xref: /linux/kernel/workqueue.c (revision 95e9fd10f06cb5642028b6b851e32b8c8afb4571)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There is one worker pool for each CPU and
20  * one extra for works which are better served by workers which are
21  * not bound to any specific CPU.
22  *
23  * Please read Documentation/workqueue.txt for details.
24  */
25 
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 
45 #include "workqueue_sched.h"
46 
47 enum {
48 	/*
49 	 * global_cwq flags
50 	 *
51 	 * A bound gcwq is either associated or disassociated with its CPU.
52 	 * While associated (!DISASSOCIATED), all workers are bound to the
53 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 	 * is in effect.
55 	 *
56 	 * While DISASSOCIATED, the cpu may be offline and all workers have
57 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 	 * be executing on any CPU.  The gcwq behaves as an unbound one.
59 	 *
60 	 * Note that DISASSOCIATED can be flipped only while holding
61 	 * managership of all pools on the gcwq to avoid changing binding
62 	 * state while create_worker() is in progress.
63 	 */
64 	GCWQ_DISASSOCIATED	= 1 << 0,	/* cpu can't serve workers */
65 	GCWQ_FREEZING		= 1 << 1,	/* freeze in progress */
66 
67 	/* pool flags */
68 	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
69 
70 	/* worker flags */
71 	WORKER_STARTED		= 1 << 0,	/* started */
72 	WORKER_DIE		= 1 << 1,	/* die die die */
73 	WORKER_IDLE		= 1 << 2,	/* is idle */
74 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
75 	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
76 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
77 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
78 
79 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
80 				  WORKER_CPU_INTENSIVE,
81 
82 	NR_WORKER_POOLS		= 2,		/* # worker pools per gcwq */
83 
84 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
85 	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
86 	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
87 
88 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
89 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
90 
91 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
92 						/* call for help after 10ms
93 						   (min two ticks) */
94 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
95 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
96 
97 	/*
98 	 * Rescue workers are used only on emergencies and shared by
99 	 * all cpus.  Give -20.
100 	 */
101 	RESCUER_NICE_LEVEL	= -20,
102 	HIGHPRI_NICE_LEVEL	= -20,
103 };
104 
105 /*
106  * Structure fields follow one of the following exclusion rules.
107  *
108  * I: Modifiable by initialization/destruction paths and read-only for
109  *    everyone else.
110  *
111  * P: Preemption protected.  Disabling preemption is enough and should
112  *    only be modified and accessed from the local cpu.
113  *
114  * L: gcwq->lock protected.  Access with gcwq->lock held.
115  *
116  * X: During normal operation, modification requires gcwq->lock and
117  *    should be done only from local cpu.  Either disabling preemption
118  *    on local cpu or grabbing gcwq->lock is enough for read access.
119  *    If GCWQ_DISASSOCIATED is set, it's identical to L.
120  *
121  * F: wq->flush_mutex protected.
122  *
123  * W: workqueue_lock protected.
124  */
125 
126 struct global_cwq;
127 struct worker_pool;
128 struct idle_rebind;
129 
130 /*
131  * The poor guys doing the actual heavy lifting.  All on-duty workers
132  * are either serving the manager role, on idle list or on busy hash.
133  */
134 struct worker {
135 	/* on idle list while idle, on busy hash table while busy */
136 	union {
137 		struct list_head	entry;	/* L: while idle */
138 		struct hlist_node	hentry;	/* L: while busy */
139 	};
140 
141 	struct work_struct	*current_work;	/* L: work being processed */
142 	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
143 	struct list_head	scheduled;	/* L: scheduled works */
144 	struct task_struct	*task;		/* I: worker task */
145 	struct worker_pool	*pool;		/* I: the associated pool */
146 	/* 64 bytes boundary on 64bit, 32 on 32bit */
147 	unsigned long		last_active;	/* L: last active timestamp */
148 	unsigned int		flags;		/* X: flags */
149 	int			id;		/* I: worker id */
150 
151 	/* for rebinding worker to CPU */
152 	struct idle_rebind	*idle_rebind;	/* L: for idle worker */
153 	struct work_struct	rebind_work;	/* L: for busy worker */
154 };
155 
156 struct worker_pool {
157 	struct global_cwq	*gcwq;		/* I: the owning gcwq */
158 	unsigned int		flags;		/* X: flags */
159 
160 	struct list_head	worklist;	/* L: list of pending works */
161 	int			nr_workers;	/* L: total number of workers */
162 	int			nr_idle;	/* L: currently idle ones */
163 
164 	struct list_head	idle_list;	/* X: list of idle workers */
165 	struct timer_list	idle_timer;	/* L: worker idle timeout */
166 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
167 
168 	struct mutex		manager_mutex;	/* mutex manager should hold */
169 	struct ida		worker_ida;	/* L: for worker IDs */
170 };
171 
172 /*
173  * Global per-cpu workqueue.  There's one and only one for each cpu
174  * and all works are queued and processed here regardless of their
175  * target workqueues.
176  */
177 struct global_cwq {
178 	spinlock_t		lock;		/* the gcwq lock */
179 	unsigned int		cpu;		/* I: the associated cpu */
180 	unsigned int		flags;		/* L: GCWQ_* flags */
181 
182 	/* workers are chained either in busy_hash or pool idle_list */
183 	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
184 						/* L: hash of busy workers */
185 
186 	struct worker_pool	pools[2];	/* normal and highpri pools */
187 
188 	wait_queue_head_t	rebind_hold;	/* rebind hold wait */
189 } ____cacheline_aligned_in_smp;
190 
191 /*
192  * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
193  * work_struct->data are used for flags and thus cwqs need to be
194  * aligned at two's power of the number of flag bits.
195  */
196 struct cpu_workqueue_struct {
197 	struct worker_pool	*pool;		/* I: the associated pool */
198 	struct workqueue_struct *wq;		/* I: the owning workqueue */
199 	int			work_color;	/* L: current color */
200 	int			flush_color;	/* L: flushing color */
201 	int			nr_in_flight[WORK_NR_COLORS];
202 						/* L: nr of in_flight works */
203 	int			nr_active;	/* L: nr of active works */
204 	int			max_active;	/* L: max active works */
205 	struct list_head	delayed_works;	/* L: delayed works */
206 };
207 
208 /*
209  * Structure used to wait for workqueue flush.
210  */
211 struct wq_flusher {
212 	struct list_head	list;		/* F: list of flushers */
213 	int			flush_color;	/* F: flush color waiting for */
214 	struct completion	done;		/* flush completion */
215 };
216 
217 /*
218  * All cpumasks are assumed to be always set on UP and thus can't be
219  * used to determine whether there's something to be done.
220  */
221 #ifdef CONFIG_SMP
222 typedef cpumask_var_t mayday_mask_t;
223 #define mayday_test_and_set_cpu(cpu, mask)	\
224 	cpumask_test_and_set_cpu((cpu), (mask))
225 #define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
226 #define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
227 #define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
228 #define free_mayday_mask(mask)			free_cpumask_var((mask))
229 #else
230 typedef unsigned long mayday_mask_t;
231 #define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
232 #define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
233 #define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
234 #define alloc_mayday_mask(maskp, gfp)		true
235 #define free_mayday_mask(mask)			do { } while (0)
236 #endif
237 
238 /*
239  * The externally visible workqueue abstraction is an array of
240  * per-CPU workqueues:
241  */
242 struct workqueue_struct {
243 	unsigned int		flags;		/* W: WQ_* flags */
244 	union {
245 		struct cpu_workqueue_struct __percpu	*pcpu;
246 		struct cpu_workqueue_struct		*single;
247 		unsigned long				v;
248 	} cpu_wq;				/* I: cwq's */
249 	struct list_head	list;		/* W: list of all workqueues */
250 
251 	struct mutex		flush_mutex;	/* protects wq flushing */
252 	int			work_color;	/* F: current work color */
253 	int			flush_color;	/* F: current flush color */
254 	atomic_t		nr_cwqs_to_flush; /* flush in progress */
255 	struct wq_flusher	*first_flusher;	/* F: first flusher */
256 	struct list_head	flusher_queue;	/* F: flush waiters */
257 	struct list_head	flusher_overflow; /* F: flush overflow list */
258 
259 	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
260 	struct worker		*rescuer;	/* I: rescue worker */
261 
262 	int			nr_drainers;	/* W: drain in progress */
263 	int			saved_max_active; /* W: saved cwq max_active */
264 #ifdef CONFIG_LOCKDEP
265 	struct lockdep_map	lockdep_map;
266 #endif
267 	char			name[];		/* I: workqueue name */
268 };
269 
270 struct workqueue_struct *system_wq __read_mostly;
271 struct workqueue_struct *system_long_wq __read_mostly;
272 struct workqueue_struct *system_nrt_wq __read_mostly;
273 struct workqueue_struct *system_unbound_wq __read_mostly;
274 struct workqueue_struct *system_freezable_wq __read_mostly;
275 struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
276 EXPORT_SYMBOL_GPL(system_wq);
277 EXPORT_SYMBOL_GPL(system_long_wq);
278 EXPORT_SYMBOL_GPL(system_nrt_wq);
279 EXPORT_SYMBOL_GPL(system_unbound_wq);
280 EXPORT_SYMBOL_GPL(system_freezable_wq);
281 EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
282 
283 #define CREATE_TRACE_POINTS
284 #include <trace/events/workqueue.h>
285 
286 #define for_each_worker_pool(pool, gcwq)				\
287 	for ((pool) = &(gcwq)->pools[0];				\
288 	     (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
289 
290 #define for_each_busy_worker(worker, i, pos, gcwq)			\
291 	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
292 		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
293 
294 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
295 				  unsigned int sw)
296 {
297 	if (cpu < nr_cpu_ids) {
298 		if (sw & 1) {
299 			cpu = cpumask_next(cpu, mask);
300 			if (cpu < nr_cpu_ids)
301 				return cpu;
302 		}
303 		if (sw & 2)
304 			return WORK_CPU_UNBOUND;
305 	}
306 	return WORK_CPU_NONE;
307 }
308 
309 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
310 				struct workqueue_struct *wq)
311 {
312 	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
313 }
314 
315 /*
316  * CPU iterators
317  *
318  * An extra gcwq is defined for an invalid cpu number
319  * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
320  * specific CPU.  The following iterators are similar to
321  * for_each_*_cpu() iterators but also considers the unbound gcwq.
322  *
323  * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
324  * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
325  * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
326  *				  WORK_CPU_UNBOUND for unbound workqueues
327  */
328 #define for_each_gcwq_cpu(cpu)						\
329 	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
330 	     (cpu) < WORK_CPU_NONE;					\
331 	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
332 
333 #define for_each_online_gcwq_cpu(cpu)					\
334 	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
335 	     (cpu) < WORK_CPU_NONE;					\
336 	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
337 
338 #define for_each_cwq_cpu(cpu, wq)					\
339 	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
340 	     (cpu) < WORK_CPU_NONE;					\
341 	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
342 
343 #ifdef CONFIG_DEBUG_OBJECTS_WORK
344 
345 static struct debug_obj_descr work_debug_descr;
346 
347 static void *work_debug_hint(void *addr)
348 {
349 	return ((struct work_struct *) addr)->func;
350 }
351 
352 /*
353  * fixup_init is called when:
354  * - an active object is initialized
355  */
356 static int work_fixup_init(void *addr, enum debug_obj_state state)
357 {
358 	struct work_struct *work = addr;
359 
360 	switch (state) {
361 	case ODEBUG_STATE_ACTIVE:
362 		cancel_work_sync(work);
363 		debug_object_init(work, &work_debug_descr);
364 		return 1;
365 	default:
366 		return 0;
367 	}
368 }
369 
370 /*
371  * fixup_activate is called when:
372  * - an active object is activated
373  * - an unknown object is activated (might be a statically initialized object)
374  */
375 static int work_fixup_activate(void *addr, enum debug_obj_state state)
376 {
377 	struct work_struct *work = addr;
378 
379 	switch (state) {
380 
381 	case ODEBUG_STATE_NOTAVAILABLE:
382 		/*
383 		 * This is not really a fixup. The work struct was
384 		 * statically initialized. We just make sure that it
385 		 * is tracked in the object tracker.
386 		 */
387 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
388 			debug_object_init(work, &work_debug_descr);
389 			debug_object_activate(work, &work_debug_descr);
390 			return 0;
391 		}
392 		WARN_ON_ONCE(1);
393 		return 0;
394 
395 	case ODEBUG_STATE_ACTIVE:
396 		WARN_ON(1);
397 
398 	default:
399 		return 0;
400 	}
401 }
402 
403 /*
404  * fixup_free is called when:
405  * - an active object is freed
406  */
407 static int work_fixup_free(void *addr, enum debug_obj_state state)
408 {
409 	struct work_struct *work = addr;
410 
411 	switch (state) {
412 	case ODEBUG_STATE_ACTIVE:
413 		cancel_work_sync(work);
414 		debug_object_free(work, &work_debug_descr);
415 		return 1;
416 	default:
417 		return 0;
418 	}
419 }
420 
421 static struct debug_obj_descr work_debug_descr = {
422 	.name		= "work_struct",
423 	.debug_hint	= work_debug_hint,
424 	.fixup_init	= work_fixup_init,
425 	.fixup_activate	= work_fixup_activate,
426 	.fixup_free	= work_fixup_free,
427 };
428 
429 static inline void debug_work_activate(struct work_struct *work)
430 {
431 	debug_object_activate(work, &work_debug_descr);
432 }
433 
434 static inline void debug_work_deactivate(struct work_struct *work)
435 {
436 	debug_object_deactivate(work, &work_debug_descr);
437 }
438 
439 void __init_work(struct work_struct *work, int onstack)
440 {
441 	if (onstack)
442 		debug_object_init_on_stack(work, &work_debug_descr);
443 	else
444 		debug_object_init(work, &work_debug_descr);
445 }
446 EXPORT_SYMBOL_GPL(__init_work);
447 
448 void destroy_work_on_stack(struct work_struct *work)
449 {
450 	debug_object_free(work, &work_debug_descr);
451 }
452 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
453 
454 #else
455 static inline void debug_work_activate(struct work_struct *work) { }
456 static inline void debug_work_deactivate(struct work_struct *work) { }
457 #endif
458 
459 /* Serializes the accesses to the list of workqueues. */
460 static DEFINE_SPINLOCK(workqueue_lock);
461 static LIST_HEAD(workqueues);
462 static bool workqueue_freezing;		/* W: have wqs started freezing? */
463 
464 /*
465  * The almighty global cpu workqueues.  nr_running is the only field
466  * which is expected to be used frequently by other cpus via
467  * try_to_wake_up().  Put it in a separate cacheline.
468  */
469 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
470 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
471 
472 /*
473  * Global cpu workqueue and nr_running counter for unbound gcwq.  The
474  * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
475  * workers have WORKER_UNBOUND set.
