1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/interrupt.h> 33 #include <linux/signal.h> 34 #include <linux/completion.h> 35 #include <linux/workqueue.h> 36 #include <linux/slab.h> 37 #include <linux/cpu.h> 38 #include <linux/notifier.h> 39 #include <linux/kthread.h> 40 #include <linux/hardirq.h> 41 #include <linux/mempolicy.h> 42 #include <linux/freezer.h> 43 #include <linux/debug_locks.h> 44 #include <linux/lockdep.h> 45 #include <linux/idr.h> 46 #include <linux/jhash.h> 47 #include <linux/hashtable.h> 48 #include <linux/rculist.h> 49 #include <linux/nodemask.h> 50 #include <linux/moduleparam.h> 51 #include <linux/uaccess.h> 52 #include <linux/sched/isolation.h> 53 #include <linux/sched/debug.h> 54 #include <linux/nmi.h> 55 #include <linux/kvm_para.h> 56 #include <linux/delay.h> 57 #include <linux/irq_work.h> 58 59 #include "workqueue_internal.h" 60 61 enum worker_pool_flags { 62 /* 63 * worker_pool flags 64 * 65 * A bound pool is either associated or disassociated with its CPU. 66 * While associated (!DISASSOCIATED), all workers are bound to the 67 * CPU and none has %WORKER_UNBOUND set and concurrency management 68 * is in effect. 69 * 70 * While DISASSOCIATED, the cpu may be offline and all workers have 71 * %WORKER_UNBOUND set and concurrency management disabled, and may 72 * be executing on any CPU. The pool behaves as an unbound one. 73 * 74 * Note that DISASSOCIATED should be flipped only while holding 75 * wq_pool_attach_mutex to avoid changing binding state while 76 * worker_attach_to_pool() is in progress. 77 * 78 * As there can only be one concurrent BH execution context per CPU, a 79 * BH pool is per-CPU and always DISASSOCIATED. 80 */ 81 POOL_BH = 1 << 0, /* is a BH pool */ 82 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */ 83 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 84 POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */ 85 }; 86 87 enum worker_flags { 88 /* worker flags */ 89 WORKER_DIE = 1 << 1, /* die die die */ 90 WORKER_IDLE = 1 << 2, /* is idle */ 91 WORKER_PREP = 1 << 3, /* preparing to run works */ 92 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 93 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 94 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 95 96 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 97 WORKER_UNBOUND | WORKER_REBOUND, 98 }; 99 100 enum work_cancel_flags { 101 WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */ 102 WORK_CANCEL_DISABLE = 1 << 1, /* canceling to disable */ 103 }; 104 105 enum wq_internal_consts { 106 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 107 108 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 109 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 110 111 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 112 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 113 114 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 115 /* call for help after 10ms 116 (min two ticks) */ 117 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 118 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 119 120 /* 121 * Rescue workers are used only on emergencies and shared by 122 * all cpus. Give MIN_NICE. 123 */ 124 RESCUER_NICE_LEVEL = MIN_NICE, 125 HIGHPRI_NICE_LEVEL = MIN_NICE, 126 127 WQ_NAME_LEN = 32, 128 WORKER_ID_LEN = 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */ 129 }; 130 131 /* 132 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and 133 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because 134 * msecs_to_jiffies() can't be an initializer. 135 */ 136 #define BH_WORKER_JIFFIES msecs_to_jiffies(2) 137 #define BH_WORKER_RESTARTS 10 138 139 /* 140 * Structure fields follow one of the following exclusion rules. 141 * 142 * I: Modifiable by initialization/destruction paths and read-only for 143 * everyone else. 144 * 145 * P: Preemption protected. Disabling preemption is enough and should 146 * only be modified and accessed from the local cpu. 147 * 148 * L: pool->lock protected. Access with pool->lock held. 149 * 150 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for 151 * reads. 152 * 153 * K: Only modified by worker while holding pool->lock. Can be safely read by 154 * self, while holding pool->lock or from IRQ context if %current is the 155 * kworker. 156 * 157 * S: Only modified by worker self. 158 * 159 * A: wq_pool_attach_mutex protected. 160 * 161 * PL: wq_pool_mutex protected. 162 * 163 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 164 * 165 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 166 * 167 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 168 * RCU for reads. 169 * 170 * WQ: wq->mutex protected. 171 * 172 * WR: wq->mutex protected for writes. RCU protected for reads. 173 * 174 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read 175 * with READ_ONCE() without locking. 176 * 177 * MD: wq_mayday_lock protected. 178 * 179 * WD: Used internally by the watchdog. 180 */ 181 182 /* struct worker is defined in workqueue_internal.h */ 183 184 struct worker_pool { 185 raw_spinlock_t lock; /* the pool lock */ 186 int cpu; /* I: the associated cpu */ 187 int node; /* I: the associated node ID */ 188 int id; /* I: pool ID */ 189 unsigned int flags; /* L: flags */ 190 191 unsigned long watchdog_ts; /* L: watchdog timestamp */ 192 bool cpu_stall; /* WD: stalled cpu bound pool */ 193 194 /* 195 * The counter is incremented in a process context on the associated CPU 196 * w/ preemption disabled, and decremented or reset in the same context 197 * but w/ pool->lock held. The readers grab pool->lock and are 198 * guaranteed to see if the counter reached zero. 199 */ 200 int nr_running; 201 202 struct list_head worklist; /* L: list of pending works */ 203 204 int nr_workers; /* L: total number of workers */ 205 int nr_idle; /* L: currently idle workers */ 206 207 struct list_head idle_list; /* L: list of idle workers */ 208 struct timer_list idle_timer; /* L: worker idle timeout */ 209 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 210 211 struct timer_list mayday_timer; /* L: SOS timer for workers */ 212 213 /* a workers is either on busy_hash or idle_list, or the manager */ 214 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 215 /* L: hash of busy workers */ 216 217 struct worker *manager; /* L: purely informational */ 218 struct list_head workers; /* A: attached workers */ 219 struct list_head dying_workers; /* A: workers about to die */ 220 struct completion *detach_completion; /* all workers detached */ 221 222 struct ida worker_ida; /* worker IDs for task name */ 223 224 struct workqueue_attrs *attrs; /* I: worker attributes */ 225 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 226 int refcnt; /* PL: refcnt for unbound pools */ 227 228 /* 229 * Destruction of pool is RCU protected to allow dereferences 230 * from get_work_pool(). 231 */ 232 struct rcu_head rcu; 233 }; 234 235 /* 236 * Per-pool_workqueue statistics. These can be monitored using 237 * tools/workqueue/wq_monitor.py. 238 */ 239 enum pool_workqueue_stats { 240 PWQ_STAT_STARTED, /* work items started execution */ 241 PWQ_STAT_COMPLETED, /* work items completed execution */ 242 PWQ_STAT_CPU_TIME, /* total CPU time consumed */ 243 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ 244 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ 245 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */ 246 PWQ_STAT_MAYDAY, /* maydays to rescuer */ 247 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ 248 249 PWQ_NR_STATS, 250 }; 251 252 /* 253 * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT 254 * of work_struct->data are used for flags and the remaining high bits 255 * point to the pwq; thus, pwqs need to be aligned at two's power of the 256 * number of flag bits. 257 */ 258 struct pool_workqueue { 259 struct worker_pool *pool; /* I: the associated pool */ 260 struct workqueue_struct *wq; /* I: the owning workqueue */ 261 int work_color; /* L: current color */ 262 int flush_color; /* L: flushing color */ 263 int refcnt; /* L: reference count */ 264 int nr_in_flight[WORK_NR_COLORS]; 265 /* L: nr of in_flight works */ 266 bool plugged; /* L: execution suspended */ 267 268 /* 269 * nr_active management and WORK_STRUCT_INACTIVE: 270 * 271 * When pwq->nr_active >= max_active, new work item is queued to 272 * pwq->inactive_works instead of pool->worklist and marked with 273 * WORK_STRUCT_INACTIVE. 274 * 275 * All work items marked with WORK_STRUCT_INACTIVE do not participate in 276 * nr_active and all work items in pwq->inactive_works are marked with 277 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are 278 * in pwq->inactive_works. Some of them are ready to run in 279 * pool->worklist or worker->scheduled. Those work itmes are only struct 280 * wq_barrier which is used for flush_work() and should not participate 281 * in nr_active. For non-barrier work item, it is marked with 282 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 283 */ 284 int nr_active; /* L: nr of active works */ 285 struct list_head inactive_works; /* L: inactive works */ 286 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */ 287 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 288 struct list_head mayday_node; /* MD: node on wq->maydays */ 289 290 u64 stats[PWQ_NR_STATS]; 291 292 /* 293 * Release of unbound pwq is punted to a kthread_worker. See put_pwq() 294 * and pwq_release_workfn() for details. pool_workqueue itself is also 295 * RCU protected so that the first pwq can be determined without 296 * grabbing wq->mutex. 297 */ 298 struct kthread_work release_work; 299 struct rcu_head rcu; 300 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT); 301 302 /* 303 * Structure used to wait for workqueue flush. 304 */ 305 struct wq_flusher { 306 struct list_head list; /* WQ: list of flushers */ 307 int flush_color; /* WQ: flush color waiting for */ 308 struct completion done; /* flush completion */ 309 }; 310 311 struct wq_device; 312 313 /* 314 * Unlike in a per-cpu workqueue where max_active limits its concurrency level 315 * on each CPU, in an unbound workqueue, max_active applies to the whole system. 316 * As sharing a single nr_active across multiple sockets can be very expensive, 317 * the counting and enforcement is per NUMA node. 318 * 319 * The following struct is used to enforce per-node max_active. When a pwq wants 320 * to start executing a work item, it should increment ->nr using 321 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over 322 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish 323 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in 324 * round-robin order. 325 */ 326 struct wq_node_nr_active { 327 int max; /* per-node max_active */ 328 atomic_t nr; /* per-node nr_active */ 329 raw_spinlock_t lock; /* nests inside pool locks */ 330 struct list_head pending_pwqs; /* LN: pwqs with inactive works */ 331 }; 332 333 /* 334 * The externally visible workqueue. It relays the issued work items to 335 * the appropriate worker_pool through its pool_workqueues. 336 */ 337 struct workqueue_struct { 338 struct list_head pwqs; /* WR: all pwqs of this wq */ 339 struct list_head list; /* PR: list of all workqueues */ 340 341 struct mutex mutex; /* protects this wq */ 342 int work_color; /* WQ: current work color */ 343 int flush_color; /* WQ: current flush color */ 344 atomic_t nr_pwqs_to_flush; /* flush in progress */ 345 struct wq_flusher *first_flusher; /* WQ: first flusher */ 346 struct list_head flusher_queue; /* WQ: flush waiters */ 347 struct list_head flusher_overflow; /* WQ: flush overflow list */ 348 349 struct list_head maydays; /* MD: pwqs requesting rescue */ 350 struct worker *rescuer; /* MD: rescue worker */ 351 352 int nr_drainers; /* WQ: drain in progress */ 353 354 /* See alloc_workqueue() function comment for info on min/max_active */ 355 int max_active; /* WO: max active works */ 356 int min_active; /* WO: min active works */ 357 int saved_max_active; /* WQ: saved max_active */ 358 int saved_min_active; /* WQ: saved min_active */ 359 360 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 361 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */ 362 363 #ifdef CONFIG_SYSFS 364 struct wq_device *wq_dev; /* I: for sysfs interface */ 365 #endif 366 #ifdef CONFIG_LOCKDEP 367 char *lock_name; 368 struct lock_class_key key; 369 struct lockdep_map lockdep_map; 370 #endif 371 char name[WQ_NAME_LEN]; /* I: workqueue name */ 372 373 /* 374 * Destruction of workqueue_struct is RCU protected to allow walking 375 * the workqueues list without grabbing wq_pool_mutex. 376 * This is used to dump all workqueues from sysrq. 377 */ 378 struct rcu_head rcu; 379 380 /* hot fields used during command issue, aligned to cacheline */ 381 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 382 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */ 383 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */ 384 }; 385 386 /* 387 * Each pod type describes how CPUs should be grouped for unbound workqueues. 388 * See the comment above workqueue_attrs->affn_scope. 389 */ 390 struct wq_pod_type { 391 int nr_pods; /* number of pods */ 392 cpumask_var_t *pod_cpus; /* pod -> cpus */ 393 int *pod_node; /* pod -> node */ 394 int *cpu_pod; /* cpu -> pod */ 395 }; 396 397 struct work_offq_data { 398 u32 pool_id; 399 u32 disable; 400 u32 flags; 401 }; 402 403 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = { 404 [WQ_AFFN_DFL] = "default", 405 [WQ_AFFN_CPU] = "cpu", 406 [WQ_AFFN_SMT] = "smt", 407 [WQ_AFFN_CACHE] = "cache", 408 [WQ_AFFN_NUMA] = "numa", 409 [WQ_AFFN_SYSTEM] = "system", 410 }; 411 412 /* 413 * Per-cpu work items which run for longer than the following threshold are 414 * automatically considered CPU intensive and excluded from concurrency 415 * management to prevent them from noticeably delaying other per-cpu work items. 416 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. 417 * The actual value is initialized in wq_cpu_intensive_thresh_init(). 418 */ 419 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; 420 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); 421 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 422 static unsigned int wq_cpu_intensive_warning_thresh = 4; 423 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644); 424 #endif 425 426 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 427 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 428 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 429 430 static bool wq_online; /* can kworkers be created yet? */ 431 static bool wq_topo_initialized __read_mostly = false; 432 433 static struct kmem_cache *pwq_cache; 434 435 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES]; 436 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE; 437 438 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */ 439 static struct workqueue_attrs *wq_update_pod_attrs_buf; 440 441 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 442 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 443 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 444 /* wait for manager to go away */ 445 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 446 447 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 448 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 449 450 /* PL&A: allowable cpus for unbound wqs and work items */ 451 static cpumask_var_t wq_unbound_cpumask; 452 453 /* PL: user requested unbound cpumask via sysfs */ 454 static cpumask_var_t wq_requested_unbound_cpumask; 455 456 /* PL: isolated cpumask to be excluded from unbound cpumask */ 457 static cpumask_var_t wq_isolated_cpumask; 458 459 /* for further constrain wq_unbound_cpumask by cmdline parameter*/ 460 static struct cpumask wq_cmdline_cpumask __initdata; 461 462 /* CPU where unbound work was last round robin scheduled from this CPU */ 463 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 464 465 /* 466 * Local execution of unbound work items is no longer guaranteed. The 467 * following always forces round-robin CPU selection on unbound work items 468 * to uncover usages which depend on it. 469 */ 470 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 471 static bool wq_debug_force_rr_cpu = true; 472 #else 473 static bool wq_debug_force_rr_cpu = false; 474 #endif 475 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 476 477 /* to raise softirq for the BH worker pools on other CPUs */ 478 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], 479 bh_pool_irq_works); 480 481 /* the BH worker pools */ 482 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 483 bh_worker_pools); 484 485 /* the per-cpu worker pools */ 486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 487 cpu_worker_pools); 488 489 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 490 491 /* PL: hash of all unbound pools keyed by pool->attrs */ 492 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 493 494 /* I: attributes used when instantiating standard unbound pools on demand */ 495 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 496 497 /* I: attributes used when instantiating ordered pools on demand */ 498 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 499 500 /* 501 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a 502 * process context while holding a pool lock. Bounce to a dedicated kthread 503 * worker to avoid A-A deadlocks. 504 */ 505 static struct kthread_worker *pwq_release_worker __ro_after_init; 506 507 struct workqueue_struct *system_wq __ro_after_init; 508 EXPORT_SYMBOL(system_wq); 509 struct workqueue_struct *system_highpri_wq __ro_after_init; 510 EXPORT_SYMBOL_GPL(system_highpri_wq); 511 struct workqueue_struct *system_long_wq __ro_after_init; 512 EXPORT_SYMBOL_GPL(system_long_wq); 513 struct workqueue_struct *system_unbound_wq __ro_after_init; 514 EXPORT_SYMBOL_GPL(system_unbound_wq); 515 struct workqueue_struct *system_freezable_wq __ro_after_init; 516 EXPORT_SYMBOL_GPL(system_freezable_wq); 517 struct workqueue_struct *system_power_efficient_wq __ro_after_init; 518 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 519 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init; 520 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 521 struct workqueue_struct *system_bh_wq; 522 EXPORT_SYMBOL_GPL(system_bh_wq); 523 struct workqueue_struct *system_bh_highpri_wq; 524 EXPORT_SYMBOL_GPL(system_bh_highpri_wq); 525 526 static int worker_thread(void *__worker); 527 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 528 static void show_pwq(struct pool_workqueue *pwq); 529 static void show_one_worker_pool(struct worker_pool *pool); 530 531 #define CREATE_TRACE_POINTS 532 #include <trace/events/workqueue.h> 533 534 #define assert_rcu_or_pool_mutex() \ 535 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 536 !lockdep_is_held(&wq_pool_mutex), \ 537 "RCU or wq_pool_mutex should be held") 538 539 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 540 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 541 !lockdep_is_held(&wq->mutex) && \ 542 !lockdep_is_held(&wq_pool_mutex), \ 543 "RCU, wq->mutex or wq_pool_mutex should be held") 544 545 #define for_each_bh_worker_pool(pool, cpu) \ 546 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \ 547 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 548 (pool)++) 549 550 #define for_each_cpu_worker_pool(pool, cpu) \ 551 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 552 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 553 (pool)++) 554 555 /** 556 * for_each_pool - iterate through all worker_pools in the system 557 * @pool: iteration cursor 558 * @pi: integer used for iteration 559 * 560 * This must be called either with wq_pool_mutex held or RCU read 561 * locked. If the pool needs to be used beyond the locking in effect, the 562 * caller is responsible for guaranteeing that the pool stays online. 563 * 564 * The if/else clause exists only for the lockdep assertion and can be 565 * ignored. 566 */ 567 #define for_each_pool(pool, pi) \ 568 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 569 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 570 else 571 572 /** 573 * for_each_pool_worker - iterate through all workers of a worker_pool 574 * @worker: iteration cursor 575 * @pool: worker_pool to iterate workers of 576 * 577 * This must be called with wq_pool_attach_mutex. 578 * 579 * The if/else clause exists only for the lockdep assertion and can be 580 * ignored. 581 */ 582 #define for_each_pool_worker(worker, pool) \ 583 list_for_each_entry((worker), &(pool)->workers, node) \ 584 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 585 else 586 587 /** 588 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 589 * @pwq: iteration cursor 590 * @wq: the target workqueue 591 * 592 * This must be called either with wq->mutex held or RCU read locked. 593 * If the pwq needs to be used beyond the locking in effect, the caller is 594 * responsible for guaranteeing that the pwq stays online. 595 * 596 * The if/else clause exists only for the lockdep assertion and can be 597 * ignored. 598 */ 599 #define for_each_pwq(pwq, wq) \ 600 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 601 lockdep_is_held(&(wq->mutex))) 602 603 #ifdef CONFIG_DEBUG_OBJECTS_WORK 604 605 static const struct debug_obj_descr work_debug_descr; 606 607 static void *work_debug_hint(void *addr) 608 { 609 return ((struct work_struct *) addr)->func; 610 } 611 612 static bool work_is_static_object(void *addr) 613 { 614 struct work_struct *work = addr; 615 616 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 617 } 618 619 /* 620 * fixup_init is called when: 621 * - an active object is initialized 622 */ 623 static bool work_fixup_init(void *addr, enum debug_obj_state state) 624 { 625 struct work_struct *work = addr; 626 627 switch (state) { 628 case ODEBUG_STATE_ACTIVE: 629 cancel_work_sync(work); 630 debug_object_init(work, &work_debug_descr); 631 return true; 632 default: 633 return false; 634 } 635 } 636 637 /* 638 * fixup_free is called when: 639 * - an active object is freed 640 */ 641 static bool work_fixup_free(void *addr, enum debug_obj_state state) 642 { 643 struct work_struct *work = addr; 644 645 switch (state) { 646 case ODEBUG_STATE_ACTIVE: 647 cancel_work_sync(work); 648 debug_object_free(work, &work_debug_descr); 649 return true; 650 default: 651 return false; 652 } 653 } 654 655 static const struct debug_obj_descr work_debug_descr = { 656 .name = "work_struct", 657 .debug_hint = work_debug_hint, 658 .is_static_object = work_is_static_object, 659 .fixup_init = work_fixup_init, 660 .fixup_free = work_fixup_free, 661 }; 662 663 static inline void debug_work_activate(struct work_struct *work) 664 { 665 debug_object_activate(work, &work_debug_descr); 666 } 667 668 static inline void debug_work_deactivate(struct work_struct *work) 669 { 670 debug_object_deactivate(work, &work_debug_descr); 671 } 672 673 void __init_work(struct work_struct *work, int onstack) 674 { 675 if (onstack) 676 debug_object_init_on_stack(work, &work_debug_descr); 677 else 678 debug_object_init(work, &work_debug_descr); 679 } 680 EXPORT_SYMBOL_GPL(__init_work); 681 682 void destroy_work_on_stack(struct work_struct *work) 683 { 684 debug_object_free(work, &work_debug_descr); 685 } 686 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 687 688 void destroy_delayed_work_on_stack(struct delayed_work *work) 689 { 690 destroy_timer_on_stack(&work->timer); 691 debug_object_free(&work->work, &work_debug_descr); 692 } 693 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 694 695 #else 696 static inline void debug_work_activate(struct work_struct *work) { } 697 static inline void debug_work_deactivate(struct work_struct *work) { } 698 #endif 699 700 /** 701 * worker_pool_assign_id - allocate ID and assign it to @pool 702 * @pool: the pool pointer of interest 703 * 704 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 705 * successfully, -errno on failure. 706 */ 707 static int worker_pool_assign_id(struct worker_pool *pool) 708 { 709 int ret; 710 711 lockdep_assert_held(&wq_pool_mutex); 712 713 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 714 GFP_KERNEL); 715 if (ret >= 0) { 716 pool->id = ret; 717 return 0; 718 } 719 return ret; 720 } 721 722 static struct pool_workqueue __rcu ** 723 unbound_pwq_slot(struct workqueue_struct *wq, int cpu) 724 { 725 if (cpu >= 0) 726 return per_cpu_ptr(wq->cpu_pwq, cpu); 727 else 728 return &wq->dfl_pwq; 729 } 730 731 /* @cpu < 0 for dfl_pwq */ 732 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu) 733 { 734 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu), 735 lockdep_is_held(&wq_pool_mutex) || 736 lockdep_is_held(&wq->mutex)); 737 } 738 739 /** 740 * unbound_effective_cpumask - effective cpumask of an unbound workqueue 741 * @wq: workqueue of interest 742 * 743 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which 744 * is masked with wq_unbound_cpumask to determine the effective cpumask. The 745 * default pwq is always mapped to the pool with the current effective cpumask. 746 */ 747 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq) 748 { 749 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask; 750 } 751 752 static unsigned int work_color_to_flags(int color) 753 { 754 return color << WORK_STRUCT_COLOR_SHIFT; 755 } 756 757 static int get_work_color(unsigned long work_data) 758 { 759 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 760 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 761 } 762 763 static int work_next_color(int color) 764 { 765 return (color + 1) % WORK_NR_COLORS; 766 } 767 768 static unsigned long pool_offq_flags(struct worker_pool *pool) 769 { 770 return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0; 771 } 772 773 /* 774 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 775 * contain the pointer to the queued pwq. Once execution starts, the flag 776 * is cleared and the high bits contain OFFQ flags and pool ID. 777 * 778 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling() 779 * can be used to set the pwq, pool or clear work->data. These functions should 780 * only be called while the work is owned - ie. while the PENDING bit is set. 781 * 782 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 783 * corresponding to a work. Pool is available once the work has been 784 * queued anywhere after initialization until it is sync canceled. pwq is 785 * available only while the work item is queued. 786 */ 787 static inline void set_work_data(struct work_struct *work, unsigned long data) 788 { 789 WARN_ON_ONCE(!work_pending(work)); 790 atomic_long_set(&work->data, data | work_static(work)); 791 } 792 793 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 794 unsigned long flags) 795 { 796 set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING | 797 WORK_STRUCT_PWQ | flags); 798 } 799 800 static void set_work_pool_and_keep_pending(struct work_struct *work, 801 int pool_id, unsigned long flags) 802 { 803 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 804 WORK_STRUCT_PENDING | flags); 805 } 806 807 static void set_work_pool_and_clear_pending(struct work_struct *work, 808 int pool_id, unsigned long flags) 809 { 810 /* 811 * The following wmb is paired with the implied mb in 812 * test_and_set_bit(PENDING) and ensures all updates to @work made 813 * here are visible to and precede any updates by the next PENDING 814 * owner. 815 */ 816 smp_wmb(); 817 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 818 flags); 819 /* 820 * The following mb guarantees that previous clear of a PENDING bit 821 * will not be reordered with any speculative LOADS or STORES from 822 * work->current_func, which is executed afterwards. This possible 823 * reordering can lead to a missed execution on attempt to queue 824 * the same @work. E.g. consider this case: 825 * 826 * CPU#0 CPU#1 827 * ---------------------------- -------------------------------- 828 * 829 * 1 STORE event_indicated 830 * 2 queue_work_on() { 831 * 3 test_and_set_bit(PENDING) 832 * 4 } set_..._and_clear_pending() { 833 * 5 set_work_data() # clear bit 834 * 6 smp_mb() 835 * 7 work->current_func() { 836 * 8 LOAD event_indicated 837 * } 838 * 839 * Without an explicit full barrier speculative LOAD on line 8 can 840 * be executed before CPU#0 does STORE on line 1. If that happens, 841 * CPU#0 observes the PENDING bit is still set and new execution of 842 * a @work is not queued in a hope, that CPU#1 will eventually 843 * finish the queued @work. Meanwhile CPU#1 does not see 844 * event_indicated is set, because speculative LOAD was executed 845 * before actual STORE. 846 */ 847 smp_mb(); 848 } 849 850 static inline struct pool_workqueue *work_struct_pwq(unsigned long data) 851 { 852 return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK); 853 } 854 855 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 856 { 857 unsigned long data = atomic_long_read(&work->data); 858 859 if (data & WORK_STRUCT_PWQ) 860 return work_struct_pwq(data); 861 else 862 return NULL; 863 } 864 865 /** 866 * get_work_pool - return the worker_pool a given work was associated with 867 * @work: the work item of interest 868 * 869 * Pools are created and destroyed under wq_pool_mutex, and allows read 870 * access under RCU read lock. As such, this function should be 871 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 872 * 873 * All fields of the returned pool are accessible as long as the above 874 * mentioned locking is in effect. If the returned pool needs to be used 875 * beyond the critical section, the caller is responsible for ensuring the 876 * returned pool is and stays online. 877 * 878 * Return: The worker_pool @work was last associated with. %NULL if none. 879 */ 880 static struct worker_pool *get_work_pool(struct work_struct *work) 881 { 882 unsigned long data = atomic_long_read(&work->data); 883 int pool_id; 884 885 assert_rcu_or_pool_mutex(); 886 887 if (data & WORK_STRUCT_PWQ) 888 return work_struct_pwq(data)->pool; 889 890 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 891 if (pool_id == WORK_OFFQ_POOL_NONE) 892 return NULL; 893 894 return idr_find(&worker_pool_idr, pool_id); 895 } 896 897 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits) 898 { 899 return (v >> shift) & ((1 << bits) - 1); 900 } 901 902 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data) 903 { 904 WARN_ON_ONCE(data & WORK_STRUCT_PWQ); 905 906 offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT, 907 WORK_OFFQ_POOL_BITS); 908 offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT, 909 WORK_OFFQ_DISABLE_BITS); 910 offqd->flags = data & WORK_OFFQ_FLAG_MASK; 911 } 912 913 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd) 914 { 915 return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) | 916 ((unsigned long)offqd->flags); 917 } 918 919 /* 920 * Policy functions. These define the policies on how the global worker 921 * pools are managed. Unless noted otherwise, these functions assume that 922 * they're being called with pool->lock held. 923 */ 924 925 /* 926 * Need to wake up a worker? Called from anything but currently 927 * running workers. 928 * 929 * Note that, because unbound workers never contribute to nr_running, this 930 * function will always return %true for unbound pools as long as the 931 * worklist isn't empty. 