xref: /linux/kernel/workqueue.c (revision 90d32e92011eaae8e70a9169b4e7acf4ca8f9d3a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58 
59 #include "workqueue_internal.h"
60 
61 enum worker_pool_flags {
62 	/*
63 	 * worker_pool flags
64 	 *
65 	 * A bound pool is either associated or disassociated with its CPU.
66 	 * While associated (!DISASSOCIATED), all workers are bound to the
67 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 	 * is in effect.
69 	 *
70 	 * While DISASSOCIATED, the cpu may be offline and all workers have
71 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 	 * be executing on any CPU.  The pool behaves as an unbound one.
73 	 *
74 	 * Note that DISASSOCIATED should be flipped only while holding
75 	 * wq_pool_attach_mutex to avoid changing binding state while
76 	 * worker_attach_to_pool() is in progress.
77 	 *
78 	 * As there can only be one concurrent BH execution context per CPU, a
79 	 * BH pool is per-CPU and always DISASSOCIATED.
80 	 */
81 	POOL_BH			= 1 << 0,	/* is a BH pool */
82 	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
83 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
84 	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
85 };
86 
87 enum worker_flags {
88 	/* worker flags */
89 	WORKER_DIE		= 1 << 1,	/* die die die */
90 	WORKER_IDLE		= 1 << 2,	/* is idle */
91 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
92 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
93 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
94 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
95 
96 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
97 				  WORKER_UNBOUND | WORKER_REBOUND,
98 };
99 
100 enum work_cancel_flags {
101 	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
102 	WORK_CANCEL_DISABLE	= 1 << 1,	/* canceling to disable */
103 };
104 
105 enum wq_internal_consts {
106 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
107 
108 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
109 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
110 
111 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
112 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
113 
114 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
115 						/* call for help after 10ms
116 						   (min two ticks) */
117 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
118 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
119 
120 	/*
121 	 * Rescue workers are used only on emergencies and shared by
122 	 * all cpus.  Give MIN_NICE.
123 	 */
124 	RESCUER_NICE_LEVEL	= MIN_NICE,
125 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
126 
127 	WQ_NAME_LEN		= 32,
128 };
129 
130 /*
131  * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
132  * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
133  * msecs_to_jiffies() can't be an initializer.
134  */
135 #define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
136 #define BH_WORKER_RESTARTS	10
137 
138 /*
139  * Structure fields follow one of the following exclusion rules.
140  *
141  * I: Modifiable by initialization/destruction paths and read-only for
142  *    everyone else.
143  *
144  * P: Preemption protected.  Disabling preemption is enough and should
145  *    only be modified and accessed from the local cpu.
146  *
147  * L: pool->lock protected.  Access with pool->lock held.
148  *
149  * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
150  *     reads.
151  *
152  * K: Only modified by worker while holding pool->lock. Can be safely read by
153  *    self, while holding pool->lock or from IRQ context if %current is the
154  *    kworker.
155  *
156  * S: Only modified by worker self.
157  *
158  * A: wq_pool_attach_mutex protected.
159  *
160  * PL: wq_pool_mutex protected.
161  *
162  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
163  *
164  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
165  *
166  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
167  *      RCU for reads.
168  *
169  * WQ: wq->mutex protected.
170  *
171  * WR: wq->mutex protected for writes.  RCU protected for reads.
172  *
173  * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
174  *     with READ_ONCE() without locking.
175  *
176  * MD: wq_mayday_lock protected.
177  *
178  * WD: Used internally by the watchdog.
179  */
180 
181 /* struct worker is defined in workqueue_internal.h */
182 
183 struct worker_pool {
184 	raw_spinlock_t		lock;		/* the pool lock */
185 	int			cpu;		/* I: the associated cpu */
186 	int			node;		/* I: the associated node ID */
187 	int			id;		/* I: pool ID */
188 	unsigned int		flags;		/* L: flags */
189 
190 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
191 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
192 
193 	/*
194 	 * The counter is incremented in a process context on the associated CPU
195 	 * w/ preemption disabled, and decremented or reset in the same context
196 	 * but w/ pool->lock held. The readers grab pool->lock and are
197 	 * guaranteed to see if the counter reached zero.
198 	 */
199 	int			nr_running;
200 
201 	struct list_head	worklist;	/* L: list of pending works */
202 
203 	int			nr_workers;	/* L: total number of workers */
204 	int			nr_idle;	/* L: currently idle workers */
205 
206 	struct list_head	idle_list;	/* L: list of idle workers */
207 	struct timer_list	idle_timer;	/* L: worker idle timeout */
208 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
209 
210 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
211 
212 	/* a workers is either on busy_hash or idle_list, or the manager */
213 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
214 						/* L: hash of busy workers */
215 
216 	struct worker		*manager;	/* L: purely informational */
217 	struct list_head	workers;	/* A: attached workers */
218 	struct list_head        dying_workers;  /* A: workers about to die */
219 	struct completion	*detach_completion; /* all workers detached */
220 
221 	struct ida		worker_ida;	/* worker IDs for task name */
222 
223 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
224 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
225 	int			refcnt;		/* PL: refcnt for unbound pools */
226 
227 	/*
228 	 * Destruction of pool is RCU protected to allow dereferences
229 	 * from get_work_pool().
230 	 */
231 	struct rcu_head		rcu;
232 };
233 
234 /*
235  * Per-pool_workqueue statistics. These can be monitored using
236  * tools/workqueue/wq_monitor.py.
237  */
238 enum pool_workqueue_stats {
239 	PWQ_STAT_STARTED,	/* work items started execution */
240 	PWQ_STAT_COMPLETED,	/* work items completed execution */
241 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
242 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
243 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
244 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
245 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
246 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
247 
248 	PWQ_NR_STATS,
249 };
250 
251 /*
252  * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
253  * of work_struct->data are used for flags and the remaining high bits
254  * point to the pwq; thus, pwqs need to be aligned at two's power of the
255  * number of flag bits.
256  */
257 struct pool_workqueue {
258 	struct worker_pool	*pool;		/* I: the associated pool */
259 	struct workqueue_struct *wq;		/* I: the owning workqueue */
260 	int			work_color;	/* L: current color */
261 	int			flush_color;	/* L: flushing color */
262 	int			refcnt;		/* L: reference count */
263 	int			nr_in_flight[WORK_NR_COLORS];
264 						/* L: nr of in_flight works */
265 	bool			plugged;	/* L: execution suspended */
266 
267 	/*
268 	 * nr_active management and WORK_STRUCT_INACTIVE:
269 	 *
270 	 * When pwq->nr_active >= max_active, new work item is queued to
271 	 * pwq->inactive_works instead of pool->worklist and marked with
272 	 * WORK_STRUCT_INACTIVE.
273 	 *
274 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
275 	 * nr_active and all work items in pwq->inactive_works are marked with
276 	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
277 	 * in pwq->inactive_works. Some of them are ready to run in
278 	 * pool->worklist or worker->scheduled. Those work itmes are only struct
279 	 * wq_barrier which is used for flush_work() and should not participate
280 	 * in nr_active. For non-barrier work item, it is marked with
281 	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
282 	 */
283 	int			nr_active;	/* L: nr of active works */
284 	struct list_head	inactive_works;	/* L: inactive works */
285 	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
286 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
287 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
288 
289 	u64			stats[PWQ_NR_STATS];
290 
291 	/*
292 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
293 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
294 	 * RCU protected so that the first pwq can be determined without
295 	 * grabbing wq->mutex.
296 	 */
297 	struct kthread_work	release_work;
298 	struct rcu_head		rcu;
299 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
300 
301 /*
302  * Structure used to wait for workqueue flush.
303  */
304 struct wq_flusher {
305 	struct list_head	list;		/* WQ: list of flushers */
306 	int			flush_color;	/* WQ: flush color waiting for */
307 	struct completion	done;		/* flush completion */
308 };
309 
310 struct wq_device;
311 
312 /*
313  * Unlike in a per-cpu workqueue where max_active limits its concurrency level
314  * on each CPU, in an unbound workqueue, max_active applies to the whole system.
315  * As sharing a single nr_active across multiple sockets can be very expensive,
316  * the counting and enforcement is per NUMA node.
317  *
318  * The following struct is used to enforce per-node max_active. When a pwq wants
319  * to start executing a work item, it should increment ->nr using
320  * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
321  * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
322  * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
323  * round-robin order.
324  */
325 struct wq_node_nr_active {
326 	int			max;		/* per-node max_active */
327 	atomic_t		nr;		/* per-node nr_active */
328 	raw_spinlock_t		lock;		/* nests inside pool locks */
329 	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
330 };
331 
332 /*
333  * The externally visible workqueue.  It relays the issued work items to
334  * the appropriate worker_pool through its pool_workqueues.
335  */
336 struct workqueue_struct {
337 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
338 	struct list_head	list;		/* PR: list of all workqueues */
339 
340 	struct mutex		mutex;		/* protects this wq */
341 	int			work_color;	/* WQ: current work color */
342 	int			flush_color;	/* WQ: current flush color */
343 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
344 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
345 	struct list_head	flusher_queue;	/* WQ: flush waiters */
346 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
347 
348 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
349 	struct worker		*rescuer;	/* MD: rescue worker */
350 
351 	int			nr_drainers;	/* WQ: drain in progress */
352 
353 	/* See alloc_workqueue() function comment for info on min/max_active */
354 	int			max_active;	/* WO: max active works */
355 	int			min_active;	/* WO: min active works */
356 	int			saved_max_active; /* WQ: saved max_active */
357 	int			saved_min_active; /* WQ: saved min_active */
358 
359 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
360 	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
361 
362 #ifdef CONFIG_SYSFS
363 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
364 #endif
365 #ifdef CONFIG_LOCKDEP
366 	char			*lock_name;
367 	struct lock_class_key	key;
368 	struct lockdep_map	lockdep_map;
369 #endif
370 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
371 
372 	/*
373 	 * Destruction of workqueue_struct is RCU protected to allow walking
374 	 * the workqueues list without grabbing wq_pool_mutex.
375 	 * This is used to dump all workqueues from sysrq.
376 	 */
377 	struct rcu_head		rcu;
378 
379 	/* hot fields used during command issue, aligned to cacheline */
380 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
381 	struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
382 	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
383 };
384 
385 /*
386  * Each pod type describes how CPUs should be grouped for unbound workqueues.
387  * See the comment above workqueue_attrs->affn_scope.
388  */
389 struct wq_pod_type {
390 	int			nr_pods;	/* number of pods */
391 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
392 	int			*pod_node;	/* pod -> node */
393 	int			*cpu_pod;	/* cpu -> pod */
394 };
395 
396 struct work_offq_data {
397 	u32			pool_id;
398 	u32			disable;
399 	u32			flags;
400 };
401 
402 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
403 	[WQ_AFFN_DFL]		= "default",
404 	[WQ_AFFN_CPU]		= "cpu",
405 	[WQ_AFFN_SMT]		= "smt",
406 	[WQ_AFFN_CACHE]		= "cache",
407 	[WQ_AFFN_NUMA]		= "numa",
408 	[WQ_AFFN_SYSTEM]	= "system",
409 };
410 
411 /*
412  * Per-cpu work items which run for longer than the following threshold are
413  * automatically considered CPU intensive and excluded from concurrency
414  * management to prevent them from noticeably delaying other per-cpu work items.
415  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
416  * The actual value is initialized in wq_cpu_intensive_thresh_init().
417  */
418 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
419 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
420 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
421 static unsigned int wq_cpu_intensive_warning_thresh = 4;
422 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
423 #endif
424 
425 /* see the comment above the definition of WQ_POWER_EFFICIENT */
426 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
427 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
428 
429 static bool wq_online;			/* can kworkers be created yet? */
430 static bool wq_topo_initialized __read_mostly = false;
431 
432 static struct kmem_cache *pwq_cache;
433 
434 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
435 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
436 
437 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
438 static struct workqueue_attrs *wq_update_pod_attrs_buf;
439 
440 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
441 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
442 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
443 /* wait for manager to go away */
444 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
445 
446 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
447 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
448 
449 /* PL&A: allowable cpus for unbound wqs and work items */
450 static cpumask_var_t wq_unbound_cpumask;
451 
452 /* PL: user requested unbound cpumask via sysfs */
453 static cpumask_var_t wq_requested_unbound_cpumask;
454 
455 /* PL: isolated cpumask to be excluded from unbound cpumask */
456 static cpumask_var_t wq_isolated_cpumask;
457 
458 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
459 static struct cpumask wq_cmdline_cpumask __initdata;
460 
461 /* CPU where unbound work was last round robin scheduled from this CPU */
462 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
463 
464 /*
465  * Local execution of unbound work items is no longer guaranteed.  The
466  * following always forces round-robin CPU selection on unbound work items
467  * to uncover usages which depend on it.
468  */
469 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
470 static bool wq_debug_force_rr_cpu = true;
471 #else
472 static bool wq_debug_force_rr_cpu = false;
473 #endif
474 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
475 
476 /* to raise softirq for the BH worker pools on other CPUs */
477 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS],
478 				     bh_pool_irq_works);
479 
480 /* the BH worker pools */
481 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
482 				     bh_worker_pools);
483 
484 /* the per-cpu worker pools */
485 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
486 				     cpu_worker_pools);
487 
488 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
489 
490 /* PL: hash of all unbound pools keyed by pool->attrs */
491 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
492 
493 /* I: attributes used when instantiating standard unbound pools on demand */
494 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
495 
496 /* I: attributes used when instantiating ordered pools on demand */
497 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
498 
499 /*
500  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
501  * process context while holding a pool lock. Bounce to a dedicated kthread
502  * worker to avoid A-A deadlocks.
503  */
504 static struct kthread_worker *pwq_release_worker __ro_after_init;
505 
506 struct workqueue_struct *system_wq __ro_after_init;
507 EXPORT_SYMBOL(system_wq);
508 struct workqueue_struct *system_highpri_wq __ro_after_init;
509 EXPORT_SYMBOL_GPL(system_highpri_wq);
510 struct workqueue_struct *system_long_wq __ro_after_init;
511 EXPORT_SYMBOL_GPL(system_long_wq);
512 struct workqueue_struct *system_unbound_wq __ro_after_init;
513 EXPORT_SYMBOL_GPL(system_unbound_wq);
514 struct workqueue_struct *system_freezable_wq __ro_after_init;
515 EXPORT_SYMBOL_GPL(system_freezable_wq);
516 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
517 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
518 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
519 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
520 struct workqueue_struct *system_bh_wq;
521 EXPORT_SYMBOL_GPL(system_bh_wq);
522 struct workqueue_struct *system_bh_highpri_wq;
523 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
524 
525 static int worker_thread(void *__worker);
526 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
527 static void show_pwq(struct pool_workqueue *pwq);
528 static void show_one_worker_pool(struct worker_pool *pool);
529 
530 #define CREATE_TRACE_POINTS
531 #include <trace/events/workqueue.h>
532 
533 #define assert_rcu_or_pool_mutex()					\
534 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
535 			 !lockdep_is_held(&wq_pool_mutex),		\
536 			 "RCU or wq_pool_mutex should be held")
537 
538 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
539 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
540 			 !lockdep_is_held(&wq->mutex) &&		\
541 			 !lockdep_is_held(&wq_pool_mutex),		\
542 			 "RCU, wq->mutex or wq_pool_mutex should be held")
543 
544 #define for_each_bh_worker_pool(pool, cpu)				\
545 	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
546 	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
547 	     (pool)++)
548 
549 #define for_each_cpu_worker_pool(pool, cpu)				\
550 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
551 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
552 	     (pool)++)
553 
554 /**
555  * for_each_pool - iterate through all worker_pools in the system
556  * @pool: iteration cursor
557  * @pi: integer used for iteration
558  *
559  * This must be called either with wq_pool_mutex held or RCU read
560  * locked.  If the pool needs to be used beyond the locking in effect, the
561  * caller is responsible for guaranteeing that the pool stays online.
562  *
563  * The if/else clause exists only for the lockdep assertion and can be
564  * ignored.
565  */
566 #define for_each_pool(pool, pi)						\
567 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
568 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
569 		else
570 
571 /**
572  * for_each_pool_worker - iterate through all workers of a worker_pool
573  * @worker: iteration cursor
574  * @pool: worker_pool to iterate workers of
575  *
576  * This must be called with wq_pool_attach_mutex.
577  *
578  * The if/else clause exists only for the lockdep assertion and can be
579  * ignored.
580  */
581 #define for_each_pool_worker(worker, pool)				\
582 	list_for_each_entry((worker), &(pool)->workers, node)		\
583 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
584 		else
585 
586 /**
587  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
588  * @pwq: iteration cursor
589  * @wq: the target workqueue
590  *
591  * This must be called either with wq->mutex held or RCU read locked.
592  * If the pwq needs to be used beyond the locking in effect, the caller is
593  * responsible for guaranteeing that the pwq stays online.
594  *
595  * The if/else clause exists only for the lockdep assertion and can be
596  * ignored.
597  */
598 #define for_each_pwq(pwq, wq)						\
599 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
600 				 lockdep_is_held(&(wq->mutex)))
601 
602 #ifdef CONFIG_DEBUG_OBJECTS_WORK
603 
604 static const struct debug_obj_descr work_debug_descr;
605 
606 static void *work_debug_hint(void *addr)
607 {
608 	return ((struct work_struct *) addr)->func;
609 }
610 
611 static bool work_is_static_object(void *addr)
612 {
613 	struct work_struct *work = addr;
614 
615 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
616 }
617 
618 /*
619  * fixup_init is called when:
620  * - an active object is initialized
621  */
622 static bool work_fixup_init(void *addr, enum debug_obj_state state)
623 {
624 	struct work_struct *work = addr;
625 
626 	switch (state) {
627 	case ODEBUG_STATE_ACTIVE:
628 		cancel_work_sync(work);
629 		debug_object_init(work, &work_debug_descr);
630 		return true;
631 	default:
632 		return false;
633 	}
634 }
635 
636 /*
637  * fixup_free is called when:
638  * - an active object is freed
639  */
640 static bool work_fixup_free(void *addr, enum debug_obj_state state)
641 {
642 	struct work_struct *work = addr;
643 
644 	switch (state) {
645 	case ODEBUG_STATE_ACTIVE:
646 		cancel_work_sync(work);
647 		debug_object_free(work, &work_debug_descr);
648 		return true;
649 	default:
650 		return false;
651 	}
652 }
653 
654 static const struct debug_obj_descr work_debug_descr = {
655 	.name		= "work_struct",
656 	.debug_hint	= work_debug_hint,
657 	.is_static_object = work_is_static_object,
658 	.fixup_init	= work_fixup_init,
659 	.fixup_free	= work_fixup_free,
660 };
661 
662 static inline void debug_work_activate(struct work_struct *work)
663 {
664 	debug_object_activate(work, &work_debug_descr);
665 }
666 
667 static inline void debug_work_deactivate(struct work_struct *work)
668 {
669 	debug_object_deactivate(work, &work_debug_descr);
670 }
671 
672 void __init_work(struct work_struct *work, int onstack)
673 {
674 	if (onstack)
675 		debug_object_init_on_stack(work, &work_debug_descr);
676 	else
677 		debug_object_init(work, &work_debug_descr);
678 }
679 EXPORT_SYMBOL_GPL(__init_work);
680 
681 void destroy_work_on_stack(struct work_struct *work)
682 {
683 	debug_object_free(work, &work_debug_descr);
684 }
685 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
686 
687 void destroy_delayed_work_on_stack(struct delayed_work *work)
688 {
689 	destroy_timer_on_stack(&work->timer);
690 	debug_object_free(&work->work, &work_debug_descr);
691 }
692 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
693 
694 #else
695 static inline void debug_work_activate(struct work_struct *work) { }
696 static inline void debug_work_deactivate(struct work_struct *work) { }
697 #endif
698 
699 /**
700  * worker_pool_assign_id - allocate ID and assign it to @pool
701  * @pool: the pool pointer of interest
702  *
703  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
704  * successfully, -errno on failure.
705  */
706 static int worker_pool_assign_id(struct worker_pool *pool)
707 {
708 	int ret;
709 
710 	lockdep_assert_held(&wq_pool_mutex);
711 
712 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
713 			GFP_KERNEL);
714 	if (ret >= 0) {
715 		pool->id = ret;
716 		return 0;
717 	}
718 	return ret;
719 }
720 
721 static struct pool_workqueue __rcu **
722 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
723 {
724        if (cpu >= 0)
725                return per_cpu_ptr(wq->cpu_pwq, cpu);
726        else
727                return &wq->dfl_pwq;
728 }
729 
730 /* @cpu < 0 for dfl_pwq */
731 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
732 {
733 	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
734 				     lockdep_is_held(&wq_pool_mutex) ||
735 				     lockdep_is_held(&wq->mutex));
736 }
737 
738 /**
739  * unbound_effective_cpumask - effective cpumask of an unbound workqueue
740  * @wq: workqueue of interest
741  *
742  * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
743  * is masked with wq_unbound_cpumask to determine the effective cpumask. The
744  * default pwq is always mapped to the pool with the current effective cpumask.
745  */
746 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
747 {
748 	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
749 }
750 
751 static unsigned int work_color_to_flags(int color)
752 {
753 	return color << WORK_STRUCT_COLOR_SHIFT;
754 }
755 
756 static int get_work_color(unsigned long work_data)
757 {
758 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
759 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
760 }
761 
762 static int work_next_color(int color)
763 {
764 	return (color + 1) % WORK_NR_COLORS;
765 }
766 
767 static unsigned long pool_offq_flags(struct worker_pool *pool)
768 {
769 	return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
770 }
771 
772 /*
773  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
774  * contain the pointer to the queued pwq.  Once execution starts, the flag
775  * is cleared and the high bits contain OFFQ flags and pool ID.
776  *
777  * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
778  * can be used to set the pwq, pool or clear work->data. These functions should
779  * only be called while the work is owned - ie. while the PENDING bit is set.
780  *
781  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
782  * corresponding to a work.  Pool is available once the work has been
783  * queued anywhere after initialization until it is sync canceled.  pwq is
784  * available only while the work item is queued.
785  */
786 static inline void set_work_data(struct work_struct *work, unsigned long data)
787 {
788 	WARN_ON_ONCE(!work_pending(work));
789 	atomic_long_set(&work->data, data | work_static(work));
790 }
791 
792 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
793 			 unsigned long flags)
794 {
795 	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
796 		      WORK_STRUCT_PWQ | flags);
797 }
798 
799 static void set_work_pool_and_keep_pending(struct work_struct *work,
800 					   int pool_id, unsigned long flags)
801 {
802 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
803 		      WORK_STRUCT_PENDING | flags);
804 }
805 
806 static void set_work_pool_and_clear_pending(struct work_struct *work,
807 					    int pool_id, unsigned long flags)
808 {
809 	/*
810 	 * The following wmb is paired with the implied mb in
811 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
812 	 * here are visible to and precede any updates by the next PENDING
813 	 * owner.
814 	 */
815 	smp_wmb();
816 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
817 		      flags);
818 	/*
819 	 * The following mb guarantees that previous clear of a PENDING bit
820 	 * will not be reordered with any speculative LOADS or STORES from
821 	 * work->current_func, which is executed afterwards.  This possible
822 	 * reordering can lead to a missed execution on attempt to queue
823 	 * the same @work.  E.g. consider this case:
824 	 *
825 	 *   CPU#0                         CPU#1
826 	 *   ----------------------------  --------------------------------
827 	 *
828 	 * 1  STORE event_indicated
829 	 * 2  queue_work_on() {
830 	 * 3    test_and_set_bit(PENDING)
831 	 * 4 }                             set_..._and_clear_pending() {
832 	 * 5                                 set_work_data() # clear bit
833 	 * 6                                 smp_mb()
834 	 * 7                               work->current_func() {
835 	 * 8				      LOAD event_indicated
836 	 *				   }
837 	 *
838 	 * Without an explicit full barrier speculative LOAD on line 8 can
839 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
840 	 * CPU#0 observes the PENDING bit is still set and new execution of
841 	 * a @work is not queued in a hope, that CPU#1 will eventually
842 	 * finish the queued @work.  Meanwhile CPU#1 does not see
843 	 * event_indicated is set, because speculative LOAD was executed
844 	 * before actual STORE.
845 	 */
846 	smp_mb();
847 }
848 
849 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
850 {
851 	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
852 }
853 
854 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
855 {
856 	unsigned long data = atomic_long_read(&work->data);
857 
858 	if (data & WORK_STRUCT_PWQ)
859 		return work_struct_pwq(data);
860 	else
861 		return NULL;
862 }
863 
864 /**
865  * get_work_pool - return the worker_pool a given work was associated with
866  * @work: the work item of interest
867  *
868  * Pools are created and destroyed under wq_pool_mutex, and allows read
869  * access under RCU read lock.  As such, this function should be
870  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
871  *
872  * All fields of the returned pool are accessible as long as the above
873  * mentioned locking is in effect.  If the returned pool needs to be used
874  * beyond the critical section, the caller is responsible for ensuring the
875  * returned pool is and stays online.
876  *
877  * Return: The worker_pool @work was last associated with.  %NULL if none.
878  */
879 static struct worker_pool *get_work_pool(struct work_struct *work)
880 {
881 	unsigned long data = atomic_long_read(&work->data);
882 	int pool_id;
883 
884 	assert_rcu_or_pool_mutex();
885 
886 	if (data & WORK_STRUCT_PWQ)
887 		return work_struct_pwq(data)->pool;
888 
889 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
890 	if (pool_id == WORK_OFFQ_POOL_NONE)
891 		return NULL;
892 
893 	return idr_find(&worker_pool_idr, pool_id);
894 }
895 
896 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
897 {
898 	return (v >> shift) & ((1 << bits) - 1);
899 }
900 
901 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
902 {
903 	WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
904 
905 	offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
906 					WORK_OFFQ_POOL_BITS);
907 	offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
908 					WORK_OFFQ_DISABLE_BITS);
909 	offqd->flags = data & WORK_OFFQ_FLAG_MASK;
910 }
911 
912 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
913 {
914 	return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
915 		((unsigned long)offqd->flags);
916 }
917 
918 /*
919  * Policy functions.  These define the policies on how the global worker
920  * pools are managed.  Unless noted otherwise, these functions assume that
921  * they're being called with pool->lock held.
922  */
923 
924 /*
925  * Need to wake up a worker?  Called from anything but currently
926  * running workers.
927  *
928  * Note that, because unbound workers never contribute to nr_running, this
929  * function will always return %true for unbound pools as long as the
930  * worklist isn't empty.
931  */
932 static bool need_more_worker(struct worker_pool *pool)
933 {
934 	return !list_empty(&pool->worklist) && !pool->nr_running;
935 }
936 
937 /* Can I start working?  Called from busy but !running workers. */
938 static bool may_start_working(struct worker_pool *pool)
939 {
940 	return pool->nr_idle;
941 }
942 
943 /* Do I need to keep working?  Called from currently running workers. */
944 static bool keep_working(struct worker_pool *pool)
945 {
946 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
947 }
948 
949 /* Do we need a new worker?  Called from manager. */
950 static bool need_to_create_worker(struct worker_pool *pool)
951 {
952 	return need_more_worker(pool) && !may_start_working(pool);
953 }
954 
955 /* Do we have too many workers and should some go away? */
956 static bool too_many_workers(struct worker_pool *pool)
957 {
958 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
959 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
960 	int nr_busy = pool->nr_workers - nr_idle;
961 
962 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
963 }
964 
965 /**
966  * worker_set_flags - set worker flags and adjust nr_running accordingly
967  * @worker: self
968  * @flags: flags to set
969  *
970  * Set @flags in @worker->flags and adjust nr_running accordingly.
971  */
972 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
973 {
974 	struct worker_pool *pool = worker->pool;
975 
976 	lockdep_assert_held(&pool->lock);
977 
978 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
979 	if ((flags & WORKER_NOT_RUNNING) &&
980 	    !(worker->flags & WORKER_NOT_RUNNING)) {
981 		pool->nr_running--;
982 	}
983 
984 	worker->flags |= flags;
985 }
986 
987 /**
988  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
989  * @worker: self
990  * @flags: flags to clear
991  *
992  * Clear @flags in @worker->flags and adjust nr_running accordingly.
993  */
994 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
995 {
996 	struct worker_pool *pool = worker->pool;
997 	unsigned int oflags = worker->flags;
998 
999 	lockdep_assert_held(&pool->lock);
1000 
1001 	worker->flags &= ~flags;
1002 
1003 	/*
1004 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1005 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1006 	 * of multiple flags, not a single flag.
1007 	 */
1008 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1009 		if (!(worker->flags & WORKER_NOT_RUNNING))
1010 			pool->nr_running++;
1011 }
1012 
1013 /* Return the first idle worker.  Called with pool->lock held. */
1014 static struct worker *first_idle_worker(struct worker_pool *pool)
1015 {
1016 	if (unlikely(list_empty(&pool->idle_list)))
1017 		return NULL;
1018 
1019 	return list_first_entry(&pool->idle_list, struct worker, entry);
1020 }
1021 
1022 /**
1023  * worker_enter_idle - enter idle state
1024  * @worker: worker which is entering idle state
1025  *
1026  * @worker is entering idle state.  Update stats and idle timer if
1027  * necessary.
1028  *
1029  * LOCKING:
1030  * raw_spin_lock_irq(pool->lock).
1031  */
1032 static void worker_enter_idle(struct worker *worker)
1033 {
1034 	struct worker_pool *pool = worker->pool;
1035 
1036 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1037 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1038 			 (worker->hentry.next || worker->hentry.pprev)))
1039 		return;
1040 
1041 	/* can't use worker_set_flags(), also called from create_worker() */
1042 	worker->flags |= WORKER_IDLE;
1043 	pool->nr_idle++;
1044 	worker->last_active = jiffies;
1045 
1046 	/* idle_list is LIFO */
1047 	list_add(&worker->entry, &pool->idle_list);
1048 
1049 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1050 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1051 
1052 	/* Sanity check nr_running. */
1053 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1054 }
1055 
1056 /**
1057  * worker_leave_idle - leave idle state
1058  * @worker: worker which is leaving idle state
1059  *
1060  * @worker is leaving idle state.  Update stats.
1061  *
1062  * LOCKING:
1063  * raw_spin_lock_irq(pool->lock).
1064  */
1065 static void worker_leave_idle(struct worker *worker)
1066 {
1067 	struct worker_pool *pool = worker->pool;
1068 
1069 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1070 		return;
1071 	worker_clr_flags(worker, WORKER_IDLE);
1072 	pool->nr_idle--;
1073 	list_del_init(&worker->entry);
1074 }
1075 
1076 /**
1077  * find_worker_executing_work - find worker which is executing a work
1078  * @pool: pool of interest
1079  * @work: work to find worker for
1080  *
1081  * Find a worker which is executing @work on @pool by searching
1082  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1083  * to match, its current execution should match the address of @work and
1084  * its work function.  This is to avoid unwanted dependency between
1085  * unrelated work executions through a work item being recycled while still
1086  * being executed.
1087  *
1088  * This is a bit tricky.  A work item may be freed once its execution
1089  * starts and nothing prevents the freed area from being recycled for
1090  * another work item.  If the same work item address ends up being reused
1091  * before the original execution finishes, workqueue will identify the
1092  * recycled work item as currently executing and make it wait until the
1093  * current execution finishes, introducing an unwanted dependency.
1094  *
1095  * This function checks the work item address and work function to avoid
1096  * false positives.  Note that this isn't complete as one may construct a
1097  * work function which can introduce dependency onto itself through a
1098  * recycled work item.  Well, if somebody wants to shoot oneself in the
1099  * foot that badly, there's only so much we can do, and if such deadlock
1100  * actually occurs, it should be easy to locate the culprit work function.
