1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/workqueue.txt for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/kallsyms.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 52 #include "workqueue_internal.h" 53 54 enum { 55 /* 56 * worker_pool flags 57 * 58 * A bound pool is either associated or disassociated with its CPU. 59 * While associated (!DISASSOCIATED), all workers are bound to the 60 * CPU and none has %WORKER_UNBOUND set and concurrency management 61 * is in effect. 62 * 63 * While DISASSOCIATED, the cpu may be offline and all workers have 64 * %WORKER_UNBOUND set and concurrency management disabled, and may 65 * be executing on any CPU. The pool behaves as an unbound one. 66 * 67 * Note that DISASSOCIATED should be flipped only while holding 68 * attach_mutex to avoid changing binding state while 69 * worker_attach_to_pool() is in progress. 70 */ 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 72 73 /* worker flags */ 74 WORKER_DIE = 1 << 1, /* die die die */ 75 WORKER_IDLE = 1 << 2, /* is idle */ 76 WORKER_PREP = 1 << 3, /* preparing to run works */ 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 80 81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 82 WORKER_UNBOUND | WORKER_REBOUND, 83 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 85 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 88 89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 91 92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 93 /* call for help after 10ms 94 (min two ticks) */ 95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 96 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 97 98 /* 99 * Rescue workers are used only on emergencies and shared by 100 * all cpus. Give MIN_NICE. 101 */ 102 RESCUER_NICE_LEVEL = MIN_NICE, 103 HIGHPRI_NICE_LEVEL = MIN_NICE, 104 105 WQ_NAME_LEN = 24, 106 }; 107 108 /* 109 * Structure fields follow one of the following exclusion rules. 110 * 111 * I: Modifiable by initialization/destruction paths and read-only for 112 * everyone else. 113 * 114 * P: Preemption protected. Disabling preemption is enough and should 115 * only be modified and accessed from the local cpu. 116 * 117 * L: pool->lock protected. Access with pool->lock held. 118 * 119 * X: During normal operation, modification requires pool->lock and should 120 * be done only from local cpu. Either disabling preemption on local 121 * cpu or grabbing pool->lock is enough for read access. If 122 * POOL_DISASSOCIATED is set, it's identical to L. 123 * 124 * A: pool->attach_mutex protected. 125 * 126 * PL: wq_pool_mutex protected. 127 * 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 129 * 130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 131 * 132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 133 * sched-RCU for reads. 134 * 135 * WQ: wq->mutex protected. 136 * 137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 138 * 139 * MD: wq_mayday_lock protected. 140 */ 141 142 /* struct worker is defined in workqueue_internal.h */ 143 144 struct worker_pool { 145 spinlock_t lock; /* the pool lock */ 146 int cpu; /* I: the associated cpu */ 147 int node; /* I: the associated node ID */ 148 int id; /* I: pool ID */ 149 unsigned int flags; /* X: flags */ 150 151 unsigned long watchdog_ts; /* L: watchdog timestamp */ 152 153 struct list_head worklist; /* L: list of pending works */ 154 int nr_workers; /* L: total number of workers */ 155 156 /* nr_idle includes the ones off idle_list for rebinding */ 157 int nr_idle; /* L: currently idle ones */ 158 159 struct list_head idle_list; /* X: list of idle workers */ 160 struct timer_list idle_timer; /* L: worker idle timeout */ 161 struct timer_list mayday_timer; /* L: SOS timer for workers */ 162 163 /* a workers is either on busy_hash or idle_list, or the manager */ 164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 165 /* L: hash of busy workers */ 166 167 /* see manage_workers() for details on the two manager mutexes */ 168 struct mutex manager_arb; /* manager arbitration */ 169 struct worker *manager; /* L: purely informational */ 170 struct mutex attach_mutex; /* attach/detach exclusion */ 171 struct list_head workers; /* A: attached workers */ 172 struct completion *detach_completion; /* all workers detached */ 173 174 struct ida worker_ida; /* worker IDs for task name */ 175 176 struct workqueue_attrs *attrs; /* I: worker attributes */ 177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 178 int refcnt; /* PL: refcnt for unbound pools */ 179 180 /* 181 * The current concurrency level. As it's likely to be accessed 182 * from other CPUs during try_to_wake_up(), put it in a separate 183 * cacheline. 184 */ 185 atomic_t nr_running ____cacheline_aligned_in_smp; 186 187 /* 188 * Destruction of pool is sched-RCU protected to allow dereferences 189 * from get_work_pool(). 190 */ 191 struct rcu_head rcu; 192 } ____cacheline_aligned_in_smp; 193 194 /* 195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 196 * of work_struct->data are used for flags and the remaining high bits 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the 198 * number of flag bits. 199 */ 200 struct pool_workqueue { 201 struct worker_pool *pool; /* I: the associated pool */ 202 struct workqueue_struct *wq; /* I: the owning workqueue */ 203 int work_color; /* L: current color */ 204 int flush_color; /* L: flushing color */ 205 int refcnt; /* L: reference count */ 206 int nr_in_flight[WORK_NR_COLORS]; 207 /* L: nr of in_flight works */ 208 int nr_active; /* L: nr of active works */ 209 int max_active; /* L: max active works */ 210 struct list_head delayed_works; /* L: delayed works */ 211 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 212 struct list_head mayday_node; /* MD: node on wq->maydays */ 213 214 /* 215 * Release of unbound pwq is punted to system_wq. See put_pwq() 216 * and pwq_unbound_release_workfn() for details. pool_workqueue 217 * itself is also sched-RCU protected so that the first pwq can be 218 * determined without grabbing wq->mutex. 219 */ 220 struct work_struct unbound_release_work; 221 struct rcu_head rcu; 222 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 223 224 /* 225 * Structure used to wait for workqueue flush. 226 */ 227 struct wq_flusher { 228 struct list_head list; /* WQ: list of flushers */ 229 int flush_color; /* WQ: flush color waiting for */ 230 struct completion done; /* flush completion */ 231 }; 232 233 struct wq_device; 234 235 /* 236 * The externally visible workqueue. It relays the issued work items to 237 * the appropriate worker_pool through its pool_workqueues. 238 */ 239 struct workqueue_struct { 240 struct list_head pwqs; /* WR: all pwqs of this wq */ 241 struct list_head list; /* PR: list of all workqueues */ 242 243 struct mutex mutex; /* protects this wq */ 244 int work_color; /* WQ: current work color */ 245 int flush_color; /* WQ: current flush color */ 246 atomic_t nr_pwqs_to_flush; /* flush in progress */ 247 struct wq_flusher *first_flusher; /* WQ: first flusher */ 248 struct list_head flusher_queue; /* WQ: flush waiters */ 249 struct list_head flusher_overflow; /* WQ: flush overflow list */ 250 251 struct list_head maydays; /* MD: pwqs requesting rescue */ 252 struct worker *rescuer; /* I: rescue worker */ 253 254 int nr_drainers; /* WQ: drain in progress */ 255 int saved_max_active; /* WQ: saved pwq max_active */ 256 257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 259 260 #ifdef CONFIG_SYSFS 261 struct wq_device *wq_dev; /* I: for sysfs interface */ 262 #endif 263 #ifdef CONFIG_LOCKDEP 264 struct lockdep_map lockdep_map; 265 #endif 266 char name[WQ_NAME_LEN]; /* I: workqueue name */ 267 268 /* 269 * Destruction of workqueue_struct is sched-RCU protected to allow 270 * walking the workqueues list without grabbing wq_pool_mutex. 271 * This is used to dump all workqueues from sysrq. 272 */ 273 struct rcu_head rcu; 274 275 /* hot fields used during command issue, aligned to cacheline */ 276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 279 }; 280 281 static struct kmem_cache *pwq_cache; 282 283 static cpumask_var_t *wq_numa_possible_cpumask; 284 /* possible CPUs of each node */ 285 286 static bool wq_disable_numa; 287 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 288 289 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 291 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 292 293 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 294 295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 297 298 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 299 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 300 301 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 302 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 303 304 static cpumask_var_t wq_unbound_cpumask; /* PL: low level cpumask for all unbound wqs */ 305 306 /* the per-cpu worker pools */ 307 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 308 cpu_worker_pools); 309 310 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 311 312 /* PL: hash of all unbound pools keyed by pool->attrs */ 313 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 314 315 /* I: attributes used when instantiating standard unbound pools on demand */ 316 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 317 318 /* I: attributes used when instantiating ordered pools on demand */ 319 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 320 321 struct workqueue_struct *system_wq __read_mostly; 322 EXPORT_SYMBOL(system_wq); 323 struct workqueue_struct *system_highpri_wq __read_mostly; 324 EXPORT_SYMBOL_GPL(system_highpri_wq); 325 struct workqueue_struct *system_long_wq __read_mostly; 326 EXPORT_SYMBOL_GPL(system_long_wq); 327 struct workqueue_struct *system_unbound_wq __read_mostly; 328 EXPORT_SYMBOL_GPL(system_unbound_wq); 329 struct workqueue_struct *system_freezable_wq __read_mostly; 330 EXPORT_SYMBOL_GPL(system_freezable_wq); 331 struct workqueue_struct *system_power_efficient_wq __read_mostly; 332 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 333 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 334 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 335 336 static int worker_thread(void *__worker); 337 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 338 339 #define CREATE_TRACE_POINTS 340 #include <trace/events/workqueue.h> 341 342 #define assert_rcu_or_pool_mutex() \ 343 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 344 !lockdep_is_held(&wq_pool_mutex), \ 345 "sched RCU or wq_pool_mutex should be held") 346 347 #define assert_rcu_or_wq_mutex(wq) \ 348 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 349 !lockdep_is_held(&wq->mutex), \ 350 "sched RCU or wq->mutex should be held") 351 352 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 353 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 354 !lockdep_is_held(&wq->mutex) && \ 355 !lockdep_is_held(&wq_pool_mutex), \ 356 "sched RCU, wq->mutex or wq_pool_mutex should be held") 357 358 #define for_each_cpu_worker_pool(pool, cpu) \ 359 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 360 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 361 (pool)++) 362 363 /** 364 * for_each_pool - iterate through all worker_pools in the system 365 * @pool: iteration cursor 366 * @pi: integer used for iteration 367 * 368 * This must be called either with wq_pool_mutex held or sched RCU read 369 * locked. If the pool needs to be used beyond the locking in effect, the 370 * caller is responsible for guaranteeing that the pool stays online. 371 * 372 * The if/else clause exists only for the lockdep assertion and can be 373 * ignored. 374 */ 375 #define for_each_pool(pool, pi) \ 376 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 377 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 378 else 379 380 /** 381 * for_each_pool_worker - iterate through all workers of a worker_pool 382 * @worker: iteration cursor 383 * @pool: worker_pool to iterate workers of 384 * 385 * This must be called with @pool->attach_mutex. 386 * 387 * The if/else clause exists only for the lockdep assertion and can be 388 * ignored. 389 */ 390 #define for_each_pool_worker(worker, pool) \ 391 list_for_each_entry((worker), &(pool)->workers, node) \ 392 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \ 393 else 394 395 /** 396 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 397 * @pwq: iteration cursor 398 * @wq: the target workqueue 399 * 400 * This must be called either with wq->mutex held or sched RCU read locked. 401 * If the pwq needs to be used beyond the locking in effect, the caller is 402 * responsible for guaranteeing that the pwq stays online. 403 * 404 * The if/else clause exists only for the lockdep assertion and can be 405 * ignored. 406 */ 407 #define for_each_pwq(pwq, wq) \ 408 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 409 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 410 else 411 412 #ifdef CONFIG_DEBUG_OBJECTS_WORK 413 414 static struct debug_obj_descr work_debug_descr; 415 416 static void *work_debug_hint(void *addr) 417 { 418 return ((struct work_struct *) addr)->func; 419 } 420 421 /* 422 * fixup_init is called when: 423 * - an active object is initialized 424 */ 425 static int work_fixup_init(void *addr, enum debug_obj_state state) 426 { 427 struct work_struct *work = addr; 428 429 switch (state) { 430 case ODEBUG_STATE_ACTIVE: 431 cancel_work_sync(work); 432 debug_object_init(work, &work_debug_descr); 433 return 1; 434 default: 435 return 0; 436 } 437 } 438 439 /* 440 * fixup_activate is called when: 441 * - an active object is activated 442 * - an unknown object is activated (might be a statically initialized object) 443 */ 444 static int work_fixup_activate(void *addr, enum debug_obj_state state) 445 { 446 struct work_struct *work = addr; 447 448 switch (state) { 449 450 case ODEBUG_STATE_NOTAVAILABLE: 451 /* 452 * This is not really a fixup. The work struct was 453 * statically initialized. We just make sure that it 454 * is tracked in the object tracker. 455 */ 456 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 457 debug_object_init(work, &work_debug_descr); 458 debug_object_activate(work, &work_debug_descr); 459 return 0; 460 } 461 WARN_ON_ONCE(1); 462 return 0; 463 464 case ODEBUG_STATE_ACTIVE: 465 WARN_ON(1); 466 467 default: 468 return 0; 469 } 470 } 471 472 /* 473 * fixup_free is called when: 474 * - an active object is freed 475 */ 476 static int work_fixup_free(void *addr, enum debug_obj_state state) 477 { 478 struct work_struct *work = addr; 479 480 switch (state) { 481 case ODEBUG_STATE_ACTIVE: 482 cancel_work_sync(work); 483 debug_object_free(work, &work_debug_descr); 484 return 1; 485 default: 486 return 0; 487 } 488 } 489 490 static struct debug_obj_descr work_debug_descr = { 491 .name = "work_struct", 492 .debug_hint = work_debug_hint, 493 .fixup_init = work_fixup_init, 494 .fixup_activate = work_fixup_activate, 495 .fixup_free = work_fixup_free, 496 }; 497 498 static inline void debug_work_activate(struct work_struct *work) 499 { 500 debug_object_activate(work, &work_debug_descr); 501 } 502 503 static inline void debug_work_deactivate(struct work_struct *work) 504 { 505 debug_object_deactivate(work, &work_debug_descr); 506 } 507 508 void __init_work(struct work_struct *work, int onstack) 509 { 510 if (onstack) 511 debug_object_init_on_stack(work, &work_debug_descr); 512 else 513 debug_object_init(work, &work_debug_descr); 514 } 515 EXPORT_SYMBOL_GPL(__init_work); 516 517 void destroy_work_on_stack(struct work_struct *work) 518 { 519 debug_object_free(work, &work_debug_descr); 520 } 521 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 522 523 void destroy_delayed_work_on_stack(struct delayed_work *work) 524 { 525 destroy_timer_on_stack(&work->timer); 526 debug_object_free(&work->work, &work_debug_descr); 527 } 528 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 529 530 #else 531 static inline void debug_work_activate(struct work_struct *work) { } 532 static inline void debug_work_deactivate(struct work_struct *work) { } 533 #endif 534 535 /** 536 * worker_pool_assign_id - allocate ID and assing it to @pool 537 * @pool: the pool pointer of interest 538 * 539 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 540 * successfully, -errno on failure. 541 */ 542 static int worker_pool_assign_id(struct worker_pool *pool) 543 { 544 int ret; 545 546 lockdep_assert_held(&wq_pool_mutex); 547 548 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 549 GFP_KERNEL); 550 if (ret >= 0) { 551 pool->id = ret; 552 return 0; 553 } 554 return ret; 555 } 556 557 /** 558 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 559 * @wq: the target workqueue 560 * @node: the node ID 561 * 562 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU 563 * read locked. 564 * If the pwq needs to be used beyond the locking in effect, the caller is 565 * responsible for guaranteeing that the pwq stays online. 566 * 567 * Return: The unbound pool_workqueue for @node. 568 */ 569 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 570 int node) 571 { 572 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 573 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 574 } 575 576 static unsigned int work_color_to_flags(int color) 577 { 578 return color << WORK_STRUCT_COLOR_SHIFT; 579 } 580 581 static int get_work_color(struct work_struct *work) 582 { 583 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 584 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 585 } 586 587 static int work_next_color(int color) 588 { 589 return (color + 1) % WORK_NR_COLORS; 590 } 591 592 /* 593 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 594 * contain the pointer to the queued pwq. Once execution starts, the flag 595 * is cleared and the high bits contain OFFQ flags and pool ID. 596 * 597 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 598 * and clear_work_data() can be used to set the pwq, pool or clear 599 * work->data. These functions should only be called while the work is 600 * owned - ie. while the PENDING bit is set. 601 * 602 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 603 * corresponding to a work. Pool is available once the work has been 604 * queued anywhere after initialization until it is sync canceled. pwq is 605 * available only while the work item is queued. 606 * 607 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 608 * canceled. While being canceled, a work item may have its PENDING set 609 * but stay off timer and worklist for arbitrarily long and nobody should 610 * try to steal the PENDING bit. 611 */ 612 static inline void set_work_data(struct work_struct *work, unsigned long data, 613 unsigned long flags) 614 { 615 WARN_ON_ONCE(!work_pending(work)); 616 atomic_long_set(&work->data, data | flags | work_static(work)); 617 } 618 619 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 620 unsigned long extra_flags) 621 { 622 set_work_data(work, (unsigned long)pwq, 623 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 624 } 625 626 static void set_work_pool_and_keep_pending(struct work_struct *work, 627 int pool_id) 628 { 629 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 630 WORK_STRUCT_PENDING); 631 } 632 633 static void set_work_pool_and_clear_pending(struct work_struct *work, 634 int pool_id) 635 { 636 /* 637 * The following wmb is paired with the implied mb in 638 * test_and_set_bit(PENDING) and ensures all updates to @work made 639 * here are visible to and precede any updates by the next PENDING 640 * owner. 641 */ 642 smp_wmb(); 643 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 644 } 645 646 static void clear_work_data(struct work_struct *work) 647 { 648 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 649 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 650 } 651 652 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 653 { 654 unsigned long data = atomic_long_read(&work->data); 655 656 if (data & WORK_STRUCT_PWQ) 657 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 658 else 659 return NULL; 660 } 661 662 /** 663 * get_work_pool - return the worker_pool a given work was associated with 664 * @work: the work item of interest 665 * 666 * Pools are created and destroyed under wq_pool_mutex, and allows read 667 * access under sched-RCU read lock. As such, this function should be 668 * called under wq_pool_mutex or with preemption disabled. 669 * 670 * All fields of the returned pool are accessible as long as the above 671 * mentioned locking is in effect. If the returned pool needs to be used 672 * beyond the critical section, the caller is responsible for ensuring the 673 * returned pool is and stays online. 