1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/interrupt.h> 33 #include <linux/signal.h> 34 #include <linux/completion.h> 35 #include <linux/workqueue.h> 36 #include <linux/slab.h> 37 #include <linux/cpu.h> 38 #include <linux/notifier.h> 39 #include <linux/kthread.h> 40 #include <linux/hardirq.h> 41 #include <linux/mempolicy.h> 42 #include <linux/freezer.h> 43 #include <linux/debug_locks.h> 44 #include <linux/lockdep.h> 45 #include <linux/idr.h> 46 #include <linux/jhash.h> 47 #include <linux/hashtable.h> 48 #include <linux/rculist.h> 49 #include <linux/nodemask.h> 50 #include <linux/moduleparam.h> 51 #include <linux/uaccess.h> 52 #include <linux/sched/isolation.h> 53 #include <linux/sched/debug.h> 54 #include <linux/nmi.h> 55 #include <linux/kvm_para.h> 56 #include <linux/delay.h> 57 #include <linux/irq_work.h> 58 59 #include "workqueue_internal.h" 60 61 enum worker_pool_flags { 62 /* 63 * worker_pool flags 64 * 65 * A bound pool is either associated or disassociated with its CPU. 66 * While associated (!DISASSOCIATED), all workers are bound to the 67 * CPU and none has %WORKER_UNBOUND set and concurrency management 68 * is in effect. 69 * 70 * While DISASSOCIATED, the cpu may be offline and all workers have 71 * %WORKER_UNBOUND set and concurrency management disabled, and may 72 * be executing on any CPU. The pool behaves as an unbound one. 73 * 74 * Note that DISASSOCIATED should be flipped only while holding 75 * wq_pool_attach_mutex to avoid changing binding state while 76 * worker_attach_to_pool() is in progress. 77 * 78 * As there can only be one concurrent BH execution context per CPU, a 79 * BH pool is per-CPU and always DISASSOCIATED. 80 */ 81 POOL_BH = 1 << 0, /* is a BH pool */ 82 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */ 83 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 84 POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */ 85 }; 86 87 enum worker_flags { 88 /* worker flags */ 89 WORKER_DIE = 1 << 1, /* die die die */ 90 WORKER_IDLE = 1 << 2, /* is idle */ 91 WORKER_PREP = 1 << 3, /* preparing to run works */ 92 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 93 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 94 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 95 96 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 97 WORKER_UNBOUND | WORKER_REBOUND, 98 }; 99 100 enum work_cancel_flags { 101 WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */ 102 WORK_CANCEL_DISABLE = 1 << 1, /* canceling to disable */ 103 }; 104 105 enum wq_internal_consts { 106 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 107 108 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 109 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 110 111 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 112 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 113 114 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 115 /* call for help after 10ms 116 (min two ticks) */ 117 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 118 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 119 120 /* 121 * Rescue workers are used only on emergencies and shared by 122 * all cpus. Give MIN_NICE. 123 */ 124 RESCUER_NICE_LEVEL = MIN_NICE, 125 HIGHPRI_NICE_LEVEL = MIN_NICE, 126 127 WQ_NAME_LEN = 32, 128 WORKER_ID_LEN = 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */ 129 }; 130 131 /* 132 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and 133 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because 134 * msecs_to_jiffies() can't be an initializer. 135 */ 136 #define BH_WORKER_JIFFIES msecs_to_jiffies(2) 137 #define BH_WORKER_RESTARTS 10 138 139 /* 140 * Structure fields follow one of the following exclusion rules. 141 * 142 * I: Modifiable by initialization/destruction paths and read-only for 143 * everyone else. 144 * 145 * P: Preemption protected. Disabling preemption is enough and should 146 * only be modified and accessed from the local cpu. 147 * 148 * L: pool->lock protected. Access with pool->lock held. 149 * 150 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for 151 * reads. 152 * 153 * K: Only modified by worker while holding pool->lock. Can be safely read by 154 * self, while holding pool->lock or from IRQ context if %current is the 155 * kworker. 156 * 157 * S: Only modified by worker self. 158 * 159 * A: wq_pool_attach_mutex protected. 160 * 161 * PL: wq_pool_mutex protected. 162 * 163 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 164 * 165 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 166 * 167 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 168 * RCU for reads. 169 * 170 * WQ: wq->mutex protected. 171 * 172 * WR: wq->mutex protected for writes. RCU protected for reads. 173 * 174 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read 175 * with READ_ONCE() without locking. 176 * 177 * MD: wq_mayday_lock protected. 178 * 179 * WD: Used internally by the watchdog. 180 */ 181 182 /* struct worker is defined in workqueue_internal.h */ 183 184 struct worker_pool { 185 raw_spinlock_t lock; /* the pool lock */ 186 int cpu; /* I: the associated cpu */ 187 int node; /* I: the associated node ID */ 188 int id; /* I: pool ID */ 189 unsigned int flags; /* L: flags */ 190 191 unsigned long watchdog_ts; /* L: watchdog timestamp */ 192 bool cpu_stall; /* WD: stalled cpu bound pool */ 193 194 /* 195 * The counter is incremented in a process context on the associated CPU 196 * w/ preemption disabled, and decremented or reset in the same context 197 * but w/ pool->lock held. The readers grab pool->lock and are 198 * guaranteed to see if the counter reached zero. 199 */ 200 int nr_running; 201 202 struct list_head worklist; /* L: list of pending works */ 203 204 int nr_workers; /* L: total number of workers */ 205 int nr_idle; /* L: currently idle workers */ 206 207 struct list_head idle_list; /* L: list of idle workers */ 208 struct timer_list idle_timer; /* L: worker idle timeout */ 209 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 210 211 struct timer_list mayday_timer; /* L: SOS timer for workers */ 212 213 /* a workers is either on busy_hash or idle_list, or the manager */ 214 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 215 /* L: hash of busy workers */ 216 217 struct worker *manager; /* L: purely informational */ 218 struct list_head workers; /* A: attached workers */ 219 220 struct ida worker_ida; /* worker IDs for task name */ 221 222 struct workqueue_attrs *attrs; /* I: worker attributes */ 223 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 224 int refcnt; /* PL: refcnt for unbound pools */ 225 226 /* 227 * Destruction of pool is RCU protected to allow dereferences 228 * from get_work_pool(). 229 */ 230 struct rcu_head rcu; 231 }; 232 233 /* 234 * Per-pool_workqueue statistics. These can be monitored using 235 * tools/workqueue/wq_monitor.py. 236 */ 237 enum pool_workqueue_stats { 238 PWQ_STAT_STARTED, /* work items started execution */ 239 PWQ_STAT_COMPLETED, /* work items completed execution */ 240 PWQ_STAT_CPU_TIME, /* total CPU time consumed */ 241 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ 242 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ 243 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */ 244 PWQ_STAT_MAYDAY, /* maydays to rescuer */ 245 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ 246 247 PWQ_NR_STATS, 248 }; 249 250 /* 251 * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT 252 * of work_struct->data are used for flags and the remaining high bits 253 * point to the pwq; thus, pwqs need to be aligned at two's power of the 254 * number of flag bits. 255 */ 256 struct pool_workqueue { 257 struct worker_pool *pool; /* I: the associated pool */ 258 struct workqueue_struct *wq; /* I: the owning workqueue */ 259 int work_color; /* L: current color */ 260 int flush_color; /* L: flushing color */ 261 int refcnt; /* L: reference count */ 262 int nr_in_flight[WORK_NR_COLORS]; 263 /* L: nr of in_flight works */ 264 bool plugged; /* L: execution suspended */ 265 266 /* 267 * nr_active management and WORK_STRUCT_INACTIVE: 268 * 269 * When pwq->nr_active >= max_active, new work item is queued to 270 * pwq->inactive_works instead of pool->worklist and marked with 271 * WORK_STRUCT_INACTIVE. 272 * 273 * All work items marked with WORK_STRUCT_INACTIVE do not participate in 274 * nr_active and all work items in pwq->inactive_works are marked with 275 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are 276 * in pwq->inactive_works. Some of them are ready to run in 277 * pool->worklist or worker->scheduled. Those work itmes are only struct 278 * wq_barrier which is used for flush_work() and should not participate 279 * in nr_active. For non-barrier work item, it is marked with 280 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 281 */ 282 int nr_active; /* L: nr of active works */ 283 struct list_head inactive_works; /* L: inactive works */ 284 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */ 285 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 286 struct list_head mayday_node; /* MD: node on wq->maydays */ 287 288 u64 stats[PWQ_NR_STATS]; 289 290 /* 291 * Release of unbound pwq is punted to a kthread_worker. See put_pwq() 292 * and pwq_release_workfn() for details. pool_workqueue itself is also 293 * RCU protected so that the first pwq can be determined without 294 * grabbing wq->mutex. 295 */ 296 struct kthread_work release_work; 297 struct rcu_head rcu; 298 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT); 299 300 /* 301 * Structure used to wait for workqueue flush. 302 */ 303 struct wq_flusher { 304 struct list_head list; /* WQ: list of flushers */ 305 int flush_color; /* WQ: flush color waiting for */ 306 struct completion done; /* flush completion */ 307 }; 308 309 struct wq_device; 310 311 /* 312 * Unlike in a per-cpu workqueue where max_active limits its concurrency level 313 * on each CPU, in an unbound workqueue, max_active applies to the whole system. 314 * As sharing a single nr_active across multiple sockets can be very expensive, 315 * the counting and enforcement is per NUMA node. 316 * 317 * The following struct is used to enforce per-node max_active. When a pwq wants 318 * to start executing a work item, it should increment ->nr using 319 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over 320 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish 321 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in 322 * round-robin order. 323 */ 324 struct wq_node_nr_active { 325 int max; /* per-node max_active */ 326 atomic_t nr; /* per-node nr_active */ 327 raw_spinlock_t lock; /* nests inside pool locks */ 328 struct list_head pending_pwqs; /* LN: pwqs with inactive works */ 329 }; 330 331 /* 332 * The externally visible workqueue. It relays the issued work items to 333 * the appropriate worker_pool through its pool_workqueues. 334 */ 335 struct workqueue_struct { 336 struct list_head pwqs; /* WR: all pwqs of this wq */ 337 struct list_head list; /* PR: list of all workqueues */ 338 339 struct mutex mutex; /* protects this wq */ 340 int work_color; /* WQ: current work color */ 341 int flush_color; /* WQ: current flush color */ 342 atomic_t nr_pwqs_to_flush; /* flush in progress */ 343 struct wq_flusher *first_flusher; /* WQ: first flusher */ 344 struct list_head flusher_queue; /* WQ: flush waiters */ 345 struct list_head flusher_overflow; /* WQ: flush overflow list */ 346 347 struct list_head maydays; /* MD: pwqs requesting rescue */ 348 struct worker *rescuer; /* MD: rescue worker */ 349 350 int nr_drainers; /* WQ: drain in progress */ 351 352 /* See alloc_workqueue() function comment for info on min/max_active */ 353 int max_active; /* WO: max active works */ 354 int min_active; /* WO: min active works */ 355 int saved_max_active; /* WQ: saved max_active */ 356 int saved_min_active; /* WQ: saved min_active */ 357 358 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 359 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */ 360 361 #ifdef CONFIG_SYSFS 362 struct wq_device *wq_dev; /* I: for sysfs interface */ 363 #endif 364 #ifdef CONFIG_LOCKDEP 365 char *lock_name; 366 struct lock_class_key key; 367 struct lockdep_map __lockdep_map; 368 struct lockdep_map *lockdep_map; 369 #endif 370 char name[WQ_NAME_LEN]; /* I: workqueue name */ 371 372 /* 373 * Destruction of workqueue_struct is RCU protected to allow walking 374 * the workqueues list without grabbing wq_pool_mutex. 375 * This is used to dump all workqueues from sysrq. 376 */ 377 struct rcu_head rcu; 378 379 /* hot fields used during command issue, aligned to cacheline */ 380 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 381 struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */ 382 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */ 383 }; 384 385 /* 386 * Each pod type describes how CPUs should be grouped for unbound workqueues. 387 * See the comment above workqueue_attrs->affn_scope. 388 */ 389 struct wq_pod_type { 390 int nr_pods; /* number of pods */ 391 cpumask_var_t *pod_cpus; /* pod -> cpus */ 392 int *pod_node; /* pod -> node */ 393 int *cpu_pod; /* cpu -> pod */ 394 }; 395 396 struct work_offq_data { 397 u32 pool_id; 398 u32 disable; 399 u32 flags; 400 }; 401 402 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = { 403 [WQ_AFFN_DFL] = "default", 404 [WQ_AFFN_CPU] = "cpu", 405 [WQ_AFFN_SMT] = "smt", 406 [WQ_AFFN_CACHE] = "cache", 407 [WQ_AFFN_NUMA] = "numa", 408 [WQ_AFFN_SYSTEM] = "system", 409 }; 410 411 /* 412 * Per-cpu work items which run for longer than the following threshold are 413 * automatically considered CPU intensive and excluded from concurrency 414 * management to prevent them from noticeably delaying other per-cpu work items. 415 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. 416 * The actual value is initialized in wq_cpu_intensive_thresh_init(). 417 */ 418 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; 419 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); 420 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 421 static unsigned int wq_cpu_intensive_warning_thresh = 4; 422 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644); 423 #endif 424 425 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 426 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 427 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 428 429 static bool wq_online; /* can kworkers be created yet? */ 430 static bool wq_topo_initialized __read_mostly = false; 431 432 static struct kmem_cache *pwq_cache; 433 434 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES]; 435 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE; 436 437 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */ 438 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf; 439 440 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 441 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 442 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 443 /* wait for manager to go away */ 444 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 445 446 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 447 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 448 449 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */ 450 static cpumask_var_t wq_online_cpumask; 451 452 /* PL&A: allowable cpus for unbound wqs and work items */ 453 static cpumask_var_t wq_unbound_cpumask; 454 455 /* PL: user requested unbound cpumask via sysfs */ 456 static cpumask_var_t wq_requested_unbound_cpumask; 457 458 /* PL: isolated cpumask to be excluded from unbound cpumask */ 459 static cpumask_var_t wq_isolated_cpumask; 460 461 /* for further constrain wq_unbound_cpumask by cmdline parameter*/ 462 static struct cpumask wq_cmdline_cpumask __initdata; 463 464 /* CPU where unbound work was last round robin scheduled from this CPU */ 465 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 466 467 /* 468 * Local execution of unbound work items is no longer guaranteed. The 469 * following always forces round-robin CPU selection on unbound work items 470 * to uncover usages which depend on it. 471 */ 472 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 473 static bool wq_debug_force_rr_cpu = true; 474 #else 475 static bool wq_debug_force_rr_cpu = false; 476 #endif 477 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 478 479 /* to raise softirq for the BH worker pools on other CPUs */ 480 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], bh_pool_irq_works); 481 482 /* the BH worker pools */ 483 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], bh_worker_pools); 484 485 /* the per-cpu worker pools */ 486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 487 488 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 489 490 /* PL: hash of all unbound pools keyed by pool->attrs */ 491 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 492 493 /* I: attributes used when instantiating standard unbound pools on demand */ 494 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 495 496 /* I: attributes used when instantiating ordered pools on demand */ 497 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 498 499 /* 500 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a 501 * process context while holding a pool lock. Bounce to a dedicated kthread 502 * worker to avoid A-A deadlocks. 503 */ 504 static struct kthread_worker *pwq_release_worker __ro_after_init; 505 506 struct workqueue_struct *system_wq __ro_after_init; 507 EXPORT_SYMBOL(system_wq); 508 struct workqueue_struct *system_highpri_wq __ro_after_init; 509 EXPORT_SYMBOL_GPL(system_highpri_wq); 510 struct workqueue_struct *system_long_wq __ro_after_init; 511 EXPORT_SYMBOL_GPL(system_long_wq); 512 struct workqueue_struct *system_unbound_wq __ro_after_init; 513 EXPORT_SYMBOL_GPL(system_unbound_wq); 514 struct workqueue_struct *system_freezable_wq __ro_after_init; 515 EXPORT_SYMBOL_GPL(system_freezable_wq); 516 struct workqueue_struct *system_power_efficient_wq __ro_after_init; 517 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 518 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init; 519 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 520 struct workqueue_struct *system_bh_wq; 521 EXPORT_SYMBOL_GPL(system_bh_wq); 522 struct workqueue_struct *system_bh_highpri_wq; 523 EXPORT_SYMBOL_GPL(system_bh_highpri_wq); 524 525 static int worker_thread(void *__worker); 526 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 527 static void show_pwq(struct pool_workqueue *pwq); 528 static void show_one_worker_pool(struct worker_pool *pool); 529 530 #define CREATE_TRACE_POINTS 531 #include <trace/events/workqueue.h> 532 533 #define assert_rcu_or_pool_mutex() \ 534 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 535 !lockdep_is_held(&wq_pool_mutex), \ 536 "RCU or wq_pool_mutex should be held") 537 538 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 539 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 540 !lockdep_is_held(&wq->mutex) && \ 541 !lockdep_is_held(&wq_pool_mutex), \ 542 "RCU, wq->mutex or wq_pool_mutex should be held") 543 544 #define for_each_bh_worker_pool(pool, cpu) \ 545 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \ 546 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 547 (pool)++) 548 549 #define for_each_cpu_worker_pool(pool, cpu) \ 550 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 551 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 552 (pool)++) 553 554 /** 555 * for_each_pool - iterate through all worker_pools in the system 556 * @pool: iteration cursor 557 * @pi: integer used for iteration 558 * 559 * This must be called either with wq_pool_mutex held or RCU read 560 * locked. If the pool needs to be used beyond the locking in effect, the 561 * caller is responsible for guaranteeing that the pool stays online. 562 * 563 * The if/else clause exists only for the lockdep assertion and can be 564 * ignored. 565 */ 566 #define for_each_pool(pool, pi) \ 567 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 568 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 569 else 570 571 /** 572 * for_each_pool_worker - iterate through all workers of a worker_pool 573 * @worker: iteration cursor 574 * @pool: worker_pool to iterate workers of 575 * 576 * This must be called with wq_pool_attach_mutex. 577 * 578 * The if/else clause exists only for the lockdep assertion and can be 579 * ignored. 580 */ 581 #define for_each_pool_worker(worker, pool) \ 582 list_for_each_entry((worker), &(pool)->workers, node) \ 583 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 584 else 585 586 /** 587 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 588 * @pwq: iteration cursor 589 * @wq: the target workqueue 590 * 591 * This must be called either with wq->mutex held or RCU read locked. 592 * If the pwq needs to be used beyond the locking in effect, the caller is 593 * responsible for guaranteeing that the pwq stays online. 594 * 595 * The if/else clause exists only for the lockdep assertion and can be 596 * ignored. 597 */ 598 #define for_each_pwq(pwq, wq) \ 599 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 600 lockdep_is_held(&(wq->mutex))) 601 602 #ifdef CONFIG_DEBUG_OBJECTS_WORK 603 604 static const struct debug_obj_descr work_debug_descr; 605 606 static void *work_debug_hint(void *addr) 607 { 608 return ((struct work_struct *) addr)->func; 609 } 610 611 static bool work_is_static_object(void *addr) 612 { 613 struct work_struct *work = addr; 614 615 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 616 } 617 618 /* 619 * fixup_init is called when: 620 * - an active object is initialized 621 */ 622 static bool work_fixup_init(void *addr, enum debug_obj_state state) 623 { 624 struct work_struct *work = addr; 625 626 switch (state) { 627 case ODEBUG_STATE_ACTIVE: 628 cancel_work_sync(work); 629 debug_object_init(work, &work_debug_descr); 630 return true; 631 default: 632 return false; 633 } 634 } 635 636 /* 637 * fixup_free is called when: 638 * - an active object is freed 639 */ 640 static bool work_fixup_free(void *addr, enum debug_obj_state state) 641 { 642 struct work_struct *work = addr; 643 644 switch (state) { 645 case ODEBUG_STATE_ACTIVE: 646 cancel_work_sync(work); 647 debug_object_free(work, &work_debug_descr); 648 return true; 649 default: 650 return false; 651 } 652 } 653 654 static const struct debug_obj_descr work_debug_descr = { 655 .name = "work_struct", 656 .debug_hint = work_debug_hint, 657 .is_static_object = work_is_static_object, 658 .fixup_init = work_fixup_init, 659 .fixup_free = work_fixup_free, 660 }; 661 662 static inline void debug_work_activate(struct work_struct *work) 663 { 664 debug_object_activate(work, &work_debug_descr); 665 } 666 667 static inline void debug_work_deactivate(struct work_struct *work) 668 { 669 debug_object_deactivate(work, &work_debug_descr); 670 } 671 672 void __init_work(struct work_struct *work, int onstack) 673 { 674 if (onstack) 675 debug_object_init_on_stack(work, &work_debug_descr); 676 else 677 debug_object_init(work, &work_debug_descr); 678 } 679 EXPORT_SYMBOL_GPL(__init_work); 680 681 void destroy_work_on_stack(struct work_struct *work) 682 { 683 debug_object_free(work, &work_debug_descr); 684 } 685 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 686 687 void destroy_delayed_work_on_stack(struct delayed_work *work) 688 { 689 destroy_timer_on_stack(&work->timer); 690 debug_object_free(&work->work, &work_debug_descr); 691 } 692 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 693 694 #else 695 static inline void debug_work_activate(struct work_struct *work) { } 696 static inline void debug_work_deactivate(struct work_struct *work) { } 697 #endif 698 699 /** 700 * worker_pool_assign_id - allocate ID and assign it to @pool 701 * @pool: the pool pointer of interest 702 * 703 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 704 * successfully, -errno on failure. 705 */ 706 static int worker_pool_assign_id(struct worker_pool *pool) 707 { 708 int ret; 709 710 lockdep_assert_held(&wq_pool_mutex); 711 712 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 713 GFP_KERNEL); 714 if (ret >= 0) { 715 pool->id = ret; 716 return 0; 717 } 718 return ret; 719 } 720 721 static struct pool_workqueue __rcu ** 722 unbound_pwq_slot(struct workqueue_struct *wq, int cpu) 723 { 724 if (cpu >= 0) 725 return per_cpu_ptr(wq->cpu_pwq, cpu); 726 else 727 return &wq->dfl_pwq; 728 } 729 730 /* @cpu < 0 for dfl_pwq */ 731 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu) 732 { 733 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu), 734 lockdep_is_held(&wq_pool_mutex) || 735 lockdep_is_held(&wq->mutex)); 736 } 737 738 /** 739 * unbound_effective_cpumask - effective cpumask of an unbound workqueue 740 * @wq: workqueue of interest 741 * 742 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which 743 * is masked with wq_unbound_cpumask to determine the effective cpumask. The 744 * default pwq is always mapped to the pool with the current effective cpumask. 745 */ 746 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq) 747 { 748 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask; 749 } 750 751 static unsigned int work_color_to_flags(int color) 752 { 753 return color << WORK_STRUCT_COLOR_SHIFT; 754 } 755 756 static int get_work_color(unsigned long work_data) 757 { 758 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 759 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 760 } 761 762 static int work_next_color(int color) 763 { 764 return (color + 1) % WORK_NR_COLORS; 765 } 766 767 static unsigned long pool_offq_flags(struct worker_pool *pool) 768 { 769 return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0; 770 } 771 772 /* 773 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 774 * contain the pointer to the queued pwq. Once execution starts, the flag 775 * is cleared and the high bits contain OFFQ flags and pool ID. 776 * 777 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling() 778 * can be used to set the pwq, pool or clear work->data. These functions should 779 * only be called while the work is owned - ie. while the PENDING bit is set. 780 * 781 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 782 * corresponding to a work. Pool is available once the work has been 783 * queued anywhere after initialization until it is sync canceled. pwq is 784 * available only while the work item is queued. 785 */ 786 static inline void set_work_data(struct work_struct *work, unsigned long data) 787 { 788 WARN_ON_ONCE(!work_pending(work)); 789 atomic_long_set(&work->data, data | work_static(work)); 790 } 791 792 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 793 unsigned long flags) 794 { 795 set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING | 796 WORK_STRUCT_PWQ | flags); 797 } 798 799 static void set_work_pool_and_keep_pending(struct work_struct *work, 800 int pool_id, unsigned long flags) 801 { 802 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 803 WORK_STRUCT_PENDING | flags); 804 } 805 806 static void set_work_pool_and_clear_pending(struct work_struct *work, 807 int pool_id, unsigned long flags) 808 { 809 /* 810 * The following wmb is paired with the implied mb in 811 * test_and_set_bit(PENDING) and ensures all updates to @work made 812 * here are visible to and precede any updates by the next PENDING 813 * owner. 814 */ 815 smp_wmb(); 816 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 817 flags); 818 /* 819 * The following mb guarantees that previous clear of a PENDING bit 820 * will not be reordered with any speculative LOADS or STORES from 821 * work->current_func, which is executed afterwards. This possible 822 * reordering can lead to a missed execution on attempt to queue 823 * the same @work. E.g. consider this case: 824 * 825 * CPU#0 CPU#1 826 * ---------------------------- -------------------------------- 827 * 828 * 1 STORE event_indicated 829 * 2 queue_work_on() { 830 * 3 test_and_set_bit(PENDING) 831 * 4 } set_..._and_clear_pending() { 832 * 5 set_work_data() # clear bit 833 * 6 smp_mb() 834 * 7 work->current_func() { 835 * 8 LOAD event_indicated 836 * } 837 * 838 * Without an explicit full barrier speculative LOAD on line 8 can 839 * be executed before CPU#0 does STORE on line 1. If that happens, 840 * CPU#0 observes the PENDING bit is still set and new execution of 841 * a @work is not queued in a hope, that CPU#1 will eventually 842 * finish the queued @work. Meanwhile CPU#1 does not see 843 * event_indicated is set, because speculative LOAD was executed 844 * before actual STORE. 845 */ 846 smp_mb(); 847 } 848 849 static inline struct pool_workqueue *work_struct_pwq(unsigned long data) 850 { 851 return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK); 852 } 853 854 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 855 { 856 unsigned long data = atomic_long_read(&work->data); 857 858 if (data & WORK_STRUCT_PWQ) 859 return work_struct_pwq(data); 860 else 861 return NULL; 862 } 863 864 /** 865 * get_work_pool - return the worker_pool a given work was associated with 866 * @work: the work item of interest 867 * 868 * Pools are created and destroyed under wq_pool_mutex, and allows read 869 * access under RCU read lock. As such, this function should be 870 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 871 * 872 * All fields of the returned pool are accessible as long as the above 873 * mentioned locking is in effect. If the returned pool needs to be used 874 * beyond the critical section, the caller is responsible for ensuring the 875 * returned pool is and stays online. 876 * 877 * Return: The worker_pool @work was last associated with. %NULL if none. 878 */ 879 static struct worker_pool *get_work_pool(struct work_struct *work) 880 { 881 unsigned long data = atomic_long_read(&work->data); 882 int pool_id; 883 884 assert_rcu_or_pool_mutex(); 885 886 if (data & WORK_STRUCT_PWQ) 887 return work_struct_pwq(data)->pool; 888 889 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 890 if (pool_id == WORK_OFFQ_POOL_NONE) 891 return NULL; 892 893 return idr_find(&worker_pool_idr, pool_id); 894 } 895 896 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits) 897 { 898 return (v >> shift) & ((1U << bits) - 1); 899 } 900 901 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data) 902 { 903 WARN_ON_ONCE(data & WORK_STRUCT_PWQ); 904 905 offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT, 906 WORK_OFFQ_POOL_BITS); 907 offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT, 908 WORK_OFFQ_DISABLE_BITS); 909 offqd->flags = data & WORK_OFFQ_FLAG_MASK; 910 } 911 912 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd) 913 { 914 return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) | 915 ((unsigned long)offqd->flags); 916 } 917 918 /* 919 * Policy functions. These define the policies on how the global worker 920 * pools are managed. Unless noted otherwise, these functions assume that 921 * they're being called with pool->lock held. 922 */ 923 924 /* 925 * Need to wake up a worker? Called from anything but currently 926 * running workers. 927 * 928 * Note that, because unbound workers never contribute to nr_running, this 929 * function will always return %true for unbound pools as long as the 930 * worklist isn't empty. 