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1787  */
1788 static void process_one_work(struct worker *worker, struct work_struct *work)
1789 __releases(&gcwq->lock)
1790 __acquires(&gcwq->lock)
1791 {
1792 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1793 	struct global_cwq *gcwq = cwq->gcwq;
1794 	struct hlist_head *bwh = busy_worker_head(gcwq, work);
1795 	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1796 	work_func_t f = work->func;
1797 	int work_color;
1798 	struct worker *collision;
1799 #ifdef CONFIG_LOCKDEP
1800 	/*
1801 	 * It is permissible to free the struct work_struct from
1802 	 * inside the function that is called from it, this we need to
1803 	 * take into account for lockdep too.  To avoid bogus "held
1804 	 * lock freed" warnings as well as problems when looking into
1805 	 * work->lockdep_map, make a copy and use that here.
1806 	 */
1807 	struct lockdep_map lockdep_map = work->lockdep_map;
1808 #endif
1809 	/*
1810 	 * A single work shouldn't be executed concurrently by
1811 	 * multiple workers on a single cpu.  Check whether anyone is
1812 	 * already processing the work.  If so, defer the work to the
1813 	 * currently executing one.
1814 	 */
1815 	collision = __find_worker_executing_work(gcwq, bwh, work);
1816 	if (unlikely(collision)) {
1817 		move_linked_works(work, &collision->scheduled, NULL);
1818 		return;
1819 	}
1820 
1821 	/* claim and process */
1822 	debug_work_deactivate(work);
1823 	hlist_add_head(&worker->hentry, bwh);
1824 	worker->current_work = work;
1825 	worker->current_cwq = cwq;
1826 	work_color = get_work_color(work);
1827 
1828 	/* record the current cpu number in the work data and dequeue */
1829 	set_work_cpu(work, gcwq->cpu);
1830 	list_del_init(&work->entry);
1831 
1832 	/*
1833 	 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1834 	 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1835 	 */
1836 	if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1837 		struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1838 						struct work_struct, entry);
1839 
1840 		if (!list_empty(&gcwq->worklist) &&
1841 		    get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1842 			wake_up_worker(gcwq);
1843 		else
1844 			gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1845 	}
1846 
1847 	/*
1848 	 * CPU intensive works don't participate in concurrency
1849 	 * management.  They're the scheduler's responsibility.
1850 	 */
1851 	if (unlikely(cpu_intensive))
1852 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1853 
1854 	spin_unlock_irq(&gcwq->lock);
1855 
1856 	work_clear_pending(work);
1857 	lock_map_acquire_read(&cwq->wq->lockdep_map);
1858 	lock_map_acquire(&lockdep_map);
1859 	trace_workqueue_execute_start(work);
1860 	f(work);
1861 	/*
1862 	 * While we must be careful to not use "work" after this, the trace
1863 	 * point will only record its address.
1864 	 */
1865 	trace_workqueue_execute_end(work);
1866 	lock_map_release(&lockdep_map);
1867 	lock_map_release(&cwq->wq->lockdep_map);
1868 
1869 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1870 		printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1871 		       "%s/0x%08x/%d\n",
1872 		       current->comm, preempt_count(), task_pid_nr(current));
1873 		printk(KERN_ERR "    last function: ");
1874 		print_symbol("%s\n", (unsigned long)f);
1875 		debug_show_held_locks(current);
1876 		dump_stack();
1877 	}
1878 
1879 	spin_lock_irq(&gcwq->lock);
1880 
1881 	/* clear cpu intensive status */
1882 	if (unlikely(cpu_intensive))
1883 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1884 
1885 	/* we're done with it, release */
1886 	hlist_del_init(&worker->hentry);
1887 	worker->current_work = NULL;
1888 	worker->current_cwq = NULL;
1889 	cwq_dec_nr_in_flight(cwq, work_color, false);
1890 }
1891 
1892 /**
1893  * process_scheduled_works - process scheduled works
1894  * @worker: self
1895  *
1896  * Process all scheduled works.  Please note that the scheduled list
1897  * may change while processing a work, so this function repeatedly
1898  * fetches a work from the top and executes it.
1899  *
1900  * CONTEXT:
1901  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1902  * multiple times.
1903  */
1904 static void process_scheduled_works(struct worker *worker)
1905 {
1906 	while (!list_empty(&worker->scheduled)) {
1907 		struct work_struct *work = list_first_entry(&worker->scheduled,
1908 						struct work_struct, entry);
1909 		process_one_work(worker, work);
1910 	}
1911 }
1912 
1913 /**
1914  * worker_thread - the worker thread function
1915  * @__worker: self
1916  *
1917  * The gcwq worker thread function.  There's a single dynamic pool of
1918  * these per each cpu.  These workers process all works regardless of
1919  * their specific target workqueue.  The only exception is works which
1920  * belong to workqueues with a rescuer which will be explained in
1921  * rescuer_thread().
1922  */
1923 static int worker_thread(void *__worker)
1924 {
1925 	struct worker *worker = __worker;
1926 	struct global_cwq *gcwq = worker->gcwq;
1927 
1928 	/* tell the scheduler that this is a workqueue worker */
1929 	worker->task->flags |= PF_WQ_WORKER;
1930 woke_up:
1931 	spin_lock_irq(&gcwq->lock);
1932 
1933 	/* DIE can be set only while we're idle, checking here is enough */
1934 	if (worker->flags & WORKER_DIE) {
1935 		spin_unlock_irq(&gcwq->lock);
1936 		worker->task->flags &= ~PF_WQ_WORKER;
1937 		return 0;
1938 	}
1939 
1940 	worker_leave_idle(worker);
1941 recheck:
1942 	/* no more worker necessary? */
1943 	if (!need_more_worker(gcwq))
1944 		goto sleep;
1945 
1946 	/* do we need to manage? */
1947 	if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1948 		goto recheck;
1949 
1950 	/*
1951 	 * ->scheduled list can only be filled while a worker is
1952 	 * preparing to process a work or actually processing it.
1953 	 * Make sure nobody diddled with it while I was sleeping.
1954 	 */
1955 	BUG_ON(!list_empty(&worker->scheduled));
1956 
1957 	/*
1958 	 * When control reaches this point, we're guaranteed to have
1959 	 * at least one idle worker or that someone else has already
1960 	 * assumed the manager role.
1961 	 */
1962 	worker_clr_flags(worker, WORKER_PREP);
1963 
1964 	do {
1965 		struct work_struct *work =
1966 			list_first_entry(&gcwq->worklist,
1967 					 struct work_struct, entry);
1968 
1969 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1970 			/* optimization path, not strictly necessary */
1971 			process_one_work(worker, work);
1972 			if (unlikely(!list_empty(&worker->scheduled)))
1973 				process_scheduled_works(worker);
1974 		} else {
1975 			move_linked_works(work, &worker->scheduled, NULL);
1976 			process_scheduled_works(worker);
1977 		}
1978 	} while (keep_working(gcwq));
1979 
1980 	worker_set_flags(worker, WORKER_PREP, false);
1981 sleep:
1982 	if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1983 		goto recheck;
1984 
1985 	/*
1986 	 * gcwq->lock is held and there's no work to process and no
1987 	 * need to manage, sleep.  Workers are woken up only while
1988 	 * holding gcwq->lock or from local cpu, so setting the
1989 	 * current state before releasing gcwq->lock is enough to
1990 	 * prevent losing any event.
1991 	 */
1992 	worker_enter_idle(worker);
1993 	__set_current_state(TASK_INTERRUPTIBLE);
1994 	spin_unlock_irq(&gcwq->lock);
1995 	schedule();
1996 	goto woke_up;
1997 }
1998 
1999 /**
2000  * rescuer_thread - the rescuer thread function
2001  * @__wq: the associated workqueue
2002  *
2003  * Workqueue rescuer thread function.  There's one rescuer for each
2004  * workqueue which has WQ_RESCUER set.
2005  *
2006  * Regular work processing on a gcwq may block trying to create a new
2007  * worker which uses GFP_KERNEL allocation which has slight chance of
2008  * developing into deadlock if some works currently on the same queue
2009  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2010  * the problem rescuer solves.
2011  *
2012  * When such condition is possible, the gcwq summons rescuers of all
2013  * workqueues which have works queued on the gcwq and let them process
2014  * those works so that forward progress can be guaranteed.
2015  *
2016  * This should happen rarely.