476  */
477 static struct global_cwq unbound_global_cwq;
478 static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
479 	[0 ... NR_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
480 };
481 
482 static int worker_thread(void *__worker);
483 
484 static int worker_pool_pri(struct worker_pool *pool)
485 {
486 	return pool - pool->gcwq->pools;
487 }
488 
489 static struct global_cwq *get_gcwq(unsigned int cpu)
490 {
491 	if (cpu != WORK_CPU_UNBOUND)
492 		return &per_cpu(global_cwq, cpu);
493 	else
494 		return &unbound_global_cwq;
495 }
496 
497 static atomic_t *get_pool_nr_running(struct worker_pool *pool)
498 {
499 	int cpu = pool->gcwq->cpu;
500 	int idx = worker_pool_pri(pool);
501 
502 	if (cpu != WORK_CPU_UNBOUND)
503 		return &per_cpu(pool_nr_running, cpu)[idx];
504 	else
505 		return &unbound_pool_nr_running[idx];
506 }
507 
508 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
509 					    struct workqueue_struct *wq)
510 {
511 	if (!(wq->flags & WQ_UNBOUND)) {
512 		if (likely(cpu < nr_cpu_ids))
513 			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
514 	} else if (likely(cpu == WORK_CPU_UNBOUND))
515 		return wq->cpu_wq.single;
516 	return NULL;
517 }
518 
519 static unsigned int work_color_to_flags(int color)
520 {
521 	return color << WORK_STRUCT_COLOR_SHIFT;
522 }
523 
524 static int get_work_color(struct work_struct *work)
525 {
526 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
527 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
528 }
529 
530 static int work_next_color(int color)
531 {
532 	return (color + 1) % WORK_NR_COLORS;
533 }
534 
535 /*
536  * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
537  * work is on queue.  Once execution starts, WORK_STRUCT_CWQ is
538  * cleared and the work data contains the cpu number it was last on.
539  *
540  * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
541  * cwq, cpu or clear work->data.  These functions should only be
542  * called while the work is owned - ie. while the PENDING bit is set.
543  *
544  * get_work_[g]cwq() can be used to obtain the gcwq or cwq
545  * corresponding to a work.  gcwq is available once the work has been
546  * queued anywhere after initialization.  cwq is available only from
547  * queueing until execution starts.
548  */
549 static inline void set_work_data(struct work_struct *work, unsigned long data,
550 				 unsigned long flags)
551 {
552 	BUG_ON(!work_pending(work));
553 	atomic_long_set(&work->data, data | flags | work_static(work));
554 }
555 
556 static void set_work_cwq(struct work_struct *work,
557 			 struct cpu_workqueue_struct *cwq,
558 			 unsigned long extra_flags)
559 {
560 	set_work_data(work, (unsigned long)cwq,
561 		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
562 }
563 
564 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
565 {
566 	set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
567 }
568 
569 static void clear_work_data(struct work_struct *work)
570 {
571 	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
572 }
573 
574 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
575 {
576 	unsigned long data = atomic_long_read(&work->data);
577 
578 	if (data & WORK_STRUCT_CWQ)
579 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
580 	else
581 		return NULL;
582 }
583 
584 static struct global_cwq *get_work_gcwq(struct work_struct *work)
585 {
586 	unsigned long data = atomic_long_read(&work->data);
587 	unsigned int cpu;
588 
589 	if (data & WORK_STRUCT_CWQ)
590 		return ((struct cpu_workqueue_struct *)
591 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
592 
593 	cpu = data >> WORK_STRUCT_FLAG_BITS;
594 	if (cpu == WORK_CPU_NONE)
595 		return NULL;
596 
597 	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
598 	return get_gcwq(cpu);
599 }
600 
601 /*
602  * Policy functions.  These define the policies on how the global worker
603  * pools are managed.  Unless noted otherwise, these functions assume that
604  * they're being called with gcwq->lock held.
605  */
606 
607 static bool __need_more_worker(struct worker_pool *pool)
608 {
609 	return !atomic_read(get_pool_nr_running(pool));
610 }
611 
612 /*
613  * Need to wake up a worker?  Called from anything but currently
614  * running workers.
615  *
616  * Note that, because unbound workers never contribute to nr_running, this
617  * function will always return %true for unbound gcwq as long as the
618  * worklist isn't empty.
619  */
620 static bool need_more_worker(struct worker_pool *pool)
621 {
622 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
623 }
624 
625 /* Can I start working?  Called from busy but !running workers. */
626 static bool may_start_working(struct worker_pool *pool)
627 {
628 	return pool->nr_idle;
629 }
630 
631 /* Do I need to keep working?  Called from currently running workers. */
632 static bool keep_working(struct worker_pool *pool)
633 {
634 	atomic_t *nr_running = get_pool_nr_running(pool);
635 
636 	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
637 }
638 
639 /* Do we need a new worker?  Called from manager. */
640 static bool need_to_create_worker(struct worker_pool *pool)
641 {
642 	return need_more_worker(pool) && !may_start_working(pool);
643 }
644 
645 /* Do I need to be the manager? */
646 static bool need_to_manage_workers(struct worker_pool *pool)
647 {
648 	return need_to_create_worker(pool) ||
649 		(pool->flags & POOL_MANAGE_WORKERS);
650 }
651 
652 /* Do we have too many workers and should some go away? */
653 static bool too_many_workers(struct worker_pool *pool)
654 {
655 	bool managing = mutex_is_locked(&pool->manager_mutex);
656 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
657 	int nr_busy = pool->nr_workers - nr_idle;
658 
659 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
660 }
661 
662 /*
663  * Wake up functions.
664  */
665 
666 /* Return the first worker.  Safe with preemption disabled */
667 static struct worker *first_worker(struct worker_pool *pool)
668 {
669 	if (unlikely(list_empty(&pool->idle_list)))
670 		return NULL;
671 
672 	return list_first_entry(&pool->idle_list, struct worker, entry);
673 }
674 
675 /**
676  * wake_up_worker - wake up an idle worker
677  * @pool: worker pool to wake worker from
678  *
679  * Wake up the first idle worker of @pool.
680  *
681  * CONTEXT:
682  * spin_lock_irq(gcwq->lock).
683  */
684 static void wake_up_worker(struct worker_pool *pool)
685 {
686 	struct worker *worker = first_worker(pool);
687 
688 	if (likely(worker))
689 		wake_up_process(worker->task);
690 }
691 
692 /**
693  * wq_worker_waking_up - a worker is waking up
694  * @task: task waking up
695  * @cpu: CPU @task is waking up to
696  *
697  * This function is called during try_to_wake_up() when a worker is
698  * being awoken.
699  *
700  * CONTEXT:
701  * spin_lock_irq(rq->lock)
702  */
703 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
704 {
705 	struct worker *worker = kthread_data(task);
706 
707 	if (!(worker->flags & WORKER_NOT_RUNNING))
708 		atomic_inc(get_pool_nr_running(worker->pool));
709 }
710 
711 /**
712  * wq_worker_sleeping - a worker is going to sleep
713  * @task: task going to sleep
714  * @cpu: CPU in question, must be the current CPU number
715  *
716  * This function is called during schedule() when a busy worker is
717  * going to sleep.  Worker on the same cpu can be woken up by
718  * returning pointer to its task.
719  *
720  * CONTEXT:
721  * spin_lock_irq(rq->lock)
722  *
723  * RETURNS:
724  * Worker task on @cpu to wake up, %NULL if none.
725  */
726 struct task_struct *wq_worker_sleeping(struct task_struct *task,
727 				       unsigned int cpu)
728 {
729 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
730 	struct worker_pool *pool = worker->pool;
731 	atomic_t *nr_running = get_pool_nr_running(pool);
732 
733 	if (worker->flags & WORKER_NOT_RUNNING)
734 		return NULL;
735 
736 	/* this can only happen on the local cpu */
737 	BUG_ON(cpu != raw_smp_processor_id());
738 
739 	/*
740 	 * The counterpart of the following dec_and_test, implied mb,
741 	 * worklist not empty test sequence is in insert_work().
742 	 * Please read comment there.
743 	 *
744 	 * NOT_RUNNING is clear.  This means that we're bound to and
745 	 * running on the local cpu w/ rq lock held and preemption
746 	 * disabled, which in turn means that none else could be
747 	 * manipulating idle_list, so dereferencing idle_list without gcwq
748 	 * lock is safe.
749 	 */
750 	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
751 		to_wakeup = first_worker(pool);
752 	return to_wakeup ? to_wakeup->task : NULL;
753 }
754 
755 /**
756  * worker_set_flags - set worker flags and adjust nr_running accordingly
757  * @worker: self
758  * @flags: flags to set
759  * @wakeup: wakeup an idle worker if necessary
760  *
761  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
762  * nr_running becomes zero and @wakeup is %true, an idle worker is
763  * woken up.
764  *
765  * CONTEXT:
766  * spin_lock_irq(gcwq->lock)
767  */
768 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
769 				    bool wakeup)
770 {
771 	struct worker_pool *pool = worker->pool;
772 
773 	WARN_ON_ONCE(worker->task != current);
774 
775 	/*
776 	 * If transitioning into NOT_RUNNING, adjust nr_running and
777 	 * wake up an idle worker as necessary if requested by
778 	 * @wakeup.
779 	 */
780 	if ((flags & WORKER_NOT_RUNNING) &&
781 	    !(worker->flags & WORKER_NOT_RUNNING)) {
782 		atomic_t *nr_running = get_pool_nr_running(pool);
783 
784 		if (wakeup) {
785 			if (atomic_dec_and_test(nr_running) &&
786 			    !list_empty(&pool->worklist))
787 				wake_up_worker(pool);
788 		} else
789 			atomic_dec(nr_running);
790 	}
791 
792 	worker->flags |= flags;
793 }
794 
795 /**
796  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
797  * @worker: self
798  * @flags: flags to clear
799  *
800  * Clear @flags in @worker->flags and adjust nr_running accordingly.
801  *
802  * CONTEXT:
803  * spin_lock_irq(gcwq->lock)
804  */
805 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
806 {
807 	struct worker_pool *pool = worker->pool;
808 	unsigned int oflags = worker->flags;
809 
810 	WARN_ON_ONCE(worker->task != current);
811 
812 	worker->flags &= ~flags;
813 
814 	/*
815 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
816 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
817 	 * of multiple flags, not a single flag.
818 	 */
819 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
820 		if (!(worker->flags & WORKER_NOT_RUNNING))
821 			atomic_inc(get_pool_nr_running(pool));
822 }
823 
824 /**
825  * busy_worker_head - return the busy hash head for a work
826  * @gcwq: gcwq of interest
827  * @work: work to be hashed
828  *
829  * Return hash head of @gcwq for @work.
830  *
831  * CONTEXT:
832  * spin_lock_irq(gcwq->lock).
833  *
834  * RETURNS:
835  * Pointer to the hash head.
836  */
837 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
838 					   struct work_struct *work)
839 {
840 	const int base_shift = ilog2(sizeof(struct work_struct));
841 	unsigned long v = (unsigned long)work;
842 
843 	/* simple shift and fold hash, do we need something better? */
844 	v >>= base_shift;
845 	v += v >> BUSY_WORKER_HASH_ORDER;
846 	v &= BUSY_WORKER_HASH_MASK;
847 
848 	return &gcwq->busy_hash[v];
849 }
850 
851 /**
852  * __find_worker_executing_work - find worker which is executing a work
853  * @gcwq: gcwq of interest
854  * @bwh: hash head as returned by busy_worker_head()
855  * @work: work to find worker for
856  *
857  * Find a worker which is executing @work on @gcwq.  @bwh should be
858  * the hash head obtained by calling busy_worker_head() with the same
859  * work.
860  *
861  * CONTEXT:
862  * spin_lock_irq(gcwq->lock).
863  *
864  * RETURNS:
865  * Pointer to worker which is executing @work if found, NULL
866  * otherwise.
867  */
868 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
869 						   struct hlist_head *bwh,
870 						   struct work_struct *work)
871 {
872 	struct worker *worker;
873 	struct hlist_node *tmp;
874 
875 	hlist_for_each_entry(worker, tmp, bwh, hentry)
876 		if (worker->current_work == work)
877 			return worker;
878 	return NULL;
879 }
880 
881 /**
882  * find_worker_executing_work - find worker which is executing a work
883  * @gcwq: gcwq of interest
884  * @work: work to find worker for
885  *
886  * Find a worker which is executing @work on @gcwq.  This function is
887  * identical to __find_worker_executing_work() except that this
888  * function calculates @bwh itself.
889  *
890  * CONTEXT:
891  * spin_lock_irq(gcwq->lock).
892  *
893  * RETURNS:
894  * Pointer to worker which is executing @work if found, NULL
895  * otherwise.
896  */
897 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
898 						 struct work_struct *work)
899 {
900 	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
901 					    work);
902 }
903 
904 /**
905  * insert_work - insert a work into gcwq
906  * @cwq: cwq @work belongs to
907  * @work: work to insert
908  * @head: insertion point
909  * @extra_flags: extra WORK_STRUCT_* flags to set
910  *
911  * Insert @work which belongs to @cwq into @gcwq after @head.
912  * @extra_flags is or'd to work_struct flags.
913  *
914  * CONTEXT:
915  * spin_lock_irq(gcwq->lock).
916  */
917 static void insert_work(struct cpu_workqueue_struct *cwq,
918 			struct work_struct *work, struct list_head *head,
919 			unsigned int extra_flags)
920 {
921 	struct worker_pool *pool = cwq->pool;
922 
923 	/* we own @work, set data and link */
924 	set_work_cwq(work, cwq, extra_flags);
925 
926 	/*
927 	 * Ensure that we get the right work->data if we see the
928 	 * result of list_add() below, see try_to_grab_pending().
929 	 */
930 	smp_wmb();
931 
932 	list_add_tail(&work->entry, head);
933 
934 	/*
935 	 * Ensure either worker_sched_deactivated() sees the above
936 	 * list_add_tail() or we see zero nr_running to avoid workers
937 	 * lying around lazily while there are works to be processed.
938 	 */
939 	smp_mb();
940 
941 	if (__need_more_worker(pool))
942 		wake_up_worker(pool);
943 }
944 
945 /*
946  * Test whether @work is being queued from another work executing on the
947  * same workqueue.  This is rather expensive and should only be used from
948  * cold paths.
949  */
950 static bool is_chained_work(struct workqueue_struct *wq)
951 {
952 	unsigned long flags;
953 	unsigned int cpu;
954 
955 	for_each_gcwq_cpu(cpu) {
956 		struct global_cwq *gcwq = get_gcwq(cpu);
957 		struct worker *worker;
958 		struct hlist_node *pos;
959 		int i;
960 
961 		spin_lock_irqsave(&gcwq->lock, flags);
962 		for_each_busy_worker(worker, i, pos, gcwq) {
963 			if (worker->task != current)
964 				continue;
965 			spin_unlock_irqrestore(&gcwq->lock, flags);
966 			/*
967 			 * I'm @worker, no locking necessary.  See if @work
968 			 * is headed to the same workqueue.
969 			 */
970 			return worker->current_cwq->wq == wq;
971 		}
972 		spin_unlock_irqrestore(&gcwq->lock, flags);
973 	}
974 	return false;
975 }
976 
977 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
978 			 struct work_struct *work)
979 {
980 	struct global_cwq *gcwq;
981 	struct cpu_workqueue_struct *cwq;
982 	struct list_head *worklist;
983 	unsigned int work_flags;
984 	unsigned long flags;
985 
986 	debug_work_activate(work);
987 
988 	/* if dying, only works from the same workqueue are allowed */
989 	if (unlikely(wq->flags & WQ_DRAINING) &&
990 	    WARN_ON_ONCE(!is_chained_work(wq)))
991 		return;
992 
993 	/* determine gcwq to use */
994 	if (!(wq->flags & WQ_UNBOUND)) {
995 		struct global_cwq *last_gcwq;
996 
997 		if (unlikely(cpu == WORK_CPU_UNBOUND))
998 			cpu = raw_smp_processor_id();
999 
1000 		/*
1001 		 * It's multi cpu.  If @wq is non-reentrant and @work
1002 		 * was previously on a different cpu, it might still
1003 		 * be running there, in which case the work needs to
1004 		 * be queued on that cpu to guarantee non-reentrance.