932 */ 933 static bool need_more_worker(struct worker_pool *pool) 934 { 935 return !list_empty(&pool->worklist) && !pool->nr_running; 936 } 937 938 /* Can I start working? Called from busy but !running workers. */ 939 static bool may_start_working(struct worker_pool *pool) 940 { 941 return pool->nr_idle; 942 } 943 944 /* Do I need to keep working? Called from currently running workers. */ 945 static bool keep_working(struct worker_pool *pool) 946 { 947 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 948 } 949 950 /* Do we need a new worker? Called from manager. */ 951 static bool need_to_create_worker(struct worker_pool *pool) 952 { 953 return need_more_worker(pool) && !may_start_working(pool); 954 } 955 956 /* Do we have too many workers and should some go away? */ 957 static bool too_many_workers(struct worker_pool *pool) 958 { 959 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 960 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 961 int nr_busy = pool->nr_workers - nr_idle; 962 963 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 964 } 965 966 /** 967 * worker_set_flags - set worker flags and adjust nr_running accordingly 968 * @worker: self 969 * @flags: flags to set 970 * 971 * Set @flags in @worker->flags and adjust nr_running accordingly. 972 */ 973 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 974 { 975 struct worker_pool *pool = worker->pool; 976 977 lockdep_assert_held(&pool->lock); 978 979 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 980 if ((flags & WORKER_NOT_RUNNING) && 981 !(worker->flags & WORKER_NOT_RUNNING)) { 982 pool->nr_running--; 983 } 984 985 worker->flags |= flags; 986 } 987 988 /** 989 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 990 * @worker: self 991 * @flags: flags to clear 992 * 993 * Clear @flags in @worker->flags and adjust nr_running accordingly. 994 */ 995 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 996 { 997 struct worker_pool *pool = worker->pool; 998 unsigned int oflags = worker->flags; 999 1000 lockdep_assert_held(&pool->lock); 1001 1002 worker->flags &= ~flags; 1003 1004 /* 1005 * If transitioning out of NOT_RUNNING, increment nr_running. Note 1006 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 1007 * of multiple flags, not a single flag. 1008 */ 1009 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 1010 if (!(worker->flags & WORKER_NOT_RUNNING)) 1011 pool->nr_running++; 1012 } 1013 1014 /* Return the first idle worker. Called with pool->lock held. */ 1015 static struct worker *first_idle_worker(struct worker_pool *pool) 1016 { 1017 if (unlikely(list_empty(&pool->idle_list))) 1018 return NULL; 1019 1020 return list_first_entry(&pool->idle_list, struct worker, entry); 1021 } 1022 1023 /** 1024 * worker_enter_idle - enter idle state 1025 * @worker: worker which is entering idle state 1026 * 1027 * @worker is entering idle state. Update stats and idle timer if 1028 * necessary. 1029 * 1030 * LOCKING: 1031 * raw_spin_lock_irq(pool->lock). 1032 */ 1033 static void worker_enter_idle(struct worker *worker) 1034 { 1035 struct worker_pool *pool = worker->pool; 1036 1037 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1038 WARN_ON_ONCE(!list_empty(&worker->entry) && 1039 (worker->hentry.next || worker->hentry.pprev))) 1040 return; 1041 1042 /* can't use worker_set_flags(), also called from create_worker() */ 1043 worker->flags |= WORKER_IDLE; 1044 pool->nr_idle++; 1045 worker->last_active = jiffies; 1046 1047 /* idle_list is LIFO */ 1048 list_add(&worker->entry, &pool->idle_list); 1049 1050 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1051 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1052 1053 /* Sanity check nr_running. */ 1054 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 1055 } 1056 1057 /** 1058 * worker_leave_idle - leave idle state 1059 * @worker: worker which is leaving idle state 1060 * 1061 * @worker is leaving idle state. Update stats. 1062 * 1063 * LOCKING: 1064 * raw_spin_lock_irq(pool->lock). 1065 */ 1066 static void worker_leave_idle(struct worker *worker) 1067 { 1068 struct worker_pool *pool = worker->pool; 1069 1070 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1071 return; 1072 worker_clr_flags(worker, WORKER_IDLE); 1073 pool->nr_idle--; 1074 list_del_init(&worker->entry); 1075 } 1076 1077 /** 1078 * find_worker_executing_work - find worker which is executing a work 1079 * @pool: pool of interest 1080 * @work: work to find worker for 1081 * 1082 * Find a worker which is executing @work on @pool by searching 1083 * @pool->busy_hash which is keyed by the address of @work. For a worker 1084 * to match, its current execution should match the address of @work and 1085 * its work function. This is to avoid unwanted dependency between 1086 * unrelated work executions through a work item being recycled while still 1087 * being executed. 1088 * 1089 * This is a bit tricky. A work item may be freed once its execution 1090 * starts and nothing prevents the freed area from being recycled for 1091 * another work item. If the same work item address ends up being reused 1092 * before the original execution finishes, workqueue will identify the 1093 * recycled work item as currently executing and make it wait until the 1094 * current execution finishes, introducing an unwanted dependency. 1095 * 1096 * This function checks the work item address and work function to avoid 1097 * false positives. Note that this isn't complete as one may construct a 1098 * work function which can introduce dependency onto itself through a 1099 * recycled work item. Well, if somebody wants to shoot oneself in the 1100 * foot that badly, there's only so much we can do, and if such deadlock 1101 * actually occurs, it should be easy to locate the culprit work function. 1102 * 1103 * CONTEXT: 1104 * raw_spin_lock_irq(pool->lock). 1105 * 1106 * Return: 1107 * Pointer to worker which is executing @work if found, %NULL 1108 * otherwise. 1109 */ 1110 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1111 struct work_struct *work) 1112 { 1113 struct worker *worker; 1114 1115 hash_for_each_possible(pool->busy_hash, worker, hentry, 1116 (unsigned long)work) 1117 if (worker->current_work == work && 1118 worker->current_func == work->func) 1119 return worker; 1120 1121 return NULL; 1122 } 1123 1124 /** 1125 * move_linked_works - move linked works to a list 1126 * @work: start of series of works to be scheduled 1127 * @head: target list to append @work to 1128 * @nextp: out parameter for nested worklist walking 1129 * 1130 * Schedule linked works starting from @work to @head. Work series to be 1131 * scheduled starts at @work and includes any consecutive work with 1132 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on 1133 * @nextp. 1134 * 1135 * CONTEXT: 1136 * raw_spin_lock_irq(pool->lock). 1137 */ 1138 static void move_linked_works(struct work_struct *work, struct list_head *head, 1139 struct work_struct **nextp) 1140 { 1141 struct work_struct *n; 1142 1143 /* 1144 * Linked worklist will always end before the end of the list, 1145 * use NULL for list head. 1146 */ 1147 list_for_each_entry_safe_from(work, n, NULL, entry) { 1148 list_move_tail(&work->entry, head); 1149 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1150 break; 1151 } 1152 1153 /* 1154 * If we're already inside safe list traversal and have moved 1155 * multiple works to the scheduled queue, the next position 1156 * needs to be updated. 1157 */ 1158 if (nextp) 1159 *nextp = n; 1160 } 1161 1162 /** 1163 * assign_work - assign a work item and its linked work items to a worker 1164 * @work: work to assign 1165 * @worker: worker to assign to 1166 * @nextp: out parameter for nested worklist walking 1167 * 1168 * Assign @work and its linked work items to @worker. If @work is already being 1169 * executed by another worker in the same pool, it'll be punted there. 1170 * 1171 * If @nextp is not NULL, it's updated to point to the next work of the last 1172 * scheduled work. This allows assign_work() to be nested inside 1173 * list_for_each_entry_safe(). 1174 * 1175 * Returns %true if @work was successfully assigned to @worker. %false if @work 1176 * was punted to another worker already executing it. 1177 */ 1178 static bool assign_work(struct work_struct *work, struct worker *worker, 1179 struct work_struct **nextp) 1180 { 1181 struct worker_pool *pool = worker->pool; 1182 struct worker *collision; 1183 1184 lockdep_assert_held(&pool->lock); 1185 1186 /* 1187 * A single work shouldn't be executed concurrently by multiple workers. 1188 * __queue_work() ensures that @work doesn't jump to a different pool 1189 * while still running in the previous pool. Here, we should ensure that 1190 * @work is not executed concurrently by multiple workers from the same 1191 * pool. Check whether anyone is already processing the work. If so, 1192 * defer the work to the currently executing one. 1193 */ 1194 collision = find_worker_executing_work(pool, work); 1195 if (unlikely(collision)) { 1196 move_linked_works(work, &collision->scheduled, nextp); 1197 return false; 1198 } 1199 1200 move_linked_works(work, &worker->scheduled, nextp); 1201 return true; 1202 } 1203 1204 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool) 1205 { 1206 int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0; 1207 1208 return &per_cpu(bh_pool_irq_works, pool->cpu)[high]; 1209 } 1210 1211 static void kick_bh_pool(struct worker_pool *pool) 1212 { 1213 #ifdef CONFIG_SMP 1214 /* see drain_dead_softirq_workfn() for BH_DRAINING */ 1215 if (unlikely(pool->cpu != smp_processor_id() && 1216 !(pool->flags & POOL_BH_DRAINING))) { 1217 irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu); 1218 return; 1219 } 1220 #endif 1221 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 1222 raise_softirq_irqoff(HI_SOFTIRQ); 1223 else 1224 raise_softirq_irqoff(TASKLET_SOFTIRQ); 1225 } 1226 1227 /** 1228 * kick_pool - wake up an idle worker if necessary 1229 * @pool: pool to kick 1230 * 1231 * @pool may have pending work items. Wake up worker if necessary. Returns 1232 * whether a worker was woken up. 1233 */ 1234 static bool kick_pool(struct worker_pool *pool) 1235 { 1236 struct worker *worker = first_idle_worker(pool); 1237 struct task_struct *p; 1238 1239 lockdep_assert_held(&pool->lock); 1240 1241 if (!need_more_worker(pool) || !worker) 1242 return false; 1243 1244 if (pool->flags & POOL_BH) { 1245 kick_bh_pool(pool); 1246 return true; 1247 } 1248 1249 p = worker->task; 1250 1251 #ifdef CONFIG_SMP 1252 /* 1253 * Idle @worker is about to execute @work and waking up provides an 1254 * opportunity to migrate @worker at a lower cost by setting the task's 1255 * wake_cpu field. Let's see if we want to move @worker to improve 1256 * execution locality. 1257 * 1258 * We're waking the worker that went idle the latest and there's some 1259 * chance that @worker is marked idle but hasn't gone off CPU yet. If 1260 * so, setting the wake_cpu won't do anything. As this is a best-effort 1261 * optimization and the race window is narrow, let's leave as-is for 1262 * now. If this becomes pronounced, we can skip over workers which are 1263 * still on cpu when picking an idle worker. 1264 * 1265 * If @pool has non-strict affinity, @worker might have ended up outside 1266 * its affinity scope. Repatriate. 1267 */ 1268 if (!pool->attrs->affn_strict && 1269 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) { 1270 struct work_struct *work = list_first_entry(&pool->worklist, 1271 struct work_struct, entry); 1272 int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask, 1273 cpu_online_mask); 1274 if (wake_cpu < nr_cpu_ids) { 1275 p->wake_cpu = wake_cpu; 1276 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++; 1277 } 1278 } 1279 #endif 1280 wake_up_process(p); 1281 return true; 1282 } 1283 1284 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 1285 1286 /* 1287 * Concurrency-managed per-cpu work items that hog CPU for longer than 1288 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, 1289 * which prevents them from stalling other concurrency-managed work items. If a 1290 * work function keeps triggering this mechanism, it's likely that the work item 1291 * should be using an unbound workqueue instead. 1292 * 1293 * wq_cpu_intensive_report() tracks work functions which trigger such conditions 1294 * and report them so that they can be examined and converted to use unbound 1295 * workqueues as appropriate. To avoid flooding the console, each violating work 1296 * function is tracked and reported with exponential backoff. 1297 */ 1298 #define WCI_MAX_ENTS 128 1299 1300 struct wci_ent { 1301 work_func_t func; 1302 atomic64_t cnt; 1303 struct hlist_node hash_node; 1304 }; 1305 1306 static struct wci_ent wci_ents[WCI_MAX_ENTS]; 1307 static int wci_nr_ents; 1308 static DEFINE_RAW_SPINLOCK(wci_lock); 1309 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); 1310 1311 static struct wci_ent *wci_find_ent(work_func_t func) 1312 { 1313 struct wci_ent *ent; 1314 1315 hash_for_each_possible_rcu(wci_hash, ent, hash_node, 1316 (unsigned long)func) { 1317 if (ent->func == func) 1318 return ent; 1319 } 1320 return NULL; 1321 } 1322 1323 static void wq_cpu_intensive_report(work_func_t func) 1324 { 1325 struct wci_ent *ent; 1326 1327 restart: 1328 ent = wci_find_ent(func); 1329 if (ent) { 1330 u64 cnt; 1331 1332 /* 1333 * Start reporting from the warning_thresh and back off 1334 * exponentially. 1335 */ 1336 cnt = atomic64_inc_return_relaxed(&ent->cnt); 1337 if (wq_cpu_intensive_warning_thresh && 1338 cnt >= wq_cpu_intensive_warning_thresh && 1339 is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh)) 1340 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", 1341 ent->func, wq_cpu_intensive_thresh_us, 1342 atomic64_read(&ent->cnt)); 1343 return; 1344 } 1345 1346 /* 1347 * @func is a new violation. Allocate a new entry for it. If wcn_ents[] 1348 * is exhausted, something went really wrong and we probably made enough 1349 * noise already. 1350 */ 1351 if (wci_nr_ents >= WCI_MAX_ENTS) 1352 return; 1353 1354 raw_spin_lock(&wci_lock); 1355 1356 if (wci_nr_ents >= WCI_MAX_ENTS) { 1357 raw_spin_unlock(&wci_lock); 1358 return; 1359 } 1360 1361 if (wci_find_ent(func)) { 1362 raw_spin_unlock(&wci_lock); 1363 goto restart; 1364 } 1365 1366 ent = &wci_ents[wci_nr_ents++]; 1367 ent->func = func; 1368 atomic64_set(&ent->cnt, 0); 1369 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); 1370 1371 raw_spin_unlock(&wci_lock); 1372 1373 goto restart; 1374 } 1375 1376 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1377 static void wq_cpu_intensive_report(work_func_t func) {} 1378 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1379 1380 /** 1381 * wq_worker_running - a worker is running again 1382 * @task: task waking up 1383 * 1384 * This function is called when a worker returns from schedule() 1385 */ 1386 void wq_worker_running(struct task_struct *task) 1387 { 1388 struct worker *worker = kthread_data(task); 1389 1390 if (!READ_ONCE(worker->sleeping)) 1391 return; 1392 1393 /* 1394 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 1395 * and the nr_running increment below, we may ruin the nr_running reset 1396 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 1397 * pool. Protect against such race. 1398 */ 1399 preempt_disable(); 1400 if (!(worker->flags & WORKER_NOT_RUNNING)) 1401 worker->pool->nr_running++; 1402 preempt_enable(); 1403 1404 /* 1405 * CPU intensive auto-detection cares about how long a work item hogged 1406 * CPU without sleeping. Reset the starting timestamp on wakeup. 1407 */ 1408 worker->current_at = worker->task->se.sum_exec_runtime; 1409 1410 WRITE_ONCE(worker->sleeping, 0); 1411 } 1412 1413 /** 1414 * wq_worker_sleeping - a worker is going to sleep 1415 * @task: task going to sleep 1416 * 1417 * This function is called from schedule() when a busy worker is 1418 * going to sleep. 1419 */ 1420 void wq_worker_sleeping(struct task_struct *task) 1421 { 1422 struct worker *worker = kthread_data(task); 1423 struct worker_pool *pool; 1424 1425 /* 1426 * Rescuers, which may not have all the fields set up like normal 1427 * workers, also reach here, let's not access anything before 1428 * checking NOT_RUNNING. 1429 */ 1430 if (worker->flags & WORKER_NOT_RUNNING) 1431 return; 1432 1433 pool = worker->pool; 1434 1435 /* Return if preempted before wq_worker_running() was reached */ 1436 if (READ_ONCE(worker->sleeping)) 1437 return; 1438 1439 WRITE_ONCE(worker->sleeping, 1); 1440 raw_spin_lock_irq(&pool->lock); 1441 1442 /* 1443 * Recheck in case unbind_workers() preempted us. We don't 1444 * want to decrement nr_running after the worker is unbound 1445 * and nr_running has been reset. 1446 */ 1447 if (worker->flags & WORKER_NOT_RUNNING) { 1448 raw_spin_unlock_irq(&pool->lock); 1449 return; 1450 } 1451 1452 pool->nr_running--; 1453 if (kick_pool(pool)) 1454 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1455 1456 raw_spin_unlock_irq(&pool->lock); 1457 } 1458 1459 /** 1460 * wq_worker_tick - a scheduler tick occurred while a kworker is running 1461 * @task: task currently running 1462 * 1463 * Called from sched_tick(). We're in the IRQ context and the current 1464 * worker's fields which follow the 'K' locking rule can be accessed safely. 1465 */ 1466 void wq_worker_tick(struct task_struct *task) 1467 { 1468 struct worker *worker = kthread_data(task); 1469 struct pool_workqueue *pwq = worker->current_pwq; 1470 struct worker_pool *pool = worker->pool; 1471 1472 if (!pwq) 1473 return; 1474 1475 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; 1476 1477 if (!wq_cpu_intensive_thresh_us) 1478 return; 1479 1480 /* 1481 * If the current worker is concurrency managed and hogged the CPU for 1482 * longer than wq_cpu_intensive_thresh_us, it's automatically marked 1483 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. 1484 * 1485 * Set @worker->sleeping means that @worker is in the process of 1486 * switching out voluntarily and won't be contributing to 1487 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also 1488 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to 1489 * double decrements. The task is releasing the CPU anyway. Let's skip. 1490 * We probably want to make this prettier in the future. 1491 */ 1492 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || 1493 worker->task->se.sum_exec_runtime - worker->current_at < 1494 wq_cpu_intensive_thresh_us * NSEC_PER_USEC) 1495 return; 1496 1497 raw_spin_lock(&pool->lock); 1498 1499 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1500 wq_cpu_intensive_report(worker->current_func); 1501 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; 1502 1503 if (kick_pool(pool)) 1504 pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1505 1506 raw_spin_unlock(&pool->lock); 1507 } 1508 1509 /** 1510 * wq_worker_last_func - retrieve worker's last work function 1511 * @task: Task to retrieve last work function of. 1512 * 1513 * Determine the last function a worker executed. This is called from 1514 * the scheduler to get a worker's last known identity. 1515 * 1516 * CONTEXT: 1517 * raw_spin_lock_irq(rq->lock) 1518 * 1519 * This function is called during schedule() when a kworker is going 1520 * to sleep. It's used by psi to identify aggregation workers during 1521 * dequeuing, to allow periodic aggregation to shut-off when that 1522 * worker is the last task in the system or cgroup to go to sleep. 1523 * 1524 * As this function doesn't involve any workqueue-related locking, it 1525 * only returns stable values when called from inside the scheduler's 1526 * queuing and dequeuing paths, when @task, which must be a kworker, 1527 * is guaranteed to not be processing any works. 1528 * 1529 * Return: 1530 * The last work function %current executed as a worker, NULL if it 1531 * hasn't executed any work yet. 1532 */ 1533 work_func_t wq_worker_last_func(struct task_struct *task) 1534 { 1535 struct worker *worker = kthread_data(task); 1536 1537 return worker->last_func; 1538 } 1539 1540 /** 1541 * wq_node_nr_active - Determine wq_node_nr_active to use 1542 * @wq: workqueue of interest 1543 * @node: NUMA node, can be %NUMA_NO_NODE 1544 * 1545 * Determine wq_node_nr_active to use for @wq on @node. Returns: 1546 * 1547 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active. 1548 * 1549 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE. 1550 * 1551 * - Otherwise, node_nr_active[@node]. 1552 */ 1553 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq, 1554 int node) 1555 { 1556 if (!(wq->flags & WQ_UNBOUND)) 1557 return NULL; 1558 1559 if (node == NUMA_NO_NODE) 1560 node = nr_node_ids; 1561 1562 return wq->node_nr_active[node]; 1563 } 1564 1565 /** 1566 * wq_update_node_max_active - Update per-node max_actives to use 1567 * @wq: workqueue to update 1568 * @off_cpu: CPU that's going down, -1 if a CPU is not going down 1569 * 1570 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is 1571 * distributed among nodes according to the proportions of numbers of online 1572 * cpus. The result is always between @wq->min_active and max_active. 1573 */ 1574 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu) 1575 { 1576 struct cpumask *effective = unbound_effective_cpumask(wq); 1577 int min_active = READ_ONCE(wq->min_active); 1578 int max_active = READ_ONCE(wq->max_active); 1579 int total_cpus, node; 1580 1581 lockdep_assert_held(&wq->mutex); 1582 1583 if (!wq_topo_initialized) 1584 return; 1585 1586 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective)) 1587 off_cpu = -1; 1588 1589 total_cpus = cpumask_weight_and(effective, cpu_online_mask); 1590 if (off_cpu >= 0) 1591 total_cpus--; 1592 1593 /* If all CPUs of the wq get offline, use the default values */ 1594 if (unlikely(!total_cpus)) { 1595 for_each_node(node) 1596 wq_node_nr_active(wq, node)->max = min_active; 1597 1598 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; 1599 return; 1600 } 1601 1602 for_each_node(node) { 1603 int node_cpus; 1604 1605 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node)); 1606 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node) 1607 node_cpus--; 1608 1609 wq_node_nr_active(wq, node)->max = 1610 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus), 1611 min_active, max_active); 1612 } 1613 1614 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; 1615 } 1616 1617 /** 1618 * get_pwq - get an extra reference on the specified pool_workqueue 1619 * @pwq: pool_workqueue to get 1620 * 1621 * Obtain an extra reference on @pwq. The caller should guarantee that 1622 * @pwq has positive refcnt and be holding the matching pool->lock. 1623 */ 1624 static void get_pwq(struct pool_workqueue *pwq) 1625 { 1626 lockdep_assert_held(&pwq->pool->lock); 1627 WARN_ON_ONCE(pwq->refcnt <= 0); 1628 pwq->refcnt++; 1629 } 1630 1631 /** 1632 * put_pwq - put a pool_workqueue reference 1633 * @pwq: pool_workqueue to put 1634 * 1635 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1636 * destruction. The caller should be holding the matching pool->lock. 1637 */ 1638 static void put_pwq(struct pool_workqueue *pwq) 1639 { 1640 lockdep_assert_held(&pwq->pool->lock); 1641 if (likely(--pwq->refcnt)) 1642 return; 1643 /* 1644 * @pwq can't be released under pool->lock, bounce to a dedicated 1645 * kthread_worker to avoid A-A deadlocks. 1646 */ 1647 kthread_queue_work(pwq_release_worker, &pwq->release_work); 1648 } 1649 1650 /** 1651 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1652 * @pwq: pool_workqueue to put (can be %NULL) 1653 * 1654 * put_pwq() with locking. This function also allows %NULL @pwq. 1655 */ 1656 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1657 { 1658 if (pwq) { 1659 /* 1660 * As both pwqs and pools are RCU protected, the 1661 * following lock operations are safe. 1662 */ 1663 raw_spin_lock_irq(&pwq->pool->lock); 1664 put_pwq(pwq); 1665 raw_spin_unlock_irq(&pwq->pool->lock); 1666 } 1667 } 1668 1669 static bool pwq_is_empty(struct pool_workqueue *pwq) 1670 { 1671 return !pwq->nr_active && list_empty(&pwq->inactive_works); 1672 } 1673 1674 static void __pwq_activate_work(struct pool_workqueue *pwq, 1675 struct work_struct *work) 1676 { 1677 unsigned long *wdb = work_data_bits(work); 1678 1679 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE)); 1680 trace_workqueue_activate_work(work); 1681 if (list_empty(&pwq->pool->worklist)) 1682 pwq->pool->watchdog_ts = jiffies; 1683 move_linked_works(work, &pwq->pool->worklist, NULL); 1684 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb); 1685 } 1686 1687 /** 1688 * pwq_activate_work - Activate a work item if inactive 1689 * @pwq: pool_workqueue @work belongs to 1690 * @work: work item to activate 1691 * 1692 * Returns %true if activated. %false if already active. 1693 */ 1694 static bool pwq_activate_work(struct pool_workqueue *pwq, 1695 struct work_struct *work) 1696 { 1697 struct worker_pool *pool = pwq->pool; 1698 struct wq_node_nr_active *nna; 1699 1700 lockdep_assert_held(&pool->lock); 1701 1702 if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE)) 1703 return false; 1704 1705 nna = wq_node_nr_active(pwq->wq, pool->node); 1706 if (nna) 1707 atomic_inc(&nna->nr); 1708 1709 pwq->nr_active++; 1710 __pwq_activate_work(pwq, work); 1711 return true; 1712 } 1713 1714 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna) 1715 { 1716 int max = READ_ONCE(nna->max); 1717 1718 while (true) { 1719 int old, tmp; 1720 1721 old = atomic_read(&nna->nr); 1722 if (old >= max) 1723 return false; 1724 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1); 1725 if (tmp == old) 1726 return true; 1727 } 1728 } 1729 1730 /** 1731 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq 1732 * @pwq: pool_workqueue of interest 1733 * @fill: max_active may have increased, try to increase concurrency level 1734 * 1735 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is 1736 * successfully obtained. %false otherwise. 1737 */ 1738 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill) 1739 { 1740 struct workqueue_struct *wq = pwq->wq; 1741 struct worker_pool *pool = pwq->pool; 1742 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node); 1743 bool obtained = false; 1744 1745 lockdep_assert_held(&pool->lock); 1746 1747 if (!nna) { 1748 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */ 1749 obtained = pwq->nr_active < READ_ONCE(wq->max_active); 1750 goto out; 1751 } 1752 1753 if (unlikely(pwq->plugged)) 1754 return false; 1755 1756 /* 1757 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is 1758 * already waiting on $nna, pwq_dec_nr_active() will maintain the 1759 * concurrency level. Don't jump the line. 1760 * 1761 * We need to ignore the pending test after max_active has increased as 1762 * pwq_dec_nr_active() can only maintain the concurrency level but not 1763 * increase it. This is indicated by @fill. 1764 */ 1765 if (!list_empty(&pwq->pending_node) && likely(!fill)) 1766 goto out; 1767 1768 obtained = tryinc_node_nr_active(nna); 1769 if (obtained) 1770 goto out; 1771 1772 /* 1773 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs 1774 * and try again. The smp_mb() is paired with the implied memory barrier 1775 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either 1776 * we see the decremented $nna->nr or they see non-empty 1777 * $nna->pending_pwqs. 1778 */ 1779 raw_spin_lock(&nna->lock); 1780 1781 if (list_empty(&pwq->pending_node)) 1782 list_add_tail(&pwq->pending_node, &nna->pending_pwqs); 1783 else if (likely(!fill)) 1784 goto out_unlock; 1785 1786 smp_mb(); 1787 1788 obtained = tryinc_node_nr_active(nna); 1789 1790 /* 1791 * If @fill, @pwq might have already been pending. Being spuriously 1792 * pending in cold paths doesn't affect anything. Let's leave it be. 1793 */ 1794 if (obtained && likely(!fill)) 1795 list_del_init(&pwq->pending_node); 1796 1797 out_unlock: 1798 raw_spin_unlock(&nna->lock); 1799 out: 1800 if (obtained) 1801 pwq->nr_active++; 1802 return obtained; 1803 } 1804 1805 /** 1806 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq 1807 * @pwq: pool_workqueue of interest 1808 * @fill: max_active may have increased, try to increase concurrency level 1809 * 1810 * Activate the first inactive work item of @pwq if available and allowed by 1811 * max_active limit. 1812 * 1813 * Returns %true if an inactive work item has been activated. %false if no 1814 * inactive work item is found or max_active limit is reached. 1815 */ 1816 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill) 1817 { 1818 struct work_struct *work = 1819 list_first_entry_or_null(&pwq->inactive_works, 1820 struct work_struct, entry); 1821 1822 if (work && pwq_tryinc_nr_active(pwq, fill)) { 1823 __pwq_activate_work(pwq, work); 1824 return true; 1825 } else { 1826 return false; 1827 } 1828 } 1829 1830 /** 1831 * unplug_oldest_pwq - unplug the oldest pool_workqueue 1832 * @wq: workqueue_struct where its oldest pwq is to be unplugged 1833 * 1834 * This function should only be called for ordered workqueues where only the 1835 * oldest pwq is unplugged, the others are plugged to suspend execution to 1836 * ensure proper work item ordering:: 1837 * 1838 * dfl_pwq --------------+ [P] - plugged 1839 * | 1840 * v 1841 * pwqs -> A -> B [P] -> C [P] (newest) 1842 * | | | 1843 * 1 3 5 1844 * | | | 1845 * 2 4 6 1846 * 1847 * When the oldest pwq is drained and removed, this function should be called 1848 * to unplug the next oldest one to start its work item execution. Note that 1849 * pwq's are linked into wq->pwqs with the oldest first, so the first one in 1850 * the list is the oldest. 1851 */ 1852 static void unplug_oldest_pwq(struct workqueue_struct *wq) 1853 { 1854 struct pool_workqueue *pwq; 1855 1856 lockdep_assert_held(&wq->mutex); 1857 1858 /* Caller should make sure that pwqs isn't empty before calling */ 1859 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue, 1860 pwqs_node); 1861 raw_spin_lock_irq(&pwq->pool->lock); 1862 if (pwq->plugged) { 1863 pwq->plugged = false; 1864 if (pwq_activate_first_inactive(pwq, true)) 1865 kick_pool(pwq->pool); 1866 } 1867 raw_spin_unlock_irq(&pwq->pool->lock); 1868 } 1869 1870 /** 1871 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active 1872 * @nna: wq_node_nr_active to activate a pending pwq for 1873 * @caller_pool: worker_pool the caller is locking 1874 * 1875 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked. 1876 * @caller_pool may be unlocked and relocked to lock other worker_pools. 1877 */ 1878 static void node_activate_pending_pwq(struct wq_node_nr_active *nna, 1879 struct worker_pool *caller_pool) 1880 { 1881 struct worker_pool *locked_pool = caller_pool; 1882 struct pool_workqueue *pwq; 1883 struct work_struct *work; 1884 1885 lockdep_assert_held(&caller_pool->lock); 1886 1887 raw_spin_lock(&nna->lock); 1888 retry: 1889 pwq = list_first_entry_or_null(&nna->pending_pwqs, 1890 struct pool_workqueue, pending_node); 1891 if (!pwq) 1892 goto out_unlock; 1893 1894 /* 1895 * If @pwq is for a different pool than @locked_pool, we need to lock 1896 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock 1897 * / lock dance. For that, we also need to release @nna->lock as it's 1898 * nested inside pool locks. 