2017  */
2018 static int rescuer_thread(void *__wq)
2019 {
2020 	struct workqueue_struct *wq = __wq;
2021 	struct worker *rescuer = wq->rescuer;
2022 	struct list_head *scheduled = &rescuer->scheduled;
2023 	bool is_unbound = wq->flags & WQ_UNBOUND;
2024 	unsigned int cpu;
2025 
2026 	set_user_nice(current, RESCUER_NICE_LEVEL);
2027 repeat:
2028 	set_current_state(TASK_INTERRUPTIBLE);
2029 
2030 	if (kthread_should_stop())
2031 		return 0;
2032 
2033 	/*
2034 	 * See whether any cpu is asking for help.  Unbounded
2035 	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2036 	 */
2037 	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2038 		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2039 		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2040 		struct global_cwq *gcwq = cwq->gcwq;
2041 		struct work_struct *work, *n;
2042 
2043 		__set_current_state(TASK_RUNNING);
2044 		mayday_clear_cpu(cpu, wq->mayday_mask);
2045 
2046 		/* migrate to the target cpu if possible */
2047 		rescuer->gcwq = gcwq;
2048 		worker_maybe_bind_and_lock(rescuer);
2049 
2050 		/*
2051 		 * Slurp in all works issued via this workqueue and
2052 		 * process'em.
2053 		 */
2054 		BUG_ON(!list_empty(&rescuer->scheduled));
2055 		list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2056 			if (get_work_cwq(work) == cwq)
2057 				move_linked_works(work, scheduled, &n);
2058 
2059 		process_scheduled_works(rescuer);
2060 
2061 		/*
2062 		 * Leave this gcwq.  If keep_working() is %true, notify a
2063 		 * regular worker; otherwise, we end up with 0 concurrency
2064 		 * and stalling the execution.
2065 		 */
2066 		if (keep_working(gcwq))
2067 			wake_up_worker(gcwq);
2068 
2069 		spin_unlock_irq(&gcwq->lock);
2070 	}
2071 
2072 	schedule();
2073 	goto repeat;
2074 }
2075 
2076 struct wq_barrier {
2077 	struct work_struct	work;
2078 	struct completion	done;
2079 };
2080 
2081 static void wq_barrier_func(struct work_struct *work)
2082 {
2083 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2084 	complete(&barr->done);
2085 }
2086 
2087 /**
2088  * insert_wq_barrier - insert a barrier work
2089  * @cwq: cwq to insert barrier into
2090  * @barr: wq_barrier to insert
2091  * @target: target work to attach @barr to
2092  * @worker: worker currently executing @target, NULL if @target is not executing
2093  *
2094  * @barr is linked to @target such that @barr is completed only after
2095  * @target finishes execution.  Please note that the ordering
2096  * guarantee is observed only with respect to @target and on the local
2097  * cpu.
2098  *
2099  * Currently, a queued barrier can't be canceled.  This is because
2100  * try_to_grab_pending() can't determine whether the work to be
2101  * grabbed is at the head of the queue and thus can't clear LINKED
2102  * flag of the previous work while there must be a valid next work
2103  * after a work with LINKED flag set.
2104  *
2105  * Note that when @worker is non-NULL, @target may be modified
2106  * underneath us, so we can't reliably determine cwq from @target.
2107  *
2108  * CONTEXT:
2109  * spin_lock_irq(gcwq->lock).
2110  */
2111 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2112 			      struct wq_barrier *barr,
2113 			      struct work_struct *target, struct worker *worker)
2114 {
2115 	struct list_head *head;
2116 	unsigned int linked = 0;
2117 
2118 	/*
2119 	 * debugobject calls are safe here even with gcwq->lock locked
2120 	 * as we know for sure that this will not trigger any of the
2121 	 * checks and call back into the fixup functions where we
2122 	 * might deadlock.
2123 	 */
2124 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2125 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2126 	init_completion(&barr->done);
2127 
2128 	/*
2129 	 * If @target is currently being executed, schedule the
2130 	 * barrier to the worker; otherwise, put it after @target.
2131 	 */
2132 	if (worker)
2133 		head = worker->scheduled.next;
2134 	else {
2135 		unsigned long *bits = work_data_bits(target);
2136 
2137 		head = target->entry.next;
2138 		/* there can already be other linked works, inherit and set */
2139 		linked = *bits & WORK_STRUCT_LINKED;
2140 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2141 	}
2142 
2143 	debug_work_activate(&barr->work);
2144 	insert_work(cwq, &barr->work, head,
2145 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2146 }
2147 
2148 /**
2149  * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2150  * @wq: workqueue being flushed
2151  * @flush_color: new flush color, < 0 for no-op
2152  * @work_color: new work color, < 0 for no-op
2153  *
2154  * Prepare cwqs for workqueue flushing.
2155  *
2156  * If @flush_color is non-negative, flush_color on all cwqs should be
2157  * -1.  If no cwq has in-flight commands at the specified color, all
2158  * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
2159  * has in flight commands, its cwq->flush_color is set to
2160  * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2161  * wakeup logic is armed and %true is returned.
2162  *
2163  * The caller should have initialized @wq->first_flusher prior to
2164  * calling this function with non-negative @flush_color.  If
2165  * @flush_color is negative, no flush color update is done and %false
2166  * is returned.
2167  *
2168  * If @work_color is non-negative, all cwqs should have the same
2169  * work_color which is previous to @work_color and all will be
2170  * advanced to @work_color.
2171  *
2172  * CONTEXT:
2173  * mutex_lock(wq->flush_mutex).
2174  *
2175  * RETURNS:
2176  * %true if @flush_color >= 0 and there's something to flush.  %false
2177  * otherwise.
2178  */
2179 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2180 				      int flush_color, int work_color)
2181 {
2182 	bool wait = false;
2183 	unsigned int cpu;
2184 
2185 	if (flush_color >= 0) {
2186 		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2187 		atomic_set(&wq->nr_cwqs_to_flush, 1);
2188 	}
2189 
2190 	for_each_cwq_cpu(cpu, wq) {
2191 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2192 		struct global_cwq *gcwq = cwq->gcwq;
2193 
2194 		spin_lock_irq(&gcwq->lock);
2195 
2196 		if (flush_color >= 0) {
2197 			BUG_ON(cwq->flush_color != -1);
2198 
2199 			if (cwq->nr_in_flight[flush_color]) {
2200 				cwq->flush_color = flush_color;
2201 				atomic_inc(&wq->nr_cwqs_to_flush);
2202 				wait = true;
2203 			}
2204 		}
2205 
2206 		if (work_color >= 0) {
2207 			BUG_ON(work_color != work_next_color(cwq->work_color));
2208 			cwq->work_color = work_color;
2209 		}
2210 
2211 		spin_unlock_irq(&gcwq->lock);
2212 	}
2213 
2214 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2215 		complete(&wq->first_flusher->done);
2216 
2217 	return wait;
2218 }
2219 
2220 /**
2221  * flush_workqueue - ensure that any scheduled work has run to completion.
2222  * @wq: workqueue to flush
2223  *
2224  * Forces execution of the workqueue and blocks until its completion.
2225  * This is typically used in driver shutdown handlers.
2226  *
2227  * We sleep until all works which were queued on entry have been handled,
2228  * but we are not livelocked by new incoming ones.
2229  */
2230 void flush_workqueue(struct workqueue_struct *wq)
2231 {
2232 	struct wq_flusher this_flusher = {
2233 		.list = LIST_HEAD_INIT(this_flusher.list),
2234 		.flush_color = -1,
2235 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2236 	};
2237 	int next_color;
2238 
2239 	lock_map_acquire(&wq->lockdep_map);
2240 	lock_map_release(&wq->lockdep_map);
2241 
2242 	mutex_lock(&wq->flush_mutex);
2243 
2244 	/*
2245 	 * Start-to-wait phase
2246 	 */
2247 	next_color = work_next_color(wq->work_color);
2248 
2249 	if (next_color != wq->flush_color) {
2250 		/*
2251 		 * Color space is not full.  The current work_color
2252 		 * becomes our flush_color and work_color is advanced
2253 		 * by one.
2254 		 */
2255 		BUG_ON(!list_empty(&wq->flusher_overflow));
2256 		this_flusher.flush_color = wq->work_color;
2257 		wq->work_color = next_color;
2258 
2259 		if (!wq->first_flusher) {
2260 			/* no flush in progress, become the first flusher */
2261 			BUG_ON(wq->flush_color != this_flusher.flush_color);
2262 
2263 			wq->first_flusher = &this_flusher;
2264 
2265 			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2266 						       wq->work_color)) {
2267 				/* nothing to flush, done */
2268 				wq->flush_color = next_color;
2269 				wq->first_flusher = NULL;
2270 				goto out_unlock;
2271 			}
2272 		} else {
2273 			/* wait in queue */
2274 			BUG_ON(wq->flush_color == this_flusher.flush_color);
2275 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2276 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2277 		}
2278 	} else {
2279 		/*
2280 		 * Oops, color space is full, wait on overflow queue.
2281 		 * The next flush completion will assign us
2282 		 * flush_color and transfer to flusher_queue.
