xref: /linux/kernel/workqueue.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton <andrewm@uow.edu.au>
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  *
16  * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 
36 /*
37  * The per-CPU workqueue (if single thread, we always use the first
38  * possible cpu).
39  *
40  * The sequence counters are for flush_scheduled_work().  It wants to wait
41  * until all currently-scheduled works are completed, but it doesn't
42  * want to be livelocked by new, incoming ones.  So it waits until
43  * remove_sequence is >= the insert_sequence which pertained when
44  * flush_scheduled_work() was called.
45  */
46 struct cpu_workqueue_struct {
47 
48 	spinlock_t lock;
49 
50 	long remove_sequence;	/* Least-recently added (next to run) */
51 	long insert_sequence;	/* Next to add */
52 
53 	struct list_head worklist;
54 	wait_queue_head_t more_work;
55 	wait_queue_head_t work_done;
56 
57 	struct workqueue_struct *wq;
58 	struct task_struct *thread;
59 
60 	int run_depth;		/* Detect run_workqueue() recursion depth */
61 
62 	int freezeable;		/* Freeze the thread during suspend */
63 } ____cacheline_aligned;
64 
65 /*
66  * The externally visible workqueue abstraction is an array of
67  * per-CPU workqueues:
68  */
69 struct workqueue_struct {
70 	struct cpu_workqueue_struct *cpu_wq;
71 	const char *name;
72 	struct list_head list; 	/* Empty if single thread */
73 };
74 
75 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove
76    threads to each one as cpus come/go. */
77 static DEFINE_MUTEX(workqueue_mutex);
78 static LIST_HEAD(workqueues);
79 
80 static int singlethread_cpu;
81 
82 /* If it's single threaded, it isn't in the list of workqueues. */
83 static inline int is_single_threaded(struct workqueue_struct *wq)
84 {
85 	return list_empty(&wq->list);
86 }
87 
88 /*
89  * Set the workqueue on which a work item is to be run
90  * - Must *only* be called if the pending flag is set
91  */
92 static inline void set_wq_data(struct work_struct *work, void *wq)
93 {
94 	unsigned long new;
95 
96 	BUG_ON(!work_pending(work));
97 
98 	new = (unsigned long) wq | (1UL << WORK_STRUCT_PENDING);
99 	new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
100 	atomic_long_set(&work->data, new);
101 }
102 
103 static inline void *get_wq_data(struct work_struct *work)
104 {
105 	return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
106 }
107 
108 static int __run_work(struct cpu_workqueue_struct *cwq, struct work_struct *work)
109 {
110 	int ret = 0;
111 	unsigned long flags;
112 
113 	spin_lock_irqsave(&cwq->lock, flags);
114 	/*
115 	 * We need to re-validate the work info after we've gotten
116 	 * the cpu_workqueue lock. We can run the work now iff:
117 	 *
118 	 *  - the wq_data still matches the cpu_workqueue_struct
119 	 *  - AND the work is still marked pending
120 	 *  - AND the work is still on a list (which will be this
121 	 *    workqueue_struct list)
122 	 *
123 	 * All these conditions are important, because we
124 	 * need to protect against the work being run right
125 	 * now on another CPU (all but the last one might be
126 	 * true if it's currently running and has not been
127 	 * released yet, for example).
128 	 */
129 	if (get_wq_data(work) == cwq
130 	    && work_pending(work)
131 	    && !list_empty(&work->entry)) {
132 		work_func_t f = work->func;
133 		list_del_init(&work->entry);
134 		spin_unlock_irqrestore(&cwq->lock, flags);
135 
136 		if (!test_bit(WORK_STRUCT_NOAUTOREL, work_data_bits(work)))
137 			work_release(work);
138 		f(work);
139 
140 		spin_lock_irqsave(&cwq->lock, flags);
141 		cwq->remove_sequence++;
142 		wake_up(&cwq->work_done);
143 		ret = 1;
144 	}
145 	spin_unlock_irqrestore(&cwq->lock, flags);
146 	return ret;
147 }
148 
149 /**
150  * run_scheduled_work - run scheduled work synchronously
151  * @work: work to run
152  *
153  * This checks if the work was pending, and runs it
154  * synchronously if so. It returns a boolean to indicate
155  * whether it had any scheduled work to run or not.