674 * 675 * Return: The worker_pool @work was last associated with. %NULL if none. 676 */ 677 static struct worker_pool *get_work_pool(struct work_struct *work) 678 { 679 unsigned long data = atomic_long_read(&work->data); 680 int pool_id; 681 682 assert_rcu_or_pool_mutex(); 683 684 if (data & WORK_STRUCT_PWQ) 685 return ((struct pool_workqueue *) 686 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 687 688 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 689 if (pool_id == WORK_OFFQ_POOL_NONE) 690 return NULL; 691 692 return idr_find(&worker_pool_idr, pool_id); 693 } 694 695 /** 696 * get_work_pool_id - return the worker pool ID a given work is associated with 697 * @work: the work item of interest 698 * 699 * Return: The worker_pool ID @work was last associated with. 700 * %WORK_OFFQ_POOL_NONE if none. 701 */ 702 static int get_work_pool_id(struct work_struct *work) 703 { 704 unsigned long data = atomic_long_read(&work->data); 705 706 if (data & WORK_STRUCT_PWQ) 707 return ((struct pool_workqueue *) 708 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 709 710 return data >> WORK_OFFQ_POOL_SHIFT; 711 } 712 713 static void mark_work_canceling(struct work_struct *work) 714 { 715 unsigned long pool_id = get_work_pool_id(work); 716 717 pool_id <<= WORK_OFFQ_POOL_SHIFT; 718 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 719 } 720 721 static bool work_is_canceling(struct work_struct *work) 722 { 723 unsigned long data = atomic_long_read(&work->data); 724 725 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 726 } 727 728 /* 729 * Policy functions. These define the policies on how the global worker 730 * pools are managed. Unless noted otherwise, these functions assume that 731 * they're being called with pool->lock held. 732 */ 733 734 static bool __need_more_worker(struct worker_pool *pool) 735 { 736 return !atomic_read(&pool->nr_running); 737 } 738 739 /* 740 * Need to wake up a worker? Called from anything but currently 741 * running workers. 742 * 743 * Note that, because unbound workers never contribute to nr_running, this 744 * function will always return %true for unbound pools as long as the 745 * worklist isn't empty. 746 */ 747 static bool need_more_worker(struct worker_pool *pool) 748 { 749 return !list_empty(&pool->worklist) && __need_more_worker(pool); 750 } 751 752 /* Can I start working? Called from busy but !running workers. */ 753 static bool may_start_working(struct worker_pool *pool) 754 { 755 return pool->nr_idle; 756 } 757 758 /* Do I need to keep working? Called from currently running workers. */ 759 static bool keep_working(struct worker_pool *pool) 760 { 761 return !list_empty(&pool->worklist) && 762 atomic_read(&pool->nr_running) <= 1; 763 } 764 765 /* Do we need a new worker? Called from manager. */ 766 static bool need_to_create_worker(struct worker_pool *pool) 767 { 768 return need_more_worker(pool) && !may_start_working(pool); 769 } 770 771 /* Do we have too many workers and should some go away? */ 772 static bool too_many_workers(struct worker_pool *pool) 773 { 774 bool managing = mutex_is_locked(&pool->manager_arb); 775 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 776 int nr_busy = pool->nr_workers - nr_idle; 777 778 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 779 } 780 781 /* 782 * Wake up functions. 783 */ 784 785 /* Return the first idle worker. Safe with preemption disabled */ 786 static struct worker *first_idle_worker(struct worker_pool *pool) 787 { 788 if (unlikely(list_empty(&pool->idle_list))) 789 return NULL; 790 791 return list_first_entry(&pool->idle_list, struct worker, entry); 792 } 793 794 /** 795 * wake_up_worker - wake up an idle worker 796 * @pool: worker pool to wake worker from 797 * 798 * Wake up the first idle worker of @pool. 799 * 800 * CONTEXT: 801 * spin_lock_irq(pool->lock). 802 */ 803 static void wake_up_worker(struct worker_pool *pool) 804 { 805 struct worker *worker = first_idle_worker(pool); 806 807 if (likely(worker)) 808 wake_up_process(worker->task); 809 } 810 811 /** 812 * wq_worker_waking_up - a worker is waking up 813 * @task: task waking up 814 * @cpu: CPU @task is waking up to 815 * 816 * This function is called during try_to_wake_up() when a worker is 817 * being awoken. 818 * 819 * CONTEXT: 820 * spin_lock_irq(rq->lock) 821 */ 822 void wq_worker_waking_up(struct task_struct *task, int cpu) 823 { 824 struct worker *worker = kthread_data(task); 825 826 if (!(worker->flags & WORKER_NOT_RUNNING)) { 827 WARN_ON_ONCE(worker->pool->cpu != cpu); 828 atomic_inc(&worker->pool->nr_running); 829 } 830 } 831 832 /** 833 * wq_worker_sleeping - a worker is going to sleep 834 * @task: task going to sleep 835 * @cpu: CPU in question, must be the current CPU number 836 * 837 * This function is called during schedule() when a busy worker is 838 * going to sleep. Worker on the same cpu can be woken up by 839 * returning pointer to its task. 840 * 841 * CONTEXT: 842 * spin_lock_irq(rq->lock) 843 * 844 * Return: 845 * Worker task on @cpu to wake up, %NULL if none. 846 */ 847 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu) 848 { 849 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 850 struct worker_pool *pool; 851 852 /* 853 * Rescuers, which may not have all the fields set up like normal 854 * workers, also reach here, let's not access anything before 855 * checking NOT_RUNNING. 856 */ 857 if (worker->flags & WORKER_NOT_RUNNING) 858 return NULL; 859 860 pool = worker->pool; 861 862 /* this can only happen on the local cpu */ 863 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu)) 864 return NULL; 865 866 /* 867 * The counterpart of the following dec_and_test, implied mb, 868 * worklist not empty test sequence is in insert_work(). 869 * Please read comment there. 870 * 871 * NOT_RUNNING is clear. This means that we're bound to and 872 * running on the local cpu w/ rq lock held and preemption 873 * disabled, which in turn means that none else could be 874 * manipulating idle_list, so dereferencing idle_list without pool 875 * lock is safe. 876 */ 877 if (atomic_dec_and_test(&pool->nr_running) && 878 !list_empty(&pool->worklist)) 879 to_wakeup = first_idle_worker(pool); 880 return to_wakeup ? to_wakeup->task : NULL; 881 } 882 883 /** 884 * worker_set_flags - set worker flags and adjust nr_running accordingly 885 * @worker: self 886 * @flags: flags to set 887 * 888 * Set @flags in @worker->flags and adjust nr_running accordingly. 889 * 890 * CONTEXT: 891 * spin_lock_irq(pool->lock) 892 */ 893 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 894 { 895 struct worker_pool *pool = worker->pool; 896 897 WARN_ON_ONCE(worker->task != current); 898 899 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 900 if ((flags & WORKER_NOT_RUNNING) && 901 !(worker->flags & WORKER_NOT_RUNNING)) { 902 atomic_dec(&pool->nr_running); 903 } 904 905 worker->flags |= flags; 906 } 907 908 /** 909 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 910 * @worker: self 911 * @flags: flags to clear 912 * 913 * Clear @flags in @worker->flags and adjust nr_running accordingly. 914 * 915 * CONTEXT: 916 * spin_lock_irq(pool->lock) 917 */ 918 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 919 { 920 struct worker_pool *pool = worker->pool; 921 unsigned int oflags = worker->flags; 922 923 WARN_ON_ONCE(worker->task != current); 924 925 worker->flags &= ~flags; 926 927 /* 928 * If transitioning out of NOT_RUNNING, increment nr_running. Note 929 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 930 * of multiple flags, not a single flag. 931 */ 932 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 933 if (!(worker->flags & WORKER_NOT_RUNNING)) 934 atomic_inc(&pool->nr_running); 935 } 936 937 /** 938 * find_worker_executing_work - find worker which is executing a work 939 * @pool: pool of interest 940 * @work: work to find worker for 941 * 942 * Find a worker which is executing @work on @pool by searching 943 * @pool->busy_hash which is keyed by the address of @work. For a worker 944 * to match, its current execution should match the address of @work and 945 * its work function. This is to avoid unwanted dependency between 946 * unrelated work executions through a work item being recycled while still 947 * being executed. 948 * 949 * This is a bit tricky. A work item may be freed once its execution 950 * starts and nothing prevents the freed area from being recycled for 951 * another work item. If the same work item address ends up being reused 952 * before the original execution finishes, workqueue will identify the 953 * recycled work item as currently executing and make it wait until the 954 * current execution finishes, introducing an unwanted dependency. 955 * 956 * This function checks the work item address and work function to avoid 957 * false positives. Note that this isn't complete as one may construct a 958 * work function which can introduce dependency onto itself through a 959 * recycled work item. Well, if somebody wants to shoot oneself in the 960 * foot that badly, there's only so much we can do, and if such deadlock 961 * actually occurs, it should be easy to locate the culprit work function. 962 * 963 * CONTEXT: 964 * spin_lock_irq(pool->lock). 965 * 966 * Return: 967 * Pointer to worker which is executing @work if found, %NULL 968 * otherwise. 969 */ 970 static struct worker *find_worker_executing_work(struct worker_pool *pool, 971 struct work_struct *work) 972 { 973 struct worker *worker; 974 975 hash_for_each_possible(pool->busy_hash, worker, hentry, 976 (unsigned long)work) 977 if (worker->current_work == work && 978 worker->current_func == work->func) 979 return worker; 980 981 return NULL; 982 } 983 984 /** 985 * move_linked_works - move linked works to a list 986 * @work: start of series of works to be scheduled 987 * @head: target list to append @work to 988 * @nextp: out parameter for nested worklist walking 989 * 990 * Schedule linked works starting from @work to @head. Work series to 991 * be scheduled starts at @work and includes any consecutive work with 992 * WORK_STRUCT_LINKED set in its predecessor. 993 * 994 * If @nextp is not NULL, it's updated to point to the next work of 995 * the last scheduled work. This allows move_linked_works() to be 996 * nested inside outer list_for_each_entry_safe(). 997 * 998 * CONTEXT: 999 * spin_lock_irq(pool->lock). 1000 */ 1001 static void move_linked_works(struct work_struct *work, struct list_head *head, 1002 struct work_struct **nextp) 1003 { 1004 struct work_struct *n; 1005 1006 /* 1007 * Linked worklist will always end before the end of the list, 1008 * use NULL for list head. 1009 */ 1010 list_for_each_entry_safe_from(work, n, NULL, entry) { 1011 list_move_tail(&work->entry, head); 1012 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1013 break; 1014 } 1015 1016 /* 1017 * If we're already inside safe list traversal and have moved 1018 * multiple works to the scheduled queue, the next position 1019 * needs to be updated. 1020 */ 1021 if (nextp) 1022 *nextp = n; 1023 } 1024 1025 /** 1026 * get_pwq - get an extra reference on the specified pool_workqueue 1027 * @pwq: pool_workqueue to get 1028 * 1029 * Obtain an extra reference on @pwq. The caller should guarantee that 1030 * @pwq has positive refcnt and be holding the matching pool->lock. 1031 */ 1032 static void get_pwq(struct pool_workqueue *pwq) 1033 { 1034 lockdep_assert_held(&pwq->pool->lock); 1035 WARN_ON_ONCE(pwq->refcnt <= 0); 1036 pwq->refcnt++; 1037 } 1038 1039 /** 1040 * put_pwq - put a pool_workqueue reference 1041 * @pwq: pool_workqueue to put 1042 * 1043 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1044 * destruction. The caller should be holding the matching pool->lock. 1045 */ 1046 static void put_pwq(struct pool_workqueue *pwq) 1047 { 1048 lockdep_assert_held(&pwq->pool->lock); 1049 if (likely(--pwq->refcnt)) 1050 return; 1051 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1052 return; 1053 /* 1054 * @pwq can't be released under pool->lock, bounce to 1055 * pwq_unbound_release_workfn(). This never recurses on the same 1056 * pool->lock as this path is taken only for unbound workqueues and 1057 * the release work item is scheduled on a per-cpu workqueue. To 1058 * avoid lockdep warning, unbound pool->locks are given lockdep 1059 * subclass of 1 in get_unbound_pool(). 1060 */ 1061 schedule_work(&pwq->unbound_release_work); 1062 } 1063 1064 /** 1065 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1066 * @pwq: pool_workqueue to put (can be %NULL) 1067 * 1068 * put_pwq() with locking. This function also allows %NULL @pwq. 1069 */ 1070 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1071 { 1072 if (pwq) { 1073 /* 1074 * As both pwqs and pools are sched-RCU protected, the 1075 * following lock operations are safe. 1076 */ 1077 spin_lock_irq(&pwq->pool->lock); 1078 put_pwq(pwq); 1079 spin_unlock_irq(&pwq->pool->lock); 1080 } 1081 } 1082 1083 static void pwq_activate_delayed_work(struct work_struct *work) 1084 { 1085 struct pool_workqueue *pwq = get_work_pwq(work); 1086 1087 trace_workqueue_activate_work(work); 1088 if (list_empty(&pwq->pool->worklist)) 1089 pwq->pool->watchdog_ts = jiffies; 1090 move_linked_works(work, &pwq->pool->worklist, NULL); 1091 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1092 pwq->nr_active++; 1093 } 1094 1095 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1096 { 1097 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1098 struct work_struct, entry); 1099 1100 pwq_activate_delayed_work(work); 1101 } 1102 1103 /** 1104 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1105 * @pwq: pwq of interest 1106 * @color: color of work which left the queue 1107 * 1108 * A work either has completed or is removed from pending queue, 1109 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1110 * 1111 * CONTEXT: 1112 * spin_lock_irq(pool->lock). 1113 */ 1114 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1115 { 1116 /* uncolored work items don't participate in flushing or nr_active */ 1117 if (color == WORK_NO_COLOR) 1118 goto out_put; 1119 1120 pwq->nr_in_flight[color]--; 1121 1122 pwq->nr_active--; 1123 if (!list_empty(&pwq->delayed_works)) { 1124 /* one down, submit a delayed one */ 1125 if (pwq->nr_active < pwq->max_active) 1126 pwq_activate_first_delayed(pwq); 1127 } 1128 1129 /* is flush in progress and are we at the flushing tip? */ 1130 if (likely(pwq->flush_color != color)) 1131 goto out_put; 1132 1133 /* are there still in-flight works? */ 1134 if (pwq->nr_in_flight[color]) 1135 goto out_put; 1136 1137 /* this pwq is done, clear flush_color */ 1138 pwq->flush_color = -1; 1139 1140 /* 1141 * If this was the last pwq, wake up the first flusher. It 1142 * will handle the rest. 1143 */ 1144 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1145 complete(&pwq->wq->first_flusher->done); 1146 out_put: 1147 put_pwq(pwq); 1148 } 1149 1150 /** 1151 * try_to_grab_pending - steal work item from worklist and disable irq 1152 * @work: work item to steal 1153 * @is_dwork: @work is a delayed_work 1154 * @flags: place to store irq state 1155 * 1156 * Try to grab PENDING bit of @work. This function can handle @work in any 1157 * stable state - idle, on timer or on worklist. 1158 * 1159 * Return: 1160 * 1 if @work was pending and we successfully stole PENDING 1161 * 0 if @work was idle and we claimed PENDING 1162 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1163 * -ENOENT if someone else is canceling @work, this state may persist 1164 * for arbitrarily long 1165 * 1166 * Note: 1167 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1168 * interrupted while holding PENDING and @work off queue, irq must be 1169 * disabled on entry. This, combined with delayed_work->timer being 1170 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1171 * 1172 * On successful return, >= 0, irq is disabled and the caller is 1173 * responsible for releasing it using local_irq_restore(*@flags). 1174 * 1175 * This function is safe to call from any context including IRQ handler. 1176 */ 1177 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1178 unsigned long *flags) 1179 { 1180 struct worker_pool *pool; 1181 struct pool_workqueue *pwq; 1182 1183 local_irq_save(*flags); 1184 1185 /* try to steal the timer if it exists */ 1186 if (is_dwork) { 1187 struct delayed_work *dwork = to_delayed_work(work); 1188 1189 /* 1190 * dwork->timer is irqsafe. If del_timer() fails, it's 1191 * guaranteed that the timer is not queued anywhere and not 1192 * running on the local CPU. 1193 */ 1194 if (likely(del_timer(&dwork->timer))) 1195 return 1; 1196 } 1197 1198 /* try to claim PENDING the normal way */ 1199 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1200 return 0; 1201 1202 /* 1203 * The queueing is in progress, or it is already queued. Try to 1204 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1205 */ 1206 pool = get_work_pool(work); 1207 if (!pool) 1208 goto fail; 1209 1210 spin_lock(&pool->lock); 1211 /* 1212 * work->data is guaranteed to point to pwq only while the work 1213 * item is queued on pwq->wq, and both updating work->data to point 1214 * to pwq on queueing and to pool on dequeueing are done under 1215 * pwq->pool->lock. This in turn guarantees that, if work->data 1216 * points to pwq which is associated with a locked pool, the work 1217 * item is currently queued on that pool. 1218 */ 1219 pwq = get_work_pwq(work); 1220 if (pwq && pwq->pool == pool) { 1221 debug_work_deactivate(work); 1222 1223 /* 1224 * A delayed work item cannot be grabbed directly because 1225 * it might have linked NO_COLOR work items which, if left 1226 * on the delayed_list, will confuse pwq->nr_active 1227 * management later on and cause stall. Make sure the work 1228 * item is activated before grabbing. 1229 */ 1230 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1231 pwq_activate_delayed_work(work); 1232 1233 list_del_init(&work->entry); 1234 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1235 1236 /* work->data points to pwq iff queued, point to pool */ 1237 set_work_pool_and_keep_pending(work, pool->id); 1238 1239 spin_unlock(&pool->lock); 1240 return 1; 1241 } 1242 spin_unlock(&pool->lock); 1243 fail: 1244 local_irq_restore(*flags); 1245 if (work_is_canceling(work)) 1246 return -ENOENT; 1247 cpu_relax(); 1248 return -EAGAIN; 1249 } 1250 1251 /** 1252 * insert_work - insert a work into a pool 1253 * @pwq: pwq @work belongs to 1254 * @work: work to insert 1255 * @head: insertion point 1256 * @extra_flags: extra WORK_STRUCT_* flags to set 1257 * 1258 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1259 * work_struct flags. 1260 * 1261 * CONTEXT: 1262 * spin_lock_irq(pool->lock). 1263 */ 1264 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1265 struct list_head *head, unsigned int extra_flags) 1266 { 1267 struct worker_pool *pool = pwq->pool; 1268 1269 /* we own @work, set data and link */ 1270 set_work_pwq(work, pwq, extra_flags); 1271 list_add_tail(&work->entry, head); 1272 get_pwq(pwq); 1273 1274 /* 1275 * Ensure either wq_worker_sleeping() sees the above 1276 * list_add_tail() or we see zero nr_running to avoid workers lying 1277 * around lazily while there are works to be processed. 1278 */ 1279 smp_mb(); 1280 1281 if (__need_more_worker(pool)) 1282 wake_up_worker(pool); 1283 } 1284 1285 /* 1286 * Test whether @work is being queued from another work executing on the 1287 * same workqueue. 1288 */ 1289 static bool is_chained_work(struct workqueue_struct *wq) 1290 { 1291 struct worker *worker; 1292 1293 worker = current_wq_worker(); 1294 /* 1295 * Return %true iff I'm a worker execuing a work item on @wq. If 1296 * I'm @worker, it's safe to dereference it without locking. 1297 */ 1298 return worker && worker->current_pwq->wq == wq; 1299 } 1300 1301 static void __queue_work(int cpu, struct workqueue_struct *wq, 1302 struct work_struct *work) 1303 { 1304 struct pool_workqueue *pwq; 1305 struct worker_pool *last_pool; 1306 struct list_head *worklist; 1307 unsigned int work_flags; 1308 unsigned int req_cpu = cpu; 1309 1310 /* 1311 * While a work item is PENDING && off queue, a task trying to 1312 * steal the PENDING will busy-loop waiting for it to either get 1313 * queued or lose PENDING. Grabbing PENDING and queueing should 1314 * happen with IRQ disabled. 1315 */ 1316 WARN_ON_ONCE(!irqs_disabled()); 1317 1318 debug_work_activate(work); 1319 1320 /* if draining, only works from the same workqueue are allowed */ 1321 if (unlikely(wq->flags & __WQ_DRAINING) && 1322 WARN_ON_ONCE(!is_chained_work(wq))) 1323 return; 1324 retry: 1325 if (req_cpu == WORK_CPU_UNBOUND) 1326 cpu = raw_smp_processor_id(); 1327 1328 /* pwq which will be used unless @work is executing elsewhere */ 1329 if (!(wq->flags & WQ_UNBOUND)) 1330 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1331 else 1332 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1333 1334 /* 1335 * If @work was previously on a different pool, it might still be 1336 * running there, in which case the work needs to be queued on that 1337 * pool to guarantee non-reentrancy. 