1101  *
1102  * CONTEXT:
1103  * raw_spin_lock_irq(pool->lock).
1104  *
1105  * Return:
1106  * Pointer to worker which is executing @work if found, %NULL
1107  * otherwise.
1108  */
1109 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1110 						 struct work_struct *work)
1111 {
1112 	struct worker *worker;
1113 
1114 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1115 			       (unsigned long)work)
1116 		if (worker->current_work == work &&
1117 		    worker->current_func == work->func)
1118 			return worker;
1119 
1120 	return NULL;
1121 }
1122 
1123 /**
1124  * move_linked_works - move linked works to a list
1125  * @work: start of series of works to be scheduled
1126  * @head: target list to append @work to
1127  * @nextp: out parameter for nested worklist walking
1128  *
1129  * Schedule linked works starting from @work to @head. Work series to be
1130  * scheduled starts at @work and includes any consecutive work with
1131  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1132  * @nextp.
1133  *
1134  * CONTEXT:
1135  * raw_spin_lock_irq(pool->lock).
1136  */
1137 static void move_linked_works(struct work_struct *work, struct list_head *head,
1138 			      struct work_struct **nextp)
1139 {
1140 	struct work_struct *n;
1141 
1142 	/*
1143 	 * Linked worklist will always end before the end of the list,
1144 	 * use NULL for list head.
1145 	 */
1146 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1147 		list_move_tail(&work->entry, head);
1148 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1149 			break;
1150 	}
1151 
1152 	/*
1153 	 * If we're already inside safe list traversal and have moved
1154 	 * multiple works to the scheduled queue, the next position
1155 	 * needs to be updated.
1156 	 */
1157 	if (nextp)
1158 		*nextp = n;
1159 }
1160 
1161 /**
1162  * assign_work - assign a work item and its linked work items to a worker
1163  * @work: work to assign
1164  * @worker: worker to assign to
1165  * @nextp: out parameter for nested worklist walking
1166  *
1167  * Assign @work and its linked work items to @worker. If @work is already being
1168  * executed by another worker in the same pool, it'll be punted there.
1169  *
1170  * If @nextp is not NULL, it's updated to point to the next work of the last
1171  * scheduled work. This allows assign_work() to be nested inside
1172  * list_for_each_entry_safe().
1173  *
1174  * Returns %true if @work was successfully assigned to @worker. %false if @work
1175  * was punted to another worker already executing it.
1176  */
1177 static bool assign_work(struct work_struct *work, struct worker *worker,
1178 			struct work_struct **nextp)
1179 {
1180 	struct worker_pool *pool = worker->pool;
1181 	struct worker *collision;
1182 
1183 	lockdep_assert_held(&pool->lock);
1184 
1185 	/*
1186 	 * A single work shouldn't be executed concurrently by multiple workers.
1187 	 * __queue_work() ensures that @work doesn't jump to a different pool
1188 	 * while still running in the previous pool. Here, we should ensure that
1189 	 * @work is not executed concurrently by multiple workers from the same
1190 	 * pool. Check whether anyone is already processing the work. If so,
1191 	 * defer the work to the currently executing one.
1192 	 */
1193 	collision = find_worker_executing_work(pool, work);
1194 	if (unlikely(collision)) {
1195 		move_linked_works(work, &collision->scheduled, nextp);
1196 		return false;
1197 	}
1198 
1199 	move_linked_works(work, &worker->scheduled, nextp);
1200 	return true;
1201 }
1202 
1203 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1204 {
1205 	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1206 
1207 	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1208 }
1209 
1210 static void kick_bh_pool(struct worker_pool *pool)
1211 {
1212 #ifdef CONFIG_SMP
1213 	/* see drain_dead_softirq_workfn() for BH_DRAINING */
1214 	if (unlikely(pool->cpu != smp_processor_id() &&
1215 		     !(pool->flags & POOL_BH_DRAINING))) {
1216 		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1217 		return;
1218 	}
1219 #endif
1220 	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1221 		raise_softirq_irqoff(HI_SOFTIRQ);
1222 	else
1223 		raise_softirq_irqoff(TASKLET_SOFTIRQ);
1224 }
1225 
1226 /**
1227  * kick_pool - wake up an idle worker if necessary
1228  * @pool: pool to kick
1229  *
1230  * @pool may have pending work items. Wake up worker if necessary. Returns
1231  * whether a worker was woken up.
1232  */
1233 static bool kick_pool(struct worker_pool *pool)
1234 {
1235 	struct worker *worker = first_idle_worker(pool);
1236 	struct task_struct *p;
1237 
1238 	lockdep_assert_held(&pool->lock);
1239 
1240 	if (!need_more_worker(pool) || !worker)
1241 		return false;
1242 
1243 	if (pool->flags & POOL_BH) {
1244 		kick_bh_pool(pool);
1245 		return true;
1246 	}
1247 
1248 	p = worker->task;
1249 
1250 #ifdef CONFIG_SMP
1251 	/*
1252 	 * Idle @worker is about to execute @work and waking up provides an
1253 	 * opportunity to migrate @worker at a lower cost by setting the task's
1254 	 * wake_cpu field. Let's see if we want to move @worker to improve
1255 	 * execution locality.
1256 	 *
1257 	 * We're waking the worker that went idle the latest and there's some
1258 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1259 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1260 	 * optimization and the race window is narrow, let's leave as-is for
1261 	 * now. If this becomes pronounced, we can skip over workers which are
1262 	 * still on cpu when picking an idle worker.
1263 	 *
1264 	 * If @pool has non-strict affinity, @worker might have ended up outside
1265 	 * its affinity scope. Repatriate.
1266 	 */
1267 	if (!pool->attrs->affn_strict &&
1268 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1269 		struct work_struct *work = list_first_entry(&pool->worklist,
1270 						struct work_struct, entry);
1271 		int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1272 							  cpu_online_mask);
1273 		if (wake_cpu < nr_cpu_ids) {
1274 			p->wake_cpu = wake_cpu;
1275 			get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1276 		}
1277 	}
1278 #endif
1279 	wake_up_process(p);
1280 	return true;
1281 }
1282 
1283 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1284 
1285 /*
1286  * Concurrency-managed per-cpu work items that hog CPU for longer than
1287  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1288  * which prevents them from stalling other concurrency-managed work items. If a
1289  * work function keeps triggering this mechanism, it's likely that the work item
1290  * should be using an unbound workqueue instead.
1291  *
1292  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1293  * and report them so that they can be examined and converted to use unbound
1294  * workqueues as appropriate. To avoid flooding the console, each violating work
1295  * function is tracked and reported with exponential backoff.
1296  */
1297 #define WCI_MAX_ENTS 128
1298 
1299 struct wci_ent {
1300 	work_func_t		func;
1301 	atomic64_t		cnt;
1302 	struct hlist_node	hash_node;
1303 };
1304 
1305 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1306 static int wci_nr_ents;
1307 static DEFINE_RAW_SPINLOCK(wci_lock);
1308 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1309 
1310 static struct wci_ent *wci_find_ent(work_func_t func)
1311 {
1312 	struct wci_ent *ent;
1313 
1314 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1315 				   (unsigned long)func) {
1316 		if (ent->func == func)
1317 			return ent;
1318 	}
1319 	return NULL;
1320 }
1321 
1322 static void wq_cpu_intensive_report(work_func_t func)
1323 {
1324 	struct wci_ent *ent;
1325 
1326 restart:
1327 	ent = wci_find_ent(func);
1328 	if (ent) {
1329 		u64 cnt;
1330 
1331 		/*
1332 		 * Start reporting from the warning_thresh and back off
1333 		 * exponentially.
1334 		 */
1335 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1336 		if (wq_cpu_intensive_warning_thresh &&
1337 		    cnt >= wq_cpu_intensive_warning_thresh &&
1338 		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1339 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1340 					ent->func, wq_cpu_intensive_thresh_us,
1341 					atomic64_read(&ent->cnt));
1342 		return;
1343 	}
1344 
1345 	/*
1346 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1347 	 * is exhausted, something went really wrong and we probably made enough
1348 	 * noise already.
1349 	 */
1350 	if (wci_nr_ents >= WCI_MAX_ENTS)
1351 		return;
1352 
1353 	raw_spin_lock(&wci_lock);
1354 
1355 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1356 		raw_spin_unlock(&wci_lock);
1357 		return;
1358 	}
1359 
1360 	if (wci_find_ent(func)) {
1361 		raw_spin_unlock(&wci_lock);
1362 		goto restart;
1363 	}
1364 
1365 	ent = &wci_ents[wci_nr_ents++];
1366 	ent->func = func;
1367 	atomic64_set(&ent->cnt, 0);
1368 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1369 
1370 	raw_spin_unlock(&wci_lock);
1371 
1372 	goto restart;
1373 }
1374 
1375 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1376 static void wq_cpu_intensive_report(work_func_t func) {}
1377 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1378 
1379 /**
1380  * wq_worker_running - a worker is running again
1381  * @task: task waking up
1382  *
1383  * This function is called when a worker returns from schedule()
1384  */
1385 void wq_worker_running(struct task_struct *task)
1386 {
1387 	struct worker *worker = kthread_data(task);
1388 
1389 	if (!READ_ONCE(worker->sleeping))
1390 		return;
1391 
1392 	/*
1393 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1394 	 * and the nr_running increment below, we may ruin the nr_running reset
1395 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1396 	 * pool. Protect against such race.
1397 	 */
1398 	preempt_disable();
1399 	if (!(worker->flags & WORKER_NOT_RUNNING))
1400 		worker->pool->nr_running++;
1401 	preempt_enable();
1402 
1403 	/*
1404 	 * CPU intensive auto-detection cares about how long a work item hogged
1405 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1406 	 */
1407 	worker->current_at = worker->task->se.sum_exec_runtime;
1408 
1409 	WRITE_ONCE(worker->sleeping, 0);
1410 }
1411 
1412 /**
1413  * wq_worker_sleeping - a worker is going to sleep
1414  * @task: task going to sleep
1415  *
1416  * This function is called from schedule() when a busy worker is
1417  * going to sleep.
1418  */
1419 void wq_worker_sleeping(struct task_struct *task)
1420 {
1421 	struct worker *worker = kthread_data(task);
1422 	struct worker_pool *pool;
1423 
1424 	/*
1425 	 * Rescuers, which may not have all the fields set up like normal
1426 	 * workers, also reach here, let's not access anything before
1427 	 * checking NOT_RUNNING.
1428 	 */
1429 	if (worker->flags & WORKER_NOT_RUNNING)
1430 		return;
1431 
1432 	pool = worker->pool;
1433 
1434 	/* Return if preempted before wq_worker_running() was reached */
1435 	if (READ_ONCE(worker->sleeping))
1436 		return;
1437 
1438 	WRITE_ONCE(worker->sleeping, 1);
1439 	raw_spin_lock_irq(&pool->lock);
1440 
1441 	/*
1442 	 * Recheck in case unbind_workers() preempted us. We don't
1443 	 * want to decrement nr_running after the worker is unbound
1444 	 * and nr_running has been reset.
1445 	 */
1446 	if (worker->flags & WORKER_NOT_RUNNING) {
1447 		raw_spin_unlock_irq(&pool->lock);
1448 		return;
1449 	}
1450 
1451 	pool->nr_running--;
1452 	if (kick_pool(pool))
1453 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1454 
1455 	raw_spin_unlock_irq(&pool->lock);
1456 }
1457 
1458 /**
1459  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1460  * @task: task currently running
1461  *
1462  * Called from sched_tick(). We're in the IRQ context and the current
1463  * worker's fields which follow the 'K' locking rule can be accessed safely.
1464  */
1465 void wq_worker_tick(struct task_struct *task)
1466 {
1467 	struct worker *worker = kthread_data(task);
1468 	struct pool_workqueue *pwq = worker->current_pwq;
1469 	struct worker_pool *pool = worker->pool;
1470 
1471 	if (!pwq)
1472 		return;
1473 
1474 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1475 
1476 	if (!wq_cpu_intensive_thresh_us)
1477 		return;
1478 
1479 	/*
1480 	 * If the current worker is concurrency managed and hogged the CPU for
1481 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1482 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1483 	 *
1484 	 * Set @worker->sleeping means that @worker is in the process of
1485 	 * switching out voluntarily and won't be contributing to
1486 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1487 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1488 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1489 	 * We probably want to make this prettier in the future.
1490 	 */
1491 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1492 	    worker->task->se.sum_exec_runtime - worker->current_at <
1493 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1494 		return;
1495 
1496 	raw_spin_lock(&pool->lock);
1497 
1498 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1499 	wq_cpu_intensive_report(worker->current_func);
1500 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1501 
1502 	if (kick_pool(pool))
1503 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1504 
1505 	raw_spin_unlock(&pool->lock);
1506 }
1507 
1508 /**
1509  * wq_worker_last_func - retrieve worker's last work function
1510  * @task: Task to retrieve last work function of.
1511  *
1512  * Determine the last function a worker executed. This is called from
1513  * the scheduler to get a worker's last known identity.
1514  *
1515  * CONTEXT:
1516  * raw_spin_lock_irq(rq->lock)
1517  *
1518  * This function is called during schedule() when a kworker is going
1519  * to sleep. It's used by psi to identify aggregation workers during
1520  * dequeuing, to allow periodic aggregation to shut-off when that
1521  * worker is the last task in the system or cgroup to go to sleep.
1522  *
1523  * As this function doesn't involve any workqueue-related locking, it
1524  * only returns stable values when called from inside the scheduler's
1525  * queuing and dequeuing paths, when @task, which must be a kworker,
1526  * is guaranteed to not be processing any works.
1527  *
1528  * Return:
1529  * The last work function %current executed as a worker, NULL if it
1530  * hasn't executed any work yet.
1531  */
1532 work_func_t wq_worker_last_func(struct task_struct *task)
1533 {
1534 	struct worker *worker = kthread_data(task);
1535 
1536 	return worker->last_func;
1537 }
1538 
1539 /**
1540  * wq_node_nr_active - Determine wq_node_nr_active to use
1541  * @wq: workqueue of interest
1542  * @node: NUMA node, can be %NUMA_NO_NODE
1543  *
1544  * Determine wq_node_nr_active to use for @wq on @node. Returns:
1545  *
1546  * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1547  *
1548  * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1549  *
1550  * - Otherwise, node_nr_active[@node].
1551  */
1552 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1553 						   int node)
1554 {
1555 	if (!(wq->flags & WQ_UNBOUND))
1556 		return NULL;
1557 
1558 	if (node == NUMA_NO_NODE)
1559 		node = nr_node_ids;
1560 
1561 	return wq->node_nr_active[node];
1562 }
1563 
1564 /**
1565  * wq_update_node_max_active - Update per-node max_actives to use
1566  * @wq: workqueue to update
1567  * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1568  *
1569  * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1570  * distributed among nodes according to the proportions of numbers of online
1571  * cpus. The result is always between @wq->min_active and max_active.
1572  */
1573 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1574 {
1575 	struct cpumask *effective = unbound_effective_cpumask(wq);
1576 	int min_active = READ_ONCE(wq->min_active);
1577 	int max_active = READ_ONCE(wq->max_active);
1578 	int total_cpus, node;
1579 
1580 	lockdep_assert_held(&wq->mutex);
1581 
1582 	if (!wq_topo_initialized)
1583 		return;
1584 
1585 	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1586 		off_cpu = -1;
1587 
1588 	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1589 	if (off_cpu >= 0)
1590 		total_cpus--;
1591 
1592 	/* If all CPUs of the wq get offline, use the default values */
1593 	if (unlikely(!total_cpus)) {
1594 		for_each_node(node)
1595 			wq_node_nr_active(wq, node)->max = min_active;
1596 
1597 		wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1598 		return;
1599 	}
1600 
1601 	for_each_node(node) {
1602 		int node_cpus;
1603 
1604 		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1605 		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1606 			node_cpus--;
1607 
1608 		wq_node_nr_active(wq, node)->max =
1609 			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1610 			      min_active, max_active);
1611 	}
1612 
1613 	wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1614 }
1615 
1616 /**
1617  * get_pwq - get an extra reference on the specified pool_workqueue
1618  * @pwq: pool_workqueue to get
1619  *
1620  * Obtain an extra reference on @pwq.  The caller should guarantee that
1621  * @pwq has positive refcnt and be holding the matching pool->lock.
1622  */
1623 static void get_pwq(struct pool_workqueue *pwq)
1624 {
1625 	lockdep_assert_held(&pwq->pool->lock);
1626 	WARN_ON_ONCE(pwq->refcnt <= 0);
1627 	pwq->refcnt++;
1628 }
1629 
1630 /**
1631  * put_pwq - put a pool_workqueue reference
1632  * @pwq: pool_workqueue to put
1633  *
1634  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1635  * destruction.  The caller should be holding the matching pool->lock.
1636  */
1637 static void put_pwq(struct pool_workqueue *pwq)
1638 {
1639 	lockdep_assert_held(&pwq->pool->lock);
1640 	if (likely(--pwq->refcnt))
1641 		return;
1642 	/*
1643 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1644 	 * kthread_worker to avoid A-A deadlocks.
1645 	 */
1646 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1647 }
1648 
1649 /**
1650  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1651  * @pwq: pool_workqueue to put (can be %NULL)
1652  *
1653  * put_pwq() with locking.  This function also allows %NULL @pwq.
1654  */
1655 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1656 {
1657 	if (pwq) {
1658 		/*
1659 		 * As both pwqs and pools are RCU protected, the
1660 		 * following lock operations are safe.
1661 		 */
1662 		raw_spin_lock_irq(&pwq->pool->lock);
1663 		put_pwq(pwq);
1664 		raw_spin_unlock_irq(&pwq->pool->lock);
1665 	}
1666 }
1667 
1668 static bool pwq_is_empty(struct pool_workqueue *pwq)
1669 {
1670 	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1671 }
1672 
1673 static void __pwq_activate_work(struct pool_workqueue *pwq,
1674 				struct work_struct *work)
1675 {
1676 	unsigned long *wdb = work_data_bits(work);
1677 
1678 	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1679 	trace_workqueue_activate_work(work);
1680 	if (list_empty(&pwq->pool->worklist))
1681 		pwq->pool->watchdog_ts = jiffies;
1682 	move_linked_works(work, &pwq->pool->worklist, NULL);
1683 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1684 }
1685 
1686 /**
1687  * pwq_activate_work - Activate a work item if inactive
1688  * @pwq: pool_workqueue @work belongs to
1689  * @work: work item to activate
1690  *
1691  * Returns %true if activated. %false if already active.
1692  */
1693 static bool pwq_activate_work(struct pool_workqueue *pwq,
1694 			      struct work_struct *work)
1695 {
1696 	struct worker_pool *pool = pwq->pool;
1697 	struct wq_node_nr_active *nna;
1698 
1699 	lockdep_assert_held(&pool->lock);
1700 
1701 	if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE))
1702 		return false;
1703 
1704 	nna = wq_node_nr_active(pwq->wq, pool->node);
1705 	if (nna)
1706 		atomic_inc(&nna->nr);
1707 
1708 	pwq->nr_active++;
1709 	__pwq_activate_work(pwq, work);
1710 	return true;
1711 }
1712 
1713 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1714 {
1715 	int max = READ_ONCE(nna->max);
1716 
1717 	while (true) {
1718 		int old, tmp;
1719 
1720 		old = atomic_read(&nna->nr);
1721 		if (old >= max)
1722 			return false;
1723 		tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1724 		if (tmp == old)
1725 			return true;
1726 	}
1727 }
1728 
1729 /**
1730  * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1731  * @pwq: pool_workqueue of interest
1732  * @fill: max_active may have increased, try to increase concurrency level
1733  *
1734  * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1735  * successfully obtained. %false otherwise.
1736  */
1737 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1738 {
1739 	struct workqueue_struct *wq = pwq->wq;
1740 	struct worker_pool *pool = pwq->pool;
1741 	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1742 	bool obtained = false;
1743 
1744 	lockdep_assert_held(&pool->lock);
1745 
1746 	if (!nna) {
1747 		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1748 		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1749 		goto out;
1750 	}
1751 
1752 	if (unlikely(pwq->plugged))
1753 		return false;
1754 
1755 	/*
1756 	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1757 	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1758 	 * concurrency level. Don't jump the line.
1759 	 *
1760 	 * We need to ignore the pending test after max_active has increased as
1761 	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1762 	 * increase it. This is indicated by @fill.
1763 	 */
1764 	if (!list_empty(&pwq->pending_node) && likely(!fill))
1765 		goto out;
1766 
1767 	obtained = tryinc_node_nr_active(nna);
1768 	if (obtained)
1769 		goto out;
1770 
1771 	/*
1772 	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1773 	 * and try again. The smp_mb() is paired with the implied memory barrier
1774 	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1775 	 * we see the decremented $nna->nr or they see non-empty
1776 	 * $nna->pending_pwqs.
1777 	 */
1778 	raw_spin_lock(&nna->lock);
1779 
1780 	if (list_empty(&pwq->pending_node))
1781 		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1782 	else if (likely(!fill))
1783 		goto out_unlock;
1784 
1785 	smp_mb();
1786 
1787 	obtained = tryinc_node_nr_active(nna);
1788 
1789 	/*
1790 	 * If @fill, @pwq might have already been pending. Being spuriously
1791 	 * pending in cold paths doesn't affect anything. Let's leave it be.
1792 	 */
1793 	if (obtained && likely(!fill))
1794 		list_del_init(&pwq->pending_node);
1795 
1796 out_unlock:
1797 	raw_spin_unlock(&nna->lock);
1798 out:
1799 	if (obtained)
1800 		pwq->nr_active++;
1801 	return obtained;
1802 }
1803 
1804 /**
1805  * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1806  * @pwq: pool_workqueue of interest
1807  * @fill: max_active may have increased, try to increase concurrency level
1808  *
1809  * Activate the first inactive work item of @pwq if available and allowed by
1810  * max_active limit.
1811  *
1812  * Returns %true if an inactive work item has been activated. %false if no
1813  * inactive work item is found or max_active limit is reached.
1814  */
1815 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1816 {
1817 	struct work_struct *work =
1818 		list_first_entry_or_null(&pwq->inactive_works,
1819 					 struct work_struct, entry);
1820 
1821 	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1822 		__pwq_activate_work(pwq, work);
1823 		return true;
1824 	} else {
1825 		return false;
1826 	}
1827 }
1828 
1829 /**
1830  * unplug_oldest_pwq - unplug the oldest pool_workqueue
1831  * @wq: workqueue_struct where its oldest pwq is to be unplugged
1832  *
1833  * This function should only be called for ordered workqueues where only the
1834  * oldest pwq is unplugged, the others are plugged to suspend execution to
1835  * ensure proper work item ordering::
1836  *
1837  *    dfl_pwq --------------+     [P] - plugged
1838  *                          |
1839  *                          v
1840  *    pwqs -> A -> B [P] -> C [P] (newest)
1841  *            |    |        |
1842  *            1    3        5
1843  *            |    |        |
1844  *            2    4        6
1845  *
1846  * When the oldest pwq is drained and removed, this function should be called
1847  * to unplug the next oldest one to start its work item execution. Note that
1848  * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1849  * the list is the oldest.
1850  */
1851 static void unplug_oldest_pwq(struct workqueue_struct *wq)
1852 {
1853 	struct pool_workqueue *pwq;
1854 
1855 	lockdep_assert_held(&wq->mutex);
1856 
1857 	/* Caller should make sure that pwqs isn't empty before calling */
1858 	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1859 				       pwqs_node);
1860 	raw_spin_lock_irq(&pwq->pool->lock);
1861 	if (pwq->plugged) {
1862 		pwq->plugged = false;
1863 		if (pwq_activate_first_inactive(pwq, true))
1864 			kick_pool(pwq->pool);
1865 	}
1866 	raw_spin_unlock_irq(&pwq->pool->lock);
1867 }
1868 
1869 /**
1870  * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1871  * @nna: wq_node_nr_active to activate a pending pwq for
1872  * @caller_pool: worker_pool the caller is locking
1873  *
1874  * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1875  * @caller_pool may be unlocked and relocked to lock other worker_pools.
1876  */
1877 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1878 				      struct worker_pool *caller_pool)
1879 {
1880 	struct worker_pool *locked_pool = caller_pool;
1881 	struct pool_workqueue *pwq;
1882 	struct work_struct *work;
1883 
1884 	lockdep_assert_held(&caller_pool->lock);
1885 
1886 	raw_spin_lock(&nna->lock);
1887 retry:
1888 	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1889 				       struct pool_workqueue, pending_node);
1890 	if (!pwq)
1891 		goto out_unlock;
1892 
1893 	/*
1894 	 * If @pwq is for a different pool than @locked_pool, we need to lock
1895 	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1896 	 * / lock dance. For that, we also need to release @nna->lock as it's
1897 	 * nested inside pool locks.
1898 	 */
1899 	if (pwq->pool != locked_pool) {
1900 		raw_spin_unlock(&locked_pool->lock);
1901 		locked_pool = pwq->pool;
1902 		if (!raw_spin_trylock(&locked_pool->lock)) {
1903 			raw_spin_unlock(&nna->lock);
1904 			raw_spin_lock(&locked_pool->lock);
1905 			raw_spin_lock(&nna->lock);
1906 			goto retry;
1907 		}
1908 	}
1909 
1910 	/*
1911 	 * $pwq may not have any inactive work items due to e.g. cancellations.
1912 	 * Drop it from pending_pwqs and see if there's another one.
1913 	 */
1914 	work = list_first_entry_or_null(&pwq->inactive_works,
1915 					struct work_struct, entry);
1916 	if (!work) {
1917 		list_del_init(&pwq->pending_node);
1918 		goto retry;
1919 	}
1920 
1921 	/*
1922 	 * Acquire an nr_active count and activate the inactive work item. If
1923 	 * $pwq still has inactive work items, rotate it to the end of the
1924 	 * pending_pwqs so that we round-robin through them. This means that
1925 	 * inactive work items are not activated in queueing order which is fine
1926 	 * given that there has never been any ordering across different pwqs.
1927 	 */
1928 	if (likely(tryinc_node_nr_active(nna))) {
1929 		pwq->nr_active++;
1930 		__pwq_activate_work(pwq, work);
1931 
1932 		if (list_empty(&pwq->inactive_works))
1933 			list_del_init(&pwq->pending_node);
1934 		else
1935 			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1936 
1937 		/* if activating a foreign pool, make sure it's running */
1938 		if (pwq->pool != caller_pool)
1939 			kick_pool(pwq->pool);
1940 	}
1941 
1942 out_unlock:
1943 	raw_spin_unlock(&nna->lock);
1944 	if (locked_pool != caller_pool) {
1945 		raw_spin_unlock(&locked_pool->lock);
1946 		raw_spin_lock(&caller_pool->lock);
1947 	}
1948 }
1949 
1950 /**
1951  * pwq_dec_nr_active - Retire an active count
1952  * @pwq: pool_workqueue of interest
1953  *
1954  * Decrement @pwq's nr_active and try to activate the first inactive work item.
1955  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1956  */
1957 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1958 {
1959 	struct worker_pool *pool = pwq->pool;
1960 	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1961 
1962 	lockdep_assert_held(&pool->lock);
1963 
1964 	/*
1965 	 * @pwq->nr_active should be decremented for both percpu and unbound
1966 	 * workqueues.
1967 	 */
1968 	pwq->nr_active--;
1969 
1970 	/*
1971 	 * For a percpu workqueue, it's simple. Just need to kick the first
1972 	 * inactive work item on @pwq itself.
1973 	 */
1974 	if (!nna) {
1975 		pwq_activate_first_inactive(pwq, false);
1976 		return;
1977 	}
1978 
1979 	/*
1980 	 * If @pwq is for an unbound workqueue, it's more complicated because
1981 	 * multiple pwqs and pools may be sharing the nr_active count. When a
1982 	 * pwq needs to wait for an nr_active count, it puts itself on
1983 	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1984 	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1985 	 * guarantee that either we see non-empty pending_pwqs or they see
1986 	 * decremented $nna->nr.
1987 	 *
1988 	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1989 	 * max_active gets updated. However, it is guaranteed to be equal to or
1990 	 * larger than @pwq->wq->min_active which is above zero unless freezing.
1991 	 * This maintains the forward progress guarantee.
1992 	 */
1993 	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1994 		return;
1995 
1996 	if (!list_empty(&nna->pending_pwqs))
1997 		node_activate_pending_pwq(nna, pool);
1998 }
1999 
2000 /**
2001  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
2002  * @pwq: pwq of interest
2003  * @work_data: work_data of work which left the queue
2004  *
2005  * A work either has completed or is removed from pending queue,
2006  * decrement nr_in_flight of its pwq and handle workqueue flushing.
2007  *
2008  * NOTE:
2009  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
2010  * and thus should be called after all other state updates for the in-flight
2011  * work item is complete.
2012  *
2013  * CONTEXT:
2014  * raw_spin_lock_irq(pool->lock).
2015  */
2016 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
2017 {
2018 	int color = get_work_color(work_data);
2019 
2020 	if (!(work_data & WORK_STRUCT_INACTIVE))
2021 		pwq_dec_nr_active(pwq);
2022 
2023 	pwq->nr_in_flight[color]--;
2024 
2025 	/* is flush in progress and are we at the flushing tip? */
2026 	if (likely(pwq->flush_color != color))
2027 		goto out_put;
2028 
2029 	/* are there still in-flight works? */
2030 	if (pwq->nr_in_flight[color])
2031 		goto out_put;
2032 
2033 	/* this pwq is done, clear flush_color */
2034 	pwq->flush_color = -1;
2035 
2036 	/*
2037 	 * If this was the last pwq, wake up the first flusher.  It
2038 	 * will handle the rest.
2039 	 */
2040 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2041 		complete(&pwq->wq->first_flusher->done);
2042 out_put:
2043 	put_pwq(pwq);
2044 }
2045 
2046 /**
2047  * try_to_grab_pending - steal work item from worklist and disable irq
2048  * @work: work item to steal
2049  * @cflags: %WORK_CANCEL_ flags
2050  * @irq_flags: place to store irq state
2051  *
2052  * Try to grab PENDING bit of @work.  This function can handle @work in any
2053  * stable state - idle, on timer or on worklist.
2054  *
2055  * Return:
2056  *
2057  *  ========	================================================================
2058  *  1		if @work was pending and we successfully stole PENDING
2059  *  0		if @work was idle and we claimed PENDING
2060  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
2061  *  ========	================================================================
2062  *
2063  * Note:
2064  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
2065  * interrupted while holding PENDING and @work off queue, irq must be
2066  * disabled on entry.  This, combined with delayed_work->timer being
2067  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2068  *
2069  * On successful return, >= 0, irq is disabled and the caller is
2070  * responsible for releasing it using local_irq_restore(*@irq_flags).
2071  *
2072  * This function is safe to call from any context including IRQ handler.
2073  */
2074 static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2075 			       unsigned long *irq_flags)
2076 {
2077 	struct worker_pool *pool;
2078 	struct pool_workqueue *pwq;
2079 
2080 	local_irq_save(*irq_flags);
2081 
2082 	/* try to steal the timer if it exists */
2083 	if (cflags & WORK_CANCEL_DELAYED) {
2084 		struct delayed_work *dwork = to_delayed_work(work);
2085 
2086 		/*
2087 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
2088 		 * guaranteed that the timer is not queued anywhere and not
2089 		 * running on the local CPU.