156  *
157  * NOTE! This _only_ works for normal work_structs. You
158  * CANNOT use this for delayed work, because the wq data
159  * for delayed work will not point properly to the per-
160  * CPU workqueue struct, but will change!
161  */
162 int fastcall run_scheduled_work(struct work_struct *work)
163 {
164 	for (;;) {
165 		struct cpu_workqueue_struct *cwq;
166 
167 		if (!work_pending(work))
168 			return 0;
169 		if (list_empty(&work->entry))
170 			return 0;
171 		/* NOTE! This depends intimately on __queue_work! */
172 		cwq = get_wq_data(work);
173 		if (!cwq)
174 			return 0;
175 		if (__run_work(cwq, work))
176 			return 1;
177 	}
178 }
179 EXPORT_SYMBOL(run_scheduled_work);
180 
181 /* Preempt must be disabled. */
182 static void __queue_work(struct cpu_workqueue_struct *cwq,
183 			 struct work_struct *work)
184 {
185 	unsigned long flags;
186 
187 	spin_lock_irqsave(&cwq->lock, flags);
188 	set_wq_data(work, cwq);
189 	list_add_tail(&work->entry, &cwq->worklist);
190 	cwq->insert_sequence++;
191 	wake_up(&cwq->more_work);
192 	spin_unlock_irqrestore(&cwq->lock, flags);
193 }
194 
195 /**
196  * queue_work - queue work on a workqueue
197  * @wq: workqueue to use
198  * @work: work to queue
199  *
200  * Returns 0 if @work was already on a queue, non-zero otherwise.
201  *
202  * We queue the work to the CPU it was submitted, but there is no
203  * guarantee that it will be processed by that CPU.
204  */
205 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
206 {
207 	int ret = 0, cpu = get_cpu();
208 
209 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
210 		if (unlikely(is_single_threaded(wq)))
211 			cpu = singlethread_cpu;
212 		BUG_ON(!list_empty(&work->entry));
213 		__queue_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
214 		ret = 1;
215 	}
216 	put_cpu();
217 	return ret;
218 }
219 EXPORT_SYMBOL_GPL(queue_work);
220 
221 void delayed_work_timer_fn(unsigned long __data)
222 {
223 	struct delayed_work *dwork = (struct delayed_work *)__data;
224 	struct workqueue_struct *wq = get_wq_data(&dwork->work);
225 	int cpu = smp_processor_id();
226 
227 	if (unlikely(is_single_threaded(wq)))
228 		cpu = singlethread_cpu;
229 
230 	__queue_work(per_cpu_ptr(wq->cpu_wq, cpu), &dwork->work);
231 }
232 
233 /**
234  * queue_delayed_work - queue work on a workqueue after delay
235  * @wq: workqueue to use
236  * @dwork: delayable work to queue
237  * @delay: number of jiffies to wait before queueing
238  *
239  * Returns 0 if @work was already on a queue, non-zero otherwise.
240  */
241 int fastcall queue_delayed_work(struct workqueue_struct *wq,
242 			struct delayed_work *dwork, unsigned long delay)
243 {
244 	int ret = 0;
245 	struct timer_list *timer = &dwork->timer;
246 	struct work_struct *work = &dwork->work;
247 
248 	timer_stats_timer_set_start_info(timer);
249 	if (delay == 0)
250 		return queue_work(wq, work);
251 
252 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
253 		BUG_ON(timer_pending(timer));
254 		BUG_ON(!list_empty(&work->entry));
255 
256 		/* This stores wq for the moment, for the timer_fn */
257 		set_wq_data(work, wq);
258 		timer->expires = jiffies + delay;
259 		timer->data = (unsigned long)dwork;
260 		timer->function = delayed_work_timer_fn;
261 		add_timer(timer);
262 		ret = 1;
263 	}
264 	return ret;
265 }
266 EXPORT_SYMBOL_GPL(queue_delayed_work);
267 
268 /**
269  * queue_delayed_work_on - queue work on specific CPU after delay
270  * @cpu: CPU number to execute work on
271  * @wq: workqueue to use
272  * @dwork: work to queue
273  * @delay: number of jiffies to wait before queueing
274  *
275  * Returns 0 if @work was already on a queue, non-zero otherwise.