1005 		 */
1006 		gcwq = get_gcwq(cpu);
1007 		if (wq->flags & WQ_NON_REENTRANT &&
1008 		    (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1009 			struct worker *worker;
1010 
1011 			spin_lock_irqsave(&last_gcwq->lock, flags);
1012 
1013 			worker = find_worker_executing_work(last_gcwq, work);
1014 
1015 			if (worker && worker->current_cwq->wq == wq)
1016 				gcwq = last_gcwq;
1017 			else {
1018 				/* meh... not running there, queue here */
1019 				spin_unlock_irqrestore(&last_gcwq->lock, flags);
1020 				spin_lock_irqsave(&gcwq->lock, flags);
1021 			}
1022 		} else
1023 			spin_lock_irqsave(&gcwq->lock, flags);
1024 	} else {
1025 		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1026 		spin_lock_irqsave(&gcwq->lock, flags);
1027 	}
1028 
1029 	/* gcwq determined, get cwq and queue */
1030 	cwq = get_cwq(gcwq->cpu, wq);
1031 	trace_workqueue_queue_work(cpu, cwq, work);
1032 
1033 	if (WARN_ON(!list_empty(&work->entry))) {
1034 		spin_unlock_irqrestore(&gcwq->lock, flags);
1035 		return;
1036 	}
1037 
1038 	cwq->nr_in_flight[cwq->work_color]++;
1039 	work_flags = work_color_to_flags(cwq->work_color);
1040 
1041 	if (likely(cwq->nr_active < cwq->max_active)) {
1042 		trace_workqueue_activate_work(work);
1043 		cwq->nr_active++;
1044 		worklist = &cwq->pool->worklist;
1045 	} else {
1046 		work_flags |= WORK_STRUCT_DELAYED;
1047 		worklist = &cwq->delayed_works;
1048 	}
1049 
1050 	insert_work(cwq, work, worklist, work_flags);
1051 
1052 	spin_unlock_irqrestore(&gcwq->lock, flags);
1053 }
1054 
1055 /**
1056  * queue_work - queue work on a workqueue
1057  * @wq: workqueue to use
1058  * @work: work to queue
1059  *
1060  * Returns 0 if @work was already on a queue, non-zero otherwise.
1061  *
1062  * We queue the work to the CPU on which it was submitted, but if the CPU dies
1063  * it can be processed by another CPU.
1064  */
1065 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1066 {
1067 	int ret;
1068 
1069 	ret = queue_work_on(get_cpu(), wq, work);
1070 	put_cpu();
1071 
1072 	return ret;
1073 }
1074 EXPORT_SYMBOL_GPL(queue_work);
1075 
1076 /**
1077  * queue_work_on - queue work on specific cpu
1078  * @cpu: CPU number to execute work on
1079  * @wq: workqueue to use
1080  * @work: work to queue
1081  *
1082  * Returns 0 if @work was already on a queue, non-zero otherwise.
1083  *
1084  * We queue the work to a specific CPU, the caller must ensure it
1085  * can't go away.
1086  */
1087 int
1088 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1089 {
1090 	int ret = 0;
1091 
1092 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1093 		__queue_work(cpu, wq, work);
1094 		ret = 1;
1095 	}
1096 	return ret;
1097 }
1098 EXPORT_SYMBOL_GPL(queue_work_on);
1099 
1100 static void delayed_work_timer_fn(unsigned long __data)
1101 {
1102 	struct delayed_work *dwork = (struct delayed_work *)__data;
1103 	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1104 
1105 	__queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1106 }
1107 
1108 /**
1109  * queue_delayed_work - queue work on a workqueue after delay
1110  * @wq: workqueue to use
1111  * @dwork: delayable work to queue
1112  * @delay: number of jiffies to wait before queueing
1113  *
1114  * Returns 0 if @work was already on a queue, non-zero otherwise.
1115  */
1116 int queue_delayed_work(struct workqueue_struct *wq,
1117 			struct delayed_work *dwork, unsigned long delay)
1118 {
1119 	if (delay == 0)
1120 		return queue_work(wq, &dwork->work);
1121 
1122 	return queue_delayed_work_on(-1, wq, dwork, delay);
1123 }
1124 EXPORT_SYMBOL_GPL(queue_delayed_work);
1125 
1126 /**
1127  * queue_delayed_work_on - queue work on specific CPU after delay
1128  * @cpu: CPU number to execute work on
1129  * @wq: workqueue to use
1130  * @dwork: work to queue
1131  * @delay: number of jiffies to wait before queueing
1132  *
1133  * Returns 0 if @work was already on a queue, non-zero otherwise.
1134  */
1135 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1136 			struct delayed_work *dwork, unsigned long delay)
1137 {
1138 	int ret = 0;
1139 	struct timer_list *timer = &dwork->timer;
1140 	struct work_struct *work = &dwork->work;
1141 
1142 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1143 		unsigned int lcpu;
1144 
1145 		BUG_ON(timer_pending(timer));
1146 		BUG_ON(!list_empty(&work->entry));
1147 
1148 		timer_stats_timer_set_start_info(&dwork->timer);
1149 
1150 		/*
1151 		 * This stores cwq for the moment, for the timer_fn.
1152 		 * Note that the work's gcwq is preserved to allow
1153 		 * reentrance detection for delayed works.
1154 		 */
1155 		if (!(wq->flags & WQ_UNBOUND)) {
1156 			struct global_cwq *gcwq = get_work_gcwq(work);
1157 
1158 			if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1159 				lcpu = gcwq->cpu;
1160 			else
1161 				lcpu = raw_smp_processor_id();
1162 		} else
1163 			lcpu = WORK_CPU_UNBOUND;
1164 
1165 		set_work_cwq(work, get_cwq(lcpu, wq), 0);
1166 
1167 		timer->expires = jiffies + delay;
1168 		timer->data = (unsigned long)dwork;
1169 		timer->function = delayed_work_timer_fn;
1170 
1171 		if (unlikely(cpu >= 0))
1172 			add_timer_on(timer, cpu);
1173 		else
1174 			add_timer(timer);
1175 		ret = 1;
1176 	}
1177 	return ret;
1178 }
1179 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1180 
1181 /**
1182  * worker_enter_idle - enter idle state
1183  * @worker: worker which is entering idle state
1184  *
1185  * @worker is entering idle state.  Update stats and idle timer if
1186  * necessary.
1187  *
1188  * LOCKING:
1189  * spin_lock_irq(gcwq->lock).
1190  */
1191 static void worker_enter_idle(struct worker *worker)
1192 {
1193 	struct worker_pool *pool = worker->pool;
1194 	struct global_cwq *gcwq = pool->gcwq;
1195 
1196 	BUG_ON(worker->flags & WORKER_IDLE);
1197 	BUG_ON(!list_empty(&worker->entry) &&
1198 	       (worker->hentry.next || worker->hentry.pprev));
1199 
1200 	/* can't use worker_set_flags(), also called from start_worker() */
1201 	worker->flags |= WORKER_IDLE;
1202 	pool->nr_idle++;
1203 	worker->last_active = jiffies;
1204 
1205 	/* idle_list is LIFO */
1206 	list_add(&worker->entry, &pool->idle_list);
1207 
1208 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1209 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1210 
1211 	/*
1212 	 * Sanity check nr_running.  Because gcwq_unbind_fn() releases
1213 	 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1214 	 * nr_running, the warning may trigger spuriously.  Check iff
1215 	 * unbind is not in progress.
1216 	 */
1217 	WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1218 		     pool->nr_workers == pool->nr_idle &&
1219 		     atomic_read(get_pool_nr_running(pool)));
1220 }
1221 
1222 /**
1223  * worker_leave_idle - leave idle state
1224  * @worker: worker which is leaving idle state
1225  *
1226  * @worker is leaving idle state.  Update stats.
1227  *
1228  * LOCKING:
1229  * spin_lock_irq(gcwq->lock).
1230  */
1231 static void worker_leave_idle(struct worker *worker)
1232 {
1233 	struct worker_pool *pool = worker->pool;
1234 
1235 	BUG_ON(!(worker->flags & WORKER_IDLE));
1236 	worker_clr_flags(worker, WORKER_IDLE);
1237 	pool->nr_idle--;
1238 	list_del_init(&worker->entry);
1239 }
1240 
1241 /**
1242  * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1243  * @worker: self
1244  *
1245  * Works which are scheduled while the cpu is online must at least be
1246  * scheduled to a worker which is bound to the cpu so that if they are
1247  * flushed from cpu callbacks while cpu is going down, they are
1248  * guaranteed to execute on the cpu.
1249  *
1250  * This function is to be used by rogue workers and rescuers to bind
1251  * themselves to the target cpu and may race with cpu going down or
1252  * coming online.  kthread_bind() can't be used because it may put the
1253  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1254  * verbatim as it's best effort and blocking and gcwq may be
1255  * [dis]associated in the meantime.
1256  *
1257  * This function tries set_cpus_allowed() and locks gcwq and verifies the
1258  * binding against %GCWQ_DISASSOCIATED which is set during
1259  * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1260  * enters idle state or fetches works without dropping lock, it can
1261  * guarantee the scheduling requirement described in the first paragraph.
1262  *
1263  * CONTEXT:
1264  * Might sleep.  Called without any lock but returns with gcwq->lock
1265  * held.
1266  *
1267  * RETURNS:
1268  * %true if the associated gcwq is online (@worker is successfully
1269  * bound), %false if offline.
1270  */
1271 static bool worker_maybe_bind_and_lock(struct worker *worker)
1272 __acquires(&gcwq->lock)
1273 {
1274 	struct global_cwq *gcwq = worker->pool->gcwq;
1275 	struct task_struct *task = worker->task;
1276 
1277 	while (true) {
1278 		/*
1279 		 * The following call may fail, succeed or succeed
1280 		 * without actually migrating the task to the cpu if
1281 		 * it races with cpu hotunplug operation.  Verify
1282 		 * against GCWQ_DISASSOCIATED.
1283 		 */
1284 		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1285 			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1286 
1287 		spin_lock_irq(&gcwq->lock);
1288 		if (gcwq->flags & GCWQ_DISASSOCIATED)
1289 			return false;
1290 		if (task_cpu(task) == gcwq->cpu &&
1291 		    cpumask_equal(&current->cpus_allowed,
1292 				  get_cpu_mask(gcwq->cpu)))
1293 			return true;
1294 		spin_unlock_irq(&gcwq->lock);
1295 
1296 		/*
1297 		 * We've raced with CPU hot[un]plug.  Give it a breather
1298 		 * and retry migration.  cond_resched() is required here;
1299 		 * otherwise, we might deadlock against cpu_stop trying to
1300 		 * bring down the CPU on non-preemptive kernel.
1301 		 */
1302 		cpu_relax();
1303 		cond_resched();
1304 	}
1305 }
1306 
1307 struct idle_rebind {
1308 	int			cnt;		/* # workers to be rebound */
1309 	struct completion	done;		/* all workers rebound */
1310 };
1311 
1312 /*
1313  * Rebind an idle @worker to its CPU.  During CPU onlining, this has to
1314  * happen synchronously for idle workers.  worker_thread() will test
1315  * %WORKER_REBIND before leaving idle and call this function.
1316  */
1317 static void idle_worker_rebind(struct worker *worker)
1318 {
1319 	struct global_cwq *gcwq = worker->pool->gcwq;
1320 
1321 	/* CPU must be online at this point */
1322 	WARN_ON(!worker_maybe_bind_and_lock(worker));
1323 	if (!--worker->idle_rebind->cnt)
1324 		complete(&worker->idle_rebind->done);
1325 	spin_unlock_irq(&worker->pool->gcwq->lock);
1326 
1327 	/* we did our part, wait for rebind_workers() to finish up */
1328 	wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1329 }
1330 
1331 /*
1332  * Function for @worker->rebind.work used to rebind unbound busy workers to
1333  * the associated cpu which is coming back online.  This is scheduled by
1334  * cpu up but can race with other cpu hotplug operations and may be
1335  * executed twice without intervening cpu down.
1336  */
1337 static void busy_worker_rebind_fn(struct work_struct *work)
1338 {
1339 	struct worker *worker = container_of(work, struct worker, rebind_work);
1340 	struct global_cwq *gcwq = worker->pool->gcwq;
1341 
1342 	if (worker_maybe_bind_and_lock(worker))
1343 		worker_clr_flags(worker, WORKER_REBIND);
1344 
1345 	spin_unlock_irq(&gcwq->lock);
1346 }
1347 
1348 /**
1349  * rebind_workers - rebind all workers of a gcwq to the associated CPU
1350  * @gcwq: gcwq of interest
1351  *
1352  * @gcwq->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1353  * is different for idle and busy ones.
1354  *
1355  * The idle ones should be rebound synchronously and idle rebinding should
1356  * be complete before any worker starts executing work items with
1357  * concurrency management enabled; otherwise, scheduler may oops trying to
1358  * wake up non-local idle worker from wq_worker_sleeping().
1359  *
1360  * This is achieved by repeatedly requesting rebinding until all idle
1361  * workers are known to have been rebound under @gcwq->lock and holding all
1362  * idle workers from becoming busy until idle rebinding is complete.
1363  *
1364  * Once idle workers are rebound, busy workers can be rebound as they
1365  * finish executing their current work items.  Queueing the rebind work at
1366  * the head of their scheduled lists is enough.  Note that nr_running will
1367  * be properbly bumped as busy workers rebind.
1368  *
1369  * On return, all workers are guaranteed to either be bound or have rebind
1370  * work item scheduled.
1371  */
1372 static void rebind_workers(struct global_cwq *gcwq)
1373 	__releases(&gcwq->lock) __acquires(&gcwq->lock)
1374 {
1375 	struct idle_rebind idle_rebind;
1376 	struct worker_pool *pool;
1377 	struct worker *worker;
1378 	struct hlist_node *pos;
1379 	int i;
1380 
1381 	lockdep_assert_held(&gcwq->lock);
1382 
1383 	for_each_worker_pool(pool, gcwq)
1384 		lockdep_assert_held(&pool->manager_mutex);
1385 
1386 	/*
1387 	 * Rebind idle workers.  Interlocked both ways.  We wait for
1388 	 * workers to rebind via @idle_rebind.done.  Workers will wait for
1389 	 * us to finish up by watching %WORKER_REBIND.
1390 	 */
1391 	init_completion(&idle_rebind.done);
1392 retry:
1393 	idle_rebind.cnt = 1;
1394 	INIT_COMPLETION(idle_rebind.done);
1395 
1396 	/* set REBIND and kick idle ones, we'll wait for these later */
1397 	for_each_worker_pool(pool, gcwq) {
1398 		list_for_each_entry(worker, &pool->idle_list, entry) {
1399 			if (worker->flags & WORKER_REBIND)
1400 				continue;
1401 
1402 			/* morph UNBOUND to REBIND */
1403 			worker->flags &= ~WORKER_UNBOUND;
1404 			worker->flags |= WORKER_REBIND;
1405 
1406 			idle_rebind.cnt++;
1407 			worker->idle_rebind = &idle_rebind;
1408 
1409 			/* worker_thread() will call idle_worker_rebind() */
1410 			wake_up_process(worker->task);
1411 		}
1412 	}
1413 
1414 	if (--idle_rebind.cnt) {
1415 		spin_unlock_irq(&gcwq->lock);
1416 		wait_for_completion(&idle_rebind.done);
1417 		spin_lock_irq(&gcwq->lock);
1418 		/* busy ones might have become idle while waiting, retry */
1419 		goto retry;
1420 	}
1421 
1422 	/*
1423 	 * All idle workers are rebound and waiting for %WORKER_REBIND to
1424 	 * be cleared inside idle_worker_rebind().  Clear and release.
1425 	 * Clearing %WORKER_REBIND from this foreign context is safe
1426 	 * because these workers are still guaranteed to be idle.