931 */ 932 static bool need_more_worker(struct worker_pool *pool) 933 { 934 return !list_empty(&pool->worklist) && !pool->nr_running; 935 } 936 937 /* Can I start working? Called from busy but !running workers. */ 938 static bool may_start_working(struct worker_pool *pool) 939 { 940 return pool->nr_idle; 941 } 942 943 /* Do I need to keep working? Called from currently running workers. */ 944 static bool keep_working(struct worker_pool *pool) 945 { 946 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 947 } 948 949 /* Do we need a new worker? Called from manager. */ 950 static bool need_to_create_worker(struct worker_pool *pool) 951 { 952 return need_more_worker(pool) && !may_start_working(pool); 953 } 954 955 /* Do we have too many workers and should some go away? */ 956 static bool too_many_workers(struct worker_pool *pool) 957 { 958 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 959 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 960 int nr_busy = pool->nr_workers - nr_idle; 961 962 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 963 } 964 965 /** 966 * worker_set_flags - set worker flags and adjust nr_running accordingly 967 * @worker: self 968 * @flags: flags to set 969 * 970 * Set @flags in @worker->flags and adjust nr_running accordingly. 971 */ 972 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 973 { 974 struct worker_pool *pool = worker->pool; 975 976 lockdep_assert_held(&pool->lock); 977 978 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 979 if ((flags & WORKER_NOT_RUNNING) && 980 !(worker->flags & WORKER_NOT_RUNNING)) { 981 pool->nr_running--; 982 } 983 984 worker->flags |= flags; 985 } 986 987 /** 988 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 989 * @worker: self 990 * @flags: flags to clear 991 * 992 * Clear @flags in @worker->flags and adjust nr_running accordingly. 993 */ 994 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 995 { 996 struct worker_pool *pool = worker->pool; 997 unsigned int oflags = worker->flags; 998 999 lockdep_assert_held(&pool->lock); 1000 1001 worker->flags &= ~flags; 1002 1003 /* 1004 * If transitioning out of NOT_RUNNING, increment nr_running. Note 1005 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 1006 * of multiple flags, not a single flag. 1007 */ 1008 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 1009 if (!(worker->flags & WORKER_NOT_RUNNING)) 1010 pool->nr_running++; 1011 } 1012 1013 /* Return the first idle worker. Called with pool->lock held. */ 1014 static struct worker *first_idle_worker(struct worker_pool *pool) 1015 { 1016 if (unlikely(list_empty(&pool->idle_list))) 1017 return NULL; 1018 1019 return list_first_entry(&pool->idle_list, struct worker, entry); 1020 } 1021 1022 /** 1023 * worker_enter_idle - enter idle state 1024 * @worker: worker which is entering idle state 1025 * 1026 * @worker is entering idle state. Update stats and idle timer if 1027 * necessary. 1028 * 1029 * LOCKING: 1030 * raw_spin_lock_irq(pool->lock). 1031 */ 1032 static void worker_enter_idle(struct worker *worker) 1033 { 1034 struct worker_pool *pool = worker->pool; 1035 1036 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1037 WARN_ON_ONCE(!list_empty(&worker->entry) && 1038 (worker->hentry.next || worker->hentry.pprev))) 1039 return; 1040 1041 /* can't use worker_set_flags(), also called from create_worker() */ 1042 worker->flags |= WORKER_IDLE; 1043 pool->nr_idle++; 1044 worker->last_active = jiffies; 1045 1046 /* idle_list is LIFO */ 1047 list_add(&worker->entry, &pool->idle_list); 1048 1049 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1050 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1051 1052 /* Sanity check nr_running. */ 1053 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 1054 } 1055 1056 /** 1057 * worker_leave_idle - leave idle state 1058 * @worker: worker which is leaving idle state 1059 * 1060 * @worker is leaving idle state. Update stats. 1061 * 1062 * LOCKING: 1063 * raw_spin_lock_irq(pool->lock). 1064 */ 1065 static void worker_leave_idle(struct worker *worker) 1066 { 1067 struct worker_pool *pool = worker->pool; 1068 1069 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1070 return; 1071 worker_clr_flags(worker, WORKER_IDLE); 1072 pool->nr_idle--; 1073 list_del_init(&worker->entry); 1074 } 1075 1076 /** 1077 * find_worker_executing_work - find worker which is executing a work 1078 * @pool: pool of interest 1079 * @work: work to find worker for 1080 * 1081 * Find a worker which is executing @work on @pool by searching 1082 * @pool->busy_hash which is keyed by the address of @work. For a worker 1083 * to match, its current execution should match the address of @work and 1084 * its work function. This is to avoid unwanted dependency between 1085 * unrelated work executions through a work item being recycled while still 1086 * being executed. 1087 * 1088 * This is a bit tricky. A work item may be freed once its execution 1089 * starts and nothing prevents the freed area from being recycled for 1090 * another work item. If the same work item address ends up being reused 1091 * before the original execution finishes, workqueue will identify the 1092 * recycled work item as currently executing and make it wait until the 1093 * current execution finishes, introducing an unwanted dependency. 1094 * 1095 * This function checks the work item address and work function to avoid 1096 * false positives. Note that this isn't complete as one may construct a 1097 * work function which can introduce dependency onto itself through a 1098 * recycled work item. Well, if somebody wants to shoot oneself in the 1099 * foot that badly, there's only so much we can do, and if such deadlock 1100 * actually occurs, it should be easy to locate the culprit work function. 1101 * 1102 * CONTEXT: 1103 * raw_spin_lock_irq(pool->lock). 1104 * 1105 * Return: 1106 * Pointer to worker which is executing @work if found, %NULL 1107 * otherwise. 1108 */ 1109 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1110 struct work_struct *work) 1111 { 1112 struct worker *worker; 1113 1114 hash_for_each_possible(pool->busy_hash, worker, hentry, 1115 (unsigned long)work) 1116 if (worker->current_work == work && 1117 worker->current_func == work->func) 1118 return worker; 1119 1120 return NULL; 1121 } 1122 1123 /** 1124 * move_linked_works - move linked works to a list 1125 * @work: start of series of works to be scheduled 1126 * @head: target list to append @work to 1127 * @nextp: out parameter for nested worklist walking 1128 * 1129 * Schedule linked works starting from @work to @head. Work series to be 1130 * scheduled starts at @work and includes any consecutive work with 1131 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on 1132 * @nextp. 1133 * 1134 * CONTEXT: 1135 * raw_spin_lock_irq(pool->lock). 1136 */ 1137 static void move_linked_works(struct work_struct *work, struct list_head *head, 1138 struct work_struct **nextp) 1139 { 1140 struct work_struct *n; 1141 1142 /* 1143 * Linked worklist will always end before the end of the list, 1144 * use NULL for list head. 1145 */ 1146 list_for_each_entry_safe_from(work, n, NULL, entry) { 1147 list_move_tail(&work->entry, head); 1148 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1149 break; 1150 } 1151 1152 /* 1153 * If we're already inside safe list traversal and have moved 1154 * multiple works to the scheduled queue, the next position 1155 * needs to be updated. 1156 */ 1157 if (nextp) 1158 *nextp = n; 1159 } 1160 1161 /** 1162 * assign_work - assign a work item and its linked work items to a worker 1163 * @work: work to assign 1164 * @worker: worker to assign to 1165 * @nextp: out parameter for nested worklist walking 1166 * 1167 * Assign @work and its linked work items to @worker. If @work is already being 1168 * executed by another worker in the same pool, it'll be punted there. 1169 * 1170 * If @nextp is not NULL, it's updated to point to the next work of the last 1171 * scheduled work. This allows assign_work() to be nested inside 1172 * list_for_each_entry_safe(). 1173 * 1174 * Returns %true if @work was successfully assigned to @worker. %false if @work 1175 * was punted to another worker already executing it. 1176 */ 1177 static bool assign_work(struct work_struct *work, struct worker *worker, 1178 struct work_struct **nextp) 1179 { 1180 struct worker_pool *pool = worker->pool; 1181 struct worker *collision; 1182 1183 lockdep_assert_held(&pool->lock); 1184 1185 /* 1186 * A single work shouldn't be executed concurrently by multiple workers. 1187 * __queue_work() ensures that @work doesn't jump to a different pool 1188 * while still running in the previous pool. Here, we should ensure that 1189 * @work is not executed concurrently by multiple workers from the same 1190 * pool. Check whether anyone is already processing the work. If so, 1191 * defer the work to the currently executing one. 1192 */ 1193 collision = find_worker_executing_work(pool, work); 1194 if (unlikely(collision)) { 1195 move_linked_works(work, &collision->scheduled, nextp); 1196 return false; 1197 } 1198 1199 move_linked_works(work, &worker->scheduled, nextp); 1200 return true; 1201 } 1202 1203 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool) 1204 { 1205 int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0; 1206 1207 return &per_cpu(bh_pool_irq_works, pool->cpu)[high]; 1208 } 1209 1210 static void kick_bh_pool(struct worker_pool *pool) 1211 { 1212 #ifdef CONFIG_SMP 1213 /* see drain_dead_softirq_workfn() for BH_DRAINING */ 1214 if (unlikely(pool->cpu != smp_processor_id() && 1215 !(pool->flags & POOL_BH_DRAINING))) { 1216 irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu); 1217 return; 1218 } 1219 #endif 1220 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 1221 raise_softirq_irqoff(HI_SOFTIRQ); 1222 else 1223 raise_softirq_irqoff(TASKLET_SOFTIRQ); 1224 } 1225 1226 /** 1227 * kick_pool - wake up an idle worker if necessary 1228 * @pool: pool to kick 1229 * 1230 * @pool may have pending work items. Wake up worker if necessary. Returns 1231 * whether a worker was woken up. 1232 */ 1233 static bool kick_pool(struct worker_pool *pool) 1234 { 1235 struct worker *worker = first_idle_worker(pool); 1236 struct task_struct *p; 1237 1238 lockdep_assert_held(&pool->lock); 1239 1240 if (!need_more_worker(pool) || !worker) 1241 return false; 1242 1243 if (pool->flags & POOL_BH) { 1244 kick_bh_pool(pool); 1245 return true; 1246 } 1247 1248 p = worker->task; 1249 1250 #ifdef CONFIG_SMP 1251 /* 1252 * Idle @worker is about to execute @work and waking up provides an 1253 * opportunity to migrate @worker at a lower cost by setting the task's 1254 * wake_cpu field. Let's see if we want to move @worker to improve 1255 * execution locality. 1256 * 1257 * We're waking the worker that went idle the latest and there's some 1258 * chance that @worker is marked idle but hasn't gone off CPU yet. If 1259 * so, setting the wake_cpu won't do anything. As this is a best-effort 1260 * optimization and the race window is narrow, let's leave as-is for 1261 * now. If this becomes pronounced, we can skip over workers which are 1262 * still on cpu when picking an idle worker. 1263 * 1264 * If @pool has non-strict affinity, @worker might have ended up outside 1265 * its affinity scope. Repatriate. 1266 */ 1267 if (!pool->attrs->affn_strict && 1268 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) { 1269 struct work_struct *work = list_first_entry(&pool->worklist, 1270 struct work_struct, entry); 1271 int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask, 1272 cpu_online_mask); 1273 if (wake_cpu < nr_cpu_ids) { 1274 p->wake_cpu = wake_cpu; 1275 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++; 1276 } 1277 } 1278 #endif 1279 wake_up_process(p); 1280 return true; 1281 } 1282 1283 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 1284 1285 /* 1286 * Concurrency-managed per-cpu work items that hog CPU for longer than 1287 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, 1288 * which prevents them from stalling other concurrency-managed work items. If a 1289 * work function keeps triggering this mechanism, it's likely that the work item 1290 * should be using an unbound workqueue instead. 1291 * 1292 * wq_cpu_intensive_report() tracks work functions which trigger such conditions 1293 * and report them so that they can be examined and converted to use unbound 1294 * workqueues as appropriate. To avoid flooding the console, each violating work 1295 * function is tracked and reported with exponential backoff. 1296 */ 1297 #define WCI_MAX_ENTS 128 1298 1299 struct wci_ent { 1300 work_func_t func; 1301 atomic64_t cnt; 1302 struct hlist_node hash_node; 1303 }; 1304 1305 static struct wci_ent wci_ents[WCI_MAX_ENTS]; 1306 static int wci_nr_ents; 1307 static DEFINE_RAW_SPINLOCK(wci_lock); 1308 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); 1309 1310 static struct wci_ent *wci_find_ent(work_func_t func) 1311 { 1312 struct wci_ent *ent; 1313 1314 hash_for_each_possible_rcu(wci_hash, ent, hash_node, 1315 (unsigned long)func) { 1316 if (ent->func == func) 1317 return ent; 1318 } 1319 return NULL; 1320 } 1321 1322 static void wq_cpu_intensive_report(work_func_t func) 1323 { 1324 struct wci_ent *ent; 1325 1326 restart: 1327 ent = wci_find_ent(func); 1328 if (ent) { 1329 u64 cnt; 1330 1331 /* 1332 * Start reporting from the warning_thresh and back off 1333 * exponentially. 1334 */ 1335 cnt = atomic64_inc_return_relaxed(&ent->cnt); 1336 if (wq_cpu_intensive_warning_thresh && 1337 cnt >= wq_cpu_intensive_warning_thresh && 1338 is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh)) 1339 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", 1340 ent->func, wq_cpu_intensive_thresh_us, 1341 atomic64_read(&ent->cnt)); 1342 return; 1343 } 1344 1345 /* 1346 * @func is a new violation. Allocate a new entry for it. If wcn_ents[] 1347 * is exhausted, something went really wrong and we probably made enough 1348 * noise already. 1349 */ 1350 if (wci_nr_ents >= WCI_MAX_ENTS) 1351 return; 1352 1353 raw_spin_lock(&wci_lock); 1354 1355 if (wci_nr_ents >= WCI_MAX_ENTS) { 1356 raw_spin_unlock(&wci_lock); 1357 return; 1358 } 1359 1360 if (wci_find_ent(func)) { 1361 raw_spin_unlock(&wci_lock); 1362 goto restart; 1363 } 1364 1365 ent = &wci_ents[wci_nr_ents++]; 1366 ent->func = func; 1367 atomic64_set(&ent->cnt, 0); 1368 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); 1369 1370 raw_spin_unlock(&wci_lock); 1371 1372 goto restart; 1373 } 1374 1375 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1376 static void wq_cpu_intensive_report(work_func_t func) {} 1377 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1378 1379 /** 1380 * wq_worker_running - a worker is running again 1381 * @task: task waking up 1382 * 1383 * This function is called when a worker returns from schedule() 1384 */ 1385 void wq_worker_running(struct task_struct *task) 1386 { 1387 struct worker *worker = kthread_data(task); 1388 1389 if (!READ_ONCE(worker->sleeping)) 1390 return; 1391 1392 /* 1393 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 1394 * and the nr_running increment below, we may ruin the nr_running reset 1395 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 1396 * pool. Protect against such race. 1397 */ 1398 preempt_disable(); 1399 if (!(worker->flags & WORKER_NOT_RUNNING)) 1400 worker->pool->nr_running++; 1401 preempt_enable(); 1402 1403 /* 1404 * CPU intensive auto-detection cares about how long a work item hogged 1405 * CPU without sleeping. Reset the starting timestamp on wakeup. 1406 */ 1407 worker->current_at = worker->task->se.sum_exec_runtime; 1408 1409 WRITE_ONCE(worker->sleeping, 0); 1410 } 1411 1412 /** 1413 * wq_worker_sleeping - a worker is going to sleep 1414 * @task: task going to sleep 1415 * 1416 * This function is called from schedule() when a busy worker is 1417 * going to sleep. 1418 */ 1419 void wq_worker_sleeping(struct task_struct *task) 1420 { 1421 struct worker *worker = kthread_data(task); 1422 struct worker_pool *pool; 1423 1424 /* 1425 * Rescuers, which may not have all the fields set up like normal 1426 * workers, also reach here, let's not access anything before 1427 * checking NOT_RUNNING. 1428 */ 1429 if (worker->flags & WORKER_NOT_RUNNING) 1430 return; 1431 1432 pool = worker->pool; 1433 1434 /* Return if preempted before wq_worker_running() was reached */ 1435 if (READ_ONCE(worker->sleeping)) 1436 return; 1437 1438 WRITE_ONCE(worker->sleeping, 1); 1439 raw_spin_lock_irq(&pool->lock); 1440 1441 /* 1442 * Recheck in case unbind_workers() preempted us. We don't 1443 * want to decrement nr_running after the worker is unbound 1444 * and nr_running has been reset. 1445 */ 1446 if (worker->flags & WORKER_NOT_RUNNING) { 1447 raw_spin_unlock_irq(&pool->lock); 1448 return; 1449 } 1450 1451 pool->nr_running--; 1452 if (kick_pool(pool)) 1453 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1454 1455 raw_spin_unlock_irq(&pool->lock); 1456 } 1457 1458 /** 1459 * wq_worker_tick - a scheduler tick occurred while a kworker is running 1460 * @task: task currently running 1461 * 1462 * Called from sched_tick(). We're in the IRQ context and the current 1463 * worker's fields which follow the 'K' locking rule can be accessed safely. 1464 */ 1465 void wq_worker_tick(struct task_struct *task) 1466 { 1467 struct worker *worker = kthread_data(task); 1468 struct pool_workqueue *pwq = worker->current_pwq; 1469 struct worker_pool *pool = worker->pool; 1470 1471 if (!pwq) 1472 return; 1473 1474 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; 1475 1476 if (!wq_cpu_intensive_thresh_us) 1477 return; 1478 1479 /* 1480 * If the current worker is concurrency managed and hogged the CPU for 1481 * longer than wq_cpu_intensive_thresh_us, it's automatically marked 1482 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. 1483 * 1484 * Set @worker->sleeping means that @worker is in the process of 1485 * switching out voluntarily and won't be contributing to 1486 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also 1487 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to 1488 * double decrements. The task is releasing the CPU anyway. Let's skip. 1489 * We probably want to make this prettier in the future. 1490 */ 1491 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || 1492 worker->task->se.sum_exec_runtime - worker->current_at < 1493 wq_cpu_intensive_thresh_us * NSEC_PER_USEC) 1494 return; 1495 1496 raw_spin_lock(&pool->lock); 1497 1498 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1499 wq_cpu_intensive_report(worker->current_func); 1500 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; 1501 1502 if (kick_pool(pool)) 1503 pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1504 1505 raw_spin_unlock(&pool->lock); 1506 } 1507 1508 /** 1509 * wq_worker_last_func - retrieve worker's last work function 1510 * @task: Task to retrieve last work function of. 1511 * 1512 * Determine the last function a worker executed. This is called from 1513 * the scheduler to get a worker's last known identity. 1514 * 1515 * CONTEXT: 1516 * raw_spin_lock_irq(rq->lock) 1517 * 1518 * This function is called during schedule() when a kworker is going 1519 * to sleep. It's used by psi to identify aggregation workers during 1520 * dequeuing, to allow periodic aggregation to shut-off when that 1521 * worker is the last task in the system or cgroup to go to sleep. 1522 * 1523 * As this function doesn't involve any workqueue-related locking, it 1524 * only returns stable values when called from inside the scheduler's 1525 * queuing and dequeuing paths, when @task, which must be a kworker, 1526 * is guaranteed to not be processing any works. 1527 * 1528 * Return: 1529 * The last work function %current executed as a worker, NULL if it 1530 * hasn't executed any work yet. 1531 */ 1532 work_func_t wq_worker_last_func(struct task_struct *task) 1533 { 1534 struct worker *worker = kthread_data(task); 1535 1536 return worker->last_func; 1537 } 1538 1539 /** 1540 * wq_node_nr_active - Determine wq_node_nr_active to use 1541 * @wq: workqueue of interest 1542 * @node: NUMA node, can be %NUMA_NO_NODE 1543 * 1544 * Determine wq_node_nr_active to use for @wq on @node. Returns: 1545 * 1546 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active. 1547 * 1548 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE. 1549 * 1550 * - Otherwise, node_nr_active[@node]. 1551 */ 1552 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq, 1553 int node) 1554 { 1555 if (!(wq->flags & WQ_UNBOUND)) 1556 return NULL; 1557 1558 if (node == NUMA_NO_NODE) 1559 node = nr_node_ids; 1560 1561 return wq->node_nr_active[node]; 1562 } 1563 1564 /** 1565 * wq_update_node_max_active - Update per-node max_actives to use 1566 * @wq: workqueue to update 1567 * @off_cpu: CPU that's going down, -1 if a CPU is not going down 1568 * 1569 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is 1570 * distributed among nodes according to the proportions of numbers of online 1571 * cpus. The result is always between @wq->min_active and max_active. 1572 */ 1573 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu) 1574 { 1575 struct cpumask *effective = unbound_effective_cpumask(wq); 1576 int min_active = READ_ONCE(wq->min_active); 1577 int max_active = READ_ONCE(wq->max_active); 1578 int total_cpus, node; 1579 1580 lockdep_assert_held(&wq->mutex); 1581 1582 if (!wq_topo_initialized) 1583 return; 1584 1585 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective)) 1586 off_cpu = -1; 1587 1588 total_cpus = cpumask_weight_and(effective, cpu_online_mask); 1589 if (off_cpu >= 0) 1590 total_cpus--; 1591 1592 /* If all CPUs of the wq get offline, use the default values */ 1593 if (unlikely(!total_cpus)) { 1594 for_each_node(node) 1595 wq_node_nr_active(wq, node)->max = min_active; 1596 1597 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; 1598 return; 1599 } 1600 1601 for_each_node(node) { 1602 int node_cpus; 1603 1604 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node)); 1605 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node) 1606 node_cpus--; 1607 1608 wq_node_nr_active(wq, node)->max = 1609 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus), 1610 min_active, max_active); 1611 } 1612 1613 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; 1614 } 1615 1616 /** 1617 * get_pwq - get an extra reference on the specified pool_workqueue 1618 * @pwq: pool_workqueue to get 1619 * 1620 * Obtain an extra reference on @pwq. The caller should guarantee that 1621 * @pwq has positive refcnt and be holding the matching pool->lock. 1622 */ 1623 static void get_pwq(struct pool_workqueue *pwq) 1624 { 1625 lockdep_assert_held(&pwq->pool->lock); 1626 WARN_ON_ONCE(pwq->refcnt <= 0); 1627 pwq->refcnt++; 1628 } 1629 1630 /** 1631 * put_pwq - put a pool_workqueue reference 1632 * @pwq: pool_workqueue to put 1633 * 1634 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1635 * destruction. The caller should be holding the matching pool->lock. 1636 */ 1637 static void put_pwq(struct pool_workqueue *pwq) 1638 { 1639 lockdep_assert_held(&pwq->pool->lock); 1640 if (likely(--pwq->refcnt)) 1641 return; 1642 /* 1643 * @pwq can't be released under pool->lock, bounce to a dedicated 1644 * kthread_worker to avoid A-A deadlocks. 1645 */ 1646 kthread_queue_work(pwq_release_worker, &pwq->release_work); 1647 } 1648 1649 /** 1650 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1651 * @pwq: pool_workqueue to put (can be %NULL) 1652 * 1653 * put_pwq() with locking. This function also allows %NULL @pwq. 1654 */ 1655 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1656 { 1657 if (pwq) { 1658 /* 1659 * As both pwqs and pools are RCU protected, the 1660 * following lock operations are safe. 1661 */ 1662 raw_spin_lock_irq(&pwq->pool->lock); 1663 put_pwq(pwq); 1664 raw_spin_unlock_irq(&pwq->pool->lock); 1665 } 1666 } 1667 1668 static bool pwq_is_empty(struct pool_workqueue *pwq) 1669 { 1670 return !pwq->nr_active && list_empty(&pwq->inactive_works); 1671 } 1672 1673 static void __pwq_activate_work(struct pool_workqueue *pwq, 1674 struct work_struct *work) 1675 { 1676 unsigned long *wdb = work_data_bits(work); 1677 1678 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE)); 1679 trace_workqueue_activate_work(work); 1680 if (list_empty(&pwq->pool->worklist)) 1681 pwq->pool->watchdog_ts = jiffies; 1682 move_linked_works(work, &pwq->pool->worklist, NULL); 1683 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb); 1684 } 1685 1686 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna) 1687 { 1688 int max = READ_ONCE(nna->max); 1689 1690 while (true) { 1691 int old, tmp; 1692 1693 old = atomic_read(&nna->nr); 1694 if (old >= max) 1695 return false; 1696 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1); 1697 if (tmp == old) 1698 return true; 1699 } 1700 } 1701 1702 /** 1703 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq 1704 * @pwq: pool_workqueue of interest 1705 * @fill: max_active may have increased, try to increase concurrency level 1706 * 1707 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is 1708 * successfully obtained. %false otherwise. 1709 */ 1710 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill) 1711 { 1712 struct workqueue_struct *wq = pwq->wq; 1713 struct worker_pool *pool = pwq->pool; 1714 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node); 1715 bool obtained = false; 1716 1717 lockdep_assert_held(&pool->lock); 1718 1719 if (!nna) { 1720 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */ 1721 obtained = pwq->nr_active < READ_ONCE(wq->max_active); 1722 goto out; 1723 } 1724 1725 if (unlikely(pwq->plugged)) 1726 return false; 1727 1728 /* 1729 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is 1730 * already waiting on $nna, pwq_dec_nr_active() will maintain the 1731 * concurrency level. Don't jump the line. 1732 * 1733 * We need to ignore the pending test after max_active has increased as 1734 * pwq_dec_nr_active() can only maintain the concurrency level but not 1735 * increase it. This is indicated by @fill. 1736 */ 1737 if (!list_empty(&pwq->pending_node) && likely(!fill)) 1738 goto out; 1739 1740 obtained = tryinc_node_nr_active(nna); 1741 if (obtained) 1742 goto out; 1743 1744 /* 1745 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs 1746 * and try again. The smp_mb() is paired with the implied memory barrier 1747 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either 1748 * we see the decremented $nna->nr or they see non-empty 1749 * $nna->pending_pwqs. 1750 */ 1751 raw_spin_lock(&nna->lock); 1752 1753 if (list_empty(&pwq->pending_node)) 1754 list_add_tail(&pwq->pending_node, &nna->pending_pwqs); 1755 else if (likely(!fill)) 1756 goto out_unlock; 1757 1758 smp_mb(); 1759 1760 obtained = tryinc_node_nr_active(nna); 1761 1762 /* 1763 * If @fill, @pwq might have already been pending. Being spuriously 1764 * pending in cold paths doesn't affect anything. Let's leave it be. 1765 */ 1766 if (obtained && likely(!fill)) 1767 list_del_init(&pwq->pending_node); 1768 1769 out_unlock: 1770 raw_spin_unlock(&nna->lock); 1771 out: 1772 if (obtained) 1773 pwq->nr_active++; 1774 return obtained; 1775 } 1776 1777 /** 1778 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq 1779 * @pwq: pool_workqueue of interest 1780 * @fill: max_active may have increased, try to increase concurrency level 1781 * 1782 * Activate the first inactive work item of @pwq if available and allowed by 1783 * max_active limit. 1784 * 1785 * Returns %true if an inactive work item has been activated. %false if no 1786 * inactive work item is found or max_active limit is reached. 1787 */ 1788 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill) 1789 { 1790 struct work_struct *work = 1791 list_first_entry_or_null(&pwq->inactive_works, 1792 struct work_struct, entry); 1793 1794 if (work && pwq_tryinc_nr_active(pwq, fill)) { 1795 __pwq_activate_work(pwq, work); 1796 return true; 1797 } else { 1798 return false; 1799 } 1800 } 1801 1802 /** 1803 * unplug_oldest_pwq - unplug the oldest pool_workqueue 1804 * @wq: workqueue_struct where its oldest pwq is to be unplugged 1805 * 1806 * This function should only be called for ordered workqueues where only the 1807 * oldest pwq is unplugged, the others are plugged to suspend execution to 1808 * ensure proper work item ordering:: 1809 * 1810 * dfl_pwq --------------+ [P] - plugged 1811 * | 1812 * v 1813 * pwqs -> A -> B [P] -> C [P] (newest) 1814 * | | | 1815 * 1 3 5 1816 * | | | 1817 * 2 4 6 1818 * 1819 * When the oldest pwq is drained and removed, this function should be called 1820 * to unplug the next oldest one to start its work item execution. Note that 1821 * pwq's are linked into wq->pwqs with the oldest first, so the first one in 1822 * the list is the oldest. 1823 */ 1824 static void unplug_oldest_pwq(struct workqueue_struct *wq) 1825 { 1826 struct pool_workqueue *pwq; 1827 1828 lockdep_assert_held(&wq->mutex); 1829 1830 /* Caller should make sure that pwqs isn't empty before calling */ 1831 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue, 1832 pwqs_node); 1833 raw_spin_lock_irq(&pwq->pool->lock); 1834 if (pwq->plugged) { 1835 pwq->plugged = false; 1836 if (pwq_activate_first_inactive(pwq, true)) 1837 kick_pool(pwq->pool); 1838 } 1839 raw_spin_unlock_irq(&pwq->pool->lock); 1840 } 1841 1842 /** 1843 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active 1844 * @nna: wq_node_nr_active to activate a pending pwq for 1845 * @caller_pool: worker_pool the caller is locking 1846 * 1847 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked. 1848 * @caller_pool may be unlocked and relocked to lock other worker_pools. 1849 */ 1850 static void node_activate_pending_pwq(struct wq_node_nr_active *nna, 1851 struct worker_pool *caller_pool) 1852 { 1853 struct worker_pool *locked_pool = caller_pool; 1854 struct pool_workqueue *pwq; 1855 struct work_struct *work; 1856 1857 lockdep_assert_held(&caller_pool->lock); 1858 1859 raw_spin_lock(&nna->lock); 1860 retry: 1861 pwq = list_first_entry_or_null(&nna->pending_pwqs, 1862 struct pool_workqueue, pending_node); 1863 if (!pwq) 1864 goto out_unlock; 1865 1866 /* 1867 * If @pwq is for a different pool than @locked_pool, we need to lock 1868 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock 1869 * / lock dance. For that, we also need to release @nna->lock as it's 1870 * nested inside pool locks. 1871 */ 1872 if (pwq->pool != locked_pool) { 1873 raw_spin_unlock(&locked_pool->lock); 1874 locked_pool = pwq->pool; 1875 if (!raw_spin_trylock(&locked_pool->lock)) { 1876 raw_spin_unlock(&nna->lock); 1877 raw_spin_lock(&locked_pool->lock); 1878 raw_spin_lock(&nna->lock); 1879 goto retry; 1880 } 1881 } 1882 1883 /* 1884 * $pwq may not have any inactive work items due to e.g. cancellations. 