1899 */ 1900 if (pwq->pool != locked_pool) { 1901 raw_spin_unlock(&locked_pool->lock); 1902 locked_pool = pwq->pool; 1903 if (!raw_spin_trylock(&locked_pool->lock)) { 1904 raw_spin_unlock(&nna->lock); 1905 raw_spin_lock(&locked_pool->lock); 1906 raw_spin_lock(&nna->lock); 1907 goto retry; 1908 } 1909 } 1910 1911 /* 1912 * $pwq may not have any inactive work items due to e.g. cancellations. 1913 * Drop it from pending_pwqs and see if there's another one. 1914 */ 1915 work = list_first_entry_or_null(&pwq->inactive_works, 1916 struct work_struct, entry); 1917 if (!work) { 1918 list_del_init(&pwq->pending_node); 1919 goto retry; 1920 } 1921 1922 /* 1923 * Acquire an nr_active count and activate the inactive work item. If 1924 * $pwq still has inactive work items, rotate it to the end of the 1925 * pending_pwqs so that we round-robin through them. This means that 1926 * inactive work items are not activated in queueing order which is fine 1927 * given that there has never been any ordering across different pwqs. 1928 */ 1929 if (likely(tryinc_node_nr_active(nna))) { 1930 pwq->nr_active++; 1931 __pwq_activate_work(pwq, work); 1932 1933 if (list_empty(&pwq->inactive_works)) 1934 list_del_init(&pwq->pending_node); 1935 else 1936 list_move_tail(&pwq->pending_node, &nna->pending_pwqs); 1937 1938 /* if activating a foreign pool, make sure it's running */ 1939 if (pwq->pool != caller_pool) 1940 kick_pool(pwq->pool); 1941 } 1942 1943 out_unlock: 1944 raw_spin_unlock(&nna->lock); 1945 if (locked_pool != caller_pool) { 1946 raw_spin_unlock(&locked_pool->lock); 1947 raw_spin_lock(&caller_pool->lock); 1948 } 1949 } 1950 1951 /** 1952 * pwq_dec_nr_active - Retire an active count 1953 * @pwq: pool_workqueue of interest 1954 * 1955 * Decrement @pwq's nr_active and try to activate the first inactive work item. 1956 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock. 1957 */ 1958 static void pwq_dec_nr_active(struct pool_workqueue *pwq) 1959 { 1960 struct worker_pool *pool = pwq->pool; 1961 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node); 1962 1963 lockdep_assert_held(&pool->lock); 1964 1965 /* 1966 * @pwq->nr_active should be decremented for both percpu and unbound 1967 * workqueues. 1968 */ 1969 pwq->nr_active--; 1970 1971 /* 1972 * For a percpu workqueue, it's simple. Just need to kick the first 1973 * inactive work item on @pwq itself. 1974 */ 1975 if (!nna) { 1976 pwq_activate_first_inactive(pwq, false); 1977 return; 1978 } 1979 1980 /* 1981 * If @pwq is for an unbound workqueue, it's more complicated because 1982 * multiple pwqs and pools may be sharing the nr_active count. When a 1983 * pwq needs to wait for an nr_active count, it puts itself on 1984 * $nna->pending_pwqs. The following atomic_dec_return()'s implied 1985 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to 1986 * guarantee that either we see non-empty pending_pwqs or they see 1987 * decremented $nna->nr. 1988 * 1989 * $nna->max may change as CPUs come online/offline and @pwq->wq's 1990 * max_active gets updated. However, it is guaranteed to be equal to or 1991 * larger than @pwq->wq->min_active which is above zero unless freezing. 1992 * This maintains the forward progress guarantee. 1993 */ 1994 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max)) 1995 return; 1996 1997 if (!list_empty(&nna->pending_pwqs)) 1998 node_activate_pending_pwq(nna, pool); 1999 } 2000 2001 /** 2002 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 2003 * @pwq: pwq of interest 2004 * @work_data: work_data of work which left the queue 2005 * 2006 * A work either has completed or is removed from pending queue, 2007 * decrement nr_in_flight of its pwq and handle workqueue flushing. 2008 * 2009 * NOTE: 2010 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock 2011 * and thus should be called after all other state updates for the in-flight 2012 * work item is complete. 2013 * 2014 * CONTEXT: 2015 * raw_spin_lock_irq(pool->lock). 2016 */ 2017 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 2018 { 2019 int color = get_work_color(work_data); 2020 2021 if (!(work_data & WORK_STRUCT_INACTIVE)) 2022 pwq_dec_nr_active(pwq); 2023 2024 pwq->nr_in_flight[color]--; 2025 2026 /* is flush in progress and are we at the flushing tip? */ 2027 if (likely(pwq->flush_color != color)) 2028 goto out_put; 2029 2030 /* are there still in-flight works? */ 2031 if (pwq->nr_in_flight[color]) 2032 goto out_put; 2033 2034 /* this pwq is done, clear flush_color */ 2035 pwq->flush_color = -1; 2036 2037 /* 2038 * If this was the last pwq, wake up the first flusher. It 2039 * will handle the rest. 2040 */ 2041 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 2042 complete(&pwq->wq->first_flusher->done); 2043 out_put: 2044 put_pwq(pwq); 2045 } 2046 2047 /** 2048 * try_to_grab_pending - steal work item from worklist and disable irq 2049 * @work: work item to steal 2050 * @cflags: %WORK_CANCEL_ flags 2051 * @irq_flags: place to store irq state 2052 * 2053 * Try to grab PENDING bit of @work. This function can handle @work in any 2054 * stable state - idle, on timer or on worklist. 2055 * 2056 * Return: 2057 * 2058 * ======== ================================================================ 2059 * 1 if @work was pending and we successfully stole PENDING 2060 * 0 if @work was idle and we claimed PENDING 2061 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 2062 * ======== ================================================================ 2063 * 2064 * Note: 2065 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 2066 * interrupted while holding PENDING and @work off queue, irq must be 2067 * disabled on entry. This, combined with delayed_work->timer being 2068 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 2069 * 2070 * On successful return, >= 0, irq is disabled and the caller is 2071 * responsible for releasing it using local_irq_restore(*@irq_flags). 2072 * 2073 * This function is safe to call from any context including IRQ handler. 2074 */ 2075 static int try_to_grab_pending(struct work_struct *work, u32 cflags, 2076 unsigned long *irq_flags) 2077 { 2078 struct worker_pool *pool; 2079 struct pool_workqueue *pwq; 2080 2081 local_irq_save(*irq_flags); 2082 2083 /* try to steal the timer if it exists */ 2084 if (cflags & WORK_CANCEL_DELAYED) { 2085 struct delayed_work *dwork = to_delayed_work(work); 2086 2087 /* 2088 * dwork->timer is irqsafe. If del_timer() fails, it's 2089 * guaranteed that the timer is not queued anywhere and not 2090 * running on the local CPU. 2091 */ 2092 if (likely(del_timer(&dwork->timer))) 2093 return 1; 2094 } 2095 2096 /* try to claim PENDING the normal way */ 2097 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2098 return 0; 2099 2100 rcu_read_lock(); 2101 /* 2102 * The queueing is in progress, or it is already queued. Try to 2103 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2104 */ 2105 pool = get_work_pool(work); 2106 if (!pool) 2107 goto fail; 2108 2109 raw_spin_lock(&pool->lock); 2110 /* 2111 * work->data is guaranteed to point to pwq only while the work 2112 * item is queued on pwq->wq, and both updating work->data to point 2113 * to pwq on queueing and to pool on dequeueing are done under 2114 * pwq->pool->lock. This in turn guarantees that, if work->data 2115 * points to pwq which is associated with a locked pool, the work 2116 * item is currently queued on that pool. 2117 */ 2118 pwq = get_work_pwq(work); 2119 if (pwq && pwq->pool == pool) { 2120 unsigned long work_data; 2121 2122 debug_work_deactivate(work); 2123 2124 /* 2125 * A cancelable inactive work item must be in the 2126 * pwq->inactive_works since a queued barrier can't be 2127 * canceled (see the comments in insert_wq_barrier()). 2128 * 2129 * An inactive work item cannot be grabbed directly because 2130 * it might have linked barrier work items which, if left 2131 * on the inactive_works list, will confuse pwq->nr_active 2132 * management later on and cause stall. Make sure the work 2133 * item is activated before grabbing. 2134 */ 2135 pwq_activate_work(pwq, work); 2136 2137 list_del_init(&work->entry); 2138 2139 /* 2140 * work->data points to pwq iff queued. Let's point to pool. As 2141 * this destroys work->data needed by the next step, stash it. 2142 */ 2143 work_data = *work_data_bits(work); 2144 set_work_pool_and_keep_pending(work, pool->id, 2145 pool_offq_flags(pool)); 2146 2147 /* must be the last step, see the function comment */ 2148 pwq_dec_nr_in_flight(pwq, work_data); 2149 2150 raw_spin_unlock(&pool->lock); 2151 rcu_read_unlock(); 2152 return 1; 2153 } 2154 raw_spin_unlock(&pool->lock); 2155 fail: 2156 rcu_read_unlock(); 2157 local_irq_restore(*irq_flags); 2158 return -EAGAIN; 2159 } 2160 2161 /** 2162 * work_grab_pending - steal work item from worklist and disable irq 2163 * @work: work item to steal 2164 * @cflags: %WORK_CANCEL_ flags 2165 * @irq_flags: place to store IRQ state 2166 * 2167 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer 2168 * or on worklist. 2169 * 2170 * Can be called from any context. IRQ is disabled on return with IRQ state 2171 * stored in *@irq_flags. The caller is responsible for re-enabling it using 2172 * local_irq_restore(). 2173 * 2174 * Returns %true if @work was pending. %false if idle. 2175 */ 2176 static bool work_grab_pending(struct work_struct *work, u32 cflags, 2177 unsigned long *irq_flags) 2178 { 2179 int ret; 2180 2181 while (true) { 2182 ret = try_to_grab_pending(work, cflags, irq_flags); 2183 if (ret >= 0) 2184 return ret; 2185 cpu_relax(); 2186 } 2187 } 2188 2189 /** 2190 * insert_work - insert a work into a pool 2191 * @pwq: pwq @work belongs to 2192 * @work: work to insert 2193 * @head: insertion point 2194 * @extra_flags: extra WORK_STRUCT_* flags to set 2195 * 2196 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 2197 * work_struct flags. 2198 * 2199 * CONTEXT: 2200 * raw_spin_lock_irq(pool->lock). 2201 */ 2202 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 2203 struct list_head *head, unsigned int extra_flags) 2204 { 2205 debug_work_activate(work); 2206 2207 /* record the work call stack in order to print it in KASAN reports */ 2208 kasan_record_aux_stack_noalloc(work); 2209 2210 /* we own @work, set data and link */ 2211 set_work_pwq(work, pwq, extra_flags); 2212 list_add_tail(&work->entry, head); 2213 get_pwq(pwq); 2214 } 2215 2216 /* 2217 * Test whether @work is being queued from another work executing on the 2218 * same workqueue. 2219 */ 2220 static bool is_chained_work(struct workqueue_struct *wq) 2221 { 2222 struct worker *worker; 2223 2224 worker = current_wq_worker(); 2225 /* 2226 * Return %true iff I'm a worker executing a work item on @wq. If 2227 * I'm @worker, it's safe to dereference it without locking. 2228 */ 2229 return worker && worker->current_pwq->wq == wq; 2230 } 2231 2232 /* 2233 * When queueing an unbound work item to a wq, prefer local CPU if allowed 2234 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 2235 * avoid perturbing sensitive tasks. 2236 */ 2237 static int wq_select_unbound_cpu(int cpu) 2238 { 2239 int new_cpu; 2240 2241 if (likely(!wq_debug_force_rr_cpu)) { 2242 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 2243 return cpu; 2244 } else { 2245 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 2246 } 2247 2248 new_cpu = __this_cpu_read(wq_rr_cpu_last); 2249 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 2250 if (unlikely(new_cpu >= nr_cpu_ids)) { 2251 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 2252 if (unlikely(new_cpu >= nr_cpu_ids)) 2253 return cpu; 2254 } 2255 __this_cpu_write(wq_rr_cpu_last, new_cpu); 2256 2257 return new_cpu; 2258 } 2259 2260 static void __queue_work(int cpu, struct workqueue_struct *wq, 2261 struct work_struct *work) 2262 { 2263 struct pool_workqueue *pwq; 2264 struct worker_pool *last_pool, *pool; 2265 unsigned int work_flags; 2266 unsigned int req_cpu = cpu; 2267 2268 /* 2269 * While a work item is PENDING && off queue, a task trying to 2270 * steal the PENDING will busy-loop waiting for it to either get 2271 * queued or lose PENDING. Grabbing PENDING and queueing should 2272 * happen with IRQ disabled. 2273 */ 2274 lockdep_assert_irqs_disabled(); 2275 2276 /* 2277 * For a draining wq, only works from the same workqueue are 2278 * allowed. The __WQ_DESTROYING helps to spot the issue that 2279 * queues a new work item to a wq after destroy_workqueue(wq). 2280 */ 2281 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 2282 WARN_ON_ONCE(!is_chained_work(wq)))) 2283 return; 2284 rcu_read_lock(); 2285 retry: 2286 /* pwq which will be used unless @work is executing elsewhere */ 2287 if (req_cpu == WORK_CPU_UNBOUND) { 2288 if (wq->flags & WQ_UNBOUND) 2289 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 2290 else 2291 cpu = raw_smp_processor_id(); 2292 } 2293 2294 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu)); 2295 pool = pwq->pool; 2296 2297 /* 2298 * If @work was previously on a different pool, it might still be 2299 * running there, in which case the work needs to be queued on that 2300 * pool to guarantee non-reentrancy. 2301 */ 2302 last_pool = get_work_pool(work); 2303 if (last_pool && last_pool != pool) { 2304 struct worker *worker; 2305 2306 raw_spin_lock(&last_pool->lock); 2307 2308 worker = find_worker_executing_work(last_pool, work); 2309 2310 if (worker && worker->current_pwq->wq == wq) { 2311 pwq = worker->current_pwq; 2312 pool = pwq->pool; 2313 WARN_ON_ONCE(pool != last_pool); 2314 } else { 2315 /* meh... not running there, queue here */ 2316 raw_spin_unlock(&last_pool->lock); 2317 raw_spin_lock(&pool->lock); 2318 } 2319 } else { 2320 raw_spin_lock(&pool->lock); 2321 } 2322 2323 /* 2324 * pwq is determined and locked. For unbound pools, we could have raced 2325 * with pwq release and it could already be dead. If its refcnt is zero, 2326 * repeat pwq selection. Note that unbound pwqs never die without 2327 * another pwq replacing it in cpu_pwq or while work items are executing 2328 * on it, so the retrying is guaranteed to make forward-progress. 2329 */ 2330 if (unlikely(!pwq->refcnt)) { 2331 if (wq->flags & WQ_UNBOUND) { 2332 raw_spin_unlock(&pool->lock); 2333 cpu_relax(); 2334 goto retry; 2335 } 2336 /* oops */ 2337 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 2338 wq->name, cpu); 2339 } 2340 2341 /* pwq determined, queue */ 2342 trace_workqueue_queue_work(req_cpu, pwq, work); 2343 2344 if (WARN_ON(!list_empty(&work->entry))) 2345 goto out; 2346 2347 pwq->nr_in_flight[pwq->work_color]++; 2348 work_flags = work_color_to_flags(pwq->work_color); 2349 2350 /* 2351 * Limit the number of concurrently active work items to max_active. 2352 * @work must also queue behind existing inactive work items to maintain 2353 * ordering when max_active changes. See wq_adjust_max_active(). 2354 */ 2355 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) { 2356 if (list_empty(&pool->worklist)) 2357 pool->watchdog_ts = jiffies; 2358 2359 trace_workqueue_activate_work(work); 2360 insert_work(pwq, work, &pool->worklist, work_flags); 2361 kick_pool(pool); 2362 } else { 2363 work_flags |= WORK_STRUCT_INACTIVE; 2364 insert_work(pwq, work, &pwq->inactive_works, work_flags); 2365 } 2366 2367 out: 2368 raw_spin_unlock(&pool->lock); 2369 rcu_read_unlock(); 2370 } 2371 2372 static bool clear_pending_if_disabled(struct work_struct *work) 2373 { 2374 unsigned long data = *work_data_bits(work); 2375 struct work_offq_data offqd; 2376 2377 if (likely((data & WORK_STRUCT_PWQ) || 2378 !(data & WORK_OFFQ_DISABLE_MASK))) 2379 return false; 2380 2381 work_offqd_unpack(&offqd, data); 2382 set_work_pool_and_clear_pending(work, offqd.pool_id, 2383 work_offqd_pack_flags(&offqd)); 2384 return true; 2385 } 2386 2387 /** 2388 * queue_work_on - queue work on specific cpu 2389 * @cpu: CPU number to execute work on 2390 * @wq: workqueue to use 2391 * @work: work to queue 2392 * 2393 * We queue the work to a specific CPU, the caller must ensure it 2394 * can't go away. Callers that fail to ensure that the specified 2395 * CPU cannot go away will execute on a randomly chosen CPU. 2396 * But note well that callers specifying a CPU that never has been 2397 * online will get a splat. 2398 * 2399 * Return: %false if @work was already on a queue, %true otherwise. 2400 */ 2401 bool queue_work_on(int cpu, struct workqueue_struct *wq, 2402 struct work_struct *work) 2403 { 2404 bool ret = false; 2405 unsigned long irq_flags; 2406 2407 local_irq_save(irq_flags); 2408 2409 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2410 !clear_pending_if_disabled(work)) { 2411 __queue_work(cpu, wq, work); 2412 ret = true; 2413 } 2414 2415 local_irq_restore(irq_flags); 2416 return ret; 2417 } 2418 EXPORT_SYMBOL(queue_work_on); 2419 2420 /** 2421 * select_numa_node_cpu - Select a CPU based on NUMA node 2422 * @node: NUMA node ID that we want to select a CPU from 2423 * 2424 * This function will attempt to find a "random" cpu available on a given 2425 * node. If there are no CPUs available on the given node it will return 2426 * WORK_CPU_UNBOUND indicating that we should just schedule to any 2427 * available CPU if we need to schedule this work. 2428 */ 2429 static int select_numa_node_cpu(int node) 2430 { 2431 int cpu; 2432 2433 /* Delay binding to CPU if node is not valid or online */ 2434 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 2435 return WORK_CPU_UNBOUND; 2436 2437 /* Use local node/cpu if we are already there */ 2438 cpu = raw_smp_processor_id(); 2439 if (node == cpu_to_node(cpu)) 2440 return cpu; 2441 2442 /* Use "random" otherwise know as "first" online CPU of node */ 2443 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 2444 2445 /* If CPU is valid return that, otherwise just defer */ 2446 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 2447 } 2448 2449 /** 2450 * queue_work_node - queue work on a "random" cpu for a given NUMA node 2451 * @node: NUMA node that we are targeting the work for 2452 * @wq: workqueue to use 2453 * @work: work to queue 2454 * 2455 * We queue the work to a "random" CPU within a given NUMA node. The basic 2456 * idea here is to provide a way to somehow associate work with a given 2457 * NUMA node. 2458 * 2459 * This function will only make a best effort attempt at getting this onto 2460 * the right NUMA node. If no node is requested or the requested node is 2461 * offline then we just fall back to standard queue_work behavior. 2462 * 2463 * Currently the "random" CPU ends up being the first available CPU in the 2464 * intersection of cpu_online_mask and the cpumask of the node, unless we 2465 * are running on the node. In that case we just use the current CPU. 2466 * 2467 * Return: %false if @work was already on a queue, %true otherwise. 2468 */ 2469 bool queue_work_node(int node, struct workqueue_struct *wq, 2470 struct work_struct *work) 2471 { 2472 unsigned long irq_flags; 2473 bool ret = false; 2474 2475 /* 2476 * This current implementation is specific to unbound workqueues. 2477 * Specifically we only return the first available CPU for a given 2478 * node instead of cycling through individual CPUs within the node. 2479 * 2480 * If this is used with a per-cpu workqueue then the logic in 2481 * workqueue_select_cpu_near would need to be updated to allow for 2482 * some round robin type logic. 2483 */ 2484 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 2485 2486 local_irq_save(irq_flags); 2487 2488 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2489 !clear_pending_if_disabled(work)) { 2490 int cpu = select_numa_node_cpu(node); 2491 2492 __queue_work(cpu, wq, work); 2493 ret = true; 2494 } 2495 2496 local_irq_restore(irq_flags); 2497 return ret; 2498 } 2499 EXPORT_SYMBOL_GPL(queue_work_node); 2500 2501 void delayed_work_timer_fn(struct timer_list *t) 2502 { 2503 struct delayed_work *dwork = from_timer(dwork, t, timer); 2504 2505 /* should have been called from irqsafe timer with irq already off */ 2506 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2507 } 2508 EXPORT_SYMBOL(delayed_work_timer_fn); 2509 2510 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 2511 struct delayed_work *dwork, unsigned long delay) 2512 { 2513 struct timer_list *timer = &dwork->timer; 2514 struct work_struct *work = &dwork->work; 2515 2516 WARN_ON_ONCE(!wq); 2517 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 2518 WARN_ON_ONCE(timer_pending(timer)); 2519 WARN_ON_ONCE(!list_empty(&work->entry)); 2520 2521 /* 2522 * If @delay is 0, queue @dwork->work immediately. This is for 2523 * both optimization and correctness. The earliest @timer can 2524 * expire is on the closest next tick and delayed_work users depend 2525 * on that there's no such delay when @delay is 0. 2526 */ 2527 if (!delay) { 2528 __queue_work(cpu, wq, &dwork->work); 2529 return; 2530 } 2531 2532 dwork->wq = wq; 2533 dwork->cpu = cpu; 2534 timer->expires = jiffies + delay; 2535 2536 if (housekeeping_enabled(HK_TYPE_TIMER)) { 2537 /* If the current cpu is a housekeeping cpu, use it. */ 2538 cpu = smp_processor_id(); 2539 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER)) 2540 cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 2541 add_timer_on(timer, cpu); 2542 } else { 2543 if (likely(cpu == WORK_CPU_UNBOUND)) 2544 add_timer_global(timer); 2545 else 2546 add_timer_on(timer, cpu); 2547 } 2548 } 2549 2550 /** 2551 * queue_delayed_work_on - queue work on specific CPU after delay 2552 * @cpu: CPU number to execute work on 2553 * @wq: workqueue to use 2554 * @dwork: work to queue 2555 * @delay: number of jiffies to wait before queueing 2556 * 2557 * Return: %false if @work was already on a queue, %true otherwise. If 2558 * @delay is zero and @dwork is idle, it will be scheduled for immediate 2559 * execution. 2560 */ 2561 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 2562 struct delayed_work *dwork, unsigned long delay) 2563 { 2564 struct work_struct *work = &dwork->work; 2565 bool ret = false; 2566 unsigned long irq_flags; 2567 2568 /* read the comment in __queue_work() */ 2569 local_irq_save(irq_flags); 2570 2571 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2572 !clear_pending_if_disabled(work)) { 2573 __queue_delayed_work(cpu, wq, dwork, delay); 2574 ret = true; 2575 } 2576 2577 local_irq_restore(irq_flags); 2578 return ret; 2579 } 2580 EXPORT_SYMBOL(queue_delayed_work_on); 2581 2582 /** 2583 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 2584 * @cpu: CPU number to execute work on 2585 * @wq: workqueue to use 2586 * @dwork: work to queue 2587 * @delay: number of jiffies to wait before queueing 2588 * 2589 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 2590 * modify @dwork's timer so that it expires after @delay. If @delay is 2591 * zero, @work is guaranteed to be scheduled immediately regardless of its 2592 * current state. 2593 * 2594 * Return: %false if @dwork was idle and queued, %true if @dwork was 2595 * pending and its timer was modified. 2596 * 2597 * This function is safe to call from any context including IRQ handler. 2598 * See try_to_grab_pending() for details. 2599 */ 2600 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 2601 struct delayed_work *dwork, unsigned long delay) 2602 { 2603 unsigned long irq_flags; 2604 bool ret; 2605 2606 ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags); 2607 2608 if (!clear_pending_if_disabled(&dwork->work)) 2609 __queue_delayed_work(cpu, wq, dwork, delay); 2610 2611 local_irq_restore(irq_flags); 2612 return ret; 2613 } 2614 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 2615 2616 static void rcu_work_rcufn(struct rcu_head *rcu) 2617 { 2618 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 2619 2620 /* read the comment in __queue_work() */ 2621 local_irq_disable(); 2622 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 2623 local_irq_enable(); 2624 } 2625 2626 /** 2627 * queue_rcu_work - queue work after a RCU grace period 2628 * @wq: workqueue to use 2629 * @rwork: work to queue 2630 * 2631 * Return: %false if @rwork was already pending, %true otherwise. Note 2632 * that a full RCU grace period is guaranteed only after a %true return. 2633 * While @rwork is guaranteed to be executed after a %false return, the 2634 * execution may happen before a full RCU grace period has passed. 2635 */ 2636 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 2637 { 2638 struct work_struct *work = &rwork->work; 2639 2640 /* 2641 * rcu_work can't be canceled or disabled. Warn if the user reached 2642 * inside @rwork and disabled the inner work. 2643 */ 2644 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2645 !WARN_ON_ONCE(clear_pending_if_disabled(work))) { 2646 rwork->wq = wq; 2647 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 2648 return true; 2649 } 2650 2651 return false; 2652 } 2653 EXPORT_SYMBOL(queue_rcu_work); 2654 2655 static struct worker *alloc_worker(int node) 2656 { 2657 struct worker *worker; 2658 2659 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 2660 if (worker) { 2661 INIT_LIST_HEAD(&worker->entry); 2662 INIT_LIST_HEAD(&worker->scheduled); 2663 INIT_LIST_HEAD(&worker->node); 2664 /* on creation a worker is in !idle && prep state */ 2665 worker->flags = WORKER_PREP; 2666 } 2667 return worker; 2668 } 2669 2670 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool) 2671 { 2672 if (pool->cpu < 0 && pool->attrs->affn_strict) 2673 return pool->attrs->__pod_cpumask; 2674 else 2675 return pool->attrs->cpumask; 2676 } 2677 2678 /** 2679 * worker_attach_to_pool() - attach a worker to a pool 2680 * @worker: worker to be attached 2681 * @pool: the target pool 2682 * 2683 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 2684 * cpu-binding of @worker are kept coordinated with the pool across 2685 * cpu-[un]hotplugs. 2686 */ 2687 static void worker_attach_to_pool(struct worker *worker, 2688 struct worker_pool *pool) 2689 { 2690 mutex_lock(&wq_pool_attach_mutex); 2691 2692 /* 2693 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable 2694 * across this function. See the comments above the flag definition for 2695 * details. BH workers are, while per-CPU, always DISASSOCIATED. 2696 */ 2697 if (pool->flags & POOL_DISASSOCIATED) { 2698 worker->flags |= WORKER_UNBOUND; 2699 } else { 2700 WARN_ON_ONCE(pool->flags & POOL_BH); 2701 kthread_set_per_cpu(worker->task, pool->cpu); 2702 } 2703 2704 if (worker->rescue_wq) 2705 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool)); 2706 2707 list_add_tail(&worker->node, &pool->workers); 2708 worker->pool = pool; 2709 2710 mutex_unlock(&wq_pool_attach_mutex); 2711 } 2712 2713 /** 2714 * worker_detach_from_pool() - detach a worker from its pool 2715 * @worker: worker which is attached to its pool 2716 * 2717 * Undo the attaching which had been done in worker_attach_to_pool(). The 2718 * caller worker shouldn't access to the pool after detached except it has 2719 * other reference to the pool. 2720 */ 2721 static void worker_detach_from_pool(struct worker *worker) 2722 { 2723 struct worker_pool *pool = worker->pool; 2724 struct completion *detach_completion = NULL; 2725 2726 /* there is one permanent BH worker per CPU which should never detach */ 2727 WARN_ON_ONCE(pool->flags & POOL_BH); 2728 2729 mutex_lock(&wq_pool_attach_mutex); 2730 2731 kthread_set_per_cpu(worker->task, -1); 2732 list_del(&worker->node); 2733 worker->pool = NULL; 2734 2735 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers)) 2736 detach_completion = pool->detach_completion; 2737 mutex_unlock(&wq_pool_attach_mutex); 2738 2739 /* clear leftover flags without pool->lock after it is detached */ 2740 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 2741 2742 if (detach_completion) 2743 complete(detach_completion); 2744 } 2745 2746 static int format_worker_id(char *buf, size_t size, struct worker *worker, 2747 struct worker_pool *pool) 2748 { 2749 if (worker->rescue_wq) 2750 return scnprintf(buf, size, "kworker/R-%s", 2751 worker->rescue_wq->name); 2752 2753 if (pool) { 2754 if (pool->cpu >= 0) 2755 return scnprintf(buf, size, "kworker/%d:%d%s", 2756 pool->cpu, worker->id, 2757 pool->attrs->nice < 0 ? "H" : ""); 2758 else 2759 return scnprintf(buf, size, "kworker/u%d:%d", 2760 pool->id, worker->id); 2761 } else { 2762 return scnprintf(buf, size, "kworker/dying"); 2763 } 2764 } 2765 2766 /** 2767 * create_worker - create a new workqueue worker 2768 * @pool: pool the new worker will belong to 2769 * 2770 * Create and start a new worker which is attached to @pool. 2771 * 2772 * CONTEXT: 2773 * Might sleep. Does GFP_KERNEL allocations. 2774 * 2775 * Return: 2776 * Pointer to the newly created worker. 2777 */ 2778 static struct worker *create_worker(struct worker_pool *pool) 2779 { 2780 struct worker *worker; 2781 int id; 2782 2783 /* ID is needed to determine kthread name */ 2784 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 2785 if (id < 0) { 2786 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 2787 ERR_PTR(id)); 2788 return NULL; 2789 } 2790 2791 worker = alloc_worker(pool->node); 2792 if (!worker) { 2793 pr_err_once("workqueue: Failed to allocate a worker\n"); 2794 goto fail; 2795 } 2796 2797 worker->id = id; 2798 2799 if (!(pool->flags & POOL_BH)) { 2800 char id_buf[WORKER_ID_LEN]; 2801 2802 format_worker_id(id_buf, sizeof(id_buf), worker, pool); 2803 worker->task = kthread_create_on_node(worker_thread, worker, 2804 pool->node, "%s", id_buf); 2805 if (IS_ERR(worker->task)) { 2806 if (PTR_ERR(worker->task) == -EINTR) { 2807 pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n", 2808 id_buf); 2809 } else { 2810 pr_err_once("workqueue: Failed to create a worker thread: %pe", 2811 worker->task); 2812 } 2813 goto fail; 2814 } 2815 2816 set_user_nice(worker->task, pool->attrs->nice); 2817 kthread_bind_mask(worker->task, pool_allowed_cpus(pool)); 2818 } 2819 2820 /* successful, attach the worker to the pool */ 2821 worker_attach_to_pool(worker, pool); 2822 2823 /* start the newly created worker */ 2824 raw_spin_lock_irq(&pool->lock); 2825 2826 worker->pool->nr_workers++; 2827 worker_enter_idle(worker); 2828 2829 /* 2830 * @worker is waiting on a completion in kthread() and will trigger hung 2831 * check if not woken up soon. As kick_pool() is noop if @pool is empty, 2832 * wake it up explicitly. 2833 */ 2834 if (worker->task) 2835 wake_up_process(worker->task); 2836 2837 raw_spin_unlock_irq(&pool->lock); 2838 2839 return worker; 2840 2841 fail: 2842 ida_free(&pool->worker_ida, id); 2843 kfree(worker); 2844 return NULL; 2845 } 2846 2847 static void unbind_worker(struct worker *worker) 2848 { 2849 lockdep_assert_held(&wq_pool_attach_mutex); 2850 2851 kthread_set_per_cpu(worker->task, -1); 2852 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 2853 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 2854 else 2855 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2856 } 2857 2858 static void wake_dying_workers(struct list_head *cull_list) 2859 { 2860 struct worker *worker, *tmp; 2861 2862 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2863 list_del_init(&worker->entry); 2864 unbind_worker(worker); 2865 /* 2866 * If the worker was somehow already running, then it had to be 2867 * in pool->idle_list when set_worker_dying() happened or we 2868 * wouldn't have gotten here. 2869 * 2870 * Thus, the worker must either have observed the WORKER_DIE 2871 * flag, or have set its state to TASK_IDLE. Either way, the 2872 * below will be observed by the worker and is safe to do 2873 * outside of pool->lock. 2874 */ 2875 wake_up_process(worker->task); 2876 } 2877 } 2878 2879 /** 2880 * set_worker_dying - Tag a worker for destruction 2881 * @worker: worker to be destroyed 2882 * @list: transfer worker away from its pool->idle_list and into list 2883 * 2884 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2885 * should be idle. 2886 * 2887 * CONTEXT: 2888 * raw_spin_lock_irq(pool->lock). 