2283 		 */
2284 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2285 	}
2286 
2287 	mutex_unlock(&wq->flush_mutex);
2288 
2289 	wait_for_completion(&this_flusher.done);
2290 
2291 	/*
2292 	 * Wake-up-and-cascade phase
2293 	 *
2294 	 * First flushers are responsible for cascading flushes and
2295 	 * handling overflow.  Non-first flushers can simply return.
2296 	 */
2297 	if (wq->first_flusher != &this_flusher)
2298 		return;
2299 
2300 	mutex_lock(&wq->flush_mutex);
2301 
2302 	/* we might have raced, check again with mutex held */
2303 	if (wq->first_flusher != &this_flusher)
2304 		goto out_unlock;
2305 
2306 	wq->first_flusher = NULL;
2307 
2308 	BUG_ON(!list_empty(&this_flusher.list));
2309 	BUG_ON(wq->flush_color != this_flusher.flush_color);
2310 
2311 	while (true) {
2312 		struct wq_flusher *next, *tmp;
2313 
2314 		/* complete all the flushers sharing the current flush color */
2315 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2316 			if (next->flush_color != wq->flush_color)
2317 				break;
2318 			list_del_init(&next->list);
2319 			complete(&next->done);
2320 		}
2321 
2322 		BUG_ON(!list_empty(&wq->flusher_overflow) &&
2323 		       wq->flush_color != work_next_color(wq->work_color));
2324 
2325 		/* this flush_color is finished, advance by one */
2326 		wq->flush_color = work_next_color(wq->flush_color);
2327 
2328 		/* one color has been freed, handle overflow queue */
2329 		if (!list_empty(&wq->flusher_overflow)) {
2330 			/*
2331 			 * Assign the same color to all overflowed
2332 			 * flushers, advance work_color and append to
2333 			 * flusher_queue.  This is the start-to-wait
2334 			 * phase for these overflowed flushers.
2335 			 */
2336 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2337 				tmp->flush_color = wq->work_color;
2338 
2339 			wq->work_color = work_next_color(wq->work_color);
2340 
2341 			list_splice_tail_init(&wq->flusher_overflow,
2342 					      &wq->flusher_queue);
2343 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2344 		}
2345 
2346 		if (list_empty(&wq->flusher_queue)) {
2347 			BUG_ON(wq->flush_color != wq->work_color);
2348 			break;
2349 		}
2350 
2351 		/*
2352 		 * Need to flush more colors.  Make the next flusher
2353 		 * the new first flusher and arm cwqs.
2354 		 */
2355 		BUG_ON(wq->flush_color == wq->work_color);
2356 		BUG_ON(wq->flush_color != next->flush_color);
2357 
2358 		list_del_init(&next->list);
2359 		wq->first_flusher = next;
2360 
2361 		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2362 			break;
2363 
2364 		/*
2365 		 * Meh... this color is already done, clear first
2366 		 * flusher and repeat cascading.
2367 		 */
2368 		wq->first_flusher = NULL;
2369 	}
2370 
2371 out_unlock:
2372 	mutex_unlock(&wq->flush_mutex);
2373 }
2374 EXPORT_SYMBOL_GPL(flush_workqueue);
2375 
2376 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2377 			     bool wait_executing)
2378 {
2379 	struct worker *worker = NULL;
2380 	struct global_cwq *gcwq;
2381 	struct cpu_workqueue_struct *cwq;
2382 
2383 	might_sleep();
2384 	gcwq = get_work_gcwq(work);
2385 	if (!gcwq)
2386 		return false;
2387 
2388 	spin_lock_irq(&gcwq->lock);
2389 	if (!list_empty(&work->entry)) {
2390 		/*
2391 		 * See the comment near try_to_grab_pending()->smp_rmb().
2392 		 * If it was re-queued to a different gcwq under us, we
2393 		 * are not going to wait.
2394 		 */
2395 		smp_rmb();
2396 		cwq = get_work_cwq(work);
2397 		if (unlikely(!cwq || gcwq != cwq->gcwq))
2398 			goto already_gone;
2399 	} else if (wait_executing) {
2400 		worker = find_worker_executing_work(gcwq, work);
2401 		if (!worker)
2402 			goto already_gone;
2403 		cwq = worker->current_cwq;
2404 	} else
2405 		goto already_gone;
2406 
2407 	insert_wq_barrier(cwq, barr, work, worker);
2408 	spin_unlock_irq(&gcwq->lock);
2409 
2410 	/*
2411 	 * If @max_active is 1 or rescuer is in use, flushing another work
2412 	 * item on the same workqueue may lead to deadlock.  Make sure the
2413 	 * flusher is not running on the same workqueue by verifying write
2414 	 * access.
2415 	 */
2416 	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2417 		lock_map_acquire(&cwq->wq->lockdep_map);
2418 	else
2419 		lock_map_acquire_read(&cwq->wq->lockdep_map);
2420 	lock_map_release(&cwq->wq->lockdep_map);
2421 
2422 	return true;
2423 already_gone:
2424 	spin_unlock_irq(&gcwq->lock);
2425 	return false;
2426 }
2427 
2428 /**
2429  * flush_work - wait for a work to finish executing the last queueing instance
2430  * @work: the work to flush
2431  *
2432  * Wait until @work has finished execution.  This function considers
2433  * only the last queueing instance of @work.  If @work has been
2434  * enqueued across different CPUs on a non-reentrant workqueue or on
2435  * multiple workqueues, @work might still be executing on return on
2436  * some of the CPUs from earlier queueing.
2437  *
2438  * If @work was queued only on a non-reentrant, ordered or unbound
2439  * workqueue, @work is guaranteed to be idle on return if it hasn't
2440  * been requeued since flush started.
2441  *
2442  * RETURNS:
2443  * %true if flush_work() waited for the work to finish execution,
2444  * %false if it was already idle.
2445  */
2446 bool flush_work(struct work_struct *work)
2447 {
2448 	struct wq_barrier barr;
2449 
2450 	if (start_flush_work(work, &barr, true)) {
2451 		wait_for_completion(&barr.done);
2452 		destroy_work_on_stack(&barr.work);
2453 		return true;
2454 	} else
2455 		return false;
2456 }
2457 EXPORT_SYMBOL_GPL(flush_work);
2458 
2459 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2460 {
2461 	struct wq_barrier barr;
2462 	struct worker *worker;
2463 
2464 	spin_lock_irq(&gcwq->lock);
2465 
2466 	worker = find_worker_executing_work(gcwq, work);
2467 	if (unlikely(worker))
2468 		insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2469 
2470 	spin_unlock_irq(&gcwq->lock);
2471 
2472 	if (unlikely(worker)) {
2473 		wait_for_completion(&barr.done);
2474 		destroy_work_on_stack(&barr.work);
2475 		return true;
2476 	} else
2477 		return false;
2478 }
2479 
2480 static bool wait_on_work(struct work_struct *work)
2481 {
2482 	bool ret = false;
2483 	int cpu;
2484 
2485 	might_sleep();
2486 
2487 	lock_map_acquire(&work->lockdep_map);
2488 	lock_map_release(&work->lockdep_map);
2489 
2490 	for_each_gcwq_cpu(cpu)
2491 		ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2492 	return ret;
2493 }
2494 
2495 /**
2496  * flush_work_sync - wait until a work has finished execution
2497  * @work: the work to flush
2498  *
2499  * Wait until @work has finished execution.  On return, it's
2500  * guaranteed that all queueing instances of @work which happened
2501  * before this function is called are finished.  In other words, if
2502  * @work hasn't been requeued since this function was called, @work is
2503  * guaranteed to be idle on return.
2504  *
2505  * RETURNS:
2506  * %true if flush_work_sync() waited for the work to finish execution,
2507  * %false if it was already idle.
2508  */
2509 bool flush_work_sync(struct work_struct *work)
2510 {
2511 	struct wq_barrier barr;
2512 	bool pending, waited;
2513 
2514 	/* we'll wait for executions separately, queue barr only if pending */
2515 	pending = start_flush_work(work, &barr, false);
2516 
2517 	/* wait for executions to finish */
2518 	waited = wait_on_work(work);
2519 
2520 	/* wait for the pending one */
2521 	if (pending) {
2522 		wait_for_completion(&barr.done);
2523 		destroy_work_on_stack(&barr.work);
2524 	}
2525 
2526 	return pending || waited;
2527 }
2528 EXPORT_SYMBOL_GPL(flush_work_sync);
2529 
2530 /*
2531  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2532  * so this work can't be re-armed in any way.
2533  */
2534 static int try_to_grab_pending(struct work_struct *work)
2535 {
2536 	struct global_cwq *gcwq;
2537 	int ret = -1;
2538 
2539 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2540 		return 0;
2541 
2542 	/*
2543 	 * The queueing is in progress, or it is already queued. Try to
2544 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2545 	 */
2546 	gcwq = get_work_gcwq(work);
2547 	if (!gcwq)
2548 		return ret;
2549 
2550 	spin_lock_irq(&gcwq->lock);
2551 	if (!list_empty(&work->entry)) {
2552 		/*
2553 		 * This work is queued, but perhaps we locked the wrong gcwq.