2090 		 */
2091 		if (likely(del_timer(&dwork->timer)))
2092 			return 1;
2093 	}
2094 
2095 	/* try to claim PENDING the normal way */
2096 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2097 		return 0;
2098 
2099 	rcu_read_lock();
2100 	/*
2101 	 * The queueing is in progress, or it is already queued. Try to
2102 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2103 	 */
2104 	pool = get_work_pool(work);
2105 	if (!pool)
2106 		goto fail;
2107 
2108 	raw_spin_lock(&pool->lock);
2109 	/*
2110 	 * work->data is guaranteed to point to pwq only while the work
2111 	 * item is queued on pwq->wq, and both updating work->data to point
2112 	 * to pwq on queueing and to pool on dequeueing are done under
2113 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2114 	 * points to pwq which is associated with a locked pool, the work
2115 	 * item is currently queued on that pool.
2116 	 */
2117 	pwq = get_work_pwq(work);
2118 	if (pwq && pwq->pool == pool) {
2119 		unsigned long work_data;
2120 
2121 		debug_work_deactivate(work);
2122 
2123 		/*
2124 		 * A cancelable inactive work item must be in the
2125 		 * pwq->inactive_works since a queued barrier can't be
2126 		 * canceled (see the comments in insert_wq_barrier()).
2127 		 *
2128 		 * An inactive work item cannot be grabbed directly because
2129 		 * it might have linked barrier work items which, if left
2130 		 * on the inactive_works list, will confuse pwq->nr_active
2131 		 * management later on and cause stall.  Make sure the work
2132 		 * item is activated before grabbing.
2133 		 */
2134 		pwq_activate_work(pwq, work);
2135 
2136 		list_del_init(&work->entry);
2137 
2138 		/*
2139 		 * work->data points to pwq iff queued. Let's point to pool. As
2140 		 * this destroys work->data needed by the next step, stash it.
2141 		 */
2142 		work_data = *work_data_bits(work);
2143 		set_work_pool_and_keep_pending(work, pool->id,
2144 					       pool_offq_flags(pool));
2145 
2146 		/* must be the last step, see the function comment */
2147 		pwq_dec_nr_in_flight(pwq, work_data);
2148 
2149 		raw_spin_unlock(&pool->lock);
2150 		rcu_read_unlock();
2151 		return 1;
2152 	}
2153 	raw_spin_unlock(&pool->lock);
2154 fail:
2155 	rcu_read_unlock();
2156 	local_irq_restore(*irq_flags);
2157 	return -EAGAIN;
2158 }
2159 
2160 /**
2161  * work_grab_pending - steal work item from worklist and disable irq
2162  * @work: work item to steal
2163  * @cflags: %WORK_CANCEL_ flags
2164  * @irq_flags: place to store IRQ state
2165  *
2166  * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2167  * or on worklist.
2168  *
2169  * Can be called from any context. IRQ is disabled on return with IRQ state
2170  * stored in *@irq_flags. The caller is responsible for re-enabling it using
2171  * local_irq_restore().
2172  *
2173  * Returns %true if @work was pending. %false if idle.
2174  */
2175 static bool work_grab_pending(struct work_struct *work, u32 cflags,
2176 			      unsigned long *irq_flags)
2177 {
2178 	int ret;
2179 
2180 	while (true) {
2181 		ret = try_to_grab_pending(work, cflags, irq_flags);
2182 		if (ret >= 0)
2183 			return ret;
2184 		cpu_relax();
2185 	}
2186 }
2187 
2188 /**
2189  * insert_work - insert a work into a pool
2190  * @pwq: pwq @work belongs to
2191  * @work: work to insert
2192  * @head: insertion point
2193  * @extra_flags: extra WORK_STRUCT_* flags to set
2194  *
2195  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2196  * work_struct flags.
2197  *
2198  * CONTEXT:
2199  * raw_spin_lock_irq(pool->lock).
2200  */
2201 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2202 			struct list_head *head, unsigned int extra_flags)
2203 {
2204 	debug_work_activate(work);
2205 
2206 	/* record the work call stack in order to print it in KASAN reports */
2207 	kasan_record_aux_stack_noalloc(work);
2208 
2209 	/* we own @work, set data and link */
2210 	set_work_pwq(work, pwq, extra_flags);
2211 	list_add_tail(&work->entry, head);
2212 	get_pwq(pwq);
2213 }
2214 
2215 /*
2216  * Test whether @work is being queued from another work executing on the
2217  * same workqueue.
2218  */
2219 static bool is_chained_work(struct workqueue_struct *wq)
2220 {
2221 	struct worker *worker;
2222 
2223 	worker = current_wq_worker();
2224 	/*
2225 	 * Return %true iff I'm a worker executing a work item on @wq.  If
2226 	 * I'm @worker, it's safe to dereference it without locking.
2227 	 */
2228 	return worker && worker->current_pwq->wq == wq;
2229 }
2230 
2231 /*
2232  * When queueing an unbound work item to a wq, prefer local CPU if allowed
2233  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2234  * avoid perturbing sensitive tasks.
2235  */
2236 static int wq_select_unbound_cpu(int cpu)
2237 {
2238 	int new_cpu;
2239 
2240 	if (likely(!wq_debug_force_rr_cpu)) {
2241 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2242 			return cpu;
2243 	} else {
2244 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2245 	}
2246 
2247 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2248 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2249 	if (unlikely(new_cpu >= nr_cpu_ids)) {
2250 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2251 		if (unlikely(new_cpu >= nr_cpu_ids))
2252 			return cpu;
2253 	}
2254 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2255 
2256 	return new_cpu;
2257 }
2258 
2259 static void __queue_work(int cpu, struct workqueue_struct *wq,
2260 			 struct work_struct *work)
2261 {
2262 	struct pool_workqueue *pwq;
2263 	struct worker_pool *last_pool, *pool;
2264 	unsigned int work_flags;
2265 	unsigned int req_cpu = cpu;
2266 
2267 	/*
2268 	 * While a work item is PENDING && off queue, a task trying to
2269 	 * steal the PENDING will busy-loop waiting for it to either get
2270 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2271 	 * happen with IRQ disabled.
2272 	 */
2273 	lockdep_assert_irqs_disabled();
2274 
2275 	/*
2276 	 * For a draining wq, only works from the same workqueue are
2277 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2278 	 * queues a new work item to a wq after destroy_workqueue(wq).
2279 	 */
2280 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2281 		     WARN_ON_ONCE(!is_chained_work(wq))))
2282 		return;
2283 	rcu_read_lock();
2284 retry:
2285 	/* pwq which will be used unless @work is executing elsewhere */
2286 	if (req_cpu == WORK_CPU_UNBOUND) {
2287 		if (wq->flags & WQ_UNBOUND)
2288 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2289 		else
2290 			cpu = raw_smp_processor_id();
2291 	}
2292 
2293 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2294 	pool = pwq->pool;
2295 
2296 	/*
2297 	 * If @work was previously on a different pool, it might still be
2298 	 * running there, in which case the work needs to be queued on that
2299 	 * pool to guarantee non-reentrancy.
2300 	 */
2301 	last_pool = get_work_pool(work);
2302 	if (last_pool && last_pool != pool) {
2303 		struct worker *worker;
2304 
2305 		raw_spin_lock(&last_pool->lock);
2306 
2307 		worker = find_worker_executing_work(last_pool, work);
2308 
2309 		if (worker && worker->current_pwq->wq == wq) {
2310 			pwq = worker->current_pwq;
2311 			pool = pwq->pool;
2312 			WARN_ON_ONCE(pool != last_pool);
2313 		} else {
2314 			/* meh... not running there, queue here */
2315 			raw_spin_unlock(&last_pool->lock);
2316 			raw_spin_lock(&pool->lock);
2317 		}
2318 	} else {
2319 		raw_spin_lock(&pool->lock);
2320 	}
2321 
2322 	/*
2323 	 * pwq is determined and locked. For unbound pools, we could have raced
2324 	 * with pwq release and it could already be dead. If its refcnt is zero,
2325 	 * repeat pwq selection. Note that unbound pwqs never die without
2326 	 * another pwq replacing it in cpu_pwq or while work items are executing
2327 	 * on it, so the retrying is guaranteed to make forward-progress.
2328 	 */
2329 	if (unlikely(!pwq->refcnt)) {
2330 		if (wq->flags & WQ_UNBOUND) {
2331 			raw_spin_unlock(&pool->lock);
2332 			cpu_relax();
2333 			goto retry;
2334 		}
2335 		/* oops */
2336 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2337 			  wq->name, cpu);
2338 	}
2339 
2340 	/* pwq determined, queue */
2341 	trace_workqueue_queue_work(req_cpu, pwq, work);
2342 
2343 	if (WARN_ON(!list_empty(&work->entry)))
2344 		goto out;
2345 
2346 	pwq->nr_in_flight[pwq->work_color]++;
2347 	work_flags = work_color_to_flags(pwq->work_color);
2348 
2349 	/*
2350 	 * Limit the number of concurrently active work items to max_active.
2351 	 * @work must also queue behind existing inactive work items to maintain
2352 	 * ordering when max_active changes. See wq_adjust_max_active().
2353 	 */
2354 	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2355 		if (list_empty(&pool->worklist))
2356 			pool->watchdog_ts = jiffies;
2357 
2358 		trace_workqueue_activate_work(work);
2359 		insert_work(pwq, work, &pool->worklist, work_flags);
2360 		kick_pool(pool);
2361 	} else {
2362 		work_flags |= WORK_STRUCT_INACTIVE;
2363 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2364 	}
2365 
2366 out:
2367 	raw_spin_unlock(&pool->lock);
2368 	rcu_read_unlock();
2369 }
2370 
2371 static bool clear_pending_if_disabled(struct work_struct *work)
2372 {
2373 	unsigned long data = *work_data_bits(work);
2374 	struct work_offq_data offqd;
2375 
2376 	if (likely((data & WORK_STRUCT_PWQ) ||
2377 		   !(data & WORK_OFFQ_DISABLE_MASK)))
2378 		return false;
2379 
2380 	work_offqd_unpack(&offqd, data);
2381 	set_work_pool_and_clear_pending(work, offqd.pool_id,
2382 					work_offqd_pack_flags(&offqd));
2383 	return true;
2384 }
2385 
2386 /**
2387  * queue_work_on - queue work on specific cpu
2388  * @cpu: CPU number to execute work on
2389  * @wq: workqueue to use
2390  * @work: work to queue
2391  *
2392  * We queue the work to a specific CPU, the caller must ensure it
2393  * can't go away.  Callers that fail to ensure that the specified
2394  * CPU cannot go away will execute on a randomly chosen CPU.
2395  * But note well that callers specifying a CPU that never has been
2396  * online will get a splat.
2397  *
2398  * Return: %false if @work was already on a queue, %true otherwise.
2399  */
2400 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2401 		   struct work_struct *work)
2402 {
2403 	bool ret = false;
2404 	unsigned long irq_flags;
2405 
2406 	local_irq_save(irq_flags);
2407 
2408 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2409 	    !clear_pending_if_disabled(work)) {
2410 		__queue_work(cpu, wq, work);
2411 		ret = true;
2412 	}
2413 
2414 	local_irq_restore(irq_flags);
2415 	return ret;
2416 }
2417 EXPORT_SYMBOL(queue_work_on);
2418 
2419 /**
2420  * select_numa_node_cpu - Select a CPU based on NUMA node
2421  * @node: NUMA node ID that we want to select a CPU from
2422  *
2423  * This function will attempt to find a "random" cpu available on a given
2424  * node. If there are no CPUs available on the given node it will return
2425  * WORK_CPU_UNBOUND indicating that we should just schedule to any
2426  * available CPU if we need to schedule this work.
2427  */
2428 static int select_numa_node_cpu(int node)
2429 {
2430 	int cpu;
2431 
2432 	/* Delay binding to CPU if node is not valid or online */
2433 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2434 		return WORK_CPU_UNBOUND;
2435 
2436 	/* Use local node/cpu if we are already there */
2437 	cpu = raw_smp_processor_id();
2438 	if (node == cpu_to_node(cpu))
2439 		return cpu;
2440 
2441 	/* Use "random" otherwise know as "first" online CPU of node */
2442 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2443 
2444 	/* If CPU is valid return that, otherwise just defer */
2445 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2446 }
2447 
2448 /**
2449  * queue_work_node - queue work on a "random" cpu for a given NUMA node
2450  * @node: NUMA node that we are targeting the work for
2451  * @wq: workqueue to use
2452  * @work: work to queue
2453  *
2454  * We queue the work to a "random" CPU within a given NUMA node. The basic
2455  * idea here is to provide a way to somehow associate work with a given
2456  * NUMA node.
2457  *
2458  * This function will only make a best effort attempt at getting this onto
2459  * the right NUMA node. If no node is requested or the requested node is
2460  * offline then we just fall back to standard queue_work behavior.
2461  *
2462  * Currently the "random" CPU ends up being the first available CPU in the
2463  * intersection of cpu_online_mask and the cpumask of the node, unless we
2464  * are running on the node. In that case we just use the current CPU.
2465  *
2466  * Return: %false if @work was already on a queue, %true otherwise.
2467  */
2468 bool queue_work_node(int node, struct workqueue_struct *wq,
2469 		     struct work_struct *work)
2470 {
2471 	unsigned long irq_flags;
2472 	bool ret = false;
2473 
2474 	/*
2475 	 * This current implementation is specific to unbound workqueues.
2476 	 * Specifically we only return the first available CPU for a given
2477 	 * node instead of cycling through individual CPUs within the node.
2478 	 *
2479 	 * If this is used with a per-cpu workqueue then the logic in
2480 	 * workqueue_select_cpu_near would need to be updated to allow for
2481 	 * some round robin type logic.
2482 	 */
2483 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2484 
2485 	local_irq_save(irq_flags);
2486 
2487 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2488 	    !clear_pending_if_disabled(work)) {
2489 		int cpu = select_numa_node_cpu(node);
2490 
2491 		__queue_work(cpu, wq, work);
2492 		ret = true;
2493 	}
2494 
2495 	local_irq_restore(irq_flags);
2496 	return ret;
2497 }
2498 EXPORT_SYMBOL_GPL(queue_work_node);
2499 
2500 void delayed_work_timer_fn(struct timer_list *t)
2501 {
2502 	struct delayed_work *dwork = from_timer(dwork, t, timer);
2503 
2504 	/* should have been called from irqsafe timer with irq already off */
2505 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2506 }
2507 EXPORT_SYMBOL(delayed_work_timer_fn);
2508 
2509 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2510 				struct delayed_work *dwork, unsigned long delay)
2511 {
2512 	struct timer_list *timer = &dwork->timer;
2513 	struct work_struct *work = &dwork->work;
2514 
2515 	WARN_ON_ONCE(!wq);
2516 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2517 	WARN_ON_ONCE(timer_pending(timer));
2518 	WARN_ON_ONCE(!list_empty(&work->entry));
2519 
2520 	/*
2521 	 * If @delay is 0, queue @dwork->work immediately.  This is for
2522 	 * both optimization and correctness.  The earliest @timer can
2523 	 * expire is on the closest next tick and delayed_work users depend
2524 	 * on that there's no such delay when @delay is 0.
2525 	 */
2526 	if (!delay) {
2527 		__queue_work(cpu, wq, &dwork->work);
2528 		return;
2529 	}
2530 
2531 	dwork->wq = wq;
2532 	dwork->cpu = cpu;
2533 	timer->expires = jiffies + delay;
2534 
2535 	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2536 		/* If the current cpu is a housekeeping cpu, use it. */
2537 		cpu = smp_processor_id();
2538 		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2539 			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2540 		add_timer_on(timer, cpu);
2541 	} else {
2542 		if (likely(cpu == WORK_CPU_UNBOUND))
2543 			add_timer_global(timer);
2544 		else
2545 			add_timer_on(timer, cpu);
2546 	}
2547 }
2548 
2549 /**
2550  * queue_delayed_work_on - queue work on specific CPU after delay
2551  * @cpu: CPU number to execute work on
2552  * @wq: workqueue to use
2553  * @dwork: work to queue
2554  * @delay: number of jiffies to wait before queueing
2555  *
2556  * Return: %false if @work was already on a queue, %true otherwise.  If
2557  * @delay is zero and @dwork is idle, it will be scheduled for immediate
2558  * execution.
2559  */
2560 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2561 			   struct delayed_work *dwork, unsigned long delay)
2562 {
2563 	struct work_struct *work = &dwork->work;
2564 	bool ret = false;
2565 	unsigned long irq_flags;
2566 
2567 	/* read the comment in __queue_work() */
2568 	local_irq_save(irq_flags);
2569 
2570 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2571 	    !clear_pending_if_disabled(work)) {
2572 		__queue_delayed_work(cpu, wq, dwork, delay);
2573 		ret = true;
2574 	}
2575 
2576 	local_irq_restore(irq_flags);
2577 	return ret;
2578 }
2579 EXPORT_SYMBOL(queue_delayed_work_on);
2580 
2581 /**
2582  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2583  * @cpu: CPU number to execute work on
2584  * @wq: workqueue to use
2585  * @dwork: work to queue
2586  * @delay: number of jiffies to wait before queueing
2587  *
2588  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2589  * modify @dwork's timer so that it expires after @delay.  If @delay is
2590  * zero, @work is guaranteed to be scheduled immediately regardless of its
2591  * current state.
2592  *
2593  * Return: %false if @dwork was idle and queued, %true if @dwork was
2594  * pending and its timer was modified.
2595  *
2596  * This function is safe to call from any context including IRQ handler.
2597  * See try_to_grab_pending() for details.
2598  */
2599 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2600 			 struct delayed_work *dwork, unsigned long delay)
2601 {
2602 	unsigned long irq_flags;
2603 	bool ret;
2604 
2605 	ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
2606 
2607 	if (!clear_pending_if_disabled(&dwork->work))
2608 		__queue_delayed_work(cpu, wq, dwork, delay);
2609 
2610 	local_irq_restore(irq_flags);
2611 	return ret;
2612 }
2613 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2614 
2615 static void rcu_work_rcufn(struct rcu_head *rcu)
2616 {
2617 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2618 
2619 	/* read the comment in __queue_work() */
2620 	local_irq_disable();
2621 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2622 	local_irq_enable();
2623 }
2624 
2625 /**
2626  * queue_rcu_work - queue work after a RCU grace period
2627  * @wq: workqueue to use
2628  * @rwork: work to queue
2629  *
2630  * Return: %false if @rwork was already pending, %true otherwise.  Note
2631  * that a full RCU grace period is guaranteed only after a %true return.
2632  * While @rwork is guaranteed to be executed after a %false return, the
2633  * execution may happen before a full RCU grace period has passed.
2634  */
2635 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2636 {
2637 	struct work_struct *work = &rwork->work;
2638 
2639 	/*
2640 	 * rcu_work can't be canceled or disabled. Warn if the user reached
2641 	 * inside @rwork and disabled the inner work.
2642 	 */
2643 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2644 	    !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
2645 		rwork->wq = wq;
2646 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2647 		return true;
2648 	}
2649 
2650 	return false;
2651 }
2652 EXPORT_SYMBOL(queue_rcu_work);
2653 
2654 static struct worker *alloc_worker(int node)
2655 {
2656 	struct worker *worker;
2657 
2658 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2659 	if (worker) {
2660 		INIT_LIST_HEAD(&worker->entry);
2661 		INIT_LIST_HEAD(&worker->scheduled);
2662 		INIT_LIST_HEAD(&worker->node);
2663 		/* on creation a worker is in !idle && prep state */
2664 		worker->flags = WORKER_PREP;
2665 	}
2666 	return worker;
2667 }
2668 
2669 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2670 {
2671 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2672 		return pool->attrs->__pod_cpumask;
2673 	else
2674 		return pool->attrs->cpumask;
2675 }
2676 
2677 /**
2678  * worker_attach_to_pool() - attach a worker to a pool
2679  * @worker: worker to be attached
2680  * @pool: the target pool
2681  *
2682  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2683  * cpu-binding of @worker are kept coordinated with the pool across
2684  * cpu-[un]hotplugs.
2685  */
2686 static void worker_attach_to_pool(struct worker *worker,
2687 				  struct worker_pool *pool)
2688 {
2689 	mutex_lock(&wq_pool_attach_mutex);
2690 
2691 	/*
2692 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2693 	 * across this function. See the comments above the flag definition for
2694 	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2695 	 */
2696 	if (pool->flags & POOL_DISASSOCIATED) {
2697 		worker->flags |= WORKER_UNBOUND;
2698 	} else {
2699 		WARN_ON_ONCE(pool->flags & POOL_BH);
2700 		kthread_set_per_cpu(worker->task, pool->cpu);
2701 	}
2702 
2703 	if (worker->rescue_wq)
2704 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2705 
2706 	list_add_tail(&worker->node, &pool->workers);
2707 	worker->pool = pool;
2708 
2709 	mutex_unlock(&wq_pool_attach_mutex);
2710 }
2711 
2712 /**
2713  * worker_detach_from_pool() - detach a worker from its pool
2714  * @worker: worker which is attached to its pool
2715  *
2716  * Undo the attaching which had been done in worker_attach_to_pool().  The
2717  * caller worker shouldn't access to the pool after detached except it has
2718  * other reference to the pool.
2719  */
2720 static void worker_detach_from_pool(struct worker *worker)
2721 {
2722 	struct worker_pool *pool = worker->pool;
2723 	struct completion *detach_completion = NULL;
2724 
2725 	/* there is one permanent BH worker per CPU which should never detach */
2726 	WARN_ON_ONCE(pool->flags & POOL_BH);
2727 
2728 	mutex_lock(&wq_pool_attach_mutex);
2729 
2730 	kthread_set_per_cpu(worker->task, -1);
2731 	list_del(&worker->node);
2732 	worker->pool = NULL;
2733 
2734 	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2735 		detach_completion = pool->detach_completion;
2736 	mutex_unlock(&wq_pool_attach_mutex);
2737 
2738 	/* clear leftover flags without pool->lock after it is detached */
2739 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2740 
2741 	if (detach_completion)
2742 		complete(detach_completion);
2743 }
2744 
2745 /**
2746  * create_worker - create a new workqueue worker
2747  * @pool: pool the new worker will belong to
2748  *
2749  * Create and start a new worker which is attached to @pool.
2750  *
2751  * CONTEXT:
2752  * Might sleep.  Does GFP_KERNEL allocations.
2753  *
2754  * Return:
2755  * Pointer to the newly created worker.
2756  */
2757 static struct worker *create_worker(struct worker_pool *pool)
2758 {
2759 	struct worker *worker;
2760 	int id;
2761 	char id_buf[23];
2762 
2763 	/* ID is needed to determine kthread name */
2764 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2765 	if (id < 0) {
2766 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2767 			    ERR_PTR(id));
2768 		return NULL;
2769 	}
2770 
2771 	worker = alloc_worker(pool->node);
2772 	if (!worker) {
2773 		pr_err_once("workqueue: Failed to allocate a worker\n");
2774 		goto fail;
2775 	}
2776 
2777 	worker->id = id;
2778 
2779 	if (!(pool->flags & POOL_BH)) {
2780 		if (pool->cpu >= 0)
2781 			snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2782 				 pool->attrs->nice < 0  ? "H" : "");
2783 		else
2784 			snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2785 
2786 		worker->task = kthread_create_on_node(worker_thread, worker,
2787 					pool->node, "kworker/%s", id_buf);
2788 		if (IS_ERR(worker->task)) {
2789 			if (PTR_ERR(worker->task) == -EINTR) {
2790 				pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2791 				       id_buf);
2792 			} else {
2793 				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2794 					    worker->task);
2795 			}
2796 			goto fail;
2797 		}
2798 
2799 		set_user_nice(worker->task, pool->attrs->nice);
2800 		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2801 	}
2802 
2803 	/* successful, attach the worker to the pool */
2804 	worker_attach_to_pool(worker, pool);
2805 
2806 	/* start the newly created worker */
2807 	raw_spin_lock_irq(&pool->lock);
2808 
2809 	worker->pool->nr_workers++;
2810 	worker_enter_idle(worker);
2811 
2812 	/*
2813 	 * @worker is waiting on a completion in kthread() and will trigger hung
2814 	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2815 	 * wake it up explicitly.
2816 	 */
2817 	if (worker->task)
2818 		wake_up_process(worker->task);
2819 
2820 	raw_spin_unlock_irq(&pool->lock);
2821 
2822 	return worker;
2823 
2824 fail:
2825 	ida_free(&pool->worker_ida, id);
2826 	kfree(worker);
2827 	return NULL;
2828 }
2829 
2830 static void unbind_worker(struct worker *worker)
2831 {
2832 	lockdep_assert_held(&wq_pool_attach_mutex);
2833 
2834 	kthread_set_per_cpu(worker->task, -1);
2835 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2836 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2837 	else
2838 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2839 }
2840 
2841 static void wake_dying_workers(struct list_head *cull_list)
2842 {
2843 	struct worker *worker, *tmp;
2844 
2845 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2846 		list_del_init(&worker->entry);
2847 		unbind_worker(worker);
2848 		/*
2849 		 * If the worker was somehow already running, then it had to be
2850 		 * in pool->idle_list when set_worker_dying() happened or we
2851 		 * wouldn't have gotten here.
2852 		 *
2853 		 * Thus, the worker must either have observed the WORKER_DIE
2854 		 * flag, or have set its state to TASK_IDLE. Either way, the
2855 		 * below will be observed by the worker and is safe to do
2856 		 * outside of pool->lock.
2857 		 */
2858 		wake_up_process(worker->task);
2859 	}
2860 }
2861 
2862 /**
2863  * set_worker_dying - Tag a worker for destruction
2864  * @worker: worker to be destroyed
2865  * @list: transfer worker away from its pool->idle_list and into list
2866  *
2867  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2868  * should be idle.
2869  *
2870  * CONTEXT:
2871  * raw_spin_lock_irq(pool->lock).
2872  */
2873 static void set_worker_dying(struct worker *worker, struct list_head *list)
2874 {
2875 	struct worker_pool *pool = worker->pool;
2876 
2877 	lockdep_assert_held(&pool->lock);
2878 	lockdep_assert_held(&wq_pool_attach_mutex);
2879 
2880 	/* sanity check frenzy */
2881 	if (WARN_ON(worker->current_work) ||
2882 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2883 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2884 		return;
2885 
2886 	pool->nr_workers--;
2887 	pool->nr_idle--;
2888 
2889 	worker->flags |= WORKER_DIE;
2890 
2891 	list_move(&worker->entry, list);
2892 	list_move(&worker->node, &pool->dying_workers);
2893 }
2894 
2895 /**
2896  * idle_worker_timeout - check if some idle workers can now be deleted.
2897  * @t: The pool's idle_timer that just expired
2898  *
2899  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2900  * worker_leave_idle(), as a worker flicking between idle and active while its
2901  * pool is at the too_many_workers() tipping point would cause too much timer
2902  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2903  * it expire and re-evaluate things from there.
2904  */
2905 static void idle_worker_timeout(struct timer_list *t)
2906 {
2907 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2908 	bool do_cull = false;
2909 
2910 	if (work_pending(&pool->idle_cull_work))
2911 		return;
2912 
2913 	raw_spin_lock_irq(&pool->lock);
2914 
2915 	if (too_many_workers(pool)) {
2916 		struct worker *worker;
2917 		unsigned long expires;
2918 
2919 		/* idle_list is kept in LIFO order, check the last one */
2920 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2921 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2922 		do_cull = !time_before(jiffies, expires);
2923 
2924 		if (!do_cull)
2925 			mod_timer(&pool->idle_timer, expires);
2926 	}
2927 	raw_spin_unlock_irq(&pool->lock);
2928 
2929 	if (do_cull)
2930 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2931 }
2932 
2933 /**
2934  * idle_cull_fn - cull workers that have been idle for too long.
2935  * @work: the pool's work for handling these idle workers
2936  *
2937  * This goes through a pool's idle workers and gets rid of those that have been
2938  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2939  *
2940  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2941  * culled, so this also resets worker affinity. This requires a sleepable
2942  * context, hence the split between timer callback and work item.
2943  */
2944 static void idle_cull_fn(struct work_struct *work)
2945 {
2946 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2947 	LIST_HEAD(cull_list);
2948 
2949 	/*
2950 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2951 	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2952 	 * path. This is required as a previously-preempted worker could run after
2953 	 * set_worker_dying() has happened but before wake_dying_workers() did.
2954 	 */
2955 	mutex_lock(&wq_pool_attach_mutex);
2956 	raw_spin_lock_irq(&pool->lock);
2957 
2958 	while (too_many_workers(pool)) {
2959 		struct worker *worker;
2960 		unsigned long expires;
2961 
2962 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2963 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2964 
2965 		if (time_before(jiffies, expires)) {
2966 			mod_timer(&pool->idle_timer, expires);
2967 			break;
2968 		}
2969 
2970 		set_worker_dying(worker, &cull_list);
2971 	}
2972 
2973 	raw_spin_unlock_irq(&pool->lock);
2974 	wake_dying_workers(&cull_list);
2975 	mutex_unlock(&wq_pool_attach_mutex);
2976 }
2977 
2978 static void send_mayday(struct work_struct *work)
2979 {
2980 	struct pool_workqueue *pwq = get_work_pwq(work);
2981 	struct workqueue_struct *wq = pwq->wq;
2982 
2983 	lockdep_assert_held(&wq_mayday_lock);
2984 
2985 	if (!wq->rescuer)
2986 		return;
2987 
2988 	/* mayday mayday mayday */
2989 	if (list_empty(&pwq->mayday_node)) {
2990 		/*
2991 		 * If @pwq is for an unbound wq, its base ref may be put at
2992 		 * any time due to an attribute change.  Pin @pwq until the
2993 		 * rescuer is done with it.
2994 		 */
2995 		get_pwq(pwq);
2996 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2997 		wake_up_process(wq->rescuer->task);
2998 		pwq->stats[PWQ_STAT_MAYDAY]++;
2999 	}
3000 }
3001 
3002 static void pool_mayday_timeout(struct timer_list *t)
3003 {
3004 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
3005 	struct work_struct *work;
3006 
3007 	raw_spin_lock_irq(&pool->lock);
3008 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
3009 
3010 	if (need_to_create_worker(pool)) {
3011 		/*
3012 		 * We've been trying to create a new worker but
3013 		 * haven't been successful.  We might be hitting an
3014 		 * allocation deadlock.  Send distress signals to
3015 		 * rescuers.
3016 		 */
3017 		list_for_each_entry(work, &pool->worklist, entry)
3018 			send_mayday(work);
3019 	}
3020 
3021 	raw_spin_unlock(&wq_mayday_lock);
3022 	raw_spin_unlock_irq(&pool->lock);
3023 
3024 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3025 }
3026 
3027 /**
3028  * maybe_create_worker - create a new worker if necessary
3029  * @pool: pool to create a new worker for
3030  *
3031  * Create a new worker for @pool if necessary.  @pool is guaranteed to
3032  * have at least one idle worker on return from this function.  If
3033  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3034  * sent to all rescuers with works scheduled on @pool to resolve
3035  * possible allocation deadlock.
3036  *
3037  * On return, need_to_create_worker() is guaranteed to be %false and
3038  * may_start_working() %true.
3039  *
3040  * LOCKING:
3041  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3042  * multiple times.  Does GFP_KERNEL allocations.  Called only from
3043  * manager.