2889 */ 2890 static void set_worker_dying(struct worker *worker, struct list_head *list) 2891 { 2892 struct worker_pool *pool = worker->pool; 2893 2894 lockdep_assert_held(&pool->lock); 2895 lockdep_assert_held(&wq_pool_attach_mutex); 2896 2897 /* sanity check frenzy */ 2898 if (WARN_ON(worker->current_work) || 2899 WARN_ON(!list_empty(&worker->scheduled)) || 2900 WARN_ON(!(worker->flags & WORKER_IDLE))) 2901 return; 2902 2903 pool->nr_workers--; 2904 pool->nr_idle--; 2905 2906 worker->flags |= WORKER_DIE; 2907 2908 list_move(&worker->entry, list); 2909 list_move(&worker->node, &pool->dying_workers); 2910 } 2911 2912 /** 2913 * idle_worker_timeout - check if some idle workers can now be deleted. 2914 * @t: The pool's idle_timer that just expired 2915 * 2916 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2917 * worker_leave_idle(), as a worker flicking between idle and active while its 2918 * pool is at the too_many_workers() tipping point would cause too much timer 2919 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2920 * it expire and re-evaluate things from there. 2921 */ 2922 static void idle_worker_timeout(struct timer_list *t) 2923 { 2924 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2925 bool do_cull = false; 2926 2927 if (work_pending(&pool->idle_cull_work)) 2928 return; 2929 2930 raw_spin_lock_irq(&pool->lock); 2931 2932 if (too_many_workers(pool)) { 2933 struct worker *worker; 2934 unsigned long expires; 2935 2936 /* idle_list is kept in LIFO order, check the last one */ 2937 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2938 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2939 do_cull = !time_before(jiffies, expires); 2940 2941 if (!do_cull) 2942 mod_timer(&pool->idle_timer, expires); 2943 } 2944 raw_spin_unlock_irq(&pool->lock); 2945 2946 if (do_cull) 2947 queue_work(system_unbound_wq, &pool->idle_cull_work); 2948 } 2949 2950 /** 2951 * idle_cull_fn - cull workers that have been idle for too long. 2952 * @work: the pool's work for handling these idle workers 2953 * 2954 * This goes through a pool's idle workers and gets rid of those that have been 2955 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2956 * 2957 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2958 * culled, so this also resets worker affinity. This requires a sleepable 2959 * context, hence the split between timer callback and work item. 2960 */ 2961 static void idle_cull_fn(struct work_struct *work) 2962 { 2963 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2964 LIST_HEAD(cull_list); 2965 2966 /* 2967 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2968 * cannot proceed beyong worker_detach_from_pool() in its self-destruct 2969 * path. This is required as a previously-preempted worker could run after 2970 * set_worker_dying() has happened but before wake_dying_workers() did. 2971 */ 2972 mutex_lock(&wq_pool_attach_mutex); 2973 raw_spin_lock_irq(&pool->lock); 2974 2975 while (too_many_workers(pool)) { 2976 struct worker *worker; 2977 unsigned long expires; 2978 2979 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2980 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2981 2982 if (time_before(jiffies, expires)) { 2983 mod_timer(&pool->idle_timer, expires); 2984 break; 2985 } 2986 2987 set_worker_dying(worker, &cull_list); 2988 } 2989 2990 raw_spin_unlock_irq(&pool->lock); 2991 wake_dying_workers(&cull_list); 2992 mutex_unlock(&wq_pool_attach_mutex); 2993 } 2994 2995 static void send_mayday(struct work_struct *work) 2996 { 2997 struct pool_workqueue *pwq = get_work_pwq(work); 2998 struct workqueue_struct *wq = pwq->wq; 2999 3000 lockdep_assert_held(&wq_mayday_lock); 3001 3002 if (!wq->rescuer) 3003 return; 3004 3005 /* mayday mayday mayday */ 3006 if (list_empty(&pwq->mayday_node)) { 3007 /* 3008 * If @pwq is for an unbound wq, its base ref may be put at 3009 * any time due to an attribute change. Pin @pwq until the 3010 * rescuer is done with it. 3011 */ 3012 get_pwq(pwq); 3013 list_add_tail(&pwq->mayday_node, &wq->maydays); 3014 wake_up_process(wq->rescuer->task); 3015 pwq->stats[PWQ_STAT_MAYDAY]++; 3016 } 3017 } 3018 3019 static void pool_mayday_timeout(struct timer_list *t) 3020 { 3021 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 3022 struct work_struct *work; 3023 3024 raw_spin_lock_irq(&pool->lock); 3025 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 3026 3027 if (need_to_create_worker(pool)) { 3028 /* 3029 * We've been trying to create a new worker but 3030 * haven't been successful. We might be hitting an 3031 * allocation deadlock. Send distress signals to 3032 * rescuers. 3033 */ 3034 list_for_each_entry(work, &pool->worklist, entry) 3035 send_mayday(work); 3036 } 3037 3038 raw_spin_unlock(&wq_mayday_lock); 3039 raw_spin_unlock_irq(&pool->lock); 3040 3041 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 3042 } 3043 3044 /** 3045 * maybe_create_worker - create a new worker if necessary 3046 * @pool: pool to create a new worker for 3047 * 3048 * Create a new worker for @pool if necessary. @pool is guaranteed to 3049 * have at least one idle worker on return from this function. If 3050 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 3051 * sent to all rescuers with works scheduled on @pool to resolve 3052 * possible allocation deadlock. 3053 * 3054 * On return, need_to_create_worker() is guaranteed to be %false and 3055 * may_start_working() %true. 3056 * 3057 * LOCKING: 3058 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3059 * multiple times. Does GFP_KERNEL allocations. Called only from 3060 * manager. 3061 */ 3062 static void maybe_create_worker(struct worker_pool *pool) 3063 __releases(&pool->lock) 3064 __acquires(&pool->lock) 3065 { 3066 restart: 3067 raw_spin_unlock_irq(&pool->lock); 3068 3069 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 3070 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 3071 3072 while (true) { 3073 if (create_worker(pool) || !need_to_create_worker(pool)) 3074 break; 3075 3076 schedule_timeout_interruptible(CREATE_COOLDOWN); 3077 3078 if (!need_to_create_worker(pool)) 3079 break; 3080 } 3081 3082 del_timer_sync(&pool->mayday_timer); 3083 raw_spin_lock_irq(&pool->lock); 3084 /* 3085 * This is necessary even after a new worker was just successfully 3086 * created as @pool->lock was dropped and the new worker might have 3087 * already become busy. 3088 */ 3089 if (need_to_create_worker(pool)) 3090 goto restart; 3091 } 3092 3093 /** 3094 * manage_workers - manage worker pool 3095 * @worker: self 3096 * 3097 * Assume the manager role and manage the worker pool @worker belongs 3098 * to. At any given time, there can be only zero or one manager per 3099 * pool. The exclusion is handled automatically by this function. 3100 * 3101 * The caller can safely start processing works on false return. On 3102 * true return, it's guaranteed that need_to_create_worker() is false 3103 * and may_start_working() is true. 3104 * 3105 * CONTEXT: 3106 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3107 * multiple times. Does GFP_KERNEL allocations. 3108 * 3109 * Return: 3110 * %false if the pool doesn't need management and the caller can safely 3111 * start processing works, %true if management function was performed and 3112 * the conditions that the caller verified before calling the function may 3113 * no longer be true. 3114 */ 3115 static bool manage_workers(struct worker *worker) 3116 { 3117 struct worker_pool *pool = worker->pool; 3118 3119 if (pool->flags & POOL_MANAGER_ACTIVE) 3120 return false; 3121 3122 pool->flags |= POOL_MANAGER_ACTIVE; 3123 pool->manager = worker; 3124 3125 maybe_create_worker(pool); 3126 3127 pool->manager = NULL; 3128 pool->flags &= ~POOL_MANAGER_ACTIVE; 3129 rcuwait_wake_up(&manager_wait); 3130 return true; 3131 } 3132 3133 /** 3134 * process_one_work - process single work 3135 * @worker: self 3136 * @work: work to process 3137 * 3138 * Process @work. This function contains all the logics necessary to 3139 * process a single work including synchronization against and 3140 * interaction with other workers on the same cpu, queueing and 3141 * flushing. As long as context requirement is met, any worker can 3142 * call this function to process a work. 3143 * 3144 * CONTEXT: 3145 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 3146 */ 3147 static void process_one_work(struct worker *worker, struct work_struct *work) 3148 __releases(&pool->lock) 3149 __acquires(&pool->lock) 3150 { 3151 struct pool_workqueue *pwq = get_work_pwq(work); 3152 struct worker_pool *pool = worker->pool; 3153 unsigned long work_data; 3154 int lockdep_start_depth, rcu_start_depth; 3155 bool bh_draining = pool->flags & POOL_BH_DRAINING; 3156 #ifdef CONFIG_LOCKDEP 3157 /* 3158 * It is permissible to free the struct work_struct from 3159 * inside the function that is called from it, this we need to 3160 * take into account for lockdep too. To avoid bogus "held 3161 * lock freed" warnings as well as problems when looking into 3162 * work->lockdep_map, make a copy and use that here. 3163 */ 3164 struct lockdep_map lockdep_map; 3165 3166 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 3167 #endif 3168 /* ensure we're on the correct CPU */ 3169 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 3170 raw_smp_processor_id() != pool->cpu); 3171 3172 /* claim and dequeue */ 3173 debug_work_deactivate(work); 3174 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 3175 worker->current_work = work; 3176 worker->current_func = work->func; 3177 worker->current_pwq = pwq; 3178 if (worker->task) 3179 worker->current_at = worker->task->se.sum_exec_runtime; 3180 work_data = *work_data_bits(work); 3181 worker->current_color = get_work_color(work_data); 3182 3183 /* 3184 * Record wq name for cmdline and debug reporting, may get 3185 * overridden through set_worker_desc(). 3186 */ 3187 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 3188 3189 list_del_init(&work->entry); 3190 3191 /* 3192 * CPU intensive works don't participate in concurrency management. 3193 * They're the scheduler's responsibility. This takes @worker out 3194 * of concurrency management and the next code block will chain 3195 * execution of the pending work items. 3196 */ 3197 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) 3198 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 3199 3200 /* 3201 * Kick @pool if necessary. It's always noop for per-cpu worker pools 3202 * since nr_running would always be >= 1 at this point. This is used to 3203 * chain execution of the pending work items for WORKER_NOT_RUNNING 3204 * workers such as the UNBOUND and CPU_INTENSIVE ones. 3205 */ 3206 kick_pool(pool); 3207 3208 /* 3209 * Record the last pool and clear PENDING which should be the last 3210 * update to @work. Also, do this inside @pool->lock so that 3211 * PENDING and queued state changes happen together while IRQ is 3212 * disabled. 3213 */ 3214 set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool)); 3215 3216 pwq->stats[PWQ_STAT_STARTED]++; 3217 raw_spin_unlock_irq(&pool->lock); 3218 3219 rcu_start_depth = rcu_preempt_depth(); 3220 lockdep_start_depth = lockdep_depth(current); 3221 /* see drain_dead_softirq_workfn() */ 3222 if (!bh_draining) 3223 lock_map_acquire(&pwq->wq->lockdep_map); 3224 lock_map_acquire(&lockdep_map); 3225 /* 3226 * Strictly speaking we should mark the invariant state without holding 3227 * any locks, that is, before these two lock_map_acquire()'s. 3228 * 3229 * However, that would result in: 3230 * 3231 * A(W1) 3232 * WFC(C) 3233 * A(W1) 3234 * C(C) 3235 * 3236 * Which would create W1->C->W1 dependencies, even though there is no 3237 * actual deadlock possible. There are two solutions, using a 3238 * read-recursive acquire on the work(queue) 'locks', but this will then 3239 * hit the lockdep limitation on recursive locks, or simply discard 3240 * these locks. 3241 * 3242 * AFAICT there is no possible deadlock scenario between the 3243 * flush_work() and complete() primitives (except for single-threaded 3244 * workqueues), so hiding them isn't a problem. 3245 */ 3246 lockdep_invariant_state(true); 3247 trace_workqueue_execute_start(work); 3248 worker->current_func(work); 3249 /* 3250 * While we must be careful to not use "work" after this, the trace 3251 * point will only record its address. 3252 */ 3253 trace_workqueue_execute_end(work, worker->current_func); 3254 pwq->stats[PWQ_STAT_COMPLETED]++; 3255 lock_map_release(&lockdep_map); 3256 if (!bh_draining) 3257 lock_map_release(&pwq->wq->lockdep_map); 3258 3259 if (unlikely((worker->task && in_atomic()) || 3260 lockdep_depth(current) != lockdep_start_depth || 3261 rcu_preempt_depth() != rcu_start_depth)) { 3262 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n" 3263 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n", 3264 current->comm, task_pid_nr(current), preempt_count(), 3265 lockdep_start_depth, lockdep_depth(current), 3266 rcu_start_depth, rcu_preempt_depth(), 3267 worker->current_func); 3268 debug_show_held_locks(current); 3269 dump_stack(); 3270 } 3271 3272 /* 3273 * The following prevents a kworker from hogging CPU on !PREEMPTION 3274 * kernels, where a requeueing work item waiting for something to 3275 * happen could deadlock with stop_machine as such work item could 3276 * indefinitely requeue itself while all other CPUs are trapped in 3277 * stop_machine. At the same time, report a quiescent RCU state so 3278 * the same condition doesn't freeze RCU. 3279 */ 3280 if (worker->task) 3281 cond_resched(); 3282 3283 raw_spin_lock_irq(&pool->lock); 3284 3285 /* 3286 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked 3287 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than 3288 * wq_cpu_intensive_thresh_us. Clear it. 3289 */ 3290 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 3291 3292 /* tag the worker for identification in schedule() */ 3293 worker->last_func = worker->current_func; 3294 3295 /* we're done with it, release */ 3296 hash_del(&worker->hentry); 3297 worker->current_work = NULL; 3298 worker->current_func = NULL; 3299 worker->current_pwq = NULL; 3300 worker->current_color = INT_MAX; 3301 3302 /* must be the last step, see the function comment */ 3303 pwq_dec_nr_in_flight(pwq, work_data); 3304 } 3305 3306 /** 3307 * process_scheduled_works - process scheduled works 3308 * @worker: self 3309 * 3310 * Process all scheduled works. Please note that the scheduled list 3311 * may change while processing a work, so this function repeatedly 3312 * fetches a work from the top and executes it. 3313 * 3314 * CONTEXT: 3315 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3316 * multiple times. 3317 */ 3318 static void process_scheduled_works(struct worker *worker) 3319 { 3320 struct work_struct *work; 3321 bool first = true; 3322 3323 while ((work = list_first_entry_or_null(&worker->scheduled, 3324 struct work_struct, entry))) { 3325 if (first) { 3326 worker->pool->watchdog_ts = jiffies; 3327 first = false; 3328 } 3329 process_one_work(worker, work); 3330 } 3331 } 3332 3333 static void set_pf_worker(bool val) 3334 { 3335 mutex_lock(&wq_pool_attach_mutex); 3336 if (val) 3337 current->flags |= PF_WQ_WORKER; 3338 else 3339 current->flags &= ~PF_WQ_WORKER; 3340 mutex_unlock(&wq_pool_attach_mutex); 3341 } 3342 3343 /** 3344 * worker_thread - the worker thread function 3345 * @__worker: self 3346 * 3347 * The worker thread function. All workers belong to a worker_pool - 3348 * either a per-cpu one or dynamic unbound one. These workers process all 3349 * work items regardless of their specific target workqueue. The only 3350 * exception is work items which belong to workqueues with a rescuer which 3351 * will be explained in rescuer_thread(). 3352 * 3353 * Return: 0 3354 */ 3355 static int worker_thread(void *__worker) 3356 { 3357 struct worker *worker = __worker; 3358 struct worker_pool *pool = worker->pool; 3359 3360 /* tell the scheduler that this is a workqueue worker */ 3361 set_pf_worker(true); 3362 woke_up: 3363 raw_spin_lock_irq(&pool->lock); 3364 3365 /* am I supposed to die? */ 3366 if (unlikely(worker->flags & WORKER_DIE)) { 3367 raw_spin_unlock_irq(&pool->lock); 3368 set_pf_worker(false); 3369 3370 ida_free(&pool->worker_ida, worker->id); 3371 worker_detach_from_pool(worker); 3372 WARN_ON_ONCE(!list_empty(&worker->entry)); 3373 kfree(worker); 3374 return 0; 3375 } 3376 3377 worker_leave_idle(worker); 3378 recheck: 3379 /* no more worker necessary? */ 3380 if (!need_more_worker(pool)) 3381 goto sleep; 3382 3383 /* do we need to manage? */ 3384 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 3385 goto recheck; 3386 3387 /* 3388 * ->scheduled list can only be filled while a worker is 3389 * preparing to process a work or actually processing it. 3390 * Make sure nobody diddled with it while I was sleeping. 3391 */ 3392 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3393 3394 /* 3395 * Finish PREP stage. We're guaranteed to have at least one idle 3396 * worker or that someone else has already assumed the manager 3397 * role. This is where @worker starts participating in concurrency 3398 * management if applicable and concurrency management is restored 3399 * after being rebound. See rebind_workers() for details. 3400 */ 3401 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3402 3403 do { 3404 struct work_struct *work = 3405 list_first_entry(&pool->worklist, 3406 struct work_struct, entry); 3407 3408 if (assign_work(work, worker, NULL)) 3409 process_scheduled_works(worker); 3410 } while (keep_working(pool)); 3411 3412 worker_set_flags(worker, WORKER_PREP); 3413 sleep: 3414 /* 3415 * pool->lock is held and there's no work to process and no need to 3416 * manage, sleep. Workers are woken up only while holding 3417 * pool->lock or from local cpu, so setting the current state 3418 * before releasing pool->lock is enough to prevent losing any 3419 * event. 3420 */ 3421 worker_enter_idle(worker); 3422 __set_current_state(TASK_IDLE); 3423 raw_spin_unlock_irq(&pool->lock); 3424 schedule(); 3425 goto woke_up; 3426 } 3427 3428 /** 3429 * rescuer_thread - the rescuer thread function 3430 * @__rescuer: self 3431 * 3432 * Workqueue rescuer thread function. There's one rescuer for each 3433 * workqueue which has WQ_MEM_RECLAIM set. 3434 * 3435 * Regular work processing on a pool may block trying to create a new 3436 * worker which uses GFP_KERNEL allocation which has slight chance of 3437 * developing into deadlock if some works currently on the same queue 3438 * need to be processed to satisfy the GFP_KERNEL allocation. This is 3439 * the problem rescuer solves. 3440 * 3441 * When such condition is possible, the pool summons rescuers of all 3442 * workqueues which have works queued on the pool and let them process 3443 * those works so that forward progress can be guaranteed. 3444 * 3445 * This should happen rarely. 3446 * 3447 * Return: 0 3448 */ 3449 static int rescuer_thread(void *__rescuer) 3450 { 3451 struct worker *rescuer = __rescuer; 3452 struct workqueue_struct *wq = rescuer->rescue_wq; 3453 bool should_stop; 3454 3455 set_user_nice(current, RESCUER_NICE_LEVEL); 3456 3457 /* 3458 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 3459 * doesn't participate in concurrency management. 3460 */ 3461 set_pf_worker(true); 3462 repeat: 3463 set_current_state(TASK_IDLE); 3464 3465 /* 3466 * By the time the rescuer is requested to stop, the workqueue 3467 * shouldn't have any work pending, but @wq->maydays may still have 3468 * pwq(s) queued. This can happen by non-rescuer workers consuming 3469 * all the work items before the rescuer got to them. Go through 3470 * @wq->maydays processing before acting on should_stop so that the 3471 * list is always empty on exit. 3472 */ 3473 should_stop = kthread_should_stop(); 3474 3475 /* see whether any pwq is asking for help */ 3476 raw_spin_lock_irq(&wq_mayday_lock); 3477 3478 while (!list_empty(&wq->maydays)) { 3479 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 3480 struct pool_workqueue, mayday_node); 3481 struct worker_pool *pool = pwq->pool; 3482 struct work_struct *work, *n; 3483 3484 __set_current_state(TASK_RUNNING); 3485 list_del_init(&pwq->mayday_node); 3486 3487 raw_spin_unlock_irq(&wq_mayday_lock); 3488 3489 worker_attach_to_pool(rescuer, pool); 3490 3491 raw_spin_lock_irq(&pool->lock); 3492 3493 /* 3494 * Slurp in all works issued via this workqueue and 3495 * process'em. 3496 */ 3497 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 3498 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 3499 if (get_work_pwq(work) == pwq && 3500 assign_work(work, rescuer, &n)) 3501 pwq->stats[PWQ_STAT_RESCUED]++; 3502 } 3503 3504 if (!list_empty(&rescuer->scheduled)) { 3505 process_scheduled_works(rescuer); 3506 3507 /* 3508 * The above execution of rescued work items could 3509 * have created more to rescue through 3510 * pwq_activate_first_inactive() or chained 3511 * queueing. Let's put @pwq back on mayday list so 3512 * that such back-to-back work items, which may be 3513 * being used to relieve memory pressure, don't 3514 * incur MAYDAY_INTERVAL delay inbetween. 3515 */ 3516 if (pwq->nr_active && need_to_create_worker(pool)) { 3517 raw_spin_lock(&wq_mayday_lock); 3518 /* 3519 * Queue iff we aren't racing destruction 3520 * and somebody else hasn't queued it already. 3521 */ 3522 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 3523 get_pwq(pwq); 3524 list_add_tail(&pwq->mayday_node, &wq->maydays); 3525 } 3526 raw_spin_unlock(&wq_mayday_lock); 3527 } 3528 } 3529 3530 /* 3531 * Put the reference grabbed by send_mayday(). @pool won't 3532 * go away while we're still attached to it. 3533 */ 3534 put_pwq(pwq); 3535 3536 /* 3537 * Leave this pool. Notify regular workers; otherwise, we end up 3538 * with 0 concurrency and stalling the execution. 3539 */ 3540 kick_pool(pool); 3541 3542 raw_spin_unlock_irq(&pool->lock); 3543 3544 worker_detach_from_pool(rescuer); 3545 3546 raw_spin_lock_irq(&wq_mayday_lock); 3547 } 3548 3549 raw_spin_unlock_irq(&wq_mayday_lock); 3550 3551 if (should_stop) { 3552 __set_current_state(TASK_RUNNING); 3553 set_pf_worker(false); 3554 return 0; 3555 } 3556 3557 /* rescuers should never participate in concurrency management */ 3558 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 3559 schedule(); 3560 goto repeat; 3561 } 3562 3563 static void bh_worker(struct worker *worker) 3564 { 3565 struct worker_pool *pool = worker->pool; 3566 int nr_restarts = BH_WORKER_RESTARTS; 3567 unsigned long end = jiffies + BH_WORKER_JIFFIES; 3568 3569 raw_spin_lock_irq(&pool->lock); 3570 worker_leave_idle(worker); 3571 3572 /* 3573 * This function follows the structure of worker_thread(). See there for 3574 * explanations on each step. 3575 */ 3576 if (!need_more_worker(pool)) 3577 goto done; 3578 3579 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3580 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3581 3582 do { 3583 struct work_struct *work = 3584 list_first_entry(&pool->worklist, 3585 struct work_struct, entry); 3586 3587 if (assign_work(work, worker, NULL)) 3588 process_scheduled_works(worker); 3589 } while (keep_working(pool) && 3590 --nr_restarts && time_before(jiffies, end)); 3591 3592 worker_set_flags(worker, WORKER_PREP); 3593 done: 3594 worker_enter_idle(worker); 3595 kick_pool(pool); 3596 raw_spin_unlock_irq(&pool->lock); 3597 } 3598 3599 /* 3600 * TODO: Convert all tasklet users to workqueue and use softirq directly. 3601 * 3602 * This is currently called from tasklet[_hi]action() and thus is also called 3603 * whenever there are tasklets to run. Let's do an early exit if there's nothing 3604 * queued. Once conversion from tasklet is complete, the need_more_worker() test 3605 * can be dropped. 3606 * 3607 * After full conversion, we'll add worker->softirq_action, directly use the 3608 * softirq action and obtain the worker pointer from the softirq_action pointer. 3609 */ 3610 void workqueue_softirq_action(bool highpri) 3611 { 3612 struct worker_pool *pool = 3613 &per_cpu(bh_worker_pools, smp_processor_id())[highpri]; 3614 if (need_more_worker(pool)) 3615 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3616 } 3617 3618 struct wq_drain_dead_softirq_work { 3619 struct work_struct work; 3620 struct worker_pool *pool; 3621 struct completion done; 3622 }; 3623 3624 static void drain_dead_softirq_workfn(struct work_struct *work) 3625 { 3626 struct wq_drain_dead_softirq_work *dead_work = 3627 container_of(work, struct wq_drain_dead_softirq_work, work); 3628 struct worker_pool *pool = dead_work->pool; 3629 bool repeat; 3630 3631 /* 3632 * @pool's CPU is dead and we want to execute its still pending work 3633 * items from this BH work item which is running on a different CPU. As 3634 * its CPU is dead, @pool can't be kicked and, as work execution path 3635 * will be nested, a lockdep annotation needs to be suppressed. Mark 3636 * @pool with %POOL_BH_DRAINING for the special treatments. 3637 */ 3638 raw_spin_lock_irq(&pool->lock); 3639 pool->flags |= POOL_BH_DRAINING; 3640 raw_spin_unlock_irq(&pool->lock); 3641 3642 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3643 3644 raw_spin_lock_irq(&pool->lock); 3645 pool->flags &= ~POOL_BH_DRAINING; 3646 repeat = need_more_worker(pool); 3647 raw_spin_unlock_irq(&pool->lock); 3648 3649 /* 3650 * bh_worker() might hit consecutive execution limit and bail. If there 3651 * still are pending work items, reschedule self and return so that we 3652 * don't hog this CPU's BH. 3653 */ 3654 if (repeat) { 3655 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3656 queue_work(system_bh_highpri_wq, work); 3657 else 3658 queue_work(system_bh_wq, work); 3659 } else { 3660 complete(&dead_work->done); 3661 } 3662 } 3663 3664 /* 3665 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's 3666 * possible to allocate dead_work per CPU and avoid flushing. However, then we 3667 * have to worry about draining overlapping with CPU coming back online or 3668 * nesting (one CPU's dead_work queued on another CPU which is also dead and so 3669 * on). Let's keep it simple and drain them synchronously. These are BH work 3670 * items which shouldn't be requeued on the same pool. Shouldn't take long. 3671 */ 3672 void workqueue_softirq_dead(unsigned int cpu) 3673 { 3674 int i; 3675 3676 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 3677 struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i]; 3678 struct wq_drain_dead_softirq_work dead_work; 3679 3680 if (!need_more_worker(pool)) 3681 continue; 3682 3683 INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn); 3684 dead_work.pool = pool; 3685 init_completion(&dead_work.done); 3686 3687 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3688 queue_work(system_bh_highpri_wq, &dead_work.work); 3689 else 3690 queue_work(system_bh_wq, &dead_work.work); 3691 3692 wait_for_completion(&dead_work.done); 3693 destroy_work_on_stack(&dead_work.work); 3694 } 3695 } 3696 3697 /** 3698 * check_flush_dependency - check for flush dependency sanity 3699 * @target_wq: workqueue being flushed 3700 * @target_work: work item being flushed (NULL for workqueue flushes) 3701 * 3702 * %current is trying to flush the whole @target_wq or @target_work on it. 3703 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 3704 * reclaiming memory or running on a workqueue which doesn't have 3705 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 3706 * a deadlock. 3707 */ 3708 static void check_flush_dependency(struct workqueue_struct *target_wq, 3709 struct work_struct *target_work) 3710 { 3711 work_func_t target_func = target_work ? target_work->func : NULL; 3712 struct worker *worker; 3713 3714 if (target_wq->flags & WQ_MEM_RECLAIM) 3715 return; 3716 3717 worker = current_wq_worker(); 3718 3719 WARN_ONCE(current->flags & PF_MEMALLOC, 3720 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 3721 current->pid, current->comm, target_wq->name, target_func); 3722 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 3723 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 3724 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 3725 worker->current_pwq->wq->name, worker->current_func, 3726 target_wq->name, target_func); 3727 } 3728 3729 struct wq_barrier { 3730 struct work_struct work; 3731 struct completion done; 3732 struct task_struct *task; /* purely informational */ 3733 }; 3734 3735 static void wq_barrier_func(struct work_struct *work) 3736 { 3737 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 3738 complete(&barr->done); 3739 } 3740 3741 /** 3742 * insert_wq_barrier - insert a barrier work 3743 * @pwq: pwq to insert barrier into 3744 * @barr: wq_barrier to insert 3745 * @target: target work to attach @barr to 3746 * @worker: worker currently executing @target, NULL if @target is not executing 3747 * 3748 * @barr is linked to @target such that @barr is completed only after 3749 * @target finishes execution. Please note that the ordering 3750 * guarantee is observed only with respect to @target and on the local 3751 * cpu. 3752 * 3753 * Currently, a queued barrier can't be canceled. This is because 3754 * try_to_grab_pending() can't determine whether the work to be 3755 * grabbed is at the head of the queue and thus can't clear LINKED 3756 * flag of the previous work while there must be a valid next work 3757 * after a work with LINKED flag set. 3758 * 3759 * Note that when @worker is non-NULL, @target may be modified 3760 * underneath us, so we can't reliably determine pwq from @target. 3761 * 3762 * CONTEXT: 3763 * raw_spin_lock_irq(pool->lock). 3764 */ 3765 static void insert_wq_barrier(struct pool_workqueue *pwq, 3766 struct wq_barrier *barr, 3767 struct work_struct *target, struct worker *worker) 3768 { 3769 static __maybe_unused struct lock_class_key bh_key, thr_key; 3770 unsigned int work_flags = 0; 3771 unsigned int work_color; 3772 struct list_head *head; 3773 3774 /* 3775 * debugobject calls are safe here even with pool->lock locked 3776 * as we know for sure that this will not trigger any of the 3777 * checks and call back into the fixup functions where we 3778 * might deadlock. 3779 * 3780 * BH and threaded workqueues need separate lockdep keys to avoid 3781 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} 3782 * usage". 3783 */ 3784 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func, 3785 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key); 3786 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 3787 3788 init_completion_map(&barr->done, &target->lockdep_map); 3789 3790 barr->task = current; 3791 3792 /* The barrier work item does not participate in nr_active. */ 3793 work_flags |= WORK_STRUCT_INACTIVE; 3794 3795 /* 3796 * If @target is currently being executed, schedule the 3797 * barrier to the worker; otherwise, put it after @target. 