1427 	 */
1428 	for_each_worker_pool(pool, gcwq)
1429 		list_for_each_entry(worker, &pool->idle_list, entry)
1430 			worker->flags &= ~WORKER_REBIND;
1431 
1432 	wake_up_all(&gcwq->rebind_hold);
1433 
1434 	/* rebind busy workers */
1435 	for_each_busy_worker(worker, i, pos, gcwq) {
1436 		struct work_struct *rebind_work = &worker->rebind_work;
1437 
1438 		/* morph UNBOUND to REBIND */
1439 		worker->flags &= ~WORKER_UNBOUND;
1440 		worker->flags |= WORKER_REBIND;
1441 
1442 		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1443 				     work_data_bits(rebind_work)))
1444 			continue;
1445 
1446 		/* wq doesn't matter, use the default one */
1447 		debug_work_activate(rebind_work);
1448 		insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
1449 			    worker->scheduled.next,
1450 			    work_color_to_flags(WORK_NO_COLOR));
1451 	}
1452 }
1453 
1454 static struct worker *alloc_worker(void)
1455 {
1456 	struct worker *worker;
1457 
1458 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1459 	if (worker) {
1460 		INIT_LIST_HEAD(&worker->entry);
1461 		INIT_LIST_HEAD(&worker->scheduled);
1462 		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1463 		/* on creation a worker is in !idle && prep state */
1464 		worker->flags = WORKER_PREP;
1465 	}
1466 	return worker;
1467 }
1468 
1469 /**
1470  * create_worker - create a new workqueue worker
1471  * @pool: pool the new worker will belong to
1472  *
1473  * Create a new worker which is bound to @pool.  The returned worker
1474  * can be started by calling start_worker() or destroyed using
1475  * destroy_worker().
1476  *
1477  * CONTEXT:
1478  * Might sleep.  Does GFP_KERNEL allocations.
1479  *
1480  * RETURNS:
1481  * Pointer to the newly created worker.
1482  */
1483 static struct worker *create_worker(struct worker_pool *pool)
1484 {
1485 	struct global_cwq *gcwq = pool->gcwq;
1486 	const char *pri = worker_pool_pri(pool) ? "H" : "";
1487 	struct worker *worker = NULL;
1488 	int id = -1;
1489 
1490 	spin_lock_irq(&gcwq->lock);
1491 	while (ida_get_new(&pool->worker_ida, &id)) {
1492 		spin_unlock_irq(&gcwq->lock);
1493 		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1494 			goto fail;
1495 		spin_lock_irq(&gcwq->lock);
1496 	}
1497 	spin_unlock_irq(&gcwq->lock);
1498 
1499 	worker = alloc_worker();
1500 	if (!worker)
1501 		goto fail;
1502 
1503 	worker->pool = pool;
1504 	worker->id = id;
1505 
1506 	if (gcwq->cpu != WORK_CPU_UNBOUND)
1507 		worker->task = kthread_create_on_node(worker_thread,
1508 					worker, cpu_to_node(gcwq->cpu),
1509 					"kworker/%u:%d%s", gcwq->cpu, id, pri);
1510 	else
1511 		worker->task = kthread_create(worker_thread, worker,
1512 					      "kworker/u:%d%s", id, pri);
1513 	if (IS_ERR(worker->task))
1514 		goto fail;
1515 
1516 	if (worker_pool_pri(pool))
1517 		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1518 
1519 	/*
1520 	 * Determine CPU binding of the new worker depending on
1521 	 * %GCWQ_DISASSOCIATED.  The caller is responsible for ensuring the
1522 	 * flag remains stable across this function.  See the comments
1523 	 * above the flag definition for details.
1524 	 *
1525 	 * As an unbound worker may later become a regular one if CPU comes
1526 	 * online, make sure every worker has %PF_THREAD_BOUND set.
1527 	 */
1528 	if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1529 		kthread_bind(worker->task, gcwq->cpu);
1530 	} else {
1531 		worker->task->flags |= PF_THREAD_BOUND;
1532 		worker->flags |= WORKER_UNBOUND;
1533 	}
1534 
1535 	return worker;
1536 fail:
1537 	if (id >= 0) {
1538 		spin_lock_irq(&gcwq->lock);
1539 		ida_remove(&pool->worker_ida, id);
1540 		spin_unlock_irq(&gcwq->lock);
1541 	}
1542 	kfree(worker);
1543 	return NULL;
1544 }
1545 
1546 /**
1547  * start_worker - start a newly created worker
1548  * @worker: worker to start
1549  *
1550  * Make the gcwq aware of @worker and start it.
1551  *
1552  * CONTEXT:
1553  * spin_lock_irq(gcwq->lock).
1554  */
1555 static void start_worker(struct worker *worker)
1556 {
1557 	worker->flags |= WORKER_STARTED;
1558 	worker->pool->nr_workers++;
1559 	worker_enter_idle(worker);
1560 	wake_up_process(worker->task);
1561 }
1562 
1563 /**
1564  * destroy_worker - destroy a workqueue worker
1565  * @worker: worker to be destroyed
1566  *
1567  * Destroy @worker and adjust @gcwq stats accordingly.
1568  *
1569  * CONTEXT:
1570  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1571  */
1572 static void destroy_worker(struct worker *worker)
1573 {
1574 	struct worker_pool *pool = worker->pool;
1575 	struct global_cwq *gcwq = pool->gcwq;
1576 	int id = worker->id;
1577 
1578 	/* sanity check frenzy */
1579 	BUG_ON(worker->current_work);
1580 	BUG_ON(!list_empty(&worker->scheduled));
1581 
1582 	if (worker->flags & WORKER_STARTED)
1583 		pool->nr_workers--;
1584 	if (worker->flags & WORKER_IDLE)
1585 		pool->nr_idle--;
1586 
1587 	list_del_init(&worker->entry);
1588 	worker->flags |= WORKER_DIE;
1589 
1590 	spin_unlock_irq(&gcwq->lock);
1591 
1592 	kthread_stop(worker->task);
1593 	kfree(worker);
1594 
1595 	spin_lock_irq(&gcwq->lock);
1596 	ida_remove(&pool->worker_ida, id);
1597 }
1598 
1599 static void idle_worker_timeout(unsigned long __pool)
1600 {
1601 	struct worker_pool *pool = (void *)__pool;
1602 	struct global_cwq *gcwq = pool->gcwq;
1603 
1604 	spin_lock_irq(&gcwq->lock);
1605 
1606 	if (too_many_workers(pool)) {
1607 		struct worker *worker;
1608 		unsigned long expires;
1609 
1610 		/* idle_list is kept in LIFO order, check the last one */
1611 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1612 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1613 
1614 		if (time_before(jiffies, expires))
1615 			mod_timer(&pool->idle_timer, expires);
1616 		else {
1617 			/* it's been idle for too long, wake up manager */
1618 			pool->flags |= POOL_MANAGE_WORKERS;
1619 			wake_up_worker(pool);
1620 		}
1621 	}
1622 
1623 	spin_unlock_irq(&gcwq->lock);
1624 }
1625 
1626 static bool send_mayday(struct work_struct *work)
1627 {
1628 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1629 	struct workqueue_struct *wq = cwq->wq;
1630 	unsigned int cpu;
1631 
1632 	if (!(wq->flags & WQ_RESCUER))
1633 		return false;
1634 
1635 	/* mayday mayday mayday */
1636 	cpu = cwq->pool->gcwq->cpu;
1637 	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1638 	if (cpu == WORK_CPU_UNBOUND)
1639 		cpu = 0;
1640 	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1641 		wake_up_process(wq->rescuer->task);
1642 	return true;
1643 }
1644 
1645 static void gcwq_mayday_timeout(unsigned long __pool)
1646 {
1647 	struct worker_pool *pool = (void *)__pool;
1648 	struct global_cwq *gcwq = pool->gcwq;
1649 	struct work_struct *work;
1650 
1651 	spin_lock_irq(&gcwq->lock);
1652 
1653 	if (need_to_create_worker(pool)) {
1654 		/*
1655 		 * We've been trying to create a new worker but
1656 		 * haven't been successful.  We might be hitting an
1657 		 * allocation deadlock.  Send distress signals to
1658 		 * rescuers.
1659 		 */
1660 		list_for_each_entry(work, &pool->worklist, entry)
1661 			send_mayday(work);
1662 	}
1663 
1664 	spin_unlock_irq(&gcwq->lock);
1665 
1666 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1667 }
1668 
1669 /**
1670  * maybe_create_worker - create a new worker if necessary
1671  * @pool: pool to create a new worker for
1672  *
1673  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1674  * have at least one idle worker on return from this function.  If
1675  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1676  * sent to all rescuers with works scheduled on @pool to resolve
1677  * possible allocation deadlock.
1678  *
1679  * On return, need_to_create_worker() is guaranteed to be false and
1680  * may_start_working() true.
1681  *
1682  * LOCKING:
1683  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1684  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1685  * manager.
1686  *
1687  * RETURNS:
1688  * false if no action was taken and gcwq->lock stayed locked, true
1689  * otherwise.
1690  */
1691 static bool maybe_create_worker(struct worker_pool *pool)
1692 __releases(&gcwq->lock)
1693 __acquires(&gcwq->lock)
1694 {
1695 	struct global_cwq *gcwq = pool->gcwq;
1696 
1697 	if (!need_to_create_worker(pool))
1698 		return false;
1699 restart:
1700 	spin_unlock_irq(&gcwq->lock);
1701 
1702 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1703 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1704 
1705 	while (true) {
1706 		struct worker *worker;
1707 
1708 		worker = create_worker(pool);
1709 		if (worker) {
1710 			del_timer_sync(&pool->mayday_timer);
1711 			spin_lock_irq(&gcwq->lock);
1712 			start_worker(worker);
1713 			BUG_ON(need_to_create_worker(pool));
1714 			return true;
1715 		}
1716 
1717 		if (!need_to_create_worker(pool))
1718 			break;
1719 
1720 		__set_current_state(TASK_INTERRUPTIBLE);
1721 		schedule_timeout(CREATE_COOLDOWN);
1722 
1723 		if (!need_to_create_worker(pool))
1724 			break;
1725 	}
1726 
1727 	del_timer_sync(&pool->mayday_timer);
1728 	spin_lock_irq(&gcwq->lock);
1729 	if (need_to_create_worker(pool))
1730 		goto restart;
1731 	return true;
1732 }
1733 
1734 /**
1735  * maybe_destroy_worker - destroy workers which have been idle for a while
1736  * @pool: pool to destroy workers for
1737  *
1738  * Destroy @pool workers which have been idle for longer than
1739  * IDLE_WORKER_TIMEOUT.
1740  *
1741  * LOCKING:
1742  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1743  * multiple times.  Called only from manager.
1744  *
1745  * RETURNS:
1746  * false if no action was taken and gcwq->lock stayed locked, true
1747  * otherwise.
1748  */
1749 static bool maybe_destroy_workers(struct worker_pool *pool)
1750 {
1751 	bool ret = false;
1752 
1753 	while (too_many_workers(pool)) {
1754 		struct worker *worker;
1755 		unsigned long expires;
1756 
1757 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1758 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1759 
1760 		if (time_before(jiffies, expires)) {
1761 			mod_timer(&pool->idle_timer, expires);
1762 			break;
1763 		}
1764 
1765 		destroy_worker(worker);
1766 		ret = true;
1767 	}
1768 
1769 	return ret;
1770 }
1771 
1772 /**
1773  * manage_workers - manage worker pool
1774  * @worker: self
1775  *
1776  * Assume the manager role and manage gcwq worker pool @worker belongs
1777  * to.  At any given time, there can be only zero or one manager per
1778  * gcwq.  The exclusion is handled automatically by this function.
1779  *
1780  * The caller can safely start processing works on false return.  On
1781  * true return, it's guaranteed that need_to_create_worker() is false
1782  * and may_start_working() is true.
1783  *
1784  * CONTEXT:
1785  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1786  * multiple times.  Does GFP_KERNEL allocations.
1787  *
1788  * RETURNS:
1789  * false if no action was taken and gcwq->lock stayed locked, true if
1790  * some action was taken.
1791  */
1792 static bool manage_workers(struct worker *worker)
1793 {
1794 	struct worker_pool *pool = worker->pool;
1795 	bool ret = false;
1796 
1797 	if (!mutex_trylock(&pool->manager_mutex))
1798 		return ret;
1799 
1800 	pool->flags &= ~POOL_MANAGE_WORKERS;
1801 
1802 	/*
1803 	 * Destroy and then create so that may_start_working() is true
1804 	 * on return.
1805 	 */
1806 	ret |= maybe_destroy_workers(pool);
1807 	ret |= maybe_create_worker(pool);
1808 
1809 	mutex_unlock(&pool->manager_mutex);
1810 	return ret;
1811 }
1812 
1813 /**
1814  * move_linked_works - move linked works to a list
1815  * @work: start of series of works to be scheduled
1816  * @head: target list to append @work to
1817  * @nextp: out paramter for nested worklist walking
1818  *
1819  * Schedule linked works starting from @work to @head.  Work series to
1820  * be scheduled starts at @work and includes any consecutive work with
1821  * WORK_STRUCT_LINKED set in its predecessor.
1822  *
1823  * If @nextp is not NULL, it's updated to point to the next work of
1824  * the last scheduled work.  This allows move_linked_works() to be
1825  * nested inside outer list_for_each_entry_safe().
1826  *
1827  * CONTEXT:
1828  * spin_lock_irq(gcwq->lock).
1829  */
1830 static void move_linked_works(struct work_struct *work, struct list_head *head,
1831 			      struct work_struct **nextp)
1832 {
1833 	struct work_struct *n;
1834 
1835 	/*
1836 	 * Linked worklist will always end before the end of the list,
1837 	 * use NULL for list head.
1838 	 */
1839 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1840 		list_move_tail(&work->entry, head);
1841 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1842 			break;
1843 	}
1844 
1845 	/*
1846 	 * If we're already inside safe list traversal and have moved
1847 	 * multiple works to the scheduled queue, the next position
1848 	 * needs to be updated.
1849 	 */
1850 	if (nextp)
1851 		*nextp = n;
1852 }
1853 
1854 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1855 {
1856 	struct work_struct *work = list_first_entry(&cwq->delayed_works,
1857 						    struct work_struct, entry);
1858 
1859 	trace_workqueue_activate_work(work);
1860 	move_linked_works(work, &cwq->pool->worklist, NULL);
1861 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1862 	cwq->nr_active++;
1863 }
1864 
1865 /**
1866  * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1867  * @cwq: cwq of interest
1868  * @color: color of work which left the queue
1869  * @delayed: for a delayed work
1870  *
1871  * A work either has completed or is removed from pending queue,
1872  * decrement nr_in_flight of its cwq and handle workqueue flushing.
1873  *
1874  * CONTEXT:
1875  * spin_lock_irq(gcwq->lock).
1876  */
1877 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1878 				 bool delayed)
1879 {
1880 	/* ignore uncolored works */
1881 	if (color == WORK_NO_COLOR)
1882 		return;
1883 
1884 	cwq->nr_in_flight[color]--;
1885 
1886 	if (!delayed) {
1887 		cwq->nr_active--;
1888 		if (!list_empty(&cwq->delayed_works)) {
1889 			/* one down, submit a delayed one */
1890 			if (cwq->nr_active < cwq->max_active)
1891 				cwq_activate_first_delayed(cwq);
1892 		}
1893 	}
1894 
1895 	/* is flush in progress and are we at the flushing tip? */
1896 	if (likely(cwq->flush_color != color))
1897 		return;
1898 
1899 	/* are there still in-flight works? */
1900 	if (cwq->nr_in_flight[color])
1901 		return;
1902 
1903 	/* this cwq is done, clear flush_color */
1904 	cwq->flush_color = -1;
1905 
1906 	/*
1907 	 * If this was the last cwq, wake up the first flusher.  It
1908 	 * will handle the rest.
