1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/nmi.h> 53 54 #include "workqueue_internal.h" 55 56 enum { 57 /* 58 * worker_pool flags 59 * 60 * A bound pool is either associated or disassociated with its CPU. 61 * While associated (!DISASSOCIATED), all workers are bound to the 62 * CPU and none has %WORKER_UNBOUND set and concurrency management 63 * is in effect. 64 * 65 * While DISASSOCIATED, the cpu may be offline and all workers have 66 * %WORKER_UNBOUND set and concurrency management disabled, and may 67 * be executing on any CPU. The pool behaves as an unbound one. 68 * 69 * Note that DISASSOCIATED should be flipped only while holding 70 * wq_pool_attach_mutex to avoid changing binding state while 71 * worker_attach_to_pool() is in progress. 72 */ 73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 75 76 /* worker flags */ 77 WORKER_DIE = 1 << 1, /* die die die */ 78 WORKER_IDLE = 1 << 2, /* is idle */ 79 WORKER_PREP = 1 << 3, /* preparing to run works */ 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 83 84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 85 WORKER_UNBOUND | WORKER_REBOUND, 86 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 88 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 91 92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 94 95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 96 /* call for help after 10ms 97 (min two ticks) */ 98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 99 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 100 101 /* 102 * Rescue workers are used only on emergencies and shared by 103 * all cpus. Give MIN_NICE. 104 */ 105 RESCUER_NICE_LEVEL = MIN_NICE, 106 HIGHPRI_NICE_LEVEL = MIN_NICE, 107 108 WQ_NAME_LEN = 24, 109 }; 110 111 /* 112 * Structure fields follow one of the following exclusion rules. 113 * 114 * I: Modifiable by initialization/destruction paths and read-only for 115 * everyone else. 116 * 117 * P: Preemption protected. Disabling preemption is enough and should 118 * only be modified and accessed from the local cpu. 119 * 120 * L: pool->lock protected. Access with pool->lock held. 121 * 122 * X: During normal operation, modification requires pool->lock and should 123 * be done only from local cpu. Either disabling preemption on local 124 * cpu or grabbing pool->lock is enough for read access. If 125 * POOL_DISASSOCIATED is set, it's identical to L. 126 * 127 * A: wq_pool_attach_mutex protected. 128 * 129 * PL: wq_pool_mutex protected. 130 * 131 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 132 * 133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 134 * 135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 136 * RCU for reads. 137 * 138 * WQ: wq->mutex protected. 139 * 140 * WR: wq->mutex protected for writes. RCU protected for reads. 141 * 142 * MD: wq_mayday_lock protected. 143 */ 144 145 /* struct worker is defined in workqueue_internal.h */ 146 147 struct worker_pool { 148 spinlock_t lock; /* the pool lock */ 149 int cpu; /* I: the associated cpu */ 150 int node; /* I: the associated node ID */ 151 int id; /* I: pool ID */ 152 unsigned int flags; /* X: flags */ 153 154 unsigned long watchdog_ts; /* L: watchdog timestamp */ 155 156 struct list_head worklist; /* L: list of pending works */ 157 158 int nr_workers; /* L: total number of workers */ 159 int nr_idle; /* L: currently idle workers */ 160 161 struct list_head idle_list; /* X: list of idle workers */ 162 struct timer_list idle_timer; /* L: worker idle timeout */ 163 struct timer_list mayday_timer; /* L: SOS timer for workers */ 164 165 /* a workers is either on busy_hash or idle_list, or the manager */ 166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 167 /* L: hash of busy workers */ 168 169 struct worker *manager; /* L: purely informational */ 170 struct list_head workers; /* A: attached workers */ 171 struct completion *detach_completion; /* all workers detached */ 172 173 struct ida worker_ida; /* worker IDs for task name */ 174 175 struct workqueue_attrs *attrs; /* I: worker attributes */ 176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 177 int refcnt; /* PL: refcnt for unbound pools */ 178 179 /* 180 * The current concurrency level. As it's likely to be accessed 181 * from other CPUs during try_to_wake_up(), put it in a separate 182 * cacheline. 183 */ 184 atomic_t nr_running ____cacheline_aligned_in_smp; 185 186 /* 187 * Destruction of pool is RCU protected to allow dereferences 188 * from get_work_pool(). 189 */ 190 struct rcu_head rcu; 191 } ____cacheline_aligned_in_smp; 192 193 /* 194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 195 * of work_struct->data are used for flags and the remaining high bits 196 * point to the pwq; thus, pwqs need to be aligned at two's power of the 197 * number of flag bits. 198 */ 199 struct pool_workqueue { 200 struct worker_pool *pool; /* I: the associated pool */ 201 struct workqueue_struct *wq; /* I: the owning workqueue */ 202 int work_color; /* L: current color */ 203 int flush_color; /* L: flushing color */ 204 int refcnt; /* L: reference count */ 205 int nr_in_flight[WORK_NR_COLORS]; 206 /* L: nr of in_flight works */ 207 int nr_active; /* L: nr of active works */ 208 int max_active; /* L: max active works */ 209 struct list_head delayed_works; /* L: delayed works */ 210 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 211 struct list_head mayday_node; /* MD: node on wq->maydays */ 212 213 /* 214 * Release of unbound pwq is punted to system_wq. See put_pwq() 215 * and pwq_unbound_release_workfn() for details. pool_workqueue 216 * itself is also RCU protected so that the first pwq can be 217 * determined without grabbing wq->mutex. 218 */ 219 struct work_struct unbound_release_work; 220 struct rcu_head rcu; 221 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 222 223 /* 224 * Structure used to wait for workqueue flush. 225 */ 226 struct wq_flusher { 227 struct list_head list; /* WQ: list of flushers */ 228 int flush_color; /* WQ: flush color waiting for */ 229 struct completion done; /* flush completion */ 230 }; 231 232 struct wq_device; 233 234 /* 235 * The externally visible workqueue. It relays the issued work items to 236 * the appropriate worker_pool through its pool_workqueues. 237 */ 238 struct workqueue_struct { 239 struct list_head pwqs; /* WR: all pwqs of this wq */ 240 struct list_head list; /* PR: list of all workqueues */ 241 242 struct mutex mutex; /* protects this wq */ 243 int work_color; /* WQ: current work color */ 244 int flush_color; /* WQ: current flush color */ 245 atomic_t nr_pwqs_to_flush; /* flush in progress */ 246 struct wq_flusher *first_flusher; /* WQ: first flusher */ 247 struct list_head flusher_queue; /* WQ: flush waiters */ 248 struct list_head flusher_overflow; /* WQ: flush overflow list */ 249 250 struct list_head maydays; /* MD: pwqs requesting rescue */ 251 struct worker *rescuer; /* MD: rescue worker */ 252 253 int nr_drainers; /* WQ: drain in progress */ 254 int saved_max_active; /* WQ: saved pwq max_active */ 255 256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 258 259 #ifdef CONFIG_SYSFS 260 struct wq_device *wq_dev; /* I: for sysfs interface */ 261 #endif 262 #ifdef CONFIG_LOCKDEP 263 char *lock_name; 264 struct lock_class_key key; 265 struct lockdep_map lockdep_map; 266 #endif 267 char name[WQ_NAME_LEN]; /* I: workqueue name */ 268 269 /* 270 * Destruction of workqueue_struct is RCU protected to allow walking 271 * the workqueues list without grabbing wq_pool_mutex. 272 * This is used to dump all workqueues from sysrq. 273 */ 274 struct rcu_head rcu; 275 276 /* hot fields used during command issue, aligned to cacheline */ 277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 280 }; 281 282 static struct kmem_cache *pwq_cache; 283 284 static cpumask_var_t *wq_numa_possible_cpumask; 285 /* possible CPUs of each node */ 286 287 static bool wq_disable_numa; 288 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 289 290 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 292 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 293 294 static bool wq_online; /* can kworkers be created yet? */ 295 296 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 297 298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 300 301 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 303 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 304 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */ 305 306 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 307 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 308 309 /* PL: allowable cpus for unbound wqs and work items */ 310 static cpumask_var_t wq_unbound_cpumask; 311 312 /* CPU where unbound work was last round robin scheduled from this CPU */ 313 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 314 315 /* 316 * Local execution of unbound work items is no longer guaranteed. The 317 * following always forces round-robin CPU selection on unbound work items 318 * to uncover usages which depend on it. 319 */ 320 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 321 static bool wq_debug_force_rr_cpu = true; 322 #else 323 static bool wq_debug_force_rr_cpu = false; 324 #endif 325 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 326 327 /* the per-cpu worker pools */ 328 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 329 330 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 331 332 /* PL: hash of all unbound pools keyed by pool->attrs */ 333 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 334 335 /* I: attributes used when instantiating standard unbound pools on demand */ 336 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 337 338 /* I: attributes used when instantiating ordered pools on demand */ 339 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 340 341 struct workqueue_struct *system_wq __read_mostly; 342 EXPORT_SYMBOL(system_wq); 343 struct workqueue_struct *system_highpri_wq __read_mostly; 344 EXPORT_SYMBOL_GPL(system_highpri_wq); 345 struct workqueue_struct *system_long_wq __read_mostly; 346 EXPORT_SYMBOL_GPL(system_long_wq); 347 struct workqueue_struct *system_unbound_wq __read_mostly; 348 EXPORT_SYMBOL_GPL(system_unbound_wq); 349 struct workqueue_struct *system_freezable_wq __read_mostly; 350 EXPORT_SYMBOL_GPL(system_freezable_wq); 351 struct workqueue_struct *system_power_efficient_wq __read_mostly; 352 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 353 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 354 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 355 356 static int worker_thread(void *__worker); 357 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 358 static void show_pwq(struct pool_workqueue *pwq); 359 360 #define CREATE_TRACE_POINTS 361 #include <trace/events/workqueue.h> 362 363 #define assert_rcu_or_pool_mutex() \ 364 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 365 !lockdep_is_held(&wq_pool_mutex), \ 366 "RCU or wq_pool_mutex should be held") 367 368 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 369 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 370 !lockdep_is_held(&wq->mutex) && \ 371 !lockdep_is_held(&wq_pool_mutex), \ 372 "RCU, wq->mutex or wq_pool_mutex should be held") 373 374 #define for_each_cpu_worker_pool(pool, cpu) \ 375 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 376 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 377 (pool)++) 378 379 /** 380 * for_each_pool - iterate through all worker_pools in the system 381 * @pool: iteration cursor 382 * @pi: integer used for iteration 383 * 384 * This must be called either with wq_pool_mutex held or RCU read 385 * locked. If the pool needs to be used beyond the locking in effect, the 386 * caller is responsible for guaranteeing that the pool stays online. 387 * 388 * The if/else clause exists only for the lockdep assertion and can be 389 * ignored. 390 */ 391 #define for_each_pool(pool, pi) \ 392 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 393 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 394 else 395 396 /** 397 * for_each_pool_worker - iterate through all workers of a worker_pool 398 * @worker: iteration cursor 399 * @pool: worker_pool to iterate workers of 400 * 401 * This must be called with wq_pool_attach_mutex. 402 * 403 * The if/else clause exists only for the lockdep assertion and can be 404 * ignored. 405 */ 406 #define for_each_pool_worker(worker, pool) \ 407 list_for_each_entry((worker), &(pool)->workers, node) \ 408 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 409 else 410 411 /** 412 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 413 * @pwq: iteration cursor 414 * @wq: the target workqueue 415 * 416 * This must be called either with wq->mutex held or RCU read locked. 417 * If the pwq needs to be used beyond the locking in effect, the caller is 418 * responsible for guaranteeing that the pwq stays online. 419 * 420 * The if/else clause exists only for the lockdep assertion and can be 421 * ignored. 422 */ 423 #define for_each_pwq(pwq, wq) \ 424 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 425 lockdep_is_held(&(wq->mutex))) 426 427 #ifdef CONFIG_DEBUG_OBJECTS_WORK 428 429 static struct debug_obj_descr work_debug_descr; 430 431 static void *work_debug_hint(void *addr) 432 { 433 return ((struct work_struct *) addr)->func; 434 } 435 436 static bool work_is_static_object(void *addr) 437 { 438 struct work_struct *work = addr; 439 440 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 441 } 442 443 /* 444 * fixup_init is called when: 445 * - an active object is initialized 446 */ 447 static bool work_fixup_init(void *addr, enum debug_obj_state state) 448 { 449 struct work_struct *work = addr; 450 451 switch (state) { 452 case ODEBUG_STATE_ACTIVE: 453 cancel_work_sync(work); 454 debug_object_init(work, &work_debug_descr); 455 return true; 456 default: 457 return false; 458 } 459 } 460 461 /* 462 * fixup_free is called when: 463 * - an active object is freed 464 */ 465 static bool work_fixup_free(void *addr, enum debug_obj_state state) 466 { 467 struct work_struct *work = addr; 468 469 switch (state) { 470 case ODEBUG_STATE_ACTIVE: 471 cancel_work_sync(work); 472 debug_object_free(work, &work_debug_descr); 473 return true; 474 default: 475 return false; 476 } 477 } 478 479 static struct debug_obj_descr work_debug_descr = { 480 .name = "work_struct", 481 .debug_hint = work_debug_hint, 482 .is_static_object = work_is_static_object, 483 .fixup_init = work_fixup_init, 484 .fixup_free = work_fixup_free, 485 }; 486 487 static inline void debug_work_activate(struct work_struct *work) 488 { 489 debug_object_activate(work, &work_debug_descr); 490 } 491 492 static inline void debug_work_deactivate(struct work_struct *work) 493 { 494 debug_object_deactivate(work, &work_debug_descr); 495 } 496 497 void __init_work(struct work_struct *work, int onstack) 498 { 499 if (onstack) 500 debug_object_init_on_stack(work, &work_debug_descr); 501 else 502 debug_object_init(work, &work_debug_descr); 503 } 504 EXPORT_SYMBOL_GPL(__init_work); 505 506 void destroy_work_on_stack(struct work_struct *work) 507 { 508 debug_object_free(work, &work_debug_descr); 509 } 510 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 511 512 void destroy_delayed_work_on_stack(struct delayed_work *work) 513 { 514 destroy_timer_on_stack(&work->timer); 515 debug_object_free(&work->work, &work_debug_descr); 516 } 517 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 518 519 #else 520 static inline void debug_work_activate(struct work_struct *work) { } 521 static inline void debug_work_deactivate(struct work_struct *work) { } 522 #endif 523 524 /** 525 * worker_pool_assign_id - allocate ID and assing it to @pool 526 * @pool: the pool pointer of interest 527 * 528 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 529 * successfully, -errno on failure. 530 */ 531 static int worker_pool_assign_id(struct worker_pool *pool) 532 { 533 int ret; 534 535 lockdep_assert_held(&wq_pool_mutex); 536 537 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 538 GFP_KERNEL); 539 if (ret >= 0) { 540 pool->id = ret; 541 return 0; 542 } 543 return ret; 544 } 545 546 /** 547 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 548 * @wq: the target workqueue 549 * @node: the node ID 550 * 551 * This must be called with any of wq_pool_mutex, wq->mutex or RCU 552 * read locked. 553 * If the pwq needs to be used beyond the locking in effect, the caller is 554 * responsible for guaranteeing that the pwq stays online. 555 * 556 * Return: The unbound pool_workqueue for @node. 557 */ 558 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 559 int node) 560 { 561 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 562 563 /* 564 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 565 * delayed item is pending. The plan is to keep CPU -> NODE 566 * mapping valid and stable across CPU on/offlines. Once that 567 * happens, this workaround can be removed. 568 */ 569 if (unlikely(node == NUMA_NO_NODE)) 570 return wq->dfl_pwq; 571 572 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 573 } 574 575 static unsigned int work_color_to_flags(int color) 576 { 577 return color << WORK_STRUCT_COLOR_SHIFT; 578 } 579 580 static int get_work_color(struct work_struct *work) 581 { 582 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 583 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 584 } 585 586 static int work_next_color(int color) 587 { 588 return (color + 1) % WORK_NR_COLORS; 589 } 590 591 /* 592 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 593 * contain the pointer to the queued pwq. Once execution starts, the flag 594 * is cleared and the high bits contain OFFQ flags and pool ID. 595 * 596 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 597 * and clear_work_data() can be used to set the pwq, pool or clear 598 * work->data. These functions should only be called while the work is 599 * owned - ie. while the PENDING bit is set. 600 * 601 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 602 * corresponding to a work. Pool is available once the work has been 603 * queued anywhere after initialization until it is sync canceled. pwq is 604 * available only while the work item is queued. 605 * 606 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 607 * canceled. While being canceled, a work item may have its PENDING set 608 * but stay off timer and worklist for arbitrarily long and nobody should 609 * try to steal the PENDING bit. 610 */ 611 static inline void set_work_data(struct work_struct *work, unsigned long data, 612 unsigned long flags) 613 { 614 WARN_ON_ONCE(!work_pending(work)); 615 atomic_long_set(&work->data, data | flags | work_static(work)); 616 } 617 618 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 619 unsigned long extra_flags) 620 { 621 set_work_data(work, (unsigned long)pwq, 622 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 623 } 624 625 static void set_work_pool_and_keep_pending(struct work_struct *work, 626 int pool_id) 627 { 628 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 629 WORK_STRUCT_PENDING); 630 } 631 632 static void set_work_pool_and_clear_pending(struct work_struct *work, 633 int pool_id) 634 { 635 /* 636 * The following wmb is paired with the implied mb in 637 * test_and_set_bit(PENDING) and ensures all updates to @work made 638 * here are visible to and precede any updates by the next PENDING 639 * owner. 640 */ 641 smp_wmb(); 642 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 643 /* 644 * The following mb guarantees that previous clear of a PENDING bit 645 * will not be reordered with any speculative LOADS or STORES from 646 * work->current_func, which is executed afterwards. This possible 647 * reordering can lead to a missed execution on attempt to queue 648 * the same @work. E.g. consider this case: 649 * 650 * CPU#0 CPU#1 651 * ---------------------------- -------------------------------- 652 * 653 * 1 STORE event_indicated 654 * 2 queue_work_on() { 655 * 3 test_and_set_bit(PENDING) 656 * 4 } set_..._and_clear_pending() { 657 * 5 set_work_data() # clear bit 658 * 6 smp_mb() 659 * 7 work->current_func() { 660 * 8 LOAD event_indicated 661 * } 662 * 663 * Without an explicit full barrier speculative LOAD on line 8 can 664 * be executed before CPU#0 does STORE on line 1. If that happens, 665 * CPU#0 observes the PENDING bit is still set and new execution of 666 * a @work is not queued in a hope, that CPU#1 will eventually 667 * finish the queued @work. Meanwhile CPU#1 does not see 668 * event_indicated is set, because speculative LOAD was executed 669 * before actual STORE. 670 */ 671 smp_mb(); 672 } 673 674 static void clear_work_data(struct work_struct *work) 675 { 676 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 677 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 678 } 679 680 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 681 { 682 unsigned long data = atomic_long_read(&work->data); 683 684 if (data & WORK_STRUCT_PWQ) 685 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 686 else 687 return NULL; 688 } 689 690 /** 691 * get_work_pool - return the worker_pool a given work was associated with 692 * @work: the work item of interest 693 * 694 * Pools are created and destroyed under wq_pool_mutex, and allows read 695 * access under RCU read lock. As such, this function should be 696 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 697 * 698 * All fields of the returned pool are accessible as long as the above 699 * mentioned locking is in effect. If the returned pool needs to be used 700 * beyond the critical section, the caller is responsible for ensuring the 701 * returned pool is and stays online. 702 * 703 * Return: The worker_pool @work was last associated with. %NULL if none. 704 */ 705 static struct worker_pool *get_work_pool(struct work_struct *work) 706 { 707 unsigned long data = atomic_long_read(&work->data); 708 int pool_id; 709 710 assert_rcu_or_pool_mutex(); 711 712 if (data & WORK_STRUCT_PWQ) 713 return ((struct pool_workqueue *) 714 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 715 716 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 717 if (pool_id == WORK_OFFQ_POOL_NONE) 718 return NULL; 719 720 return idr_find(&worker_pool_idr, pool_id); 721 } 722 723 /** 724 * get_work_pool_id - return the worker pool ID a given work is associated with 725 * @work: the work item of interest 726 * 727 * Return: The worker_pool ID @work was last associated with. 728 * %WORK_OFFQ_POOL_NONE if none. 729 */ 730 static int get_work_pool_id(struct work_struct *work) 731 { 732 unsigned long data = atomic_long_read(&work->data); 733 734 if (data & WORK_STRUCT_PWQ) 735 return ((struct pool_workqueue *) 736 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 737 738 return data >> WORK_OFFQ_POOL_SHIFT; 739 } 740 741 static void mark_work_canceling(struct work_struct *work) 742 { 743 unsigned long pool_id = get_work_pool_id(work); 744 745 pool_id <<= WORK_OFFQ_POOL_SHIFT; 746 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 747 } 748 749 static bool work_is_canceling(struct work_struct *work) 750 { 751 unsigned long data = atomic_long_read(&work->data); 752 753 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 754 } 755 756 /* 757 * Policy functions. These define the policies on how the global worker 758 * pools are managed. Unless noted otherwise, these functions assume that 759 * they're being called with pool->lock held. 760 */ 761 762 static bool __need_more_worker(struct worker_pool *pool) 763 { 764 return !atomic_read(&pool->nr_running); 765 } 766 767 /* 768 * Need to wake up a worker? Called from anything but currently 769 * running workers. 