1338 */ 1339 last_pool = get_work_pool(work); 1340 if (last_pool && last_pool != pwq->pool) { 1341 struct worker *worker; 1342 1343 spin_lock(&last_pool->lock); 1344 1345 worker = find_worker_executing_work(last_pool, work); 1346 1347 if (worker && worker->current_pwq->wq == wq) { 1348 pwq = worker->current_pwq; 1349 } else { 1350 /* meh... not running there, queue here */ 1351 spin_unlock(&last_pool->lock); 1352 spin_lock(&pwq->pool->lock); 1353 } 1354 } else { 1355 spin_lock(&pwq->pool->lock); 1356 } 1357 1358 /* 1359 * pwq is determined and locked. For unbound pools, we could have 1360 * raced with pwq release and it could already be dead. If its 1361 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1362 * without another pwq replacing it in the numa_pwq_tbl or while 1363 * work items are executing on it, so the retrying is guaranteed to 1364 * make forward-progress. 1365 */ 1366 if (unlikely(!pwq->refcnt)) { 1367 if (wq->flags & WQ_UNBOUND) { 1368 spin_unlock(&pwq->pool->lock); 1369 cpu_relax(); 1370 goto retry; 1371 } 1372 /* oops */ 1373 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1374 wq->name, cpu); 1375 } 1376 1377 /* pwq determined, queue */ 1378 trace_workqueue_queue_work(req_cpu, pwq, work); 1379 1380 if (WARN_ON(!list_empty(&work->entry))) { 1381 spin_unlock(&pwq->pool->lock); 1382 return; 1383 } 1384 1385 pwq->nr_in_flight[pwq->work_color]++; 1386 work_flags = work_color_to_flags(pwq->work_color); 1387 1388 if (likely(pwq->nr_active < pwq->max_active)) { 1389 trace_workqueue_activate_work(work); 1390 pwq->nr_active++; 1391 worklist = &pwq->pool->worklist; 1392 if (list_empty(worklist)) 1393 pwq->pool->watchdog_ts = jiffies; 1394 } else { 1395 work_flags |= WORK_STRUCT_DELAYED; 1396 worklist = &pwq->delayed_works; 1397 } 1398 1399 insert_work(pwq, work, worklist, work_flags); 1400 1401 spin_unlock(&pwq->pool->lock); 1402 } 1403 1404 /** 1405 * queue_work_on - queue work on specific cpu 1406 * @cpu: CPU number to execute work on 1407 * @wq: workqueue to use 1408 * @work: work to queue 1409 * 1410 * We queue the work to a specific CPU, the caller must ensure it 1411 * can't go away. 1412 * 1413 * Return: %false if @work was already on a queue, %true otherwise. 1414 */ 1415 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1416 struct work_struct *work) 1417 { 1418 bool ret = false; 1419 unsigned long flags; 1420 1421 local_irq_save(flags); 1422 1423 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1424 __queue_work(cpu, wq, work); 1425 ret = true; 1426 } 1427 1428 local_irq_restore(flags); 1429 return ret; 1430 } 1431 EXPORT_SYMBOL(queue_work_on); 1432 1433 void delayed_work_timer_fn(unsigned long __data) 1434 { 1435 struct delayed_work *dwork = (struct delayed_work *)__data; 1436 1437 /* should have been called from irqsafe timer with irq already off */ 1438 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1439 } 1440 EXPORT_SYMBOL(delayed_work_timer_fn); 1441 1442 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1443 struct delayed_work *dwork, unsigned long delay) 1444 { 1445 struct timer_list *timer = &dwork->timer; 1446 struct work_struct *work = &dwork->work; 1447 1448 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1449 timer->data != (unsigned long)dwork); 1450 WARN_ON_ONCE(timer_pending(timer)); 1451 WARN_ON_ONCE(!list_empty(&work->entry)); 1452 1453 /* 1454 * If @delay is 0, queue @dwork->work immediately. This is for 1455 * both optimization and correctness. The earliest @timer can 1456 * expire is on the closest next tick and delayed_work users depend 1457 * on that there's no such delay when @delay is 0. 1458 */ 1459 if (!delay) { 1460 __queue_work(cpu, wq, &dwork->work); 1461 return; 1462 } 1463 1464 timer_stats_timer_set_start_info(&dwork->timer); 1465 1466 dwork->wq = wq; 1467 /* timer isn't guaranteed to run in this cpu, record earlier */ 1468 if (cpu == WORK_CPU_UNBOUND) 1469 cpu = raw_smp_processor_id(); 1470 dwork->cpu = cpu; 1471 timer->expires = jiffies + delay; 1472 1473 add_timer_on(timer, cpu); 1474 } 1475 1476 /** 1477 * queue_delayed_work_on - queue work on specific CPU after delay 1478 * @cpu: CPU number to execute work on 1479 * @wq: workqueue to use 1480 * @dwork: work to queue 1481 * @delay: number of jiffies to wait before queueing 1482 * 1483 * Return: %false if @work was already on a queue, %true otherwise. If 1484 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1485 * execution. 1486 */ 1487 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1488 struct delayed_work *dwork, unsigned long delay) 1489 { 1490 struct work_struct *work = &dwork->work; 1491 bool ret = false; 1492 unsigned long flags; 1493 1494 /* read the comment in __queue_work() */ 1495 local_irq_save(flags); 1496 1497 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1498 __queue_delayed_work(cpu, wq, dwork, delay); 1499 ret = true; 1500 } 1501 1502 local_irq_restore(flags); 1503 return ret; 1504 } 1505 EXPORT_SYMBOL(queue_delayed_work_on); 1506 1507 /** 1508 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1509 * @cpu: CPU number to execute work on 1510 * @wq: workqueue to use 1511 * @dwork: work to queue 1512 * @delay: number of jiffies to wait before queueing 1513 * 1514 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1515 * modify @dwork's timer so that it expires after @delay. If @delay is 1516 * zero, @work is guaranteed to be scheduled immediately regardless of its 1517 * current state. 1518 * 1519 * Return: %false if @dwork was idle and queued, %true if @dwork was 1520 * pending and its timer was modified. 1521 * 1522 * This function is safe to call from any context including IRQ handler. 1523 * See try_to_grab_pending() for details. 1524 */ 1525 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1526 struct delayed_work *dwork, unsigned long delay) 1527 { 1528 unsigned long flags; 1529 int ret; 1530 1531 do { 1532 ret = try_to_grab_pending(&dwork->work, true, &flags); 1533 } while (unlikely(ret == -EAGAIN)); 1534 1535 if (likely(ret >= 0)) { 1536 __queue_delayed_work(cpu, wq, dwork, delay); 1537 local_irq_restore(flags); 1538 } 1539 1540 /* -ENOENT from try_to_grab_pending() becomes %true */ 1541 return ret; 1542 } 1543 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1544 1545 /** 1546 * worker_enter_idle - enter idle state 1547 * @worker: worker which is entering idle state 1548 * 1549 * @worker is entering idle state. Update stats and idle timer if 1550 * necessary. 1551 * 1552 * LOCKING: 1553 * spin_lock_irq(pool->lock). 1554 */ 1555 static void worker_enter_idle(struct worker *worker) 1556 { 1557 struct worker_pool *pool = worker->pool; 1558 1559 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1560 WARN_ON_ONCE(!list_empty(&worker->entry) && 1561 (worker->hentry.next || worker->hentry.pprev))) 1562 return; 1563 1564 /* can't use worker_set_flags(), also called from create_worker() */ 1565 worker->flags |= WORKER_IDLE; 1566 pool->nr_idle++; 1567 worker->last_active = jiffies; 1568 1569 /* idle_list is LIFO */ 1570 list_add(&worker->entry, &pool->idle_list); 1571 1572 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1573 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1574 1575 /* 1576 * Sanity check nr_running. Because wq_unbind_fn() releases 1577 * pool->lock between setting %WORKER_UNBOUND and zapping 1578 * nr_running, the warning may trigger spuriously. Check iff 1579 * unbind is not in progress. 1580 */ 1581 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1582 pool->nr_workers == pool->nr_idle && 1583 atomic_read(&pool->nr_running)); 1584 } 1585 1586 /** 1587 * worker_leave_idle - leave idle state 1588 * @worker: worker which is leaving idle state 1589 * 1590 * @worker is leaving idle state. Update stats. 1591 * 1592 * LOCKING: 1593 * spin_lock_irq(pool->lock). 1594 */ 1595 static void worker_leave_idle(struct worker *worker) 1596 { 1597 struct worker_pool *pool = worker->pool; 1598 1599 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1600 return; 1601 worker_clr_flags(worker, WORKER_IDLE); 1602 pool->nr_idle--; 1603 list_del_init(&worker->entry); 1604 } 1605 1606 static struct worker *alloc_worker(int node) 1607 { 1608 struct worker *worker; 1609 1610 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1611 if (worker) { 1612 INIT_LIST_HEAD(&worker->entry); 1613 INIT_LIST_HEAD(&worker->scheduled); 1614 INIT_LIST_HEAD(&worker->node); 1615 /* on creation a worker is in !idle && prep state */ 1616 worker->flags = WORKER_PREP; 1617 } 1618 return worker; 1619 } 1620 1621 /** 1622 * worker_attach_to_pool() - attach a worker to a pool 1623 * @worker: worker to be attached 1624 * @pool: the target pool 1625 * 1626 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1627 * cpu-binding of @worker are kept coordinated with the pool across 1628 * cpu-[un]hotplugs. 1629 */ 1630 static void worker_attach_to_pool(struct worker *worker, 1631 struct worker_pool *pool) 1632 { 1633 mutex_lock(&pool->attach_mutex); 1634 1635 /* 1636 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1637 * online CPUs. It'll be re-applied when any of the CPUs come up. 1638 */ 1639 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1640 1641 /* 1642 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains 1643 * stable across this function. See the comments above the 1644 * flag definition for details. 1645 */ 1646 if (pool->flags & POOL_DISASSOCIATED) 1647 worker->flags |= WORKER_UNBOUND; 1648 1649 list_add_tail(&worker->node, &pool->workers); 1650 1651 mutex_unlock(&pool->attach_mutex); 1652 } 1653 1654 /** 1655 * worker_detach_from_pool() - detach a worker from its pool 1656 * @worker: worker which is attached to its pool 1657 * @pool: the pool @worker is attached to 1658 * 1659 * Undo the attaching which had been done in worker_attach_to_pool(). The 1660 * caller worker shouldn't access to the pool after detached except it has 1661 * other reference to the pool. 1662 */ 1663 static void worker_detach_from_pool(struct worker *worker, 1664 struct worker_pool *pool) 1665 { 1666 struct completion *detach_completion = NULL; 1667 1668 mutex_lock(&pool->attach_mutex); 1669 list_del(&worker->node); 1670 if (list_empty(&pool->workers)) 1671 detach_completion = pool->detach_completion; 1672 mutex_unlock(&pool->attach_mutex); 1673 1674 /* clear leftover flags without pool->lock after it is detached */ 1675 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1676 1677 if (detach_completion) 1678 complete(detach_completion); 1679 } 1680 1681 /** 1682 * create_worker - create a new workqueue worker 1683 * @pool: pool the new worker will belong to 1684 * 1685 * Create and start a new worker which is attached to @pool. 1686 * 1687 * CONTEXT: 1688 * Might sleep. Does GFP_KERNEL allocations. 1689 * 1690 * Return: 1691 * Pointer to the newly created worker. 1692 */ 1693 static struct worker *create_worker(struct worker_pool *pool) 1694 { 1695 struct worker *worker = NULL; 1696 int id = -1; 1697 char id_buf[16]; 1698 1699 /* ID is needed to determine kthread name */ 1700 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1701 if (id < 0) 1702 goto fail; 1703 1704 worker = alloc_worker(pool->node); 1705 if (!worker) 1706 goto fail; 1707 1708 worker->pool = pool; 1709 worker->id = id; 1710 1711 if (pool->cpu >= 0) 1712 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1713 pool->attrs->nice < 0 ? "H" : ""); 1714 else 1715 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1716 1717 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1718 "kworker/%s", id_buf); 1719 if (IS_ERR(worker->task)) 1720 goto fail; 1721 1722 set_user_nice(worker->task, pool->attrs->nice); 1723 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1724 1725 /* successful, attach the worker to the pool */ 1726 worker_attach_to_pool(worker, pool); 1727 1728 /* start the newly created worker */ 1729 spin_lock_irq(&pool->lock); 1730 worker->pool->nr_workers++; 1731 worker_enter_idle(worker); 1732 wake_up_process(worker->task); 1733 spin_unlock_irq(&pool->lock); 1734 1735 return worker; 1736 1737 fail: 1738 if (id >= 0) 1739 ida_simple_remove(&pool->worker_ida, id); 1740 kfree(worker); 1741 return NULL; 1742 } 1743 1744 /** 1745 * destroy_worker - destroy a workqueue worker 1746 * @worker: worker to be destroyed 1747 * 1748 * Destroy @worker and adjust @pool stats accordingly. The worker should 1749 * be idle. 1750 * 1751 * CONTEXT: 1752 * spin_lock_irq(pool->lock). 1753 */ 1754 static void destroy_worker(struct worker *worker) 1755 { 1756 struct worker_pool *pool = worker->pool; 1757 1758 lockdep_assert_held(&pool->lock); 1759 1760 /* sanity check frenzy */ 1761 if (WARN_ON(worker->current_work) || 1762 WARN_ON(!list_empty(&worker->scheduled)) || 1763 WARN_ON(!(worker->flags & WORKER_IDLE))) 1764 return; 1765 1766 pool->nr_workers--; 1767 pool->nr_idle--; 1768 1769 list_del_init(&worker->entry); 1770 worker->flags |= WORKER_DIE; 1771 wake_up_process(worker->task); 1772 } 1773 1774 static void idle_worker_timeout(unsigned long __pool) 1775 { 1776 struct worker_pool *pool = (void *)__pool; 1777 1778 spin_lock_irq(&pool->lock); 1779 1780 while (too_many_workers(pool)) { 1781 struct worker *worker; 1782 unsigned long expires; 1783 1784 /* idle_list is kept in LIFO order, check the last one */ 1785 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1786 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1787 1788 if (time_before(jiffies, expires)) { 1789 mod_timer(&pool->idle_timer, expires); 1790 break; 1791 } 1792 1793 destroy_worker(worker); 1794 } 1795 1796 spin_unlock_irq(&pool->lock); 1797 } 1798 1799 static void send_mayday(struct work_struct *work) 1800 { 1801 struct pool_workqueue *pwq = get_work_pwq(work); 1802 struct workqueue_struct *wq = pwq->wq; 1803 1804 lockdep_assert_held(&wq_mayday_lock); 1805 1806 if (!wq->rescuer) 1807 return; 1808 1809 /* mayday mayday mayday */ 1810 if (list_empty(&pwq->mayday_node)) { 1811 /* 1812 * If @pwq is for an unbound wq, its base ref may be put at 1813 * any time due to an attribute change. Pin @pwq until the 1814 * rescuer is done with it. 1815 */ 1816 get_pwq(pwq); 1817 list_add_tail(&pwq->mayday_node, &wq->maydays); 1818 wake_up_process(wq->rescuer->task); 1819 } 1820 } 1821 1822 static void pool_mayday_timeout(unsigned long __pool) 1823 { 1824 struct worker_pool *pool = (void *)__pool; 1825 struct work_struct *work; 1826 1827 spin_lock_irq(&pool->lock); 1828 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 1829 1830 if (need_to_create_worker(pool)) { 1831 /* 1832 * We've been trying to create a new worker but 1833 * haven't been successful. We might be hitting an 1834 * allocation deadlock. Send distress signals to 1835 * rescuers. 1836 */ 1837 list_for_each_entry(work, &pool->worklist, entry) 1838 send_mayday(work); 1839 } 1840 1841 spin_unlock(&wq_mayday_lock); 1842 spin_unlock_irq(&pool->lock); 1843 1844 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1845 } 1846 1847 /** 1848 * maybe_create_worker - create a new worker if necessary 1849 * @pool: pool to create a new worker for 1850 * 1851 * Create a new worker for @pool if necessary. @pool is guaranteed to 1852 * have at least one idle worker on return from this function. If 1853 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1854 * sent to all rescuers with works scheduled on @pool to resolve 1855 * possible allocation deadlock. 1856 * 1857 * On return, need_to_create_worker() is guaranteed to be %false and 1858 * may_start_working() %true. 1859 * 1860 * LOCKING: 1861 * spin_lock_irq(pool->lock) which may be released and regrabbed 1862 * multiple times. Does GFP_KERNEL allocations. Called only from 1863 * manager. 1864 */ 1865 static void maybe_create_worker(struct worker_pool *pool) 1866 __releases(&pool->lock) 1867 __acquires(&pool->lock) 1868 { 1869 restart: 1870 spin_unlock_irq(&pool->lock); 1871 1872 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1873 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1874 1875 while (true) { 1876 if (create_worker(pool) || !need_to_create_worker(pool)) 1877 break; 1878 1879 schedule_timeout_interruptible(CREATE_COOLDOWN); 1880 1881 if (!need_to_create_worker(pool)) 1882 break; 1883 } 1884 1885 del_timer_sync(&pool->mayday_timer); 1886 spin_lock_irq(&pool->lock); 1887 /* 1888 * This is necessary even after a new worker was just successfully 1889 * created as @pool->lock was dropped and the new worker might have 1890 * already become busy. 1891 */ 1892 if (need_to_create_worker(pool)) 1893 goto restart; 1894 } 1895 1896 /** 1897 * manage_workers - manage worker pool 1898 * @worker: self 1899 * 1900 * Assume the manager role and manage the worker pool @worker belongs 1901 * to. At any given time, there can be only zero or one manager per 1902 * pool. The exclusion is handled automatically by this function. 1903 * 1904 * The caller can safely start processing works on false return. On 1905 * true return, it's guaranteed that need_to_create_worker() is false 1906 * and may_start_working() is true. 1907 * 1908 * CONTEXT: 1909 * spin_lock_irq(pool->lock) which may be released and regrabbed 1910 * multiple times. Does GFP_KERNEL allocations. 1911 * 1912 * Return: 1913 * %false if the pool doesn't need management and the caller can safely 1914 * start processing works, %true if management function was performed and 1915 * the conditions that the caller verified before calling the function may 1916 * no longer be true. 1917 */ 1918 static bool manage_workers(struct worker *worker) 1919 { 1920 struct worker_pool *pool = worker->pool; 1921 1922 /* 1923 * Anyone who successfully grabs manager_arb wins the arbitration 1924 * and becomes the manager. mutex_trylock() on pool->manager_arb 1925 * failure while holding pool->lock reliably indicates that someone 1926 * else is managing the pool and the worker which failed trylock 1927 * can proceed to executing work items. This means that anyone 1928 * grabbing manager_arb is responsible for actually performing 1929 * manager duties. If manager_arb is grabbed and released without 1930 * actual management, the pool may stall indefinitely. 1931 */ 1932 if (!mutex_trylock(&pool->manager_arb)) 1933 return false; 1934 pool->manager = worker; 1935 1936 maybe_create_worker(pool); 1937 1938 pool->manager = NULL; 1939 mutex_unlock(&pool->manager_arb); 1940 return true; 1941 } 1942 1943 /** 1944 * process_one_work - process single work 1945 * @worker: self 1946 * @work: work to process 1947 * 1948 * Process @work. This function contains all the logics necessary to 1949 * process a single work including synchronization against and 1950 * interaction with other workers on the same cpu, queueing and 1951 * flushing. As long as context requirement is met, any worker can 1952 * call this function to process a work. 1953 * 1954 * CONTEXT: 1955 * spin_lock_irq(pool->lock) which is released and regrabbed. 1956 */ 1957 static void process_one_work(struct worker *worker, struct work_struct *work) 1958 __releases(&pool->lock) 1959 __acquires(&pool->lock) 1960 { 1961 struct pool_workqueue *pwq = get_work_pwq(work); 1962 struct worker_pool *pool = worker->pool; 1963 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 1964 int work_color; 1965 struct worker *collision; 1966 #ifdef CONFIG_LOCKDEP 1967 /* 1968 * It is permissible to free the struct work_struct from 1969 * inside the function that is called from it, this we need to 1970 * take into account for lockdep too. To avoid bogus "held 1971 * lock freed" warnings as well as problems when looking into 1972 * work->lockdep_map, make a copy and use that here. 1973 */ 1974 struct lockdep_map lockdep_map; 1975 1976 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 1977 #endif 1978 /* ensure we're on the correct CPU */ 1979 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1980 raw_smp_processor_id() != pool->cpu); 1981 1982 /* 1983 * A single work shouldn't be executed concurrently by 1984 * multiple workers on a single cpu. Check whether anyone is 1985 * already processing the work. If so, defer the work to the 1986 * currently executing one. 1987 */ 1988 collision = find_worker_executing_work(pool, work); 1989 if (unlikely(collision)) { 1990 move_linked_works(work, &collision->scheduled, NULL); 1991 return; 1992 } 1993 1994 /* claim and dequeue */ 1995 debug_work_deactivate(work); 1996 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 1997 worker->current_work = work; 1998 worker->current_func = work->func; 1999 worker->current_pwq = pwq; 2000 work_color = get_work_color(work); 2001 2002 list_del_init(&work->entry); 2003 2004 /* 2005 * CPU intensive works don't participate in concurrency management. 