xref: /linux/kernel/workqueue.c (revision 8f8d74ee110c02137f5b78ca0a2bd6c10331f267)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58 
59 #include "workqueue_internal.h"
60 
61 enum worker_pool_flags {
62 	/*
63 	 * worker_pool flags
64 	 *
65 	 * A bound pool is either associated or disassociated with its CPU.
66 	 * While associated (!DISASSOCIATED), all workers are bound to the
67 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 	 * is in effect.
69 	 *
70 	 * While DISASSOCIATED, the cpu may be offline and all workers have
71 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 	 * be executing on any CPU.  The pool behaves as an unbound one.
73 	 *
74 	 * Note that DISASSOCIATED should be flipped only while holding
75 	 * wq_pool_attach_mutex to avoid changing binding state while
76 	 * worker_attach_to_pool() is in progress.
77 	 *
78 	 * As there can only be one concurrent BH execution context per CPU, a
79 	 * BH pool is per-CPU and always DISASSOCIATED.
80 	 */
81 	POOL_BH			= 1 << 0,	/* is a BH pool */
82 	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
83 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
84 	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
85 };
86 
87 enum worker_flags {
88 	/* worker flags */
89 	WORKER_DIE		= 1 << 1,	/* die die die */
90 	WORKER_IDLE		= 1 << 2,	/* is idle */
91 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
92 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
93 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
94 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
95 
96 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
97 				  WORKER_UNBOUND | WORKER_REBOUND,
98 };
99 
100 enum work_cancel_flags {
101 	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
102 };
103 
104 enum wq_internal_consts {
105 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
106 
107 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
108 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
109 
110 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
111 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
112 
113 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
114 						/* call for help after 10ms
115 						   (min two ticks) */
116 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
117 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
118 
119 	/*
120 	 * Rescue workers are used only on emergencies and shared by
121 	 * all cpus.  Give MIN_NICE.
122 	 */
123 	RESCUER_NICE_LEVEL	= MIN_NICE,
124 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
125 
126 	WQ_NAME_LEN		= 32,
127 };
128 
129 /*
130  * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
131  * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
132  * msecs_to_jiffies() can't be an initializer.
133  */
134 #define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
135 #define BH_WORKER_RESTARTS	10
136 
137 /*
138  * Structure fields follow one of the following exclusion rules.
139  *
140  * I: Modifiable by initialization/destruction paths and read-only for
141  *    everyone else.
142  *
143  * P: Preemption protected.  Disabling preemption is enough and should
144  *    only be modified and accessed from the local cpu.
145  *
146  * L: pool->lock protected.  Access with pool->lock held.
147  *
148  * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
149  *     reads.
150  *
151  * K: Only modified by worker while holding pool->lock. Can be safely read by
152  *    self, while holding pool->lock or from IRQ context if %current is the
153  *    kworker.
154  *
155  * S: Only modified by worker self.
156  *
157  * A: wq_pool_attach_mutex protected.
158  *
159  * PL: wq_pool_mutex protected.
160  *
161  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
162  *
163  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
164  *
165  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
166  *      RCU for reads.
167  *
168  * WQ: wq->mutex protected.
169  *
170  * WR: wq->mutex protected for writes.  RCU protected for reads.
171  *
172  * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
173  *     with READ_ONCE() without locking.
174  *
175  * MD: wq_mayday_lock protected.
176  *
177  * WD: Used internally by the watchdog.
178  */
179 
180 /* struct worker is defined in workqueue_internal.h */
181 
182 struct worker_pool {
183 	raw_spinlock_t		lock;		/* the pool lock */
184 	int			cpu;		/* I: the associated cpu */
185 	int			node;		/* I: the associated node ID */
186 	int			id;		/* I: pool ID */
187 	unsigned int		flags;		/* L: flags */
188 
189 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
190 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
191 
192 	/*
193 	 * The counter is incremented in a process context on the associated CPU
194 	 * w/ preemption disabled, and decremented or reset in the same context
195 	 * but w/ pool->lock held. The readers grab pool->lock and are
196 	 * guaranteed to see if the counter reached zero.