770 * 771 * Note that, because unbound workers never contribute to nr_running, this 772 * function will always return %true for unbound pools as long as the 773 * worklist isn't empty. 774 */ 775 static bool need_more_worker(struct worker_pool *pool) 776 { 777 return !list_empty(&pool->worklist) && __need_more_worker(pool); 778 } 779 780 /* Can I start working? Called from busy but !running workers. */ 781 static bool may_start_working(struct worker_pool *pool) 782 { 783 return pool->nr_idle; 784 } 785 786 /* Do I need to keep working? Called from currently running workers. */ 787 static bool keep_working(struct worker_pool *pool) 788 { 789 return !list_empty(&pool->worklist) && 790 atomic_read(&pool->nr_running) <= 1; 791 } 792 793 /* Do we need a new worker? Called from manager. */ 794 static bool need_to_create_worker(struct worker_pool *pool) 795 { 796 return need_more_worker(pool) && !may_start_working(pool); 797 } 798 799 /* Do we have too many workers and should some go away? */ 800 static bool too_many_workers(struct worker_pool *pool) 801 { 802 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 803 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 804 int nr_busy = pool->nr_workers - nr_idle; 805 806 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 807 } 808 809 /* 810 * Wake up functions. 811 */ 812 813 /* Return the first idle worker. Safe with preemption disabled */ 814 static struct worker *first_idle_worker(struct worker_pool *pool) 815 { 816 if (unlikely(list_empty(&pool->idle_list))) 817 return NULL; 818 819 return list_first_entry(&pool->idle_list, struct worker, entry); 820 } 821 822 /** 823 * wake_up_worker - wake up an idle worker 824 * @pool: worker pool to wake worker from 825 * 826 * Wake up the first idle worker of @pool. 827 * 828 * CONTEXT: 829 * spin_lock_irq(pool->lock). 830 */ 831 static void wake_up_worker(struct worker_pool *pool) 832 { 833 struct worker *worker = first_idle_worker(pool); 834 835 if (likely(worker)) 836 wake_up_process(worker->task); 837 } 838 839 /** 840 * wq_worker_running - a worker is running again 841 * @task: task waking up 842 * 843 * This function is called when a worker returns from schedule() 844 */ 845 void wq_worker_running(struct task_struct *task) 846 { 847 struct worker *worker = kthread_data(task); 848 849 if (!worker->sleeping) 850 return; 851 if (!(worker->flags & WORKER_NOT_RUNNING)) 852 atomic_inc(&worker->pool->nr_running); 853 worker->sleeping = 0; 854 } 855 856 /** 857 * wq_worker_sleeping - a worker is going to sleep 858 * @task: task going to sleep 859 * 860 * This function is called from schedule() when a busy worker is 861 * going to sleep. 862 */ 863 void wq_worker_sleeping(struct task_struct *task) 864 { 865 struct worker *next, *worker = kthread_data(task); 866 struct worker_pool *pool; 867 868 /* 869 * Rescuers, which may not have all the fields set up like normal 870 * workers, also reach here, let's not access anything before 871 * checking NOT_RUNNING. 872 */ 873 if (worker->flags & WORKER_NOT_RUNNING) 874 return; 875 876 pool = worker->pool; 877 878 if (WARN_ON_ONCE(worker->sleeping)) 879 return; 880 881 worker->sleeping = 1; 882 spin_lock_irq(&pool->lock); 883 884 /* 885 * The counterpart of the following dec_and_test, implied mb, 886 * worklist not empty test sequence is in insert_work(). 887 * Please read comment there. 888 * 889 * NOT_RUNNING is clear. This means that we're bound to and 890 * running on the local cpu w/ rq lock held and preemption 891 * disabled, which in turn means that none else could be 892 * manipulating idle_list, so dereferencing idle_list without pool 893 * lock is safe. 894 */ 895 if (atomic_dec_and_test(&pool->nr_running) && 896 !list_empty(&pool->worklist)) { 897 next = first_idle_worker(pool); 898 if (next) 899 wake_up_process(next->task); 900 } 901 spin_unlock_irq(&pool->lock); 902 } 903 904 /** 905 * wq_worker_last_func - retrieve worker's last work function 906 * @task: Task to retrieve last work function of. 907 * 908 * Determine the last function a worker executed. This is called from 909 * the scheduler to get a worker's last known identity. 910 * 911 * CONTEXT: 912 * spin_lock_irq(rq->lock) 913 * 914 * This function is called during schedule() when a kworker is going 915 * to sleep. It's used by psi to identify aggregation workers during 916 * dequeuing, to allow periodic aggregation to shut-off when that 917 * worker is the last task in the system or cgroup to go to sleep. 918 * 919 * As this function doesn't involve any workqueue-related locking, it 920 * only returns stable values when called from inside the scheduler's 921 * queuing and dequeuing paths, when @task, which must be a kworker, 922 * is guaranteed to not be processing any works. 923 * 924 * Return: 925 * The last work function %current executed as a worker, NULL if it 926 * hasn't executed any work yet. 927 */ 928 work_func_t wq_worker_last_func(struct task_struct *task) 929 { 930 struct worker *worker = kthread_data(task); 931 932 return worker->last_func; 933 } 934 935 /** 936 * worker_set_flags - set worker flags and adjust nr_running accordingly 937 * @worker: self 938 * @flags: flags to set 939 * 940 * Set @flags in @worker->flags and adjust nr_running accordingly. 941 * 942 * CONTEXT: 943 * spin_lock_irq(pool->lock) 944 */ 945 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 946 { 947 struct worker_pool *pool = worker->pool; 948 949 WARN_ON_ONCE(worker->task != current); 950 951 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 952 if ((flags & WORKER_NOT_RUNNING) && 953 !(worker->flags & WORKER_NOT_RUNNING)) { 954 atomic_dec(&pool->nr_running); 955 } 956 957 worker->flags |= flags; 958 } 959 960 /** 961 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 962 * @worker: self 963 * @flags: flags to clear 964 * 965 * Clear @flags in @worker->flags and adjust nr_running accordingly. 966 * 967 * CONTEXT: 968 * spin_lock_irq(pool->lock) 969 */ 970 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 971 { 972 struct worker_pool *pool = worker->pool; 973 unsigned int oflags = worker->flags; 974 975 WARN_ON_ONCE(worker->task != current); 976 977 worker->flags &= ~flags; 978 979 /* 980 * If transitioning out of NOT_RUNNING, increment nr_running. Note 981 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 982 * of multiple flags, not a single flag. 983 */ 984 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 985 if (!(worker->flags & WORKER_NOT_RUNNING)) 986 atomic_inc(&pool->nr_running); 987 } 988 989 /** 990 * find_worker_executing_work - find worker which is executing a work 991 * @pool: pool of interest 992 * @work: work to find worker for 993 * 994 * Find a worker which is executing @work on @pool by searching 995 * @pool->busy_hash which is keyed by the address of @work. For a worker 996 * to match, its current execution should match the address of @work and 997 * its work function. This is to avoid unwanted dependency between 998 * unrelated work executions through a work item being recycled while still 999 * being executed. 1000 * 1001 * This is a bit tricky. A work item may be freed once its execution 1002 * starts and nothing prevents the freed area from being recycled for 1003 * another work item. If the same work item address ends up being reused 1004 * before the original execution finishes, workqueue will identify the 1005 * recycled work item as currently executing and make it wait until the 1006 * current execution finishes, introducing an unwanted dependency. 1007 * 1008 * This function checks the work item address and work function to avoid 1009 * false positives. Note that this isn't complete as one may construct a 1010 * work function which can introduce dependency onto itself through a 1011 * recycled work item. Well, if somebody wants to shoot oneself in the 1012 * foot that badly, there's only so much we can do, and if such deadlock 1013 * actually occurs, it should be easy to locate the culprit work function. 1014 * 1015 * CONTEXT: 1016 * spin_lock_irq(pool->lock). 1017 * 1018 * Return: 1019 * Pointer to worker which is executing @work if found, %NULL 1020 * otherwise. 1021 */ 1022 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1023 struct work_struct *work) 1024 { 1025 struct worker *worker; 1026 1027 hash_for_each_possible(pool->busy_hash, worker, hentry, 1028 (unsigned long)work) 1029 if (worker->current_work == work && 1030 worker->current_func == work->func) 1031 return worker; 1032 1033 return NULL; 1034 } 1035 1036 /** 1037 * move_linked_works - move linked works to a list 1038 * @work: start of series of works to be scheduled 1039 * @head: target list to append @work to 1040 * @nextp: out parameter for nested worklist walking 1041 * 1042 * Schedule linked works starting from @work to @head. Work series to 1043 * be scheduled starts at @work and includes any consecutive work with 1044 * WORK_STRUCT_LINKED set in its predecessor. 1045 * 1046 * If @nextp is not NULL, it's updated to point to the next work of 1047 * the last scheduled work. This allows move_linked_works() to be 1048 * nested inside outer list_for_each_entry_safe(). 1049 * 1050 * CONTEXT: 1051 * spin_lock_irq(pool->lock). 1052 */ 1053 static void move_linked_works(struct work_struct *work, struct list_head *head, 1054 struct work_struct **nextp) 1055 { 1056 struct work_struct *n; 1057 1058 /* 1059 * Linked worklist will always end before the end of the list, 1060 * use NULL for list head. 1061 */ 1062 list_for_each_entry_safe_from(work, n, NULL, entry) { 1063 list_move_tail(&work->entry, head); 1064 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1065 break; 1066 } 1067 1068 /* 1069 * If we're already inside safe list traversal and have moved 1070 * multiple works to the scheduled queue, the next position 1071 * needs to be updated. 1072 */ 1073 if (nextp) 1074 *nextp = n; 1075 } 1076 1077 /** 1078 * get_pwq - get an extra reference on the specified pool_workqueue 1079 * @pwq: pool_workqueue to get 1080 * 1081 * Obtain an extra reference on @pwq. The caller should guarantee that 1082 * @pwq has positive refcnt and be holding the matching pool->lock. 1083 */ 1084 static void get_pwq(struct pool_workqueue *pwq) 1085 { 1086 lockdep_assert_held(&pwq->pool->lock); 1087 WARN_ON_ONCE(pwq->refcnt <= 0); 1088 pwq->refcnt++; 1089 } 1090 1091 /** 1092 * put_pwq - put a pool_workqueue reference 1093 * @pwq: pool_workqueue to put 1094 * 1095 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1096 * destruction. The caller should be holding the matching pool->lock. 1097 */ 1098 static void put_pwq(struct pool_workqueue *pwq) 1099 { 1100 lockdep_assert_held(&pwq->pool->lock); 1101 if (likely(--pwq->refcnt)) 1102 return; 1103 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1104 return; 1105 /* 1106 * @pwq can't be released under pool->lock, bounce to 1107 * pwq_unbound_release_workfn(). This never recurses on the same 1108 * pool->lock as this path is taken only for unbound workqueues and 1109 * the release work item is scheduled on a per-cpu workqueue. To 1110 * avoid lockdep warning, unbound pool->locks are given lockdep 1111 * subclass of 1 in get_unbound_pool(). 1112 */ 1113 schedule_work(&pwq->unbound_release_work); 1114 } 1115 1116 /** 1117 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1118 * @pwq: pool_workqueue to put (can be %NULL) 1119 * 1120 * put_pwq() with locking. This function also allows %NULL @pwq. 1121 */ 1122 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1123 { 1124 if (pwq) { 1125 /* 1126 * As both pwqs and pools are RCU protected, the 1127 * following lock operations are safe. 1128 */ 1129 spin_lock_irq(&pwq->pool->lock); 1130 put_pwq(pwq); 1131 spin_unlock_irq(&pwq->pool->lock); 1132 } 1133 } 1134 1135 static void pwq_activate_delayed_work(struct work_struct *work) 1136 { 1137 struct pool_workqueue *pwq = get_work_pwq(work); 1138 1139 trace_workqueue_activate_work(work); 1140 if (list_empty(&pwq->pool->worklist)) 1141 pwq->pool->watchdog_ts = jiffies; 1142 move_linked_works(work, &pwq->pool->worklist, NULL); 1143 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1144 pwq->nr_active++; 1145 } 1146 1147 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1148 { 1149 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1150 struct work_struct, entry); 1151 1152 pwq_activate_delayed_work(work); 1153 } 1154 1155 /** 1156 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1157 * @pwq: pwq of interest 1158 * @color: color of work which left the queue 1159 * 1160 * A work either has completed or is removed from pending queue, 1161 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1162 * 1163 * CONTEXT: 1164 * spin_lock_irq(pool->lock). 1165 */ 1166 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1167 { 1168 /* uncolored work items don't participate in flushing or nr_active */ 1169 if (color == WORK_NO_COLOR) 1170 goto out_put; 1171 1172 pwq->nr_in_flight[color]--; 1173 1174 pwq->nr_active--; 1175 if (!list_empty(&pwq->delayed_works)) { 1176 /* one down, submit a delayed one */ 1177 if (pwq->nr_active < pwq->max_active) 1178 pwq_activate_first_delayed(pwq); 1179 } 1180 1181 /* is flush in progress and are we at the flushing tip? */ 1182 if (likely(pwq->flush_color != color)) 1183 goto out_put; 1184 1185 /* are there still in-flight works? */ 1186 if (pwq->nr_in_flight[color]) 1187 goto out_put; 1188 1189 /* this pwq is done, clear flush_color */ 1190 pwq->flush_color = -1; 1191 1192 /* 1193 * If this was the last pwq, wake up the first flusher. It 1194 * will handle the rest. 1195 */ 1196 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1197 complete(&pwq->wq->first_flusher->done); 1198 out_put: 1199 put_pwq(pwq); 1200 } 1201 1202 /** 1203 * try_to_grab_pending - steal work item from worklist and disable irq 1204 * @work: work item to steal 1205 * @is_dwork: @work is a delayed_work 1206 * @flags: place to store irq state 1207 * 1208 * Try to grab PENDING bit of @work. This function can handle @work in any 1209 * stable state - idle, on timer or on worklist. 1210 * 1211 * Return: 1212 * 1 if @work was pending and we successfully stole PENDING 1213 * 0 if @work was idle and we claimed PENDING 1214 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1215 * -ENOENT if someone else is canceling @work, this state may persist 1216 * for arbitrarily long 1217 * 1218 * Note: 1219 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1220 * interrupted while holding PENDING and @work off queue, irq must be 1221 * disabled on entry. This, combined with delayed_work->timer being 1222 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1223 * 1224 * On successful return, >= 0, irq is disabled and the caller is 1225 * responsible for releasing it using local_irq_restore(*@flags). 1226 * 1227 * This function is safe to call from any context including IRQ handler. 1228 */ 1229 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1230 unsigned long *flags) 1231 { 1232 struct worker_pool *pool; 1233 struct pool_workqueue *pwq; 1234 1235 local_irq_save(*flags); 1236 1237 /* try to steal the timer if it exists */ 1238 if (is_dwork) { 1239 struct delayed_work *dwork = to_delayed_work(work); 1240 1241 /* 1242 * dwork->timer is irqsafe. If del_timer() fails, it's 1243 * guaranteed that the timer is not queued anywhere and not 1244 * running on the local CPU. 1245 */ 1246 if (likely(del_timer(&dwork->timer))) 1247 return 1; 1248 } 1249 1250 /* try to claim PENDING the normal way */ 1251 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1252 return 0; 1253 1254 rcu_read_lock(); 1255 /* 1256 * The queueing is in progress, or it is already queued. Try to 1257 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1258 */ 1259 pool = get_work_pool(work); 1260 if (!pool) 1261 goto fail; 1262 1263 spin_lock(&pool->lock); 1264 /* 1265 * work->data is guaranteed to point to pwq only while the work 1266 * item is queued on pwq->wq, and both updating work->data to point 1267 * to pwq on queueing and to pool on dequeueing are done under 1268 * pwq->pool->lock. This in turn guarantees that, if work->data 1269 * points to pwq which is associated with a locked pool, the work 1270 * item is currently queued on that pool. 1271 */ 1272 pwq = get_work_pwq(work); 1273 if (pwq && pwq->pool == pool) { 1274 debug_work_deactivate(work); 1275 1276 /* 1277 * A delayed work item cannot be grabbed directly because 1278 * it might have linked NO_COLOR work items which, if left 1279 * on the delayed_list, will confuse pwq->nr_active 1280 * management later on and cause stall. Make sure the work 1281 * item is activated before grabbing. 1282 */ 1283 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1284 pwq_activate_delayed_work(work); 1285 1286 list_del_init(&work->entry); 1287 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1288 1289 /* work->data points to pwq iff queued, point to pool */ 1290 set_work_pool_and_keep_pending(work, pool->id); 1291 1292 spin_unlock(&pool->lock); 1293 rcu_read_unlock(); 1294 return 1; 1295 } 1296 spin_unlock(&pool->lock); 1297 fail: 1298 rcu_read_unlock(); 1299 local_irq_restore(*flags); 1300 if (work_is_canceling(work)) 1301 return -ENOENT; 1302 cpu_relax(); 1303 return -EAGAIN; 1304 } 1305 1306 /** 1307 * insert_work - insert a work into a pool 1308 * @pwq: pwq @work belongs to 1309 * @work: work to insert 1310 * @head: insertion point 1311 * @extra_flags: extra WORK_STRUCT_* flags to set 1312 * 1313 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1314 * work_struct flags. 1315 * 1316 * CONTEXT: 1317 * spin_lock_irq(pool->lock). 1318 */ 1319 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1320 struct list_head *head, unsigned int extra_flags) 1321 { 1322 struct worker_pool *pool = pwq->pool; 1323 1324 /* we own @work, set data and link */ 1325 set_work_pwq(work, pwq, extra_flags); 1326 list_add_tail(&work->entry, head); 1327 get_pwq(pwq); 1328 1329 /* 1330 * Ensure either wq_worker_sleeping() sees the above 1331 * list_add_tail() or we see zero nr_running to avoid workers lying 1332 * around lazily while there are works to be processed. 1333 */ 1334 smp_mb(); 1335 1336 if (__need_more_worker(pool)) 1337 wake_up_worker(pool); 1338 } 1339 1340 /* 1341 * Test whether @work is being queued from another work executing on the 1342 * same workqueue. 1343 */ 1344 static bool is_chained_work(struct workqueue_struct *wq) 1345 { 1346 struct worker *worker; 1347 1348 worker = current_wq_worker(); 1349 /* 1350 * Return %true iff I'm a worker executing a work item on @wq. If 1351 * I'm @worker, it's safe to dereference it without locking. 1352 */ 1353 return worker && worker->current_pwq->wq == wq; 1354 } 1355 1356 /* 1357 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1358 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1359 * avoid perturbing sensitive tasks. 1360 */ 1361 static int wq_select_unbound_cpu(int cpu) 1362 { 1363 static bool printed_dbg_warning; 1364 int new_cpu; 1365 1366 if (likely(!wq_debug_force_rr_cpu)) { 1367 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1368 return cpu; 1369 } else if (!printed_dbg_warning) { 1370 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1371 printed_dbg_warning = true; 1372 } 1373 1374 if (cpumask_empty(wq_unbound_cpumask)) 1375 return cpu; 1376 1377 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1378 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1379 if (unlikely(new_cpu >= nr_cpu_ids)) { 1380 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1381 if (unlikely(new_cpu >= nr_cpu_ids)) 1382 return cpu; 1383 } 1384 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1385 1386 return new_cpu; 1387 } 1388 1389 static void __queue_work(int cpu, struct workqueue_struct *wq, 1390 struct work_struct *work) 1391 { 1392 struct pool_workqueue *pwq; 1393 struct worker_pool *last_pool; 1394 struct list_head *worklist; 1395 unsigned int work_flags; 1396 unsigned int req_cpu = cpu; 1397 1398 /* 1399 * While a work item is PENDING && off queue, a task trying to 1400 * steal the PENDING will busy-loop waiting for it to either get 1401 * queued or lose PENDING. Grabbing PENDING and queueing should 1402 * happen with IRQ disabled. 1403 */ 1404 lockdep_assert_irqs_disabled(); 1405 1406 debug_work_activate(work); 1407 1408 /* if draining, only works from the same workqueue are allowed */ 1409 if (unlikely(wq->flags & __WQ_DRAINING) && 1410 WARN_ON_ONCE(!is_chained_work(wq))) 1411 return; 1412 rcu_read_lock(); 1413 retry: 1414 /* pwq which will be used unless @work is executing elsewhere */ 1415 if (wq->flags & WQ_UNBOUND) { 1416 if (req_cpu == WORK_CPU_UNBOUND) 1417 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1418 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1419 } else { 1420 if (req_cpu == WORK_CPU_UNBOUND) 1421 cpu = raw_smp_processor_id(); 1422 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1423 } 1424 1425 /* 1426 * If @work was previously on a different pool, it might still be 1427 * running there, in which case the work needs to be queued on that 1428 * pool to guarantee non-reentrancy. 1429 */ 1430 last_pool = get_work_pool(work); 1431 if (last_pool && last_pool != pwq->pool) { 1432 struct worker *worker; 1433 1434 spin_lock(&last_pool->lock); 1435 1436 worker = find_worker_executing_work(last_pool, work); 1437 1438 if (worker && worker->current_pwq->wq == wq) { 1439 pwq = worker->current_pwq; 1440 } else { 1441 /* meh... not running there, queue here */ 1442 spin_unlock(&last_pool->lock); 1443 spin_lock(&pwq->pool->lock); 1444 } 1445 } else { 1446 spin_lock(&pwq->pool->lock); 1447 } 1448 1449 /* 1450 * pwq is determined and locked. For unbound pools, we could have 1451 * raced with pwq release and it could already be dead. If its 1452 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1453 * without another pwq replacing it in the numa_pwq_tbl or while 1454 * work items are executing on it, so the retrying is guaranteed to 1455 * make forward-progress. 