3044  */
3045 static void maybe_create_worker(struct worker_pool *pool)
3046 __releases(&pool->lock)
3047 __acquires(&pool->lock)
3048 {
3049 restart:
3050 	raw_spin_unlock_irq(&pool->lock);
3051 
3052 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3053 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3054 
3055 	while (true) {
3056 		if (create_worker(pool) || !need_to_create_worker(pool))
3057 			break;
3058 
3059 		schedule_timeout_interruptible(CREATE_COOLDOWN);
3060 
3061 		if (!need_to_create_worker(pool))
3062 			break;
3063 	}
3064 
3065 	del_timer_sync(&pool->mayday_timer);
3066 	raw_spin_lock_irq(&pool->lock);
3067 	/*
3068 	 * This is necessary even after a new worker was just successfully
3069 	 * created as @pool->lock was dropped and the new worker might have
3070 	 * already become busy.
3071 	 */
3072 	if (need_to_create_worker(pool))
3073 		goto restart;
3074 }
3075 
3076 /**
3077  * manage_workers - manage worker pool
3078  * @worker: self
3079  *
3080  * Assume the manager role and manage the worker pool @worker belongs
3081  * to.  At any given time, there can be only zero or one manager per
3082  * pool.  The exclusion is handled automatically by this function.
3083  *
3084  * The caller can safely start processing works on false return.  On
3085  * true return, it's guaranteed that need_to_create_worker() is false
3086  * and may_start_working() is true.
3087  *
3088  * CONTEXT:
3089  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3090  * multiple times.  Does GFP_KERNEL allocations.
3091  *
3092  * Return:
3093  * %false if the pool doesn't need management and the caller can safely
3094  * start processing works, %true if management function was performed and
3095  * the conditions that the caller verified before calling the function may
3096  * no longer be true.
3097  */
3098 static bool manage_workers(struct worker *worker)
3099 {
3100 	struct worker_pool *pool = worker->pool;
3101 
3102 	if (pool->flags & POOL_MANAGER_ACTIVE)
3103 		return false;
3104 
3105 	pool->flags |= POOL_MANAGER_ACTIVE;
3106 	pool->manager = worker;
3107 
3108 	maybe_create_worker(pool);
3109 
3110 	pool->manager = NULL;
3111 	pool->flags &= ~POOL_MANAGER_ACTIVE;
3112 	rcuwait_wake_up(&manager_wait);
3113 	return true;
3114 }
3115 
3116 /**
3117  * process_one_work - process single work
3118  * @worker: self
3119  * @work: work to process
3120  *
3121  * Process @work.  This function contains all the logics necessary to
3122  * process a single work including synchronization against and
3123  * interaction with other workers on the same cpu, queueing and
3124  * flushing.  As long as context requirement is met, any worker can
3125  * call this function to process a work.
3126  *
3127  * CONTEXT:
3128  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3129  */
3130 static void process_one_work(struct worker *worker, struct work_struct *work)
3131 __releases(&pool->lock)
3132 __acquires(&pool->lock)
3133 {
3134 	struct pool_workqueue *pwq = get_work_pwq(work);
3135 	struct worker_pool *pool = worker->pool;
3136 	unsigned long work_data;
3137 	int lockdep_start_depth, rcu_start_depth;
3138 	bool bh_draining = pool->flags & POOL_BH_DRAINING;
3139 #ifdef CONFIG_LOCKDEP
3140 	/*
3141 	 * It is permissible to free the struct work_struct from
3142 	 * inside the function that is called from it, this we need to
3143 	 * take into account for lockdep too.  To avoid bogus "held
3144 	 * lock freed" warnings as well as problems when looking into
3145 	 * work->lockdep_map, make a copy and use that here.
3146 	 */
3147 	struct lockdep_map lockdep_map;
3148 
3149 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3150 #endif
3151 	/* ensure we're on the correct CPU */
3152 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3153 		     raw_smp_processor_id() != pool->cpu);
3154 
3155 	/* claim and dequeue */
3156 	debug_work_deactivate(work);
3157 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3158 	worker->current_work = work;
3159 	worker->current_func = work->func;
3160 	worker->current_pwq = pwq;
3161 	if (worker->task)
3162 		worker->current_at = worker->task->se.sum_exec_runtime;
3163 	work_data = *work_data_bits(work);
3164 	worker->current_color = get_work_color(work_data);
3165 
3166 	/*
3167 	 * Record wq name for cmdline and debug reporting, may get
3168 	 * overridden through set_worker_desc().
3169 	 */
3170 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3171 
3172 	list_del_init(&work->entry);
3173 
3174 	/*
3175 	 * CPU intensive works don't participate in concurrency management.
3176 	 * They're the scheduler's responsibility.  This takes @worker out
3177 	 * of concurrency management and the next code block will chain
3178 	 * execution of the pending work items.
3179 	 */
3180 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3181 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3182 
3183 	/*
3184 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3185 	 * since nr_running would always be >= 1 at this point. This is used to
3186 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3187 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3188 	 */
3189 	kick_pool(pool);
3190 
3191 	/*
3192 	 * Record the last pool and clear PENDING which should be the last
3193 	 * update to @work.  Also, do this inside @pool->lock so that
3194 	 * PENDING and queued state changes happen together while IRQ is
3195 	 * disabled.
3196 	 */
3197 	set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
3198 
3199 	pwq->stats[PWQ_STAT_STARTED]++;
3200 	raw_spin_unlock_irq(&pool->lock);
3201 
3202 	rcu_start_depth = rcu_preempt_depth();
3203 	lockdep_start_depth = lockdep_depth(current);
3204 	/* see drain_dead_softirq_workfn() */
3205 	if (!bh_draining)
3206 		lock_map_acquire(&pwq->wq->lockdep_map);
3207 	lock_map_acquire(&lockdep_map);
3208 	/*
3209 	 * Strictly speaking we should mark the invariant state without holding
3210 	 * any locks, that is, before these two lock_map_acquire()'s.
3211 	 *
3212 	 * However, that would result in:
3213 	 *
3214 	 *   A(W1)
3215 	 *   WFC(C)
3216 	 *		A(W1)
3217 	 *		C(C)
3218 	 *
3219 	 * Which would create W1->C->W1 dependencies, even though there is no
3220 	 * actual deadlock possible. There are two solutions, using a
3221 	 * read-recursive acquire on the work(queue) 'locks', but this will then
3222 	 * hit the lockdep limitation on recursive locks, or simply discard
3223 	 * these locks.
3224 	 *
3225 	 * AFAICT there is no possible deadlock scenario between the
3226 	 * flush_work() and complete() primitives (except for single-threaded
3227 	 * workqueues), so hiding them isn't a problem.
3228 	 */
3229 	lockdep_invariant_state(true);
3230 	trace_workqueue_execute_start(work);
3231 	worker->current_func(work);
3232 	/*
3233 	 * While we must be careful to not use "work" after this, the trace
3234 	 * point will only record its address.
3235 	 */
3236 	trace_workqueue_execute_end(work, worker->current_func);
3237 	pwq->stats[PWQ_STAT_COMPLETED]++;
3238 	lock_map_release(&lockdep_map);
3239 	if (!bh_draining)
3240 		lock_map_release(&pwq->wq->lockdep_map);
3241 
3242 	if (unlikely((worker->task && in_atomic()) ||
3243 		     lockdep_depth(current) != lockdep_start_depth ||
3244 		     rcu_preempt_depth() != rcu_start_depth)) {
3245 		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3246 		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3247 		       current->comm, task_pid_nr(current), preempt_count(),
3248 		       lockdep_start_depth, lockdep_depth(current),
3249 		       rcu_start_depth, rcu_preempt_depth(),
3250 		       worker->current_func);
3251 		debug_show_held_locks(current);
3252 		dump_stack();
3253 	}
3254 
3255 	/*
3256 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3257 	 * kernels, where a requeueing work item waiting for something to
3258 	 * happen could deadlock with stop_machine as such work item could
3259 	 * indefinitely requeue itself while all other CPUs are trapped in
3260 	 * stop_machine. At the same time, report a quiescent RCU state so
3261 	 * the same condition doesn't freeze RCU.
3262 	 */
3263 	if (worker->task)
3264 		cond_resched();
3265 
3266 	raw_spin_lock_irq(&pool->lock);
3267 
3268 	/*
3269 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3270 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3271 	 * wq_cpu_intensive_thresh_us. Clear it.
3272 	 */
3273 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3274 
3275 	/* tag the worker for identification in schedule() */
3276 	worker->last_func = worker->current_func;
3277 
3278 	/* we're done with it, release */
3279 	hash_del(&worker->hentry);
3280 	worker->current_work = NULL;
3281 	worker->current_func = NULL;
3282 	worker->current_pwq = NULL;
3283 	worker->current_color = INT_MAX;
3284 
3285 	/* must be the last step, see the function comment */
3286 	pwq_dec_nr_in_flight(pwq, work_data);
3287 }
3288 
3289 /**
3290  * process_scheduled_works - process scheduled works
3291  * @worker: self
3292  *
3293  * Process all scheduled works.  Please note that the scheduled list
3294  * may change while processing a work, so this function repeatedly
3295  * fetches a work from the top and executes it.
3296  *
3297  * CONTEXT:
3298  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3299  * multiple times.
3300  */
3301 static void process_scheduled_works(struct worker *worker)
3302 {
3303 	struct work_struct *work;
3304 	bool first = true;
3305 
3306 	while ((work = list_first_entry_or_null(&worker->scheduled,
3307 						struct work_struct, entry))) {
3308 		if (first) {
3309 			worker->pool->watchdog_ts = jiffies;
3310 			first = false;
3311 		}
3312 		process_one_work(worker, work);
3313 	}
3314 }
3315 
3316 static void set_pf_worker(bool val)
3317 {
3318 	mutex_lock(&wq_pool_attach_mutex);
3319 	if (val)
3320 		current->flags |= PF_WQ_WORKER;
3321 	else
3322 		current->flags &= ~PF_WQ_WORKER;
3323 	mutex_unlock(&wq_pool_attach_mutex);
3324 }
3325 
3326 /**
3327  * worker_thread - the worker thread function
3328  * @__worker: self
3329  *
3330  * The worker thread function.  All workers belong to a worker_pool -
3331  * either a per-cpu one or dynamic unbound one.  These workers process all
3332  * work items regardless of their specific target workqueue.  The only
3333  * exception is work items which belong to workqueues with a rescuer which
3334  * will be explained in rescuer_thread().
3335  *
3336  * Return: 0
3337  */
3338 static int worker_thread(void *__worker)
3339 {
3340 	struct worker *worker = __worker;
3341 	struct worker_pool *pool = worker->pool;
3342 
3343 	/* tell the scheduler that this is a workqueue worker */
3344 	set_pf_worker(true);
3345 woke_up:
3346 	raw_spin_lock_irq(&pool->lock);
3347 
3348 	/* am I supposed to die? */
3349 	if (unlikely(worker->flags & WORKER_DIE)) {
3350 		raw_spin_unlock_irq(&pool->lock);
3351 		set_pf_worker(false);
3352 
3353 		set_task_comm(worker->task, "kworker/dying");
3354 		ida_free(&pool->worker_ida, worker->id);
3355 		worker_detach_from_pool(worker);
3356 		WARN_ON_ONCE(!list_empty(&worker->entry));
3357 		kfree(worker);
3358 		return 0;
3359 	}
3360 
3361 	worker_leave_idle(worker);
3362 recheck:
3363 	/* no more worker necessary? */
3364 	if (!need_more_worker(pool))
3365 		goto sleep;
3366 
3367 	/* do we need to manage? */
3368 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3369 		goto recheck;
3370 
3371 	/*
3372 	 * ->scheduled list can only be filled while a worker is
3373 	 * preparing to process a work or actually processing it.
3374 	 * Make sure nobody diddled with it while I was sleeping.
3375 	 */
3376 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3377 
3378 	/*
3379 	 * Finish PREP stage.  We're guaranteed to have at least one idle
3380 	 * worker or that someone else has already assumed the manager
3381 	 * role.  This is where @worker starts participating in concurrency
3382 	 * management if applicable and concurrency management is restored
3383 	 * after being rebound.  See rebind_workers() for details.
3384 	 */
3385 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3386 
3387 	do {
3388 		struct work_struct *work =
3389 			list_first_entry(&pool->worklist,
3390 					 struct work_struct, entry);
3391 
3392 		if (assign_work(work, worker, NULL))
3393 			process_scheduled_works(worker);
3394 	} while (keep_working(pool));
3395 
3396 	worker_set_flags(worker, WORKER_PREP);
3397 sleep:
3398 	/*
3399 	 * pool->lock is held and there's no work to process and no need to
3400 	 * manage, sleep.  Workers are woken up only while holding
3401 	 * pool->lock or from local cpu, so setting the current state
3402 	 * before releasing pool->lock is enough to prevent losing any
3403 	 * event.
3404 	 */
3405 	worker_enter_idle(worker);
3406 	__set_current_state(TASK_IDLE);
3407 	raw_spin_unlock_irq(&pool->lock);
3408 	schedule();
3409 	goto woke_up;
3410 }
3411 
3412 /**
3413  * rescuer_thread - the rescuer thread function
3414  * @__rescuer: self
3415  *
3416  * Workqueue rescuer thread function.  There's one rescuer for each
3417  * workqueue which has WQ_MEM_RECLAIM set.
3418  *
3419  * Regular work processing on a pool may block trying to create a new
3420  * worker which uses GFP_KERNEL allocation which has slight chance of
3421  * developing into deadlock if some works currently on the same queue
3422  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3423  * the problem rescuer solves.
3424  *
3425  * When such condition is possible, the pool summons rescuers of all
3426  * workqueues which have works queued on the pool and let them process
3427  * those works so that forward progress can be guaranteed.
3428  *
3429  * This should happen rarely.
3430  *
3431  * Return: 0
3432  */
3433 static int rescuer_thread(void *__rescuer)
3434 {
3435 	struct worker *rescuer = __rescuer;
3436 	struct workqueue_struct *wq = rescuer->rescue_wq;
3437 	bool should_stop;
3438 
3439 	set_user_nice(current, RESCUER_NICE_LEVEL);
3440 
3441 	/*
3442 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3443 	 * doesn't participate in concurrency management.
3444 	 */
3445 	set_pf_worker(true);
3446 repeat:
3447 	set_current_state(TASK_IDLE);
3448 
3449 	/*
3450 	 * By the time the rescuer is requested to stop, the workqueue
3451 	 * shouldn't have any work pending, but @wq->maydays may still have
3452 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3453 	 * all the work items before the rescuer got to them.  Go through
3454 	 * @wq->maydays processing before acting on should_stop so that the
3455 	 * list is always empty on exit.
3456 	 */
3457 	should_stop = kthread_should_stop();
3458 
3459 	/* see whether any pwq is asking for help */
3460 	raw_spin_lock_irq(&wq_mayday_lock);
3461 
3462 	while (!list_empty(&wq->maydays)) {
3463 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3464 					struct pool_workqueue, mayday_node);
3465 		struct worker_pool *pool = pwq->pool;
3466 		struct work_struct *work, *n;
3467 
3468 		__set_current_state(TASK_RUNNING);
3469 		list_del_init(&pwq->mayday_node);
3470 
3471 		raw_spin_unlock_irq(&wq_mayday_lock);
3472 
3473 		worker_attach_to_pool(rescuer, pool);
3474 
3475 		raw_spin_lock_irq(&pool->lock);
3476 
3477 		/*
3478 		 * Slurp in all works issued via this workqueue and
3479 		 * process'em.
3480 		 */
3481 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3482 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3483 			if (get_work_pwq(work) == pwq &&
3484 			    assign_work(work, rescuer, &n))
3485 				pwq->stats[PWQ_STAT_RESCUED]++;
3486 		}
3487 
3488 		if (!list_empty(&rescuer->scheduled)) {
3489 			process_scheduled_works(rescuer);
3490 
3491 			/*
3492 			 * The above execution of rescued work items could
3493 			 * have created more to rescue through
3494 			 * pwq_activate_first_inactive() or chained
3495 			 * queueing.  Let's put @pwq back on mayday list so
3496 			 * that such back-to-back work items, which may be
3497 			 * being used to relieve memory pressure, don't
3498 			 * incur MAYDAY_INTERVAL delay inbetween.
3499 			 */
3500 			if (pwq->nr_active && need_to_create_worker(pool)) {
3501 				raw_spin_lock(&wq_mayday_lock);
3502 				/*
3503 				 * Queue iff we aren't racing destruction
3504 				 * and somebody else hasn't queued it already.
3505 				 */
3506 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3507 					get_pwq(pwq);
3508 					list_add_tail(&pwq->mayday_node, &wq->maydays);
3509 				}
3510 				raw_spin_unlock(&wq_mayday_lock);
3511 			}
3512 		}
3513 
3514 		/*
3515 		 * Put the reference grabbed by send_mayday().  @pool won't
3516 		 * go away while we're still attached to it.
3517 		 */
3518 		put_pwq(pwq);
3519 
3520 		/*
3521 		 * Leave this pool. Notify regular workers; otherwise, we end up
3522 		 * with 0 concurrency and stalling the execution.
3523 		 */
3524 		kick_pool(pool);
3525 
3526 		raw_spin_unlock_irq(&pool->lock);
3527 
3528 		worker_detach_from_pool(rescuer);
3529 
3530 		raw_spin_lock_irq(&wq_mayday_lock);
3531 	}
3532 
3533 	raw_spin_unlock_irq(&wq_mayday_lock);
3534 
3535 	if (should_stop) {
3536 		__set_current_state(TASK_RUNNING);
3537 		set_pf_worker(false);
3538 		return 0;
3539 	}
3540 
3541 	/* rescuers should never participate in concurrency management */
3542 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3543 	schedule();
3544 	goto repeat;
3545 }
3546 
3547 static void bh_worker(struct worker *worker)
3548 {
3549 	struct worker_pool *pool = worker->pool;
3550 	int nr_restarts = BH_WORKER_RESTARTS;
3551 	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3552 
3553 	raw_spin_lock_irq(&pool->lock);
3554 	worker_leave_idle(worker);
3555 
3556 	/*
3557 	 * This function follows the structure of worker_thread(). See there for
3558 	 * explanations on each step.
3559 	 */
3560 	if (!need_more_worker(pool))
3561 		goto done;
3562 
3563 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3564 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3565 
3566 	do {
3567 		struct work_struct *work =
3568 			list_first_entry(&pool->worklist,
3569 					 struct work_struct, entry);
3570 
3571 		if (assign_work(work, worker, NULL))
3572 			process_scheduled_works(worker);
3573 	} while (keep_working(pool) &&
3574 		 --nr_restarts && time_before(jiffies, end));
3575 
3576 	worker_set_flags(worker, WORKER_PREP);
3577 done:
3578 	worker_enter_idle(worker);
3579 	kick_pool(pool);
3580 	raw_spin_unlock_irq(&pool->lock);
3581 }
3582 
3583 /*
3584  * TODO: Convert all tasklet users to workqueue and use softirq directly.
3585  *
3586  * This is currently called from tasklet[_hi]action() and thus is also called
3587  * whenever there are tasklets to run. Let's do an early exit if there's nothing
3588  * queued. Once conversion from tasklet is complete, the need_more_worker() test
3589  * can be dropped.
3590  *
3591  * After full conversion, we'll add worker->softirq_action, directly use the
3592  * softirq action and obtain the worker pointer from the softirq_action pointer.
3593  */
3594 void workqueue_softirq_action(bool highpri)
3595 {
3596 	struct worker_pool *pool =
3597 		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3598 	if (need_more_worker(pool))
3599 		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3600 }
3601 
3602 struct wq_drain_dead_softirq_work {
3603 	struct work_struct	work;
3604 	struct worker_pool	*pool;
3605 	struct completion	done;
3606 };
3607 
3608 static void drain_dead_softirq_workfn(struct work_struct *work)
3609 {
3610 	struct wq_drain_dead_softirq_work *dead_work =
3611 		container_of(work, struct wq_drain_dead_softirq_work, work);
3612 	struct worker_pool *pool = dead_work->pool;
3613 	bool repeat;
3614 
3615 	/*
3616 	 * @pool's CPU is dead and we want to execute its still pending work
3617 	 * items from this BH work item which is running on a different CPU. As
3618 	 * its CPU is dead, @pool can't be kicked and, as work execution path
3619 	 * will be nested, a lockdep annotation needs to be suppressed. Mark
3620 	 * @pool with %POOL_BH_DRAINING for the special treatments.
3621 	 */
3622 	raw_spin_lock_irq(&pool->lock);
3623 	pool->flags |= POOL_BH_DRAINING;
3624 	raw_spin_unlock_irq(&pool->lock);
3625 
3626 	bh_worker(list_first_entry(&pool->workers, struct worker, node));
3627 
3628 	raw_spin_lock_irq(&pool->lock);
3629 	pool->flags &= ~POOL_BH_DRAINING;
3630 	repeat = need_more_worker(pool);
3631 	raw_spin_unlock_irq(&pool->lock);
3632 
3633 	/*
3634 	 * bh_worker() might hit consecutive execution limit and bail. If there
3635 	 * still are pending work items, reschedule self and return so that we
3636 	 * don't hog this CPU's BH.
3637 	 */
3638 	if (repeat) {
3639 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3640 			queue_work(system_bh_highpri_wq, work);
3641 		else
3642 			queue_work(system_bh_wq, work);
3643 	} else {
3644 		complete(&dead_work->done);
3645 	}
3646 }
3647 
3648 /*
3649  * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3650  * possible to allocate dead_work per CPU and avoid flushing. However, then we
3651  * have to worry about draining overlapping with CPU coming back online or
3652  * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3653  * on). Let's keep it simple and drain them synchronously. These are BH work
3654  * items which shouldn't be requeued on the same pool. Shouldn't take long.
3655  */
3656 void workqueue_softirq_dead(unsigned int cpu)
3657 {
3658 	int i;
3659 
3660 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3661 		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3662 		struct wq_drain_dead_softirq_work dead_work;
3663 
3664 		if (!need_more_worker(pool))
3665 			continue;
3666 
3667 		INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
3668 		dead_work.pool = pool;
3669 		init_completion(&dead_work.done);
3670 
3671 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3672 			queue_work(system_bh_highpri_wq, &dead_work.work);
3673 		else
3674 			queue_work(system_bh_wq, &dead_work.work);
3675 
3676 		wait_for_completion(&dead_work.done);
3677 		destroy_work_on_stack(&dead_work.work);
3678 	}
3679 }
3680 
3681 /**
3682  * check_flush_dependency - check for flush dependency sanity
3683  * @target_wq: workqueue being flushed
3684  * @target_work: work item being flushed (NULL for workqueue flushes)
3685  *
3686  * %current is trying to flush the whole @target_wq or @target_work on it.
3687  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3688  * reclaiming memory or running on a workqueue which doesn't have
3689  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3690  * a deadlock.
3691  */
3692 static void check_flush_dependency(struct workqueue_struct *target_wq,
3693 				   struct work_struct *target_work)
3694 {
3695 	work_func_t target_func = target_work ? target_work->func : NULL;
3696 	struct worker *worker;
3697 
3698 	if (target_wq->flags & WQ_MEM_RECLAIM)
3699 		return;
3700 
3701 	worker = current_wq_worker();
3702 
3703 	WARN_ONCE(current->flags & PF_MEMALLOC,
3704 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3705 		  current->pid, current->comm, target_wq->name, target_func);
3706 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3707 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3708 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3709 		  worker->current_pwq->wq->name, worker->current_func,
3710 		  target_wq->name, target_func);
3711 }
3712 
3713 struct wq_barrier {
3714 	struct work_struct	work;
3715 	struct completion	done;
3716 	struct task_struct	*task;	/* purely informational */
3717 };
3718 
3719 static void wq_barrier_func(struct work_struct *work)
3720 {
3721 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3722 	complete(&barr->done);
3723 }
3724 
3725 /**
3726  * insert_wq_barrier - insert a barrier work
3727  * @pwq: pwq to insert barrier into
3728  * @barr: wq_barrier to insert
3729  * @target: target work to attach @barr to
3730  * @worker: worker currently executing @target, NULL if @target is not executing
3731  *
3732  * @barr is linked to @target such that @barr is completed only after
3733  * @target finishes execution.  Please note that the ordering
3734  * guarantee is observed only with respect to @target and on the local
3735  * cpu.
3736  *
3737  * Currently, a queued barrier can't be canceled.  This is because
3738  * try_to_grab_pending() can't determine whether the work to be
3739  * grabbed is at the head of the queue and thus can't clear LINKED
3740  * flag of the previous work while there must be a valid next work
3741  * after a work with LINKED flag set.
3742  *
3743  * Note that when @worker is non-NULL, @target may be modified
3744  * underneath us, so we can't reliably determine pwq from @target.
3745  *
3746  * CONTEXT:
3747  * raw_spin_lock_irq(pool->lock).
3748  */
3749 static void insert_wq_barrier(struct pool_workqueue *pwq,
3750 			      struct wq_barrier *barr,
3751 			      struct work_struct *target, struct worker *worker)
3752 {
3753 	static __maybe_unused struct lock_class_key bh_key, thr_key;
3754 	unsigned int work_flags = 0;
3755 	unsigned int work_color;
3756 	struct list_head *head;
3757 
3758 	/*
3759 	 * debugobject calls are safe here even with pool->lock locked
3760 	 * as we know for sure that this will not trigger any of the
3761 	 * checks and call back into the fixup functions where we
3762 	 * might deadlock.
3763 	 *
3764 	 * BH and threaded workqueues need separate lockdep keys to avoid
3765 	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3766 	 * usage".
3767 	 */
3768 	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3769 			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3770 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3771 
3772 	init_completion_map(&barr->done, &target->lockdep_map);
3773 
3774 	barr->task = current;
3775 
3776 	/* The barrier work item does not participate in nr_active. */
3777 	work_flags |= WORK_STRUCT_INACTIVE;
3778 
3779 	/*
3780 	 * If @target is currently being executed, schedule the
3781 	 * barrier to the worker; otherwise, put it after @target.
3782 	 */
3783 	if (worker) {
3784 		head = worker->scheduled.next;
3785 		work_color = worker->current_color;
3786 	} else {
3787 		unsigned long *bits = work_data_bits(target);
3788 
3789 		head = target->entry.next;
3790 		/* there can already be other linked works, inherit and set */
3791 		work_flags |= *bits & WORK_STRUCT_LINKED;
3792 		work_color = get_work_color(*bits);
3793 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3794 	}
3795 
3796 	pwq->nr_in_flight[work_color]++;
3797 	work_flags |= work_color_to_flags(work_color);
3798 
3799 	insert_work(pwq, &barr->work, head, work_flags);
3800 }
3801 
3802 /**
3803  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3804  * @wq: workqueue being flushed
3805  * @flush_color: new flush color, < 0 for no-op
3806  * @work_color: new work color, < 0 for no-op
3807  *
3808  * Prepare pwqs for workqueue flushing.
3809  *
3810  * If @flush_color is non-negative, flush_color on all pwqs should be
3811  * -1.  If no pwq has in-flight commands at the specified color, all
3812  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3813  * has in flight commands, its pwq->flush_color is set to
3814  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3815  * wakeup logic is armed and %true is returned.
3816  *
3817  * The caller should have initialized @wq->first_flusher prior to
3818  * calling this function with non-negative @flush_color.  If
3819  * @flush_color is negative, no flush color update is done and %false
3820  * is returned.
3821  *
3822  * If @work_color is non-negative, all pwqs should have the same
3823  * work_color which is previous to @work_color and all will be
3824  * advanced to @work_color.
3825  *
3826  * CONTEXT:
3827  * mutex_lock(wq->mutex).
3828  *
3829  * Return:
3830  * %true if @flush_color >= 0 and there's something to flush.  %false
3831  * otherwise.
3832  */
3833 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3834 				      int flush_color, int work_color)
3835 {
3836 	bool wait = false;
3837 	struct pool_workqueue *pwq;
3838 
3839 	if (flush_color >= 0) {
3840 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3841 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3842 	}
3843 
3844 	for_each_pwq(pwq, wq) {
3845 		struct worker_pool *pool = pwq->pool;
3846 
3847 		raw_spin_lock_irq(&pool->lock);
3848 
3849 		if (flush_color >= 0) {
3850 			WARN_ON_ONCE(pwq->flush_color != -1);
3851 
3852 			if (pwq->nr_in_flight[flush_color]) {
3853 				pwq->flush_color = flush_color;
3854 				atomic_inc(&wq->nr_pwqs_to_flush);
3855 				wait = true;
3856 			}
3857 		}
3858 
3859 		if (work_color >= 0) {
3860 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3861 			pwq->work_color = work_color;
3862 		}
3863 
3864 		raw_spin_unlock_irq(&pool->lock);
3865 	}
3866 
3867 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3868 		complete(&wq->first_flusher->done);
3869 
3870 	return wait;
3871 }
3872 
3873 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3874 {
3875 #ifdef CONFIG_LOCKDEP
3876 	if (wq->flags & WQ_BH)
3877 		local_bh_disable();
3878 
3879 	lock_map_acquire(&wq->lockdep_map);
3880 	lock_map_release(&wq->lockdep_map);
3881 
3882 	if (wq->flags & WQ_BH)
3883 		local_bh_enable();
3884 #endif
3885 }
3886 
3887 static void touch_work_lockdep_map(struct work_struct *work,
3888 				   struct workqueue_struct *wq)
3889 {
3890 #ifdef CONFIG_LOCKDEP
3891 	if (wq->flags & WQ_BH)
3892 		local_bh_disable();
3893 
3894 	lock_map_acquire(&work->lockdep_map);
3895 	lock_map_release(&work->lockdep_map);
3896 
3897 	if (wq->flags & WQ_BH)
3898 		local_bh_enable();
3899 #endif
3900 }
3901 
3902 /**
3903  * __flush_workqueue - ensure that any scheduled work has run to completion.
3904  * @wq: workqueue to flush
3905  *
3906  * This function sleeps until all work items which were queued on entry
3907  * have finished execution, but it is not livelocked by new incoming ones.
3908  */
3909 void __flush_workqueue(struct workqueue_struct *wq)
3910 {
3911 	struct wq_flusher this_flusher = {
3912 		.list = LIST_HEAD_INIT(this_flusher.list),
3913 		.flush_color = -1,
3914 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3915 	};
3916 	int next_color;
3917 
3918 	if (WARN_ON(!wq_online))
3919 		return;
3920 
3921 	touch_wq_lockdep_map(wq);
3922 
3923 	mutex_lock(&wq->mutex);
3924 
3925 	/*
3926 	 * Start-to-wait phase
3927 	 */
3928 	next_color = work_next_color(wq->work_color);
3929 
3930 	if (next_color != wq->flush_color) {
3931 		/*
3932 		 * Color space is not full.  The current work_color
3933 		 * becomes our flush_color and work_color is advanced
3934 		 * by one.
3935 		 */
3936 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3937 		this_flusher.flush_color = wq->work_color;
3938 		wq->work_color = next_color;
3939 
3940 		if (!wq->first_flusher) {
3941 			/* no flush in progress, become the first flusher */
3942 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3943 
3944 			wq->first_flusher = &this_flusher;
3945 
3946 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3947 						       wq->work_color)) {
3948 				/* nothing to flush, done */
3949 				wq->flush_color = next_color;
3950 				wq->first_flusher = NULL;
3951 				goto out_unlock;
3952 			}
3953 		} else {
3954 			/* wait in queue */
3955 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3956 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3957 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3958 		}
3959 	} else {
3960 		/*
3961 		 * Oops, color space is full, wait on overflow queue.
3962 		 * The next flush completion will assign us
3963 		 * flush_color and transfer to flusher_queue.
3964 		 */
3965 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3966 	}
3967 
3968 	check_flush_dependency(wq, NULL);
3969 
3970 	mutex_unlock(&wq->mutex);
3971 
3972 	wait_for_completion(&this_flusher.done);
3973 
3974 	/*
3975 	 * Wake-up-and-cascade phase
3976 	 *
3977 	 * First flushers are responsible for cascading flushes and
3978 	 * handling overflow.  Non-first flushers can simply return.
