1 /* 2 * linux/kernel/workqueue.c 3 * 4 * Generic mechanism for defining kernel helper threads for running 5 * arbitrary tasks in process context. 6 * 7 * Started by Ingo Molnar, Copyright (C) 2002 8 * 9 * Derived from the taskqueue/keventd code by: 10 * 11 * David Woodhouse <dwmw2@infradead.org> 12 * Andrew Morton <andrewm@uow.edu.au> 13 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 14 * Theodore Ts'o <tytso@mit.edu> 15 * 16 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>. 17 */ 18 19 #include <linux/module.h> 20 #include <linux/kernel.h> 21 #include <linux/sched.h> 22 #include <linux/init.h> 23 #include <linux/signal.h> 24 #include <linux/completion.h> 25 #include <linux/workqueue.h> 26 #include <linux/slab.h> 27 #include <linux/cpu.h> 28 #include <linux/notifier.h> 29 #include <linux/kthread.h> 30 #include <linux/hardirq.h> 31 #include <linux/mempolicy.h> 32 #include <linux/freezer.h> 33 #include <linux/kallsyms.h> 34 #include <linux/debug_locks.h> 35 36 /* 37 * The per-CPU workqueue (if single thread, we always use the first 38 * possible cpu). 39 */ 40 struct cpu_workqueue_struct { 41 42 spinlock_t lock; 43 44 struct list_head worklist; 45 wait_queue_head_t more_work; 46 struct work_struct *current_work; 47 48 struct workqueue_struct *wq; 49 struct task_struct *thread; 50 51 int run_depth; /* Detect run_workqueue() recursion depth */ 52 } ____cacheline_aligned; 53 54 /* 55 * The externally visible workqueue abstraction is an array of 56 * per-CPU workqueues: 57 */ 58 struct workqueue_struct { 59 struct cpu_workqueue_struct *cpu_wq; 60 struct list_head list; 61 const char *name; 62 int singlethread; 63 int freezeable; /* Freeze threads during suspend */ 64 }; 65 66 /* All the per-cpu workqueues on the system, for hotplug cpu to add/remove 67 threads to each one as cpus come/go. */ 68 static DEFINE_MUTEX(workqueue_mutex); 69 static LIST_HEAD(workqueues); 70 71 static int singlethread_cpu __read_mostly; 72 static cpumask_t cpu_singlethread_map __read_mostly; 73 /* 74 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD 75 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work 76 * which comes in between can't use for_each_online_cpu(). We could 77 * use cpu_possible_map, the cpumask below is more a documentation 78 * than optimization. 79 */ 80 static cpumask_t cpu_populated_map __read_mostly; 81 82 /* If it's single threaded, it isn't in the list of workqueues. */ 83 static inline int is_single_threaded(struct workqueue_struct *wq) 84 { 85 return wq->singlethread; 86 } 87 88 static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq) 89 { 90 return is_single_threaded(wq) 91 ? &cpu_singlethread_map : &cpu_populated_map; 92 } 93 94 static 95 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu) 96 { 97 if (unlikely(is_single_threaded(wq))) 98 cpu = singlethread_cpu; 99 return per_cpu_ptr(wq->cpu_wq, cpu); 100 } 101 102 /* 103 * Set the workqueue on which a work item is to be run 104 * - Must *only* be called if the pending flag is set 105 */ 106 static inline void set_wq_data(struct work_struct *work, 107 struct cpu_workqueue_struct *cwq) 108 { 109 unsigned long new; 110 111 BUG_ON(!work_pending(work)); 112 113 new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING); 114 new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work); 115 atomic_long_set(&work->data, new); 116 } 117 118 static inline 119 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work) 120 { 121 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK); 122 } 123 124 static void insert_work(struct cpu_workqueue_struct *cwq, 125 struct work_struct *work, int tail) 126 { 127 set_wq_data(work, cwq); 128 /* 129 * Ensure that we get the right work->data if we see the 130 * result of list_add() below, see try_to_grab_pending(). 