1909 	 */
1910 	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1911 		complete(&cwq->wq->first_flusher->done);
1912 }
1913 
1914 /**
1915  * process_one_work - process single work
1916  * @worker: self
1917  * @work: work to process
1918  *
1919  * Process @work.  This function contains all the logics necessary to
1920  * process a single work including synchronization against and
1921  * interaction with other workers on the same cpu, queueing and
1922  * flushing.  As long as context requirement is met, any worker can
1923  * call this function to process a work.
1924  *
1925  * CONTEXT:
1926  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1927  */
1928 static void process_one_work(struct worker *worker, struct work_struct *work)
1929 __releases(&gcwq->lock)
1930 __acquires(&gcwq->lock)
1931 {
1932 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1933 	struct worker_pool *pool = worker->pool;
1934 	struct global_cwq *gcwq = pool->gcwq;
1935 	struct hlist_head *bwh = busy_worker_head(gcwq, work);
1936 	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1937 	work_func_t f = work->func;
1938 	int work_color;
1939 	struct worker *collision;
1940 #ifdef CONFIG_LOCKDEP
1941 	/*
1942 	 * It is permissible to free the struct work_struct from
1943 	 * inside the function that is called from it, this we need to
1944 	 * take into account for lockdep too.  To avoid bogus "held
1945 	 * lock freed" warnings as well as problems when looking into
1946 	 * work->lockdep_map, make a copy and use that here.
1947 	 */
1948 	struct lockdep_map lockdep_map;
1949 
1950 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1951 #endif
1952 	/*
1953 	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
1954 	 * necessary to avoid spurious warnings from rescuers servicing the
1955 	 * unbound or a disassociated gcwq.
1956 	 */
1957 	WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
1958 		     !(gcwq->flags & GCWQ_DISASSOCIATED) &&
1959 		     raw_smp_processor_id() != gcwq->cpu);
1960 
1961 	/*
1962 	 * A single work shouldn't be executed concurrently by
1963 	 * multiple workers on a single cpu.  Check whether anyone is
1964 	 * already processing the work.  If so, defer the work to the
1965 	 * currently executing one.
1966 	 */
1967 	collision = __find_worker_executing_work(gcwq, bwh, work);
1968 	if (unlikely(collision)) {
1969 		move_linked_works(work, &collision->scheduled, NULL);
1970 		return;
1971 	}
1972 
1973 	/* claim and process */
1974 	debug_work_deactivate(work);
1975 	hlist_add_head(&worker->hentry, bwh);
1976 	worker->current_work = work;
1977 	worker->current_cwq = cwq;
1978 	work_color = get_work_color(work);
1979 
1980 	/* record the current cpu number in the work data and dequeue */
1981 	set_work_cpu(work, gcwq->cpu);
1982 	list_del_init(&work->entry);
1983 
1984 	/*
1985 	 * CPU intensive works don't participate in concurrency
1986 	 * management.  They're the scheduler's responsibility.
1987 	 */
1988 	if (unlikely(cpu_intensive))
1989 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1990 
1991 	/*
1992 	 * Unbound gcwq isn't concurrency managed and work items should be
1993 	 * executed ASAP.  Wake up another worker if necessary.
1994 	 */
1995 	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
1996 		wake_up_worker(pool);
1997 
1998 	spin_unlock_irq(&gcwq->lock);
1999 
2000 	work_clear_pending(work);
2001 	lock_map_acquire_read(&cwq->wq->lockdep_map);
2002 	lock_map_acquire(&lockdep_map);
2003 	trace_workqueue_execute_start(work);
2004 	f(work);
2005 	/*
2006 	 * While we must be careful to not use "work" after this, the trace
2007 	 * point will only record its address.
2008 	 */
2009 	trace_workqueue_execute_end(work);
2010 	lock_map_release(&lockdep_map);
2011 	lock_map_release(&cwq->wq->lockdep_map);
2012 
2013 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2014 		printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
2015 		       "%s/0x%08x/%d\n",
2016 		       current->comm, preempt_count(), task_pid_nr(current));
2017 		printk(KERN_ERR "    last function: ");
2018 		print_symbol("%s\n", (unsigned long)f);
2019 		debug_show_held_locks(current);
2020 		dump_stack();
2021 	}
2022 
2023 	spin_lock_irq(&gcwq->lock);
2024 
2025 	/* clear cpu intensive status */
2026 	if (unlikely(cpu_intensive))
2027 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2028 
2029 	/* we're done with it, release */
2030 	hlist_del_init(&worker->hentry);
2031 	worker->current_work = NULL;
2032 	worker->current_cwq = NULL;
2033 	cwq_dec_nr_in_flight(cwq, work_color, false);
2034 }
2035 
2036 /**
2037  * process_scheduled_works - process scheduled works
2038  * @worker: self
2039  *
2040  * Process all scheduled works.  Please note that the scheduled list
2041  * may change while processing a work, so this function repeatedly
2042  * fetches a work from the top and executes it.
2043  *
2044  * CONTEXT:
2045  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2046  * multiple times.
2047  */
2048 static void process_scheduled_works(struct worker *worker)
2049 {
2050 	while (!list_empty(&worker->scheduled)) {
2051 		struct work_struct *work = list_first_entry(&worker->scheduled,
2052 						struct work_struct, entry);
2053 		process_one_work(worker, work);
2054 	}
2055 }
2056 
2057 /**
2058  * worker_thread - the worker thread function
2059  * @__worker: self
2060  *
2061  * The gcwq worker thread function.  There's a single dynamic pool of
2062  * these per each cpu.  These workers process all works regardless of
2063  * their specific target workqueue.  The only exception is works which
2064  * belong to workqueues with a rescuer which will be explained in
2065  * rescuer_thread().
2066  */
2067 static int worker_thread(void *__worker)
2068 {
2069 	struct worker *worker = __worker;
2070 	struct worker_pool *pool = worker->pool;
2071 	struct global_cwq *gcwq = pool->gcwq;
2072 
2073 	/* tell the scheduler that this is a workqueue worker */
2074 	worker->task->flags |= PF_WQ_WORKER;
2075 woke_up:
2076 	spin_lock_irq(&gcwq->lock);
2077 
2078 	/*
2079 	 * DIE can be set only while idle and REBIND set while busy has
2080 	 * @worker->rebind_work scheduled.  Checking here is enough.
2081 	 */
2082 	if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
2083 		spin_unlock_irq(&gcwq->lock);
2084 
2085 		if (worker->flags & WORKER_DIE) {
2086 			worker->task->flags &= ~PF_WQ_WORKER;
2087 			return 0;
2088 		}
2089 
2090 		idle_worker_rebind(worker);
2091 		goto woke_up;
2092 	}
2093 
2094 	worker_leave_idle(worker);
2095 recheck:
2096 	/* no more worker necessary? */
2097 	if (!need_more_worker(pool))
2098 		goto sleep;
2099 
2100 	/* do we need to manage? */
2101 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2102 		goto recheck;
2103 
2104 	/*
2105 	 * ->scheduled list can only be filled while a worker is
2106 	 * preparing to process a work or actually processing it.
2107 	 * Make sure nobody diddled with it while I was sleeping.
2108 	 */
2109 	BUG_ON(!list_empty(&worker->scheduled));
2110 
2111 	/*
2112 	 * When control reaches this point, we're guaranteed to have
2113 	 * at least one idle worker or that someone else has already
2114 	 * assumed the manager role.
2115 	 */
2116 	worker_clr_flags(worker, WORKER_PREP);
2117 
2118 	do {
2119 		struct work_struct *work =
2120 			list_first_entry(&pool->worklist,
2121 					 struct work_struct, entry);
2122 
2123 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2124 			/* optimization path, not strictly necessary */
2125 			process_one_work(worker, work);
2126 			if (unlikely(!list_empty(&worker->scheduled)))
2127 				process_scheduled_works(worker);
2128 		} else {
2129 			move_linked_works(work, &worker->scheduled, NULL);
2130 			process_scheduled_works(worker);
2131 		}
2132 	} while (keep_working(pool));
2133 
2134 	worker_set_flags(worker, WORKER_PREP, false);
2135 sleep:
2136 	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2137 		goto recheck;
2138 
2139 	/*
2140 	 * gcwq->lock is held and there's no work to process and no
2141 	 * need to manage, sleep.  Workers are woken up only while
2142 	 * holding gcwq->lock or from local cpu, so setting the
2143 	 * current state before releasing gcwq->lock is enough to
2144 	 * prevent losing any event.
2145 	 */
2146 	worker_enter_idle(worker);
2147 	__set_current_state(TASK_INTERRUPTIBLE);
2148 	spin_unlock_irq(&gcwq->lock);
2149 	schedule();
2150 	goto woke_up;
2151 }
2152 
2153 /**
2154  * rescuer_thread - the rescuer thread function
2155  * @__wq: the associated workqueue
2156  *
2157  * Workqueue rescuer thread function.  There's one rescuer for each
2158  * workqueue which has WQ_RESCUER set.
2159  *
2160  * Regular work processing on a gcwq may block trying to create a new
2161  * worker which uses GFP_KERNEL allocation which has slight chance of
2162  * developing into deadlock if some works currently on the same queue
2163  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2164  * the problem rescuer solves.
2165  *
2166  * When such condition is possible, the gcwq summons rescuers of all
2167  * workqueues which have works queued on the gcwq and let them process
2168  * those works so that forward progress can be guaranteed.
2169  *
2170  * This should happen rarely.
2171  */
2172 static int rescuer_thread(void *__wq)
2173 {
2174 	struct workqueue_struct *wq = __wq;
2175 	struct worker *rescuer = wq->rescuer;
2176 	struct list_head *scheduled = &rescuer->scheduled;
2177 	bool is_unbound = wq->flags & WQ_UNBOUND;
2178 	unsigned int cpu;
2179 
2180 	set_user_nice(current, RESCUER_NICE_LEVEL);
2181 repeat:
2182 	set_current_state(TASK_INTERRUPTIBLE);
2183 
2184 	if (kthread_should_stop())
2185 		return 0;
2186 
2187 	/*
2188 	 * See whether any cpu is asking for help.  Unbounded
2189 	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2190 	 */
2191 	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2192 		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2193 		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2194 		struct worker_pool *pool = cwq->pool;
2195 		struct global_cwq *gcwq = pool->gcwq;
2196 		struct work_struct *work, *n;
2197 
2198 		__set_current_state(TASK_RUNNING);
2199 		mayday_clear_cpu(cpu, wq->mayday_mask);
2200 
2201 		/* migrate to the target cpu if possible */
2202 		rescuer->pool = pool;
2203 		worker_maybe_bind_and_lock(rescuer);
2204 
2205 		/*
2206 		 * Slurp in all works issued via this workqueue and
2207 		 * process'em.
2208 		 */
2209 		BUG_ON(!list_empty(&rescuer->scheduled));
2210 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2211 			if (get_work_cwq(work) == cwq)
2212 				move_linked_works(work, scheduled, &n);
2213 
2214 		process_scheduled_works(rescuer);
2215 
2216 		/*
2217 		 * Leave this gcwq.  If keep_working() is %true, notify a
2218 		 * regular worker; otherwise, we end up with 0 concurrency
2219 		 * and stalling the execution.
2220 		 */
2221 		if (keep_working(pool))
2222 			wake_up_worker(pool);
2223 
2224 		spin_unlock_irq(&gcwq->lock);
2225 	}
2226 
2227 	schedule();
2228 	goto repeat;
2229 }
2230 
2231 struct wq_barrier {
2232 	struct work_struct	work;
2233 	struct completion	done;
2234 };
2235 
2236 static void wq_barrier_func(struct work_struct *work)
2237 {
2238 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2239 	complete(&barr->done);
2240 }
2241 
2242 /**
2243  * insert_wq_barrier - insert a barrier work
2244  * @cwq: cwq to insert barrier into
2245  * @barr: wq_barrier to insert
2246  * @target: target work to attach @barr to
2247  * @worker: worker currently executing @target, NULL if @target is not executing
2248  *
2249  * @barr is linked to @target such that @barr is completed only after
2250  * @target finishes execution.  Please note that the ordering
2251  * guarantee is observed only with respect to @target and on the local
2252  * cpu.
2253  *
2254  * Currently, a queued barrier can't be canceled.  This is because
2255  * try_to_grab_pending() can't determine whether the work to be
2256  * grabbed is at the head of the queue and thus can't clear LINKED
2257  * flag of the previous work while there must be a valid next work
2258  * after a work with LINKED flag set.
2259  *
2260  * Note that when @worker is non-NULL, @target may be modified
2261  * underneath us, so we can't reliably determine cwq from @target.
2262  *
2263  * CONTEXT:
2264  * spin_lock_irq(gcwq->lock).
2265  */
2266 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2267 			      struct wq_barrier *barr,
2268 			      struct work_struct *target, struct worker *worker)
2269 {
2270 	struct list_head *head;
2271 	unsigned int linked = 0;
2272 
2273 	/*
2274 	 * debugobject calls are safe here even with gcwq->lock locked
2275 	 * as we know for sure that this will not trigger any of the
2276 	 * checks and call back into the fixup functions where we
2277 	 * might deadlock.
2278 	 */
2279 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2280 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2281 	init_completion(&barr->done);
2282 
2283 	/*
2284 	 * If @target is currently being executed, schedule the
2285 	 * barrier to the worker; otherwise, put it after @target.
2286 	 */
2287 	if (worker)
2288 		head = worker->scheduled.next;
2289 	else {
2290 		unsigned long *bits = work_data_bits(target);
2291 
2292 		head = target->entry.next;
2293 		/* there can already be other linked works, inherit and set */
2294 		linked = *bits & WORK_STRUCT_LINKED;
2295 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2296 	}
2297 
2298 	debug_work_activate(&barr->work);
2299 	insert_work(cwq, &barr->work, head,
2300 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2301 }
2302 
2303 /**
2304  * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2305  * @wq: workqueue being flushed
2306  * @flush_color: new flush color, < 0 for no-op
2307  * @work_color: new work color, < 0 for no-op
2308  *
2309  * Prepare cwqs for workqueue flushing.
2310  *
2311  * If @flush_color is non-negative, flush_color on all cwqs should be
2312  * -1.  If no cwq has in-flight commands at the specified color, all
2313  * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
2314  * has in flight commands, its cwq->flush_color is set to
2315  * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2316  * wakeup logic is armed and %true is returned.
2317  *
2318  * The caller should have initialized @wq->first_flusher prior to
2319  * calling this function with non-negative @flush_color.  If
2320  * @flush_color is negative, no flush color update is done and %false
2321  * is returned.
2322  *
2323  * If @work_color is non-negative, all cwqs should have the same
2324  * work_color which is previous to @work_color and all will be
2325  * advanced to @work_color.
2326  *
2327  * CONTEXT:
2328  * mutex_lock(wq->flush_mutex).
2329  *
2330  * RETURNS:
2331  * %true if @flush_color >= 0 and there's something to flush.  %false
2332  * otherwise.
2333  */
2334 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2335 				      int flush_color, int work_color)
2336 {
2337 	bool wait = false;
2338 	unsigned int cpu;
2339 
2340 	if (flush_color >= 0) {
2341 		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2342 		atomic_set(&wq->nr_cwqs_to_flush, 1);
2343 	}
2344 
2345 	for_each_cwq_cpu(cpu, wq) {
2346 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2347 		struct global_cwq *gcwq = cwq->pool->gcwq;
2348 
2349 		spin_lock_irq(&gcwq->lock);
2350 
2351 		if (flush_color >= 0) {
2352 			BUG_ON(cwq->flush_color != -1);
2353 
2354 			if (cwq->nr_in_flight[flush_color]) {
2355 				cwq->flush_color = flush_color;
2356 				atomic_inc(&wq->nr_cwqs_to_flush);
2357 				wait = true;
2358 			}
2359 		}
2360 
2361 		if (work_color >= 0) {
2362 			BUG_ON(work_color != work_next_color(cwq->work_color));
2363 			cwq->work_color = work_color;
2364 		}
2365 
2366 		spin_unlock_irq(&gcwq->lock);
2367 	}
2368 
2369 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2370 		complete(&wq->first_flusher->done);
2371 
2372 	return wait;
2373 }
2374 
2375 /**
2376  * flush_workqueue - ensure that any scheduled work has run to completion.