1885 * Drop it from pending_pwqs and see if there's another one. 1886 */ 1887 work = list_first_entry_or_null(&pwq->inactive_works, 1888 struct work_struct, entry); 1889 if (!work) { 1890 list_del_init(&pwq->pending_node); 1891 goto retry; 1892 } 1893 1894 /* 1895 * Acquire an nr_active count and activate the inactive work item. If 1896 * $pwq still has inactive work items, rotate it to the end of the 1897 * pending_pwqs so that we round-robin through them. This means that 1898 * inactive work items are not activated in queueing order which is fine 1899 * given that there has never been any ordering across different pwqs. 1900 */ 1901 if (likely(tryinc_node_nr_active(nna))) { 1902 pwq->nr_active++; 1903 __pwq_activate_work(pwq, work); 1904 1905 if (list_empty(&pwq->inactive_works)) 1906 list_del_init(&pwq->pending_node); 1907 else 1908 list_move_tail(&pwq->pending_node, &nna->pending_pwqs); 1909 1910 /* if activating a foreign pool, make sure it's running */ 1911 if (pwq->pool != caller_pool) 1912 kick_pool(pwq->pool); 1913 } 1914 1915 out_unlock: 1916 raw_spin_unlock(&nna->lock); 1917 if (locked_pool != caller_pool) { 1918 raw_spin_unlock(&locked_pool->lock); 1919 raw_spin_lock(&caller_pool->lock); 1920 } 1921 } 1922 1923 /** 1924 * pwq_dec_nr_active - Retire an active count 1925 * @pwq: pool_workqueue of interest 1926 * 1927 * Decrement @pwq's nr_active and try to activate the first inactive work item. 1928 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock. 1929 */ 1930 static void pwq_dec_nr_active(struct pool_workqueue *pwq) 1931 { 1932 struct worker_pool *pool = pwq->pool; 1933 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node); 1934 1935 lockdep_assert_held(&pool->lock); 1936 1937 /* 1938 * @pwq->nr_active should be decremented for both percpu and unbound 1939 * workqueues. 1940 */ 1941 pwq->nr_active--; 1942 1943 /* 1944 * For a percpu workqueue, it's simple. Just need to kick the first 1945 * inactive work item on @pwq itself. 1946 */ 1947 if (!nna) { 1948 pwq_activate_first_inactive(pwq, false); 1949 return; 1950 } 1951 1952 /* 1953 * If @pwq is for an unbound workqueue, it's more complicated because 1954 * multiple pwqs and pools may be sharing the nr_active count. When a 1955 * pwq needs to wait for an nr_active count, it puts itself on 1956 * $nna->pending_pwqs. The following atomic_dec_return()'s implied 1957 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to 1958 * guarantee that either we see non-empty pending_pwqs or they see 1959 * decremented $nna->nr. 1960 * 1961 * $nna->max may change as CPUs come online/offline and @pwq->wq's 1962 * max_active gets updated. However, it is guaranteed to be equal to or 1963 * larger than @pwq->wq->min_active which is above zero unless freezing. 1964 * This maintains the forward progress guarantee. 1965 */ 1966 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max)) 1967 return; 1968 1969 if (!list_empty(&nna->pending_pwqs)) 1970 node_activate_pending_pwq(nna, pool); 1971 } 1972 1973 /** 1974 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1975 * @pwq: pwq of interest 1976 * @work_data: work_data of work which left the queue 1977 * 1978 * A work either has completed or is removed from pending queue, 1979 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1980 * 1981 * NOTE: 1982 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock 1983 * and thus should be called after all other state updates for the in-flight 1984 * work item is complete. 1985 * 1986 * CONTEXT: 1987 * raw_spin_lock_irq(pool->lock). 1988 */ 1989 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1990 { 1991 int color = get_work_color(work_data); 1992 1993 if (!(work_data & WORK_STRUCT_INACTIVE)) 1994 pwq_dec_nr_active(pwq); 1995 1996 pwq->nr_in_flight[color]--; 1997 1998 /* is flush in progress and are we at the flushing tip? */ 1999 if (likely(pwq->flush_color != color)) 2000 goto out_put; 2001 2002 /* are there still in-flight works? */ 2003 if (pwq->nr_in_flight[color]) 2004 goto out_put; 2005 2006 /* this pwq is done, clear flush_color */ 2007 pwq->flush_color = -1; 2008 2009 /* 2010 * If this was the last pwq, wake up the first flusher. It 2011 * will handle the rest. 2012 */ 2013 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 2014 complete(&pwq->wq->first_flusher->done); 2015 out_put: 2016 put_pwq(pwq); 2017 } 2018 2019 /** 2020 * try_to_grab_pending - steal work item from worklist and disable irq 2021 * @work: work item to steal 2022 * @cflags: %WORK_CANCEL_ flags 2023 * @irq_flags: place to store irq state 2024 * 2025 * Try to grab PENDING bit of @work. This function can handle @work in any 2026 * stable state - idle, on timer or on worklist. 2027 * 2028 * Return: 2029 * 2030 * ======== ================================================================ 2031 * 1 if @work was pending and we successfully stole PENDING 2032 * 0 if @work was idle and we claimed PENDING 2033 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 2034 * ======== ================================================================ 2035 * 2036 * Note: 2037 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 2038 * interrupted while holding PENDING and @work off queue, irq must be 2039 * disabled on entry. This, combined with delayed_work->timer being 2040 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 2041 * 2042 * On successful return, >= 0, irq is disabled and the caller is 2043 * responsible for releasing it using local_irq_restore(*@irq_flags). 2044 * 2045 * This function is safe to call from any context including IRQ handler. 2046 */ 2047 static int try_to_grab_pending(struct work_struct *work, u32 cflags, 2048 unsigned long *irq_flags) 2049 { 2050 struct worker_pool *pool; 2051 struct pool_workqueue *pwq; 2052 2053 local_irq_save(*irq_flags); 2054 2055 /* try to steal the timer if it exists */ 2056 if (cflags & WORK_CANCEL_DELAYED) { 2057 struct delayed_work *dwork = to_delayed_work(work); 2058 2059 /* 2060 * dwork->timer is irqsafe. If del_timer() fails, it's 2061 * guaranteed that the timer is not queued anywhere and not 2062 * running on the local CPU. 2063 */ 2064 if (likely(del_timer(&dwork->timer))) 2065 return 1; 2066 } 2067 2068 /* try to claim PENDING the normal way */ 2069 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2070 return 0; 2071 2072 rcu_read_lock(); 2073 /* 2074 * The queueing is in progress, or it is already queued. Try to 2075 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2076 */ 2077 pool = get_work_pool(work); 2078 if (!pool) 2079 goto fail; 2080 2081 raw_spin_lock(&pool->lock); 2082 /* 2083 * work->data is guaranteed to point to pwq only while the work 2084 * item is queued on pwq->wq, and both updating work->data to point 2085 * to pwq on queueing and to pool on dequeueing are done under 2086 * pwq->pool->lock. This in turn guarantees that, if work->data 2087 * points to pwq which is associated with a locked pool, the work 2088 * item is currently queued on that pool. 2089 */ 2090 pwq = get_work_pwq(work); 2091 if (pwq && pwq->pool == pool) { 2092 unsigned long work_data = *work_data_bits(work); 2093 2094 debug_work_deactivate(work); 2095 2096 /* 2097 * A cancelable inactive work item must be in the 2098 * pwq->inactive_works since a queued barrier can't be 2099 * canceled (see the comments in insert_wq_barrier()). 2100 * 2101 * An inactive work item cannot be deleted directly because 2102 * it might have linked barrier work items which, if left 2103 * on the inactive_works list, will confuse pwq->nr_active 2104 * management later on and cause stall. Move the linked 2105 * barrier work items to the worklist when deleting the grabbed 2106 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that 2107 * it doesn't participate in nr_active management in later 2108 * pwq_dec_nr_in_flight(). 2109 */ 2110 if (work_data & WORK_STRUCT_INACTIVE) 2111 move_linked_works(work, &pwq->pool->worklist, NULL); 2112 2113 list_del_init(&work->entry); 2114 2115 /* 2116 * work->data points to pwq iff queued. Let's point to pool. As 2117 * this destroys work->data needed by the next step, stash it. 2118 */ 2119 set_work_pool_and_keep_pending(work, pool->id, 2120 pool_offq_flags(pool)); 2121 2122 /* must be the last step, see the function comment */ 2123 pwq_dec_nr_in_flight(pwq, work_data); 2124 2125 raw_spin_unlock(&pool->lock); 2126 rcu_read_unlock(); 2127 return 1; 2128 } 2129 raw_spin_unlock(&pool->lock); 2130 fail: 2131 rcu_read_unlock(); 2132 local_irq_restore(*irq_flags); 2133 return -EAGAIN; 2134 } 2135 2136 /** 2137 * work_grab_pending - steal work item from worklist and disable irq 2138 * @work: work item to steal 2139 * @cflags: %WORK_CANCEL_ flags 2140 * @irq_flags: place to store IRQ state 2141 * 2142 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer 2143 * or on worklist. 2144 * 2145 * Can be called from any context. IRQ is disabled on return with IRQ state 2146 * stored in *@irq_flags. The caller is responsible for re-enabling it using 2147 * local_irq_restore(). 2148 * 2149 * Returns %true if @work was pending. %false if idle. 2150 */ 2151 static bool work_grab_pending(struct work_struct *work, u32 cflags, 2152 unsigned long *irq_flags) 2153 { 2154 int ret; 2155 2156 while (true) { 2157 ret = try_to_grab_pending(work, cflags, irq_flags); 2158 if (ret >= 0) 2159 return ret; 2160 cpu_relax(); 2161 } 2162 } 2163 2164 /** 2165 * insert_work - insert a work into a pool 2166 * @pwq: pwq @work belongs to 2167 * @work: work to insert 2168 * @head: insertion point 2169 * @extra_flags: extra WORK_STRUCT_* flags to set 2170 * 2171 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 2172 * work_struct flags. 2173 * 2174 * CONTEXT: 2175 * raw_spin_lock_irq(pool->lock). 2176 */ 2177 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 2178 struct list_head *head, unsigned int extra_flags) 2179 { 2180 debug_work_activate(work); 2181 2182 /* record the work call stack in order to print it in KASAN reports */ 2183 kasan_record_aux_stack(work); 2184 2185 /* we own @work, set data and link */ 2186 set_work_pwq(work, pwq, extra_flags); 2187 list_add_tail(&work->entry, head); 2188 get_pwq(pwq); 2189 } 2190 2191 /* 2192 * Test whether @work is being queued from another work executing on the 2193 * same workqueue. 2194 */ 2195 static bool is_chained_work(struct workqueue_struct *wq) 2196 { 2197 struct worker *worker; 2198 2199 worker = current_wq_worker(); 2200 /* 2201 * Return %true iff I'm a worker executing a work item on @wq. If 2202 * I'm @worker, it's safe to dereference it without locking. 2203 */ 2204 return worker && worker->current_pwq->wq == wq; 2205 } 2206 2207 /* 2208 * When queueing an unbound work item to a wq, prefer local CPU if allowed 2209 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 2210 * avoid perturbing sensitive tasks. 2211 */ 2212 static int wq_select_unbound_cpu(int cpu) 2213 { 2214 int new_cpu; 2215 2216 if (likely(!wq_debug_force_rr_cpu)) { 2217 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 2218 return cpu; 2219 } else { 2220 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 2221 } 2222 2223 new_cpu = __this_cpu_read(wq_rr_cpu_last); 2224 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 2225 if (unlikely(new_cpu >= nr_cpu_ids)) { 2226 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 2227 if (unlikely(new_cpu >= nr_cpu_ids)) 2228 return cpu; 2229 } 2230 __this_cpu_write(wq_rr_cpu_last, new_cpu); 2231 2232 return new_cpu; 2233 } 2234 2235 static void __queue_work(int cpu, struct workqueue_struct *wq, 2236 struct work_struct *work) 2237 { 2238 struct pool_workqueue *pwq; 2239 struct worker_pool *last_pool, *pool; 2240 unsigned int work_flags; 2241 unsigned int req_cpu = cpu; 2242 2243 /* 2244 * While a work item is PENDING && off queue, a task trying to 2245 * steal the PENDING will busy-loop waiting for it to either get 2246 * queued or lose PENDING. Grabbing PENDING and queueing should 2247 * happen with IRQ disabled. 2248 */ 2249 lockdep_assert_irqs_disabled(); 2250 2251 /* 2252 * For a draining wq, only works from the same workqueue are 2253 * allowed. The __WQ_DESTROYING helps to spot the issue that 2254 * queues a new work item to a wq after destroy_workqueue(wq). 2255 */ 2256 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 2257 WARN_ONCE(!is_chained_work(wq), "workqueue: cannot queue %ps on wq %s\n", 2258 work->func, wq->name))) { 2259 return; 2260 } 2261 rcu_read_lock(); 2262 retry: 2263 /* pwq which will be used unless @work is executing elsewhere */ 2264 if (req_cpu == WORK_CPU_UNBOUND) { 2265 if (wq->flags & WQ_UNBOUND) 2266 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 2267 else 2268 cpu = raw_smp_processor_id(); 2269 } 2270 2271 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu)); 2272 pool = pwq->pool; 2273 2274 /* 2275 * If @work was previously on a different pool, it might still be 2276 * running there, in which case the work needs to be queued on that 2277 * pool to guarantee non-reentrancy. 2278 * 2279 * For ordered workqueue, work items must be queued on the newest pwq 2280 * for accurate order management. Guaranteed order also guarantees 2281 * non-reentrancy. See the comments above unplug_oldest_pwq(). 2282 */ 2283 last_pool = get_work_pool(work); 2284 if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) { 2285 struct worker *worker; 2286 2287 raw_spin_lock(&last_pool->lock); 2288 2289 worker = find_worker_executing_work(last_pool, work); 2290 2291 if (worker && worker->current_pwq->wq == wq) { 2292 pwq = worker->current_pwq; 2293 pool = pwq->pool; 2294 WARN_ON_ONCE(pool != last_pool); 2295 } else { 2296 /* meh... not running there, queue here */ 2297 raw_spin_unlock(&last_pool->lock); 2298 raw_spin_lock(&pool->lock); 2299 } 2300 } else { 2301 raw_spin_lock(&pool->lock); 2302 } 2303 2304 /* 2305 * pwq is determined and locked. For unbound pools, we could have raced 2306 * with pwq release and it could already be dead. If its refcnt is zero, 2307 * repeat pwq selection. Note that unbound pwqs never die without 2308 * another pwq replacing it in cpu_pwq or while work items are executing 2309 * on it, so the retrying is guaranteed to make forward-progress. 2310 */ 2311 if (unlikely(!pwq->refcnt)) { 2312 if (wq->flags & WQ_UNBOUND) { 2313 raw_spin_unlock(&pool->lock); 2314 cpu_relax(); 2315 goto retry; 2316 } 2317 /* oops */ 2318 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 2319 wq->name, cpu); 2320 } 2321 2322 /* pwq determined, queue */ 2323 trace_workqueue_queue_work(req_cpu, pwq, work); 2324 2325 if (WARN_ON(!list_empty(&work->entry))) 2326 goto out; 2327 2328 pwq->nr_in_flight[pwq->work_color]++; 2329 work_flags = work_color_to_flags(pwq->work_color); 2330 2331 /* 2332 * Limit the number of concurrently active work items to max_active. 2333 * @work must also queue behind existing inactive work items to maintain 2334 * ordering when max_active changes. See wq_adjust_max_active(). 2335 */ 2336 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) { 2337 if (list_empty(&pool->worklist)) 2338 pool->watchdog_ts = jiffies; 2339 2340 trace_workqueue_activate_work(work); 2341 insert_work(pwq, work, &pool->worklist, work_flags); 2342 kick_pool(pool); 2343 } else { 2344 work_flags |= WORK_STRUCT_INACTIVE; 2345 insert_work(pwq, work, &pwq->inactive_works, work_flags); 2346 } 2347 2348 out: 2349 raw_spin_unlock(&pool->lock); 2350 rcu_read_unlock(); 2351 } 2352 2353 static bool clear_pending_if_disabled(struct work_struct *work) 2354 { 2355 unsigned long data = *work_data_bits(work); 2356 struct work_offq_data offqd; 2357 2358 if (likely((data & WORK_STRUCT_PWQ) || 2359 !(data & WORK_OFFQ_DISABLE_MASK))) 2360 return false; 2361 2362 work_offqd_unpack(&offqd, data); 2363 set_work_pool_and_clear_pending(work, offqd.pool_id, 2364 work_offqd_pack_flags(&offqd)); 2365 return true; 2366 } 2367 2368 /** 2369 * queue_work_on - queue work on specific cpu 2370 * @cpu: CPU number to execute work on 2371 * @wq: workqueue to use 2372 * @work: work to queue 2373 * 2374 * We queue the work to a specific CPU, the caller must ensure it 2375 * can't go away. Callers that fail to ensure that the specified 2376 * CPU cannot go away will execute on a randomly chosen CPU. 2377 * But note well that callers specifying a CPU that never has been 2378 * online will get a splat. 2379 * 2380 * Return: %false if @work was already on a queue, %true otherwise. 2381 */ 2382 bool queue_work_on(int cpu, struct workqueue_struct *wq, 2383 struct work_struct *work) 2384 { 2385 bool ret = false; 2386 unsigned long irq_flags; 2387 2388 local_irq_save(irq_flags); 2389 2390 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2391 !clear_pending_if_disabled(work)) { 2392 __queue_work(cpu, wq, work); 2393 ret = true; 2394 } 2395 2396 local_irq_restore(irq_flags); 2397 return ret; 2398 } 2399 EXPORT_SYMBOL(queue_work_on); 2400 2401 /** 2402 * select_numa_node_cpu - Select a CPU based on NUMA node 2403 * @node: NUMA node ID that we want to select a CPU from 2404 * 2405 * This function will attempt to find a "random" cpu available on a given 2406 * node. If there are no CPUs available on the given node it will return 2407 * WORK_CPU_UNBOUND indicating that we should just schedule to any 2408 * available CPU if we need to schedule this work. 2409 */ 2410 static int select_numa_node_cpu(int node) 2411 { 2412 int cpu; 2413 2414 /* Delay binding to CPU if node is not valid or online */ 2415 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 2416 return WORK_CPU_UNBOUND; 2417 2418 /* Use local node/cpu if we are already there */ 2419 cpu = raw_smp_processor_id(); 2420 if (node == cpu_to_node(cpu)) 2421 return cpu; 2422 2423 /* Use "random" otherwise know as "first" online CPU of node */ 2424 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 2425 2426 /* If CPU is valid return that, otherwise just defer */ 2427 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 2428 } 2429 2430 /** 2431 * queue_work_node - queue work on a "random" cpu for a given NUMA node 2432 * @node: NUMA node that we are targeting the work for 2433 * @wq: workqueue to use 2434 * @work: work to queue 2435 * 2436 * We queue the work to a "random" CPU within a given NUMA node. The basic 2437 * idea here is to provide a way to somehow associate work with a given 2438 * NUMA node. 2439 * 2440 * This function will only make a best effort attempt at getting this onto 2441 * the right NUMA node. If no node is requested or the requested node is 2442 * offline then we just fall back to standard queue_work behavior. 2443 * 2444 * Currently the "random" CPU ends up being the first available CPU in the 2445 * intersection of cpu_online_mask and the cpumask of the node, unless we 2446 * are running on the node. In that case we just use the current CPU. 2447 * 2448 * Return: %false if @work was already on a queue, %true otherwise. 2449 */ 2450 bool queue_work_node(int node, struct workqueue_struct *wq, 2451 struct work_struct *work) 2452 { 2453 unsigned long irq_flags; 2454 bool ret = false; 2455 2456 /* 2457 * This current implementation is specific to unbound workqueues. 2458 * Specifically we only return the first available CPU for a given 2459 * node instead of cycling through individual CPUs within the node. 2460 * 2461 * If this is used with a per-cpu workqueue then the logic in 2462 * workqueue_select_cpu_near would need to be updated to allow for 2463 * some round robin type logic. 2464 */ 2465 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 2466 2467 local_irq_save(irq_flags); 2468 2469 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2470 !clear_pending_if_disabled(work)) { 2471 int cpu = select_numa_node_cpu(node); 2472 2473 __queue_work(cpu, wq, work); 2474 ret = true; 2475 } 2476 2477 local_irq_restore(irq_flags); 2478 return ret; 2479 } 2480 EXPORT_SYMBOL_GPL(queue_work_node); 2481 2482 void delayed_work_timer_fn(struct timer_list *t) 2483 { 2484 struct delayed_work *dwork = from_timer(dwork, t, timer); 2485 2486 /* should have been called from irqsafe timer with irq already off */ 2487 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2488 } 2489 EXPORT_SYMBOL(delayed_work_timer_fn); 2490 2491 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 2492 struct delayed_work *dwork, unsigned long delay) 2493 { 2494 struct timer_list *timer = &dwork->timer; 2495 struct work_struct *work = &dwork->work; 2496 2497 WARN_ON_ONCE(!wq); 2498 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 2499 WARN_ON_ONCE(timer_pending(timer)); 2500 WARN_ON_ONCE(!list_empty(&work->entry)); 2501 2502 /* 2503 * If @delay is 0, queue @dwork->work immediately. This is for 2504 * both optimization and correctness. The earliest @timer can 2505 * expire is on the closest next tick and delayed_work users depend 2506 * on that there's no such delay when @delay is 0. 2507 */ 2508 if (!delay) { 2509 __queue_work(cpu, wq, &dwork->work); 2510 return; 2511 } 2512 2513 WARN_ON_ONCE(cpu != WORK_CPU_UNBOUND && !cpu_online(cpu)); 2514 dwork->wq = wq; 2515 dwork->cpu = cpu; 2516 timer->expires = jiffies + delay; 2517 2518 if (housekeeping_enabled(HK_TYPE_TIMER)) { 2519 /* If the current cpu is a housekeeping cpu, use it. */ 2520 cpu = smp_processor_id(); 2521 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER)) 2522 cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 2523 add_timer_on(timer, cpu); 2524 } else { 2525 if (likely(cpu == WORK_CPU_UNBOUND)) 2526 add_timer_global(timer); 2527 else 2528 add_timer_on(timer, cpu); 2529 } 2530 } 2531 2532 /** 2533 * queue_delayed_work_on - queue work on specific CPU after delay 2534 * @cpu: CPU number to execute work on 2535 * @wq: workqueue to use 2536 * @dwork: work to queue 2537 * @delay: number of jiffies to wait before queueing 2538 * 2539 * We queue the delayed_work to a specific CPU, for non-zero delays the 2540 * caller must ensure it is online and can't go away. Callers that fail 2541 * to ensure this, may get @dwork->timer queued to an offlined CPU and 2542 * this will prevent queueing of @dwork->work unless the offlined CPU 2543 * becomes online again. 2544 * 2545 * Return: %false if @work was already on a queue, %true otherwise. If 2546 * @delay is zero and @dwork is idle, it will be scheduled for immediate 2547 * execution. 2548 */ 2549 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 2550 struct delayed_work *dwork, unsigned long delay) 2551 { 2552 struct work_struct *work = &dwork->work; 2553 bool ret = false; 2554 unsigned long irq_flags; 2555 2556 /* read the comment in __queue_work() */ 2557 local_irq_save(irq_flags); 2558 2559 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2560 !clear_pending_if_disabled(work)) { 2561 __queue_delayed_work(cpu, wq, dwork, delay); 2562 ret = true; 2563 } 2564 2565 local_irq_restore(irq_flags); 2566 return ret; 2567 } 2568 EXPORT_SYMBOL(queue_delayed_work_on); 2569 2570 /** 2571 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 2572 * @cpu: CPU number to execute work on 2573 * @wq: workqueue to use 2574 * @dwork: work to queue 2575 * @delay: number of jiffies to wait before queueing 2576 * 2577 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 2578 * modify @dwork's timer so that it expires after @delay. If @delay is 2579 * zero, @work is guaranteed to be scheduled immediately regardless of its 2580 * current state. 2581 * 2582 * Return: %false if @dwork was idle and queued, %true if @dwork was 2583 * pending and its timer was modified. 2584 * 2585 * This function is safe to call from any context including IRQ handler. 2586 * See try_to_grab_pending() for details. 2587 */ 2588 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 2589 struct delayed_work *dwork, unsigned long delay) 2590 { 2591 unsigned long irq_flags; 2592 bool ret; 2593 2594 ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags); 2595 2596 if (!clear_pending_if_disabled(&dwork->work)) 2597 __queue_delayed_work(cpu, wq, dwork, delay); 2598 2599 local_irq_restore(irq_flags); 2600 return ret; 2601 } 2602 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 2603 2604 static void rcu_work_rcufn(struct rcu_head *rcu) 2605 { 2606 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 2607 2608 /* read the comment in __queue_work() */ 2609 local_irq_disable(); 2610 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 2611 local_irq_enable(); 2612 } 2613 2614 /** 2615 * queue_rcu_work - queue work after a RCU grace period 2616 * @wq: workqueue to use 2617 * @rwork: work to queue 2618 * 2619 * Return: %false if @rwork was already pending, %true otherwise. Note 2620 * that a full RCU grace period is guaranteed only after a %true return. 2621 * While @rwork is guaranteed to be executed after a %false return, the 2622 * execution may happen before a full RCU grace period has passed. 2623 */ 2624 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 2625 { 2626 struct work_struct *work = &rwork->work; 2627 2628 /* 2629 * rcu_work can't be canceled or disabled. Warn if the user reached 2630 * inside @rwork and disabled the inner work. 2631 */ 2632 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2633 !WARN_ON_ONCE(clear_pending_if_disabled(work))) { 2634 rwork->wq = wq; 2635 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 2636 return true; 2637 } 2638 2639 return false; 2640 } 2641 EXPORT_SYMBOL(queue_rcu_work); 2642 2643 static struct worker *alloc_worker(int node) 2644 { 2645 struct worker *worker; 2646 2647 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 2648 if (worker) { 2649 INIT_LIST_HEAD(&worker->entry); 2650 INIT_LIST_HEAD(&worker->scheduled); 2651 INIT_LIST_HEAD(&worker->node); 2652 /* on creation a worker is in !idle && prep state */ 2653 worker->flags = WORKER_PREP; 2654 } 2655 return worker; 2656 } 2657 2658 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool) 2659 { 2660 if (pool->cpu < 0 && pool->attrs->affn_strict) 2661 return pool->attrs->__pod_cpumask; 2662 else 2663 return pool->attrs->cpumask; 2664 } 2665 2666 /** 2667 * worker_attach_to_pool() - attach a worker to a pool 2668 * @worker: worker to be attached 2669 * @pool: the target pool 2670 * 2671 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 2672 * cpu-binding of @worker are kept coordinated with the pool across 2673 * cpu-[un]hotplugs. 2674 */ 2675 static void worker_attach_to_pool(struct worker *worker, 2676 struct worker_pool *pool) 2677 { 2678 mutex_lock(&wq_pool_attach_mutex); 2679 2680 /* 2681 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable 2682 * across this function. See the comments above the flag definition for 2683 * details. BH workers are, while per-CPU, always DISASSOCIATED. 2684 */ 2685 if (pool->flags & POOL_DISASSOCIATED) { 2686 worker->flags |= WORKER_UNBOUND; 2687 } else { 2688 WARN_ON_ONCE(pool->flags & POOL_BH); 2689 kthread_set_per_cpu(worker->task, pool->cpu); 2690 } 2691 2692 if (worker->rescue_wq) 2693 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool)); 2694 2695 list_add_tail(&worker->node, &pool->workers); 2696 worker->pool = pool; 2697 2698 mutex_unlock(&wq_pool_attach_mutex); 2699 } 2700 2701 static void unbind_worker(struct worker *worker) 2702 { 2703 lockdep_assert_held(&wq_pool_attach_mutex); 2704 2705 kthread_set_per_cpu(worker->task, -1); 2706 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 2707 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 2708 else 2709 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2710 } 2711 2712 2713 static void detach_worker(struct worker *worker) 2714 { 2715 lockdep_assert_held(&wq_pool_attach_mutex); 2716 2717 unbind_worker(worker); 2718 list_del(&worker->node); 2719 } 2720 2721 /** 2722 * worker_detach_from_pool() - detach a worker from its pool 2723 * @worker: worker which is attached to its pool 2724 * 2725 * Undo the attaching which had been done in worker_attach_to_pool(). The 2726 * caller worker shouldn't access to the pool after detached except it has 2727 * other reference to the pool. 2728 */ 2729 static void worker_detach_from_pool(struct worker *worker) 2730 { 2731 struct worker_pool *pool = worker->pool; 2732 2733 /* there is one permanent BH worker per CPU which should never detach */ 2734 WARN_ON_ONCE(pool->flags & POOL_BH); 2735 2736 mutex_lock(&wq_pool_attach_mutex); 2737 detach_worker(worker); 2738 worker->pool = NULL; 2739 mutex_unlock(&wq_pool_attach_mutex); 2740 2741 /* clear leftover flags without pool->lock after it is detached */ 2742 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 2743 } 2744 2745 static int format_worker_id(char *buf, size_t size, struct worker *worker, 2746 struct worker_pool *pool) 2747 { 2748 if (worker->rescue_wq) 2749 return scnprintf(buf, size, "kworker/R-%s", 2750 worker->rescue_wq->name); 2751 2752 if (pool) { 2753 if (pool->cpu >= 0) 2754 return scnprintf(buf, size, "kworker/%d:%d%s", 2755 pool->cpu, worker->id, 2756 pool->attrs->nice < 0 ? "H" : ""); 2757 else 2758 return scnprintf(buf, size, "kworker/u%d:%d", 2759 pool->id, worker->id); 2760 } else { 2761 return scnprintf(buf, size, "kworker/dying"); 2762 } 2763 } 2764 2765 /** 2766 * create_worker - create a new workqueue worker 2767 * @pool: pool the new worker will belong to 2768 * 2769 * Create and start a new worker which is attached to @pool. 2770 * 2771 * CONTEXT: 2772 * Might sleep. Does GFP_KERNEL allocations. 2773 * 2774 * Return: 2775 * Pointer to the newly created worker. 2776 */ 2777 static struct worker *create_worker(struct worker_pool *pool) 2778 { 2779 struct worker *worker; 2780 int id; 2781 2782 /* ID is needed to determine kthread name */ 2783 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 2784 if (id < 0) { 2785 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 2786 ERR_PTR(id)); 2787 return NULL; 2788 } 2789 2790 worker = alloc_worker(pool->node); 2791 if (!worker) { 2792 pr_err_once("workqueue: Failed to allocate a worker\n"); 2793 goto fail; 2794 } 2795 2796 worker->id = id; 2797 2798 if (!(pool->flags & POOL_BH)) { 2799 char id_buf[WORKER_ID_LEN]; 2800 2801 format_worker_id(id_buf, sizeof(id_buf), worker, pool); 2802 worker->task = kthread_create_on_node(worker_thread, worker, 2803 pool->node, "%s", id_buf); 2804 if (IS_ERR(worker->task)) { 2805 if (PTR_ERR(worker->task) == -EINTR) { 2806 pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n", 2807 id_buf); 2808 } else { 2809 pr_err_once("workqueue: Failed to create a worker thread: %pe", 2810 worker->task); 2811 } 2812 goto fail; 2813 } 2814 2815 set_user_nice(worker->task, pool->attrs->nice); 2816 kthread_bind_mask(worker->task, pool_allowed_cpus(pool)); 2817 } 2818 2819 /* successful, attach the worker to the pool */ 2820 worker_attach_to_pool(worker, pool); 2821 2822 /* start the newly created worker */ 2823 raw_spin_lock_irq(&pool->lock); 2824 2825 worker->pool->nr_workers++; 2826 worker_enter_idle(worker); 2827 2828 /* 2829 * @worker is waiting on a completion in kthread() and will trigger hung 2830 * check if not woken up soon. As kick_pool() is noop if @pool is empty, 2831 * wake it up explicitly. 2832 */ 2833 if (worker->task) 2834 wake_up_process(worker->task); 2835 2836 raw_spin_unlock_irq(&pool->lock); 2837 2838 return worker; 2839 2840 fail: 2841 ida_free(&pool->worker_ida, id); 2842 kfree(worker); 2843 return NULL; 2844 } 2845 2846 static void detach_dying_workers(struct list_head *cull_list) 2847 { 2848 struct worker *worker; 2849 2850 list_for_each_entry(worker, cull_list, entry) 2851 detach_worker(worker); 2852 } 2853 2854 static void reap_dying_workers(struct list_head *cull_list) 2855 { 2856 struct worker *worker, *tmp; 2857 2858 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2859 list_del_init(&worker->entry); 2860 kthread_stop_put(worker->task); 2861 kfree(worker); 2862 } 2863 } 2864 2865 /** 2866 * set_worker_dying - Tag a worker for destruction 2867 * @worker: worker to be destroyed 2868 * @list: transfer worker away from its pool->idle_list and into list 2869 * 2870 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2871 * should be idle. 2872 * 2873 * CONTEXT: 2874 * raw_spin_lock_irq(pool->lock). 