131 */ 132 smp_wmb(); 133 if (tail) 134 list_add_tail(&work->entry, &cwq->worklist); 135 else 136 list_add(&work->entry, &cwq->worklist); 137 wake_up(&cwq->more_work); 138 } 139 140 /* Preempt must be disabled. */ 141 static void __queue_work(struct cpu_workqueue_struct *cwq, 142 struct work_struct *work) 143 { 144 unsigned long flags; 145 146 spin_lock_irqsave(&cwq->lock, flags); 147 insert_work(cwq, work, 1); 148 spin_unlock_irqrestore(&cwq->lock, flags); 149 } 150 151 /** 152 * queue_work - queue work on a workqueue 153 * @wq: workqueue to use 154 * @work: work to queue 155 * 156 * Returns 0 if @work was already on a queue, non-zero otherwise. 157 * 158 * We queue the work to the CPU it was submitted, but there is no 159 * guarantee that it will be processed by that CPU. 160 */ 161 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work) 162 { 163 int ret = 0; 164 165 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { 166 BUG_ON(!list_empty(&work->entry)); 167 __queue_work(wq_per_cpu(wq, get_cpu()), work); 168 put_cpu(); 169 ret = 1; 170 } 171 return ret; 172 } 173 EXPORT_SYMBOL_GPL(queue_work); 174 175 void delayed_work_timer_fn(unsigned long __data) 176 { 177 struct delayed_work *dwork = (struct delayed_work *)__data; 178 struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work); 179 struct workqueue_struct *wq = cwq->wq; 180 181 __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work); 182 } 183 184 /** 185 * queue_delayed_work - queue work on a workqueue after delay 186 * @wq: workqueue to use 187 * @dwork: delayable work to queue 188 * @delay: number of jiffies to wait before queueing 189 * 190 * Returns 0 if @work was already on a queue, non-zero otherwise. 191 */ 192 int fastcall queue_delayed_work(struct workqueue_struct *wq, 193 struct delayed_work *dwork, unsigned long delay) 194 { 195 timer_stats_timer_set_start_info(&dwork->timer); 196 if (delay == 0) 197 return queue_work(wq, &dwork->work); 198 199 return queue_delayed_work_on(-1, wq, dwork, delay); 200 } 201 EXPORT_SYMBOL_GPL(queue_delayed_work); 202 203 /** 204 * queue_delayed_work_on - queue work on specific CPU after delay 205 * @cpu: CPU number to execute work on 206 * @wq: workqueue to use 207 * @dwork: work to queue 208 * @delay: number of jiffies to wait before queueing 209 * 210 * Returns 0 if @work was already on a queue, non-zero otherwise. 211 */ 212 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 213 struct delayed_work *dwork, unsigned long delay) 214 { 215 int ret = 0; 216 struct timer_list *timer = &dwork->timer; 217 struct work_struct *work = &dwork->work; 218 219 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { 220 BUG_ON(timer_pending(timer)); 221 BUG_ON(!list_empty(&work->entry)); 222 223 /* This stores cwq for the moment, for the timer_fn */ 224 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id())); 225 timer->expires = jiffies + delay; 226 timer->data = (unsigned long)dwork; 227 timer->function = delayed_work_timer_fn; 228 229 if (unlikely(cpu >= 0)) 230 add_timer_on(timer, cpu); 231 else 232 add_timer(timer); 233 ret = 1; 234 } 235 return ret; 236 } 237 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 238 239 static void run_workqueue(struct cpu_workqueue_struct *cwq) 240 { 241 spin_lock_irq(&cwq->lock); 242 cwq->run_depth++; 243 if (cwq->run_depth > 3) { 244 /* morton gets to eat his hat */ 245 printk("%s: recursion depth exceeded: %d\n", 246 __FUNCTION__, cwq->run_depth); 247 dump_stack(); 248 } 249 while (!list_empty(&cwq->worklist)) { 250 struct work_struct *work = list_entry(cwq->worklist.next, 251 struct work_struct, entry); 252 work_func_t f = work->func; 253 254 cwq->current_work = work; 255 list_del_init(cwq->worklist.next); 256 spin_unlock_irq(&cwq->lock); 257 258 BUG_ON(get_wq_data(work) != cwq); 259 work_clear_pending(work); 260 f(work); 261 262 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 263 