276  */
277 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
278 			struct delayed_work *dwork, unsigned long delay)
279 {
280 	int ret = 0;
281 	struct timer_list *timer = &dwork->timer;
282 	struct work_struct *work = &dwork->work;
283 
284 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
285 		BUG_ON(timer_pending(timer));
286 		BUG_ON(!list_empty(&work->entry));
287 
288 		/* This stores wq for the moment, for the timer_fn */
289 		set_wq_data(work, wq);
290 		timer->expires = jiffies + delay;
291 		timer->data = (unsigned long)dwork;
292 		timer->function = delayed_work_timer_fn;
293 		add_timer_on(timer, cpu);
294 		ret = 1;
295 	}
296 	return ret;
297 }
298 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
299 
300 static void run_workqueue(struct cpu_workqueue_struct *cwq)
301 {
302 	unsigned long flags;
303 
304 	/*
305 	 * Keep taking off work from the queue until
306 	 * done.
307 	 */
308 	spin_lock_irqsave(&cwq->lock, flags);
309 	cwq->run_depth++;
310 	if (cwq->run_depth > 3) {
311 		/* morton gets to eat his hat */
312 		printk("%s: recursion depth exceeded: %d\n",
313 			__FUNCTION__, cwq->run_depth);
314 		dump_stack();
315 	}
316 	while (!list_empty(&cwq->worklist)) {
317 		struct work_struct *work = list_entry(cwq->worklist.next,
318 						struct work_struct, entry);
319 		work_func_t f = work->func;
320 
321 		list_del_init(cwq->worklist.next);
322 		spin_unlock_irqrestore(&cwq->lock, flags);
323 
324 		BUG_ON(get_wq_data(work) != cwq);
325 		if (!test_bit(WORK_STRUCT_NOAUTOREL, work_data_bits(work)))
326 			work_release(work);
327 		f(work);
328 
329 		if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
330 			printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
331 					"%s/0x%08x/%d\n",
332 					current->comm, preempt_count(),
333 				       	current->pid);
334 			printk(KERN_ERR "    last function: ");
335 			print_symbol("%s\n", (unsigned long)f);
336 			debug_show_held_locks(current);
337 			dump_stack();
338 		}
339 
340 		spin_lock_irqsave(&cwq->lock, flags);
341 		cwq->remove_sequence++;
342 		wake_up(&cwq->work_done);
343 	}
344 	cwq->run_depth--;
345 	spin_unlock_irqrestore(&cwq->lock, flags);
346 }
347 
348 static int worker_thread(void *__cwq)
349 {
350 	struct cpu_workqueue_struct *cwq = __cwq;
351 	DECLARE_WAITQUEUE(wait, current);
352 	struct k_sigaction sa;
353 	sigset_t blocked;
354 
355 	if (!cwq->freezeable)
356 		current->flags |= PF_NOFREEZE;
357 
358 	set_user_nice(current, -5);
359 
360 	/* Block and flush all signals */
361 	sigfillset(&blocked);
362 	sigprocmask(SIG_BLOCK, &blocked, NULL);
363 	flush_signals(current);
364 
365 	/*
366 	 * We inherited MPOL_INTERLEAVE from the booting kernel.
367 	 * Set MPOL_DEFAULT to insure node local allocations.