2554 		 * In that case we must see the new value after rmb(), see
2555 		 * insert_work()->wmb().
2556 		 */
2557 		smp_rmb();
2558 		if (gcwq == get_work_gcwq(work)) {
2559 			debug_work_deactivate(work);
2560 			list_del_init(&work->entry);
2561 			cwq_dec_nr_in_flight(get_work_cwq(work),
2562 				get_work_color(work),
2563 				*work_data_bits(work) & WORK_STRUCT_DELAYED);
2564 			ret = 1;
2565 		}
2566 	}
2567 	spin_unlock_irq(&gcwq->lock);
2568 
2569 	return ret;
2570 }
2571 
2572 static bool __cancel_work_timer(struct work_struct *work,
2573 				struct timer_list* timer)
2574 {
2575 	int ret;
2576 
2577 	do {
2578 		ret = (timer && likely(del_timer(timer)));
2579 		if (!ret)
2580 			ret = try_to_grab_pending(work);
2581 		wait_on_work(work);
2582 	} while (unlikely(ret < 0));
2583 
2584 	clear_work_data(work);
2585 	return ret;
2586 }
2587 
2588 /**
2589  * cancel_work_sync - cancel a work and wait for it to finish
2590  * @work: the work to cancel
2591  *
2592  * Cancel @work and wait for its execution to finish.  This function
2593  * can be used even if the work re-queues itself or migrates to
2594  * another workqueue.  On return from this function, @work is
2595  * guaranteed to be not pending or executing on any CPU.
2596  *
2597  * cancel_work_sync(&delayed_work->work) must not be used for
2598  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2599  *
2600  * The caller must ensure that the workqueue on which @work was last
2601  * queued can't be destroyed before this function returns.
2602  *
2603  * RETURNS:
2604  * %true if @work was pending, %false otherwise.
2605  */
2606 bool cancel_work_sync(struct work_struct *work)
2607 {
2608 	return __cancel_work_timer(work, NULL);
2609 }
2610 EXPORT_SYMBOL_GPL(cancel_work_sync);
2611 
2612 /**
2613  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2614  * @dwork: the delayed work to flush
2615  *
2616  * Delayed timer is cancelled and the pending work is queued for
2617  * immediate execution.  Like flush_work(), this function only
2618  * considers the last queueing instance of @dwork.
2619  *
2620  * RETURNS:
2621  * %true if flush_work() waited for the work to finish execution,
2622  * %false if it was already idle.
2623  */
2624 bool flush_delayed_work(struct delayed_work *dwork)
2625 {
2626 	if (del_timer_sync(&dwork->timer))
2627 		__queue_work(raw_smp_processor_id(),
2628 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2629 	return flush_work(&dwork->work);
2630 }
2631 EXPORT_SYMBOL(flush_delayed_work);
2632 
2633 /**
2634  * flush_delayed_work_sync - wait for a dwork to finish
2635  * @dwork: the delayed work to flush
2636  *
2637  * Delayed timer is cancelled and the pending work is queued for
2638  * execution immediately.  Other than timer handling, its behavior
2639  * is identical to flush_work_sync().
2640  *
2641  * RETURNS:
2642  * %true if flush_work_sync() waited for the work to finish execution,
2643  * %false if it was already idle.
2644  */
2645 bool flush_delayed_work_sync(struct delayed_work *dwork)
2646 {
2647 	if (del_timer_sync(&dwork->timer))
2648 		__queue_work(raw_smp_processor_id(),
2649 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2650 	return flush_work_sync(&dwork->work);
2651 }
2652 EXPORT_SYMBOL(flush_delayed_work_sync);
2653 
2654 /**
2655  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2656  * @dwork: the delayed work cancel
2657  *
2658  * This is cancel_work_sync() for delayed works.
2659  *
2660  * RETURNS:
2661  * %true if @dwork was pending, %false otherwise.
2662  */
2663 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2664 {
2665 	return __cancel_work_timer(&dwork->work, &dwork->timer);
2666 }
2667 EXPORT_SYMBOL(cancel_delayed_work_sync);
2668 
2669 /**
2670  * schedule_work - put work task in global workqueue
2671  * @work: job to be done
2672  *
2673  * Returns zero if @work was already on the kernel-global workqueue and
2674  * non-zero otherwise.
2675  *
2676  * This puts a job in the kernel-global workqueue if it was not already
2677  * queued and leaves it in the same position on the kernel-global
2678  * workqueue otherwise.
2679  */
2680 int schedule_work(struct work_struct *work)
2681 {
2682 	return queue_work(system_wq, work);
2683 }
2684 EXPORT_SYMBOL(schedule_work);
2685 
2686 /*
2687  * schedule_work_on - put work task on a specific cpu
2688  * @cpu: cpu to put the work task on
2689  * @work: job to be done
2690  *
2691  * This puts a job on a specific cpu
2692  */
2693 int schedule_work_on(int cpu, struct work_struct *work)
2694 {
2695 	return queue_work_on(cpu, system_wq, work);
2696 }
2697 EXPORT_SYMBOL(schedule_work_on);
2698 
2699 /**
2700  * schedule_delayed_work - put work task in global workqueue after delay
2701  * @dwork: job to be done
2702  * @delay: number of jiffies to wait or 0 for immediate execution
2703  *
2704  * After waiting for a given time this puts a job in the kernel-global
2705  * workqueue.
2706  */
2707 int schedule_delayed_work(struct delayed_work *dwork,
2708 					unsigned long delay)
2709 {
2710 	return queue_delayed_work(system_wq, dwork, delay);
2711 }
2712 EXPORT_SYMBOL(schedule_delayed_work);
2713 
2714 /**
2715  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2716  * @cpu: cpu to use
2717  * @dwork: job to be done
2718  * @delay: number of jiffies to wait
2719  *
2720  * After waiting for a given time this puts a job in the kernel-global
2721  * workqueue on the specified CPU.
2722  */
2723 int schedule_delayed_work_on(int cpu,
2724 			struct delayed_work *dwork, unsigned long delay)
2725 {
2726 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2727 }
2728 EXPORT_SYMBOL(schedule_delayed_work_on);
2729 
2730 /**
2731  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2732  * @func: the function to call
2733  *
2734  * schedule_on_each_cpu() executes @func on each online CPU using the
2735  * system workqueue and blocks until all CPUs have completed.
2736  * schedule_on_each_cpu() is very slow.
2737  *
2738  * RETURNS:
2739  * 0 on success, -errno on failure.
2740  */
2741 int schedule_on_each_cpu(work_func_t func)
2742 {
2743 	int cpu;
2744 	struct work_struct __percpu *works;
2745 
2746 	works = alloc_percpu(struct work_struct);
2747 	if (!works)
2748 		return -ENOMEM;
2749 
2750 	get_online_cpus();
2751 
2752 	for_each_online_cpu(cpu) {
2753 		struct work_struct *work = per_cpu_ptr(works, cpu);
2754 
2755 		INIT_WORK(work, func);
2756 		schedule_work_on(cpu, work);
2757 	}
2758 
2759 	for_each_online_cpu(cpu)
2760 		flush_work(per_cpu_ptr(works, cpu));
2761 
2762 	put_online_cpus();
2763 	free_percpu(works);
2764 	return 0;
2765 }
2766 
2767 /**
2768  * flush_scheduled_work - ensure that any scheduled work has run to completion.
2769  *
2770  * Forces execution of the kernel-global workqueue and blocks until its
2771  * completion.
2772  *
2773  * Think twice before calling this function!  It's very easy to get into
2774  * trouble if you don't take great care.  Either of the following situations
2775  * will lead to deadlock:
2776  *
2777  *	One of the work items currently on the workqueue needs to acquire
2778  *	a lock held by your code or its caller.
2779  *
2780  *	Your code is running in the context of a work routine.
2781  *
2782  * They will be detected by lockdep when they occur, but the first might not
2783  * occur very often.  It depends on what work items are on the workqueue and
2784  * what locks they need, which you have no control over.
2785  *
2786  * In most situations flushing the entire workqueue is overkill; you merely
2787  * need to know that a particular work item isn't queued and isn't running.
2788  * In such cases you should use cancel_delayed_work_sync() or
2789  * cancel_work_sync() instead.
2790  */
2791 void flush_scheduled_work(void)
2792 {
2793 	flush_workqueue(system_wq);
2794 }
2795 EXPORT_SYMBOL(flush_scheduled_work);
2796 
2797 /**
2798  * execute_in_process_context - reliably execute the routine with user context
2799  * @fn:		the function to execute
2800  * @ew:		guaranteed storage for the execute work structure (must
2801  *		be available when the work executes)
2802  *
2803  * Executes the function immediately if process context is available,
2804  * otherwise schedules the function for delayed execution.