2006 * They're the scheduler's responsibility. This takes @worker out 2007 * of concurrency management and the next code block will chain 2008 * execution of the pending work items. 2009 */ 2010 if (unlikely(cpu_intensive)) 2011 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2012 2013 /* 2014 * Wake up another worker if necessary. The condition is always 2015 * false for normal per-cpu workers since nr_running would always 2016 * be >= 1 at this point. This is used to chain execution of the 2017 * pending work items for WORKER_NOT_RUNNING workers such as the 2018 * UNBOUND and CPU_INTENSIVE ones. 2019 */ 2020 if (need_more_worker(pool)) 2021 wake_up_worker(pool); 2022 2023 /* 2024 * Record the last pool and clear PENDING which should be the last 2025 * update to @work. Also, do this inside @pool->lock so that 2026 * PENDING and queued state changes happen together while IRQ is 2027 * disabled. 2028 */ 2029 set_work_pool_and_clear_pending(work, pool->id); 2030 2031 spin_unlock_irq(&pool->lock); 2032 2033 lock_map_acquire_read(&pwq->wq->lockdep_map); 2034 lock_map_acquire(&lockdep_map); 2035 trace_workqueue_execute_start(work); 2036 worker->current_func(work); 2037 /* 2038 * While we must be careful to not use "work" after this, the trace 2039 * point will only record its address. 2040 */ 2041 trace_workqueue_execute_end(work); 2042 lock_map_release(&lockdep_map); 2043 lock_map_release(&pwq->wq->lockdep_map); 2044 2045 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2046 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2047 " last function: %pf\n", 2048 current->comm, preempt_count(), task_pid_nr(current), 2049 worker->current_func); 2050 debug_show_held_locks(current); 2051 dump_stack(); 2052 } 2053 2054 /* 2055 * The following prevents a kworker from hogging CPU on !PREEMPT 2056 * kernels, where a requeueing work item waiting for something to 2057 * happen could deadlock with stop_machine as such work item could 2058 * indefinitely requeue itself while all other CPUs are trapped in 2059 * stop_machine. At the same time, report a quiescent RCU state so 2060 * the same condition doesn't freeze RCU. 2061 */ 2062 cond_resched_rcu_qs(); 2063 2064 spin_lock_irq(&pool->lock); 2065 2066 /* clear cpu intensive status */ 2067 if (unlikely(cpu_intensive)) 2068 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2069 2070 /* we're done with it, release */ 2071 hash_del(&worker->hentry); 2072 worker->current_work = NULL; 2073 worker->current_func = NULL; 2074 worker->current_pwq = NULL; 2075 worker->desc_valid = false; 2076 pwq_dec_nr_in_flight(pwq, work_color); 2077 } 2078 2079 /** 2080 * process_scheduled_works - process scheduled works 2081 * @worker: self 2082 * 2083 * Process all scheduled works. Please note that the scheduled list 2084 * may change while processing a work, so this function repeatedly 2085 * fetches a work from the top and executes it. 2086 * 2087 * CONTEXT: 2088 * spin_lock_irq(pool->lock) which may be released and regrabbed 2089 * multiple times. 2090 */ 2091 static void process_scheduled_works(struct worker *worker) 2092 { 2093 while (!list_empty(&worker->scheduled)) { 2094 struct work_struct *work = list_first_entry(&worker->scheduled, 2095 struct work_struct, entry); 2096 process_one_work(worker, work); 2097 } 2098 } 2099 2100 /** 2101 * worker_thread - the worker thread function 2102 * @__worker: self 2103 * 2104 * The worker thread function. All workers belong to a worker_pool - 2105 * either a per-cpu one or dynamic unbound one. These workers process all 2106 * work items regardless of their specific target workqueue. The only 2107 * exception is work items which belong to workqueues with a rescuer which 2108 * will be explained in rescuer_thread(). 2109 * 2110 * Return: 0 2111 */ 2112 static int worker_thread(void *__worker) 2113 { 2114 struct worker *worker = __worker; 2115 struct worker_pool *pool = worker->pool; 2116 2117 /* tell the scheduler that this is a workqueue worker */ 2118 worker->task->flags |= PF_WQ_WORKER; 2119 woke_up: 2120 spin_lock_irq(&pool->lock); 2121 2122 /* am I supposed to die? */ 2123 if (unlikely(worker->flags & WORKER_DIE)) { 2124 spin_unlock_irq(&pool->lock); 2125 WARN_ON_ONCE(!list_empty(&worker->entry)); 2126 worker->task->flags &= ~PF_WQ_WORKER; 2127 2128 set_task_comm(worker->task, "kworker/dying"); 2129 ida_simple_remove(&pool->worker_ida, worker->id); 2130 worker_detach_from_pool(worker, pool); 2131 kfree(worker); 2132 return 0; 2133 } 2134 2135 worker_leave_idle(worker); 2136 recheck: 2137 /* no more worker necessary? */ 2138 if (!need_more_worker(pool)) 2139 goto sleep; 2140 2141 /* do we need to manage? */ 2142 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2143 goto recheck; 2144 2145 /* 2146 * ->scheduled list can only be filled while a worker is 2147 * preparing to process a work or actually processing it. 2148 * Make sure nobody diddled with it while I was sleeping. 2149 */ 2150 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2151 2152 /* 2153 * Finish PREP stage. We're guaranteed to have at least one idle 2154 * worker or that someone else has already assumed the manager 2155 * role. This is where @worker starts participating in concurrency 2156 * management if applicable and concurrency management is restored 2157 * after being rebound. See rebind_workers() for details. 2158 */ 2159 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2160 2161 do { 2162 struct work_struct *work = 2163 list_first_entry(&pool->worklist, 2164 struct work_struct, entry); 2165 2166 pool->watchdog_ts = jiffies; 2167 2168 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2169 /* optimization path, not strictly necessary */ 2170 process_one_work(worker, work); 2171 if (unlikely(!list_empty(&worker->scheduled))) 2172 process_scheduled_works(worker); 2173 } else { 2174 move_linked_works(work, &worker->scheduled, NULL); 2175 process_scheduled_works(worker); 2176 } 2177 } while (keep_working(pool)); 2178 2179 worker_set_flags(worker, WORKER_PREP); 2180 sleep: 2181 /* 2182 * pool->lock is held and there's no work to process and no need to 2183 * manage, sleep. Workers are woken up only while holding 2184 * pool->lock or from local cpu, so setting the current state 2185 * before releasing pool->lock is enough to prevent losing any 2186 * event. 2187 */ 2188 worker_enter_idle(worker); 2189 __set_current_state(TASK_INTERRUPTIBLE); 2190 spin_unlock_irq(&pool->lock); 2191 schedule(); 2192 goto woke_up; 2193 } 2194 2195 /** 2196 * rescuer_thread - the rescuer thread function 2197 * @__rescuer: self 2198 * 2199 * Workqueue rescuer thread function. There's one rescuer for each 2200 * workqueue which has WQ_MEM_RECLAIM set. 2201 * 2202 * Regular work processing on a pool may block trying to create a new 2203 * worker which uses GFP_KERNEL allocation which has slight chance of 2204 * developing into deadlock if some works currently on the same queue 2205 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2206 * the problem rescuer solves. 2207 * 2208 * When such condition is possible, the pool summons rescuers of all 2209 * workqueues which have works queued on the pool and let them process 2210 * those works so that forward progress can be guaranteed. 2211 * 2212 * This should happen rarely. 2213 * 2214 * Return: 0 2215 */ 2216 static int rescuer_thread(void *__rescuer) 2217 { 2218 struct worker *rescuer = __rescuer; 2219 struct workqueue_struct *wq = rescuer->rescue_wq; 2220 struct list_head *scheduled = &rescuer->scheduled; 2221 bool should_stop; 2222 2223 set_user_nice(current, RESCUER_NICE_LEVEL); 2224 2225 /* 2226 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2227 * doesn't participate in concurrency management. 2228 */ 2229 rescuer->task->flags |= PF_WQ_WORKER; 2230 repeat: 2231 set_current_state(TASK_INTERRUPTIBLE); 2232 2233 /* 2234 * By the time the rescuer is requested to stop, the workqueue 2235 * shouldn't have any work pending, but @wq->maydays may still have 2236 * pwq(s) queued. This can happen by non-rescuer workers consuming 2237 * all the work items before the rescuer got to them. Go through 2238 * @wq->maydays processing before acting on should_stop so that the 2239 * list is always empty on exit. 2240 */ 2241 should_stop = kthread_should_stop(); 2242 2243 /* see whether any pwq is asking for help */ 2244 spin_lock_irq(&wq_mayday_lock); 2245 2246 while (!list_empty(&wq->maydays)) { 2247 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2248 struct pool_workqueue, mayday_node); 2249 struct worker_pool *pool = pwq->pool; 2250 struct work_struct *work, *n; 2251 bool first = true; 2252 2253 __set_current_state(TASK_RUNNING); 2254 list_del_init(&pwq->mayday_node); 2255 2256 spin_unlock_irq(&wq_mayday_lock); 2257 2258 worker_attach_to_pool(rescuer, pool); 2259 2260 spin_lock_irq(&pool->lock); 2261 rescuer->pool = pool; 2262 2263 /* 2264 * Slurp in all works issued via this workqueue and 2265 * process'em. 2266 */ 2267 WARN_ON_ONCE(!list_empty(scheduled)); 2268 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2269 if (get_work_pwq(work) == pwq) { 2270 if (first) 2271 pool->watchdog_ts = jiffies; 2272 move_linked_works(work, scheduled, &n); 2273 } 2274 first = false; 2275 } 2276 2277 if (!list_empty(scheduled)) { 2278 process_scheduled_works(rescuer); 2279 2280 /* 2281 * The above execution of rescued work items could 2282 * have created more to rescue through 2283 * pwq_activate_first_delayed() or chained 2284 * queueing. Let's put @pwq back on mayday list so 2285 * that such back-to-back work items, which may be 2286 * being used to relieve memory pressure, don't 2287 * incur MAYDAY_INTERVAL delay inbetween. 2288 */ 2289 if (need_to_create_worker(pool)) { 2290 spin_lock(&wq_mayday_lock); 2291 get_pwq(pwq); 2292 list_move_tail(&pwq->mayday_node, &wq->maydays); 2293 spin_unlock(&wq_mayday_lock); 2294 } 2295 } 2296 2297 /* 2298 * Put the reference grabbed by send_mayday(). @pool won't 2299 * go away while we're still attached to it. 2300 */ 2301 put_pwq(pwq); 2302 2303 /* 2304 * Leave this pool. If need_more_worker() is %true, notify a 2305 * regular worker; otherwise, we end up with 0 concurrency 2306 * and stalling the execution. 2307 */ 2308 if (need_more_worker(pool)) 2309 wake_up_worker(pool); 2310 2311 rescuer->pool = NULL; 2312 spin_unlock_irq(&pool->lock); 2313 2314 worker_detach_from_pool(rescuer, pool); 2315 2316 spin_lock_irq(&wq_mayday_lock); 2317 } 2318 2319 spin_unlock_irq(&wq_mayday_lock); 2320 2321 if (should_stop) { 2322 __set_current_state(TASK_RUNNING); 2323 rescuer->task->flags &= ~PF_WQ_WORKER; 2324 return 0; 2325 } 2326 2327 /* rescuers should never participate in concurrency management */ 2328 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2329 schedule(); 2330 goto repeat; 2331 } 2332 2333 /** 2334 * check_flush_dependency - check for flush dependency sanity 2335 * @target_wq: workqueue being flushed 2336 * @target_work: work item being flushed (NULL for workqueue flushes) 2337 * 2338 * %current is trying to flush the whole @target_wq or @target_work on it. 2339 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2340 * reclaiming memory or running on a workqueue which doesn't have 2341 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2342 * a deadlock. 2343 */ 2344 static void check_flush_dependency(struct workqueue_struct *target_wq, 2345 struct work_struct *target_work) 2346 { 2347 work_func_t target_func = target_work ? target_work->func : NULL; 2348 struct worker *worker; 2349 2350 if (target_wq->flags & WQ_MEM_RECLAIM) 2351 return; 2352 2353 worker = current_wq_worker(); 2354 2355 WARN_ONCE(current->flags & PF_MEMALLOC, 2356 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf", 2357 current->pid, current->comm, target_wq->name, target_func); 2358 WARN_ONCE(worker && (worker->current_pwq->wq->flags & WQ_MEM_RECLAIM), 2359 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf", 2360 worker->current_pwq->wq->name, worker->current_func, 2361 target_wq->name, target_func); 2362 } 2363 2364 struct wq_barrier { 2365 struct work_struct work; 2366 struct completion done; 2367 struct task_struct *task; /* purely informational */ 2368 }; 2369 2370 static void wq_barrier_func(struct work_struct *work) 2371 { 2372 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2373 complete(&barr->done); 2374 } 2375 2376 /** 2377 * insert_wq_barrier - insert a barrier work 2378 * @pwq: pwq to insert barrier into 2379 * @barr: wq_barrier to insert 2380 * @target: target work to attach @barr to 2381 * @worker: worker currently executing @target, NULL if @target is not executing 2382 * 2383 * @barr is linked to @target such that @barr is completed only after 2384 * @target finishes execution. Please note that the ordering 2385 * guarantee is observed only with respect to @target and on the local 2386 * cpu. 2387 * 2388 * Currently, a queued barrier can't be canceled. This is because 2389 * try_to_grab_pending() can't determine whether the work to be 2390 * grabbed is at the head of the queue and thus can't clear LINKED 2391 * flag of the previous work while there must be a valid next work 2392 * after a work with LINKED flag set. 2393 * 2394 * Note that when @worker is non-NULL, @target may be modified 2395 * underneath us, so we can't reliably determine pwq from @target. 2396 * 2397 * CONTEXT: 2398 * spin_lock_irq(pool->lock). 2399 */ 2400 static void insert_wq_barrier(struct pool_workqueue *pwq, 2401 struct wq_barrier *barr, 2402 struct work_struct *target, struct worker *worker) 2403 { 2404 struct list_head *head; 2405 unsigned int linked = 0; 2406 2407 /* 2408 * debugobject calls are safe here even with pool->lock locked 2409 * as we know for sure that this will not trigger any of the 2410 * checks and call back into the fixup functions where we 2411 * might deadlock. 2412 */ 2413 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2414 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2415 init_completion(&barr->done); 2416 barr->task = current; 2417 2418 /* 2419 * If @target is currently being executed, schedule the 2420 * barrier to the worker; otherwise, put it after @target. 2421 */ 2422 if (worker) 2423 head = worker->scheduled.next; 2424 else { 2425 unsigned long *bits = work_data_bits(target); 2426 2427 head = target->entry.next; 2428 /* there can already be other linked works, inherit and set */ 2429 linked = *bits & WORK_STRUCT_LINKED; 2430 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2431 } 2432 2433 debug_work_activate(&barr->work); 2434 insert_work(pwq, &barr->work, head, 2435 work_color_to_flags(WORK_NO_COLOR) | linked); 2436 } 2437 2438 /** 2439 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2440 * @wq: workqueue being flushed 2441 * @flush_color: new flush color, < 0 for no-op 2442 * @work_color: new work color, < 0 for no-op 2443 * 2444 * Prepare pwqs for workqueue flushing. 2445 * 2446 * If @flush_color is non-negative, flush_color on all pwqs should be 2447 * -1. If no pwq has in-flight commands at the specified color, all 2448 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2449 * has in flight commands, its pwq->flush_color is set to 2450 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2451 * wakeup logic is armed and %true is returned. 2452 * 2453 * The caller should have initialized @wq->first_flusher prior to 2454 * calling this function with non-negative @flush_color. If 2455 * @flush_color is negative, no flush color update is done and %false 2456 * is returned. 2457 * 2458 * If @work_color is non-negative, all pwqs should have the same 2459 * work_color which is previous to @work_color and all will be 2460 * advanced to @work_color. 2461 * 2462 * CONTEXT: 2463 * mutex_lock(wq->mutex). 2464 * 2465 * Return: 2466 * %true if @flush_color >= 0 and there's something to flush. %false 2467 * otherwise. 2468 */ 2469 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2470 int flush_color, int work_color) 2471 { 2472 bool wait = false; 2473 struct pool_workqueue *pwq; 2474 2475 if (flush_color >= 0) { 2476 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2477 atomic_set(&wq->nr_pwqs_to_flush, 1); 2478 } 2479 2480 for_each_pwq(pwq, wq) { 2481 struct worker_pool *pool = pwq->pool; 2482 2483 spin_lock_irq(&pool->lock); 2484 2485 if (flush_color >= 0) { 2486 WARN_ON_ONCE(pwq->flush_color != -1); 2487 2488 if (pwq->nr_in_flight[flush_color]) { 2489 pwq->flush_color = flush_color; 2490 atomic_inc(&wq->nr_pwqs_to_flush); 2491 wait = true; 2492 } 2493 } 2494 2495 if (work_color >= 0) { 2496 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2497 pwq->work_color = work_color; 2498 } 2499 2500 spin_unlock_irq(&pool->lock); 2501 } 2502 2503 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2504 complete(&wq->first_flusher->done); 2505 2506 return wait; 2507 } 2508 2509 /** 2510 * flush_workqueue - ensure that any scheduled work has run to completion. 2511 * @wq: workqueue to flush 2512 * 2513 * This function sleeps until all work items which were queued on entry 2514 * have finished execution, but it is not livelocked by new incoming ones. 2515 */ 2516 void flush_workqueue(struct workqueue_struct *wq) 2517 { 2518 struct wq_flusher this_flusher = { 2519 .list = LIST_HEAD_INIT(this_flusher.list), 2520 .flush_color = -1, 2521 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2522 }; 2523 int next_color; 2524 2525 lock_map_acquire(&wq->lockdep_map); 2526 lock_map_release(&wq->lockdep_map); 2527 2528 mutex_lock(&wq->mutex); 2529 2530 /* 2531 * Start-to-wait phase 2532 */ 2533 next_color = work_next_color(wq->work_color); 2534 2535 if (next_color != wq->flush_color) { 2536 /* 2537 * Color space is not full. The current work_color 2538 * becomes our flush_color and work_color is advanced 2539 * by one. 2540 */ 2541 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2542 this_flusher.flush_color = wq->work_color; 2543 wq->work_color = next_color; 2544 2545 if (!wq->first_flusher) { 2546 /* no flush in progress, become the first flusher */ 2547 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2548 2549 wq->first_flusher = &this_flusher; 2550 2551 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2552 wq->work_color)) { 2553 /* nothing to flush, done */ 2554 wq->flush_color = next_color; 2555 wq->first_flusher = NULL; 2556 goto out_unlock; 2557 } 2558 } else { 2559 /* wait in queue */ 2560 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2561 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2562 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2563 } 2564 } else { 2565 /* 2566 * Oops, color space is full, wait on overflow queue. 2567 * The next flush completion will assign us 2568 * flush_color and transfer to flusher_queue. 2569 */ 2570 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2571 } 2572 2573 check_flush_dependency(wq, NULL); 2574 2575 mutex_unlock(&wq->mutex); 2576 2577 wait_for_completion(&this_flusher.done); 2578 2579 /* 2580 * Wake-up-and-cascade phase 2581 * 2582 * First flushers are responsible for cascading flushes and 2583 * handling overflow. Non-first flushers can simply return. 2584 */ 2585 if (wq->first_flusher != &this_flusher) 2586 return; 2587 2588 mutex_lock(&wq->mutex); 2589 2590 /* we might have raced, check again with mutex held */ 2591 if (wq->first_flusher != &this_flusher) 2592 goto out_unlock; 2593 2594 wq->first_flusher = NULL; 2595 2596 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2597 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2598 2599 while (true) { 2600 struct wq_flusher *next, *tmp; 2601 2602 /* complete all the flushers sharing the current flush color */ 2603 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2604 if (next->flush_color != wq->flush_color) 2605 break; 2606 list_del_init(&next->list); 2607 complete(&next->done); 2608 } 2609 2610 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2611 wq->flush_color != work_next_color(wq->work_color)); 2612 2613 /* this flush_color is finished, advance by one */ 2614 wq->flush_color = work_next_color(wq->flush_color); 2615 2616 /* one color has been freed, handle overflow queue */ 2617 if (!list_empty(&wq->flusher_overflow)) { 2618 /* 2619 * Assign the same color to all overflowed 2620 * flushers, advance work_color and append to 2621 * flusher_queue. This is the start-to-wait 2622 * phase for these overflowed flushers. 2623 */ 2624 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2625 tmp->flush_color = wq->work_color; 2626 2627 wq->work_color = work_next_color(wq->work_color); 2628 2629 list_splice_tail_init(&wq->flusher_overflow, 2630 &wq->flusher_queue); 2631 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2632 } 2633 2634 if (list_empty(&wq->flusher_queue)) { 2635 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2636 break; 2637 } 2638 2639 /* 2640 * Need to flush more colors. Make the next flusher 2641 * the new first flusher and arm pwqs. 2642 */ 2643 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2644 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2645 2646 list_del_init(&next->list); 2647 wq->first_flusher = next; 2648 2649 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2650 break; 2651 2652 /* 2653 * Meh... this color is already done, clear first 2654 * flusher and repeat cascading. 