368 	 */
369 	numa_default_policy();
370 
371 	/* SIG_IGN makes children autoreap: see do_notify_parent(). */
372 	sa.sa.sa_handler = SIG_IGN;
373 	sa.sa.sa_flags = 0;
374 	siginitset(&sa.sa.sa_mask, sigmask(SIGCHLD));
375 	do_sigaction(SIGCHLD, &sa, (struct k_sigaction *)0);
376 
377 	set_current_state(TASK_INTERRUPTIBLE);
378 	while (!kthread_should_stop()) {
379 		if (cwq->freezeable)
380 			try_to_freeze();
381 
382 		add_wait_queue(&cwq->more_work, &wait);
383 		if (list_empty(&cwq->worklist))
384 			schedule();
385 		else
386 			__set_current_state(TASK_RUNNING);
387 		remove_wait_queue(&cwq->more_work, &wait);
388 
389 		if (!list_empty(&cwq->worklist))
390 			run_workqueue(cwq);
391 		set_current_state(TASK_INTERRUPTIBLE);
392 	}
393 	__set_current_state(TASK_RUNNING);
394 	return 0;
395 }
396 
397 static void flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
398 {
399 	if (cwq->thread == current) {
400 		/*
401 		 * Probably keventd trying to flush its own queue. So simply run
402 		 * it by hand rather than deadlocking.
403 		 */
404 		run_workqueue(cwq);
405 	} else {
406 		DEFINE_WAIT(wait);
407 		long sequence_needed;
408 
409 		spin_lock_irq(&cwq->lock);
410 		sequence_needed = cwq->insert_sequence;
411 
412 		while (sequence_needed - cwq->remove_sequence > 0) {
413 			prepare_to_wait(&cwq->work_done, &wait,
414 					TASK_UNINTERRUPTIBLE);
415 			spin_unlock_irq(&cwq->lock);
416 			schedule();
417 			spin_lock_irq(&cwq->lock);
418 		}
419 		finish_wait(&cwq->work_done, &wait);
420 		spin_unlock_irq(&cwq->lock);
421 	}
422 }
423 
424 /**
425  * flush_workqueue - ensure that any scheduled work has run to completion.
426  * @wq: workqueue to flush
427  *
428  * Forces execution of the workqueue and blocks until its completion.
429  * This is typically used in driver shutdown handlers.
430  *
431  * This function will sample each workqueue's current insert_sequence number and
432  * will sleep until the head sequence is greater than or equal to that.  This
433  * means that we sleep until all works which were queued on entry have been
434  * handled, but we are not livelocked by new incoming ones.
435  *
436  * This function used to run the workqueues itself.  Now we just wait for the
437  * helper threads to do it.
438  */
439 void fastcall flush_workqueue(struct workqueue_struct *wq)
440 {
441 	might_sleep();
442 
443 	if (is_single_threaded(wq)) {
444 		/* Always use first cpu's area. */
445 		flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, singlethread_cpu));
446 	} else {
447 		int cpu;
448 
449 		mutex_lock(&workqueue_mutex);
450 		for_each_online_cpu(cpu)
451 			flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
452 		mutex_unlock(&workqueue_mutex);
453 	}
454 }
455 EXPORT_SYMBOL_GPL(flush_workqueue);
456 
457 static struct task_struct *create_workqueue_thread(struct workqueue_struct *wq,
458 						   int cpu, int freezeable)
459 {
460 	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
461 	struct task_struct *p;
462 
463 	spin_lock_init(&cwq->lock);
464 	cwq->wq = wq;
465 	cwq->thread = NULL;
466 	cwq->insert_sequence = 0;
467 	cwq->remove_sequence = 0;
468 	cwq->freezeable = freezeable;
469 	INIT_LIST_HEAD(&cwq->worklist);
470 	init_waitqueue_head(&cwq->more_work);
471 	init_waitqueue_head(&cwq->work_done);
