1 /* 2 * linux/kernel/workqueue.c 3 * 4 * Generic mechanism for defining kernel helper threads for running 5 * arbitrary tasks in process context. 6 * 7 * Started by Ingo Molnar, Copyright (C) 2002 8 * 9 * Derived from the taskqueue/keventd code by: 10 * 11 * David Woodhouse <dwmw2@infradead.org> 12 * Andrew Morton 13 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 14 * Theodore Ts'o <tytso@mit.edu> 15 * 16 * Made to use alloc_percpu by Christoph Lameter. 17 */ 18 19 #include <linux/module.h> 20 #include <linux/kernel.h> 21 #include <linux/sched.h> 22 #include <linux/init.h> 23 #include <linux/signal.h> 24 #include <linux/completion.h> 25 #include <linux/workqueue.h> 26 #include <linux/slab.h> 27 #include <linux/cpu.h> 28 #include <linux/notifier.h> 29 #include <linux/kthread.h> 30 #include <linux/hardirq.h> 31 #include <linux/mempolicy.h> 32 #include <linux/freezer.h> 33 #include <linux/kallsyms.h> 34 #include <linux/debug_locks.h> 35 #include <linux/lockdep.h> 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/workqueue.h> 38 39 /* 40 * The per-CPU workqueue (if single thread, we always use the first 41 * possible cpu). 42 */ 43 struct cpu_workqueue_struct { 44 45 spinlock_t lock; 46 47 struct list_head worklist; 48 wait_queue_head_t more_work; 49 struct work_struct *current_work; 50 51 struct workqueue_struct *wq; 52 struct task_struct *thread; 53 } ____cacheline_aligned; 54 55 /* 56 * The externally visible workqueue abstraction is an array of 57 * per-CPU workqueues: 58 */ 59 struct workqueue_struct { 60 struct cpu_workqueue_struct *cpu_wq; 61 struct list_head list; 62 const char *name; 63 int singlethread; 64 int freezeable; /* Freeze threads during suspend */ 65 int rt; 66 #ifdef CONFIG_LOCKDEP 67 struct lockdep_map lockdep_map; 68 #endif 69 }; 70 71 /* Serializes the accesses to the list of workqueues. */ 72 static DEFINE_SPINLOCK(workqueue_lock); 73 static LIST_HEAD(workqueues); 74 75 static int singlethread_cpu __read_mostly; 76 static const struct cpumask *cpu_singlethread_map __read_mostly; 77 /* 78 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD 79 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work 80 * which comes in between can't use for_each_online_cpu(). We could 81 * use cpu_possible_map, the cpumask below is more a documentation 82 * than optimization. 83 */ 84 static cpumask_var_t cpu_populated_map __read_mostly; 85 86 /* If it's single threaded, it isn't in the list of workqueues. */ 87 static inline int is_wq_single_threaded(struct workqueue_struct *wq) 88 { 89 return wq->singlethread; 90 } 91 92 static const struct cpumask *wq_cpu_map(struct workqueue_struct *wq) 93 { 94 return is_wq_single_threaded(wq) 95 ? cpu_singlethread_map : cpu_populated_map; 96 } 97 98 static 99 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu) 100 { 101 if (unlikely(is_wq_single_threaded(wq))) 102 cpu = singlethread_cpu; 103 return per_cpu_ptr(wq->cpu_wq, cpu); 104 } 105 106 /* 107 * Set the workqueue on which a work item is to be run 108 * - Must *only* be called if the pending flag is set 109 */ 110 static inline void set_wq_data(struct work_struct *work, 111 struct cpu_workqueue_struct *cwq) 112 { 113 unsigned long new; 114 115 BUG_ON(!work_pending(work)); 116 117 new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING); 118 new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work); 119 atomic_long_set(&work->data, new); 120 } 121 122 static inline 123 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work) 124 { 125 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK); 126 } 127 128 static void insert_work(struct cpu_workqueue_struct *cwq, 129 struct work_struct *work, struct list_head *head) 130 { 131 trace_workqueue_insertion(cwq->thread, work); 132 133 set_wq_data(work, cwq); 134 /* 135 * Ensure that we get the right work->data if we see the 136 * result of list_add() below, see try_to_grab_pending(). 