3979 	 */
3980 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
3981 		return;
3982 
3983 	mutex_lock(&wq->mutex);
3984 
3985 	/* we might have raced, check again with mutex held */
3986 	if (wq->first_flusher != &this_flusher)
3987 		goto out_unlock;
3988 
3989 	WRITE_ONCE(wq->first_flusher, NULL);
3990 
3991 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
3992 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3993 
3994 	while (true) {
3995 		struct wq_flusher *next, *tmp;
3996 
3997 		/* complete all the flushers sharing the current flush color */
3998 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3999 			if (next->flush_color != wq->flush_color)
4000 				break;
4001 			list_del_init(&next->list);
4002 			complete(&next->done);
4003 		}
4004 
4005 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4006 			     wq->flush_color != work_next_color(wq->work_color));
4007 
4008 		/* this flush_color is finished, advance by one */
4009 		wq->flush_color = work_next_color(wq->flush_color);
4010 
4011 		/* one color has been freed, handle overflow queue */
4012 		if (!list_empty(&wq->flusher_overflow)) {
4013 			/*
4014 			 * Assign the same color to all overflowed
4015 			 * flushers, advance work_color and append to
4016 			 * flusher_queue.  This is the start-to-wait
4017 			 * phase for these overflowed flushers.
4018 			 */
4019 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
4020 				tmp->flush_color = wq->work_color;
4021 
4022 			wq->work_color = work_next_color(wq->work_color);
4023 
4024 			list_splice_tail_init(&wq->flusher_overflow,
4025 					      &wq->flusher_queue);
4026 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4027 		}
4028 
4029 		if (list_empty(&wq->flusher_queue)) {
4030 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
4031 			break;
4032 		}
4033 
4034 		/*
4035 		 * Need to flush more colors.  Make the next flusher
4036 		 * the new first flusher and arm pwqs.
4037 		 */
4038 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
4039 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
4040 
4041 		list_del_init(&next->list);
4042 		wq->first_flusher = next;
4043 
4044 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4045 			break;
4046 
4047 		/*
4048 		 * Meh... this color is already done, clear first
4049 		 * flusher and repeat cascading.
4050 		 */
4051 		wq->first_flusher = NULL;
4052 	}
4053 
4054 out_unlock:
4055 	mutex_unlock(&wq->mutex);
4056 }
4057 EXPORT_SYMBOL(__flush_workqueue);
4058 
4059 /**
4060  * drain_workqueue - drain a workqueue
4061  * @wq: workqueue to drain
4062  *
4063  * Wait until the workqueue becomes empty.  While draining is in progress,
4064  * only chain queueing is allowed.  IOW, only currently pending or running
4065  * work items on @wq can queue further work items on it.  @wq is flushed
4066  * repeatedly until it becomes empty.  The number of flushing is determined
4067  * by the depth of chaining and should be relatively short.  Whine if it
4068  * takes too long.
4069  */
4070 void drain_workqueue(struct workqueue_struct *wq)
4071 {
4072 	unsigned int flush_cnt = 0;
4073 	struct pool_workqueue *pwq;
4074 
4075 	/*
4076 	 * __queue_work() needs to test whether there are drainers, is much
4077 	 * hotter than drain_workqueue() and already looks at @wq->flags.
4078 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4079 	 */
4080 	mutex_lock(&wq->mutex);
4081 	if (!wq->nr_drainers++)
4082 		wq->flags |= __WQ_DRAINING;
4083 	mutex_unlock(&wq->mutex);
4084 reflush:
4085 	__flush_workqueue(wq);
4086 
4087 	mutex_lock(&wq->mutex);
4088 
4089 	for_each_pwq(pwq, wq) {
4090 		bool drained;
4091 
4092 		raw_spin_lock_irq(&pwq->pool->lock);
4093 		drained = pwq_is_empty(pwq);
4094 		raw_spin_unlock_irq(&pwq->pool->lock);
4095 
4096 		if (drained)
4097 			continue;
4098 
4099 		if (++flush_cnt == 10 ||
4100 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4101 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4102 				wq->name, __func__, flush_cnt);
4103 
4104 		mutex_unlock(&wq->mutex);
4105 		goto reflush;
4106 	}
4107 
4108 	if (!--wq->nr_drainers)
4109 		wq->flags &= ~__WQ_DRAINING;
4110 	mutex_unlock(&wq->mutex);
4111 }
4112 EXPORT_SYMBOL_GPL(drain_workqueue);
4113 
4114 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4115 			     bool from_cancel)
4116 {
4117 	struct worker *worker = NULL;
4118 	struct worker_pool *pool;
4119 	struct pool_workqueue *pwq;
4120 	struct workqueue_struct *wq;
4121 
4122 	rcu_read_lock();
4123 	pool = get_work_pool(work);
4124 	if (!pool) {
4125 		rcu_read_unlock();
4126 		return false;
4127 	}
4128 
4129 	raw_spin_lock_irq(&pool->lock);
4130 	/* see the comment in try_to_grab_pending() with the same code */
4131 	pwq = get_work_pwq(work);
4132 	if (pwq) {
4133 		if (unlikely(pwq->pool != pool))
4134 			goto already_gone;
4135 	} else {
4136 		worker = find_worker_executing_work(pool, work);
4137 		if (!worker)
4138 			goto already_gone;
4139 		pwq = worker->current_pwq;
4140 	}
4141 
4142 	wq = pwq->wq;
4143 	check_flush_dependency(wq, work);
4144 
4145 	insert_wq_barrier(pwq, barr, work, worker);
4146 	raw_spin_unlock_irq(&pool->lock);
4147 
4148 	touch_work_lockdep_map(work, wq);
4149 
4150 	/*
4151 	 * Force a lock recursion deadlock when using flush_work() inside a
4152 	 * single-threaded or rescuer equipped workqueue.
4153 	 *
4154 	 * For single threaded workqueues the deadlock happens when the work
4155 	 * is after the work issuing the flush_work(). For rescuer equipped
4156 	 * workqueues the deadlock happens when the rescuer stalls, blocking
4157 	 * forward progress.
4158 	 */
4159 	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4160 		touch_wq_lockdep_map(wq);
4161 
4162 	rcu_read_unlock();
4163 	return true;
4164 already_gone:
4165 	raw_spin_unlock_irq(&pool->lock);
4166 	rcu_read_unlock();
4167 	return false;
4168 }
4169 
4170 static bool __flush_work(struct work_struct *work, bool from_cancel)
4171 {
4172 	struct wq_barrier barr;
4173 	unsigned long data;
4174 
4175 	if (WARN_ON(!wq_online))
4176 		return false;
4177 
4178 	if (WARN_ON(!work->func))
4179 		return false;
4180 
4181 	if (!start_flush_work(work, &barr, from_cancel))
4182 		return false;
4183 
4184 	/*
4185 	 * start_flush_work() returned %true. If @from_cancel is set, we know
4186 	 * that @work must have been executing during start_flush_work() and
4187 	 * can't currently be queued. Its data must contain OFFQ bits. If @work
4188 	 * was queued on a BH workqueue, we also know that it was running in the
4189 	 * BH context and thus can be busy-waited.
4190 	 */
4191 	data = *work_data_bits(work);
4192 	if (from_cancel &&
4193 	    !WARN_ON_ONCE(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_BH)) {
4194 		/*
4195 		 * On RT, prevent a live lock when %current preempted soft
4196 		 * interrupt processing or prevents ksoftirqd from running by
4197 		 * keeping flipping BH. If the BH work item runs on a different
4198 		 * CPU then this has no effect other than doing the BH
4199 		 * disable/enable dance for nothing. This is copied from
4200 		 * kernel/softirq.c::tasklet_unlock_spin_wait().
4201 		 */
4202 		while (!try_wait_for_completion(&barr.done)) {
4203 			if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4204 				local_bh_disable();
4205 				local_bh_enable();
4206 			} else {
4207 				cpu_relax();
4208 			}
4209 		}
4210 	} else {
4211 		wait_for_completion(&barr.done);
4212 	}
4213 
4214 	destroy_work_on_stack(&barr.work);
4215 	return true;
4216 }
4217 
4218 /**
4219  * flush_work - wait for a work to finish executing the last queueing instance
4220  * @work: the work to flush
4221  *
4222  * Wait until @work has finished execution.  @work is guaranteed to be idle
4223  * on return if it hasn't been requeued since flush started.
4224  *
4225  * Return:
4226  * %true if flush_work() waited for the work to finish execution,
4227  * %false if it was already idle.
4228  */
4229 bool flush_work(struct work_struct *work)
4230 {
4231 	might_sleep();
4232 	return __flush_work(work, false);
4233 }
4234 EXPORT_SYMBOL_GPL(flush_work);
4235 
4236 /**
4237  * flush_delayed_work - wait for a dwork to finish executing the last queueing
4238  * @dwork: the delayed work to flush
4239  *
4240  * Delayed timer is cancelled and the pending work is queued for
4241  * immediate execution.  Like flush_work(), this function only
4242  * considers the last queueing instance of @dwork.
4243  *
4244  * Return:
4245  * %true if flush_work() waited for the work to finish execution,
4246  * %false if it was already idle.
4247  */
4248 bool flush_delayed_work(struct delayed_work *dwork)
4249 {
4250 	local_irq_disable();
4251 	if (del_timer_sync(&dwork->timer))
4252 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4253 	local_irq_enable();
4254 	return flush_work(&dwork->work);
4255 }
4256 EXPORT_SYMBOL(flush_delayed_work);
4257 
4258 /**
4259  * flush_rcu_work - wait for a rwork to finish executing the last queueing
4260  * @rwork: the rcu work to flush
4261  *
4262  * Return:
4263  * %true if flush_rcu_work() waited for the work to finish execution,
4264  * %false if it was already idle.
4265  */
4266 bool flush_rcu_work(struct rcu_work *rwork)
4267 {
4268 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4269 		rcu_barrier();
4270 		flush_work(&rwork->work);
4271 		return true;
4272 	} else {
4273 		return flush_work(&rwork->work);
4274 	}
4275 }
4276 EXPORT_SYMBOL(flush_rcu_work);
4277 
4278 static void work_offqd_disable(struct work_offq_data *offqd)
4279 {
4280 	const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4281 
4282 	if (likely(offqd->disable < max))
4283 		offqd->disable++;
4284 	else
4285 		WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4286 }
4287 
4288 static void work_offqd_enable(struct work_offq_data *offqd)
4289 {
4290 	if (likely(offqd->disable > 0))
4291 		offqd->disable--;
4292 	else
4293 		WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4294 }
4295 
4296 static bool __cancel_work(struct work_struct *work, u32 cflags)
4297 {
4298 	struct work_offq_data offqd;
4299 	unsigned long irq_flags;
4300 	int ret;
4301 
4302 	ret = work_grab_pending(work, cflags, &irq_flags);
4303 
4304 	work_offqd_unpack(&offqd, *work_data_bits(work));
4305 
4306 	if (cflags & WORK_CANCEL_DISABLE)
4307 		work_offqd_disable(&offqd);
4308 
4309 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4310 					work_offqd_pack_flags(&offqd));
4311 	local_irq_restore(irq_flags);
4312 	return ret;
4313 }
4314 
4315 static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4316 {
4317 	bool ret;
4318 
4319 	ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
4320 
4321 	if (*work_data_bits(work) & WORK_OFFQ_BH)
4322 		WARN_ON_ONCE(in_hardirq());
4323 	else
4324 		might_sleep();
4325 
4326 	/*
4327 	 * Skip __flush_work() during early boot when we know that @work isn't
4328 	 * executing. This allows canceling during early boot.
4329 	 */
4330 	if (wq_online)
4331 		__flush_work(work, true);
4332 
4333 	if (!(cflags & WORK_CANCEL_DISABLE))
4334 		enable_work(work);
4335 
4336 	return ret;
4337 }
4338 
4339 /*
4340  * See cancel_delayed_work()
4341  */
4342 bool cancel_work(struct work_struct *work)
4343 {
4344 	return __cancel_work(work, 0);
4345 }
4346 EXPORT_SYMBOL(cancel_work);
4347 
4348 /**
4349  * cancel_work_sync - cancel a work and wait for it to finish
4350  * @work: the work to cancel
4351  *
4352  * Cancel @work and wait for its execution to finish. This function can be used
4353  * even if the work re-queues itself or migrates to another workqueue. On return
4354  * from this function, @work is guaranteed to be not pending or executing on any
4355  * CPU as long as there aren't racing enqueues.
4356  *
4357  * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4358  * Use cancel_delayed_work_sync() instead.
4359  *
4360  * Must be called from a sleepable context if @work was last queued on a non-BH
4361  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4362  * if @work was last queued on a BH workqueue.
4363  *
4364  * Returns %true if @work was pending, %false otherwise.
4365  */
4366 bool cancel_work_sync(struct work_struct *work)
4367 {
4368 	return __cancel_work_sync(work, 0);
4369 }
4370 EXPORT_SYMBOL_GPL(cancel_work_sync);
4371 
4372 /**
4373  * cancel_delayed_work - cancel a delayed work
4374  * @dwork: delayed_work to cancel
4375  *
4376  * Kill off a pending delayed_work.
4377  *
4378  * Return: %true if @dwork was pending and canceled; %false if it wasn't
4379  * pending.
4380  *
4381  * Note:
4382  * The work callback function may still be running on return, unless
4383  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4384  * use cancel_delayed_work_sync() to wait on it.
4385  *
4386  * This function is safe to call from any context including IRQ handler.
4387  */
4388 bool cancel_delayed_work(struct delayed_work *dwork)
4389 {
4390 	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4391 }
4392 EXPORT_SYMBOL(cancel_delayed_work);
4393 
4394 /**
4395  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4396  * @dwork: the delayed work cancel
4397  *
4398  * This is cancel_work_sync() for delayed works.
4399  *
4400  * Return:
4401  * %true if @dwork was pending, %false otherwise.
4402  */
4403 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4404 {
4405 	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4406 }
4407 EXPORT_SYMBOL(cancel_delayed_work_sync);
4408 
4409 /**
4410  * disable_work - Disable and cancel a work item
4411  * @work: work item to disable
4412  *
4413  * Disable @work by incrementing its disable count and cancel it if currently
4414  * pending. As long as the disable count is non-zero, any attempt to queue @work
4415  * will fail and return %false. The maximum supported disable depth is 2 to the
4416  * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4417  *
4418  * Can be called from any context. Returns %true if @work was pending, %false
4419  * otherwise.
4420  */
4421 bool disable_work(struct work_struct *work)
4422 {
4423 	return __cancel_work(work, WORK_CANCEL_DISABLE);
4424 }
4425 EXPORT_SYMBOL_GPL(disable_work);
4426 
4427 /**
4428  * disable_work_sync - Disable, cancel and drain a work item
4429  * @work: work item to disable
4430  *
4431  * Similar to disable_work() but also wait for @work to finish if currently
4432  * executing.
4433  *
4434  * Must be called from a sleepable context if @work was last queued on a non-BH
4435  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4436  * if @work was last queued on a BH workqueue.
4437  *
4438  * Returns %true if @work was pending, %false otherwise.
4439  */
4440 bool disable_work_sync(struct work_struct *work)
4441 {
4442 	return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4443 }
4444 EXPORT_SYMBOL_GPL(disable_work_sync);
4445 
4446 /**
4447  * enable_work - Enable a work item
4448  * @work: work item to enable
4449  *
4450  * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4451  * only be queued if its disable count is 0.
4452  *
4453  * Can be called from any context. Returns %true if the disable count reached 0.
4454  * Otherwise, %false.
4455  */
4456 bool enable_work(struct work_struct *work)
4457 {
4458 	struct work_offq_data offqd;
4459 	unsigned long irq_flags;
4460 
4461 	work_grab_pending(work, 0, &irq_flags);
4462 
4463 	work_offqd_unpack(&offqd, *work_data_bits(work));
4464 	work_offqd_enable(&offqd);
4465 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4466 					work_offqd_pack_flags(&offqd));
4467 	local_irq_restore(irq_flags);
4468 
4469 	return !offqd.disable;
4470 }
4471 EXPORT_SYMBOL_GPL(enable_work);
4472 
4473 /**
4474  * disable_delayed_work - Disable and cancel a delayed work item
4475  * @dwork: delayed work item to disable
4476  *
4477  * disable_work() for delayed work items.
4478  */
4479 bool disable_delayed_work(struct delayed_work *dwork)
4480 {
4481 	return __cancel_work(&dwork->work,
4482 			     WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4483 }
4484 EXPORT_SYMBOL_GPL(disable_delayed_work);
4485 
4486 /**
4487  * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4488  * @dwork: delayed work item to disable
4489  *
4490  * disable_work_sync() for delayed work items.
4491  */
4492 bool disable_delayed_work_sync(struct delayed_work *dwork)
4493 {
4494 	return __cancel_work_sync(&dwork->work,
4495 				  WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4496 }
4497 EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4498 
4499 /**
4500  * enable_delayed_work - Enable a delayed work item
4501  * @dwork: delayed work item to enable
4502  *
4503  * enable_work() for delayed work items.
4504  */
4505 bool enable_delayed_work(struct delayed_work *dwork)
4506 {
4507 	return enable_work(&dwork->work);
4508 }
4509 EXPORT_SYMBOL_GPL(enable_delayed_work);
4510 
4511 /**
4512  * schedule_on_each_cpu - execute a function synchronously on each online CPU
4513  * @func: the function to call
4514  *
4515  * schedule_on_each_cpu() executes @func on each online CPU using the
4516  * system workqueue and blocks until all CPUs have completed.
4517  * schedule_on_each_cpu() is very slow.
4518  *
4519  * Return:
4520  * 0 on success, -errno on failure.
4521  */
4522 int schedule_on_each_cpu(work_func_t func)
4523 {
4524 	int cpu;
4525 	struct work_struct __percpu *works;
4526 
4527 	works = alloc_percpu(struct work_struct);
4528 	if (!works)
4529 		return -ENOMEM;
4530 
4531 	cpus_read_lock();
4532 
4533 	for_each_online_cpu(cpu) {
4534 		struct work_struct *work = per_cpu_ptr(works, cpu);
4535 
4536 		INIT_WORK(work, func);
4537 		schedule_work_on(cpu, work);
4538 	}
4539 
4540 	for_each_online_cpu(cpu)
4541 		flush_work(per_cpu_ptr(works, cpu));
4542 
4543 	cpus_read_unlock();
4544 	free_percpu(works);
4545 	return 0;
4546 }
4547 
4548 /**
4549  * execute_in_process_context - reliably execute the routine with user context
4550  * @fn:		the function to execute
4551  * @ew:		guaranteed storage for the execute work structure (must
4552  *		be available when the work executes)
4553  *
4554  * Executes the function immediately if process context is available,
4555  * otherwise schedules the function for delayed execution.
4556  *
4557  * Return:	0 - function was executed
4558  *		1 - function was scheduled for execution
4559  */
4560 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4561 {
4562 	if (!in_interrupt()) {
4563 		fn(&ew->work);
4564 		return 0;
4565 	}
4566 
4567 	INIT_WORK(&ew->work, fn);
4568 	schedule_work(&ew->work);
4569 
4570 	return 1;
4571 }
4572 EXPORT_SYMBOL_GPL(execute_in_process_context);
4573 
4574 /**
4575  * free_workqueue_attrs - free a workqueue_attrs
4576  * @attrs: workqueue_attrs to free
4577  *
4578  * Undo alloc_workqueue_attrs().
4579  */
4580 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4581 {
4582 	if (attrs) {
4583 		free_cpumask_var(attrs->cpumask);
4584 		free_cpumask_var(attrs->__pod_cpumask);
4585 		kfree(attrs);
4586 	}
4587 }
4588 
4589 /**
4590  * alloc_workqueue_attrs - allocate a workqueue_attrs
4591  *
4592  * Allocate a new workqueue_attrs, initialize with default settings and
4593  * return it.
4594  *
4595  * Return: The allocated new workqueue_attr on success. %NULL on failure.
4596  */
4597 struct workqueue_attrs *alloc_workqueue_attrs(void)
4598 {
4599 	struct workqueue_attrs *attrs;
4600 
4601 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4602 	if (!attrs)
4603 		goto fail;
4604 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4605 		goto fail;
4606 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4607 		goto fail;
4608 
4609 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4610 	attrs->affn_scope = WQ_AFFN_DFL;
4611 	return attrs;
4612 fail:
4613 	free_workqueue_attrs(attrs);
4614 	return NULL;
4615 }
4616 
4617 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4618 				 const struct workqueue_attrs *from)
4619 {
4620 	to->nice = from->nice;
4621 	cpumask_copy(to->cpumask, from->cpumask);
4622 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4623 	to->affn_strict = from->affn_strict;
4624 
4625 	/*
4626 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4627 	 * fields as copying is used for both pool and wq attrs. Instead,
4628 	 * get_unbound_pool() explicitly clears the fields.
4629 	 */
4630 	to->affn_scope = from->affn_scope;
4631 	to->ordered = from->ordered;
4632 }
4633 
4634 /*
4635  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4636  * comments in 'struct workqueue_attrs' definition.
4637  */
4638 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4639 {
4640 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4641 	attrs->ordered = false;
4642 	if (attrs->affn_strict)
4643 		cpumask_copy(attrs->cpumask, cpu_possible_mask);
4644 }
4645 
4646 /* hash value of the content of @attr */
4647 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4648 {
4649 	u32 hash = 0;
4650 
4651 	hash = jhash_1word(attrs->nice, hash);
4652 	hash = jhash_1word(attrs->affn_strict, hash);
4653 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4654 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4655 	if (!attrs->affn_strict)
4656 		hash = jhash(cpumask_bits(attrs->cpumask),
4657 			     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4658 	return hash;
4659 }
4660 
4661 /* content equality test */
4662 static bool wqattrs_equal(const struct workqueue_attrs *a,
4663 			  const struct workqueue_attrs *b)
4664 {
4665 	if (a->nice != b->nice)
4666 		return false;
4667 	if (a->affn_strict != b->affn_strict)
4668 		return false;
4669 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4670 		return false;
4671 	if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
4672 		return false;
4673 	return true;
4674 }
4675 
4676 /* Update @attrs with actually available CPUs */
4677 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4678 				      const cpumask_t *unbound_cpumask)
4679 {
4680 	/*
4681 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4682 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4683 	 * @unbound_cpumask.
4684 	 */
4685 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4686 	if (unlikely(cpumask_empty(attrs->cpumask)))
4687 		cpumask_copy(attrs->cpumask, unbound_cpumask);
4688 }
4689 
4690 /* find wq_pod_type to use for @attrs */
4691 static const struct wq_pod_type *
4692 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4693 {
4694 	enum wq_affn_scope scope;
4695 	struct wq_pod_type *pt;
4696 
4697 	/* to synchronize access to wq_affn_dfl */
4698 	lockdep_assert_held(&wq_pool_mutex);
4699 
4700 	if (attrs->affn_scope == WQ_AFFN_DFL)
4701 		scope = wq_affn_dfl;
4702 	else
4703 		scope = attrs->affn_scope;
4704 
4705 	pt = &wq_pod_types[scope];
4706 
4707 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4708 	    likely(pt->nr_pods))
4709 		return pt;
4710 
4711 	/*
4712 	 * Before workqueue_init_topology(), only SYSTEM is available which is
4713 	 * initialized in workqueue_init_early().
4714 	 */
4715 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4716 	BUG_ON(!pt->nr_pods);
4717 	return pt;
4718 }
4719 
4720 /**
4721  * init_worker_pool - initialize a newly zalloc'd worker_pool
4722  * @pool: worker_pool to initialize
4723  *
4724  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4725  *
4726  * Return: 0 on success, -errno on failure.  Even on failure, all fields
4727  * inside @pool proper are initialized and put_unbound_pool() can be called
4728  * on @pool safely to release it.
4729  */
4730 static int init_worker_pool(struct worker_pool *pool)
4731 {
4732 	raw_spin_lock_init(&pool->lock);
4733 	pool->id = -1;
4734 	pool->cpu = -1;
4735 	pool->node = NUMA_NO_NODE;
4736 	pool->flags |= POOL_DISASSOCIATED;
4737 	pool->watchdog_ts = jiffies;
4738 	INIT_LIST_HEAD(&pool->worklist);
4739 	INIT_LIST_HEAD(&pool->idle_list);
4740 	hash_init(pool->busy_hash);
4741 
4742 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4743 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4744 
4745 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4746 
4747 	INIT_LIST_HEAD(&pool->workers);
4748 	INIT_LIST_HEAD(&pool->dying_workers);
4749 
4750 	ida_init(&pool->worker_ida);
4751 	INIT_HLIST_NODE(&pool->hash_node);
4752 	pool->refcnt = 1;
4753 
4754 	/* shouldn't fail above this point */
4755 	pool->attrs = alloc_workqueue_attrs();
4756 	if (!pool->attrs)
4757 		return -ENOMEM;
4758 
4759 	wqattrs_clear_for_pool(pool->attrs);
4760 
4761 	return 0;
4762 }
4763 
4764 #ifdef CONFIG_LOCKDEP
4765 static void wq_init_lockdep(struct workqueue_struct *wq)
4766 {
4767 	char *lock_name;
4768 
4769 	lockdep_register_key(&wq->key);
4770 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4771 	if (!lock_name)
4772 		lock_name = wq->name;
4773 
4774 	wq->lock_name = lock_name;
4775 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
4776 }
4777 
4778 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4779 {
4780 	lockdep_unregister_key(&wq->key);
4781 }
4782 
4783 static void wq_free_lockdep(struct workqueue_struct *wq)
4784 {
4785 	if (wq->lock_name != wq->name)
4786 		kfree(wq->lock_name);
4787 }
4788 #else
4789 static void wq_init_lockdep(struct workqueue_struct *wq)
4790 {
4791 }
4792 
4793 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4794 {
4795 }
4796 
4797 static void wq_free_lockdep(struct workqueue_struct *wq)
4798 {
4799 }
4800 #endif
4801 
4802 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4803 {
4804 	int node;
4805 
4806 	for_each_node(node) {
4807 		kfree(nna_ar[node]);
4808 		nna_ar[node] = NULL;
4809 	}
4810 
4811 	kfree(nna_ar[nr_node_ids]);
4812 	nna_ar[nr_node_ids] = NULL;
4813 }
4814 
4815 static void init_node_nr_active(struct wq_node_nr_active *nna)
4816 {
4817 	nna->max = WQ_DFL_MIN_ACTIVE;
4818 	atomic_set(&nna->nr, 0);
4819 	raw_spin_lock_init(&nna->lock);
4820 	INIT_LIST_HEAD(&nna->pending_pwqs);
4821 }
4822 
4823 /*
4824  * Each node's nr_active counter will be accessed mostly from its own node and
4825  * should be allocated in the node.
4826  */
4827 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4828 {
4829 	struct wq_node_nr_active *nna;
4830 	int node;
4831 
4832 	for_each_node(node) {
4833 		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4834 		if (!nna)
4835 			goto err_free;
4836 		init_node_nr_active(nna);
4837 		nna_ar[node] = nna;
4838 	}
4839 
4840 	/* [nr_node_ids] is used as the fallback */
4841 	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4842 	if (!nna)
4843 		goto err_free;
4844 	init_node_nr_active(nna);
4845 	nna_ar[nr_node_ids] = nna;
4846 
4847 	return 0;
4848 
4849 err_free:
4850 	free_node_nr_active(nna_ar);
4851 	return -ENOMEM;
4852 }
4853 
4854 static void rcu_free_wq(struct rcu_head *rcu)
4855 {
4856 	struct workqueue_struct *wq =
4857 		container_of(rcu, struct workqueue_struct, rcu);
4858 
4859 	if (wq->flags & WQ_UNBOUND)
4860 		free_node_nr_active(wq->node_nr_active);
4861 
4862 	wq_free_lockdep(wq);
4863 	free_percpu(wq->cpu_pwq);
4864 	free_workqueue_attrs(wq->unbound_attrs);
4865 	kfree(wq);
4866 }
4867 
4868 static void rcu_free_pool(struct rcu_head *rcu)
4869 {
4870 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4871 
4872 	ida_destroy(&pool->worker_ida);
4873 	free_workqueue_attrs(pool->attrs);
4874 	kfree(pool);
4875 }
4876 
4877 /**
4878  * put_unbound_pool - put a worker_pool
4879  * @pool: worker_pool to put
4880  *
4881  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4882  * safe manner.  get_unbound_pool() calls this function on its failure path
4883  * and this function should be able to release pools which went through,
4884  * successfully or not, init_worker_pool().
4885  *
4886  * Should be called with wq_pool_mutex held.
4887  */
4888 static void put_unbound_pool(struct worker_pool *pool)
4889 {
4890 	DECLARE_COMPLETION_ONSTACK(detach_completion);
4891 	struct worker *worker;
4892 	LIST_HEAD(cull_list);
4893 
4894 	lockdep_assert_held(&wq_pool_mutex);
4895 
4896 	if (--pool->refcnt)
4897 		return;
4898 
4899 	/* sanity checks */
4900 	if (WARN_ON(!(pool->cpu < 0)) ||
4901 	    WARN_ON(!list_empty(&pool->worklist)))
4902 		return;
4903 
4904 	/* release id and unhash */
4905 	if (pool->id >= 0)
4906 		idr_remove(&worker_pool_idr, pool->id);
4907 	hash_del(&pool->hash_node);
4908 
4909 	/*
4910 	 * Become the manager and destroy all workers.  This prevents
4911 	 * @pool's workers from blocking on attach_mutex.  We're the last
4912 	 * manager and @pool gets freed with the flag set.
4913 	 *
4914 	 * Having a concurrent manager is quite unlikely to happen as we can
4915 	 * only get here with
4916 	 *   pwq->refcnt == pool->refcnt == 0
4917 	 * which implies no work queued to the pool, which implies no worker can
4918 	 * become the manager. However a worker could have taken the role of
4919 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4920 	 * drops pool->lock
4921 	 */
4922 	while (true) {
4923 		rcuwait_wait_event(&manager_wait,
4924 				   !(pool->flags & POOL_MANAGER_ACTIVE),
4925 				   TASK_UNINTERRUPTIBLE);
4926 
4927 		mutex_lock(&wq_pool_attach_mutex);
4928 		raw_spin_lock_irq(&pool->lock);
4929 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4930 			pool->flags |= POOL_MANAGER_ACTIVE;
4931 			break;
4932 		}
4933 		raw_spin_unlock_irq(&pool->lock);
4934 		mutex_unlock(&wq_pool_attach_mutex);
4935 	}
4936 
4937 	while ((worker = first_idle_worker(pool)))
4938 		set_worker_dying(worker, &cull_list);
4939 	WARN_ON(pool->nr_workers || pool->nr_idle);
4940 	raw_spin_unlock_irq(&pool->lock);
4941 
4942 	wake_dying_workers(&cull_list);
4943 
4944 	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
4945 		pool->detach_completion = &detach_completion;
4946 	mutex_unlock(&wq_pool_attach_mutex);
4947 
4948 	if (pool->detach_completion)
4949 		wait_for_completion(pool->detach_completion);
4950 
4951 	/* shut down the timers */
4952 	del_timer_sync(&pool->idle_timer);
4953 	cancel_work_sync(&pool->idle_cull_work);
4954 	del_timer_sync(&pool->mayday_timer);
4955 
4956 	/* RCU protected to allow dereferences from get_work_pool() */
4957 	call_rcu(&pool->rcu, rcu_free_pool);
4958 }
4959 
4960 /**
4961  * get_unbound_pool - get a worker_pool with the specified attributes
4962  * @attrs: the attributes of the worker_pool to get
4963  *
4964  * Obtain a worker_pool which has the same attributes as @attrs, bump the
4965  * reference count and return it.  If there already is a matching
4966  * worker_pool, it will be used; otherwise, this function attempts to
4967  * create a new one.