2655 */ 2656 wq->first_flusher = NULL; 2657 } 2658 2659 out_unlock: 2660 mutex_unlock(&wq->mutex); 2661 } 2662 EXPORT_SYMBOL(flush_workqueue); 2663 2664 /** 2665 * drain_workqueue - drain a workqueue 2666 * @wq: workqueue to drain 2667 * 2668 * Wait until the workqueue becomes empty. While draining is in progress, 2669 * only chain queueing is allowed. IOW, only currently pending or running 2670 * work items on @wq can queue further work items on it. @wq is flushed 2671 * repeatedly until it becomes empty. The number of flushing is determined 2672 * by the depth of chaining and should be relatively short. Whine if it 2673 * takes too long. 2674 */ 2675 void drain_workqueue(struct workqueue_struct *wq) 2676 { 2677 unsigned int flush_cnt = 0; 2678 struct pool_workqueue *pwq; 2679 2680 /* 2681 * __queue_work() needs to test whether there are drainers, is much 2682 * hotter than drain_workqueue() and already looks at @wq->flags. 2683 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2684 */ 2685 mutex_lock(&wq->mutex); 2686 if (!wq->nr_drainers++) 2687 wq->flags |= __WQ_DRAINING; 2688 mutex_unlock(&wq->mutex); 2689 reflush: 2690 flush_workqueue(wq); 2691 2692 mutex_lock(&wq->mutex); 2693 2694 for_each_pwq(pwq, wq) { 2695 bool drained; 2696 2697 spin_lock_irq(&pwq->pool->lock); 2698 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2699 spin_unlock_irq(&pwq->pool->lock); 2700 2701 if (drained) 2702 continue; 2703 2704 if (++flush_cnt == 10 || 2705 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2706 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2707 wq->name, flush_cnt); 2708 2709 mutex_unlock(&wq->mutex); 2710 goto reflush; 2711 } 2712 2713 if (!--wq->nr_drainers) 2714 wq->flags &= ~__WQ_DRAINING; 2715 mutex_unlock(&wq->mutex); 2716 } 2717 EXPORT_SYMBOL_GPL(drain_workqueue); 2718 2719 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2720 { 2721 struct worker *worker = NULL; 2722 struct worker_pool *pool; 2723 struct pool_workqueue *pwq; 2724 2725 might_sleep(); 2726 2727 local_irq_disable(); 2728 pool = get_work_pool(work); 2729 if (!pool) { 2730 local_irq_enable(); 2731 return false; 2732 } 2733 2734 spin_lock(&pool->lock); 2735 /* see the comment in try_to_grab_pending() with the same code */ 2736 pwq = get_work_pwq(work); 2737 if (pwq) { 2738 if (unlikely(pwq->pool != pool)) 2739 goto already_gone; 2740 } else { 2741 worker = find_worker_executing_work(pool, work); 2742 if (!worker) 2743 goto already_gone; 2744 pwq = worker->current_pwq; 2745 } 2746 2747 check_flush_dependency(pwq->wq, work); 2748 2749 insert_wq_barrier(pwq, barr, work, worker); 2750 spin_unlock_irq(&pool->lock); 2751 2752 /* 2753 * If @max_active is 1 or rescuer is in use, flushing another work 2754 * item on the same workqueue may lead to deadlock. Make sure the 2755 * flusher is not running on the same workqueue by verifying write 2756 * access. 2757 */ 2758 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) 2759 lock_map_acquire(&pwq->wq->lockdep_map); 2760 else 2761 lock_map_acquire_read(&pwq->wq->lockdep_map); 2762 lock_map_release(&pwq->wq->lockdep_map); 2763 2764 return true; 2765 already_gone: 2766 spin_unlock_irq(&pool->lock); 2767 return false; 2768 } 2769 2770 /** 2771 * flush_work - wait for a work to finish executing the last queueing instance 2772 * @work: the work to flush 2773 * 2774 * Wait until @work has finished execution. @work is guaranteed to be idle 2775 * on return if it hasn't been requeued since flush started. 2776 * 2777 * Return: 2778 * %true if flush_work() waited for the work to finish execution, 2779 * %false if it was already idle. 2780 */ 2781 bool flush_work(struct work_struct *work) 2782 { 2783 struct wq_barrier barr; 2784 2785 lock_map_acquire(&work->lockdep_map); 2786 lock_map_release(&work->lockdep_map); 2787 2788 if (start_flush_work(work, &barr)) { 2789 wait_for_completion(&barr.done); 2790 destroy_work_on_stack(&barr.work); 2791 return true; 2792 } else { 2793 return false; 2794 } 2795 } 2796 EXPORT_SYMBOL_GPL(flush_work); 2797 2798 struct cwt_wait { 2799 wait_queue_t wait; 2800 struct work_struct *work; 2801 }; 2802 2803 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key) 2804 { 2805 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 2806 2807 if (cwait->work != key) 2808 return 0; 2809 return autoremove_wake_function(wait, mode, sync, key); 2810 } 2811 2812 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2813 { 2814 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 2815 unsigned long flags; 2816 int ret; 2817 2818 do { 2819 ret = try_to_grab_pending(work, is_dwork, &flags); 2820 /* 2821 * If someone else is already canceling, wait for it to 2822 * finish. flush_work() doesn't work for PREEMPT_NONE 2823 * because we may get scheduled between @work's completion 2824 * and the other canceling task resuming and clearing 2825 * CANCELING - flush_work() will return false immediately 2826 * as @work is no longer busy, try_to_grab_pending() will 2827 * return -ENOENT as @work is still being canceled and the 2828 * other canceling task won't be able to clear CANCELING as 2829 * we're hogging the CPU. 2830 * 2831 * Let's wait for completion using a waitqueue. As this 2832 * may lead to the thundering herd problem, use a custom 2833 * wake function which matches @work along with exclusive 2834 * wait and wakeup. 2835 */ 2836 if (unlikely(ret == -ENOENT)) { 2837 struct cwt_wait cwait; 2838 2839 init_wait(&cwait.wait); 2840 cwait.wait.func = cwt_wakefn; 2841 cwait.work = work; 2842 2843 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 2844 TASK_UNINTERRUPTIBLE); 2845 if (work_is_canceling(work)) 2846 schedule(); 2847 finish_wait(&cancel_waitq, &cwait.wait); 2848 } 2849 } while (unlikely(ret < 0)); 2850 2851 /* tell other tasks trying to grab @work to back off */ 2852 mark_work_canceling(work); 2853 local_irq_restore(flags); 2854 2855 flush_work(work); 2856 clear_work_data(work); 2857 2858 /* 2859 * Paired with prepare_to_wait() above so that either 2860 * waitqueue_active() is visible here or !work_is_canceling() is 2861 * visible there. 2862 */ 2863 smp_mb(); 2864 if (waitqueue_active(&cancel_waitq)) 2865 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 2866 2867 return ret; 2868 } 2869 2870 /** 2871 * cancel_work_sync - cancel a work and wait for it to finish 2872 * @work: the work to cancel 2873 * 2874 * Cancel @work and wait for its execution to finish. This function 2875 * can be used even if the work re-queues itself or migrates to 2876 * another workqueue. On return from this function, @work is 2877 * guaranteed to be not pending or executing on any CPU. 2878 * 2879 * cancel_work_sync(&delayed_work->work) must not be used for 2880 * delayed_work's. Use cancel_delayed_work_sync() instead. 2881 * 2882 * The caller must ensure that the workqueue on which @work was last 2883 * queued can't be destroyed before this function returns. 2884 * 2885 * Return: 2886 * %true if @work was pending, %false otherwise. 2887 */ 2888 bool cancel_work_sync(struct work_struct *work) 2889 { 2890 return __cancel_work_timer(work, false); 2891 } 2892 EXPORT_SYMBOL_GPL(cancel_work_sync); 2893 2894 /** 2895 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2896 * @dwork: the delayed work to flush 2897 * 2898 * Delayed timer is cancelled and the pending work is queued for 2899 * immediate execution. Like flush_work(), this function only 2900 * considers the last queueing instance of @dwork. 2901 * 2902 * Return: 2903 * %true if flush_work() waited for the work to finish execution, 2904 * %false if it was already idle. 2905 */ 2906 bool flush_delayed_work(struct delayed_work *dwork) 2907 { 2908 local_irq_disable(); 2909 if (del_timer_sync(&dwork->timer)) 2910 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2911 local_irq_enable(); 2912 return flush_work(&dwork->work); 2913 } 2914 EXPORT_SYMBOL(flush_delayed_work); 2915 2916 /** 2917 * cancel_delayed_work - cancel a delayed work 2918 * @dwork: delayed_work to cancel 2919 * 2920 * Kill off a pending delayed_work. 2921 * 2922 * Return: %true if @dwork was pending and canceled; %false if it wasn't 2923 * pending. 2924 * 2925 * Note: 2926 * The work callback function may still be running on return, unless 2927 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 2928 * use cancel_delayed_work_sync() to wait on it. 2929 * 2930 * This function is safe to call from any context including IRQ handler. 2931 */ 2932 bool cancel_delayed_work(struct delayed_work *dwork) 2933 { 2934 unsigned long flags; 2935 int ret; 2936 2937 do { 2938 ret = try_to_grab_pending(&dwork->work, true, &flags); 2939 } while (unlikely(ret == -EAGAIN)); 2940 2941 if (unlikely(ret < 0)) 2942 return false; 2943 2944 set_work_pool_and_clear_pending(&dwork->work, 2945 get_work_pool_id(&dwork->work)); 2946 local_irq_restore(flags); 2947 return ret; 2948 } 2949 EXPORT_SYMBOL(cancel_delayed_work); 2950 2951 /** 2952 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2953 * @dwork: the delayed work cancel 2954 * 2955 * This is cancel_work_sync() for delayed works. 2956 * 2957 * Return: 2958 * %true if @dwork was pending, %false otherwise. 2959 */ 2960 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2961 { 2962 return __cancel_work_timer(&dwork->work, true); 2963 } 2964 EXPORT_SYMBOL(cancel_delayed_work_sync); 2965 2966 /** 2967 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2968 * @func: the function to call 2969 * 2970 * schedule_on_each_cpu() executes @func on each online CPU using the 2971 * system workqueue and blocks until all CPUs have completed. 2972 * schedule_on_each_cpu() is very slow. 2973 * 2974 * Return: 2975 * 0 on success, -errno on failure. 2976 */ 2977 int schedule_on_each_cpu(work_func_t func) 2978 { 2979 int cpu; 2980 struct work_struct __percpu *works; 2981 2982 works = alloc_percpu(struct work_struct); 2983 if (!works) 2984 return -ENOMEM; 2985 2986 get_online_cpus(); 2987 2988 for_each_online_cpu(cpu) { 2989 struct work_struct *work = per_cpu_ptr(works, cpu); 2990 2991 INIT_WORK(work, func); 2992 schedule_work_on(cpu, work); 2993 } 2994 2995 for_each_online_cpu(cpu) 2996 flush_work(per_cpu_ptr(works, cpu)); 2997 2998 put_online_cpus(); 2999 free_percpu(works); 3000 return 0; 3001 } 3002 3003 /** 3004 * execute_in_process_context - reliably execute the routine with user context 3005 * @fn: the function to execute 3006 * @ew: guaranteed storage for the execute work structure (must 3007 * be available when the work executes) 3008 * 3009 * Executes the function immediately if process context is available, 3010 * otherwise schedules the function for delayed execution. 3011 * 3012 * Return: 0 - function was executed 3013 * 1 - function was scheduled for execution 3014 */ 3015 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3016 { 3017 if (!in_interrupt()) { 3018 fn(&ew->work); 3019 return 0; 3020 } 3021 3022 INIT_WORK(&ew->work, fn); 3023 schedule_work(&ew->work); 3024 3025 return 1; 3026 } 3027 EXPORT_SYMBOL_GPL(execute_in_process_context); 3028 3029 /** 3030 * free_workqueue_attrs - free a workqueue_attrs 3031 * @attrs: workqueue_attrs to free 3032 * 3033 * Undo alloc_workqueue_attrs(). 3034 */ 3035 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3036 { 3037 if (attrs) { 3038 free_cpumask_var(attrs->cpumask); 3039 kfree(attrs); 3040 } 3041 } 3042 3043 /** 3044 * alloc_workqueue_attrs - allocate a workqueue_attrs 3045 * @gfp_mask: allocation mask to use 3046 * 3047 * Allocate a new workqueue_attrs, initialize with default settings and 3048 * return it. 3049 * 3050 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3051 */ 3052 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3053 { 3054 struct workqueue_attrs *attrs; 3055 3056 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3057 if (!attrs) 3058 goto fail; 3059 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3060 goto fail; 3061 3062 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3063 return attrs; 3064 fail: 3065 free_workqueue_attrs(attrs); 3066 return NULL; 3067 } 3068 3069 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3070 const struct workqueue_attrs *from) 3071 { 3072 to->nice = from->nice; 3073 cpumask_copy(to->cpumask, from->cpumask); 3074 /* 3075 * Unlike hash and equality test, this function doesn't ignore 3076 * ->no_numa as it is used for both pool and wq attrs. Instead, 3077 * get_unbound_pool() explicitly clears ->no_numa after copying. 3078 */ 3079 to->no_numa = from->no_numa; 3080 } 3081 3082 /* hash value of the content of @attr */ 3083 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3084 { 3085 u32 hash = 0; 3086 3087 hash = jhash_1word(attrs->nice, hash); 3088 hash = jhash(cpumask_bits(attrs->cpumask), 3089 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3090 return hash; 3091 } 3092 3093 /* content equality test */ 3094 static bool wqattrs_equal(const struct workqueue_attrs *a, 3095 const struct workqueue_attrs *b) 3096 { 3097 if (a->nice != b->nice) 3098 return false; 3099 if (!cpumask_equal(a->cpumask, b->cpumask)) 3100 return false; 3101 return true; 3102 } 3103 3104 /** 3105 * init_worker_pool - initialize a newly zalloc'd worker_pool 3106 * @pool: worker_pool to initialize 3107 * 3108 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3109 * 3110 * Return: 0 on success, -errno on failure. Even on failure, all fields 3111 * inside @pool proper are initialized and put_unbound_pool() can be called 3112 * on @pool safely to release it. 3113 */ 3114 static int init_worker_pool(struct worker_pool *pool) 3115 { 3116 spin_lock_init(&pool->lock); 3117 pool->id = -1; 3118 pool->cpu = -1; 3119 pool->node = NUMA_NO_NODE; 3120 pool->flags |= POOL_DISASSOCIATED; 3121 pool->watchdog_ts = jiffies; 3122 INIT_LIST_HEAD(&pool->worklist); 3123 INIT_LIST_HEAD(&pool->idle_list); 3124 hash_init(pool->busy_hash); 3125 3126 init_timer_deferrable(&pool->idle_timer); 3127 pool->idle_timer.function = idle_worker_timeout; 3128 pool->idle_timer.data = (unsigned long)pool; 3129 3130 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3131 (unsigned long)pool); 3132 3133 mutex_init(&pool->manager_arb); 3134 mutex_init(&pool->attach_mutex); 3135 INIT_LIST_HEAD(&pool->workers); 3136 3137 ida_init(&pool->worker_ida); 3138 INIT_HLIST_NODE(&pool->hash_node); 3139 pool->refcnt = 1; 3140 3141 /* shouldn't fail above this point */ 3142 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3143 if (!pool->attrs) 3144 return -ENOMEM; 3145 return 0; 3146 } 3147 3148 static void rcu_free_wq(struct rcu_head *rcu) 3149 { 3150 struct workqueue_struct *wq = 3151 container_of(rcu, struct workqueue_struct, rcu); 3152 3153 if (!(wq->flags & WQ_UNBOUND)) 3154 free_percpu(wq->cpu_pwqs); 3155 else 3156 free_workqueue_attrs(wq->unbound_attrs); 3157 3158 kfree(wq->rescuer); 3159 kfree(wq); 3160 } 3161 3162 static void rcu_free_pool(struct rcu_head *rcu) 3163 { 3164 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3165 3166 ida_destroy(&pool->worker_ida); 3167 free_workqueue_attrs(pool->attrs); 3168 kfree(pool); 3169 } 3170 3171 /** 3172 * put_unbound_pool - put a worker_pool 3173 * @pool: worker_pool to put 3174 * 3175 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3176 * safe manner. get_unbound_pool() calls this function on its failure path 3177 * and this function should be able to release pools which went through, 3178 * successfully or not, init_worker_pool(). 3179 * 3180 * Should be called with wq_pool_mutex held. 3181 */ 3182 static void put_unbound_pool(struct worker_pool *pool) 3183 { 3184 DECLARE_COMPLETION_ONSTACK(detach_completion); 3185 struct worker *worker; 3186 3187 lockdep_assert_held(&wq_pool_mutex); 3188 3189 if (--pool->refcnt) 3190 return; 3191 3192 /* sanity checks */ 3193 if (WARN_ON(!(pool->cpu < 0)) || 3194 WARN_ON(!list_empty(&pool->worklist))) 3195 return; 3196 3197 /* release id and unhash */ 3198 if (pool->id >= 0) 3199 idr_remove(&worker_pool_idr, pool->id); 3200 hash_del(&pool->hash_node); 3201 3202 /* 3203 * Become the manager and destroy all workers. Grabbing 3204 * manager_arb prevents @pool's workers from blocking on 3205 * attach_mutex. 3206 */ 3207 mutex_lock(&pool->manager_arb); 3208 3209 spin_lock_irq(&pool->lock); 3210 while ((worker = first_idle_worker(pool))) 3211 destroy_worker(worker); 3212 WARN_ON(pool->nr_workers || pool->nr_idle); 3213 spin_unlock_irq(&pool->lock); 3214 3215 mutex_lock(&pool->attach_mutex); 3216 if (!list_empty(&pool->workers)) 3217 pool->detach_completion = &detach_completion; 3218 mutex_unlock(&pool->attach_mutex); 3219 3220 if (pool->detach_completion) 3221 wait_for_completion(pool->detach_completion); 3222 3223 mutex_unlock(&pool->manager_arb); 3224 3225 /* shut down the timers */ 3226 del_timer_sync(&pool->idle_timer); 3227 del_timer_sync(&pool->mayday_timer); 3228 3229 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3230 call_rcu_sched(&pool->rcu, rcu_free_pool); 3231 } 3232 3233 /** 3234 * get_unbound_pool - get a worker_pool with the specified attributes 3235 * @attrs: the attributes of the worker_pool to get 3236 * 3237 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3238 * reference count and return it. If there already is a matching 3239 * worker_pool, it will be used; otherwise, this function attempts to 3240 * create a new one. 3241 * 3242 * Should be called with wq_pool_mutex held. 3243 * 3244 * Return: On success, a worker_pool with the same attributes as @attrs. 3245 * On failure, %NULL. 3246 */ 3247 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3248 { 3249 u32 hash = wqattrs_hash(attrs); 3250 struct worker_pool *pool; 3251 int node; 3252 int target_node = NUMA_NO_NODE; 3253 3254 lockdep_assert_held(&wq_pool_mutex); 3255 3256 /* do we already have a matching pool? */ 3257 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3258 if (wqattrs_equal(pool->attrs, attrs)) { 3259 pool->refcnt++; 3260 return pool; 3261 } 3262 } 3263 3264 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3265 if (wq_numa_enabled) { 3266 for_each_node(node) { 3267 if (cpumask_subset(attrs->cpumask, 3268 wq_numa_possible_cpumask[node])) { 3269 target_node = node; 3270 break; 3271 } 3272 } 3273 } 3274 3275 /* nope, create a new one */ 3276 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3277 if (!pool || init_worker_pool(pool) < 0) 3278 goto fail; 3279 3280 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3281 copy_workqueue_attrs(pool->attrs, attrs); 3282 pool->node = target_node; 3283 3284 /* 3285 * no_numa isn't a worker_pool attribute, always clear it. See 3286 * 'struct workqueue_attrs' comments for detail. 3287 */ 3288 pool->attrs->no_numa = false; 3289 3290 if (worker_pool_assign_id(pool) < 0) 3291 goto fail; 3292 3293 /* create and start the initial worker */ 3294 if (!create_worker(pool)) 3295 goto fail; 3296 3297 /* install */ 3298 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3299 3300 return pool; 3301 fail: 3302 if (pool) 3303 put_unbound_pool(pool); 3304 return NULL; 3305 } 3306 3307 static void rcu_free_pwq(struct rcu_head *rcu) 3308 { 3309 kmem_cache_free(pwq_cache, 3310 container_of(rcu, struct pool_workqueue, rcu)); 3311 } 3312 3313 /* 3314 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3315 * and needs to be destroyed. 3316 */ 3317 static void pwq_unbound_release_workfn(struct work_struct *work) 3318 { 3319 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3320 unbound_release_work); 3321 struct workqueue_struct *wq = pwq->wq; 3322 struct worker_pool *pool = pwq->pool; 3323 bool is_last; 3324 3325 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3326 return; 3327 3328 mutex_lock(&wq->mutex); 3329 list_del_rcu(&pwq->pwqs_node); 3330 is_last = list_empty(&wq->pwqs); 3331 mutex_unlock(&wq->mutex); 3332 3333 mutex_lock(&wq_pool_mutex); 3334 put_unbound_pool(pool); 3335 mutex_unlock(&wq_pool_mutex); 3336 3337 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3338 3339 /* 3340 * If we're the last pwq going away, @wq is already dead and no one 3341 * is gonna access it anymore. Schedule RCU free. 3342 */ 3343 if (is_last) 3344 call_rcu_sched(&wq->rcu, rcu_free_wq); 3345 } 3346 3347 /** 3348 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3349 * @pwq: target pool_workqueue 3350 * 3351 * If @pwq isn't freezing, set @pwq->max_active to the associated 3352 * workqueue's saved_max_active and activate delayed work items 3353 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3354 */ 3355 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3356 { 3357 struct workqueue_struct *wq = pwq->wq; 3358 bool freezable = wq->flags & WQ_FREEZABLE; 3359 3360 /* for @wq->saved_max_active */ 3361 lockdep_assert_held(&wq->mutex); 3362 3363 /* fast exit for non-freezable wqs */ 3364 if (!freezable && pwq->max_active == wq->saved_max_active) 3365 return; 3366 3367 spin_lock_irq(&pwq->pool->lock); 3368 3369 /* 3370 * During [un]freezing, the caller is responsible for ensuring that 3371 * this function is called at least once after @workqueue_freezing 3372 * is updated and visible. 