1456 */ 1457 if (unlikely(!pwq->refcnt)) { 1458 if (wq->flags & WQ_UNBOUND) { 1459 spin_unlock(&pwq->pool->lock); 1460 cpu_relax(); 1461 goto retry; 1462 } 1463 /* oops */ 1464 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1465 wq->name, cpu); 1466 } 1467 1468 /* pwq determined, queue */ 1469 trace_workqueue_queue_work(req_cpu, pwq, work); 1470 1471 if (WARN_ON(!list_empty(&work->entry))) 1472 goto out; 1473 1474 pwq->nr_in_flight[pwq->work_color]++; 1475 work_flags = work_color_to_flags(pwq->work_color); 1476 1477 if (likely(pwq->nr_active < pwq->max_active)) { 1478 trace_workqueue_activate_work(work); 1479 pwq->nr_active++; 1480 worklist = &pwq->pool->worklist; 1481 if (list_empty(worklist)) 1482 pwq->pool->watchdog_ts = jiffies; 1483 } else { 1484 work_flags |= WORK_STRUCT_DELAYED; 1485 worklist = &pwq->delayed_works; 1486 } 1487 1488 insert_work(pwq, work, worklist, work_flags); 1489 1490 out: 1491 spin_unlock(&pwq->pool->lock); 1492 rcu_read_unlock(); 1493 } 1494 1495 /** 1496 * queue_work_on - queue work on specific cpu 1497 * @cpu: CPU number to execute work on 1498 * @wq: workqueue to use 1499 * @work: work to queue 1500 * 1501 * We queue the work to a specific CPU, the caller must ensure it 1502 * can't go away. 1503 * 1504 * Return: %false if @work was already on a queue, %true otherwise. 1505 */ 1506 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1507 struct work_struct *work) 1508 { 1509 bool ret = false; 1510 unsigned long flags; 1511 1512 local_irq_save(flags); 1513 1514 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1515 __queue_work(cpu, wq, work); 1516 ret = true; 1517 } 1518 1519 local_irq_restore(flags); 1520 return ret; 1521 } 1522 EXPORT_SYMBOL(queue_work_on); 1523 1524 /** 1525 * workqueue_select_cpu_near - Select a CPU based on NUMA node 1526 * @node: NUMA node ID that we want to select a CPU from 1527 * 1528 * This function will attempt to find a "random" cpu available on a given 1529 * node. If there are no CPUs available on the given node it will return 1530 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1531 * available CPU if we need to schedule this work. 1532 */ 1533 static int workqueue_select_cpu_near(int node) 1534 { 1535 int cpu; 1536 1537 /* No point in doing this if NUMA isn't enabled for workqueues */ 1538 if (!wq_numa_enabled) 1539 return WORK_CPU_UNBOUND; 1540 1541 /* Delay binding to CPU if node is not valid or online */ 1542 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1543 return WORK_CPU_UNBOUND; 1544 1545 /* Use local node/cpu if we are already there */ 1546 cpu = raw_smp_processor_id(); 1547 if (node == cpu_to_node(cpu)) 1548 return cpu; 1549 1550 /* Use "random" otherwise know as "first" online CPU of node */ 1551 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1552 1553 /* If CPU is valid return that, otherwise just defer */ 1554 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1555 } 1556 1557 /** 1558 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1559 * @node: NUMA node that we are targeting the work for 1560 * @wq: workqueue to use 1561 * @work: work to queue 1562 * 1563 * We queue the work to a "random" CPU within a given NUMA node. The basic 1564 * idea here is to provide a way to somehow associate work with a given 1565 * NUMA node. 1566 * 1567 * This function will only make a best effort attempt at getting this onto 1568 * the right NUMA node. If no node is requested or the requested node is 1569 * offline then we just fall back to standard queue_work behavior. 1570 * 1571 * Currently the "random" CPU ends up being the first available CPU in the 1572 * intersection of cpu_online_mask and the cpumask of the node, unless we 1573 * are running on the node. In that case we just use the current CPU. 1574 * 1575 * Return: %false if @work was already on a queue, %true otherwise. 1576 */ 1577 bool queue_work_node(int node, struct workqueue_struct *wq, 1578 struct work_struct *work) 1579 { 1580 unsigned long flags; 1581 bool ret = false; 1582 1583 /* 1584 * This current implementation is specific to unbound workqueues. 1585 * Specifically we only return the first available CPU for a given 1586 * node instead of cycling through individual CPUs within the node. 1587 * 1588 * If this is used with a per-cpu workqueue then the logic in 1589 * workqueue_select_cpu_near would need to be updated to allow for 1590 * some round robin type logic. 1591 */ 1592 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1593 1594 local_irq_save(flags); 1595 1596 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1597 int cpu = workqueue_select_cpu_near(node); 1598 1599 __queue_work(cpu, wq, work); 1600 ret = true; 1601 } 1602 1603 local_irq_restore(flags); 1604 return ret; 1605 } 1606 EXPORT_SYMBOL_GPL(queue_work_node); 1607 1608 void delayed_work_timer_fn(struct timer_list *t) 1609 { 1610 struct delayed_work *dwork = from_timer(dwork, t, timer); 1611 1612 /* should have been called from irqsafe timer with irq already off */ 1613 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1614 } 1615 EXPORT_SYMBOL(delayed_work_timer_fn); 1616 1617 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1618 struct delayed_work *dwork, unsigned long delay) 1619 { 1620 struct timer_list *timer = &dwork->timer; 1621 struct work_struct *work = &dwork->work; 1622 1623 WARN_ON_ONCE(!wq); 1624 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1625 WARN_ON_ONCE(timer_pending(timer)); 1626 WARN_ON_ONCE(!list_empty(&work->entry)); 1627 1628 /* 1629 * If @delay is 0, queue @dwork->work immediately. This is for 1630 * both optimization and correctness. The earliest @timer can 1631 * expire is on the closest next tick and delayed_work users depend 1632 * on that there's no such delay when @delay is 0. 1633 */ 1634 if (!delay) { 1635 __queue_work(cpu, wq, &dwork->work); 1636 return; 1637 } 1638 1639 dwork->wq = wq; 1640 dwork->cpu = cpu; 1641 timer->expires = jiffies + delay; 1642 1643 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1644 add_timer_on(timer, cpu); 1645 else 1646 add_timer(timer); 1647 } 1648 1649 /** 1650 * queue_delayed_work_on - queue work on specific CPU after delay 1651 * @cpu: CPU number to execute work on 1652 * @wq: workqueue to use 1653 * @dwork: work to queue 1654 * @delay: number of jiffies to wait before queueing 1655 * 1656 * Return: %false if @work was already on a queue, %true otherwise. If 1657 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1658 * execution. 1659 */ 1660 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1661 struct delayed_work *dwork, unsigned long delay) 1662 { 1663 struct work_struct *work = &dwork->work; 1664 bool ret = false; 1665 unsigned long flags; 1666 1667 /* read the comment in __queue_work() */ 1668 local_irq_save(flags); 1669 1670 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1671 __queue_delayed_work(cpu, wq, dwork, delay); 1672 ret = true; 1673 } 1674 1675 local_irq_restore(flags); 1676 return ret; 1677 } 1678 EXPORT_SYMBOL(queue_delayed_work_on); 1679 1680 /** 1681 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1682 * @cpu: CPU number to execute work on 1683 * @wq: workqueue to use 1684 * @dwork: work to queue 1685 * @delay: number of jiffies to wait before queueing 1686 * 1687 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1688 * modify @dwork's timer so that it expires after @delay. If @delay is 1689 * zero, @work is guaranteed to be scheduled immediately regardless of its 1690 * current state. 1691 * 1692 * Return: %false if @dwork was idle and queued, %true if @dwork was 1693 * pending and its timer was modified. 1694 * 1695 * This function is safe to call from any context including IRQ handler. 1696 * See try_to_grab_pending() for details. 1697 */ 1698 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1699 struct delayed_work *dwork, unsigned long delay) 1700 { 1701 unsigned long flags; 1702 int ret; 1703 1704 do { 1705 ret = try_to_grab_pending(&dwork->work, true, &flags); 1706 } while (unlikely(ret == -EAGAIN)); 1707 1708 if (likely(ret >= 0)) { 1709 __queue_delayed_work(cpu, wq, dwork, delay); 1710 local_irq_restore(flags); 1711 } 1712 1713 /* -ENOENT from try_to_grab_pending() becomes %true */ 1714 return ret; 1715 } 1716 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1717 1718 static void rcu_work_rcufn(struct rcu_head *rcu) 1719 { 1720 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1721 1722 /* read the comment in __queue_work() */ 1723 local_irq_disable(); 1724 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1725 local_irq_enable(); 1726 } 1727 1728 /** 1729 * queue_rcu_work - queue work after a RCU grace period 1730 * @wq: workqueue to use 1731 * @rwork: work to queue 1732 * 1733 * Return: %false if @rwork was already pending, %true otherwise. Note 1734 * that a full RCU grace period is guaranteed only after a %true return. 1735 * While @rwork is guaranteed to be executed after a %false return, the 1736 * execution may happen before a full RCU grace period has passed. 1737 */ 1738 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1739 { 1740 struct work_struct *work = &rwork->work; 1741 1742 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1743 rwork->wq = wq; 1744 call_rcu(&rwork->rcu, rcu_work_rcufn); 1745 return true; 1746 } 1747 1748 return false; 1749 } 1750 EXPORT_SYMBOL(queue_rcu_work); 1751 1752 /** 1753 * worker_enter_idle - enter idle state 1754 * @worker: worker which is entering idle state 1755 * 1756 * @worker is entering idle state. Update stats and idle timer if 1757 * necessary. 1758 * 1759 * LOCKING: 1760 * spin_lock_irq(pool->lock). 1761 */ 1762 static void worker_enter_idle(struct worker *worker) 1763 { 1764 struct worker_pool *pool = worker->pool; 1765 1766 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1767 WARN_ON_ONCE(!list_empty(&worker->entry) && 1768 (worker->hentry.next || worker->hentry.pprev))) 1769 return; 1770 1771 /* can't use worker_set_flags(), also called from create_worker() */ 1772 worker->flags |= WORKER_IDLE; 1773 pool->nr_idle++; 1774 worker->last_active = jiffies; 1775 1776 /* idle_list is LIFO */ 1777 list_add(&worker->entry, &pool->idle_list); 1778 1779 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1780 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1781 1782 /* 1783 * Sanity check nr_running. Because unbind_workers() releases 1784 * pool->lock between setting %WORKER_UNBOUND and zapping 1785 * nr_running, the warning may trigger spuriously. Check iff 1786 * unbind is not in progress. 1787 */ 1788 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1789 pool->nr_workers == pool->nr_idle && 1790 atomic_read(&pool->nr_running)); 1791 } 1792 1793 /** 1794 * worker_leave_idle - leave idle state 1795 * @worker: worker which is leaving idle state 1796 * 1797 * @worker is leaving idle state. Update stats. 1798 * 1799 * LOCKING: 1800 * spin_lock_irq(pool->lock). 1801 */ 1802 static void worker_leave_idle(struct worker *worker) 1803 { 1804 struct worker_pool *pool = worker->pool; 1805 1806 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1807 return; 1808 worker_clr_flags(worker, WORKER_IDLE); 1809 pool->nr_idle--; 1810 list_del_init(&worker->entry); 1811 } 1812 1813 static struct worker *alloc_worker(int node) 1814 { 1815 struct worker *worker; 1816 1817 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1818 if (worker) { 1819 INIT_LIST_HEAD(&worker->entry); 1820 INIT_LIST_HEAD(&worker->scheduled); 1821 INIT_LIST_HEAD(&worker->node); 1822 /* on creation a worker is in !idle && prep state */ 1823 worker->flags = WORKER_PREP; 1824 } 1825 return worker; 1826 } 1827 1828 /** 1829 * worker_attach_to_pool() - attach a worker to a pool 1830 * @worker: worker to be attached 1831 * @pool: the target pool 1832 * 1833 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1834 * cpu-binding of @worker are kept coordinated with the pool across 1835 * cpu-[un]hotplugs. 1836 */ 1837 static void worker_attach_to_pool(struct worker *worker, 1838 struct worker_pool *pool) 1839 { 1840 mutex_lock(&wq_pool_attach_mutex); 1841 1842 /* 1843 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1844 * online CPUs. It'll be re-applied when any of the CPUs come up. 1845 */ 1846 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1847 1848 /* 1849 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1850 * stable across this function. See the comments above the flag 1851 * definition for details. 1852 */ 1853 if (pool->flags & POOL_DISASSOCIATED) 1854 worker->flags |= WORKER_UNBOUND; 1855 1856 list_add_tail(&worker->node, &pool->workers); 1857 worker->pool = pool; 1858 1859 mutex_unlock(&wq_pool_attach_mutex); 1860 } 1861 1862 /** 1863 * worker_detach_from_pool() - detach a worker from its pool 1864 * @worker: worker which is attached to its pool 1865 * 1866 * Undo the attaching which had been done in worker_attach_to_pool(). The 1867 * caller worker shouldn't access to the pool after detached except it has 1868 * other reference to the pool. 1869 */ 1870 static void worker_detach_from_pool(struct worker *worker) 1871 { 1872 struct worker_pool *pool = worker->pool; 1873 struct completion *detach_completion = NULL; 1874 1875 mutex_lock(&wq_pool_attach_mutex); 1876 1877 list_del(&worker->node); 1878 worker->pool = NULL; 1879 1880 if (list_empty(&pool->workers)) 1881 detach_completion = pool->detach_completion; 1882 mutex_unlock(&wq_pool_attach_mutex); 1883 1884 /* clear leftover flags without pool->lock after it is detached */ 1885 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1886 1887 if (detach_completion) 1888 complete(detach_completion); 1889 } 1890 1891 /** 1892 * create_worker - create a new workqueue worker 1893 * @pool: pool the new worker will belong to 1894 * 1895 * Create and start a new worker which is attached to @pool. 1896 * 1897 * CONTEXT: 1898 * Might sleep. Does GFP_KERNEL allocations. 1899 * 1900 * Return: 1901 * Pointer to the newly created worker. 1902 */ 1903 static struct worker *create_worker(struct worker_pool *pool) 1904 { 1905 struct worker *worker = NULL; 1906 int id = -1; 1907 char id_buf[16]; 1908 1909 /* ID is needed to determine kthread name */ 1910 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1911 if (id < 0) 1912 goto fail; 1913 1914 worker = alloc_worker(pool->node); 1915 if (!worker) 1916 goto fail; 1917 1918 worker->id = id; 1919 1920 if (pool->cpu >= 0) 1921 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1922 pool->attrs->nice < 0 ? "H" : ""); 1923 else 1924 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1925 1926 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1927 "kworker/%s", id_buf); 1928 if (IS_ERR(worker->task)) 1929 goto fail; 1930 1931 set_user_nice(worker->task, pool->attrs->nice); 1932 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1933 1934 /* successful, attach the worker to the pool */ 1935 worker_attach_to_pool(worker, pool); 1936 1937 /* start the newly created worker */ 1938 spin_lock_irq(&pool->lock); 1939 worker->pool->nr_workers++; 1940 worker_enter_idle(worker); 1941 wake_up_process(worker->task); 1942 spin_unlock_irq(&pool->lock); 1943 1944 return worker; 1945 1946 fail: 1947 if (id >= 0) 1948 ida_simple_remove(&pool->worker_ida, id); 1949 kfree(worker); 1950 return NULL; 1951 } 1952 1953 /** 1954 * destroy_worker - destroy a workqueue worker 1955 * @worker: worker to be destroyed 1956 * 1957 * Destroy @worker and adjust @pool stats accordingly. The worker should 1958 * be idle. 1959 * 1960 * CONTEXT: 1961 * spin_lock_irq(pool->lock). 1962 */ 1963 static void destroy_worker(struct worker *worker) 1964 { 1965 struct worker_pool *pool = worker->pool; 1966 1967 lockdep_assert_held(&pool->lock); 1968 1969 /* sanity check frenzy */ 1970 if (WARN_ON(worker->current_work) || 1971 WARN_ON(!list_empty(&worker->scheduled)) || 1972 WARN_ON(!(worker->flags & WORKER_IDLE))) 1973 return; 1974 1975 pool->nr_workers--; 1976 pool->nr_idle--; 1977 1978 list_del_init(&worker->entry); 1979 worker->flags |= WORKER_DIE; 1980 wake_up_process(worker->task); 1981 } 1982 1983 static void idle_worker_timeout(struct timer_list *t) 1984 { 1985 struct worker_pool *pool = from_timer(pool, t, idle_timer); 1986 1987 spin_lock_irq(&pool->lock); 1988 1989 while (too_many_workers(pool)) { 1990 struct worker *worker; 1991 unsigned long expires; 1992 1993 /* idle_list is kept in LIFO order, check the last one */ 1994 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1995 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1996 1997 if (time_before(jiffies, expires)) { 1998 mod_timer(&pool->idle_timer, expires); 1999 break; 2000 } 2001 2002 destroy_worker(worker); 2003 } 2004 2005 spin_unlock_irq(&pool->lock); 2006 } 2007 2008 static void send_mayday(struct work_struct *work) 2009 { 2010 struct pool_workqueue *pwq = get_work_pwq(work); 2011 struct workqueue_struct *wq = pwq->wq; 2012 2013 lockdep_assert_held(&wq_mayday_lock); 2014 2015 if (!wq->rescuer) 2016 return; 2017 2018 /* mayday mayday mayday */ 2019 if (list_empty(&pwq->mayday_node)) { 2020 /* 2021 * If @pwq is for an unbound wq, its base ref may be put at 2022 * any time due to an attribute change. Pin @pwq until the 2023 * rescuer is done with it. 2024 */ 2025 get_pwq(pwq); 2026 list_add_tail(&pwq->mayday_node, &wq->maydays); 2027 wake_up_process(wq->rescuer->task); 2028 } 2029 } 2030 2031 static void pool_mayday_timeout(struct timer_list *t) 2032 { 2033 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2034 struct work_struct *work; 2035 2036 spin_lock_irq(&pool->lock); 2037 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2038 2039 if (need_to_create_worker(pool)) { 2040 /* 2041 * We've been trying to create a new worker but 2042 * haven't been successful. We might be hitting an 2043 * allocation deadlock. Send distress signals to 2044 * rescuers. 2045 */ 2046 list_for_each_entry(work, &pool->worklist, entry) 2047 send_mayday(work); 2048 } 2049 2050 spin_unlock(&wq_mayday_lock); 2051 spin_unlock_irq(&pool->lock); 2052 2053 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2054 } 2055 2056 /** 2057 * maybe_create_worker - create a new worker if necessary 2058 * @pool: pool to create a new worker for 2059 * 2060 * Create a new worker for @pool if necessary. @pool is guaranteed to 2061 * have at least one idle worker on return from this function. If 2062 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2063 * sent to all rescuers with works scheduled on @pool to resolve 2064 * possible allocation deadlock. 2065 * 2066 * On return, need_to_create_worker() is guaranteed to be %false and 2067 * may_start_working() %true. 2068 * 2069 * LOCKING: 2070 * spin_lock_irq(pool->lock) which may be released and regrabbed 2071 * multiple times. Does GFP_KERNEL allocations. Called only from 2072 * manager. 2073 */ 2074 static void maybe_create_worker(struct worker_pool *pool) 2075 __releases(&pool->lock) 2076 __acquires(&pool->lock) 2077 { 2078 restart: 2079 spin_unlock_irq(&pool->lock); 2080 2081 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2082 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2083 2084 while (true) { 2085 if (create_worker(pool) || !need_to_create_worker(pool)) 2086 break; 2087 2088 schedule_timeout_interruptible(CREATE_COOLDOWN); 2089 2090 if (!need_to_create_worker(pool)) 2091 break; 2092 } 2093 2094 del_timer_sync(&pool->mayday_timer); 2095 spin_lock_irq(&pool->lock); 2096 /* 2097 * This is necessary even after a new worker was just successfully 2098 * created as @pool->lock was dropped and the new worker might have 2099 * already become busy. 2100 */ 2101 if (need_to_create_worker(pool)) 2102 goto restart; 2103 } 2104 2105 /** 2106 * manage_workers - manage worker pool 2107 * @worker: self 2108 * 2109 * Assume the manager role and manage the worker pool @worker belongs 2110 * to. At any given time, there can be only zero or one manager per 2111 * pool. The exclusion is handled automatically by this function. 2112 * 2113 * The caller can safely start processing works on false return. On 2114 * true return, it's guaranteed that need_to_create_worker() is false 2115 * and may_start_working() is true. 2116 * 2117 * CONTEXT: 2118 * spin_lock_irq(pool->lock) which may be released and regrabbed 2119 * multiple times. Does GFP_KERNEL allocations. 2120 * 2121 * Return: 2122 * %false if the pool doesn't need management and the caller can safely 2123 * start processing works, %true if management function was performed and 2124 * the conditions that the caller verified before calling the function may 2125 * no longer be true. 2126 */ 2127 static bool manage_workers(struct worker *worker) 2128 { 2129 struct worker_pool *pool = worker->pool; 2130 2131 if (pool->flags & POOL_MANAGER_ACTIVE) 2132 return false; 2133 2134 pool->flags |= POOL_MANAGER_ACTIVE; 2135 pool->manager = worker; 2136 2137 maybe_create_worker(pool); 2138 2139 pool->manager = NULL; 2140 pool->flags &= ~POOL_MANAGER_ACTIVE; 2141 wake_up(&wq_manager_wait); 2142 return true; 2143 } 2144 2145 /** 2146 * process_one_work - process single work 2147 * @worker: self 2148 * @work: work to process 2149 * 2150 * Process @work. This function contains all the logics necessary to 2151 * process a single work including synchronization against and 2152 * interaction with other workers on the same cpu, queueing and 2153 * flushing. As long as context requirement is met, any worker can 2154 * call this function to process a work. 2155 * 2156 * CONTEXT: 2157 * spin_lock_irq(pool->lock) which is released and regrabbed. 2158 */ 2159 static void process_one_work(struct worker *worker, struct work_struct *work) 2160 __releases(&pool->lock) 2161 __acquires(&pool->lock) 2162 { 2163 struct pool_workqueue *pwq = get_work_pwq(work); 2164 struct worker_pool *pool = worker->pool; 2165 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2166 int work_color; 2167 struct worker *collision; 2168 #ifdef CONFIG_LOCKDEP 2169 /* 2170 * It is permissible to free the struct work_struct from 2171 * inside the function that is called from it, this we need to 2172 * take into account for lockdep too. To avoid bogus "held 2173 * lock freed" warnings as well as problems when looking into 2174 * work->lockdep_map, make a copy and use that here. 2175 */ 2176 struct lockdep_map lockdep_map; 2177 2178 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2179 #endif 2180 /* ensure we're on the correct CPU */ 2181 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2182 raw_smp_processor_id() != pool->cpu); 2183 2184 /* 2185 * A single work shouldn't be executed concurrently by 2186 * multiple workers on a single cpu. Check whether anyone is 2187 * already processing the work. If so, defer the work to the 2188 * currently executing one. 2189 */ 2190 collision = find_worker_executing_work(pool, work); 2191 if (unlikely(collision)) { 2192 move_linked_works(work, &collision->scheduled, NULL); 2193 return; 2194 } 2195 2196 /* claim and dequeue */ 2197 debug_work_deactivate(work); 2198 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2199 worker->current_work = work; 2200 worker->current_func = work->func; 2201 worker->current_pwq = pwq; 2202 work_color = get_work_color(work); 2203 2204 /* 2205 * Record wq name for cmdline and debug reporting, may get 2206 * overridden through set_worker_desc(). 