3798 */ 3799 if (worker) { 3800 head = worker->scheduled.next; 3801 work_color = worker->current_color; 3802 } else { 3803 unsigned long *bits = work_data_bits(target); 3804 3805 head = target->entry.next; 3806 /* there can already be other linked works, inherit and set */ 3807 work_flags |= *bits & WORK_STRUCT_LINKED; 3808 work_color = get_work_color(*bits); 3809 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 3810 } 3811 3812 pwq->nr_in_flight[work_color]++; 3813 work_flags |= work_color_to_flags(work_color); 3814 3815 insert_work(pwq, &barr->work, head, work_flags); 3816 } 3817 3818 /** 3819 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 3820 * @wq: workqueue being flushed 3821 * @flush_color: new flush color, < 0 for no-op 3822 * @work_color: new work color, < 0 for no-op 3823 * 3824 * Prepare pwqs for workqueue flushing. 3825 * 3826 * If @flush_color is non-negative, flush_color on all pwqs should be 3827 * -1. If no pwq has in-flight commands at the specified color, all 3828 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 3829 * has in flight commands, its pwq->flush_color is set to 3830 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 3831 * wakeup logic is armed and %true is returned. 3832 * 3833 * The caller should have initialized @wq->first_flusher prior to 3834 * calling this function with non-negative @flush_color. If 3835 * @flush_color is negative, no flush color update is done and %false 3836 * is returned. 3837 * 3838 * If @work_color is non-negative, all pwqs should have the same 3839 * work_color which is previous to @work_color and all will be 3840 * advanced to @work_color. 3841 * 3842 * CONTEXT: 3843 * mutex_lock(wq->mutex). 3844 * 3845 * Return: 3846 * %true if @flush_color >= 0 and there's something to flush. %false 3847 * otherwise. 3848 */ 3849 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 3850 int flush_color, int work_color) 3851 { 3852 bool wait = false; 3853 struct pool_workqueue *pwq; 3854 3855 if (flush_color >= 0) { 3856 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 3857 atomic_set(&wq->nr_pwqs_to_flush, 1); 3858 } 3859 3860 for_each_pwq(pwq, wq) { 3861 struct worker_pool *pool = pwq->pool; 3862 3863 raw_spin_lock_irq(&pool->lock); 3864 3865 if (flush_color >= 0) { 3866 WARN_ON_ONCE(pwq->flush_color != -1); 3867 3868 if (pwq->nr_in_flight[flush_color]) { 3869 pwq->flush_color = flush_color; 3870 atomic_inc(&wq->nr_pwqs_to_flush); 3871 wait = true; 3872 } 3873 } 3874 3875 if (work_color >= 0) { 3876 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 3877 pwq->work_color = work_color; 3878 } 3879 3880 raw_spin_unlock_irq(&pool->lock); 3881 } 3882 3883 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 3884 complete(&wq->first_flusher->done); 3885 3886 return wait; 3887 } 3888 3889 static void touch_wq_lockdep_map(struct workqueue_struct *wq) 3890 { 3891 #ifdef CONFIG_LOCKDEP 3892 if (wq->flags & WQ_BH) 3893 local_bh_disable(); 3894 3895 lock_map_acquire(&wq->lockdep_map); 3896 lock_map_release(&wq->lockdep_map); 3897 3898 if (wq->flags & WQ_BH) 3899 local_bh_enable(); 3900 #endif 3901 } 3902 3903 static void touch_work_lockdep_map(struct work_struct *work, 3904 struct workqueue_struct *wq) 3905 { 3906 #ifdef CONFIG_LOCKDEP 3907 if (wq->flags & WQ_BH) 3908 local_bh_disable(); 3909 3910 lock_map_acquire(&work->lockdep_map); 3911 lock_map_release(&work->lockdep_map); 3912 3913 if (wq->flags & WQ_BH) 3914 local_bh_enable(); 3915 #endif 3916 } 3917 3918 /** 3919 * __flush_workqueue - ensure that any scheduled work has run to completion. 3920 * @wq: workqueue to flush 3921 * 3922 * This function sleeps until all work items which were queued on entry 3923 * have finished execution, but it is not livelocked by new incoming ones. 3924 */ 3925 void __flush_workqueue(struct workqueue_struct *wq) 3926 { 3927 struct wq_flusher this_flusher = { 3928 .list = LIST_HEAD_INIT(this_flusher.list), 3929 .flush_color = -1, 3930 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 3931 }; 3932 int next_color; 3933 3934 if (WARN_ON(!wq_online)) 3935 return; 3936 3937 touch_wq_lockdep_map(wq); 3938 3939 mutex_lock(&wq->mutex); 3940 3941 /* 3942 * Start-to-wait phase 3943 */ 3944 next_color = work_next_color(wq->work_color); 3945 3946 if (next_color != wq->flush_color) { 3947 /* 3948 * Color space is not full. The current work_color 3949 * becomes our flush_color and work_color is advanced 3950 * by one. 3951 */ 3952 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 3953 this_flusher.flush_color = wq->work_color; 3954 wq->work_color = next_color; 3955 3956 if (!wq->first_flusher) { 3957 /* no flush in progress, become the first flusher */ 3958 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3959 3960 wq->first_flusher = &this_flusher; 3961 3962 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 3963 wq->work_color)) { 3964 /* nothing to flush, done */ 3965 wq->flush_color = next_color; 3966 wq->first_flusher = NULL; 3967 goto out_unlock; 3968 } 3969 } else { 3970 /* wait in queue */ 3971 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 3972 list_add_tail(&this_flusher.list, &wq->flusher_queue); 3973 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3974 } 3975 } else { 3976 /* 3977 * Oops, color space is full, wait on overflow queue. 3978 * The next flush completion will assign us 3979 * flush_color and transfer to flusher_queue. 3980 */ 3981 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 3982 } 3983 3984 check_flush_dependency(wq, NULL); 3985 3986 mutex_unlock(&wq->mutex); 3987 3988 wait_for_completion(&this_flusher.done); 3989 3990 /* 3991 * Wake-up-and-cascade phase 3992 * 3993 * First flushers are responsible for cascading flushes and 3994 * handling overflow. Non-first flushers can simply return. 3995 */ 3996 if (READ_ONCE(wq->first_flusher) != &this_flusher) 3997 return; 3998 3999 mutex_lock(&wq->mutex); 4000 4001 /* we might have raced, check again with mutex held */ 4002 if (wq->first_flusher != &this_flusher) 4003 goto out_unlock; 4004 4005 WRITE_ONCE(wq->first_flusher, NULL); 4006 4007 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 4008 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 4009 4010 while (true) { 4011 struct wq_flusher *next, *tmp; 4012 4013 /* complete all the flushers sharing the current flush color */ 4014 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 4015 if (next->flush_color != wq->flush_color) 4016 break; 4017 list_del_init(&next->list); 4018 complete(&next->done); 4019 } 4020 4021 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 4022 wq->flush_color != work_next_color(wq->work_color)); 4023 4024 /* this flush_color is finished, advance by one */ 4025 wq->flush_color = work_next_color(wq->flush_color); 4026 4027 /* one color has been freed, handle overflow queue */ 4028 if (!list_empty(&wq->flusher_overflow)) { 4029 /* 4030 * Assign the same color to all overflowed 4031 * flushers, advance work_color and append to 4032 * flusher_queue. This is the start-to-wait 4033 * phase for these overflowed flushers. 4034 */ 4035 list_for_each_entry(tmp, &wq->flusher_overflow, list) 4036 tmp->flush_color = wq->work_color; 4037 4038 wq->work_color = work_next_color(wq->work_color); 4039 4040 list_splice_tail_init(&wq->flusher_overflow, 4041 &wq->flusher_queue); 4042 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 4043 } 4044 4045 if (list_empty(&wq->flusher_queue)) { 4046 WARN_ON_ONCE(wq->flush_color != wq->work_color); 4047 break; 4048 } 4049 4050 /* 4051 * Need to flush more colors. Make the next flusher 4052 * the new first flusher and arm pwqs. 4053 */ 4054 WARN_ON_ONCE(wq->flush_color == wq->work_color); 4055 WARN_ON_ONCE(wq->flush_color != next->flush_color); 4056 4057 list_del_init(&next->list); 4058 wq->first_flusher = next; 4059 4060 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 4061 break; 4062 4063 /* 4064 * Meh... this color is already done, clear first 4065 * flusher and repeat cascading. 4066 */ 4067 wq->first_flusher = NULL; 4068 } 4069 4070 out_unlock: 4071 mutex_unlock(&wq->mutex); 4072 } 4073 EXPORT_SYMBOL(__flush_workqueue); 4074 4075 /** 4076 * drain_workqueue - drain a workqueue 4077 * @wq: workqueue to drain 4078 * 4079 * Wait until the workqueue becomes empty. While draining is in progress, 4080 * only chain queueing is allowed. IOW, only currently pending or running 4081 * work items on @wq can queue further work items on it. @wq is flushed 4082 * repeatedly until it becomes empty. The number of flushing is determined 4083 * by the depth of chaining and should be relatively short. Whine if it 4084 * takes too long. 4085 */ 4086 void drain_workqueue(struct workqueue_struct *wq) 4087 { 4088 unsigned int flush_cnt = 0; 4089 struct pool_workqueue *pwq; 4090 4091 /* 4092 * __queue_work() needs to test whether there are drainers, is much 4093 * hotter than drain_workqueue() and already looks at @wq->flags. 4094 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 4095 */ 4096 mutex_lock(&wq->mutex); 4097 if (!wq->nr_drainers++) 4098 wq->flags |= __WQ_DRAINING; 4099 mutex_unlock(&wq->mutex); 4100 reflush: 4101 __flush_workqueue(wq); 4102 4103 mutex_lock(&wq->mutex); 4104 4105 for_each_pwq(pwq, wq) { 4106 bool drained; 4107 4108 raw_spin_lock_irq(&pwq->pool->lock); 4109 drained = pwq_is_empty(pwq); 4110 raw_spin_unlock_irq(&pwq->pool->lock); 4111 4112 if (drained) 4113 continue; 4114 4115 if (++flush_cnt == 10 || 4116 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 4117 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 4118 wq->name, __func__, flush_cnt); 4119 4120 mutex_unlock(&wq->mutex); 4121 goto reflush; 4122 } 4123 4124 if (!--wq->nr_drainers) 4125 wq->flags &= ~__WQ_DRAINING; 4126 mutex_unlock(&wq->mutex); 4127 } 4128 EXPORT_SYMBOL_GPL(drain_workqueue); 4129 4130 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 4131 bool from_cancel) 4132 { 4133 struct worker *worker = NULL; 4134 struct worker_pool *pool; 4135 struct pool_workqueue *pwq; 4136 struct workqueue_struct *wq; 4137 4138 rcu_read_lock(); 4139 pool = get_work_pool(work); 4140 if (!pool) { 4141 rcu_read_unlock(); 4142 return false; 4143 } 4144 4145 raw_spin_lock_irq(&pool->lock); 4146 /* see the comment in try_to_grab_pending() with the same code */ 4147 pwq = get_work_pwq(work); 4148 if (pwq) { 4149 if (unlikely(pwq->pool != pool)) 4150 goto already_gone; 4151 } else { 4152 worker = find_worker_executing_work(pool, work); 4153 if (!worker) 4154 goto already_gone; 4155 pwq = worker->current_pwq; 4156 } 4157 4158 wq = pwq->wq; 4159 check_flush_dependency(wq, work); 4160 4161 insert_wq_barrier(pwq, barr, work, worker); 4162 raw_spin_unlock_irq(&pool->lock); 4163 4164 touch_work_lockdep_map(work, wq); 4165 4166 /* 4167 * Force a lock recursion deadlock when using flush_work() inside a 4168 * single-threaded or rescuer equipped workqueue. 4169 * 4170 * For single threaded workqueues the deadlock happens when the work 4171 * is after the work issuing the flush_work(). For rescuer equipped 4172 * workqueues the deadlock happens when the rescuer stalls, blocking 4173 * forward progress. 4174 */ 4175 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer)) 4176 touch_wq_lockdep_map(wq); 4177 4178 rcu_read_unlock(); 4179 return true; 4180 already_gone: 4181 raw_spin_unlock_irq(&pool->lock); 4182 rcu_read_unlock(); 4183 return false; 4184 } 4185 4186 static bool __flush_work(struct work_struct *work, bool from_cancel) 4187 { 4188 struct wq_barrier barr; 4189 unsigned long data; 4190 4191 if (WARN_ON(!wq_online)) 4192 return false; 4193 4194 if (WARN_ON(!work->func)) 4195 return false; 4196 4197 if (!start_flush_work(work, &barr, from_cancel)) 4198 return false; 4199 4200 /* 4201 * start_flush_work() returned %true. If @from_cancel is set, we know 4202 * that @work must have been executing during start_flush_work() and 4203 * can't currently be queued. Its data must contain OFFQ bits. If @work 4204 * was queued on a BH workqueue, we also know that it was running in the 4205 * BH context and thus can be busy-waited. 4206 */ 4207 data = *work_data_bits(work); 4208 if (from_cancel && 4209 !WARN_ON_ONCE(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_BH)) { 4210 /* 4211 * On RT, prevent a live lock when %current preempted soft 4212 * interrupt processing or prevents ksoftirqd from running by 4213 * keeping flipping BH. If the BH work item runs on a different 4214 * CPU then this has no effect other than doing the BH 4215 * disable/enable dance for nothing. This is copied from 4216 * kernel/softirq.c::tasklet_unlock_spin_wait(). 4217 */ 4218 while (!try_wait_for_completion(&barr.done)) { 4219 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 4220 local_bh_disable(); 4221 local_bh_enable(); 4222 } else { 4223 cpu_relax(); 4224 } 4225 } 4226 } else { 4227 wait_for_completion(&barr.done); 4228 } 4229 4230 destroy_work_on_stack(&barr.work); 4231 return true; 4232 } 4233 4234 /** 4235 * flush_work - wait for a work to finish executing the last queueing instance 4236 * @work: the work to flush 4237 * 4238 * Wait until @work has finished execution. @work is guaranteed to be idle 4239 * on return if it hasn't been requeued since flush started. 4240 * 4241 * Return: 4242 * %true if flush_work() waited for the work to finish execution, 4243 * %false if it was already idle. 4244 */ 4245 bool flush_work(struct work_struct *work) 4246 { 4247 might_sleep(); 4248 return __flush_work(work, false); 4249 } 4250 EXPORT_SYMBOL_GPL(flush_work); 4251 4252 /** 4253 * flush_delayed_work - wait for a dwork to finish executing the last queueing 4254 * @dwork: the delayed work to flush 4255 * 4256 * Delayed timer is cancelled and the pending work is queued for 4257 * immediate execution. Like flush_work(), this function only 4258 * considers the last queueing instance of @dwork. 4259 * 4260 * Return: 4261 * %true if flush_work() waited for the work to finish execution, 4262 * %false if it was already idle. 4263 */ 4264 bool flush_delayed_work(struct delayed_work *dwork) 4265 { 4266 local_irq_disable(); 4267 if (del_timer_sync(&dwork->timer)) 4268 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 4269 local_irq_enable(); 4270 return flush_work(&dwork->work); 4271 } 4272 EXPORT_SYMBOL(flush_delayed_work); 4273 4274 /** 4275 * flush_rcu_work - wait for a rwork to finish executing the last queueing 4276 * @rwork: the rcu work to flush 4277 * 4278 * Return: 4279 * %true if flush_rcu_work() waited for the work to finish execution, 4280 * %false if it was already idle. 4281 */ 4282 bool flush_rcu_work(struct rcu_work *rwork) 4283 { 4284 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 4285 rcu_barrier(); 4286 flush_work(&rwork->work); 4287 return true; 4288 } else { 4289 return flush_work(&rwork->work); 4290 } 4291 } 4292 EXPORT_SYMBOL(flush_rcu_work); 4293 4294 static void work_offqd_disable(struct work_offq_data *offqd) 4295 { 4296 const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1; 4297 4298 if (likely(offqd->disable < max)) 4299 offqd->disable++; 4300 else 4301 WARN_ONCE(true, "workqueue: work disable count overflowed\n"); 4302 } 4303 4304 static void work_offqd_enable(struct work_offq_data *offqd) 4305 { 4306 if (likely(offqd->disable > 0)) 4307 offqd->disable--; 4308 else 4309 WARN_ONCE(true, "workqueue: work disable count underflowed\n"); 4310 } 4311 4312 static bool __cancel_work(struct work_struct *work, u32 cflags) 4313 { 4314 struct work_offq_data offqd; 4315 unsigned long irq_flags; 4316 int ret; 4317 4318 ret = work_grab_pending(work, cflags, &irq_flags); 4319 4320 work_offqd_unpack(&offqd, *work_data_bits(work)); 4321 4322 if (cflags & WORK_CANCEL_DISABLE) 4323 work_offqd_disable(&offqd); 4324 4325 set_work_pool_and_clear_pending(work, offqd.pool_id, 4326 work_offqd_pack_flags(&offqd)); 4327 local_irq_restore(irq_flags); 4328 return ret; 4329 } 4330 4331 static bool __cancel_work_sync(struct work_struct *work, u32 cflags) 4332 { 4333 bool ret; 4334 4335 ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE); 4336 4337 if (*work_data_bits(work) & WORK_OFFQ_BH) 4338 WARN_ON_ONCE(in_hardirq()); 4339 else 4340 might_sleep(); 4341 4342 /* 4343 * Skip __flush_work() during early boot when we know that @work isn't 4344 * executing. This allows canceling during early boot. 4345 */ 4346 if (wq_online) 4347 __flush_work(work, true); 4348 4349 if (!(cflags & WORK_CANCEL_DISABLE)) 4350 enable_work(work); 4351 4352 return ret; 4353 } 4354 4355 /* 4356 * See cancel_delayed_work() 4357 */ 4358 bool cancel_work(struct work_struct *work) 4359 { 4360 return __cancel_work(work, 0); 4361 } 4362 EXPORT_SYMBOL(cancel_work); 4363 4364 /** 4365 * cancel_work_sync - cancel a work and wait for it to finish 4366 * @work: the work to cancel 4367 * 4368 * Cancel @work and wait for its execution to finish. This function can be used 4369 * even if the work re-queues itself or migrates to another workqueue. On return 4370 * from this function, @work is guaranteed to be not pending or executing on any 4371 * CPU as long as there aren't racing enqueues. 4372 * 4373 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's. 4374 * Use cancel_delayed_work_sync() instead. 4375 * 4376 * Must be called from a sleepable context if @work was last queued on a non-BH 4377 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4378 * if @work was last queued on a BH workqueue. 4379 * 4380 * Returns %true if @work was pending, %false otherwise. 4381 */ 4382 bool cancel_work_sync(struct work_struct *work) 4383 { 4384 return __cancel_work_sync(work, 0); 4385 } 4386 EXPORT_SYMBOL_GPL(cancel_work_sync); 4387 4388 /** 4389 * cancel_delayed_work - cancel a delayed work 4390 * @dwork: delayed_work to cancel 4391 * 4392 * Kill off a pending delayed_work. 4393 * 4394 * Return: %true if @dwork was pending and canceled; %false if it wasn't 4395 * pending. 4396 * 4397 * Note: 4398 * The work callback function may still be running on return, unless 4399 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 4400 * use cancel_delayed_work_sync() to wait on it. 4401 * 4402 * This function is safe to call from any context including IRQ handler. 4403 */ 4404 bool cancel_delayed_work(struct delayed_work *dwork) 4405 { 4406 return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED); 4407 } 4408 EXPORT_SYMBOL(cancel_delayed_work); 4409 4410 /** 4411 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 4412 * @dwork: the delayed work cancel 4413 * 4414 * This is cancel_work_sync() for delayed works. 4415 * 4416 * Return: 4417 * %true if @dwork was pending, %false otherwise. 4418 */ 4419 bool cancel_delayed_work_sync(struct delayed_work *dwork) 4420 { 4421 return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED); 4422 } 4423 EXPORT_SYMBOL(cancel_delayed_work_sync); 4424 4425 /** 4426 * disable_work - Disable and cancel a work item 4427 * @work: work item to disable 4428 * 4429 * Disable @work by incrementing its disable count and cancel it if currently 4430 * pending. As long as the disable count is non-zero, any attempt to queue @work 4431 * will fail and return %false. The maximum supported disable depth is 2 to the 4432 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536. 4433 * 4434 * Can be called from any context. Returns %true if @work was pending, %false 4435 * otherwise. 4436 */ 4437 bool disable_work(struct work_struct *work) 4438 { 4439 return __cancel_work(work, WORK_CANCEL_DISABLE); 4440 } 4441 EXPORT_SYMBOL_GPL(disable_work); 4442 4443 /** 4444 * disable_work_sync - Disable, cancel and drain a work item 4445 * @work: work item to disable 4446 * 4447 * Similar to disable_work() but also wait for @work to finish if currently 4448 * executing. 4449 * 4450 * Must be called from a sleepable context if @work was last queued on a non-BH 4451 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4452 * if @work was last queued on a BH workqueue. 4453 * 4454 * Returns %true if @work was pending, %false otherwise. 4455 */ 4456 bool disable_work_sync(struct work_struct *work) 4457 { 4458 return __cancel_work_sync(work, WORK_CANCEL_DISABLE); 4459 } 4460 EXPORT_SYMBOL_GPL(disable_work_sync); 4461 4462 /** 4463 * enable_work - Enable a work item 4464 * @work: work item to enable 4465 * 4466 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can 4467 * only be queued if its disable count is 0. 4468 * 4469 * Can be called from any context. Returns %true if the disable count reached 0. 4470 * Otherwise, %false. 4471 */ 4472 bool enable_work(struct work_struct *work) 4473 { 4474 struct work_offq_data offqd; 4475 unsigned long irq_flags; 4476 4477 work_grab_pending(work, 0, &irq_flags); 4478 4479 work_offqd_unpack(&offqd, *work_data_bits(work)); 4480 work_offqd_enable(&offqd); 4481 set_work_pool_and_clear_pending(work, offqd.pool_id, 4482 work_offqd_pack_flags(&offqd)); 4483 local_irq_restore(irq_flags); 4484 4485 return !offqd.disable; 4486 } 4487 EXPORT_SYMBOL_GPL(enable_work); 4488 4489 /** 4490 * disable_delayed_work - Disable and cancel a delayed work item 4491 * @dwork: delayed work item to disable 4492 * 4493 * disable_work() for delayed work items. 4494 */ 4495 bool disable_delayed_work(struct delayed_work *dwork) 4496 { 4497 return __cancel_work(&dwork->work, 4498 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4499 } 4500 EXPORT_SYMBOL_GPL(disable_delayed_work); 4501 4502 /** 4503 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item 4504 * @dwork: delayed work item to disable 4505 * 4506 * disable_work_sync() for delayed work items. 4507 */ 4508 bool disable_delayed_work_sync(struct delayed_work *dwork) 4509 { 4510 return __cancel_work_sync(&dwork->work, 4511 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4512 } 4513 EXPORT_SYMBOL_GPL(disable_delayed_work_sync); 4514 4515 /** 4516 * enable_delayed_work - Enable a delayed work item 4517 * @dwork: delayed work item to enable 4518 * 4519 * enable_work() for delayed work items. 4520 */ 4521 bool enable_delayed_work(struct delayed_work *dwork) 4522 { 4523 return enable_work(&dwork->work); 4524 } 4525 EXPORT_SYMBOL_GPL(enable_delayed_work); 4526 4527 /** 4528 * schedule_on_each_cpu - execute a function synchronously on each online CPU 4529 * @func: the function to call 4530 * 4531 * schedule_on_each_cpu() executes @func on each online CPU using the 4532 * system workqueue and blocks until all CPUs have completed. 4533 * schedule_on_each_cpu() is very slow. 4534 * 4535 * Return: 4536 * 0 on success, -errno on failure. 4537 */ 4538 int schedule_on_each_cpu(work_func_t func) 4539 { 4540 int cpu; 4541 struct work_struct __percpu *works; 4542 4543 works = alloc_percpu(struct work_struct); 4544 if (!works) 4545 return -ENOMEM; 4546 4547 cpus_read_lock(); 4548 4549 for_each_online_cpu(cpu) { 4550 struct work_struct *work = per_cpu_ptr(works, cpu); 4551 4552 INIT_WORK(work, func); 4553 schedule_work_on(cpu, work); 4554 } 4555 4556 for_each_online_cpu(cpu) 4557 flush_work(per_cpu_ptr(works, cpu)); 4558 4559 cpus_read_unlock(); 4560 free_percpu(works); 4561 return 0; 4562 } 4563 4564 /** 4565 * execute_in_process_context - reliably execute the routine with user context 4566 * @fn: the function to execute 4567 * @ew: guaranteed storage for the execute work structure (must 4568 * be available when the work executes) 4569 * 4570 * Executes the function immediately if process context is available, 4571 * otherwise schedules the function for delayed execution. 4572 * 4573 * Return: 0 - function was executed 4574 * 1 - function was scheduled for execution 4575 */ 4576 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 4577 { 4578 if (!in_interrupt()) { 4579 fn(&ew->work); 4580 return 0; 4581 } 4582 4583 INIT_WORK(&ew->work, fn); 4584 schedule_work(&ew->work); 4585 4586 return 1; 4587 } 4588 EXPORT_SYMBOL_GPL(execute_in_process_context); 4589 4590 /** 4591 * free_workqueue_attrs - free a workqueue_attrs 4592 * @attrs: workqueue_attrs to free 4593 * 4594 * Undo alloc_workqueue_attrs(). 4595 */ 4596 void free_workqueue_attrs(struct workqueue_attrs *attrs) 4597 { 4598 if (attrs) { 4599 free_cpumask_var(attrs->cpumask); 4600 free_cpumask_var(attrs->__pod_cpumask); 4601 kfree(attrs); 4602 } 4603 } 4604 4605 /** 4606 * alloc_workqueue_attrs - allocate a workqueue_attrs 4607 * 4608 * Allocate a new workqueue_attrs, initialize with default settings and 4609 * return it. 4610 * 4611 * Return: The allocated new workqueue_attr on success. %NULL on failure. 4612 */ 4613 struct workqueue_attrs *alloc_workqueue_attrs(void) 4614 { 4615 struct workqueue_attrs *attrs; 4616 4617 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 4618 if (!attrs) 4619 goto fail; 4620 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 4621 goto fail; 4622 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL)) 4623 goto fail; 4624 4625 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4626 attrs->affn_scope = WQ_AFFN_DFL; 4627 return attrs; 4628 fail: 4629 free_workqueue_attrs(attrs); 4630 return NULL; 4631 } 4632 4633 static void copy_workqueue_attrs(struct workqueue_attrs *to, 4634 const struct workqueue_attrs *from) 4635 { 4636 to->nice = from->nice; 4637 cpumask_copy(to->cpumask, from->cpumask); 4638 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask); 4639 to->affn_strict = from->affn_strict; 4640 4641 /* 4642 * Unlike hash and equality test, copying shouldn't ignore wq-only 4643 * fields as copying is used for both pool and wq attrs. Instead, 4644 * get_unbound_pool() explicitly clears the fields. 4645 */ 4646 to->affn_scope = from->affn_scope; 4647 to->ordered = from->ordered; 4648 } 4649 4650 /* 4651 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the 4652 * comments in 'struct workqueue_attrs' definition. 4653 */ 4654 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs) 4655 { 4656 attrs->affn_scope = WQ_AFFN_NR_TYPES; 4657 attrs->ordered = false; 4658 if (attrs->affn_strict) 4659 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4660 } 4661 4662 /* hash value of the content of @attr */ 4663 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 4664 { 4665 u32 hash = 0; 4666 4667 hash = jhash_1word(attrs->nice, hash); 4668 hash = jhash_1word(attrs->affn_strict, hash); 4669 hash = jhash(cpumask_bits(attrs->__pod_cpumask), 4670 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4671 if (!attrs->affn_strict) 4672 hash = jhash(cpumask_bits(attrs->cpumask), 4673 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4674 return hash; 4675 } 4676 4677 /* content equality test */ 4678 static bool wqattrs_equal(const struct workqueue_attrs *a, 4679 const struct workqueue_attrs *b) 4680 { 4681 if (a->nice != b->nice) 4682 return false; 4683 if (a->affn_strict != b->affn_strict) 4684 return false; 4685 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask)) 4686 return false; 4687 if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask)) 4688 return false; 4689 return true; 4690 } 4691 4692 /* Update @attrs with actually available CPUs */ 4693 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs, 4694 const cpumask_t *unbound_cpumask) 4695 { 4696 /* 4697 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If 4698 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to 4699 * @unbound_cpumask. 4700 */ 4701 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask); 4702 if (unlikely(cpumask_empty(attrs->cpumask))) 4703 cpumask_copy(attrs->cpumask, unbound_cpumask); 4704 } 4705 4706 /* find wq_pod_type to use for @attrs */ 4707 static const struct wq_pod_type * 4708 wqattrs_pod_type(const struct workqueue_attrs *attrs) 4709 { 4710 enum wq_affn_scope scope; 4711 struct wq_pod_type *pt; 4712 4713 /* to synchronize access to wq_affn_dfl */ 4714 lockdep_assert_held(&wq_pool_mutex); 4715 4716 if (attrs->affn_scope == WQ_AFFN_DFL) 4717 scope = wq_affn_dfl; 4718 else 4719 scope = attrs->affn_scope; 4720 4721 pt = &wq_pod_types[scope]; 4722 4723 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) && 4724 likely(pt->nr_pods)) 4725 return pt; 4726 4727 /* 4728 * Before workqueue_init_topology(), only SYSTEM is available which is 4729 * initialized in workqueue_init_early(). 4730 */ 4731 pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 4732 BUG_ON(!pt->nr_pods); 4733 return pt; 4734 } 4735 4736 /** 4737 * init_worker_pool - initialize a newly zalloc'd worker_pool 4738 * @pool: worker_pool to initialize 4739 * 4740 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 4741 * 4742 * Return: 0 on success, -errno on failure. Even on failure, all fields 4743 * inside @pool proper are initialized and put_unbound_pool() can be called 4744 * on @pool safely to release it. 4745 */ 4746 static int init_worker_pool(struct worker_pool *pool) 4747 { 4748 raw_spin_lock_init(&pool->lock); 4749 pool->id = -1; 4750 pool->cpu = -1; 4751 pool->node = NUMA_NO_NODE; 4752 pool->flags |= POOL_DISASSOCIATED; 4753 pool->watchdog_ts = jiffies; 4754 INIT_LIST_HEAD(&pool->worklist); 4755 INIT_LIST_HEAD(&pool->idle_list); 4756 hash_init(pool->busy_hash); 4757 4758 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 4759 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 4760 4761 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 4762 4763 INIT_LIST_HEAD(&pool->workers); 4764 INIT_LIST_HEAD(&pool->dying_workers); 4765 4766 ida_init(&pool->worker_ida); 4767 INIT_HLIST_NODE(&pool->hash_node); 4768 pool->refcnt = 1; 4769 4770 /* shouldn't fail above this point */ 4771 pool->attrs = alloc_workqueue_attrs(); 4772 if (!pool->attrs) 4773 return -ENOMEM; 4774 4775 wqattrs_clear_for_pool(pool->attrs); 4776 4777 return 0; 4778 } 4779 4780 #ifdef CONFIG_LOCKDEP 4781 static void wq_init_lockdep(struct workqueue_struct *wq) 4782 { 4783 char *lock_name; 4784 4785 lockdep_register_key(&wq->key); 4786 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 4787 if (!lock_name) 4788 lock_name = wq->name; 4789 4790 wq->lock_name = lock_name; 4791 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 4792 } 4793 4794 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4795 { 4796 lockdep_unregister_key(&wq->key); 4797 } 4798 4799 static void wq_free_lockdep(struct workqueue_struct *wq) 4800 { 4801 if (wq->lock_name != wq->name) 4802 kfree(wq->lock_name); 4803 } 4804 #else 4805 static void wq_init_lockdep(struct workqueue_struct *wq) 4806 { 4807 } 4808 4809 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4810 { 4811 } 4812 4813 static void wq_free_lockdep(struct workqueue_struct *wq) 4814 { 4815 } 4816 #endif 4817 4818 static void free_node_nr_active(struct wq_node_nr_active **nna_ar) 4819 { 4820 int node; 4821 4822 for_each_node(node) { 4823 kfree(nna_ar[node]); 4824 nna_ar[node] = NULL; 4825 } 4826 4827 kfree(nna_ar[nr_node_ids]); 4828 nna_ar[nr_node_ids] = NULL; 4829 } 4830 4831 static void init_node_nr_active(struct wq_node_nr_active *nna) 4832 { 4833 nna->max = WQ_DFL_MIN_ACTIVE; 4834 atomic_set(&nna->nr, 0); 4835 raw_spin_lock_init(&nna->lock); 4836 INIT_LIST_HEAD(&nna->pending_pwqs); 4837 } 4838 4839 /* 4840 * Each node's nr_active counter will be accessed mostly from its own node and 4841 * should be allocated in the node. 4842 */ 4843 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar) 4844 { 4845 struct wq_node_nr_active *nna; 4846 int node; 4847 4848 for_each_node(node) { 4849 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node); 4850 if (!nna) 4851 goto err_free; 4852 init_node_nr_active(nna); 4853 nna_ar[node] = nna; 4854 } 4855 4856 /* [nr_node_ids] is used as the fallback */ 4857 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE); 4858 if (!nna) 4859 goto err_free; 4860 init_node_nr_active(nna); 4861 nna_ar[nr_node_ids] = nna; 4862 4863 return 0; 4864 4865 err_free: 4866 free_node_nr_active(nna_ar); 4867 return -ENOMEM; 4868 } 4869 4870 static void rcu_free_wq(struct rcu_head *rcu) 4871 { 4872 struct workqueue_struct *wq = 4873 container_of(rcu, struct workqueue_struct, rcu); 4874 4875 if (wq->flags & WQ_UNBOUND) 4876 free_node_nr_active(wq->node_nr_active); 4877 4878 wq_free_lockdep(wq); 4879 free_percpu(wq->cpu_pwq); 4880 free_workqueue_attrs(wq->unbound_attrs); 4881 kfree(wq); 4882 } 4883 4884 static void rcu_free_pool(struct rcu_head *rcu) 4885 { 4886 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 4887 4888 ida_destroy(&pool->worker_ida); 4889 free_workqueue_attrs(pool->attrs); 4890 kfree(pool); 4891 } 4892 4893 /** 4894 * put_unbound_pool - put a worker_pool 4895 * @pool: worker_pool to put 4896 * 4897 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 4898 * safe manner. get_unbound_pool() calls this function on its failure path 4899 * and this function should be able to release pools which went through, 4900 * successfully or not, init_worker_pool(). 