2875 */ 2876 static void set_worker_dying(struct worker *worker, struct list_head *list) 2877 { 2878 struct worker_pool *pool = worker->pool; 2879 2880 lockdep_assert_held(&pool->lock); 2881 lockdep_assert_held(&wq_pool_attach_mutex); 2882 2883 /* sanity check frenzy */ 2884 if (WARN_ON(worker->current_work) || 2885 WARN_ON(!list_empty(&worker->scheduled)) || 2886 WARN_ON(!(worker->flags & WORKER_IDLE))) 2887 return; 2888 2889 pool->nr_workers--; 2890 pool->nr_idle--; 2891 2892 worker->flags |= WORKER_DIE; 2893 2894 list_move(&worker->entry, list); 2895 2896 /* get an extra task struct reference for later kthread_stop_put() */ 2897 get_task_struct(worker->task); 2898 } 2899 2900 /** 2901 * idle_worker_timeout - check if some idle workers can now be deleted. 2902 * @t: The pool's idle_timer that just expired 2903 * 2904 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2905 * worker_leave_idle(), as a worker flicking between idle and active while its 2906 * pool is at the too_many_workers() tipping point would cause too much timer 2907 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2908 * it expire and re-evaluate things from there. 2909 */ 2910 static void idle_worker_timeout(struct timer_list *t) 2911 { 2912 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2913 bool do_cull = false; 2914 2915 if (work_pending(&pool->idle_cull_work)) 2916 return; 2917 2918 raw_spin_lock_irq(&pool->lock); 2919 2920 if (too_many_workers(pool)) { 2921 struct worker *worker; 2922 unsigned long expires; 2923 2924 /* idle_list is kept in LIFO order, check the last one */ 2925 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2926 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2927 do_cull = !time_before(jiffies, expires); 2928 2929 if (!do_cull) 2930 mod_timer(&pool->idle_timer, expires); 2931 } 2932 raw_spin_unlock_irq(&pool->lock); 2933 2934 if (do_cull) 2935 queue_work(system_unbound_wq, &pool->idle_cull_work); 2936 } 2937 2938 /** 2939 * idle_cull_fn - cull workers that have been idle for too long. 2940 * @work: the pool's work for handling these idle workers 2941 * 2942 * This goes through a pool's idle workers and gets rid of those that have been 2943 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2944 * 2945 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2946 * culled, so this also resets worker affinity. This requires a sleepable 2947 * context, hence the split between timer callback and work item. 2948 */ 2949 static void idle_cull_fn(struct work_struct *work) 2950 { 2951 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2952 LIST_HEAD(cull_list); 2953 2954 /* 2955 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2956 * cannot proceed beyong set_pf_worker() in its self-destruct path. 2957 * This is required as a previously-preempted worker could run after 2958 * set_worker_dying() has happened but before detach_dying_workers() did. 2959 */ 2960 mutex_lock(&wq_pool_attach_mutex); 2961 raw_spin_lock_irq(&pool->lock); 2962 2963 while (too_many_workers(pool)) { 2964 struct worker *worker; 2965 unsigned long expires; 2966 2967 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2968 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2969 2970 if (time_before(jiffies, expires)) { 2971 mod_timer(&pool->idle_timer, expires); 2972 break; 2973 } 2974 2975 set_worker_dying(worker, &cull_list); 2976 } 2977 2978 raw_spin_unlock_irq(&pool->lock); 2979 detach_dying_workers(&cull_list); 2980 mutex_unlock(&wq_pool_attach_mutex); 2981 2982 reap_dying_workers(&cull_list); 2983 } 2984 2985 static void send_mayday(struct work_struct *work) 2986 { 2987 struct pool_workqueue *pwq = get_work_pwq(work); 2988 struct workqueue_struct *wq = pwq->wq; 2989 2990 lockdep_assert_held(&wq_mayday_lock); 2991 2992 if (!wq->rescuer) 2993 return; 2994 2995 /* mayday mayday mayday */ 2996 if (list_empty(&pwq->mayday_node)) { 2997 /* 2998 * If @pwq is for an unbound wq, its base ref may be put at 2999 * any time due to an attribute change. Pin @pwq until the 3000 * rescuer is done with it. 3001 */ 3002 get_pwq(pwq); 3003 list_add_tail(&pwq->mayday_node, &wq->maydays); 3004 wake_up_process(wq->rescuer->task); 3005 pwq->stats[PWQ_STAT_MAYDAY]++; 3006 } 3007 } 3008 3009 static void pool_mayday_timeout(struct timer_list *t) 3010 { 3011 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 3012 struct work_struct *work; 3013 3014 raw_spin_lock_irq(&pool->lock); 3015 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 3016 3017 if (need_to_create_worker(pool)) { 3018 /* 3019 * We've been trying to create a new worker but 3020 * haven't been successful. We might be hitting an 3021 * allocation deadlock. Send distress signals to 3022 * rescuers. 3023 */ 3024 list_for_each_entry(work, &pool->worklist, entry) 3025 send_mayday(work); 3026 } 3027 3028 raw_spin_unlock(&wq_mayday_lock); 3029 raw_spin_unlock_irq(&pool->lock); 3030 3031 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 3032 } 3033 3034 /** 3035 * maybe_create_worker - create a new worker if necessary 3036 * @pool: pool to create a new worker for 3037 * 3038 * Create a new worker for @pool if necessary. @pool is guaranteed to 3039 * have at least one idle worker on return from this function. If 3040 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 3041 * sent to all rescuers with works scheduled on @pool to resolve 3042 * possible allocation deadlock. 3043 * 3044 * On return, need_to_create_worker() is guaranteed to be %false and 3045 * may_start_working() %true. 3046 * 3047 * LOCKING: 3048 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3049 * multiple times. Does GFP_KERNEL allocations. Called only from 3050 * manager. 3051 */ 3052 static void maybe_create_worker(struct worker_pool *pool) 3053 __releases(&pool->lock) 3054 __acquires(&pool->lock) 3055 { 3056 restart: 3057 raw_spin_unlock_irq(&pool->lock); 3058 3059 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 3060 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 3061 3062 while (true) { 3063 if (create_worker(pool) || !need_to_create_worker(pool)) 3064 break; 3065 3066 schedule_timeout_interruptible(CREATE_COOLDOWN); 3067 3068 if (!need_to_create_worker(pool)) 3069 break; 3070 } 3071 3072 del_timer_sync(&pool->mayday_timer); 3073 raw_spin_lock_irq(&pool->lock); 3074 /* 3075 * This is necessary even after a new worker was just successfully 3076 * created as @pool->lock was dropped and the new worker might have 3077 * already become busy. 3078 */ 3079 if (need_to_create_worker(pool)) 3080 goto restart; 3081 } 3082 3083 /** 3084 * manage_workers - manage worker pool 3085 * @worker: self 3086 * 3087 * Assume the manager role and manage the worker pool @worker belongs 3088 * to. At any given time, there can be only zero or one manager per 3089 * pool. The exclusion is handled automatically by this function. 3090 * 3091 * The caller can safely start processing works on false return. On 3092 * true return, it's guaranteed that need_to_create_worker() is false 3093 * and may_start_working() is true. 3094 * 3095 * CONTEXT: 3096 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3097 * multiple times. Does GFP_KERNEL allocations. 3098 * 3099 * Return: 3100 * %false if the pool doesn't need management and the caller can safely 3101 * start processing works, %true if management function was performed and 3102 * the conditions that the caller verified before calling the function may 3103 * no longer be true. 3104 */ 3105 static bool manage_workers(struct worker *worker) 3106 { 3107 struct worker_pool *pool = worker->pool; 3108 3109 if (pool->flags & POOL_MANAGER_ACTIVE) 3110 return false; 3111 3112 pool->flags |= POOL_MANAGER_ACTIVE; 3113 pool->manager = worker; 3114 3115 maybe_create_worker(pool); 3116 3117 pool->manager = NULL; 3118 pool->flags &= ~POOL_MANAGER_ACTIVE; 3119 rcuwait_wake_up(&manager_wait); 3120 return true; 3121 } 3122 3123 /** 3124 * process_one_work - process single work 3125 * @worker: self 3126 * @work: work to process 3127 * 3128 * Process @work. This function contains all the logics necessary to 3129 * process a single work including synchronization against and 3130 * interaction with other workers on the same cpu, queueing and 3131 * flushing. As long as context requirement is met, any worker can 3132 * call this function to process a work. 3133 * 3134 * CONTEXT: 3135 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 3136 */ 3137 static void process_one_work(struct worker *worker, struct work_struct *work) 3138 __releases(&pool->lock) 3139 __acquires(&pool->lock) 3140 { 3141 struct pool_workqueue *pwq = get_work_pwq(work); 3142 struct worker_pool *pool = worker->pool; 3143 unsigned long work_data; 3144 int lockdep_start_depth, rcu_start_depth; 3145 bool bh_draining = pool->flags & POOL_BH_DRAINING; 3146 #ifdef CONFIG_LOCKDEP 3147 /* 3148 * It is permissible to free the struct work_struct from 3149 * inside the function that is called from it, this we need to 3150 * take into account for lockdep too. To avoid bogus "held 3151 * lock freed" warnings as well as problems when looking into 3152 * work->lockdep_map, make a copy and use that here. 3153 */ 3154 struct lockdep_map lockdep_map; 3155 3156 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 3157 #endif 3158 /* ensure we're on the correct CPU */ 3159 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 3160 raw_smp_processor_id() != pool->cpu); 3161 3162 /* claim and dequeue */ 3163 debug_work_deactivate(work); 3164 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 3165 worker->current_work = work; 3166 worker->current_func = work->func; 3167 worker->current_pwq = pwq; 3168 if (worker->task) 3169 worker->current_at = worker->task->se.sum_exec_runtime; 3170 work_data = *work_data_bits(work); 3171 worker->current_color = get_work_color(work_data); 3172 3173 /* 3174 * Record wq name for cmdline and debug reporting, may get 3175 * overridden through set_worker_desc(). 3176 */ 3177 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 3178 3179 list_del_init(&work->entry); 3180 3181 /* 3182 * CPU intensive works don't participate in concurrency management. 3183 * They're the scheduler's responsibility. This takes @worker out 3184 * of concurrency management and the next code block will chain 3185 * execution of the pending work items. 3186 */ 3187 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) 3188 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 3189 3190 /* 3191 * Kick @pool if necessary. It's always noop for per-cpu worker pools 3192 * since nr_running would always be >= 1 at this point. This is used to 3193 * chain execution of the pending work items for WORKER_NOT_RUNNING 3194 * workers such as the UNBOUND and CPU_INTENSIVE ones. 3195 */ 3196 kick_pool(pool); 3197 3198 /* 3199 * Record the last pool and clear PENDING which should be the last 3200 * update to @work. Also, do this inside @pool->lock so that 3201 * PENDING and queued state changes happen together while IRQ is 3202 * disabled. 3203 */ 3204 set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool)); 3205 3206 pwq->stats[PWQ_STAT_STARTED]++; 3207 raw_spin_unlock_irq(&pool->lock); 3208 3209 rcu_start_depth = rcu_preempt_depth(); 3210 lockdep_start_depth = lockdep_depth(current); 3211 /* see drain_dead_softirq_workfn() */ 3212 if (!bh_draining) 3213 lock_map_acquire(pwq->wq->lockdep_map); 3214 lock_map_acquire(&lockdep_map); 3215 /* 3216 * Strictly speaking we should mark the invariant state without holding 3217 * any locks, that is, before these two lock_map_acquire()'s. 3218 * 3219 * However, that would result in: 3220 * 3221 * A(W1) 3222 * WFC(C) 3223 * A(W1) 3224 * C(C) 3225 * 3226 * Which would create W1->C->W1 dependencies, even though there is no 3227 * actual deadlock possible. There are two solutions, using a 3228 * read-recursive acquire on the work(queue) 'locks', but this will then 3229 * hit the lockdep limitation on recursive locks, or simply discard 3230 * these locks. 3231 * 3232 * AFAICT there is no possible deadlock scenario between the 3233 * flush_work() and complete() primitives (except for single-threaded 3234 * workqueues), so hiding them isn't a problem. 3235 */ 3236 lockdep_invariant_state(true); 3237 trace_workqueue_execute_start(work); 3238 worker->current_func(work); 3239 /* 3240 * While we must be careful to not use "work" after this, the trace 3241 * point will only record its address. 3242 */ 3243 trace_workqueue_execute_end(work, worker->current_func); 3244 pwq->stats[PWQ_STAT_COMPLETED]++; 3245 lock_map_release(&lockdep_map); 3246 if (!bh_draining) 3247 lock_map_release(pwq->wq->lockdep_map); 3248 3249 if (unlikely((worker->task && in_atomic()) || 3250 lockdep_depth(current) != lockdep_start_depth || 3251 rcu_preempt_depth() != rcu_start_depth)) { 3252 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n" 3253 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n", 3254 current->comm, task_pid_nr(current), preempt_count(), 3255 lockdep_start_depth, lockdep_depth(current), 3256 rcu_start_depth, rcu_preempt_depth(), 3257 worker->current_func); 3258 debug_show_held_locks(current); 3259 dump_stack(); 3260 } 3261 3262 /* 3263 * The following prevents a kworker from hogging CPU on !PREEMPTION 3264 * kernels, where a requeueing work item waiting for something to 3265 * happen could deadlock with stop_machine as such work item could 3266 * indefinitely requeue itself while all other CPUs are trapped in 3267 * stop_machine. At the same time, report a quiescent RCU state so 3268 * the same condition doesn't freeze RCU. 3269 */ 3270 if (worker->task) 3271 cond_resched(); 3272 3273 raw_spin_lock_irq(&pool->lock); 3274 3275 /* 3276 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked 3277 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than 3278 * wq_cpu_intensive_thresh_us. Clear it. 3279 */ 3280 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 3281 3282 /* tag the worker for identification in schedule() */ 3283 worker->last_func = worker->current_func; 3284 3285 /* we're done with it, release */ 3286 hash_del(&worker->hentry); 3287 worker->current_work = NULL; 3288 worker->current_func = NULL; 3289 worker->current_pwq = NULL; 3290 worker->current_color = INT_MAX; 3291 3292 /* must be the last step, see the function comment */ 3293 pwq_dec_nr_in_flight(pwq, work_data); 3294 } 3295 3296 /** 3297 * process_scheduled_works - process scheduled works 3298 * @worker: self 3299 * 3300 * Process all scheduled works. Please note that the scheduled list 3301 * may change while processing a work, so this function repeatedly 3302 * fetches a work from the top and executes it. 3303 * 3304 * CONTEXT: 3305 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3306 * multiple times. 3307 */ 3308 static void process_scheduled_works(struct worker *worker) 3309 { 3310 struct work_struct *work; 3311 bool first = true; 3312 3313 while ((work = list_first_entry_or_null(&worker->scheduled, 3314 struct work_struct, entry))) { 3315 if (first) { 3316 worker->pool->watchdog_ts = jiffies; 3317 first = false; 3318 } 3319 process_one_work(worker, work); 3320 } 3321 } 3322 3323 static void set_pf_worker(bool val) 3324 { 3325 mutex_lock(&wq_pool_attach_mutex); 3326 if (val) 3327 current->flags |= PF_WQ_WORKER; 3328 else 3329 current->flags &= ~PF_WQ_WORKER; 3330 mutex_unlock(&wq_pool_attach_mutex); 3331 } 3332 3333 /** 3334 * worker_thread - the worker thread function 3335 * @__worker: self 3336 * 3337 * The worker thread function. All workers belong to a worker_pool - 3338 * either a per-cpu one or dynamic unbound one. These workers process all 3339 * work items regardless of their specific target workqueue. The only 3340 * exception is work items which belong to workqueues with a rescuer which 3341 * will be explained in rescuer_thread(). 3342 * 3343 * Return: 0 3344 */ 3345 static int worker_thread(void *__worker) 3346 { 3347 struct worker *worker = __worker; 3348 struct worker_pool *pool = worker->pool; 3349 3350 /* tell the scheduler that this is a workqueue worker */ 3351 set_pf_worker(true); 3352 woke_up: 3353 raw_spin_lock_irq(&pool->lock); 3354 3355 /* am I supposed to die? */ 3356 if (unlikely(worker->flags & WORKER_DIE)) { 3357 raw_spin_unlock_irq(&pool->lock); 3358 set_pf_worker(false); 3359 /* 3360 * The worker is dead and PF_WQ_WORKER is cleared, worker->pool 3361 * shouldn't be accessed, reset it to NULL in case otherwise. 3362 */ 3363 worker->pool = NULL; 3364 ida_free(&pool->worker_ida, worker->id); 3365 return 0; 3366 } 3367 3368 worker_leave_idle(worker); 3369 recheck: 3370 /* no more worker necessary? */ 3371 if (!need_more_worker(pool)) 3372 goto sleep; 3373 3374 /* do we need to manage? */ 3375 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 3376 goto recheck; 3377 3378 /* 3379 * ->scheduled list can only be filled while a worker is 3380 * preparing to process a work or actually processing it. 3381 * Make sure nobody diddled with it while I was sleeping. 3382 */ 3383 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3384 3385 /* 3386 * Finish PREP stage. We're guaranteed to have at least one idle 3387 * worker or that someone else has already assumed the manager 3388 * role. This is where @worker starts participating in concurrency 3389 * management if applicable and concurrency management is restored 3390 * after being rebound. See rebind_workers() for details. 3391 */ 3392 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3393 3394 do { 3395 struct work_struct *work = 3396 list_first_entry(&pool->worklist, 3397 struct work_struct, entry); 3398 3399 if (assign_work(work, worker, NULL)) 3400 process_scheduled_works(worker); 3401 } while (keep_working(pool)); 3402 3403 worker_set_flags(worker, WORKER_PREP); 3404 sleep: 3405 /* 3406 * pool->lock is held and there's no work to process and no need to 3407 * manage, sleep. Workers are woken up only while holding 3408 * pool->lock or from local cpu, so setting the current state 3409 * before releasing pool->lock is enough to prevent losing any 3410 * event. 3411 */ 3412 worker_enter_idle(worker); 3413 __set_current_state(TASK_IDLE); 3414 raw_spin_unlock_irq(&pool->lock); 3415 schedule(); 3416 goto woke_up; 3417 } 3418 3419 /** 3420 * rescuer_thread - the rescuer thread function 3421 * @__rescuer: self 3422 * 3423 * Workqueue rescuer thread function. There's one rescuer for each 3424 * workqueue which has WQ_MEM_RECLAIM set. 3425 * 3426 * Regular work processing on a pool may block trying to create a new 3427 * worker which uses GFP_KERNEL allocation which has slight chance of 3428 * developing into deadlock if some works currently on the same queue 3429 * need to be processed to satisfy the GFP_KERNEL allocation. This is 3430 * the problem rescuer solves. 3431 * 3432 * When such condition is possible, the pool summons rescuers of all 3433 * workqueues which have works queued on the pool and let them process 3434 * those works so that forward progress can be guaranteed. 3435 * 3436 * This should happen rarely. 3437 * 3438 * Return: 0 3439 */ 3440 static int rescuer_thread(void *__rescuer) 3441 { 3442 struct worker *rescuer = __rescuer; 3443 struct workqueue_struct *wq = rescuer->rescue_wq; 3444 bool should_stop; 3445 3446 set_user_nice(current, RESCUER_NICE_LEVEL); 3447 3448 /* 3449 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 3450 * doesn't participate in concurrency management. 3451 */ 3452 set_pf_worker(true); 3453 repeat: 3454 set_current_state(TASK_IDLE); 3455 3456 /* 3457 * By the time the rescuer is requested to stop, the workqueue 3458 * shouldn't have any work pending, but @wq->maydays may still have 3459 * pwq(s) queued. This can happen by non-rescuer workers consuming 3460 * all the work items before the rescuer got to them. Go through 3461 * @wq->maydays processing before acting on should_stop so that the 3462 * list is always empty on exit. 3463 */ 3464 should_stop = kthread_should_stop(); 3465 3466 /* see whether any pwq is asking for help */ 3467 raw_spin_lock_irq(&wq_mayday_lock); 3468 3469 while (!list_empty(&wq->maydays)) { 3470 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 3471 struct pool_workqueue, mayday_node); 3472 struct worker_pool *pool = pwq->pool; 3473 struct work_struct *work, *n; 3474 3475 __set_current_state(TASK_RUNNING); 3476 list_del_init(&pwq->mayday_node); 3477 3478 raw_spin_unlock_irq(&wq_mayday_lock); 3479 3480 worker_attach_to_pool(rescuer, pool); 3481 3482 raw_spin_lock_irq(&pool->lock); 3483 3484 /* 3485 * Slurp in all works issued via this workqueue and 3486 * process'em. 3487 */ 3488 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 3489 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 3490 if (get_work_pwq(work) == pwq && 3491 assign_work(work, rescuer, &n)) 3492 pwq->stats[PWQ_STAT_RESCUED]++; 3493 } 3494 3495 if (!list_empty(&rescuer->scheduled)) { 3496 process_scheduled_works(rescuer); 3497 3498 /* 3499 * The above execution of rescued work items could 3500 * have created more to rescue through 3501 * pwq_activate_first_inactive() or chained 3502 * queueing. Let's put @pwq back on mayday list so 3503 * that such back-to-back work items, which may be 3504 * being used to relieve memory pressure, don't 3505 * incur MAYDAY_INTERVAL delay inbetween. 3506 */ 3507 if (pwq->nr_active && need_to_create_worker(pool)) { 3508 raw_spin_lock(&wq_mayday_lock); 3509 /* 3510 * Queue iff we aren't racing destruction 3511 * and somebody else hasn't queued it already. 3512 */ 3513 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 3514 get_pwq(pwq); 3515 list_add_tail(&pwq->mayday_node, &wq->maydays); 3516 } 3517 raw_spin_unlock(&wq_mayday_lock); 3518 } 3519 } 3520 3521 /* 3522 * Leave this pool. Notify regular workers; otherwise, we end up 3523 * with 0 concurrency and stalling the execution. 3524 */ 3525 kick_pool(pool); 3526 3527 raw_spin_unlock_irq(&pool->lock); 3528 3529 worker_detach_from_pool(rescuer); 3530 3531 /* 3532 * Put the reference grabbed by send_mayday(). @pool might 3533 * go away any time after it. 3534 */ 3535 put_pwq_unlocked(pwq); 3536 3537 raw_spin_lock_irq(&wq_mayday_lock); 3538 } 3539 3540 raw_spin_unlock_irq(&wq_mayday_lock); 3541 3542 if (should_stop) { 3543 __set_current_state(TASK_RUNNING); 3544 set_pf_worker(false); 3545 return 0; 3546 } 3547 3548 /* rescuers should never participate in concurrency management */ 3549 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 3550 schedule(); 3551 goto repeat; 3552 } 3553 3554 static void bh_worker(struct worker *worker) 3555 { 3556 struct worker_pool *pool = worker->pool; 3557 int nr_restarts = BH_WORKER_RESTARTS; 3558 unsigned long end = jiffies + BH_WORKER_JIFFIES; 3559 3560 raw_spin_lock_irq(&pool->lock); 3561 worker_leave_idle(worker); 3562 3563 /* 3564 * This function follows the structure of worker_thread(). See there for 3565 * explanations on each step. 3566 */ 3567 if (!need_more_worker(pool)) 3568 goto done; 3569 3570 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3571 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3572 3573 do { 3574 struct work_struct *work = 3575 list_first_entry(&pool->worklist, 3576 struct work_struct, entry); 3577 3578 if (assign_work(work, worker, NULL)) 3579 process_scheduled_works(worker); 3580 } while (keep_working(pool) && 3581 --nr_restarts && time_before(jiffies, end)); 3582 3583 worker_set_flags(worker, WORKER_PREP); 3584 done: 3585 worker_enter_idle(worker); 3586 kick_pool(pool); 3587 raw_spin_unlock_irq(&pool->lock); 3588 } 3589 3590 /* 3591 * TODO: Convert all tasklet users to workqueue and use softirq directly. 3592 * 3593 * This is currently called from tasklet[_hi]action() and thus is also called 3594 * whenever there are tasklets to run. Let's do an early exit if there's nothing 3595 * queued. Once conversion from tasklet is complete, the need_more_worker() test 3596 * can be dropped. 3597 * 3598 * After full conversion, we'll add worker->softirq_action, directly use the 3599 * softirq action and obtain the worker pointer from the softirq_action pointer. 3600 */ 3601 void workqueue_softirq_action(bool highpri) 3602 { 3603 struct worker_pool *pool = 3604 &per_cpu(bh_worker_pools, smp_processor_id())[highpri]; 3605 if (need_more_worker(pool)) 3606 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3607 } 3608 3609 struct wq_drain_dead_softirq_work { 3610 struct work_struct work; 3611 struct worker_pool *pool; 3612 struct completion done; 3613 }; 3614 3615 static void drain_dead_softirq_workfn(struct work_struct *work) 3616 { 3617 struct wq_drain_dead_softirq_work *dead_work = 3618 container_of(work, struct wq_drain_dead_softirq_work, work); 3619 struct worker_pool *pool = dead_work->pool; 3620 bool repeat; 3621 3622 /* 3623 * @pool's CPU is dead and we want to execute its still pending work 3624 * items from this BH work item which is running on a different CPU. As 3625 * its CPU is dead, @pool can't be kicked and, as work execution path 3626 * will be nested, a lockdep annotation needs to be suppressed. Mark 3627 * @pool with %POOL_BH_DRAINING for the special treatments. 3628 */ 3629 raw_spin_lock_irq(&pool->lock); 3630 pool->flags |= POOL_BH_DRAINING; 3631 raw_spin_unlock_irq(&pool->lock); 3632 3633 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3634 3635 raw_spin_lock_irq(&pool->lock); 3636 pool->flags &= ~POOL_BH_DRAINING; 3637 repeat = need_more_worker(pool); 3638 raw_spin_unlock_irq(&pool->lock); 3639 3640 /* 3641 * bh_worker() might hit consecutive execution limit and bail. If there 3642 * still are pending work items, reschedule self and return so that we 3643 * don't hog this CPU's BH. 3644 */ 3645 if (repeat) { 3646 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3647 queue_work(system_bh_highpri_wq, work); 3648 else 3649 queue_work(system_bh_wq, work); 3650 } else { 3651 complete(&dead_work->done); 3652 } 3653 } 3654 3655 /* 3656 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's 3657 * possible to allocate dead_work per CPU and avoid flushing. However, then we 3658 * have to worry about draining overlapping with CPU coming back online or 3659 * nesting (one CPU's dead_work queued on another CPU which is also dead and so 3660 * on). Let's keep it simple and drain them synchronously. These are BH work 3661 * items which shouldn't be requeued on the same pool. Shouldn't take long. 3662 */ 3663 void workqueue_softirq_dead(unsigned int cpu) 3664 { 3665 int i; 3666 3667 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 3668 struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i]; 3669 struct wq_drain_dead_softirq_work dead_work; 3670 3671 if (!need_more_worker(pool)) 3672 continue; 3673 3674 INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn); 3675 dead_work.pool = pool; 3676 init_completion(&dead_work.done); 3677 3678 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3679 queue_work(system_bh_highpri_wq, &dead_work.work); 3680 else 3681 queue_work(system_bh_wq, &dead_work.work); 3682 3683 wait_for_completion(&dead_work.done); 3684 destroy_work_on_stack(&dead_work.work); 3685 } 3686 } 3687 3688 /** 3689 * check_flush_dependency - check for flush dependency sanity 3690 * @target_wq: workqueue being flushed 3691 * @target_work: work item being flushed (NULL for workqueue flushes) 3692 * @from_cancel: are we called from the work cancel path 3693 * 3694 * %current is trying to flush the whole @target_wq or @target_work on it. 3695 * If this is not the cancel path (which implies work being flushed is either 3696 * already running, or will not be at all), check if @target_wq doesn't have 3697 * %WQ_MEM_RECLAIM and verify that %current is not reclaiming memory or running 3698 * on a workqueue which doesn't have %WQ_MEM_RECLAIM as that can break forward- 3699 * progress guarantee leading to a deadlock. 3700 */ 3701 static void check_flush_dependency(struct workqueue_struct *target_wq, 3702 struct work_struct *target_work, 3703 bool from_cancel) 3704 { 3705 work_func_t target_func; 3706 struct worker *worker; 3707 3708 if (from_cancel || target_wq->flags & WQ_MEM_RECLAIM) 3709 return; 3710 3711 worker = current_wq_worker(); 3712 target_func = target_work ? target_work->func : NULL; 3713 3714 WARN_ONCE(current->flags & PF_MEMALLOC, 3715 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 3716 current->pid, current->comm, target_wq->name, target_func); 3717 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 3718 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 3719 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 3720 worker->current_pwq->wq->name, worker->current_func, 3721 target_wq->name, target_func); 3722 } 3723 3724 struct wq_barrier { 3725 struct work_struct work; 3726 struct completion done; 3727 struct task_struct *task; /* purely informational */ 3728 }; 3729 3730 static void wq_barrier_func(struct work_struct *work) 3731 { 3732 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 3733 complete(&barr->done); 3734 } 3735 3736 /** 3737 * insert_wq_barrier - insert a barrier work 3738 * @pwq: pwq to insert barrier into 3739 * @barr: wq_barrier to insert 3740 * @target: target work to attach @barr to 3741 * @worker: worker currently executing @target, NULL if @target is not executing 3742 * 3743 * @barr is linked to @target such that @barr is completed only after 3744 * @target finishes execution. Please note that the ordering 3745 * guarantee is observed only with respect to @target and on the local 3746 * cpu. 3747 * 3748 * Currently, a queued barrier can't be canceled. This is because 3749 * try_to_grab_pending() can't determine whether the work to be 3750 * grabbed is at the head of the queue and thus can't clear LINKED 3751 * flag of the previous work while there must be a valid next work 3752 * after a work with LINKED flag set. 3753 * 3754 * Note that when @worker is non-NULL, @target may be modified 3755 * underneath us, so we can't reliably determine pwq from @target. 3756 * 3757 * CONTEXT: 3758 * raw_spin_lock_irq(pool->lock). 3759 */ 3760 static void insert_wq_barrier(struct pool_workqueue *pwq, 3761 struct wq_barrier *barr, 3762 struct work_struct *target, struct worker *worker) 3763 { 3764 static __maybe_unused struct lock_class_key bh_key, thr_key; 3765 unsigned int work_flags = 0; 3766 unsigned int work_color; 3767 struct list_head *head; 3768 3769 /* 3770 * debugobject calls are safe here even with pool->lock locked 3771 * as we know for sure that this will not trigger any of the 3772 * checks and call back into the fixup functions where we 3773 * might deadlock. 3774 * 3775 * BH and threaded workqueues need separate lockdep keys to avoid 3776 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} 3777 * usage". 3778 */ 3779 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func, 3780 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key); 3781 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 3782 3783 init_completion_map(&barr->done, &target->lockdep_map); 3784 3785 barr->task = current; 3786 3787 /* The barrier work item does not participate in nr_active. */ 3788 work_flags |= WORK_STRUCT_INACTIVE; 3789 3790 /* 3791 * If @target is currently being executed, schedule the 3792 * barrier to the worker; otherwise, put it after @target. 