1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/nmi.h> 53 54 #include "workqueue_internal.h" 55 56 enum { 57 /* 58 * worker_pool flags 59 * 60 * A bound pool is either associated or disassociated with its CPU. 61 * While associated (!DISASSOCIATED), all workers are bound to the 62 * CPU and none has %WORKER_UNBOUND set and concurrency management 63 * is in effect. 64 * 65 * While DISASSOCIATED, the cpu may be offline and all workers have 66 * %WORKER_UNBOUND set and concurrency management disabled, and may 67 * be executing on any CPU. The pool behaves as an unbound one. 68 * 69 * Note that DISASSOCIATED should be flipped only while holding 70 * wq_pool_attach_mutex to avoid changing binding state while 71 * worker_attach_to_pool() is in progress. 72 */ 73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 75 76 /* worker flags */ 77 WORKER_DIE = 1 << 1, /* die die die */ 78 WORKER_IDLE = 1 << 2, /* is idle */ 79 WORKER_PREP = 1 << 3, /* preparing to run works */ 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 83 84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 85 WORKER_UNBOUND | WORKER_REBOUND, 86 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 88 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 91 92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 94 95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 96 /* call for help after 10ms 97 (min two ticks) */ 98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 99 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 100 101 /* 102 * Rescue workers are used only on emergencies and shared by 103 * all cpus. Give MIN_NICE. 104 */ 105 RESCUER_NICE_LEVEL = MIN_NICE, 106 HIGHPRI_NICE_LEVEL = MIN_NICE, 107 108 WQ_NAME_LEN = 24, 109 }; 110 111 /* 112 * Structure fields follow one of the following exclusion rules. 113 * 114 * I: Modifiable by initialization/destruction paths and read-only for 115 * everyone else. 116 * 117 * P: Preemption protected. Disabling preemption is enough and should 118 * only be modified and accessed from the local cpu. 119 * 120 * L: pool->lock protected. Access with pool->lock held. 121 * 122 * X: During normal operation, modification requires pool->lock and should 123 * be done only from local cpu. Either disabling preemption on local 124 * cpu or grabbing pool->lock is enough for read access. If 125 * POOL_DISASSOCIATED is set, it's identical to L. 126 * 127 * A: wq_pool_attach_mutex protected. 128 * 129 * PL: wq_pool_mutex protected. 130 * 131 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 132 * 133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 134 * 135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 136 * RCU for reads. 137 * 138 * WQ: wq->mutex protected. 139 * 140 * WR: wq->mutex protected for writes. RCU protected for reads. 141 * 142 * MD: wq_mayday_lock protected. 143 */ 144 145 /* struct worker is defined in workqueue_internal.h */ 146 147 struct worker_pool { 148 raw_spinlock_t lock; /* the pool lock */ 149 int cpu; /* I: the associated cpu */ 150 int node; /* I: the associated node ID */ 151 int id; /* I: pool ID */ 152 unsigned int flags; /* X: flags */ 153 154 unsigned long watchdog_ts; /* L: watchdog timestamp */ 155 156 struct list_head worklist; /* L: list of pending works */ 157 158 int nr_workers; /* L: total number of workers */ 159 int nr_idle; /* L: currently idle workers */ 160 161 struct list_head idle_list; /* X: list of idle workers */ 162 struct timer_list idle_timer; /* L: worker idle timeout */ 163 struct timer_list mayday_timer; /* L: SOS timer for workers */ 164 165 /* a workers is either on busy_hash or idle_list, or the manager */ 166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 167 /* L: hash of busy workers */ 168 169 struct worker *manager; /* L: purely informational */ 170 struct list_head workers; /* A: attached workers */ 171 struct completion *detach_completion; /* all workers detached */ 172 173 struct ida worker_ida; /* worker IDs for task name */ 174 175 struct workqueue_attrs *attrs; /* I: worker attributes */ 176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 177 int refcnt; /* PL: refcnt for unbound pools */ 178 179 /* 180 * The current concurrency level. As it's likely to be accessed 181 * from other CPUs during try_to_wake_up(), put it in a separate 182 * cacheline. 183 */ 184 atomic_t nr_running ____cacheline_aligned_in_smp; 185 186 /* 187 * Destruction of pool is RCU protected to allow dereferences 188 * from get_work_pool(). 189 */ 190 struct rcu_head rcu; 191 } ____cacheline_aligned_in_smp; 192 193 /* 194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 195 * of work_struct->data are used for flags and the remaining high bits 196 * point to the pwq; thus, pwqs need to be aligned at two's power of the 197 * number of flag bits. 198 */ 199 struct pool_workqueue { 200 struct worker_pool *pool; /* I: the associated pool */ 201 struct workqueue_struct *wq; /* I: the owning workqueue */ 202 int work_color; /* L: current color */ 203 int flush_color; /* L: flushing color */ 204 int refcnt; /* L: reference count */ 205 int nr_in_flight[WORK_NR_COLORS]; 206 /* L: nr of in_flight works */ 207 int nr_active; /* L: nr of active works */ 208 int max_active; /* L: max active works */ 209 struct list_head delayed_works; /* L: delayed works */ 210 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 211 struct list_head mayday_node; /* MD: node on wq->maydays */ 212 213 /* 214 * Release of unbound pwq is punted to system_wq. See put_pwq() 215 * and pwq_unbound_release_workfn() for details. pool_workqueue 216 * itself is also RCU protected so that the first pwq can be 217 * determined without grabbing wq->mutex. 218 */ 219 struct work_struct unbound_release_work; 220 struct rcu_head rcu; 221 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 222 223 /* 224 * Structure used to wait for workqueue flush. 225 */ 226 struct wq_flusher { 227 struct list_head list; /* WQ: list of flushers */ 228 int flush_color; /* WQ: flush color waiting for */ 229 struct completion done; /* flush completion */ 230 }; 231 232 struct wq_device; 233 234 /* 235 * The externally visible workqueue. It relays the issued work items to 236 * the appropriate worker_pool through its pool_workqueues. 237 */ 238 struct workqueue_struct { 239 struct list_head pwqs; /* WR: all pwqs of this wq */ 240 struct list_head list; /* PR: list of all workqueues */ 241 242 struct mutex mutex; /* protects this wq */ 243 int work_color; /* WQ: current work color */ 244 int flush_color; /* WQ: current flush color */ 245 atomic_t nr_pwqs_to_flush; /* flush in progress */ 246 struct wq_flusher *first_flusher; /* WQ: first flusher */ 247 struct list_head flusher_queue; /* WQ: flush waiters */ 248 struct list_head flusher_overflow; /* WQ: flush overflow list */ 249 250 struct list_head maydays; /* MD: pwqs requesting rescue */ 251 struct worker *rescuer; /* MD: rescue worker */ 252 253 int nr_drainers; /* WQ: drain in progress */ 254 int saved_max_active; /* WQ: saved pwq max_active */ 255 256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 258 259 #ifdef CONFIG_SYSFS 260 struct wq_device *wq_dev; /* I: for sysfs interface */ 261 #endif 262 #ifdef CONFIG_LOCKDEP 263 char *lock_name; 264 struct lock_class_key key; 265 struct lockdep_map lockdep_map; 266 #endif 267 char name[WQ_NAME_LEN]; /* I: workqueue name */ 268 269 /* 270 * Destruction of workqueue_struct is RCU protected to allow walking 271 * the workqueues list without grabbing wq_pool_mutex. 272 * This is used to dump all workqueues from sysrq. 273 */ 274 struct rcu_head rcu; 275 276 /* hot fields used during command issue, aligned to cacheline */ 277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 280 }; 281 282 static struct kmem_cache *pwq_cache; 283 284 static cpumask_var_t *wq_numa_possible_cpumask; 285 /* possible CPUs of each node */ 286 287 static bool wq_disable_numa; 288 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 289 290 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 292 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 293 294 static bool wq_online; /* can kworkers be created yet? */ 295 296 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 297 298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 300 301 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 303 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 304 /* wait for manager to go away */ 305 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 306 307 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 308 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 309 310 /* PL: allowable cpus for unbound wqs and work items */ 311 static cpumask_var_t wq_unbound_cpumask; 312 313 /* CPU where unbound work was last round robin scheduled from this CPU */ 314 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 315 316 /* 317 * Local execution of unbound work items is no longer guaranteed. The 318 * following always forces round-robin CPU selection on unbound work items 319 * to uncover usages which depend on it. 320 */ 321 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 322 static bool wq_debug_force_rr_cpu = true; 323 #else 324 static bool wq_debug_force_rr_cpu = false; 325 #endif 326 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 327 328 /* the per-cpu worker pools */ 329 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 330 331 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 332 333 /* PL: hash of all unbound pools keyed by pool->attrs */ 334 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 335 336 /* I: attributes used when instantiating standard unbound pools on demand */ 337 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 338 339 /* I: attributes used when instantiating ordered pools on demand */ 340 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 341 342 struct workqueue_struct *system_wq __read_mostly; 343 EXPORT_SYMBOL(system_wq); 344 struct workqueue_struct *system_highpri_wq __read_mostly; 345 EXPORT_SYMBOL_GPL(system_highpri_wq); 346 struct workqueue_struct *system_long_wq __read_mostly; 347 EXPORT_SYMBOL_GPL(system_long_wq); 348 struct workqueue_struct *system_unbound_wq __read_mostly; 349 EXPORT_SYMBOL_GPL(system_unbound_wq); 350 struct workqueue_struct *system_freezable_wq __read_mostly; 351 EXPORT_SYMBOL_GPL(system_freezable_wq); 352 struct workqueue_struct *system_power_efficient_wq __read_mostly; 353 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 354 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 355 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 356 357 static int worker_thread(void *__worker); 358 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 359 static void show_pwq(struct pool_workqueue *pwq); 360 361 #define CREATE_TRACE_POINTS 362 #include <trace/events/workqueue.h> 363 364 #define assert_rcu_or_pool_mutex() \ 365 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 366 !lockdep_is_held(&wq_pool_mutex), \ 367 "RCU or wq_pool_mutex should be held") 368 369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 370 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 371 !lockdep_is_held(&wq->mutex) && \ 372 !lockdep_is_held(&wq_pool_mutex), \ 373 "RCU, wq->mutex or wq_pool_mutex should be held") 374 375 #define for_each_cpu_worker_pool(pool, cpu) \ 376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 378 (pool)++) 379 380 /** 381 * for_each_pool - iterate through all worker_pools in the system 382 * @pool: iteration cursor 383 * @pi: integer used for iteration 384 * 385 * This must be called either with wq_pool_mutex held or RCU read 386 * locked. If the pool needs to be used beyond the locking in effect, the 387 * caller is responsible for guaranteeing that the pool stays online. 388 * 389 * The if/else clause exists only for the lockdep assertion and can be 390 * ignored. 391 */ 392 #define for_each_pool(pool, pi) \ 393 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 395 else 396 397 /** 398 * for_each_pool_worker - iterate through all workers of a worker_pool 399 * @worker: iteration cursor 400 * @pool: worker_pool to iterate workers of 401 * 402 * This must be called with wq_pool_attach_mutex. 403 * 404 * The if/else clause exists only for the lockdep assertion and can be 405 * ignored. 406 */ 407 #define for_each_pool_worker(worker, pool) \ 408 list_for_each_entry((worker), &(pool)->workers, node) \ 409 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 410 else 411 412 /** 413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 414 * @pwq: iteration cursor 415 * @wq: the target workqueue 416 * 417 * This must be called either with wq->mutex held or RCU read locked. 418 * If the pwq needs to be used beyond the locking in effect, the caller is 419 * responsible for guaranteeing that the pwq stays online. 420 * 421 * The if/else clause exists only for the lockdep assertion and can be 422 * ignored. 423 */ 424 #define for_each_pwq(pwq, wq) \ 425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 426 lockdep_is_held(&(wq->mutex))) 427 428 #ifdef CONFIG_DEBUG_OBJECTS_WORK 429 430 static const struct debug_obj_descr work_debug_descr; 431 432 static void *work_debug_hint(void *addr) 433 { 434 return ((struct work_struct *) addr)->func; 435 } 436 437 static bool work_is_static_object(void *addr) 438 { 439 struct work_struct *work = addr; 440 441 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 442 } 443 444 /* 445 * fixup_init is called when: 446 * - an active object is initialized 447 */ 448 static bool work_fixup_init(void *addr, enum debug_obj_state state) 449 { 450 struct work_struct *work = addr; 451 452 switch (state) { 453 case ODEBUG_STATE_ACTIVE: 454 cancel_work_sync(work); 455 debug_object_init(work, &work_debug_descr); 456 return true; 457 default: 458 return false; 459 } 460 } 461 462 /* 463 * fixup_free is called when: 464 * - an active object is freed 465 */ 466 static bool work_fixup_free(void *addr, enum debug_obj_state state) 467 { 468 struct work_struct *work = addr; 469 470 switch (state) { 471 case ODEBUG_STATE_ACTIVE: 472 cancel_work_sync(work); 473 debug_object_free(work, &work_debug_descr); 474 return true; 475 default: 476 return false; 477 } 478 } 479 480 static const struct debug_obj_descr work_debug_descr = { 481 .name = "work_struct", 482 .debug_hint = work_debug_hint, 483 .is_static_object = work_is_static_object, 484 .fixup_init = work_fixup_init, 485 .fixup_free = work_fixup_free, 486 }; 487 488 static inline void debug_work_activate(struct work_struct *work) 489 { 490 debug_object_activate(work, &work_debug_descr); 491 } 492 493 static inline void debug_work_deactivate(struct work_struct *work) 494 { 495 debug_object_deactivate(work, &work_debug_descr); 496 } 497 498 void __init_work(struct work_struct *work, int onstack) 499 { 500 if (onstack) 501 debug_object_init_on_stack(work, &work_debug_descr); 502 else 503 debug_object_init(work, &work_debug_descr); 504 } 505 EXPORT_SYMBOL_GPL(__init_work); 506 507 void destroy_work_on_stack(struct work_struct *work) 508 { 509 debug_object_free(work, &work_debug_descr); 510 } 511 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 512 513 void destroy_delayed_work_on_stack(struct delayed_work *work) 514 { 515 destroy_timer_on_stack(&work->timer); 516 debug_object_free(&work->work, &work_debug_descr); 517 } 518 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 519 520 #else 521 static inline void debug_work_activate(struct work_struct *work) { } 522 static inline void debug_work_deactivate(struct work_struct *work) { } 523 #endif 524 525 /** 526 * worker_pool_assign_id - allocate ID and assing it to @pool 527 * @pool: the pool pointer of interest 528 * 529 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 530 * successfully, -errno on failure. 531 */ 532 static int worker_pool_assign_id(struct worker_pool *pool) 533 { 534 int ret; 535 536 lockdep_assert_held(&wq_pool_mutex); 537 538 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 539 GFP_KERNEL); 540 if (ret >= 0) { 541 pool->id = ret; 542 return 0; 543 } 544 return ret; 545 } 546 547 /** 548 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 549 * @wq: the target workqueue 550 * @node: the node ID 551 * 552 * This must be called with any of wq_pool_mutex, wq->mutex or RCU 553 * read locked. 554 * If the pwq needs to be used beyond the locking in effect, the caller is 555 * responsible for guaranteeing that the pwq stays online. 556 * 557 * Return: The unbound pool_workqueue for @node. 558 */ 559 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 560 int node) 561 { 562 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 563 564 /* 565 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 566 * delayed item is pending. The plan is to keep CPU -> NODE 567 * mapping valid and stable across CPU on/offlines. Once that 568 * happens, this workaround can be removed. 569 */ 570 if (unlikely(node == NUMA_NO_NODE)) 571 return wq->dfl_pwq; 572 573 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 574 } 575 576 static unsigned int work_color_to_flags(int color) 577 { 578 return color << WORK_STRUCT_COLOR_SHIFT; 579 } 580 581 static int get_work_color(struct work_struct *work) 582 { 583 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 584 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 585 } 586 587 static int work_next_color(int color) 588 { 589 return (color + 1) % WORK_NR_COLORS; 590 } 591 592 /* 593 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 594 * contain the pointer to the queued pwq. Once execution starts, the flag 595 * is cleared and the high bits contain OFFQ flags and pool ID. 596 * 597 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 598 * and clear_work_data() can be used to set the pwq, pool or clear 599 * work->data. These functions should only be called while the work is 600 * owned - ie. while the PENDING bit is set. 601 * 602 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 603 * corresponding to a work. Pool is available once the work has been 604 * queued anywhere after initialization until it is sync canceled. pwq is 605 * available only while the work item is queued. 606 * 607 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 608 * canceled. While being canceled, a work item may have its PENDING set 609 * but stay off timer and worklist for arbitrarily long and nobody should 610 * try to steal the PENDING bit. 611 */ 612 static inline void set_work_data(struct work_struct *work, unsigned long data, 613 unsigned long flags) 614 { 615 WARN_ON_ONCE(!work_pending(work)); 616 atomic_long_set(&work->data, data | flags | work_static(work)); 617 } 618 619 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 620 unsigned long extra_flags) 621 { 622 set_work_data(work, (unsigned long)pwq, 623 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 624 } 625 626 static void set_work_pool_and_keep_pending(struct work_struct *work, 627 int pool_id) 628 { 629 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 630 WORK_STRUCT_PENDING); 631 } 632 633 static void set_work_pool_and_clear_pending(struct work_struct *work, 634 int pool_id) 635 { 636 /* 637 * The following wmb is paired with the implied mb in 638 * test_and_set_bit(PENDING) and ensures all updates to @work made 639 * here are visible to and precede any updates by the next PENDING 640 * owner. 641 */ 642 smp_wmb(); 643 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 644 /* 645 * The following mb guarantees that previous clear of a PENDING bit 646 * will not be reordered with any speculative LOADS or STORES from 647 * work->current_func, which is executed afterwards. This possible 648 * reordering can lead to a missed execution on attempt to queue 649 * the same @work. E.g. consider this case: 650 * 651 * CPU#0 CPU#1 652 * ---------------------------- -------------------------------- 653 * 654 * 1 STORE event_indicated 655 * 2 queue_work_on() { 656 * 3 test_and_set_bit(PENDING) 657 * 4 } set_..._and_clear_pending() { 658 * 5 set_work_data() # clear bit 659 * 6 smp_mb() 660 * 7 work->current_func() { 661 * 8 LOAD event_indicated 662 * } 663 * 664 * Without an explicit full barrier speculative LOAD on line 8 can 665 * be executed before CPU#0 does STORE on line 1. If that happens, 666 * CPU#0 observes the PENDING bit is still set and new execution of 667 * a @work is not queued in a hope, that CPU#1 will eventually 668 * finish the queued @work. Meanwhile CPU#1 does not see 669 * event_indicated is set, because speculative LOAD was executed 670 * before actual STORE. 671 */ 672 smp_mb(); 673 } 674 675 static void clear_work_data(struct work_struct *work) 676 { 677 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 678 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 679 } 680 681 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 682 { 683 unsigned long data = atomic_long_read(&work->data); 684 685 if (data & WORK_STRUCT_PWQ) 686 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 687 else 688 return NULL; 689 } 690 691 /** 692 * get_work_pool - return the worker_pool a given work was associated with 693 * @work: the work item of interest 694 * 695 * Pools are created and destroyed under wq_pool_mutex, and allows read 696 * access under RCU read lock. As such, this function should be 697 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 698 * 699 * All fields of the returned pool are accessible as long as the above 700 * mentioned locking is in effect. If the returned pool needs to be used 701 * beyond the critical section, the caller is responsible for ensuring the 702 * returned pool is and stays online. 703 * 704 * Return: The worker_pool @work was last associated with. %NULL if none. 705 */ 706 static struct worker_pool *get_work_pool(struct work_struct *work) 707 { 708 unsigned long data = atomic_long_read(&work->data); 709 int pool_id; 710 711 assert_rcu_or_pool_mutex(); 712 713 if (data & WORK_STRUCT_PWQ) 714 return ((struct pool_workqueue *) 715 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 716 717 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 718 if (pool_id == WORK_OFFQ_POOL_NONE) 719 return NULL; 720 721 return idr_find(&worker_pool_idr, pool_id); 722 } 723 724 /** 725 * get_work_pool_id - return the worker pool ID a given work is associated with 726 * @work: the work item of interest 727 * 728 * Return: The worker_pool ID @work was last associated with. 729 * %WORK_OFFQ_POOL_NONE if none. 730 */ 731 static int get_work_pool_id(struct work_struct *work) 732 { 733 unsigned long data = atomic_long_read(&work->data); 734 735 if (data & WORK_STRUCT_PWQ) 736 return ((struct pool_workqueue *) 737 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 738 739 return data >> WORK_OFFQ_POOL_SHIFT; 740 } 741 742 static void mark_work_canceling(struct work_struct *work) 743 { 744 unsigned long pool_id = get_work_pool_id(work); 745 746 pool_id <<= WORK_OFFQ_POOL_SHIFT; 747 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 748 } 749 750 static bool work_is_canceling(struct work_struct *work) 751 { 752 unsigned long data = atomic_long_read(&work->data); 753 754 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 755 } 756 757 /* 758 * Policy functions. These define the policies on how the global worker 759 * pools are managed. Unless noted otherwise, these functions assume that 760 * they're being called with pool->lock held. 761 */ 762 763 static bool __need_more_worker(struct worker_pool *pool) 764 { 765 return !atomic_read(&pool->nr_running); 766 } 767 768 /* 769 * Need to wake up a worker? Called from anything but currently 770 * running workers. 