4968  *
4969  * Should be called with wq_pool_mutex held.
4970  *
4971  * Return: On success, a worker_pool with the same attributes as @attrs.
4972  * On failure, %NULL.
4973  */
4974 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4975 {
4976 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4977 	u32 hash = wqattrs_hash(attrs);
4978 	struct worker_pool *pool;
4979 	int pod, node = NUMA_NO_NODE;
4980 
4981 	lockdep_assert_held(&wq_pool_mutex);
4982 
4983 	/* do we already have a matching pool? */
4984 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4985 		if (wqattrs_equal(pool->attrs, attrs)) {
4986 			pool->refcnt++;
4987 			return pool;
4988 		}
4989 	}
4990 
4991 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4992 	for (pod = 0; pod < pt->nr_pods; pod++) {
4993 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4994 			node = pt->pod_node[pod];
4995 			break;
4996 		}
4997 	}
4998 
4999 	/* nope, create a new one */
5000 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
5001 	if (!pool || init_worker_pool(pool) < 0)
5002 		goto fail;
5003 
5004 	pool->node = node;
5005 	copy_workqueue_attrs(pool->attrs, attrs);
5006 	wqattrs_clear_for_pool(pool->attrs);
5007 
5008 	if (worker_pool_assign_id(pool) < 0)
5009 		goto fail;
5010 
5011 	/* create and start the initial worker */
5012 	if (wq_online && !create_worker(pool))
5013 		goto fail;
5014 
5015 	/* install */
5016 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
5017 
5018 	return pool;
5019 fail:
5020 	if (pool)
5021 		put_unbound_pool(pool);
5022 	return NULL;
5023 }
5024 
5025 static void rcu_free_pwq(struct rcu_head *rcu)
5026 {
5027 	kmem_cache_free(pwq_cache,
5028 			container_of(rcu, struct pool_workqueue, rcu));
5029 }
5030 
5031 /*
5032  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5033  * refcnt and needs to be destroyed.
5034  */
5035 static void pwq_release_workfn(struct kthread_work *work)
5036 {
5037 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
5038 						  release_work);
5039 	struct workqueue_struct *wq = pwq->wq;
5040 	struct worker_pool *pool = pwq->pool;
5041 	bool is_last = false;
5042 
5043 	/*
5044 	 * When @pwq is not linked, it doesn't hold any reference to the
5045 	 * @wq, and @wq is invalid to access.
5046 	 */
5047 	if (!list_empty(&pwq->pwqs_node)) {
5048 		mutex_lock(&wq->mutex);
5049 		list_del_rcu(&pwq->pwqs_node);
5050 		is_last = list_empty(&wq->pwqs);
5051 
5052 		/*
5053 		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5054 		 */
5055 		if (!is_last && (wq->flags & __WQ_ORDERED))
5056 			unplug_oldest_pwq(wq);
5057 
5058 		mutex_unlock(&wq->mutex);
5059 	}
5060 
5061 	if (wq->flags & WQ_UNBOUND) {
5062 		mutex_lock(&wq_pool_mutex);
5063 		put_unbound_pool(pool);
5064 		mutex_unlock(&wq_pool_mutex);
5065 	}
5066 
5067 	if (!list_empty(&pwq->pending_node)) {
5068 		struct wq_node_nr_active *nna =
5069 			wq_node_nr_active(pwq->wq, pwq->pool->node);
5070 
5071 		raw_spin_lock_irq(&nna->lock);
5072 		list_del_init(&pwq->pending_node);
5073 		raw_spin_unlock_irq(&nna->lock);
5074 	}
5075 
5076 	call_rcu(&pwq->rcu, rcu_free_pwq);
5077 
5078 	/*
5079 	 * If we're the last pwq going away, @wq is already dead and no one
5080 	 * is gonna access it anymore.  Schedule RCU free.
5081 	 */
5082 	if (is_last) {
5083 		wq_unregister_lockdep(wq);
5084 		call_rcu(&wq->rcu, rcu_free_wq);
5085 	}
5086 }
5087 
5088 /* initialize newly allocated @pwq which is associated with @wq and @pool */
5089 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5090 		     struct worker_pool *pool)
5091 {
5092 	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
5093 
5094 	memset(pwq, 0, sizeof(*pwq));
5095 
5096 	pwq->pool = pool;
5097 	pwq->wq = wq;
5098 	pwq->flush_color = -1;
5099 	pwq->refcnt = 1;
5100 	INIT_LIST_HEAD(&pwq->inactive_works);
5101 	INIT_LIST_HEAD(&pwq->pending_node);
5102 	INIT_LIST_HEAD(&pwq->pwqs_node);
5103 	INIT_LIST_HEAD(&pwq->mayday_node);
5104 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
5105 }
5106 
5107 /* sync @pwq with the current state of its associated wq and link it */
5108 static void link_pwq(struct pool_workqueue *pwq)
5109 {
5110 	struct workqueue_struct *wq = pwq->wq;
5111 
5112 	lockdep_assert_held(&wq->mutex);
5113 
5114 	/* may be called multiple times, ignore if already linked */
5115 	if (!list_empty(&pwq->pwqs_node))
5116 		return;
5117 
5118 	/* set the matching work_color */
5119 	pwq->work_color = wq->work_color;
5120 
5121 	/* link in @pwq */
5122 	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5123 }
5124 
5125 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
5126 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5127 					const struct workqueue_attrs *attrs)
5128 {
5129 	struct worker_pool *pool;
5130 	struct pool_workqueue *pwq;
5131 
5132 	lockdep_assert_held(&wq_pool_mutex);
5133 
5134 	pool = get_unbound_pool(attrs);
5135 	if (!pool)
5136 		return NULL;
5137 
5138 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5139 	if (!pwq) {
5140 		put_unbound_pool(pool);
5141 		return NULL;
5142 	}
5143 
5144 	init_pwq(pwq, wq, pool);
5145 	return pwq;
5146 }
5147 
5148 /**
5149  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5150  * @attrs: the wq_attrs of the default pwq of the target workqueue
5151  * @cpu: the target CPU
5152  * @cpu_going_down: if >= 0, the CPU to consider as offline
5153  *
5154  * Calculate the cpumask a workqueue with @attrs should use on @pod. If
5155  * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
5156  * The result is stored in @attrs->__pod_cpumask.
5157  *
5158  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5159  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5160  * intersection of the possible CPUs of @pod and @attrs->cpumask.
5161  *
5162  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5163  */
5164 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
5165 				int cpu_going_down)
5166 {
5167 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5168 	int pod = pt->cpu_pod[cpu];
5169 
5170 	/* does @pod have any online CPUs @attrs wants? */
5171 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5172 	cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
5173 	if (cpu_going_down >= 0)
5174 		cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
5175 
5176 	if (cpumask_empty(attrs->__pod_cpumask)) {
5177 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5178 		return;
5179 	}
5180 
5181 	/* yeap, return possible CPUs in @pod that @attrs wants */
5182 	cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
5183 
5184 	if (cpumask_empty(attrs->__pod_cpumask))
5185 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
5186 				"possible intersect\n");
5187 }
5188 
5189 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
5190 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5191 					int cpu, struct pool_workqueue *pwq)
5192 {
5193 	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5194 	struct pool_workqueue *old_pwq;
5195 
5196 	lockdep_assert_held(&wq_pool_mutex);
5197 	lockdep_assert_held(&wq->mutex);
5198 
5199 	/* link_pwq() can handle duplicate calls */
5200 	link_pwq(pwq);
5201 
5202 	old_pwq = rcu_access_pointer(*slot);
5203 	rcu_assign_pointer(*slot, pwq);
5204 	return old_pwq;
5205 }
5206 
5207 /* context to store the prepared attrs & pwqs before applying */
5208 struct apply_wqattrs_ctx {
5209 	struct workqueue_struct	*wq;		/* target workqueue */
5210 	struct workqueue_attrs	*attrs;		/* attrs to apply */
5211 	struct list_head	list;		/* queued for batching commit */
5212 	struct pool_workqueue	*dfl_pwq;
5213 	struct pool_workqueue	*pwq_tbl[];
5214 };
5215 
5216 /* free the resources after success or abort */
5217 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5218 {
5219 	if (ctx) {
5220 		int cpu;
5221 
5222 		for_each_possible_cpu(cpu)
5223 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5224 		put_pwq_unlocked(ctx->dfl_pwq);
5225 
5226 		free_workqueue_attrs(ctx->attrs);
5227 
5228 		kfree(ctx);
5229 	}
5230 }
5231 
5232 /* allocate the attrs and pwqs for later installation */
5233 static struct apply_wqattrs_ctx *
5234 apply_wqattrs_prepare(struct workqueue_struct *wq,
5235 		      const struct workqueue_attrs *attrs,
5236 		      const cpumask_var_t unbound_cpumask)
5237 {
5238 	struct apply_wqattrs_ctx *ctx;
5239 	struct workqueue_attrs *new_attrs;
5240 	int cpu;
5241 
5242 	lockdep_assert_held(&wq_pool_mutex);
5243 
5244 	if (WARN_ON(attrs->affn_scope < 0 ||
5245 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5246 		return ERR_PTR(-EINVAL);
5247 
5248 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5249 
5250 	new_attrs = alloc_workqueue_attrs();
5251 	if (!ctx || !new_attrs)
5252 		goto out_free;
5253 
5254 	/*
5255 	 * If something goes wrong during CPU up/down, we'll fall back to
5256 	 * the default pwq covering whole @attrs->cpumask.  Always create
5257 	 * it even if we don't use it immediately.
5258 	 */
5259 	copy_workqueue_attrs(new_attrs, attrs);
5260 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5261 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5262 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5263 	if (!ctx->dfl_pwq)
5264 		goto out_free;
5265 
5266 	for_each_possible_cpu(cpu) {
5267 		if (new_attrs->ordered) {
5268 			ctx->dfl_pwq->refcnt++;
5269 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5270 		} else {
5271 			wq_calc_pod_cpumask(new_attrs, cpu, -1);
5272 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5273 			if (!ctx->pwq_tbl[cpu])
5274 				goto out_free;
5275 		}
5276 	}
5277 
5278 	/* save the user configured attrs and sanitize it. */
5279 	copy_workqueue_attrs(new_attrs, attrs);
5280 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5281 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5282 	ctx->attrs = new_attrs;
5283 
5284 	/*
5285 	 * For initialized ordered workqueues, there should only be one pwq
5286 	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5287 	 * of newly queued work items until execution of older work items in
5288 	 * the old pwq's have completed.
5289 	 */
5290 	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5291 		ctx->dfl_pwq->plugged = true;
5292 
5293 	ctx->wq = wq;
5294 	return ctx;
5295 
5296 out_free:
5297 	free_workqueue_attrs(new_attrs);
5298 	apply_wqattrs_cleanup(ctx);
5299 	return ERR_PTR(-ENOMEM);
5300 }
5301 
5302 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
5303 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5304 {
5305 	int cpu;
5306 
5307 	/* all pwqs have been created successfully, let's install'em */
5308 	mutex_lock(&ctx->wq->mutex);
5309 
5310 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5311 
5312 	/* save the previous pwqs and install the new ones */
5313 	for_each_possible_cpu(cpu)
5314 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5315 							ctx->pwq_tbl[cpu]);
5316 	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5317 
5318 	/* update node_nr_active->max */
5319 	wq_update_node_max_active(ctx->wq, -1);
5320 
5321 	/* rescuer needs to respect wq cpumask changes */
5322 	if (ctx->wq->rescuer)
5323 		set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5324 				     unbound_effective_cpumask(ctx->wq));
5325 
5326 	mutex_unlock(&ctx->wq->mutex);
5327 }
5328 
5329 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5330 					const struct workqueue_attrs *attrs)
5331 {
5332 	struct apply_wqattrs_ctx *ctx;
5333 
5334 	/* only unbound workqueues can change attributes */
5335 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5336 		return -EINVAL;
5337 
5338 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5339 	if (IS_ERR(ctx))
5340 		return PTR_ERR(ctx);
5341 
5342 	/* the ctx has been prepared successfully, let's commit it */
5343 	apply_wqattrs_commit(ctx);
5344 	apply_wqattrs_cleanup(ctx);
5345 
5346 	return 0;
5347 }
5348 
5349 /**
5350  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5351  * @wq: the target workqueue
5352  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5353  *
5354  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5355  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5356  * work items are affine to the pod it was issued on. Older pwqs are released as
5357  * in-flight work items finish. Note that a work item which repeatedly requeues
5358  * itself back-to-back will stay on its current pwq.
5359  *
5360  * Performs GFP_KERNEL allocations.
5361  *
5362  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
5363  *
5364  * Return: 0 on success and -errno on failure.
5365  */
5366 int apply_workqueue_attrs(struct workqueue_struct *wq,
5367 			  const struct workqueue_attrs *attrs)
5368 {
5369 	int ret;
5370 
5371 	lockdep_assert_cpus_held();
5372 
5373 	mutex_lock(&wq_pool_mutex);
5374 	ret = apply_workqueue_attrs_locked(wq, attrs);
5375 	mutex_unlock(&wq_pool_mutex);
5376 
5377 	return ret;
5378 }
5379 
5380 /**
5381  * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
5382  * @wq: the target workqueue
5383  * @cpu: the CPU to update pool association for
5384  * @hotplug_cpu: the CPU coming up or going down
5385  * @online: whether @cpu is coming up or going down
5386  *
5387  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5388  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update pod affinity of
5389  * @wq accordingly.
5390  *
5391  *
5392  * If pod affinity can't be adjusted due to memory allocation failure, it falls
5393  * back to @wq->dfl_pwq which may not be optimal but is always correct.
5394  *
5395  * Note that when the last allowed CPU of a pod goes offline for a workqueue
5396  * with a cpumask spanning multiple pods, the workers which were already
5397  * executing the work items for the workqueue will lose their CPU affinity and
5398  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5399  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5400  * responsibility to flush the work item from CPU_DOWN_PREPARE.
5401  */
5402 static void wq_update_pod(struct workqueue_struct *wq, int cpu,
5403 			  int hotplug_cpu, bool online)
5404 {
5405 	int off_cpu = online ? -1 : hotplug_cpu;
5406 	struct pool_workqueue *old_pwq = NULL, *pwq;
5407 	struct workqueue_attrs *target_attrs;
5408 
5409 	lockdep_assert_held(&wq_pool_mutex);
5410 
5411 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5412 		return;
5413 
5414 	/*
5415 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5416 	 * Let's use a preallocated one.  The following buf is protected by
5417 	 * CPU hotplug exclusion.
5418 	 */
5419 	target_attrs = wq_update_pod_attrs_buf;
5420 
5421 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5422 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5423 
5424 	/* nothing to do if the target cpumask matches the current pwq */
5425 	wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
5426 	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5427 		return;
5428 
5429 	/* create a new pwq */
5430 	pwq = alloc_unbound_pwq(wq, target_attrs);
5431 	if (!pwq) {
5432 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5433 			wq->name);
5434 		goto use_dfl_pwq;
5435 	}
5436 
5437 	/* Install the new pwq. */
5438 	mutex_lock(&wq->mutex);
5439 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5440 	goto out_unlock;
5441 
5442 use_dfl_pwq:
5443 	mutex_lock(&wq->mutex);
5444 	pwq = unbound_pwq(wq, -1);
5445 	raw_spin_lock_irq(&pwq->pool->lock);
5446 	get_pwq(pwq);
5447 	raw_spin_unlock_irq(&pwq->pool->lock);
5448 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5449 out_unlock:
5450 	mutex_unlock(&wq->mutex);
5451 	put_pwq_unlocked(old_pwq);
5452 }
5453 
5454 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5455 {
5456 	bool highpri = wq->flags & WQ_HIGHPRI;
5457 	int cpu, ret;
5458 
5459 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5460 	if (!wq->cpu_pwq)
5461 		goto enomem;
5462 
5463 	if (!(wq->flags & WQ_UNBOUND)) {
5464 		for_each_possible_cpu(cpu) {
5465 			struct pool_workqueue **pwq_p;
5466 			struct worker_pool __percpu *pools;
5467 			struct worker_pool *pool;
5468 
5469 			if (wq->flags & WQ_BH)
5470 				pools = bh_worker_pools;
5471 			else
5472 				pools = cpu_worker_pools;
5473 
5474 			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5475 			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5476 
5477 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5478 						       pool->node);
5479 			if (!*pwq_p)
5480 				goto enomem;
5481 
5482 			init_pwq(*pwq_p, wq, pool);
5483 
5484 			mutex_lock(&wq->mutex);
5485 			link_pwq(*pwq_p);
5486 			mutex_unlock(&wq->mutex);
5487 		}
5488 		return 0;
5489 	}
5490 
5491 	cpus_read_lock();
5492 	if (wq->flags & __WQ_ORDERED) {
5493 		struct pool_workqueue *dfl_pwq;
5494 
5495 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
5496 		/* there should only be single pwq for ordering guarantee */
5497 		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5498 		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5499 			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5500 		     "ordering guarantee broken for workqueue %s\n", wq->name);
5501 	} else {
5502 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
5503 	}
5504 	cpus_read_unlock();
5505 
5506 	/* for unbound pwq, flush the pwq_release_worker ensures that the
5507 	 * pwq_release_workfn() completes before calling kfree(wq).
5508 	 */
5509 	if (ret)
5510 		kthread_flush_worker(pwq_release_worker);
5511 
5512 	return ret;
5513 
5514 enomem:
5515 	if (wq->cpu_pwq) {
5516 		for_each_possible_cpu(cpu) {
5517 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5518 
5519 			if (pwq)
5520 				kmem_cache_free(pwq_cache, pwq);
5521 		}
5522 		free_percpu(wq->cpu_pwq);
5523 		wq->cpu_pwq = NULL;
5524 	}
5525 	return -ENOMEM;
5526 }
5527 
5528 static int wq_clamp_max_active(int max_active, unsigned int flags,
5529 			       const char *name)
5530 {
5531 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5532 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5533 			max_active, name, 1, WQ_MAX_ACTIVE);
5534 
5535 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5536 }
5537 
5538 /*
5539  * Workqueues which may be used during memory reclaim should have a rescuer
5540  * to guarantee forward progress.
5541  */
5542 static int init_rescuer(struct workqueue_struct *wq)
5543 {
5544 	struct worker *rescuer;
5545 	int ret;
5546 
5547 	if (!(wq->flags & WQ_MEM_RECLAIM))
5548 		return 0;
5549 
5550 	rescuer = alloc_worker(NUMA_NO_NODE);
5551 	if (!rescuer) {
5552 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5553 		       wq->name);
5554 		return -ENOMEM;
5555 	}
5556 
5557 	rescuer->rescue_wq = wq;
5558 	rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
5559 	if (IS_ERR(rescuer->task)) {
5560 		ret = PTR_ERR(rescuer->task);
5561 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5562 		       wq->name, ERR_PTR(ret));
5563 		kfree(rescuer);
5564 		return ret;
5565 	}
5566 
5567 	wq->rescuer = rescuer;
5568 	if (wq->flags & WQ_UNBOUND)
5569 		kthread_bind_mask(rescuer->task, wq_unbound_cpumask);
5570 	else
5571 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5572 	wake_up_process(rescuer->task);
5573 
5574 	return 0;
5575 }
5576 
5577 /**
5578  * wq_adjust_max_active - update a wq's max_active to the current setting
5579  * @wq: target workqueue
5580  *
5581  * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5582  * activate inactive work items accordingly. If @wq is freezing, clear
5583  * @wq->max_active to zero.
5584  */
5585 static void wq_adjust_max_active(struct workqueue_struct *wq)
5586 {
5587 	bool activated;
5588 	int new_max, new_min;
5589 
5590 	lockdep_assert_held(&wq->mutex);
5591 
5592 	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5593 		new_max = 0;
5594 		new_min = 0;
5595 	} else {
5596 		new_max = wq->saved_max_active;
5597 		new_min = wq->saved_min_active;
5598 	}
5599 
5600 	if (wq->max_active == new_max && wq->min_active == new_min)
5601 		return;
5602 
5603 	/*
5604 	 * Update @wq->max/min_active and then kick inactive work items if more
5605 	 * active work items are allowed. This doesn't break work item ordering
5606 	 * because new work items are always queued behind existing inactive
5607 	 * work items if there are any.
5608 	 */
5609 	WRITE_ONCE(wq->max_active, new_max);
5610 	WRITE_ONCE(wq->min_active, new_min);
5611 
5612 	if (wq->flags & WQ_UNBOUND)
5613 		wq_update_node_max_active(wq, -1);
5614 
5615 	if (new_max == 0)
5616 		return;
5617 
5618 	/*
5619 	 * Round-robin through pwq's activating the first inactive work item
5620 	 * until max_active is filled.
5621 	 */
5622 	do {
5623 		struct pool_workqueue *pwq;
5624 
5625 		activated = false;
5626 		for_each_pwq(pwq, wq) {
5627 			unsigned long irq_flags;
5628 
5629 			/* can be called during early boot w/ irq disabled */
5630 			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5631 			if (pwq_activate_first_inactive(pwq, true)) {
5632 				activated = true;
5633 				kick_pool(pwq->pool);
5634 			}
5635 			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5636 		}
5637 	} while (activated);
5638 }
5639 
5640 __printf(1, 4)
5641 struct workqueue_struct *alloc_workqueue(const char *fmt,
5642 					 unsigned int flags,
5643 					 int max_active, ...)
5644 {
5645 	va_list args;
5646 	struct workqueue_struct *wq;
5647 	size_t wq_size;
5648 	int name_len;
5649 
5650 	if (flags & WQ_BH) {
5651 		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5652 			return NULL;
5653 		if (WARN_ON_ONCE(max_active))
5654 			return NULL;
5655 	}
5656 
5657 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5658 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5659 		flags |= WQ_UNBOUND;
5660 
5661 	/* allocate wq and format name */
5662 	if (flags & WQ_UNBOUND)
5663 		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5664 	else
5665 		wq_size = sizeof(*wq);
5666 
5667 	wq = kzalloc(wq_size, GFP_KERNEL);
5668 	if (!wq)
5669 		return NULL;
5670 
5671 	if (flags & WQ_UNBOUND) {
5672 		wq->unbound_attrs = alloc_workqueue_attrs();
5673 		if (!wq->unbound_attrs)
5674 			goto err_free_wq;
5675 	}
5676 
5677 	va_start(args, max_active);
5678 	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5679 	va_end(args);
5680 
5681 	if (name_len >= WQ_NAME_LEN)
5682 		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5683 			     wq->name);
5684 
5685 	if (flags & WQ_BH) {
5686 		/*
5687 		 * BH workqueues always share a single execution context per CPU
5688 		 * and don't impose any max_active limit.
5689 		 */
5690 		max_active = INT_MAX;
5691 	} else {
5692 		max_active = max_active ?: WQ_DFL_ACTIVE;
5693 		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5694 	}
5695 
5696 	/* init wq */
5697 	wq->flags = flags;
5698 	wq->max_active = max_active;
5699 	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5700 	wq->saved_max_active = wq->max_active;
5701 	wq->saved_min_active = wq->min_active;
5702 	mutex_init(&wq->mutex);
5703 	atomic_set(&wq->nr_pwqs_to_flush, 0);
5704 	INIT_LIST_HEAD(&wq->pwqs);
5705 	INIT_LIST_HEAD(&wq->flusher_queue);
5706 	INIT_LIST_HEAD(&wq->flusher_overflow);
5707 	INIT_LIST_HEAD(&wq->maydays);
5708 
5709 	wq_init_lockdep(wq);
5710 	INIT_LIST_HEAD(&wq->list);
5711 
5712 	if (flags & WQ_UNBOUND) {
5713 		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5714 			goto err_unreg_lockdep;
5715 	}
5716 
5717 	if (alloc_and_link_pwqs(wq) < 0)
5718 		goto err_free_node_nr_active;
5719 
5720 	if (wq_online && init_rescuer(wq) < 0)
5721 		goto err_destroy;
5722 
5723 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5724 		goto err_destroy;
5725 
5726 	/*
5727 	 * wq_pool_mutex protects global freeze state and workqueues list.
5728 	 * Grab it, adjust max_active and add the new @wq to workqueues
5729 	 * list.
5730 	 */
5731 	mutex_lock(&wq_pool_mutex);
5732 
5733 	mutex_lock(&wq->mutex);
5734 	wq_adjust_max_active(wq);
5735 	mutex_unlock(&wq->mutex);
5736 
5737 	list_add_tail_rcu(&wq->list, &workqueues);
5738 
5739 	mutex_unlock(&wq_pool_mutex);
5740 
5741 	return wq;
5742 
5743 err_free_node_nr_active:
5744 	if (wq->flags & WQ_UNBOUND)
5745 		free_node_nr_active(wq->node_nr_active);
5746 err_unreg_lockdep:
5747 	wq_unregister_lockdep(wq);
5748 	wq_free_lockdep(wq);
5749 err_free_wq:
5750 	free_workqueue_attrs(wq->unbound_attrs);
5751 	kfree(wq);
5752 	return NULL;
5753 err_destroy:
5754 	destroy_workqueue(wq);
5755 	return NULL;
5756 }
5757 EXPORT_SYMBOL_GPL(alloc_workqueue);
5758 
5759 static bool pwq_busy(struct pool_workqueue *pwq)
5760 {
5761 	int i;
5762 
5763 	for (i = 0; i < WORK_NR_COLORS; i++)
5764 		if (pwq->nr_in_flight[i])
5765 			return true;
5766 
5767 	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5768 		return true;
5769 	if (!pwq_is_empty(pwq))
5770 		return true;
5771 
5772 	return false;
5773 }
5774 
5775 /**
5776  * destroy_workqueue - safely terminate a workqueue
5777  * @wq: target workqueue
5778  *
5779  * Safely destroy a workqueue. All work currently pending will be done first.
5780  */
5781 void destroy_workqueue(struct workqueue_struct *wq)
5782 {
5783 	struct pool_workqueue *pwq;
5784 	int cpu;
5785 
5786 	/*
5787 	 * Remove it from sysfs first so that sanity check failure doesn't
5788 	 * lead to sysfs name conflicts.
5789 	 */
5790 	workqueue_sysfs_unregister(wq);
5791 
5792 	/* mark the workqueue destruction is in progress */
5793 	mutex_lock(&wq->mutex);
5794 	wq->flags |= __WQ_DESTROYING;
5795 	mutex_unlock(&wq->mutex);
5796 
5797 	/* drain it before proceeding with destruction */
5798 	drain_workqueue(wq);
5799 
5800 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5801 	if (wq->rescuer) {
5802 		struct worker *rescuer = wq->rescuer;
5803 
5804 		/* this prevents new queueing */
5805 		raw_spin_lock_irq(&wq_mayday_lock);
5806 		wq->rescuer = NULL;
5807 		raw_spin_unlock_irq(&wq_mayday_lock);
5808 
5809 		/* rescuer will empty maydays list before exiting */
5810 		kthread_stop(rescuer->task);
5811 		kfree(rescuer);
5812 	}
5813 
5814 	/*
5815 	 * Sanity checks - grab all the locks so that we wait for all
5816 	 * in-flight operations which may do put_pwq().
5817 	 */
5818 	mutex_lock(&wq_pool_mutex);
5819 	mutex_lock(&wq->mutex);
5820 	for_each_pwq(pwq, wq) {
5821 		raw_spin_lock_irq(&pwq->pool->lock);
5822 		if (WARN_ON(pwq_busy(pwq))) {
5823 			pr_warn("%s: %s has the following busy pwq\n",
5824 				__func__, wq->name);
5825 			show_pwq(pwq);
5826 			raw_spin_unlock_irq(&pwq->pool->lock);
5827 			mutex_unlock(&wq->mutex);
5828 			mutex_unlock(&wq_pool_mutex);
5829 			show_one_workqueue(wq);
5830 			return;
5831 		}
5832 		raw_spin_unlock_irq(&pwq->pool->lock);
5833 	}
5834 	mutex_unlock(&wq->mutex);
5835 
5836 	/*
5837 	 * wq list is used to freeze wq, remove from list after
5838 	 * flushing is complete in case freeze races us.
5839 	 */
5840 	list_del_rcu(&wq->list);
5841 	mutex_unlock(&wq_pool_mutex);
5842 
5843 	/*
5844 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5845 	 * to put the base refs. @wq will be auto-destroyed from the last
5846 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5847 	 */
5848 	rcu_read_lock();
5849 
5850 	for_each_possible_cpu(cpu) {
5851 		put_pwq_unlocked(unbound_pwq(wq, cpu));
5852 		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5853 	}
5854 
5855 	put_pwq_unlocked(unbound_pwq(wq, -1));
5856 	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5857 
5858 	rcu_read_unlock();
5859 }
5860 EXPORT_SYMBOL_GPL(destroy_workqueue);
5861 
5862 /**
5863  * workqueue_set_max_active - adjust max_active of a workqueue
5864  * @wq: target workqueue
5865  * @max_active: new max_active value.
5866  *
5867  * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5868  * comment.
5869  *
5870  * CONTEXT:
5871  * Don't call from IRQ context.
5872  */
5873 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5874 {
5875 	/* max_active doesn't mean anything for BH workqueues */
5876 	if (WARN_ON(wq->flags & WQ_BH))
5877 		return;
5878 	/* disallow meddling with max_active for ordered workqueues */
5879 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5880 		return;
5881 
5882 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5883 
5884 	mutex_lock(&wq->mutex);
5885 
5886 	wq->saved_max_active = max_active;
5887 	if (wq->flags & WQ_UNBOUND)
5888 		wq->saved_min_active = min(wq->saved_min_active, max_active);
5889 
5890 	wq_adjust_max_active(wq);
5891 
5892 	mutex_unlock(&wq->mutex);
5893 }
5894 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5895 
5896 /**
5897  * workqueue_set_min_active - adjust min_active of an unbound workqueue
5898  * @wq: target unbound workqueue
5899  * @min_active: new min_active value
5900  *
5901  * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5902  * unbound workqueue is not guaranteed to be able to process max_active
5903  * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5904  * able to process min_active number of interdependent work items which is
5905  * %WQ_DFL_MIN_ACTIVE by default.
5906  *
5907  * Use this function to adjust the min_active value between 0 and the current
5908  * max_active.
5909  */
5910 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5911 {
5912 	/* min_active is only meaningful for non-ordered unbound workqueues */
5913 	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5914 		    WQ_UNBOUND))
5915 		return;
5916 
5917 	mutex_lock(&wq->mutex);
5918 	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5919 	wq_adjust_max_active(wq);
5920 	mutex_unlock(&wq->mutex);
5921 }
5922 
5923 /**
5924  * current_work - retrieve %current task's work struct
5925  *
5926  * Determine if %current task is a workqueue worker and what it's working on.
5927  * Useful to find out the context that the %current task is running in.
5928  *
5929  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5930  */
5931 struct work_struct *current_work(void)
5932 {
5933 	struct worker *worker = current_wq_worker();
5934 
5935 	return worker ? worker->current_work : NULL;
5936 }
5937 EXPORT_SYMBOL(current_work);
5938 
5939 /**
5940  * current_is_workqueue_rescuer - is %current workqueue rescuer?
5941  *
5942  * Determine whether %current is a workqueue rescuer.  Can be used from
5943  * work functions to determine whether it's being run off the rescuer task.
5944  *
5945  * Return: %true if %current is a workqueue rescuer. %false otherwise.