3793 */ 3794 if (worker) { 3795 head = worker->scheduled.next; 3796 work_color = worker->current_color; 3797 } else { 3798 unsigned long *bits = work_data_bits(target); 3799 3800 head = target->entry.next; 3801 /* there can already be other linked works, inherit and set */ 3802 work_flags |= *bits & WORK_STRUCT_LINKED; 3803 work_color = get_work_color(*bits); 3804 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 3805 } 3806 3807 pwq->nr_in_flight[work_color]++; 3808 work_flags |= work_color_to_flags(work_color); 3809 3810 insert_work(pwq, &barr->work, head, work_flags); 3811 } 3812 3813 /** 3814 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 3815 * @wq: workqueue being flushed 3816 * @flush_color: new flush color, < 0 for no-op 3817 * @work_color: new work color, < 0 for no-op 3818 * 3819 * Prepare pwqs for workqueue flushing. 3820 * 3821 * If @flush_color is non-negative, flush_color on all pwqs should be 3822 * -1. If no pwq has in-flight commands at the specified color, all 3823 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 3824 * has in flight commands, its pwq->flush_color is set to 3825 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 3826 * wakeup logic is armed and %true is returned. 3827 * 3828 * The caller should have initialized @wq->first_flusher prior to 3829 * calling this function with non-negative @flush_color. If 3830 * @flush_color is negative, no flush color update is done and %false 3831 * is returned. 3832 * 3833 * If @work_color is non-negative, all pwqs should have the same 3834 * work_color which is previous to @work_color and all will be 3835 * advanced to @work_color. 3836 * 3837 * CONTEXT: 3838 * mutex_lock(wq->mutex). 3839 * 3840 * Return: 3841 * %true if @flush_color >= 0 and there's something to flush. %false 3842 * otherwise. 3843 */ 3844 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 3845 int flush_color, int work_color) 3846 { 3847 bool wait = false; 3848 struct pool_workqueue *pwq; 3849 struct worker_pool *current_pool = NULL; 3850 3851 if (flush_color >= 0) { 3852 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 3853 atomic_set(&wq->nr_pwqs_to_flush, 1); 3854 } 3855 3856 /* 3857 * For unbound workqueue, pwqs will map to only a few pools. 3858 * Most of the time, pwqs within the same pool will be linked 3859 * sequentially to wq->pwqs by cpu index. So in the majority 3860 * of pwq iters, the pool is the same, only doing lock/unlock 3861 * if the pool has changed. This can largely reduce expensive 3862 * lock operations. 3863 */ 3864 for_each_pwq(pwq, wq) { 3865 if (current_pool != pwq->pool) { 3866 if (likely(current_pool)) 3867 raw_spin_unlock_irq(¤t_pool->lock); 3868 current_pool = pwq->pool; 3869 raw_spin_lock_irq(¤t_pool->lock); 3870 } 3871 3872 if (flush_color >= 0) { 3873 WARN_ON_ONCE(pwq->flush_color != -1); 3874 3875 if (pwq->nr_in_flight[flush_color]) { 3876 pwq->flush_color = flush_color; 3877 atomic_inc(&wq->nr_pwqs_to_flush); 3878 wait = true; 3879 } 3880 } 3881 3882 if (work_color >= 0) { 3883 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 3884 pwq->work_color = work_color; 3885 } 3886 3887 } 3888 3889 if (current_pool) 3890 raw_spin_unlock_irq(¤t_pool->lock); 3891 3892 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 3893 complete(&wq->first_flusher->done); 3894 3895 return wait; 3896 } 3897 3898 static void touch_wq_lockdep_map(struct workqueue_struct *wq) 3899 { 3900 #ifdef CONFIG_LOCKDEP 3901 if (unlikely(!wq->lockdep_map)) 3902 return; 3903 3904 if (wq->flags & WQ_BH) 3905 local_bh_disable(); 3906 3907 lock_map_acquire(wq->lockdep_map); 3908 lock_map_release(wq->lockdep_map); 3909 3910 if (wq->flags & WQ_BH) 3911 local_bh_enable(); 3912 #endif 3913 } 3914 3915 static void touch_work_lockdep_map(struct work_struct *work, 3916 struct workqueue_struct *wq) 3917 { 3918 #ifdef CONFIG_LOCKDEP 3919 if (wq->flags & WQ_BH) 3920 local_bh_disable(); 3921 3922 lock_map_acquire(&work->lockdep_map); 3923 lock_map_release(&work->lockdep_map); 3924 3925 if (wq->flags & WQ_BH) 3926 local_bh_enable(); 3927 #endif 3928 } 3929 3930 /** 3931 * __flush_workqueue - ensure that any scheduled work has run to completion. 3932 * @wq: workqueue to flush 3933 * 3934 * This function sleeps until all work items which were queued on entry 3935 * have finished execution, but it is not livelocked by new incoming ones. 3936 */ 3937 void __flush_workqueue(struct workqueue_struct *wq) 3938 { 3939 struct wq_flusher this_flusher = { 3940 .list = LIST_HEAD_INIT(this_flusher.list), 3941 .flush_color = -1, 3942 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, (*wq->lockdep_map)), 3943 }; 3944 int next_color; 3945 3946 if (WARN_ON(!wq_online)) 3947 return; 3948 3949 touch_wq_lockdep_map(wq); 3950 3951 mutex_lock(&wq->mutex); 3952 3953 /* 3954 * Start-to-wait phase 3955 */ 3956 next_color = work_next_color(wq->work_color); 3957 3958 if (next_color != wq->flush_color) { 3959 /* 3960 * Color space is not full. The current work_color 3961 * becomes our flush_color and work_color is advanced 3962 * by one. 3963 */ 3964 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 3965 this_flusher.flush_color = wq->work_color; 3966 wq->work_color = next_color; 3967 3968 if (!wq->first_flusher) { 3969 /* no flush in progress, become the first flusher */ 3970 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3971 3972 wq->first_flusher = &this_flusher; 3973 3974 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 3975 wq->work_color)) { 3976 /* nothing to flush, done */ 3977 wq->flush_color = next_color; 3978 wq->first_flusher = NULL; 3979 goto out_unlock; 3980 } 3981 } else { 3982 /* wait in queue */ 3983 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 3984 list_add_tail(&this_flusher.list, &wq->flusher_queue); 3985 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3986 } 3987 } else { 3988 /* 3989 * Oops, color space is full, wait on overflow queue. 3990 * The next flush completion will assign us 3991 * flush_color and transfer to flusher_queue. 3992 */ 3993 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 3994 } 3995 3996 check_flush_dependency(wq, NULL, false); 3997 3998 mutex_unlock(&wq->mutex); 3999 4000 wait_for_completion(&this_flusher.done); 4001 4002 /* 4003 * Wake-up-and-cascade phase 4004 * 4005 * First flushers are responsible for cascading flushes and 4006 * handling overflow. Non-first flushers can simply return. 4007 */ 4008 if (READ_ONCE(wq->first_flusher) != &this_flusher) 4009 return; 4010 4011 mutex_lock(&wq->mutex); 4012 4013 /* we might have raced, check again with mutex held */ 4014 if (wq->first_flusher != &this_flusher) 4015 goto out_unlock; 4016 4017 WRITE_ONCE(wq->first_flusher, NULL); 4018 4019 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 4020 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 4021 4022 while (true) { 4023 struct wq_flusher *next, *tmp; 4024 4025 /* complete all the flushers sharing the current flush color */ 4026 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 4027 if (next->flush_color != wq->flush_color) 4028 break; 4029 list_del_init(&next->list); 4030 complete(&next->done); 4031 } 4032 4033 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 4034 wq->flush_color != work_next_color(wq->work_color)); 4035 4036 /* this flush_color is finished, advance by one */ 4037 wq->flush_color = work_next_color(wq->flush_color); 4038 4039 /* one color has been freed, handle overflow queue */ 4040 if (!list_empty(&wq->flusher_overflow)) { 4041 /* 4042 * Assign the same color to all overflowed 4043 * flushers, advance work_color and append to 4044 * flusher_queue. This is the start-to-wait 4045 * phase for these overflowed flushers. 4046 */ 4047 list_for_each_entry(tmp, &wq->flusher_overflow, list) 4048 tmp->flush_color = wq->work_color; 4049 4050 wq->work_color = work_next_color(wq->work_color); 4051 4052 list_splice_tail_init(&wq->flusher_overflow, 4053 &wq->flusher_queue); 4054 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 4055 } 4056 4057 if (list_empty(&wq->flusher_queue)) { 4058 WARN_ON_ONCE(wq->flush_color != wq->work_color); 4059 break; 4060 } 4061 4062 /* 4063 * Need to flush more colors. Make the next flusher 4064 * the new first flusher and arm pwqs. 4065 */ 4066 WARN_ON_ONCE(wq->flush_color == wq->work_color); 4067 WARN_ON_ONCE(wq->flush_color != next->flush_color); 4068 4069 list_del_init(&next->list); 4070 wq->first_flusher = next; 4071 4072 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 4073 break; 4074 4075 /* 4076 * Meh... this color is already done, clear first 4077 * flusher and repeat cascading. 4078 */ 4079 wq->first_flusher = NULL; 4080 } 4081 4082 out_unlock: 4083 mutex_unlock(&wq->mutex); 4084 } 4085 EXPORT_SYMBOL(__flush_workqueue); 4086 4087 /** 4088 * drain_workqueue - drain a workqueue 4089 * @wq: workqueue to drain 4090 * 4091 * Wait until the workqueue becomes empty. While draining is in progress, 4092 * only chain queueing is allowed. IOW, only currently pending or running 4093 * work items on @wq can queue further work items on it. @wq is flushed 4094 * repeatedly until it becomes empty. The number of flushing is determined 4095 * by the depth of chaining and should be relatively short. Whine if it 4096 * takes too long. 4097 */ 4098 void drain_workqueue(struct workqueue_struct *wq) 4099 { 4100 unsigned int flush_cnt = 0; 4101 struct pool_workqueue *pwq; 4102 4103 /* 4104 * __queue_work() needs to test whether there are drainers, is much 4105 * hotter than drain_workqueue() and already looks at @wq->flags. 4106 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 4107 */ 4108 mutex_lock(&wq->mutex); 4109 if (!wq->nr_drainers++) 4110 wq->flags |= __WQ_DRAINING; 4111 mutex_unlock(&wq->mutex); 4112 reflush: 4113 __flush_workqueue(wq); 4114 4115 mutex_lock(&wq->mutex); 4116 4117 for_each_pwq(pwq, wq) { 4118 bool drained; 4119 4120 raw_spin_lock_irq(&pwq->pool->lock); 4121 drained = pwq_is_empty(pwq); 4122 raw_spin_unlock_irq(&pwq->pool->lock); 4123 4124 if (drained) 4125 continue; 4126 4127 if (++flush_cnt == 10 || 4128 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 4129 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 4130 wq->name, __func__, flush_cnt); 4131 4132 mutex_unlock(&wq->mutex); 4133 goto reflush; 4134 } 4135 4136 if (!--wq->nr_drainers) 4137 wq->flags &= ~__WQ_DRAINING; 4138 mutex_unlock(&wq->mutex); 4139 } 4140 EXPORT_SYMBOL_GPL(drain_workqueue); 4141 4142 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 4143 bool from_cancel) 4144 { 4145 struct worker *worker = NULL; 4146 struct worker_pool *pool; 4147 struct pool_workqueue *pwq; 4148 struct workqueue_struct *wq; 4149 4150 rcu_read_lock(); 4151 pool = get_work_pool(work); 4152 if (!pool) { 4153 rcu_read_unlock(); 4154 return false; 4155 } 4156 4157 raw_spin_lock_irq(&pool->lock); 4158 /* see the comment in try_to_grab_pending() with the same code */ 4159 pwq = get_work_pwq(work); 4160 if (pwq) { 4161 if (unlikely(pwq->pool != pool)) 4162 goto already_gone; 4163 } else { 4164 worker = find_worker_executing_work(pool, work); 4165 if (!worker) 4166 goto already_gone; 4167 pwq = worker->current_pwq; 4168 } 4169 4170 wq = pwq->wq; 4171 check_flush_dependency(wq, work, from_cancel); 4172 4173 insert_wq_barrier(pwq, barr, work, worker); 4174 raw_spin_unlock_irq(&pool->lock); 4175 4176 touch_work_lockdep_map(work, wq); 4177 4178 /* 4179 * Force a lock recursion deadlock when using flush_work() inside a 4180 * single-threaded or rescuer equipped workqueue. 4181 * 4182 * For single threaded workqueues the deadlock happens when the work 4183 * is after the work issuing the flush_work(). For rescuer equipped 4184 * workqueues the deadlock happens when the rescuer stalls, blocking 4185 * forward progress. 4186 */ 4187 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer)) 4188 touch_wq_lockdep_map(wq); 4189 4190 rcu_read_unlock(); 4191 return true; 4192 already_gone: 4193 raw_spin_unlock_irq(&pool->lock); 4194 rcu_read_unlock(); 4195 return false; 4196 } 4197 4198 static bool __flush_work(struct work_struct *work, bool from_cancel) 4199 { 4200 struct wq_barrier barr; 4201 4202 if (WARN_ON(!wq_online)) 4203 return false; 4204 4205 if (WARN_ON(!work->func)) 4206 return false; 4207 4208 if (!start_flush_work(work, &barr, from_cancel)) 4209 return false; 4210 4211 /* 4212 * start_flush_work() returned %true. If @from_cancel is set, we know 4213 * that @work must have been executing during start_flush_work() and 4214 * can't currently be queued. Its data must contain OFFQ bits. If @work 4215 * was queued on a BH workqueue, we also know that it was running in the 4216 * BH context and thus can be busy-waited. 4217 */ 4218 if (from_cancel) { 4219 unsigned long data = *work_data_bits(work); 4220 4221 if (!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) && 4222 (data & WORK_OFFQ_BH)) { 4223 /* 4224 * On RT, prevent a live lock when %current preempted 4225 * soft interrupt processing or prevents ksoftirqd from 4226 * running by keeping flipping BH. If the BH work item 4227 * runs on a different CPU then this has no effect other 4228 * than doing the BH disable/enable dance for nothing. 4229 * This is copied from 4230 * kernel/softirq.c::tasklet_unlock_spin_wait(). 4231 */ 4232 while (!try_wait_for_completion(&barr.done)) { 4233 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 4234 local_bh_disable(); 4235 local_bh_enable(); 4236 } else { 4237 cpu_relax(); 4238 } 4239 } 4240 goto out_destroy; 4241 } 4242 } 4243 4244 wait_for_completion(&barr.done); 4245 4246 out_destroy: 4247 destroy_work_on_stack(&barr.work); 4248 return true; 4249 } 4250 4251 /** 4252 * flush_work - wait for a work to finish executing the last queueing instance 4253 * @work: the work to flush 4254 * 4255 * Wait until @work has finished execution. @work is guaranteed to be idle 4256 * on return if it hasn't been requeued since flush started. 4257 * 4258 * Return: 4259 * %true if flush_work() waited for the work to finish execution, 4260 * %false if it was already idle. 4261 */ 4262 bool flush_work(struct work_struct *work) 4263 { 4264 might_sleep(); 4265 return __flush_work(work, false); 4266 } 4267 EXPORT_SYMBOL_GPL(flush_work); 4268 4269 /** 4270 * flush_delayed_work - wait for a dwork to finish executing the last queueing 4271 * @dwork: the delayed work to flush 4272 * 4273 * Delayed timer is cancelled and the pending work is queued for 4274 * immediate execution. Like flush_work(), this function only 4275 * considers the last queueing instance of @dwork. 4276 * 4277 * Return: 4278 * %true if flush_work() waited for the work to finish execution, 4279 * %false if it was already idle. 4280 */ 4281 bool flush_delayed_work(struct delayed_work *dwork) 4282 { 4283 local_irq_disable(); 4284 if (del_timer_sync(&dwork->timer)) 4285 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 4286 local_irq_enable(); 4287 return flush_work(&dwork->work); 4288 } 4289 EXPORT_SYMBOL(flush_delayed_work); 4290 4291 /** 4292 * flush_rcu_work - wait for a rwork to finish executing the last queueing 4293 * @rwork: the rcu work to flush 4294 * 4295 * Return: 4296 * %true if flush_rcu_work() waited for the work to finish execution, 4297 * %false if it was already idle. 4298 */ 4299 bool flush_rcu_work(struct rcu_work *rwork) 4300 { 4301 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 4302 rcu_barrier(); 4303 flush_work(&rwork->work); 4304 return true; 4305 } else { 4306 return flush_work(&rwork->work); 4307 } 4308 } 4309 EXPORT_SYMBOL(flush_rcu_work); 4310 4311 static void work_offqd_disable(struct work_offq_data *offqd) 4312 { 4313 const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1; 4314 4315 if (likely(offqd->disable < max)) 4316 offqd->disable++; 4317 else 4318 WARN_ONCE(true, "workqueue: work disable count overflowed\n"); 4319 } 4320 4321 static void work_offqd_enable(struct work_offq_data *offqd) 4322 { 4323 if (likely(offqd->disable > 0)) 4324 offqd->disable--; 4325 else 4326 WARN_ONCE(true, "workqueue: work disable count underflowed\n"); 4327 } 4328 4329 static bool __cancel_work(struct work_struct *work, u32 cflags) 4330 { 4331 struct work_offq_data offqd; 4332 unsigned long irq_flags; 4333 int ret; 4334 4335 ret = work_grab_pending(work, cflags, &irq_flags); 4336 4337 work_offqd_unpack(&offqd, *work_data_bits(work)); 4338 4339 if (cflags & WORK_CANCEL_DISABLE) 4340 work_offqd_disable(&offqd); 4341 4342 set_work_pool_and_clear_pending(work, offqd.pool_id, 4343 work_offqd_pack_flags(&offqd)); 4344 local_irq_restore(irq_flags); 4345 return ret; 4346 } 4347 4348 static bool __cancel_work_sync(struct work_struct *work, u32 cflags) 4349 { 4350 bool ret; 4351 4352 ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE); 4353 4354 if (*work_data_bits(work) & WORK_OFFQ_BH) 4355 WARN_ON_ONCE(in_hardirq()); 4356 else 4357 might_sleep(); 4358 4359 /* 4360 * Skip __flush_work() during early boot when we know that @work isn't 4361 * executing. This allows canceling during early boot. 4362 */ 4363 if (wq_online) 4364 __flush_work(work, true); 4365 4366 if (!(cflags & WORK_CANCEL_DISABLE)) 4367 enable_work(work); 4368 4369 return ret; 4370 } 4371 4372 /* 4373 * See cancel_delayed_work() 4374 */ 4375 bool cancel_work(struct work_struct *work) 4376 { 4377 return __cancel_work(work, 0); 4378 } 4379 EXPORT_SYMBOL(cancel_work); 4380 4381 /** 4382 * cancel_work_sync - cancel a work and wait for it to finish 4383 * @work: the work to cancel 4384 * 4385 * Cancel @work and wait for its execution to finish. This function can be used 4386 * even if the work re-queues itself or migrates to another workqueue. On return 4387 * from this function, @work is guaranteed to be not pending or executing on any 4388 * CPU as long as there aren't racing enqueues. 4389 * 4390 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's. 4391 * Use cancel_delayed_work_sync() instead. 4392 * 4393 * Must be called from a sleepable context if @work was last queued on a non-BH 4394 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4395 * if @work was last queued on a BH workqueue. 4396 * 4397 * Returns %true if @work was pending, %false otherwise. 4398 */ 4399 bool cancel_work_sync(struct work_struct *work) 4400 { 4401 return __cancel_work_sync(work, 0); 4402 } 4403 EXPORT_SYMBOL_GPL(cancel_work_sync); 4404 4405 /** 4406 * cancel_delayed_work - cancel a delayed work 4407 * @dwork: delayed_work to cancel 4408 * 4409 * Kill off a pending delayed_work. 4410 * 4411 * Return: %true if @dwork was pending and canceled; %false if it wasn't 4412 * pending. 4413 * 4414 * Note: 4415 * The work callback function may still be running on return, unless 4416 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 4417 * use cancel_delayed_work_sync() to wait on it. 4418 * 4419 * This function is safe to call from any context including IRQ handler. 4420 */ 4421 bool cancel_delayed_work(struct delayed_work *dwork) 4422 { 4423 return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED); 4424 } 4425 EXPORT_SYMBOL(cancel_delayed_work); 4426 4427 /** 4428 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 4429 * @dwork: the delayed work cancel 4430 * 4431 * This is cancel_work_sync() for delayed works. 4432 * 4433 * Return: 4434 * %true if @dwork was pending, %false otherwise. 4435 */ 4436 bool cancel_delayed_work_sync(struct delayed_work *dwork) 4437 { 4438 return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED); 4439 } 4440 EXPORT_SYMBOL(cancel_delayed_work_sync); 4441 4442 /** 4443 * disable_work - Disable and cancel a work item 4444 * @work: work item to disable 4445 * 4446 * Disable @work by incrementing its disable count and cancel it if currently 4447 * pending. As long as the disable count is non-zero, any attempt to queue @work 4448 * will fail and return %false. The maximum supported disable depth is 2 to the 4449 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536. 4450 * 4451 * Can be called from any context. Returns %true if @work was pending, %false 4452 * otherwise. 4453 */ 4454 bool disable_work(struct work_struct *work) 4455 { 4456 return __cancel_work(work, WORK_CANCEL_DISABLE); 4457 } 4458 EXPORT_SYMBOL_GPL(disable_work); 4459 4460 /** 4461 * disable_work_sync - Disable, cancel and drain a work item 4462 * @work: work item to disable 4463 * 4464 * Similar to disable_work() but also wait for @work to finish if currently 4465 * executing. 4466 * 4467 * Must be called from a sleepable context if @work was last queued on a non-BH 4468 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4469 * if @work was last queued on a BH workqueue. 4470 * 4471 * Returns %true if @work was pending, %false otherwise. 4472 */ 4473 bool disable_work_sync(struct work_struct *work) 4474 { 4475 return __cancel_work_sync(work, WORK_CANCEL_DISABLE); 4476 } 4477 EXPORT_SYMBOL_GPL(disable_work_sync); 4478 4479 /** 4480 * enable_work - Enable a work item 4481 * @work: work item to enable 4482 * 4483 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can 4484 * only be queued if its disable count is 0. 4485 * 4486 * Can be called from any context. Returns %true if the disable count reached 0. 4487 * Otherwise, %false. 4488 */ 4489 bool enable_work(struct work_struct *work) 4490 { 4491 struct work_offq_data offqd; 4492 unsigned long irq_flags; 4493 4494 work_grab_pending(work, 0, &irq_flags); 4495 4496 work_offqd_unpack(&offqd, *work_data_bits(work)); 4497 work_offqd_enable(&offqd); 4498 set_work_pool_and_clear_pending(work, offqd.pool_id, 4499 work_offqd_pack_flags(&offqd)); 4500 local_irq_restore(irq_flags); 4501 4502 return !offqd.disable; 4503 } 4504 EXPORT_SYMBOL_GPL(enable_work); 4505 4506 /** 4507 * disable_delayed_work - Disable and cancel a delayed work item 4508 * @dwork: delayed work item to disable 4509 * 4510 * disable_work() for delayed work items. 4511 */ 4512 bool disable_delayed_work(struct delayed_work *dwork) 4513 { 4514 return __cancel_work(&dwork->work, 4515 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4516 } 4517 EXPORT_SYMBOL_GPL(disable_delayed_work); 4518 4519 /** 4520 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item 4521 * @dwork: delayed work item to disable 4522 * 4523 * disable_work_sync() for delayed work items. 4524 */ 4525 bool disable_delayed_work_sync(struct delayed_work *dwork) 4526 { 4527 return __cancel_work_sync(&dwork->work, 4528 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4529 } 4530 EXPORT_SYMBOL_GPL(disable_delayed_work_sync); 4531 4532 /** 4533 * enable_delayed_work - Enable a delayed work item 4534 * @dwork: delayed work item to enable 4535 * 4536 * enable_work() for delayed work items. 4537 */ 4538 bool enable_delayed_work(struct delayed_work *dwork) 4539 { 4540 return enable_work(&dwork->work); 4541 } 4542 EXPORT_SYMBOL_GPL(enable_delayed_work); 4543 4544 /** 4545 * schedule_on_each_cpu - execute a function synchronously on each online CPU 4546 * @func: the function to call 4547 * 4548 * schedule_on_each_cpu() executes @func on each online CPU using the 4549 * system workqueue and blocks until all CPUs have completed. 4550 * schedule_on_each_cpu() is very slow. 4551 * 4552 * Return: 4553 * 0 on success, -errno on failure. 4554 */ 4555 int schedule_on_each_cpu(work_func_t func) 4556 { 4557 int cpu; 4558 struct work_struct __percpu *works; 4559 4560 works = alloc_percpu(struct work_struct); 4561 if (!works) 4562 return -ENOMEM; 4563 4564 cpus_read_lock(); 4565 4566 for_each_online_cpu(cpu) { 4567 struct work_struct *work = per_cpu_ptr(works, cpu); 4568 4569 INIT_WORK(work, func); 4570 schedule_work_on(cpu, work); 4571 } 4572 4573 for_each_online_cpu(cpu) 4574 flush_work(per_cpu_ptr(works, cpu)); 4575 4576 cpus_read_unlock(); 4577 free_percpu(works); 4578 return 0; 4579 } 4580 4581 /** 4582 * execute_in_process_context - reliably execute the routine with user context 4583 * @fn: the function to execute 4584 * @ew: guaranteed storage for the execute work structure (must 4585 * be available when the work executes) 4586 * 4587 * Executes the function immediately if process context is available, 4588 * otherwise schedules the function for delayed execution. 4589 * 4590 * Return: 0 - function was executed 4591 * 1 - function was scheduled for execution 4592 */ 4593 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 4594 { 4595 if (!in_interrupt()) { 4596 fn(&ew->work); 4597 return 0; 4598 } 4599 4600 INIT_WORK(&ew->work, fn); 4601 schedule_work(&ew->work); 4602 4603 return 1; 4604 } 4605 EXPORT_SYMBOL_GPL(execute_in_process_context); 4606 4607 /** 4608 * free_workqueue_attrs - free a workqueue_attrs 4609 * @attrs: workqueue_attrs to free 4610 * 4611 * Undo alloc_workqueue_attrs(). 4612 */ 4613 void free_workqueue_attrs(struct workqueue_attrs *attrs) 4614 { 4615 if (attrs) { 4616 free_cpumask_var(attrs->cpumask); 4617 free_cpumask_var(attrs->__pod_cpumask); 4618 kfree(attrs); 4619 } 4620 } 4621 4622 /** 4623 * alloc_workqueue_attrs - allocate a workqueue_attrs 4624 * 4625 * Allocate a new workqueue_attrs, initialize with default settings and 4626 * return it. 4627 * 4628 * Return: The allocated new workqueue_attr on success. %NULL on failure. 4629 */ 4630 struct workqueue_attrs *alloc_workqueue_attrs(void) 4631 { 4632 struct workqueue_attrs *attrs; 4633 4634 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 4635 if (!attrs) 4636 goto fail; 4637 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 4638 goto fail; 4639 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL)) 4640 goto fail; 4641 4642 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4643 attrs->affn_scope = WQ_AFFN_DFL; 4644 return attrs; 4645 fail: 4646 free_workqueue_attrs(attrs); 4647 return NULL; 4648 } 4649 4650 static void copy_workqueue_attrs(struct workqueue_attrs *to, 4651 const struct workqueue_attrs *from) 4652 { 4653 to->nice = from->nice; 4654 cpumask_copy(to->cpumask, from->cpumask); 4655 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask); 4656 to->affn_strict = from->affn_strict; 4657 4658 /* 4659 * Unlike hash and equality test, copying shouldn't ignore wq-only 4660 * fields as copying is used for both pool and wq attrs. Instead, 4661 * get_unbound_pool() explicitly clears the fields. 4662 */ 4663 to->affn_scope = from->affn_scope; 4664 to->ordered = from->ordered; 4665 } 4666 4667 /* 4668 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the 4669 * comments in 'struct workqueue_attrs' definition. 4670 */ 4671 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs) 4672 { 4673 attrs->affn_scope = WQ_AFFN_NR_TYPES; 4674 attrs->ordered = false; 4675 if (attrs->affn_strict) 4676 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4677 } 4678 4679 /* hash value of the content of @attr */ 4680 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 4681 { 4682 u32 hash = 0; 4683 4684 hash = jhash_1word(attrs->nice, hash); 4685 hash = jhash_1word(attrs->affn_strict, hash); 4686 hash = jhash(cpumask_bits(attrs->__pod_cpumask), 4687 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4688 if (!attrs->affn_strict) 4689 hash = jhash(cpumask_bits(attrs->cpumask), 4690 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4691 return hash; 4692 } 4693 4694 /* content equality test */ 4695 static bool wqattrs_equal(const struct workqueue_attrs *a, 4696 const struct workqueue_attrs *b) 4697 { 4698 if (a->nice != b->nice) 4699 return false; 4700 if (a->affn_strict != b->affn_strict) 4701 return false; 4702 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask)) 4703 return false; 4704 if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask)) 4705 return false; 4706 return true; 4707 } 4708 4709 /* Update @attrs with actually available CPUs */ 4710 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs, 4711 const cpumask_t *unbound_cpumask) 4712 { 4713 /* 4714 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If 4715 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to 4716 * @unbound_cpumask. 4717 */ 4718 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask); 4719 if (unlikely(cpumask_empty(attrs->cpumask))) 4720 cpumask_copy(attrs->cpumask, unbound_cpumask); 4721 } 4722 4723 /* find wq_pod_type to use for @attrs */ 4724 static const struct wq_pod_type * 4725 wqattrs_pod_type(const struct workqueue_attrs *attrs) 4726 { 4727 enum wq_affn_scope scope; 4728 struct wq_pod_type *pt; 4729 4730 /* to synchronize access to wq_affn_dfl */ 4731 lockdep_assert_held(&wq_pool_mutex); 4732 4733 if (attrs->affn_scope == WQ_AFFN_DFL) 4734 scope = wq_affn_dfl; 4735 else 4736 scope = attrs->affn_scope; 4737 4738 pt = &wq_pod_types[scope]; 4739 4740 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) && 4741 likely(pt->nr_pods)) 4742 return pt; 4743 4744 /* 4745 * Before workqueue_init_topology(), only SYSTEM is available which is 4746 * initialized in workqueue_init_early(). 4747 */ 4748 pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 4749 BUG_ON(!pt->nr_pods); 4750 return pt; 4751 } 4752 4753 /** 4754 * init_worker_pool - initialize a newly zalloc'd worker_pool 4755 * @pool: worker_pool to initialize 4756 * 4757 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 4758 * 4759 * Return: 0 on success, -errno on failure. Even on failure, all fields 4760 * inside @pool proper are initialized and put_unbound_pool() can be called 4761 * on @pool safely to release it. 4762 */ 4763 static int init_worker_pool(struct worker_pool *pool) 4764 { 4765 raw_spin_lock_init(&pool->lock); 4766 pool->id = -1; 4767 pool->cpu = -1; 4768 pool->node = NUMA_NO_NODE; 4769 pool->flags |= POOL_DISASSOCIATED; 4770 pool->watchdog_ts = jiffies; 4771 INIT_LIST_HEAD(&pool->worklist); 4772 INIT_LIST_HEAD(&pool->idle_list); 4773 hash_init(pool->busy_hash); 4774 4775 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 4776 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 4777 4778 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 4779 4780 INIT_LIST_HEAD(&pool->workers); 4781 4782 ida_init(&pool->worker_ida); 4783 INIT_HLIST_NODE(&pool->hash_node); 4784 pool->refcnt = 1; 4785 4786 /* shouldn't fail above this point */ 4787 pool->attrs = alloc_workqueue_attrs(); 4788 if (!pool->attrs) 4789 return -ENOMEM; 4790 4791 wqattrs_clear_for_pool(pool->attrs); 4792 4793 return 0; 4794 } 4795 4796 #ifdef CONFIG_LOCKDEP 4797 static void wq_init_lockdep(struct workqueue_struct *wq) 4798 { 4799 char *lock_name; 4800 4801 lockdep_register_key(&wq->key); 4802 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 4803 if (!lock_name) 4804 lock_name = wq->name; 4805 4806 wq->lock_name = lock_name; 4807 wq->lockdep_map = &wq->__lockdep_map; 4808 lockdep_init_map(wq->lockdep_map, lock_name, &wq->key, 0); 4809 } 4810 4811 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4812 { 4813 if (wq->lockdep_map != &wq->__lockdep_map) 4814 return; 4815 4816 lockdep_unregister_key(&wq->key); 4817 } 4818 4819 static void wq_free_lockdep(struct workqueue_struct *wq) 4820 { 4821 if (wq->lockdep_map != &wq->__lockdep_map) 4822 return; 4823 4824 if (wq->lock_name != wq->name) 4825 kfree(wq->lock_name); 4826 } 4827 #else 4828 static void wq_init_lockdep(struct workqueue_struct *wq) 4829 { 4830 } 4831 4832 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4833 { 4834 } 4835 4836 static void wq_free_lockdep(struct workqueue_struct *wq) 4837 { 4838 } 4839 #endif 4840 4841 static void free_node_nr_active(struct wq_node_nr_active **nna_ar) 4842 { 4843 int node; 4844 4845 for_each_node(node) { 4846 kfree(nna_ar[node]); 4847 nna_ar[node] = NULL; 4848 } 4849 4850 kfree(nna_ar[nr_node_ids]); 4851 nna_ar[nr_node_ids] = NULL; 4852 } 4853 4854 static void init_node_nr_active(struct wq_node_nr_active *nna) 4855 { 4856 nna->max = WQ_DFL_MIN_ACTIVE; 4857 atomic_set(&nna->nr, 0); 4858 raw_spin_lock_init(&nna->lock); 4859 INIT_LIST_HEAD(&nna->pending_pwqs); 4860 } 4861 4862 /* 4863 * Each node's nr_active counter will be accessed mostly from its own node and 4864 * should be allocated in the node. 4865 */ 4866 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar) 4867 { 4868 struct wq_node_nr_active *nna; 4869 int node; 4870 4871 for_each_node(node) { 4872 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node); 4873 if (!nna) 4874 goto err_free; 4875 init_node_nr_active(nna); 4876 nna_ar[node] = nna; 4877 } 4878 4879 /* [nr_node_ids] is used as the fallback */ 4880 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE); 4881 if (!nna) 4882 goto err_free; 4883 init_node_nr_active(nna); 4884 nna_ar[nr_node_ids] = nna; 4885 4886 return 0; 4887 4888 err_free: 4889 free_node_nr_active(nna_ar); 4890 return -ENOMEM; 4891 } 4892 4893 static void rcu_free_wq(struct rcu_head *rcu) 4894 { 4895 struct workqueue_struct *wq = 4896 container_of(rcu, struct workqueue_struct, rcu); 4897 4898 if (wq->flags & WQ_UNBOUND) 4899 free_node_nr_active(wq->node_nr_active); 4900 4901 wq_free_lockdep(wq); 4902 free_percpu(wq->cpu_pwq); 4903 free_workqueue_attrs(wq->unbound_attrs); 4904 kfree(wq); 4905 } 4906 4907 static void rcu_free_pool(struct rcu_head *rcu) 4908 { 4909 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 4910 4911 ida_destroy(&pool->worker_ida); 4912 free_workqueue_attrs(pool->attrs); 4913 kfree(pool); 4914 } 4915 4916 /** 4917 * put_unbound_pool - put a worker_pool 4918 * @pool: worker_pool to put 4919 * 4920 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 4921 * safe manner. get_unbound_pool() calls this function on its failure path 4922 * and this function should be able to release pools which went through, 4923 * successfully or not, init_worker_pool(). 