4901 * 4902 * Should be called with wq_pool_mutex held. 4903 */ 4904 static void put_unbound_pool(struct worker_pool *pool) 4905 { 4906 DECLARE_COMPLETION_ONSTACK(detach_completion); 4907 struct worker *worker; 4908 LIST_HEAD(cull_list); 4909 4910 lockdep_assert_held(&wq_pool_mutex); 4911 4912 if (--pool->refcnt) 4913 return; 4914 4915 /* sanity checks */ 4916 if (WARN_ON(!(pool->cpu < 0)) || 4917 WARN_ON(!list_empty(&pool->worklist))) 4918 return; 4919 4920 /* release id and unhash */ 4921 if (pool->id >= 0) 4922 idr_remove(&worker_pool_idr, pool->id); 4923 hash_del(&pool->hash_node); 4924 4925 /* 4926 * Become the manager and destroy all workers. This prevents 4927 * @pool's workers from blocking on attach_mutex. We're the last 4928 * manager and @pool gets freed with the flag set. 4929 * 4930 * Having a concurrent manager is quite unlikely to happen as we can 4931 * only get here with 4932 * pwq->refcnt == pool->refcnt == 0 4933 * which implies no work queued to the pool, which implies no worker can 4934 * become the manager. However a worker could have taken the role of 4935 * manager before the refcnts dropped to 0, since maybe_create_worker() 4936 * drops pool->lock 4937 */ 4938 while (true) { 4939 rcuwait_wait_event(&manager_wait, 4940 !(pool->flags & POOL_MANAGER_ACTIVE), 4941 TASK_UNINTERRUPTIBLE); 4942 4943 mutex_lock(&wq_pool_attach_mutex); 4944 raw_spin_lock_irq(&pool->lock); 4945 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 4946 pool->flags |= POOL_MANAGER_ACTIVE; 4947 break; 4948 } 4949 raw_spin_unlock_irq(&pool->lock); 4950 mutex_unlock(&wq_pool_attach_mutex); 4951 } 4952 4953 while ((worker = first_idle_worker(pool))) 4954 set_worker_dying(worker, &cull_list); 4955 WARN_ON(pool->nr_workers || pool->nr_idle); 4956 raw_spin_unlock_irq(&pool->lock); 4957 4958 wake_dying_workers(&cull_list); 4959 4960 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers)) 4961 pool->detach_completion = &detach_completion; 4962 mutex_unlock(&wq_pool_attach_mutex); 4963 4964 if (pool->detach_completion) 4965 wait_for_completion(pool->detach_completion); 4966 4967 /* shut down the timers */ 4968 del_timer_sync(&pool->idle_timer); 4969 cancel_work_sync(&pool->idle_cull_work); 4970 del_timer_sync(&pool->mayday_timer); 4971 4972 /* RCU protected to allow dereferences from get_work_pool() */ 4973 call_rcu(&pool->rcu, rcu_free_pool); 4974 } 4975 4976 /** 4977 * get_unbound_pool - get a worker_pool with the specified attributes 4978 * @attrs: the attributes of the worker_pool to get 4979 * 4980 * Obtain a worker_pool which has the same attributes as @attrs, bump the 4981 * reference count and return it. If there already is a matching 4982 * worker_pool, it will be used; otherwise, this function attempts to 4983 * create a new one. 4984 * 4985 * Should be called with wq_pool_mutex held. 4986 * 4987 * Return: On success, a worker_pool with the same attributes as @attrs. 4988 * On failure, %NULL. 4989 */ 4990 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 4991 { 4992 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA]; 4993 u32 hash = wqattrs_hash(attrs); 4994 struct worker_pool *pool; 4995 int pod, node = NUMA_NO_NODE; 4996 4997 lockdep_assert_held(&wq_pool_mutex); 4998 4999 /* do we already have a matching pool? */ 5000 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 5001 if (wqattrs_equal(pool->attrs, attrs)) { 5002 pool->refcnt++; 5003 return pool; 5004 } 5005 } 5006 5007 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */ 5008 for (pod = 0; pod < pt->nr_pods; pod++) { 5009 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) { 5010 node = pt->pod_node[pod]; 5011 break; 5012 } 5013 } 5014 5015 /* nope, create a new one */ 5016 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node); 5017 if (!pool || init_worker_pool(pool) < 0) 5018 goto fail; 5019 5020 pool->node = node; 5021 copy_workqueue_attrs(pool->attrs, attrs); 5022 wqattrs_clear_for_pool(pool->attrs); 5023 5024 if (worker_pool_assign_id(pool) < 0) 5025 goto fail; 5026 5027 /* create and start the initial worker */ 5028 if (wq_online && !create_worker(pool)) 5029 goto fail; 5030 5031 /* install */ 5032 hash_add(unbound_pool_hash, &pool->hash_node, hash); 5033 5034 return pool; 5035 fail: 5036 if (pool) 5037 put_unbound_pool(pool); 5038 return NULL; 5039 } 5040 5041 static void rcu_free_pwq(struct rcu_head *rcu) 5042 { 5043 kmem_cache_free(pwq_cache, 5044 container_of(rcu, struct pool_workqueue, rcu)); 5045 } 5046 5047 /* 5048 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero 5049 * refcnt and needs to be destroyed. 5050 */ 5051 static void pwq_release_workfn(struct kthread_work *work) 5052 { 5053 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 5054 release_work); 5055 struct workqueue_struct *wq = pwq->wq; 5056 struct worker_pool *pool = pwq->pool; 5057 bool is_last = false; 5058 5059 /* 5060 * When @pwq is not linked, it doesn't hold any reference to the 5061 * @wq, and @wq is invalid to access. 5062 */ 5063 if (!list_empty(&pwq->pwqs_node)) { 5064 mutex_lock(&wq->mutex); 5065 list_del_rcu(&pwq->pwqs_node); 5066 is_last = list_empty(&wq->pwqs); 5067 5068 /* 5069 * For ordered workqueue with a plugged dfl_pwq, restart it now. 5070 */ 5071 if (!is_last && (wq->flags & __WQ_ORDERED)) 5072 unplug_oldest_pwq(wq); 5073 5074 mutex_unlock(&wq->mutex); 5075 } 5076 5077 if (wq->flags & WQ_UNBOUND) { 5078 mutex_lock(&wq_pool_mutex); 5079 put_unbound_pool(pool); 5080 mutex_unlock(&wq_pool_mutex); 5081 } 5082 5083 if (!list_empty(&pwq->pending_node)) { 5084 struct wq_node_nr_active *nna = 5085 wq_node_nr_active(pwq->wq, pwq->pool->node); 5086 5087 raw_spin_lock_irq(&nna->lock); 5088 list_del_init(&pwq->pending_node); 5089 raw_spin_unlock_irq(&nna->lock); 5090 } 5091 5092 call_rcu(&pwq->rcu, rcu_free_pwq); 5093 5094 /* 5095 * If we're the last pwq going away, @wq is already dead and no one 5096 * is gonna access it anymore. Schedule RCU free. 5097 */ 5098 if (is_last) { 5099 wq_unregister_lockdep(wq); 5100 call_rcu(&wq->rcu, rcu_free_wq); 5101 } 5102 } 5103 5104 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 5105 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 5106 struct worker_pool *pool) 5107 { 5108 BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK); 5109 5110 memset(pwq, 0, sizeof(*pwq)); 5111 5112 pwq->pool = pool; 5113 pwq->wq = wq; 5114 pwq->flush_color = -1; 5115 pwq->refcnt = 1; 5116 INIT_LIST_HEAD(&pwq->inactive_works); 5117 INIT_LIST_HEAD(&pwq->pending_node); 5118 INIT_LIST_HEAD(&pwq->pwqs_node); 5119 INIT_LIST_HEAD(&pwq->mayday_node); 5120 kthread_init_work(&pwq->release_work, pwq_release_workfn); 5121 } 5122 5123 /* sync @pwq with the current state of its associated wq and link it */ 5124 static void link_pwq(struct pool_workqueue *pwq) 5125 { 5126 struct workqueue_struct *wq = pwq->wq; 5127 5128 lockdep_assert_held(&wq->mutex); 5129 5130 /* may be called multiple times, ignore if already linked */ 5131 if (!list_empty(&pwq->pwqs_node)) 5132 return; 5133 5134 /* set the matching work_color */ 5135 pwq->work_color = wq->work_color; 5136 5137 /* link in @pwq */ 5138 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs); 5139 } 5140 5141 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 5142 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 5143 const struct workqueue_attrs *attrs) 5144 { 5145 struct worker_pool *pool; 5146 struct pool_workqueue *pwq; 5147 5148 lockdep_assert_held(&wq_pool_mutex); 5149 5150 pool = get_unbound_pool(attrs); 5151 if (!pool) 5152 return NULL; 5153 5154 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 5155 if (!pwq) { 5156 put_unbound_pool(pool); 5157 return NULL; 5158 } 5159 5160 init_pwq(pwq, wq, pool); 5161 return pwq; 5162 } 5163 5164 /** 5165 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod 5166 * @attrs: the wq_attrs of the default pwq of the target workqueue 5167 * @cpu: the target CPU 5168 * @cpu_going_down: if >= 0, the CPU to consider as offline 5169 * 5170 * Calculate the cpumask a workqueue with @attrs should use on @pod. If 5171 * @cpu_going_down is >= 0, that cpu is considered offline during calculation. 5172 * The result is stored in @attrs->__pod_cpumask. 5173 * 5174 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled 5175 * and @pod has online CPUs requested by @attrs, the returned cpumask is the 5176 * intersection of the possible CPUs of @pod and @attrs->cpumask. 5177 * 5178 * The caller is responsible for ensuring that the cpumask of @pod stays stable. 5179 */ 5180 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu, 5181 int cpu_going_down) 5182 { 5183 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 5184 int pod = pt->cpu_pod[cpu]; 5185 5186 /* does @pod have any online CPUs @attrs wants? */ 5187 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask); 5188 cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask); 5189 if (cpu_going_down >= 0) 5190 cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask); 5191 5192 if (cpumask_empty(attrs->__pod_cpumask)) { 5193 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask); 5194 return; 5195 } 5196 5197 /* yeap, return possible CPUs in @pod that @attrs wants */ 5198 cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]); 5199 5200 if (cpumask_empty(attrs->__pod_cpumask)) 5201 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 5202 "possible intersect\n"); 5203 } 5204 5205 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */ 5206 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq, 5207 int cpu, struct pool_workqueue *pwq) 5208 { 5209 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu); 5210 struct pool_workqueue *old_pwq; 5211 5212 lockdep_assert_held(&wq_pool_mutex); 5213 lockdep_assert_held(&wq->mutex); 5214 5215 /* link_pwq() can handle duplicate calls */ 5216 link_pwq(pwq); 5217 5218 old_pwq = rcu_access_pointer(*slot); 5219 rcu_assign_pointer(*slot, pwq); 5220 return old_pwq; 5221 } 5222 5223 /* context to store the prepared attrs & pwqs before applying */ 5224 struct apply_wqattrs_ctx { 5225 struct workqueue_struct *wq; /* target workqueue */ 5226 struct workqueue_attrs *attrs; /* attrs to apply */ 5227 struct list_head list; /* queued for batching commit */ 5228 struct pool_workqueue *dfl_pwq; 5229 struct pool_workqueue *pwq_tbl[]; 5230 }; 5231 5232 /* free the resources after success or abort */ 5233 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 5234 { 5235 if (ctx) { 5236 int cpu; 5237 5238 for_each_possible_cpu(cpu) 5239 put_pwq_unlocked(ctx->pwq_tbl[cpu]); 5240 put_pwq_unlocked(ctx->dfl_pwq); 5241 5242 free_workqueue_attrs(ctx->attrs); 5243 5244 kfree(ctx); 5245 } 5246 } 5247 5248 /* allocate the attrs and pwqs for later installation */ 5249 static struct apply_wqattrs_ctx * 5250 apply_wqattrs_prepare(struct workqueue_struct *wq, 5251 const struct workqueue_attrs *attrs, 5252 const cpumask_var_t unbound_cpumask) 5253 { 5254 struct apply_wqattrs_ctx *ctx; 5255 struct workqueue_attrs *new_attrs; 5256 int cpu; 5257 5258 lockdep_assert_held(&wq_pool_mutex); 5259 5260 if (WARN_ON(attrs->affn_scope < 0 || 5261 attrs->affn_scope >= WQ_AFFN_NR_TYPES)) 5262 return ERR_PTR(-EINVAL); 5263 5264 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL); 5265 5266 new_attrs = alloc_workqueue_attrs(); 5267 if (!ctx || !new_attrs) 5268 goto out_free; 5269 5270 /* 5271 * If something goes wrong during CPU up/down, we'll fall back to 5272 * the default pwq covering whole @attrs->cpumask. Always create 5273 * it even if we don't use it immediately. 5274 */ 5275 copy_workqueue_attrs(new_attrs, attrs); 5276 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask); 5277 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5278 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 5279 if (!ctx->dfl_pwq) 5280 goto out_free; 5281 5282 for_each_possible_cpu(cpu) { 5283 if (new_attrs->ordered) { 5284 ctx->dfl_pwq->refcnt++; 5285 ctx->pwq_tbl[cpu] = ctx->dfl_pwq; 5286 } else { 5287 wq_calc_pod_cpumask(new_attrs, cpu, -1); 5288 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs); 5289 if (!ctx->pwq_tbl[cpu]) 5290 goto out_free; 5291 } 5292 } 5293 5294 /* save the user configured attrs and sanitize it. */ 5295 copy_workqueue_attrs(new_attrs, attrs); 5296 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 5297 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5298 ctx->attrs = new_attrs; 5299 5300 /* 5301 * For initialized ordered workqueues, there should only be one pwq 5302 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution 5303 * of newly queued work items until execution of older work items in 5304 * the old pwq's have completed. 5305 */ 5306 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)) 5307 ctx->dfl_pwq->plugged = true; 5308 5309 ctx->wq = wq; 5310 return ctx; 5311 5312 out_free: 5313 free_workqueue_attrs(new_attrs); 5314 apply_wqattrs_cleanup(ctx); 5315 return ERR_PTR(-ENOMEM); 5316 } 5317 5318 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 5319 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 5320 { 5321 int cpu; 5322 5323 /* all pwqs have been created successfully, let's install'em */ 5324 mutex_lock(&ctx->wq->mutex); 5325 5326 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 5327 5328 /* save the previous pwqs and install the new ones */ 5329 for_each_possible_cpu(cpu) 5330 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu, 5331 ctx->pwq_tbl[cpu]); 5332 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq); 5333 5334 /* update node_nr_active->max */ 5335 wq_update_node_max_active(ctx->wq, -1); 5336 5337 /* rescuer needs to respect wq cpumask changes */ 5338 if (ctx->wq->rescuer) 5339 set_cpus_allowed_ptr(ctx->wq->rescuer->task, 5340 unbound_effective_cpumask(ctx->wq)); 5341 5342 mutex_unlock(&ctx->wq->mutex); 5343 } 5344 5345 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 5346 const struct workqueue_attrs *attrs) 5347 { 5348 struct apply_wqattrs_ctx *ctx; 5349 5350 /* only unbound workqueues can change attributes */ 5351 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 5352 return -EINVAL; 5353 5354 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 5355 if (IS_ERR(ctx)) 5356 return PTR_ERR(ctx); 5357 5358 /* the ctx has been prepared successfully, let's commit it */ 5359 apply_wqattrs_commit(ctx); 5360 apply_wqattrs_cleanup(ctx); 5361 5362 return 0; 5363 } 5364 5365 /** 5366 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 5367 * @wq: the target workqueue 5368 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 5369 * 5370 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps 5371 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that 5372 * work items are affine to the pod it was issued on. Older pwqs are released as 5373 * in-flight work items finish. Note that a work item which repeatedly requeues 5374 * itself back-to-back will stay on its current pwq. 5375 * 5376 * Performs GFP_KERNEL allocations. 5377 * 5378 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). 5379 * 5380 * Return: 0 on success and -errno on failure. 5381 */ 5382 int apply_workqueue_attrs(struct workqueue_struct *wq, 5383 const struct workqueue_attrs *attrs) 5384 { 5385 int ret; 5386 5387 lockdep_assert_cpus_held(); 5388 5389 mutex_lock(&wq_pool_mutex); 5390 ret = apply_workqueue_attrs_locked(wq, attrs); 5391 mutex_unlock(&wq_pool_mutex); 5392 5393 return ret; 5394 } 5395 5396 /** 5397 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug 5398 * @wq: the target workqueue 5399 * @cpu: the CPU to update pool association for 5400 * @hotplug_cpu: the CPU coming up or going down 5401 * @online: whether @cpu is coming up or going down 5402 * 5403 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 5404 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of 5405 * @wq accordingly. 5406 * 5407 * 5408 * If pod affinity can't be adjusted due to memory allocation failure, it falls 5409 * back to @wq->dfl_pwq which may not be optimal but is always correct. 5410 * 5411 * Note that when the last allowed CPU of a pod goes offline for a workqueue 5412 * with a cpumask spanning multiple pods, the workers which were already 5413 * executing the work items for the workqueue will lose their CPU affinity and 5414 * may execute on any CPU. This is similar to how per-cpu workqueues behave on 5415 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's 5416 * responsibility to flush the work item from CPU_DOWN_PREPARE. 5417 */ 5418 static void wq_update_pod(struct workqueue_struct *wq, int cpu, 5419 int hotplug_cpu, bool online) 5420 { 5421 int off_cpu = online ? -1 : hotplug_cpu; 5422 struct pool_workqueue *old_pwq = NULL, *pwq; 5423 struct workqueue_attrs *target_attrs; 5424 5425 lockdep_assert_held(&wq_pool_mutex); 5426 5427 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered) 5428 return; 5429 5430 /* 5431 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 5432 * Let's use a preallocated one. The following buf is protected by 5433 * CPU hotplug exclusion. 5434 */ 5435 target_attrs = wq_update_pod_attrs_buf; 5436 5437 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 5438 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask); 5439 5440 /* nothing to do if the target cpumask matches the current pwq */ 5441 wq_calc_pod_cpumask(target_attrs, cpu, off_cpu); 5442 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs)) 5443 return; 5444 5445 /* create a new pwq */ 5446 pwq = alloc_unbound_pwq(wq, target_attrs); 5447 if (!pwq) { 5448 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n", 5449 wq->name); 5450 goto use_dfl_pwq; 5451 } 5452 5453 /* Install the new pwq. */ 5454 mutex_lock(&wq->mutex); 5455 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5456 goto out_unlock; 5457 5458 use_dfl_pwq: 5459 mutex_lock(&wq->mutex); 5460 pwq = unbound_pwq(wq, -1); 5461 raw_spin_lock_irq(&pwq->pool->lock); 5462 get_pwq(pwq); 5463 raw_spin_unlock_irq(&pwq->pool->lock); 5464 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5465 out_unlock: 5466 mutex_unlock(&wq->mutex); 5467 put_pwq_unlocked(old_pwq); 5468 } 5469 5470 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 5471 { 5472 bool highpri = wq->flags & WQ_HIGHPRI; 5473 int cpu, ret; 5474 5475 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *); 5476 if (!wq->cpu_pwq) 5477 goto enomem; 5478 5479 if (!(wq->flags & WQ_UNBOUND)) { 5480 for_each_possible_cpu(cpu) { 5481 struct pool_workqueue **pwq_p; 5482 struct worker_pool __percpu *pools; 5483 struct worker_pool *pool; 5484 5485 if (wq->flags & WQ_BH) 5486 pools = bh_worker_pools; 5487 else 5488 pools = cpu_worker_pools; 5489 5490 pool = &(per_cpu_ptr(pools, cpu)[highpri]); 5491 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu); 5492 5493 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, 5494 pool->node); 5495 if (!*pwq_p) 5496 goto enomem; 5497 5498 init_pwq(*pwq_p, wq, pool); 5499 5500 mutex_lock(&wq->mutex); 5501 link_pwq(*pwq_p); 5502 mutex_unlock(&wq->mutex); 5503 } 5504 return 0; 5505 } 5506 5507 cpus_read_lock(); 5508 if (wq->flags & __WQ_ORDERED) { 5509 struct pool_workqueue *dfl_pwq; 5510 5511 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 5512 /* there should only be single pwq for ordering guarantee */ 5513 dfl_pwq = rcu_access_pointer(wq->dfl_pwq); 5514 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node || 5515 wq->pwqs.prev != &dfl_pwq->pwqs_node), 5516 "ordering guarantee broken for workqueue %s\n", wq->name); 5517 } else { 5518 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 5519 } 5520 cpus_read_unlock(); 5521 5522 /* for unbound pwq, flush the pwq_release_worker ensures that the 5523 * pwq_release_workfn() completes before calling kfree(wq). 5524 */ 5525 if (ret) 5526 kthread_flush_worker(pwq_release_worker); 5527 5528 return ret; 5529 5530 enomem: 5531 if (wq->cpu_pwq) { 5532 for_each_possible_cpu(cpu) { 5533 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5534 5535 if (pwq) 5536 kmem_cache_free(pwq_cache, pwq); 5537 } 5538 free_percpu(wq->cpu_pwq); 5539 wq->cpu_pwq = NULL; 5540 } 5541 return -ENOMEM; 5542 } 5543 5544 static int wq_clamp_max_active(int max_active, unsigned int flags, 5545 const char *name) 5546 { 5547 if (max_active < 1 || max_active > WQ_MAX_ACTIVE) 5548 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 5549 max_active, name, 1, WQ_MAX_ACTIVE); 5550 5551 return clamp_val(max_active, 1, WQ_MAX_ACTIVE); 5552 } 5553 5554 /* 5555 * Workqueues which may be used during memory reclaim should have a rescuer 5556 * to guarantee forward progress. 5557 */ 5558 static int init_rescuer(struct workqueue_struct *wq) 5559 { 5560 struct worker *rescuer; 5561 char id_buf[WORKER_ID_LEN]; 5562 int ret; 5563 5564 if (!(wq->flags & WQ_MEM_RECLAIM)) 5565 return 0; 5566 5567 rescuer = alloc_worker(NUMA_NO_NODE); 5568 if (!rescuer) { 5569 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 5570 wq->name); 5571 return -ENOMEM; 5572 } 5573 5574 rescuer->rescue_wq = wq; 5575 format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL); 5576 5577 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf); 5578 if (IS_ERR(rescuer->task)) { 5579 ret = PTR_ERR(rescuer->task); 5580 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 5581 wq->name, ERR_PTR(ret)); 5582 kfree(rescuer); 5583 return ret; 5584 } 5585 5586 wq->rescuer = rescuer; 5587 if (wq->flags & WQ_UNBOUND) 5588 kthread_bind_mask(rescuer->task, wq_unbound_cpumask); 5589 else 5590 kthread_bind_mask(rescuer->task, cpu_possible_mask); 5591 wake_up_process(rescuer->task); 5592 5593 return 0; 5594 } 5595 5596 /** 5597 * wq_adjust_max_active - update a wq's max_active to the current setting 5598 * @wq: target workqueue 5599 * 5600 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and 5601 * activate inactive work items accordingly. If @wq is freezing, clear 5602 * @wq->max_active to zero. 5603 */ 5604 static void wq_adjust_max_active(struct workqueue_struct *wq) 5605 { 5606 bool activated; 5607 int new_max, new_min; 5608 5609 lockdep_assert_held(&wq->mutex); 5610 5611 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) { 5612 new_max = 0; 5613 new_min = 0; 5614 } else { 5615 new_max = wq->saved_max_active; 5616 new_min = wq->saved_min_active; 5617 } 5618 5619 if (wq->max_active == new_max && wq->min_active == new_min) 5620 return; 5621 5622 /* 5623 * Update @wq->max/min_active and then kick inactive work items if more 5624 * active work items are allowed. This doesn't break work item ordering 5625 * because new work items are always queued behind existing inactive 5626 * work items if there are any. 5627 */ 5628 WRITE_ONCE(wq->max_active, new_max); 5629 WRITE_ONCE(wq->min_active, new_min); 5630 5631 if (wq->flags & WQ_UNBOUND) 5632 wq_update_node_max_active(wq, -1); 5633 5634 if (new_max == 0) 5635 return; 5636 5637 /* 5638 * Round-robin through pwq's activating the first inactive work item 5639 * until max_active is filled. 5640 */ 5641 do { 5642 struct pool_workqueue *pwq; 5643 5644 activated = false; 5645 for_each_pwq(pwq, wq) { 5646 unsigned long irq_flags; 5647 5648 /* can be called during early boot w/ irq disabled */ 5649 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 5650 if (pwq_activate_first_inactive(pwq, true)) { 5651 activated = true; 5652 kick_pool(pwq->pool); 5653 } 5654 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 5655 } 5656 } while (activated); 5657 } 5658 5659 __printf(1, 4) 5660 struct workqueue_struct *alloc_workqueue(const char *fmt, 5661 unsigned int flags, 5662 int max_active, ...) 5663 { 5664 va_list args; 5665 struct workqueue_struct *wq; 5666 size_t wq_size; 5667 int name_len; 5668 5669 if (flags & WQ_BH) { 5670 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS)) 5671 return NULL; 5672 if (WARN_ON_ONCE(max_active)) 5673 return NULL; 5674 } 5675 5676 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 5677 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 5678 flags |= WQ_UNBOUND; 5679 5680 /* allocate wq and format name */ 5681 if (flags & WQ_UNBOUND) 5682 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1); 5683 else 5684 wq_size = sizeof(*wq); 5685 5686 wq = kzalloc(wq_size, GFP_KERNEL); 5687 if (!wq) 5688 return NULL; 5689 5690 if (flags & WQ_UNBOUND) { 5691 wq->unbound_attrs = alloc_workqueue_attrs(); 5692 if (!wq->unbound_attrs) 5693 goto err_free_wq; 5694 } 5695 5696 va_start(args, max_active); 5697 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args); 5698 va_end(args); 5699 5700 if (name_len >= WQ_NAME_LEN) 5701 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n", 5702 wq->name); 5703 5704 if (flags & WQ_BH) { 5705 /* 5706 * BH workqueues always share a single execution context per CPU 5707 * and don't impose any max_active limit. 5708 */ 5709 max_active = INT_MAX; 5710 } else { 5711 max_active = max_active ?: WQ_DFL_ACTIVE; 5712 max_active = wq_clamp_max_active(max_active, flags, wq->name); 5713 } 5714 5715 /* init wq */ 5716 wq->flags = flags; 5717 wq->max_active = max_active; 5718 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE); 5719 wq->saved_max_active = wq->max_active; 5720 wq->saved_min_active = wq->min_active; 5721 mutex_init(&wq->mutex); 5722 atomic_set(&wq->nr_pwqs_to_flush, 0); 5723 INIT_LIST_HEAD(&wq->pwqs); 5724 INIT_LIST_HEAD(&wq->flusher_queue); 5725 INIT_LIST_HEAD(&wq->flusher_overflow); 5726 INIT_LIST_HEAD(&wq->maydays); 5727 5728 wq_init_lockdep(wq); 5729 INIT_LIST_HEAD(&wq->list); 5730 5731 if (flags & WQ_UNBOUND) { 5732 if (alloc_node_nr_active(wq->node_nr_active) < 0) 5733 goto err_unreg_lockdep; 5734 } 5735 5736 if (alloc_and_link_pwqs(wq) < 0) 5737 goto err_free_node_nr_active; 5738 5739 if (wq_online && init_rescuer(wq) < 0) 5740 goto err_destroy; 5741 5742 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 5743 goto err_destroy; 5744 5745 /* 5746 * wq_pool_mutex protects global freeze state and workqueues list. 5747 * Grab it, adjust max_active and add the new @wq to workqueues 5748 * list. 5749 */ 5750 mutex_lock(&wq_pool_mutex); 5751 5752 mutex_lock(&wq->mutex); 5753 wq_adjust_max_active(wq); 5754 mutex_unlock(&wq->mutex); 5755 5756 list_add_tail_rcu(&wq->list, &workqueues); 5757 5758 mutex_unlock(&wq_pool_mutex); 5759 5760 return wq; 5761 5762 err_free_node_nr_active: 5763 if (wq->flags & WQ_UNBOUND) 5764 free_node_nr_active(wq->node_nr_active); 5765 err_unreg_lockdep: 5766 wq_unregister_lockdep(wq); 5767 wq_free_lockdep(wq); 5768 err_free_wq: 5769 free_workqueue_attrs(wq->unbound_attrs); 5770 kfree(wq); 5771 return NULL; 5772 err_destroy: 5773 destroy_workqueue(wq); 5774 return NULL; 5775 } 5776 EXPORT_SYMBOL_GPL(alloc_workqueue); 5777 5778 static bool pwq_busy(struct pool_workqueue *pwq) 5779 { 5780 int i; 5781 5782 for (i = 0; i < WORK_NR_COLORS; i++) 5783 if (pwq->nr_in_flight[i]) 5784 return true; 5785 5786 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1)) 5787 return true; 5788 if (!pwq_is_empty(pwq)) 5789 return true; 5790 5791 return false; 5792 } 5793 5794 /** 5795 * destroy_workqueue - safely terminate a workqueue 5796 * @wq: target workqueue 5797 * 5798 * Safely destroy a workqueue. All work currently pending will be done first. 5799 */ 5800 void destroy_workqueue(struct workqueue_struct *wq) 5801 { 5802 struct pool_workqueue *pwq; 5803 int cpu; 5804 5805 /* 5806 * Remove it from sysfs first so that sanity check failure doesn't 5807 * lead to sysfs name conflicts. 5808 */ 5809 workqueue_sysfs_unregister(wq); 5810 5811 /* mark the workqueue destruction is in progress */ 5812 mutex_lock(&wq->mutex); 5813 wq->flags |= __WQ_DESTROYING; 5814 mutex_unlock(&wq->mutex); 5815 5816 /* drain it before proceeding with destruction */ 5817 drain_workqueue(wq); 5818 5819 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 5820 if (wq->rescuer) { 5821 struct worker *rescuer = wq->rescuer; 5822 5823 /* this prevents new queueing */ 5824 raw_spin_lock_irq(&wq_mayday_lock); 5825 wq->rescuer = NULL; 5826 raw_spin_unlock_irq(&wq_mayday_lock); 5827 5828 /* rescuer will empty maydays list before exiting */ 5829 kthread_stop(rescuer->task); 5830 kfree(rescuer); 5831 } 5832 5833 /* 5834 * Sanity checks - grab all the locks so that we wait for all 5835 * in-flight operations which may do put_pwq(). 5836 */ 5837 mutex_lock(&wq_pool_mutex); 5838 mutex_lock(&wq->mutex); 5839 for_each_pwq(pwq, wq) { 5840 raw_spin_lock_irq(&pwq->pool->lock); 5841 if (WARN_ON(pwq_busy(pwq))) { 5842 pr_warn("%s: %s has the following busy pwq\n", 5843 __func__, wq->name); 5844 show_pwq(pwq); 5845 raw_spin_unlock_irq(&pwq->pool->lock); 5846 mutex_unlock(&wq->mutex); 5847 mutex_unlock(&wq_pool_mutex); 5848 show_one_workqueue(wq); 5849 return; 5850 } 5851 raw_spin_unlock_irq(&pwq->pool->lock); 5852 } 5853 mutex_unlock(&wq->mutex); 5854 5855 /* 5856 * wq list is used to freeze wq, remove from list after 5857 * flushing is complete in case freeze races us. 5858 */ 5859 list_del_rcu(&wq->list); 5860 mutex_unlock(&wq_pool_mutex); 5861 5862 /* 5863 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq 5864 * to put the base refs. @wq will be auto-destroyed from the last 5865 * pwq_put. RCU read lock prevents @wq from going away from under us. 5866 */ 5867 rcu_read_lock(); 5868 5869 for_each_possible_cpu(cpu) { 5870 put_pwq_unlocked(unbound_pwq(wq, cpu)); 5871 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL); 5872 } 5873 5874 put_pwq_unlocked(unbound_pwq(wq, -1)); 5875 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL); 5876 5877 rcu_read_unlock(); 5878 } 5879 EXPORT_SYMBOL_GPL(destroy_workqueue); 5880 5881 /** 5882 * workqueue_set_max_active - adjust max_active of a workqueue 5883 * @wq: target workqueue 5884 * @max_active: new max_active value. 5885 * 5886 * Set max_active of @wq to @max_active. See the alloc_workqueue() function 5887 * comment. 5888 * 5889 * CONTEXT: 5890 * Don't call from IRQ context. 