137 */ 138 smp_wmb(); 139 list_add_tail(&work->entry, head); 140 wake_up(&cwq->more_work); 141 } 142 143 static void __queue_work(struct cpu_workqueue_struct *cwq, 144 struct work_struct *work) 145 { 146 unsigned long flags; 147 148 spin_lock_irqsave(&cwq->lock, flags); 149 insert_work(cwq, work, &cwq->worklist); 150 spin_unlock_irqrestore(&cwq->lock, flags); 151 } 152 153 /** 154 * queue_work - queue work on a workqueue 155 * @wq: workqueue to use 156 * @work: work to queue 157 * 158 * Returns 0 if @work was already on a queue, non-zero otherwise. 159 * 160 * We queue the work to the CPU on which it was submitted, but if the CPU dies 161 * it can be processed by another CPU. 162 */ 163 int queue_work(struct workqueue_struct *wq, struct work_struct *work) 164 { 165 int ret; 166 167 ret = queue_work_on(get_cpu(), wq, work); 168 put_cpu(); 169 170 return ret; 171 } 172 EXPORT_SYMBOL_GPL(queue_work); 173 174 /** 175 * queue_work_on - queue work on specific cpu 176 * @cpu: CPU number to execute work on 177 * @wq: workqueue to use 178 * @work: work to queue 179 * 180 * Returns 0 if @work was already on a queue, non-zero otherwise. 181 * 182 * We queue the work to a specific CPU, the caller must ensure it 183 * can't go away. 184 */ 185 int 186 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work) 187 { 188 int ret = 0; 189 190 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { 191 BUG_ON(!list_empty(&work->entry)); 192 __queue_work(wq_per_cpu(wq, cpu), work); 193 ret = 1; 194 } 195 return ret; 196 } 197 EXPORT_SYMBOL_GPL(queue_work_on); 198 199 static void delayed_work_timer_fn(unsigned long __data) 200 { 201 struct delayed_work *dwork = (struct delayed_work *)__data; 202 struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work); 203 struct workqueue_struct *wq = cwq->wq; 204 205 __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work); 206 } 207 208 /** 209 * queue_delayed_work - queue work on a workqueue after delay 210 * @wq: workqueue to use 211 * @dwork: delayable work to queue 212 * @delay: number of jiffies to wait before queueing 213 * 214 * Returns 0 if @work was already on a queue, non-zero otherwise. 215 */ 216 int queue_delayed_work(struct workqueue_struct *wq, 217 struct delayed_work *dwork, unsigned long delay) 218 { 219 if (delay == 0) 220 return queue_work(wq, &dwork->work); 221 222 return queue_delayed_work_on(-1, wq, dwork, delay); 223 } 224 EXPORT_SYMBOL_GPL(queue_delayed_work); 225 226 /** 227 * queue_delayed_work_on - queue work on specific CPU after delay 228 * @cpu: CPU number to execute work on 229 * @wq: workqueue to use 230 * @dwork: work to queue 231 * @delay: number of jiffies to wait before queueing 232 * 233 * Returns 0 if @work was already on a queue, non-zero otherwise. 