197 	 */
198 	int			nr_running;
199 
200 	struct list_head	worklist;	/* L: list of pending works */
201 
202 	int			nr_workers;	/* L: total number of workers */
203 	int			nr_idle;	/* L: currently idle workers */
204 
205 	struct list_head	idle_list;	/* L: list of idle workers */
206 	struct timer_list	idle_timer;	/* L: worker idle timeout */
207 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
208 
209 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
210 
211 	/* a workers is either on busy_hash or idle_list, or the manager */
212 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
213 						/* L: hash of busy workers */
214 
215 	struct worker		*manager;	/* L: purely informational */
216 	struct list_head	workers;	/* A: attached workers */
217 	struct list_head        dying_workers;  /* A: workers about to die */
218 	struct completion	*detach_completion; /* all workers detached */
219 
220 	struct ida		worker_ida;	/* worker IDs for task name */
221 
222 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
223 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
224 	int			refcnt;		/* PL: refcnt for unbound pools */
225 
226 	/*
227 	 * Destruction of pool is RCU protected to allow dereferences
228 	 * from get_work_pool().
229 	 */
230 	struct rcu_head		rcu;
231 };
232 
233 /*
234  * Per-pool_workqueue statistics. These can be monitored using
235  * tools/workqueue/wq_monitor.py.
236  */
237 enum pool_workqueue_stats {
238 	PWQ_STAT_STARTED,	/* work items started execution */
239 	PWQ_STAT_COMPLETED,	/* work items completed execution */
240 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
241 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
242 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
243 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
244 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
245 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
246 
247 	PWQ_NR_STATS,
248 };
249 
250 /*
251  * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
252  * of work_struct->data are used for flags and the remaining high bits
253  * point to the pwq; thus, pwqs need to be aligned at two's power of the
254  * number of flag bits.
255  */
256 struct pool_workqueue {
257 	struct worker_pool	*pool;		/* I: the associated pool */
258 	struct workqueue_struct *wq;		/* I: the owning workqueue */
259 	int			work_color;	/* L: current color */
260 	int			flush_color;	/* L: flushing color */
261 	int			refcnt;		/* L: reference count */
262 	int			nr_in_flight[WORK_NR_COLORS];
263 						/* L: nr of in_flight works */
264 	bool			plugged;	/* L: execution suspended */
265 
266 	/*
267 	 * nr_active management and WORK_STRUCT_INACTIVE:
268 	 *
269 	 * When pwq->nr_active >= max_active, new work item is queued to
270 	 * pwq->inactive_works instead of pool->worklist and marked with
271 	 * WORK_STRUCT_INACTIVE.
272 	 *
273 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
274 	 * nr_active and all work items in pwq->inactive_works are marked with
275 	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
276 	 * in pwq->inactive_works. Some of them are ready to run in
277 	 * pool->worklist or worker->scheduled. Those work itmes are only struct
278 	 * wq_barrier which is used for flush_work() and should not participate
279 	 * in nr_active. For non-barrier work item, it is marked with
280 	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
281 	 */
282 	int			nr_active;	/* L: nr of active works */
283 	struct list_head	inactive_works;	/* L: inactive works */
284 	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
285 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
286 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
287 
288 	u64			stats[PWQ_NR_STATS];
289 
290 	/*
291 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
292 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
293 	 * RCU protected so that the first pwq can be determined without
294 	 * grabbing wq->mutex.
295 	 */
296 	struct kthread_work	release_work;
297 	struct rcu_head		rcu;
298 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
299 
300 /*
301  * Structure used to wait for workqueue flush.
302  */
303 struct wq_flusher {
304 	struct list_head	list;		/* WQ: list of flushers */
305 	int			flush_color;	/* WQ: flush color waiting for */
306 	struct completion	done;		/* flush completion */
307 };
308 
309 struct wq_device;
310 
311 /*
312  * Unlike in a per-cpu workqueue where max_active limits its concurrency level
313  * on each CPU, in an unbound workqueue, max_active applies to the whole system.
314  * As sharing a single nr_active across multiple sockets can be very expensive,
315  * the counting and enforcement is per NUMA node.
316  *
317  * The following struct is used to enforce per-node max_active. When a pwq wants
318  * to start executing a work item, it should increment ->nr using
319  * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
320  * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
321  * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
322  * round-robin order.
323  */
324 struct wq_node_nr_active {
325 	int			max;		/* per-node max_active */
326 	atomic_t		nr;		/* per-node nr_active */
327 	raw_spinlock_t		lock;		/* nests inside pool locks */
328 	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
329 };
330 
331 /*
332  * The externally visible workqueue.  It relays the issued work items to
333  * the appropriate worker_pool through its pool_workqueues.