2805  *
2806  * Returns:	0 - function was executed
2807  *		1 - function was scheduled for execution
2808  */
2809 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2810 {
2811 	if (!in_interrupt()) {
2812 		fn(&ew->work);
2813 		return 0;
2814 	}
2815 
2816 	INIT_WORK(&ew->work, fn);
2817 	schedule_work(&ew->work);
2818 
2819 	return 1;
2820 }
2821 EXPORT_SYMBOL_GPL(execute_in_process_context);
2822 
2823 int keventd_up(void)
2824 {
2825 	return system_wq != NULL;
2826 }
2827 
2828 static int alloc_cwqs(struct workqueue_struct *wq)
2829 {
2830 	/*
2831 	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2832 	 * Make sure that the alignment isn't lower than that of
2833 	 * unsigned long long.
2834 	 */
2835 	const size_t size = sizeof(struct cpu_workqueue_struct);
2836 	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2837 				   __alignof__(unsigned long long));
2838 #ifdef CONFIG_SMP
2839 	bool percpu = !(wq->flags & WQ_UNBOUND);
2840 #else
2841 	bool percpu = false;
2842 #endif
2843 
2844 	if (percpu)
2845 		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2846 	else {
2847 		void *ptr;
2848 
2849 		/*
2850 		 * Allocate enough room to align cwq and put an extra
2851 		 * pointer at the end pointing back to the originally
2852 		 * allocated pointer which will be used for free.
2853 		 */
2854 		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2855 		if (ptr) {
2856 			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2857 			*(void **)(wq->cpu_wq.single + 1) = ptr;
2858 		}
2859 	}
2860 
2861 	/* just in case, make sure it's actually aligned
2862 	 * - this is affected by PERCPU() alignment in vmlinux.lds.S
2863 	 */
2864 	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2865 	return wq->cpu_wq.v ? 0 : -ENOMEM;
2866 }
2867 
2868 static void free_cwqs(struct workqueue_struct *wq)
2869 {
2870 #ifdef CONFIG_SMP
2871 	bool percpu = !(wq->flags & WQ_UNBOUND);
2872 #else
2873 	bool percpu = false;
2874 #endif
2875 
2876 	if (percpu)
2877 		free_percpu(wq->cpu_wq.pcpu);
2878 	else if (wq->cpu_wq.single) {
2879 		/* the pointer to free is stored right after the cwq */
2880 		kfree(*(void **)(wq->cpu_wq.single + 1));
2881 	}
2882 }
2883 
2884 static int wq_clamp_max_active(int max_active, unsigned int flags,
2885 			       const char *name)
2886 {
2887 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2888 
2889 	if (max_active < 1 || max_active > lim)
2890 		printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2891 		       "is out of range, clamping between %d and %d\n",
2892 		       max_active, name, 1, lim);
2893 
2894 	return clamp_val(max_active, 1, lim);
2895 }
2896 
2897 struct workqueue_struct *__alloc_workqueue_key(const char *name,
2898 					       unsigned int flags,
2899 					       int max_active,
2900 					       struct lock_class_key *key,
2901 					       const char *lock_name)
2902 {
2903 	struct workqueue_struct *wq;
2904 	unsigned int cpu;
2905 
2906 	/*
2907 	 * Workqueues which may be used during memory reclaim should
2908 	 * have a rescuer to guarantee forward progress.
2909 	 */
2910 	if (flags & WQ_MEM_RECLAIM)
2911 		flags |= WQ_RESCUER;
2912 
2913 	/*
2914 	 * Unbound workqueues aren't concurrency managed and should be
2915 	 * dispatched to workers immediately.
2916 	 */
2917 	if (flags & WQ_UNBOUND)
2918 		flags |= WQ_HIGHPRI;
2919 
2920 	max_active = max_active ?: WQ_DFL_ACTIVE;
2921 	max_active = wq_clamp_max_active(max_active, flags, name);
2922 
2923 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
2924 	if (!wq)
2925 		goto err;
2926 
2927 	wq->flags = flags;
2928 	wq->saved_max_active = max_active;
2929 	mutex_init(&wq->flush_mutex);
2930 	atomic_set(&wq->nr_cwqs_to_flush, 0);
2931 	INIT_LIST_HEAD(&wq->flusher_queue);
2932 	INIT_LIST_HEAD(&wq->flusher_overflow);
2933 
2934 	wq->name = name;
2935 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
2936 	INIT_LIST_HEAD(&wq->list);
2937 
2938 	if (alloc_cwqs(wq) < 0)
2939 		goto err;
2940 
2941 	for_each_cwq_cpu(cpu, wq) {
2942 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2943 		struct global_cwq *gcwq = get_gcwq(cpu);
2944 
2945 		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
2946 		cwq->gcwq = gcwq;
2947 		cwq->wq = wq;
2948 		cwq->flush_color = -1;
2949 		cwq->max_active = max_active;
2950 		INIT_LIST_HEAD(&cwq->delayed_works);
2951 	}
2952 
2953 	if (flags & WQ_RESCUER) {
2954 		struct worker *rescuer;
2955 
2956 		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
2957 			goto err;
2958 
2959 		wq->rescuer = rescuer = alloc_worker();
2960 		if (!rescuer)
2961 			goto err;
2962 
2963 		rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
2964 		if (IS_ERR(rescuer->task))
2965 			goto err;
2966 
2967 		rescuer->task->flags |= PF_THREAD_BOUND;
2968 		wake_up_process(rescuer->task);
2969 	}
2970 
2971 	/*
2972 	 * workqueue_lock protects global freeze state and workqueues
2973 	 * list.  Grab it, set max_active accordingly and add the new
2974 	 * workqueue to workqueues list.
2975 	 */
2976 	spin_lock(&workqueue_lock);
2977 
2978 	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
2979 		for_each_cwq_cpu(cpu, wq)
2980 			get_cwq(cpu, wq)->max_active = 0;
2981 
2982 	list_add(&wq->list, &workqueues);
2983 
2984 	spin_unlock(&workqueue_lock);
2985 
2986 	return wq;
2987 err:
2988 	if (wq) {
2989 		free_cwqs(wq);
2990 		free_mayday_mask(wq->mayday_mask);
2991 		kfree(wq->rescuer);
2992 		kfree(wq);
2993 	}
2994 	return NULL;
2995 }
2996 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
2997 
2998 /**
2999  * destroy_workqueue - safely terminate a workqueue
3000  * @wq: target workqueue
3001  *
3002  * Safely destroy a workqueue. All work currently pending will be done first.
3003  */
3004 void destroy_workqueue(struct workqueue_struct *wq)
3005 {
3006 	unsigned int flush_cnt = 0;
3007 	unsigned int cpu;
3008 
3009 	/*
3010 	 * Mark @wq dying and drain all pending works.  Once WQ_DYING is
3011 	 * set, only chain queueing is allowed.  IOW, only currently
3012 	 * pending or running work items on @wq can queue further work
3013 	 * items on it.  @wq is flushed repeatedly until it becomes empty.
3014 	 * The number of flushing is detemined by the depth of chaining and
3015 	 * should be relatively short.  Whine if it takes too long.
3016 	 */
3017 	wq->flags |= WQ_DYING;
3018 reflush:
3019 	flush_workqueue(wq);
3020 
3021 	for_each_cwq_cpu(cpu, wq) {
3022 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3023 
3024 		if (!cwq->nr_active && list_empty(&cwq->delayed_works))
3025 			continue;
3026 
3027 		if (++flush_cnt == 10 ||
3028 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3029 			printk(KERN_WARNING "workqueue %s: flush on "
3030 			       "destruction isn't complete after %u tries\n",
3031 			       wq->name, flush_cnt);
3032 		goto reflush;
3033 	}
3034 
3035 	/*
3036 	 * wq list is used to freeze wq, remove from list after
3037 	 * flushing is complete in case freeze races us.
3038 	 */
3039 	spin_lock(&workqueue_lock);
3040 	list_del(&wq->list);
3041 	spin_unlock(&workqueue_lock);
3042 
3043 	/* sanity check */
3044 	for_each_cwq_cpu(cpu, wq) {
3045 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3046 		int i;
3047 
3048 		for (i = 0; i < WORK_NR_COLORS; i++)
3049 			BUG_ON(cwq->nr_in_flight[i]);
3050 		BUG_ON(cwq->nr_active);
3051 		BUG_ON(!list_empty(&cwq->delayed_works));
3052 	}
3053 
3054 	if (wq->flags & WQ_RESCUER) {
3055 		kthread_stop(wq->rescuer->task);
3056 		free_mayday_mask(wq->mayday_mask);
3057 		kfree(wq->rescuer);
3058 	}
3059 
3060 	free_cwqs(wq);
3061 	kfree(wq);
3062 }
3063 EXPORT_SYMBOL_GPL(destroy_workqueue);
3064 
3065 /**
3066  * workqueue_set_max_active - adjust max_active of a workqueue
3067  * @wq: target workqueue
3068  * @max_active: new max_active value.