234 */ 235 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 236 struct delayed_work *dwork, unsigned long delay) 237 { 238 int ret = 0; 239 struct timer_list *timer = &dwork->timer; 240 struct work_struct *work = &dwork->work; 241 242 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { 243 BUG_ON(timer_pending(timer)); 244 BUG_ON(!list_empty(&work->entry)); 245 246 timer_stats_timer_set_start_info(&dwork->timer); 247 248 /* This stores cwq for the moment, for the timer_fn */ 249 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id())); 250 timer->expires = jiffies + delay; 251 timer->data = (unsigned long)dwork; 252 timer->function = delayed_work_timer_fn; 253 254 if (unlikely(cpu >= 0)) 255 add_timer_on(timer, cpu); 256 else 257 add_timer(timer); 258 ret = 1; 259 } 260 return ret; 261 } 262 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 263 264 static void run_workqueue(struct cpu_workqueue_struct *cwq) 265 { 266 spin_lock_irq(&cwq->lock); 267 while (!list_empty(&cwq->worklist)) { 268 struct work_struct *work = list_entry(cwq->worklist.next, 269 struct work_struct, entry); 270 work_func_t f = work->func; 271 #ifdef CONFIG_LOCKDEP 272 /* 273 * It is permissible to free the struct work_struct 274 * from inside the function that is called from it, 275 * this we need to take into account for lockdep too. 276 * To avoid bogus "held lock freed" warnings as well 277 * as problems when looking into work->lockdep_map, 278 * make a copy and use that here. 279 */ 280 struct lockdep_map lockdep_map = work->lockdep_map; 281 #endif 282 trace_workqueue_execution(cwq->thread, work); 283 cwq->current_work = work; 284 list_del_init(cwq->worklist.next); 285 spin_unlock_irq(&cwq->lock); 286 287 BUG_ON(get_wq_data(work) != cwq); 288 work_clear_pending(work); 289 lock_map_acquire(&cwq->wq->lockdep_map); 290 lock_map_acquire(&lockdep_map); 291 f(work); 292 lock_map_release(&lockdep_map); 293 lock_map_release(&cwq->wq->lockdep_map); 294 295 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 296 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " 297 "%s/0x%08x/%d\n", 298 current->comm, preempt_count(), 299 task_pid_nr(current)); 300 printk(KERN_ERR " last function: "); 301 print_symbol("%s\n", (unsigned long)f); 302 debug_show_held_locks(current); 303 dump_stack(); 304 } 305 306 spin_lock_irq(&cwq->lock); 307 cwq->current_work = NULL; 308 } 309 spin_unlock_irq(&cwq->lock); 310 } 311 312 static int worker_thread(void *__cwq) 313 { 314 struct cpu_workqueue_struct *cwq = __cwq; 315 DEFINE_WAIT(wait); 316 317 if (cwq->wq->freezeable) 318 set_freezable(); 319 320 for (;;) { 321 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE); 322 if (!freezing(current) && 323 !kthread_should_stop() && 324 list_empty(&cwq->worklist)) 325 schedule(); 326 finish_wait(&cwq->more_work, &wait); 327 328 try_to_freeze(); 329 330 if (kthread_should_stop()) 331 break; 332 333 run_workqueue(cwq); 334 } 335 336 return 0; 337 } 338 339 struct wq_barrier { 340 struct work_struct work; 341 struct completion done; 342 }; 343 344 static void wq_barrier_func(struct work_struct *work) 345 { 346 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 347 complete(&barr->done); 348 } 349 350 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, 351 struct wq_barrier *barr, struct list_head *head) 352 { 353 INIT_WORK(&barr->work, wq_barrier_func); 354 __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work)); 355 356 init_completion(&barr->done); 357 358 insert_work(cwq, &barr->work, head); 359 } 360 361 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq) 362 { 363 int active = 0; 364 struct wq_barrier barr; 365 366 WARN_ON(cwq->thread == current); 367 368 spin_lock_irq(&cwq->lock); 369 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) { 370 insert_wq_barrier(cwq, &barr, &cwq->worklist); 371 active = 1; 372 } 373 spin_unlock_irq(&cwq->lock); 374 375 if (active) 376 wait_for_completion(&barr.done); 377 378 return active; 379 } 380 381 /** 382 * flush_workqueue - ensure that any scheduled work has run to completion. 