4924 * 4925 * Should be called with wq_pool_mutex held. 4926 */ 4927 static void put_unbound_pool(struct worker_pool *pool) 4928 { 4929 struct worker *worker; 4930 LIST_HEAD(cull_list); 4931 4932 lockdep_assert_held(&wq_pool_mutex); 4933 4934 if (--pool->refcnt) 4935 return; 4936 4937 /* sanity checks */ 4938 if (WARN_ON(!(pool->cpu < 0)) || 4939 WARN_ON(!list_empty(&pool->worklist))) 4940 return; 4941 4942 /* release id and unhash */ 4943 if (pool->id >= 0) 4944 idr_remove(&worker_pool_idr, pool->id); 4945 hash_del(&pool->hash_node); 4946 4947 /* 4948 * Become the manager and destroy all workers. This prevents 4949 * @pool's workers from blocking on attach_mutex. We're the last 4950 * manager and @pool gets freed with the flag set. 4951 * 4952 * Having a concurrent manager is quite unlikely to happen as we can 4953 * only get here with 4954 * pwq->refcnt == pool->refcnt == 0 4955 * which implies no work queued to the pool, which implies no worker can 4956 * become the manager. However a worker could have taken the role of 4957 * manager before the refcnts dropped to 0, since maybe_create_worker() 4958 * drops pool->lock 4959 */ 4960 while (true) { 4961 rcuwait_wait_event(&manager_wait, 4962 !(pool->flags & POOL_MANAGER_ACTIVE), 4963 TASK_UNINTERRUPTIBLE); 4964 4965 mutex_lock(&wq_pool_attach_mutex); 4966 raw_spin_lock_irq(&pool->lock); 4967 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 4968 pool->flags |= POOL_MANAGER_ACTIVE; 4969 break; 4970 } 4971 raw_spin_unlock_irq(&pool->lock); 4972 mutex_unlock(&wq_pool_attach_mutex); 4973 } 4974 4975 while ((worker = first_idle_worker(pool))) 4976 set_worker_dying(worker, &cull_list); 4977 WARN_ON(pool->nr_workers || pool->nr_idle); 4978 raw_spin_unlock_irq(&pool->lock); 4979 4980 detach_dying_workers(&cull_list); 4981 4982 mutex_unlock(&wq_pool_attach_mutex); 4983 4984 reap_dying_workers(&cull_list); 4985 4986 /* shut down the timers */ 4987 del_timer_sync(&pool->idle_timer); 4988 cancel_work_sync(&pool->idle_cull_work); 4989 del_timer_sync(&pool->mayday_timer); 4990 4991 /* RCU protected to allow dereferences from get_work_pool() */ 4992 call_rcu(&pool->rcu, rcu_free_pool); 4993 } 4994 4995 /** 4996 * get_unbound_pool - get a worker_pool with the specified attributes 4997 * @attrs: the attributes of the worker_pool to get 4998 * 4999 * Obtain a worker_pool which has the same attributes as @attrs, bump the 5000 * reference count and return it. If there already is a matching 5001 * worker_pool, it will be used; otherwise, this function attempts to 5002 * create a new one. 5003 * 5004 * Should be called with wq_pool_mutex held. 5005 * 5006 * Return: On success, a worker_pool with the same attributes as @attrs. 5007 * On failure, %NULL. 5008 */ 5009 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 5010 { 5011 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA]; 5012 u32 hash = wqattrs_hash(attrs); 5013 struct worker_pool *pool; 5014 int pod, node = NUMA_NO_NODE; 5015 5016 lockdep_assert_held(&wq_pool_mutex); 5017 5018 /* do we already have a matching pool? */ 5019 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 5020 if (wqattrs_equal(pool->attrs, attrs)) { 5021 pool->refcnt++; 5022 return pool; 5023 } 5024 } 5025 5026 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */ 5027 for (pod = 0; pod < pt->nr_pods; pod++) { 5028 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) { 5029 node = pt->pod_node[pod]; 5030 break; 5031 } 5032 } 5033 5034 /* nope, create a new one */ 5035 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node); 5036 if (!pool || init_worker_pool(pool) < 0) 5037 goto fail; 5038 5039 pool->node = node; 5040 copy_workqueue_attrs(pool->attrs, attrs); 5041 wqattrs_clear_for_pool(pool->attrs); 5042 5043 if (worker_pool_assign_id(pool) < 0) 5044 goto fail; 5045 5046 /* create and start the initial worker */ 5047 if (wq_online && !create_worker(pool)) 5048 goto fail; 5049 5050 /* install */ 5051 hash_add(unbound_pool_hash, &pool->hash_node, hash); 5052 5053 return pool; 5054 fail: 5055 if (pool) 5056 put_unbound_pool(pool); 5057 return NULL; 5058 } 5059 5060 /* 5061 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero 5062 * refcnt and needs to be destroyed. 5063 */ 5064 static void pwq_release_workfn(struct kthread_work *work) 5065 { 5066 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 5067 release_work); 5068 struct workqueue_struct *wq = pwq->wq; 5069 struct worker_pool *pool = pwq->pool; 5070 bool is_last = false; 5071 5072 /* 5073 * When @pwq is not linked, it doesn't hold any reference to the 5074 * @wq, and @wq is invalid to access. 5075 */ 5076 if (!list_empty(&pwq->pwqs_node)) { 5077 mutex_lock(&wq->mutex); 5078 list_del_rcu(&pwq->pwqs_node); 5079 is_last = list_empty(&wq->pwqs); 5080 5081 /* 5082 * For ordered workqueue with a plugged dfl_pwq, restart it now. 5083 */ 5084 if (!is_last && (wq->flags & __WQ_ORDERED)) 5085 unplug_oldest_pwq(wq); 5086 5087 mutex_unlock(&wq->mutex); 5088 } 5089 5090 if (wq->flags & WQ_UNBOUND) { 5091 mutex_lock(&wq_pool_mutex); 5092 put_unbound_pool(pool); 5093 mutex_unlock(&wq_pool_mutex); 5094 } 5095 5096 if (!list_empty(&pwq->pending_node)) { 5097 struct wq_node_nr_active *nna = 5098 wq_node_nr_active(pwq->wq, pwq->pool->node); 5099 5100 raw_spin_lock_irq(&nna->lock); 5101 list_del_init(&pwq->pending_node); 5102 raw_spin_unlock_irq(&nna->lock); 5103 } 5104 5105 kfree_rcu(pwq, rcu); 5106 5107 /* 5108 * If we're the last pwq going away, @wq is already dead and no one 5109 * is gonna access it anymore. Schedule RCU free. 5110 */ 5111 if (is_last) { 5112 wq_unregister_lockdep(wq); 5113 call_rcu(&wq->rcu, rcu_free_wq); 5114 } 5115 } 5116 5117 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 5118 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 5119 struct worker_pool *pool) 5120 { 5121 BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK); 5122 5123 memset(pwq, 0, sizeof(*pwq)); 5124 5125 pwq->pool = pool; 5126 pwq->wq = wq; 5127 pwq->flush_color = -1; 5128 pwq->refcnt = 1; 5129 INIT_LIST_HEAD(&pwq->inactive_works); 5130 INIT_LIST_HEAD(&pwq->pending_node); 5131 INIT_LIST_HEAD(&pwq->pwqs_node); 5132 INIT_LIST_HEAD(&pwq->mayday_node); 5133 kthread_init_work(&pwq->release_work, pwq_release_workfn); 5134 } 5135 5136 /* sync @pwq with the current state of its associated wq and link it */ 5137 static void link_pwq(struct pool_workqueue *pwq) 5138 { 5139 struct workqueue_struct *wq = pwq->wq; 5140 5141 lockdep_assert_held(&wq->mutex); 5142 5143 /* may be called multiple times, ignore if already linked */ 5144 if (!list_empty(&pwq->pwqs_node)) 5145 return; 5146 5147 /* set the matching work_color */ 5148 pwq->work_color = wq->work_color; 5149 5150 /* link in @pwq */ 5151 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs); 5152 } 5153 5154 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 5155 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 5156 const struct workqueue_attrs *attrs) 5157 { 5158 struct worker_pool *pool; 5159 struct pool_workqueue *pwq; 5160 5161 lockdep_assert_held(&wq_pool_mutex); 5162 5163 pool = get_unbound_pool(attrs); 5164 if (!pool) 5165 return NULL; 5166 5167 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 5168 if (!pwq) { 5169 put_unbound_pool(pool); 5170 return NULL; 5171 } 5172 5173 init_pwq(pwq, wq, pool); 5174 return pwq; 5175 } 5176 5177 static void apply_wqattrs_lock(void) 5178 { 5179 mutex_lock(&wq_pool_mutex); 5180 } 5181 5182 static void apply_wqattrs_unlock(void) 5183 { 5184 mutex_unlock(&wq_pool_mutex); 5185 } 5186 5187 /** 5188 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod 5189 * @attrs: the wq_attrs of the default pwq of the target workqueue 5190 * @cpu: the target CPU 5191 * 5192 * Calculate the cpumask a workqueue with @attrs should use on @pod. 5193 * The result is stored in @attrs->__pod_cpumask. 5194 * 5195 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled 5196 * and @pod has online CPUs requested by @attrs, the returned cpumask is the 5197 * intersection of the possible CPUs of @pod and @attrs->cpumask. 5198 * 5199 * The caller is responsible for ensuring that the cpumask of @pod stays stable. 5200 */ 5201 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu) 5202 { 5203 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 5204 int pod = pt->cpu_pod[cpu]; 5205 5206 /* calculate possible CPUs in @pod that @attrs wants */ 5207 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask); 5208 /* does @pod have any online CPUs @attrs wants? */ 5209 if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) { 5210 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask); 5211 return; 5212 } 5213 } 5214 5215 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */ 5216 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq, 5217 int cpu, struct pool_workqueue *pwq) 5218 { 5219 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu); 5220 struct pool_workqueue *old_pwq; 5221 5222 lockdep_assert_held(&wq_pool_mutex); 5223 lockdep_assert_held(&wq->mutex); 5224 5225 /* link_pwq() can handle duplicate calls */ 5226 link_pwq(pwq); 5227 5228 old_pwq = rcu_access_pointer(*slot); 5229 rcu_assign_pointer(*slot, pwq); 5230 return old_pwq; 5231 } 5232 5233 /* context to store the prepared attrs & pwqs before applying */ 5234 struct apply_wqattrs_ctx { 5235 struct workqueue_struct *wq; /* target workqueue */ 5236 struct workqueue_attrs *attrs; /* attrs to apply */ 5237 struct list_head list; /* queued for batching commit */ 5238 struct pool_workqueue *dfl_pwq; 5239 struct pool_workqueue *pwq_tbl[]; 5240 }; 5241 5242 /* free the resources after success or abort */ 5243 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 5244 { 5245 if (ctx) { 5246 int cpu; 5247 5248 for_each_possible_cpu(cpu) 5249 put_pwq_unlocked(ctx->pwq_tbl[cpu]); 5250 put_pwq_unlocked(ctx->dfl_pwq); 5251 5252 free_workqueue_attrs(ctx->attrs); 5253 5254 kfree(ctx); 5255 } 5256 } 5257 5258 /* allocate the attrs and pwqs for later installation */ 5259 static struct apply_wqattrs_ctx * 5260 apply_wqattrs_prepare(struct workqueue_struct *wq, 5261 const struct workqueue_attrs *attrs, 5262 const cpumask_var_t unbound_cpumask) 5263 { 5264 struct apply_wqattrs_ctx *ctx; 5265 struct workqueue_attrs *new_attrs; 5266 int cpu; 5267 5268 lockdep_assert_held(&wq_pool_mutex); 5269 5270 if (WARN_ON(attrs->affn_scope < 0 || 5271 attrs->affn_scope >= WQ_AFFN_NR_TYPES)) 5272 return ERR_PTR(-EINVAL); 5273 5274 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL); 5275 5276 new_attrs = alloc_workqueue_attrs(); 5277 if (!ctx || !new_attrs) 5278 goto out_free; 5279 5280 /* 5281 * If something goes wrong during CPU up/down, we'll fall back to 5282 * the default pwq covering whole @attrs->cpumask. Always create 5283 * it even if we don't use it immediately. 5284 */ 5285 copy_workqueue_attrs(new_attrs, attrs); 5286 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask); 5287 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5288 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 5289 if (!ctx->dfl_pwq) 5290 goto out_free; 5291 5292 for_each_possible_cpu(cpu) { 5293 if (new_attrs->ordered) { 5294 ctx->dfl_pwq->refcnt++; 5295 ctx->pwq_tbl[cpu] = ctx->dfl_pwq; 5296 } else { 5297 wq_calc_pod_cpumask(new_attrs, cpu); 5298 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs); 5299 if (!ctx->pwq_tbl[cpu]) 5300 goto out_free; 5301 } 5302 } 5303 5304 /* save the user configured attrs and sanitize it. */ 5305 copy_workqueue_attrs(new_attrs, attrs); 5306 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 5307 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5308 ctx->attrs = new_attrs; 5309 5310 /* 5311 * For initialized ordered workqueues, there should only be one pwq 5312 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution 5313 * of newly queued work items until execution of older work items in 5314 * the old pwq's have completed. 5315 */ 5316 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)) 5317 ctx->dfl_pwq->plugged = true; 5318 5319 ctx->wq = wq; 5320 return ctx; 5321 5322 out_free: 5323 free_workqueue_attrs(new_attrs); 5324 apply_wqattrs_cleanup(ctx); 5325 return ERR_PTR(-ENOMEM); 5326 } 5327 5328 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 5329 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 5330 { 5331 int cpu; 5332 5333 /* all pwqs have been created successfully, let's install'em */ 5334 mutex_lock(&ctx->wq->mutex); 5335 5336 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 5337 5338 /* save the previous pwqs and install the new ones */ 5339 for_each_possible_cpu(cpu) 5340 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu, 5341 ctx->pwq_tbl[cpu]); 5342 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq); 5343 5344 /* update node_nr_active->max */ 5345 wq_update_node_max_active(ctx->wq, -1); 5346 5347 /* rescuer needs to respect wq cpumask changes */ 5348 if (ctx->wq->rescuer) 5349 set_cpus_allowed_ptr(ctx->wq->rescuer->task, 5350 unbound_effective_cpumask(ctx->wq)); 5351 5352 mutex_unlock(&ctx->wq->mutex); 5353 } 5354 5355 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 5356 const struct workqueue_attrs *attrs) 5357 { 5358 struct apply_wqattrs_ctx *ctx; 5359 5360 /* only unbound workqueues can change attributes */ 5361 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 5362 return -EINVAL; 5363 5364 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 5365 if (IS_ERR(ctx)) 5366 return PTR_ERR(ctx); 5367 5368 /* the ctx has been prepared successfully, let's commit it */ 5369 apply_wqattrs_commit(ctx); 5370 apply_wqattrs_cleanup(ctx); 5371 5372 return 0; 5373 } 5374 5375 /** 5376 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 5377 * @wq: the target workqueue 5378 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 5379 * 5380 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps 5381 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that 5382 * work items are affine to the pod it was issued on. Older pwqs are released as 5383 * in-flight work items finish. Note that a work item which repeatedly requeues 5384 * itself back-to-back will stay on its current pwq. 5385 * 5386 * Performs GFP_KERNEL allocations. 5387 * 5388 * Return: 0 on success and -errno on failure. 5389 */ 5390 int apply_workqueue_attrs(struct workqueue_struct *wq, 5391 const struct workqueue_attrs *attrs) 5392 { 5393 int ret; 5394 5395 mutex_lock(&wq_pool_mutex); 5396 ret = apply_workqueue_attrs_locked(wq, attrs); 5397 mutex_unlock(&wq_pool_mutex); 5398 5399 return ret; 5400 } 5401 5402 /** 5403 * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug 5404 * @wq: the target workqueue 5405 * @cpu: the CPU to update the pwq slot for 5406 * 5407 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 5408 * %CPU_DOWN_FAILED. @cpu is in the same pod of the CPU being hot[un]plugged. 5409 * 5410 * 5411 * If pod affinity can't be adjusted due to memory allocation failure, it falls 5412 * back to @wq->dfl_pwq which may not be optimal but is always correct. 5413 * 5414 * Note that when the last allowed CPU of a pod goes offline for a workqueue 5415 * with a cpumask spanning multiple pods, the workers which were already 5416 * executing the work items for the workqueue will lose their CPU affinity and 5417 * may execute on any CPU. This is similar to how per-cpu workqueues behave on 5418 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's 5419 * responsibility to flush the work item from CPU_DOWN_PREPARE. 5420 */ 5421 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu) 5422 { 5423 struct pool_workqueue *old_pwq = NULL, *pwq; 5424 struct workqueue_attrs *target_attrs; 5425 5426 lockdep_assert_held(&wq_pool_mutex); 5427 5428 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered) 5429 return; 5430 5431 /* 5432 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 5433 * Let's use a preallocated one. The following buf is protected by 5434 * CPU hotplug exclusion. 5435 */ 5436 target_attrs = unbound_wq_update_pwq_attrs_buf; 5437 5438 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 5439 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask); 5440 5441 /* nothing to do if the target cpumask matches the current pwq */ 5442 wq_calc_pod_cpumask(target_attrs, cpu); 5443 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs)) 5444 return; 5445 5446 /* create a new pwq */ 5447 pwq = alloc_unbound_pwq(wq, target_attrs); 5448 if (!pwq) { 5449 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n", 5450 wq->name); 5451 goto use_dfl_pwq; 5452 } 5453 5454 /* Install the new pwq. */ 5455 mutex_lock(&wq->mutex); 5456 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5457 goto out_unlock; 5458 5459 use_dfl_pwq: 5460 mutex_lock(&wq->mutex); 5461 pwq = unbound_pwq(wq, -1); 5462 raw_spin_lock_irq(&pwq->pool->lock); 5463 get_pwq(pwq); 5464 raw_spin_unlock_irq(&pwq->pool->lock); 5465 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5466 out_unlock: 5467 mutex_unlock(&wq->mutex); 5468 put_pwq_unlocked(old_pwq); 5469 } 5470 5471 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 5472 { 5473 bool highpri = wq->flags & WQ_HIGHPRI; 5474 int cpu, ret; 5475 5476 lockdep_assert_held(&wq_pool_mutex); 5477 5478 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *); 5479 if (!wq->cpu_pwq) 5480 goto enomem; 5481 5482 if (!(wq->flags & WQ_UNBOUND)) { 5483 struct worker_pool __percpu *pools; 5484 5485 if (wq->flags & WQ_BH) 5486 pools = bh_worker_pools; 5487 else 5488 pools = cpu_worker_pools; 5489 5490 for_each_possible_cpu(cpu) { 5491 struct pool_workqueue **pwq_p; 5492 struct worker_pool *pool; 5493 5494 pool = &(per_cpu_ptr(pools, cpu)[highpri]); 5495 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu); 5496 5497 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, 5498 pool->node); 5499 if (!*pwq_p) 5500 goto enomem; 5501 5502 init_pwq(*pwq_p, wq, pool); 5503 5504 mutex_lock(&wq->mutex); 5505 link_pwq(*pwq_p); 5506 mutex_unlock(&wq->mutex); 5507 } 5508 return 0; 5509 } 5510 5511 if (wq->flags & __WQ_ORDERED) { 5512 struct pool_workqueue *dfl_pwq; 5513 5514 ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]); 5515 /* there should only be single pwq for ordering guarantee */ 5516 dfl_pwq = rcu_access_pointer(wq->dfl_pwq); 5517 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node || 5518 wq->pwqs.prev != &dfl_pwq->pwqs_node), 5519 "ordering guarantee broken for workqueue %s\n", wq->name); 5520 } else { 5521 ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]); 5522 } 5523 5524 return ret; 5525 5526 enomem: 5527 if (wq->cpu_pwq) { 5528 for_each_possible_cpu(cpu) { 5529 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5530 5531 if (pwq) 5532 kmem_cache_free(pwq_cache, pwq); 5533 } 5534 free_percpu(wq->cpu_pwq); 5535 wq->cpu_pwq = NULL; 5536 } 5537 return -ENOMEM; 5538 } 5539 5540 static int wq_clamp_max_active(int max_active, unsigned int flags, 5541 const char *name) 5542 { 5543 if (max_active < 1 || max_active > WQ_MAX_ACTIVE) 5544 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 5545 max_active, name, 1, WQ_MAX_ACTIVE); 5546 5547 return clamp_val(max_active, 1, WQ_MAX_ACTIVE); 5548 } 5549 5550 /* 5551 * Workqueues which may be used during memory reclaim should have a rescuer 5552 * to guarantee forward progress. 5553 */ 5554 static int init_rescuer(struct workqueue_struct *wq) 5555 { 5556 struct worker *rescuer; 5557 char id_buf[WORKER_ID_LEN]; 5558 int ret; 5559 5560 lockdep_assert_held(&wq_pool_mutex); 5561 5562 if (!(wq->flags & WQ_MEM_RECLAIM)) 5563 return 0; 5564 5565 rescuer = alloc_worker(NUMA_NO_NODE); 5566 if (!rescuer) { 5567 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 5568 wq->name); 5569 return -ENOMEM; 5570 } 5571 5572 rescuer->rescue_wq = wq; 5573 format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL); 5574 5575 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf); 5576 if (IS_ERR(rescuer->task)) { 5577 ret = PTR_ERR(rescuer->task); 5578 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 5579 wq->name, ERR_PTR(ret)); 5580 kfree(rescuer); 5581 return ret; 5582 } 5583 5584 wq->rescuer = rescuer; 5585 if (wq->flags & WQ_UNBOUND) 5586 kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq)); 5587 else 5588 kthread_bind_mask(rescuer->task, cpu_possible_mask); 5589 wake_up_process(rescuer->task); 5590 5591 return 0; 5592 } 5593 5594 /** 5595 * wq_adjust_max_active - update a wq's max_active to the current setting 5596 * @wq: target workqueue 5597 * 5598 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and 5599 * activate inactive work items accordingly. If @wq is freezing, clear 5600 * @wq->max_active to zero. 5601 */ 5602 static void wq_adjust_max_active(struct workqueue_struct *wq) 5603 { 5604 bool activated; 5605 int new_max, new_min; 5606 5607 lockdep_assert_held(&wq->mutex); 5608 5609 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) { 5610 new_max = 0; 5611 new_min = 0; 5612 } else { 5613 new_max = wq->saved_max_active; 5614 new_min = wq->saved_min_active; 5615 } 5616 5617 if (wq->max_active == new_max && wq->min_active == new_min) 5618 return; 5619 5620 /* 5621 * Update @wq->max/min_active and then kick inactive work items if more 5622 * active work items are allowed. This doesn't break work item ordering 5623 * because new work items are always queued behind existing inactive 5624 * work items if there are any. 5625 */ 5626 WRITE_ONCE(wq->max_active, new_max); 5627 WRITE_ONCE(wq->min_active, new_min); 5628 5629 if (wq->flags & WQ_UNBOUND) 5630 wq_update_node_max_active(wq, -1); 5631 5632 if (new_max == 0) 5633 return; 5634 5635 /* 5636 * Round-robin through pwq's activating the first inactive work item 5637 * until max_active is filled. 5638 */ 5639 do { 5640 struct pool_workqueue *pwq; 5641 5642 activated = false; 5643 for_each_pwq(pwq, wq) { 5644 unsigned long irq_flags; 5645 5646 /* can be called during early boot w/ irq disabled */ 5647 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 5648 if (pwq_activate_first_inactive(pwq, true)) { 5649 activated = true; 5650 kick_pool(pwq->pool); 5651 } 5652 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 5653 } 5654 } while (activated); 5655 } 5656 5657 __printf(1, 0) 5658 static struct workqueue_struct *__alloc_workqueue(const char *fmt, 5659 unsigned int flags, 5660 int max_active, va_list args) 5661 { 5662 struct workqueue_struct *wq; 5663 size_t wq_size; 5664 int name_len; 5665 5666 if (flags & WQ_BH) { 5667 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS)) 5668 return NULL; 5669 if (WARN_ON_ONCE(max_active)) 5670 return NULL; 5671 } 5672 5673 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 5674 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 5675 flags |= WQ_UNBOUND; 5676 5677 /* allocate wq and format name */ 5678 if (flags & WQ_UNBOUND) 5679 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1); 5680 else 5681 wq_size = sizeof(*wq); 5682 5683 wq = kzalloc(wq_size, GFP_KERNEL); 5684 if (!wq) 5685 return NULL; 5686 5687 if (flags & WQ_UNBOUND) { 5688 wq->unbound_attrs = alloc_workqueue_attrs(); 5689 if (!wq->unbound_attrs) 5690 goto err_free_wq; 5691 } 5692 5693 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args); 5694 5695 if (name_len >= WQ_NAME_LEN) 5696 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n", 5697 wq->name); 5698 5699 if (flags & WQ_BH) { 5700 /* 5701 * BH workqueues always share a single execution context per CPU 5702 * and don't impose any max_active limit. 5703 */ 5704 max_active = INT_MAX; 5705 } else { 5706 max_active = max_active ?: WQ_DFL_ACTIVE; 5707 max_active = wq_clamp_max_active(max_active, flags, wq->name); 5708 } 5709 5710 /* init wq */ 5711 wq->flags = flags; 5712 wq->max_active = max_active; 5713 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE); 5714 wq->saved_max_active = wq->max_active; 5715 wq->saved_min_active = wq->min_active; 5716 mutex_init(&wq->mutex); 5717 atomic_set(&wq->nr_pwqs_to_flush, 0); 5718 INIT_LIST_HEAD(&wq->pwqs); 5719 INIT_LIST_HEAD(&wq->flusher_queue); 5720 INIT_LIST_HEAD(&wq->flusher_overflow); 5721 INIT_LIST_HEAD(&wq->maydays); 5722 5723 INIT_LIST_HEAD(&wq->list); 5724 5725 if (flags & WQ_UNBOUND) { 5726 if (alloc_node_nr_active(wq->node_nr_active) < 0) 5727 goto err_free_wq; 5728 } 5729 5730 /* 5731 * wq_pool_mutex protects the workqueues list, allocations of PWQs, 5732 * and the global freeze state. 5733 */ 5734 apply_wqattrs_lock(); 5735 5736 if (alloc_and_link_pwqs(wq) < 0) 5737 goto err_unlock_free_node_nr_active; 5738 5739 mutex_lock(&wq->mutex); 5740 wq_adjust_max_active(wq); 5741 mutex_unlock(&wq->mutex); 5742 5743 list_add_tail_rcu(&wq->list, &workqueues); 5744 5745 if (wq_online && init_rescuer(wq) < 0) 5746 goto err_unlock_destroy; 5747 5748 apply_wqattrs_unlock(); 5749 5750 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 5751 goto err_destroy; 5752 5753 return wq; 5754 5755 err_unlock_free_node_nr_active: 5756 apply_wqattrs_unlock(); 5757 /* 5758 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work, 5759 * flushing the pwq_release_worker ensures that the pwq_release_workfn() 5760 * completes before calling kfree(wq). 5761 */ 5762 if (wq->flags & WQ_UNBOUND) { 5763 kthread_flush_worker(pwq_release_worker); 5764 free_node_nr_active(wq->node_nr_active); 5765 } 5766 err_free_wq: 5767 free_workqueue_attrs(wq->unbound_attrs); 5768 kfree(wq); 5769 return NULL; 5770 err_unlock_destroy: 5771 apply_wqattrs_unlock(); 5772 err_destroy: 5773 destroy_workqueue(wq); 5774 return NULL; 5775 } 5776 5777 __printf(1, 4) 5778 struct workqueue_struct *alloc_workqueue(const char *fmt, 5779 unsigned int flags, 5780 int max_active, ...) 5781 { 5782 struct workqueue_struct *wq; 5783 va_list args; 5784 5785 va_start(args, max_active); 5786 wq = __alloc_workqueue(fmt, flags, max_active, args); 5787 va_end(args); 5788 if (!wq) 5789 return NULL; 5790 5791 wq_init_lockdep(wq); 5792 5793 return wq; 5794 } 5795 EXPORT_SYMBOL_GPL(alloc_workqueue); 5796 5797 #ifdef CONFIG_LOCKDEP 5798 __printf(1, 5) 5799 struct workqueue_struct * 5800 alloc_workqueue_lockdep_map(const char *fmt, unsigned int flags, 5801 int max_active, struct lockdep_map *lockdep_map, ...) 5802 { 5803 struct workqueue_struct *wq; 5804 va_list args; 5805 5806 va_start(args, lockdep_map); 5807 wq = __alloc_workqueue(fmt, flags, max_active, args); 5808 va_end(args); 5809 if (!wq) 5810 return NULL; 5811 5812 wq->lockdep_map = lockdep_map; 5813 5814 return wq; 5815 } 5816 EXPORT_SYMBOL_GPL(alloc_workqueue_lockdep_map); 5817 #endif 5818 5819 static bool pwq_busy(struct pool_workqueue *pwq) 5820 { 5821 int i; 5822 5823 for (i = 0; i < WORK_NR_COLORS; i++) 5824 if (pwq->nr_in_flight[i]) 5825 return true; 5826 5827 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1)) 5828 return true; 5829 if (!pwq_is_empty(pwq)) 5830 return true; 5831 5832 return false; 5833 } 5834 5835 /** 5836 * destroy_workqueue - safely terminate a workqueue 5837 * @wq: target workqueue 5838 * 5839 * Safely destroy a workqueue. All work currently pending will be done first. 5840 */ 5841 void destroy_workqueue(struct workqueue_struct *wq) 5842 { 5843 struct pool_workqueue *pwq; 5844 int cpu; 5845 5846 /* 5847 * Remove it from sysfs first so that sanity check failure doesn't 5848 * lead to sysfs name conflicts. 5849 */ 5850 workqueue_sysfs_unregister(wq); 5851 5852 /* mark the workqueue destruction is in progress */ 5853 mutex_lock(&wq->mutex); 5854 wq->flags |= __WQ_DESTROYING; 5855 mutex_unlock(&wq->mutex); 5856 5857 /* drain it before proceeding with destruction */ 5858 drain_workqueue(wq); 5859 5860 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 5861 if (wq->rescuer) { 5862 struct worker *rescuer = wq->rescuer; 5863 5864 /* this prevents new queueing */ 5865 raw_spin_lock_irq(&wq_mayday_lock); 5866 wq->rescuer = NULL; 5867 raw_spin_unlock_irq(&wq_mayday_lock); 5868 5869 /* rescuer will empty maydays list before exiting */ 5870 kthread_stop(rescuer->task); 5871 kfree(rescuer); 5872 } 5873 5874 /* 5875 * Sanity checks - grab all the locks so that we wait for all 5876 * in-flight operations which may do put_pwq(). 5877 */ 5878 mutex_lock(&wq_pool_mutex); 5879 mutex_lock(&wq->mutex); 5880 for_each_pwq(pwq, wq) { 5881 raw_spin_lock_irq(&pwq->pool->lock); 5882 if (WARN_ON(pwq_busy(pwq))) { 5883 pr_warn("%s: %s has the following busy pwq\n", 5884 __func__, wq->name); 5885 show_pwq(pwq); 5886 raw_spin_unlock_irq(&pwq->pool->lock); 5887 mutex_unlock(&wq->mutex); 5888 mutex_unlock(&wq_pool_mutex); 5889 show_one_workqueue(wq); 5890 return; 5891 } 5892 raw_spin_unlock_irq(&pwq->pool->lock); 5893 } 5894 mutex_unlock(&wq->mutex); 5895 5896 /* 5897 * wq list is used to freeze wq, remove from list after 5898 * flushing is complete in case freeze races us. 5899 */ 5900 list_del_rcu(&wq->list); 5901 mutex_unlock(&wq_pool_mutex); 5902 5903 /* 5904 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq 5905 * to put the base refs. @wq will be auto-destroyed from the last 5906 * pwq_put. RCU read lock prevents @wq from going away from under us. 5907 */ 5908 rcu_read_lock(); 5909 5910 for_each_possible_cpu(cpu) { 5911 put_pwq_unlocked(unbound_pwq(wq, cpu)); 5912 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL); 5913 } 5914 5915 put_pwq_unlocked(unbound_pwq(wq, -1)); 5916 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL); 5917 5918 rcu_read_unlock(); 5919 } 5920 EXPORT_SYMBOL_GPL(destroy_workqueue); 5921 5922 /** 5923 * workqueue_set_max_active - adjust max_active of a workqueue 5924 * @wq: target workqueue 5925 * @max_active: new max_active value. 5926 * 5927 * Set max_active of @wq to @max_active. See the alloc_workqueue() function 5928 * comment. 5929 * 5930 * CONTEXT: 5931 * Don't call from IRQ context. 