334  */
335 struct workqueue_struct {
336 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
337 	struct list_head	list;		/* PR: list of all workqueues */
338 
339 	struct mutex		mutex;		/* protects this wq */
340 	int			work_color;	/* WQ: current work color */
341 	int			flush_color;	/* WQ: current flush color */
342 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
343 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
344 	struct list_head	flusher_queue;	/* WQ: flush waiters */
345 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
346 
347 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
348 	struct worker		*rescuer;	/* MD: rescue worker */
349 
350 	int			nr_drainers;	/* WQ: drain in progress */
351 
352 	/* See alloc_workqueue() function comment for info on min/max_active */
353 	int			max_active;	/* WO: max active works */
354 	int			min_active;	/* WO: min active works */
355 	int			saved_max_active; /* WQ: saved max_active */
356 	int			saved_min_active; /* WQ: saved min_active */
357 
358 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
359 	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
360 
361 #ifdef CONFIG_SYSFS
362 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
363 #endif
364 #ifdef CONFIG_LOCKDEP
365 	char			*lock_name;
366 	struct lock_class_key	key;
367 	struct lockdep_map	lockdep_map;
368 #endif
369 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
370 
371 	/*
372 	 * Destruction of workqueue_struct is RCU protected to allow walking
373 	 * the workqueues list without grabbing wq_pool_mutex.
374 	 * This is used to dump all workqueues from sysrq.
375 	 */
376 	struct rcu_head		rcu;
377 
378 	/* hot fields used during command issue, aligned to cacheline */
379 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
380 	struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */
381 	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
382 };
383 
384 /*
385  * Each pod type describes how CPUs should be grouped for unbound workqueues.
386  * See the comment above workqueue_attrs->affn_scope.
387  */
388 struct wq_pod_type {
389 	int			nr_pods;	/* number of pods */
390 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
391 	int			*pod_node;	/* pod -> node */
392 	int			*cpu_pod;	/* cpu -> pod */
393 };
394 
395 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
396 	[WQ_AFFN_DFL]		= "default",
397 	[WQ_AFFN_CPU]		= "cpu",
398 	[WQ_AFFN_SMT]		= "smt",
399 	[WQ_AFFN_CACHE]		= "cache",
400 	[WQ_AFFN_NUMA]		= "numa",
401 	[WQ_AFFN_SYSTEM]	= "system",
402 };
403 
404 /*
405  * Per-cpu work items which run for longer than the following threshold are
406  * automatically considered CPU intensive and excluded from concurrency
407  * management to prevent them from noticeably delaying other per-cpu work items.
408  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
409  * The actual value is initialized in wq_cpu_intensive_thresh_init().
410  */
411 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
412 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
413 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
414 static unsigned int wq_cpu_intensive_warning_thresh = 4;
415 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
416 #endif
417 
418 /* see the comment above the definition of WQ_POWER_EFFICIENT */
419 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
420 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
421 
422 static bool wq_online;			/* can kworkers be created yet? */
423 static bool wq_topo_initialized __read_mostly = false;
424 
425 static struct kmem_cache *pwq_cache;
426 
427 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
428 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
429 
430 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
431 static struct workqueue_attrs *wq_update_pod_attrs_buf;
432 
433 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
434 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
435 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
436 /* wait for manager to go away */
437 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
438 
439 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
440 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
441 
442 /* PL&A: allowable cpus for unbound wqs and work items */
443 static cpumask_var_t wq_unbound_cpumask;
444 
445 /* PL: user requested unbound cpumask via sysfs */
446 static cpumask_var_t wq_requested_unbound_cpumask;
447 
448 /* PL: isolated cpumask to be excluded from unbound cpumask */
449 static cpumask_var_t wq_isolated_cpumask;
450 
451 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
452 static struct cpumask wq_cmdline_cpumask __initdata;
453 
454 /* CPU where unbound work was last round robin scheduled from this CPU */
455 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
456 
457 /*
458  * Local execution of unbound work items is no longer guaranteed.  The
459  * following always forces round-robin CPU selection on unbound work items
460  * to uncover usages which depend on it.
461  */
462 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
463 static bool wq_debug_force_rr_cpu = true;
464 #else
465 static bool wq_debug_force_rr_cpu = false;
466 #endif
467 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
468 
469 /* to raise softirq for the BH worker pools on other CPUs */
470 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS],
471 				     bh_pool_irq_works);
472 
473 /* the BH worker pools */
474 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
475 				     bh_worker_pools);
476 
477 /* the per-cpu worker pools */
478 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
479 				     cpu_worker_pools);
480 
481 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
482 
483 /* PL: hash of all unbound pools keyed by pool->attrs */
484 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
485 
486 /* I: attributes used when instantiating standard unbound pools on demand */
487 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
488 
489 /* I: attributes used when instantiating ordered pools on demand */
490 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
491 
492 /*
493  * Used to synchronize multiple cancel_sync attempts on the same work item. See
494  * work_grab_pending() and __cancel_work_sync().