3373 */ 3374 if (!freezable || !workqueue_freezing) { 3375 pwq->max_active = wq->saved_max_active; 3376 3377 while (!list_empty(&pwq->delayed_works) && 3378 pwq->nr_active < pwq->max_active) 3379 pwq_activate_first_delayed(pwq); 3380 3381 /* 3382 * Need to kick a worker after thawed or an unbound wq's 3383 * max_active is bumped. It's a slow path. Do it always. 3384 */ 3385 wake_up_worker(pwq->pool); 3386 } else { 3387 pwq->max_active = 0; 3388 } 3389 3390 spin_unlock_irq(&pwq->pool->lock); 3391 } 3392 3393 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3394 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3395 struct worker_pool *pool) 3396 { 3397 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3398 3399 memset(pwq, 0, sizeof(*pwq)); 3400 3401 pwq->pool = pool; 3402 pwq->wq = wq; 3403 pwq->flush_color = -1; 3404 pwq->refcnt = 1; 3405 INIT_LIST_HEAD(&pwq->delayed_works); 3406 INIT_LIST_HEAD(&pwq->pwqs_node); 3407 INIT_LIST_HEAD(&pwq->mayday_node); 3408 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3409 } 3410 3411 /* sync @pwq with the current state of its associated wq and link it */ 3412 static void link_pwq(struct pool_workqueue *pwq) 3413 { 3414 struct workqueue_struct *wq = pwq->wq; 3415 3416 lockdep_assert_held(&wq->mutex); 3417 3418 /* may be called multiple times, ignore if already linked */ 3419 if (!list_empty(&pwq->pwqs_node)) 3420 return; 3421 3422 /* set the matching work_color */ 3423 pwq->work_color = wq->work_color; 3424 3425 /* sync max_active to the current setting */ 3426 pwq_adjust_max_active(pwq); 3427 3428 /* link in @pwq */ 3429 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3430 } 3431 3432 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3433 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3434 const struct workqueue_attrs *attrs) 3435 { 3436 struct worker_pool *pool; 3437 struct pool_workqueue *pwq; 3438 3439 lockdep_assert_held(&wq_pool_mutex); 3440 3441 pool = get_unbound_pool(attrs); 3442 if (!pool) 3443 return NULL; 3444 3445 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3446 if (!pwq) { 3447 put_unbound_pool(pool); 3448 return NULL; 3449 } 3450 3451 init_pwq(pwq, wq, pool); 3452 return pwq; 3453 } 3454 3455 /** 3456 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3457 * @attrs: the wq_attrs of the default pwq of the target workqueue 3458 * @node: the target NUMA node 3459 * @cpu_going_down: if >= 0, the CPU to consider as offline 3460 * @cpumask: outarg, the resulting cpumask 3461 * 3462 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3463 * @cpu_going_down is >= 0, that cpu is considered offline during 3464 * calculation. The result is stored in @cpumask. 3465 * 3466 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3467 * enabled and @node has online CPUs requested by @attrs, the returned 3468 * cpumask is the intersection of the possible CPUs of @node and 3469 * @attrs->cpumask. 3470 * 3471 * The caller is responsible for ensuring that the cpumask of @node stays 3472 * stable. 3473 * 3474 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3475 * %false if equal. 3476 */ 3477 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3478 int cpu_going_down, cpumask_t *cpumask) 3479 { 3480 if (!wq_numa_enabled || attrs->no_numa) 3481 goto use_dfl; 3482 3483 /* does @node have any online CPUs @attrs wants? */ 3484 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3485 if (cpu_going_down >= 0) 3486 cpumask_clear_cpu(cpu_going_down, cpumask); 3487 3488 if (cpumask_empty(cpumask)) 3489 goto use_dfl; 3490 3491 /* yeap, return possible CPUs in @node that @attrs wants */ 3492 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3493 return !cpumask_equal(cpumask, attrs->cpumask); 3494 3495 use_dfl: 3496 cpumask_copy(cpumask, attrs->cpumask); 3497 return false; 3498 } 3499 3500 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3501 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3502 int node, 3503 struct pool_workqueue *pwq) 3504 { 3505 struct pool_workqueue *old_pwq; 3506 3507 lockdep_assert_held(&wq_pool_mutex); 3508 lockdep_assert_held(&wq->mutex); 3509 3510 /* link_pwq() can handle duplicate calls */ 3511 link_pwq(pwq); 3512 3513 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3514 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3515 return old_pwq; 3516 } 3517 3518 /* context to store the prepared attrs & pwqs before applying */ 3519 struct apply_wqattrs_ctx { 3520 struct workqueue_struct *wq; /* target workqueue */ 3521 struct workqueue_attrs *attrs; /* attrs to apply */ 3522 struct list_head list; /* queued for batching commit */ 3523 struct pool_workqueue *dfl_pwq; 3524 struct pool_workqueue *pwq_tbl[]; 3525 }; 3526 3527 /* free the resources after success or abort */ 3528 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3529 { 3530 if (ctx) { 3531 int node; 3532 3533 for_each_node(node) 3534 put_pwq_unlocked(ctx->pwq_tbl[node]); 3535 put_pwq_unlocked(ctx->dfl_pwq); 3536 3537 free_workqueue_attrs(ctx->attrs); 3538 3539 kfree(ctx); 3540 } 3541 } 3542 3543 /* allocate the attrs and pwqs for later installation */ 3544 static struct apply_wqattrs_ctx * 3545 apply_wqattrs_prepare(struct workqueue_struct *wq, 3546 const struct workqueue_attrs *attrs) 3547 { 3548 struct apply_wqattrs_ctx *ctx; 3549 struct workqueue_attrs *new_attrs, *tmp_attrs; 3550 int node; 3551 3552 lockdep_assert_held(&wq_pool_mutex); 3553 3554 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]), 3555 GFP_KERNEL); 3556 3557 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3558 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3559 if (!ctx || !new_attrs || !tmp_attrs) 3560 goto out_free; 3561 3562 /* 3563 * Calculate the attrs of the default pwq. 3564 * If the user configured cpumask doesn't overlap with the 3565 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3566 */ 3567 copy_workqueue_attrs(new_attrs, attrs); 3568 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3569 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3570 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3571 3572 /* 3573 * We may create multiple pwqs with differing cpumasks. Make a 3574 * copy of @new_attrs which will be modified and used to obtain 3575 * pools. 3576 */ 3577 copy_workqueue_attrs(tmp_attrs, new_attrs); 3578 3579 /* 3580 * If something goes wrong during CPU up/down, we'll fall back to 3581 * the default pwq covering whole @attrs->cpumask. Always create 3582 * it even if we don't use it immediately. 3583 */ 3584 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3585 if (!ctx->dfl_pwq) 3586 goto out_free; 3587 3588 for_each_node(node) { 3589 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3590 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3591 if (!ctx->pwq_tbl[node]) 3592 goto out_free; 3593 } else { 3594 ctx->dfl_pwq->refcnt++; 3595 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3596 } 3597 } 3598 3599 /* save the user configured attrs and sanitize it. */ 3600 copy_workqueue_attrs(new_attrs, attrs); 3601 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3602 ctx->attrs = new_attrs; 3603 3604 ctx->wq = wq; 3605 free_workqueue_attrs(tmp_attrs); 3606 return ctx; 3607 3608 out_free: 3609 free_workqueue_attrs(tmp_attrs); 3610 free_workqueue_attrs(new_attrs); 3611 apply_wqattrs_cleanup(ctx); 3612 return NULL; 3613 } 3614 3615 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3616 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3617 { 3618 int node; 3619 3620 /* all pwqs have been created successfully, let's install'em */ 3621 mutex_lock(&ctx->wq->mutex); 3622 3623 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3624 3625 /* save the previous pwq and install the new one */ 3626 for_each_node(node) 3627 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3628 ctx->pwq_tbl[node]); 3629 3630 /* @dfl_pwq might not have been used, ensure it's linked */ 3631 link_pwq(ctx->dfl_pwq); 3632 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3633 3634 mutex_unlock(&ctx->wq->mutex); 3635 } 3636 3637 static void apply_wqattrs_lock(void) 3638 { 3639 /* CPUs should stay stable across pwq creations and installations */ 3640 get_online_cpus(); 3641 mutex_lock(&wq_pool_mutex); 3642 } 3643 3644 static void apply_wqattrs_unlock(void) 3645 { 3646 mutex_unlock(&wq_pool_mutex); 3647 put_online_cpus(); 3648 } 3649 3650 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3651 const struct workqueue_attrs *attrs) 3652 { 3653 struct apply_wqattrs_ctx *ctx; 3654 3655 /* only unbound workqueues can change attributes */ 3656 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3657 return -EINVAL; 3658 3659 /* creating multiple pwqs breaks ordering guarantee */ 3660 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) 3661 return -EINVAL; 3662 3663 ctx = apply_wqattrs_prepare(wq, attrs); 3664 if (!ctx) 3665 return -ENOMEM; 3666 3667 /* the ctx has been prepared successfully, let's commit it */ 3668 apply_wqattrs_commit(ctx); 3669 apply_wqattrs_cleanup(ctx); 3670 3671 return 0; 3672 } 3673 3674 /** 3675 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3676 * @wq: the target workqueue 3677 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3678 * 3679 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3680 * machines, this function maps a separate pwq to each NUMA node with 3681 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3682 * NUMA node it was issued on. Older pwqs are released as in-flight work 3683 * items finish. Note that a work item which repeatedly requeues itself 3684 * back-to-back will stay on its current pwq. 3685 * 3686 * Performs GFP_KERNEL allocations. 3687 * 3688 * Return: 0 on success and -errno on failure. 3689 */ 3690 int apply_workqueue_attrs(struct workqueue_struct *wq, 3691 const struct workqueue_attrs *attrs) 3692 { 3693 int ret; 3694 3695 apply_wqattrs_lock(); 3696 ret = apply_workqueue_attrs_locked(wq, attrs); 3697 apply_wqattrs_unlock(); 3698 3699 return ret; 3700 } 3701 3702 /** 3703 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3704 * @wq: the target workqueue 3705 * @cpu: the CPU coming up or going down 3706 * @online: whether @cpu is coming up or going down 3707 * 3708 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3709 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3710 * @wq accordingly. 3711 * 3712 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3713 * falls back to @wq->dfl_pwq which may not be optimal but is always 3714 * correct. 3715 * 3716 * Note that when the last allowed CPU of a NUMA node goes offline for a 3717 * workqueue with a cpumask spanning multiple nodes, the workers which were 3718 * already executing the work items for the workqueue will lose their CPU 3719 * affinity and may execute on any CPU. This is similar to how per-cpu 3720 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3721 * affinity, it's the user's responsibility to flush the work item from 3722 * CPU_DOWN_PREPARE. 3723 */ 3724 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3725 bool online) 3726 { 3727 int node = cpu_to_node(cpu); 3728 int cpu_off = online ? -1 : cpu; 3729 struct pool_workqueue *old_pwq = NULL, *pwq; 3730 struct workqueue_attrs *target_attrs; 3731 cpumask_t *cpumask; 3732 3733 lockdep_assert_held(&wq_pool_mutex); 3734 3735 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 3736 wq->unbound_attrs->no_numa) 3737 return; 3738 3739 /* 3740 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3741 * Let's use a preallocated one. The following buf is protected by 3742 * CPU hotplug exclusion. 3743 */ 3744 target_attrs = wq_update_unbound_numa_attrs_buf; 3745 cpumask = target_attrs->cpumask; 3746 3747 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3748 pwq = unbound_pwq_by_node(wq, node); 3749 3750 /* 3751 * Let's determine what needs to be done. If the target cpumask is 3752 * different from the default pwq's, we need to compare it to @pwq's 3753 * and create a new one if they don't match. If the target cpumask 3754 * equals the default pwq's, the default pwq should be used. 3755 */ 3756 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 3757 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 3758 return; 3759 } else { 3760 goto use_dfl_pwq; 3761 } 3762 3763 /* create a new pwq */ 3764 pwq = alloc_unbound_pwq(wq, target_attrs); 3765 if (!pwq) { 3766 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 3767 wq->name); 3768 goto use_dfl_pwq; 3769 } 3770 3771 /* Install the new pwq. */ 3772 mutex_lock(&wq->mutex); 3773 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 3774 goto out_unlock; 3775 3776 use_dfl_pwq: 3777 mutex_lock(&wq->mutex); 3778 spin_lock_irq(&wq->dfl_pwq->pool->lock); 3779 get_pwq(wq->dfl_pwq); 3780 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 3781 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 3782 out_unlock: 3783 mutex_unlock(&wq->mutex); 3784 put_pwq_unlocked(old_pwq); 3785 } 3786 3787 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 3788 { 3789 bool highpri = wq->flags & WQ_HIGHPRI; 3790 int cpu, ret; 3791 3792 if (!(wq->flags & WQ_UNBOUND)) { 3793 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 3794 if (!wq->cpu_pwqs) 3795 return -ENOMEM; 3796 3797 for_each_possible_cpu(cpu) { 3798 struct pool_workqueue *pwq = 3799 per_cpu_ptr(wq->cpu_pwqs, cpu); 3800 struct worker_pool *cpu_pools = 3801 per_cpu(cpu_worker_pools, cpu); 3802 3803 init_pwq(pwq, wq, &cpu_pools[highpri]); 3804 3805 mutex_lock(&wq->mutex); 3806 link_pwq(pwq); 3807 mutex_unlock(&wq->mutex); 3808 } 3809 return 0; 3810 } else if (wq->flags & __WQ_ORDERED) { 3811 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 3812 /* there should only be single pwq for ordering guarantee */ 3813 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 3814 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 3815 "ordering guarantee broken for workqueue %s\n", wq->name); 3816 return ret; 3817 } else { 3818 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 3819 } 3820 } 3821 3822 static int wq_clamp_max_active(int max_active, unsigned int flags, 3823 const char *name) 3824 { 3825 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 3826 3827 if (max_active < 1 || max_active > lim) 3828 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 3829 max_active, name, 1, lim); 3830 3831 return clamp_val(max_active, 1, lim); 3832 } 3833 3834 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 3835 unsigned int flags, 3836 int max_active, 3837 struct lock_class_key *key, 3838 const char *lock_name, ...) 3839 { 3840 size_t tbl_size = 0; 3841 va_list args; 3842 struct workqueue_struct *wq; 3843 struct pool_workqueue *pwq; 3844 3845 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 3846 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 3847 flags |= WQ_UNBOUND; 3848 3849 /* allocate wq and format name */ 3850 if (flags & WQ_UNBOUND) 3851 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 3852 3853 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 3854 if (!wq) 3855 return NULL; 3856 3857 if (flags & WQ_UNBOUND) { 3858 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3859 if (!wq->unbound_attrs) 3860 goto err_free_wq; 3861 } 3862 3863 va_start(args, lock_name); 3864 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 3865 va_end(args); 3866 3867 max_active = max_active ?: WQ_DFL_ACTIVE; 3868 max_active = wq_clamp_max_active(max_active, flags, wq->name); 3869 3870 /* init wq */ 3871 wq->flags = flags; 3872 wq->saved_max_active = max_active; 3873 mutex_init(&wq->mutex); 3874 atomic_set(&wq->nr_pwqs_to_flush, 0); 3875 INIT_LIST_HEAD(&wq->pwqs); 3876 INIT_LIST_HEAD(&wq->flusher_queue); 3877 INIT_LIST_HEAD(&wq->flusher_overflow); 3878 INIT_LIST_HEAD(&wq->maydays); 3879 3880 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 3881 INIT_LIST_HEAD(&wq->list); 3882 3883 if (alloc_and_link_pwqs(wq) < 0) 3884 goto err_free_wq; 3885 3886 /* 3887 * Workqueues which may be used during memory reclaim should 3888 * have a rescuer to guarantee forward progress. 3889 */ 3890 if (flags & WQ_MEM_RECLAIM) { 3891 struct worker *rescuer; 3892 3893 rescuer = alloc_worker(NUMA_NO_NODE); 3894 if (!rescuer) 3895 goto err_destroy; 3896 3897 rescuer->rescue_wq = wq; 3898 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 3899 wq->name); 3900 if (IS_ERR(rescuer->task)) { 3901 kfree(rescuer); 3902 goto err_destroy; 3903 } 3904 3905 wq->rescuer = rescuer; 3906 kthread_bind_mask(rescuer->task, cpu_possible_mask); 3907 wake_up_process(rescuer->task); 3908 } 3909 3910 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 3911 goto err_destroy; 3912 3913 /* 3914 * wq_pool_mutex protects global freeze state and workqueues list. 3915 * Grab it, adjust max_active and add the new @wq to workqueues 3916 * list. 3917 */ 3918 mutex_lock(&wq_pool_mutex); 3919 3920 mutex_lock(&wq->mutex); 3921 for_each_pwq(pwq, wq) 3922 pwq_adjust_max_active(pwq); 3923 mutex_unlock(&wq->mutex); 3924 3925 list_add_tail_rcu(&wq->list, &workqueues); 3926 3927 mutex_unlock(&wq_pool_mutex); 3928 3929 return wq; 3930 3931 err_free_wq: 3932 free_workqueue_attrs(wq->unbound_attrs); 3933 kfree(wq); 3934 return NULL; 3935 err_destroy: 3936 destroy_workqueue(wq); 3937 return NULL; 3938 } 3939 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 3940 3941 /** 3942 * destroy_workqueue - safely terminate a workqueue 3943 * @wq: target workqueue 3944 * 3945 * Safely destroy a workqueue. All work currently pending will be done first. 3946 */ 3947 void destroy_workqueue(struct workqueue_struct *wq) 3948 { 3949 struct pool_workqueue *pwq; 3950 int node; 3951 3952 /* drain it before proceeding with destruction */ 3953 drain_workqueue(wq); 3954 3955 /* sanity checks */ 3956 mutex_lock(&wq->mutex); 3957 for_each_pwq(pwq, wq) { 3958 int i; 3959 3960 for (i = 0; i < WORK_NR_COLORS; i++) { 3961 if (WARN_ON(pwq->nr_in_flight[i])) { 3962 mutex_unlock(&wq->mutex); 3963 return; 3964 } 3965 } 3966 3967 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 3968 WARN_ON(pwq->nr_active) || 3969 WARN_ON(!list_empty(&pwq->delayed_works))) { 3970 mutex_unlock(&wq->mutex); 3971 return; 3972 } 3973 } 3974 mutex_unlock(&wq->mutex); 3975 3976 /* 3977 * wq list is used to freeze wq, remove from list after 3978 * flushing is complete in case freeze races us. 3979 */ 3980 mutex_lock(&wq_pool_mutex); 3981 list_del_rcu(&wq->list); 3982 mutex_unlock(&wq_pool_mutex); 3983 3984 workqueue_sysfs_unregister(wq); 3985 3986 if (wq->rescuer) 3987 kthread_stop(wq->rescuer->task); 3988 3989 if (!(wq->flags & WQ_UNBOUND)) { 3990 /* 3991 * The base ref is never dropped on per-cpu pwqs. Directly 3992 * schedule RCU free. 3993 */ 3994 call_rcu_sched(&wq->rcu, rcu_free_wq); 3995 } else { 3996 /* 3997 * We're the sole accessor of @wq at this point. Directly 3998 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 3999 * @wq will be freed when the last pwq is released. 4000 */ 4001 for_each_node(node) { 4002 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4003 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4004 put_pwq_unlocked(pwq); 4005 } 4006 4007 /* 4008 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4009 * put. Don't access it afterwards. 4010 */ 4011 pwq = wq->dfl_pwq; 4012 wq->dfl_pwq = NULL; 4013 put_pwq_unlocked(pwq); 4014 } 4015 } 4016 EXPORT_SYMBOL_GPL(destroy_workqueue); 4017 4018 /** 4019 * workqueue_set_max_active - adjust max_active of a workqueue 4020 * @wq: target workqueue 4021 * @max_active: new max_active value. 4022 * 4023 * Set max_active of @wq to @max_active. 4024 * 4025 * CONTEXT: 4026 * Don't call from IRQ context. 4027 */ 4028 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4029 { 4030 struct pool_workqueue *pwq; 4031 4032 /* disallow meddling with max_active for ordered workqueues */ 4033 if (WARN_ON(wq->flags & __WQ_ORDERED)) 4034 return; 4035 4036 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4037 4038 mutex_lock(&wq->mutex); 4039 4040 wq->saved_max_active = max_active; 4041 4042 for_each_pwq(pwq, wq) 4043 pwq_adjust_max_active(pwq); 4044 4045 mutex_unlock(&wq->mutex); 4046 } 4047 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4048 4049 /** 4050 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4051 * 4052 * Determine whether %current is a workqueue rescuer. Can be used from 4053 * work functions to determine whether it's being run off the rescuer task. 4054 * 4055 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4056 */ 4057 bool current_is_workqueue_rescuer(void) 4058 { 4059 struct worker *worker = current_wq_worker(); 4060 4061 return worker && worker->rescue_wq; 4062 } 4063 4064 /** 4065 * workqueue_congested - test whether a workqueue is congested 4066 * @cpu: CPU in question 4067 * @wq: target workqueue 4068 * 4069 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4070 * no synchronization around this function and the test result is 4071 * unreliable and only useful as advisory hints or for debugging. 