3069  *
3070  * Set max_active of @wq to @max_active.
3071  *
3072  * CONTEXT:
3073  * Don't call from IRQ context.
3074  */
3075 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3076 {
3077 	unsigned int cpu;
3078 
3079 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3080 
3081 	spin_lock(&workqueue_lock);
3082 
3083 	wq->saved_max_active = max_active;
3084 
3085 	for_each_cwq_cpu(cpu, wq) {
3086 		struct global_cwq *gcwq = get_gcwq(cpu);
3087 
3088 		spin_lock_irq(&gcwq->lock);
3089 
3090 		if (!(wq->flags & WQ_FREEZABLE) ||
3091 		    !(gcwq->flags & GCWQ_FREEZING))
3092 			get_cwq(gcwq->cpu, wq)->max_active = max_active;
3093 
3094 		spin_unlock_irq(&gcwq->lock);
3095 	}
3096 
3097 	spin_unlock(&workqueue_lock);
3098 }
3099 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3100 
3101 /**
3102  * workqueue_congested - test whether a workqueue is congested
3103  * @cpu: CPU in question
3104  * @wq: target workqueue
3105  *
3106  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
3107  * no synchronization around this function and the test result is
3108  * unreliable and only useful as advisory hints or for debugging.
3109  *
3110  * RETURNS:
3111  * %true if congested, %false otherwise.
3112  */
3113 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3114 {
3115 	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3116 
3117 	return !list_empty(&cwq->delayed_works);
3118 }
3119 EXPORT_SYMBOL_GPL(workqueue_congested);
3120 
3121 /**
3122  * work_cpu - return the last known associated cpu for @work
3123  * @work: the work of interest
3124  *
3125  * RETURNS:
3126  * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3127  */
3128 unsigned int work_cpu(struct work_struct *work)
3129 {
3130 	struct global_cwq *gcwq = get_work_gcwq(work);
3131 
3132 	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3133 }
3134 EXPORT_SYMBOL_GPL(work_cpu);
3135 
3136 /**
3137  * work_busy - test whether a work is currently pending or running
3138  * @work: the work to be tested
3139  *
3140  * Test whether @work is currently pending or running.  There is no
3141  * synchronization around this function and the test result is
3142  * unreliable and only useful as advisory hints or for debugging.
3143  * Especially for reentrant wqs, the pending state might hide the
3144  * running state.
3145  *
3146  * RETURNS:
3147  * OR'd bitmask of WORK_BUSY_* bits.
3148  */
3149 unsigned int work_busy(struct work_struct *work)
3150 {
3151 	struct global_cwq *gcwq = get_work_gcwq(work);
3152 	unsigned long flags;
3153 	unsigned int ret = 0;
3154 
3155 	if (!gcwq)
3156 		return false;
3157 
3158 	spin_lock_irqsave(&gcwq->lock, flags);
3159 
3160 	if (work_pending(work))
3161 		ret |= WORK_BUSY_PENDING;
3162 	if (find_worker_executing_work(gcwq, work))
3163 		ret |= WORK_BUSY_RUNNING;
3164 
3165 	spin_unlock_irqrestore(&gcwq->lock, flags);
3166 
3167 	return ret;
3168 }
3169 EXPORT_SYMBOL_GPL(work_busy);
3170 
3171 /*
3172  * CPU hotplug.
3173  *
3174  * There are two challenges in supporting CPU hotplug.  Firstly, there
3175  * are a lot of assumptions on strong associations among work, cwq and
3176  * gcwq which make migrating pending and scheduled works very
3177  * difficult to implement without impacting hot paths.  Secondly,
3178  * gcwqs serve mix of short, long and very long running works making
3179  * blocked draining impractical.
3180  *
3181  * This is solved by allowing a gcwq to be detached from CPU, running
3182  * it with unbound (rogue) workers and allowing it to be reattached
3183  * later if the cpu comes back online.  A separate thread is created
3184  * to govern a gcwq in such state and is called the trustee of the
3185  * gcwq.
3186  *
3187  * Trustee states and their descriptions.
3188  *
3189  * START	Command state used on startup.  On CPU_DOWN_PREPARE, a
3190  *		new trustee is started with this state.
3191  *
3192  * IN_CHARGE	Once started, trustee will enter this state after
3193  *		assuming the manager role and making all existing
3194  *		workers rogue.  DOWN_PREPARE waits for trustee to
3195  *		enter this state.  After reaching IN_CHARGE, trustee
3196  *		tries to execute the pending worklist until it's empty
3197  *		and the state is set to BUTCHER, or the state is set
3198  *		to RELEASE.
3199  *
3200  * BUTCHER	Command state which is set by the cpu callback after
3201  *		the cpu has went down.  Once this state is set trustee
3202  *		knows that there will be no new works on the worklist
3203  *		and once the worklist is empty it can proceed to
3204  *		killing idle workers.
3205  *
3206  * RELEASE	Command state which is set by the cpu callback if the
3207  *		cpu down has been canceled or it has come online
3208  *		again.  After recognizing this state, trustee stops
3209  *		trying to drain or butcher and clears ROGUE, rebinds
3210  *		all remaining workers back to the cpu and releases
3211  *		manager role.
3212  *
3213  * DONE		Trustee will enter this state after BUTCHER or RELEASE
3214  *		is complete.
3215  *
3216  *          trustee                 CPU                draining
3217  *         took over                down               complete
3218  * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3219  *                        |                     |                  ^
3220  *                        | CPU is back online  v   return workers |
3221  *                         ----------------> RELEASE --------------
3222  */
3223 
3224 /**
3225  * trustee_wait_event_timeout - timed event wait for trustee
3226  * @cond: condition to wait for
3227  * @timeout: timeout in jiffies
3228  *
3229  * wait_event_timeout() for trustee to use.  Handles locking and
3230  * checks for RELEASE request.
3231  *
3232  * CONTEXT:
3233  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3234  * multiple times.  To be used by trustee.
3235  *
3236  * RETURNS:
3237  * Positive indicating left time if @cond is satisfied, 0 if timed
3238  * out, -1 if canceled.
3239  */
3240 #define trustee_wait_event_timeout(cond, timeout) ({			\
3241 	long __ret = (timeout);						\
3242 	while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) &&	\
3243 	       __ret) {							\
3244 		spin_unlock_irq(&gcwq->lock);				\
3245 		__wait_event_timeout(gcwq->trustee_wait, (cond) ||	\
3246 			(gcwq->trustee_state == TRUSTEE_RELEASE),	\
3247 			__ret);						\
3248 		spin_lock_irq(&gcwq->lock);				\
3249 	}								\
3250 	gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret);		\
3251 })
3252 
3253 /**
3254  * trustee_wait_event - event wait for trustee
3255  * @cond: condition to wait for
3256  *
3257  * wait_event() for trustee to use.  Automatically handles locking and
3258  * checks for CANCEL request.
3259  *
3260  * CONTEXT:
3261  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3262  * multiple times.  To be used by trustee.
3263  *
3264  * RETURNS:
3265  * 0 if @cond is satisfied, -1 if canceled.
3266  */
3267 #define trustee_wait_event(cond) ({					\
3268 	long __ret1;							\
3269 	__ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3270 	__ret1 < 0 ? -1 : 0;						\
3271 })
3272 
3273 static int __cpuinit trustee_thread(void *__gcwq)
3274 {
3275 	struct global_cwq *gcwq = __gcwq;
3276 	struct worker *worker;
3277 	struct work_struct *work;
3278 	struct hlist_node *pos;
3279 	long rc;
3280 	int i;
3281 
3282 	BUG_ON(gcwq->cpu != smp_processor_id());
3283 
3284 	spin_lock_irq(&gcwq->lock);
3285 	/*
3286 	 * Claim the manager position and make all workers rogue.
3287 	 * Trustee must be bound to the target cpu and can't be
3288 	 * cancelled.
3289 	 */
3290 	BUG_ON(gcwq->cpu != smp_processor_id());
3291 	rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3292 	BUG_ON(rc < 0);
3293 
3294 	gcwq->flags |= GCWQ_MANAGING_WORKERS;
3295 
3296 	list_for_each_entry(worker, &gcwq->idle_list, entry)
3297 		worker->flags |= WORKER_ROGUE;
3298 
3299 	for_each_busy_worker(worker, i, pos, gcwq)
3300 		worker->flags |= WORKER_ROGUE;
3301 
3302 	/*
3303 	 * Call schedule() so that we cross rq->lock and thus can
3304 	 * guarantee sched callbacks see the rogue flag.  This is
3305 	 * necessary as scheduler callbacks may be invoked from other
3306 	 * cpus.