472 
473 	if (is_single_threaded(wq))
474 		p = kthread_create(worker_thread, cwq, "%s", wq->name);
475 	else
476 		p = kthread_create(worker_thread, cwq, "%s/%d", wq->name, cpu);
477 	if (IS_ERR(p))
478 		return NULL;
479 	cwq->thread = p;
480 	return p;
481 }
482 
483 struct workqueue_struct *__create_workqueue(const char *name,
484 					    int singlethread, int freezeable)
485 {
486 	int cpu, destroy = 0;
487 	struct workqueue_struct *wq;
488 	struct task_struct *p;
489 
490 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
491 	if (!wq)
492 		return NULL;
493 
494 	wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
495 	if (!wq->cpu_wq) {
496 		kfree(wq);
497 		return NULL;
498 	}
499 
500 	wq->name = name;
501 	mutex_lock(&workqueue_mutex);
502 	if (singlethread) {
503 		INIT_LIST_HEAD(&wq->list);
504 		p = create_workqueue_thread(wq, singlethread_cpu, freezeable);
505 		if (!p)
506 			destroy = 1;
507 		else
508 			wake_up_process(p);
509 	} else {
510 		list_add(&wq->list, &workqueues);
511 		for_each_online_cpu(cpu) {
512 			p = create_workqueue_thread(wq, cpu, freezeable);
513 			if (p) {
514 				kthread_bind(p, cpu);
515 				wake_up_process(p);
516 			} else
517 				destroy = 1;
518 		}
519 	}
520 	mutex_unlock(&workqueue_mutex);
521 
522 	/*
523 	 * Was there any error during startup? If yes then clean up:
524 	 */
525 	if (destroy) {
526 		destroy_workqueue(wq);
527 		wq = NULL;
528 	}
529 	return wq;
530 }
531 EXPORT_SYMBOL_GPL(__create_workqueue);
532 
533 static void cleanup_workqueue_thread(struct workqueue_struct *wq, int cpu)
534 {
535 	struct cpu_workqueue_struct *cwq;
536 	unsigned long flags;
537 	struct task_struct *p;
538 
539 	cwq = per_cpu_ptr(wq->cpu_wq, cpu);
540 	spin_lock_irqsave(&cwq->lock, flags);
541 	p = cwq->thread;
542 	cwq->thread = NULL;
543 	spin_unlock_irqrestore(&cwq->lock, flags);
544 	if (p)
545 		kthread_stop(p);
546 }
547 
548 /**
549  * destroy_workqueue - safely terminate a workqueue
550  * @wq: target workqueue
551  *
552  * Safely destroy a workqueue. All work currently pending will be done first.
553  */
554 void destroy_workqueue(struct workqueue_struct *wq)
555 {
556 	int cpu;
557 
558 	flush_workqueue(wq);
559 
560 	/* We don't need the distraction of CPUs appearing and vanishing. */
561 	mutex_lock(&workqueue_mutex);
562 	if (is_single_threaded(wq))
563 		cleanup_workqueue_thread(wq, singlethread_cpu);
564 	else {
565 		for_each_online_cpu(cpu)
566 			cleanup_workqueue_thread(wq, cpu);
567 		list_del(&wq->list);
568 	}
569 	mutex_unlock(&workqueue_mutex);
570 	free_percpu(wq->cpu_wq);
571 	kfree(wq);
572 }
573 EXPORT_SYMBOL_GPL(destroy_workqueue);
574 
575 static struct workqueue_struct *keventd_wq;
576 
577 /**
578  * schedule_work - put work task in global workqueue
579  * @work: job to be done
580  *
581  * This puts a job in the kernel-global workqueue.
582  */
583 int fastcall schedule_work(struct work_struct *work)
584 {
585 	return queue_work(keventd_wq, work);
586 }
587 EXPORT_SYMBOL(schedule_work);
588 
589 /**
590  * schedule_delayed_work - put work task in global workqueue after delay
591  * @dwork: job to be done
592  * @delay: number of jiffies to wait or 0 for immediate execution
593  *
594  * After waiting for a given time this puts a job in the kernel-global
595  * workqueue.