771 * 772 * Note that, because unbound workers never contribute to nr_running, this 773 * function will always return %true for unbound pools as long as the 774 * worklist isn't empty. 775 */ 776 static bool need_more_worker(struct worker_pool *pool) 777 { 778 return !list_empty(&pool->worklist) && __need_more_worker(pool); 779 } 780 781 /* Can I start working? Called from busy but !running workers. */ 782 static bool may_start_working(struct worker_pool *pool) 783 { 784 return pool->nr_idle; 785 } 786 787 /* Do I need to keep working? Called from currently running workers. */ 788 static bool keep_working(struct worker_pool *pool) 789 { 790 return !list_empty(&pool->worklist) && 791 atomic_read(&pool->nr_running) <= 1; 792 } 793 794 /* Do we need a new worker? Called from manager. */ 795 static bool need_to_create_worker(struct worker_pool *pool) 796 { 797 return need_more_worker(pool) && !may_start_working(pool); 798 } 799 800 /* Do we have too many workers and should some go away? */ 801 static bool too_many_workers(struct worker_pool *pool) 802 { 803 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 804 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 805 int nr_busy = pool->nr_workers - nr_idle; 806 807 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 808 } 809 810 /* 811 * Wake up functions. 812 */ 813 814 /* Return the first idle worker. Safe with preemption disabled */ 815 static struct worker *first_idle_worker(struct worker_pool *pool) 816 { 817 if (unlikely(list_empty(&pool->idle_list))) 818 return NULL; 819 820 return list_first_entry(&pool->idle_list, struct worker, entry); 821 } 822 823 /** 824 * wake_up_worker - wake up an idle worker 825 * @pool: worker pool to wake worker from 826 * 827 * Wake up the first idle worker of @pool. 828 * 829 * CONTEXT: 830 * raw_spin_lock_irq(pool->lock). 831 */ 832 static void wake_up_worker(struct worker_pool *pool) 833 { 834 struct worker *worker = first_idle_worker(pool); 835 836 if (likely(worker)) 837 wake_up_process(worker->task); 838 } 839 840 /** 841 * wq_worker_running - a worker is running again 842 * @task: task waking up 843 * 844 * This function is called when a worker returns from schedule() 845 */ 846 void wq_worker_running(struct task_struct *task) 847 { 848 struct worker *worker = kthread_data(task); 849 850 if (!worker->sleeping) 851 return; 852 if (!(worker->flags & WORKER_NOT_RUNNING)) 853 atomic_inc(&worker->pool->nr_running); 854 worker->sleeping = 0; 855 } 856 857 /** 858 * wq_worker_sleeping - a worker is going to sleep 859 * @task: task going to sleep 860 * 861 * This function is called from schedule() when a busy worker is 862 * going to sleep. Preemption needs to be disabled to protect ->sleeping 863 * assignment. 864 */ 865 void wq_worker_sleeping(struct task_struct *task) 866 { 867 struct worker *next, *worker = kthread_data(task); 868 struct worker_pool *pool; 869 870 /* 871 * Rescuers, which may not have all the fields set up like normal 872 * workers, also reach here, let's not access anything before 873 * checking NOT_RUNNING. 874 */ 875 if (worker->flags & WORKER_NOT_RUNNING) 876 return; 877 878 pool = worker->pool; 879 880 /* Return if preempted before wq_worker_running() was reached */ 881 if (worker->sleeping) 882 return; 883 884 worker->sleeping = 1; 885 raw_spin_lock_irq(&pool->lock); 886 887 /* 888 * The counterpart of the following dec_and_test, implied mb, 889 * worklist not empty test sequence is in insert_work(). 890 * Please read comment there. 891 * 892 * NOT_RUNNING is clear. This means that we're bound to and 893 * running on the local cpu w/ rq lock held and preemption 894 * disabled, which in turn means that none else could be 895 * manipulating idle_list, so dereferencing idle_list without pool 896 * lock is safe. 897 */ 898 if (atomic_dec_and_test(&pool->nr_running) && 899 !list_empty(&pool->worklist)) { 900 next = first_idle_worker(pool); 901 if (next) 902 wake_up_process(next->task); 903 } 904 raw_spin_unlock_irq(&pool->lock); 905 } 906 907 /** 908 * wq_worker_last_func - retrieve worker's last work function 909 * @task: Task to retrieve last work function of. 910 * 911 * Determine the last function a worker executed. This is called from 912 * the scheduler to get a worker's last known identity. 913 * 914 * CONTEXT: 915 * raw_spin_lock_irq(rq->lock) 916 * 917 * This function is called during schedule() when a kworker is going 918 * to sleep. It's used by psi to identify aggregation workers during 919 * dequeuing, to allow periodic aggregation to shut-off when that 920 * worker is the last task in the system or cgroup to go to sleep. 921 * 922 * As this function doesn't involve any workqueue-related locking, it 923 * only returns stable values when called from inside the scheduler's 924 * queuing and dequeuing paths, when @task, which must be a kworker, 925 * is guaranteed to not be processing any works. 926 * 927 * Return: 928 * The last work function %current executed as a worker, NULL if it 929 * hasn't executed any work yet. 930 */ 931 work_func_t wq_worker_last_func(struct task_struct *task) 932 { 933 struct worker *worker = kthread_data(task); 934 935 return worker->last_func; 936 } 937 938 /** 939 * worker_set_flags - set worker flags and adjust nr_running accordingly 940 * @worker: self 941 * @flags: flags to set 942 * 943 * Set @flags in @worker->flags and adjust nr_running accordingly. 944 * 945 * CONTEXT: 946 * raw_spin_lock_irq(pool->lock) 947 */ 948 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 949 { 950 struct worker_pool *pool = worker->pool; 951 952 WARN_ON_ONCE(worker->task != current); 953 954 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 955 if ((flags & WORKER_NOT_RUNNING) && 956 !(worker->flags & WORKER_NOT_RUNNING)) { 957 atomic_dec(&pool->nr_running); 958 } 959 960 worker->flags |= flags; 961 } 962 963 /** 964 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 965 * @worker: self 966 * @flags: flags to clear 967 * 968 * Clear @flags in @worker->flags and adjust nr_running accordingly. 969 * 970 * CONTEXT: 971 * raw_spin_lock_irq(pool->lock) 972 */ 973 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 974 { 975 struct worker_pool *pool = worker->pool; 976 unsigned int oflags = worker->flags; 977 978 WARN_ON_ONCE(worker->task != current); 979 980 worker->flags &= ~flags; 981 982 /* 983 * If transitioning out of NOT_RUNNING, increment nr_running. Note 984 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 985 * of multiple flags, not a single flag. 986 */ 987 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 988 if (!(worker->flags & WORKER_NOT_RUNNING)) 989 atomic_inc(&pool->nr_running); 990 } 991 992 /** 993 * find_worker_executing_work - find worker which is executing a work 994 * @pool: pool of interest 995 * @work: work to find worker for 996 * 997 * Find a worker which is executing @work on @pool by searching 998 * @pool->busy_hash which is keyed by the address of @work. For a worker 999 * to match, its current execution should match the address of @work and 1000 * its work function. This is to avoid unwanted dependency between 1001 * unrelated work executions through a work item being recycled while still 1002 * being executed. 1003 * 1004 * This is a bit tricky. A work item may be freed once its execution 1005 * starts and nothing prevents the freed area from being recycled for 1006 * another work item. If the same work item address ends up being reused 1007 * before the original execution finishes, workqueue will identify the 1008 * recycled work item as currently executing and make it wait until the 1009 * current execution finishes, introducing an unwanted dependency. 1010 * 1011 * This function checks the work item address and work function to avoid 1012 * false positives. Note that this isn't complete as one may construct a 1013 * work function which can introduce dependency onto itself through a 1014 * recycled work item. Well, if somebody wants to shoot oneself in the 1015 * foot that badly, there's only so much we can do, and if such deadlock 1016 * actually occurs, it should be easy to locate the culprit work function. 1017 * 1018 * CONTEXT: 1019 * raw_spin_lock_irq(pool->lock). 1020 * 1021 * Return: 1022 * Pointer to worker which is executing @work if found, %NULL 1023 * otherwise. 1024 */ 1025 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1026 struct work_struct *work) 1027 { 1028 struct worker *worker; 1029 1030 hash_for_each_possible(pool->busy_hash, worker, hentry, 1031 (unsigned long)work) 1032 if (worker->current_work == work && 1033 worker->current_func == work->func) 1034 return worker; 1035 1036 return NULL; 1037 } 1038 1039 /** 1040 * move_linked_works - move linked works to a list 1041 * @work: start of series of works to be scheduled 1042 * @head: target list to append @work to 1043 * @nextp: out parameter for nested worklist walking 1044 * 1045 * Schedule linked works starting from @work to @head. Work series to 1046 * be scheduled starts at @work and includes any consecutive work with 1047 * WORK_STRUCT_LINKED set in its predecessor. 1048 * 1049 * If @nextp is not NULL, it's updated to point to the next work of 1050 * the last scheduled work. This allows move_linked_works() to be 1051 * nested inside outer list_for_each_entry_safe(). 1052 * 1053 * CONTEXT: 1054 * raw_spin_lock_irq(pool->lock). 1055 */ 1056 static void move_linked_works(struct work_struct *work, struct list_head *head, 1057 struct work_struct **nextp) 1058 { 1059 struct work_struct *n; 1060 1061 /* 1062 * Linked worklist will always end before the end of the list, 1063 * use NULL for list head. 1064 */ 1065 list_for_each_entry_safe_from(work, n, NULL, entry) { 1066 list_move_tail(&work->entry, head); 1067 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1068 break; 1069 } 1070 1071 /* 1072 * If we're already inside safe list traversal and have moved 1073 * multiple works to the scheduled queue, the next position 1074 * needs to be updated. 1075 */ 1076 if (nextp) 1077 *nextp = n; 1078 } 1079 1080 /** 1081 * get_pwq - get an extra reference on the specified pool_workqueue 1082 * @pwq: pool_workqueue to get 1083 * 1084 * Obtain an extra reference on @pwq. The caller should guarantee that 1085 * @pwq has positive refcnt and be holding the matching pool->lock. 1086 */ 1087 static void get_pwq(struct pool_workqueue *pwq) 1088 { 1089 lockdep_assert_held(&pwq->pool->lock); 1090 WARN_ON_ONCE(pwq->refcnt <= 0); 1091 pwq->refcnt++; 1092 } 1093 1094 /** 1095 * put_pwq - put a pool_workqueue reference 1096 * @pwq: pool_workqueue to put 1097 * 1098 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1099 * destruction. The caller should be holding the matching pool->lock. 1100 */ 1101 static void put_pwq(struct pool_workqueue *pwq) 1102 { 1103 lockdep_assert_held(&pwq->pool->lock); 1104 if (likely(--pwq->refcnt)) 1105 return; 1106 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1107 return; 1108 /* 1109 * @pwq can't be released under pool->lock, bounce to 1110 * pwq_unbound_release_workfn(). This never recurses on the same 1111 * pool->lock as this path is taken only for unbound workqueues and 1112 * the release work item is scheduled on a per-cpu workqueue. To 1113 * avoid lockdep warning, unbound pool->locks are given lockdep 1114 * subclass of 1 in get_unbound_pool(). 1115 */ 1116 schedule_work(&pwq->unbound_release_work); 1117 } 1118 1119 /** 1120 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1121 * @pwq: pool_workqueue to put (can be %NULL) 1122 * 1123 * put_pwq() with locking. This function also allows %NULL @pwq. 1124 */ 1125 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1126 { 1127 if (pwq) { 1128 /* 1129 * As both pwqs and pools are RCU protected, the 1130 * following lock operations are safe. 1131 */ 1132 raw_spin_lock_irq(&pwq->pool->lock); 1133 put_pwq(pwq); 1134 raw_spin_unlock_irq(&pwq->pool->lock); 1135 } 1136 } 1137 1138 static void pwq_activate_delayed_work(struct work_struct *work) 1139 { 1140 struct pool_workqueue *pwq = get_work_pwq(work); 1141 1142 trace_workqueue_activate_work(work); 1143 if (list_empty(&pwq->pool->worklist)) 1144 pwq->pool->watchdog_ts = jiffies; 1145 move_linked_works(work, &pwq->pool->worklist, NULL); 1146 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1147 pwq->nr_active++; 1148 } 1149 1150 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1151 { 1152 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1153 struct work_struct, entry); 1154 1155 pwq_activate_delayed_work(work); 1156 } 1157 1158 /** 1159 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1160 * @pwq: pwq of interest 1161 * @color: color of work which left the queue 1162 * 1163 * A work either has completed or is removed from pending queue, 1164 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1165 * 1166 * CONTEXT: 1167 * raw_spin_lock_irq(pool->lock). 1168 */ 1169 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1170 { 1171 /* uncolored work items don't participate in flushing or nr_active */ 1172 if (color == WORK_NO_COLOR) 1173 goto out_put; 1174 1175 pwq->nr_in_flight[color]--; 1176 1177 pwq->nr_active--; 1178 if (!list_empty(&pwq->delayed_works)) { 1179 /* one down, submit a delayed one */ 1180 if (pwq->nr_active < pwq->max_active) 1181 pwq_activate_first_delayed(pwq); 1182 } 1183 1184 /* is flush in progress and are we at the flushing tip? */ 1185 if (likely(pwq->flush_color != color)) 1186 goto out_put; 1187 1188 /* are there still in-flight works? */ 1189 if (pwq->nr_in_flight[color]) 1190 goto out_put; 1191 1192 /* this pwq is done, clear flush_color */ 1193 pwq->flush_color = -1; 1194 1195 /* 1196 * If this was the last pwq, wake up the first flusher. It 1197 * will handle the rest. 1198 */ 1199 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1200 complete(&pwq->wq->first_flusher->done); 1201 out_put: 1202 put_pwq(pwq); 1203 } 1204 1205 /** 1206 * try_to_grab_pending - steal work item from worklist and disable irq 1207 * @work: work item to steal 1208 * @is_dwork: @work is a delayed_work 1209 * @flags: place to store irq state 1210 * 1211 * Try to grab PENDING bit of @work. This function can handle @work in any 1212 * stable state - idle, on timer or on worklist. 1213 * 1214 * Return: 1215 * 1216 * ======== ================================================================ 1217 * 1 if @work was pending and we successfully stole PENDING 1218 * 0 if @work was idle and we claimed PENDING 1219 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1220 * -ENOENT if someone else is canceling @work, this state may persist 1221 * for arbitrarily long 1222 * ======== ================================================================ 1223 * 1224 * Note: 1225 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1226 * interrupted while holding PENDING and @work off queue, irq must be 1227 * disabled on entry. This, combined with delayed_work->timer being 1228 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1229 * 1230 * On successful return, >= 0, irq is disabled and the caller is 1231 * responsible for releasing it using local_irq_restore(*@flags). 1232 * 1233 * This function is safe to call from any context including IRQ handler. 1234 */ 1235 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1236 unsigned long *flags) 1237 { 1238 struct worker_pool *pool; 1239 struct pool_workqueue *pwq; 1240 1241 local_irq_save(*flags); 1242 1243 /* try to steal the timer if it exists */ 1244 if (is_dwork) { 1245 struct delayed_work *dwork = to_delayed_work(work); 1246 1247 /* 1248 * dwork->timer is irqsafe. If del_timer() fails, it's 1249 * guaranteed that the timer is not queued anywhere and not 1250 * running on the local CPU. 1251 */ 1252 if (likely(del_timer(&dwork->timer))) 1253 return 1; 1254 } 1255 1256 /* try to claim PENDING the normal way */ 1257 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1258 return 0; 1259 1260 rcu_read_lock(); 1261 /* 1262 * The queueing is in progress, or it is already queued. Try to 1263 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1264 */ 1265 pool = get_work_pool(work); 1266 if (!pool) 1267 goto fail; 1268 1269 raw_spin_lock(&pool->lock); 1270 /* 1271 * work->data is guaranteed to point to pwq only while the work 1272 * item is queued on pwq->wq, and both updating work->data to point 1273 * to pwq on queueing and to pool on dequeueing are done under 1274 * pwq->pool->lock. This in turn guarantees that, if work->data 1275 * points to pwq which is associated with a locked pool, the work 1276 * item is currently queued on that pool. 1277 */ 1278 pwq = get_work_pwq(work); 1279 if (pwq && pwq->pool == pool) { 1280 debug_work_deactivate(work); 1281 1282 /* 1283 * A delayed work item cannot be grabbed directly because 1284 * it might have linked NO_COLOR work items which, if left 1285 * on the delayed_list, will confuse pwq->nr_active 1286 * management later on and cause stall. Make sure the work 1287 * item is activated before grabbing. 1288 */ 1289 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1290 pwq_activate_delayed_work(work); 1291 1292 list_del_init(&work->entry); 1293 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1294 1295 /* work->data points to pwq iff queued, point to pool */ 1296 set_work_pool_and_keep_pending(work, pool->id); 1297 1298 raw_spin_unlock(&pool->lock); 1299 rcu_read_unlock(); 1300 return 1; 1301 } 1302 raw_spin_unlock(&pool->lock); 1303 fail: 1304 rcu_read_unlock(); 1305 local_irq_restore(*flags); 1306 if (work_is_canceling(work)) 1307 return -ENOENT; 1308 cpu_relax(); 1309 return -EAGAIN; 1310 } 1311 1312 /** 1313 * insert_work - insert a work into a pool 1314 * @pwq: pwq @work belongs to 1315 * @work: work to insert 1316 * @head: insertion point 1317 * @extra_flags: extra WORK_STRUCT_* flags to set 1318 * 1319 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1320 * work_struct flags. 1321 * 1322 * CONTEXT: 1323 * raw_spin_lock_irq(pool->lock). 1324 */ 1325 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1326 struct list_head *head, unsigned int extra_flags) 1327 { 1328 struct worker_pool *pool = pwq->pool; 1329 1330 /* record the work call stack in order to print it in KASAN reports */ 1331 kasan_record_aux_stack(work); 1332 1333 /* we own @work, set data and link */ 1334 set_work_pwq(work, pwq, extra_flags); 1335 list_add_tail(&work->entry, head); 1336 get_pwq(pwq); 1337 1338 /* 1339 * Ensure either wq_worker_sleeping() sees the above 1340 * list_add_tail() or we see zero nr_running to avoid workers lying 1341 * around lazily while there are works to be processed. 1342 */ 1343 smp_mb(); 1344 1345 if (__need_more_worker(pool)) 1346 wake_up_worker(pool); 1347 } 1348 1349 /* 1350 * Test whether @work is being queued from another work executing on the 1351 * same workqueue. 1352 */ 1353 static bool is_chained_work(struct workqueue_struct *wq) 1354 { 1355 struct worker *worker; 1356 1357 worker = current_wq_worker(); 1358 /* 1359 * Return %true iff I'm a worker executing a work item on @wq. If 1360 * I'm @worker, it's safe to dereference it without locking. 1361 */ 1362 return worker && worker->current_pwq->wq == wq; 1363 } 1364 1365 /* 1366 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1367 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1368 * avoid perturbing sensitive tasks. 1369 */ 1370 static int wq_select_unbound_cpu(int cpu) 1371 { 1372 static bool printed_dbg_warning; 1373 int new_cpu; 1374 1375 if (likely(!wq_debug_force_rr_cpu)) { 1376 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1377 return cpu; 1378 } else if (!printed_dbg_warning) { 1379 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1380 printed_dbg_warning = true; 1381 } 1382 1383 if (cpumask_empty(wq_unbound_cpumask)) 1384 return cpu; 1385 1386 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1387 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1388 if (unlikely(new_cpu >= nr_cpu_ids)) { 1389 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1390 if (unlikely(new_cpu >= nr_cpu_ids)) 1391 return cpu; 1392 } 1393 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1394 1395 return new_cpu; 1396 } 1397 1398 static void __queue_work(int cpu, struct workqueue_struct *wq, 1399 struct work_struct *work) 1400 { 1401 struct pool_workqueue *pwq; 1402 struct worker_pool *last_pool; 1403 struct list_head *worklist; 1404 unsigned int work_flags; 1405 unsigned int req_cpu = cpu; 1406 1407 /* 1408 * While a work item is PENDING && off queue, a task trying to 1409 * steal the PENDING will busy-loop waiting for it to either get 1410 * queued or lose PENDING. Grabbing PENDING and queueing should 1411 * happen with IRQ disabled. 1412 */ 1413 lockdep_assert_irqs_disabled(); 1414 1415 debug_work_activate(work); 1416 1417 /* if draining, only works from the same workqueue are allowed */ 1418 if (unlikely(wq->flags & __WQ_DRAINING) && 1419 WARN_ON_ONCE(!is_chained_work(wq))) 1420 return; 1421 rcu_read_lock(); 1422 retry: 1423 /* pwq which will be used unless @work is executing elsewhere */ 1424 if (wq->flags & WQ_UNBOUND) { 1425 if (req_cpu == WORK_CPU_UNBOUND) 1426 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1427 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1428 } else { 1429 if (req_cpu == WORK_CPU_UNBOUND) 1430 cpu = raw_smp_processor_id(); 1431 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1432 } 1433 1434 /* 1435 * If @work was previously on a different pool, it might still be 1436 * running there, in which case the work needs to be queued on that 1437 * pool to guarantee non-reentrancy. 1438 */ 1439 last_pool = get_work_pool(work); 1440 if (last_pool && last_pool != pwq->pool) { 1441 struct worker *worker; 1442 1443 raw_spin_lock(&last_pool->lock); 1444 1445 worker = find_worker_executing_work(last_pool, work); 1446 1447 if (worker && worker->current_pwq->wq == wq) { 1448 pwq = worker->current_pwq; 1449 } else { 1450 /* meh... not running there, queue here */ 1451 raw_spin_unlock(&last_pool->lock); 1452 raw_spin_lock(&pwq->pool->lock); 1453 } 1454 } else { 1455 raw_spin_lock(&pwq->pool->lock); 1456 } 1457 1458 /* 1459 * pwq is determined and locked. For unbound pools, we could have 1460 * raced with pwq release and it could already be dead. If its 1461 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1462 * without another pwq replacing it in the numa_pwq_tbl or while 1463 * work items are executing on it, so the retrying is guaranteed to 1464 * make forward-progress. 