383 * @wq: workqueue to flush 384 * 385 * Forces execution of the workqueue and blocks until its completion. 386 * This is typically used in driver shutdown handlers. 387 * 388 * We sleep until all works which were queued on entry have been handled, 389 * but we are not livelocked by new incoming ones. 390 * 391 * This function used to run the workqueues itself. Now we just wait for the 392 * helper threads to do it. 393 */ 394 void flush_workqueue(struct workqueue_struct *wq) 395 { 396 const struct cpumask *cpu_map = wq_cpu_map(wq); 397 int cpu; 398 399 might_sleep(); 400 lock_map_acquire(&wq->lockdep_map); 401 lock_map_release(&wq->lockdep_map); 402 for_each_cpu(cpu, cpu_map) 403 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu)); 404 } 405 EXPORT_SYMBOL_GPL(flush_workqueue); 406 407 /** 408 * flush_work - block until a work_struct's callback has terminated 409 * @work: the work which is to be flushed 410 * 411 * Returns false if @work has already terminated. 412 * 413 * It is expected that, prior to calling flush_work(), the caller has 414 * arranged for the work to not be requeued, otherwise it doesn't make 415 * sense to use this function. 416 */ 417 int flush_work(struct work_struct *work) 418 { 419 struct cpu_workqueue_struct *cwq; 420 struct list_head *prev; 421 struct wq_barrier barr; 422 423 might_sleep(); 424 cwq = get_wq_data(work); 425 if (!cwq) 426 return 0; 427 428 lock_map_acquire(&cwq->wq->lockdep_map); 429 lock_map_release(&cwq->wq->lockdep_map); 430 431 prev = NULL; 432 spin_lock_irq(&cwq->lock); 433 if (!list_empty(&work->entry)) { 434 /* 435 * See the comment near try_to_grab_pending()->smp_rmb(). 436 * If it was re-queued under us we are not going to wait. 437 */ 438 smp_rmb(); 439 if (unlikely(cwq != get_wq_data(work))) 440 goto out; 441 prev = &work->entry; 442 } else { 443 if (cwq->current_work != work) 444 goto out; 445 prev = &cwq->worklist; 446 } 447 insert_wq_barrier(cwq, &barr, prev->next); 448 out: 449 spin_unlock_irq(&cwq->lock); 450 if (!prev) 451 return 0; 452 453 wait_for_completion(&barr.done); 454 return 1; 455 } 456 EXPORT_SYMBOL_GPL(flush_work); 457 458 /* 459 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit, 460 * so this work can't be re-armed in any way. 461 */ 462 static int try_to_grab_pending(struct work_struct *work) 463 { 464 struct cpu_workqueue_struct *cwq; 465 int ret = -1; 466 467 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) 468 return 0; 469 470 /* 471 * The queueing is in progress, or it is already queued. Try to 472 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 473 */ 474 475 cwq = get_wq_data(work); 476 if (!cwq) 477 return ret; 478 479 spin_lock_irq(&cwq->lock); 480 if (!list_empty(&work->entry)) { 481 /* 482 * This work is queued, but perhaps we locked the wrong cwq. 483 * In that case we must see the new value after rmb(), see 484 * insert_work()->wmb(). 