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " 264 "%s/0x%08x/%d\n", 265 current->comm, preempt_count(), 266 current->pid); 267 printk(KERN_ERR " last function: "); 268 print_symbol("%s\n", (unsigned long)f); 269 debug_show_held_locks(current); 270 dump_stack(); 271 } 272 273 spin_lock_irq(&cwq->lock); 274 cwq->current_work = NULL; 275 } 276 cwq->run_depth--; 277 spin_unlock_irq(&cwq->lock); 278 } 279 280 static int worker_thread(void *__cwq) 281 { 282 struct cpu_workqueue_struct *cwq = __cwq; 283 DEFINE_WAIT(wait); 284 285 if (cwq->wq->freezeable) 286 set_freezable(); 287 288 set_user_nice(current, -5); 289 290 for (;;) { 291 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE); 292 if (!freezing(current) && 293 !kthread_should_stop() && 294 list_empty(&cwq->worklist)) 295 schedule(); 296 finish_wait(&cwq->more_work, &wait); 297 298 try_to_freeze(); 299 300 if (kthread_should_stop()) 301 break; 302 303 run_workqueue(cwq); 304 } 305 306 return 0; 307 } 308 309 struct wq_barrier { 310 struct work_struct work; 311 struct completion done; 312 }; 313 314 static void wq_barrier_func(struct work_struct *work) 315 { 316 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 317 complete(&barr->done); 318 } 319 320 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, 321 struct wq_barrier *barr, int tail) 322 { 323 INIT_WORK(&barr->work, wq_barrier_func); 324 __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work)); 325 326 init_completion(&barr->done); 327 328 insert_work(cwq, &barr->work, tail); 329 } 330 331 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq) 332 { 333 int active; 334 335 if (cwq->thread == current) { 336 /* 337 * Probably keventd trying to flush its own queue. So simply run 338 * it by hand rather than deadlocking. 339 */ 340 run_workqueue(cwq); 341 active = 1; 342 } else { 343 struct wq_barrier barr; 344 345 active = 0; 346 spin_lock_irq(&cwq->lock); 347 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) { 348 insert_wq_barrier(cwq, &barr, 1); 349 active = 1; 350 } 351 spin_unlock_irq(&cwq->lock); 352 353 if (active) 354 wait_for_completion(&barr.done); 355 } 356 357 return active; 358 } 359 360 /** 361 * flush_workqueue - ensure that any scheduled work has run to completion. 362 * @wq: workqueue to flush 363 * 364 * Forces execution of the workqueue and blocks until its completion. 365 * This is typically used in driver shutdown handlers. 366 * 367 * We sleep until all works which were queued on entry have been handled, 368 * but we are not livelocked by new incoming ones. 369 * 370 * This function used to run the workqueues itself. Now we just wait for the 371 * helper threads to do it. 372 */ 373 void fastcall flush_workqueue(struct workqueue_struct *wq) 374 { 375 const cpumask_t *cpu_map = wq_cpu_map(wq); 376 int cpu; 377 378 might_sleep(); 379 for_each_cpu_mask(cpu, *cpu_map) 380 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu)); 381 } 382 EXPORT_SYMBOL_GPL(flush_workqueue); 383 384 /* 385 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit, 386 * so this work can't be re-armed in any way. 387 */ 388 static int try_to_grab_pending(struct work_struct *work) 389 { 390 struct cpu_workqueue_struct *cwq; 391 int ret = -1; 392 393 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) 394 return 0; 395 396 /* 397 * The queueing is in progress, or it is already queued. Try to 398 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 399 */ 400 401 cwq = get_wq_data(work); 402 if (!cwq) 403 return ret; 404 405 spin_lock_irq(&cwq->lock); 406 if (!list_empty(&work->entry)) { 407 /* 408 * This work is queued, but perhaps we locked the wrong cwq. 409 * In that case we must see the new value after rmb(), see 410 * insert_work()->wmb(). 