3307 	 */
3308 	spin_unlock_irq(&gcwq->lock);
3309 	schedule();
3310 	spin_lock_irq(&gcwq->lock);
3311 
3312 	/*
3313 	 * Sched callbacks are disabled now.  Zap nr_running.  After
3314 	 * this, nr_running stays zero and need_more_worker() and
3315 	 * keep_working() are always true as long as the worklist is
3316 	 * not empty.
3317 	 */
3318 	atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3319 
3320 	spin_unlock_irq(&gcwq->lock);
3321 	del_timer_sync(&gcwq->idle_timer);
3322 	spin_lock_irq(&gcwq->lock);
3323 
3324 	/*
3325 	 * We're now in charge.  Notify and proceed to drain.  We need
3326 	 * to keep the gcwq running during the whole CPU down
3327 	 * procedure as other cpu hotunplug callbacks may need to
3328 	 * flush currently running tasks.
3329 	 */
3330 	gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3331 	wake_up_all(&gcwq->trustee_wait);
3332 
3333 	/*
3334 	 * The original cpu is in the process of dying and may go away
3335 	 * anytime now.  When that happens, we and all workers would
3336 	 * be migrated to other cpus.  Try draining any left work.  We
3337 	 * want to get it over with ASAP - spam rescuers, wake up as
3338 	 * many idlers as necessary and create new ones till the
3339 	 * worklist is empty.  Note that if the gcwq is frozen, there
3340 	 * may be frozen works in freezable cwqs.  Don't declare
3341 	 * completion while frozen.
3342 	 */
3343 	while (gcwq->nr_workers != gcwq->nr_idle ||
3344 	       gcwq->flags & GCWQ_FREEZING ||
3345 	       gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3346 		int nr_works = 0;
3347 
3348 		list_for_each_entry(work, &gcwq->worklist, entry) {
3349 			send_mayday(work);
3350 			nr_works++;
3351 		}
3352 
3353 		list_for_each_entry(worker, &gcwq->idle_list, entry) {
3354 			if (!nr_works--)
3355 				break;
3356 			wake_up_process(worker->task);
3357 		}
3358 
3359 		if (need_to_create_worker(gcwq)) {
3360 			spin_unlock_irq(&gcwq->lock);
3361 			worker = create_worker(gcwq, false);
3362 			spin_lock_irq(&gcwq->lock);
3363 			if (worker) {
3364 				worker->flags |= WORKER_ROGUE;
3365 				start_worker(worker);
3366 			}
3367 		}
3368 
3369 		/* give a breather */
3370 		if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3371 			break;
3372 	}
3373 
3374 	/*
3375 	 * Either all works have been scheduled and cpu is down, or
3376 	 * cpu down has already been canceled.  Wait for and butcher
3377 	 * all workers till we're canceled.
3378 	 */
3379 	do {
3380 		rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3381 		while (!list_empty(&gcwq->idle_list))
3382 			destroy_worker(list_first_entry(&gcwq->idle_list,
3383 							struct worker, entry));
3384 	} while (gcwq->nr_workers && rc >= 0);
3385 
3386 	/*
3387 	 * At this point, either draining has completed and no worker
3388 	 * is left, or cpu down has been canceled or the cpu is being
3389 	 * brought back up.  There shouldn't be any idle one left.
3390 	 * Tell the remaining busy ones to rebind once it finishes the
3391 	 * currently scheduled works by scheduling the rebind_work.
3392 	 */
3393 	WARN_ON(!list_empty(&gcwq->idle_list));
3394 
3395 	for_each_busy_worker(worker, i, pos, gcwq) {
3396 		struct work_struct *rebind_work = &worker->rebind_work;
3397 
3398 		/*
3399 		 * Rebind_work may race with future cpu hotplug
3400 		 * operations.  Use a separate flag to mark that
3401 		 * rebinding is scheduled.
3402 		 */
3403 		worker->flags |= WORKER_REBIND;
3404 		worker->flags &= ~WORKER_ROGUE;
3405 
3406 		/* queue rebind_work, wq doesn't matter, use the default one */
3407 		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3408 				     work_data_bits(rebind_work)))
3409 			continue;
3410 
3411 		debug_work_activate(rebind_work);
3412 		insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3413 			    worker->scheduled.next,
3414 			    work_color_to_flags(WORK_NO_COLOR));
3415 	}
3416 
3417 	/* relinquish manager role */
3418 	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3419 
3420 	/* notify completion */
3421 	gcwq->trustee = NULL;
3422 	gcwq->trustee_state = TRUSTEE_DONE;
3423 	wake_up_all(&gcwq->trustee_wait);
3424 	spin_unlock_irq(&gcwq->lock);
3425 	return 0;
3426 }
3427 
3428 /**
3429  * wait_trustee_state - wait for trustee to enter the specified state
3430  * @gcwq: gcwq the trustee of interest belongs to
3431  * @state: target state to wait for
3432  *
3433  * Wait for the trustee to reach @state.  DONE is already matched.
3434  *
3435  * CONTEXT:
3436  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3437  * multiple times.  To be used by cpu_callback.
3438  */
3439 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3440 __releases(&gcwq->lock)
3441 __acquires(&gcwq->lock)
3442 {
3443 	if (!(gcwq->trustee_state == state ||
3444 	      gcwq->trustee_state == TRUSTEE_DONE)) {
3445 		spin_unlock_irq(&gcwq->lock);
3446 		__wait_event(gcwq->trustee_wait,
3447 			     gcwq->trustee_state == state ||
3448 			     gcwq->trustee_state == TRUSTEE_DONE);
3449 		spin_lock_irq(&gcwq->lock);
3450 	}
3451 }
3452 
3453 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3454 						unsigned long action,
3455 						void *hcpu)
3456 {
3457 	unsigned int cpu = (unsigned long)hcpu;
3458 	struct global_cwq *gcwq = get_gcwq(cpu);
3459 	struct task_struct *new_trustee = NULL;
3460 	struct worker *uninitialized_var(new_worker);
3461 	unsigned long flags;
3462 
3463 	action &= ~CPU_TASKS_FROZEN;
3464 
3465 	switch (action) {
3466 	case CPU_DOWN_PREPARE:
3467 		new_trustee = kthread_create(trustee_thread, gcwq,
3468 					     "workqueue_trustee/%d\n", cpu);
3469 		if (IS_ERR(new_trustee))
3470 			return notifier_from_errno(PTR_ERR(new_trustee));
3471 		kthread_bind(new_trustee, cpu);
3472 		/* fall through */
3473 	case CPU_UP_PREPARE:
3474 		BUG_ON(gcwq->first_idle);
3475 		new_worker = create_worker(gcwq, false);
3476 		if (!new_worker) {
3477 			if (new_trustee)
3478 				kthread_stop(new_trustee);
3479 			return NOTIFY_BAD;
3480 		}
3481 	}
3482 
3483 	/* some are called w/ irq disabled, don't disturb irq status */
3484 	spin_lock_irqsave(&gcwq->lock, flags);
3485 
3486 	switch (action) {
3487 	case CPU_DOWN_PREPARE:
3488 		/* initialize trustee and tell it to acquire the gcwq */
3489 		BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3490 		gcwq->trustee = new_trustee;
3491 		gcwq->trustee_state = TRUSTEE_START;
3492 		wake_up_process(gcwq->trustee);
3493 		wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3494 		/* fall through */
3495 	case CPU_UP_PREPARE:
3496 		BUG_ON(gcwq->first_idle);
3497 		gcwq->first_idle = new_worker;
3498 		break;
3499 
3500 	case CPU_DYING:
3501 		/*
3502 		 * Before this, the trustee and all workers except for
3503 		 * the ones which are still executing works from
3504 		 * before the last CPU down must be on the cpu.  After
3505 		 * this, they'll all be diasporas.
3506 		 */
3507 		gcwq->flags |= GCWQ_DISASSOCIATED;
3508 		break;
3509 
3510 	case CPU_POST_DEAD:
3511 		gcwq->trustee_state = TRUSTEE_BUTCHER;
3512 		/* fall through */
3513 	case CPU_UP_CANCELED:
3514 		destroy_worker(gcwq->first_idle);
3515 		gcwq->first_idle = NULL;
3516 		break;
3517 
3518 	case CPU_DOWN_FAILED:
3519 	case CPU_ONLINE:
3520 		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3521 		if (gcwq->trustee_state != TRUSTEE_DONE) {
3522 			gcwq->trustee_state = TRUSTEE_RELEASE;
3523 			wake_up_process(gcwq->trustee);
3524 			wait_trustee_state(gcwq, TRUSTEE_DONE);
3525 		}
3526 
3527 		/*
3528 		 * Trustee is done and there might be no worker left.
3529 		 * Put the first_idle in and request a real manager to
3530 		 * take a look.