1465 */ 1466 if (unlikely(!pwq->refcnt)) { 1467 if (wq->flags & WQ_UNBOUND) { 1468 raw_spin_unlock(&pwq->pool->lock); 1469 cpu_relax(); 1470 goto retry; 1471 } 1472 /* oops */ 1473 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1474 wq->name, cpu); 1475 } 1476 1477 /* pwq determined, queue */ 1478 trace_workqueue_queue_work(req_cpu, pwq, work); 1479 1480 if (WARN_ON(!list_empty(&work->entry))) 1481 goto out; 1482 1483 pwq->nr_in_flight[pwq->work_color]++; 1484 work_flags = work_color_to_flags(pwq->work_color); 1485 1486 if (likely(pwq->nr_active < pwq->max_active)) { 1487 trace_workqueue_activate_work(work); 1488 pwq->nr_active++; 1489 worklist = &pwq->pool->worklist; 1490 if (list_empty(worklist)) 1491 pwq->pool->watchdog_ts = jiffies; 1492 } else { 1493 work_flags |= WORK_STRUCT_DELAYED; 1494 worklist = &pwq->delayed_works; 1495 } 1496 1497 insert_work(pwq, work, worklist, work_flags); 1498 1499 out: 1500 raw_spin_unlock(&pwq->pool->lock); 1501 rcu_read_unlock(); 1502 } 1503 1504 /** 1505 * queue_work_on - queue work on specific cpu 1506 * @cpu: CPU number to execute work on 1507 * @wq: workqueue to use 1508 * @work: work to queue 1509 * 1510 * We queue the work to a specific CPU, the caller must ensure it 1511 * can't go away. 1512 * 1513 * Return: %false if @work was already on a queue, %true otherwise. 1514 */ 1515 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1516 struct work_struct *work) 1517 { 1518 bool ret = false; 1519 unsigned long flags; 1520 1521 local_irq_save(flags); 1522 1523 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1524 __queue_work(cpu, wq, work); 1525 ret = true; 1526 } 1527 1528 local_irq_restore(flags); 1529 return ret; 1530 } 1531 EXPORT_SYMBOL(queue_work_on); 1532 1533 /** 1534 * workqueue_select_cpu_near - Select a CPU based on NUMA node 1535 * @node: NUMA node ID that we want to select a CPU from 1536 * 1537 * This function will attempt to find a "random" cpu available on a given 1538 * node. If there are no CPUs available on the given node it will return 1539 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1540 * available CPU if we need to schedule this work. 1541 */ 1542 static int workqueue_select_cpu_near(int node) 1543 { 1544 int cpu; 1545 1546 /* No point in doing this if NUMA isn't enabled for workqueues */ 1547 if (!wq_numa_enabled) 1548 return WORK_CPU_UNBOUND; 1549 1550 /* Delay binding to CPU if node is not valid or online */ 1551 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1552 return WORK_CPU_UNBOUND; 1553 1554 /* Use local node/cpu if we are already there */ 1555 cpu = raw_smp_processor_id(); 1556 if (node == cpu_to_node(cpu)) 1557 return cpu; 1558 1559 /* Use "random" otherwise know as "first" online CPU of node */ 1560 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1561 1562 /* If CPU is valid return that, otherwise just defer */ 1563 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1564 } 1565 1566 /** 1567 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1568 * @node: NUMA node that we are targeting the work for 1569 * @wq: workqueue to use 1570 * @work: work to queue 1571 * 1572 * We queue the work to a "random" CPU within a given NUMA node. The basic 1573 * idea here is to provide a way to somehow associate work with a given 1574 * NUMA node. 1575 * 1576 * This function will only make a best effort attempt at getting this onto 1577 * the right NUMA node. If no node is requested or the requested node is 1578 * offline then we just fall back to standard queue_work behavior. 1579 * 1580 * Currently the "random" CPU ends up being the first available CPU in the 1581 * intersection of cpu_online_mask and the cpumask of the node, unless we 1582 * are running on the node. In that case we just use the current CPU. 1583 * 1584 * Return: %false if @work was already on a queue, %true otherwise. 1585 */ 1586 bool queue_work_node(int node, struct workqueue_struct *wq, 1587 struct work_struct *work) 1588 { 1589 unsigned long flags; 1590 bool ret = false; 1591 1592 /* 1593 * This current implementation is specific to unbound workqueues. 1594 * Specifically we only return the first available CPU for a given 1595 * node instead of cycling through individual CPUs within the node. 1596 * 1597 * If this is used with a per-cpu workqueue then the logic in 1598 * workqueue_select_cpu_near would need to be updated to allow for 1599 * some round robin type logic. 1600 */ 1601 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1602 1603 local_irq_save(flags); 1604 1605 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1606 int cpu = workqueue_select_cpu_near(node); 1607 1608 __queue_work(cpu, wq, work); 1609 ret = true; 1610 } 1611 1612 local_irq_restore(flags); 1613 return ret; 1614 } 1615 EXPORT_SYMBOL_GPL(queue_work_node); 1616 1617 void delayed_work_timer_fn(struct timer_list *t) 1618 { 1619 struct delayed_work *dwork = from_timer(dwork, t, timer); 1620 1621 /* should have been called from irqsafe timer with irq already off */ 1622 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1623 } 1624 EXPORT_SYMBOL(delayed_work_timer_fn); 1625 1626 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1627 struct delayed_work *dwork, unsigned long delay) 1628 { 1629 struct timer_list *timer = &dwork->timer; 1630 struct work_struct *work = &dwork->work; 1631 1632 WARN_ON_ONCE(!wq); 1633 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1634 WARN_ON_ONCE(timer_pending(timer)); 1635 WARN_ON_ONCE(!list_empty(&work->entry)); 1636 1637 /* 1638 * If @delay is 0, queue @dwork->work immediately. This is for 1639 * both optimization and correctness. The earliest @timer can 1640 * expire is on the closest next tick and delayed_work users depend 1641 * on that there's no such delay when @delay is 0. 1642 */ 1643 if (!delay) { 1644 __queue_work(cpu, wq, &dwork->work); 1645 return; 1646 } 1647 1648 dwork->wq = wq; 1649 dwork->cpu = cpu; 1650 timer->expires = jiffies + delay; 1651 1652 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1653 add_timer_on(timer, cpu); 1654 else 1655 add_timer(timer); 1656 } 1657 1658 /** 1659 * queue_delayed_work_on - queue work on specific CPU after delay 1660 * @cpu: CPU number to execute work on 1661 * @wq: workqueue to use 1662 * @dwork: work to queue 1663 * @delay: number of jiffies to wait before queueing 1664 * 1665 * Return: %false if @work was already on a queue, %true otherwise. If 1666 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1667 * execution. 1668 */ 1669 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1670 struct delayed_work *dwork, unsigned long delay) 1671 { 1672 struct work_struct *work = &dwork->work; 1673 bool ret = false; 1674 unsigned long flags; 1675 1676 /* read the comment in __queue_work() */ 1677 local_irq_save(flags); 1678 1679 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1680 __queue_delayed_work(cpu, wq, dwork, delay); 1681 ret = true; 1682 } 1683 1684 local_irq_restore(flags); 1685 return ret; 1686 } 1687 EXPORT_SYMBOL(queue_delayed_work_on); 1688 1689 /** 1690 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1691 * @cpu: CPU number to execute work on 1692 * @wq: workqueue to use 1693 * @dwork: work to queue 1694 * @delay: number of jiffies to wait before queueing 1695 * 1696 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1697 * modify @dwork's timer so that it expires after @delay. If @delay is 1698 * zero, @work is guaranteed to be scheduled immediately regardless of its 1699 * current state. 1700 * 1701 * Return: %false if @dwork was idle and queued, %true if @dwork was 1702 * pending and its timer was modified. 1703 * 1704 * This function is safe to call from any context including IRQ handler. 1705 * See try_to_grab_pending() for details. 1706 */ 1707 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1708 struct delayed_work *dwork, unsigned long delay) 1709 { 1710 unsigned long flags; 1711 int ret; 1712 1713 do { 1714 ret = try_to_grab_pending(&dwork->work, true, &flags); 1715 } while (unlikely(ret == -EAGAIN)); 1716 1717 if (likely(ret >= 0)) { 1718 __queue_delayed_work(cpu, wq, dwork, delay); 1719 local_irq_restore(flags); 1720 } 1721 1722 /* -ENOENT from try_to_grab_pending() becomes %true */ 1723 return ret; 1724 } 1725 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1726 1727 static void rcu_work_rcufn(struct rcu_head *rcu) 1728 { 1729 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1730 1731 /* read the comment in __queue_work() */ 1732 local_irq_disable(); 1733 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1734 local_irq_enable(); 1735 } 1736 1737 /** 1738 * queue_rcu_work - queue work after a RCU grace period 1739 * @wq: workqueue to use 1740 * @rwork: work to queue 1741 * 1742 * Return: %false if @rwork was already pending, %true otherwise. Note 1743 * that a full RCU grace period is guaranteed only after a %true return. 1744 * While @rwork is guaranteed to be executed after a %false return, the 1745 * execution may happen before a full RCU grace period has passed. 1746 */ 1747 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1748 { 1749 struct work_struct *work = &rwork->work; 1750 1751 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1752 rwork->wq = wq; 1753 call_rcu(&rwork->rcu, rcu_work_rcufn); 1754 return true; 1755 } 1756 1757 return false; 1758 } 1759 EXPORT_SYMBOL(queue_rcu_work); 1760 1761 /** 1762 * worker_enter_idle - enter idle state 1763 * @worker: worker which is entering idle state 1764 * 1765 * @worker is entering idle state. Update stats and idle timer if 1766 * necessary. 1767 * 1768 * LOCKING: 1769 * raw_spin_lock_irq(pool->lock). 1770 */ 1771 static void worker_enter_idle(struct worker *worker) 1772 { 1773 struct worker_pool *pool = worker->pool; 1774 1775 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1776 WARN_ON_ONCE(!list_empty(&worker->entry) && 1777 (worker->hentry.next || worker->hentry.pprev))) 1778 return; 1779 1780 /* can't use worker_set_flags(), also called from create_worker() */ 1781 worker->flags |= WORKER_IDLE; 1782 pool->nr_idle++; 1783 worker->last_active = jiffies; 1784 1785 /* idle_list is LIFO */ 1786 list_add(&worker->entry, &pool->idle_list); 1787 1788 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1789 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1790 1791 /* 1792 * Sanity check nr_running. Because unbind_workers() releases 1793 * pool->lock between setting %WORKER_UNBOUND and zapping 1794 * nr_running, the warning may trigger spuriously. Check iff 1795 * unbind is not in progress. 1796 */ 1797 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1798 pool->nr_workers == pool->nr_idle && 1799 atomic_read(&pool->nr_running)); 1800 } 1801 1802 /** 1803 * worker_leave_idle - leave idle state 1804 * @worker: worker which is leaving idle state 1805 * 1806 * @worker is leaving idle state. Update stats. 1807 * 1808 * LOCKING: 1809 * raw_spin_lock_irq(pool->lock). 1810 */ 1811 static void worker_leave_idle(struct worker *worker) 1812 { 1813 struct worker_pool *pool = worker->pool; 1814 1815 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1816 return; 1817 worker_clr_flags(worker, WORKER_IDLE); 1818 pool->nr_idle--; 1819 list_del_init(&worker->entry); 1820 } 1821 1822 static struct worker *alloc_worker(int node) 1823 { 1824 struct worker *worker; 1825 1826 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1827 if (worker) { 1828 INIT_LIST_HEAD(&worker->entry); 1829 INIT_LIST_HEAD(&worker->scheduled); 1830 INIT_LIST_HEAD(&worker->node); 1831 /* on creation a worker is in !idle && prep state */ 1832 worker->flags = WORKER_PREP; 1833 } 1834 return worker; 1835 } 1836 1837 /** 1838 * worker_attach_to_pool() - attach a worker to a pool 1839 * @worker: worker to be attached 1840 * @pool: the target pool 1841 * 1842 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1843 * cpu-binding of @worker are kept coordinated with the pool across 1844 * cpu-[un]hotplugs. 1845 */ 1846 static void worker_attach_to_pool(struct worker *worker, 1847 struct worker_pool *pool) 1848 { 1849 mutex_lock(&wq_pool_attach_mutex); 1850 1851 /* 1852 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1853 * online CPUs. It'll be re-applied when any of the CPUs come up. 1854 */ 1855 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1856 1857 /* 1858 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1859 * stable across this function. See the comments above the flag 1860 * definition for details. 1861 */ 1862 if (pool->flags & POOL_DISASSOCIATED) 1863 worker->flags |= WORKER_UNBOUND; 1864 1865 list_add_tail(&worker->node, &pool->workers); 1866 worker->pool = pool; 1867 1868 mutex_unlock(&wq_pool_attach_mutex); 1869 } 1870 1871 /** 1872 * worker_detach_from_pool() - detach a worker from its pool 1873 * @worker: worker which is attached to its pool 1874 * 1875 * Undo the attaching which had been done in worker_attach_to_pool(). The 1876 * caller worker shouldn't access to the pool after detached except it has 1877 * other reference to the pool. 1878 */ 1879 static void worker_detach_from_pool(struct worker *worker) 1880 { 1881 struct worker_pool *pool = worker->pool; 1882 struct completion *detach_completion = NULL; 1883 1884 mutex_lock(&wq_pool_attach_mutex); 1885 1886 list_del(&worker->node); 1887 worker->pool = NULL; 1888 1889 if (list_empty(&pool->workers)) 1890 detach_completion = pool->detach_completion; 1891 mutex_unlock(&wq_pool_attach_mutex); 1892 1893 /* clear leftover flags without pool->lock after it is detached */ 1894 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1895 1896 if (detach_completion) 1897 complete(detach_completion); 1898 } 1899 1900 /** 1901 * create_worker - create a new workqueue worker 1902 * @pool: pool the new worker will belong to 1903 * 1904 * Create and start a new worker which is attached to @pool. 1905 * 1906 * CONTEXT: 1907 * Might sleep. Does GFP_KERNEL allocations. 1908 * 1909 * Return: 1910 * Pointer to the newly created worker. 1911 */ 1912 static struct worker *create_worker(struct worker_pool *pool) 1913 { 1914 struct worker *worker = NULL; 1915 int id = -1; 1916 char id_buf[16]; 1917 1918 /* ID is needed to determine kthread name */ 1919 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1920 if (id < 0) 1921 goto fail; 1922 1923 worker = alloc_worker(pool->node); 1924 if (!worker) 1925 goto fail; 1926 1927 worker->id = id; 1928 1929 if (pool->cpu >= 0) 1930 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1931 pool->attrs->nice < 0 ? "H" : ""); 1932 else 1933 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1934 1935 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1936 "kworker/%s", id_buf); 1937 if (IS_ERR(worker->task)) 1938 goto fail; 1939 1940 set_user_nice(worker->task, pool->attrs->nice); 1941 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1942 1943 /* successful, attach the worker to the pool */ 1944 worker_attach_to_pool(worker, pool); 1945 1946 /* start the newly created worker */ 1947 raw_spin_lock_irq(&pool->lock); 1948 worker->pool->nr_workers++; 1949 worker_enter_idle(worker); 1950 wake_up_process(worker->task); 1951 raw_spin_unlock_irq(&pool->lock); 1952 1953 return worker; 1954 1955 fail: 1956 if (id >= 0) 1957 ida_simple_remove(&pool->worker_ida, id); 1958 kfree(worker); 1959 return NULL; 1960 } 1961 1962 /** 1963 * destroy_worker - destroy a workqueue worker 1964 * @worker: worker to be destroyed 1965 * 1966 * Destroy @worker and adjust @pool stats accordingly. The worker should 1967 * be idle. 1968 * 1969 * CONTEXT: 1970 * raw_spin_lock_irq(pool->lock). 1971 */ 1972 static void destroy_worker(struct worker *worker) 1973 { 1974 struct worker_pool *pool = worker->pool; 1975 1976 lockdep_assert_held(&pool->lock); 1977 1978 /* sanity check frenzy */ 1979 if (WARN_ON(worker->current_work) || 1980 WARN_ON(!list_empty(&worker->scheduled)) || 1981 WARN_ON(!(worker->flags & WORKER_IDLE))) 1982 return; 1983 1984 pool->nr_workers--; 1985 pool->nr_idle--; 1986 1987 list_del_init(&worker->entry); 1988 worker->flags |= WORKER_DIE; 1989 wake_up_process(worker->task); 1990 } 1991 1992 static void idle_worker_timeout(struct timer_list *t) 1993 { 1994 struct worker_pool *pool = from_timer(pool, t, idle_timer); 1995 1996 raw_spin_lock_irq(&pool->lock); 1997 1998 while (too_many_workers(pool)) { 1999 struct worker *worker; 2000 unsigned long expires; 2001 2002 /* idle_list is kept in LIFO order, check the last one */ 2003 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2004 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2005 2006 if (time_before(jiffies, expires)) { 2007 mod_timer(&pool->idle_timer, expires); 2008 break; 2009 } 2010 2011 destroy_worker(worker); 2012 } 2013 2014 raw_spin_unlock_irq(&pool->lock); 2015 } 2016 2017 static void send_mayday(struct work_struct *work) 2018 { 2019 struct pool_workqueue *pwq = get_work_pwq(work); 2020 struct workqueue_struct *wq = pwq->wq; 2021 2022 lockdep_assert_held(&wq_mayday_lock); 2023 2024 if (!wq->rescuer) 2025 return; 2026 2027 /* mayday mayday mayday */ 2028 if (list_empty(&pwq->mayday_node)) { 2029 /* 2030 * If @pwq is for an unbound wq, its base ref may be put at 2031 * any time due to an attribute change. Pin @pwq until the 2032 * rescuer is done with it. 2033 */ 2034 get_pwq(pwq); 2035 list_add_tail(&pwq->mayday_node, &wq->maydays); 2036 wake_up_process(wq->rescuer->task); 2037 } 2038 } 2039 2040 static void pool_mayday_timeout(struct timer_list *t) 2041 { 2042 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2043 struct work_struct *work; 2044 2045 raw_spin_lock_irq(&pool->lock); 2046 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2047 2048 if (need_to_create_worker(pool)) { 2049 /* 2050 * We've been trying to create a new worker but 2051 * haven't been successful. We might be hitting an 2052 * allocation deadlock. Send distress signals to 2053 * rescuers. 2054 */ 2055 list_for_each_entry(work, &pool->worklist, entry) 2056 send_mayday(work); 2057 } 2058 2059 raw_spin_unlock(&wq_mayday_lock); 2060 raw_spin_unlock_irq(&pool->lock); 2061 2062 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2063 } 2064 2065 /** 2066 * maybe_create_worker - create a new worker if necessary 2067 * @pool: pool to create a new worker for 2068 * 2069 * Create a new worker for @pool if necessary. @pool is guaranteed to 2070 * have at least one idle worker on return from this function. If 2071 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2072 * sent to all rescuers with works scheduled on @pool to resolve 2073 * possible allocation deadlock. 2074 * 2075 * On return, need_to_create_worker() is guaranteed to be %false and 2076 * may_start_working() %true. 2077 * 2078 * LOCKING: 2079 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2080 * multiple times. Does GFP_KERNEL allocations. Called only from 2081 * manager. 2082 */ 2083 static void maybe_create_worker(struct worker_pool *pool) 2084 __releases(&pool->lock) 2085 __acquires(&pool->lock) 2086 { 2087 restart: 2088 raw_spin_unlock_irq(&pool->lock); 2089 2090 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2091 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2092 2093 while (true) { 2094 if (create_worker(pool) || !need_to_create_worker(pool)) 2095 break; 2096 2097 schedule_timeout_interruptible(CREATE_COOLDOWN); 2098 2099 if (!need_to_create_worker(pool)) 2100 break; 2101 } 2102 2103 del_timer_sync(&pool->mayday_timer); 2104 raw_spin_lock_irq(&pool->lock); 2105 /* 2106 * This is necessary even after a new worker was just successfully 2107 * created as @pool->lock was dropped and the new worker might have 2108 * already become busy. 2109 */ 2110 if (need_to_create_worker(pool)) 2111 goto restart; 2112 } 2113 2114 /** 2115 * manage_workers - manage worker pool 2116 * @worker: self 2117 * 2118 * Assume the manager role and manage the worker pool @worker belongs 2119 * to. At any given time, there can be only zero or one manager per 2120 * pool. The exclusion is handled automatically by this function. 2121 * 2122 * The caller can safely start processing works on false return. On 2123 * true return, it's guaranteed that need_to_create_worker() is false 2124 * and may_start_working() is true. 2125 * 2126 * CONTEXT: 2127 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2128 * multiple times. Does GFP_KERNEL allocations. 2129 * 2130 * Return: 2131 * %false if the pool doesn't need management and the caller can safely 2132 * start processing works, %true if management function was performed and 2133 * the conditions that the caller verified before calling the function may 2134 * no longer be true. 2135 */ 2136 static bool manage_workers(struct worker *worker) 2137 { 2138 struct worker_pool *pool = worker->pool; 2139 2140 if (pool->flags & POOL_MANAGER_ACTIVE) 2141 return false; 2142 2143 pool->flags |= POOL_MANAGER_ACTIVE; 2144 pool->manager = worker; 2145 2146 maybe_create_worker(pool); 2147 2148 pool->manager = NULL; 2149 pool->flags &= ~POOL_MANAGER_ACTIVE; 2150 rcuwait_wake_up(&manager_wait); 2151 return true; 2152 } 2153 2154 /** 2155 * process_one_work - process single work 2156 * @worker: self 2157 * @work: work to process 2158 * 2159 * Process @work. This function contains all the logics necessary to 2160 * process a single work including synchronization against and 2161 * interaction with other workers on the same cpu, queueing and 2162 * flushing. As long as context requirement is met, any worker can 2163 * call this function to process a work. 2164 * 2165 * CONTEXT: 2166 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 2167 */ 2168 static void process_one_work(struct worker *worker, struct work_struct *work) 2169 __releases(&pool->lock) 2170 __acquires(&pool->lock) 2171 { 2172 struct pool_workqueue *pwq = get_work_pwq(work); 2173 struct worker_pool *pool = worker->pool; 2174 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2175 int work_color; 2176 struct worker *collision; 2177 #ifdef CONFIG_LOCKDEP 2178 /* 2179 * It is permissible to free the struct work_struct from 2180 * inside the function that is called from it, this we need to 2181 * take into account for lockdep too. To avoid bogus "held 2182 * lock freed" warnings as well as problems when looking into 2183 * work->lockdep_map, make a copy and use that here. 2184 */ 2185 struct lockdep_map lockdep_map; 2186 2187 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2188 #endif 2189 /* ensure we're on the correct CPU */ 2190 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2191 raw_smp_processor_id() != pool->cpu); 2192 2193 /* 2194 * A single work shouldn't be executed concurrently by 2195 * multiple workers on a single cpu. Check whether anyone is 2196 * already processing the work. If so, defer the work to the 2197 * currently executing one. 2198 */ 2199 collision = find_worker_executing_work(pool, work); 2200 if (unlikely(collision)) { 2201 move_linked_works(work, &collision->scheduled, NULL); 2202 return; 2203 } 2204 2205 /* claim and dequeue */ 2206 debug_work_deactivate(work); 2207 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2208 worker->current_work = work; 2209 worker->current_func = work->func; 2210 worker->current_pwq = pwq; 2211 work_color = get_work_color(work); 2212 2213 /* 2214 * Record wq name for cmdline and debug reporting, may get 2215 * overridden through set_worker_desc(). 