485 */ 486 smp_rmb(); 487 if (cwq == get_wq_data(work)) { 488 list_del_init(&work->entry); 489 ret = 1; 490 } 491 } 492 spin_unlock_irq(&cwq->lock); 493 494 return ret; 495 } 496 497 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq, 498 struct work_struct *work) 499 { 500 struct wq_barrier barr; 501 int running = 0; 502 503 spin_lock_irq(&cwq->lock); 504 if (unlikely(cwq->current_work == work)) { 505 insert_wq_barrier(cwq, &barr, cwq->worklist.next); 506 running = 1; 507 } 508 spin_unlock_irq(&cwq->lock); 509 510 if (unlikely(running)) 511 wait_for_completion(&barr.done); 512 } 513 514 static void wait_on_work(struct work_struct *work) 515 { 516 struct cpu_workqueue_struct *cwq; 517 struct workqueue_struct *wq; 518 const struct cpumask *cpu_map; 519 int cpu; 520 521 might_sleep(); 522 523 lock_map_acquire(&work->lockdep_map); 524 lock_map_release(&work->lockdep_map); 525 526 cwq = get_wq_data(work); 527 if (!cwq) 528 return; 529 530 wq = cwq->wq; 531 cpu_map = wq_cpu_map(wq); 532 533 for_each_cpu(cpu, cpu_map) 534 wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work); 535 } 536 537 static int __cancel_work_timer(struct work_struct *work, 538 struct timer_list* timer) 539 { 540 int ret; 541 542 do { 543 ret = (timer && likely(del_timer(timer))); 544 if (!ret) 545 ret = try_to_grab_pending(work); 546 wait_on_work(work); 547 } while (unlikely(ret < 0)); 548 549 work_clear_pending(work); 550 return ret; 551 } 552 553 /** 554 * cancel_work_sync - block until a work_struct's callback has terminated 555 * @work: the work which is to be flushed 556 * 557 * Returns true if @work was pending. 558 * 559 * cancel_work_sync() will cancel the work if it is queued. If the work's 560 * callback appears to be running, cancel_work_sync() will block until it 561 * has completed. 562 * 563 * It is possible to use this function if the work re-queues itself. It can 564 * cancel the work even if it migrates to another workqueue, however in that 565 * case it only guarantees that work->func() has completed on the last queued 566 * workqueue. 567 * 568 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not 569 * pending, otherwise it goes into a busy-wait loop until the timer expires. 570 * 571 * The caller must ensure that workqueue_struct on which this work was last 572 * queued can't be destroyed before this function returns. 573 */ 574 int cancel_work_sync(struct work_struct *work) 575 { 576 return __cancel_work_timer(work, NULL); 577 } 578 EXPORT_SYMBOL_GPL(cancel_work_sync); 579 580 /** 581 * cancel_delayed_work_sync - reliably kill off a delayed work. 582 * @dwork: the delayed work struct 583 * 584 * Returns true if @dwork was pending. 585 * 586 * It is possible to use this function if @dwork rearms itself via queue_work() 587 * or queue_delayed_work(). See also the comment for cancel_work_sync(). 588 */ 589 int cancel_delayed_work_sync(struct delayed_work *dwork) 590 { 591 return __cancel_work_timer(&dwork->work, &dwork->timer); 592 } 593 EXPORT_SYMBOL(cancel_delayed_work_sync); 594 595 static struct workqueue_struct *keventd_wq __read_mostly; 596 597 /** 598 * schedule_work - put work task in global workqueue 599 * @work: job to be done 600 * 601 * Returns zero if @work was already on the kernel-global workqueue and 602 * non-zero otherwise. 603 * 604 * This puts a job in the kernel-global workqueue if it was not already 605 * queued and leaves it in the same position on the kernel-global 606 * workqueue otherwise. 607 */ 608 int schedule_work(struct work_struct *work) 609 { 610 return queue_work(keventd_wq, work); 611 } 612 EXPORT_SYMBOL(schedule_work); 613 614 /* 615 * schedule_work_on - put work task on a specific cpu 616 * @cpu: cpu to put the work task on 617 * @work: job to be done 618 * 619 * This puts a job on a specific cpu 620 */ 621 int schedule_work_on(int cpu, struct work_struct *work) 622 { 623 return queue_work_on(cpu, keventd_wq, work); 624 } 625 EXPORT_SYMBOL(schedule_work_on); 626 627 /** 628 * schedule_delayed_work - put work task in global workqueue after delay 629 * @dwork: job to be done 630 * @delay: number of jiffies to wait or 0 for immediate execution 631 * 632 * After waiting for a given time this puts a job in the kernel-global 633 * workqueue. 