2207 */ 2208 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2209 2210 list_del_init(&work->entry); 2211 2212 /* 2213 * CPU intensive works don't participate in concurrency management. 2214 * They're the scheduler's responsibility. This takes @worker out 2215 * of concurrency management and the next code block will chain 2216 * execution of the pending work items. 2217 */ 2218 if (unlikely(cpu_intensive)) 2219 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2220 2221 /* 2222 * Wake up another worker if necessary. The condition is always 2223 * false for normal per-cpu workers since nr_running would always 2224 * be >= 1 at this point. This is used to chain execution of the 2225 * pending work items for WORKER_NOT_RUNNING workers such as the 2226 * UNBOUND and CPU_INTENSIVE ones. 2227 */ 2228 if (need_more_worker(pool)) 2229 wake_up_worker(pool); 2230 2231 /* 2232 * Record the last pool and clear PENDING which should be the last 2233 * update to @work. Also, do this inside @pool->lock so that 2234 * PENDING and queued state changes happen together while IRQ is 2235 * disabled. 2236 */ 2237 set_work_pool_and_clear_pending(work, pool->id); 2238 2239 spin_unlock_irq(&pool->lock); 2240 2241 lock_map_acquire(&pwq->wq->lockdep_map); 2242 lock_map_acquire(&lockdep_map); 2243 /* 2244 * Strictly speaking we should mark the invariant state without holding 2245 * any locks, that is, before these two lock_map_acquire()'s. 2246 * 2247 * However, that would result in: 2248 * 2249 * A(W1) 2250 * WFC(C) 2251 * A(W1) 2252 * C(C) 2253 * 2254 * Which would create W1->C->W1 dependencies, even though there is no 2255 * actual deadlock possible. There are two solutions, using a 2256 * read-recursive acquire on the work(queue) 'locks', but this will then 2257 * hit the lockdep limitation on recursive locks, or simply discard 2258 * these locks. 2259 * 2260 * AFAICT there is no possible deadlock scenario between the 2261 * flush_work() and complete() primitives (except for single-threaded 2262 * workqueues), so hiding them isn't a problem. 2263 */ 2264 lockdep_invariant_state(true); 2265 trace_workqueue_execute_start(work); 2266 worker->current_func(work); 2267 /* 2268 * While we must be careful to not use "work" after this, the trace 2269 * point will only record its address. 2270 */ 2271 trace_workqueue_execute_end(work, worker->current_func); 2272 lock_map_release(&lockdep_map); 2273 lock_map_release(&pwq->wq->lockdep_map); 2274 2275 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2276 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2277 " last function: %ps\n", 2278 current->comm, preempt_count(), task_pid_nr(current), 2279 worker->current_func); 2280 debug_show_held_locks(current); 2281 dump_stack(); 2282 } 2283 2284 /* 2285 * The following prevents a kworker from hogging CPU on !PREEMPTION 2286 * kernels, where a requeueing work item waiting for something to 2287 * happen could deadlock with stop_machine as such work item could 2288 * indefinitely requeue itself while all other CPUs are trapped in 2289 * stop_machine. At the same time, report a quiescent RCU state so 2290 * the same condition doesn't freeze RCU. 2291 */ 2292 cond_resched(); 2293 2294 spin_lock_irq(&pool->lock); 2295 2296 /* clear cpu intensive status */ 2297 if (unlikely(cpu_intensive)) 2298 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2299 2300 /* tag the worker for identification in schedule() */ 2301 worker->last_func = worker->current_func; 2302 2303 /* we're done with it, release */ 2304 hash_del(&worker->hentry); 2305 worker->current_work = NULL; 2306 worker->current_func = NULL; 2307 worker->current_pwq = NULL; 2308 pwq_dec_nr_in_flight(pwq, work_color); 2309 } 2310 2311 /** 2312 * process_scheduled_works - process scheduled works 2313 * @worker: self 2314 * 2315 * Process all scheduled works. Please note that the scheduled list 2316 * may change while processing a work, so this function repeatedly 2317 * fetches a work from the top and executes it. 2318 * 2319 * CONTEXT: 2320 * spin_lock_irq(pool->lock) which may be released and regrabbed 2321 * multiple times. 2322 */ 2323 static void process_scheduled_works(struct worker *worker) 2324 { 2325 while (!list_empty(&worker->scheduled)) { 2326 struct work_struct *work = list_first_entry(&worker->scheduled, 2327 struct work_struct, entry); 2328 process_one_work(worker, work); 2329 } 2330 } 2331 2332 static void set_pf_worker(bool val) 2333 { 2334 mutex_lock(&wq_pool_attach_mutex); 2335 if (val) 2336 current->flags |= PF_WQ_WORKER; 2337 else 2338 current->flags &= ~PF_WQ_WORKER; 2339 mutex_unlock(&wq_pool_attach_mutex); 2340 } 2341 2342 /** 2343 * worker_thread - the worker thread function 2344 * @__worker: self 2345 * 2346 * The worker thread function. All workers belong to a worker_pool - 2347 * either a per-cpu one or dynamic unbound one. These workers process all 2348 * work items regardless of their specific target workqueue. The only 2349 * exception is work items which belong to workqueues with a rescuer which 2350 * will be explained in rescuer_thread(). 2351 * 2352 * Return: 0 2353 */ 2354 static int worker_thread(void *__worker) 2355 { 2356 struct worker *worker = __worker; 2357 struct worker_pool *pool = worker->pool; 2358 2359 /* tell the scheduler that this is a workqueue worker */ 2360 set_pf_worker(true); 2361 woke_up: 2362 spin_lock_irq(&pool->lock); 2363 2364 /* am I supposed to die? */ 2365 if (unlikely(worker->flags & WORKER_DIE)) { 2366 spin_unlock_irq(&pool->lock); 2367 WARN_ON_ONCE(!list_empty(&worker->entry)); 2368 set_pf_worker(false); 2369 2370 set_task_comm(worker->task, "kworker/dying"); 2371 ida_simple_remove(&pool->worker_ida, worker->id); 2372 worker_detach_from_pool(worker); 2373 kfree(worker); 2374 return 0; 2375 } 2376 2377 worker_leave_idle(worker); 2378 recheck: 2379 /* no more worker necessary? */ 2380 if (!need_more_worker(pool)) 2381 goto sleep; 2382 2383 /* do we need to manage? */ 2384 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2385 goto recheck; 2386 2387 /* 2388 * ->scheduled list can only be filled while a worker is 2389 * preparing to process a work or actually processing it. 2390 * Make sure nobody diddled with it while I was sleeping. 2391 */ 2392 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2393 2394 /* 2395 * Finish PREP stage. We're guaranteed to have at least one idle 2396 * worker or that someone else has already assumed the manager 2397 * role. This is where @worker starts participating in concurrency 2398 * management if applicable and concurrency management is restored 2399 * after being rebound. See rebind_workers() for details. 2400 */ 2401 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2402 2403 do { 2404 struct work_struct *work = 2405 list_first_entry(&pool->worklist, 2406 struct work_struct, entry); 2407 2408 pool->watchdog_ts = jiffies; 2409 2410 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2411 /* optimization path, not strictly necessary */ 2412 process_one_work(worker, work); 2413 if (unlikely(!list_empty(&worker->scheduled))) 2414 process_scheduled_works(worker); 2415 } else { 2416 move_linked_works(work, &worker->scheduled, NULL); 2417 process_scheduled_works(worker); 2418 } 2419 } while (keep_working(pool)); 2420 2421 worker_set_flags(worker, WORKER_PREP); 2422 sleep: 2423 /* 2424 * pool->lock is held and there's no work to process and no need to 2425 * manage, sleep. Workers are woken up only while holding 2426 * pool->lock or from local cpu, so setting the current state 2427 * before releasing pool->lock is enough to prevent losing any 2428 * event. 2429 */ 2430 worker_enter_idle(worker); 2431 __set_current_state(TASK_IDLE); 2432 spin_unlock_irq(&pool->lock); 2433 schedule(); 2434 goto woke_up; 2435 } 2436 2437 /** 2438 * rescuer_thread - the rescuer thread function 2439 * @__rescuer: self 2440 * 2441 * Workqueue rescuer thread function. There's one rescuer for each 2442 * workqueue which has WQ_MEM_RECLAIM set. 2443 * 2444 * Regular work processing on a pool may block trying to create a new 2445 * worker which uses GFP_KERNEL allocation which has slight chance of 2446 * developing into deadlock if some works currently on the same queue 2447 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2448 * the problem rescuer solves. 2449 * 2450 * When such condition is possible, the pool summons rescuers of all 2451 * workqueues which have works queued on the pool and let them process 2452 * those works so that forward progress can be guaranteed. 2453 * 2454 * This should happen rarely. 2455 * 2456 * Return: 0 2457 */ 2458 static int rescuer_thread(void *__rescuer) 2459 { 2460 struct worker *rescuer = __rescuer; 2461 struct workqueue_struct *wq = rescuer->rescue_wq; 2462 struct list_head *scheduled = &rescuer->scheduled; 2463 bool should_stop; 2464 2465 set_user_nice(current, RESCUER_NICE_LEVEL); 2466 2467 /* 2468 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2469 * doesn't participate in concurrency management. 2470 */ 2471 set_pf_worker(true); 2472 repeat: 2473 set_current_state(TASK_IDLE); 2474 2475 /* 2476 * By the time the rescuer is requested to stop, the workqueue 2477 * shouldn't have any work pending, but @wq->maydays may still have 2478 * pwq(s) queued. This can happen by non-rescuer workers consuming 2479 * all the work items before the rescuer got to them. Go through 2480 * @wq->maydays processing before acting on should_stop so that the 2481 * list is always empty on exit. 2482 */ 2483 should_stop = kthread_should_stop(); 2484 2485 /* see whether any pwq is asking for help */ 2486 spin_lock_irq(&wq_mayday_lock); 2487 2488 while (!list_empty(&wq->maydays)) { 2489 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2490 struct pool_workqueue, mayday_node); 2491 struct worker_pool *pool = pwq->pool; 2492 struct work_struct *work, *n; 2493 bool first = true; 2494 2495 __set_current_state(TASK_RUNNING); 2496 list_del_init(&pwq->mayday_node); 2497 2498 spin_unlock_irq(&wq_mayday_lock); 2499 2500 worker_attach_to_pool(rescuer, pool); 2501 2502 spin_lock_irq(&pool->lock); 2503 2504 /* 2505 * Slurp in all works issued via this workqueue and 2506 * process'em. 2507 */ 2508 WARN_ON_ONCE(!list_empty(scheduled)); 2509 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2510 if (get_work_pwq(work) == pwq) { 2511 if (first) 2512 pool->watchdog_ts = jiffies; 2513 move_linked_works(work, scheduled, &n); 2514 } 2515 first = false; 2516 } 2517 2518 if (!list_empty(scheduled)) { 2519 process_scheduled_works(rescuer); 2520 2521 /* 2522 * The above execution of rescued work items could 2523 * have created more to rescue through 2524 * pwq_activate_first_delayed() or chained 2525 * queueing. Let's put @pwq back on mayday list so 2526 * that such back-to-back work items, which may be 2527 * being used to relieve memory pressure, don't 2528 * incur MAYDAY_INTERVAL delay inbetween. 2529 */ 2530 if (need_to_create_worker(pool)) { 2531 spin_lock(&wq_mayday_lock); 2532 /* 2533 * Queue iff we aren't racing destruction 2534 * and somebody else hasn't queued it already. 2535 */ 2536 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 2537 get_pwq(pwq); 2538 list_add_tail(&pwq->mayday_node, &wq->maydays); 2539 } 2540 spin_unlock(&wq_mayday_lock); 2541 } 2542 } 2543 2544 /* 2545 * Put the reference grabbed by send_mayday(). @pool won't 2546 * go away while we're still attached to it. 2547 */ 2548 put_pwq(pwq); 2549 2550 /* 2551 * Leave this pool. If need_more_worker() is %true, notify a 2552 * regular worker; otherwise, we end up with 0 concurrency 2553 * and stalling the execution. 2554 */ 2555 if (need_more_worker(pool)) 2556 wake_up_worker(pool); 2557 2558 spin_unlock_irq(&pool->lock); 2559 2560 worker_detach_from_pool(rescuer); 2561 2562 spin_lock_irq(&wq_mayday_lock); 2563 } 2564 2565 spin_unlock_irq(&wq_mayday_lock); 2566 2567 if (should_stop) { 2568 __set_current_state(TASK_RUNNING); 2569 set_pf_worker(false); 2570 return 0; 2571 } 2572 2573 /* rescuers should never participate in concurrency management */ 2574 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2575 schedule(); 2576 goto repeat; 2577 } 2578 2579 /** 2580 * check_flush_dependency - check for flush dependency sanity 2581 * @target_wq: workqueue being flushed 2582 * @target_work: work item being flushed (NULL for workqueue flushes) 2583 * 2584 * %current is trying to flush the whole @target_wq or @target_work on it. 2585 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2586 * reclaiming memory or running on a workqueue which doesn't have 2587 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2588 * a deadlock. 2589 */ 2590 static void check_flush_dependency(struct workqueue_struct *target_wq, 2591 struct work_struct *target_work) 2592 { 2593 work_func_t target_func = target_work ? target_work->func : NULL; 2594 struct worker *worker; 2595 2596 if (target_wq->flags & WQ_MEM_RECLAIM) 2597 return; 2598 2599 worker = current_wq_worker(); 2600 2601 WARN_ONCE(current->flags & PF_MEMALLOC, 2602 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 2603 current->pid, current->comm, target_wq->name, target_func); 2604 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2605 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2606 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 2607 worker->current_pwq->wq->name, worker->current_func, 2608 target_wq->name, target_func); 2609 } 2610 2611 struct wq_barrier { 2612 struct work_struct work; 2613 struct completion done; 2614 struct task_struct *task; /* purely informational */ 2615 }; 2616 2617 static void wq_barrier_func(struct work_struct *work) 2618 { 2619 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2620 complete(&barr->done); 2621 } 2622 2623 /** 2624 * insert_wq_barrier - insert a barrier work 2625 * @pwq: pwq to insert barrier into 2626 * @barr: wq_barrier to insert 2627 * @target: target work to attach @barr to 2628 * @worker: worker currently executing @target, NULL if @target is not executing 2629 * 2630 * @barr is linked to @target such that @barr is completed only after 2631 * @target finishes execution. Please note that the ordering 2632 * guarantee is observed only with respect to @target and on the local 2633 * cpu. 2634 * 2635 * Currently, a queued barrier can't be canceled. This is because 2636 * try_to_grab_pending() can't determine whether the work to be 2637 * grabbed is at the head of the queue and thus can't clear LINKED 2638 * flag of the previous work while there must be a valid next work 2639 * after a work with LINKED flag set. 2640 * 2641 * Note that when @worker is non-NULL, @target may be modified 2642 * underneath us, so we can't reliably determine pwq from @target. 2643 * 2644 * CONTEXT: 2645 * spin_lock_irq(pool->lock). 2646 */ 2647 static void insert_wq_barrier(struct pool_workqueue *pwq, 2648 struct wq_barrier *barr, 2649 struct work_struct *target, struct worker *worker) 2650 { 2651 struct list_head *head; 2652 unsigned int linked = 0; 2653 2654 /* 2655 * debugobject calls are safe here even with pool->lock locked 2656 * as we know for sure that this will not trigger any of the 2657 * checks and call back into the fixup functions where we 2658 * might deadlock. 2659 */ 2660 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2661 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2662 2663 init_completion_map(&barr->done, &target->lockdep_map); 2664 2665 barr->task = current; 2666 2667 /* 2668 * If @target is currently being executed, schedule the 2669 * barrier to the worker; otherwise, put it after @target. 2670 */ 2671 if (worker) 2672 head = worker->scheduled.next; 2673 else { 2674 unsigned long *bits = work_data_bits(target); 2675 2676 head = target->entry.next; 2677 /* there can already be other linked works, inherit and set */ 2678 linked = *bits & WORK_STRUCT_LINKED; 2679 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2680 } 2681 2682 debug_work_activate(&barr->work); 2683 insert_work(pwq, &barr->work, head, 2684 work_color_to_flags(WORK_NO_COLOR) | linked); 2685 } 2686 2687 /** 2688 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2689 * @wq: workqueue being flushed 2690 * @flush_color: new flush color, < 0 for no-op 2691 * @work_color: new work color, < 0 for no-op 2692 * 2693 * Prepare pwqs for workqueue flushing. 2694 * 2695 * If @flush_color is non-negative, flush_color on all pwqs should be 2696 * -1. If no pwq has in-flight commands at the specified color, all 2697 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2698 * has in flight commands, its pwq->flush_color is set to 2699 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2700 * wakeup logic is armed and %true is returned. 2701 * 2702 * The caller should have initialized @wq->first_flusher prior to 2703 * calling this function with non-negative @flush_color. If 2704 * @flush_color is negative, no flush color update is done and %false 2705 * is returned. 2706 * 2707 * If @work_color is non-negative, all pwqs should have the same 2708 * work_color which is previous to @work_color and all will be 2709 * advanced to @work_color. 2710 * 2711 * CONTEXT: 2712 * mutex_lock(wq->mutex). 2713 * 2714 * Return: 2715 * %true if @flush_color >= 0 and there's something to flush. %false 2716 * otherwise. 2717 */ 2718 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2719 int flush_color, int work_color) 2720 { 2721 bool wait = false; 2722 struct pool_workqueue *pwq; 2723 2724 if (flush_color >= 0) { 2725 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2726 atomic_set(&wq->nr_pwqs_to_flush, 1); 2727 } 2728 2729 for_each_pwq(pwq, wq) { 2730 struct worker_pool *pool = pwq->pool; 2731 2732 spin_lock_irq(&pool->lock); 2733 2734 if (flush_color >= 0) { 2735 WARN_ON_ONCE(pwq->flush_color != -1); 2736 2737 if (pwq->nr_in_flight[flush_color]) { 2738 pwq->flush_color = flush_color; 2739 atomic_inc(&wq->nr_pwqs_to_flush); 2740 wait = true; 2741 } 2742 } 2743 2744 if (work_color >= 0) { 2745 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2746 pwq->work_color = work_color; 2747 } 2748 2749 spin_unlock_irq(&pool->lock); 2750 } 2751 2752 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2753 complete(&wq->first_flusher->done); 2754 2755 return wait; 2756 } 2757 2758 /** 2759 * flush_workqueue - ensure that any scheduled work has run to completion. 2760 * @wq: workqueue to flush 2761 * 2762 * This function sleeps until all work items which were queued on entry 2763 * have finished execution, but it is not livelocked by new incoming ones. 2764 */ 2765 void flush_workqueue(struct workqueue_struct *wq) 2766 { 2767 struct wq_flusher this_flusher = { 2768 .list = LIST_HEAD_INIT(this_flusher.list), 2769 .flush_color = -1, 2770 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2771 }; 2772 int next_color; 2773 2774 if (WARN_ON(!wq_online)) 2775 return; 2776 2777 lock_map_acquire(&wq->lockdep_map); 2778 lock_map_release(&wq->lockdep_map); 2779 2780 mutex_lock(&wq->mutex); 2781 2782 /* 2783 * Start-to-wait phase 2784 */ 2785 next_color = work_next_color(wq->work_color); 2786 2787 if (next_color != wq->flush_color) { 2788 /* 2789 * Color space is not full. The current work_color 2790 * becomes our flush_color and work_color is advanced 2791 * by one. 2792 */ 2793 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2794 this_flusher.flush_color = wq->work_color; 2795 wq->work_color = next_color; 2796 2797 if (!wq->first_flusher) { 2798 /* no flush in progress, become the first flusher */ 2799 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2800 2801 wq->first_flusher = &this_flusher; 2802 2803 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2804 wq->work_color)) { 2805 /* nothing to flush, done */ 2806 wq->flush_color = next_color; 2807 wq->first_flusher = NULL; 2808 goto out_unlock; 2809 } 2810 } else { 2811 /* wait in queue */ 2812 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2813 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2814 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2815 } 2816 } else { 2817 /* 2818 * Oops, color space is full, wait on overflow queue. 2819 * The next flush completion will assign us 2820 * flush_color and transfer to flusher_queue. 2821 */ 2822 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2823 } 2824 2825 check_flush_dependency(wq, NULL); 2826 2827 mutex_unlock(&wq->mutex); 2828 2829 wait_for_completion(&this_flusher.done); 2830 2831 /* 2832 * Wake-up-and-cascade phase 2833 * 2834 * First flushers are responsible for cascading flushes and 2835 * handling overflow. Non-first flushers can simply return. 2836 */ 2837 if (wq->first_flusher != &this_flusher) 2838 return; 2839 2840 mutex_lock(&wq->mutex); 2841 2842 /* we might have raced, check again with mutex held */ 2843 if (wq->first_flusher != &this_flusher) 2844 goto out_unlock; 2845 2846 wq->first_flusher = NULL; 2847 2848 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2849 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2850 2851 while (true) { 2852 struct wq_flusher *next, *tmp; 2853 2854 /* complete all the flushers sharing the current flush color */ 2855 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2856 if (next->flush_color != wq->flush_color) 2857 break; 2858 list_del_init(&next->list); 2859 complete(&next->done); 2860 } 2861 2862 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2863 wq->flush_color != work_next_color(wq->work_color)); 2864 2865 /* this flush_color is finished, advance by one */ 2866 wq->flush_color = work_next_color(wq->flush_color); 2867 2868 /* one color has been freed, handle overflow queue */ 2869 if (!list_empty(&wq->flusher_overflow)) { 2870 /* 2871 * Assign the same color to all overflowed 2872 * flushers, advance work_color and append to 2873 * flusher_queue. This is the start-to-wait 2874 * phase for these overflowed flushers. 