2216 */ 2217 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2218 2219 list_del_init(&work->entry); 2220 2221 /* 2222 * CPU intensive works don't participate in concurrency management. 2223 * They're the scheduler's responsibility. This takes @worker out 2224 * of concurrency management and the next code block will chain 2225 * execution of the pending work items. 2226 */ 2227 if (unlikely(cpu_intensive)) 2228 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2229 2230 /* 2231 * Wake up another worker if necessary. The condition is always 2232 * false for normal per-cpu workers since nr_running would always 2233 * be >= 1 at this point. This is used to chain execution of the 2234 * pending work items for WORKER_NOT_RUNNING workers such as the 2235 * UNBOUND and CPU_INTENSIVE ones. 2236 */ 2237 if (need_more_worker(pool)) 2238 wake_up_worker(pool); 2239 2240 /* 2241 * Record the last pool and clear PENDING which should be the last 2242 * update to @work. Also, do this inside @pool->lock so that 2243 * PENDING and queued state changes happen together while IRQ is 2244 * disabled. 2245 */ 2246 set_work_pool_and_clear_pending(work, pool->id); 2247 2248 raw_spin_unlock_irq(&pool->lock); 2249 2250 lock_map_acquire(&pwq->wq->lockdep_map); 2251 lock_map_acquire(&lockdep_map); 2252 /* 2253 * Strictly speaking we should mark the invariant state without holding 2254 * any locks, that is, before these two lock_map_acquire()'s. 2255 * 2256 * However, that would result in: 2257 * 2258 * A(W1) 2259 * WFC(C) 2260 * A(W1) 2261 * C(C) 2262 * 2263 * Which would create W1->C->W1 dependencies, even though there is no 2264 * actual deadlock possible. There are two solutions, using a 2265 * read-recursive acquire on the work(queue) 'locks', but this will then 2266 * hit the lockdep limitation on recursive locks, or simply discard 2267 * these locks. 2268 * 2269 * AFAICT there is no possible deadlock scenario between the 2270 * flush_work() and complete() primitives (except for single-threaded 2271 * workqueues), so hiding them isn't a problem. 2272 */ 2273 lockdep_invariant_state(true); 2274 trace_workqueue_execute_start(work); 2275 worker->current_func(work); 2276 /* 2277 * While we must be careful to not use "work" after this, the trace 2278 * point will only record its address. 2279 */ 2280 trace_workqueue_execute_end(work, worker->current_func); 2281 lock_map_release(&lockdep_map); 2282 lock_map_release(&pwq->wq->lockdep_map); 2283 2284 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2285 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2286 " last function: %ps\n", 2287 current->comm, preempt_count(), task_pid_nr(current), 2288 worker->current_func); 2289 debug_show_held_locks(current); 2290 dump_stack(); 2291 } 2292 2293 /* 2294 * The following prevents a kworker from hogging CPU on !PREEMPTION 2295 * kernels, where a requeueing work item waiting for something to 2296 * happen could deadlock with stop_machine as such work item could 2297 * indefinitely requeue itself while all other CPUs are trapped in 2298 * stop_machine. At the same time, report a quiescent RCU state so 2299 * the same condition doesn't freeze RCU. 2300 */ 2301 cond_resched(); 2302 2303 raw_spin_lock_irq(&pool->lock); 2304 2305 /* clear cpu intensive status */ 2306 if (unlikely(cpu_intensive)) 2307 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2308 2309 /* tag the worker for identification in schedule() */ 2310 worker->last_func = worker->current_func; 2311 2312 /* we're done with it, release */ 2313 hash_del(&worker->hentry); 2314 worker->current_work = NULL; 2315 worker->current_func = NULL; 2316 worker->current_pwq = NULL; 2317 pwq_dec_nr_in_flight(pwq, work_color); 2318 } 2319 2320 /** 2321 * process_scheduled_works - process scheduled works 2322 * @worker: self 2323 * 2324 * Process all scheduled works. Please note that the scheduled list 2325 * may change while processing a work, so this function repeatedly 2326 * fetches a work from the top and executes it. 2327 * 2328 * CONTEXT: 2329 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2330 * multiple times. 2331 */ 2332 static void process_scheduled_works(struct worker *worker) 2333 { 2334 while (!list_empty(&worker->scheduled)) { 2335 struct work_struct *work = list_first_entry(&worker->scheduled, 2336 struct work_struct, entry); 2337 process_one_work(worker, work); 2338 } 2339 } 2340 2341 static void set_pf_worker(bool val) 2342 { 2343 mutex_lock(&wq_pool_attach_mutex); 2344 if (val) 2345 current->flags |= PF_WQ_WORKER; 2346 else 2347 current->flags &= ~PF_WQ_WORKER; 2348 mutex_unlock(&wq_pool_attach_mutex); 2349 } 2350 2351 /** 2352 * worker_thread - the worker thread function 2353 * @__worker: self 2354 * 2355 * The worker thread function. All workers belong to a worker_pool - 2356 * either a per-cpu one or dynamic unbound one. These workers process all 2357 * work items regardless of their specific target workqueue. The only 2358 * exception is work items which belong to workqueues with a rescuer which 2359 * will be explained in rescuer_thread(). 2360 * 2361 * Return: 0 2362 */ 2363 static int worker_thread(void *__worker) 2364 { 2365 struct worker *worker = __worker; 2366 struct worker_pool *pool = worker->pool; 2367 2368 /* tell the scheduler that this is a workqueue worker */ 2369 set_pf_worker(true); 2370 woke_up: 2371 raw_spin_lock_irq(&pool->lock); 2372 2373 /* am I supposed to die? */ 2374 if (unlikely(worker->flags & WORKER_DIE)) { 2375 raw_spin_unlock_irq(&pool->lock); 2376 WARN_ON_ONCE(!list_empty(&worker->entry)); 2377 set_pf_worker(false); 2378 2379 set_task_comm(worker->task, "kworker/dying"); 2380 ida_simple_remove(&pool->worker_ida, worker->id); 2381 worker_detach_from_pool(worker); 2382 kfree(worker); 2383 return 0; 2384 } 2385 2386 worker_leave_idle(worker); 2387 recheck: 2388 /* no more worker necessary? */ 2389 if (!need_more_worker(pool)) 2390 goto sleep; 2391 2392 /* do we need to manage? */ 2393 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2394 goto recheck; 2395 2396 /* 2397 * ->scheduled list can only be filled while a worker is 2398 * preparing to process a work or actually processing it. 2399 * Make sure nobody diddled with it while I was sleeping. 2400 */ 2401 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2402 2403 /* 2404 * Finish PREP stage. We're guaranteed to have at least one idle 2405 * worker or that someone else has already assumed the manager 2406 * role. This is where @worker starts participating in concurrency 2407 * management if applicable and concurrency management is restored 2408 * after being rebound. See rebind_workers() for details. 2409 */ 2410 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2411 2412 do { 2413 struct work_struct *work = 2414 list_first_entry(&pool->worklist, 2415 struct work_struct, entry); 2416 2417 pool->watchdog_ts = jiffies; 2418 2419 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2420 /* optimization path, not strictly necessary */ 2421 process_one_work(worker, work); 2422 if (unlikely(!list_empty(&worker->scheduled))) 2423 process_scheduled_works(worker); 2424 } else { 2425 move_linked_works(work, &worker->scheduled, NULL); 2426 process_scheduled_works(worker); 2427 } 2428 } while (keep_working(pool)); 2429 2430 worker_set_flags(worker, WORKER_PREP); 2431 sleep: 2432 /* 2433 * pool->lock is held and there's no work to process and no need to 2434 * manage, sleep. Workers are woken up only while holding 2435 * pool->lock or from local cpu, so setting the current state 2436 * before releasing pool->lock is enough to prevent losing any 2437 * event. 2438 */ 2439 worker_enter_idle(worker); 2440 __set_current_state(TASK_IDLE); 2441 raw_spin_unlock_irq(&pool->lock); 2442 schedule(); 2443 goto woke_up; 2444 } 2445 2446 /** 2447 * rescuer_thread - the rescuer thread function 2448 * @__rescuer: self 2449 * 2450 * Workqueue rescuer thread function. There's one rescuer for each 2451 * workqueue which has WQ_MEM_RECLAIM set. 2452 * 2453 * Regular work processing on a pool may block trying to create a new 2454 * worker which uses GFP_KERNEL allocation which has slight chance of 2455 * developing into deadlock if some works currently on the same queue 2456 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2457 * the problem rescuer solves. 2458 * 2459 * When such condition is possible, the pool summons rescuers of all 2460 * workqueues which have works queued on the pool and let them process 2461 * those works so that forward progress can be guaranteed. 2462 * 2463 * This should happen rarely. 2464 * 2465 * Return: 0 2466 */ 2467 static int rescuer_thread(void *__rescuer) 2468 { 2469 struct worker *rescuer = __rescuer; 2470 struct workqueue_struct *wq = rescuer->rescue_wq; 2471 struct list_head *scheduled = &rescuer->scheduled; 2472 bool should_stop; 2473 2474 set_user_nice(current, RESCUER_NICE_LEVEL); 2475 2476 /* 2477 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2478 * doesn't participate in concurrency management. 2479 */ 2480 set_pf_worker(true); 2481 repeat: 2482 set_current_state(TASK_IDLE); 2483 2484 /* 2485 * By the time the rescuer is requested to stop, the workqueue 2486 * shouldn't have any work pending, but @wq->maydays may still have 2487 * pwq(s) queued. This can happen by non-rescuer workers consuming 2488 * all the work items before the rescuer got to them. Go through 2489 * @wq->maydays processing before acting on should_stop so that the 2490 * list is always empty on exit. 2491 */ 2492 should_stop = kthread_should_stop(); 2493 2494 /* see whether any pwq is asking for help */ 2495 raw_spin_lock_irq(&wq_mayday_lock); 2496 2497 while (!list_empty(&wq->maydays)) { 2498 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2499 struct pool_workqueue, mayday_node); 2500 struct worker_pool *pool = pwq->pool; 2501 struct work_struct *work, *n; 2502 bool first = true; 2503 2504 __set_current_state(TASK_RUNNING); 2505 list_del_init(&pwq->mayday_node); 2506 2507 raw_spin_unlock_irq(&wq_mayday_lock); 2508 2509 worker_attach_to_pool(rescuer, pool); 2510 2511 raw_spin_lock_irq(&pool->lock); 2512 2513 /* 2514 * Slurp in all works issued via this workqueue and 2515 * process'em. 2516 */ 2517 WARN_ON_ONCE(!list_empty(scheduled)); 2518 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2519 if (get_work_pwq(work) == pwq) { 2520 if (first) 2521 pool->watchdog_ts = jiffies; 2522 move_linked_works(work, scheduled, &n); 2523 } 2524 first = false; 2525 } 2526 2527 if (!list_empty(scheduled)) { 2528 process_scheduled_works(rescuer); 2529 2530 /* 2531 * The above execution of rescued work items could 2532 * have created more to rescue through 2533 * pwq_activate_first_delayed() or chained 2534 * queueing. Let's put @pwq back on mayday list so 2535 * that such back-to-back work items, which may be 2536 * being used to relieve memory pressure, don't 2537 * incur MAYDAY_INTERVAL delay inbetween. 2538 */ 2539 if (pwq->nr_active && need_to_create_worker(pool)) { 2540 raw_spin_lock(&wq_mayday_lock); 2541 /* 2542 * Queue iff we aren't racing destruction 2543 * and somebody else hasn't queued it already. 2544 */ 2545 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 2546 get_pwq(pwq); 2547 list_add_tail(&pwq->mayday_node, &wq->maydays); 2548 } 2549 raw_spin_unlock(&wq_mayday_lock); 2550 } 2551 } 2552 2553 /* 2554 * Put the reference grabbed by send_mayday(). @pool won't 2555 * go away while we're still attached to it. 2556 */ 2557 put_pwq(pwq); 2558 2559 /* 2560 * Leave this pool. If need_more_worker() is %true, notify a 2561 * regular worker; otherwise, we end up with 0 concurrency 2562 * and stalling the execution. 2563 */ 2564 if (need_more_worker(pool)) 2565 wake_up_worker(pool); 2566 2567 raw_spin_unlock_irq(&pool->lock); 2568 2569 worker_detach_from_pool(rescuer); 2570 2571 raw_spin_lock_irq(&wq_mayday_lock); 2572 } 2573 2574 raw_spin_unlock_irq(&wq_mayday_lock); 2575 2576 if (should_stop) { 2577 __set_current_state(TASK_RUNNING); 2578 set_pf_worker(false); 2579 return 0; 2580 } 2581 2582 /* rescuers should never participate in concurrency management */ 2583 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2584 schedule(); 2585 goto repeat; 2586 } 2587 2588 /** 2589 * check_flush_dependency - check for flush dependency sanity 2590 * @target_wq: workqueue being flushed 2591 * @target_work: work item being flushed (NULL for workqueue flushes) 2592 * 2593 * %current is trying to flush the whole @target_wq or @target_work on it. 2594 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2595 * reclaiming memory or running on a workqueue which doesn't have 2596 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2597 * a deadlock. 2598 */ 2599 static void check_flush_dependency(struct workqueue_struct *target_wq, 2600 struct work_struct *target_work) 2601 { 2602 work_func_t target_func = target_work ? target_work->func : NULL; 2603 struct worker *worker; 2604 2605 if (target_wq->flags & WQ_MEM_RECLAIM) 2606 return; 2607 2608 worker = current_wq_worker(); 2609 2610 WARN_ONCE(current->flags & PF_MEMALLOC, 2611 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 2612 current->pid, current->comm, target_wq->name, target_func); 2613 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2614 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2615 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 2616 worker->current_pwq->wq->name, worker->current_func, 2617 target_wq->name, target_func); 2618 } 2619 2620 struct wq_barrier { 2621 struct work_struct work; 2622 struct completion done; 2623 struct task_struct *task; /* purely informational */ 2624 }; 2625 2626 static void wq_barrier_func(struct work_struct *work) 2627 { 2628 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2629 complete(&barr->done); 2630 } 2631 2632 /** 2633 * insert_wq_barrier - insert a barrier work 2634 * @pwq: pwq to insert barrier into 2635 * @barr: wq_barrier to insert 2636 * @target: target work to attach @barr to 2637 * @worker: worker currently executing @target, NULL if @target is not executing 2638 * 2639 * @barr is linked to @target such that @barr is completed only after 2640 * @target finishes execution. Please note that the ordering 2641 * guarantee is observed only with respect to @target and on the local 2642 * cpu. 2643 * 2644 * Currently, a queued barrier can't be canceled. This is because 2645 * try_to_grab_pending() can't determine whether the work to be 2646 * grabbed is at the head of the queue and thus can't clear LINKED 2647 * flag of the previous work while there must be a valid next work 2648 * after a work with LINKED flag set. 2649 * 2650 * Note that when @worker is non-NULL, @target may be modified 2651 * underneath us, so we can't reliably determine pwq from @target. 2652 * 2653 * CONTEXT: 2654 * raw_spin_lock_irq(pool->lock). 2655 */ 2656 static void insert_wq_barrier(struct pool_workqueue *pwq, 2657 struct wq_barrier *barr, 2658 struct work_struct *target, struct worker *worker) 2659 { 2660 struct list_head *head; 2661 unsigned int linked = 0; 2662 2663 /* 2664 * debugobject calls are safe here even with pool->lock locked 2665 * as we know for sure that this will not trigger any of the 2666 * checks and call back into the fixup functions where we 2667 * might deadlock. 2668 */ 2669 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2670 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2671 2672 init_completion_map(&barr->done, &target->lockdep_map); 2673 2674 barr->task = current; 2675 2676 /* 2677 * If @target is currently being executed, schedule the 2678 * barrier to the worker; otherwise, put it after @target. 2679 */ 2680 if (worker) 2681 head = worker->scheduled.next; 2682 else { 2683 unsigned long *bits = work_data_bits(target); 2684 2685 head = target->entry.next; 2686 /* there can already be other linked works, inherit and set */ 2687 linked = *bits & WORK_STRUCT_LINKED; 2688 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2689 } 2690 2691 debug_work_activate(&barr->work); 2692 insert_work(pwq, &barr->work, head, 2693 work_color_to_flags(WORK_NO_COLOR) | linked); 2694 } 2695 2696 /** 2697 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2698 * @wq: workqueue being flushed 2699 * @flush_color: new flush color, < 0 for no-op 2700 * @work_color: new work color, < 0 for no-op 2701 * 2702 * Prepare pwqs for workqueue flushing. 2703 * 2704 * If @flush_color is non-negative, flush_color on all pwqs should be 2705 * -1. If no pwq has in-flight commands at the specified color, all 2706 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2707 * has in flight commands, its pwq->flush_color is set to 2708 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2709 * wakeup logic is armed and %true is returned. 2710 * 2711 * The caller should have initialized @wq->first_flusher prior to 2712 * calling this function with non-negative @flush_color. If 2713 * @flush_color is negative, no flush color update is done and %false 2714 * is returned. 2715 * 2716 * If @work_color is non-negative, all pwqs should have the same 2717 * work_color which is previous to @work_color and all will be 2718 * advanced to @work_color. 2719 * 2720 * CONTEXT: 2721 * mutex_lock(wq->mutex). 2722 * 2723 * Return: 2724 * %true if @flush_color >= 0 and there's something to flush. %false 2725 * otherwise. 2726 */ 2727 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2728 int flush_color, int work_color) 2729 { 2730 bool wait = false; 2731 struct pool_workqueue *pwq; 2732 2733 if (flush_color >= 0) { 2734 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2735 atomic_set(&wq->nr_pwqs_to_flush, 1); 2736 } 2737 2738 for_each_pwq(pwq, wq) { 2739 struct worker_pool *pool = pwq->pool; 2740 2741 raw_spin_lock_irq(&pool->lock); 2742 2743 if (flush_color >= 0) { 2744 WARN_ON_ONCE(pwq->flush_color != -1); 2745 2746 if (pwq->nr_in_flight[flush_color]) { 2747 pwq->flush_color = flush_color; 2748 atomic_inc(&wq->nr_pwqs_to_flush); 2749 wait = true; 2750 } 2751 } 2752 2753 if (work_color >= 0) { 2754 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2755 pwq->work_color = work_color; 2756 } 2757 2758 raw_spin_unlock_irq(&pool->lock); 2759 } 2760 2761 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2762 complete(&wq->first_flusher->done); 2763 2764 return wait; 2765 } 2766 2767 /** 2768 * flush_workqueue - ensure that any scheduled work has run to completion. 2769 * @wq: workqueue to flush 2770 * 2771 * This function sleeps until all work items which were queued on entry 2772 * have finished execution, but it is not livelocked by new incoming ones. 2773 */ 2774 void flush_workqueue(struct workqueue_struct *wq) 2775 { 2776 struct wq_flusher this_flusher = { 2777 .list = LIST_HEAD_INIT(this_flusher.list), 2778 .flush_color = -1, 2779 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2780 }; 2781 int next_color; 2782 2783 if (WARN_ON(!wq_online)) 2784 return; 2785 2786 lock_map_acquire(&wq->lockdep_map); 2787 lock_map_release(&wq->lockdep_map); 2788 2789 mutex_lock(&wq->mutex); 2790 2791 /* 2792 * Start-to-wait phase 2793 */ 2794 next_color = work_next_color(wq->work_color); 2795 2796 if (next_color != wq->flush_color) { 2797 /* 2798 * Color space is not full. The current work_color 2799 * becomes our flush_color and work_color is advanced 2800 * by one. 2801 */ 2802 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2803 this_flusher.flush_color = wq->work_color; 2804 wq->work_color = next_color; 2805 2806 if (!wq->first_flusher) { 2807 /* no flush in progress, become the first flusher */ 2808 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2809 2810 wq->first_flusher = &this_flusher; 2811 2812 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2813 wq->work_color)) { 2814 /* nothing to flush, done */ 2815 wq->flush_color = next_color; 2816 wq->first_flusher = NULL; 2817 goto out_unlock; 2818 } 2819 } else { 2820 /* wait in queue */ 2821 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2822 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2823 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2824 } 2825 } else { 2826 /* 2827 * Oops, color space is full, wait on overflow queue. 2828 * The next flush completion will assign us 2829 * flush_color and transfer to flusher_queue. 2830 */ 2831 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2832 } 2833 2834 check_flush_dependency(wq, NULL); 2835 2836 mutex_unlock(&wq->mutex); 2837 2838 wait_for_completion(&this_flusher.done); 2839 2840 /* 2841 * Wake-up-and-cascade phase 2842 * 2843 * First flushers are responsible for cascading flushes and 2844 * handling overflow. Non-first flushers can simply return. 2845 */ 2846 if (READ_ONCE(wq->first_flusher) != &this_flusher) 2847 return; 2848 2849 mutex_lock(&wq->mutex); 2850 2851 /* we might have raced, check again with mutex held */ 2852 if (wq->first_flusher != &this_flusher) 2853 goto out_unlock; 2854 2855 WRITE_ONCE(wq->first_flusher, NULL); 2856 2857 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2858 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2859 2860 while (true) { 2861 struct wq_flusher *next, *tmp; 2862 2863 /* complete all the flushers sharing the current flush color */ 2864 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2865 if (next->flush_color != wq->flush_color) 2866 break; 2867 list_del_init(&next->list); 2868 complete(&next->done); 2869 } 2870 2871 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2872 wq->flush_color != work_next_color(wq->work_color)); 2873 2874 /* this flush_color is finished, advance by one */ 2875 wq->flush_color = work_next_color(wq->flush_color); 2876 2877 /* one color has been freed, handle overflow queue */ 2878 if (!list_empty(&wq->flusher_overflow)) { 2879 /* 2880 * Assign the same color to all overflowed 2881 * flushers, advance work_color and append to 2882 * flusher_queue. This is the start-to-wait 2883 * phase for these overflowed flushers. 2884 */ 2885 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2886 tmp->flush_color = wq->work_color; 2887 2888 wq->work_color = work_next_color(wq->work_color); 2889 2890 list_splice_tail_init(&wq->flusher_overflow, 2891 &wq->flusher_queue); 2892 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2893 } 2894 2895 if (list_empty(&wq->flusher_queue)) { 2896 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2897 break; 2898 } 2899 2900 /* 2901 * Need to flush more colors. Make the next flusher 2902 * the new first flusher and arm pwqs. 2903 */ 2904 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2905 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2906 2907 list_del_init(&next->list); 2908 wq->first_flusher = next; 2909 2910 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2911 break; 2912 2913 /* 2914 * Meh... this color is already done, clear first 2915 * flusher and repeat cascading. 