596  */
597 int fastcall schedule_delayed_work(struct delayed_work *dwork,
598 					unsigned long delay)
599 {
600 	timer_stats_timer_set_start_info(&dwork->timer);
601 	return queue_delayed_work(keventd_wq, dwork, delay);
602 }
603 EXPORT_SYMBOL(schedule_delayed_work);
604 
605 /**
606  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
607  * @cpu: cpu to use
608  * @dwork: job to be done
609  * @delay: number of jiffies to wait
610  *
611  * After waiting for a given time this puts a job in the kernel-global
612  * workqueue on the specified CPU.
613  */
614 int schedule_delayed_work_on(int cpu,
615 			struct delayed_work *dwork, unsigned long delay)
616 {
617 	return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
618 }
619 EXPORT_SYMBOL(schedule_delayed_work_on);
620 
621 /**
622  * schedule_on_each_cpu - call a function on each online CPU from keventd
623  * @func: the function to call
624  *
625  * Returns zero on success.
626  * Returns -ve errno on failure.
627  *
628  * Appears to be racy against CPU hotplug.
629  *
630  * schedule_on_each_cpu() is very slow.
631  */
632 int schedule_on_each_cpu(work_func_t func)
633 {
634 	int cpu;
635 	struct work_struct *works;
636 
637 	works = alloc_percpu(struct work_struct);
638 	if (!works)
639 		return -ENOMEM;
640 
641 	mutex_lock(&workqueue_mutex);
642 	for_each_online_cpu(cpu) {
643 		struct work_struct *work = per_cpu_ptr(works, cpu);
644 
645 		INIT_WORK(work, func);
646 		set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
647 		__queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
648 	}
649 	mutex_unlock(&workqueue_mutex);
650 	flush_workqueue(keventd_wq);
651 	free_percpu(works);
652 	return 0;
653 }
654 
655 void flush_scheduled_work(void)
656 {
657 	flush_workqueue(keventd_wq);
658 }
659 EXPORT_SYMBOL(flush_scheduled_work);
660 
661 /**
662  * cancel_rearming_delayed_workqueue - reliably kill off a delayed work whose handler rearms the delayed work.
663  * @wq:   the controlling workqueue structure
664  * @dwork: the delayed work struct
665  */
666 void cancel_rearming_delayed_workqueue(struct workqueue_struct *wq,
667 				       struct delayed_work *dwork)
668 {
669 	while (!cancel_delayed_work(dwork))
670 		flush_workqueue(wq);
671 }
672 EXPORT_SYMBOL(cancel_rearming_delayed_workqueue);
673 
674 /**
675  * cancel_rearming_delayed_work - reliably kill off a delayed keventd work whose handler rearms the delayed work.
676  * @dwork: the delayed work struct
677  */
678 void cancel_rearming_delayed_work(struct delayed_work *dwork)
679 {
680 	cancel_rearming_delayed_workqueue(keventd_wq, dwork);
681 }
682 EXPORT_SYMBOL(cancel_rearming_delayed_work);
683 
684 /**
685  * execute_in_process_context - reliably execute the routine with user context
686  * @fn:		the function to execute
687  * @ew:		guaranteed storage for the execute work structure (must
688  *		be available when the work executes)
689  *
690  * Executes the function immediately if process context is available,
691  * otherwise schedules the function for delayed execution.