2875 */ 2876 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2877 tmp->flush_color = wq->work_color; 2878 2879 wq->work_color = work_next_color(wq->work_color); 2880 2881 list_splice_tail_init(&wq->flusher_overflow, 2882 &wq->flusher_queue); 2883 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2884 } 2885 2886 if (list_empty(&wq->flusher_queue)) { 2887 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2888 break; 2889 } 2890 2891 /* 2892 * Need to flush more colors. Make the next flusher 2893 * the new first flusher and arm pwqs. 2894 */ 2895 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2896 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2897 2898 list_del_init(&next->list); 2899 wq->first_flusher = next; 2900 2901 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2902 break; 2903 2904 /* 2905 * Meh... this color is already done, clear first 2906 * flusher and repeat cascading. 2907 */ 2908 wq->first_flusher = NULL; 2909 } 2910 2911 out_unlock: 2912 mutex_unlock(&wq->mutex); 2913 } 2914 EXPORT_SYMBOL(flush_workqueue); 2915 2916 /** 2917 * drain_workqueue - drain a workqueue 2918 * @wq: workqueue to drain 2919 * 2920 * Wait until the workqueue becomes empty. While draining is in progress, 2921 * only chain queueing is allowed. IOW, only currently pending or running 2922 * work items on @wq can queue further work items on it. @wq is flushed 2923 * repeatedly until it becomes empty. The number of flushing is determined 2924 * by the depth of chaining and should be relatively short. Whine if it 2925 * takes too long. 2926 */ 2927 void drain_workqueue(struct workqueue_struct *wq) 2928 { 2929 unsigned int flush_cnt = 0; 2930 struct pool_workqueue *pwq; 2931 2932 /* 2933 * __queue_work() needs to test whether there are drainers, is much 2934 * hotter than drain_workqueue() and already looks at @wq->flags. 2935 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2936 */ 2937 mutex_lock(&wq->mutex); 2938 if (!wq->nr_drainers++) 2939 wq->flags |= __WQ_DRAINING; 2940 mutex_unlock(&wq->mutex); 2941 reflush: 2942 flush_workqueue(wq); 2943 2944 mutex_lock(&wq->mutex); 2945 2946 for_each_pwq(pwq, wq) { 2947 bool drained; 2948 2949 spin_lock_irq(&pwq->pool->lock); 2950 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2951 spin_unlock_irq(&pwq->pool->lock); 2952 2953 if (drained) 2954 continue; 2955 2956 if (++flush_cnt == 10 || 2957 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2958 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2959 wq->name, flush_cnt); 2960 2961 mutex_unlock(&wq->mutex); 2962 goto reflush; 2963 } 2964 2965 if (!--wq->nr_drainers) 2966 wq->flags &= ~__WQ_DRAINING; 2967 mutex_unlock(&wq->mutex); 2968 } 2969 EXPORT_SYMBOL_GPL(drain_workqueue); 2970 2971 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2972 bool from_cancel) 2973 { 2974 struct worker *worker = NULL; 2975 struct worker_pool *pool; 2976 struct pool_workqueue *pwq; 2977 2978 might_sleep(); 2979 2980 rcu_read_lock(); 2981 pool = get_work_pool(work); 2982 if (!pool) { 2983 rcu_read_unlock(); 2984 return false; 2985 } 2986 2987 spin_lock_irq(&pool->lock); 2988 /* see the comment in try_to_grab_pending() with the same code */ 2989 pwq = get_work_pwq(work); 2990 if (pwq) { 2991 if (unlikely(pwq->pool != pool)) 2992 goto already_gone; 2993 } else { 2994 worker = find_worker_executing_work(pool, work); 2995 if (!worker) 2996 goto already_gone; 2997 pwq = worker->current_pwq; 2998 } 2999 3000 check_flush_dependency(pwq->wq, work); 3001 3002 insert_wq_barrier(pwq, barr, work, worker); 3003 spin_unlock_irq(&pool->lock); 3004 3005 /* 3006 * Force a lock recursion deadlock when using flush_work() inside a 3007 * single-threaded or rescuer equipped workqueue. 3008 * 3009 * For single threaded workqueues the deadlock happens when the work 3010 * is after the work issuing the flush_work(). For rescuer equipped 3011 * workqueues the deadlock happens when the rescuer stalls, blocking 3012 * forward progress. 3013 */ 3014 if (!from_cancel && 3015 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3016 lock_map_acquire(&pwq->wq->lockdep_map); 3017 lock_map_release(&pwq->wq->lockdep_map); 3018 } 3019 rcu_read_unlock(); 3020 return true; 3021 already_gone: 3022 spin_unlock_irq(&pool->lock); 3023 rcu_read_unlock(); 3024 return false; 3025 } 3026 3027 static bool __flush_work(struct work_struct *work, bool from_cancel) 3028 { 3029 struct wq_barrier barr; 3030 3031 if (WARN_ON(!wq_online)) 3032 return false; 3033 3034 if (WARN_ON(!work->func)) 3035 return false; 3036 3037 if (!from_cancel) { 3038 lock_map_acquire(&work->lockdep_map); 3039 lock_map_release(&work->lockdep_map); 3040 } 3041 3042 if (start_flush_work(work, &barr, from_cancel)) { 3043 wait_for_completion(&barr.done); 3044 destroy_work_on_stack(&barr.work); 3045 return true; 3046 } else { 3047 return false; 3048 } 3049 } 3050 3051 /** 3052 * flush_work - wait for a work to finish executing the last queueing instance 3053 * @work: the work to flush 3054 * 3055 * Wait until @work has finished execution. @work is guaranteed to be idle 3056 * on return if it hasn't been requeued since flush started. 3057 * 3058 * Return: 3059 * %true if flush_work() waited for the work to finish execution, 3060 * %false if it was already idle. 3061 */ 3062 bool flush_work(struct work_struct *work) 3063 { 3064 return __flush_work(work, false); 3065 } 3066 EXPORT_SYMBOL_GPL(flush_work); 3067 3068 struct cwt_wait { 3069 wait_queue_entry_t wait; 3070 struct work_struct *work; 3071 }; 3072 3073 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3074 { 3075 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3076 3077 if (cwait->work != key) 3078 return 0; 3079 return autoremove_wake_function(wait, mode, sync, key); 3080 } 3081 3082 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3083 { 3084 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3085 unsigned long flags; 3086 int ret; 3087 3088 do { 3089 ret = try_to_grab_pending(work, is_dwork, &flags); 3090 /* 3091 * If someone else is already canceling, wait for it to 3092 * finish. flush_work() doesn't work for PREEMPT_NONE 3093 * because we may get scheduled between @work's completion 3094 * and the other canceling task resuming and clearing 3095 * CANCELING - flush_work() will return false immediately 3096 * as @work is no longer busy, try_to_grab_pending() will 3097 * return -ENOENT as @work is still being canceled and the 3098 * other canceling task won't be able to clear CANCELING as 3099 * we're hogging the CPU. 3100 * 3101 * Let's wait for completion using a waitqueue. As this 3102 * may lead to the thundering herd problem, use a custom 3103 * wake function which matches @work along with exclusive 3104 * wait and wakeup. 3105 */ 3106 if (unlikely(ret == -ENOENT)) { 3107 struct cwt_wait cwait; 3108 3109 init_wait(&cwait.wait); 3110 cwait.wait.func = cwt_wakefn; 3111 cwait.work = work; 3112 3113 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3114 TASK_UNINTERRUPTIBLE); 3115 if (work_is_canceling(work)) 3116 schedule(); 3117 finish_wait(&cancel_waitq, &cwait.wait); 3118 } 3119 } while (unlikely(ret < 0)); 3120 3121 /* tell other tasks trying to grab @work to back off */ 3122 mark_work_canceling(work); 3123 local_irq_restore(flags); 3124 3125 /* 3126 * This allows canceling during early boot. We know that @work 3127 * isn't executing. 3128 */ 3129 if (wq_online) 3130 __flush_work(work, true); 3131 3132 clear_work_data(work); 3133 3134 /* 3135 * Paired with prepare_to_wait() above so that either 3136 * waitqueue_active() is visible here or !work_is_canceling() is 3137 * visible there. 3138 */ 3139 smp_mb(); 3140 if (waitqueue_active(&cancel_waitq)) 3141 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3142 3143 return ret; 3144 } 3145 3146 /** 3147 * cancel_work_sync - cancel a work and wait for it to finish 3148 * @work: the work to cancel 3149 * 3150 * Cancel @work and wait for its execution to finish. This function 3151 * can be used even if the work re-queues itself or migrates to 3152 * another workqueue. On return from this function, @work is 3153 * guaranteed to be not pending or executing on any CPU. 3154 * 3155 * cancel_work_sync(&delayed_work->work) must not be used for 3156 * delayed_work's. Use cancel_delayed_work_sync() instead. 3157 * 3158 * The caller must ensure that the workqueue on which @work was last 3159 * queued can't be destroyed before this function returns. 3160 * 3161 * Return: 3162 * %true if @work was pending, %false otherwise. 3163 */ 3164 bool cancel_work_sync(struct work_struct *work) 3165 { 3166 return __cancel_work_timer(work, false); 3167 } 3168 EXPORT_SYMBOL_GPL(cancel_work_sync); 3169 3170 /** 3171 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3172 * @dwork: the delayed work to flush 3173 * 3174 * Delayed timer is cancelled and the pending work is queued for 3175 * immediate execution. Like flush_work(), this function only 3176 * considers the last queueing instance of @dwork. 3177 * 3178 * Return: 3179 * %true if flush_work() waited for the work to finish execution, 3180 * %false if it was already idle. 3181 */ 3182 bool flush_delayed_work(struct delayed_work *dwork) 3183 { 3184 local_irq_disable(); 3185 if (del_timer_sync(&dwork->timer)) 3186 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3187 local_irq_enable(); 3188 return flush_work(&dwork->work); 3189 } 3190 EXPORT_SYMBOL(flush_delayed_work); 3191 3192 /** 3193 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3194 * @rwork: the rcu work to flush 3195 * 3196 * Return: 3197 * %true if flush_rcu_work() waited for the work to finish execution, 3198 * %false if it was already idle. 3199 */ 3200 bool flush_rcu_work(struct rcu_work *rwork) 3201 { 3202 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3203 rcu_barrier(); 3204 flush_work(&rwork->work); 3205 return true; 3206 } else { 3207 return flush_work(&rwork->work); 3208 } 3209 } 3210 EXPORT_SYMBOL(flush_rcu_work); 3211 3212 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3213 { 3214 unsigned long flags; 3215 int ret; 3216 3217 do { 3218 ret = try_to_grab_pending(work, is_dwork, &flags); 3219 } while (unlikely(ret == -EAGAIN)); 3220 3221 if (unlikely(ret < 0)) 3222 return false; 3223 3224 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3225 local_irq_restore(flags); 3226 return ret; 3227 } 3228 3229 /** 3230 * cancel_delayed_work - cancel a delayed work 3231 * @dwork: delayed_work to cancel 3232 * 3233 * Kill off a pending delayed_work. 3234 * 3235 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3236 * pending. 3237 * 3238 * Note: 3239 * The work callback function may still be running on return, unless 3240 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3241 * use cancel_delayed_work_sync() to wait on it. 3242 * 3243 * This function is safe to call from any context including IRQ handler. 3244 */ 3245 bool cancel_delayed_work(struct delayed_work *dwork) 3246 { 3247 return __cancel_work(&dwork->work, true); 3248 } 3249 EXPORT_SYMBOL(cancel_delayed_work); 3250 3251 /** 3252 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3253 * @dwork: the delayed work cancel 3254 * 3255 * This is cancel_work_sync() for delayed works. 3256 * 3257 * Return: 3258 * %true if @dwork was pending, %false otherwise. 3259 */ 3260 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3261 { 3262 return __cancel_work_timer(&dwork->work, true); 3263 } 3264 EXPORT_SYMBOL(cancel_delayed_work_sync); 3265 3266 /** 3267 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3268 * @func: the function to call 3269 * 3270 * schedule_on_each_cpu() executes @func on each online CPU using the 3271 * system workqueue and blocks until all CPUs have completed. 3272 * schedule_on_each_cpu() is very slow. 3273 * 3274 * Return: 3275 * 0 on success, -errno on failure. 3276 */ 3277 int schedule_on_each_cpu(work_func_t func) 3278 { 3279 int cpu; 3280 struct work_struct __percpu *works; 3281 3282 works = alloc_percpu(struct work_struct); 3283 if (!works) 3284 return -ENOMEM; 3285 3286 get_online_cpus(); 3287 3288 for_each_online_cpu(cpu) { 3289 struct work_struct *work = per_cpu_ptr(works, cpu); 3290 3291 INIT_WORK(work, func); 3292 schedule_work_on(cpu, work); 3293 } 3294 3295 for_each_online_cpu(cpu) 3296 flush_work(per_cpu_ptr(works, cpu)); 3297 3298 put_online_cpus(); 3299 free_percpu(works); 3300 return 0; 3301 } 3302 3303 /** 3304 * execute_in_process_context - reliably execute the routine with user context 3305 * @fn: the function to execute 3306 * @ew: guaranteed storage for the execute work structure (must 3307 * be available when the work executes) 3308 * 3309 * Executes the function immediately if process context is available, 3310 * otherwise schedules the function for delayed execution. 3311 * 3312 * Return: 0 - function was executed 3313 * 1 - function was scheduled for execution 3314 */ 3315 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3316 { 3317 if (!in_interrupt()) { 3318 fn(&ew->work); 3319 return 0; 3320 } 3321 3322 INIT_WORK(&ew->work, fn); 3323 schedule_work(&ew->work); 3324 3325 return 1; 3326 } 3327 EXPORT_SYMBOL_GPL(execute_in_process_context); 3328 3329 /** 3330 * free_workqueue_attrs - free a workqueue_attrs 3331 * @attrs: workqueue_attrs to free 3332 * 3333 * Undo alloc_workqueue_attrs(). 3334 */ 3335 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3336 { 3337 if (attrs) { 3338 free_cpumask_var(attrs->cpumask); 3339 kfree(attrs); 3340 } 3341 } 3342 3343 /** 3344 * alloc_workqueue_attrs - allocate a workqueue_attrs 3345 * 3346 * Allocate a new workqueue_attrs, initialize with default settings and 3347 * return it. 3348 * 3349 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3350 */ 3351 struct workqueue_attrs *alloc_workqueue_attrs(void) 3352 { 3353 struct workqueue_attrs *attrs; 3354 3355 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 3356 if (!attrs) 3357 goto fail; 3358 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 3359 goto fail; 3360 3361 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3362 return attrs; 3363 fail: 3364 free_workqueue_attrs(attrs); 3365 return NULL; 3366 } 3367 3368 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3369 const struct workqueue_attrs *from) 3370 { 3371 to->nice = from->nice; 3372 cpumask_copy(to->cpumask, from->cpumask); 3373 /* 3374 * Unlike hash and equality test, this function doesn't ignore 3375 * ->no_numa as it is used for both pool and wq attrs. Instead, 3376 * get_unbound_pool() explicitly clears ->no_numa after copying. 3377 */ 3378 to->no_numa = from->no_numa; 3379 } 3380 3381 /* hash value of the content of @attr */ 3382 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3383 { 3384 u32 hash = 0; 3385 3386 hash = jhash_1word(attrs->nice, hash); 3387 hash = jhash(cpumask_bits(attrs->cpumask), 3388 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3389 return hash; 3390 } 3391 3392 /* content equality test */ 3393 static bool wqattrs_equal(const struct workqueue_attrs *a, 3394 const struct workqueue_attrs *b) 3395 { 3396 if (a->nice != b->nice) 3397 return false; 3398 if (!cpumask_equal(a->cpumask, b->cpumask)) 3399 return false; 3400 return true; 3401 } 3402 3403 /** 3404 * init_worker_pool - initialize a newly zalloc'd worker_pool 3405 * @pool: worker_pool to initialize 3406 * 3407 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3408 * 3409 * Return: 0 on success, -errno on failure. Even on failure, all fields 3410 * inside @pool proper are initialized and put_unbound_pool() can be called 3411 * on @pool safely to release it. 3412 */ 3413 static int init_worker_pool(struct worker_pool *pool) 3414 { 3415 spin_lock_init(&pool->lock); 3416 pool->id = -1; 3417 pool->cpu = -1; 3418 pool->node = NUMA_NO_NODE; 3419 pool->flags |= POOL_DISASSOCIATED; 3420 pool->watchdog_ts = jiffies; 3421 INIT_LIST_HEAD(&pool->worklist); 3422 INIT_LIST_HEAD(&pool->idle_list); 3423 hash_init(pool->busy_hash); 3424 3425 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3426 3427 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3428 3429 INIT_LIST_HEAD(&pool->workers); 3430 3431 ida_init(&pool->worker_ida); 3432 INIT_HLIST_NODE(&pool->hash_node); 3433 pool->refcnt = 1; 3434 3435 /* shouldn't fail above this point */ 3436 pool->attrs = alloc_workqueue_attrs(); 3437 if (!pool->attrs) 3438 return -ENOMEM; 3439 return 0; 3440 } 3441 3442 #ifdef CONFIG_LOCKDEP 3443 static void wq_init_lockdep(struct workqueue_struct *wq) 3444 { 3445 char *lock_name; 3446 3447 lockdep_register_key(&wq->key); 3448 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3449 if (!lock_name) 3450 lock_name = wq->name; 3451 3452 wq->lock_name = lock_name; 3453 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3454 } 3455 3456 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3457 { 3458 lockdep_unregister_key(&wq->key); 3459 } 3460 3461 static void wq_free_lockdep(struct workqueue_struct *wq) 3462 { 3463 if (wq->lock_name != wq->name) 3464 kfree(wq->lock_name); 3465 } 3466 #else 3467 static void wq_init_lockdep(struct workqueue_struct *wq) 3468 { 3469 } 3470 3471 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3472 { 3473 } 3474 3475 static void wq_free_lockdep(struct workqueue_struct *wq) 3476 { 3477 } 3478 #endif 3479 3480 static void rcu_free_wq(struct rcu_head *rcu) 3481 { 3482 struct workqueue_struct *wq = 3483 container_of(rcu, struct workqueue_struct, rcu); 3484 3485 wq_free_lockdep(wq); 3486 3487 if (!(wq->flags & WQ_UNBOUND)) 3488 free_percpu(wq->cpu_pwqs); 3489 else 3490 free_workqueue_attrs(wq->unbound_attrs); 3491 3492 kfree(wq->rescuer); 3493 kfree(wq); 3494 } 3495 3496 static void rcu_free_pool(struct rcu_head *rcu) 3497 { 3498 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3499 3500 ida_destroy(&pool->worker_ida); 3501 free_workqueue_attrs(pool->attrs); 3502 kfree(pool); 3503 } 3504 3505 /** 3506 * put_unbound_pool - put a worker_pool 3507 * @pool: worker_pool to put 3508 * 3509 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 3510 * safe manner. get_unbound_pool() calls this function on its failure path 3511 * and this function should be able to release pools which went through, 3512 * successfully or not, init_worker_pool(). 3513 * 3514 * Should be called with wq_pool_mutex held. 3515 */ 3516 static void put_unbound_pool(struct worker_pool *pool) 3517 { 3518 DECLARE_COMPLETION_ONSTACK(detach_completion); 3519 struct worker *worker; 3520 3521 lockdep_assert_held(&wq_pool_mutex); 3522 3523 if (--pool->refcnt) 3524 return; 3525 3526 /* sanity checks */ 3527 if (WARN_ON(!(pool->cpu < 0)) || 3528 WARN_ON(!list_empty(&pool->worklist))) 3529 return; 3530 3531 /* release id and unhash */ 3532 if (pool->id >= 0) 3533 idr_remove(&worker_pool_idr, pool->id); 3534 hash_del(&pool->hash_node); 3535 3536 /* 3537 * Become the manager and destroy all workers. This prevents 3538 * @pool's workers from blocking on attach_mutex. We're the last 3539 * manager and @pool gets freed with the flag set. 3540 */ 3541 spin_lock_irq(&pool->lock); 3542 wait_event_lock_irq(wq_manager_wait, 3543 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock); 3544 pool->flags |= POOL_MANAGER_ACTIVE; 3545 3546 while ((worker = first_idle_worker(pool))) 3547 destroy_worker(worker); 3548 WARN_ON(pool->nr_workers || pool->nr_idle); 3549 spin_unlock_irq(&pool->lock); 3550 3551 mutex_lock(&wq_pool_attach_mutex); 3552 if (!list_empty(&pool->workers)) 3553 pool->detach_completion = &detach_completion; 3554 mutex_unlock(&wq_pool_attach_mutex); 3555 3556 if (pool->detach_completion) 3557 wait_for_completion(pool->detach_completion); 3558 3559 /* shut down the timers */ 3560 del_timer_sync(&pool->idle_timer); 3561 del_timer_sync(&pool->mayday_timer); 3562 3563 /* RCU protected to allow dereferences from get_work_pool() */ 3564 call_rcu(&pool->rcu, rcu_free_pool); 3565 } 3566 3567 /** 3568 * get_unbound_pool - get a worker_pool with the specified attributes 3569 * @attrs: the attributes of the worker_pool to get 3570 * 3571 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3572 * reference count and return it. If there already is a matching 3573 * worker_pool, it will be used; otherwise, this function attempts to 3574 * create a new one. 3575 * 3576 * Should be called with wq_pool_mutex held. 3577 * 3578 * Return: On success, a worker_pool with the same attributes as @attrs. 3579 * On failure, %NULL. 3580 */ 3581 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3582 { 3583 u32 hash = wqattrs_hash(attrs); 3584 struct worker_pool *pool; 3585 int node; 3586 int target_node = NUMA_NO_NODE; 3587 3588 lockdep_assert_held(&wq_pool_mutex); 3589 3590 /* do we already have a matching pool? */ 3591 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3592 if (wqattrs_equal(pool->attrs, attrs)) { 3593 pool->refcnt++; 3594 return pool; 3595 } 3596 } 3597 3598 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3599 if (wq_numa_enabled) { 3600 for_each_node(node) { 3601 if (cpumask_subset(attrs->cpumask, 3602 wq_numa_possible_cpumask[node])) { 3603 target_node = node; 3604 break; 3605 } 3606 } 3607 } 3608 3609 /* nope, create a new one */ 3610 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3611 if (!pool || init_worker_pool(pool) < 0) 3612 goto fail; 3613 3614 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3615 copy_workqueue_attrs(pool->attrs, attrs); 3616 pool->node = target_node; 3617 3618 /* 3619 * no_numa isn't a worker_pool attribute, always clear it. See 3620 * 'struct workqueue_attrs' comments for detail. 3621 */ 3622 pool->attrs->no_numa = false; 3623 3624 if (worker_pool_assign_id(pool) < 0) 3625 goto fail; 3626 3627 /* create and start the initial worker */ 3628 if (wq_online && !create_worker(pool)) 3629 goto fail; 3630 3631 /* install */ 3632 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3633 3634 return pool; 3635 fail: 3636 if (pool) 3637 put_unbound_pool(pool); 3638 return NULL; 3639 } 3640 3641 static void rcu_free_pwq(struct rcu_head *rcu) 3642 { 3643 kmem_cache_free(pwq_cache, 3644 container_of(rcu, struct pool_workqueue, rcu)); 3645 } 3646 3647 /* 3648 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3649 * and needs to be destroyed. 3650 */ 3651 static void pwq_unbound_release_workfn(struct work_struct *work) 3652 { 3653 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3654 unbound_release_work); 3655 struct workqueue_struct *wq = pwq->wq; 3656 struct worker_pool *pool = pwq->pool; 3657 bool is_last; 3658 3659 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3660 return; 3661 3662 mutex_lock(&wq->mutex); 3663 list_del_rcu(&pwq->pwqs_node); 3664 is_last = list_empty(&wq->pwqs); 3665 mutex_unlock(&wq->mutex); 3666 3667 mutex_lock(&wq_pool_mutex); 3668 put_unbound_pool(pool); 3669 mutex_unlock(&wq_pool_mutex); 3670 3671 call_rcu(&pwq->rcu, rcu_free_pwq); 3672 3673 /* 3674 * If we're the last pwq going away, @wq is already dead and no one 3675 * is gonna access it anymore. Schedule RCU free. 3676 */ 3677 if (is_last) { 3678 wq_unregister_lockdep(wq); 3679 call_rcu(&wq->rcu, rcu_free_wq); 3680 } 3681 } 3682 3683 /** 3684 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3685 * @pwq: target pool_workqueue 3686 * 3687 * If @pwq isn't freezing, set @pwq->max_active to the associated 3688 * workqueue's saved_max_active and activate delayed work items 3689 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3690 */ 3691 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3692 { 3693 struct workqueue_struct *wq = pwq->wq; 3694 bool freezable = wq->flags & WQ_FREEZABLE; 3695 unsigned long flags; 3696 3697 /* for @wq->saved_max_active */ 3698 lockdep_assert_held(&wq->mutex); 3699 3700 /* fast exit for non-freezable wqs */ 3701 if (!freezable && pwq->max_active == wq->saved_max_active) 3702 return; 3703 3704 /* this function can be called during early boot w/ irq disabled */ 3705 spin_lock_irqsave(&pwq->pool->lock, flags); 3706 3707 /* 3708 * During [un]freezing, the caller is responsible for ensuring that 3709 * this function is called at least once after @workqueue_freezing 3710 * is updated and visible. 