634 */ 635 int schedule_delayed_work(struct delayed_work *dwork, 636 unsigned long delay) 637 { 638 return queue_delayed_work(keventd_wq, dwork, delay); 639 } 640 EXPORT_SYMBOL(schedule_delayed_work); 641 642 /** 643 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 644 * @cpu: cpu to use 645 * @dwork: job to be done 646 * @delay: number of jiffies to wait 647 * 648 * After waiting for a given time this puts a job in the kernel-global 649 * workqueue on the specified CPU. 650 */ 651 int schedule_delayed_work_on(int cpu, 652 struct delayed_work *dwork, unsigned long delay) 653 { 654 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay); 655 } 656 EXPORT_SYMBOL(schedule_delayed_work_on); 657 658 /** 659 * schedule_on_each_cpu - call a function on each online CPU from keventd 660 * @func: the function to call 661 * 662 * Returns zero on success. 663 * Returns -ve errno on failure. 664 * 665 * schedule_on_each_cpu() is very slow. 666 */ 667 int schedule_on_each_cpu(work_func_t func) 668 { 669 int cpu; 670 struct work_struct *works; 671 672 works = alloc_percpu(struct work_struct); 673 if (!works) 674 return -ENOMEM; 675 676 get_online_cpus(); 677 for_each_online_cpu(cpu) { 678 struct work_struct *work = per_cpu_ptr(works, cpu); 679 680 INIT_WORK(work, func); 681 schedule_work_on(cpu, work); 682 } 683 for_each_online_cpu(cpu) 684 flush_work(per_cpu_ptr(works, cpu)); 685 put_online_cpus(); 686 free_percpu(works); 687 return 0; 688 } 689 690 void flush_scheduled_work(void) 691 { 692 flush_workqueue(keventd_wq); 693 } 694 EXPORT_SYMBOL(flush_scheduled_work); 695 696 /** 697 * execute_in_process_context - reliably execute the routine with user context 698 * @fn: the function to execute 699 * @ew: guaranteed storage for the execute work structure (must 700 * be available when the work executes) 701 * 702 * Executes the function immediately if process context is available, 703 * otherwise schedules the function for delayed execution. 704 * 705 * Returns: 0 - function was executed 706 * 1 - function was scheduled for execution 707 */ 708 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 709 { 710 if (!in_interrupt()) { 711 fn(&ew->work); 712 return 0; 713 } 714 715 INIT_WORK(&ew->work, fn); 716 schedule_work(&ew->work); 717 718 return 1; 719 } 720 EXPORT_SYMBOL_GPL(execute_in_process_context); 721 722 int keventd_up(void) 723 { 724 return keventd_wq != NULL; 725 } 726 727 int current_is_keventd(void) 728 { 729 struct cpu_workqueue_struct *cwq; 730 int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */ 731 int ret = 0; 732 733 BUG_ON(!keventd_wq); 734 735 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu); 736 if (current == cwq->thread) 737 ret = 1; 738 739 return ret; 740 741 } 742 743 static struct cpu_workqueue_struct * 744 init_cpu_workqueue(struct workqueue_struct *wq, int cpu) 745 { 746 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu); 747 748 cwq->wq = wq; 749 spin_lock_init(&cwq->lock); 750 INIT_LIST_HEAD(&cwq->worklist); 751 init_waitqueue_head(&cwq->more_work); 752 753 return cwq; 754 } 755 756 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) 757 { 758 struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 }; 759 struct workqueue_struct *wq = cwq->wq; 760 const char *fmt = is_wq_single_threaded(wq) ? "%s" : "%s/%d"; 761 struct task_struct *p; 762 763 p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu); 764 /* 765 * Nobody can add the work_struct to this cwq, 766 * if (caller is __create_workqueue) 767 * nobody should see this wq 768 * else // caller is CPU_UP_PREPARE 769 * cpu is not on cpu_online_map 770 * so we can abort safely. 