2377  * @wq: workqueue to flush
2378  *
2379  * Forces execution of the workqueue and blocks until its completion.
2380  * This is typically used in driver shutdown handlers.
2381  *
2382  * We sleep until all works which were queued on entry have been handled,
2383  * but we are not livelocked by new incoming ones.
2384  */
2385 void flush_workqueue(struct workqueue_struct *wq)
2386 {
2387 	struct wq_flusher this_flusher = {
2388 		.list = LIST_HEAD_INIT(this_flusher.list),
2389 		.flush_color = -1,
2390 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2391 	};
2392 	int next_color;
2393 
2394 	lock_map_acquire(&wq->lockdep_map);
2395 	lock_map_release(&wq->lockdep_map);
2396 
2397 	mutex_lock(&wq->flush_mutex);
2398 
2399 	/*
2400 	 * Start-to-wait phase
2401 	 */
2402 	next_color = work_next_color(wq->work_color);
2403 
2404 	if (next_color != wq->flush_color) {
2405 		/*
2406 		 * Color space is not full.  The current work_color
2407 		 * becomes our flush_color and work_color is advanced
2408 		 * by one.
2409 		 */
2410 		BUG_ON(!list_empty(&wq->flusher_overflow));
2411 		this_flusher.flush_color = wq->work_color;
2412 		wq->work_color = next_color;
2413 
2414 		if (!wq->first_flusher) {
2415 			/* no flush in progress, become the first flusher */
2416 			BUG_ON(wq->flush_color != this_flusher.flush_color);
2417 
2418 			wq->first_flusher = &this_flusher;
2419 
2420 			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2421 						       wq->work_color)) {
2422 				/* nothing to flush, done */
2423 				wq->flush_color = next_color;
2424 				wq->first_flusher = NULL;
2425 				goto out_unlock;
2426 			}
2427 		} else {
2428 			/* wait in queue */
2429 			BUG_ON(wq->flush_color == this_flusher.flush_color);
2430 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2431 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2432 		}
2433 	} else {
2434 		/*
2435 		 * Oops, color space is full, wait on overflow queue.
2436 		 * The next flush completion will assign us
2437 		 * flush_color and transfer to flusher_queue.
2438 		 */
2439 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2440 	}
2441 
2442 	mutex_unlock(&wq->flush_mutex);
2443 
2444 	wait_for_completion(&this_flusher.done);
2445 
2446 	/*
2447 	 * Wake-up-and-cascade phase
2448 	 *
2449 	 * First flushers are responsible for cascading flushes and
2450 	 * handling overflow.  Non-first flushers can simply return.
2451 	 */
2452 	if (wq->first_flusher != &this_flusher)
2453 		return;
2454 
2455 	mutex_lock(&wq->flush_mutex);
2456 
2457 	/* we might have raced, check again with mutex held */
2458 	if (wq->first_flusher != &this_flusher)
2459 		goto out_unlock;
2460 
2461 	wq->first_flusher = NULL;
2462 
2463 	BUG_ON(!list_empty(&this_flusher.list));
2464 	BUG_ON(wq->flush_color != this_flusher.flush_color);
2465 
2466 	while (true) {
2467 		struct wq_flusher *next, *tmp;
2468 
2469 		/* complete all the flushers sharing the current flush color */
2470 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2471 			if (next->flush_color != wq->flush_color)
2472 				break;
2473 			list_del_init(&next->list);
2474 			complete(&next->done);
2475 		}
2476 
2477 		BUG_ON(!list_empty(&wq->flusher_overflow) &&
2478 		       wq->flush_color != work_next_color(wq->work_color));
2479 
2480 		/* this flush_color is finished, advance by one */
2481 		wq->flush_color = work_next_color(wq->flush_color);
2482 
2483 		/* one color has been freed, handle overflow queue */
2484 		if (!list_empty(&wq->flusher_overflow)) {
2485 			/*
2486 			 * Assign the same color to all overflowed
2487 			 * flushers, advance work_color and append to
2488 			 * flusher_queue.  This is the start-to-wait
2489 			 * phase for these overflowed flushers.
2490 			 */
2491 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2492 				tmp->flush_color = wq->work_color;
2493 
2494 			wq->work_color = work_next_color(wq->work_color);
2495 
2496 			list_splice_tail_init(&wq->flusher_overflow,
2497 					      &wq->flusher_queue);
2498 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2499 		}
2500 
2501 		if (list_empty(&wq->flusher_queue)) {
2502 			BUG_ON(wq->flush_color != wq->work_color);
2503 			break;
2504 		}
2505 
2506 		/*
2507 		 * Need to flush more colors.  Make the next flusher
2508 		 * the new first flusher and arm cwqs.
2509 		 */
2510 		BUG_ON(wq->flush_color == wq->work_color);
2511 		BUG_ON(wq->flush_color != next->flush_color);
2512 
2513 		list_del_init(&next->list);
2514 		wq->first_flusher = next;
2515 
2516 		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2517 			break;
2518 
2519 		/*
2520 		 * Meh... this color is already done, clear first
2521 		 * flusher and repeat cascading.
2522 		 */
2523 		wq->first_flusher = NULL;
2524 	}
2525 
2526 out_unlock:
2527 	mutex_unlock(&wq->flush_mutex);
2528 }
2529 EXPORT_SYMBOL_GPL(flush_workqueue);
2530 
2531 /**
2532  * drain_workqueue - drain a workqueue
2533  * @wq: workqueue to drain
2534  *
2535  * Wait until the workqueue becomes empty.  While draining is in progress,
2536  * only chain queueing is allowed.  IOW, only currently pending or running
2537  * work items on @wq can queue further work items on it.  @wq is flushed
2538  * repeatedly until it becomes empty.  The number of flushing is detemined
2539  * by the depth of chaining and should be relatively short.  Whine if it
2540  * takes too long.
2541  */
2542 void drain_workqueue(struct workqueue_struct *wq)
2543 {
2544 	unsigned int flush_cnt = 0;
2545 	unsigned int cpu;
2546 
2547 	/*
2548 	 * __queue_work() needs to test whether there are drainers, is much
2549 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2550 	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2551 	 */
2552 	spin_lock(&workqueue_lock);
2553 	if (!wq->nr_drainers++)
2554 		wq->flags |= WQ_DRAINING;
2555 	spin_unlock(&workqueue_lock);
2556 reflush:
2557 	flush_workqueue(wq);
2558 
2559 	for_each_cwq_cpu(cpu, wq) {
2560 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2561 		bool drained;
2562 
2563 		spin_lock_irq(&cwq->pool->gcwq->lock);
2564 		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2565 		spin_unlock_irq(&cwq->pool->gcwq->lock);
2566 
2567 		if (drained)
2568 			continue;
2569 
2570 		if (++flush_cnt == 10 ||
2571 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2572 			pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2573 				   wq->name, flush_cnt);
2574 		goto reflush;
2575 	}
2576 
2577 	spin_lock(&workqueue_lock);
2578 	if (!--wq->nr_drainers)
2579 		wq->flags &= ~WQ_DRAINING;
2580 	spin_unlock(&workqueue_lock);
2581 }
2582 EXPORT_SYMBOL_GPL(drain_workqueue);
2583 
2584 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2585 			     bool wait_executing)
2586 {
2587 	struct worker *worker = NULL;
2588 	struct global_cwq *gcwq;
2589 	struct cpu_workqueue_struct *cwq;
2590 
2591 	might_sleep();
2592 	gcwq = get_work_gcwq(work);
2593 	if (!gcwq)
2594 		return false;
2595 
2596 	spin_lock_irq(&gcwq->lock);
2597 	if (!list_empty(&work->entry)) {
2598 		/*
2599 		 * See the comment near try_to_grab_pending()->smp_rmb().
2600 		 * If it was re-queued to a different gcwq under us, we
2601 		 * are not going to wait.
2602 		 */
2603 		smp_rmb();
2604 		cwq = get_work_cwq(work);
2605 		if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
2606 			goto already_gone;
2607 	} else if (wait_executing) {
2608 		worker = find_worker_executing_work(gcwq, work);
2609 		if (!worker)
2610 			goto already_gone;
2611 		cwq = worker->current_cwq;
2612 	} else
2613 		goto already_gone;
2614 
2615 	insert_wq_barrier(cwq, barr, work, worker);
2616 	spin_unlock_irq(&gcwq->lock);
2617 
2618 	/*
2619 	 * If @max_active is 1 or rescuer is in use, flushing another work
2620 	 * item on the same workqueue may lead to deadlock.  Make sure the
2621 	 * flusher is not running on the same workqueue by verifying write
2622 	 * access.
2623 	 */
2624 	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2625 		lock_map_acquire(&cwq->wq->lockdep_map);
2626 	else
2627 		lock_map_acquire_read(&cwq->wq->lockdep_map);
2628 	lock_map_release(&cwq->wq->lockdep_map);
2629 
2630 	return true;
2631 already_gone:
2632 	spin_unlock_irq(&gcwq->lock);
2633 	return false;
2634 }
2635 
2636 /**
2637  * flush_work - wait for a work to finish executing the last queueing instance
2638  * @work: the work to flush
2639  *
2640  * Wait until @work has finished execution.  This function considers
2641  * only the last queueing instance of @work.  If @work has been
2642  * enqueued across different CPUs on a non-reentrant workqueue or on
2643  * multiple workqueues, @work might still be executing on return on
2644  * some of the CPUs from earlier queueing.
2645  *
2646  * If @work was queued only on a non-reentrant, ordered or unbound
2647  * workqueue, @work is guaranteed to be idle on return if it hasn't
2648  * been requeued since flush started.
2649  *
2650  * RETURNS:
2651  * %true if flush_work() waited for the work to finish execution,
2652  * %false if it was already idle.
2653  */
2654 bool flush_work(struct work_struct *work)
2655 {
2656 	struct wq_barrier barr;
2657 
2658 	lock_map_acquire(&work->lockdep_map);
2659 	lock_map_release(&work->lockdep_map);
2660 
2661 	if (start_flush_work(work, &barr, true)) {
2662 		wait_for_completion(&barr.done);
2663 		destroy_work_on_stack(&barr.work);
2664 		return true;
2665 	} else
2666 		return false;
2667 }
2668 EXPORT_SYMBOL_GPL(flush_work);
2669 
2670 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2671 {
2672 	struct wq_barrier barr;
2673 	struct worker *worker;
2674 
2675 	spin_lock_irq(&gcwq->lock);
2676 
2677 	worker = find_worker_executing_work(gcwq, work);
2678 	if (unlikely(worker))
2679 		insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2680 
2681 	spin_unlock_irq(&gcwq->lock);
2682 
2683 	if (unlikely(worker)) {
2684 		wait_for_completion(&barr.done);
2685 		destroy_work_on_stack(&barr.work);
2686 		return true;
2687 	} else
2688 		return false;
2689 }
2690 
2691 static bool wait_on_work(struct work_struct *work)
2692 {
2693 	bool ret = false;
2694 	int cpu;
2695 
2696 	might_sleep();
2697 
2698 	lock_map_acquire(&work->lockdep_map);
2699 	lock_map_release(&work->lockdep_map);
2700 
2701 	for_each_gcwq_cpu(cpu)
2702 		ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2703 	return ret;
2704 }
2705 
2706 /**
2707  * flush_work_sync - wait until a work has finished execution
2708  * @work: the work to flush
2709  *
2710  * Wait until @work has finished execution.  On return, it's
2711  * guaranteed that all queueing instances of @work which happened
2712  * before this function is called are finished.  In other words, if
2713  * @work hasn't been requeued since this function was called, @work is
2714  * guaranteed to be idle on return.
2715  *
2716  * RETURNS:
2717  * %true if flush_work_sync() waited for the work to finish execution,
2718  * %false if it was already idle.
2719  */
2720 bool flush_work_sync(struct work_struct *work)
2721 {
2722 	struct wq_barrier barr;
2723 	bool pending, waited;
2724 
2725 	/* we'll wait for executions separately, queue barr only if pending */
2726 	pending = start_flush_work(work, &barr, false);
2727 
2728 	/* wait for executions to finish */
2729 	waited = wait_on_work(work);
2730 
2731 	/* wait for the pending one */
2732 	if (pending) {
2733 		wait_for_completion(&barr.done);
2734 		destroy_work_on_stack(&barr.work);
2735 	}
2736 
2737 	return pending || waited;
2738 }
2739 EXPORT_SYMBOL_GPL(flush_work_sync);
2740 
2741 /*
2742  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2743  * so this work can't be re-armed in any way.
2744  */
2745 static int try_to_grab_pending(struct work_struct *work)
2746 {
2747 	struct global_cwq *gcwq;
2748 	int ret = -1;
2749 
2750 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2751 		return 0;
2752 
2753 	/*
2754 	 * The queueing is in progress, or it is already queued. Try to
2755 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2756 	 */
2757 	gcwq = get_work_gcwq(work);
2758 	if (!gcwq)
2759 		return ret;
2760 
2761 	spin_lock_irq(&gcwq->lock);
2762 	if (!list_empty(&work->entry)) {
2763 		/*
2764 		 * This work is queued, but perhaps we locked the wrong gcwq.
2765 		 * In that case we must see the new value after rmb(), see
2766 		 * insert_work()->wmb().
2767 		 */
2768 		smp_rmb();
2769 		if (gcwq == get_work_gcwq(work)) {
2770 			debug_work_deactivate(work);
2771 			list_del_init(&work->entry);
2772 			cwq_dec_nr_in_flight(get_work_cwq(work),
2773 				get_work_color(work),
2774 				*work_data_bits(work) & WORK_STRUCT_DELAYED);
2775 			ret = 1;
2776 		}
2777 	}
2778 	spin_unlock_irq(&gcwq->lock);
2779 
2780 	return ret;
2781 }
2782 
2783 static bool __cancel_work_timer(struct work_struct *work,
2784 				struct timer_list* timer)
2785 {
2786 	int ret;
2787 
2788 	do {
2789 		ret = (timer && likely(del_timer(timer)));
2790 		if (!ret)
2791 			ret = try_to_grab_pending(work);
2792 		wait_on_work(work);
2793 	} while (unlikely(ret < 0));
2794 
2795 	clear_work_data(work);
2796 	return ret;
2797 }
2798 
2799 /**
2800  * cancel_work_sync - cancel a work and wait for it to finish
2801  * @work: the work to cancel
2802  *
2803  * Cancel @work and wait for its execution to finish.  This function
2804  * can be used even if the work re-queues itself or migrates to
2805  * another workqueue.  On return from this function, @work is
2806  * guaranteed to be not pending or executing on any CPU.
2807  *
2808  * cancel_work_sync(&delayed_work->work) must not be used for
2809  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2810  *
2811  * The caller must ensure that the workqueue on which @work was last
2812  * queued can't be destroyed before this function returns.
2813  *
2814  * RETURNS:
2815  * %true if @work was pending, %false otherwise.
2816  */
2817 bool cancel_work_sync(struct work_struct *work)
2818 {
2819 	return __cancel_work_timer(work, NULL);
2820 }
2821 EXPORT_SYMBOL_GPL(cancel_work_sync);
2822 
2823 /**
2824  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2825  * @dwork: the delayed work to flush
2826  *
2827  * Delayed timer is cancelled and the pending work is queued for
2828  * immediate execution.  Like flush_work(), this function only
2829  * considers the last queueing instance of @dwork.