3711 */ 3712 if (!freezable || !workqueue_freezing) { 3713 pwq->max_active = wq->saved_max_active; 3714 3715 while (!list_empty(&pwq->delayed_works) && 3716 pwq->nr_active < pwq->max_active) 3717 pwq_activate_first_delayed(pwq); 3718 3719 /* 3720 * Need to kick a worker after thawed or an unbound wq's 3721 * max_active is bumped. It's a slow path. Do it always. 3722 */ 3723 wake_up_worker(pwq->pool); 3724 } else { 3725 pwq->max_active = 0; 3726 } 3727 3728 spin_unlock_irqrestore(&pwq->pool->lock, flags); 3729 } 3730 3731 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3732 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3733 struct worker_pool *pool) 3734 { 3735 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3736 3737 memset(pwq, 0, sizeof(*pwq)); 3738 3739 pwq->pool = pool; 3740 pwq->wq = wq; 3741 pwq->flush_color = -1; 3742 pwq->refcnt = 1; 3743 INIT_LIST_HEAD(&pwq->delayed_works); 3744 INIT_LIST_HEAD(&pwq->pwqs_node); 3745 INIT_LIST_HEAD(&pwq->mayday_node); 3746 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3747 } 3748 3749 /* sync @pwq with the current state of its associated wq and link it */ 3750 static void link_pwq(struct pool_workqueue *pwq) 3751 { 3752 struct workqueue_struct *wq = pwq->wq; 3753 3754 lockdep_assert_held(&wq->mutex); 3755 3756 /* may be called multiple times, ignore if already linked */ 3757 if (!list_empty(&pwq->pwqs_node)) 3758 return; 3759 3760 /* set the matching work_color */ 3761 pwq->work_color = wq->work_color; 3762 3763 /* sync max_active to the current setting */ 3764 pwq_adjust_max_active(pwq); 3765 3766 /* link in @pwq */ 3767 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3768 } 3769 3770 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3771 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3772 const struct workqueue_attrs *attrs) 3773 { 3774 struct worker_pool *pool; 3775 struct pool_workqueue *pwq; 3776 3777 lockdep_assert_held(&wq_pool_mutex); 3778 3779 pool = get_unbound_pool(attrs); 3780 if (!pool) 3781 return NULL; 3782 3783 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3784 if (!pwq) { 3785 put_unbound_pool(pool); 3786 return NULL; 3787 } 3788 3789 init_pwq(pwq, wq, pool); 3790 return pwq; 3791 } 3792 3793 /** 3794 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3795 * @attrs: the wq_attrs of the default pwq of the target workqueue 3796 * @node: the target NUMA node 3797 * @cpu_going_down: if >= 0, the CPU to consider as offline 3798 * @cpumask: outarg, the resulting cpumask 3799 * 3800 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3801 * @cpu_going_down is >= 0, that cpu is considered offline during 3802 * calculation. The result is stored in @cpumask. 3803 * 3804 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3805 * enabled and @node has online CPUs requested by @attrs, the returned 3806 * cpumask is the intersection of the possible CPUs of @node and 3807 * @attrs->cpumask. 3808 * 3809 * The caller is responsible for ensuring that the cpumask of @node stays 3810 * stable. 3811 * 3812 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3813 * %false if equal. 3814 */ 3815 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3816 int cpu_going_down, cpumask_t *cpumask) 3817 { 3818 if (!wq_numa_enabled || attrs->no_numa) 3819 goto use_dfl; 3820 3821 /* does @node have any online CPUs @attrs wants? */ 3822 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3823 if (cpu_going_down >= 0) 3824 cpumask_clear_cpu(cpu_going_down, cpumask); 3825 3826 if (cpumask_empty(cpumask)) 3827 goto use_dfl; 3828 3829 /* yeap, return possible CPUs in @node that @attrs wants */ 3830 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3831 3832 if (cpumask_empty(cpumask)) { 3833 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3834 "possible intersect\n"); 3835 return false; 3836 } 3837 3838 return !cpumask_equal(cpumask, attrs->cpumask); 3839 3840 use_dfl: 3841 cpumask_copy(cpumask, attrs->cpumask); 3842 return false; 3843 } 3844 3845 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3846 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3847 int node, 3848 struct pool_workqueue *pwq) 3849 { 3850 struct pool_workqueue *old_pwq; 3851 3852 lockdep_assert_held(&wq_pool_mutex); 3853 lockdep_assert_held(&wq->mutex); 3854 3855 /* link_pwq() can handle duplicate calls */ 3856 link_pwq(pwq); 3857 3858 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3859 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3860 return old_pwq; 3861 } 3862 3863 /* context to store the prepared attrs & pwqs before applying */ 3864 struct apply_wqattrs_ctx { 3865 struct workqueue_struct *wq; /* target workqueue */ 3866 struct workqueue_attrs *attrs; /* attrs to apply */ 3867 struct list_head list; /* queued for batching commit */ 3868 struct pool_workqueue *dfl_pwq; 3869 struct pool_workqueue *pwq_tbl[]; 3870 }; 3871 3872 /* free the resources after success or abort */ 3873 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3874 { 3875 if (ctx) { 3876 int node; 3877 3878 for_each_node(node) 3879 put_pwq_unlocked(ctx->pwq_tbl[node]); 3880 put_pwq_unlocked(ctx->dfl_pwq); 3881 3882 free_workqueue_attrs(ctx->attrs); 3883 3884 kfree(ctx); 3885 } 3886 } 3887 3888 /* allocate the attrs and pwqs for later installation */ 3889 static struct apply_wqattrs_ctx * 3890 apply_wqattrs_prepare(struct workqueue_struct *wq, 3891 const struct workqueue_attrs *attrs) 3892 { 3893 struct apply_wqattrs_ctx *ctx; 3894 struct workqueue_attrs *new_attrs, *tmp_attrs; 3895 int node; 3896 3897 lockdep_assert_held(&wq_pool_mutex); 3898 3899 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 3900 3901 new_attrs = alloc_workqueue_attrs(); 3902 tmp_attrs = alloc_workqueue_attrs(); 3903 if (!ctx || !new_attrs || !tmp_attrs) 3904 goto out_free; 3905 3906 /* 3907 * Calculate the attrs of the default pwq. 3908 * If the user configured cpumask doesn't overlap with the 3909 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3910 */ 3911 copy_workqueue_attrs(new_attrs, attrs); 3912 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3913 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3914 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3915 3916 /* 3917 * We may create multiple pwqs with differing cpumasks. Make a 3918 * copy of @new_attrs which will be modified and used to obtain 3919 * pools. 3920 */ 3921 copy_workqueue_attrs(tmp_attrs, new_attrs); 3922 3923 /* 3924 * If something goes wrong during CPU up/down, we'll fall back to 3925 * the default pwq covering whole @attrs->cpumask. Always create 3926 * it even if we don't use it immediately. 3927 */ 3928 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3929 if (!ctx->dfl_pwq) 3930 goto out_free; 3931 3932 for_each_node(node) { 3933 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3934 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3935 if (!ctx->pwq_tbl[node]) 3936 goto out_free; 3937 } else { 3938 ctx->dfl_pwq->refcnt++; 3939 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3940 } 3941 } 3942 3943 /* save the user configured attrs and sanitize it. */ 3944 copy_workqueue_attrs(new_attrs, attrs); 3945 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3946 ctx->attrs = new_attrs; 3947 3948 ctx->wq = wq; 3949 free_workqueue_attrs(tmp_attrs); 3950 return ctx; 3951 3952 out_free: 3953 free_workqueue_attrs(tmp_attrs); 3954 free_workqueue_attrs(new_attrs); 3955 apply_wqattrs_cleanup(ctx); 3956 return NULL; 3957 } 3958 3959 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3960 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3961 { 3962 int node; 3963 3964 /* all pwqs have been created successfully, let's install'em */ 3965 mutex_lock(&ctx->wq->mutex); 3966 3967 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3968 3969 /* save the previous pwq and install the new one */ 3970 for_each_node(node) 3971 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3972 ctx->pwq_tbl[node]); 3973 3974 /* @dfl_pwq might not have been used, ensure it's linked */ 3975 link_pwq(ctx->dfl_pwq); 3976 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3977 3978 mutex_unlock(&ctx->wq->mutex); 3979 } 3980 3981 static void apply_wqattrs_lock(void) 3982 { 3983 /* CPUs should stay stable across pwq creations and installations */ 3984 get_online_cpus(); 3985 mutex_lock(&wq_pool_mutex); 3986 } 3987 3988 static void apply_wqattrs_unlock(void) 3989 { 3990 mutex_unlock(&wq_pool_mutex); 3991 put_online_cpus(); 3992 } 3993 3994 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3995 const struct workqueue_attrs *attrs) 3996 { 3997 struct apply_wqattrs_ctx *ctx; 3998 3999 /* only unbound workqueues can change attributes */ 4000 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 4001 return -EINVAL; 4002 4003 /* creating multiple pwqs breaks ordering guarantee */ 4004 if (!list_empty(&wq->pwqs)) { 4005 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4006 return -EINVAL; 4007 4008 wq->flags &= ~__WQ_ORDERED; 4009 } 4010 4011 ctx = apply_wqattrs_prepare(wq, attrs); 4012 if (!ctx) 4013 return -ENOMEM; 4014 4015 /* the ctx has been prepared successfully, let's commit it */ 4016 apply_wqattrs_commit(ctx); 4017 apply_wqattrs_cleanup(ctx); 4018 4019 return 0; 4020 } 4021 4022 /** 4023 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4024 * @wq: the target workqueue 4025 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4026 * 4027 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 4028 * machines, this function maps a separate pwq to each NUMA node with 4029 * possibles CPUs in @attrs->cpumask so that work items are affine to the 4030 * NUMA node it was issued on. Older pwqs are released as in-flight work 4031 * items finish. Note that a work item which repeatedly requeues itself 4032 * back-to-back will stay on its current pwq. 4033 * 4034 * Performs GFP_KERNEL allocations. 4035 * 4036 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus(). 4037 * 4038 * Return: 0 on success and -errno on failure. 4039 */ 4040 int apply_workqueue_attrs(struct workqueue_struct *wq, 4041 const struct workqueue_attrs *attrs) 4042 { 4043 int ret; 4044 4045 lockdep_assert_cpus_held(); 4046 4047 mutex_lock(&wq_pool_mutex); 4048 ret = apply_workqueue_attrs_locked(wq, attrs); 4049 mutex_unlock(&wq_pool_mutex); 4050 4051 return ret; 4052 } 4053 4054 /** 4055 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4056 * @wq: the target workqueue 4057 * @cpu: the CPU coming up or going down 4058 * @online: whether @cpu is coming up or going down 4059 * 4060 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4061 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4062 * @wq accordingly. 4063 * 4064 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4065 * falls back to @wq->dfl_pwq which may not be optimal but is always 4066 * correct. 4067 * 4068 * Note that when the last allowed CPU of a NUMA node goes offline for a 4069 * workqueue with a cpumask spanning multiple nodes, the workers which were 4070 * already executing the work items for the workqueue will lose their CPU 4071 * affinity and may execute on any CPU. This is similar to how per-cpu 4072 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4073 * affinity, it's the user's responsibility to flush the work item from 4074 * CPU_DOWN_PREPARE. 4075 */ 4076 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4077 bool online) 4078 { 4079 int node = cpu_to_node(cpu); 4080 int cpu_off = online ? -1 : cpu; 4081 struct pool_workqueue *old_pwq = NULL, *pwq; 4082 struct workqueue_attrs *target_attrs; 4083 cpumask_t *cpumask; 4084 4085 lockdep_assert_held(&wq_pool_mutex); 4086 4087 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 4088 wq->unbound_attrs->no_numa) 4089 return; 4090 4091 /* 4092 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4093 * Let's use a preallocated one. The following buf is protected by 4094 * CPU hotplug exclusion. 4095 */ 4096 target_attrs = wq_update_unbound_numa_attrs_buf; 4097 cpumask = target_attrs->cpumask; 4098 4099 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4100 pwq = unbound_pwq_by_node(wq, node); 4101 4102 /* 4103 * Let's determine what needs to be done. If the target cpumask is 4104 * different from the default pwq's, we need to compare it to @pwq's 4105 * and create a new one if they don't match. If the target cpumask 4106 * equals the default pwq's, the default pwq should be used. 4107 */ 4108 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4109 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4110 return; 4111 } else { 4112 goto use_dfl_pwq; 4113 } 4114 4115 /* create a new pwq */ 4116 pwq = alloc_unbound_pwq(wq, target_attrs); 4117 if (!pwq) { 4118 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4119 wq->name); 4120 goto use_dfl_pwq; 4121 } 4122 4123 /* Install the new pwq. */ 4124 mutex_lock(&wq->mutex); 4125 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4126 goto out_unlock; 4127 4128 use_dfl_pwq: 4129 mutex_lock(&wq->mutex); 4130 spin_lock_irq(&wq->dfl_pwq->pool->lock); 4131 get_pwq(wq->dfl_pwq); 4132 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4133 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4134 out_unlock: 4135 mutex_unlock(&wq->mutex); 4136 put_pwq_unlocked(old_pwq); 4137 } 4138 4139 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4140 { 4141 bool highpri = wq->flags & WQ_HIGHPRI; 4142 int cpu, ret; 4143 4144 if (!(wq->flags & WQ_UNBOUND)) { 4145 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4146 if (!wq->cpu_pwqs) 4147 return -ENOMEM; 4148 4149 for_each_possible_cpu(cpu) { 4150 struct pool_workqueue *pwq = 4151 per_cpu_ptr(wq->cpu_pwqs, cpu); 4152 struct worker_pool *cpu_pools = 4153 per_cpu(cpu_worker_pools, cpu); 4154 4155 init_pwq(pwq, wq, &cpu_pools[highpri]); 4156 4157 mutex_lock(&wq->mutex); 4158 link_pwq(pwq); 4159 mutex_unlock(&wq->mutex); 4160 } 4161 return 0; 4162 } 4163 4164 get_online_cpus(); 4165 if (wq->flags & __WQ_ORDERED) { 4166 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4167 /* there should only be single pwq for ordering guarantee */ 4168 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4169 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4170 "ordering guarantee broken for workqueue %s\n", wq->name); 4171 } else { 4172 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4173 } 4174 put_online_cpus(); 4175 4176 return ret; 4177 } 4178 4179 static int wq_clamp_max_active(int max_active, unsigned int flags, 4180 const char *name) 4181 { 4182 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4183 4184 if (max_active < 1 || max_active > lim) 4185 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4186 max_active, name, 1, lim); 4187 4188 return clamp_val(max_active, 1, lim); 4189 } 4190 4191 /* 4192 * Workqueues which may be used during memory reclaim should have a rescuer 4193 * to guarantee forward progress. 4194 */ 4195 static int init_rescuer(struct workqueue_struct *wq) 4196 { 4197 struct worker *rescuer; 4198 int ret; 4199 4200 if (!(wq->flags & WQ_MEM_RECLAIM)) 4201 return 0; 4202 4203 rescuer = alloc_worker(NUMA_NO_NODE); 4204 if (!rescuer) 4205 return -ENOMEM; 4206 4207 rescuer->rescue_wq = wq; 4208 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4209 ret = PTR_ERR_OR_ZERO(rescuer->task); 4210 if (ret) { 4211 kfree(rescuer); 4212 return ret; 4213 } 4214 4215 wq->rescuer = rescuer; 4216 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4217 wake_up_process(rescuer->task); 4218 4219 return 0; 4220 } 4221 4222 __printf(1, 4) 4223 struct workqueue_struct *alloc_workqueue(const char *fmt, 4224 unsigned int flags, 4225 int max_active, ...) 4226 { 4227 size_t tbl_size = 0; 4228 va_list args; 4229 struct workqueue_struct *wq; 4230 struct pool_workqueue *pwq; 4231 4232 /* 4233 * Unbound && max_active == 1 used to imply ordered, which is no 4234 * longer the case on NUMA machines due to per-node pools. While 4235 * alloc_ordered_workqueue() is the right way to create an ordered 4236 * workqueue, keep the previous behavior to avoid subtle breakages 4237 * on NUMA. 4238 */ 4239 if ((flags & WQ_UNBOUND) && max_active == 1) 4240 flags |= __WQ_ORDERED; 4241 4242 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4243 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4244 flags |= WQ_UNBOUND; 4245 4246 /* allocate wq and format name */ 4247 if (flags & WQ_UNBOUND) 4248 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4249 4250 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4251 if (!wq) 4252 return NULL; 4253 4254 if (flags & WQ_UNBOUND) { 4255 wq->unbound_attrs = alloc_workqueue_attrs(); 4256 if (!wq->unbound_attrs) 4257 goto err_free_wq; 4258 } 4259 4260 va_start(args, max_active); 4261 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4262 va_end(args); 4263 4264 max_active = max_active ?: WQ_DFL_ACTIVE; 4265 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4266 4267 /* init wq */ 4268 wq->flags = flags; 4269 wq->saved_max_active = max_active; 4270 mutex_init(&wq->mutex); 4271 atomic_set(&wq->nr_pwqs_to_flush, 0); 4272 INIT_LIST_HEAD(&wq->pwqs); 4273 INIT_LIST_HEAD(&wq->flusher_queue); 4274 INIT_LIST_HEAD(&wq->flusher_overflow); 4275 INIT_LIST_HEAD(&wq->maydays); 4276 4277 wq_init_lockdep(wq); 4278 INIT_LIST_HEAD(&wq->list); 4279 4280 if (alloc_and_link_pwqs(wq) < 0) 4281 goto err_unreg_lockdep; 4282 4283 if (wq_online && init_rescuer(wq) < 0) 4284 goto err_destroy; 4285 4286 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4287 goto err_destroy; 4288 4289 /* 4290 * wq_pool_mutex protects global freeze state and workqueues list. 4291 * Grab it, adjust max_active and add the new @wq to workqueues 4292 * list. 4293 */ 4294 mutex_lock(&wq_pool_mutex); 4295 4296 mutex_lock(&wq->mutex); 4297 for_each_pwq(pwq, wq) 4298 pwq_adjust_max_active(pwq); 4299 mutex_unlock(&wq->mutex); 4300 4301 list_add_tail_rcu(&wq->list, &workqueues); 4302 4303 mutex_unlock(&wq_pool_mutex); 4304 4305 return wq; 4306 4307 err_unreg_lockdep: 4308 wq_unregister_lockdep(wq); 4309 wq_free_lockdep(wq); 4310 err_free_wq: 4311 free_workqueue_attrs(wq->unbound_attrs); 4312 kfree(wq); 4313 return NULL; 4314 err_destroy: 4315 destroy_workqueue(wq); 4316 return NULL; 4317 } 4318 EXPORT_SYMBOL_GPL(alloc_workqueue); 4319 4320 static bool pwq_busy(struct pool_workqueue *pwq) 4321 { 4322 int i; 4323 4324 for (i = 0; i < WORK_NR_COLORS; i++) 4325 if (pwq->nr_in_flight[i]) 4326 return true; 4327 4328 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1)) 4329 return true; 4330 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4331 return true; 4332 4333 return false; 4334 } 4335 4336 /** 4337 * destroy_workqueue - safely terminate a workqueue 4338 * @wq: target workqueue 4339 * 4340 * Safely destroy a workqueue. All work currently pending will be done first. 4341 */ 4342 void destroy_workqueue(struct workqueue_struct *wq) 4343 { 4344 struct pool_workqueue *pwq; 4345 int node; 4346 4347 /* 4348 * Remove it from sysfs first so that sanity check failure doesn't 4349 * lead to sysfs name conflicts. 4350 */ 4351 workqueue_sysfs_unregister(wq); 4352 4353 /* drain it before proceeding with destruction */ 4354 drain_workqueue(wq); 4355 4356 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 4357 if (wq->rescuer) { 4358 struct worker *rescuer = wq->rescuer; 4359 4360 /* this prevents new queueing */ 4361 spin_lock_irq(&wq_mayday_lock); 4362 wq->rescuer = NULL; 4363 spin_unlock_irq(&wq_mayday_lock); 4364 4365 /* rescuer will empty maydays list before exiting */ 4366 kthread_stop(rescuer->task); 4367 kfree(rescuer); 4368 } 4369 4370 /* 4371 * Sanity checks - grab all the locks so that we wait for all 4372 * in-flight operations which may do put_pwq(). 4373 */ 4374 mutex_lock(&wq_pool_mutex); 4375 mutex_lock(&wq->mutex); 4376 for_each_pwq(pwq, wq) { 4377 spin_lock_irq(&pwq->pool->lock); 4378 if (WARN_ON(pwq_busy(pwq))) { 4379 pr_warn("%s: %s has the following busy pwq\n", 4380 __func__, wq->name); 4381 show_pwq(pwq); 4382 spin_unlock_irq(&pwq->pool->lock); 4383 mutex_unlock(&wq->mutex); 4384 mutex_unlock(&wq_pool_mutex); 4385 show_workqueue_state(); 4386 return; 4387 } 4388 spin_unlock_irq(&pwq->pool->lock); 4389 } 4390 mutex_unlock(&wq->mutex); 4391 mutex_unlock(&wq_pool_mutex); 4392 4393 /* 4394 * wq list is used to freeze wq, remove from list after 4395 * flushing is complete in case freeze races us. 4396 */ 4397 mutex_lock(&wq_pool_mutex); 4398 list_del_rcu(&wq->list); 4399 mutex_unlock(&wq_pool_mutex); 4400 4401 if (!(wq->flags & WQ_UNBOUND)) { 4402 wq_unregister_lockdep(wq); 4403 /* 4404 * The base ref is never dropped on per-cpu pwqs. Directly 4405 * schedule RCU free. 4406 */ 4407 call_rcu(&wq->rcu, rcu_free_wq); 4408 } else { 4409 /* 4410 * We're the sole accessor of @wq at this point. Directly 4411 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4412 * @wq will be freed when the last pwq is released. 4413 */ 4414 for_each_node(node) { 4415 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4416 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4417 put_pwq_unlocked(pwq); 4418 } 4419 4420 /* 4421 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4422 * put. Don't access it afterwards. 4423 */ 4424 pwq = wq->dfl_pwq; 4425 wq->dfl_pwq = NULL; 4426 put_pwq_unlocked(pwq); 4427 } 4428 } 4429 EXPORT_SYMBOL_GPL(destroy_workqueue); 4430 4431 /** 4432 * workqueue_set_max_active - adjust max_active of a workqueue 4433 * @wq: target workqueue 4434 * @max_active: new max_active value. 4435 * 4436 * Set max_active of @wq to @max_active. 4437 * 4438 * CONTEXT: 4439 * Don't call from IRQ context. 