5932 */ 5933 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 5934 { 5935 /* max_active doesn't mean anything for BH workqueues */ 5936 if (WARN_ON(wq->flags & WQ_BH)) 5937 return; 5938 /* disallow meddling with max_active for ordered workqueues */ 5939 if (WARN_ON(wq->flags & __WQ_ORDERED)) 5940 return; 5941 5942 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 5943 5944 mutex_lock(&wq->mutex); 5945 5946 wq->saved_max_active = max_active; 5947 if (wq->flags & WQ_UNBOUND) 5948 wq->saved_min_active = min(wq->saved_min_active, max_active); 5949 5950 wq_adjust_max_active(wq); 5951 5952 mutex_unlock(&wq->mutex); 5953 } 5954 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 5955 5956 /** 5957 * workqueue_set_min_active - adjust min_active of an unbound workqueue 5958 * @wq: target unbound workqueue 5959 * @min_active: new min_active value 5960 * 5961 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an 5962 * unbound workqueue is not guaranteed to be able to process max_active 5963 * interdependent work items. Instead, an unbound workqueue is guaranteed to be 5964 * able to process min_active number of interdependent work items which is 5965 * %WQ_DFL_MIN_ACTIVE by default. 5966 * 5967 * Use this function to adjust the min_active value between 0 and the current 5968 * max_active. 5969 */ 5970 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active) 5971 { 5972 /* min_active is only meaningful for non-ordered unbound workqueues */ 5973 if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) != 5974 WQ_UNBOUND)) 5975 return; 5976 5977 mutex_lock(&wq->mutex); 5978 wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active); 5979 wq_adjust_max_active(wq); 5980 mutex_unlock(&wq->mutex); 5981 } 5982 5983 /** 5984 * current_work - retrieve %current task's work struct 5985 * 5986 * Determine if %current task is a workqueue worker and what it's working on. 5987 * Useful to find out the context that the %current task is running in. 5988 * 5989 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 5990 */ 5991 struct work_struct *current_work(void) 5992 { 5993 struct worker *worker = current_wq_worker(); 5994 5995 return worker ? worker->current_work : NULL; 5996 } 5997 EXPORT_SYMBOL(current_work); 5998 5999 /** 6000 * current_is_workqueue_rescuer - is %current workqueue rescuer? 6001 * 6002 * Determine whether %current is a workqueue rescuer. Can be used from 6003 * work functions to determine whether it's being run off the rescuer task. 6004 * 6005 * Return: %true if %current is a workqueue rescuer. %false otherwise. 6006 */ 6007 bool current_is_workqueue_rescuer(void) 6008 { 6009 struct worker *worker = current_wq_worker(); 6010 6011 return worker && worker->rescue_wq; 6012 } 6013 6014 /** 6015 * workqueue_congested - test whether a workqueue is congested 6016 * @cpu: CPU in question 6017 * @wq: target workqueue 6018 * 6019 * Test whether @wq's cpu workqueue for @cpu is congested. There is 6020 * no synchronization around this function and the test result is 6021 * unreliable and only useful as advisory hints or for debugging. 6022 * 6023 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 6024 * 6025 * With the exception of ordered workqueues, all workqueues have per-cpu 6026 * pool_workqueues, each with its own congested state. A workqueue being 6027 * congested on one CPU doesn't mean that the workqueue is contested on any 6028 * other CPUs. 6029 * 6030 * Return: 6031 * %true if congested, %false otherwise. 6032 */ 6033 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 6034 { 6035 struct pool_workqueue *pwq; 6036 bool ret; 6037 6038 rcu_read_lock(); 6039 preempt_disable(); 6040 6041 if (cpu == WORK_CPU_UNBOUND) 6042 cpu = smp_processor_id(); 6043 6044 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 6045 ret = !list_empty(&pwq->inactive_works); 6046 6047 preempt_enable(); 6048 rcu_read_unlock(); 6049 6050 return ret; 6051 } 6052 EXPORT_SYMBOL_GPL(workqueue_congested); 6053 6054 /** 6055 * work_busy - test whether a work is currently pending or running 6056 * @work: the work to be tested 6057 * 6058 * Test whether @work is currently pending or running. There is no 6059 * synchronization around this function and the test result is 6060 * unreliable and only useful as advisory hints or for debugging. 6061 * 6062 * Return: 6063 * OR'd bitmask of WORK_BUSY_* bits. 6064 */ 6065 unsigned int work_busy(struct work_struct *work) 6066 { 6067 struct worker_pool *pool; 6068 unsigned long irq_flags; 6069 unsigned int ret = 0; 6070 6071 if (work_pending(work)) 6072 ret |= WORK_BUSY_PENDING; 6073 6074 rcu_read_lock(); 6075 pool = get_work_pool(work); 6076 if (pool) { 6077 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6078 if (find_worker_executing_work(pool, work)) 6079 ret |= WORK_BUSY_RUNNING; 6080 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6081 } 6082 rcu_read_unlock(); 6083 6084 return ret; 6085 } 6086 EXPORT_SYMBOL_GPL(work_busy); 6087 6088 /** 6089 * set_worker_desc - set description for the current work item 6090 * @fmt: printf-style format string 6091 * @...: arguments for the format string 6092 * 6093 * This function can be called by a running work function to describe what 6094 * the work item is about. If the worker task gets dumped, this 6095 * information will be printed out together to help debugging. The 6096 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 6097 */ 6098 void set_worker_desc(const char *fmt, ...) 6099 { 6100 struct worker *worker = current_wq_worker(); 6101 va_list args; 6102 6103 if (worker) { 6104 va_start(args, fmt); 6105 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 6106 va_end(args); 6107 } 6108 } 6109 EXPORT_SYMBOL_GPL(set_worker_desc); 6110 6111 /** 6112 * print_worker_info - print out worker information and description 6113 * @log_lvl: the log level to use when printing 6114 * @task: target task 6115 * 6116 * If @task is a worker and currently executing a work item, print out the 6117 * name of the workqueue being serviced and worker description set with 6118 * set_worker_desc() by the currently executing work item. 6119 * 6120 * This function can be safely called on any task as long as the 6121 * task_struct itself is accessible. While safe, this function isn't 6122 * synchronized and may print out mixups or garbages of limited length. 6123 */ 6124 void print_worker_info(const char *log_lvl, struct task_struct *task) 6125 { 6126 work_func_t *fn = NULL; 6127 char name[WQ_NAME_LEN] = { }; 6128 char desc[WORKER_DESC_LEN] = { }; 6129 struct pool_workqueue *pwq = NULL; 6130 struct workqueue_struct *wq = NULL; 6131 struct worker *worker; 6132 6133 if (!(task->flags & PF_WQ_WORKER)) 6134 return; 6135 6136 /* 6137 * This function is called without any synchronization and @task 6138 * could be in any state. Be careful with dereferences. 6139 */ 6140 worker = kthread_probe_data(task); 6141 6142 /* 6143 * Carefully copy the associated workqueue's workfn, name and desc. 6144 * Keep the original last '\0' in case the original is garbage. 6145 */ 6146 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 6147 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 6148 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 6149 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 6150 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 6151 6152 if (fn || name[0] || desc[0]) { 6153 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 6154 if (strcmp(name, desc)) 6155 pr_cont(" (%s)", desc); 6156 pr_cont("\n"); 6157 } 6158 } 6159 6160 static void pr_cont_pool_info(struct worker_pool *pool) 6161 { 6162 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 6163 if (pool->node != NUMA_NO_NODE) 6164 pr_cont(" node=%d", pool->node); 6165 pr_cont(" flags=0x%x", pool->flags); 6166 if (pool->flags & POOL_BH) 6167 pr_cont(" bh%s", 6168 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6169 else 6170 pr_cont(" nice=%d", pool->attrs->nice); 6171 } 6172 6173 static void pr_cont_worker_id(struct worker *worker) 6174 { 6175 struct worker_pool *pool = worker->pool; 6176 6177 if (pool->flags & WQ_BH) 6178 pr_cont("bh%s", 6179 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6180 else 6181 pr_cont("%d%s", task_pid_nr(worker->task), 6182 worker->rescue_wq ? "(RESCUER)" : ""); 6183 } 6184 6185 struct pr_cont_work_struct { 6186 bool comma; 6187 work_func_t func; 6188 long ctr; 6189 }; 6190 6191 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 6192 { 6193 if (!pcwsp->ctr) 6194 goto out_record; 6195 if (func == pcwsp->func) { 6196 pcwsp->ctr++; 6197 return; 6198 } 6199 if (pcwsp->ctr == 1) 6200 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 6201 else 6202 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 6203 pcwsp->ctr = 0; 6204 out_record: 6205 if ((long)func == -1L) 6206 return; 6207 pcwsp->comma = comma; 6208 pcwsp->func = func; 6209 pcwsp->ctr = 1; 6210 } 6211 6212 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 6213 { 6214 if (work->func == wq_barrier_func) { 6215 struct wq_barrier *barr; 6216 6217 barr = container_of(work, struct wq_barrier, work); 6218 6219 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6220 pr_cont("%s BAR(%d)", comma ? "," : "", 6221 task_pid_nr(barr->task)); 6222 } else { 6223 if (!comma) 6224 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6225 pr_cont_work_flush(comma, work->func, pcwsp); 6226 } 6227 } 6228 6229 static void show_pwq(struct pool_workqueue *pwq) 6230 { 6231 struct pr_cont_work_struct pcws = { .ctr = 0, }; 6232 struct worker_pool *pool = pwq->pool; 6233 struct work_struct *work; 6234 struct worker *worker; 6235 bool has_in_flight = false, has_pending = false; 6236 int bkt; 6237 6238 pr_info(" pwq %d:", pool->id); 6239 pr_cont_pool_info(pool); 6240 6241 pr_cont(" active=%d refcnt=%d%s\n", 6242 pwq->nr_active, pwq->refcnt, 6243 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 6244 6245 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6246 if (worker->current_pwq == pwq) { 6247 has_in_flight = true; 6248 break; 6249 } 6250 } 6251 if (has_in_flight) { 6252 bool comma = false; 6253 6254 pr_info(" in-flight:"); 6255 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6256 if (worker->current_pwq != pwq) 6257 continue; 6258 6259 pr_cont(" %s", comma ? "," : ""); 6260 pr_cont_worker_id(worker); 6261 pr_cont(":%ps", worker->current_func); 6262 list_for_each_entry(work, &worker->scheduled, entry) 6263 pr_cont_work(false, work, &pcws); 6264 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6265 comma = true; 6266 } 6267 pr_cont("\n"); 6268 } 6269 6270 list_for_each_entry(work, &pool->worklist, entry) { 6271 if (get_work_pwq(work) == pwq) { 6272 has_pending = true; 6273 break; 6274 } 6275 } 6276 if (has_pending) { 6277 bool comma = false; 6278 6279 pr_info(" pending:"); 6280 list_for_each_entry(work, &pool->worklist, entry) { 6281 if (get_work_pwq(work) != pwq) 6282 continue; 6283 6284 pr_cont_work(comma, work, &pcws); 6285 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6286 } 6287 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6288 pr_cont("\n"); 6289 } 6290 6291 if (!list_empty(&pwq->inactive_works)) { 6292 bool comma = false; 6293 6294 pr_info(" inactive:"); 6295 list_for_each_entry(work, &pwq->inactive_works, entry) { 6296 pr_cont_work(comma, work, &pcws); 6297 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6298 } 6299 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6300 pr_cont("\n"); 6301 } 6302 } 6303 6304 /** 6305 * show_one_workqueue - dump state of specified workqueue 6306 * @wq: workqueue whose state will be printed 6307 */ 6308 void show_one_workqueue(struct workqueue_struct *wq) 6309 { 6310 struct pool_workqueue *pwq; 6311 bool idle = true; 6312 unsigned long irq_flags; 6313 6314 for_each_pwq(pwq, wq) { 6315 if (!pwq_is_empty(pwq)) { 6316 idle = false; 6317 break; 6318 } 6319 } 6320 if (idle) /* Nothing to print for idle workqueue */ 6321 return; 6322 6323 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 6324 6325 for_each_pwq(pwq, wq) { 6326 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 6327 if (!pwq_is_empty(pwq)) { 6328 /* 6329 * Defer printing to avoid deadlocks in console 6330 * drivers that queue work while holding locks 6331 * also taken in their write paths. 6332 */ 6333 printk_deferred_enter(); 6334 show_pwq(pwq); 6335 printk_deferred_exit(); 6336 } 6337 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 6338 /* 6339 * We could be printing a lot from atomic context, e.g. 6340 * sysrq-t -> show_all_workqueues(). Avoid triggering 6341 * hard lockup. 6342 */ 6343 touch_nmi_watchdog(); 6344 } 6345 6346 } 6347 6348 /** 6349 * show_one_worker_pool - dump state of specified worker pool 6350 * @pool: worker pool whose state will be printed 6351 */ 6352 static void show_one_worker_pool(struct worker_pool *pool) 6353 { 6354 struct worker *worker; 6355 bool first = true; 6356 unsigned long irq_flags; 6357 unsigned long hung = 0; 6358 6359 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6360 if (pool->nr_workers == pool->nr_idle) 6361 goto next_pool; 6362 6363 /* How long the first pending work is waiting for a worker. */ 6364 if (!list_empty(&pool->worklist)) 6365 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 6366 6367 /* 6368 * Defer printing to avoid deadlocks in console drivers that 6369 * queue work while holding locks also taken in their write 6370 * paths. 6371 */ 6372 printk_deferred_enter(); 6373 pr_info("pool %d:", pool->id); 6374 pr_cont_pool_info(pool); 6375 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 6376 if (pool->manager) 6377 pr_cont(" manager: %d", 6378 task_pid_nr(pool->manager->task)); 6379 list_for_each_entry(worker, &pool->idle_list, entry) { 6380 pr_cont(" %s", first ? "idle: " : ""); 6381 pr_cont_worker_id(worker); 6382 first = false; 6383 } 6384 pr_cont("\n"); 6385 printk_deferred_exit(); 6386 next_pool: 6387 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6388 /* 6389 * We could be printing a lot from atomic context, e.g. 6390 * sysrq-t -> show_all_workqueues(). Avoid triggering 6391 * hard lockup. 6392 */ 6393 touch_nmi_watchdog(); 6394 6395 } 6396 6397 /** 6398 * show_all_workqueues - dump workqueue state 6399 * 6400 * Called from a sysrq handler and prints out all busy workqueues and pools. 6401 */ 6402 void show_all_workqueues(void) 6403 { 6404 struct workqueue_struct *wq; 6405 struct worker_pool *pool; 6406 int pi; 6407 6408 rcu_read_lock(); 6409 6410 pr_info("Showing busy workqueues and worker pools:\n"); 6411 6412 list_for_each_entry_rcu(wq, &workqueues, list) 6413 show_one_workqueue(wq); 6414 6415 for_each_pool(pool, pi) 6416 show_one_worker_pool(pool); 6417 6418 rcu_read_unlock(); 6419 } 6420 6421 /** 6422 * show_freezable_workqueues - dump freezable workqueue state 6423 * 6424 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 6425 * still busy. 6426 */ 6427 void show_freezable_workqueues(void) 6428 { 6429 struct workqueue_struct *wq; 6430 6431 rcu_read_lock(); 6432 6433 pr_info("Showing freezable workqueues that are still busy:\n"); 6434 6435 list_for_each_entry_rcu(wq, &workqueues, list) { 6436 if (!(wq->flags & WQ_FREEZABLE)) 6437 continue; 6438 show_one_workqueue(wq); 6439 } 6440 6441 rcu_read_unlock(); 6442 } 6443 6444 /* used to show worker information through /proc/PID/{comm,stat,status} */ 6445 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 6446 { 6447 /* stabilize PF_WQ_WORKER and worker pool association */ 6448 mutex_lock(&wq_pool_attach_mutex); 6449 6450 if (task->flags & PF_WQ_WORKER) { 6451 struct worker *worker = kthread_data(task); 6452 struct worker_pool *pool = worker->pool; 6453 int off; 6454 6455 off = format_worker_id(buf, size, worker, pool); 6456 6457 if (pool) { 6458 raw_spin_lock_irq(&pool->lock); 6459 /* 6460 * ->desc tracks information (wq name or 6461 * set_worker_desc()) for the latest execution. If 6462 * current, prepend '+', otherwise '-'. 6463 */ 6464 if (worker->desc[0] != '\0') { 6465 if (worker->current_work) 6466 scnprintf(buf + off, size - off, "+%s", 6467 worker->desc); 6468 else 6469 scnprintf(buf + off, size - off, "-%s", 6470 worker->desc); 6471 } 6472 raw_spin_unlock_irq(&pool->lock); 6473 } 6474 } else { 6475 strscpy(buf, task->comm, size); 6476 } 6477 6478 mutex_unlock(&wq_pool_attach_mutex); 6479 } 6480 6481 #ifdef CONFIG_SMP 6482 6483 /* 6484 * CPU hotplug. 6485 * 6486 * There are two challenges in supporting CPU hotplug. Firstly, there 6487 * are a lot of assumptions on strong associations among work, pwq and 6488 * pool which make migrating pending and scheduled works very 6489 * difficult to implement without impacting hot paths. Secondly, 6490 * worker pools serve mix of short, long and very long running works making 6491 * blocked draining impractical. 6492 * 6493 * This is solved by allowing the pools to be disassociated from the CPU 6494 * running as an unbound one and allowing it to be reattached later if the 6495 * cpu comes back online. 6496 */ 6497 6498 static void unbind_workers(int cpu) 6499 { 6500 struct worker_pool *pool; 6501 struct worker *worker; 6502 6503 for_each_cpu_worker_pool(pool, cpu) { 6504 mutex_lock(&wq_pool_attach_mutex); 6505 raw_spin_lock_irq(&pool->lock); 6506 6507 /* 6508 * We've blocked all attach/detach operations. Make all workers 6509 * unbound and set DISASSOCIATED. Before this, all workers 6510 * must be on the cpu. After this, they may become diasporas. 6511 * And the preemption disabled section in their sched callbacks 6512 * are guaranteed to see WORKER_UNBOUND since the code here 6513 * is on the same cpu. 6514 */ 6515 for_each_pool_worker(worker, pool) 6516 worker->flags |= WORKER_UNBOUND; 6517 6518 pool->flags |= POOL_DISASSOCIATED; 6519 6520 /* 6521 * The handling of nr_running in sched callbacks are disabled 6522 * now. Zap nr_running. After this, nr_running stays zero and 6523 * need_more_worker() and keep_working() are always true as 6524 * long as the worklist is not empty. This pool now behaves as 6525 * an unbound (in terms of concurrency management) pool which 6526 * are served by workers tied to the pool. 6527 */ 6528 pool->nr_running = 0; 6529 6530 /* 6531 * With concurrency management just turned off, a busy 6532 * worker blocking could lead to lengthy stalls. Kick off 6533 * unbound chain execution of currently pending work items. 6534 */ 6535 kick_pool(pool); 6536 6537 raw_spin_unlock_irq(&pool->lock); 6538 6539 for_each_pool_worker(worker, pool) 6540 unbind_worker(worker); 6541 6542 mutex_unlock(&wq_pool_attach_mutex); 6543 } 6544 } 6545 6546 /** 6547 * rebind_workers - rebind all workers of a pool to the associated CPU 6548 * @pool: pool of interest 6549 * 6550 * @pool->cpu is coming online. Rebind all workers to the CPU. 6551 */ 6552 static void rebind_workers(struct worker_pool *pool) 6553 { 6554 struct worker *worker; 6555 6556 lockdep_assert_held(&wq_pool_attach_mutex); 6557 6558 /* 6559 * Restore CPU affinity of all workers. As all idle workers should 6560 * be on the run-queue of the associated CPU before any local 6561 * wake-ups for concurrency management happen, restore CPU affinity 6562 * of all workers first and then clear UNBOUND. As we're called 6563 * from CPU_ONLINE, the following shouldn't fail. 6564 */ 6565 for_each_pool_worker(worker, pool) { 6566 kthread_set_per_cpu(worker->task, pool->cpu); 6567 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 6568 pool_allowed_cpus(pool)) < 0); 6569 } 6570 6571 raw_spin_lock_irq(&pool->lock); 6572 6573 pool->flags &= ~POOL_DISASSOCIATED; 6574 6575 for_each_pool_worker(worker, pool) { 6576 unsigned int worker_flags = worker->flags; 6577 6578 /* 6579 * We want to clear UNBOUND but can't directly call 6580 * worker_clr_flags() or adjust nr_running. Atomically 6581 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 6582 * @worker will clear REBOUND using worker_clr_flags() when 6583 * it initiates the next execution cycle thus restoring 6584 * concurrency management. Note that when or whether 6585 * @worker clears REBOUND doesn't affect correctness. 6586 * 6587 * WRITE_ONCE() is necessary because @worker->flags may be 6588 * tested without holding any lock in 6589 * wq_worker_running(). Without it, NOT_RUNNING test may 6590 * fail incorrectly leading to premature concurrency 6591 * management operations. 6592 */ 6593 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 6594 worker_flags |= WORKER_REBOUND; 6595 worker_flags &= ~WORKER_UNBOUND; 6596 WRITE_ONCE(worker->flags, worker_flags); 6597 } 6598 6599 raw_spin_unlock_irq(&pool->lock); 6600 } 6601 6602 /** 6603 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 6604 * @pool: unbound pool of interest 6605 * @cpu: the CPU which is coming up 6606 * 6607 * An unbound pool may end up with a cpumask which doesn't have any online 6608 * CPUs. When a worker of such pool get scheduled, the scheduler resets 6609 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 6610 * online CPU before, cpus_allowed of all its workers should be restored. 6611 */ 6612 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 6613 { 6614 static cpumask_t cpumask; 6615 struct worker *worker; 6616 6617 lockdep_assert_held(&wq_pool_attach_mutex); 6618 6619 /* is @cpu allowed for @pool? */ 6620 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 6621 return; 6622 6623 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 6624 6625 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 6626 for_each_pool_worker(worker, pool) 6627 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 6628 } 6629 6630 int workqueue_prepare_cpu(unsigned int cpu) 6631 { 6632 struct worker_pool *pool; 6633 6634 for_each_cpu_worker_pool(pool, cpu) { 6635 if (pool->nr_workers) 6636 continue; 6637 if (!create_worker(pool)) 6638 return -ENOMEM; 6639 } 6640 return 0; 6641 } 6642 6643 int workqueue_online_cpu(unsigned int cpu) 6644 { 6645 struct worker_pool *pool; 6646 struct workqueue_struct *wq; 6647 int pi; 6648 6649 mutex_lock(&wq_pool_mutex); 6650 6651 cpumask_set_cpu(cpu, wq_online_cpumask); 6652 6653 for_each_pool(pool, pi) { 6654 /* BH pools aren't affected by hotplug */ 6655 if (pool->flags & POOL_BH) 6656 continue; 6657 6658 mutex_lock(&wq_pool_attach_mutex); 6659 if (pool->cpu == cpu) 6660 rebind_workers(pool); 6661 else if (pool->cpu < 0) 6662 restore_unbound_workers_cpumask(pool, cpu); 6663 mutex_unlock(&wq_pool_attach_mutex); 6664 } 6665 6666 /* update pod affinity of unbound workqueues */ 6667 list_for_each_entry(wq, &workqueues, list) { 6668 struct workqueue_attrs *attrs = wq->unbound_attrs; 6669 6670 if (attrs) { 6671 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6672 int tcpu; 6673 6674 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6675 unbound_wq_update_pwq(wq, tcpu); 6676 6677 mutex_lock(&wq->mutex); 6678 wq_update_node_max_active(wq, -1); 6679 mutex_unlock(&wq->mutex); 6680 } 6681 } 6682 6683 mutex_unlock(&wq_pool_mutex); 6684 return 0; 6685 } 6686 6687 int workqueue_offline_cpu(unsigned int cpu) 6688 { 6689 struct workqueue_struct *wq; 6690 6691 /* unbinding per-cpu workers should happen on the local CPU */ 6692 if (WARN_ON(cpu != smp_processor_id())) 6693 return -1; 6694 6695 unbind_workers(cpu); 6696 6697 /* update pod affinity of unbound workqueues */ 6698 mutex_lock(&wq_pool_mutex); 6699 6700 cpumask_clear_cpu(cpu, wq_online_cpumask); 6701 6702 list_for_each_entry(wq, &workqueues, list) { 6703 struct workqueue_attrs *attrs = wq->unbound_attrs; 6704 6705 if (attrs) { 6706 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6707 int tcpu; 6708 6709 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6710 unbound_wq_update_pwq(wq, tcpu); 6711 6712 mutex_lock(&wq->mutex); 6713 wq_update_node_max_active(wq, cpu); 6714 mutex_unlock(&wq->mutex); 6715 } 6716 } 6717 mutex_unlock(&wq_pool_mutex); 6718 6719 return 0; 6720 } 6721 6722 struct work_for_cpu { 6723 struct work_struct work; 6724 long (*fn)(void *); 6725 void *arg; 6726 long ret; 6727 }; 6728 6729 static void work_for_cpu_fn(struct work_struct *work) 6730 { 6731 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 6732 6733 wfc->ret = wfc->fn(wfc->arg); 6734 } 6735 6736 /** 6737 * work_on_cpu_key - run a function in thread context on a particular cpu 6738 * @cpu: the cpu to run on 6739 * @fn: the function to run 6740 * @arg: the function arg 6741 * @key: The lock class key for lock debugging purposes 6742 * 6743 * It is up to the caller to ensure that the cpu doesn't go offline. 6744 * The caller must not hold any locks which would prevent @fn from completing. 6745 * 6746 * Return: The value @fn returns. 6747 */ 6748 long work_on_cpu_key(int cpu, long (*fn)(void *), 6749 void *arg, struct lock_class_key *key) 6750 { 6751 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 6752 6753 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key); 6754 schedule_work_on(cpu, &wfc.work); 6755 flush_work(&wfc.work); 6756 destroy_work_on_stack(&wfc.work); 6757 return wfc.ret; 6758 } 6759 EXPORT_SYMBOL_GPL(work_on_cpu_key); 6760 6761 /** 6762 * work_on_cpu_safe_key - run a function in thread context on a particular cpu 6763 * @cpu: the cpu to run on 6764 * @fn: the function to run 6765 * @arg: the function argument 6766 * @key: The lock class key for lock debugging purposes 6767 * 6768 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 6769 * any locks which would prevent @fn from completing. 6770 * 6771 * Return: The value @fn returns. 6772 */ 6773 long work_on_cpu_safe_key(int cpu, long (*fn)(void *), 6774 void *arg, struct lock_class_key *key) 6775 { 6776 long ret = -ENODEV; 6777 6778 cpus_read_lock(); 6779 if (cpu_online(cpu)) 6780 ret = work_on_cpu_key(cpu, fn, arg, key); 6781 cpus_read_unlock(); 6782 return ret; 6783 } 6784 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key); 6785 #endif /* CONFIG_SMP */ 6786 6787 #ifdef CONFIG_FREEZER 6788 6789 /** 6790 * freeze_workqueues_begin - begin freezing workqueues 6791 * 6792 * Start freezing workqueues. After this function returns, all freezable 6793 * workqueues will queue new works to their inactive_works list instead of 6794 * pool->worklist. 6795 * 6796 * CONTEXT: 6797 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6798 */ 6799 void freeze_workqueues_begin(void) 6800 { 6801 struct workqueue_struct *wq; 6802 6803 mutex_lock(&wq_pool_mutex); 6804 6805 WARN_ON_ONCE(workqueue_freezing); 6806 workqueue_freezing = true; 6807 6808 list_for_each_entry(wq, &workqueues, list) { 6809 mutex_lock(&wq->mutex); 6810 wq_adjust_max_active(wq); 6811 mutex_unlock(&wq->mutex); 6812 } 6813 6814 mutex_unlock(&wq_pool_mutex); 6815 } 6816 6817 /** 6818 * freeze_workqueues_busy - are freezable workqueues still busy? 6819 * 6820 * Check whether freezing is complete. This function must be called 6821 * between freeze_workqueues_begin() and thaw_workqueues(). 6822 * 6823 * CONTEXT: 6824 * Grabs and releases wq_pool_mutex. 6825 * 6826 * Return: 6827 * %true if some freezable workqueues are still busy. %false if freezing 6828 * is complete. 6829 */ 6830 bool freeze_workqueues_busy(void) 6831 { 6832 bool busy = false; 6833 struct workqueue_struct *wq; 6834 struct pool_workqueue *pwq; 6835 6836 mutex_lock(&wq_pool_mutex); 6837 6838 WARN_ON_ONCE(!workqueue_freezing); 6839 6840 list_for_each_entry(wq, &workqueues, list) { 6841 if (!(wq->flags & WQ_FREEZABLE)) 6842 continue; 6843 /* 6844 * nr_active is monotonically decreasing. It's safe 6845 * to peek without lock. 6846 */ 6847 rcu_read_lock(); 6848 for_each_pwq(pwq, wq) { 6849 WARN_ON_ONCE(pwq->nr_active < 0); 6850 if (pwq->nr_active) { 6851 busy = true; 6852 rcu_read_unlock(); 6853 goto out_unlock; 6854 } 6855 } 6856 rcu_read_unlock(); 6857 } 6858 out_unlock: 6859 mutex_unlock(&wq_pool_mutex); 6860 return busy; 6861 } 6862 6863 /** 6864 * thaw_workqueues - thaw workqueues 6865 * 6866 * Thaw workqueues. Normal queueing is restored and all collected 6867 * frozen works are transferred to their respective pool worklists. 6868 * 6869 * CONTEXT: 6870 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6871 */ 6872 void thaw_workqueues(void) 6873 { 6874 struct workqueue_struct *wq; 6875 6876 mutex_lock(&wq_pool_mutex); 6877 6878 if (!workqueue_freezing) 6879 goto out_unlock; 6880 6881 workqueue_freezing = false; 6882 6883 /* restore max_active and repopulate worklist */ 6884 list_for_each_entry(wq, &workqueues, list) { 6885 mutex_lock(&wq->mutex); 6886 wq_adjust_max_active(wq); 6887 mutex_unlock(&wq->mutex); 6888 } 6889 6890 out_unlock: 6891 mutex_unlock(&wq_pool_mutex); 6892 } 6893 #endif /* CONFIG_FREEZER */ 6894 6895 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 6896 { 6897 LIST_HEAD(ctxs); 6898 int ret = 0; 6899 struct workqueue_struct *wq; 6900 struct apply_wqattrs_ctx *ctx, *n; 6901 6902 lockdep_assert_held(&wq_pool_mutex); 6903 6904 list_for_each_entry(wq, &workqueues, list) { 6905 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING)) 6906 continue; 6907 6908 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 6909 if (IS_ERR(ctx)) { 6910 ret = PTR_ERR(ctx); 6911 break; 6912 } 6913 6914 list_add_tail(&ctx->list, &ctxs); 6915 } 6916 6917 list_for_each_entry_safe(ctx, n, &ctxs, list) { 6918 if (!ret) 6919 apply_wqattrs_commit(ctx); 6920 apply_wqattrs_cleanup(ctx); 6921 } 6922 6923 if (!ret) { 6924 mutex_lock(&wq_pool_attach_mutex); 6925 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 6926 mutex_unlock(&wq_pool_attach_mutex); 6927 } 6928 return ret; 6929 } 6930 6931 /** 6932 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask 6933 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask 6934 * 6935 * This function can be called from cpuset code to provide a set of isolated 6936 * CPUs that should be excluded from wq_unbound_cpumask. 6937 */ 6938 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask) 6939 { 6940 cpumask_var_t cpumask; 6941 int ret = 0; 6942 6943 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 6944 return -ENOMEM; 6945 6946 mutex_lock(&wq_pool_mutex); 6947 6948 /* 6949 * If the operation fails, it will fall back to 6950 * wq_requested_unbound_cpumask which is initially set to 6951 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten 6952 * by any subsequent write to workqueue/cpumask sysfs file. 6953 */ 6954 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask)) 6955 cpumask_copy(cpumask, wq_requested_unbound_cpumask); 6956 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 6957 ret = workqueue_apply_unbound_cpumask(cpumask); 6958 6959 /* Save the current isolated cpumask & export it via sysfs */ 6960 if (!ret) 6961 cpumask_copy(wq_isolated_cpumask, exclude_cpumask); 6962 6963 mutex_unlock(&wq_pool_mutex); 6964 free_cpumask_var(cpumask); 6965 return ret; 6966 } 6967 6968 static int parse_affn_scope(const char *val) 6969 { 6970 int i; 6971 6972 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) { 6973 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i]))) 6974 return i; 6975 } 6976 return -EINVAL; 6977 } 6978 6979 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp) 6980 { 6981 struct workqueue_struct *wq; 6982 int affn, cpu; 6983 6984 affn = parse_affn_scope(val); 6985 if (affn < 0) 6986 return affn; 6987 if (affn == WQ_AFFN_DFL) 6988 return -EINVAL; 6989 6990 cpus_read_lock(); 6991 mutex_lock(&wq_pool_mutex); 6992 6993 wq_affn_dfl = affn; 6994 6995 list_for_each_entry(wq, &workqueues, list) { 6996 for_each_online_cpu(cpu) 6997 unbound_wq_update_pwq(wq, cpu); 6998 } 6999 7000 mutex_unlock(&wq_pool_mutex); 7001 cpus_read_unlock(); 7002 7003 return 0; 7004 } 7005 7006 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp) 7007 { 7008 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]); 7009 } 7010 7011 static const struct kernel_param_ops wq_affn_dfl_ops = { 7012 .set = wq_affn_dfl_set, 7013 .get = wq_affn_dfl_get, 7014 }; 7015 7016 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644); 7017 7018 #ifdef CONFIG_SYSFS 7019 /* 7020 * Workqueues with WQ_SYSFS flag set is visible to userland via 7021 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 7022 * following attributes. 