411 */ 412 smp_rmb(); 413 if (cwq == get_wq_data(work)) { 414 list_del_init(&work->entry); 415 ret = 1; 416 } 417 } 418 spin_unlock_irq(&cwq->lock); 419 420 return ret; 421 } 422 423 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq, 424 struct work_struct *work) 425 { 426 struct wq_barrier barr; 427 int running = 0; 428 429 spin_lock_irq(&cwq->lock); 430 if (unlikely(cwq->current_work == work)) { 431 insert_wq_barrier(cwq, &barr, 0); 432 running = 1; 433 } 434 spin_unlock_irq(&cwq->lock); 435 436 if (unlikely(running)) 437 wait_for_completion(&barr.done); 438 } 439 440 static void wait_on_work(struct work_struct *work) 441 { 442 struct cpu_workqueue_struct *cwq; 443 struct workqueue_struct *wq; 444 const cpumask_t *cpu_map; 445 int cpu; 446 447 might_sleep(); 448 449 cwq = get_wq_data(work); 450 if (!cwq) 451 return; 452 453 wq = cwq->wq; 454 cpu_map = wq_cpu_map(wq); 455 456 for_each_cpu_mask(cpu, *cpu_map) 457 wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work); 458 } 459 460 static int __cancel_work_timer(struct work_struct *work, 461 struct timer_list* timer) 462 { 463 int ret; 464 465 do { 466 ret = (timer && likely(del_timer(timer))); 467 if (!ret) 468 ret = try_to_grab_pending(work); 469 wait_on_work(work); 470 } while (unlikely(ret < 0)); 471 472 work_clear_pending(work); 473 return ret; 474 } 475 476 /** 477 * cancel_work_sync - block until a work_struct's callback has terminated 478 * @work: the work which is to be flushed 479 * 480 * Returns true if @work was pending. 481 * 482 * cancel_work_sync() will cancel the work if it is queued. If the work's 483 * callback appears to be running, cancel_work_sync() will block until it 484 * has completed. 485 * 486 * It is possible to use this function if the work re-queues itself. It can 487 * cancel the work even if it migrates to another workqueue, however in that 488 * case it only guarantees that work->func() has completed on the last queued 489 * workqueue. 490 * 491 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not 492 * pending, otherwise it goes into a busy-wait loop until the timer expires. 493 * 494 * The caller must ensure that workqueue_struct on which this work was last 495 * queued can't be destroyed before this function returns. 496 */ 497 int cancel_work_sync(struct work_struct *work) 498 { 499 return __cancel_work_timer(work, NULL); 500 } 501 EXPORT_SYMBOL_GPL(cancel_work_sync); 502 503 /** 504 * cancel_delayed_work_sync - reliably kill off a delayed work. 505 * @dwork: the delayed work struct 506 * 507 * Returns true if @dwork was pending. 508 * 509 * It is possible to use this function if @dwork rearms itself via queue_work() 510 * or queue_delayed_work(). See also the comment for cancel_work_sync(). 511 */ 512 int cancel_delayed_work_sync(struct delayed_work *dwork) 513 { 514 return __cancel_work_timer(&dwork->work, &dwork->timer); 515 } 516 EXPORT_SYMBOL(cancel_delayed_work_sync); 517 518 static struct workqueue_struct *keventd_wq __read_mostly; 519 520 /** 521 * schedule_work - put work task in global workqueue 522 * @work: job to be done 523 * 524 * This puts a job in the kernel-global workqueue. 525 */ 526 int fastcall schedule_work(struct work_struct *work) 527 { 528 return queue_work(keventd_wq, work); 529 } 530 EXPORT_SYMBOL(schedule_work); 531 532 /** 533 * schedule_delayed_work - put work task in global workqueue after delay 534 * @dwork: job to be done 535 * @delay: number of jiffies to wait or 0 for immediate execution 536 * 537 * After waiting for a given time this puts a job in the kernel-global 538 * workqueue. 