2830  *
2831  * RETURNS:
2832  * %true if flush_work() waited for the work to finish execution,
2833  * %false if it was already idle.
2834  */
2835 bool flush_delayed_work(struct delayed_work *dwork)
2836 {
2837 	if (del_timer_sync(&dwork->timer))
2838 		__queue_work(raw_smp_processor_id(),
2839 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2840 	return flush_work(&dwork->work);
2841 }
2842 EXPORT_SYMBOL(flush_delayed_work);
2843 
2844 /**
2845  * flush_delayed_work_sync - wait for a dwork to finish
2846  * @dwork: the delayed work to flush
2847  *
2848  * Delayed timer is cancelled and the pending work is queued for
2849  * execution immediately.  Other than timer handling, its behavior
2850  * is identical to flush_work_sync().
2851  *
2852  * RETURNS:
2853  * %true if flush_work_sync() waited for the work to finish execution,
2854  * %false if it was already idle.
2855  */
2856 bool flush_delayed_work_sync(struct delayed_work *dwork)
2857 {
2858 	if (del_timer_sync(&dwork->timer))
2859 		__queue_work(raw_smp_processor_id(),
2860 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2861 	return flush_work_sync(&dwork->work);
2862 }
2863 EXPORT_SYMBOL(flush_delayed_work_sync);
2864 
2865 /**
2866  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2867  * @dwork: the delayed work cancel
2868  *
2869  * This is cancel_work_sync() for delayed works.
2870  *
2871  * RETURNS:
2872  * %true if @dwork was pending, %false otherwise.
2873  */
2874 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2875 {
2876 	return __cancel_work_timer(&dwork->work, &dwork->timer);
2877 }
2878 EXPORT_SYMBOL(cancel_delayed_work_sync);
2879 
2880 /**
2881  * schedule_work - put work task in global workqueue
2882  * @work: job to be done
2883  *
2884  * Returns zero if @work was already on the kernel-global workqueue and
2885  * non-zero otherwise.
2886  *
2887  * This puts a job in the kernel-global workqueue if it was not already
2888  * queued and leaves it in the same position on the kernel-global
2889  * workqueue otherwise.
2890  */
2891 int schedule_work(struct work_struct *work)
2892 {
2893 	return queue_work(system_wq, work);
2894 }
2895 EXPORT_SYMBOL(schedule_work);
2896 
2897 /*
2898  * schedule_work_on - put work task on a specific cpu
2899  * @cpu: cpu to put the work task on
2900  * @work: job to be done
2901  *
2902  * This puts a job on a specific cpu
2903  */
2904 int schedule_work_on(int cpu, struct work_struct *work)
2905 {
2906 	return queue_work_on(cpu, system_wq, work);
2907 }
2908 EXPORT_SYMBOL(schedule_work_on);
2909 
2910 /**
2911  * schedule_delayed_work - put work task in global workqueue after delay
2912  * @dwork: job to be done
2913  * @delay: number of jiffies to wait or 0 for immediate execution
2914  *
2915  * After waiting for a given time this puts a job in the kernel-global
2916  * workqueue.
2917  */
2918 int schedule_delayed_work(struct delayed_work *dwork,
2919 					unsigned long delay)
2920 {
2921 	return queue_delayed_work(system_wq, dwork, delay);
2922 }
2923 EXPORT_SYMBOL(schedule_delayed_work);
2924 
2925 /**
2926  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2927  * @cpu: cpu to use
2928  * @dwork: job to be done
2929  * @delay: number of jiffies to wait
2930  *
2931  * After waiting for a given time this puts a job in the kernel-global
2932  * workqueue on the specified CPU.
2933  */
2934 int schedule_delayed_work_on(int cpu,
2935 			struct delayed_work *dwork, unsigned long delay)
2936 {
2937 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2938 }
2939 EXPORT_SYMBOL(schedule_delayed_work_on);
2940 
2941 /**
2942  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2943  * @func: the function to call
2944  *
2945  * schedule_on_each_cpu() executes @func on each online CPU using the
2946  * system workqueue and blocks until all CPUs have completed.
2947  * schedule_on_each_cpu() is very slow.
2948  *
2949  * RETURNS:
2950  * 0 on success, -errno on failure.
2951  */
2952 int schedule_on_each_cpu(work_func_t func)
2953 {
2954 	int cpu;
2955 	struct work_struct __percpu *works;
2956 
2957 	works = alloc_percpu(struct work_struct);
2958 	if (!works)
2959 		return -ENOMEM;
2960 
2961 	get_online_cpus();
2962 
2963 	for_each_online_cpu(cpu) {
2964 		struct work_struct *work = per_cpu_ptr(works, cpu);
2965 
2966 		INIT_WORK(work, func);
2967 		schedule_work_on(cpu, work);
2968 	}
2969 
2970 	for_each_online_cpu(cpu)
2971 		flush_work(per_cpu_ptr(works, cpu));
2972 
2973 	put_online_cpus();
2974 	free_percpu(works);
2975 	return 0;
2976 }
2977 
2978 /**
2979  * flush_scheduled_work - ensure that any scheduled work has run to completion.
2980  *
2981  * Forces execution of the kernel-global workqueue and blocks until its
2982  * completion.
2983  *
2984  * Think twice before calling this function!  It's very easy to get into
2985  * trouble if you don't take great care.  Either of the following situations
2986  * will lead to deadlock:
2987  *
2988  *	One of the work items currently on the workqueue needs to acquire
2989  *	a lock held by your code or its caller.
2990  *
2991  *	Your code is running in the context of a work routine.
2992  *
2993  * They will be detected by lockdep when they occur, but the first might not
2994  * occur very often.  It depends on what work items are on the workqueue and
2995  * what locks they need, which you have no control over.
2996  *
2997  * In most situations flushing the entire workqueue is overkill; you merely
2998  * need to know that a particular work item isn't queued and isn't running.
2999  * In such cases you should use cancel_delayed_work_sync() or
3000  * cancel_work_sync() instead.
3001  */
3002 void flush_scheduled_work(void)
3003 {
3004 	flush_workqueue(system_wq);
3005 }
3006 EXPORT_SYMBOL(flush_scheduled_work);
3007 
3008 /**
3009  * execute_in_process_context - reliably execute the routine with user context
3010  * @fn:		the function to execute
3011  * @ew:		guaranteed storage for the execute work structure (must
3012  *		be available when the work executes)
3013  *
3014  * Executes the function immediately if process context is available,
3015  * otherwise schedules the function for delayed execution.
3016  *
3017  * Returns:	0 - function was executed
3018  *		1 - function was scheduled for execution
3019  */
3020 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3021 {
3022 	if (!in_interrupt()) {
3023 		fn(&ew->work);
3024 		return 0;
3025 	}
3026 
3027 	INIT_WORK(&ew->work, fn);
3028 	schedule_work(&ew->work);
3029 
3030 	return 1;
3031 }
3032 EXPORT_SYMBOL_GPL(execute_in_process_context);
3033 
3034 int keventd_up(void)
3035 {
3036 	return system_wq != NULL;
3037 }
3038 
3039 static int alloc_cwqs(struct workqueue_struct *wq)
3040 {
3041 	/*
3042 	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3043 	 * Make sure that the alignment isn't lower than that of
3044 	 * unsigned long long.
3045 	 */
3046 	const size_t size = sizeof(struct cpu_workqueue_struct);
3047 	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3048 				   __alignof__(unsigned long long));
3049 
3050 	if (!(wq->flags & WQ_UNBOUND))
3051 		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3052 	else {
3053 		void *ptr;
3054 
3055 		/*
3056 		 * Allocate enough room to align cwq and put an extra
3057 		 * pointer at the end pointing back to the originally
3058 		 * allocated pointer which will be used for free.
3059 		 */
3060 		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3061 		if (ptr) {
3062 			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3063 			*(void **)(wq->cpu_wq.single + 1) = ptr;
3064 		}
3065 	}
3066 
3067 	/* just in case, make sure it's actually aligned */
3068 	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3069 	return wq->cpu_wq.v ? 0 : -ENOMEM;
3070 }
3071 
3072 static void free_cwqs(struct workqueue_struct *wq)
3073 {
3074 	if (!(wq->flags & WQ_UNBOUND))
3075 		free_percpu(wq->cpu_wq.pcpu);
3076 	else if (wq->cpu_wq.single) {
3077 		/* the pointer to free is stored right after the cwq */
3078 		kfree(*(void **)(wq->cpu_wq.single + 1));
3079 	}
3080 }
3081 
3082 static int wq_clamp_max_active(int max_active, unsigned int flags,
3083 			       const char *name)
3084 {
3085 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3086 
3087 	if (max_active < 1 || max_active > lim)
3088 		printk(KERN_WARNING "workqueue: max_active %d requested for %s "
3089 		       "is out of range, clamping between %d and %d\n",
3090 		       max_active, name, 1, lim);
3091 
3092 	return clamp_val(max_active, 1, lim);
3093 }
3094 
3095 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3096 					       unsigned int flags,
3097 					       int max_active,
3098 					       struct lock_class_key *key,
3099 					       const char *lock_name, ...)
3100 {
3101 	va_list args, args1;
3102 	struct workqueue_struct *wq;
3103 	unsigned int cpu;
3104 	size_t namelen;
3105 
3106 	/* determine namelen, allocate wq and format name */
3107 	va_start(args, lock_name);
3108 	va_copy(args1, args);
3109 	namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3110 
3111 	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3112 	if (!wq)
3113 		goto err;
3114 
3115 	vsnprintf(wq->name, namelen, fmt, args1);
3116 	va_end(args);
3117 	va_end(args1);
3118 
3119 	/*
3120 	 * Workqueues which may be used during memory reclaim should
3121 	 * have a rescuer to guarantee forward progress.
3122 	 */
3123 	if (flags & WQ_MEM_RECLAIM)
3124 		flags |= WQ_RESCUER;
3125 
3126 	max_active = max_active ?: WQ_DFL_ACTIVE;
3127 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3128 
3129 	/* init wq */
3130 	wq->flags = flags;
3131 	wq->saved_max_active = max_active;
3132 	mutex_init(&wq->flush_mutex);
3133 	atomic_set(&wq->nr_cwqs_to_flush, 0);
3134 	INIT_LIST_HEAD(&wq->flusher_queue);
3135 	INIT_LIST_HEAD(&wq->flusher_overflow);
3136 
3137 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3138 	INIT_LIST_HEAD(&wq->list);
3139 
3140 	if (alloc_cwqs(wq) < 0)
3141 		goto err;
3142 
3143 	for_each_cwq_cpu(cpu, wq) {
3144 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3145 		struct global_cwq *gcwq = get_gcwq(cpu);
3146 		int pool_idx = (bool)(flags & WQ_HIGHPRI);
3147 
3148 		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3149 		cwq->pool = &gcwq->pools[pool_idx];
3150 		cwq->wq = wq;
3151 		cwq->flush_color = -1;
3152 		cwq->max_active = max_active;
3153 		INIT_LIST_HEAD(&cwq->delayed_works);
3154 	}
3155 
3156 	if (flags & WQ_RESCUER) {
3157 		struct worker *rescuer;
3158 
3159 		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3160 			goto err;
3161 
3162 		wq->rescuer = rescuer = alloc_worker();
3163 		if (!rescuer)
3164 			goto err;
3165 
3166 		rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3167 					       wq->name);
3168 		if (IS_ERR(rescuer->task))
3169 			goto err;
3170 
3171 		rescuer->task->flags |= PF_THREAD_BOUND;
3172 		wake_up_process(rescuer->task);
3173 	}
3174 
3175 	/*
3176 	 * workqueue_lock protects global freeze state and workqueues
3177 	 * list.  Grab it, set max_active accordingly and add the new
3178 	 * workqueue to workqueues list.
3179 	 */
3180 	spin_lock(&workqueue_lock);
3181 
3182 	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3183 		for_each_cwq_cpu(cpu, wq)
3184 			get_cwq(cpu, wq)->max_active = 0;
3185 
3186 	list_add(&wq->list, &workqueues);
3187 
3188 	spin_unlock(&workqueue_lock);
3189 
3190 	return wq;
3191 err:
3192 	if (wq) {
3193 		free_cwqs(wq);
3194 		free_mayday_mask(wq->mayday_mask);
3195 		kfree(wq->rescuer);
3196 		kfree(wq);
3197 	}
3198 	return NULL;
3199 }
3200 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3201 
3202 /**
3203  * destroy_workqueue - safely terminate a workqueue
3204  * @wq: target workqueue
3205  *
3206  * Safely destroy a workqueue. All work currently pending will be done first.
3207  */
3208 void destroy_workqueue(struct workqueue_struct *wq)
3209 {
3210 	unsigned int cpu;
3211 
3212 	/* drain it before proceeding with destruction */
3213 	drain_workqueue(wq);
3214 
3215 	/*
3216 	 * wq list is used to freeze wq, remove from list after
3217 	 * flushing is complete in case freeze races us.
3218 	 */
3219 	spin_lock(&workqueue_lock);
3220 	list_del(&wq->list);
3221 	spin_unlock(&workqueue_lock);
3222 
3223 	/* sanity check */
3224 	for_each_cwq_cpu(cpu, wq) {
3225 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3226 		int i;
3227 
3228 		for (i = 0; i < WORK_NR_COLORS; i++)
3229 			BUG_ON(cwq->nr_in_flight[i]);
3230 		BUG_ON(cwq->nr_active);
3231 		BUG_ON(!list_empty(&cwq->delayed_works));
3232 	}
3233 
3234 	if (wq->flags & WQ_RESCUER) {
3235 		kthread_stop(wq->rescuer->task);
3236 		free_mayday_mask(wq->mayday_mask);
3237 		kfree(wq->rescuer);
3238 	}
3239 
3240 	free_cwqs(wq);
3241 	kfree(wq);
3242 }
3243 EXPORT_SYMBOL_GPL(destroy_workqueue);
3244 
3245 /**
3246  * workqueue_set_max_active - adjust max_active of a workqueue
3247  * @wq: target workqueue
3248  * @max_active: new max_active value.
3249  *
3250  * Set max_active of @wq to @max_active.
3251  *
3252  * CONTEXT:
3253  * Don't call from IRQ context.
3254  */
3255 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3256 {
3257 	unsigned int cpu;
3258 
3259 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3260 
3261 	spin_lock(&workqueue_lock);
3262 
3263 	wq->saved_max_active = max_active;
3264 
3265 	for_each_cwq_cpu(cpu, wq) {
3266 		struct global_cwq *gcwq = get_gcwq(cpu);
3267 
3268 		spin_lock_irq(&gcwq->lock);
3269 
3270 		if (!(wq->flags & WQ_FREEZABLE) ||
3271 		    !(gcwq->flags & GCWQ_FREEZING))
3272 			get_cwq(gcwq->cpu, wq)->max_active = max_active;
3273 
3274 		spin_unlock_irq(&gcwq->lock);
3275 	}
3276 
3277 	spin_unlock(&workqueue_lock);
3278 }
3279 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3280 
3281 /**
3282  * workqueue_congested - test whether a workqueue is congested
3283  * @cpu: CPU in question
3284  * @wq: target workqueue
3285  *
3286  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
3287  * no synchronization around this function and the test result is
3288  * unreliable and only useful as advisory hints or for debugging.
3289  *
3290  * RETURNS:
3291  * %true if congested, %false otherwise.