5891 */ 5892 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 5893 { 5894 /* max_active doesn't mean anything for BH workqueues */ 5895 if (WARN_ON(wq->flags & WQ_BH)) 5896 return; 5897 /* disallow meddling with max_active for ordered workqueues */ 5898 if (WARN_ON(wq->flags & __WQ_ORDERED)) 5899 return; 5900 5901 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 5902 5903 mutex_lock(&wq->mutex); 5904 5905 wq->saved_max_active = max_active; 5906 if (wq->flags & WQ_UNBOUND) 5907 wq->saved_min_active = min(wq->saved_min_active, max_active); 5908 5909 wq_adjust_max_active(wq); 5910 5911 mutex_unlock(&wq->mutex); 5912 } 5913 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 5914 5915 /** 5916 * workqueue_set_min_active - adjust min_active of an unbound workqueue 5917 * @wq: target unbound workqueue 5918 * @min_active: new min_active value 5919 * 5920 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an 5921 * unbound workqueue is not guaranteed to be able to process max_active 5922 * interdependent work items. Instead, an unbound workqueue is guaranteed to be 5923 * able to process min_active number of interdependent work items which is 5924 * %WQ_DFL_MIN_ACTIVE by default. 5925 * 5926 * Use this function to adjust the min_active value between 0 and the current 5927 * max_active. 5928 */ 5929 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active) 5930 { 5931 /* min_active is only meaningful for non-ordered unbound workqueues */ 5932 if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) != 5933 WQ_UNBOUND)) 5934 return; 5935 5936 mutex_lock(&wq->mutex); 5937 wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active); 5938 wq_adjust_max_active(wq); 5939 mutex_unlock(&wq->mutex); 5940 } 5941 5942 /** 5943 * current_work - retrieve %current task's work struct 5944 * 5945 * Determine if %current task is a workqueue worker and what it's working on. 5946 * Useful to find out the context that the %current task is running in. 5947 * 5948 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 5949 */ 5950 struct work_struct *current_work(void) 5951 { 5952 struct worker *worker = current_wq_worker(); 5953 5954 return worker ? worker->current_work : NULL; 5955 } 5956 EXPORT_SYMBOL(current_work); 5957 5958 /** 5959 * current_is_workqueue_rescuer - is %current workqueue rescuer? 5960 * 5961 * Determine whether %current is a workqueue rescuer. Can be used from 5962 * work functions to determine whether it's being run off the rescuer task. 5963 * 5964 * Return: %true if %current is a workqueue rescuer. %false otherwise. 5965 */ 5966 bool current_is_workqueue_rescuer(void) 5967 { 5968 struct worker *worker = current_wq_worker(); 5969 5970 return worker && worker->rescue_wq; 5971 } 5972 5973 /** 5974 * workqueue_congested - test whether a workqueue is congested 5975 * @cpu: CPU in question 5976 * @wq: target workqueue 5977 * 5978 * Test whether @wq's cpu workqueue for @cpu is congested. There is 5979 * no synchronization around this function and the test result is 5980 * unreliable and only useful as advisory hints or for debugging. 5981 * 5982 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 5983 * 5984 * With the exception of ordered workqueues, all workqueues have per-cpu 5985 * pool_workqueues, each with its own congested state. A workqueue being 5986 * congested on one CPU doesn't mean that the workqueue is contested on any 5987 * other CPUs. 5988 * 5989 * Return: 5990 * %true if congested, %false otherwise. 5991 */ 5992 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 5993 { 5994 struct pool_workqueue *pwq; 5995 bool ret; 5996 5997 rcu_read_lock(); 5998 preempt_disable(); 5999 6000 if (cpu == WORK_CPU_UNBOUND) 6001 cpu = smp_processor_id(); 6002 6003 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 6004 ret = !list_empty(&pwq->inactive_works); 6005 6006 preempt_enable(); 6007 rcu_read_unlock(); 6008 6009 return ret; 6010 } 6011 EXPORT_SYMBOL_GPL(workqueue_congested); 6012 6013 /** 6014 * work_busy - test whether a work is currently pending or running 6015 * @work: the work to be tested 6016 * 6017 * Test whether @work is currently pending or running. There is no 6018 * synchronization around this function and the test result is 6019 * unreliable and only useful as advisory hints or for debugging. 6020 * 6021 * Return: 6022 * OR'd bitmask of WORK_BUSY_* bits. 6023 */ 6024 unsigned int work_busy(struct work_struct *work) 6025 { 6026 struct worker_pool *pool; 6027 unsigned long irq_flags; 6028 unsigned int ret = 0; 6029 6030 if (work_pending(work)) 6031 ret |= WORK_BUSY_PENDING; 6032 6033 rcu_read_lock(); 6034 pool = get_work_pool(work); 6035 if (pool) { 6036 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6037 if (find_worker_executing_work(pool, work)) 6038 ret |= WORK_BUSY_RUNNING; 6039 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6040 } 6041 rcu_read_unlock(); 6042 6043 return ret; 6044 } 6045 EXPORT_SYMBOL_GPL(work_busy); 6046 6047 /** 6048 * set_worker_desc - set description for the current work item 6049 * @fmt: printf-style format string 6050 * @...: arguments for the format string 6051 * 6052 * This function can be called by a running work function to describe what 6053 * the work item is about. If the worker task gets dumped, this 6054 * information will be printed out together to help debugging. The 6055 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 6056 */ 6057 void set_worker_desc(const char *fmt, ...) 6058 { 6059 struct worker *worker = current_wq_worker(); 6060 va_list args; 6061 6062 if (worker) { 6063 va_start(args, fmt); 6064 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 6065 va_end(args); 6066 } 6067 } 6068 EXPORT_SYMBOL_GPL(set_worker_desc); 6069 6070 /** 6071 * print_worker_info - print out worker information and description 6072 * @log_lvl: the log level to use when printing 6073 * @task: target task 6074 * 6075 * If @task is a worker and currently executing a work item, print out the 6076 * name of the workqueue being serviced and worker description set with 6077 * set_worker_desc() by the currently executing work item. 6078 * 6079 * This function can be safely called on any task as long as the 6080 * task_struct itself is accessible. While safe, this function isn't 6081 * synchronized and may print out mixups or garbages of limited length. 6082 */ 6083 void print_worker_info(const char *log_lvl, struct task_struct *task) 6084 { 6085 work_func_t *fn = NULL; 6086 char name[WQ_NAME_LEN] = { }; 6087 char desc[WORKER_DESC_LEN] = { }; 6088 struct pool_workqueue *pwq = NULL; 6089 struct workqueue_struct *wq = NULL; 6090 struct worker *worker; 6091 6092 if (!(task->flags & PF_WQ_WORKER)) 6093 return; 6094 6095 /* 6096 * This function is called without any synchronization and @task 6097 * could be in any state. Be careful with dereferences. 6098 */ 6099 worker = kthread_probe_data(task); 6100 6101 /* 6102 * Carefully copy the associated workqueue's workfn, name and desc. 6103 * Keep the original last '\0' in case the original is garbage. 6104 */ 6105 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 6106 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 6107 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 6108 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 6109 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 6110 6111 if (fn || name[0] || desc[0]) { 6112 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 6113 if (strcmp(name, desc)) 6114 pr_cont(" (%s)", desc); 6115 pr_cont("\n"); 6116 } 6117 } 6118 6119 static void pr_cont_pool_info(struct worker_pool *pool) 6120 { 6121 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 6122 if (pool->node != NUMA_NO_NODE) 6123 pr_cont(" node=%d", pool->node); 6124 pr_cont(" flags=0x%x", pool->flags); 6125 if (pool->flags & POOL_BH) 6126 pr_cont(" bh%s", 6127 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6128 else 6129 pr_cont(" nice=%d", pool->attrs->nice); 6130 } 6131 6132 static void pr_cont_worker_id(struct worker *worker) 6133 { 6134 struct worker_pool *pool = worker->pool; 6135 6136 if (pool->flags & WQ_BH) 6137 pr_cont("bh%s", 6138 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6139 else 6140 pr_cont("%d%s", task_pid_nr(worker->task), 6141 worker->rescue_wq ? "(RESCUER)" : ""); 6142 } 6143 6144 struct pr_cont_work_struct { 6145 bool comma; 6146 work_func_t func; 6147 long ctr; 6148 }; 6149 6150 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 6151 { 6152 if (!pcwsp->ctr) 6153 goto out_record; 6154 if (func == pcwsp->func) { 6155 pcwsp->ctr++; 6156 return; 6157 } 6158 if (pcwsp->ctr == 1) 6159 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 6160 else 6161 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 6162 pcwsp->ctr = 0; 6163 out_record: 6164 if ((long)func == -1L) 6165 return; 6166 pcwsp->comma = comma; 6167 pcwsp->func = func; 6168 pcwsp->ctr = 1; 6169 } 6170 6171 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 6172 { 6173 if (work->func == wq_barrier_func) { 6174 struct wq_barrier *barr; 6175 6176 barr = container_of(work, struct wq_barrier, work); 6177 6178 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6179 pr_cont("%s BAR(%d)", comma ? "," : "", 6180 task_pid_nr(barr->task)); 6181 } else { 6182 if (!comma) 6183 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6184 pr_cont_work_flush(comma, work->func, pcwsp); 6185 } 6186 } 6187 6188 static void show_pwq(struct pool_workqueue *pwq) 6189 { 6190 struct pr_cont_work_struct pcws = { .ctr = 0, }; 6191 struct worker_pool *pool = pwq->pool; 6192 struct work_struct *work; 6193 struct worker *worker; 6194 bool has_in_flight = false, has_pending = false; 6195 int bkt; 6196 6197 pr_info(" pwq %d:", pool->id); 6198 pr_cont_pool_info(pool); 6199 6200 pr_cont(" active=%d refcnt=%d%s\n", 6201 pwq->nr_active, pwq->refcnt, 6202 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 6203 6204 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6205 if (worker->current_pwq == pwq) { 6206 has_in_flight = true; 6207 break; 6208 } 6209 } 6210 if (has_in_flight) { 6211 bool comma = false; 6212 6213 pr_info(" in-flight:"); 6214 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6215 if (worker->current_pwq != pwq) 6216 continue; 6217 6218 pr_cont(" %s", comma ? "," : ""); 6219 pr_cont_worker_id(worker); 6220 pr_cont(":%ps", worker->current_func); 6221 list_for_each_entry(work, &worker->scheduled, entry) 6222 pr_cont_work(false, work, &pcws); 6223 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6224 comma = true; 6225 } 6226 pr_cont("\n"); 6227 } 6228 6229 list_for_each_entry(work, &pool->worklist, entry) { 6230 if (get_work_pwq(work) == pwq) { 6231 has_pending = true; 6232 break; 6233 } 6234 } 6235 if (has_pending) { 6236 bool comma = false; 6237 6238 pr_info(" pending:"); 6239 list_for_each_entry(work, &pool->worklist, entry) { 6240 if (get_work_pwq(work) != pwq) 6241 continue; 6242 6243 pr_cont_work(comma, work, &pcws); 6244 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6245 } 6246 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6247 pr_cont("\n"); 6248 } 6249 6250 if (!list_empty(&pwq->inactive_works)) { 6251 bool comma = false; 6252 6253 pr_info(" inactive:"); 6254 list_for_each_entry(work, &pwq->inactive_works, entry) { 6255 pr_cont_work(comma, work, &pcws); 6256 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6257 } 6258 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6259 pr_cont("\n"); 6260 } 6261 } 6262 6263 /** 6264 * show_one_workqueue - dump state of specified workqueue 6265 * @wq: workqueue whose state will be printed 6266 */ 6267 void show_one_workqueue(struct workqueue_struct *wq) 6268 { 6269 struct pool_workqueue *pwq; 6270 bool idle = true; 6271 unsigned long irq_flags; 6272 6273 for_each_pwq(pwq, wq) { 6274 if (!pwq_is_empty(pwq)) { 6275 idle = false; 6276 break; 6277 } 6278 } 6279 if (idle) /* Nothing to print for idle workqueue */ 6280 return; 6281 6282 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 6283 6284 for_each_pwq(pwq, wq) { 6285 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 6286 if (!pwq_is_empty(pwq)) { 6287 /* 6288 * Defer printing to avoid deadlocks in console 6289 * drivers that queue work while holding locks 6290 * also taken in their write paths. 6291 */ 6292 printk_deferred_enter(); 6293 show_pwq(pwq); 6294 printk_deferred_exit(); 6295 } 6296 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 6297 /* 6298 * We could be printing a lot from atomic context, e.g. 6299 * sysrq-t -> show_all_workqueues(). Avoid triggering 6300 * hard lockup. 6301 */ 6302 touch_nmi_watchdog(); 6303 } 6304 6305 } 6306 6307 /** 6308 * show_one_worker_pool - dump state of specified worker pool 6309 * @pool: worker pool whose state will be printed 6310 */ 6311 static void show_one_worker_pool(struct worker_pool *pool) 6312 { 6313 struct worker *worker; 6314 bool first = true; 6315 unsigned long irq_flags; 6316 unsigned long hung = 0; 6317 6318 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6319 if (pool->nr_workers == pool->nr_idle) 6320 goto next_pool; 6321 6322 /* How long the first pending work is waiting for a worker. */ 6323 if (!list_empty(&pool->worklist)) 6324 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 6325 6326 /* 6327 * Defer printing to avoid deadlocks in console drivers that 6328 * queue work while holding locks also taken in their write 6329 * paths. 6330 */ 6331 printk_deferred_enter(); 6332 pr_info("pool %d:", pool->id); 6333 pr_cont_pool_info(pool); 6334 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 6335 if (pool->manager) 6336 pr_cont(" manager: %d", 6337 task_pid_nr(pool->manager->task)); 6338 list_for_each_entry(worker, &pool->idle_list, entry) { 6339 pr_cont(" %s", first ? "idle: " : ""); 6340 pr_cont_worker_id(worker); 6341 first = false; 6342 } 6343 pr_cont("\n"); 6344 printk_deferred_exit(); 6345 next_pool: 6346 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6347 /* 6348 * We could be printing a lot from atomic context, e.g. 6349 * sysrq-t -> show_all_workqueues(). Avoid triggering 6350 * hard lockup. 6351 */ 6352 touch_nmi_watchdog(); 6353 6354 } 6355 6356 /** 6357 * show_all_workqueues - dump workqueue state 6358 * 6359 * Called from a sysrq handler and prints out all busy workqueues and pools. 6360 */ 6361 void show_all_workqueues(void) 6362 { 6363 struct workqueue_struct *wq; 6364 struct worker_pool *pool; 6365 int pi; 6366 6367 rcu_read_lock(); 6368 6369 pr_info("Showing busy workqueues and worker pools:\n"); 6370 6371 list_for_each_entry_rcu(wq, &workqueues, list) 6372 show_one_workqueue(wq); 6373 6374 for_each_pool(pool, pi) 6375 show_one_worker_pool(pool); 6376 6377 rcu_read_unlock(); 6378 } 6379 6380 /** 6381 * show_freezable_workqueues - dump freezable workqueue state 6382 * 6383 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 6384 * still busy. 6385 */ 6386 void show_freezable_workqueues(void) 6387 { 6388 struct workqueue_struct *wq; 6389 6390 rcu_read_lock(); 6391 6392 pr_info("Showing freezable workqueues that are still busy:\n"); 6393 6394 list_for_each_entry_rcu(wq, &workqueues, list) { 6395 if (!(wq->flags & WQ_FREEZABLE)) 6396 continue; 6397 show_one_workqueue(wq); 6398 } 6399 6400 rcu_read_unlock(); 6401 } 6402 6403 /* used to show worker information through /proc/PID/{comm,stat,status} */ 6404 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 6405 { 6406 /* stabilize PF_WQ_WORKER and worker pool association */ 6407 mutex_lock(&wq_pool_attach_mutex); 6408 6409 if (task->flags & PF_WQ_WORKER) { 6410 struct worker *worker = kthread_data(task); 6411 struct worker_pool *pool = worker->pool; 6412 int off; 6413 6414 off = format_worker_id(buf, size, worker, pool); 6415 6416 if (pool) { 6417 raw_spin_lock_irq(&pool->lock); 6418 /* 6419 * ->desc tracks information (wq name or 6420 * set_worker_desc()) for the latest execution. If 6421 * current, prepend '+', otherwise '-'. 6422 */ 6423 if (worker->desc[0] != '\0') { 6424 if (worker->current_work) 6425 scnprintf(buf + off, size - off, "+%s", 6426 worker->desc); 6427 else 6428 scnprintf(buf + off, size - off, "-%s", 6429 worker->desc); 6430 } 6431 raw_spin_unlock_irq(&pool->lock); 6432 } 6433 } else { 6434 strscpy(buf, task->comm, size); 6435 } 6436 6437 mutex_unlock(&wq_pool_attach_mutex); 6438 } 6439 6440 #ifdef CONFIG_SMP 6441 6442 /* 6443 * CPU hotplug. 6444 * 6445 * There are two challenges in supporting CPU hotplug. Firstly, there 6446 * are a lot of assumptions on strong associations among work, pwq and 6447 * pool which make migrating pending and scheduled works very 6448 * difficult to implement without impacting hot paths. Secondly, 6449 * worker pools serve mix of short, long and very long running works making 6450 * blocked draining impractical. 6451 * 6452 * This is solved by allowing the pools to be disassociated from the CPU 6453 * running as an unbound one and allowing it to be reattached later if the 6454 * cpu comes back online. 6455 */ 6456 6457 static void unbind_workers(int cpu) 6458 { 6459 struct worker_pool *pool; 6460 struct worker *worker; 6461 6462 for_each_cpu_worker_pool(pool, cpu) { 6463 mutex_lock(&wq_pool_attach_mutex); 6464 raw_spin_lock_irq(&pool->lock); 6465 6466 /* 6467 * We've blocked all attach/detach operations. Make all workers 6468 * unbound and set DISASSOCIATED. Before this, all workers 6469 * must be on the cpu. After this, they may become diasporas. 6470 * And the preemption disabled section in their sched callbacks 6471 * are guaranteed to see WORKER_UNBOUND since the code here 6472 * is on the same cpu. 6473 */ 6474 for_each_pool_worker(worker, pool) 6475 worker->flags |= WORKER_UNBOUND; 6476 6477 pool->flags |= POOL_DISASSOCIATED; 6478 6479 /* 6480 * The handling of nr_running in sched callbacks are disabled 6481 * now. Zap nr_running. After this, nr_running stays zero and 6482 * need_more_worker() and keep_working() are always true as 6483 * long as the worklist is not empty. This pool now behaves as 6484 * an unbound (in terms of concurrency management) pool which 6485 * are served by workers tied to the pool. 6486 */ 6487 pool->nr_running = 0; 6488 6489 /* 6490 * With concurrency management just turned off, a busy 6491 * worker blocking could lead to lengthy stalls. Kick off 6492 * unbound chain execution of currently pending work items. 6493 */ 6494 kick_pool(pool); 6495 6496 raw_spin_unlock_irq(&pool->lock); 6497 6498 for_each_pool_worker(worker, pool) 6499 unbind_worker(worker); 6500 6501 mutex_unlock(&wq_pool_attach_mutex); 6502 } 6503 } 6504 6505 /** 6506 * rebind_workers - rebind all workers of a pool to the associated CPU 6507 * @pool: pool of interest 6508 * 6509 * @pool->cpu is coming online. Rebind all workers to the CPU. 6510 */ 6511 static void rebind_workers(struct worker_pool *pool) 6512 { 6513 struct worker *worker; 6514 6515 lockdep_assert_held(&wq_pool_attach_mutex); 6516 6517 /* 6518 * Restore CPU affinity of all workers. As all idle workers should 6519 * be on the run-queue of the associated CPU before any local 6520 * wake-ups for concurrency management happen, restore CPU affinity 6521 * of all workers first and then clear UNBOUND. As we're called 6522 * from CPU_ONLINE, the following shouldn't fail. 6523 */ 6524 for_each_pool_worker(worker, pool) { 6525 kthread_set_per_cpu(worker->task, pool->cpu); 6526 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 6527 pool_allowed_cpus(pool)) < 0); 6528 } 6529 6530 raw_spin_lock_irq(&pool->lock); 6531 6532 pool->flags &= ~POOL_DISASSOCIATED; 6533 6534 for_each_pool_worker(worker, pool) { 6535 unsigned int worker_flags = worker->flags; 6536 6537 /* 6538 * We want to clear UNBOUND but can't directly call 6539 * worker_clr_flags() or adjust nr_running. Atomically 6540 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 6541 * @worker will clear REBOUND using worker_clr_flags() when 6542 * it initiates the next execution cycle thus restoring 6543 * concurrency management. Note that when or whether 6544 * @worker clears REBOUND doesn't affect correctness. 6545 * 6546 * WRITE_ONCE() is necessary because @worker->flags may be 6547 * tested without holding any lock in 6548 * wq_worker_running(). Without it, NOT_RUNNING test may 6549 * fail incorrectly leading to premature concurrency 6550 * management operations. 6551 */ 6552 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 6553 worker_flags |= WORKER_REBOUND; 6554 worker_flags &= ~WORKER_UNBOUND; 6555 WRITE_ONCE(worker->flags, worker_flags); 6556 } 6557 6558 raw_spin_unlock_irq(&pool->lock); 6559 } 6560 6561 /** 6562 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 6563 * @pool: unbound pool of interest 6564 * @cpu: the CPU which is coming up 6565 * 6566 * An unbound pool may end up with a cpumask which doesn't have any online 6567 * CPUs. When a worker of such pool get scheduled, the scheduler resets 6568 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 6569 * online CPU before, cpus_allowed of all its workers should be restored. 6570 */ 6571 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 6572 { 6573 static cpumask_t cpumask; 6574 struct worker *worker; 6575 6576 lockdep_assert_held(&wq_pool_attach_mutex); 6577 6578 /* is @cpu allowed for @pool? */ 6579 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 6580 return; 6581 6582 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 6583 6584 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 6585 for_each_pool_worker(worker, pool) 6586 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 6587 } 6588 6589 int workqueue_prepare_cpu(unsigned int cpu) 6590 { 6591 struct worker_pool *pool; 6592 6593 for_each_cpu_worker_pool(pool, cpu) { 6594 if (pool->nr_workers) 6595 continue; 6596 if (!create_worker(pool)) 6597 return -ENOMEM; 6598 } 6599 return 0; 6600 } 6601 6602 int workqueue_online_cpu(unsigned int cpu) 6603 { 6604 struct worker_pool *pool; 6605 struct workqueue_struct *wq; 6606 int pi; 6607 6608 mutex_lock(&wq_pool_mutex); 6609 6610 for_each_pool(pool, pi) { 6611 /* BH pools aren't affected by hotplug */ 6612 if (pool->flags & POOL_BH) 6613 continue; 6614 6615 mutex_lock(&wq_pool_attach_mutex); 6616 if (pool->cpu == cpu) 6617 rebind_workers(pool); 6618 else if (pool->cpu < 0) 6619 restore_unbound_workers_cpumask(pool, cpu); 6620 mutex_unlock(&wq_pool_attach_mutex); 6621 } 6622 6623 /* update pod affinity of unbound workqueues */ 6624 list_for_each_entry(wq, &workqueues, list) { 6625 struct workqueue_attrs *attrs = wq->unbound_attrs; 6626 6627 if (attrs) { 6628 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6629 int tcpu; 6630 6631 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6632 wq_update_pod(wq, tcpu, cpu, true); 6633 6634 mutex_lock(&wq->mutex); 6635 wq_update_node_max_active(wq, -1); 6636 mutex_unlock(&wq->mutex); 6637 } 6638 } 6639 6640 mutex_unlock(&wq_pool_mutex); 6641 return 0; 6642 } 6643 6644 int workqueue_offline_cpu(unsigned int cpu) 6645 { 6646 struct workqueue_struct *wq; 6647 6648 /* unbinding per-cpu workers should happen on the local CPU */ 6649 if (WARN_ON(cpu != smp_processor_id())) 6650 return -1; 6651 6652 unbind_workers(cpu); 6653 6654 /* update pod affinity of unbound workqueues */ 6655 mutex_lock(&wq_pool_mutex); 6656 list_for_each_entry(wq, &workqueues, list) { 6657 struct workqueue_attrs *attrs = wq->unbound_attrs; 6658 6659 if (attrs) { 6660 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6661 int tcpu; 6662 6663 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6664 wq_update_pod(wq, tcpu, cpu, false); 6665 6666 mutex_lock(&wq->mutex); 6667 wq_update_node_max_active(wq, cpu); 6668 mutex_unlock(&wq->mutex); 6669 } 6670 } 6671 mutex_unlock(&wq_pool_mutex); 6672 6673 return 0; 6674 } 6675 6676 struct work_for_cpu { 6677 struct work_struct work; 6678 long (*fn)(void *); 6679 void *arg; 6680 long ret; 6681 }; 6682 6683 static void work_for_cpu_fn(struct work_struct *work) 6684 { 6685 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 6686 6687 wfc->ret = wfc->fn(wfc->arg); 6688 } 6689 6690 /** 6691 * work_on_cpu_key - run a function in thread context on a particular cpu 6692 * @cpu: the cpu to run on 6693 * @fn: the function to run 6694 * @arg: the function arg 6695 * @key: The lock class key for lock debugging purposes 6696 * 6697 * It is up to the caller to ensure that the cpu doesn't go offline. 6698 * The caller must not hold any locks which would prevent @fn from completing. 6699 * 6700 * Return: The value @fn returns. 6701 */ 6702 long work_on_cpu_key(int cpu, long (*fn)(void *), 6703 void *arg, struct lock_class_key *key) 6704 { 6705 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 6706 6707 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key); 6708 schedule_work_on(cpu, &wfc.work); 6709 flush_work(&wfc.work); 6710 destroy_work_on_stack(&wfc.work); 6711 return wfc.ret; 6712 } 6713 EXPORT_SYMBOL_GPL(work_on_cpu_key); 6714 6715 /** 6716 * work_on_cpu_safe_key - run a function in thread context on a particular cpu 6717 * @cpu: the cpu to run on 6718 * @fn: the function to run 6719 * @arg: the function argument 6720 * @key: The lock class key for lock debugging purposes 6721 * 6722 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 6723 * any locks which would prevent @fn from completing. 6724 * 6725 * Return: The value @fn returns. 6726 */ 6727 long work_on_cpu_safe_key(int cpu, long (*fn)(void *), 6728 void *arg, struct lock_class_key *key) 6729 { 6730 long ret = -ENODEV; 6731 6732 cpus_read_lock(); 6733 if (cpu_online(cpu)) 6734 ret = work_on_cpu_key(cpu, fn, arg, key); 6735 cpus_read_unlock(); 6736 return ret; 6737 } 6738 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key); 6739 #endif /* CONFIG_SMP */ 6740 6741 #ifdef CONFIG_FREEZER 6742 6743 /** 6744 * freeze_workqueues_begin - begin freezing workqueues 6745 * 6746 * Start freezing workqueues. After this function returns, all freezable 6747 * workqueues will queue new works to their inactive_works list instead of 6748 * pool->worklist. 6749 * 6750 * CONTEXT: 6751 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6752 */ 6753 void freeze_workqueues_begin(void) 6754 { 6755 struct workqueue_struct *wq; 6756 6757 mutex_lock(&wq_pool_mutex); 6758 6759 WARN_ON_ONCE(workqueue_freezing); 6760 workqueue_freezing = true; 6761 6762 list_for_each_entry(wq, &workqueues, list) { 6763 mutex_lock(&wq->mutex); 6764 wq_adjust_max_active(wq); 6765 mutex_unlock(&wq->mutex); 6766 } 6767 6768 mutex_unlock(&wq_pool_mutex); 6769 } 6770 6771 /** 6772 * freeze_workqueues_busy - are freezable workqueues still busy? 6773 * 6774 * Check whether freezing is complete. This function must be called 6775 * between freeze_workqueues_begin() and thaw_workqueues(). 6776 * 6777 * CONTEXT: 6778 * Grabs and releases wq_pool_mutex. 6779 * 6780 * Return: 6781 * %true if some freezable workqueues are still busy. %false if freezing 6782 * is complete. 6783 */ 6784 bool freeze_workqueues_busy(void) 6785 { 6786 bool busy = false; 6787 struct workqueue_struct *wq; 6788 struct pool_workqueue *pwq; 6789 6790 mutex_lock(&wq_pool_mutex); 6791 6792 WARN_ON_ONCE(!workqueue_freezing); 6793 6794 list_for_each_entry(wq, &workqueues, list) { 6795 if (!(wq->flags & WQ_FREEZABLE)) 6796 continue; 6797 /* 6798 * nr_active is monotonically decreasing. It's safe 6799 * to peek without lock. 6800 */ 6801 rcu_read_lock(); 6802 for_each_pwq(pwq, wq) { 6803 WARN_ON_ONCE(pwq->nr_active < 0); 6804 if (pwq->nr_active) { 6805 busy = true; 6806 rcu_read_unlock(); 6807 goto out_unlock; 6808 } 6809 } 6810 rcu_read_unlock(); 6811 } 6812 out_unlock: 6813 mutex_unlock(&wq_pool_mutex); 6814 return busy; 6815 } 6816 6817 /** 6818 * thaw_workqueues - thaw workqueues 6819 * 6820 * Thaw workqueues. Normal queueing is restored and all collected 6821 * frozen works are transferred to their respective pool worklists. 6822 * 6823 * CONTEXT: 6824 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6825 */ 6826 void thaw_workqueues(void) 6827 { 6828 struct workqueue_struct *wq; 6829 6830 mutex_lock(&wq_pool_mutex); 6831 6832 if (!workqueue_freezing) 6833 goto out_unlock; 6834 6835 workqueue_freezing = false; 6836 6837 /* restore max_active and repopulate worklist */ 6838 list_for_each_entry(wq, &workqueues, list) { 6839 mutex_lock(&wq->mutex); 6840 wq_adjust_max_active(wq); 6841 mutex_unlock(&wq->mutex); 6842 } 6843 6844 out_unlock: 6845 mutex_unlock(&wq_pool_mutex); 6846 } 6847 #endif /* CONFIG_FREEZER */ 6848 6849 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 6850 { 6851 LIST_HEAD(ctxs); 6852 int ret = 0; 6853 struct workqueue_struct *wq; 6854 struct apply_wqattrs_ctx *ctx, *n; 6855 6856 lockdep_assert_held(&wq_pool_mutex); 6857 6858 list_for_each_entry(wq, &workqueues, list) { 6859 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING)) 6860 continue; 6861 6862 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 6863 if (IS_ERR(ctx)) { 6864 ret = PTR_ERR(ctx); 6865 break; 6866 } 6867 6868 list_add_tail(&ctx->list, &ctxs); 6869 } 6870 6871 list_for_each_entry_safe(ctx, n, &ctxs, list) { 6872 if (!ret) 6873 apply_wqattrs_commit(ctx); 6874 apply_wqattrs_cleanup(ctx); 6875 } 6876 6877 if (!ret) { 6878 mutex_lock(&wq_pool_attach_mutex); 6879 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 6880 mutex_unlock(&wq_pool_attach_mutex); 6881 } 6882 return ret; 6883 } 6884 6885 /** 6886 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask 6887 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask 6888 * 6889 * This function can be called from cpuset code to provide a set of isolated 6890 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold 6891 * either cpus_read_lock or cpus_write_lock. 6892 */ 6893 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask) 6894 { 6895 cpumask_var_t cpumask; 6896 int ret = 0; 6897 6898 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 6899 return -ENOMEM; 6900 6901 lockdep_assert_cpus_held(); 6902 mutex_lock(&wq_pool_mutex); 6903 6904 /* Save the current isolated cpumask & export it via sysfs */ 6905 cpumask_copy(wq_isolated_cpumask, exclude_cpumask); 6906 6907 /* 6908 * If the operation fails, it will fall back to 6909 * wq_requested_unbound_cpumask which is initially set to 6910 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten 6911 * by any subsequent write to workqueue/cpumask sysfs file. 6912 */ 6913 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask)) 6914 cpumask_copy(cpumask, wq_requested_unbound_cpumask); 6915 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 6916 ret = workqueue_apply_unbound_cpumask(cpumask); 6917 6918 mutex_unlock(&wq_pool_mutex); 6919 free_cpumask_var(cpumask); 6920 return ret; 6921 } 6922 6923 static int parse_affn_scope(const char *val) 6924 { 6925 int i; 6926 6927 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) { 6928 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i]))) 6929 return i; 6930 } 6931 return -EINVAL; 6932 } 6933 6934 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp) 6935 { 6936 struct workqueue_struct *wq; 6937 int affn, cpu; 6938 6939 affn = parse_affn_scope(val); 6940 if (affn < 0) 6941 return affn; 6942 if (affn == WQ_AFFN_DFL) 6943 return -EINVAL; 6944 6945 cpus_read_lock(); 6946 mutex_lock(&wq_pool_mutex); 6947 6948 wq_affn_dfl = affn; 6949 6950 list_for_each_entry(wq, &workqueues, list) { 6951 for_each_online_cpu(cpu) { 6952 wq_update_pod(wq, cpu, cpu, true); 6953 } 6954 } 6955 6956 mutex_unlock(&wq_pool_mutex); 6957 cpus_read_unlock(); 6958 6959 return 0; 6960 } 6961 6962 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp) 6963 { 6964 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]); 6965 } 6966 6967 static const struct kernel_param_ops wq_affn_dfl_ops = { 6968 .set = wq_affn_dfl_set, 6969 .get = wq_affn_dfl_get, 6970 }; 6971 6972 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644); 6973 6974 #ifdef CONFIG_SYSFS 6975 /* 6976 * Workqueues with WQ_SYSFS flag set is visible to userland via 6977 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 6978 * following attributes. 