539 */ 540 int fastcall schedule_delayed_work(struct delayed_work *dwork, 541 unsigned long delay) 542 { 543 timer_stats_timer_set_start_info(&dwork->timer); 544 return queue_delayed_work(keventd_wq, dwork, delay); 545 } 546 EXPORT_SYMBOL(schedule_delayed_work); 547 548 /** 549 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 550 * @cpu: cpu to use 551 * @dwork: job to be done 552 * @delay: number of jiffies to wait 553 * 554 * After waiting for a given time this puts a job in the kernel-global 555 * workqueue on the specified CPU. 556 */ 557 int schedule_delayed_work_on(int cpu, 558 struct delayed_work *dwork, unsigned long delay) 559 { 560 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay); 561 } 562 EXPORT_SYMBOL(schedule_delayed_work_on); 563 564 /** 565 * schedule_on_each_cpu - call a function on each online CPU from keventd 566 * @func: the function to call 567 * 568 * Returns zero on success. 569 * Returns -ve errno on failure. 570 * 571 * Appears to be racy against CPU hotplug. 572 * 573 * schedule_on_each_cpu() is very slow. 574 */ 575 int schedule_on_each_cpu(work_func_t func) 576 { 577 int cpu; 578 struct work_struct *works; 579 580 works = alloc_percpu(struct work_struct); 581 if (!works) 582 return -ENOMEM; 583 584 preempt_disable(); /* CPU hotplug */ 585 for_each_online_cpu(cpu) { 586 struct work_struct *work = per_cpu_ptr(works, cpu); 587 588 INIT_WORK(work, func); 589 set_bit(WORK_STRUCT_PENDING, work_data_bits(work)); 590 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work); 591 } 592 preempt_enable(); 593 flush_workqueue(keventd_wq); 594 free_percpu(works); 595 return 0; 596 } 597 598 void flush_scheduled_work(void) 599 { 600 flush_workqueue(keventd_wq); 601 } 602 EXPORT_SYMBOL(flush_scheduled_work); 603 604 /** 605 * execute_in_process_context - reliably execute the routine with user context 606 * @fn: the function to execute 607 * @ew: guaranteed storage for the execute work structure (must 608 * be available when the work executes) 609 * 610 * Executes the function immediately if process context is available, 611 * otherwise schedules the function for delayed execution. 612 * 613 * Returns: 0 - function was executed 614 * 1 - function was scheduled for execution 615 */ 616 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 617 { 618 if (!in_interrupt()) { 619 fn(&ew->work); 620 return 0; 621 } 622 623 INIT_WORK(&ew->work, fn); 624 schedule_work(&ew->work); 625 626 return 1; 627 } 628 EXPORT_SYMBOL_GPL(execute_in_process_context); 629 630 int keventd_up(void) 631 { 632 return keventd_wq != NULL; 633 } 634 635 int current_is_keventd(void) 636 { 637 struct cpu_workqueue_struct *cwq; 638 int cpu = smp_processor_id(); /* preempt-safe: keventd is per-cpu */ 639 int ret = 0; 640 641 BUG_ON(!keventd_wq); 642 643 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu); 644 if (current == cwq->thread) 645 ret = 1; 646 647 return ret; 648 649 } 650 651 static struct cpu_workqueue_struct * 652 init_cpu_workqueue(struct workqueue_struct *wq, int cpu) 653 { 654 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu); 655 656 cwq->wq = wq; 657 spin_lock_init(&cwq->lock); 658 INIT_LIST_HEAD(&cwq->worklist); 659 init_waitqueue_head(&cwq->more_work); 660 661 return cwq; 662 } 663 664 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) 665 { 666 struct workqueue_struct *wq = cwq->wq; 667 const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d"; 668 struct task_struct *p; 669 670 p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu); 671 /* 672 * Nobody can add the work_struct to this cwq, 673 * if (caller is __create_workqueue) 674 * nobody should see this wq 675 * else // caller is CPU_UP_PREPARE 676 * cpu is not on cpu_online_map 677 * so we can abort safely. 