771 */ 772 if (IS_ERR(p)) 773 return PTR_ERR(p); 774 if (cwq->wq->rt) 775 sched_setscheduler_nocheck(p, SCHED_FIFO, ¶m); 776 cwq->thread = p; 777 778 trace_workqueue_creation(cwq->thread, cpu); 779 780 return 0; 781 } 782 783 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) 784 { 785 struct task_struct *p = cwq->thread; 786 787 if (p != NULL) { 788 if (cpu >= 0) 789 kthread_bind(p, cpu); 790 wake_up_process(p); 791 } 792 } 793 794 struct workqueue_struct *__create_workqueue_key(const char *name, 795 int singlethread, 796 int freezeable, 797 int rt, 798 struct lock_class_key *key, 799 const char *lock_name) 800 { 801 struct workqueue_struct *wq; 802 struct cpu_workqueue_struct *cwq; 803 int err = 0, cpu; 804 805 wq = kzalloc(sizeof(*wq), GFP_KERNEL); 806 if (!wq) 807 return NULL; 808 809 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct); 810 if (!wq->cpu_wq) { 811 kfree(wq); 812 return NULL; 813 } 814 815 wq->name = name; 816 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 817 wq->singlethread = singlethread; 818 wq->freezeable = freezeable; 819 wq->rt = rt; 820 INIT_LIST_HEAD(&wq->list); 821 822 if (singlethread) { 823 cwq = init_cpu_workqueue(wq, singlethread_cpu); 824 err = create_workqueue_thread(cwq, singlethread_cpu); 825 start_workqueue_thread(cwq, -1); 826 } else { 827 cpu_maps_update_begin(); 828 /* 829 * We must place this wq on list even if the code below fails. 830 * cpu_down(cpu) can remove cpu from cpu_populated_map before 831 * destroy_workqueue() takes the lock, in that case we leak 832 * cwq[cpu]->thread. 833 */ 834 spin_lock(&workqueue_lock); 835 list_add(&wq->list, &workqueues); 836 spin_unlock(&workqueue_lock); 837 /* 838 * We must initialize cwqs for each possible cpu even if we 839 * are going to call destroy_workqueue() finally. Otherwise 840 * cpu_up() can hit the uninitialized cwq once we drop the 841 * lock. 842 */ 843 for_each_possible_cpu(cpu) { 844 cwq = init_cpu_workqueue(wq, cpu); 845 if (err || !cpu_online(cpu)) 846 continue; 847 err = create_workqueue_thread(cwq, cpu); 848 start_workqueue_thread(cwq, cpu); 849 } 850 cpu_maps_update_done(); 851 } 852 853 if (err) { 854 destroy_workqueue(wq); 855 wq = NULL; 856 } 857 return wq; 858 } 859 EXPORT_SYMBOL_GPL(__create_workqueue_key); 860 861 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq) 862 { 863 /* 864 * Our caller is either destroy_workqueue() or CPU_POST_DEAD, 865 * cpu_add_remove_lock protects cwq->thread. 866 */ 867 if (cwq->thread == NULL) 868 return; 869 870 lock_map_acquire(&cwq->wq->lockdep_map); 871 lock_map_release(&cwq->wq->lockdep_map); 872 873 flush_cpu_workqueue(cwq); 874 /* 875 * If the caller is CPU_POST_DEAD and cwq->worklist was not empty, 876 * a concurrent flush_workqueue() can insert a barrier after us. 877 * However, in that case run_workqueue() won't return and check 878 * kthread_should_stop() until it flushes all work_struct's. 879 * When ->worklist becomes empty it is safe to exit because no 880 * more work_structs can be queued on this cwq: flush_workqueue 881 * checks list_empty(), and a "normal" queue_work() can't use 882 * a dead CPU. 883 */ 884 trace_workqueue_destruction(cwq->thread); 885 kthread_stop(cwq->thread); 886 cwq->thread = NULL; 887 } 888 889 /** 890 * destroy_workqueue - safely terminate a workqueue 891 * @wq: target workqueue 892 * 893 * Safely destroy a workqueue. All work currently pending will be done first. 