6979 * 6980 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 6981 * max_active RW int : maximum number of in-flight work items 6982 * 6983 * Unbound workqueues have the following extra attributes. 6984 * 6985 * nice RW int : nice value of the workers 6986 * cpumask RW mask : bitmask of allowed CPUs for the workers 6987 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none) 6988 * affinity_strict RW bool : worker CPU affinity is strict 6989 */ 6990 struct wq_device { 6991 struct workqueue_struct *wq; 6992 struct device dev; 6993 }; 6994 6995 static struct workqueue_struct *dev_to_wq(struct device *dev) 6996 { 6997 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 6998 6999 return wq_dev->wq; 7000 } 7001 7002 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 7003 char *buf) 7004 { 7005 struct workqueue_struct *wq = dev_to_wq(dev); 7006 7007 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 7008 } 7009 static DEVICE_ATTR_RO(per_cpu); 7010 7011 static ssize_t max_active_show(struct device *dev, 7012 struct device_attribute *attr, char *buf) 7013 { 7014 struct workqueue_struct *wq = dev_to_wq(dev); 7015 7016 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 7017 } 7018 7019 static ssize_t max_active_store(struct device *dev, 7020 struct device_attribute *attr, const char *buf, 7021 size_t count) 7022 { 7023 struct workqueue_struct *wq = dev_to_wq(dev); 7024 int val; 7025 7026 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 7027 return -EINVAL; 7028 7029 workqueue_set_max_active(wq, val); 7030 return count; 7031 } 7032 static DEVICE_ATTR_RW(max_active); 7033 7034 static struct attribute *wq_sysfs_attrs[] = { 7035 &dev_attr_per_cpu.attr, 7036 &dev_attr_max_active.attr, 7037 NULL, 7038 }; 7039 ATTRIBUTE_GROUPS(wq_sysfs); 7040 7041 static void apply_wqattrs_lock(void) 7042 { 7043 /* CPUs should stay stable across pwq creations and installations */ 7044 cpus_read_lock(); 7045 mutex_lock(&wq_pool_mutex); 7046 } 7047 7048 static void apply_wqattrs_unlock(void) 7049 { 7050 mutex_unlock(&wq_pool_mutex); 7051 cpus_read_unlock(); 7052 } 7053 7054 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 7055 char *buf) 7056 { 7057 struct workqueue_struct *wq = dev_to_wq(dev); 7058 int written; 7059 7060 mutex_lock(&wq->mutex); 7061 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 7062 mutex_unlock(&wq->mutex); 7063 7064 return written; 7065 } 7066 7067 /* prepare workqueue_attrs for sysfs store operations */ 7068 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 7069 { 7070 struct workqueue_attrs *attrs; 7071 7072 lockdep_assert_held(&wq_pool_mutex); 7073 7074 attrs = alloc_workqueue_attrs(); 7075 if (!attrs) 7076 return NULL; 7077 7078 copy_workqueue_attrs(attrs, wq->unbound_attrs); 7079 return attrs; 7080 } 7081 7082 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 7083 const char *buf, size_t count) 7084 { 7085 struct workqueue_struct *wq = dev_to_wq(dev); 7086 struct workqueue_attrs *attrs; 7087 int ret = -ENOMEM; 7088 7089 apply_wqattrs_lock(); 7090 7091 attrs = wq_sysfs_prep_attrs(wq); 7092 if (!attrs) 7093 goto out_unlock; 7094 7095 if (sscanf(buf, "%d", &attrs->nice) == 1 && 7096 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 7097 ret = apply_workqueue_attrs_locked(wq, attrs); 7098 else 7099 ret = -EINVAL; 7100 7101 out_unlock: 7102 apply_wqattrs_unlock(); 7103 free_workqueue_attrs(attrs); 7104 return ret ?: count; 7105 } 7106 7107 static ssize_t wq_cpumask_show(struct device *dev, 7108 struct device_attribute *attr, char *buf) 7109 { 7110 struct workqueue_struct *wq = dev_to_wq(dev); 7111 int written; 7112 7113 mutex_lock(&wq->mutex); 7114 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 7115 cpumask_pr_args(wq->unbound_attrs->cpumask)); 7116 mutex_unlock(&wq->mutex); 7117 return written; 7118 } 7119 7120 static ssize_t wq_cpumask_store(struct device *dev, 7121 struct device_attribute *attr, 7122 const char *buf, size_t count) 7123 { 7124 struct workqueue_struct *wq = dev_to_wq(dev); 7125 struct workqueue_attrs *attrs; 7126 int ret = -ENOMEM; 7127 7128 apply_wqattrs_lock(); 7129 7130 attrs = wq_sysfs_prep_attrs(wq); 7131 if (!attrs) 7132 goto out_unlock; 7133 7134 ret = cpumask_parse(buf, attrs->cpumask); 7135 if (!ret) 7136 ret = apply_workqueue_attrs_locked(wq, attrs); 7137 7138 out_unlock: 7139 apply_wqattrs_unlock(); 7140 free_workqueue_attrs(attrs); 7141 return ret ?: count; 7142 } 7143 7144 static ssize_t wq_affn_scope_show(struct device *dev, 7145 struct device_attribute *attr, char *buf) 7146 { 7147 struct workqueue_struct *wq = dev_to_wq(dev); 7148 int written; 7149 7150 mutex_lock(&wq->mutex); 7151 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL) 7152 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n", 7153 wq_affn_names[WQ_AFFN_DFL], 7154 wq_affn_names[wq_affn_dfl]); 7155 else 7156 written = scnprintf(buf, PAGE_SIZE, "%s\n", 7157 wq_affn_names[wq->unbound_attrs->affn_scope]); 7158 mutex_unlock(&wq->mutex); 7159 7160 return written; 7161 } 7162 7163 static ssize_t wq_affn_scope_store(struct device *dev, 7164 struct device_attribute *attr, 7165 const char *buf, size_t count) 7166 { 7167 struct workqueue_struct *wq = dev_to_wq(dev); 7168 struct workqueue_attrs *attrs; 7169 int affn, ret = -ENOMEM; 7170 7171 affn = parse_affn_scope(buf); 7172 if (affn < 0) 7173 return affn; 7174 7175 apply_wqattrs_lock(); 7176 attrs = wq_sysfs_prep_attrs(wq); 7177 if (attrs) { 7178 attrs->affn_scope = affn; 7179 ret = apply_workqueue_attrs_locked(wq, attrs); 7180 } 7181 apply_wqattrs_unlock(); 7182 free_workqueue_attrs(attrs); 7183 return ret ?: count; 7184 } 7185 7186 static ssize_t wq_affinity_strict_show(struct device *dev, 7187 struct device_attribute *attr, char *buf) 7188 { 7189 struct workqueue_struct *wq = dev_to_wq(dev); 7190 7191 return scnprintf(buf, PAGE_SIZE, "%d\n", 7192 wq->unbound_attrs->affn_strict); 7193 } 7194 7195 static ssize_t wq_affinity_strict_store(struct device *dev, 7196 struct device_attribute *attr, 7197 const char *buf, size_t count) 7198 { 7199 struct workqueue_struct *wq = dev_to_wq(dev); 7200 struct workqueue_attrs *attrs; 7201 int v, ret = -ENOMEM; 7202 7203 if (sscanf(buf, "%d", &v) != 1) 7204 return -EINVAL; 7205 7206 apply_wqattrs_lock(); 7207 attrs = wq_sysfs_prep_attrs(wq); 7208 if (attrs) { 7209 attrs->affn_strict = (bool)v; 7210 ret = apply_workqueue_attrs_locked(wq, attrs); 7211 } 7212 apply_wqattrs_unlock(); 7213 free_workqueue_attrs(attrs); 7214 return ret ?: count; 7215 } 7216 7217 static struct device_attribute wq_sysfs_unbound_attrs[] = { 7218 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 7219 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 7220 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store), 7221 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store), 7222 __ATTR_NULL, 7223 }; 7224 7225 static const struct bus_type wq_subsys = { 7226 .name = "workqueue", 7227 .dev_groups = wq_sysfs_groups, 7228 }; 7229 7230 /** 7231 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 7232 * @cpumask: the cpumask to set 7233 * 7234 * The low-level workqueues cpumask is a global cpumask that limits 7235 * the affinity of all unbound workqueues. This function check the @cpumask 7236 * and apply it to all unbound workqueues and updates all pwqs of them. 7237 * 7238 * Return: 0 - Success 7239 * -EINVAL - Invalid @cpumask 7240 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 7241 */ 7242 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 7243 { 7244 int ret = -EINVAL; 7245 7246 /* 7247 * Not excluding isolated cpus on purpose. 7248 * If the user wishes to include them, we allow that. 7249 */ 7250 cpumask_and(cpumask, cpumask, cpu_possible_mask); 7251 if (!cpumask_empty(cpumask)) { 7252 apply_wqattrs_lock(); 7253 cpumask_copy(wq_requested_unbound_cpumask, cpumask); 7254 if (cpumask_equal(cpumask, wq_unbound_cpumask)) { 7255 ret = 0; 7256 goto out_unlock; 7257 } 7258 7259 ret = workqueue_apply_unbound_cpumask(cpumask); 7260 7261 out_unlock: 7262 apply_wqattrs_unlock(); 7263 } 7264 7265 return ret; 7266 } 7267 7268 static ssize_t __wq_cpumask_show(struct device *dev, 7269 struct device_attribute *attr, char *buf, cpumask_var_t mask) 7270 { 7271 int written; 7272 7273 mutex_lock(&wq_pool_mutex); 7274 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 7275 mutex_unlock(&wq_pool_mutex); 7276 7277 return written; 7278 } 7279 7280 static ssize_t cpumask_requested_show(struct device *dev, 7281 struct device_attribute *attr, char *buf) 7282 { 7283 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask); 7284 } 7285 static DEVICE_ATTR_RO(cpumask_requested); 7286 7287 static ssize_t cpumask_isolated_show(struct device *dev, 7288 struct device_attribute *attr, char *buf) 7289 { 7290 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask); 7291 } 7292 static DEVICE_ATTR_RO(cpumask_isolated); 7293 7294 static ssize_t cpumask_show(struct device *dev, 7295 struct device_attribute *attr, char *buf) 7296 { 7297 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask); 7298 } 7299 7300 static ssize_t cpumask_store(struct device *dev, 7301 struct device_attribute *attr, const char *buf, size_t count) 7302 { 7303 cpumask_var_t cpumask; 7304 int ret; 7305 7306 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 7307 return -ENOMEM; 7308 7309 ret = cpumask_parse(buf, cpumask); 7310 if (!ret) 7311 ret = workqueue_set_unbound_cpumask(cpumask); 7312 7313 free_cpumask_var(cpumask); 7314 return ret ? ret : count; 7315 } 7316 static DEVICE_ATTR_RW(cpumask); 7317 7318 static struct attribute *wq_sysfs_cpumask_attrs[] = { 7319 &dev_attr_cpumask.attr, 7320 &dev_attr_cpumask_requested.attr, 7321 &dev_attr_cpumask_isolated.attr, 7322 NULL, 7323 }; 7324 ATTRIBUTE_GROUPS(wq_sysfs_cpumask); 7325 7326 static int __init wq_sysfs_init(void) 7327 { 7328 return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups); 7329 } 7330 core_initcall(wq_sysfs_init); 7331 7332 static void wq_device_release(struct device *dev) 7333 { 7334 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 7335 7336 kfree(wq_dev); 7337 } 7338 7339 /** 7340 * workqueue_sysfs_register - make a workqueue visible in sysfs 7341 * @wq: the workqueue to register 7342 * 7343 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 7344 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 7345 * which is the preferred method. 7346 * 7347 * Workqueue user should use this function directly iff it wants to apply 7348 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 7349 * apply_workqueue_attrs() may race against userland updating the 7350 * attributes. 7351 * 7352 * Return: 0 on success, -errno on failure. 7353 */ 7354 int workqueue_sysfs_register(struct workqueue_struct *wq) 7355 { 7356 struct wq_device *wq_dev; 7357 int ret; 7358 7359 /* 7360 * Adjusting max_active breaks ordering guarantee. Disallow exposing 7361 * ordered workqueues. 7362 */ 7363 if (WARN_ON(wq->flags & __WQ_ORDERED)) 7364 return -EINVAL; 7365 7366 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 7367 if (!wq_dev) 7368 return -ENOMEM; 7369 7370 wq_dev->wq = wq; 7371 wq_dev->dev.bus = &wq_subsys; 7372 wq_dev->dev.release = wq_device_release; 7373 dev_set_name(&wq_dev->dev, "%s", wq->name); 7374 7375 /* 7376 * unbound_attrs are created separately. Suppress uevent until 7377 * everything is ready. 7378 */ 7379 dev_set_uevent_suppress(&wq_dev->dev, true); 7380 7381 ret = device_register(&wq_dev->dev); 7382 if (ret) { 7383 put_device(&wq_dev->dev); 7384 wq->wq_dev = NULL; 7385 return ret; 7386 } 7387 7388 if (wq->flags & WQ_UNBOUND) { 7389 struct device_attribute *attr; 7390 7391 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 7392 ret = device_create_file(&wq_dev->dev, attr); 7393 if (ret) { 7394 device_unregister(&wq_dev->dev); 7395 wq->wq_dev = NULL; 7396 return ret; 7397 } 7398 } 7399 } 7400 7401 dev_set_uevent_suppress(&wq_dev->dev, false); 7402 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 7403 return 0; 7404 } 7405 7406 /** 7407 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 7408 * @wq: the workqueue to unregister 7409 * 7410 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 7411 */ 7412 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 7413 { 7414 struct wq_device *wq_dev = wq->wq_dev; 7415 7416 if (!wq->wq_dev) 7417 return; 7418 7419 wq->wq_dev = NULL; 7420 device_unregister(&wq_dev->dev); 7421 } 7422 #else /* CONFIG_SYSFS */ 7423 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 7424 #endif /* CONFIG_SYSFS */ 7425 7426 /* 7427 * Workqueue watchdog. 7428 * 7429 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 7430 * flush dependency, a concurrency managed work item which stays RUNNING 7431 * indefinitely. Workqueue stalls can be very difficult to debug as the 7432 * usual warning mechanisms don't trigger and internal workqueue state is 7433 * largely opaque. 7434 * 7435 * Workqueue watchdog monitors all worker pools periodically and dumps 7436 * state if some pools failed to make forward progress for a while where 7437 * forward progress is defined as the first item on ->worklist changing. 7438 * 7439 * This mechanism is controlled through the kernel parameter 7440 * "workqueue.watchdog_thresh" which can be updated at runtime through the 7441 * corresponding sysfs parameter file. 7442 */ 7443 #ifdef CONFIG_WQ_WATCHDOG 7444 7445 static unsigned long wq_watchdog_thresh = 30; 7446 static struct timer_list wq_watchdog_timer; 7447 7448 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 7449 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 7450 7451 /* 7452 * Show workers that might prevent the processing of pending work items. 7453 * The only candidates are CPU-bound workers in the running state. 7454 * Pending work items should be handled by another idle worker 7455 * in all other situations. 7456 */ 7457 static void show_cpu_pool_hog(struct worker_pool *pool) 7458 { 7459 struct worker *worker; 7460 unsigned long irq_flags; 7461 int bkt; 7462 7463 raw_spin_lock_irqsave(&pool->lock, irq_flags); 7464 7465 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 7466 if (task_is_running(worker->task)) { 7467 /* 7468 * Defer printing to avoid deadlocks in console 7469 * drivers that queue work while holding locks 7470 * also taken in their write paths. 7471 */ 7472 printk_deferred_enter(); 7473 7474 pr_info("pool %d:\n", pool->id); 7475 sched_show_task(worker->task); 7476 7477 printk_deferred_exit(); 7478 } 7479 } 7480 7481 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 7482 } 7483 7484 static void show_cpu_pools_hogs(void) 7485 { 7486 struct worker_pool *pool; 7487 int pi; 7488 7489 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 7490 7491 rcu_read_lock(); 7492 7493 for_each_pool(pool, pi) { 7494 if (pool->cpu_stall) 7495 show_cpu_pool_hog(pool); 7496 7497 } 7498 7499 rcu_read_unlock(); 7500 } 7501 7502 static void wq_watchdog_reset_touched(void) 7503 { 7504 int cpu; 7505 7506 wq_watchdog_touched = jiffies; 7507 for_each_possible_cpu(cpu) 7508 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 7509 } 7510 7511 static void wq_watchdog_timer_fn(struct timer_list *unused) 7512 { 7513 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7514 bool lockup_detected = false; 7515 bool cpu_pool_stall = false; 7516 unsigned long now = jiffies; 7517 struct worker_pool *pool; 7518 int pi; 7519 7520 if (!thresh) 7521 return; 7522 7523 rcu_read_lock(); 7524 7525 for_each_pool(pool, pi) { 7526 unsigned long pool_ts, touched, ts; 7527 7528 pool->cpu_stall = false; 7529 if (list_empty(&pool->worklist)) 7530 continue; 7531 7532 /* 7533 * If a virtual machine is stopped by the host it can look to 7534 * the watchdog like a stall. 7535 */ 7536 kvm_check_and_clear_guest_paused(); 7537 7538 /* get the latest of pool and touched timestamps */ 7539 if (pool->cpu >= 0) 7540 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 7541 else 7542 touched = READ_ONCE(wq_watchdog_touched); 7543 pool_ts = READ_ONCE(pool->watchdog_ts); 7544 7545 if (time_after(pool_ts, touched)) 7546 ts = pool_ts; 7547 else 7548 ts = touched; 7549 7550 /* did we stall? */ 7551 if (time_after(now, ts + thresh)) { 7552 lockup_detected = true; 7553 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) { 7554 pool->cpu_stall = true; 7555 cpu_pool_stall = true; 7556 } 7557 pr_emerg("BUG: workqueue lockup - pool"); 7558 pr_cont_pool_info(pool); 7559 pr_cont(" stuck for %us!\n", 7560 jiffies_to_msecs(now - pool_ts) / 1000); 7561 } 7562 7563 7564 } 7565 7566 rcu_read_unlock(); 7567 7568 if (lockup_detected) 7569 show_all_workqueues(); 7570 7571 if (cpu_pool_stall) 7572 show_cpu_pools_hogs(); 7573 7574 wq_watchdog_reset_touched(); 7575 mod_timer(&wq_watchdog_timer, jiffies + thresh); 7576 } 7577 7578 notrace void wq_watchdog_touch(int cpu) 7579 { 7580 if (cpu >= 0) 7581 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 7582 7583 wq_watchdog_touched = jiffies; 7584 } 7585 7586 static void wq_watchdog_set_thresh(unsigned long thresh) 7587 { 7588 wq_watchdog_thresh = 0; 7589 del_timer_sync(&wq_watchdog_timer); 7590 7591 if (thresh) { 7592 wq_watchdog_thresh = thresh; 7593 wq_watchdog_reset_touched(); 7594 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 7595 } 7596 } 7597 7598 static int wq_watchdog_param_set_thresh(const char *val, 7599 const struct kernel_param *kp) 7600 { 7601 unsigned long thresh; 7602 int ret; 7603 7604 ret = kstrtoul(val, 0, &thresh); 7605 if (ret) 7606 return ret; 7607 7608 if (system_wq) 7609 wq_watchdog_set_thresh(thresh); 7610 else 7611 wq_watchdog_thresh = thresh; 7612 7613 return 0; 7614 } 7615 7616 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 7617 .set = wq_watchdog_param_set_thresh, 7618 .get = param_get_ulong, 7619 }; 7620 7621 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 7622 0644); 7623 7624 static void wq_watchdog_init(void) 7625 { 7626 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 7627 wq_watchdog_set_thresh(wq_watchdog_thresh); 7628 } 7629 7630 #else /* CONFIG_WQ_WATCHDOG */ 7631 7632 static inline void wq_watchdog_init(void) { } 7633 7634 #endif /* CONFIG_WQ_WATCHDOG */ 7635 7636 static void bh_pool_kick_normal(struct irq_work *irq_work) 7637 { 7638 raise_softirq_irqoff(TASKLET_SOFTIRQ); 7639 } 7640 7641 static void bh_pool_kick_highpri(struct irq_work *irq_work) 7642 { 7643 raise_softirq_irqoff(HI_SOFTIRQ); 7644 } 7645 7646 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask) 7647 { 7648 if (!cpumask_intersects(wq_unbound_cpumask, mask)) { 7649 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n", 7650 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask)); 7651 return; 7652 } 7653 7654 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask); 7655 } 7656 7657 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice) 7658 { 7659 BUG_ON(init_worker_pool(pool)); 7660 pool->cpu = cpu; 7661 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 7662 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu)); 7663 pool->attrs->nice = nice; 7664 pool->attrs->affn_strict = true; 7665 pool->node = cpu_to_node(cpu); 7666 7667 /* alloc pool ID */ 7668 mutex_lock(&wq_pool_mutex); 7669 BUG_ON(worker_pool_assign_id(pool)); 7670 mutex_unlock(&wq_pool_mutex); 7671 } 7672 7673 /** 7674 * workqueue_init_early - early init for workqueue subsystem 7675 * 7676 * This is the first step of three-staged workqueue subsystem initialization and 7677 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are 7678 * up. It sets up all the data structures and system workqueues and allows early 7679 * boot code to create workqueues and queue/cancel work items. Actual work item 7680 * execution starts only after kthreads can be created and scheduled right 7681 * before early initcalls. 7682 */ 7683 void __init workqueue_init_early(void) 7684 { 7685 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 7686 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 7687 void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal, 7688 bh_pool_kick_highpri }; 7689 int i, cpu; 7690 7691 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 7692 7693 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 7694 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL)); 7695 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL)); 7696 7697 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 7698 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ)); 7699 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN)); 7700 if (!cpumask_empty(&wq_cmdline_cpumask)) 7701 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask); 7702 7703 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask); 7704 7705 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 7706 7707 wq_update_pod_attrs_buf = alloc_workqueue_attrs(); 7708 BUG_ON(!wq_update_pod_attrs_buf); 7709 7710 /* 7711 * If nohz_full is enabled, set power efficient workqueue as unbound. 7712 * This allows workqueue items to be moved to HK CPUs. 7713 */ 7714 if (housekeeping_enabled(HK_TYPE_TICK)) 7715 wq_power_efficient = true; 7716 7717 /* initialize WQ_AFFN_SYSTEM pods */ 7718 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7719 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL); 7720 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7721 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod); 7722 7723 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE)); 7724 7725 pt->nr_pods = 1; 7726 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask); 7727 pt->pod_node[0] = NUMA_NO_NODE; 7728 pt->cpu_pod[0] = 0; 7729 7730 /* initialize BH and CPU pools */ 7731 for_each_possible_cpu(cpu) { 7732 struct worker_pool *pool; 7733 7734 i = 0; 7735 for_each_bh_worker_pool(pool, cpu) { 7736 init_cpu_worker_pool(pool, cpu, std_nice[i]); 7737 pool->flags |= POOL_BH; 7738 init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]); 7739 i++; 7740 } 7741 7742 i = 0; 7743 for_each_cpu_worker_pool(pool, cpu) 7744 init_cpu_worker_pool(pool, cpu, std_nice[i++]); 7745 } 7746 7747 /* create default unbound and ordered wq attrs */ 7748 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 7749 struct workqueue_attrs *attrs; 7750 7751 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7752 attrs->nice = std_nice[i]; 7753 unbound_std_wq_attrs[i] = attrs; 7754 7755 /* 7756 * An ordered wq should have only one pwq as ordering is 7757 * guaranteed by max_active which is enforced by pwqs. 7758 */ 7759 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7760 attrs->nice = std_nice[i]; 7761 attrs->ordered = true; 7762 ordered_wq_attrs[i] = attrs; 7763 } 7764 7765 system_wq = alloc_workqueue("events", 0, 0); 7766 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 7767 system_long_wq = alloc_workqueue("events_long", 0, 0); 7768 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 7769 WQ_MAX_ACTIVE); 7770 system_freezable_wq = alloc_workqueue("events_freezable", 7771 WQ_FREEZABLE, 0); 7772 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 7773 WQ_POWER_EFFICIENT, 0); 7774 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient", 7775 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 7776 0); 7777 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0); 7778 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri", 7779 WQ_BH | WQ_HIGHPRI, 0); 7780 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 7781 !system_unbound_wq || !system_freezable_wq || 7782 !system_power_efficient_wq || 7783 !system_freezable_power_efficient_wq || 7784 !system_bh_wq || !system_bh_highpri_wq); 7785 } 7786 7787 static void __init wq_cpu_intensive_thresh_init(void) 7788 { 7789 unsigned long thresh; 7790 unsigned long bogo; 7791 7792 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release"); 7793 BUG_ON(IS_ERR(pwq_release_worker)); 7794 7795 /* if the user set it to a specific value, keep it */ 7796 if (wq_cpu_intensive_thresh_us != ULONG_MAX) 7797 return; 7798 7799 /* 7800 * The default of 10ms is derived from the fact that most modern (as of 7801 * 2023) processors can do a lot in 10ms and that it's just below what 7802 * most consider human-perceivable. However, the kernel also runs on a 7803 * lot slower CPUs including microcontrollers where the threshold is way 7804 * too low. 7805 * 7806 * Let's scale up the threshold upto 1 second if BogoMips is below 4000. 7807 * This is by no means accurate but it doesn't have to be. The mechanism 7808 * is still useful even when the threshold is fully scaled up. Also, as 7809 * the reports would usually be applicable to everyone, some machines 7810 * operating on longer thresholds won't significantly diminish their 7811 * usefulness. 7812 */ 7813 thresh = 10 * USEC_PER_MSEC; 7814 7815 /* see init/calibrate.c for lpj -> BogoMIPS calculation */ 7816 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); 7817 if (bogo < 4000) 7818 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); 7819 7820 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n", 7821 loops_per_jiffy, bogo, thresh); 7822 7823 wq_cpu_intensive_thresh_us = thresh; 7824 } 7825 7826 /** 7827 * workqueue_init - bring workqueue subsystem fully online 7828 * 7829 * This is the second step of three-staged workqueue subsystem initialization 7830 * and invoked as soon as kthreads can be created and scheduled. Workqueues have 7831 * been created and work items queued on them, but there are no kworkers 7832 * executing the work items yet. Populate the worker pools with the initial 7833 * workers and enable future kworker creations. 7834 */ 7835 void __init workqueue_init(void) 7836 { 7837 struct workqueue_struct *wq; 7838 struct worker_pool *pool; 7839 int cpu, bkt; 7840 7841 wq_cpu_intensive_thresh_init(); 7842 7843 mutex_lock(&wq_pool_mutex); 7844 7845 /* 7846 * Per-cpu pools created earlier could be missing node hint. Fix them 7847 * up. Also, create a rescuer for workqueues that requested it. 7848 */ 7849 for_each_possible_cpu(cpu) { 7850 for_each_bh_worker_pool(pool, cpu) 7851 pool->node = cpu_to_node(cpu); 7852 for_each_cpu_worker_pool(pool, cpu) 7853 pool->node = cpu_to_node(cpu); 7854 } 7855 7856 list_for_each_entry(wq, &workqueues, list) { 7857 WARN(init_rescuer(wq), 7858 "workqueue: failed to create early rescuer for %s", 7859 wq->name); 7860 } 7861 7862 mutex_unlock(&wq_pool_mutex); 7863 7864 /* 7865 * Create the initial workers. A BH pool has one pseudo worker that 7866 * represents the shared BH execution context and thus doesn't get 7867 * affected by hotplug events. Create the BH pseudo workers for all 7868 * possible CPUs here. 7869 */ 7870 for_each_possible_cpu(cpu) 7871 for_each_bh_worker_pool(pool, cpu) 7872 BUG_ON(!create_worker(pool)); 7873 7874 for_each_online_cpu(cpu) { 7875 for_each_cpu_worker_pool(pool, cpu) { 7876 pool->flags &= ~POOL_DISASSOCIATED; 7877 BUG_ON(!create_worker(pool)); 7878 } 7879 } 7880 7881 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 7882 BUG_ON(!create_worker(pool)); 7883 7884 wq_online = true; 7885 wq_watchdog_init(); 7886 } 7887 7888 /* 7889 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to 7890 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique 7891 * and consecutive pod ID. The rest of @pt is initialized accordingly. 7892 */ 7893 static void __init init_pod_type(struct wq_pod_type *pt, 7894 bool (*cpus_share_pod)(int, int)) 7895 { 7896 int cur, pre, cpu, pod; 7897 7898 pt->nr_pods = 0; 7899 7900 /* init @pt->cpu_pod[] according to @cpus_share_pod() */ 7901 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7902 BUG_ON(!pt->cpu_pod); 7903 7904 for_each_possible_cpu(cur) { 7905 for_each_possible_cpu(pre) { 7906 if (pre >= cur) { 7907 pt->cpu_pod[cur] = pt->nr_pods++; 7908 break; 7909 } 7910 if (cpus_share_pod(cur, pre)) { 7911 pt->cpu_pod[cur] = pt->cpu_pod[pre]; 7912 break; 7913 } 7914 } 7915 } 7916 7917 /* init the rest to match @pt->cpu_pod[] */ 7918 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7919 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL); 7920 BUG_ON(!pt->pod_cpus || !pt->pod_node); 7921 7922 for (pod = 0; pod < pt->nr_pods; pod++) 7923 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL)); 7924 7925 for_each_possible_cpu(cpu) { 7926 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]); 7927 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu); 7928 } 7929 } 7930 7931 static bool __init cpus_dont_share(int cpu0, int cpu1) 7932 { 7933 return false; 7934 } 7935 7936 static bool __init cpus_share_smt(int cpu0, int cpu1) 7937 { 7938 #ifdef CONFIG_SCHED_SMT 7939 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1)); 7940 #else 7941 return false; 7942 #endif 7943 } 7944 7945 static bool __init cpus_share_numa(int cpu0, int cpu1) 7946 { 7947 return cpu_to_node(cpu0) == cpu_to_node(cpu1); 7948 } 7949 7950 /** 7951 * workqueue_init_topology - initialize CPU pods for unbound workqueues 7952 * 7953 * This is the third step of three-staged workqueue subsystem initialization and 7954 * invoked after SMP and topology information are fully initialized. It 7955 * initializes the unbound CPU pods accordingly. 7956 */ 7957 void __init workqueue_init_topology(void) 7958 { 7959 struct workqueue_struct *wq; 7960 int cpu; 7961 7962 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share); 7963 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt); 7964 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache); 7965 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa); 7966 7967 wq_topo_initialized = true; 7968 7969 mutex_lock(&wq_pool_mutex); 7970 7971 /* 7972 * Workqueues allocated earlier would have all CPUs sharing the default 7973 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU 7974 * combinations to apply per-pod sharing. 7975 */ 7976 list_for_each_entry(wq, &workqueues, list) { 7977 for_each_online_cpu(cpu) 7978 wq_update_pod(wq, cpu, cpu, true); 7979 if (wq->flags & WQ_UNBOUND) { 7980 mutex_lock(&wq->mutex); 7981 wq_update_node_max_active(wq, -1); 7982 mutex_unlock(&wq->mutex); 7983 } 7984 } 7985 7986 mutex_unlock(&wq_pool_mutex); 7987 } 7988 7989 void __warn_flushing_systemwide_wq(void) 7990 { 7991 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n"); 7992 dump_stack(); 7993 } 7994 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 7995 7996 static int __init workqueue_unbound_cpus_setup(char *str) 7997 { 7998 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) { 7999 cpumask_clear(&wq_cmdline_cpumask); 8000 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n"); 8001 } 8002 8003 return 1; 8004 } 8005 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup); 8006