692  *
693  * Returns:	0 - function was executed
694  *		1 - function was scheduled for execution
695  */
696 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
697 {
698 	if (!in_interrupt()) {
699 		fn(&ew->work);
700 		return 0;
701 	}
702 
703 	INIT_WORK(&ew->work, fn);
704 	schedule_work(&ew->work);
705 
706 	return 1;
707 }
708 EXPORT_SYMBOL_GPL(execute_in_process_context);
709 
710 int keventd_up(void)
711 {
712 	return keventd_wq != NULL;
713 }
714 
715 int current_is_keventd(void)
716 {
717 	struct cpu_workqueue_struct *cwq;
718 	int cpu = smp_processor_id();	/* preempt-safe: keventd is per-cpu */
719 	int ret = 0;
720 
721 	BUG_ON(!keventd_wq);
722 
723 	cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
724 	if (current == cwq->thread)
725 		ret = 1;
726 
727 	return ret;
728 
729 }
730 
731 /* Take the work from this (downed) CPU. */
732 static void take_over_work(struct workqueue_struct *wq, unsigned int cpu)
733 {
734 	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
735 	struct list_head list;
736 	struct work_struct *work;
737 
738 	spin_lock_irq(&cwq->lock);
739 	list_replace_init(&cwq->worklist, &list);
740 
741 	while (!list_empty(&list)) {
742 		printk("Taking work for %s\n", wq->name);
743 		work = list_entry(list.next,struct work_struct,entry);
744 		list_del(&work->entry);
745 		__queue_work(per_cpu_ptr(wq->cpu_wq, smp_processor_id()), work);
746 	}
747 	spin_unlock_irq(&cwq->lock);
748 }
749 
750 /* We're holding the cpucontrol mutex here */
751 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
752 				  unsigned long action,
753 				  void *hcpu)
754 {
755 	unsigned int hotcpu = (unsigned long)hcpu;
756 	struct workqueue_struct *wq;
757 
758 	switch (action) {
759 	case CPU_UP_PREPARE:
760 		mutex_lock(&workqueue_mutex);
761 		/* Create a new workqueue thread for it. */
762 		list_for_each_entry(wq, &workqueues, list) {
763 			if (!create_workqueue_thread(wq, hotcpu, 0)) {
764 				printk("workqueue for %i failed\n", hotcpu);
765 				return NOTIFY_BAD;
766 			}
767 		}
768 		break;
769 
770 	case CPU_ONLINE:
771 		/* Kick off worker threads. */
772 		list_for_each_entry(wq, &workqueues, list) {
773 			struct cpu_workqueue_struct *cwq;
774 
775 			cwq = per_cpu_ptr(wq->cpu_wq, hotcpu);
776 			kthread_bind(cwq->thread, hotcpu);
777 			wake_up_process(cwq->thread);
778 		}
779 		mutex_unlock(&workqueue_mutex);
780 		break;
781 
782 	case CPU_UP_CANCELED:
783 		list_for_each_entry(wq, &workqueues, list) {
784 			if (!per_cpu_ptr(wq->cpu_wq, hotcpu)->thread)
785 				continue;
786 			/* Unbind so it can run. */
787 			kthread_bind(per_cpu_ptr(wq->cpu_wq, hotcpu)->thread,
788 				     any_online_cpu(cpu_online_map));
789 			cleanup_workqueue_thread(wq, hotcpu);
790 		}
791 		mutex_unlock(&workqueue_mutex);
792 		break;
793 
794 	case CPU_DOWN_PREPARE:
795 		mutex_lock(&workqueue_mutex);
796 		break;
797 
798 	case CPU_DOWN_FAILED:
799 		mutex_unlock(&workqueue_mutex);
800 		break;
801 
802 	case CPU_DEAD:
803 		list_for_each_entry(wq, &workqueues, list)
804 			cleanup_workqueue_thread(wq, hotcpu);
805 		list_for_each_entry(wq, &workqueues, list)
806 			take_over_work(wq, hotcpu);
807 		mutex_unlock(&workqueue_mutex);
808 		break;
809 	}
810 
811 	return NOTIFY_OK;
812 }
813 
814 void init_workqueues(void)
815 {
816 	singlethread_cpu = first_cpu(cpu_possible_map);
817 	hotcpu_notifier(workqueue_cpu_callback, 0);
818 	keventd_wq = create_workqueue("events");
819 	BUG_ON(!keventd_wq);
820 }
821 
822