3531 		 */
3532 		spin_unlock_irq(&gcwq->lock);
3533 		kthread_bind(gcwq->first_idle->task, cpu);
3534 		spin_lock_irq(&gcwq->lock);
3535 		gcwq->flags |= GCWQ_MANAGE_WORKERS;
3536 		start_worker(gcwq->first_idle);
3537 		gcwq->first_idle = NULL;
3538 		break;
3539 	}
3540 
3541 	spin_unlock_irqrestore(&gcwq->lock, flags);
3542 
3543 	return notifier_from_errno(0);
3544 }
3545 
3546 #ifdef CONFIG_SMP
3547 
3548 struct work_for_cpu {
3549 	struct completion completion;
3550 	long (*fn)(void *);
3551 	void *arg;
3552 	long ret;
3553 };
3554 
3555 static int do_work_for_cpu(void *_wfc)
3556 {
3557 	struct work_for_cpu *wfc = _wfc;
3558 	wfc->ret = wfc->fn(wfc->arg);
3559 	complete(&wfc->completion);
3560 	return 0;
3561 }
3562 
3563 /**
3564  * work_on_cpu - run a function in user context on a particular cpu
3565  * @cpu: the cpu to run on
3566  * @fn: the function to run
3567  * @arg: the function arg
3568  *
3569  * This will return the value @fn returns.
3570  * It is up to the caller to ensure that the cpu doesn't go offline.
3571  * The caller must not hold any locks which would prevent @fn from completing.
3572  */
3573 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3574 {
3575 	struct task_struct *sub_thread;
3576 	struct work_for_cpu wfc = {
3577 		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3578 		.fn = fn,
3579 		.arg = arg,
3580 	};
3581 
3582 	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3583 	if (IS_ERR(sub_thread))
3584 		return PTR_ERR(sub_thread);
3585 	kthread_bind(sub_thread, cpu);
3586 	wake_up_process(sub_thread);
3587 	wait_for_completion(&wfc.completion);
3588 	return wfc.ret;
3589 }
3590 EXPORT_SYMBOL_GPL(work_on_cpu);
3591 #endif /* CONFIG_SMP */
3592 
3593 #ifdef CONFIG_FREEZER
3594 
3595 /**
3596  * freeze_workqueues_begin - begin freezing workqueues
3597  *
3598  * Start freezing workqueues.  After this function returns, all freezable
3599  * workqueues will queue new works to their frozen_works list instead of
3600  * gcwq->worklist.
3601  *
3602  * CONTEXT:
3603  * Grabs and releases workqueue_lock and gcwq->lock's.
3604  */
3605 void freeze_workqueues_begin(void)
3606 {
3607 	unsigned int cpu;
3608 
3609 	spin_lock(&workqueue_lock);
3610 
3611 	BUG_ON(workqueue_freezing);
3612 	workqueue_freezing = true;
3613 
3614 	for_each_gcwq_cpu(cpu) {
3615 		struct global_cwq *gcwq = get_gcwq(cpu);
3616 		struct workqueue_struct *wq;
3617 
3618 		spin_lock_irq(&gcwq->lock);
3619 
3620 		BUG_ON(gcwq->flags & GCWQ_FREEZING);
3621 		gcwq->flags |= GCWQ_FREEZING;
3622 
3623 		list_for_each_entry(wq, &workqueues, list) {
3624 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3625 
3626 			if (cwq && wq->flags & WQ_FREEZABLE)
3627 				cwq->max_active = 0;
3628 		}
3629 
3630 		spin_unlock_irq(&gcwq->lock);
3631 	}
3632 
3633 	spin_unlock(&workqueue_lock);
3634 }
3635 
3636 /**
3637  * freeze_workqueues_busy - are freezable workqueues still busy?
3638  *
3639  * Check whether freezing is complete.  This function must be called
3640  * between freeze_workqueues_begin() and thaw_workqueues().
3641  *
3642  * CONTEXT:
3643  * Grabs and releases workqueue_lock.
3644  *
3645  * RETURNS:
3646  * %true if some freezable workqueues are still busy.  %false if freezing
3647  * is complete.
3648  */
3649 bool freeze_workqueues_busy(void)
3650 {
3651 	unsigned int cpu;
3652 	bool busy = false;
3653 
3654 	spin_lock(&workqueue_lock);
3655 
3656 	BUG_ON(!workqueue_freezing);
3657 
3658 	for_each_gcwq_cpu(cpu) {
3659 		struct workqueue_struct *wq;
3660 		/*
3661 		 * nr_active is monotonically decreasing.  It's safe
3662 		 * to peek without lock.
3663 		 */
3664 		list_for_each_entry(wq, &workqueues, list) {
3665 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3666 
3667 			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3668 				continue;
3669 
3670 			BUG_ON(cwq->nr_active < 0);
3671 			if (cwq->nr_active) {
3672 				busy = true;
3673 				goto out_unlock;
3674 			}
3675 		}
3676 	}
3677 out_unlock:
3678 	spin_unlock(&workqueue_lock);
3679 	return busy;
3680 }
3681 
3682 /**
3683  * thaw_workqueues - thaw workqueues
3684  *
3685  * Thaw workqueues.  Normal queueing is restored and all collected
3686  * frozen works are transferred to their respective gcwq worklists.
3687  *
3688  * CONTEXT:
3689  * Grabs and releases workqueue_lock and gcwq->lock's.
3690  */
3691 void thaw_workqueues(void)
3692 {
3693 	unsigned int cpu;
3694 
3695 	spin_lock(&workqueue_lock);
3696 
3697 	if (!workqueue_freezing)
3698 		goto out_unlock;
3699 
3700 	for_each_gcwq_cpu(cpu) {
3701 		struct global_cwq *gcwq = get_gcwq(cpu);
3702 		struct workqueue_struct *wq;
3703 
3704 		spin_lock_irq(&gcwq->lock);
3705 
3706 		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3707 		gcwq->flags &= ~GCWQ_FREEZING;
3708 
3709 		list_for_each_entry(wq, &workqueues, list) {
3710 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3711 
3712 			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3713 				continue;
3714 
3715 			/* restore max_active and repopulate worklist */
3716 			cwq->max_active = wq->saved_max_active;
3717 
3718 			while (!list_empty(&cwq->delayed_works) &&
3719 			       cwq->nr_active < cwq->max_active)
3720 				cwq_activate_first_delayed(cwq);
3721 		}
3722 
3723 		wake_up_worker(gcwq);
3724 
3725 		spin_unlock_irq(&gcwq->lock);
3726 	}
3727 
3728 	workqueue_freezing = false;
3729 out_unlock:
3730 	spin_unlock(&workqueue_lock);
3731 }
3732 #endif /* CONFIG_FREEZER */
3733 
3734 static int __init init_workqueues(void)
3735 {
3736 	unsigned int cpu;
3737 	int i;
3738 
3739 	cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
3740 
3741 	/* initialize gcwqs */
3742 	for_each_gcwq_cpu(cpu) {
3743 		struct global_cwq *gcwq = get_gcwq(cpu);
3744 
3745 		spin_lock_init(&gcwq->lock);
3746 		INIT_LIST_HEAD(&gcwq->worklist);
3747 		gcwq->cpu = cpu;
3748 		gcwq->flags |= GCWQ_DISASSOCIATED;
3749 
3750 		INIT_LIST_HEAD(&gcwq->idle_list);
3751 		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3752 			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3753 
3754 		init_timer_deferrable(&gcwq->idle_timer);
3755 		gcwq->idle_timer.function = idle_worker_timeout;
3756 		gcwq->idle_timer.data = (unsigned long)gcwq;
3757 
3758 		setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3759 			    (unsigned long)gcwq);
3760 
3761 		ida_init(&gcwq->worker_ida);
3762 
3763 		gcwq->trustee_state = TRUSTEE_DONE;
3764 		init_waitqueue_head(&gcwq->trustee_wait);
3765 	}
3766 
3767 	/* create the initial worker */
3768 	for_each_online_gcwq_cpu(cpu) {
3769 		struct global_cwq *gcwq = get_gcwq(cpu);
3770 		struct worker *worker;
3771 
3772 		if (cpu != WORK_CPU_UNBOUND)
3773 			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3774 		worker = create_worker(gcwq, true);
3775 		BUG_ON(!worker);
3776 		spin_lock_irq(&gcwq->lock);
3777 		start_worker(worker);
3778 		spin_unlock_irq(&gcwq->lock);
3779 	}
3780 
3781 	system_wq = alloc_workqueue("events", 0, 0);
3782 	system_long_wq = alloc_workqueue("events_long", 0, 0);
3783 	system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3784 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3785 					    WQ_UNBOUND_MAX_ACTIVE);
3786 	system_freezable_wq = alloc_workqueue("events_freezable",
3787 					      WQ_FREEZABLE, 0);
3788 	BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3789 	       !system_unbound_wq || !system_freezable_wq);
3790 	return 0;
3791 }
3792 early_initcall(init_workqueues);
3793