3292  */
3293 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3294 {
3295 	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3296 
3297 	return !list_empty(&cwq->delayed_works);
3298 }
3299 EXPORT_SYMBOL_GPL(workqueue_congested);
3300 
3301 /**
3302  * work_cpu - return the last known associated cpu for @work
3303  * @work: the work of interest
3304  *
3305  * RETURNS:
3306  * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3307  */
3308 unsigned int work_cpu(struct work_struct *work)
3309 {
3310 	struct global_cwq *gcwq = get_work_gcwq(work);
3311 
3312 	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3313 }
3314 EXPORT_SYMBOL_GPL(work_cpu);
3315 
3316 /**
3317  * work_busy - test whether a work is currently pending or running
3318  * @work: the work to be tested
3319  *
3320  * Test whether @work is currently pending or running.  There is no
3321  * synchronization around this function and the test result is
3322  * unreliable and only useful as advisory hints or for debugging.
3323  * Especially for reentrant wqs, the pending state might hide the
3324  * running state.
3325  *
3326  * RETURNS:
3327  * OR'd bitmask of WORK_BUSY_* bits.
3328  */
3329 unsigned int work_busy(struct work_struct *work)
3330 {
3331 	struct global_cwq *gcwq = get_work_gcwq(work);
3332 	unsigned long flags;
3333 	unsigned int ret = 0;
3334 
3335 	if (!gcwq)
3336 		return false;
3337 
3338 	spin_lock_irqsave(&gcwq->lock, flags);
3339 
3340 	if (work_pending(work))
3341 		ret |= WORK_BUSY_PENDING;
3342 	if (find_worker_executing_work(gcwq, work))
3343 		ret |= WORK_BUSY_RUNNING;
3344 
3345 	spin_unlock_irqrestore(&gcwq->lock, flags);
3346 
3347 	return ret;
3348 }
3349 EXPORT_SYMBOL_GPL(work_busy);
3350 
3351 /*
3352  * CPU hotplug.
3353  *
3354  * There are two challenges in supporting CPU hotplug.  Firstly, there
3355  * are a lot of assumptions on strong associations among work, cwq and
3356  * gcwq which make migrating pending and scheduled works very
3357  * difficult to implement without impacting hot paths.  Secondly,
3358  * gcwqs serve mix of short, long and very long running works making
3359  * blocked draining impractical.
3360  *
3361  * This is solved by allowing a gcwq to be disassociated from the CPU
3362  * running as an unbound one and allowing it to be reattached later if the
3363  * cpu comes back online.
3364  */
3365 
3366 /* claim manager positions of all pools */
3367 static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
3368 {
3369 	struct worker_pool *pool;
3370 
3371 	for_each_worker_pool(pool, gcwq)
3372 		mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
3373 	spin_lock_irq(&gcwq->lock);
3374 }
3375 
3376 /* release manager positions */
3377 static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
3378 {
3379 	struct worker_pool *pool;
3380 
3381 	spin_unlock_irq(&gcwq->lock);
3382 	for_each_worker_pool(pool, gcwq)
3383 		mutex_unlock(&pool->manager_mutex);
3384 }
3385 
3386 static void gcwq_unbind_fn(struct work_struct *work)
3387 {
3388 	struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3389 	struct worker_pool *pool;
3390 	struct worker *worker;
3391 	struct hlist_node *pos;
3392 	int i;
3393 
3394 	BUG_ON(gcwq->cpu != smp_processor_id());
3395 
3396 	gcwq_claim_management_and_lock(gcwq);
3397 
3398 	/*
3399 	 * We've claimed all manager positions.  Make all workers unbound
3400 	 * and set DISASSOCIATED.  Before this, all workers except for the
3401 	 * ones which are still executing works from before the last CPU
3402 	 * down must be on the cpu.  After this, they may become diasporas.
3403 	 */
3404 	for_each_worker_pool(pool, gcwq)
3405 		list_for_each_entry(worker, &pool->idle_list, entry)
3406 			worker->flags |= WORKER_UNBOUND;
3407 
3408 	for_each_busy_worker(worker, i, pos, gcwq)
3409 		worker->flags |= WORKER_UNBOUND;
3410 
3411 	gcwq->flags |= GCWQ_DISASSOCIATED;
3412 
3413 	gcwq_release_management_and_unlock(gcwq);
3414 
3415 	/*
3416 	 * Call schedule() so that we cross rq->lock and thus can guarantee
3417 	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
3418 	 * as scheduler callbacks may be invoked from other cpus.
3419 	 */
3420 	schedule();
3421 
3422 	/*
3423 	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
3424 	 * nr_running stays zero and need_more_worker() and keep_working()
3425 	 * are always true as long as the worklist is not empty.  @gcwq now
3426 	 * behaves as unbound (in terms of concurrency management) gcwq
3427 	 * which is served by workers tied to the CPU.
3428 	 *
3429 	 * On return from this function, the current worker would trigger
3430 	 * unbound chain execution of pending work items if other workers
3431 	 * didn't already.
3432 	 */
3433 	for_each_worker_pool(pool, gcwq)
3434 		atomic_set(get_pool_nr_running(pool), 0);
3435 }
3436 
3437 /*
3438  * Workqueues should be brought up before normal priority CPU notifiers.
3439  * This will be registered high priority CPU notifier.
3440  */
3441 static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3442 					       unsigned long action,
3443 					       void *hcpu)
3444 {
3445 	unsigned int cpu = (unsigned long)hcpu;
3446 	struct global_cwq *gcwq = get_gcwq(cpu);
3447 	struct worker_pool *pool;
3448 
3449 	switch (action & ~CPU_TASKS_FROZEN) {
3450 	case CPU_UP_PREPARE:
3451 		for_each_worker_pool(pool, gcwq) {
3452 			struct worker *worker;
3453 
3454 			if (pool->nr_workers)
3455 				continue;
3456 
3457 			worker = create_worker(pool);
3458 			if (!worker)
3459 				return NOTIFY_BAD;
3460 
3461 			spin_lock_irq(&gcwq->lock);
3462 			start_worker(worker);
3463 			spin_unlock_irq(&gcwq->lock);
3464 		}
3465 		break;
3466 
3467 	case CPU_DOWN_FAILED:
3468 	case CPU_ONLINE:
3469 		gcwq_claim_management_and_lock(gcwq);
3470 		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3471 		rebind_workers(gcwq);
3472 		gcwq_release_management_and_unlock(gcwq);
3473 		break;
3474 	}
3475 	return NOTIFY_OK;
3476 }
3477 
3478 /*
3479  * Workqueues should be brought down after normal priority CPU notifiers.
3480  * This will be registered as low priority CPU notifier.
3481  */
3482 static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3483 						 unsigned long action,
3484 						 void *hcpu)
3485 {
3486 	unsigned int cpu = (unsigned long)hcpu;
3487 	struct work_struct unbind_work;
3488 
3489 	switch (action & ~CPU_TASKS_FROZEN) {
3490 	case CPU_DOWN_PREPARE:
3491 		/* unbinding should happen on the local CPU */
3492 		INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3493 		schedule_work_on(cpu, &unbind_work);
3494 		flush_work(&unbind_work);
3495 		break;
3496 	}
3497 	return NOTIFY_OK;
3498 }
3499 
3500 #ifdef CONFIG_SMP
3501 
3502 struct work_for_cpu {
3503 	struct completion completion;
3504 	long (*fn)(void *);
3505 	void *arg;
3506 	long ret;
3507 };
3508 
3509 static int do_work_for_cpu(void *_wfc)
3510 {
3511 	struct work_for_cpu *wfc = _wfc;
3512 	wfc->ret = wfc->fn(wfc->arg);
3513 	complete(&wfc->completion);
3514 	return 0;
3515 }
3516 
3517 /**
3518  * work_on_cpu - run a function in user context on a particular cpu
3519  * @cpu: the cpu to run on
3520  * @fn: the function to run
3521  * @arg: the function arg
3522  *
3523  * This will return the value @fn returns.
3524  * It is up to the caller to ensure that the cpu doesn't go offline.
3525  * The caller must not hold any locks which would prevent @fn from completing.
3526  */
3527 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3528 {
3529 	struct task_struct *sub_thread;
3530 	struct work_for_cpu wfc = {
3531 		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3532 		.fn = fn,
3533 		.arg = arg,
3534 	};
3535 
3536 	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3537 	if (IS_ERR(sub_thread))
3538 		return PTR_ERR(sub_thread);
3539 	kthread_bind(sub_thread, cpu);
3540 	wake_up_process(sub_thread);
3541 	wait_for_completion(&wfc.completion);
3542 	return wfc.ret;
3543 }
3544 EXPORT_SYMBOL_GPL(work_on_cpu);
3545 #endif /* CONFIG_SMP */
3546 
3547 #ifdef CONFIG_FREEZER
3548 
3549 /**
3550  * freeze_workqueues_begin - begin freezing workqueues
3551  *
3552  * Start freezing workqueues.  After this function returns, all freezable
3553  * workqueues will queue new works to their frozen_works list instead of
3554  * gcwq->worklist.
3555  *
3556  * CONTEXT:
3557  * Grabs and releases workqueue_lock and gcwq->lock's.
3558  */
3559 void freeze_workqueues_begin(void)
3560 {
3561 	unsigned int cpu;
3562 
3563 	spin_lock(&workqueue_lock);
3564 
3565 	BUG_ON(workqueue_freezing);
3566 	workqueue_freezing = true;
3567 
3568 	for_each_gcwq_cpu(cpu) {
3569 		struct global_cwq *gcwq = get_gcwq(cpu);
3570 		struct workqueue_struct *wq;
3571 
3572 		spin_lock_irq(&gcwq->lock);
3573 
3574 		BUG_ON(gcwq->flags & GCWQ_FREEZING);
3575 		gcwq->flags |= GCWQ_FREEZING;
3576 
3577 		list_for_each_entry(wq, &workqueues, list) {
3578 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3579 
3580 			if (cwq && wq->flags & WQ_FREEZABLE)
3581 				cwq->max_active = 0;
3582 		}
3583 
3584 		spin_unlock_irq(&gcwq->lock);
3585 	}
3586 
3587 	spin_unlock(&workqueue_lock);
3588 }
3589 
3590 /**
3591  * freeze_workqueues_busy - are freezable workqueues still busy?
3592  *
3593  * Check whether freezing is complete.  This function must be called
3594  * between freeze_workqueues_begin() and thaw_workqueues().
3595  *
3596  * CONTEXT:
3597  * Grabs and releases workqueue_lock.
3598  *
3599  * RETURNS:
3600  * %true if some freezable workqueues are still busy.  %false if freezing
3601  * is complete.
3602  */
3603 bool freeze_workqueues_busy(void)
3604 {
3605 	unsigned int cpu;
3606 	bool busy = false;
3607 
3608 	spin_lock(&workqueue_lock);
3609 
3610 	BUG_ON(!workqueue_freezing);
3611 
3612 	for_each_gcwq_cpu(cpu) {
3613 		struct workqueue_struct *wq;
3614 		/*
3615 		 * nr_active is monotonically decreasing.  It's safe
3616 		 * to peek without lock.
3617 		 */
3618 		list_for_each_entry(wq, &workqueues, list) {
3619 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3620 
3621 			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3622 				continue;
3623 
3624 			BUG_ON(cwq->nr_active < 0);
3625 			if (cwq->nr_active) {
3626 				busy = true;
3627 				goto out_unlock;
3628 			}
3629 		}
3630 	}
3631 out_unlock:
3632 	spin_unlock(&workqueue_lock);
3633 	return busy;
3634 }
3635 
3636 /**
3637  * thaw_workqueues - thaw workqueues
3638  *
3639  * Thaw workqueues.  Normal queueing is restored and all collected
3640  * frozen works are transferred to their respective gcwq worklists.
3641  *
3642  * CONTEXT:
3643  * Grabs and releases workqueue_lock and gcwq->lock's.
3644  */
3645 void thaw_workqueues(void)
3646 {
3647 	unsigned int cpu;
3648 
3649 	spin_lock(&workqueue_lock);
3650 
3651 	if (!workqueue_freezing)
3652 		goto out_unlock;
3653 
3654 	for_each_gcwq_cpu(cpu) {
3655 		struct global_cwq *gcwq = get_gcwq(cpu);
3656 		struct worker_pool *pool;
3657 		struct workqueue_struct *wq;
3658 
3659 		spin_lock_irq(&gcwq->lock);
3660 
3661 		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3662 		gcwq->flags &= ~GCWQ_FREEZING;
3663 
3664 		list_for_each_entry(wq, &workqueues, list) {
3665 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3666 
3667 			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3668 				continue;
3669 
3670 			/* restore max_active and repopulate worklist */
3671 			cwq->max_active = wq->saved_max_active;
3672 
3673 			while (!list_empty(&cwq->delayed_works) &&
3674 			       cwq->nr_active < cwq->max_active)
3675 				cwq_activate_first_delayed(cwq);
3676 		}
3677 
3678 		for_each_worker_pool(pool, gcwq)
3679 			wake_up_worker(pool);
3680 
3681 		spin_unlock_irq(&gcwq->lock);
3682 	}
3683 
3684 	workqueue_freezing = false;
3685 out_unlock:
3686 	spin_unlock(&workqueue_lock);
3687 }
3688 #endif /* CONFIG_FREEZER */
3689 
3690 static int __init init_workqueues(void)
3691 {
3692 	unsigned int cpu;
3693 	int i;
3694 
3695 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3696 	cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3697 
3698 	/* initialize gcwqs */
3699 	for_each_gcwq_cpu(cpu) {
3700 		struct global_cwq *gcwq = get_gcwq(cpu);
3701 		struct worker_pool *pool;
3702 
3703 		spin_lock_init(&gcwq->lock);
3704 		gcwq->cpu = cpu;
3705 		gcwq->flags |= GCWQ_DISASSOCIATED;
3706 
3707 		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3708 			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3709 
3710 		for_each_worker_pool(pool, gcwq) {
3711 			pool->gcwq = gcwq;
3712 			INIT_LIST_HEAD(&pool->worklist);
3713 			INIT_LIST_HEAD(&pool->idle_list);
3714 
3715 			init_timer_deferrable(&pool->idle_timer);
3716 			pool->idle_timer.function = idle_worker_timeout;
3717 			pool->idle_timer.data = (unsigned long)pool;
3718 
3719 			setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3720 				    (unsigned long)pool);
3721 
3722 			mutex_init(&pool->manager_mutex);
3723 			ida_init(&pool->worker_ida);
3724 		}
3725 
3726 		init_waitqueue_head(&gcwq->rebind_hold);
3727 	}
3728 
3729 	/* create the initial worker */
3730 	for_each_online_gcwq_cpu(cpu) {
3731 		struct global_cwq *gcwq = get_gcwq(cpu);
3732 		struct worker_pool *pool;
3733 
3734 		if (cpu != WORK_CPU_UNBOUND)
3735 			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3736 
3737 		for_each_worker_pool(pool, gcwq) {
3738 			struct worker *worker;
3739 
3740 			worker = create_worker(pool);
3741 			BUG_ON(!worker);
3742 			spin_lock_irq(&gcwq->lock);
3743 			start_worker(worker);
3744 			spin_unlock_irq(&gcwq->lock);
3745 		}
3746 	}
3747 
3748 	system_wq = alloc_workqueue("events", 0, 0);
3749 	system_long_wq = alloc_workqueue("events_long", 0, 0);
3750 	system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3751 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3752 					    WQ_UNBOUND_MAX_ACTIVE);
3753 	system_freezable_wq = alloc_workqueue("events_freezable",
3754 					      WQ_FREEZABLE, 0);
3755 	system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3756 			WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3757 	BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3758 	       !system_unbound_wq || !system_freezable_wq ||
3759 		!system_nrt_freezable_wq);
3760 	return 0;
3761 }
3762 early_initcall(init_workqueues);
3763