2916 */ 2917 wq->first_flusher = NULL; 2918 } 2919 2920 out_unlock: 2921 mutex_unlock(&wq->mutex); 2922 } 2923 EXPORT_SYMBOL(flush_workqueue); 2924 2925 /** 2926 * drain_workqueue - drain a workqueue 2927 * @wq: workqueue to drain 2928 * 2929 * Wait until the workqueue becomes empty. While draining is in progress, 2930 * only chain queueing is allowed. IOW, only currently pending or running 2931 * work items on @wq can queue further work items on it. @wq is flushed 2932 * repeatedly until it becomes empty. The number of flushing is determined 2933 * by the depth of chaining and should be relatively short. Whine if it 2934 * takes too long. 2935 */ 2936 void drain_workqueue(struct workqueue_struct *wq) 2937 { 2938 unsigned int flush_cnt = 0; 2939 struct pool_workqueue *pwq; 2940 2941 /* 2942 * __queue_work() needs to test whether there are drainers, is much 2943 * hotter than drain_workqueue() and already looks at @wq->flags. 2944 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2945 */ 2946 mutex_lock(&wq->mutex); 2947 if (!wq->nr_drainers++) 2948 wq->flags |= __WQ_DRAINING; 2949 mutex_unlock(&wq->mutex); 2950 reflush: 2951 flush_workqueue(wq); 2952 2953 mutex_lock(&wq->mutex); 2954 2955 for_each_pwq(pwq, wq) { 2956 bool drained; 2957 2958 raw_spin_lock_irq(&pwq->pool->lock); 2959 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2960 raw_spin_unlock_irq(&pwq->pool->lock); 2961 2962 if (drained) 2963 continue; 2964 2965 if (++flush_cnt == 10 || 2966 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2967 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2968 wq->name, flush_cnt); 2969 2970 mutex_unlock(&wq->mutex); 2971 goto reflush; 2972 } 2973 2974 if (!--wq->nr_drainers) 2975 wq->flags &= ~__WQ_DRAINING; 2976 mutex_unlock(&wq->mutex); 2977 } 2978 EXPORT_SYMBOL_GPL(drain_workqueue); 2979 2980 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2981 bool from_cancel) 2982 { 2983 struct worker *worker = NULL; 2984 struct worker_pool *pool; 2985 struct pool_workqueue *pwq; 2986 2987 might_sleep(); 2988 2989 rcu_read_lock(); 2990 pool = get_work_pool(work); 2991 if (!pool) { 2992 rcu_read_unlock(); 2993 return false; 2994 } 2995 2996 raw_spin_lock_irq(&pool->lock); 2997 /* see the comment in try_to_grab_pending() with the same code */ 2998 pwq = get_work_pwq(work); 2999 if (pwq) { 3000 if (unlikely(pwq->pool != pool)) 3001 goto already_gone; 3002 } else { 3003 worker = find_worker_executing_work(pool, work); 3004 if (!worker) 3005 goto already_gone; 3006 pwq = worker->current_pwq; 3007 } 3008 3009 check_flush_dependency(pwq->wq, work); 3010 3011 insert_wq_barrier(pwq, barr, work, worker); 3012 raw_spin_unlock_irq(&pool->lock); 3013 3014 /* 3015 * Force a lock recursion deadlock when using flush_work() inside a 3016 * single-threaded or rescuer equipped workqueue. 3017 * 3018 * For single threaded workqueues the deadlock happens when the work 3019 * is after the work issuing the flush_work(). For rescuer equipped 3020 * workqueues the deadlock happens when the rescuer stalls, blocking 3021 * forward progress. 3022 */ 3023 if (!from_cancel && 3024 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3025 lock_map_acquire(&pwq->wq->lockdep_map); 3026 lock_map_release(&pwq->wq->lockdep_map); 3027 } 3028 rcu_read_unlock(); 3029 return true; 3030 already_gone: 3031 raw_spin_unlock_irq(&pool->lock); 3032 rcu_read_unlock(); 3033 return false; 3034 } 3035 3036 static bool __flush_work(struct work_struct *work, bool from_cancel) 3037 { 3038 struct wq_barrier barr; 3039 3040 if (WARN_ON(!wq_online)) 3041 return false; 3042 3043 if (WARN_ON(!work->func)) 3044 return false; 3045 3046 if (!from_cancel) { 3047 lock_map_acquire(&work->lockdep_map); 3048 lock_map_release(&work->lockdep_map); 3049 } 3050 3051 if (start_flush_work(work, &barr, from_cancel)) { 3052 wait_for_completion(&barr.done); 3053 destroy_work_on_stack(&barr.work); 3054 return true; 3055 } else { 3056 return false; 3057 } 3058 } 3059 3060 /** 3061 * flush_work - wait for a work to finish executing the last queueing instance 3062 * @work: the work to flush 3063 * 3064 * Wait until @work has finished execution. @work is guaranteed to be idle 3065 * on return if it hasn't been requeued since flush started. 3066 * 3067 * Return: 3068 * %true if flush_work() waited for the work to finish execution, 3069 * %false if it was already idle. 3070 */ 3071 bool flush_work(struct work_struct *work) 3072 { 3073 return __flush_work(work, false); 3074 } 3075 EXPORT_SYMBOL_GPL(flush_work); 3076 3077 struct cwt_wait { 3078 wait_queue_entry_t wait; 3079 struct work_struct *work; 3080 }; 3081 3082 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3083 { 3084 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3085 3086 if (cwait->work != key) 3087 return 0; 3088 return autoremove_wake_function(wait, mode, sync, key); 3089 } 3090 3091 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3092 { 3093 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3094 unsigned long flags; 3095 int ret; 3096 3097 do { 3098 ret = try_to_grab_pending(work, is_dwork, &flags); 3099 /* 3100 * If someone else is already canceling, wait for it to 3101 * finish. flush_work() doesn't work for PREEMPT_NONE 3102 * because we may get scheduled between @work's completion 3103 * and the other canceling task resuming and clearing 3104 * CANCELING - flush_work() will return false immediately 3105 * as @work is no longer busy, try_to_grab_pending() will 3106 * return -ENOENT as @work is still being canceled and the 3107 * other canceling task won't be able to clear CANCELING as 3108 * we're hogging the CPU. 3109 * 3110 * Let's wait for completion using a waitqueue. As this 3111 * may lead to the thundering herd problem, use a custom 3112 * wake function which matches @work along with exclusive 3113 * wait and wakeup. 3114 */ 3115 if (unlikely(ret == -ENOENT)) { 3116 struct cwt_wait cwait; 3117 3118 init_wait(&cwait.wait); 3119 cwait.wait.func = cwt_wakefn; 3120 cwait.work = work; 3121 3122 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3123 TASK_UNINTERRUPTIBLE); 3124 if (work_is_canceling(work)) 3125 schedule(); 3126 finish_wait(&cancel_waitq, &cwait.wait); 3127 } 3128 } while (unlikely(ret < 0)); 3129 3130 /* tell other tasks trying to grab @work to back off */ 3131 mark_work_canceling(work); 3132 local_irq_restore(flags); 3133 3134 /* 3135 * This allows canceling during early boot. We know that @work 3136 * isn't executing. 3137 */ 3138 if (wq_online) 3139 __flush_work(work, true); 3140 3141 clear_work_data(work); 3142 3143 /* 3144 * Paired with prepare_to_wait() above so that either 3145 * waitqueue_active() is visible here or !work_is_canceling() is 3146 * visible there. 3147 */ 3148 smp_mb(); 3149 if (waitqueue_active(&cancel_waitq)) 3150 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3151 3152 return ret; 3153 } 3154 3155 /** 3156 * cancel_work_sync - cancel a work and wait for it to finish 3157 * @work: the work to cancel 3158 * 3159 * Cancel @work and wait for its execution to finish. This function 3160 * can be used even if the work re-queues itself or migrates to 3161 * another workqueue. On return from this function, @work is 3162 * guaranteed to be not pending or executing on any CPU. 3163 * 3164 * cancel_work_sync(&delayed_work->work) must not be used for 3165 * delayed_work's. Use cancel_delayed_work_sync() instead. 3166 * 3167 * The caller must ensure that the workqueue on which @work was last 3168 * queued can't be destroyed before this function returns. 3169 * 3170 * Return: 3171 * %true if @work was pending, %false otherwise. 3172 */ 3173 bool cancel_work_sync(struct work_struct *work) 3174 { 3175 return __cancel_work_timer(work, false); 3176 } 3177 EXPORT_SYMBOL_GPL(cancel_work_sync); 3178 3179 /** 3180 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3181 * @dwork: the delayed work to flush 3182 * 3183 * Delayed timer is cancelled and the pending work is queued for 3184 * immediate execution. Like flush_work(), this function only 3185 * considers the last queueing instance of @dwork. 3186 * 3187 * Return: 3188 * %true if flush_work() waited for the work to finish execution, 3189 * %false if it was already idle. 3190 */ 3191 bool flush_delayed_work(struct delayed_work *dwork) 3192 { 3193 local_irq_disable(); 3194 if (del_timer_sync(&dwork->timer)) 3195 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3196 local_irq_enable(); 3197 return flush_work(&dwork->work); 3198 } 3199 EXPORT_SYMBOL(flush_delayed_work); 3200 3201 /** 3202 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3203 * @rwork: the rcu work to flush 3204 * 3205 * Return: 3206 * %true if flush_rcu_work() waited for the work to finish execution, 3207 * %false if it was already idle. 3208 */ 3209 bool flush_rcu_work(struct rcu_work *rwork) 3210 { 3211 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3212 rcu_barrier(); 3213 flush_work(&rwork->work); 3214 return true; 3215 } else { 3216 return flush_work(&rwork->work); 3217 } 3218 } 3219 EXPORT_SYMBOL(flush_rcu_work); 3220 3221 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3222 { 3223 unsigned long flags; 3224 int ret; 3225 3226 do { 3227 ret = try_to_grab_pending(work, is_dwork, &flags); 3228 } while (unlikely(ret == -EAGAIN)); 3229 3230 if (unlikely(ret < 0)) 3231 return false; 3232 3233 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3234 local_irq_restore(flags); 3235 return ret; 3236 } 3237 3238 /** 3239 * cancel_delayed_work - cancel a delayed work 3240 * @dwork: delayed_work to cancel 3241 * 3242 * Kill off a pending delayed_work. 3243 * 3244 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3245 * pending. 3246 * 3247 * Note: 3248 * The work callback function may still be running on return, unless 3249 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3250 * use cancel_delayed_work_sync() to wait on it. 3251 * 3252 * This function is safe to call from any context including IRQ handler. 3253 */ 3254 bool cancel_delayed_work(struct delayed_work *dwork) 3255 { 3256 return __cancel_work(&dwork->work, true); 3257 } 3258 EXPORT_SYMBOL(cancel_delayed_work); 3259 3260 /** 3261 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3262 * @dwork: the delayed work cancel 3263 * 3264 * This is cancel_work_sync() for delayed works. 3265 * 3266 * Return: 3267 * %true if @dwork was pending, %false otherwise. 3268 */ 3269 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3270 { 3271 return __cancel_work_timer(&dwork->work, true); 3272 } 3273 EXPORT_SYMBOL(cancel_delayed_work_sync); 3274 3275 /** 3276 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3277 * @func: the function to call 3278 * 3279 * schedule_on_each_cpu() executes @func on each online CPU using the 3280 * system workqueue and blocks until all CPUs have completed. 3281 * schedule_on_each_cpu() is very slow. 3282 * 3283 * Return: 3284 * 0 on success, -errno on failure. 3285 */ 3286 int schedule_on_each_cpu(work_func_t func) 3287 { 3288 int cpu; 3289 struct work_struct __percpu *works; 3290 3291 works = alloc_percpu(struct work_struct); 3292 if (!works) 3293 return -ENOMEM; 3294 3295 get_online_cpus(); 3296 3297 for_each_online_cpu(cpu) { 3298 struct work_struct *work = per_cpu_ptr(works, cpu); 3299 3300 INIT_WORK(work, func); 3301 schedule_work_on(cpu, work); 3302 } 3303 3304 for_each_online_cpu(cpu) 3305 flush_work(per_cpu_ptr(works, cpu)); 3306 3307 put_online_cpus(); 3308 free_percpu(works); 3309 return 0; 3310 } 3311 3312 /** 3313 * execute_in_process_context - reliably execute the routine with user context 3314 * @fn: the function to execute 3315 * @ew: guaranteed storage for the execute work structure (must 3316 * be available when the work executes) 3317 * 3318 * Executes the function immediately if process context is available, 3319 * otherwise schedules the function for delayed execution. 3320 * 3321 * Return: 0 - function was executed 3322 * 1 - function was scheduled for execution 3323 */ 3324 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3325 { 3326 if (!in_interrupt()) { 3327 fn(&ew->work); 3328 return 0; 3329 } 3330 3331 INIT_WORK(&ew->work, fn); 3332 schedule_work(&ew->work); 3333 3334 return 1; 3335 } 3336 EXPORT_SYMBOL_GPL(execute_in_process_context); 3337 3338 /** 3339 * free_workqueue_attrs - free a workqueue_attrs 3340 * @attrs: workqueue_attrs to free 3341 * 3342 * Undo alloc_workqueue_attrs(). 3343 */ 3344 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3345 { 3346 if (attrs) { 3347 free_cpumask_var(attrs->cpumask); 3348 kfree(attrs); 3349 } 3350 } 3351 3352 /** 3353 * alloc_workqueue_attrs - allocate a workqueue_attrs 3354 * 3355 * Allocate a new workqueue_attrs, initialize with default settings and 3356 * return it. 3357 * 3358 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3359 */ 3360 struct workqueue_attrs *alloc_workqueue_attrs(void) 3361 { 3362 struct workqueue_attrs *attrs; 3363 3364 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 3365 if (!attrs) 3366 goto fail; 3367 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 3368 goto fail; 3369 3370 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3371 return attrs; 3372 fail: 3373 free_workqueue_attrs(attrs); 3374 return NULL; 3375 } 3376 3377 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3378 const struct workqueue_attrs *from) 3379 { 3380 to->nice = from->nice; 3381 cpumask_copy(to->cpumask, from->cpumask); 3382 /* 3383 * Unlike hash and equality test, this function doesn't ignore 3384 * ->no_numa as it is used for both pool and wq attrs. Instead, 3385 * get_unbound_pool() explicitly clears ->no_numa after copying. 3386 */ 3387 to->no_numa = from->no_numa; 3388 } 3389 3390 /* hash value of the content of @attr */ 3391 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3392 { 3393 u32 hash = 0; 3394 3395 hash = jhash_1word(attrs->nice, hash); 3396 hash = jhash(cpumask_bits(attrs->cpumask), 3397 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3398 return hash; 3399 } 3400 3401 /* content equality test */ 3402 static bool wqattrs_equal(const struct workqueue_attrs *a, 3403 const struct workqueue_attrs *b) 3404 { 3405 if (a->nice != b->nice) 3406 return false; 3407 if (!cpumask_equal(a->cpumask, b->cpumask)) 3408 return false; 3409 return true; 3410 } 3411 3412 /** 3413 * init_worker_pool - initialize a newly zalloc'd worker_pool 3414 * @pool: worker_pool to initialize 3415 * 3416 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3417 * 3418 * Return: 0 on success, -errno on failure. Even on failure, all fields 3419 * inside @pool proper are initialized and put_unbound_pool() can be called 3420 * on @pool safely to release it. 3421 */ 3422 static int init_worker_pool(struct worker_pool *pool) 3423 { 3424 raw_spin_lock_init(&pool->lock); 3425 pool->id = -1; 3426 pool->cpu = -1; 3427 pool->node = NUMA_NO_NODE; 3428 pool->flags |= POOL_DISASSOCIATED; 3429 pool->watchdog_ts = jiffies; 3430 INIT_LIST_HEAD(&pool->worklist); 3431 INIT_LIST_HEAD(&pool->idle_list); 3432 hash_init(pool->busy_hash); 3433 3434 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3435 3436 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3437 3438 INIT_LIST_HEAD(&pool->workers); 3439 3440 ida_init(&pool->worker_ida); 3441 INIT_HLIST_NODE(&pool->hash_node); 3442 pool->refcnt = 1; 3443 3444 /* shouldn't fail above this point */ 3445 pool->attrs = alloc_workqueue_attrs(); 3446 if (!pool->attrs) 3447 return -ENOMEM; 3448 return 0; 3449 } 3450 3451 #ifdef CONFIG_LOCKDEP 3452 static void wq_init_lockdep(struct workqueue_struct *wq) 3453 { 3454 char *lock_name; 3455 3456 lockdep_register_key(&wq->key); 3457 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3458 if (!lock_name) 3459 lock_name = wq->name; 3460 3461 wq->lock_name = lock_name; 3462 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3463 } 3464 3465 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3466 { 3467 lockdep_unregister_key(&wq->key); 3468 } 3469 3470 static void wq_free_lockdep(struct workqueue_struct *wq) 3471 { 3472 if (wq->lock_name != wq->name) 3473 kfree(wq->lock_name); 3474 } 3475 #else 3476 static void wq_init_lockdep(struct workqueue_struct *wq) 3477 { 3478 } 3479 3480 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3481 { 3482 } 3483 3484 static void wq_free_lockdep(struct workqueue_struct *wq) 3485 { 3486 } 3487 #endif 3488 3489 static void rcu_free_wq(struct rcu_head *rcu) 3490 { 3491 struct workqueue_struct *wq = 3492 container_of(rcu, struct workqueue_struct, rcu); 3493 3494 wq_free_lockdep(wq); 3495 3496 if (!(wq->flags & WQ_UNBOUND)) 3497 free_percpu(wq->cpu_pwqs); 3498 else 3499 free_workqueue_attrs(wq->unbound_attrs); 3500 3501 kfree(wq); 3502 } 3503 3504 static void rcu_free_pool(struct rcu_head *rcu) 3505 { 3506 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3507 3508 ida_destroy(&pool->worker_ida); 3509 free_workqueue_attrs(pool->attrs); 3510 kfree(pool); 3511 } 3512 3513 /* This returns with the lock held on success (pool manager is inactive). */ 3514 static bool wq_manager_inactive(struct worker_pool *pool) 3515 { 3516 raw_spin_lock_irq(&pool->lock); 3517 3518 if (pool->flags & POOL_MANAGER_ACTIVE) { 3519 raw_spin_unlock_irq(&pool->lock); 3520 return false; 3521 } 3522 return true; 3523 } 3524 3525 /** 3526 * put_unbound_pool - put a worker_pool 3527 * @pool: worker_pool to put 3528 * 3529 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 3530 * safe manner. get_unbound_pool() calls this function on its failure path 3531 * and this function should be able to release pools which went through, 3532 * successfully or not, init_worker_pool(). 3533 * 3534 * Should be called with wq_pool_mutex held. 3535 */ 3536 static void put_unbound_pool(struct worker_pool *pool) 3537 { 3538 DECLARE_COMPLETION_ONSTACK(detach_completion); 3539 struct worker *worker; 3540 3541 lockdep_assert_held(&wq_pool_mutex); 3542 3543 if (--pool->refcnt) 3544 return; 3545 3546 /* sanity checks */ 3547 if (WARN_ON(!(pool->cpu < 0)) || 3548 WARN_ON(!list_empty(&pool->worklist))) 3549 return; 3550 3551 /* release id and unhash */ 3552 if (pool->id >= 0) 3553 idr_remove(&worker_pool_idr, pool->id); 3554 hash_del(&pool->hash_node); 3555 3556 /* 3557 * Become the manager and destroy all workers. This prevents 3558 * @pool's workers from blocking on attach_mutex. We're the last 3559 * manager and @pool gets freed with the flag set. 3560 * Because of how wq_manager_inactive() works, we will hold the 3561 * spinlock after a successful wait. 3562 */ 3563 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool), 3564 TASK_UNINTERRUPTIBLE); 3565 pool->flags |= POOL_MANAGER_ACTIVE; 3566 3567 while ((worker = first_idle_worker(pool))) 3568 destroy_worker(worker); 3569 WARN_ON(pool->nr_workers || pool->nr_idle); 3570 raw_spin_unlock_irq(&pool->lock); 3571 3572 mutex_lock(&wq_pool_attach_mutex); 3573 if (!list_empty(&pool->workers)) 3574 pool->detach_completion = &detach_completion; 3575 mutex_unlock(&wq_pool_attach_mutex); 3576 3577 if (pool->detach_completion) 3578 wait_for_completion(pool->detach_completion); 3579 3580 /* shut down the timers */ 3581 del_timer_sync(&pool->idle_timer); 3582 del_timer_sync(&pool->mayday_timer); 3583 3584 /* RCU protected to allow dereferences from get_work_pool() */ 3585 call_rcu(&pool->rcu, rcu_free_pool); 3586 } 3587 3588 /** 3589 * get_unbound_pool - get a worker_pool with the specified attributes 3590 * @attrs: the attributes of the worker_pool to get 3591 * 3592 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3593 * reference count and return it. If there already is a matching 3594 * worker_pool, it will be used; otherwise, this function attempts to 3595 * create a new one. 3596 * 3597 * Should be called with wq_pool_mutex held. 3598 * 3599 * Return: On success, a worker_pool with the same attributes as @attrs. 3600 * On failure, %NULL. 3601 */ 3602 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3603 { 3604 u32 hash = wqattrs_hash(attrs); 3605 struct worker_pool *pool; 3606 int node; 3607 int target_node = NUMA_NO_NODE; 3608 3609 lockdep_assert_held(&wq_pool_mutex); 3610 3611 /* do we already have a matching pool? */ 3612 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3613 if (wqattrs_equal(pool->attrs, attrs)) { 3614 pool->refcnt++; 3615 return pool; 3616 } 3617 } 3618 3619 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3620 if (wq_numa_enabled) { 3621 for_each_node(node) { 3622 if (cpumask_subset(attrs->cpumask, 3623 wq_numa_possible_cpumask[node])) { 3624 target_node = node; 3625 break; 3626 } 3627 } 3628 } 3629 3630 /* nope, create a new one */ 3631 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3632 if (!pool || init_worker_pool(pool) < 0) 3633 goto fail; 3634 3635 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3636 copy_workqueue_attrs(pool->attrs, attrs); 3637 pool->node = target_node; 3638 3639 /* 3640 * no_numa isn't a worker_pool attribute, always clear it. See 3641 * 'struct workqueue_attrs' comments for detail. 3642 */ 3643 pool->attrs->no_numa = false; 3644 3645 if (worker_pool_assign_id(pool) < 0) 3646 goto fail; 3647 3648 /* create and start the initial worker */ 3649 if (wq_online && !create_worker(pool)) 3650 goto fail; 3651 3652 /* install */ 3653 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3654 3655 return pool; 3656 fail: 3657 if (pool) 3658 put_unbound_pool(pool); 3659 return NULL; 3660 } 3661 3662 static void rcu_free_pwq(struct rcu_head *rcu) 3663 { 3664 kmem_cache_free(pwq_cache, 3665 container_of(rcu, struct pool_workqueue, rcu)); 3666 } 3667 3668 /* 3669 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3670 * and needs to be destroyed. 