4440 */ 4441 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4442 { 4443 struct pool_workqueue *pwq; 4444 4445 /* disallow meddling with max_active for ordered workqueues */ 4446 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4447 return; 4448 4449 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4450 4451 mutex_lock(&wq->mutex); 4452 4453 wq->flags &= ~__WQ_ORDERED; 4454 wq->saved_max_active = max_active; 4455 4456 for_each_pwq(pwq, wq) 4457 pwq_adjust_max_active(pwq); 4458 4459 mutex_unlock(&wq->mutex); 4460 } 4461 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4462 4463 /** 4464 * current_work - retrieve %current task's work struct 4465 * 4466 * Determine if %current task is a workqueue worker and what it's working on. 4467 * Useful to find out the context that the %current task is running in. 4468 * 4469 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4470 */ 4471 struct work_struct *current_work(void) 4472 { 4473 struct worker *worker = current_wq_worker(); 4474 4475 return worker ? worker->current_work : NULL; 4476 } 4477 EXPORT_SYMBOL(current_work); 4478 4479 /** 4480 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4481 * 4482 * Determine whether %current is a workqueue rescuer. Can be used from 4483 * work functions to determine whether it's being run off the rescuer task. 4484 * 4485 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4486 */ 4487 bool current_is_workqueue_rescuer(void) 4488 { 4489 struct worker *worker = current_wq_worker(); 4490 4491 return worker && worker->rescue_wq; 4492 } 4493 4494 /** 4495 * workqueue_congested - test whether a workqueue is congested 4496 * @cpu: CPU in question 4497 * @wq: target workqueue 4498 * 4499 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4500 * no synchronization around this function and the test result is 4501 * unreliable and only useful as advisory hints or for debugging. 4502 * 4503 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4504 * Note that both per-cpu and unbound workqueues may be associated with 4505 * multiple pool_workqueues which have separate congested states. A 4506 * workqueue being congested on one CPU doesn't mean the workqueue is also 4507 * contested on other CPUs / NUMA nodes. 4508 * 4509 * Return: 4510 * %true if congested, %false otherwise. 4511 */ 4512 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4513 { 4514 struct pool_workqueue *pwq; 4515 bool ret; 4516 4517 rcu_read_lock(); 4518 preempt_disable(); 4519 4520 if (cpu == WORK_CPU_UNBOUND) 4521 cpu = smp_processor_id(); 4522 4523 if (!(wq->flags & WQ_UNBOUND)) 4524 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4525 else 4526 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4527 4528 ret = !list_empty(&pwq->delayed_works); 4529 preempt_enable(); 4530 rcu_read_unlock(); 4531 4532 return ret; 4533 } 4534 EXPORT_SYMBOL_GPL(workqueue_congested); 4535 4536 /** 4537 * work_busy - test whether a work is currently pending or running 4538 * @work: the work to be tested 4539 * 4540 * Test whether @work is currently pending or running. There is no 4541 * synchronization around this function and the test result is 4542 * unreliable and only useful as advisory hints or for debugging. 4543 * 4544 * Return: 4545 * OR'd bitmask of WORK_BUSY_* bits. 4546 */ 4547 unsigned int work_busy(struct work_struct *work) 4548 { 4549 struct worker_pool *pool; 4550 unsigned long flags; 4551 unsigned int ret = 0; 4552 4553 if (work_pending(work)) 4554 ret |= WORK_BUSY_PENDING; 4555 4556 rcu_read_lock(); 4557 pool = get_work_pool(work); 4558 if (pool) { 4559 spin_lock_irqsave(&pool->lock, flags); 4560 if (find_worker_executing_work(pool, work)) 4561 ret |= WORK_BUSY_RUNNING; 4562 spin_unlock_irqrestore(&pool->lock, flags); 4563 } 4564 rcu_read_unlock(); 4565 4566 return ret; 4567 } 4568 EXPORT_SYMBOL_GPL(work_busy); 4569 4570 /** 4571 * set_worker_desc - set description for the current work item 4572 * @fmt: printf-style format string 4573 * @...: arguments for the format string 4574 * 4575 * This function can be called by a running work function to describe what 4576 * the work item is about. If the worker task gets dumped, this 4577 * information will be printed out together to help debugging. The 4578 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4579 */ 4580 void set_worker_desc(const char *fmt, ...) 4581 { 4582 struct worker *worker = current_wq_worker(); 4583 va_list args; 4584 4585 if (worker) { 4586 va_start(args, fmt); 4587 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4588 va_end(args); 4589 } 4590 } 4591 EXPORT_SYMBOL_GPL(set_worker_desc); 4592 4593 /** 4594 * print_worker_info - print out worker information and description 4595 * @log_lvl: the log level to use when printing 4596 * @task: target task 4597 * 4598 * If @task is a worker and currently executing a work item, print out the 4599 * name of the workqueue being serviced and worker description set with 4600 * set_worker_desc() by the currently executing work item. 4601 * 4602 * This function can be safely called on any task as long as the 4603 * task_struct itself is accessible. While safe, this function isn't 4604 * synchronized and may print out mixups or garbages of limited length. 4605 */ 4606 void print_worker_info(const char *log_lvl, struct task_struct *task) 4607 { 4608 work_func_t *fn = NULL; 4609 char name[WQ_NAME_LEN] = { }; 4610 char desc[WORKER_DESC_LEN] = { }; 4611 struct pool_workqueue *pwq = NULL; 4612 struct workqueue_struct *wq = NULL; 4613 struct worker *worker; 4614 4615 if (!(task->flags & PF_WQ_WORKER)) 4616 return; 4617 4618 /* 4619 * This function is called without any synchronization and @task 4620 * could be in any state. Be careful with dereferences. 4621 */ 4622 worker = kthread_probe_data(task); 4623 4624 /* 4625 * Carefully copy the associated workqueue's workfn, name and desc. 4626 * Keep the original last '\0' in case the original is garbage. 4627 */ 4628 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4629 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4630 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4631 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4632 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4633 4634 if (fn || name[0] || desc[0]) { 4635 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 4636 if (strcmp(name, desc)) 4637 pr_cont(" (%s)", desc); 4638 pr_cont("\n"); 4639 } 4640 } 4641 4642 static void pr_cont_pool_info(struct worker_pool *pool) 4643 { 4644 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4645 if (pool->node != NUMA_NO_NODE) 4646 pr_cont(" node=%d", pool->node); 4647 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4648 } 4649 4650 static void pr_cont_work(bool comma, struct work_struct *work) 4651 { 4652 if (work->func == wq_barrier_func) { 4653 struct wq_barrier *barr; 4654 4655 barr = container_of(work, struct wq_barrier, work); 4656 4657 pr_cont("%s BAR(%d)", comma ? "," : "", 4658 task_pid_nr(barr->task)); 4659 } else { 4660 pr_cont("%s %ps", comma ? "," : "", work->func); 4661 } 4662 } 4663 4664 static void show_pwq(struct pool_workqueue *pwq) 4665 { 4666 struct worker_pool *pool = pwq->pool; 4667 struct work_struct *work; 4668 struct worker *worker; 4669 bool has_in_flight = false, has_pending = false; 4670 int bkt; 4671 4672 pr_info(" pwq %d:", pool->id); 4673 pr_cont_pool_info(pool); 4674 4675 pr_cont(" active=%d/%d refcnt=%d%s\n", 4676 pwq->nr_active, pwq->max_active, pwq->refcnt, 4677 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4678 4679 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4680 if (worker->current_pwq == pwq) { 4681 has_in_flight = true; 4682 break; 4683 } 4684 } 4685 if (has_in_flight) { 4686 bool comma = false; 4687 4688 pr_info(" in-flight:"); 4689 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4690 if (worker->current_pwq != pwq) 4691 continue; 4692 4693 pr_cont("%s %d%s:%ps", comma ? "," : "", 4694 task_pid_nr(worker->task), 4695 worker->rescue_wq ? "(RESCUER)" : "", 4696 worker->current_func); 4697 list_for_each_entry(work, &worker->scheduled, entry) 4698 pr_cont_work(false, work); 4699 comma = true; 4700 } 4701 pr_cont("\n"); 4702 } 4703 4704 list_for_each_entry(work, &pool->worklist, entry) { 4705 if (get_work_pwq(work) == pwq) { 4706 has_pending = true; 4707 break; 4708 } 4709 } 4710 if (has_pending) { 4711 bool comma = false; 4712 4713 pr_info(" pending:"); 4714 list_for_each_entry(work, &pool->worklist, entry) { 4715 if (get_work_pwq(work) != pwq) 4716 continue; 4717 4718 pr_cont_work(comma, work); 4719 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4720 } 4721 pr_cont("\n"); 4722 } 4723 4724 if (!list_empty(&pwq->delayed_works)) { 4725 bool comma = false; 4726 4727 pr_info(" delayed:"); 4728 list_for_each_entry(work, &pwq->delayed_works, entry) { 4729 pr_cont_work(comma, work); 4730 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4731 } 4732 pr_cont("\n"); 4733 } 4734 } 4735 4736 /** 4737 * show_workqueue_state - dump workqueue state 4738 * 4739 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4740 * all busy workqueues and pools. 4741 */ 4742 void show_workqueue_state(void) 4743 { 4744 struct workqueue_struct *wq; 4745 struct worker_pool *pool; 4746 unsigned long flags; 4747 int pi; 4748 4749 rcu_read_lock(); 4750 4751 pr_info("Showing busy workqueues and worker pools:\n"); 4752 4753 list_for_each_entry_rcu(wq, &workqueues, list) { 4754 struct pool_workqueue *pwq; 4755 bool idle = true; 4756 4757 for_each_pwq(pwq, wq) { 4758 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4759 idle = false; 4760 break; 4761 } 4762 } 4763 if (idle) 4764 continue; 4765 4766 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4767 4768 for_each_pwq(pwq, wq) { 4769 spin_lock_irqsave(&pwq->pool->lock, flags); 4770 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4771 show_pwq(pwq); 4772 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4773 /* 4774 * We could be printing a lot from atomic context, e.g. 4775 * sysrq-t -> show_workqueue_state(). Avoid triggering 4776 * hard lockup. 4777 */ 4778 touch_nmi_watchdog(); 4779 } 4780 } 4781 4782 for_each_pool(pool, pi) { 4783 struct worker *worker; 4784 bool first = true; 4785 4786 spin_lock_irqsave(&pool->lock, flags); 4787 if (pool->nr_workers == pool->nr_idle) 4788 goto next_pool; 4789 4790 pr_info("pool %d:", pool->id); 4791 pr_cont_pool_info(pool); 4792 pr_cont(" hung=%us workers=%d", 4793 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4794 pool->nr_workers); 4795 if (pool->manager) 4796 pr_cont(" manager: %d", 4797 task_pid_nr(pool->manager->task)); 4798 list_for_each_entry(worker, &pool->idle_list, entry) { 4799 pr_cont(" %s%d", first ? "idle: " : "", 4800 task_pid_nr(worker->task)); 4801 first = false; 4802 } 4803 pr_cont("\n"); 4804 next_pool: 4805 spin_unlock_irqrestore(&pool->lock, flags); 4806 /* 4807 * We could be printing a lot from atomic context, e.g. 4808 * sysrq-t -> show_workqueue_state(). Avoid triggering 4809 * hard lockup. 4810 */ 4811 touch_nmi_watchdog(); 4812 } 4813 4814 rcu_read_unlock(); 4815 } 4816 4817 /* used to show worker information through /proc/PID/{comm,stat,status} */ 4818 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 4819 { 4820 int off; 4821 4822 /* always show the actual comm */ 4823 off = strscpy(buf, task->comm, size); 4824 if (off < 0) 4825 return; 4826 4827 /* stabilize PF_WQ_WORKER and worker pool association */ 4828 mutex_lock(&wq_pool_attach_mutex); 4829 4830 if (task->flags & PF_WQ_WORKER) { 4831 struct worker *worker = kthread_data(task); 4832 struct worker_pool *pool = worker->pool; 4833 4834 if (pool) { 4835 spin_lock_irq(&pool->lock); 4836 /* 4837 * ->desc tracks information (wq name or 4838 * set_worker_desc()) for the latest execution. If 4839 * current, prepend '+', otherwise '-'. 4840 */ 4841 if (worker->desc[0] != '\0') { 4842 if (worker->current_work) 4843 scnprintf(buf + off, size - off, "+%s", 4844 worker->desc); 4845 else 4846 scnprintf(buf + off, size - off, "-%s", 4847 worker->desc); 4848 } 4849 spin_unlock_irq(&pool->lock); 4850 } 4851 } 4852 4853 mutex_unlock(&wq_pool_attach_mutex); 4854 } 4855 4856 #ifdef CONFIG_SMP 4857 4858 /* 4859 * CPU hotplug. 4860 * 4861 * There are two challenges in supporting CPU hotplug. Firstly, there 4862 * are a lot of assumptions on strong associations among work, pwq and 4863 * pool which make migrating pending and scheduled works very 4864 * difficult to implement without impacting hot paths. Secondly, 4865 * worker pools serve mix of short, long and very long running works making 4866 * blocked draining impractical. 4867 * 4868 * This is solved by allowing the pools to be disassociated from the CPU 4869 * running as an unbound one and allowing it to be reattached later if the 4870 * cpu comes back online. 4871 */ 4872 4873 static void unbind_workers(int cpu) 4874 { 4875 struct worker_pool *pool; 4876 struct worker *worker; 4877 4878 for_each_cpu_worker_pool(pool, cpu) { 4879 mutex_lock(&wq_pool_attach_mutex); 4880 spin_lock_irq(&pool->lock); 4881 4882 /* 4883 * We've blocked all attach/detach operations. Make all workers 4884 * unbound and set DISASSOCIATED. Before this, all workers 4885 * except for the ones which are still executing works from 4886 * before the last CPU down must be on the cpu. After 4887 * this, they may become diasporas. 4888 */ 4889 for_each_pool_worker(worker, pool) 4890 worker->flags |= WORKER_UNBOUND; 4891 4892 pool->flags |= POOL_DISASSOCIATED; 4893 4894 spin_unlock_irq(&pool->lock); 4895 mutex_unlock(&wq_pool_attach_mutex); 4896 4897 /* 4898 * Call schedule() so that we cross rq->lock and thus can 4899 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4900 * This is necessary as scheduler callbacks may be invoked 4901 * from other cpus. 4902 */ 4903 schedule(); 4904 4905 /* 4906 * Sched callbacks are disabled now. Zap nr_running. 4907 * After this, nr_running stays zero and need_more_worker() 4908 * and keep_working() are always true as long as the 4909 * worklist is not empty. This pool now behaves as an 4910 * unbound (in terms of concurrency management) pool which 4911 * are served by workers tied to the pool. 4912 */ 4913 atomic_set(&pool->nr_running, 0); 4914 4915 /* 4916 * With concurrency management just turned off, a busy 4917 * worker blocking could lead to lengthy stalls. Kick off 4918 * unbound chain execution of currently pending work items. 4919 */ 4920 spin_lock_irq(&pool->lock); 4921 wake_up_worker(pool); 4922 spin_unlock_irq(&pool->lock); 4923 } 4924 } 4925 4926 /** 4927 * rebind_workers - rebind all workers of a pool to the associated CPU 4928 * @pool: pool of interest 4929 * 4930 * @pool->cpu is coming online. Rebind all workers to the CPU. 4931 */ 4932 static void rebind_workers(struct worker_pool *pool) 4933 { 4934 struct worker *worker; 4935 4936 lockdep_assert_held(&wq_pool_attach_mutex); 4937 4938 /* 4939 * Restore CPU affinity of all workers. As all idle workers should 4940 * be on the run-queue of the associated CPU before any local 4941 * wake-ups for concurrency management happen, restore CPU affinity 4942 * of all workers first and then clear UNBOUND. As we're called 4943 * from CPU_ONLINE, the following shouldn't fail. 4944 */ 4945 for_each_pool_worker(worker, pool) 4946 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4947 pool->attrs->cpumask) < 0); 4948 4949 spin_lock_irq(&pool->lock); 4950 4951 pool->flags &= ~POOL_DISASSOCIATED; 4952 4953 for_each_pool_worker(worker, pool) { 4954 unsigned int worker_flags = worker->flags; 4955 4956 /* 4957 * A bound idle worker should actually be on the runqueue 4958 * of the associated CPU for local wake-ups targeting it to 4959 * work. Kick all idle workers so that they migrate to the 4960 * associated CPU. Doing this in the same loop as 4961 * replacing UNBOUND with REBOUND is safe as no worker will 4962 * be bound before @pool->lock is released. 4963 */ 4964 if (worker_flags & WORKER_IDLE) 4965 wake_up_process(worker->task); 4966 4967 /* 4968 * We want to clear UNBOUND but can't directly call 4969 * worker_clr_flags() or adjust nr_running. Atomically 4970 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4971 * @worker will clear REBOUND using worker_clr_flags() when 4972 * it initiates the next execution cycle thus restoring 4973 * concurrency management. Note that when or whether 4974 * @worker clears REBOUND doesn't affect correctness. 4975 * 4976 * WRITE_ONCE() is necessary because @worker->flags may be 4977 * tested without holding any lock in 4978 * wq_worker_running(). Without it, NOT_RUNNING test may 4979 * fail incorrectly leading to premature concurrency 4980 * management operations. 4981 */ 4982 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4983 worker_flags |= WORKER_REBOUND; 4984 worker_flags &= ~WORKER_UNBOUND; 4985 WRITE_ONCE(worker->flags, worker_flags); 4986 } 4987 4988 spin_unlock_irq(&pool->lock); 4989 } 4990 4991 /** 4992 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4993 * @pool: unbound pool of interest 4994 * @cpu: the CPU which is coming up 4995 * 4996 * An unbound pool may end up with a cpumask which doesn't have any online 4997 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4998 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4999 * online CPU before, cpus_allowed of all its workers should be restored. 5000 */ 5001 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 5002 { 5003 static cpumask_t cpumask; 5004 struct worker *worker; 5005 5006 lockdep_assert_held(&wq_pool_attach_mutex); 5007 5008 /* is @cpu allowed for @pool? */ 5009 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 5010 return; 5011 5012 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 5013 5014 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 5015 for_each_pool_worker(worker, pool) 5016 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 5017 } 5018 5019 int workqueue_prepare_cpu(unsigned int cpu) 5020 { 5021 struct worker_pool *pool; 5022 5023 for_each_cpu_worker_pool(pool, cpu) { 5024 if (pool->nr_workers) 5025 continue; 5026 if (!create_worker(pool)) 5027 return -ENOMEM; 5028 } 5029 return 0; 5030 } 5031 5032 int workqueue_online_cpu(unsigned int cpu) 5033 { 5034 struct worker_pool *pool; 5035 struct workqueue_struct *wq; 5036 int pi; 5037 5038 mutex_lock(&wq_pool_mutex); 5039 5040 for_each_pool(pool, pi) { 5041 mutex_lock(&wq_pool_attach_mutex); 5042 5043 if (pool->cpu == cpu) 5044 rebind_workers(pool); 5045 else if (pool->cpu < 0) 5046 restore_unbound_workers_cpumask(pool, cpu); 5047 5048 mutex_unlock(&wq_pool_attach_mutex); 5049 } 5050 5051 /* update NUMA affinity of unbound workqueues */ 5052 list_for_each_entry(wq, &workqueues, list) 5053 wq_update_unbound_numa(wq, cpu, true); 5054 5055 mutex_unlock(&wq_pool_mutex); 5056 return 0; 5057 } 5058 5059 int workqueue_offline_cpu(unsigned int cpu) 5060 { 5061 struct workqueue_struct *wq; 5062 5063 /* unbinding per-cpu workers should happen on the local CPU */ 5064 if (WARN_ON(cpu != smp_processor_id())) 5065 return -1; 5066 5067 unbind_workers(cpu); 5068 5069 /* update NUMA affinity of unbound workqueues */ 5070 mutex_lock(&wq_pool_mutex); 5071 list_for_each_entry(wq, &workqueues, list) 5072 wq_update_unbound_numa(wq, cpu, false); 5073 mutex_unlock(&wq_pool_mutex); 5074 5075 return 0; 5076 } 5077 5078 struct work_for_cpu { 5079 struct work_struct work; 5080 long (*fn)(void *); 5081 void *arg; 5082 long ret; 5083 }; 5084 5085 static void work_for_cpu_fn(struct work_struct *work) 5086 { 5087 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5088 5089 wfc->ret = wfc->fn(wfc->arg); 5090 } 5091 5092 /** 5093 * work_on_cpu - run a function in thread context on a particular cpu 5094 * @cpu: the cpu to run on 5095 * @fn: the function to run 5096 * @arg: the function arg 5097 * 5098 * It is up to the caller to ensure that the cpu doesn't go offline. 5099 * The caller must not hold any locks which would prevent @fn from completing. 5100 * 5101 * Return: The value @fn returns. 5102 */ 5103 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 5104 { 5105 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5106 5107 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 5108 schedule_work_on(cpu, &wfc.work); 5109 flush_work(&wfc.work); 5110 destroy_work_on_stack(&wfc.work); 5111 return wfc.ret; 5112 } 5113 EXPORT_SYMBOL_GPL(work_on_cpu); 5114 5115 /** 5116 * work_on_cpu_safe - run a function in thread context on a particular cpu 5117 * @cpu: the cpu to run on 5118 * @fn: the function to run 5119 * @arg: the function argument 5120 * 5121 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5122 * any locks which would prevent @fn from completing. 5123 * 5124 * Return: The value @fn returns. 5125 */ 5126 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 5127 { 5128 long ret = -ENODEV; 5129 5130 get_online_cpus(); 5131 if (cpu_online(cpu)) 5132 ret = work_on_cpu(cpu, fn, arg); 5133 put_online_cpus(); 5134 return ret; 5135 } 5136 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 5137 #endif /* CONFIG_SMP */ 5138 5139 #ifdef CONFIG_FREEZER 5140 5141 /** 5142 * freeze_workqueues_begin - begin freezing workqueues 5143 * 5144 * Start freezing workqueues. After this function returns, all freezable 5145 * workqueues will queue new works to their delayed_works list instead of 5146 * pool->worklist. 5147 * 5148 * CONTEXT: 5149 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5150 */ 5151 void freeze_workqueues_begin(void) 5152 { 5153 struct workqueue_struct *wq; 5154 struct pool_workqueue *pwq; 5155 5156 mutex_lock(&wq_pool_mutex); 5157 5158 WARN_ON_ONCE(workqueue_freezing); 5159 workqueue_freezing = true; 5160 5161 list_for_each_entry(wq, &workqueues, list) { 5162 mutex_lock(&wq->mutex); 5163 for_each_pwq(pwq, wq) 5164 pwq_adjust_max_active(pwq); 5165 mutex_unlock(&wq->mutex); 5166 } 5167 5168 mutex_unlock(&wq_pool_mutex); 5169 } 5170 5171 /** 5172 * freeze_workqueues_busy - are freezable workqueues still busy? 5173 * 5174 * Check whether freezing is complete. This function must be called 5175 * between freeze_workqueues_begin() and thaw_workqueues(). 5176 * 5177 * CONTEXT: 5178 * Grabs and releases wq_pool_mutex. 5179 * 5180 * Return: 5181 * %true if some freezable workqueues are still busy. %false if freezing 5182 * is complete. 5183 */ 5184 bool freeze_workqueues_busy(void) 5185 { 5186 bool busy = false; 5187 struct workqueue_struct *wq; 5188 struct pool_workqueue *pwq; 5189 5190 mutex_lock(&wq_pool_mutex); 5191 5192 WARN_ON_ONCE(!workqueue_freezing); 5193 5194 list_for_each_entry(wq, &workqueues, list) { 5195 if (!(wq->flags & WQ_FREEZABLE)) 5196 continue; 5197 /* 5198 * nr_active is monotonically decreasing. It's safe 5199 * to peek without lock. 5200 */ 5201 rcu_read_lock(); 5202 for_each_pwq(pwq, wq) { 5203 WARN_ON_ONCE(pwq->nr_active < 0); 5204 if (pwq->nr_active) { 5205 busy = true; 5206 rcu_read_unlock(); 5207 goto out_unlock; 5208 } 5209 } 5210 rcu_read_unlock(); 5211 } 5212 out_unlock: 5213 mutex_unlock(&wq_pool_mutex); 5214 return busy; 5215 } 5216 5217 /** 5218 * thaw_workqueues - thaw workqueues 5219 * 5220 * Thaw workqueues. Normal queueing is restored and all collected 5221 * frozen works are transferred to their respective pool worklists. 