894 */ 895 void destroy_workqueue(struct workqueue_struct *wq) 896 { 897 const struct cpumask *cpu_map = wq_cpu_map(wq); 898 int cpu; 899 900 cpu_maps_update_begin(); 901 spin_lock(&workqueue_lock); 902 list_del(&wq->list); 903 spin_unlock(&workqueue_lock); 904 905 for_each_cpu(cpu, cpu_map) 906 cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu)); 907 cpu_maps_update_done(); 908 909 free_percpu(wq->cpu_wq); 910 kfree(wq); 911 } 912 EXPORT_SYMBOL_GPL(destroy_workqueue); 913 914 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, 915 unsigned long action, 916 void *hcpu) 917 { 918 unsigned int cpu = (unsigned long)hcpu; 919 struct cpu_workqueue_struct *cwq; 920 struct workqueue_struct *wq; 921 int ret = NOTIFY_OK; 922 923 action &= ~CPU_TASKS_FROZEN; 924 925 switch (action) { 926 case CPU_UP_PREPARE: 927 cpumask_set_cpu(cpu, cpu_populated_map); 928 } 929 undo: 930 list_for_each_entry(wq, &workqueues, list) { 931 cwq = per_cpu_ptr(wq->cpu_wq, cpu); 932 933 switch (action) { 934 case CPU_UP_PREPARE: 935 if (!create_workqueue_thread(cwq, cpu)) 936 break; 937 printk(KERN_ERR "workqueue [%s] for %i failed\n", 938 wq->name, cpu); 939 action = CPU_UP_CANCELED; 940 ret = NOTIFY_BAD; 941 goto undo; 942 943 case CPU_ONLINE: 944 start_workqueue_thread(cwq, cpu); 945 break; 946 947 case CPU_UP_CANCELED: 948 start_workqueue_thread(cwq, -1); 949 case CPU_POST_DEAD: 950 cleanup_workqueue_thread(cwq); 951 break; 952 } 953 } 954 955 switch (action) { 956 case CPU_UP_CANCELED: 957 case CPU_POST_DEAD: 958 cpumask_clear_cpu(cpu, cpu_populated_map); 959 } 960 961 return ret; 962 } 963 964 #ifdef CONFIG_SMP 965 966 struct work_for_cpu { 967 struct completion completion; 968 long (*fn)(void *); 969 void *arg; 970 long ret; 971 }; 972 973 static int do_work_for_cpu(void *_wfc) 974 { 975 struct work_for_cpu *wfc = _wfc; 976 wfc->ret = wfc->fn(wfc->arg); 977 complete(&wfc->completion); 978 return 0; 979 } 980 981 /** 982 * work_on_cpu - run a function in user context on a particular cpu 983 * @cpu: the cpu to run on 984 * @fn: the function to run 985 * @arg: the function arg 986 * 987 * This will return the value @fn returns. 988 * It is up to the caller to ensure that the cpu doesn't go offline. 989 * The caller must not hold any locks which would prevent @fn from completing. 990 */ 991 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) 992 { 993 struct task_struct *sub_thread; 994 struct work_for_cpu wfc = { 995 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion), 996 .fn = fn, 997 .arg = arg, 998 }; 999 1000 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu"); 1001 if (IS_ERR(sub_thread)) 1002 return PTR_ERR(sub_thread); 1003 kthread_bind(sub_thread, cpu); 1004 wake_up_process(sub_thread); 1005 wait_for_completion(&wfc.completion); 1006 return wfc.ret; 1007 } 1008 EXPORT_SYMBOL_GPL(work_on_cpu); 1009 #endif /* CONFIG_SMP */ 1010 1011 void __init init_workqueues(void) 1012 { 1013 alloc_cpumask_var(&cpu_populated_map, GFP_KERNEL); 1014 1015 cpumask_copy(cpu_populated_map, cpu_online_mask); 1016 singlethread_cpu = cpumask_first(cpu_possible_mask); 1017 cpu_singlethread_map = cpumask_of(singlethread_cpu); 1018 hotcpu_notifier(workqueue_cpu_callback, 0); 1019 keventd_wq = create_workqueue("events"); 1020 BUG_ON(!keventd_wq); 1021 } 1022