5946  */
5947 bool current_is_workqueue_rescuer(void)
5948 {
5949 	struct worker *worker = current_wq_worker();
5950 
5951 	return worker && worker->rescue_wq;
5952 }
5953 
5954 /**
5955  * workqueue_congested - test whether a workqueue is congested
5956  * @cpu: CPU in question
5957  * @wq: target workqueue
5958  *
5959  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
5960  * no synchronization around this function and the test result is
5961  * unreliable and only useful as advisory hints or for debugging.
5962  *
5963  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
5964  *
5965  * With the exception of ordered workqueues, all workqueues have per-cpu
5966  * pool_workqueues, each with its own congested state. A workqueue being
5967  * congested on one CPU doesn't mean that the workqueue is contested on any
5968  * other CPUs.
5969  *
5970  * Return:
5971  * %true if congested, %false otherwise.
5972  */
5973 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
5974 {
5975 	struct pool_workqueue *pwq;
5976 	bool ret;
5977 
5978 	rcu_read_lock();
5979 	preempt_disable();
5980 
5981 	if (cpu == WORK_CPU_UNBOUND)
5982 		cpu = smp_processor_id();
5983 
5984 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5985 	ret = !list_empty(&pwq->inactive_works);
5986 
5987 	preempt_enable();
5988 	rcu_read_unlock();
5989 
5990 	return ret;
5991 }
5992 EXPORT_SYMBOL_GPL(workqueue_congested);
5993 
5994 /**
5995  * work_busy - test whether a work is currently pending or running
5996  * @work: the work to be tested
5997  *
5998  * Test whether @work is currently pending or running.  There is no
5999  * synchronization around this function and the test result is
6000  * unreliable and only useful as advisory hints or for debugging.
6001  *
6002  * Return:
6003  * OR'd bitmask of WORK_BUSY_* bits.
6004  */
6005 unsigned int work_busy(struct work_struct *work)
6006 {
6007 	struct worker_pool *pool;
6008 	unsigned long irq_flags;
6009 	unsigned int ret = 0;
6010 
6011 	if (work_pending(work))
6012 		ret |= WORK_BUSY_PENDING;
6013 
6014 	rcu_read_lock();
6015 	pool = get_work_pool(work);
6016 	if (pool) {
6017 		raw_spin_lock_irqsave(&pool->lock, irq_flags);
6018 		if (find_worker_executing_work(pool, work))
6019 			ret |= WORK_BUSY_RUNNING;
6020 		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6021 	}
6022 	rcu_read_unlock();
6023 
6024 	return ret;
6025 }
6026 EXPORT_SYMBOL_GPL(work_busy);
6027 
6028 /**
6029  * set_worker_desc - set description for the current work item
6030  * @fmt: printf-style format string
6031  * @...: arguments for the format string
6032  *
6033  * This function can be called by a running work function to describe what
6034  * the work item is about.  If the worker task gets dumped, this
6035  * information will be printed out together to help debugging.  The
6036  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6037  */
6038 void set_worker_desc(const char *fmt, ...)
6039 {
6040 	struct worker *worker = current_wq_worker();
6041 	va_list args;
6042 
6043 	if (worker) {
6044 		va_start(args, fmt);
6045 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6046 		va_end(args);
6047 	}
6048 }
6049 EXPORT_SYMBOL_GPL(set_worker_desc);
6050 
6051 /**
6052  * print_worker_info - print out worker information and description
6053  * @log_lvl: the log level to use when printing
6054  * @task: target task
6055  *
6056  * If @task is a worker and currently executing a work item, print out the
6057  * name of the workqueue being serviced and worker description set with
6058  * set_worker_desc() by the currently executing work item.
6059  *
6060  * This function can be safely called on any task as long as the
6061  * task_struct itself is accessible.  While safe, this function isn't
6062  * synchronized and may print out mixups or garbages of limited length.
6063  */
6064 void print_worker_info(const char *log_lvl, struct task_struct *task)
6065 {
6066 	work_func_t *fn = NULL;
6067 	char name[WQ_NAME_LEN] = { };
6068 	char desc[WORKER_DESC_LEN] = { };
6069 	struct pool_workqueue *pwq = NULL;
6070 	struct workqueue_struct *wq = NULL;
6071 	struct worker *worker;
6072 
6073 	if (!(task->flags & PF_WQ_WORKER))
6074 		return;
6075 
6076 	/*
6077 	 * This function is called without any synchronization and @task
6078 	 * could be in any state.  Be careful with dereferences.
6079 	 */
6080 	worker = kthread_probe_data(task);
6081 
6082 	/*
6083 	 * Carefully copy the associated workqueue's workfn, name and desc.
6084 	 * Keep the original last '\0' in case the original is garbage.
6085 	 */
6086 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6087 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6088 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6089 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6090 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
6091 
6092 	if (fn || name[0] || desc[0]) {
6093 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
6094 		if (strcmp(name, desc))
6095 			pr_cont(" (%s)", desc);
6096 		pr_cont("\n");
6097 	}
6098 }
6099 
6100 static void pr_cont_pool_info(struct worker_pool *pool)
6101 {
6102 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6103 	if (pool->node != NUMA_NO_NODE)
6104 		pr_cont(" node=%d", pool->node);
6105 	pr_cont(" flags=0x%x", pool->flags);
6106 	if (pool->flags & POOL_BH)
6107 		pr_cont(" bh%s",
6108 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6109 	else
6110 		pr_cont(" nice=%d", pool->attrs->nice);
6111 }
6112 
6113 static void pr_cont_worker_id(struct worker *worker)
6114 {
6115 	struct worker_pool *pool = worker->pool;
6116 
6117 	if (pool->flags & WQ_BH)
6118 		pr_cont("bh%s",
6119 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6120 	else
6121 		pr_cont("%d%s", task_pid_nr(worker->task),
6122 			worker->rescue_wq ? "(RESCUER)" : "");
6123 }
6124 
6125 struct pr_cont_work_struct {
6126 	bool comma;
6127 	work_func_t func;
6128 	long ctr;
6129 };
6130 
6131 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6132 {
6133 	if (!pcwsp->ctr)
6134 		goto out_record;
6135 	if (func == pcwsp->func) {
6136 		pcwsp->ctr++;
6137 		return;
6138 	}
6139 	if (pcwsp->ctr == 1)
6140 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6141 	else
6142 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6143 	pcwsp->ctr = 0;
6144 out_record:
6145 	if ((long)func == -1L)
6146 		return;
6147 	pcwsp->comma = comma;
6148 	pcwsp->func = func;
6149 	pcwsp->ctr = 1;
6150 }
6151 
6152 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6153 {
6154 	if (work->func == wq_barrier_func) {
6155 		struct wq_barrier *barr;
6156 
6157 		barr = container_of(work, struct wq_barrier, work);
6158 
6159 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6160 		pr_cont("%s BAR(%d)", comma ? "," : "",
6161 			task_pid_nr(barr->task));
6162 	} else {
6163 		if (!comma)
6164 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6165 		pr_cont_work_flush(comma, work->func, pcwsp);
6166 	}
6167 }
6168 
6169 static void show_pwq(struct pool_workqueue *pwq)
6170 {
6171 	struct pr_cont_work_struct pcws = { .ctr = 0, };
6172 	struct worker_pool *pool = pwq->pool;
6173 	struct work_struct *work;
6174 	struct worker *worker;
6175 	bool has_in_flight = false, has_pending = false;
6176 	int bkt;
6177 
6178 	pr_info("  pwq %d:", pool->id);
6179 	pr_cont_pool_info(pool);
6180 
6181 	pr_cont(" active=%d refcnt=%d%s\n",
6182 		pwq->nr_active, pwq->refcnt,
6183 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6184 
6185 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6186 		if (worker->current_pwq == pwq) {
6187 			has_in_flight = true;
6188 			break;
6189 		}
6190 	}
6191 	if (has_in_flight) {
6192 		bool comma = false;
6193 
6194 		pr_info("    in-flight:");
6195 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6196 			if (worker->current_pwq != pwq)
6197 				continue;
6198 
6199 			pr_cont(" %s", comma ? "," : "");
6200 			pr_cont_worker_id(worker);
6201 			pr_cont(":%ps", worker->current_func);
6202 			list_for_each_entry(work, &worker->scheduled, entry)
6203 				pr_cont_work(false, work, &pcws);
6204 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6205 			comma = true;
6206 		}
6207 		pr_cont("\n");
6208 	}
6209 
6210 	list_for_each_entry(work, &pool->worklist, entry) {
6211 		if (get_work_pwq(work) == pwq) {
6212 			has_pending = true;
6213 			break;
6214 		}
6215 	}
6216 	if (has_pending) {
6217 		bool comma = false;
6218 
6219 		pr_info("    pending:");
6220 		list_for_each_entry(work, &pool->worklist, entry) {
6221 			if (get_work_pwq(work) != pwq)
6222 				continue;
6223 
6224 			pr_cont_work(comma, work, &pcws);
6225 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6226 		}
6227 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6228 		pr_cont("\n");
6229 	}
6230 
6231 	if (!list_empty(&pwq->inactive_works)) {
6232 		bool comma = false;
6233 
6234 		pr_info("    inactive:");
6235 		list_for_each_entry(work, &pwq->inactive_works, entry) {
6236 			pr_cont_work(comma, work, &pcws);
6237 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6238 		}
6239 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6240 		pr_cont("\n");
6241 	}
6242 }
6243 
6244 /**
6245  * show_one_workqueue - dump state of specified workqueue
6246  * @wq: workqueue whose state will be printed
6247  */
6248 void show_one_workqueue(struct workqueue_struct *wq)
6249 {
6250 	struct pool_workqueue *pwq;
6251 	bool idle = true;
6252 	unsigned long irq_flags;
6253 
6254 	for_each_pwq(pwq, wq) {
6255 		if (!pwq_is_empty(pwq)) {
6256 			idle = false;
6257 			break;
6258 		}
6259 	}
6260 	if (idle) /* Nothing to print for idle workqueue */
6261 		return;
6262 
6263 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6264 
6265 	for_each_pwq(pwq, wq) {
6266 		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6267 		if (!pwq_is_empty(pwq)) {
6268 			/*
6269 			 * Defer printing to avoid deadlocks in console
6270 			 * drivers that queue work while holding locks
6271 			 * also taken in their write paths.
6272 			 */
6273 			printk_deferred_enter();
6274 			show_pwq(pwq);
6275 			printk_deferred_exit();
6276 		}
6277 		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6278 		/*
6279 		 * We could be printing a lot from atomic context, e.g.
6280 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
6281 		 * hard lockup.
6282 		 */
6283 		touch_nmi_watchdog();
6284 	}
6285 
6286 }
6287 
6288 /**
6289  * show_one_worker_pool - dump state of specified worker pool
6290  * @pool: worker pool whose state will be printed
6291  */
6292 static void show_one_worker_pool(struct worker_pool *pool)
6293 {
6294 	struct worker *worker;
6295 	bool first = true;
6296 	unsigned long irq_flags;
6297 	unsigned long hung = 0;
6298 
6299 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
6300 	if (pool->nr_workers == pool->nr_idle)
6301 		goto next_pool;
6302 
6303 	/* How long the first pending work is waiting for a worker. */
6304 	if (!list_empty(&pool->worklist))
6305 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6306 
6307 	/*
6308 	 * Defer printing to avoid deadlocks in console drivers that
6309 	 * queue work while holding locks also taken in their write
6310 	 * paths.
6311 	 */
6312 	printk_deferred_enter();
6313 	pr_info("pool %d:", pool->id);
6314 	pr_cont_pool_info(pool);
6315 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6316 	if (pool->manager)
6317 		pr_cont(" manager: %d",
6318 			task_pid_nr(pool->manager->task));
6319 	list_for_each_entry(worker, &pool->idle_list, entry) {
6320 		pr_cont(" %s", first ? "idle: " : "");
6321 		pr_cont_worker_id(worker);
6322 		first = false;
6323 	}
6324 	pr_cont("\n");
6325 	printk_deferred_exit();
6326 next_pool:
6327 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6328 	/*
6329 	 * We could be printing a lot from atomic context, e.g.
6330 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
6331 	 * hard lockup.
6332 	 */
6333 	touch_nmi_watchdog();
6334 
6335 }
6336 
6337 /**
6338  * show_all_workqueues - dump workqueue state
6339  *
6340  * Called from a sysrq handler and prints out all busy workqueues and pools.
6341  */
6342 void show_all_workqueues(void)
6343 {
6344 	struct workqueue_struct *wq;
6345 	struct worker_pool *pool;
6346 	int pi;
6347 
6348 	rcu_read_lock();
6349 
6350 	pr_info("Showing busy workqueues and worker pools:\n");
6351 
6352 	list_for_each_entry_rcu(wq, &workqueues, list)
6353 		show_one_workqueue(wq);
6354 
6355 	for_each_pool(pool, pi)
6356 		show_one_worker_pool(pool);
6357 
6358 	rcu_read_unlock();
6359 }
6360 
6361 /**
6362  * show_freezable_workqueues - dump freezable workqueue state
6363  *
6364  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6365  * still busy.
6366  */
6367 void show_freezable_workqueues(void)
6368 {
6369 	struct workqueue_struct *wq;
6370 
6371 	rcu_read_lock();
6372 
6373 	pr_info("Showing freezable workqueues that are still busy:\n");
6374 
6375 	list_for_each_entry_rcu(wq, &workqueues, list) {
6376 		if (!(wq->flags & WQ_FREEZABLE))
6377 			continue;
6378 		show_one_workqueue(wq);
6379 	}
6380 
6381 	rcu_read_unlock();
6382 }
6383 
6384 /* used to show worker information through /proc/PID/{comm,stat,status} */
6385 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6386 {
6387 	int off;
6388 
6389 	/* always show the actual comm */
6390 	off = strscpy(buf, task->comm, size);
6391 	if (off < 0)
6392 		return;
6393 
6394 	/* stabilize PF_WQ_WORKER and worker pool association */
6395 	mutex_lock(&wq_pool_attach_mutex);
6396 
6397 	if (task->flags & PF_WQ_WORKER) {
6398 		struct worker *worker = kthread_data(task);
6399 		struct worker_pool *pool = worker->pool;
6400 
6401 		if (pool) {
6402 			raw_spin_lock_irq(&pool->lock);
6403 			/*
6404 			 * ->desc tracks information (wq name or
6405 			 * set_worker_desc()) for the latest execution.  If
6406 			 * current, prepend '+', otherwise '-'.
6407 			 */
6408 			if (worker->desc[0] != '\0') {
6409 				if (worker->current_work)
6410 					scnprintf(buf + off, size - off, "+%s",
6411 						  worker->desc);
6412 				else
6413 					scnprintf(buf + off, size - off, "-%s",
6414 						  worker->desc);
6415 			}
6416 			raw_spin_unlock_irq(&pool->lock);
6417 		}
6418 	}
6419 
6420 	mutex_unlock(&wq_pool_attach_mutex);
6421 }
6422 
6423 #ifdef CONFIG_SMP
6424 
6425 /*
6426  * CPU hotplug.
6427  *
6428  * There are two challenges in supporting CPU hotplug.  Firstly, there
6429  * are a lot of assumptions on strong associations among work, pwq and
6430  * pool which make migrating pending and scheduled works very
6431  * difficult to implement without impacting hot paths.  Secondly,
6432  * worker pools serve mix of short, long and very long running works making
6433  * blocked draining impractical.
6434  *
6435  * This is solved by allowing the pools to be disassociated from the CPU
6436  * running as an unbound one and allowing it to be reattached later if the
6437  * cpu comes back online.
6438  */
6439 
6440 static void unbind_workers(int cpu)
6441 {
6442 	struct worker_pool *pool;
6443 	struct worker *worker;
6444 
6445 	for_each_cpu_worker_pool(pool, cpu) {
6446 		mutex_lock(&wq_pool_attach_mutex);
6447 		raw_spin_lock_irq(&pool->lock);
6448 
6449 		/*
6450 		 * We've blocked all attach/detach operations. Make all workers
6451 		 * unbound and set DISASSOCIATED.  Before this, all workers
6452 		 * must be on the cpu.  After this, they may become diasporas.
6453 		 * And the preemption disabled section in their sched callbacks
6454 		 * are guaranteed to see WORKER_UNBOUND since the code here
6455 		 * is on the same cpu.
6456 		 */
6457 		for_each_pool_worker(worker, pool)
6458 			worker->flags |= WORKER_UNBOUND;
6459 
6460 		pool->flags |= POOL_DISASSOCIATED;
6461 
6462 		/*
6463 		 * The handling of nr_running in sched callbacks are disabled
6464 		 * now.  Zap nr_running.  After this, nr_running stays zero and
6465 		 * need_more_worker() and keep_working() are always true as
6466 		 * long as the worklist is not empty.  This pool now behaves as
6467 		 * an unbound (in terms of concurrency management) pool which
6468 		 * are served by workers tied to the pool.
6469 		 */
6470 		pool->nr_running = 0;
6471 
6472 		/*
6473 		 * With concurrency management just turned off, a busy
6474 		 * worker blocking could lead to lengthy stalls.  Kick off
6475 		 * unbound chain execution of currently pending work items.
6476 		 */
6477 		kick_pool(pool);
6478 
6479 		raw_spin_unlock_irq(&pool->lock);
6480 
6481 		for_each_pool_worker(worker, pool)
6482 			unbind_worker(worker);
6483 
6484 		mutex_unlock(&wq_pool_attach_mutex);
6485 	}
6486 }
6487 
6488 /**
6489  * rebind_workers - rebind all workers of a pool to the associated CPU
6490  * @pool: pool of interest
6491  *
6492  * @pool->cpu is coming online.  Rebind all workers to the CPU.
6493  */
6494 static void rebind_workers(struct worker_pool *pool)
6495 {
6496 	struct worker *worker;
6497 
6498 	lockdep_assert_held(&wq_pool_attach_mutex);
6499 
6500 	/*
6501 	 * Restore CPU affinity of all workers.  As all idle workers should
6502 	 * be on the run-queue of the associated CPU before any local
6503 	 * wake-ups for concurrency management happen, restore CPU affinity
6504 	 * of all workers first and then clear UNBOUND.  As we're called
6505 	 * from CPU_ONLINE, the following shouldn't fail.
6506 	 */
6507 	for_each_pool_worker(worker, pool) {
6508 		kthread_set_per_cpu(worker->task, pool->cpu);
6509 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6510 						  pool_allowed_cpus(pool)) < 0);
6511 	}
6512 
6513 	raw_spin_lock_irq(&pool->lock);
6514 
6515 	pool->flags &= ~POOL_DISASSOCIATED;
6516 
6517 	for_each_pool_worker(worker, pool) {
6518 		unsigned int worker_flags = worker->flags;
6519 
6520 		/*
6521 		 * We want to clear UNBOUND but can't directly call
6522 		 * worker_clr_flags() or adjust nr_running.  Atomically
6523 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6524 		 * @worker will clear REBOUND using worker_clr_flags() when
6525 		 * it initiates the next execution cycle thus restoring
6526 		 * concurrency management.  Note that when or whether
6527 		 * @worker clears REBOUND doesn't affect correctness.
6528 		 *
6529 		 * WRITE_ONCE() is necessary because @worker->flags may be
6530 		 * tested without holding any lock in
6531 		 * wq_worker_running().  Without it, NOT_RUNNING test may
6532 		 * fail incorrectly leading to premature concurrency
6533 		 * management operations.
6534 		 */
6535 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6536 		worker_flags |= WORKER_REBOUND;
6537 		worker_flags &= ~WORKER_UNBOUND;
6538 		WRITE_ONCE(worker->flags, worker_flags);
6539 	}
6540 
6541 	raw_spin_unlock_irq(&pool->lock);
6542 }
6543 
6544 /**
6545  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6546  * @pool: unbound pool of interest
6547  * @cpu: the CPU which is coming up
6548  *
6549  * An unbound pool may end up with a cpumask which doesn't have any online
6550  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6551  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6552  * online CPU before, cpus_allowed of all its workers should be restored.
6553  */
6554 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6555 {
6556 	static cpumask_t cpumask;
6557 	struct worker *worker;
6558 
6559 	lockdep_assert_held(&wq_pool_attach_mutex);
6560 
6561 	/* is @cpu allowed for @pool? */
6562 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6563 		return;
6564 
6565 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6566 
6567 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6568 	for_each_pool_worker(worker, pool)
6569 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6570 }
6571 
6572 int workqueue_prepare_cpu(unsigned int cpu)
6573 {
6574 	struct worker_pool *pool;
6575 
6576 	for_each_cpu_worker_pool(pool, cpu) {
6577 		if (pool->nr_workers)
6578 			continue;
6579 		if (!create_worker(pool))
6580 			return -ENOMEM;
6581 	}
6582 	return 0;
6583 }
6584 
6585 int workqueue_online_cpu(unsigned int cpu)
6586 {
6587 	struct worker_pool *pool;
6588 	struct workqueue_struct *wq;
6589 	int pi;
6590 
6591 	mutex_lock(&wq_pool_mutex);
6592 
6593 	for_each_pool(pool, pi) {
6594 		/* BH pools aren't affected by hotplug */
6595 		if (pool->flags & POOL_BH)
6596 			continue;
6597 
6598 		mutex_lock(&wq_pool_attach_mutex);
6599 		if (pool->cpu == cpu)
6600 			rebind_workers(pool);
6601 		else if (pool->cpu < 0)
6602 			restore_unbound_workers_cpumask(pool, cpu);
6603 		mutex_unlock(&wq_pool_attach_mutex);
6604 	}
6605 
6606 	/* update pod affinity of unbound workqueues */
6607 	list_for_each_entry(wq, &workqueues, list) {
6608 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6609 
6610 		if (attrs) {
6611 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6612 			int tcpu;
6613 
6614 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6615 				wq_update_pod(wq, tcpu, cpu, true);
6616 
6617 			mutex_lock(&wq->mutex);
6618 			wq_update_node_max_active(wq, -1);
6619 			mutex_unlock(&wq->mutex);
6620 		}
6621 	}
6622 
6623 	mutex_unlock(&wq_pool_mutex);
6624 	return 0;
6625 }
6626 
6627 int workqueue_offline_cpu(unsigned int cpu)
6628 {
6629 	struct workqueue_struct *wq;
6630 
6631 	/* unbinding per-cpu workers should happen on the local CPU */
6632 	if (WARN_ON(cpu != smp_processor_id()))
6633 		return -1;
6634 
6635 	unbind_workers(cpu);
6636 
6637 	/* update pod affinity of unbound workqueues */
6638 	mutex_lock(&wq_pool_mutex);
6639 	list_for_each_entry(wq, &workqueues, list) {
6640 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6641 
6642 		if (attrs) {
6643 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6644 			int tcpu;
6645 
6646 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6647 				wq_update_pod(wq, tcpu, cpu, false);
6648 
6649 			mutex_lock(&wq->mutex);
6650 			wq_update_node_max_active(wq, cpu);
6651 			mutex_unlock(&wq->mutex);
6652 		}
6653 	}
6654 	mutex_unlock(&wq_pool_mutex);
6655 
6656 	return 0;
6657 }
6658 
6659 struct work_for_cpu {
6660 	struct work_struct work;
6661 	long (*fn)(void *);
6662 	void *arg;
6663 	long ret;
6664 };
6665 
6666 static void work_for_cpu_fn(struct work_struct *work)
6667 {
6668 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6669 
6670 	wfc->ret = wfc->fn(wfc->arg);
6671 }
6672 
6673 /**
6674  * work_on_cpu_key - run a function in thread context on a particular cpu
6675  * @cpu: the cpu to run on
6676  * @fn: the function to run
6677  * @arg: the function arg
6678  * @key: The lock class key for lock debugging purposes
6679  *
6680  * It is up to the caller to ensure that the cpu doesn't go offline.
6681  * The caller must not hold any locks which would prevent @fn from completing.
6682  *
6683  * Return: The value @fn returns.
6684  */
6685 long work_on_cpu_key(int cpu, long (*fn)(void *),
6686 		     void *arg, struct lock_class_key *key)
6687 {
6688 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6689 
6690 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6691 	schedule_work_on(cpu, &wfc.work);
6692 	flush_work(&wfc.work);
6693 	destroy_work_on_stack(&wfc.work);
6694 	return wfc.ret;
6695 }
6696 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6697 
6698 /**
6699  * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6700  * @cpu: the cpu to run on
6701  * @fn:  the function to run
6702  * @arg: the function argument
6703  * @key: The lock class key for lock debugging purposes
6704  *
6705  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6706  * any locks which would prevent @fn from completing.
6707  *
6708  * Return: The value @fn returns.
6709  */
6710 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6711 			  void *arg, struct lock_class_key *key)
6712 {
6713 	long ret = -ENODEV;
6714 
6715 	cpus_read_lock();
6716 	if (cpu_online(cpu))
6717 		ret = work_on_cpu_key(cpu, fn, arg, key);
6718 	cpus_read_unlock();
6719 	return ret;
6720 }
6721 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6722 #endif /* CONFIG_SMP */
6723 
6724 #ifdef CONFIG_FREEZER
6725 
6726 /**
6727  * freeze_workqueues_begin - begin freezing workqueues
6728  *
6729  * Start freezing workqueues.  After this function returns, all freezable
6730  * workqueues will queue new works to their inactive_works list instead of
6731  * pool->worklist.
6732  *
6733  * CONTEXT:
6734  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6735  */
6736 void freeze_workqueues_begin(void)
6737 {
6738 	struct workqueue_struct *wq;
6739 
6740 	mutex_lock(&wq_pool_mutex);
6741 
6742 	WARN_ON_ONCE(workqueue_freezing);
6743 	workqueue_freezing = true;
6744 
6745 	list_for_each_entry(wq, &workqueues, list) {
6746 		mutex_lock(&wq->mutex);
6747 		wq_adjust_max_active(wq);
6748 		mutex_unlock(&wq->mutex);
6749 	}
6750 
6751 	mutex_unlock(&wq_pool_mutex);
6752 }
6753 
6754 /**
6755  * freeze_workqueues_busy - are freezable workqueues still busy?
6756  *
6757  * Check whether freezing is complete.  This function must be called
6758  * between freeze_workqueues_begin() and thaw_workqueues().
6759  *
6760  * CONTEXT:
6761  * Grabs and releases wq_pool_mutex.
6762  *
6763  * Return:
6764  * %true if some freezable workqueues are still busy.  %false if freezing
6765  * is complete.
6766  */
6767 bool freeze_workqueues_busy(void)
6768 {
6769 	bool busy = false;
6770 	struct workqueue_struct *wq;
6771 	struct pool_workqueue *pwq;
6772 
6773 	mutex_lock(&wq_pool_mutex);
6774 
6775 	WARN_ON_ONCE(!workqueue_freezing);
6776 
6777 	list_for_each_entry(wq, &workqueues, list) {
6778 		if (!(wq->flags & WQ_FREEZABLE))
6779 			continue;
6780 		/*
6781 		 * nr_active is monotonically decreasing.  It's safe
6782 		 * to peek without lock.
6783 		 */
6784 		rcu_read_lock();
6785 		for_each_pwq(pwq, wq) {
6786 			WARN_ON_ONCE(pwq->nr_active < 0);
6787 			if (pwq->nr_active) {
6788 				busy = true;
6789 				rcu_read_unlock();
6790 				goto out_unlock;
6791 			}
6792 		}
6793 		rcu_read_unlock();
6794 	}
6795 out_unlock:
6796 	mutex_unlock(&wq_pool_mutex);
6797 	return busy;
6798 }
6799 
6800 /**
6801  * thaw_workqueues - thaw workqueues
6802  *
6803  * Thaw workqueues.  Normal queueing is restored and all collected
6804  * frozen works are transferred to their respective pool worklists.
6805  *
6806  * CONTEXT:
6807  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6808  */
6809 void thaw_workqueues(void)
6810 {
6811 	struct workqueue_struct *wq;
6812 
6813 	mutex_lock(&wq_pool_mutex);
6814 
6815 	if (!workqueue_freezing)
6816 		goto out_unlock;
6817 
6818 	workqueue_freezing = false;
6819 
6820 	/* restore max_active and repopulate worklist */
6821 	list_for_each_entry(wq, &workqueues, list) {
6822 		mutex_lock(&wq->mutex);
6823 		wq_adjust_max_active(wq);
6824 		mutex_unlock(&wq->mutex);
6825 	}
6826 
6827 out_unlock:
6828 	mutex_unlock(&wq_pool_mutex);
6829 }
6830 #endif /* CONFIG_FREEZER */
6831 
6832 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6833 {
6834 	LIST_HEAD(ctxs);
6835 	int ret = 0;
6836 	struct workqueue_struct *wq;
6837 	struct apply_wqattrs_ctx *ctx, *n;
6838 
6839 	lockdep_assert_held(&wq_pool_mutex);
6840 
6841 	list_for_each_entry(wq, &workqueues, list) {
6842 		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6843 			continue;
6844 
6845 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6846 		if (IS_ERR(ctx)) {
6847 			ret = PTR_ERR(ctx);
6848 			break;
6849 		}
6850 
6851 		list_add_tail(&ctx->list, &ctxs);
6852 	}
6853 
6854 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6855 		if (!ret)
6856 			apply_wqattrs_commit(ctx);
6857 		apply_wqattrs_cleanup(ctx);
6858 	}
6859 
6860 	if (!ret) {
6861 		mutex_lock(&wq_pool_attach_mutex);
6862 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6863 		mutex_unlock(&wq_pool_attach_mutex);
6864 	}
6865 	return ret;
6866 }
6867 
6868 /**
6869  * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6870  * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6871  *
6872  * This function can be called from cpuset code to provide a set of isolated
6873  * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
6874  * either cpus_read_lock or cpus_write_lock.
6875  */
6876 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6877 {
6878 	cpumask_var_t cpumask;
6879 	int ret = 0;
6880 
6881 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6882 		return -ENOMEM;
6883 
6884 	lockdep_assert_cpus_held();
6885 	mutex_lock(&wq_pool_mutex);
6886 
6887 	/* Save the current isolated cpumask & export it via sysfs */
6888 	cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6889 
6890 	/*
6891 	 * If the operation fails, it will fall back to
6892 	 * wq_requested_unbound_cpumask which is initially set to
6893 	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6894 	 * by any subsequent write to workqueue/cpumask sysfs file.
6895 	 */
6896 	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6897 		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6898 	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6899 		ret = workqueue_apply_unbound_cpumask(cpumask);
6900 
6901 	mutex_unlock(&wq_pool_mutex);
6902 	free_cpumask_var(cpumask);
6903 	return ret;
6904 }
6905 
6906 static int parse_affn_scope(const char *val)
6907 {
6908 	int i;
6909 
6910 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6911 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6912 			return i;
6913 	}
6914 	return -EINVAL;
6915 }
6916 
6917 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6918 {
6919 	struct workqueue_struct *wq;
6920 	int affn, cpu;
6921 
6922 	affn = parse_affn_scope(val);
6923 	if (affn < 0)
6924 		return affn;
6925 	if (affn == WQ_AFFN_DFL)
6926 		return -EINVAL;
6927 
6928 	cpus_read_lock();
6929 	mutex_lock(&wq_pool_mutex);
6930 
6931 	wq_affn_dfl = affn;
6932 
6933 	list_for_each_entry(wq, &workqueues, list) {
6934 		for_each_online_cpu(cpu) {
6935 			wq_update_pod(wq, cpu, cpu, true);
6936 		}
6937 	}
6938 
6939 	mutex_unlock(&wq_pool_mutex);
6940 	cpus_read_unlock();
6941 
6942 	return 0;
6943 }
6944 
6945 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6946 {
6947 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6948 }
6949 
6950 static const struct kernel_param_ops wq_affn_dfl_ops = {
6951 	.set	= wq_affn_dfl_set,
6952 	.get	= wq_affn_dfl_get,
6953 };
6954 
6955 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6956 
6957 #ifdef CONFIG_SYSFS
6958 /*
6959  * Workqueues with WQ_SYSFS flag set is visible to userland via
6960  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
6961  * following attributes.