3671 */ 3672 static void pwq_unbound_release_workfn(struct work_struct *work) 3673 { 3674 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3675 unbound_release_work); 3676 struct workqueue_struct *wq = pwq->wq; 3677 struct worker_pool *pool = pwq->pool; 3678 bool is_last; 3679 3680 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3681 return; 3682 3683 mutex_lock(&wq->mutex); 3684 list_del_rcu(&pwq->pwqs_node); 3685 is_last = list_empty(&wq->pwqs); 3686 mutex_unlock(&wq->mutex); 3687 3688 mutex_lock(&wq_pool_mutex); 3689 put_unbound_pool(pool); 3690 mutex_unlock(&wq_pool_mutex); 3691 3692 call_rcu(&pwq->rcu, rcu_free_pwq); 3693 3694 /* 3695 * If we're the last pwq going away, @wq is already dead and no one 3696 * is gonna access it anymore. Schedule RCU free. 3697 */ 3698 if (is_last) { 3699 wq_unregister_lockdep(wq); 3700 call_rcu(&wq->rcu, rcu_free_wq); 3701 } 3702 } 3703 3704 /** 3705 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3706 * @pwq: target pool_workqueue 3707 * 3708 * If @pwq isn't freezing, set @pwq->max_active to the associated 3709 * workqueue's saved_max_active and activate delayed work items 3710 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3711 */ 3712 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3713 { 3714 struct workqueue_struct *wq = pwq->wq; 3715 bool freezable = wq->flags & WQ_FREEZABLE; 3716 unsigned long flags; 3717 3718 /* for @wq->saved_max_active */ 3719 lockdep_assert_held(&wq->mutex); 3720 3721 /* fast exit for non-freezable wqs */ 3722 if (!freezable && pwq->max_active == wq->saved_max_active) 3723 return; 3724 3725 /* this function can be called during early boot w/ irq disabled */ 3726 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 3727 3728 /* 3729 * During [un]freezing, the caller is responsible for ensuring that 3730 * this function is called at least once after @workqueue_freezing 3731 * is updated and visible. 3732 */ 3733 if (!freezable || !workqueue_freezing) { 3734 bool kick = false; 3735 3736 pwq->max_active = wq->saved_max_active; 3737 3738 while (!list_empty(&pwq->delayed_works) && 3739 pwq->nr_active < pwq->max_active) { 3740 pwq_activate_first_delayed(pwq); 3741 kick = true; 3742 } 3743 3744 /* 3745 * Need to kick a worker after thawed or an unbound wq's 3746 * max_active is bumped. In realtime scenarios, always kicking a 3747 * worker will cause interference on the isolated cpu cores, so 3748 * let's kick iff work items were activated. 3749 */ 3750 if (kick) 3751 wake_up_worker(pwq->pool); 3752 } else { 3753 pwq->max_active = 0; 3754 } 3755 3756 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 3757 } 3758 3759 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3760 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3761 struct worker_pool *pool) 3762 { 3763 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3764 3765 memset(pwq, 0, sizeof(*pwq)); 3766 3767 pwq->pool = pool; 3768 pwq->wq = wq; 3769 pwq->flush_color = -1; 3770 pwq->refcnt = 1; 3771 INIT_LIST_HEAD(&pwq->delayed_works); 3772 INIT_LIST_HEAD(&pwq->pwqs_node); 3773 INIT_LIST_HEAD(&pwq->mayday_node); 3774 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3775 } 3776 3777 /* sync @pwq with the current state of its associated wq and link it */ 3778 static void link_pwq(struct pool_workqueue *pwq) 3779 { 3780 struct workqueue_struct *wq = pwq->wq; 3781 3782 lockdep_assert_held(&wq->mutex); 3783 3784 /* may be called multiple times, ignore if already linked */ 3785 if (!list_empty(&pwq->pwqs_node)) 3786 return; 3787 3788 /* set the matching work_color */ 3789 pwq->work_color = wq->work_color; 3790 3791 /* sync max_active to the current setting */ 3792 pwq_adjust_max_active(pwq); 3793 3794 /* link in @pwq */ 3795 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3796 } 3797 3798 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3799 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3800 const struct workqueue_attrs *attrs) 3801 { 3802 struct worker_pool *pool; 3803 struct pool_workqueue *pwq; 3804 3805 lockdep_assert_held(&wq_pool_mutex); 3806 3807 pool = get_unbound_pool(attrs); 3808 if (!pool) 3809 return NULL; 3810 3811 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3812 if (!pwq) { 3813 put_unbound_pool(pool); 3814 return NULL; 3815 } 3816 3817 init_pwq(pwq, wq, pool); 3818 return pwq; 3819 } 3820 3821 /** 3822 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3823 * @attrs: the wq_attrs of the default pwq of the target workqueue 3824 * @node: the target NUMA node 3825 * @cpu_going_down: if >= 0, the CPU to consider as offline 3826 * @cpumask: outarg, the resulting cpumask 3827 * 3828 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3829 * @cpu_going_down is >= 0, that cpu is considered offline during 3830 * calculation. The result is stored in @cpumask. 3831 * 3832 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3833 * enabled and @node has online CPUs requested by @attrs, the returned 3834 * cpumask is the intersection of the possible CPUs of @node and 3835 * @attrs->cpumask. 3836 * 3837 * The caller is responsible for ensuring that the cpumask of @node stays 3838 * stable. 3839 * 3840 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3841 * %false if equal. 3842 */ 3843 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3844 int cpu_going_down, cpumask_t *cpumask) 3845 { 3846 if (!wq_numa_enabled || attrs->no_numa) 3847 goto use_dfl; 3848 3849 /* does @node have any online CPUs @attrs wants? */ 3850 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3851 if (cpu_going_down >= 0) 3852 cpumask_clear_cpu(cpu_going_down, cpumask); 3853 3854 if (cpumask_empty(cpumask)) 3855 goto use_dfl; 3856 3857 /* yeap, return possible CPUs in @node that @attrs wants */ 3858 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3859 3860 if (cpumask_empty(cpumask)) { 3861 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3862 "possible intersect\n"); 3863 return false; 3864 } 3865 3866 return !cpumask_equal(cpumask, attrs->cpumask); 3867 3868 use_dfl: 3869 cpumask_copy(cpumask, attrs->cpumask); 3870 return false; 3871 } 3872 3873 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3874 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3875 int node, 3876 struct pool_workqueue *pwq) 3877 { 3878 struct pool_workqueue *old_pwq; 3879 3880 lockdep_assert_held(&wq_pool_mutex); 3881 lockdep_assert_held(&wq->mutex); 3882 3883 /* link_pwq() can handle duplicate calls */ 3884 link_pwq(pwq); 3885 3886 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3887 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3888 return old_pwq; 3889 } 3890 3891 /* context to store the prepared attrs & pwqs before applying */ 3892 struct apply_wqattrs_ctx { 3893 struct workqueue_struct *wq; /* target workqueue */ 3894 struct workqueue_attrs *attrs; /* attrs to apply */ 3895 struct list_head list; /* queued for batching commit */ 3896 struct pool_workqueue *dfl_pwq; 3897 struct pool_workqueue *pwq_tbl[]; 3898 }; 3899 3900 /* free the resources after success or abort */ 3901 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3902 { 3903 if (ctx) { 3904 int node; 3905 3906 for_each_node(node) 3907 put_pwq_unlocked(ctx->pwq_tbl[node]); 3908 put_pwq_unlocked(ctx->dfl_pwq); 3909 3910 free_workqueue_attrs(ctx->attrs); 3911 3912 kfree(ctx); 3913 } 3914 } 3915 3916 /* allocate the attrs and pwqs for later installation */ 3917 static struct apply_wqattrs_ctx * 3918 apply_wqattrs_prepare(struct workqueue_struct *wq, 3919 const struct workqueue_attrs *attrs) 3920 { 3921 struct apply_wqattrs_ctx *ctx; 3922 struct workqueue_attrs *new_attrs, *tmp_attrs; 3923 int node; 3924 3925 lockdep_assert_held(&wq_pool_mutex); 3926 3927 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 3928 3929 new_attrs = alloc_workqueue_attrs(); 3930 tmp_attrs = alloc_workqueue_attrs(); 3931 if (!ctx || !new_attrs || !tmp_attrs) 3932 goto out_free; 3933 3934 /* 3935 * Calculate the attrs of the default pwq. 3936 * If the user configured cpumask doesn't overlap with the 3937 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3938 */ 3939 copy_workqueue_attrs(new_attrs, attrs); 3940 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3941 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3942 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3943 3944 /* 3945 * We may create multiple pwqs with differing cpumasks. Make a 3946 * copy of @new_attrs which will be modified and used to obtain 3947 * pools. 3948 */ 3949 copy_workqueue_attrs(tmp_attrs, new_attrs); 3950 3951 /* 3952 * If something goes wrong during CPU up/down, we'll fall back to 3953 * the default pwq covering whole @attrs->cpumask. Always create 3954 * it even if we don't use it immediately. 3955 */ 3956 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3957 if (!ctx->dfl_pwq) 3958 goto out_free; 3959 3960 for_each_node(node) { 3961 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3962 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3963 if (!ctx->pwq_tbl[node]) 3964 goto out_free; 3965 } else { 3966 ctx->dfl_pwq->refcnt++; 3967 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3968 } 3969 } 3970 3971 /* save the user configured attrs and sanitize it. */ 3972 copy_workqueue_attrs(new_attrs, attrs); 3973 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3974 ctx->attrs = new_attrs; 3975 3976 ctx->wq = wq; 3977 free_workqueue_attrs(tmp_attrs); 3978 return ctx; 3979 3980 out_free: 3981 free_workqueue_attrs(tmp_attrs); 3982 free_workqueue_attrs(new_attrs); 3983 apply_wqattrs_cleanup(ctx); 3984 return NULL; 3985 } 3986 3987 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3988 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3989 { 3990 int node; 3991 3992 /* all pwqs have been created successfully, let's install'em */ 3993 mutex_lock(&ctx->wq->mutex); 3994 3995 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3996 3997 /* save the previous pwq and install the new one */ 3998 for_each_node(node) 3999 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 4000 ctx->pwq_tbl[node]); 4001 4002 /* @dfl_pwq might not have been used, ensure it's linked */ 4003 link_pwq(ctx->dfl_pwq); 4004 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 4005 4006 mutex_unlock(&ctx->wq->mutex); 4007 } 4008 4009 static void apply_wqattrs_lock(void) 4010 { 4011 /* CPUs should stay stable across pwq creations and installations */ 4012 get_online_cpus(); 4013 mutex_lock(&wq_pool_mutex); 4014 } 4015 4016 static void apply_wqattrs_unlock(void) 4017 { 4018 mutex_unlock(&wq_pool_mutex); 4019 put_online_cpus(); 4020 } 4021 4022 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 4023 const struct workqueue_attrs *attrs) 4024 { 4025 struct apply_wqattrs_ctx *ctx; 4026 4027 /* only unbound workqueues can change attributes */ 4028 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 4029 return -EINVAL; 4030 4031 /* creating multiple pwqs breaks ordering guarantee */ 4032 if (!list_empty(&wq->pwqs)) { 4033 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4034 return -EINVAL; 4035 4036 wq->flags &= ~__WQ_ORDERED; 4037 } 4038 4039 ctx = apply_wqattrs_prepare(wq, attrs); 4040 if (!ctx) 4041 return -ENOMEM; 4042 4043 /* the ctx has been prepared successfully, let's commit it */ 4044 apply_wqattrs_commit(ctx); 4045 apply_wqattrs_cleanup(ctx); 4046 4047 return 0; 4048 } 4049 4050 /** 4051 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4052 * @wq: the target workqueue 4053 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4054 * 4055 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 4056 * machines, this function maps a separate pwq to each NUMA node with 4057 * possibles CPUs in @attrs->cpumask so that work items are affine to the 4058 * NUMA node it was issued on. Older pwqs are released as in-flight work 4059 * items finish. Note that a work item which repeatedly requeues itself 4060 * back-to-back will stay on its current pwq. 4061 * 4062 * Performs GFP_KERNEL allocations. 4063 * 4064 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus(). 4065 * 4066 * Return: 0 on success and -errno on failure. 4067 */ 4068 int apply_workqueue_attrs(struct workqueue_struct *wq, 4069 const struct workqueue_attrs *attrs) 4070 { 4071 int ret; 4072 4073 lockdep_assert_cpus_held(); 4074 4075 mutex_lock(&wq_pool_mutex); 4076 ret = apply_workqueue_attrs_locked(wq, attrs); 4077 mutex_unlock(&wq_pool_mutex); 4078 4079 return ret; 4080 } 4081 4082 /** 4083 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4084 * @wq: the target workqueue 4085 * @cpu: the CPU coming up or going down 4086 * @online: whether @cpu is coming up or going down 4087 * 4088 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4089 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4090 * @wq accordingly. 4091 * 4092 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4093 * falls back to @wq->dfl_pwq which may not be optimal but is always 4094 * correct. 4095 * 4096 * Note that when the last allowed CPU of a NUMA node goes offline for a 4097 * workqueue with a cpumask spanning multiple nodes, the workers which were 4098 * already executing the work items for the workqueue will lose their CPU 4099 * affinity and may execute on any CPU. This is similar to how per-cpu 4100 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4101 * affinity, it's the user's responsibility to flush the work item from 4102 * CPU_DOWN_PREPARE. 4103 */ 4104 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4105 bool online) 4106 { 4107 int node = cpu_to_node(cpu); 4108 int cpu_off = online ? -1 : cpu; 4109 struct pool_workqueue *old_pwq = NULL, *pwq; 4110 struct workqueue_attrs *target_attrs; 4111 cpumask_t *cpumask; 4112 4113 lockdep_assert_held(&wq_pool_mutex); 4114 4115 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 4116 wq->unbound_attrs->no_numa) 4117 return; 4118 4119 /* 4120 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4121 * Let's use a preallocated one. The following buf is protected by 4122 * CPU hotplug exclusion. 4123 */ 4124 target_attrs = wq_update_unbound_numa_attrs_buf; 4125 cpumask = target_attrs->cpumask; 4126 4127 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4128 pwq = unbound_pwq_by_node(wq, node); 4129 4130 /* 4131 * Let's determine what needs to be done. If the target cpumask is 4132 * different from the default pwq's, we need to compare it to @pwq's 4133 * and create a new one if they don't match. If the target cpumask 4134 * equals the default pwq's, the default pwq should be used. 4135 */ 4136 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4137 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4138 return; 4139 } else { 4140 goto use_dfl_pwq; 4141 } 4142 4143 /* create a new pwq */ 4144 pwq = alloc_unbound_pwq(wq, target_attrs); 4145 if (!pwq) { 4146 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4147 wq->name); 4148 goto use_dfl_pwq; 4149 } 4150 4151 /* Install the new pwq. */ 4152 mutex_lock(&wq->mutex); 4153 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4154 goto out_unlock; 4155 4156 use_dfl_pwq: 4157 mutex_lock(&wq->mutex); 4158 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock); 4159 get_pwq(wq->dfl_pwq); 4160 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4161 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4162 out_unlock: 4163 mutex_unlock(&wq->mutex); 4164 put_pwq_unlocked(old_pwq); 4165 } 4166 4167 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4168 { 4169 bool highpri = wq->flags & WQ_HIGHPRI; 4170 int cpu, ret; 4171 4172 if (!(wq->flags & WQ_UNBOUND)) { 4173 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4174 if (!wq->cpu_pwqs) 4175 return -ENOMEM; 4176 4177 for_each_possible_cpu(cpu) { 4178 struct pool_workqueue *pwq = 4179 per_cpu_ptr(wq->cpu_pwqs, cpu); 4180 struct worker_pool *cpu_pools = 4181 per_cpu(cpu_worker_pools, cpu); 4182 4183 init_pwq(pwq, wq, &cpu_pools[highpri]); 4184 4185 mutex_lock(&wq->mutex); 4186 link_pwq(pwq); 4187 mutex_unlock(&wq->mutex); 4188 } 4189 return 0; 4190 } 4191 4192 get_online_cpus(); 4193 if (wq->flags & __WQ_ORDERED) { 4194 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4195 /* there should only be single pwq for ordering guarantee */ 4196 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4197 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4198 "ordering guarantee broken for workqueue %s\n", wq->name); 4199 } else { 4200 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4201 } 4202 put_online_cpus(); 4203 4204 return ret; 4205 } 4206 4207 static int wq_clamp_max_active(int max_active, unsigned int flags, 4208 const char *name) 4209 { 4210 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4211 4212 if (max_active < 1 || max_active > lim) 4213 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4214 max_active, name, 1, lim); 4215 4216 return clamp_val(max_active, 1, lim); 4217 } 4218 4219 /* 4220 * Workqueues which may be used during memory reclaim should have a rescuer 4221 * to guarantee forward progress. 4222 */ 4223 static int init_rescuer(struct workqueue_struct *wq) 4224 { 4225 struct worker *rescuer; 4226 int ret; 4227 4228 if (!(wq->flags & WQ_MEM_RECLAIM)) 4229 return 0; 4230 4231 rescuer = alloc_worker(NUMA_NO_NODE); 4232 if (!rescuer) 4233 return -ENOMEM; 4234 4235 rescuer->rescue_wq = wq; 4236 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4237 if (IS_ERR(rescuer->task)) { 4238 ret = PTR_ERR(rescuer->task); 4239 kfree(rescuer); 4240 return ret; 4241 } 4242 4243 wq->rescuer = rescuer; 4244 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4245 wake_up_process(rescuer->task); 4246 4247 return 0; 4248 } 4249 4250 __printf(1, 4) 4251 struct workqueue_struct *alloc_workqueue(const char *fmt, 4252 unsigned int flags, 4253 int max_active, ...) 4254 { 4255 size_t tbl_size = 0; 4256 va_list args; 4257 struct workqueue_struct *wq; 4258 struct pool_workqueue *pwq; 4259 4260 /* 4261 * Unbound && max_active == 1 used to imply ordered, which is no 4262 * longer the case on NUMA machines due to per-node pools. While 4263 * alloc_ordered_workqueue() is the right way to create an ordered 4264 * workqueue, keep the previous behavior to avoid subtle breakages 4265 * on NUMA. 4266 */ 4267 if ((flags & WQ_UNBOUND) && max_active == 1) 4268 flags |= __WQ_ORDERED; 4269 4270 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4271 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4272 flags |= WQ_UNBOUND; 4273 4274 /* allocate wq and format name */ 4275 if (flags & WQ_UNBOUND) 4276 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4277 4278 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4279 if (!wq) 4280 return NULL; 4281 4282 if (flags & WQ_UNBOUND) { 4283 wq->unbound_attrs = alloc_workqueue_attrs(); 4284 if (!wq->unbound_attrs) 4285 goto err_free_wq; 4286 } 4287 4288 va_start(args, max_active); 4289 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4290 va_end(args); 4291 4292 max_active = max_active ?: WQ_DFL_ACTIVE; 4293 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4294 4295 /* init wq */ 4296 wq->flags = flags; 4297 wq->saved_max_active = max_active; 4298 mutex_init(&wq->mutex); 4299 atomic_set(&wq->nr_pwqs_to_flush, 0); 4300 INIT_LIST_HEAD(&wq->pwqs); 4301 INIT_LIST_HEAD(&wq->flusher_queue); 4302 INIT_LIST_HEAD(&wq->flusher_overflow); 4303 INIT_LIST_HEAD(&wq->maydays); 4304 4305 wq_init_lockdep(wq); 4306 INIT_LIST_HEAD(&wq->list); 4307 4308 if (alloc_and_link_pwqs(wq) < 0) 4309 goto err_unreg_lockdep; 4310 4311 if (wq_online && init_rescuer(wq) < 0) 4312 goto err_destroy; 4313 4314 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4315 goto err_destroy; 4316 4317 /* 4318 * wq_pool_mutex protects global freeze state and workqueues list. 4319 * Grab it, adjust max_active and add the new @wq to workqueues 4320 * list. 4321 */ 4322 mutex_lock(&wq_pool_mutex); 4323 4324 mutex_lock(&wq->mutex); 4325 for_each_pwq(pwq, wq) 4326 pwq_adjust_max_active(pwq); 4327 mutex_unlock(&wq->mutex); 4328 4329 list_add_tail_rcu(&wq->list, &workqueues); 4330 4331 mutex_unlock(&wq_pool_mutex); 4332 4333 return wq; 4334 4335 err_unreg_lockdep: 4336 wq_unregister_lockdep(wq); 4337 wq_free_lockdep(wq); 4338 err_free_wq: 4339 free_workqueue_attrs(wq->unbound_attrs); 4340 kfree(wq); 4341 return NULL; 4342 err_destroy: 4343 destroy_workqueue(wq); 4344 return NULL; 4345 } 4346 EXPORT_SYMBOL_GPL(alloc_workqueue); 4347 4348 static bool pwq_busy(struct pool_workqueue *pwq) 4349 { 4350 int i; 4351 4352 for (i = 0; i < WORK_NR_COLORS; i++) 4353 if (pwq->nr_in_flight[i]) 4354 return true; 4355 4356 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1)) 4357 return true; 4358 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4359 return true; 4360 4361 return false; 4362 } 4363 4364 /** 4365 * destroy_workqueue - safely terminate a workqueue 4366 * @wq: target workqueue 4367 * 4368 * Safely destroy a workqueue. All work currently pending will be done first. 4369 */ 4370 void destroy_workqueue(struct workqueue_struct *wq) 4371 { 4372 struct pool_workqueue *pwq; 4373 int node; 4374 4375 /* 4376 * Remove it from sysfs first so that sanity check failure doesn't 4377 * lead to sysfs name conflicts. 4378 */ 4379 workqueue_sysfs_unregister(wq); 4380 4381 /* drain it before proceeding with destruction */ 4382 drain_workqueue(wq); 4383 4384 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 4385 if (wq->rescuer) { 4386 struct worker *rescuer = wq->rescuer; 4387 4388 /* this prevents new queueing */ 4389 raw_spin_lock_irq(&wq_mayday_lock); 4390 wq->rescuer = NULL; 4391 raw_spin_unlock_irq(&wq_mayday_lock); 4392 4393 /* rescuer will empty maydays list before exiting */ 4394 kthread_stop(rescuer->task); 4395 kfree(rescuer); 4396 } 4397 4398 /* 4399 * Sanity checks - grab all the locks so that we wait for all 4400 * in-flight operations which may do put_pwq(). 4401 */ 4402 mutex_lock(&wq_pool_mutex); 4403 mutex_lock(&wq->mutex); 4404 for_each_pwq(pwq, wq) { 4405 raw_spin_lock_irq(&pwq->pool->lock); 4406 if (WARN_ON(pwq_busy(pwq))) { 4407 pr_warn("%s: %s has the following busy pwq\n", 4408 __func__, wq->name); 4409 show_pwq(pwq); 4410 raw_spin_unlock_irq(&pwq->pool->lock); 4411 mutex_unlock(&wq->mutex); 4412 mutex_unlock(&wq_pool_mutex); 4413 show_workqueue_state(); 4414 return; 4415 } 4416 raw_spin_unlock_irq(&pwq->pool->lock); 4417 } 4418 mutex_unlock(&wq->mutex); 4419 4420 /* 4421 * wq list is used to freeze wq, remove from list after 4422 * flushing is complete in case freeze races us. 4423 */ 4424 list_del_rcu(&wq->list); 4425 mutex_unlock(&wq_pool_mutex); 4426 4427 if (!(wq->flags & WQ_UNBOUND)) { 4428 wq_unregister_lockdep(wq); 4429 /* 4430 * The base ref is never dropped on per-cpu pwqs. Directly 4431 * schedule RCU free. 4432 */ 4433 call_rcu(&wq->rcu, rcu_free_wq); 4434 } else { 4435 /* 4436 * We're the sole accessor of @wq at this point. Directly 4437 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4438 * @wq will be freed when the last pwq is released. 4439 */ 4440 for_each_node(node) { 4441 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4442 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4443 put_pwq_unlocked(pwq); 4444 } 4445 4446 /* 4447 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4448 * put. Don't access it afterwards. 4449 */ 4450 pwq = wq->dfl_pwq; 4451 wq->dfl_pwq = NULL; 4452 put_pwq_unlocked(pwq); 4453 } 4454 } 4455 EXPORT_SYMBOL_GPL(destroy_workqueue); 4456 4457 /** 4458 * workqueue_set_max_active - adjust max_active of a workqueue 4459 * @wq: target workqueue 4460 * @max_active: new max_active value. 4461 * 4462 * Set max_active of @wq to @max_active. 4463 * 4464 * CONTEXT: 4465 * Don't call from IRQ context. 