4072 * 4073 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4074 * Note that both per-cpu and unbound workqueues may be associated with 4075 * multiple pool_workqueues which have separate congested states. A 4076 * workqueue being congested on one CPU doesn't mean the workqueue is also 4077 * contested on other CPUs / NUMA nodes. 4078 * 4079 * Return: 4080 * %true if congested, %false otherwise. 4081 */ 4082 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4083 { 4084 struct pool_workqueue *pwq; 4085 bool ret; 4086 4087 rcu_read_lock_sched(); 4088 4089 if (cpu == WORK_CPU_UNBOUND) 4090 cpu = smp_processor_id(); 4091 4092 if (!(wq->flags & WQ_UNBOUND)) 4093 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4094 else 4095 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4096 4097 ret = !list_empty(&pwq->delayed_works); 4098 rcu_read_unlock_sched(); 4099 4100 return ret; 4101 } 4102 EXPORT_SYMBOL_GPL(workqueue_congested); 4103 4104 /** 4105 * work_busy - test whether a work is currently pending or running 4106 * @work: the work to be tested 4107 * 4108 * Test whether @work is currently pending or running. There is no 4109 * synchronization around this function and the test result is 4110 * unreliable and only useful as advisory hints or for debugging. 4111 * 4112 * Return: 4113 * OR'd bitmask of WORK_BUSY_* bits. 4114 */ 4115 unsigned int work_busy(struct work_struct *work) 4116 { 4117 struct worker_pool *pool; 4118 unsigned long flags; 4119 unsigned int ret = 0; 4120 4121 if (work_pending(work)) 4122 ret |= WORK_BUSY_PENDING; 4123 4124 local_irq_save(flags); 4125 pool = get_work_pool(work); 4126 if (pool) { 4127 spin_lock(&pool->lock); 4128 if (find_worker_executing_work(pool, work)) 4129 ret |= WORK_BUSY_RUNNING; 4130 spin_unlock(&pool->lock); 4131 } 4132 local_irq_restore(flags); 4133 4134 return ret; 4135 } 4136 EXPORT_SYMBOL_GPL(work_busy); 4137 4138 /** 4139 * set_worker_desc - set description for the current work item 4140 * @fmt: printf-style format string 4141 * @...: arguments for the format string 4142 * 4143 * This function can be called by a running work function to describe what 4144 * the work item is about. If the worker task gets dumped, this 4145 * information will be printed out together to help debugging. The 4146 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4147 */ 4148 void set_worker_desc(const char *fmt, ...) 4149 { 4150 struct worker *worker = current_wq_worker(); 4151 va_list args; 4152 4153 if (worker) { 4154 va_start(args, fmt); 4155 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4156 va_end(args); 4157 worker->desc_valid = true; 4158 } 4159 } 4160 4161 /** 4162 * print_worker_info - print out worker information and description 4163 * @log_lvl: the log level to use when printing 4164 * @task: target task 4165 * 4166 * If @task is a worker and currently executing a work item, print out the 4167 * name of the workqueue being serviced and worker description set with 4168 * set_worker_desc() by the currently executing work item. 4169 * 4170 * This function can be safely called on any task as long as the 4171 * task_struct itself is accessible. While safe, this function isn't 4172 * synchronized and may print out mixups or garbages of limited length. 4173 */ 4174 void print_worker_info(const char *log_lvl, struct task_struct *task) 4175 { 4176 work_func_t *fn = NULL; 4177 char name[WQ_NAME_LEN] = { }; 4178 char desc[WORKER_DESC_LEN] = { }; 4179 struct pool_workqueue *pwq = NULL; 4180 struct workqueue_struct *wq = NULL; 4181 bool desc_valid = false; 4182 struct worker *worker; 4183 4184 if (!(task->flags & PF_WQ_WORKER)) 4185 return; 4186 4187 /* 4188 * This function is called without any synchronization and @task 4189 * could be in any state. Be careful with dereferences. 4190 */ 4191 worker = probe_kthread_data(task); 4192 4193 /* 4194 * Carefully copy the associated workqueue's workfn and name. Keep 4195 * the original last '\0' in case the original contains garbage. 4196 */ 4197 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4198 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4199 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4200 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4201 4202 /* copy worker description */ 4203 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4204 if (desc_valid) 4205 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4206 4207 if (fn || name[0] || desc[0]) { 4208 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4209 if (desc[0]) 4210 pr_cont(" (%s)", desc); 4211 pr_cont("\n"); 4212 } 4213 } 4214 4215 static void pr_cont_pool_info(struct worker_pool *pool) 4216 { 4217 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4218 if (pool->node != NUMA_NO_NODE) 4219 pr_cont(" node=%d", pool->node); 4220 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4221 } 4222 4223 static void pr_cont_work(bool comma, struct work_struct *work) 4224 { 4225 if (work->func == wq_barrier_func) { 4226 struct wq_barrier *barr; 4227 4228 barr = container_of(work, struct wq_barrier, work); 4229 4230 pr_cont("%s BAR(%d)", comma ? "," : "", 4231 task_pid_nr(barr->task)); 4232 } else { 4233 pr_cont("%s %pf", comma ? "," : "", work->func); 4234 } 4235 } 4236 4237 static void show_pwq(struct pool_workqueue *pwq) 4238 { 4239 struct worker_pool *pool = pwq->pool; 4240 struct work_struct *work; 4241 struct worker *worker; 4242 bool has_in_flight = false, has_pending = false; 4243 int bkt; 4244 4245 pr_info(" pwq %d:", pool->id); 4246 pr_cont_pool_info(pool); 4247 4248 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4249 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4250 4251 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4252 if (worker->current_pwq == pwq) { 4253 has_in_flight = true; 4254 break; 4255 } 4256 } 4257 if (has_in_flight) { 4258 bool comma = false; 4259 4260 pr_info(" in-flight:"); 4261 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4262 if (worker->current_pwq != pwq) 4263 continue; 4264 4265 pr_cont("%s %d%s:%pf", comma ? "," : "", 4266 task_pid_nr(worker->task), 4267 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4268 worker->current_func); 4269 list_for_each_entry(work, &worker->scheduled, entry) 4270 pr_cont_work(false, work); 4271 comma = true; 4272 } 4273 pr_cont("\n"); 4274 } 4275 4276 list_for_each_entry(work, &pool->worklist, entry) { 4277 if (get_work_pwq(work) == pwq) { 4278 has_pending = true; 4279 break; 4280 } 4281 } 4282 if (has_pending) { 4283 bool comma = false; 4284 4285 pr_info(" pending:"); 4286 list_for_each_entry(work, &pool->worklist, entry) { 4287 if (get_work_pwq(work) != pwq) 4288 continue; 4289 4290 pr_cont_work(comma, work); 4291 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4292 } 4293 pr_cont("\n"); 4294 } 4295 4296 if (!list_empty(&pwq->delayed_works)) { 4297 bool comma = false; 4298 4299 pr_info(" delayed:"); 4300 list_for_each_entry(work, &pwq->delayed_works, entry) { 4301 pr_cont_work(comma, work); 4302 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4303 } 4304 pr_cont("\n"); 4305 } 4306 } 4307 4308 /** 4309 * show_workqueue_state - dump workqueue state 4310 * 4311 * Called from a sysrq handler and prints out all busy workqueues and 4312 * pools. 4313 */ 4314 void show_workqueue_state(void) 4315 { 4316 struct workqueue_struct *wq; 4317 struct worker_pool *pool; 4318 unsigned long flags; 4319 int pi; 4320 4321 rcu_read_lock_sched(); 4322 4323 pr_info("Showing busy workqueues and worker pools:\n"); 4324 4325 list_for_each_entry_rcu(wq, &workqueues, list) { 4326 struct pool_workqueue *pwq; 4327 bool idle = true; 4328 4329 for_each_pwq(pwq, wq) { 4330 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4331 idle = false; 4332 break; 4333 } 4334 } 4335 if (idle) 4336 continue; 4337 4338 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4339 4340 for_each_pwq(pwq, wq) { 4341 spin_lock_irqsave(&pwq->pool->lock, flags); 4342 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4343 show_pwq(pwq); 4344 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4345 } 4346 } 4347 4348 for_each_pool(pool, pi) { 4349 struct worker *worker; 4350 bool first = true; 4351 4352 spin_lock_irqsave(&pool->lock, flags); 4353 if (pool->nr_workers == pool->nr_idle) 4354 goto next_pool; 4355 4356 pr_info("pool %d:", pool->id); 4357 pr_cont_pool_info(pool); 4358 pr_cont(" hung=%us workers=%d", 4359 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4360 pool->nr_workers); 4361 if (pool->manager) 4362 pr_cont(" manager: %d", 4363 task_pid_nr(pool->manager->task)); 4364 list_for_each_entry(worker, &pool->idle_list, entry) { 4365 pr_cont(" %s%d", first ? "idle: " : "", 4366 task_pid_nr(worker->task)); 4367 first = false; 4368 } 4369 pr_cont("\n"); 4370 next_pool: 4371 spin_unlock_irqrestore(&pool->lock, flags); 4372 } 4373 4374 rcu_read_unlock_sched(); 4375 } 4376 4377 /* 4378 * CPU hotplug. 4379 * 4380 * There are two challenges in supporting CPU hotplug. Firstly, there 4381 * are a lot of assumptions on strong associations among work, pwq and 4382 * pool which make migrating pending and scheduled works very 4383 * difficult to implement without impacting hot paths. Secondly, 4384 * worker pools serve mix of short, long and very long running works making 4385 * blocked draining impractical. 4386 * 4387 * This is solved by allowing the pools to be disassociated from the CPU 4388 * running as an unbound one and allowing it to be reattached later if the 4389 * cpu comes back online. 4390 */ 4391 4392 static void wq_unbind_fn(struct work_struct *work) 4393 { 4394 int cpu = smp_processor_id(); 4395 struct worker_pool *pool; 4396 struct worker *worker; 4397 4398 for_each_cpu_worker_pool(pool, cpu) { 4399 mutex_lock(&pool->attach_mutex); 4400 spin_lock_irq(&pool->lock); 4401 4402 /* 4403 * We've blocked all attach/detach operations. Make all workers 4404 * unbound and set DISASSOCIATED. Before this, all workers 4405 * except for the ones which are still executing works from 4406 * before the last CPU down must be on the cpu. After 4407 * this, they may become diasporas. 4408 */ 4409 for_each_pool_worker(worker, pool) 4410 worker->flags |= WORKER_UNBOUND; 4411 4412 pool->flags |= POOL_DISASSOCIATED; 4413 4414 spin_unlock_irq(&pool->lock); 4415 mutex_unlock(&pool->attach_mutex); 4416 4417 /* 4418 * Call schedule() so that we cross rq->lock and thus can 4419 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4420 * This is necessary as scheduler callbacks may be invoked 4421 * from other cpus. 4422 */ 4423 schedule(); 4424 4425 /* 4426 * Sched callbacks are disabled now. Zap nr_running. 4427 * After this, nr_running stays zero and need_more_worker() 4428 * and keep_working() are always true as long as the 4429 * worklist is not empty. This pool now behaves as an 4430 * unbound (in terms of concurrency management) pool which 4431 * are served by workers tied to the pool. 4432 */ 4433 atomic_set(&pool->nr_running, 0); 4434 4435 /* 4436 * With concurrency management just turned off, a busy 4437 * worker blocking could lead to lengthy stalls. Kick off 4438 * unbound chain execution of currently pending work items. 4439 */ 4440 spin_lock_irq(&pool->lock); 4441 wake_up_worker(pool); 4442 spin_unlock_irq(&pool->lock); 4443 } 4444 } 4445 4446 /** 4447 * rebind_workers - rebind all workers of a pool to the associated CPU 4448 * @pool: pool of interest 4449 * 4450 * @pool->cpu is coming online. Rebind all workers to the CPU. 4451 */ 4452 static void rebind_workers(struct worker_pool *pool) 4453 { 4454 struct worker *worker; 4455 4456 lockdep_assert_held(&pool->attach_mutex); 4457 4458 /* 4459 * Restore CPU affinity of all workers. As all idle workers should 4460 * be on the run-queue of the associated CPU before any local 4461 * wake-ups for concurrency management happen, restore CPU affinity 4462 * of all workers first and then clear UNBOUND. As we're called 4463 * from CPU_ONLINE, the following shouldn't fail. 4464 */ 4465 for_each_pool_worker(worker, pool) 4466 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4467 pool->attrs->cpumask) < 0); 4468 4469 spin_lock_irq(&pool->lock); 4470 pool->flags &= ~POOL_DISASSOCIATED; 4471 4472 for_each_pool_worker(worker, pool) { 4473 unsigned int worker_flags = worker->flags; 4474 4475 /* 4476 * A bound idle worker should actually be on the runqueue 4477 * of the associated CPU for local wake-ups targeting it to 4478 * work. Kick all idle workers so that they migrate to the 4479 * associated CPU. Doing this in the same loop as 4480 * replacing UNBOUND with REBOUND is safe as no worker will 4481 * be bound before @pool->lock is released. 4482 */ 4483 if (worker_flags & WORKER_IDLE) 4484 wake_up_process(worker->task); 4485 4486 /* 4487 * We want to clear UNBOUND but can't directly call 4488 * worker_clr_flags() or adjust nr_running. Atomically 4489 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4490 * @worker will clear REBOUND using worker_clr_flags() when 4491 * it initiates the next execution cycle thus restoring 4492 * concurrency management. Note that when or whether 4493 * @worker clears REBOUND doesn't affect correctness. 4494 * 4495 * ACCESS_ONCE() is necessary because @worker->flags may be 4496 * tested without holding any lock in 4497 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4498 * fail incorrectly leading to premature concurrency 4499 * management operations. 4500 */ 4501 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4502 worker_flags |= WORKER_REBOUND; 4503 worker_flags &= ~WORKER_UNBOUND; 4504 ACCESS_ONCE(worker->flags) = worker_flags; 4505 } 4506 4507 spin_unlock_irq(&pool->lock); 4508 } 4509 4510 /** 4511 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4512 * @pool: unbound pool of interest 4513 * @cpu: the CPU which is coming up 4514 * 4515 * An unbound pool may end up with a cpumask which doesn't have any online 4516 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4517 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4518 * online CPU before, cpus_allowed of all its workers should be restored. 4519 */ 4520 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4521 { 4522 static cpumask_t cpumask; 4523 struct worker *worker; 4524 4525 lockdep_assert_held(&pool->attach_mutex); 4526 4527 /* is @cpu allowed for @pool? */ 4528 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4529 return; 4530 4531 /* is @cpu the only online CPU? */ 4532 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4533 if (cpumask_weight(&cpumask) != 1) 4534 return; 4535 4536 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4537 for_each_pool_worker(worker, pool) 4538 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4539 pool->attrs->cpumask) < 0); 4540 } 4541 4542 /* 4543 * Workqueues should be brought up before normal priority CPU notifiers. 4544 * This will be registered high priority CPU notifier. 4545 */ 4546 static int workqueue_cpu_up_callback(struct notifier_block *nfb, 4547 unsigned long action, 4548 void *hcpu) 4549 { 4550 int cpu = (unsigned long)hcpu; 4551 struct worker_pool *pool; 4552 struct workqueue_struct *wq; 4553 int pi; 4554 4555 switch (action & ~CPU_TASKS_FROZEN) { 4556 case CPU_UP_PREPARE: 4557 for_each_cpu_worker_pool(pool, cpu) { 4558 if (pool->nr_workers) 4559 continue; 4560 if (!create_worker(pool)) 4561 return NOTIFY_BAD; 4562 } 4563 break; 4564 4565 case CPU_DOWN_FAILED: 4566 case CPU_ONLINE: 4567 mutex_lock(&wq_pool_mutex); 4568 4569 for_each_pool(pool, pi) { 4570 mutex_lock(&pool->attach_mutex); 4571 4572 if (pool->cpu == cpu) 4573 rebind_workers(pool); 4574 else if (pool->cpu < 0) 4575 restore_unbound_workers_cpumask(pool, cpu); 4576 4577 mutex_unlock(&pool->attach_mutex); 4578 } 4579 4580 /* update NUMA affinity of unbound workqueues */ 4581 list_for_each_entry(wq, &workqueues, list) 4582 wq_update_unbound_numa(wq, cpu, true); 4583 4584 mutex_unlock(&wq_pool_mutex); 4585 break; 4586 } 4587 return NOTIFY_OK; 4588 } 4589 4590 /* 4591 * Workqueues should be brought down after normal priority CPU notifiers. 4592 * This will be registered as low priority CPU notifier. 4593 */ 4594 static int workqueue_cpu_down_callback(struct notifier_block *nfb, 4595 unsigned long action, 4596 void *hcpu) 4597 { 4598 int cpu = (unsigned long)hcpu; 4599 struct work_struct unbind_work; 4600 struct workqueue_struct *wq; 4601 4602 switch (action & ~CPU_TASKS_FROZEN) { 4603 case CPU_DOWN_PREPARE: 4604 /* unbinding per-cpu workers should happen on the local CPU */ 4605 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4606 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4607 4608 /* update NUMA affinity of unbound workqueues */ 4609 mutex_lock(&wq_pool_mutex); 4610 list_for_each_entry(wq, &workqueues, list) 4611 wq_update_unbound_numa(wq, cpu, false); 4612 mutex_unlock(&wq_pool_mutex); 4613 4614 /* wait for per-cpu unbinding to finish */ 4615 flush_work(&unbind_work); 4616 destroy_work_on_stack(&unbind_work); 4617 break; 4618 } 4619 return NOTIFY_OK; 4620 } 4621 4622 #ifdef CONFIG_SMP 4623 4624 struct work_for_cpu { 4625 struct work_struct work; 4626 long (*fn)(void *); 4627 void *arg; 4628 long ret; 4629 }; 4630 4631 static void work_for_cpu_fn(struct work_struct *work) 4632 { 4633 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4634 4635 wfc->ret = wfc->fn(wfc->arg); 4636 } 4637 4638 /** 4639 * work_on_cpu - run a function in user context on a particular cpu 4640 * @cpu: the cpu to run on 4641 * @fn: the function to run 4642 * @arg: the function arg 4643 * 4644 * It is up to the caller to ensure that the cpu doesn't go offline. 4645 * The caller must not hold any locks which would prevent @fn from completing. 4646 * 4647 * Return: The value @fn returns. 4648 */ 4649 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4650 { 4651 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4652 4653 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4654 schedule_work_on(cpu, &wfc.work); 4655 flush_work(&wfc.work); 4656 destroy_work_on_stack(&wfc.work); 4657 return wfc.ret; 4658 } 4659 EXPORT_SYMBOL_GPL(work_on_cpu); 4660 #endif /* CONFIG_SMP */ 4661 4662 #ifdef CONFIG_FREEZER 4663 4664 /** 4665 * freeze_workqueues_begin - begin freezing workqueues 4666 * 4667 * Start freezing workqueues. After this function returns, all freezable 4668 * workqueues will queue new works to their delayed_works list instead of 4669 * pool->worklist. 4670 * 4671 * CONTEXT: 4672 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4673 */ 4674 void freeze_workqueues_begin(void) 4675 { 4676 struct workqueue_struct *wq; 4677 struct pool_workqueue *pwq; 4678 4679 mutex_lock(&wq_pool_mutex); 4680 4681 WARN_ON_ONCE(workqueue_freezing); 4682 workqueue_freezing = true; 4683 4684 list_for_each_entry(wq, &workqueues, list) { 4685 mutex_lock(&wq->mutex); 4686 for_each_pwq(pwq, wq) 4687 pwq_adjust_max_active(pwq); 4688 mutex_unlock(&wq->mutex); 4689 } 4690 4691 mutex_unlock(&wq_pool_mutex); 4692 } 4693 4694 /** 4695 * freeze_workqueues_busy - are freezable workqueues still busy? 4696 * 4697 * Check whether freezing is complete. This function must be called 4698 * between freeze_workqueues_begin() and thaw_workqueues(). 4699 * 4700 * CONTEXT: 4701 * Grabs and releases wq_pool_mutex. 4702 * 4703 * Return: 4704 * %true if some freezable workqueues are still busy. %false if freezing 4705 * is complete. 4706 */ 4707 bool freeze_workqueues_busy(void) 4708 { 4709 bool busy = false; 4710 struct workqueue_struct *wq; 4711 struct pool_workqueue *pwq; 4712 4713 mutex_lock(&wq_pool_mutex); 4714 4715 WARN_ON_ONCE(!workqueue_freezing); 4716 4717 list_for_each_entry(wq, &workqueues, list) { 4718 if (!(wq->flags & WQ_FREEZABLE)) 4719 continue; 4720 /* 4721 * nr_active is monotonically decreasing. It's safe 4722 * to peek without lock. 4723 */ 4724 rcu_read_lock_sched(); 4725 for_each_pwq(pwq, wq) { 4726 WARN_ON_ONCE(pwq->nr_active < 0); 4727 if (pwq->nr_active) { 4728 busy = true; 4729 rcu_read_unlock_sched(); 4730 goto out_unlock; 4731 } 4732 } 4733 rcu_read_unlock_sched(); 4734 } 4735 out_unlock: 4736 mutex_unlock(&wq_pool_mutex); 4737 return busy; 4738 } 4739 4740 /** 4741 * thaw_workqueues - thaw workqueues 4742 * 4743 * Thaw workqueues. Normal queueing is restored and all collected 4744 * frozen works are transferred to their respective pool worklists. 