6962  *
6963  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
6964  *  max_active		RW int	: maximum number of in-flight work items
6965  *
6966  * Unbound workqueues have the following extra attributes.
6967  *
6968  *  nice		RW int	: nice value of the workers
6969  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
6970  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
6971  *  affinity_strict	RW bool : worker CPU affinity is strict
6972  */
6973 struct wq_device {
6974 	struct workqueue_struct		*wq;
6975 	struct device			dev;
6976 };
6977 
6978 static struct workqueue_struct *dev_to_wq(struct device *dev)
6979 {
6980 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6981 
6982 	return wq_dev->wq;
6983 }
6984 
6985 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6986 			    char *buf)
6987 {
6988 	struct workqueue_struct *wq = dev_to_wq(dev);
6989 
6990 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6991 }
6992 static DEVICE_ATTR_RO(per_cpu);
6993 
6994 static ssize_t max_active_show(struct device *dev,
6995 			       struct device_attribute *attr, char *buf)
6996 {
6997 	struct workqueue_struct *wq = dev_to_wq(dev);
6998 
6999 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
7000 }
7001 
7002 static ssize_t max_active_store(struct device *dev,
7003 				struct device_attribute *attr, const char *buf,
7004 				size_t count)
7005 {
7006 	struct workqueue_struct *wq = dev_to_wq(dev);
7007 	int val;
7008 
7009 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
7010 		return -EINVAL;
7011 
7012 	workqueue_set_max_active(wq, val);
7013 	return count;
7014 }
7015 static DEVICE_ATTR_RW(max_active);
7016 
7017 static struct attribute *wq_sysfs_attrs[] = {
7018 	&dev_attr_per_cpu.attr,
7019 	&dev_attr_max_active.attr,
7020 	NULL,
7021 };
7022 ATTRIBUTE_GROUPS(wq_sysfs);
7023 
7024 static void apply_wqattrs_lock(void)
7025 {
7026 	/* CPUs should stay stable across pwq creations and installations */
7027 	cpus_read_lock();
7028 	mutex_lock(&wq_pool_mutex);
7029 }
7030 
7031 static void apply_wqattrs_unlock(void)
7032 {
7033 	mutex_unlock(&wq_pool_mutex);
7034 	cpus_read_unlock();
7035 }
7036 
7037 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7038 			    char *buf)
7039 {
7040 	struct workqueue_struct *wq = dev_to_wq(dev);
7041 	int written;
7042 
7043 	mutex_lock(&wq->mutex);
7044 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7045 	mutex_unlock(&wq->mutex);
7046 
7047 	return written;
7048 }
7049 
7050 /* prepare workqueue_attrs for sysfs store operations */
7051 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7052 {
7053 	struct workqueue_attrs *attrs;
7054 
7055 	lockdep_assert_held(&wq_pool_mutex);
7056 
7057 	attrs = alloc_workqueue_attrs();
7058 	if (!attrs)
7059 		return NULL;
7060 
7061 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
7062 	return attrs;
7063 }
7064 
7065 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7066 			     const char *buf, size_t count)
7067 {
7068 	struct workqueue_struct *wq = dev_to_wq(dev);
7069 	struct workqueue_attrs *attrs;
7070 	int ret = -ENOMEM;
7071 
7072 	apply_wqattrs_lock();
7073 
7074 	attrs = wq_sysfs_prep_attrs(wq);
7075 	if (!attrs)
7076 		goto out_unlock;
7077 
7078 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7079 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
7080 		ret = apply_workqueue_attrs_locked(wq, attrs);
7081 	else
7082 		ret = -EINVAL;
7083 
7084 out_unlock:
7085 	apply_wqattrs_unlock();
7086 	free_workqueue_attrs(attrs);
7087 	return ret ?: count;
7088 }
7089 
7090 static ssize_t wq_cpumask_show(struct device *dev,
7091 			       struct device_attribute *attr, char *buf)
7092 {
7093 	struct workqueue_struct *wq = dev_to_wq(dev);
7094 	int written;
7095 
7096 	mutex_lock(&wq->mutex);
7097 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7098 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
7099 	mutex_unlock(&wq->mutex);
7100 	return written;
7101 }
7102 
7103 static ssize_t wq_cpumask_store(struct device *dev,
7104 				struct device_attribute *attr,
7105 				const char *buf, size_t count)
7106 {
7107 	struct workqueue_struct *wq = dev_to_wq(dev);
7108 	struct workqueue_attrs *attrs;
7109 	int ret = -ENOMEM;
7110 
7111 	apply_wqattrs_lock();
7112 
7113 	attrs = wq_sysfs_prep_attrs(wq);
7114 	if (!attrs)
7115 		goto out_unlock;
7116 
7117 	ret = cpumask_parse(buf, attrs->cpumask);
7118 	if (!ret)
7119 		ret = apply_workqueue_attrs_locked(wq, attrs);
7120 
7121 out_unlock:
7122 	apply_wqattrs_unlock();
7123 	free_workqueue_attrs(attrs);
7124 	return ret ?: count;
7125 }
7126 
7127 static ssize_t wq_affn_scope_show(struct device *dev,
7128 				  struct device_attribute *attr, char *buf)
7129 {
7130 	struct workqueue_struct *wq = dev_to_wq(dev);
7131 	int written;
7132 
7133 	mutex_lock(&wq->mutex);
7134 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7135 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7136 				    wq_affn_names[WQ_AFFN_DFL],
7137 				    wq_affn_names[wq_affn_dfl]);
7138 	else
7139 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
7140 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
7141 	mutex_unlock(&wq->mutex);
7142 
7143 	return written;
7144 }
7145 
7146 static ssize_t wq_affn_scope_store(struct device *dev,
7147 				   struct device_attribute *attr,
7148 				   const char *buf, size_t count)
7149 {
7150 	struct workqueue_struct *wq = dev_to_wq(dev);
7151 	struct workqueue_attrs *attrs;
7152 	int affn, ret = -ENOMEM;
7153 
7154 	affn = parse_affn_scope(buf);
7155 	if (affn < 0)
7156 		return affn;
7157 
7158 	apply_wqattrs_lock();
7159 	attrs = wq_sysfs_prep_attrs(wq);
7160 	if (attrs) {
7161 		attrs->affn_scope = affn;
7162 		ret = apply_workqueue_attrs_locked(wq, attrs);
7163 	}
7164 	apply_wqattrs_unlock();
7165 	free_workqueue_attrs(attrs);
7166 	return ret ?: count;
7167 }
7168 
7169 static ssize_t wq_affinity_strict_show(struct device *dev,
7170 				       struct device_attribute *attr, char *buf)
7171 {
7172 	struct workqueue_struct *wq = dev_to_wq(dev);
7173 
7174 	return scnprintf(buf, PAGE_SIZE, "%d\n",
7175 			 wq->unbound_attrs->affn_strict);
7176 }
7177 
7178 static ssize_t wq_affinity_strict_store(struct device *dev,
7179 					struct device_attribute *attr,
7180 					const char *buf, size_t count)
7181 {
7182 	struct workqueue_struct *wq = dev_to_wq(dev);
7183 	struct workqueue_attrs *attrs;
7184 	int v, ret = -ENOMEM;
7185 
7186 	if (sscanf(buf, "%d", &v) != 1)
7187 		return -EINVAL;
7188 
7189 	apply_wqattrs_lock();
7190 	attrs = wq_sysfs_prep_attrs(wq);
7191 	if (attrs) {
7192 		attrs->affn_strict = (bool)v;
7193 		ret = apply_workqueue_attrs_locked(wq, attrs);
7194 	}
7195 	apply_wqattrs_unlock();
7196 	free_workqueue_attrs(attrs);
7197 	return ret ?: count;
7198 }
7199 
7200 static struct device_attribute wq_sysfs_unbound_attrs[] = {
7201 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7202 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7203 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7204 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7205 	__ATTR_NULL,
7206 };
7207 
7208 static const struct bus_type wq_subsys = {
7209 	.name				= "workqueue",
7210 	.dev_groups			= wq_sysfs_groups,
7211 };
7212 
7213 /**
7214  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7215  *  @cpumask: the cpumask to set
7216  *
7217  *  The low-level workqueues cpumask is a global cpumask that limits
7218  *  the affinity of all unbound workqueues.  This function check the @cpumask
7219  *  and apply it to all unbound workqueues and updates all pwqs of them.
7220  *
7221  *  Return:	0	- Success
7222  *		-EINVAL	- Invalid @cpumask
7223  *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
7224  */
7225 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7226 {
7227 	int ret = -EINVAL;
7228 
7229 	/*
7230 	 * Not excluding isolated cpus on purpose.
7231 	 * If the user wishes to include them, we allow that.
7232 	 */
7233 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
7234 	if (!cpumask_empty(cpumask)) {
7235 		apply_wqattrs_lock();
7236 		cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7237 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
7238 			ret = 0;
7239 			goto out_unlock;
7240 		}
7241 
7242 		ret = workqueue_apply_unbound_cpumask(cpumask);
7243 
7244 out_unlock:
7245 		apply_wqattrs_unlock();
7246 	}
7247 
7248 	return ret;
7249 }
7250 
7251 static ssize_t __wq_cpumask_show(struct device *dev,
7252 		struct device_attribute *attr, char *buf, cpumask_var_t mask)
7253 {
7254 	int written;
7255 
7256 	mutex_lock(&wq_pool_mutex);
7257 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7258 	mutex_unlock(&wq_pool_mutex);
7259 
7260 	return written;
7261 }
7262 
7263 static ssize_t cpumask_requested_show(struct device *dev,
7264 		struct device_attribute *attr, char *buf)
7265 {
7266 	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7267 }
7268 static DEVICE_ATTR_RO(cpumask_requested);
7269 
7270 static ssize_t cpumask_isolated_show(struct device *dev,
7271 		struct device_attribute *attr, char *buf)
7272 {
7273 	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7274 }
7275 static DEVICE_ATTR_RO(cpumask_isolated);
7276 
7277 static ssize_t cpumask_show(struct device *dev,
7278 		struct device_attribute *attr, char *buf)
7279 {
7280 	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7281 }
7282 
7283 static ssize_t cpumask_store(struct device *dev,
7284 		struct device_attribute *attr, const char *buf, size_t count)
7285 {
7286 	cpumask_var_t cpumask;
7287 	int ret;
7288 
7289 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7290 		return -ENOMEM;
7291 
7292 	ret = cpumask_parse(buf, cpumask);
7293 	if (!ret)
7294 		ret = workqueue_set_unbound_cpumask(cpumask);
7295 
7296 	free_cpumask_var(cpumask);
7297 	return ret ? ret : count;
7298 }
7299 static DEVICE_ATTR_RW(cpumask);
7300 
7301 static struct attribute *wq_sysfs_cpumask_attrs[] = {
7302 	&dev_attr_cpumask.attr,
7303 	&dev_attr_cpumask_requested.attr,
7304 	&dev_attr_cpumask_isolated.attr,
7305 	NULL,
7306 };
7307 ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
7308 
7309 static int __init wq_sysfs_init(void)
7310 {
7311 	return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
7312 }
7313 core_initcall(wq_sysfs_init);
7314 
7315 static void wq_device_release(struct device *dev)
7316 {
7317 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7318 
7319 	kfree(wq_dev);
7320 }
7321 
7322 /**
7323  * workqueue_sysfs_register - make a workqueue visible in sysfs
7324  * @wq: the workqueue to register
7325  *
7326  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7327  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7328  * which is the preferred method.
7329  *
7330  * Workqueue user should use this function directly iff it wants to apply
7331  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7332  * apply_workqueue_attrs() may race against userland updating the
7333  * attributes.
7334  *
7335  * Return: 0 on success, -errno on failure.
7336  */
7337 int workqueue_sysfs_register(struct workqueue_struct *wq)
7338 {
7339 	struct wq_device *wq_dev;
7340 	int ret;
7341 
7342 	/*
7343 	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
7344 	 * ordered workqueues.
7345 	 */
7346 	if (WARN_ON(wq->flags & __WQ_ORDERED))
7347 		return -EINVAL;
7348 
7349 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7350 	if (!wq_dev)
7351 		return -ENOMEM;
7352 
7353 	wq_dev->wq = wq;
7354 	wq_dev->dev.bus = &wq_subsys;
7355 	wq_dev->dev.release = wq_device_release;
7356 	dev_set_name(&wq_dev->dev, "%s", wq->name);
7357 
7358 	/*
7359 	 * unbound_attrs are created separately.  Suppress uevent until
7360 	 * everything is ready.
7361 	 */
7362 	dev_set_uevent_suppress(&wq_dev->dev, true);
7363 
7364 	ret = device_register(&wq_dev->dev);
7365 	if (ret) {
7366 		put_device(&wq_dev->dev);
7367 		wq->wq_dev = NULL;
7368 		return ret;
7369 	}
7370 
7371 	if (wq->flags & WQ_UNBOUND) {
7372 		struct device_attribute *attr;
7373 
7374 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7375 			ret = device_create_file(&wq_dev->dev, attr);
7376 			if (ret) {
7377 				device_unregister(&wq_dev->dev);
7378 				wq->wq_dev = NULL;
7379 				return ret;
7380 			}
7381 		}
7382 	}
7383 
7384 	dev_set_uevent_suppress(&wq_dev->dev, false);
7385 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7386 	return 0;
7387 }
7388 
7389 /**
7390  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7391  * @wq: the workqueue to unregister
7392  *
7393  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7394  */
7395 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7396 {
7397 	struct wq_device *wq_dev = wq->wq_dev;
7398 
7399 	if (!wq->wq_dev)
7400 		return;
7401 
7402 	wq->wq_dev = NULL;
7403 	device_unregister(&wq_dev->dev);
7404 }
7405 #else	/* CONFIG_SYSFS */
7406 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7407 #endif	/* CONFIG_SYSFS */
7408 
7409 /*
7410  * Workqueue watchdog.
7411  *
7412  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7413  * flush dependency, a concurrency managed work item which stays RUNNING
7414  * indefinitely.  Workqueue stalls can be very difficult to debug as the
7415  * usual warning mechanisms don't trigger and internal workqueue state is
7416  * largely opaque.
7417  *
7418  * Workqueue watchdog monitors all worker pools periodically and dumps
7419  * state if some pools failed to make forward progress for a while where
7420  * forward progress is defined as the first item on ->worklist changing.
7421  *
7422  * This mechanism is controlled through the kernel parameter
7423  * "workqueue.watchdog_thresh" which can be updated at runtime through the
7424  * corresponding sysfs parameter file.
7425  */
7426 #ifdef CONFIG_WQ_WATCHDOG
7427 
7428 static unsigned long wq_watchdog_thresh = 30;
7429 static struct timer_list wq_watchdog_timer;
7430 
7431 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7432 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7433 
7434 /*
7435  * Show workers that might prevent the processing of pending work items.
7436  * The only candidates are CPU-bound workers in the running state.
7437  * Pending work items should be handled by another idle worker
7438  * in all other situations.
7439  */
7440 static void show_cpu_pool_hog(struct worker_pool *pool)
7441 {
7442 	struct worker *worker;
7443 	unsigned long irq_flags;
7444 	int bkt;
7445 
7446 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
7447 
7448 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7449 		if (task_is_running(worker->task)) {
7450 			/*
7451 			 * Defer printing to avoid deadlocks in console
7452 			 * drivers that queue work while holding locks
7453 			 * also taken in their write paths.
7454 			 */
7455 			printk_deferred_enter();
7456 
7457 			pr_info("pool %d:\n", pool->id);
7458 			sched_show_task(worker->task);
7459 
7460 			printk_deferred_exit();
7461 		}
7462 	}
7463 
7464 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7465 }
7466 
7467 static void show_cpu_pools_hogs(void)
7468 {
7469 	struct worker_pool *pool;
7470 	int pi;
7471 
7472 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7473 
7474 	rcu_read_lock();
7475 
7476 	for_each_pool(pool, pi) {
7477 		if (pool->cpu_stall)
7478 			show_cpu_pool_hog(pool);
7479 
7480 	}
7481 
7482 	rcu_read_unlock();
7483 }
7484 
7485 static void wq_watchdog_reset_touched(void)
7486 {
7487 	int cpu;
7488 
7489 	wq_watchdog_touched = jiffies;
7490 	for_each_possible_cpu(cpu)
7491 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7492 }
7493 
7494 static void wq_watchdog_timer_fn(struct timer_list *unused)
7495 {
7496 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7497 	bool lockup_detected = false;
7498 	bool cpu_pool_stall = false;
7499 	unsigned long now = jiffies;
7500 	struct worker_pool *pool;
7501 	int pi;
7502 
7503 	if (!thresh)
7504 		return;
7505 
7506 	rcu_read_lock();
7507 
7508 	for_each_pool(pool, pi) {
7509 		unsigned long pool_ts, touched, ts;
7510 
7511 		pool->cpu_stall = false;
7512 		if (list_empty(&pool->worklist))
7513 			continue;
7514 
7515 		/*
7516 		 * If a virtual machine is stopped by the host it can look to
7517 		 * the watchdog like a stall.
7518 		 */
7519 		kvm_check_and_clear_guest_paused();
7520 
7521 		/* get the latest of pool and touched timestamps */
7522 		if (pool->cpu >= 0)
7523 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7524 		else
7525 			touched = READ_ONCE(wq_watchdog_touched);
7526 		pool_ts = READ_ONCE(pool->watchdog_ts);
7527 
7528 		if (time_after(pool_ts, touched))
7529 			ts = pool_ts;
7530 		else
7531 			ts = touched;
7532 
7533 		/* did we stall? */
7534 		if (time_after(now, ts + thresh)) {
7535 			lockup_detected = true;
7536 			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7537 				pool->cpu_stall = true;
7538 				cpu_pool_stall = true;
7539 			}
7540 			pr_emerg("BUG: workqueue lockup - pool");
7541 			pr_cont_pool_info(pool);
7542 			pr_cont(" stuck for %us!\n",
7543 				jiffies_to_msecs(now - pool_ts) / 1000);
7544 		}
7545 
7546 
7547 	}
7548 
7549 	rcu_read_unlock();
7550 
7551 	if (lockup_detected)
7552 		show_all_workqueues();
7553 
7554 	if (cpu_pool_stall)
7555 		show_cpu_pools_hogs();
7556 
7557 	wq_watchdog_reset_touched();
7558 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7559 }
7560 
7561 notrace void wq_watchdog_touch(int cpu)
7562 {
7563 	if (cpu >= 0)
7564 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7565 
7566 	wq_watchdog_touched = jiffies;
7567 }
7568 
7569 static void wq_watchdog_set_thresh(unsigned long thresh)
7570 {
7571 	wq_watchdog_thresh = 0;
7572 	del_timer_sync(&wq_watchdog_timer);
7573 
7574 	if (thresh) {
7575 		wq_watchdog_thresh = thresh;
7576 		wq_watchdog_reset_touched();
7577 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7578 	}
7579 }
7580 
7581 static int wq_watchdog_param_set_thresh(const char *val,
7582 					const struct kernel_param *kp)
7583 {
7584 	unsigned long thresh;
7585 	int ret;
7586 
7587 	ret = kstrtoul(val, 0, &thresh);
7588 	if (ret)
7589 		return ret;
7590 
7591 	if (system_wq)
7592 		wq_watchdog_set_thresh(thresh);
7593 	else
7594 		wq_watchdog_thresh = thresh;
7595 
7596 	return 0;
7597 }
7598 
7599 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7600 	.set	= wq_watchdog_param_set_thresh,
7601 	.get	= param_get_ulong,
7602 };
7603 
7604 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7605 		0644);
7606 
7607 static void wq_watchdog_init(void)
7608 {
7609 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7610 	wq_watchdog_set_thresh(wq_watchdog_thresh);
7611 }
7612 
7613 #else	/* CONFIG_WQ_WATCHDOG */
7614 
7615 static inline void wq_watchdog_init(void) { }
7616 
7617 #endif	/* CONFIG_WQ_WATCHDOG */
7618 
7619 static void bh_pool_kick_normal(struct irq_work *irq_work)
7620 {
7621 	raise_softirq_irqoff(TASKLET_SOFTIRQ);
7622 }
7623 
7624 static void bh_pool_kick_highpri(struct irq_work *irq_work)
7625 {
7626 	raise_softirq_irqoff(HI_SOFTIRQ);
7627 }
7628 
7629 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7630 {
7631 	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7632 		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7633 			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7634 		return;
7635 	}
7636 
7637 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7638 }
7639 
7640 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7641 {
7642 	BUG_ON(init_worker_pool(pool));
7643 	pool->cpu = cpu;
7644 	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7645 	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7646 	pool->attrs->nice = nice;
7647 	pool->attrs->affn_strict = true;
7648 	pool->node = cpu_to_node(cpu);
7649 
7650 	/* alloc pool ID */
7651 	mutex_lock(&wq_pool_mutex);
7652 	BUG_ON(worker_pool_assign_id(pool));
7653 	mutex_unlock(&wq_pool_mutex);
7654 }
7655 
7656 /**
7657  * workqueue_init_early - early init for workqueue subsystem
7658  *
7659  * This is the first step of three-staged workqueue subsystem initialization and
7660  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7661  * up. It sets up all the data structures and system workqueues and allows early
7662  * boot code to create workqueues and queue/cancel work items. Actual work item
7663  * execution starts only after kthreads can be created and scheduled right
7664  * before early initcalls.
7665  */
7666 void __init workqueue_init_early(void)
7667 {
7668 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7669 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7670 	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7671 						       bh_pool_kick_highpri };
7672 	int i, cpu;
7673 
7674 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7675 
7676 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7677 	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7678 	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7679 
7680 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7681 	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7682 	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7683 	if (!cpumask_empty(&wq_cmdline_cpumask))
7684 		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7685 
7686 	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7687 
7688 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7689 
7690 	wq_update_pod_attrs_buf = alloc_workqueue_attrs();
7691 	BUG_ON(!wq_update_pod_attrs_buf);
7692 
7693 	/*
7694 	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7695 	 * This allows workqueue items to be moved to HK CPUs.
7696 	 */
7697 	if (housekeeping_enabled(HK_TYPE_TICK))
7698 		wq_power_efficient = true;
7699 
7700 	/* initialize WQ_AFFN_SYSTEM pods */
7701 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7702 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7703 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7704 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7705 
7706 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7707 
7708 	pt->nr_pods = 1;
7709 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7710 	pt->pod_node[0] = NUMA_NO_NODE;
7711 	pt->cpu_pod[0] = 0;
7712 
7713 	/* initialize BH and CPU pools */
7714 	for_each_possible_cpu(cpu) {
7715 		struct worker_pool *pool;
7716 
7717 		i = 0;
7718 		for_each_bh_worker_pool(pool, cpu) {
7719 			init_cpu_worker_pool(pool, cpu, std_nice[i]);
7720 			pool->flags |= POOL_BH;
7721 			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7722 			i++;
7723 		}
7724 
7725 		i = 0;
7726 		for_each_cpu_worker_pool(pool, cpu)
7727 			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7728 	}
7729 
7730 	/* create default unbound and ordered wq attrs */
7731 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7732 		struct workqueue_attrs *attrs;
7733 
7734 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7735 		attrs->nice = std_nice[i];
7736 		unbound_std_wq_attrs[i] = attrs;
7737 
7738 		/*
7739 		 * An ordered wq should have only one pwq as ordering is
7740 		 * guaranteed by max_active which is enforced by pwqs.
7741 		 */
7742 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7743 		attrs->nice = std_nice[i];
7744 		attrs->ordered = true;
7745 		ordered_wq_attrs[i] = attrs;
7746 	}
7747 
7748 	system_wq = alloc_workqueue("events", 0, 0);
7749 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7750 	system_long_wq = alloc_workqueue("events_long", 0, 0);
7751 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7752 					    WQ_MAX_ACTIVE);
7753 	system_freezable_wq = alloc_workqueue("events_freezable",
7754 					      WQ_FREEZABLE, 0);
7755 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7756 					      WQ_POWER_EFFICIENT, 0);
7757 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7758 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7759 					      0);
7760 	system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7761 	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7762 					       WQ_BH | WQ_HIGHPRI, 0);
7763 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7764 	       !system_unbound_wq || !system_freezable_wq ||
7765 	       !system_power_efficient_wq ||
7766 	       !system_freezable_power_efficient_wq ||
7767 	       !system_bh_wq || !system_bh_highpri_wq);
7768 }
7769 
7770 static void __init wq_cpu_intensive_thresh_init(void)
7771 {
7772 	unsigned long thresh;
7773 	unsigned long bogo;
7774 
7775 	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7776 	BUG_ON(IS_ERR(pwq_release_worker));
7777 
7778 	/* if the user set it to a specific value, keep it */
7779 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7780 		return;
7781 
7782 	/*
7783 	 * The default of 10ms is derived from the fact that most modern (as of
7784 	 * 2023) processors can do a lot in 10ms and that it's just below what
7785 	 * most consider human-perceivable. However, the kernel also runs on a
7786 	 * lot slower CPUs including microcontrollers where the threshold is way
7787 	 * too low.
7788 	 *
7789 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7790 	 * This is by no means accurate but it doesn't have to be. The mechanism
7791 	 * is still useful even when the threshold is fully scaled up. Also, as
7792 	 * the reports would usually be applicable to everyone, some machines
7793 	 * operating on longer thresholds won't significantly diminish their
7794 	 * usefulness.
7795 	 */
7796 	thresh = 10 * USEC_PER_MSEC;
7797 
7798 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7799 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7800 	if (bogo < 4000)
7801 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7802 
7803 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7804 		 loops_per_jiffy, bogo, thresh);
7805 
7806 	wq_cpu_intensive_thresh_us = thresh;
7807 }
7808 
7809 /**
7810  * workqueue_init - bring workqueue subsystem fully online
7811  *
7812  * This is the second step of three-staged workqueue subsystem initialization
7813  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7814  * been created and work items queued on them, but there are no kworkers
7815  * executing the work items yet. Populate the worker pools with the initial
7816  * workers and enable future kworker creations.
7817  */
7818 void __init workqueue_init(void)
7819 {
7820 	struct workqueue_struct *wq;
7821 	struct worker_pool *pool;
7822 	int cpu, bkt;
7823 
7824 	wq_cpu_intensive_thresh_init();
7825 
7826 	mutex_lock(&wq_pool_mutex);
7827 
7828 	/*
7829 	 * Per-cpu pools created earlier could be missing node hint. Fix them
7830 	 * up. Also, create a rescuer for workqueues that requested it.
7831 	 */
7832 	for_each_possible_cpu(cpu) {
7833 		for_each_bh_worker_pool(pool, cpu)
7834 			pool->node = cpu_to_node(cpu);
7835 		for_each_cpu_worker_pool(pool, cpu)
7836 			pool->node = cpu_to_node(cpu);
7837 	}
7838 
7839 	list_for_each_entry(wq, &workqueues, list) {
7840 		WARN(init_rescuer(wq),
7841 		     "workqueue: failed to create early rescuer for %s",
7842 		     wq->name);
7843 	}
7844 
7845 	mutex_unlock(&wq_pool_mutex);
7846 
7847 	/*
7848 	 * Create the initial workers. A BH pool has one pseudo worker that
7849 	 * represents the shared BH execution context and thus doesn't get
7850 	 * affected by hotplug events. Create the BH pseudo workers for all
7851 	 * possible CPUs here.
7852 	 */
7853 	for_each_possible_cpu(cpu)
7854 		for_each_bh_worker_pool(pool, cpu)
7855 			BUG_ON(!create_worker(pool));
7856 
7857 	for_each_online_cpu(cpu) {
7858 		for_each_cpu_worker_pool(pool, cpu) {
7859 			pool->flags &= ~POOL_DISASSOCIATED;
7860 			BUG_ON(!create_worker(pool));
7861 		}
7862 	}
7863 
7864 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7865 		BUG_ON(!create_worker(pool));
7866 
7867 	wq_online = true;
7868 	wq_watchdog_init();
7869 }
7870 
7871 /*
7872  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7873  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7874  * and consecutive pod ID. The rest of @pt is initialized accordingly.
7875  */
7876 static void __init init_pod_type(struct wq_pod_type *pt,
7877 				 bool (*cpus_share_pod)(int, int))
7878 {
7879 	int cur, pre, cpu, pod;
7880 
7881 	pt->nr_pods = 0;
7882 
7883 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7884 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7885 	BUG_ON(!pt->cpu_pod);
7886 
7887 	for_each_possible_cpu(cur) {
7888 		for_each_possible_cpu(pre) {
7889 			if (pre >= cur) {
7890 				pt->cpu_pod[cur] = pt->nr_pods++;
7891 				break;
7892 			}
7893 			if (cpus_share_pod(cur, pre)) {
7894 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7895 				break;
7896 			}
7897 		}
7898 	}
7899 
7900 	/* init the rest to match @pt->cpu_pod[] */
7901 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7902 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7903 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
7904 
7905 	for (pod = 0; pod < pt->nr_pods; pod++)
7906 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7907 
7908 	for_each_possible_cpu(cpu) {
7909 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7910 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7911 	}
7912 }
7913 
7914 static bool __init cpus_dont_share(int cpu0, int cpu1)
7915 {
7916 	return false;
7917 }
7918 
7919 static bool __init cpus_share_smt(int cpu0, int cpu1)
7920 {
7921 #ifdef CONFIG_SCHED_SMT
7922 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7923 #else
7924 	return false;
7925 #endif
7926 }
7927 
7928 static bool __init cpus_share_numa(int cpu0, int cpu1)
7929 {
7930 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7931 }
7932 
7933 /**
7934  * workqueue_init_topology - initialize CPU pods for unbound workqueues
7935  *
7936  * This is the third step of three-staged workqueue subsystem initialization and
7937  * invoked after SMP and topology information are fully initialized. It
7938  * initializes the unbound CPU pods accordingly.
7939  */
7940 void __init workqueue_init_topology(void)
7941 {
7942 	struct workqueue_struct *wq;
7943 	int cpu;
7944 
7945 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7946 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7947 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
7948 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
7949 
7950 	wq_topo_initialized = true;
7951 
7952 	mutex_lock(&wq_pool_mutex);
7953 
7954 	/*
7955 	 * Workqueues allocated earlier would have all CPUs sharing the default
7956 	 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
7957 	 * combinations to apply per-pod sharing.
7958 	 */
7959 	list_for_each_entry(wq, &workqueues, list) {
7960 		for_each_online_cpu(cpu)
7961 			wq_update_pod(wq, cpu, cpu, true);
7962 		if (wq->flags & WQ_UNBOUND) {
7963 			mutex_lock(&wq->mutex);
7964 			wq_update_node_max_active(wq, -1);
7965 			mutex_unlock(&wq->mutex);
7966 		}
7967 	}
7968 
7969 	mutex_unlock(&wq_pool_mutex);
7970 }
7971 
7972 void __warn_flushing_systemwide_wq(void)
7973 {
7974 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
7975 	dump_stack();
7976 }
7977 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
7978 
7979 static int __init workqueue_unbound_cpus_setup(char *str)
7980 {
7981 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
7982 		cpumask_clear(&wq_cmdline_cpumask);
7983 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
7984 	}
7985 
7986 	return 1;
7987 }
7988 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
7989