4466 */ 4467 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4468 { 4469 struct pool_workqueue *pwq; 4470 4471 /* disallow meddling with max_active for ordered workqueues */ 4472 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4473 return; 4474 4475 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4476 4477 mutex_lock(&wq->mutex); 4478 4479 wq->flags &= ~__WQ_ORDERED; 4480 wq->saved_max_active = max_active; 4481 4482 for_each_pwq(pwq, wq) 4483 pwq_adjust_max_active(pwq); 4484 4485 mutex_unlock(&wq->mutex); 4486 } 4487 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4488 4489 /** 4490 * current_work - retrieve %current task's work struct 4491 * 4492 * Determine if %current task is a workqueue worker and what it's working on. 4493 * Useful to find out the context that the %current task is running in. 4494 * 4495 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4496 */ 4497 struct work_struct *current_work(void) 4498 { 4499 struct worker *worker = current_wq_worker(); 4500 4501 return worker ? worker->current_work : NULL; 4502 } 4503 EXPORT_SYMBOL(current_work); 4504 4505 /** 4506 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4507 * 4508 * Determine whether %current is a workqueue rescuer. Can be used from 4509 * work functions to determine whether it's being run off the rescuer task. 4510 * 4511 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4512 */ 4513 bool current_is_workqueue_rescuer(void) 4514 { 4515 struct worker *worker = current_wq_worker(); 4516 4517 return worker && worker->rescue_wq; 4518 } 4519 4520 /** 4521 * workqueue_congested - test whether a workqueue is congested 4522 * @cpu: CPU in question 4523 * @wq: target workqueue 4524 * 4525 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4526 * no synchronization around this function and the test result is 4527 * unreliable and only useful as advisory hints or for debugging. 4528 * 4529 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4530 * Note that both per-cpu and unbound workqueues may be associated with 4531 * multiple pool_workqueues which have separate congested states. A 4532 * workqueue being congested on one CPU doesn't mean the workqueue is also 4533 * contested on other CPUs / NUMA nodes. 4534 * 4535 * Return: 4536 * %true if congested, %false otherwise. 4537 */ 4538 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4539 { 4540 struct pool_workqueue *pwq; 4541 bool ret; 4542 4543 rcu_read_lock(); 4544 preempt_disable(); 4545 4546 if (cpu == WORK_CPU_UNBOUND) 4547 cpu = smp_processor_id(); 4548 4549 if (!(wq->flags & WQ_UNBOUND)) 4550 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4551 else 4552 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4553 4554 ret = !list_empty(&pwq->delayed_works); 4555 preempt_enable(); 4556 rcu_read_unlock(); 4557 4558 return ret; 4559 } 4560 EXPORT_SYMBOL_GPL(workqueue_congested); 4561 4562 /** 4563 * work_busy - test whether a work is currently pending or running 4564 * @work: the work to be tested 4565 * 4566 * Test whether @work is currently pending or running. There is no 4567 * synchronization around this function and the test result is 4568 * unreliable and only useful as advisory hints or for debugging. 4569 * 4570 * Return: 4571 * OR'd bitmask of WORK_BUSY_* bits. 4572 */ 4573 unsigned int work_busy(struct work_struct *work) 4574 { 4575 struct worker_pool *pool; 4576 unsigned long flags; 4577 unsigned int ret = 0; 4578 4579 if (work_pending(work)) 4580 ret |= WORK_BUSY_PENDING; 4581 4582 rcu_read_lock(); 4583 pool = get_work_pool(work); 4584 if (pool) { 4585 raw_spin_lock_irqsave(&pool->lock, flags); 4586 if (find_worker_executing_work(pool, work)) 4587 ret |= WORK_BUSY_RUNNING; 4588 raw_spin_unlock_irqrestore(&pool->lock, flags); 4589 } 4590 rcu_read_unlock(); 4591 4592 return ret; 4593 } 4594 EXPORT_SYMBOL_GPL(work_busy); 4595 4596 /** 4597 * set_worker_desc - set description for the current work item 4598 * @fmt: printf-style format string 4599 * @...: arguments for the format string 4600 * 4601 * This function can be called by a running work function to describe what 4602 * the work item is about. If the worker task gets dumped, this 4603 * information will be printed out together to help debugging. The 4604 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4605 */ 4606 void set_worker_desc(const char *fmt, ...) 4607 { 4608 struct worker *worker = current_wq_worker(); 4609 va_list args; 4610 4611 if (worker) { 4612 va_start(args, fmt); 4613 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4614 va_end(args); 4615 } 4616 } 4617 EXPORT_SYMBOL_GPL(set_worker_desc); 4618 4619 /** 4620 * print_worker_info - print out worker information and description 4621 * @log_lvl: the log level to use when printing 4622 * @task: target task 4623 * 4624 * If @task is a worker and currently executing a work item, print out the 4625 * name of the workqueue being serviced and worker description set with 4626 * set_worker_desc() by the currently executing work item. 4627 * 4628 * This function can be safely called on any task as long as the 4629 * task_struct itself is accessible. While safe, this function isn't 4630 * synchronized and may print out mixups or garbages of limited length. 4631 */ 4632 void print_worker_info(const char *log_lvl, struct task_struct *task) 4633 { 4634 work_func_t *fn = NULL; 4635 char name[WQ_NAME_LEN] = { }; 4636 char desc[WORKER_DESC_LEN] = { }; 4637 struct pool_workqueue *pwq = NULL; 4638 struct workqueue_struct *wq = NULL; 4639 struct worker *worker; 4640 4641 if (!(task->flags & PF_WQ_WORKER)) 4642 return; 4643 4644 /* 4645 * This function is called without any synchronization and @task 4646 * could be in any state. Be careful with dereferences. 4647 */ 4648 worker = kthread_probe_data(task); 4649 4650 /* 4651 * Carefully copy the associated workqueue's workfn, name and desc. 4652 * Keep the original last '\0' in case the original is garbage. 4653 */ 4654 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 4655 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 4656 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 4657 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 4658 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 4659 4660 if (fn || name[0] || desc[0]) { 4661 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 4662 if (strcmp(name, desc)) 4663 pr_cont(" (%s)", desc); 4664 pr_cont("\n"); 4665 } 4666 } 4667 4668 static void pr_cont_pool_info(struct worker_pool *pool) 4669 { 4670 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4671 if (pool->node != NUMA_NO_NODE) 4672 pr_cont(" node=%d", pool->node); 4673 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4674 } 4675 4676 static void pr_cont_work(bool comma, struct work_struct *work) 4677 { 4678 if (work->func == wq_barrier_func) { 4679 struct wq_barrier *barr; 4680 4681 barr = container_of(work, struct wq_barrier, work); 4682 4683 pr_cont("%s BAR(%d)", comma ? "," : "", 4684 task_pid_nr(barr->task)); 4685 } else { 4686 pr_cont("%s %ps", comma ? "," : "", work->func); 4687 } 4688 } 4689 4690 static void show_pwq(struct pool_workqueue *pwq) 4691 { 4692 struct worker_pool *pool = pwq->pool; 4693 struct work_struct *work; 4694 struct worker *worker; 4695 bool has_in_flight = false, has_pending = false; 4696 int bkt; 4697 4698 pr_info(" pwq %d:", pool->id); 4699 pr_cont_pool_info(pool); 4700 4701 pr_cont(" active=%d/%d refcnt=%d%s\n", 4702 pwq->nr_active, pwq->max_active, pwq->refcnt, 4703 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4704 4705 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4706 if (worker->current_pwq == pwq) { 4707 has_in_flight = true; 4708 break; 4709 } 4710 } 4711 if (has_in_flight) { 4712 bool comma = false; 4713 4714 pr_info(" in-flight:"); 4715 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4716 if (worker->current_pwq != pwq) 4717 continue; 4718 4719 pr_cont("%s %d%s:%ps", comma ? "," : "", 4720 task_pid_nr(worker->task), 4721 worker->rescue_wq ? "(RESCUER)" : "", 4722 worker->current_func); 4723 list_for_each_entry(work, &worker->scheduled, entry) 4724 pr_cont_work(false, work); 4725 comma = true; 4726 } 4727 pr_cont("\n"); 4728 } 4729 4730 list_for_each_entry(work, &pool->worklist, entry) { 4731 if (get_work_pwq(work) == pwq) { 4732 has_pending = true; 4733 break; 4734 } 4735 } 4736 if (has_pending) { 4737 bool comma = false; 4738 4739 pr_info(" pending:"); 4740 list_for_each_entry(work, &pool->worklist, entry) { 4741 if (get_work_pwq(work) != pwq) 4742 continue; 4743 4744 pr_cont_work(comma, work); 4745 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4746 } 4747 pr_cont("\n"); 4748 } 4749 4750 if (!list_empty(&pwq->delayed_works)) { 4751 bool comma = false; 4752 4753 pr_info(" delayed:"); 4754 list_for_each_entry(work, &pwq->delayed_works, entry) { 4755 pr_cont_work(comma, work); 4756 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4757 } 4758 pr_cont("\n"); 4759 } 4760 } 4761 4762 /** 4763 * show_workqueue_state - dump workqueue state 4764 * 4765 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4766 * all busy workqueues and pools. 4767 */ 4768 void show_workqueue_state(void) 4769 { 4770 struct workqueue_struct *wq; 4771 struct worker_pool *pool; 4772 unsigned long flags; 4773 int pi; 4774 4775 rcu_read_lock(); 4776 4777 pr_info("Showing busy workqueues and worker pools:\n"); 4778 4779 list_for_each_entry_rcu(wq, &workqueues, list) { 4780 struct pool_workqueue *pwq; 4781 bool idle = true; 4782 4783 for_each_pwq(pwq, wq) { 4784 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4785 idle = false; 4786 break; 4787 } 4788 } 4789 if (idle) 4790 continue; 4791 4792 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4793 4794 for_each_pwq(pwq, wq) { 4795 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 4796 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4797 show_pwq(pwq); 4798 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 4799 /* 4800 * We could be printing a lot from atomic context, e.g. 4801 * sysrq-t -> show_workqueue_state(). Avoid triggering 4802 * hard lockup. 4803 */ 4804 touch_nmi_watchdog(); 4805 } 4806 } 4807 4808 for_each_pool(pool, pi) { 4809 struct worker *worker; 4810 bool first = true; 4811 4812 raw_spin_lock_irqsave(&pool->lock, flags); 4813 if (pool->nr_workers == pool->nr_idle) 4814 goto next_pool; 4815 4816 pr_info("pool %d:", pool->id); 4817 pr_cont_pool_info(pool); 4818 pr_cont(" hung=%us workers=%d", 4819 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4820 pool->nr_workers); 4821 if (pool->manager) 4822 pr_cont(" manager: %d", 4823 task_pid_nr(pool->manager->task)); 4824 list_for_each_entry(worker, &pool->idle_list, entry) { 4825 pr_cont(" %s%d", first ? "idle: " : "", 4826 task_pid_nr(worker->task)); 4827 first = false; 4828 } 4829 pr_cont("\n"); 4830 next_pool: 4831 raw_spin_unlock_irqrestore(&pool->lock, flags); 4832 /* 4833 * We could be printing a lot from atomic context, e.g. 4834 * sysrq-t -> show_workqueue_state(). Avoid triggering 4835 * hard lockup. 4836 */ 4837 touch_nmi_watchdog(); 4838 } 4839 4840 rcu_read_unlock(); 4841 } 4842 4843 /* used to show worker information through /proc/PID/{comm,stat,status} */ 4844 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 4845 { 4846 int off; 4847 4848 /* always show the actual comm */ 4849 off = strscpy(buf, task->comm, size); 4850 if (off < 0) 4851 return; 4852 4853 /* stabilize PF_WQ_WORKER and worker pool association */ 4854 mutex_lock(&wq_pool_attach_mutex); 4855 4856 if (task->flags & PF_WQ_WORKER) { 4857 struct worker *worker = kthread_data(task); 4858 struct worker_pool *pool = worker->pool; 4859 4860 if (pool) { 4861 raw_spin_lock_irq(&pool->lock); 4862 /* 4863 * ->desc tracks information (wq name or 4864 * set_worker_desc()) for the latest execution. If 4865 * current, prepend '+', otherwise '-'. 4866 */ 4867 if (worker->desc[0] != '\0') { 4868 if (worker->current_work) 4869 scnprintf(buf + off, size - off, "+%s", 4870 worker->desc); 4871 else 4872 scnprintf(buf + off, size - off, "-%s", 4873 worker->desc); 4874 } 4875 raw_spin_unlock_irq(&pool->lock); 4876 } 4877 } 4878 4879 mutex_unlock(&wq_pool_attach_mutex); 4880 } 4881 4882 #ifdef CONFIG_SMP 4883 4884 /* 4885 * CPU hotplug. 4886 * 4887 * There are two challenges in supporting CPU hotplug. Firstly, there 4888 * are a lot of assumptions on strong associations among work, pwq and 4889 * pool which make migrating pending and scheduled works very 4890 * difficult to implement without impacting hot paths. Secondly, 4891 * worker pools serve mix of short, long and very long running works making 4892 * blocked draining impractical. 4893 * 4894 * This is solved by allowing the pools to be disassociated from the CPU 4895 * running as an unbound one and allowing it to be reattached later if the 4896 * cpu comes back online. 4897 */ 4898 4899 static void unbind_workers(int cpu) 4900 { 4901 struct worker_pool *pool; 4902 struct worker *worker; 4903 4904 for_each_cpu_worker_pool(pool, cpu) { 4905 mutex_lock(&wq_pool_attach_mutex); 4906 raw_spin_lock_irq(&pool->lock); 4907 4908 /* 4909 * We've blocked all attach/detach operations. Make all workers 4910 * unbound and set DISASSOCIATED. Before this, all workers 4911 * except for the ones which are still executing works from 4912 * before the last CPU down must be on the cpu. After 4913 * this, they may become diasporas. 4914 */ 4915 for_each_pool_worker(worker, pool) 4916 worker->flags |= WORKER_UNBOUND; 4917 4918 pool->flags |= POOL_DISASSOCIATED; 4919 4920 raw_spin_unlock_irq(&pool->lock); 4921 4922 for_each_pool_worker(worker, pool) 4923 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_active_mask) < 0); 4924 4925 mutex_unlock(&wq_pool_attach_mutex); 4926 4927 /* 4928 * Call schedule() so that we cross rq->lock and thus can 4929 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4930 * This is necessary as scheduler callbacks may be invoked 4931 * from other cpus. 4932 */ 4933 schedule(); 4934 4935 /* 4936 * Sched callbacks are disabled now. Zap nr_running. 4937 * After this, nr_running stays zero and need_more_worker() 4938 * and keep_working() are always true as long as the 4939 * worklist is not empty. This pool now behaves as an 4940 * unbound (in terms of concurrency management) pool which 4941 * are served by workers tied to the pool. 4942 */ 4943 atomic_set(&pool->nr_running, 0); 4944 4945 /* 4946 * With concurrency management just turned off, a busy 4947 * worker blocking could lead to lengthy stalls. Kick off 4948 * unbound chain execution of currently pending work items. 4949 */ 4950 raw_spin_lock_irq(&pool->lock); 4951 wake_up_worker(pool); 4952 raw_spin_unlock_irq(&pool->lock); 4953 } 4954 } 4955 4956 /** 4957 * rebind_workers - rebind all workers of a pool to the associated CPU 4958 * @pool: pool of interest 4959 * 4960 * @pool->cpu is coming online. Rebind all workers to the CPU. 4961 */ 4962 static void rebind_workers(struct worker_pool *pool) 4963 { 4964 struct worker *worker; 4965 4966 lockdep_assert_held(&wq_pool_attach_mutex); 4967 4968 /* 4969 * Restore CPU affinity of all workers. As all idle workers should 4970 * be on the run-queue of the associated CPU before any local 4971 * wake-ups for concurrency management happen, restore CPU affinity 4972 * of all workers first and then clear UNBOUND. As we're called 4973 * from CPU_ONLINE, the following shouldn't fail. 4974 */ 4975 for_each_pool_worker(worker, pool) 4976 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4977 pool->attrs->cpumask) < 0); 4978 4979 raw_spin_lock_irq(&pool->lock); 4980 4981 pool->flags &= ~POOL_DISASSOCIATED; 4982 4983 for_each_pool_worker(worker, pool) { 4984 unsigned int worker_flags = worker->flags; 4985 4986 /* 4987 * A bound idle worker should actually be on the runqueue 4988 * of the associated CPU for local wake-ups targeting it to 4989 * work. Kick all idle workers so that they migrate to the 4990 * associated CPU. Doing this in the same loop as 4991 * replacing UNBOUND with REBOUND is safe as no worker will 4992 * be bound before @pool->lock is released. 4993 */ 4994 if (worker_flags & WORKER_IDLE) 4995 wake_up_process(worker->task); 4996 4997 /* 4998 * We want to clear UNBOUND but can't directly call 4999 * worker_clr_flags() or adjust nr_running. Atomically 5000 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 5001 * @worker will clear REBOUND using worker_clr_flags() when 5002 * it initiates the next execution cycle thus restoring 5003 * concurrency management. Note that when or whether 5004 * @worker clears REBOUND doesn't affect correctness. 5005 * 5006 * WRITE_ONCE() is necessary because @worker->flags may be 5007 * tested without holding any lock in 5008 * wq_worker_running(). Without it, NOT_RUNNING test may 5009 * fail incorrectly leading to premature concurrency 5010 * management operations. 5011 */ 5012 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 5013 worker_flags |= WORKER_REBOUND; 5014 worker_flags &= ~WORKER_UNBOUND; 5015 WRITE_ONCE(worker->flags, worker_flags); 5016 } 5017 5018 raw_spin_unlock_irq(&pool->lock); 5019 } 5020 5021 /** 5022 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 5023 * @pool: unbound pool of interest 5024 * @cpu: the CPU which is coming up 5025 * 5026 * An unbound pool may end up with a cpumask which doesn't have any online 5027 * CPUs. When a worker of such pool get scheduled, the scheduler resets 5028 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 5029 * online CPU before, cpus_allowed of all its workers should be restored. 5030 */ 5031 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 5032 { 5033 static cpumask_t cpumask; 5034 struct worker *worker; 5035 5036 lockdep_assert_held(&wq_pool_attach_mutex); 5037 5038 /* is @cpu allowed for @pool? */ 5039 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 5040 return; 5041 5042 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 5043 5044 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 5045 for_each_pool_worker(worker, pool) 5046 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 5047 } 5048 5049 int workqueue_prepare_cpu(unsigned int cpu) 5050 { 5051 struct worker_pool *pool; 5052 5053 for_each_cpu_worker_pool(pool, cpu) { 5054 if (pool->nr_workers) 5055 continue; 5056 if (!create_worker(pool)) 5057 return -ENOMEM; 5058 } 5059 return 0; 5060 } 5061 5062 int workqueue_online_cpu(unsigned int cpu) 5063 { 5064 struct worker_pool *pool; 5065 struct workqueue_struct *wq; 5066 int pi; 5067 5068 mutex_lock(&wq_pool_mutex); 5069 5070 for_each_pool(pool, pi) { 5071 mutex_lock(&wq_pool_attach_mutex); 5072 5073 if (pool->cpu == cpu) 5074 rebind_workers(pool); 5075 else if (pool->cpu < 0) 5076 restore_unbound_workers_cpumask(pool, cpu); 5077 5078 mutex_unlock(&wq_pool_attach_mutex); 5079 } 5080 5081 /* update NUMA affinity of unbound workqueues */ 5082 list_for_each_entry(wq, &workqueues, list) 5083 wq_update_unbound_numa(wq, cpu, true); 5084 5085 mutex_unlock(&wq_pool_mutex); 5086 return 0; 5087 } 5088 5089 int workqueue_offline_cpu(unsigned int cpu) 5090 { 5091 struct workqueue_struct *wq; 5092 5093 /* unbinding per-cpu workers should happen on the local CPU */ 5094 if (WARN_ON(cpu != smp_processor_id())) 5095 return -1; 5096 5097 unbind_workers(cpu); 5098 5099 /* update NUMA affinity of unbound workqueues */ 5100 mutex_lock(&wq_pool_mutex); 5101 list_for_each_entry(wq, &workqueues, list) 5102 wq_update_unbound_numa(wq, cpu, false); 5103 mutex_unlock(&wq_pool_mutex); 5104 5105 return 0; 5106 } 5107 5108 struct work_for_cpu { 5109 struct work_struct work; 5110 long (*fn)(void *); 5111 void *arg; 5112 long ret; 5113 }; 5114 5115 static void work_for_cpu_fn(struct work_struct *work) 5116 { 5117 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5118 5119 wfc->ret = wfc->fn(wfc->arg); 5120 } 5121 5122 /** 5123 * work_on_cpu - run a function in thread context on a particular cpu 5124 * @cpu: the cpu to run on 5125 * @fn: the function to run 5126 * @arg: the function arg 5127 * 5128 * It is up to the caller to ensure that the cpu doesn't go offline. 5129 * The caller must not hold any locks which would prevent @fn from completing. 5130 * 5131 * Return: The value @fn returns. 5132 */ 5133 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 5134 { 5135 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5136 5137 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 5138 schedule_work_on(cpu, &wfc.work); 5139 flush_work(&wfc.work); 5140 destroy_work_on_stack(&wfc.work); 5141 return wfc.ret; 5142 } 5143 EXPORT_SYMBOL_GPL(work_on_cpu); 5144 5145 /** 5146 * work_on_cpu_safe - run a function in thread context on a particular cpu 5147 * @cpu: the cpu to run on 5148 * @fn: the function to run 5149 * @arg: the function argument 5150 * 5151 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5152 * any locks which would prevent @fn from completing. 5153 * 5154 * Return: The value @fn returns. 5155 */ 5156 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 5157 { 5158 long ret = -ENODEV; 5159 5160 get_online_cpus(); 5161 if (cpu_online(cpu)) 5162 ret = work_on_cpu(cpu, fn, arg); 5163 put_online_cpus(); 5164 return ret; 5165 } 5166 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 5167 #endif /* CONFIG_SMP */ 5168 5169 #ifdef CONFIG_FREEZER 5170 5171 /** 5172 * freeze_workqueues_begin - begin freezing workqueues 5173 * 5174 * Start freezing workqueues. After this function returns, all freezable 5175 * workqueues will queue new works to their delayed_works list instead of 5176 * pool->worklist. 5177 * 5178 * CONTEXT: 5179 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5180 */ 5181 void freeze_workqueues_begin(void) 5182 { 5183 struct workqueue_struct *wq; 5184 struct pool_workqueue *pwq; 5185 5186 mutex_lock(&wq_pool_mutex); 5187 5188 WARN_ON_ONCE(workqueue_freezing); 5189 workqueue_freezing = true; 5190 5191 list_for_each_entry(wq, &workqueues, list) { 5192 mutex_lock(&wq->mutex); 5193 for_each_pwq(pwq, wq) 5194 pwq_adjust_max_active(pwq); 5195 mutex_unlock(&wq->mutex); 5196 } 5197 5198 mutex_unlock(&wq_pool_mutex); 5199 } 5200 5201 /** 5202 * freeze_workqueues_busy - are freezable workqueues still busy? 5203 * 5204 * Check whether freezing is complete. This function must be called 5205 * between freeze_workqueues_begin() and thaw_workqueues(). 5206 * 5207 * CONTEXT: 5208 * Grabs and releases wq_pool_mutex. 5209 * 5210 * Return: 5211 * %true if some freezable workqueues are still busy. %false if freezing 5212 * is complete. 5213 */ 5214 bool freeze_workqueues_busy(void) 5215 { 5216 bool busy = false; 5217 struct workqueue_struct *wq; 5218 struct pool_workqueue *pwq; 5219 5220 mutex_lock(&wq_pool_mutex); 5221 5222 WARN_ON_ONCE(!workqueue_freezing); 5223 5224 list_for_each_entry(wq, &workqueues, list) { 5225 if (!(wq->flags & WQ_FREEZABLE)) 5226 continue; 5227 /* 5228 * nr_active is monotonically decreasing. It's safe 5229 * to peek without lock. 5230 */ 5231 rcu_read_lock(); 5232 for_each_pwq(pwq, wq) { 5233 WARN_ON_ONCE(pwq->nr_active < 0); 5234 if (pwq->nr_active) { 5235 busy = true; 5236 rcu_read_unlock(); 5237 goto out_unlock; 5238 } 5239 } 5240 rcu_read_unlock(); 5241 } 5242 out_unlock: 5243 mutex_unlock(&wq_pool_mutex); 5244 return busy; 5245 } 5246 5247 /** 5248 * thaw_workqueues - thaw workqueues 5249 * 5250 * Thaw workqueues. Normal queueing is restored and all collected 5251 * frozen works are transferred to their respective pool worklists. 