5222 * 5223 * CONTEXT: 5224 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5225 */ 5226 void thaw_workqueues(void) 5227 { 5228 struct workqueue_struct *wq; 5229 struct pool_workqueue *pwq; 5230 5231 mutex_lock(&wq_pool_mutex); 5232 5233 if (!workqueue_freezing) 5234 goto out_unlock; 5235 5236 workqueue_freezing = false; 5237 5238 /* restore max_active and repopulate worklist */ 5239 list_for_each_entry(wq, &workqueues, list) { 5240 mutex_lock(&wq->mutex); 5241 for_each_pwq(pwq, wq) 5242 pwq_adjust_max_active(pwq); 5243 mutex_unlock(&wq->mutex); 5244 } 5245 5246 out_unlock: 5247 mutex_unlock(&wq_pool_mutex); 5248 } 5249 #endif /* CONFIG_FREEZER */ 5250 5251 static int workqueue_apply_unbound_cpumask(void) 5252 { 5253 LIST_HEAD(ctxs); 5254 int ret = 0; 5255 struct workqueue_struct *wq; 5256 struct apply_wqattrs_ctx *ctx, *n; 5257 5258 lockdep_assert_held(&wq_pool_mutex); 5259 5260 list_for_each_entry(wq, &workqueues, list) { 5261 if (!(wq->flags & WQ_UNBOUND)) 5262 continue; 5263 /* creating multiple pwqs breaks ordering guarantee */ 5264 if (wq->flags & __WQ_ORDERED) 5265 continue; 5266 5267 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 5268 if (!ctx) { 5269 ret = -ENOMEM; 5270 break; 5271 } 5272 5273 list_add_tail(&ctx->list, &ctxs); 5274 } 5275 5276 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5277 if (!ret) 5278 apply_wqattrs_commit(ctx); 5279 apply_wqattrs_cleanup(ctx); 5280 } 5281 5282 return ret; 5283 } 5284 5285 /** 5286 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5287 * @cpumask: the cpumask to set 5288 * 5289 * The low-level workqueues cpumask is a global cpumask that limits 5290 * the affinity of all unbound workqueues. This function check the @cpumask 5291 * and apply it to all unbound workqueues and updates all pwqs of them. 5292 * 5293 * Retun: 0 - Success 5294 * -EINVAL - Invalid @cpumask 5295 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5296 */ 5297 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5298 { 5299 int ret = -EINVAL; 5300 cpumask_var_t saved_cpumask; 5301 5302 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 5303 return -ENOMEM; 5304 5305 /* 5306 * Not excluding isolated cpus on purpose. 5307 * If the user wishes to include them, we allow that. 5308 */ 5309 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5310 if (!cpumask_empty(cpumask)) { 5311 apply_wqattrs_lock(); 5312 5313 /* save the old wq_unbound_cpumask. */ 5314 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 5315 5316 /* update wq_unbound_cpumask at first and apply it to wqs. */ 5317 cpumask_copy(wq_unbound_cpumask, cpumask); 5318 ret = workqueue_apply_unbound_cpumask(); 5319 5320 /* restore the wq_unbound_cpumask when failed. */ 5321 if (ret < 0) 5322 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5323 5324 apply_wqattrs_unlock(); 5325 } 5326 5327 free_cpumask_var(saved_cpumask); 5328 return ret; 5329 } 5330 5331 #ifdef CONFIG_SYSFS 5332 /* 5333 * Workqueues with WQ_SYSFS flag set is visible to userland via 5334 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5335 * following attributes. 5336 * 5337 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5338 * max_active RW int : maximum number of in-flight work items 5339 * 5340 * Unbound workqueues have the following extra attributes. 5341 * 5342 * pool_ids RO int : the associated pool IDs for each node 5343 * nice RW int : nice value of the workers 5344 * cpumask RW mask : bitmask of allowed CPUs for the workers 5345 * numa RW bool : whether enable NUMA affinity 5346 */ 5347 struct wq_device { 5348 struct workqueue_struct *wq; 5349 struct device dev; 5350 }; 5351 5352 static struct workqueue_struct *dev_to_wq(struct device *dev) 5353 { 5354 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5355 5356 return wq_dev->wq; 5357 } 5358 5359 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5360 char *buf) 5361 { 5362 struct workqueue_struct *wq = dev_to_wq(dev); 5363 5364 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5365 } 5366 static DEVICE_ATTR_RO(per_cpu); 5367 5368 static ssize_t max_active_show(struct device *dev, 5369 struct device_attribute *attr, char *buf) 5370 { 5371 struct workqueue_struct *wq = dev_to_wq(dev); 5372 5373 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5374 } 5375 5376 static ssize_t max_active_store(struct device *dev, 5377 struct device_attribute *attr, const char *buf, 5378 size_t count) 5379 { 5380 struct workqueue_struct *wq = dev_to_wq(dev); 5381 int val; 5382 5383 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5384 return -EINVAL; 5385 5386 workqueue_set_max_active(wq, val); 5387 return count; 5388 } 5389 static DEVICE_ATTR_RW(max_active); 5390 5391 static struct attribute *wq_sysfs_attrs[] = { 5392 &dev_attr_per_cpu.attr, 5393 &dev_attr_max_active.attr, 5394 NULL, 5395 }; 5396 ATTRIBUTE_GROUPS(wq_sysfs); 5397 5398 static ssize_t wq_pool_ids_show(struct device *dev, 5399 struct device_attribute *attr, char *buf) 5400 { 5401 struct workqueue_struct *wq = dev_to_wq(dev); 5402 const char *delim = ""; 5403 int node, written = 0; 5404 5405 get_online_cpus(); 5406 rcu_read_lock(); 5407 for_each_node(node) { 5408 written += scnprintf(buf + written, PAGE_SIZE - written, 5409 "%s%d:%d", delim, node, 5410 unbound_pwq_by_node(wq, node)->pool->id); 5411 delim = " "; 5412 } 5413 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5414 rcu_read_unlock(); 5415 put_online_cpus(); 5416 5417 return written; 5418 } 5419 5420 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5421 char *buf) 5422 { 5423 struct workqueue_struct *wq = dev_to_wq(dev); 5424 int written; 5425 5426 mutex_lock(&wq->mutex); 5427 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5428 mutex_unlock(&wq->mutex); 5429 5430 return written; 5431 } 5432 5433 /* prepare workqueue_attrs for sysfs store operations */ 5434 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5435 { 5436 struct workqueue_attrs *attrs; 5437 5438 lockdep_assert_held(&wq_pool_mutex); 5439 5440 attrs = alloc_workqueue_attrs(); 5441 if (!attrs) 5442 return NULL; 5443 5444 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5445 return attrs; 5446 } 5447 5448 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5449 const char *buf, size_t count) 5450 { 5451 struct workqueue_struct *wq = dev_to_wq(dev); 5452 struct workqueue_attrs *attrs; 5453 int ret = -ENOMEM; 5454 5455 apply_wqattrs_lock(); 5456 5457 attrs = wq_sysfs_prep_attrs(wq); 5458 if (!attrs) 5459 goto out_unlock; 5460 5461 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5462 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5463 ret = apply_workqueue_attrs_locked(wq, attrs); 5464 else 5465 ret = -EINVAL; 5466 5467 out_unlock: 5468 apply_wqattrs_unlock(); 5469 free_workqueue_attrs(attrs); 5470 return ret ?: count; 5471 } 5472 5473 static ssize_t wq_cpumask_show(struct device *dev, 5474 struct device_attribute *attr, char *buf) 5475 { 5476 struct workqueue_struct *wq = dev_to_wq(dev); 5477 int written; 5478 5479 mutex_lock(&wq->mutex); 5480 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5481 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5482 mutex_unlock(&wq->mutex); 5483 return written; 5484 } 5485 5486 static ssize_t wq_cpumask_store(struct device *dev, 5487 struct device_attribute *attr, 5488 const char *buf, size_t count) 5489 { 5490 struct workqueue_struct *wq = dev_to_wq(dev); 5491 struct workqueue_attrs *attrs; 5492 int ret = -ENOMEM; 5493 5494 apply_wqattrs_lock(); 5495 5496 attrs = wq_sysfs_prep_attrs(wq); 5497 if (!attrs) 5498 goto out_unlock; 5499 5500 ret = cpumask_parse(buf, attrs->cpumask); 5501 if (!ret) 5502 ret = apply_workqueue_attrs_locked(wq, attrs); 5503 5504 out_unlock: 5505 apply_wqattrs_unlock(); 5506 free_workqueue_attrs(attrs); 5507 return ret ?: count; 5508 } 5509 5510 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5511 char *buf) 5512 { 5513 struct workqueue_struct *wq = dev_to_wq(dev); 5514 int written; 5515 5516 mutex_lock(&wq->mutex); 5517 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5518 !wq->unbound_attrs->no_numa); 5519 mutex_unlock(&wq->mutex); 5520 5521 return written; 5522 } 5523 5524 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5525 const char *buf, size_t count) 5526 { 5527 struct workqueue_struct *wq = dev_to_wq(dev); 5528 struct workqueue_attrs *attrs; 5529 int v, ret = -ENOMEM; 5530 5531 apply_wqattrs_lock(); 5532 5533 attrs = wq_sysfs_prep_attrs(wq); 5534 if (!attrs) 5535 goto out_unlock; 5536 5537 ret = -EINVAL; 5538 if (sscanf(buf, "%d", &v) == 1) { 5539 attrs->no_numa = !v; 5540 ret = apply_workqueue_attrs_locked(wq, attrs); 5541 } 5542 5543 out_unlock: 5544 apply_wqattrs_unlock(); 5545 free_workqueue_attrs(attrs); 5546 return ret ?: count; 5547 } 5548 5549 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5550 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5551 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5552 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5553 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5554 __ATTR_NULL, 5555 }; 5556 5557 static struct bus_type wq_subsys = { 5558 .name = "workqueue", 5559 .dev_groups = wq_sysfs_groups, 5560 }; 5561 5562 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5563 struct device_attribute *attr, char *buf) 5564 { 5565 int written; 5566 5567 mutex_lock(&wq_pool_mutex); 5568 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5569 cpumask_pr_args(wq_unbound_cpumask)); 5570 mutex_unlock(&wq_pool_mutex); 5571 5572 return written; 5573 } 5574 5575 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5576 struct device_attribute *attr, const char *buf, size_t count) 5577 { 5578 cpumask_var_t cpumask; 5579 int ret; 5580 5581 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5582 return -ENOMEM; 5583 5584 ret = cpumask_parse(buf, cpumask); 5585 if (!ret) 5586 ret = workqueue_set_unbound_cpumask(cpumask); 5587 5588 free_cpumask_var(cpumask); 5589 return ret ? ret : count; 5590 } 5591 5592 static struct device_attribute wq_sysfs_cpumask_attr = 5593 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5594 wq_unbound_cpumask_store); 5595 5596 static int __init wq_sysfs_init(void) 5597 { 5598 int err; 5599 5600 err = subsys_virtual_register(&wq_subsys, NULL); 5601 if (err) 5602 return err; 5603 5604 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5605 } 5606 core_initcall(wq_sysfs_init); 5607 5608 static void wq_device_release(struct device *dev) 5609 { 5610 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5611 5612 kfree(wq_dev); 5613 } 5614 5615 /** 5616 * workqueue_sysfs_register - make a workqueue visible in sysfs 5617 * @wq: the workqueue to register 5618 * 5619 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5620 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5621 * which is the preferred method. 5622 * 5623 * Workqueue user should use this function directly iff it wants to apply 5624 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5625 * apply_workqueue_attrs() may race against userland updating the 5626 * attributes. 5627 * 5628 * Return: 0 on success, -errno on failure. 5629 */ 5630 int workqueue_sysfs_register(struct workqueue_struct *wq) 5631 { 5632 struct wq_device *wq_dev; 5633 int ret; 5634 5635 /* 5636 * Adjusting max_active or creating new pwqs by applying 5637 * attributes breaks ordering guarantee. Disallow exposing ordered 5638 * workqueues. 5639 */ 5640 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5641 return -EINVAL; 5642 5643 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5644 if (!wq_dev) 5645 return -ENOMEM; 5646 5647 wq_dev->wq = wq; 5648 wq_dev->dev.bus = &wq_subsys; 5649 wq_dev->dev.release = wq_device_release; 5650 dev_set_name(&wq_dev->dev, "%s", wq->name); 5651 5652 /* 5653 * unbound_attrs are created separately. Suppress uevent until 5654 * everything is ready. 5655 */ 5656 dev_set_uevent_suppress(&wq_dev->dev, true); 5657 5658 ret = device_register(&wq_dev->dev); 5659 if (ret) { 5660 put_device(&wq_dev->dev); 5661 wq->wq_dev = NULL; 5662 return ret; 5663 } 5664 5665 if (wq->flags & WQ_UNBOUND) { 5666 struct device_attribute *attr; 5667 5668 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5669 ret = device_create_file(&wq_dev->dev, attr); 5670 if (ret) { 5671 device_unregister(&wq_dev->dev); 5672 wq->wq_dev = NULL; 5673 return ret; 5674 } 5675 } 5676 } 5677 5678 dev_set_uevent_suppress(&wq_dev->dev, false); 5679 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5680 return 0; 5681 } 5682 5683 /** 5684 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5685 * @wq: the workqueue to unregister 5686 * 5687 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5688 */ 5689 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5690 { 5691 struct wq_device *wq_dev = wq->wq_dev; 5692 5693 if (!wq->wq_dev) 5694 return; 5695 5696 wq->wq_dev = NULL; 5697 device_unregister(&wq_dev->dev); 5698 } 5699 #else /* CONFIG_SYSFS */ 5700 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5701 #endif /* CONFIG_SYSFS */ 5702 5703 /* 5704 * Workqueue watchdog. 5705 * 5706 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5707 * flush dependency, a concurrency managed work item which stays RUNNING 5708 * indefinitely. Workqueue stalls can be very difficult to debug as the 5709 * usual warning mechanisms don't trigger and internal workqueue state is 5710 * largely opaque. 5711 * 5712 * Workqueue watchdog monitors all worker pools periodically and dumps 5713 * state if some pools failed to make forward progress for a while where 5714 * forward progress is defined as the first item on ->worklist changing. 5715 * 5716 * This mechanism is controlled through the kernel parameter 5717 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5718 * corresponding sysfs parameter file. 5719 */ 5720 #ifdef CONFIG_WQ_WATCHDOG 5721 5722 static unsigned long wq_watchdog_thresh = 30; 5723 static struct timer_list wq_watchdog_timer; 5724 5725 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5726 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5727 5728 static void wq_watchdog_reset_touched(void) 5729 { 5730 int cpu; 5731 5732 wq_watchdog_touched = jiffies; 5733 for_each_possible_cpu(cpu) 5734 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5735 } 5736 5737 static void wq_watchdog_timer_fn(struct timer_list *unused) 5738 { 5739 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5740 bool lockup_detected = false; 5741 struct worker_pool *pool; 5742 int pi; 5743 5744 if (!thresh) 5745 return; 5746 5747 rcu_read_lock(); 5748 5749 for_each_pool(pool, pi) { 5750 unsigned long pool_ts, touched, ts; 5751 5752 if (list_empty(&pool->worklist)) 5753 continue; 5754 5755 /* get the latest of pool and touched timestamps */ 5756 pool_ts = READ_ONCE(pool->watchdog_ts); 5757 touched = READ_ONCE(wq_watchdog_touched); 5758 5759 if (time_after(pool_ts, touched)) 5760 ts = pool_ts; 5761 else 5762 ts = touched; 5763 5764 if (pool->cpu >= 0) { 5765 unsigned long cpu_touched = 5766 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5767 pool->cpu)); 5768 if (time_after(cpu_touched, ts)) 5769 ts = cpu_touched; 5770 } 5771 5772 /* did we stall? */ 5773 if (time_after(jiffies, ts + thresh)) { 5774 lockup_detected = true; 5775 pr_emerg("BUG: workqueue lockup - pool"); 5776 pr_cont_pool_info(pool); 5777 pr_cont(" stuck for %us!\n", 5778 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5779 } 5780 } 5781 5782 rcu_read_unlock(); 5783 5784 if (lockup_detected) 5785 show_workqueue_state(); 5786 5787 wq_watchdog_reset_touched(); 5788 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5789 } 5790 5791 notrace void wq_watchdog_touch(int cpu) 5792 { 5793 if (cpu >= 0) 5794 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5795 else 5796 wq_watchdog_touched = jiffies; 5797 } 5798 5799 static void wq_watchdog_set_thresh(unsigned long thresh) 5800 { 5801 wq_watchdog_thresh = 0; 5802 del_timer_sync(&wq_watchdog_timer); 5803 5804 if (thresh) { 5805 wq_watchdog_thresh = thresh; 5806 wq_watchdog_reset_touched(); 5807 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5808 } 5809 } 5810 5811 static int wq_watchdog_param_set_thresh(const char *val, 5812 const struct kernel_param *kp) 5813 { 5814 unsigned long thresh; 5815 int ret; 5816 5817 ret = kstrtoul(val, 0, &thresh); 5818 if (ret) 5819 return ret; 5820 5821 if (system_wq) 5822 wq_watchdog_set_thresh(thresh); 5823 else 5824 wq_watchdog_thresh = thresh; 5825 5826 return 0; 5827 } 5828 5829 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5830 .set = wq_watchdog_param_set_thresh, 5831 .get = param_get_ulong, 5832 }; 5833 5834 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5835 0644); 5836 5837 static void wq_watchdog_init(void) 5838 { 5839 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5840 wq_watchdog_set_thresh(wq_watchdog_thresh); 5841 } 5842 5843 #else /* CONFIG_WQ_WATCHDOG */ 5844 5845 static inline void wq_watchdog_init(void) { } 5846 5847 #endif /* CONFIG_WQ_WATCHDOG */ 5848 5849 static void __init wq_numa_init(void) 5850 { 5851 cpumask_var_t *tbl; 5852 int node, cpu; 5853 5854 if (num_possible_nodes() <= 1) 5855 return; 5856 5857 if (wq_disable_numa) { 5858 pr_info("workqueue: NUMA affinity support disabled\n"); 5859 return; 5860 } 5861 5862 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(); 5863 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5864 5865 /* 5866 * We want masks of possible CPUs of each node which isn't readily 5867 * available. Build one from cpu_to_node() which should have been 5868 * fully initialized by now. 5869 */ 5870 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 5871 BUG_ON(!tbl); 5872 5873 for_each_node(node) 5874 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5875 node_online(node) ? node : NUMA_NO_NODE)); 5876 5877 for_each_possible_cpu(cpu) { 5878 node = cpu_to_node(cpu); 5879 if (WARN_ON(node == NUMA_NO_NODE)) { 5880 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5881 /* happens iff arch is bonkers, let's just proceed */ 5882 return; 5883 } 5884 cpumask_set_cpu(cpu, tbl[node]); 5885 } 5886 5887 wq_numa_possible_cpumask = tbl; 5888 wq_numa_enabled = true; 5889 } 5890 5891 /** 5892 * workqueue_init_early - early init for workqueue subsystem 5893 * 5894 * This is the first half of two-staged workqueue subsystem initialization 5895 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5896 * idr are up. It sets up all the data structures and system workqueues 5897 * and allows early boot code to create workqueues and queue/cancel work 5898 * items. Actual work item execution starts only after kthreads can be 5899 * created and scheduled right before early initcalls. 5900 */ 5901 int __init workqueue_init_early(void) 5902 { 5903 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5904 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 5905 int i, cpu; 5906 5907 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5908 5909 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5910 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags)); 5911 5912 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5913 5914 /* initialize CPU pools */ 5915 for_each_possible_cpu(cpu) { 5916 struct worker_pool *pool; 5917 5918 i = 0; 5919 for_each_cpu_worker_pool(pool, cpu) { 5920 BUG_ON(init_worker_pool(pool)); 5921 pool->cpu = cpu; 5922 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5923 pool->attrs->nice = std_nice[i++]; 5924 pool->node = cpu_to_node(cpu); 5925 5926 /* alloc pool ID */ 5927 mutex_lock(&wq_pool_mutex); 5928 BUG_ON(worker_pool_assign_id(pool)); 5929 mutex_unlock(&wq_pool_mutex); 5930 } 5931 } 5932 5933 /* create default unbound and ordered wq attrs */ 5934 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5935 struct workqueue_attrs *attrs; 5936 5937 BUG_ON(!(attrs = alloc_workqueue_attrs())); 5938 attrs->nice = std_nice[i]; 5939 unbound_std_wq_attrs[i] = attrs; 5940 5941 /* 5942 * An ordered wq should have only one pwq as ordering is 5943 * guaranteed by max_active which is enforced by pwqs. 5944 * Turn off NUMA so that dfl_pwq is used for all nodes. 5945 */ 5946 BUG_ON(!(attrs = alloc_workqueue_attrs())); 5947 attrs->nice = std_nice[i]; 5948 attrs->no_numa = true; 5949 ordered_wq_attrs[i] = attrs; 5950 } 5951 5952 system_wq = alloc_workqueue("events", 0, 0); 5953 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5954 system_long_wq = alloc_workqueue("events_long", 0, 0); 5955 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5956 WQ_UNBOUND_MAX_ACTIVE); 5957 system_freezable_wq = alloc_workqueue("events_freezable", 5958 WQ_FREEZABLE, 0); 5959 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5960 WQ_POWER_EFFICIENT, 0); 5961 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5962 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5963 0); 5964 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5965 !system_unbound_wq || !system_freezable_wq || 5966 !system_power_efficient_wq || 5967 !system_freezable_power_efficient_wq); 5968 5969 return 0; 5970 } 5971 5972 /** 5973 * workqueue_init - bring workqueue subsystem fully online 5974 * 5975 * This is the latter half of two-staged workqueue subsystem initialization 5976 * and invoked as soon as kthreads can be created and scheduled. 5977 * Workqueues have been created and work items queued on them, but there 5978 * are no kworkers executing the work items yet. Populate the worker pools 5979 * with the initial workers and enable future kworker creations. 5980 */ 5981 int __init workqueue_init(void) 5982 { 5983 struct workqueue_struct *wq; 5984 struct worker_pool *pool; 5985 int cpu, bkt; 5986 5987 /* 5988 * It'd be simpler to initialize NUMA in workqueue_init_early() but 5989 * CPU to node mapping may not be available that early on some 5990 * archs such as power and arm64. As per-cpu pools created 5991 * previously could be missing node hint and unbound pools NUMA 5992 * affinity, fix them up. 5993 * 5994 * Also, while iterating workqueues, create rescuers if requested. 5995 */ 5996 wq_numa_init(); 5997 5998 mutex_lock(&wq_pool_mutex); 5999 6000 for_each_possible_cpu(cpu) { 6001 for_each_cpu_worker_pool(pool, cpu) { 6002 pool->node = cpu_to_node(cpu); 6003 } 6004 } 6005 6006 list_for_each_entry(wq, &workqueues, list) { 6007 wq_update_unbound_numa(wq, smp_processor_id(), true); 6008 WARN(init_rescuer(wq), 6009 "workqueue: failed to create early rescuer for %s", 6010 wq->name); 6011 } 6012 6013 mutex_unlock(&wq_pool_mutex); 6014 6015 /* create the initial workers */ 6016 for_each_online_cpu(cpu) { 6017 for_each_cpu_worker_pool(pool, cpu) { 6018 pool->flags &= ~POOL_DISASSOCIATED; 6019 BUG_ON(!create_worker(pool)); 6020 } 6021 } 6022 6023 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 6024 BUG_ON(!create_worker(pool)); 6025 6026 wq_online = true; 6027 wq_watchdog_init(); 6028 6029 return 0; 6030 } 6031