678 */ 679 if (IS_ERR(p)) 680 return PTR_ERR(p); 681 682 cwq->thread = p; 683 684 return 0; 685 } 686 687 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) 688 { 689 struct task_struct *p = cwq->thread; 690 691 if (p != NULL) { 692 if (cpu >= 0) 693 kthread_bind(p, cpu); 694 wake_up_process(p); 695 } 696 } 697 698 struct workqueue_struct *__create_workqueue(const char *name, 699 int singlethread, int freezeable) 700 { 701 struct workqueue_struct *wq; 702 struct cpu_workqueue_struct *cwq; 703 int err = 0, cpu; 704 705 wq = kzalloc(sizeof(*wq), GFP_KERNEL); 706 if (!wq) 707 return NULL; 708 709 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct); 710 if (!wq->cpu_wq) { 711 kfree(wq); 712 return NULL; 713 } 714 715 wq->name = name; 716 wq->singlethread = singlethread; 717 wq->freezeable = freezeable; 718 INIT_LIST_HEAD(&wq->list); 719 720 if (singlethread) { 721 cwq = init_cpu_workqueue(wq, singlethread_cpu); 722 err = create_workqueue_thread(cwq, singlethread_cpu); 723 start_workqueue_thread(cwq, -1); 724 } else { 725 mutex_lock(&workqueue_mutex); 726 list_add(&wq->list, &workqueues); 727 728 for_each_possible_cpu(cpu) { 729 cwq = init_cpu_workqueue(wq, cpu); 730 if (err || !cpu_online(cpu)) 731 continue; 732 err = create_workqueue_thread(cwq, cpu); 733 start_workqueue_thread(cwq, cpu); 734 } 735 mutex_unlock(&workqueue_mutex); 736 } 737 738 if (err) { 739 destroy_workqueue(wq); 740 wq = NULL; 741 } 742 return wq; 743 } 744 EXPORT_SYMBOL_GPL(__create_workqueue); 745 746 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) 747 { 748 /* 749 * Our caller is either destroy_workqueue() or CPU_DEAD, 750 * workqueue_mutex protects cwq->thread 751 */ 752 if (cwq->thread == NULL) 753 return; 754 755 flush_cpu_workqueue(cwq); 756 /* 757 * If the caller is CPU_DEAD and cwq->worklist was not empty, 758 * a concurrent flush_workqueue() can insert a barrier after us. 759 * However, in that case run_workqueue() won't return and check 760 * kthread_should_stop() until it flushes all work_struct's. 761 * When ->worklist becomes empty it is safe to exit because no 762 * more work_structs can be queued on this cwq: flush_workqueue 763 * checks list_empty(), and a "normal" queue_work() can't use 764 * a dead CPU. 765 */ 766 kthread_stop(cwq->thread); 767 cwq->thread = NULL; 768 } 769 770 /** 771 * destroy_workqueue - safely terminate a workqueue 772 * @wq: target workqueue 773 * 774 * Safely destroy a workqueue. All work currently pending will be done first. 775 */ 776 void destroy_workqueue(struct workqueue_struct *wq) 777 { 778 const cpumask_t *cpu_map = wq_cpu_map(wq); 779 struct cpu_workqueue_struct *cwq; 780 int cpu; 781 782 mutex_lock(&workqueue_mutex); 783 list_del(&wq->list); 784 mutex_unlock(&workqueue_mutex); 785 786 for_each_cpu_mask(cpu, *cpu_map) { 787 cwq = per_cpu_ptr(wq->cpu_wq, cpu); 788 cleanup_workqueue_thread(cwq, cpu); 789 } 790 791 free_percpu(wq->cpu_wq); 792 kfree(wq); 793 } 794 EXPORT_SYMBOL_GPL(destroy_workqueue); 795 796 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, 797 unsigned long action, 798 void *hcpu) 799 { 800 unsigned int cpu = (unsigned long)hcpu; 801 struct cpu_workqueue_struct *cwq; 802 struct workqueue_struct *wq; 803 804 action &= ~CPU_TASKS_FROZEN; 805 806 switch (action) { 807 case CPU_LOCK_ACQUIRE: 808 mutex_lock(&workqueue_mutex); 809 return NOTIFY_OK; 810 811 case CPU_LOCK_RELEASE: 812 mutex_unlock(&workqueue_mutex); 813 return NOTIFY_OK; 814 815 case CPU_UP_PREPARE: 816 cpu_set(cpu, cpu_populated_map); 817 } 818 819 list_for_each_entry(wq, &workqueues, list) { 820 cwq = per_cpu_ptr(wq->cpu_wq, cpu); 821 822 switch (action) { 823 case CPU_UP_PREPARE: 824 if (!create_workqueue_thread(cwq, cpu)) 825 break; 826 printk(KERN_ERR "workqueue for %i failed\n", cpu); 827 return NOTIFY_BAD; 828 829 case CPU_ONLINE: 830 start_workqueue_thread(cwq, cpu); 831 break; 832 833 case CPU_UP_CANCELED: 834 start_workqueue_thread(cwq, -1); 835 case CPU_DEAD: 836 cleanup_workqueue_thread(cwq, cpu); 837 break; 838 } 839 } 840 841 return NOTIFY_OK; 842 } 843 844 void __init init_workqueues(void) 845 { 846 cpu_populated_map = cpu_online_map; 847 singlethread_cpu = first_cpu(cpu_possible_map); 848 cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu); 849 hotcpu_notifier(workqueue_cpu_callback, 0); 850 keventd_wq = create_workqueue("events"); 851 BUG_ON(!keventd_wq); 852 } 853