5252 * 5253 * CONTEXT: 5254 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5255 */ 5256 void thaw_workqueues(void) 5257 { 5258 struct workqueue_struct *wq; 5259 struct pool_workqueue *pwq; 5260 5261 mutex_lock(&wq_pool_mutex); 5262 5263 if (!workqueue_freezing) 5264 goto out_unlock; 5265 5266 workqueue_freezing = false; 5267 5268 /* restore max_active and repopulate worklist */ 5269 list_for_each_entry(wq, &workqueues, list) { 5270 mutex_lock(&wq->mutex); 5271 for_each_pwq(pwq, wq) 5272 pwq_adjust_max_active(pwq); 5273 mutex_unlock(&wq->mutex); 5274 } 5275 5276 out_unlock: 5277 mutex_unlock(&wq_pool_mutex); 5278 } 5279 #endif /* CONFIG_FREEZER */ 5280 5281 static int workqueue_apply_unbound_cpumask(void) 5282 { 5283 LIST_HEAD(ctxs); 5284 int ret = 0; 5285 struct workqueue_struct *wq; 5286 struct apply_wqattrs_ctx *ctx, *n; 5287 5288 lockdep_assert_held(&wq_pool_mutex); 5289 5290 list_for_each_entry(wq, &workqueues, list) { 5291 if (!(wq->flags & WQ_UNBOUND)) 5292 continue; 5293 /* creating multiple pwqs breaks ordering guarantee */ 5294 if (wq->flags & __WQ_ORDERED) 5295 continue; 5296 5297 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 5298 if (!ctx) { 5299 ret = -ENOMEM; 5300 break; 5301 } 5302 5303 list_add_tail(&ctx->list, &ctxs); 5304 } 5305 5306 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5307 if (!ret) 5308 apply_wqattrs_commit(ctx); 5309 apply_wqattrs_cleanup(ctx); 5310 } 5311 5312 return ret; 5313 } 5314 5315 /** 5316 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5317 * @cpumask: the cpumask to set 5318 * 5319 * The low-level workqueues cpumask is a global cpumask that limits 5320 * the affinity of all unbound workqueues. This function check the @cpumask 5321 * and apply it to all unbound workqueues and updates all pwqs of them. 5322 * 5323 * Retun: 0 - Success 5324 * -EINVAL - Invalid @cpumask 5325 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5326 */ 5327 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5328 { 5329 int ret = -EINVAL; 5330 cpumask_var_t saved_cpumask; 5331 5332 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 5333 return -ENOMEM; 5334 5335 /* 5336 * Not excluding isolated cpus on purpose. 5337 * If the user wishes to include them, we allow that. 5338 */ 5339 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5340 if (!cpumask_empty(cpumask)) { 5341 apply_wqattrs_lock(); 5342 5343 /* save the old wq_unbound_cpumask. */ 5344 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 5345 5346 /* update wq_unbound_cpumask at first and apply it to wqs. */ 5347 cpumask_copy(wq_unbound_cpumask, cpumask); 5348 ret = workqueue_apply_unbound_cpumask(); 5349 5350 /* restore the wq_unbound_cpumask when failed. */ 5351 if (ret < 0) 5352 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5353 5354 apply_wqattrs_unlock(); 5355 } 5356 5357 free_cpumask_var(saved_cpumask); 5358 return ret; 5359 } 5360 5361 #ifdef CONFIG_SYSFS 5362 /* 5363 * Workqueues with WQ_SYSFS flag set is visible to userland via 5364 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5365 * following attributes. 5366 * 5367 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5368 * max_active RW int : maximum number of in-flight work items 5369 * 5370 * Unbound workqueues have the following extra attributes. 5371 * 5372 * pool_ids RO int : the associated pool IDs for each node 5373 * nice RW int : nice value of the workers 5374 * cpumask RW mask : bitmask of allowed CPUs for the workers 5375 * numa RW bool : whether enable NUMA affinity 5376 */ 5377 struct wq_device { 5378 struct workqueue_struct *wq; 5379 struct device dev; 5380 }; 5381 5382 static struct workqueue_struct *dev_to_wq(struct device *dev) 5383 { 5384 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5385 5386 return wq_dev->wq; 5387 } 5388 5389 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5390 char *buf) 5391 { 5392 struct workqueue_struct *wq = dev_to_wq(dev); 5393 5394 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5395 } 5396 static DEVICE_ATTR_RO(per_cpu); 5397 5398 static ssize_t max_active_show(struct device *dev, 5399 struct device_attribute *attr, char *buf) 5400 { 5401 struct workqueue_struct *wq = dev_to_wq(dev); 5402 5403 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5404 } 5405 5406 static ssize_t max_active_store(struct device *dev, 5407 struct device_attribute *attr, const char *buf, 5408 size_t count) 5409 { 5410 struct workqueue_struct *wq = dev_to_wq(dev); 5411 int val; 5412 5413 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5414 return -EINVAL; 5415 5416 workqueue_set_max_active(wq, val); 5417 return count; 5418 } 5419 static DEVICE_ATTR_RW(max_active); 5420 5421 static struct attribute *wq_sysfs_attrs[] = { 5422 &dev_attr_per_cpu.attr, 5423 &dev_attr_max_active.attr, 5424 NULL, 5425 }; 5426 ATTRIBUTE_GROUPS(wq_sysfs); 5427 5428 static ssize_t wq_pool_ids_show(struct device *dev, 5429 struct device_attribute *attr, char *buf) 5430 { 5431 struct workqueue_struct *wq = dev_to_wq(dev); 5432 const char *delim = ""; 5433 int node, written = 0; 5434 5435 get_online_cpus(); 5436 rcu_read_lock(); 5437 for_each_node(node) { 5438 written += scnprintf(buf + written, PAGE_SIZE - written, 5439 "%s%d:%d", delim, node, 5440 unbound_pwq_by_node(wq, node)->pool->id); 5441 delim = " "; 5442 } 5443 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5444 rcu_read_unlock(); 5445 put_online_cpus(); 5446 5447 return written; 5448 } 5449 5450 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5451 char *buf) 5452 { 5453 struct workqueue_struct *wq = dev_to_wq(dev); 5454 int written; 5455 5456 mutex_lock(&wq->mutex); 5457 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5458 mutex_unlock(&wq->mutex); 5459 5460 return written; 5461 } 5462 5463 /* prepare workqueue_attrs for sysfs store operations */ 5464 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5465 { 5466 struct workqueue_attrs *attrs; 5467 5468 lockdep_assert_held(&wq_pool_mutex); 5469 5470 attrs = alloc_workqueue_attrs(); 5471 if (!attrs) 5472 return NULL; 5473 5474 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5475 return attrs; 5476 } 5477 5478 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5479 const char *buf, size_t count) 5480 { 5481 struct workqueue_struct *wq = dev_to_wq(dev); 5482 struct workqueue_attrs *attrs; 5483 int ret = -ENOMEM; 5484 5485 apply_wqattrs_lock(); 5486 5487 attrs = wq_sysfs_prep_attrs(wq); 5488 if (!attrs) 5489 goto out_unlock; 5490 5491 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5492 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5493 ret = apply_workqueue_attrs_locked(wq, attrs); 5494 else 5495 ret = -EINVAL; 5496 5497 out_unlock: 5498 apply_wqattrs_unlock(); 5499 free_workqueue_attrs(attrs); 5500 return ret ?: count; 5501 } 5502 5503 static ssize_t wq_cpumask_show(struct device *dev, 5504 struct device_attribute *attr, char *buf) 5505 { 5506 struct workqueue_struct *wq = dev_to_wq(dev); 5507 int written; 5508 5509 mutex_lock(&wq->mutex); 5510 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5511 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5512 mutex_unlock(&wq->mutex); 5513 return written; 5514 } 5515 5516 static ssize_t wq_cpumask_store(struct device *dev, 5517 struct device_attribute *attr, 5518 const char *buf, size_t count) 5519 { 5520 struct workqueue_struct *wq = dev_to_wq(dev); 5521 struct workqueue_attrs *attrs; 5522 int ret = -ENOMEM; 5523 5524 apply_wqattrs_lock(); 5525 5526 attrs = wq_sysfs_prep_attrs(wq); 5527 if (!attrs) 5528 goto out_unlock; 5529 5530 ret = cpumask_parse(buf, attrs->cpumask); 5531 if (!ret) 5532 ret = apply_workqueue_attrs_locked(wq, attrs); 5533 5534 out_unlock: 5535 apply_wqattrs_unlock(); 5536 free_workqueue_attrs(attrs); 5537 return ret ?: count; 5538 } 5539 5540 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5541 char *buf) 5542 { 5543 struct workqueue_struct *wq = dev_to_wq(dev); 5544 int written; 5545 5546 mutex_lock(&wq->mutex); 5547 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5548 !wq->unbound_attrs->no_numa); 5549 mutex_unlock(&wq->mutex); 5550 5551 return written; 5552 } 5553 5554 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5555 const char *buf, size_t count) 5556 { 5557 struct workqueue_struct *wq = dev_to_wq(dev); 5558 struct workqueue_attrs *attrs; 5559 int v, ret = -ENOMEM; 5560 5561 apply_wqattrs_lock(); 5562 5563 attrs = wq_sysfs_prep_attrs(wq); 5564 if (!attrs) 5565 goto out_unlock; 5566 5567 ret = -EINVAL; 5568 if (sscanf(buf, "%d", &v) == 1) { 5569 attrs->no_numa = !v; 5570 ret = apply_workqueue_attrs_locked(wq, attrs); 5571 } 5572 5573 out_unlock: 5574 apply_wqattrs_unlock(); 5575 free_workqueue_attrs(attrs); 5576 return ret ?: count; 5577 } 5578 5579 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5580 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5581 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5582 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5583 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5584 __ATTR_NULL, 5585 }; 5586 5587 static struct bus_type wq_subsys = { 5588 .name = "workqueue", 5589 .dev_groups = wq_sysfs_groups, 5590 }; 5591 5592 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5593 struct device_attribute *attr, char *buf) 5594 { 5595 int written; 5596 5597 mutex_lock(&wq_pool_mutex); 5598 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5599 cpumask_pr_args(wq_unbound_cpumask)); 5600 mutex_unlock(&wq_pool_mutex); 5601 5602 return written; 5603 } 5604 5605 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5606 struct device_attribute *attr, const char *buf, size_t count) 5607 { 5608 cpumask_var_t cpumask; 5609 int ret; 5610 5611 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5612 return -ENOMEM; 5613 5614 ret = cpumask_parse(buf, cpumask); 5615 if (!ret) 5616 ret = workqueue_set_unbound_cpumask(cpumask); 5617 5618 free_cpumask_var(cpumask); 5619 return ret ? ret : count; 5620 } 5621 5622 static struct device_attribute wq_sysfs_cpumask_attr = 5623 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5624 wq_unbound_cpumask_store); 5625 5626 static int __init wq_sysfs_init(void) 5627 { 5628 int err; 5629 5630 err = subsys_virtual_register(&wq_subsys, NULL); 5631 if (err) 5632 return err; 5633 5634 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5635 } 5636 core_initcall(wq_sysfs_init); 5637 5638 static void wq_device_release(struct device *dev) 5639 { 5640 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5641 5642 kfree(wq_dev); 5643 } 5644 5645 /** 5646 * workqueue_sysfs_register - make a workqueue visible in sysfs 5647 * @wq: the workqueue to register 5648 * 5649 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5650 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5651 * which is the preferred method. 5652 * 5653 * Workqueue user should use this function directly iff it wants to apply 5654 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5655 * apply_workqueue_attrs() may race against userland updating the 5656 * attributes. 5657 * 5658 * Return: 0 on success, -errno on failure. 5659 */ 5660 int workqueue_sysfs_register(struct workqueue_struct *wq) 5661 { 5662 struct wq_device *wq_dev; 5663 int ret; 5664 5665 /* 5666 * Adjusting max_active or creating new pwqs by applying 5667 * attributes breaks ordering guarantee. Disallow exposing ordered 5668 * workqueues. 5669 */ 5670 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5671 return -EINVAL; 5672 5673 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5674 if (!wq_dev) 5675 return -ENOMEM; 5676 5677 wq_dev->wq = wq; 5678 wq_dev->dev.bus = &wq_subsys; 5679 wq_dev->dev.release = wq_device_release; 5680 dev_set_name(&wq_dev->dev, "%s", wq->name); 5681 5682 /* 5683 * unbound_attrs are created separately. Suppress uevent until 5684 * everything is ready. 5685 */ 5686 dev_set_uevent_suppress(&wq_dev->dev, true); 5687 5688 ret = device_register(&wq_dev->dev); 5689 if (ret) { 5690 put_device(&wq_dev->dev); 5691 wq->wq_dev = NULL; 5692 return ret; 5693 } 5694 5695 if (wq->flags & WQ_UNBOUND) { 5696 struct device_attribute *attr; 5697 5698 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5699 ret = device_create_file(&wq_dev->dev, attr); 5700 if (ret) { 5701 device_unregister(&wq_dev->dev); 5702 wq->wq_dev = NULL; 5703 return ret; 5704 } 5705 } 5706 } 5707 5708 dev_set_uevent_suppress(&wq_dev->dev, false); 5709 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5710 return 0; 5711 } 5712 5713 /** 5714 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5715 * @wq: the workqueue to unregister 5716 * 5717 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5718 */ 5719 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5720 { 5721 struct wq_device *wq_dev = wq->wq_dev; 5722 5723 if (!wq->wq_dev) 5724 return; 5725 5726 wq->wq_dev = NULL; 5727 device_unregister(&wq_dev->dev); 5728 } 5729 #else /* CONFIG_SYSFS */ 5730 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5731 #endif /* CONFIG_SYSFS */ 5732 5733 /* 5734 * Workqueue watchdog. 5735 * 5736 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5737 * flush dependency, a concurrency managed work item which stays RUNNING 5738 * indefinitely. Workqueue stalls can be very difficult to debug as the 5739 * usual warning mechanisms don't trigger and internal workqueue state is 5740 * largely opaque. 5741 * 5742 * Workqueue watchdog monitors all worker pools periodically and dumps 5743 * state if some pools failed to make forward progress for a while where 5744 * forward progress is defined as the first item on ->worklist changing. 5745 * 5746 * This mechanism is controlled through the kernel parameter 5747 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5748 * corresponding sysfs parameter file. 5749 */ 5750 #ifdef CONFIG_WQ_WATCHDOG 5751 5752 static unsigned long wq_watchdog_thresh = 30; 5753 static struct timer_list wq_watchdog_timer; 5754 5755 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5756 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5757 5758 static void wq_watchdog_reset_touched(void) 5759 { 5760 int cpu; 5761 5762 wq_watchdog_touched = jiffies; 5763 for_each_possible_cpu(cpu) 5764 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5765 } 5766 5767 static void wq_watchdog_timer_fn(struct timer_list *unused) 5768 { 5769 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5770 bool lockup_detected = false; 5771 struct worker_pool *pool; 5772 int pi; 5773 5774 if (!thresh) 5775 return; 5776 5777 rcu_read_lock(); 5778 5779 for_each_pool(pool, pi) { 5780 unsigned long pool_ts, touched, ts; 5781 5782 if (list_empty(&pool->worklist)) 5783 continue; 5784 5785 /* get the latest of pool and touched timestamps */ 5786 pool_ts = READ_ONCE(pool->watchdog_ts); 5787 touched = READ_ONCE(wq_watchdog_touched); 5788 5789 if (time_after(pool_ts, touched)) 5790 ts = pool_ts; 5791 else 5792 ts = touched; 5793 5794 if (pool->cpu >= 0) { 5795 unsigned long cpu_touched = 5796 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5797 pool->cpu)); 5798 if (time_after(cpu_touched, ts)) 5799 ts = cpu_touched; 5800 } 5801 5802 /* did we stall? */ 5803 if (time_after(jiffies, ts + thresh)) { 5804 lockup_detected = true; 5805 pr_emerg("BUG: workqueue lockup - pool"); 5806 pr_cont_pool_info(pool); 5807 pr_cont(" stuck for %us!\n", 5808 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5809 } 5810 } 5811 5812 rcu_read_unlock(); 5813 5814 if (lockup_detected) 5815 show_workqueue_state(); 5816 5817 wq_watchdog_reset_touched(); 5818 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5819 } 5820 5821 notrace void wq_watchdog_touch(int cpu) 5822 { 5823 if (cpu >= 0) 5824 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5825 else 5826 wq_watchdog_touched = jiffies; 5827 } 5828 5829 static void wq_watchdog_set_thresh(unsigned long thresh) 5830 { 5831 wq_watchdog_thresh = 0; 5832 del_timer_sync(&wq_watchdog_timer); 5833 5834 if (thresh) { 5835 wq_watchdog_thresh = thresh; 5836 wq_watchdog_reset_touched(); 5837 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5838 } 5839 } 5840 5841 static int wq_watchdog_param_set_thresh(const char *val, 5842 const struct kernel_param *kp) 5843 { 5844 unsigned long thresh; 5845 int ret; 5846 5847 ret = kstrtoul(val, 0, &thresh); 5848 if (ret) 5849 return ret; 5850 5851 if (system_wq) 5852 wq_watchdog_set_thresh(thresh); 5853 else 5854 wq_watchdog_thresh = thresh; 5855 5856 return 0; 5857 } 5858 5859 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5860 .set = wq_watchdog_param_set_thresh, 5861 .get = param_get_ulong, 5862 }; 5863 5864 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5865 0644); 5866 5867 static void wq_watchdog_init(void) 5868 { 5869 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5870 wq_watchdog_set_thresh(wq_watchdog_thresh); 5871 } 5872 5873 #else /* CONFIG_WQ_WATCHDOG */ 5874 5875 static inline void wq_watchdog_init(void) { } 5876 5877 #endif /* CONFIG_WQ_WATCHDOG */ 5878 5879 static void __init wq_numa_init(void) 5880 { 5881 cpumask_var_t *tbl; 5882 int node, cpu; 5883 5884 if (num_possible_nodes() <= 1) 5885 return; 5886 5887 if (wq_disable_numa) { 5888 pr_info("workqueue: NUMA affinity support disabled\n"); 5889 return; 5890 } 5891 5892 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(); 5893 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5894 5895 /* 5896 * We want masks of possible CPUs of each node which isn't readily 5897 * available. Build one from cpu_to_node() which should have been 5898 * fully initialized by now. 5899 */ 5900 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 5901 BUG_ON(!tbl); 5902 5903 for_each_node(node) 5904 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5905 node_online(node) ? node : NUMA_NO_NODE)); 5906 5907 for_each_possible_cpu(cpu) { 5908 node = cpu_to_node(cpu); 5909 if (WARN_ON(node == NUMA_NO_NODE)) { 5910 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5911 /* happens iff arch is bonkers, let's just proceed */ 5912 return; 5913 } 5914 cpumask_set_cpu(cpu, tbl[node]); 5915 } 5916 5917 wq_numa_possible_cpumask = tbl; 5918 wq_numa_enabled = true; 5919 } 5920 5921 /** 5922 * workqueue_init_early - early init for workqueue subsystem 5923 * 5924 * This is the first half of two-staged workqueue subsystem initialization 5925 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5926 * idr are up. It sets up all the data structures and system workqueues 5927 * and allows early boot code to create workqueues and queue/cancel work 5928 * items. Actual work item execution starts only after kthreads can be 5929 * created and scheduled right before early initcalls. 5930 */ 5931 void __init workqueue_init_early(void) 5932 { 5933 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5934 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 5935 int i, cpu; 5936 5937 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5938 5939 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5940 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags)); 5941 5942 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5943 5944 /* initialize CPU pools */ 5945 for_each_possible_cpu(cpu) { 5946 struct worker_pool *pool; 5947 5948 i = 0; 5949 for_each_cpu_worker_pool(pool, cpu) { 5950 BUG_ON(init_worker_pool(pool)); 5951 pool->cpu = cpu; 5952 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5953 pool->attrs->nice = std_nice[i++]; 5954 pool->node = cpu_to_node(cpu); 5955 5956 /* alloc pool ID */ 5957 mutex_lock(&wq_pool_mutex); 5958 BUG_ON(worker_pool_assign_id(pool)); 5959 mutex_unlock(&wq_pool_mutex); 5960 } 5961 } 5962 5963 /* create default unbound and ordered wq attrs */ 5964 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5965 struct workqueue_attrs *attrs; 5966 5967 BUG_ON(!(attrs = alloc_workqueue_attrs())); 5968 attrs->nice = std_nice[i]; 5969 unbound_std_wq_attrs[i] = attrs; 5970 5971 /* 5972 * An ordered wq should have only one pwq as ordering is 5973 * guaranteed by max_active which is enforced by pwqs. 5974 * Turn off NUMA so that dfl_pwq is used for all nodes. 5975 */ 5976 BUG_ON(!(attrs = alloc_workqueue_attrs())); 5977 attrs->nice = std_nice[i]; 5978 attrs->no_numa = true; 5979 ordered_wq_attrs[i] = attrs; 5980 } 5981 5982 system_wq = alloc_workqueue("events", 0, 0); 5983 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5984 system_long_wq = alloc_workqueue("events_long", 0, 0); 5985 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5986 WQ_UNBOUND_MAX_ACTIVE); 5987 system_freezable_wq = alloc_workqueue("events_freezable", 5988 WQ_FREEZABLE, 0); 5989 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5990 WQ_POWER_EFFICIENT, 0); 5991 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5992 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5993 0); 5994 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5995 !system_unbound_wq || !system_freezable_wq || 5996 !system_power_efficient_wq || 5997 !system_freezable_power_efficient_wq); 5998 } 5999 6000 /** 6001 * workqueue_init - bring workqueue subsystem fully online 6002 * 6003 * This is the latter half of two-staged workqueue subsystem initialization 6004 * and invoked as soon as kthreads can be created and scheduled. 6005 * Workqueues have been created and work items queued on them, but there 6006 * are no kworkers executing the work items yet. Populate the worker pools 6007 * with the initial workers and enable future kworker creations. 6008 */ 6009 void __init workqueue_init(void) 6010 { 6011 struct workqueue_struct *wq; 6012 struct worker_pool *pool; 6013 int cpu, bkt; 6014 6015 /* 6016 * It'd be simpler to initialize NUMA in workqueue_init_early() but 6017 * CPU to node mapping may not be available that early on some 6018 * archs such as power and arm64. As per-cpu pools created 6019 * previously could be missing node hint and unbound pools NUMA 6020 * affinity, fix them up. 6021 * 6022 * Also, while iterating workqueues, create rescuers if requested. 6023 */ 6024 wq_numa_init(); 6025 6026 mutex_lock(&wq_pool_mutex); 6027 6028 for_each_possible_cpu(cpu) { 6029 for_each_cpu_worker_pool(pool, cpu) { 6030 pool->node = cpu_to_node(cpu); 6031 } 6032 } 6033 6034 list_for_each_entry(wq, &workqueues, list) { 6035 wq_update_unbound_numa(wq, smp_processor_id(), true); 6036 WARN(init_rescuer(wq), 6037 "workqueue: failed to create early rescuer for %s", 6038 wq->name); 6039 } 6040 6041 mutex_unlock(&wq_pool_mutex); 6042 6043 /* create the initial workers */ 6044 for_each_online_cpu(cpu) { 6045 for_each_cpu_worker_pool(pool, cpu) { 6046 pool->flags &= ~POOL_DISASSOCIATED; 6047 BUG_ON(!create_worker(pool)); 6048 } 6049 } 6050 6051 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 6052 BUG_ON(!create_worker(pool)); 6053 6054 wq_online = true; 6055 wq_watchdog_init(); 6056 } 6057