7023 * 7024 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 7025 * max_active RW int : maximum number of in-flight work items 7026 * 7027 * Unbound workqueues have the following extra attributes. 7028 * 7029 * nice RW int : nice value of the workers 7030 * cpumask RW mask : bitmask of allowed CPUs for the workers 7031 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none) 7032 * affinity_strict RW bool : worker CPU affinity is strict 7033 */ 7034 struct wq_device { 7035 struct workqueue_struct *wq; 7036 struct device dev; 7037 }; 7038 7039 static struct workqueue_struct *dev_to_wq(struct device *dev) 7040 { 7041 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 7042 7043 return wq_dev->wq; 7044 } 7045 7046 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 7047 char *buf) 7048 { 7049 struct workqueue_struct *wq = dev_to_wq(dev); 7050 7051 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 7052 } 7053 static DEVICE_ATTR_RO(per_cpu); 7054 7055 static ssize_t max_active_show(struct device *dev, 7056 struct device_attribute *attr, char *buf) 7057 { 7058 struct workqueue_struct *wq = dev_to_wq(dev); 7059 7060 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 7061 } 7062 7063 static ssize_t max_active_store(struct device *dev, 7064 struct device_attribute *attr, const char *buf, 7065 size_t count) 7066 { 7067 struct workqueue_struct *wq = dev_to_wq(dev); 7068 int val; 7069 7070 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 7071 return -EINVAL; 7072 7073 workqueue_set_max_active(wq, val); 7074 return count; 7075 } 7076 static DEVICE_ATTR_RW(max_active); 7077 7078 static struct attribute *wq_sysfs_attrs[] = { 7079 &dev_attr_per_cpu.attr, 7080 &dev_attr_max_active.attr, 7081 NULL, 7082 }; 7083 ATTRIBUTE_GROUPS(wq_sysfs); 7084 7085 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 7086 char *buf) 7087 { 7088 struct workqueue_struct *wq = dev_to_wq(dev); 7089 int written; 7090 7091 mutex_lock(&wq->mutex); 7092 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 7093 mutex_unlock(&wq->mutex); 7094 7095 return written; 7096 } 7097 7098 /* prepare workqueue_attrs for sysfs store operations */ 7099 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 7100 { 7101 struct workqueue_attrs *attrs; 7102 7103 lockdep_assert_held(&wq_pool_mutex); 7104 7105 attrs = alloc_workqueue_attrs(); 7106 if (!attrs) 7107 return NULL; 7108 7109 copy_workqueue_attrs(attrs, wq->unbound_attrs); 7110 return attrs; 7111 } 7112 7113 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 7114 const char *buf, size_t count) 7115 { 7116 struct workqueue_struct *wq = dev_to_wq(dev); 7117 struct workqueue_attrs *attrs; 7118 int ret = -ENOMEM; 7119 7120 apply_wqattrs_lock(); 7121 7122 attrs = wq_sysfs_prep_attrs(wq); 7123 if (!attrs) 7124 goto out_unlock; 7125 7126 if (sscanf(buf, "%d", &attrs->nice) == 1 && 7127 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 7128 ret = apply_workqueue_attrs_locked(wq, attrs); 7129 else 7130 ret = -EINVAL; 7131 7132 out_unlock: 7133 apply_wqattrs_unlock(); 7134 free_workqueue_attrs(attrs); 7135 return ret ?: count; 7136 } 7137 7138 static ssize_t wq_cpumask_show(struct device *dev, 7139 struct device_attribute *attr, char *buf) 7140 { 7141 struct workqueue_struct *wq = dev_to_wq(dev); 7142 int written; 7143 7144 mutex_lock(&wq->mutex); 7145 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 7146 cpumask_pr_args(wq->unbound_attrs->cpumask)); 7147 mutex_unlock(&wq->mutex); 7148 return written; 7149 } 7150 7151 static ssize_t wq_cpumask_store(struct device *dev, 7152 struct device_attribute *attr, 7153 const char *buf, size_t count) 7154 { 7155 struct workqueue_struct *wq = dev_to_wq(dev); 7156 struct workqueue_attrs *attrs; 7157 int ret = -ENOMEM; 7158 7159 apply_wqattrs_lock(); 7160 7161 attrs = wq_sysfs_prep_attrs(wq); 7162 if (!attrs) 7163 goto out_unlock; 7164 7165 ret = cpumask_parse(buf, attrs->cpumask); 7166 if (!ret) 7167 ret = apply_workqueue_attrs_locked(wq, attrs); 7168 7169 out_unlock: 7170 apply_wqattrs_unlock(); 7171 free_workqueue_attrs(attrs); 7172 return ret ?: count; 7173 } 7174 7175 static ssize_t wq_affn_scope_show(struct device *dev, 7176 struct device_attribute *attr, char *buf) 7177 { 7178 struct workqueue_struct *wq = dev_to_wq(dev); 7179 int written; 7180 7181 mutex_lock(&wq->mutex); 7182 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL) 7183 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n", 7184 wq_affn_names[WQ_AFFN_DFL], 7185 wq_affn_names[wq_affn_dfl]); 7186 else 7187 written = scnprintf(buf, PAGE_SIZE, "%s\n", 7188 wq_affn_names[wq->unbound_attrs->affn_scope]); 7189 mutex_unlock(&wq->mutex); 7190 7191 return written; 7192 } 7193 7194 static ssize_t wq_affn_scope_store(struct device *dev, 7195 struct device_attribute *attr, 7196 const char *buf, size_t count) 7197 { 7198 struct workqueue_struct *wq = dev_to_wq(dev); 7199 struct workqueue_attrs *attrs; 7200 int affn, ret = -ENOMEM; 7201 7202 affn = parse_affn_scope(buf); 7203 if (affn < 0) 7204 return affn; 7205 7206 apply_wqattrs_lock(); 7207 attrs = wq_sysfs_prep_attrs(wq); 7208 if (attrs) { 7209 attrs->affn_scope = affn; 7210 ret = apply_workqueue_attrs_locked(wq, attrs); 7211 } 7212 apply_wqattrs_unlock(); 7213 free_workqueue_attrs(attrs); 7214 return ret ?: count; 7215 } 7216 7217 static ssize_t wq_affinity_strict_show(struct device *dev, 7218 struct device_attribute *attr, char *buf) 7219 { 7220 struct workqueue_struct *wq = dev_to_wq(dev); 7221 7222 return scnprintf(buf, PAGE_SIZE, "%d\n", 7223 wq->unbound_attrs->affn_strict); 7224 } 7225 7226 static ssize_t wq_affinity_strict_store(struct device *dev, 7227 struct device_attribute *attr, 7228 const char *buf, size_t count) 7229 { 7230 struct workqueue_struct *wq = dev_to_wq(dev); 7231 struct workqueue_attrs *attrs; 7232 int v, ret = -ENOMEM; 7233 7234 if (sscanf(buf, "%d", &v) != 1) 7235 return -EINVAL; 7236 7237 apply_wqattrs_lock(); 7238 attrs = wq_sysfs_prep_attrs(wq); 7239 if (attrs) { 7240 attrs->affn_strict = (bool)v; 7241 ret = apply_workqueue_attrs_locked(wq, attrs); 7242 } 7243 apply_wqattrs_unlock(); 7244 free_workqueue_attrs(attrs); 7245 return ret ?: count; 7246 } 7247 7248 static struct device_attribute wq_sysfs_unbound_attrs[] = { 7249 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 7250 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 7251 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store), 7252 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store), 7253 __ATTR_NULL, 7254 }; 7255 7256 static const struct bus_type wq_subsys = { 7257 .name = "workqueue", 7258 .dev_groups = wq_sysfs_groups, 7259 }; 7260 7261 /** 7262 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 7263 * @cpumask: the cpumask to set 7264 * 7265 * The low-level workqueues cpumask is a global cpumask that limits 7266 * the affinity of all unbound workqueues. This function check the @cpumask 7267 * and apply it to all unbound workqueues and updates all pwqs of them. 7268 * 7269 * Return: 0 - Success 7270 * -EINVAL - Invalid @cpumask 7271 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 7272 */ 7273 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 7274 { 7275 int ret = -EINVAL; 7276 7277 /* 7278 * Not excluding isolated cpus on purpose. 7279 * If the user wishes to include them, we allow that. 7280 */ 7281 cpumask_and(cpumask, cpumask, cpu_possible_mask); 7282 if (!cpumask_empty(cpumask)) { 7283 ret = 0; 7284 apply_wqattrs_lock(); 7285 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 7286 ret = workqueue_apply_unbound_cpumask(cpumask); 7287 if (!ret) 7288 cpumask_copy(wq_requested_unbound_cpumask, cpumask); 7289 apply_wqattrs_unlock(); 7290 } 7291 7292 return ret; 7293 } 7294 7295 static ssize_t __wq_cpumask_show(struct device *dev, 7296 struct device_attribute *attr, char *buf, cpumask_var_t mask) 7297 { 7298 int written; 7299 7300 mutex_lock(&wq_pool_mutex); 7301 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 7302 mutex_unlock(&wq_pool_mutex); 7303 7304 return written; 7305 } 7306 7307 static ssize_t cpumask_requested_show(struct device *dev, 7308 struct device_attribute *attr, char *buf) 7309 { 7310 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask); 7311 } 7312 static DEVICE_ATTR_RO(cpumask_requested); 7313 7314 static ssize_t cpumask_isolated_show(struct device *dev, 7315 struct device_attribute *attr, char *buf) 7316 { 7317 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask); 7318 } 7319 static DEVICE_ATTR_RO(cpumask_isolated); 7320 7321 static ssize_t cpumask_show(struct device *dev, 7322 struct device_attribute *attr, char *buf) 7323 { 7324 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask); 7325 } 7326 7327 static ssize_t cpumask_store(struct device *dev, 7328 struct device_attribute *attr, const char *buf, size_t count) 7329 { 7330 cpumask_var_t cpumask; 7331 int ret; 7332 7333 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 7334 return -ENOMEM; 7335 7336 ret = cpumask_parse(buf, cpumask); 7337 if (!ret) 7338 ret = workqueue_set_unbound_cpumask(cpumask); 7339 7340 free_cpumask_var(cpumask); 7341 return ret ? ret : count; 7342 } 7343 static DEVICE_ATTR_RW(cpumask); 7344 7345 static struct attribute *wq_sysfs_cpumask_attrs[] = { 7346 &dev_attr_cpumask.attr, 7347 &dev_attr_cpumask_requested.attr, 7348 &dev_attr_cpumask_isolated.attr, 7349 NULL, 7350 }; 7351 ATTRIBUTE_GROUPS(wq_sysfs_cpumask); 7352 7353 static int __init wq_sysfs_init(void) 7354 { 7355 return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups); 7356 } 7357 core_initcall(wq_sysfs_init); 7358 7359 static void wq_device_release(struct device *dev) 7360 { 7361 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 7362 7363 kfree(wq_dev); 7364 } 7365 7366 /** 7367 * workqueue_sysfs_register - make a workqueue visible in sysfs 7368 * @wq: the workqueue to register 7369 * 7370 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 7371 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 7372 * which is the preferred method. 7373 * 7374 * Workqueue user should use this function directly iff it wants to apply 7375 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 7376 * apply_workqueue_attrs() may race against userland updating the 7377 * attributes. 7378 * 7379 * Return: 0 on success, -errno on failure. 7380 */ 7381 int workqueue_sysfs_register(struct workqueue_struct *wq) 7382 { 7383 struct wq_device *wq_dev; 7384 int ret; 7385 7386 /* 7387 * Adjusting max_active breaks ordering guarantee. Disallow exposing 7388 * ordered workqueues. 7389 */ 7390 if (WARN_ON(wq->flags & __WQ_ORDERED)) 7391 return -EINVAL; 7392 7393 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 7394 if (!wq_dev) 7395 return -ENOMEM; 7396 7397 wq_dev->wq = wq; 7398 wq_dev->dev.bus = &wq_subsys; 7399 wq_dev->dev.release = wq_device_release; 7400 dev_set_name(&wq_dev->dev, "%s", wq->name); 7401 7402 /* 7403 * unbound_attrs are created separately. Suppress uevent until 7404 * everything is ready. 7405 */ 7406 dev_set_uevent_suppress(&wq_dev->dev, true); 7407 7408 ret = device_register(&wq_dev->dev); 7409 if (ret) { 7410 put_device(&wq_dev->dev); 7411 wq->wq_dev = NULL; 7412 return ret; 7413 } 7414 7415 if (wq->flags & WQ_UNBOUND) { 7416 struct device_attribute *attr; 7417 7418 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 7419 ret = device_create_file(&wq_dev->dev, attr); 7420 if (ret) { 7421 device_unregister(&wq_dev->dev); 7422 wq->wq_dev = NULL; 7423 return ret; 7424 } 7425 } 7426 } 7427 7428 dev_set_uevent_suppress(&wq_dev->dev, false); 7429 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 7430 return 0; 7431 } 7432 7433 /** 7434 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 7435 * @wq: the workqueue to unregister 7436 * 7437 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 7438 */ 7439 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 7440 { 7441 struct wq_device *wq_dev = wq->wq_dev; 7442 7443 if (!wq->wq_dev) 7444 return; 7445 7446 wq->wq_dev = NULL; 7447 device_unregister(&wq_dev->dev); 7448 } 7449 #else /* CONFIG_SYSFS */ 7450 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 7451 #endif /* CONFIG_SYSFS */ 7452 7453 /* 7454 * Workqueue watchdog. 7455 * 7456 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 7457 * flush dependency, a concurrency managed work item which stays RUNNING 7458 * indefinitely. Workqueue stalls can be very difficult to debug as the 7459 * usual warning mechanisms don't trigger and internal workqueue state is 7460 * largely opaque. 7461 * 7462 * Workqueue watchdog monitors all worker pools periodically and dumps 7463 * state if some pools failed to make forward progress for a while where 7464 * forward progress is defined as the first item on ->worklist changing. 7465 * 7466 * This mechanism is controlled through the kernel parameter 7467 * "workqueue.watchdog_thresh" which can be updated at runtime through the 7468 * corresponding sysfs parameter file. 7469 */ 7470 #ifdef CONFIG_WQ_WATCHDOG 7471 7472 static unsigned long wq_watchdog_thresh = 30; 7473 static struct timer_list wq_watchdog_timer; 7474 7475 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 7476 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 7477 7478 static unsigned int wq_panic_on_stall; 7479 module_param_named(panic_on_stall, wq_panic_on_stall, uint, 0644); 7480 7481 /* 7482 * Show workers that might prevent the processing of pending work items. 7483 * The only candidates are CPU-bound workers in the running state. 7484 * Pending work items should be handled by another idle worker 7485 * in all other situations. 7486 */ 7487 static void show_cpu_pool_hog(struct worker_pool *pool) 7488 { 7489 struct worker *worker; 7490 unsigned long irq_flags; 7491 int bkt; 7492 7493 raw_spin_lock_irqsave(&pool->lock, irq_flags); 7494 7495 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 7496 if (task_is_running(worker->task)) { 7497 /* 7498 * Defer printing to avoid deadlocks in console 7499 * drivers that queue work while holding locks 7500 * also taken in their write paths. 7501 */ 7502 printk_deferred_enter(); 7503 7504 pr_info("pool %d:\n", pool->id); 7505 sched_show_task(worker->task); 7506 7507 printk_deferred_exit(); 7508 } 7509 } 7510 7511 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 7512 } 7513 7514 static void show_cpu_pools_hogs(void) 7515 { 7516 struct worker_pool *pool; 7517 int pi; 7518 7519 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 7520 7521 rcu_read_lock(); 7522 7523 for_each_pool(pool, pi) { 7524 if (pool->cpu_stall) 7525 show_cpu_pool_hog(pool); 7526 7527 } 7528 7529 rcu_read_unlock(); 7530 } 7531 7532 static void panic_on_wq_watchdog(void) 7533 { 7534 static unsigned int wq_stall; 7535 7536 if (wq_panic_on_stall) { 7537 wq_stall++; 7538 BUG_ON(wq_stall >= wq_panic_on_stall); 7539 } 7540 } 7541 7542 static void wq_watchdog_reset_touched(void) 7543 { 7544 int cpu; 7545 7546 wq_watchdog_touched = jiffies; 7547 for_each_possible_cpu(cpu) 7548 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 7549 } 7550 7551 static void wq_watchdog_timer_fn(struct timer_list *unused) 7552 { 7553 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7554 bool lockup_detected = false; 7555 bool cpu_pool_stall = false; 7556 unsigned long now = jiffies; 7557 struct worker_pool *pool; 7558 int pi; 7559 7560 if (!thresh) 7561 return; 7562 7563 rcu_read_lock(); 7564 7565 for_each_pool(pool, pi) { 7566 unsigned long pool_ts, touched, ts; 7567 7568 pool->cpu_stall = false; 7569 if (list_empty(&pool->worklist)) 7570 continue; 7571 7572 /* 7573 * If a virtual machine is stopped by the host it can look to 7574 * the watchdog like a stall. 7575 */ 7576 kvm_check_and_clear_guest_paused(); 7577 7578 /* get the latest of pool and touched timestamps */ 7579 if (pool->cpu >= 0) 7580 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 7581 else 7582 touched = READ_ONCE(wq_watchdog_touched); 7583 pool_ts = READ_ONCE(pool->watchdog_ts); 7584 7585 if (time_after(pool_ts, touched)) 7586 ts = pool_ts; 7587 else 7588 ts = touched; 7589 7590 /* did we stall? */ 7591 if (time_after(now, ts + thresh)) { 7592 lockup_detected = true; 7593 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) { 7594 pool->cpu_stall = true; 7595 cpu_pool_stall = true; 7596 } 7597 pr_emerg("BUG: workqueue lockup - pool"); 7598 pr_cont_pool_info(pool); 7599 pr_cont(" stuck for %us!\n", 7600 jiffies_to_msecs(now - pool_ts) / 1000); 7601 } 7602 7603 7604 } 7605 7606 rcu_read_unlock(); 7607 7608 if (lockup_detected) 7609 show_all_workqueues(); 7610 7611 if (cpu_pool_stall) 7612 show_cpu_pools_hogs(); 7613 7614 if (lockup_detected) 7615 panic_on_wq_watchdog(); 7616 7617 wq_watchdog_reset_touched(); 7618 mod_timer(&wq_watchdog_timer, jiffies + thresh); 7619 } 7620 7621 notrace void wq_watchdog_touch(int cpu) 7622 { 7623 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7624 unsigned long touch_ts = READ_ONCE(wq_watchdog_touched); 7625 unsigned long now = jiffies; 7626 7627 if (cpu >= 0) 7628 per_cpu(wq_watchdog_touched_cpu, cpu) = now; 7629 else 7630 WARN_ONCE(1, "%s should be called with valid CPU", __func__); 7631 7632 /* Don't unnecessarily store to global cacheline */ 7633 if (time_after(now, touch_ts + thresh / 4)) 7634 WRITE_ONCE(wq_watchdog_touched, jiffies); 7635 } 7636 7637 static void wq_watchdog_set_thresh(unsigned long thresh) 7638 { 7639 wq_watchdog_thresh = 0; 7640 del_timer_sync(&wq_watchdog_timer); 7641 7642 if (thresh) { 7643 wq_watchdog_thresh = thresh; 7644 wq_watchdog_reset_touched(); 7645 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 7646 } 7647 } 7648 7649 static int wq_watchdog_param_set_thresh(const char *val, 7650 const struct kernel_param *kp) 7651 { 7652 unsigned long thresh; 7653 int ret; 7654 7655 ret = kstrtoul(val, 0, &thresh); 7656 if (ret) 7657 return ret; 7658 7659 if (system_wq) 7660 wq_watchdog_set_thresh(thresh); 7661 else 7662 wq_watchdog_thresh = thresh; 7663 7664 return 0; 7665 } 7666 7667 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 7668 .set = wq_watchdog_param_set_thresh, 7669 .get = param_get_ulong, 7670 }; 7671 7672 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 7673 0644); 7674 7675 static void wq_watchdog_init(void) 7676 { 7677 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 7678 wq_watchdog_set_thresh(wq_watchdog_thresh); 7679 } 7680 7681 #else /* CONFIG_WQ_WATCHDOG */ 7682 7683 static inline void wq_watchdog_init(void) { } 7684 7685 #endif /* CONFIG_WQ_WATCHDOG */ 7686 7687 static void bh_pool_kick_normal(struct irq_work *irq_work) 7688 { 7689 raise_softirq_irqoff(TASKLET_SOFTIRQ); 7690 } 7691 7692 static void bh_pool_kick_highpri(struct irq_work *irq_work) 7693 { 7694 raise_softirq_irqoff(HI_SOFTIRQ); 7695 } 7696 7697 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask) 7698 { 7699 if (!cpumask_intersects(wq_unbound_cpumask, mask)) { 7700 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n", 7701 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask)); 7702 return; 7703 } 7704 7705 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask); 7706 } 7707 7708 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice) 7709 { 7710 BUG_ON(init_worker_pool(pool)); 7711 pool->cpu = cpu; 7712 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 7713 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu)); 7714 pool->attrs->nice = nice; 7715 pool->attrs->affn_strict = true; 7716 pool->node = cpu_to_node(cpu); 7717 7718 /* alloc pool ID */ 7719 mutex_lock(&wq_pool_mutex); 7720 BUG_ON(worker_pool_assign_id(pool)); 7721 mutex_unlock(&wq_pool_mutex); 7722 } 7723 7724 /** 7725 * workqueue_init_early - early init for workqueue subsystem 7726 * 7727 * This is the first step of three-staged workqueue subsystem initialization and 7728 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are 7729 * up. It sets up all the data structures and system workqueues and allows early 7730 * boot code to create workqueues and queue/cancel work items. Actual work item 7731 * execution starts only after kthreads can be created and scheduled right 7732 * before early initcalls. 7733 */ 7734 void __init workqueue_init_early(void) 7735 { 7736 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 7737 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 7738 void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal, 7739 bh_pool_kick_highpri }; 7740 int i, cpu; 7741 7742 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 7743 7744 BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL)); 7745 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 7746 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL)); 7747 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL)); 7748 7749 cpumask_copy(wq_online_cpumask, cpu_online_mask); 7750 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 7751 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ)); 7752 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN)); 7753 if (!cpumask_empty(&wq_cmdline_cpumask)) 7754 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask); 7755 7756 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask); 7757 7758 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 7759 7760 unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs(); 7761 BUG_ON(!unbound_wq_update_pwq_attrs_buf); 7762 7763 /* 7764 * If nohz_full is enabled, set power efficient workqueue as unbound. 7765 * This allows workqueue items to be moved to HK CPUs. 7766 */ 7767 if (housekeeping_enabled(HK_TYPE_TICK)) 7768 wq_power_efficient = true; 7769 7770 /* initialize WQ_AFFN_SYSTEM pods */ 7771 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7772 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL); 7773 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7774 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod); 7775 7776 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE)); 7777 7778 pt->nr_pods = 1; 7779 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask); 7780 pt->pod_node[0] = NUMA_NO_NODE; 7781 pt->cpu_pod[0] = 0; 7782 7783 /* initialize BH and CPU pools */ 7784 for_each_possible_cpu(cpu) { 7785 struct worker_pool *pool; 7786 7787 i = 0; 7788 for_each_bh_worker_pool(pool, cpu) { 7789 init_cpu_worker_pool(pool, cpu, std_nice[i]); 7790 pool->flags |= POOL_BH; 7791 init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]); 7792 i++; 7793 } 7794 7795 i = 0; 7796 for_each_cpu_worker_pool(pool, cpu) 7797 init_cpu_worker_pool(pool, cpu, std_nice[i++]); 7798 } 7799 7800 /* create default unbound and ordered wq attrs */ 7801 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 7802 struct workqueue_attrs *attrs; 7803 7804 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7805 attrs->nice = std_nice[i]; 7806 unbound_std_wq_attrs[i] = attrs; 7807 7808 /* 7809 * An ordered wq should have only one pwq as ordering is 7810 * guaranteed by max_active which is enforced by pwqs. 7811 */ 7812 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7813 attrs->nice = std_nice[i]; 7814 attrs->ordered = true; 7815 ordered_wq_attrs[i] = attrs; 7816 } 7817 7818 system_wq = alloc_workqueue("events", 0, 0); 7819 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 7820 system_long_wq = alloc_workqueue("events_long", 0, 0); 7821 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 7822 WQ_MAX_ACTIVE); 7823 system_freezable_wq = alloc_workqueue("events_freezable", 7824 WQ_FREEZABLE, 0); 7825 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 7826 WQ_POWER_EFFICIENT, 0); 7827 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient", 7828 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 7829 0); 7830 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0); 7831 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri", 7832 WQ_BH | WQ_HIGHPRI, 0); 7833 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 7834 !system_unbound_wq || !system_freezable_wq || 7835 !system_power_efficient_wq || 7836 !system_freezable_power_efficient_wq || 7837 !system_bh_wq || !system_bh_highpri_wq); 7838 } 7839 7840 static void __init wq_cpu_intensive_thresh_init(void) 7841 { 7842 unsigned long thresh; 7843 unsigned long bogo; 7844 7845 pwq_release_worker = kthread_run_worker(0, "pool_workqueue_release"); 7846 BUG_ON(IS_ERR(pwq_release_worker)); 7847 7848 /* if the user set it to a specific value, keep it */ 7849 if (wq_cpu_intensive_thresh_us != ULONG_MAX) 7850 return; 7851 7852 /* 7853 * The default of 10ms is derived from the fact that most modern (as of 7854 * 2023) processors can do a lot in 10ms and that it's just below what 7855 * most consider human-perceivable. However, the kernel also runs on a 7856 * lot slower CPUs including microcontrollers where the threshold is way 7857 * too low. 7858 * 7859 * Let's scale up the threshold upto 1 second if BogoMips is below 4000. 7860 * This is by no means accurate but it doesn't have to be. The mechanism 7861 * is still useful even when the threshold is fully scaled up. Also, as 7862 * the reports would usually be applicable to everyone, some machines 7863 * operating on longer thresholds won't significantly diminish their 7864 * usefulness. 7865 */ 7866 thresh = 10 * USEC_PER_MSEC; 7867 7868 /* see init/calibrate.c for lpj -> BogoMIPS calculation */ 7869 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); 7870 if (bogo < 4000) 7871 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); 7872 7873 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n", 7874 loops_per_jiffy, bogo, thresh); 7875 7876 wq_cpu_intensive_thresh_us = thresh; 7877 } 7878 7879 /** 7880 * workqueue_init - bring workqueue subsystem fully online 7881 * 7882 * This is the second step of three-staged workqueue subsystem initialization 7883 * and invoked as soon as kthreads can be created and scheduled. Workqueues have 7884 * been created and work items queued on them, but there are no kworkers 7885 * executing the work items yet. Populate the worker pools with the initial 7886 * workers and enable future kworker creations. 7887 */ 7888 void __init workqueue_init(void) 7889 { 7890 struct workqueue_struct *wq; 7891 struct worker_pool *pool; 7892 int cpu, bkt; 7893 7894 wq_cpu_intensive_thresh_init(); 7895 7896 mutex_lock(&wq_pool_mutex); 7897 7898 /* 7899 * Per-cpu pools created earlier could be missing node hint. Fix them 7900 * up. Also, create a rescuer for workqueues that requested it. 7901 */ 7902 for_each_possible_cpu(cpu) { 7903 for_each_bh_worker_pool(pool, cpu) 7904 pool->node = cpu_to_node(cpu); 7905 for_each_cpu_worker_pool(pool, cpu) 7906 pool->node = cpu_to_node(cpu); 7907 } 7908 7909 list_for_each_entry(wq, &workqueues, list) { 7910 WARN(init_rescuer(wq), 7911 "workqueue: failed to create early rescuer for %s", 7912 wq->name); 7913 } 7914 7915 mutex_unlock(&wq_pool_mutex); 7916 7917 /* 7918 * Create the initial workers. A BH pool has one pseudo worker that 7919 * represents the shared BH execution context and thus doesn't get 7920 * affected by hotplug events. Create the BH pseudo workers for all 7921 * possible CPUs here. 7922 */ 7923 for_each_possible_cpu(cpu) 7924 for_each_bh_worker_pool(pool, cpu) 7925 BUG_ON(!create_worker(pool)); 7926 7927 for_each_online_cpu(cpu) { 7928 for_each_cpu_worker_pool(pool, cpu) { 7929 pool->flags &= ~POOL_DISASSOCIATED; 7930 BUG_ON(!create_worker(pool)); 7931 } 7932 } 7933 7934 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 7935 BUG_ON(!create_worker(pool)); 7936 7937 wq_online = true; 7938 wq_watchdog_init(); 7939 } 7940 7941 /* 7942 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to 7943 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique 7944 * and consecutive pod ID. The rest of @pt is initialized accordingly. 7945 */ 7946 static void __init init_pod_type(struct wq_pod_type *pt, 7947 bool (*cpus_share_pod)(int, int)) 7948 { 7949 int cur, pre, cpu, pod; 7950 7951 pt->nr_pods = 0; 7952 7953 /* init @pt->cpu_pod[] according to @cpus_share_pod() */ 7954 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7955 BUG_ON(!pt->cpu_pod); 7956 7957 for_each_possible_cpu(cur) { 7958 for_each_possible_cpu(pre) { 7959 if (pre >= cur) { 7960 pt->cpu_pod[cur] = pt->nr_pods++; 7961 break; 7962 } 7963 if (cpus_share_pod(cur, pre)) { 7964 pt->cpu_pod[cur] = pt->cpu_pod[pre]; 7965 break; 7966 } 7967 } 7968 } 7969 7970 /* init the rest to match @pt->cpu_pod[] */ 7971 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7972 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL); 7973 BUG_ON(!pt->pod_cpus || !pt->pod_node); 7974 7975 for (pod = 0; pod < pt->nr_pods; pod++) 7976 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL)); 7977 7978 for_each_possible_cpu(cpu) { 7979 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]); 7980 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu); 7981 } 7982 } 7983 7984 static bool __init cpus_dont_share(int cpu0, int cpu1) 7985 { 7986 return false; 7987 } 7988 7989 static bool __init cpus_share_smt(int cpu0, int cpu1) 7990 { 7991 #ifdef CONFIG_SCHED_SMT 7992 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1)); 7993 #else 7994 return false; 7995 #endif 7996 } 7997 7998 static bool __init cpus_share_numa(int cpu0, int cpu1) 7999 { 8000 return cpu_to_node(cpu0) == cpu_to_node(cpu1); 8001 } 8002 8003 /** 8004 * workqueue_init_topology - initialize CPU pods for unbound workqueues 8005 * 8006 * This is the third step of three-staged workqueue subsystem initialization and 8007 * invoked after SMP and topology information are fully initialized. It 8008 * initializes the unbound CPU pods accordingly. 8009 */ 8010 void __init workqueue_init_topology(void) 8011 { 8012 struct workqueue_struct *wq; 8013 int cpu; 8014 8015 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share); 8016 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt); 8017 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache); 8018 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa); 8019 8020 wq_topo_initialized = true; 8021 8022 mutex_lock(&wq_pool_mutex); 8023 8024 /* 8025 * Workqueues allocated earlier would have all CPUs sharing the default 8026 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue 8027 * and CPU combinations to apply per-pod sharing. 8028 */ 8029 list_for_each_entry(wq, &workqueues, list) { 8030 for_each_online_cpu(cpu) 8031 unbound_wq_update_pwq(wq, cpu); 8032 if (wq->flags & WQ_UNBOUND) { 8033 mutex_lock(&wq->mutex); 8034 wq_update_node_max_active(wq, -1); 8035 mutex_unlock(&wq->mutex); 8036 } 8037 } 8038 8039 mutex_unlock(&wq_pool_mutex); 8040 } 8041 8042 void __warn_flushing_systemwide_wq(void) 8043 { 8044 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n"); 8045 dump_stack(); 8046 } 8047 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 8048 8049 static int __init workqueue_unbound_cpus_setup(char *str) 8050 { 8051 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) { 8052 cpumask_clear(&wq_cmdline_cpumask); 8053 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n"); 8054 } 8055 8056 return 1; 8057 } 8058 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup); 8059