4745 * 4746 * CONTEXT: 4747 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4748 */ 4749 void thaw_workqueues(void) 4750 { 4751 struct workqueue_struct *wq; 4752 struct pool_workqueue *pwq; 4753 4754 mutex_lock(&wq_pool_mutex); 4755 4756 if (!workqueue_freezing) 4757 goto out_unlock; 4758 4759 workqueue_freezing = false; 4760 4761 /* restore max_active and repopulate worklist */ 4762 list_for_each_entry(wq, &workqueues, list) { 4763 mutex_lock(&wq->mutex); 4764 for_each_pwq(pwq, wq) 4765 pwq_adjust_max_active(pwq); 4766 mutex_unlock(&wq->mutex); 4767 } 4768 4769 out_unlock: 4770 mutex_unlock(&wq_pool_mutex); 4771 } 4772 #endif /* CONFIG_FREEZER */ 4773 4774 static int workqueue_apply_unbound_cpumask(void) 4775 { 4776 LIST_HEAD(ctxs); 4777 int ret = 0; 4778 struct workqueue_struct *wq; 4779 struct apply_wqattrs_ctx *ctx, *n; 4780 4781 lockdep_assert_held(&wq_pool_mutex); 4782 4783 list_for_each_entry(wq, &workqueues, list) { 4784 if (!(wq->flags & WQ_UNBOUND)) 4785 continue; 4786 /* creating multiple pwqs breaks ordering guarantee */ 4787 if (wq->flags & __WQ_ORDERED) 4788 continue; 4789 4790 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 4791 if (!ctx) { 4792 ret = -ENOMEM; 4793 break; 4794 } 4795 4796 list_add_tail(&ctx->list, &ctxs); 4797 } 4798 4799 list_for_each_entry_safe(ctx, n, &ctxs, list) { 4800 if (!ret) 4801 apply_wqattrs_commit(ctx); 4802 apply_wqattrs_cleanup(ctx); 4803 } 4804 4805 return ret; 4806 } 4807 4808 /** 4809 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 4810 * @cpumask: the cpumask to set 4811 * 4812 * The low-level workqueues cpumask is a global cpumask that limits 4813 * the affinity of all unbound workqueues. This function check the @cpumask 4814 * and apply it to all unbound workqueues and updates all pwqs of them. 4815 * 4816 * Retun: 0 - Success 4817 * -EINVAL - Invalid @cpumask 4818 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 4819 */ 4820 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 4821 { 4822 int ret = -EINVAL; 4823 cpumask_var_t saved_cpumask; 4824 4825 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 4826 return -ENOMEM; 4827 4828 cpumask_and(cpumask, cpumask, cpu_possible_mask); 4829 if (!cpumask_empty(cpumask)) { 4830 apply_wqattrs_lock(); 4831 4832 /* save the old wq_unbound_cpumask. */ 4833 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 4834 4835 /* update wq_unbound_cpumask at first and apply it to wqs. */ 4836 cpumask_copy(wq_unbound_cpumask, cpumask); 4837 ret = workqueue_apply_unbound_cpumask(); 4838 4839 /* restore the wq_unbound_cpumask when failed. */ 4840 if (ret < 0) 4841 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 4842 4843 apply_wqattrs_unlock(); 4844 } 4845 4846 free_cpumask_var(saved_cpumask); 4847 return ret; 4848 } 4849 4850 #ifdef CONFIG_SYSFS 4851 /* 4852 * Workqueues with WQ_SYSFS flag set is visible to userland via 4853 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 4854 * following attributes. 4855 * 4856 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 4857 * max_active RW int : maximum number of in-flight work items 4858 * 4859 * Unbound workqueues have the following extra attributes. 4860 * 4861 * id RO int : the associated pool ID 4862 * nice RW int : nice value of the workers 4863 * cpumask RW mask : bitmask of allowed CPUs for the workers 4864 */ 4865 struct wq_device { 4866 struct workqueue_struct *wq; 4867 struct device dev; 4868 }; 4869 4870 static struct workqueue_struct *dev_to_wq(struct device *dev) 4871 { 4872 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 4873 4874 return wq_dev->wq; 4875 } 4876 4877 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 4878 char *buf) 4879 { 4880 struct workqueue_struct *wq = dev_to_wq(dev); 4881 4882 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 4883 } 4884 static DEVICE_ATTR_RO(per_cpu); 4885 4886 static ssize_t max_active_show(struct device *dev, 4887 struct device_attribute *attr, char *buf) 4888 { 4889 struct workqueue_struct *wq = dev_to_wq(dev); 4890 4891 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 4892 } 4893 4894 static ssize_t max_active_store(struct device *dev, 4895 struct device_attribute *attr, const char *buf, 4896 size_t count) 4897 { 4898 struct workqueue_struct *wq = dev_to_wq(dev); 4899 int val; 4900 4901 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 4902 return -EINVAL; 4903 4904 workqueue_set_max_active(wq, val); 4905 return count; 4906 } 4907 static DEVICE_ATTR_RW(max_active); 4908 4909 static struct attribute *wq_sysfs_attrs[] = { 4910 &dev_attr_per_cpu.attr, 4911 &dev_attr_max_active.attr, 4912 NULL, 4913 }; 4914 ATTRIBUTE_GROUPS(wq_sysfs); 4915 4916 static ssize_t wq_pool_ids_show(struct device *dev, 4917 struct device_attribute *attr, char *buf) 4918 { 4919 struct workqueue_struct *wq = dev_to_wq(dev); 4920 const char *delim = ""; 4921 int node, written = 0; 4922 4923 rcu_read_lock_sched(); 4924 for_each_node(node) { 4925 written += scnprintf(buf + written, PAGE_SIZE - written, 4926 "%s%d:%d", delim, node, 4927 unbound_pwq_by_node(wq, node)->pool->id); 4928 delim = " "; 4929 } 4930 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 4931 rcu_read_unlock_sched(); 4932 4933 return written; 4934 } 4935 4936 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 4937 char *buf) 4938 { 4939 struct workqueue_struct *wq = dev_to_wq(dev); 4940 int written; 4941 4942 mutex_lock(&wq->mutex); 4943 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 4944 mutex_unlock(&wq->mutex); 4945 4946 return written; 4947 } 4948 4949 /* prepare workqueue_attrs for sysfs store operations */ 4950 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 4951 { 4952 struct workqueue_attrs *attrs; 4953 4954 lockdep_assert_held(&wq_pool_mutex); 4955 4956 attrs = alloc_workqueue_attrs(GFP_KERNEL); 4957 if (!attrs) 4958 return NULL; 4959 4960 copy_workqueue_attrs(attrs, wq->unbound_attrs); 4961 return attrs; 4962 } 4963 4964 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 4965 const char *buf, size_t count) 4966 { 4967 struct workqueue_struct *wq = dev_to_wq(dev); 4968 struct workqueue_attrs *attrs; 4969 int ret = -ENOMEM; 4970 4971 apply_wqattrs_lock(); 4972 4973 attrs = wq_sysfs_prep_attrs(wq); 4974 if (!attrs) 4975 goto out_unlock; 4976 4977 if (sscanf(buf, "%d", &attrs->nice) == 1 && 4978 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 4979 ret = apply_workqueue_attrs_locked(wq, attrs); 4980 else 4981 ret = -EINVAL; 4982 4983 out_unlock: 4984 apply_wqattrs_unlock(); 4985 free_workqueue_attrs(attrs); 4986 return ret ?: count; 4987 } 4988 4989 static ssize_t wq_cpumask_show(struct device *dev, 4990 struct device_attribute *attr, char *buf) 4991 { 4992 struct workqueue_struct *wq = dev_to_wq(dev); 4993 int written; 4994 4995 mutex_lock(&wq->mutex); 4996 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 4997 cpumask_pr_args(wq->unbound_attrs->cpumask)); 4998 mutex_unlock(&wq->mutex); 4999 return written; 5000 } 5001 5002 static ssize_t wq_cpumask_store(struct device *dev, 5003 struct device_attribute *attr, 5004 const char *buf, size_t count) 5005 { 5006 struct workqueue_struct *wq = dev_to_wq(dev); 5007 struct workqueue_attrs *attrs; 5008 int ret = -ENOMEM; 5009 5010 apply_wqattrs_lock(); 5011 5012 attrs = wq_sysfs_prep_attrs(wq); 5013 if (!attrs) 5014 goto out_unlock; 5015 5016 ret = cpumask_parse(buf, attrs->cpumask); 5017 if (!ret) 5018 ret = apply_workqueue_attrs_locked(wq, attrs); 5019 5020 out_unlock: 5021 apply_wqattrs_unlock(); 5022 free_workqueue_attrs(attrs); 5023 return ret ?: count; 5024 } 5025 5026 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5027 char *buf) 5028 { 5029 struct workqueue_struct *wq = dev_to_wq(dev); 5030 int written; 5031 5032 mutex_lock(&wq->mutex); 5033 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5034 !wq->unbound_attrs->no_numa); 5035 mutex_unlock(&wq->mutex); 5036 5037 return written; 5038 } 5039 5040 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5041 const char *buf, size_t count) 5042 { 5043 struct workqueue_struct *wq = dev_to_wq(dev); 5044 struct workqueue_attrs *attrs; 5045 int v, ret = -ENOMEM; 5046 5047 apply_wqattrs_lock(); 5048 5049 attrs = wq_sysfs_prep_attrs(wq); 5050 if (!attrs) 5051 goto out_unlock; 5052 5053 ret = -EINVAL; 5054 if (sscanf(buf, "%d", &v) == 1) { 5055 attrs->no_numa = !v; 5056 ret = apply_workqueue_attrs_locked(wq, attrs); 5057 } 5058 5059 out_unlock: 5060 apply_wqattrs_unlock(); 5061 free_workqueue_attrs(attrs); 5062 return ret ?: count; 5063 } 5064 5065 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5066 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5067 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5068 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5069 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5070 __ATTR_NULL, 5071 }; 5072 5073 static struct bus_type wq_subsys = { 5074 .name = "workqueue", 5075 .dev_groups = wq_sysfs_groups, 5076 }; 5077 5078 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5079 struct device_attribute *attr, char *buf) 5080 { 5081 int written; 5082 5083 mutex_lock(&wq_pool_mutex); 5084 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5085 cpumask_pr_args(wq_unbound_cpumask)); 5086 mutex_unlock(&wq_pool_mutex); 5087 5088 return written; 5089 } 5090 5091 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5092 struct device_attribute *attr, const char *buf, size_t count) 5093 { 5094 cpumask_var_t cpumask; 5095 int ret; 5096 5097 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5098 return -ENOMEM; 5099 5100 ret = cpumask_parse(buf, cpumask); 5101 if (!ret) 5102 ret = workqueue_set_unbound_cpumask(cpumask); 5103 5104 free_cpumask_var(cpumask); 5105 return ret ? ret : count; 5106 } 5107 5108 static struct device_attribute wq_sysfs_cpumask_attr = 5109 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5110 wq_unbound_cpumask_store); 5111 5112 static int __init wq_sysfs_init(void) 5113 { 5114 int err; 5115 5116 err = subsys_virtual_register(&wq_subsys, NULL); 5117 if (err) 5118 return err; 5119 5120 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5121 } 5122 core_initcall(wq_sysfs_init); 5123 5124 static void wq_device_release(struct device *dev) 5125 { 5126 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5127 5128 kfree(wq_dev); 5129 } 5130 5131 /** 5132 * workqueue_sysfs_register - make a workqueue visible in sysfs 5133 * @wq: the workqueue to register 5134 * 5135 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5136 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5137 * which is the preferred method. 5138 * 5139 * Workqueue user should use this function directly iff it wants to apply 5140 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5141 * apply_workqueue_attrs() may race against userland updating the 5142 * attributes. 5143 * 5144 * Return: 0 on success, -errno on failure. 5145 */ 5146 int workqueue_sysfs_register(struct workqueue_struct *wq) 5147 { 5148 struct wq_device *wq_dev; 5149 int ret; 5150 5151 /* 5152 * Adjusting max_active or creating new pwqs by applying 5153 * attributes breaks ordering guarantee. Disallow exposing ordered 5154 * workqueues. 5155 */ 5156 if (WARN_ON(wq->flags & __WQ_ORDERED)) 5157 return -EINVAL; 5158 5159 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5160 if (!wq_dev) 5161 return -ENOMEM; 5162 5163 wq_dev->wq = wq; 5164 wq_dev->dev.bus = &wq_subsys; 5165 wq_dev->dev.init_name = wq->name; 5166 wq_dev->dev.release = wq_device_release; 5167 5168 /* 5169 * unbound_attrs are created separately. Suppress uevent until 5170 * everything is ready. 5171 */ 5172 dev_set_uevent_suppress(&wq_dev->dev, true); 5173 5174 ret = device_register(&wq_dev->dev); 5175 if (ret) { 5176 kfree(wq_dev); 5177 wq->wq_dev = NULL; 5178 return ret; 5179 } 5180 5181 if (wq->flags & WQ_UNBOUND) { 5182 struct device_attribute *attr; 5183 5184 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5185 ret = device_create_file(&wq_dev->dev, attr); 5186 if (ret) { 5187 device_unregister(&wq_dev->dev); 5188 wq->wq_dev = NULL; 5189 return ret; 5190 } 5191 } 5192 } 5193 5194 dev_set_uevent_suppress(&wq_dev->dev, false); 5195 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5196 return 0; 5197 } 5198 5199 /** 5200 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5201 * @wq: the workqueue to unregister 5202 * 5203 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5204 */ 5205 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5206 { 5207 struct wq_device *wq_dev = wq->wq_dev; 5208 5209 if (!wq->wq_dev) 5210 return; 5211 5212 wq->wq_dev = NULL; 5213 device_unregister(&wq_dev->dev); 5214 } 5215 #else /* CONFIG_SYSFS */ 5216 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5217 #endif /* CONFIG_SYSFS */ 5218 5219 /* 5220 * Workqueue watchdog. 5221 * 5222 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5223 * flush dependency, a concurrency managed work item which stays RUNNING 5224 * indefinitely. Workqueue stalls can be very difficult to debug as the 5225 * usual warning mechanisms don't trigger and internal workqueue state is 5226 * largely opaque. 5227 * 5228 * Workqueue watchdog monitors all worker pools periodically and dumps 5229 * state if some pools failed to make forward progress for a while where 5230 * forward progress is defined as the first item on ->worklist changing. 5231 * 5232 * This mechanism is controlled through the kernel parameter 5233 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5234 * corresponding sysfs parameter file. 5235 */ 5236 #ifdef CONFIG_WQ_WATCHDOG 5237 5238 static void wq_watchdog_timer_fn(unsigned long data); 5239 5240 static unsigned long wq_watchdog_thresh = 30; 5241 static struct timer_list wq_watchdog_timer = 5242 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0); 5243 5244 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5245 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5246 5247 static void wq_watchdog_reset_touched(void) 5248 { 5249 int cpu; 5250 5251 wq_watchdog_touched = jiffies; 5252 for_each_possible_cpu(cpu) 5253 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5254 } 5255 5256 static void wq_watchdog_timer_fn(unsigned long data) 5257 { 5258 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5259 bool lockup_detected = false; 5260 struct worker_pool *pool; 5261 int pi; 5262 5263 if (!thresh) 5264 return; 5265 5266 rcu_read_lock(); 5267 5268 for_each_pool(pool, pi) { 5269 unsigned long pool_ts, touched, ts; 5270 5271 if (list_empty(&pool->worklist)) 5272 continue; 5273 5274 /* get the latest of pool and touched timestamps */ 5275 pool_ts = READ_ONCE(pool->watchdog_ts); 5276 touched = READ_ONCE(wq_watchdog_touched); 5277 5278 if (time_after(pool_ts, touched)) 5279 ts = pool_ts; 5280 else 5281 ts = touched; 5282 5283 if (pool->cpu >= 0) { 5284 unsigned long cpu_touched = 5285 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5286 pool->cpu)); 5287 if (time_after(cpu_touched, ts)) 5288 ts = cpu_touched; 5289 } 5290 5291 /* did we stall? */ 5292 if (time_after(jiffies, ts + thresh)) { 5293 lockup_detected = true; 5294 pr_emerg("BUG: workqueue lockup - pool"); 5295 pr_cont_pool_info(pool); 5296 pr_cont(" stuck for %us!\n", 5297 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5298 } 5299 } 5300 5301 rcu_read_unlock(); 5302 5303 if (lockup_detected) 5304 show_workqueue_state(); 5305 5306 wq_watchdog_reset_touched(); 5307 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5308 } 5309 5310 void wq_watchdog_touch(int cpu) 5311 { 5312 if (cpu >= 0) 5313 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5314 else 5315 wq_watchdog_touched = jiffies; 5316 } 5317 5318 static void wq_watchdog_set_thresh(unsigned long thresh) 5319 { 5320 wq_watchdog_thresh = 0; 5321 del_timer_sync(&wq_watchdog_timer); 5322 5323 if (thresh) { 5324 wq_watchdog_thresh = thresh; 5325 wq_watchdog_reset_touched(); 5326 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5327 } 5328 } 5329 5330 static int wq_watchdog_param_set_thresh(const char *val, 5331 const struct kernel_param *kp) 5332 { 5333 unsigned long thresh; 5334 int ret; 5335 5336 ret = kstrtoul(val, 0, &thresh); 5337 if (ret) 5338 return ret; 5339 5340 if (system_wq) 5341 wq_watchdog_set_thresh(thresh); 5342 else 5343 wq_watchdog_thresh = thresh; 5344 5345 return 0; 5346 } 5347 5348 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5349 .set = wq_watchdog_param_set_thresh, 5350 .get = param_get_ulong, 5351 }; 5352 5353 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5354 0644); 5355 5356 static void wq_watchdog_init(void) 5357 { 5358 wq_watchdog_set_thresh(wq_watchdog_thresh); 5359 } 5360 5361 #else /* CONFIG_WQ_WATCHDOG */ 5362 5363 static inline void wq_watchdog_init(void) { } 5364 5365 #endif /* CONFIG_WQ_WATCHDOG */ 5366 5367 static void __init wq_numa_init(void) 5368 { 5369 cpumask_var_t *tbl; 5370 int node, cpu; 5371 5372 if (num_possible_nodes() <= 1) 5373 return; 5374 5375 if (wq_disable_numa) { 5376 pr_info("workqueue: NUMA affinity support disabled\n"); 5377 return; 5378 } 5379 5380 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5381 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5382 5383 /* 5384 * We want masks of possible CPUs of each node which isn't readily 5385 * available. Build one from cpu_to_node() which should have been 5386 * fully initialized by now. 5387 */ 5388 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL); 5389 BUG_ON(!tbl); 5390 5391 for_each_node(node) 5392 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5393 node_online(node) ? node : NUMA_NO_NODE)); 5394 5395 for_each_possible_cpu(cpu) { 5396 node = cpu_to_node(cpu); 5397 if (WARN_ON(node == NUMA_NO_NODE)) { 5398 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5399 /* happens iff arch is bonkers, let's just proceed */ 5400 return; 5401 } 5402 cpumask_set_cpu(cpu, tbl[node]); 5403 } 5404 5405 wq_numa_possible_cpumask = tbl; 5406 wq_numa_enabled = true; 5407 } 5408 5409 static int __init init_workqueues(void) 5410 { 5411 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5412 int i, cpu; 5413 5414 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5415 5416 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5417 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 5418 5419 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5420 5421 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 5422 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 5423 5424 wq_numa_init(); 5425 5426 /* initialize CPU pools */ 5427 for_each_possible_cpu(cpu) { 5428 struct worker_pool *pool; 5429 5430 i = 0; 5431 for_each_cpu_worker_pool(pool, cpu) { 5432 BUG_ON(init_worker_pool(pool)); 5433 pool->cpu = cpu; 5434 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5435 pool->attrs->nice = std_nice[i++]; 5436 pool->node = cpu_to_node(cpu); 5437 5438 /* alloc pool ID */ 5439 mutex_lock(&wq_pool_mutex); 5440 BUG_ON(worker_pool_assign_id(pool)); 5441 mutex_unlock(&wq_pool_mutex); 5442 } 5443 } 5444 5445 /* create the initial worker */ 5446 for_each_online_cpu(cpu) { 5447 struct worker_pool *pool; 5448 5449 for_each_cpu_worker_pool(pool, cpu) { 5450 pool->flags &= ~POOL_DISASSOCIATED; 5451 BUG_ON(!create_worker(pool)); 5452 } 5453 } 5454 5455 /* create default unbound and ordered wq attrs */ 5456 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5457 struct workqueue_attrs *attrs; 5458 5459 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5460 attrs->nice = std_nice[i]; 5461 unbound_std_wq_attrs[i] = attrs; 5462 5463 /* 5464 * An ordered wq should have only one pwq as ordering is 5465 * guaranteed by max_active which is enforced by pwqs. 5466 * Turn off NUMA so that dfl_pwq is used for all nodes. 5467 */ 5468 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5469 attrs->nice = std_nice[i]; 5470 attrs->no_numa = true; 5471 ordered_wq_attrs[i] = attrs; 5472 } 5473 5474 system_wq = alloc_workqueue("events", 0, 0); 5475 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5476 system_long_wq = alloc_workqueue("events_long", 0, 0); 5477 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5478 WQ_UNBOUND_MAX_ACTIVE); 5479 system_freezable_wq = alloc_workqueue("events_freezable", 5480 WQ_FREEZABLE, 0); 5481 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5482 WQ_POWER_EFFICIENT, 0); 5483 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5484 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5485 0); 5486 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5487 !system_unbound_wq || !system_freezable_wq || 5488 !system_power_efficient_wq || 5489 !system_freezable_power_efficient_wq); 5490 5491 wq_watchdog_init(); 5492 5493 return 0; 5494 } 5495 early_initcall(init_workqueues); 5496