495  */
496 static DECLARE_WAIT_QUEUE_HEAD(wq_cancel_waitq);
497 
498 /*
499  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
500  * process context while holding a pool lock. Bounce to a dedicated kthread
501  * worker to avoid A-A deadlocks.
502  */
503 static struct kthread_worker *pwq_release_worker __ro_after_init;
504 
505 struct workqueue_struct *system_wq __ro_after_init;
506 EXPORT_SYMBOL(system_wq);
507 struct workqueue_struct *system_highpri_wq __ro_after_init;
508 EXPORT_SYMBOL_GPL(system_highpri_wq);
509 struct workqueue_struct *system_long_wq __ro_after_init;
510 EXPORT_SYMBOL_GPL(system_long_wq);
511 struct workqueue_struct *system_unbound_wq __ro_after_init;
512 EXPORT_SYMBOL_GPL(system_unbound_wq);
513 struct workqueue_struct *system_freezable_wq __ro_after_init;
514 EXPORT_SYMBOL_GPL(system_freezable_wq);
515 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
516 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
517 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
518 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
519 struct workqueue_struct *system_bh_wq;
520 EXPORT_SYMBOL_GPL(system_bh_wq);
521 struct workqueue_struct *system_bh_highpri_wq;
522 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
523 
524 static int worker_thread(void *__worker);
525 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
526 static void show_pwq(struct pool_workqueue *pwq);
527 static void show_one_worker_pool(struct worker_pool *pool);
528 
529 #define CREATE_TRACE_POINTS
530 #include <trace/events/workqueue.h>
531 
532 #define assert_rcu_or_pool_mutex()					\
533 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
534 			 !lockdep_is_held(&wq_pool_mutex),		\
535 			 "RCU or wq_pool_mutex should be held")
536 
537 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
538 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
539 			 !lockdep_is_held(&wq->mutex) &&		\
540 			 !lockdep_is_held(&wq_pool_mutex),		\
541 			 "RCU, wq->mutex or wq_pool_mutex should be held")
542 
543 #define for_each_bh_worker_pool(pool, cpu)				\
544 	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
545 	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
546 	     (pool)++)
547 
548 #define for_each_cpu_worker_pool(pool, cpu)				\
549 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
550 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
551 	     (pool)++)
552 
553 /**
554  * for_each_pool - iterate through all worker_pools in the system
555  * @pool: iteration cursor
556  * @pi: integer used for iteration
557  *
558  * This must be called either with wq_pool_mutex held or RCU read
559  * locked.  If the pool needs to be used beyond the locking in effect, the
560  * caller is responsible for guaranteeing that the pool stays online.
561  *
562  * The if/else clause exists only for the lockdep assertion and can be
563  * ignored.
564  */
565 #define for_each_pool(pool, pi)						\
566 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
567 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
568 		else
569 
570 /**
571  * for_each_pool_worker - iterate through all workers of a worker_pool
572  * @worker: iteration cursor
573  * @pool: worker_pool to iterate workers of
574  *
575  * This must be called with wq_pool_attach_mutex.
576  *
577  * The if/else clause exists only for the lockdep assertion and can be
578  * ignored.
579  */
580 #define for_each_pool_worker(worker, pool)				\
581 	list_for_each_entry((worker), &(pool)->workers, node)		\
582 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
583 		else
584 
585 /**
586  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
587  * @pwq: iteration cursor
588  * @wq: the target workqueue
589  *
590  * This must be called either with wq->mutex held or RCU read locked.
591  * If the pwq needs to be used beyond the locking in effect, the caller is
592  * responsible for guaranteeing that the pwq stays online.
593  *
594  * The if/else clause exists only for the lockdep assertion and can be
595  * ignored.
596  */
597 #define for_each_pwq(pwq, wq)						\
598 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
599 				 lockdep_is_held(&(wq->mutex)))
600 
601 #ifdef CONFIG_DEBUG_OBJECTS_WORK
602 
603 static const struct debug_obj_descr work_debug_descr;
604 
605 static void *work_debug_hint(void *addr)
606 {
607 	return ((struct work_struct *) addr)->func;
608 }
609 
610 static bool work_is_static_object(void *addr)
611 {
612 	struct work_struct *work = addr;
613 
614 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
615 }
616 
617 /*
618  * fixup_init is called when:
619  * - an active object is initialized
620  */
621 static bool work_fixup_init(void *addr, enum debug_obj_state state)
622 {
623 	struct work_struct *work = addr;
624 
625 	switch (state) {
626 	case ODEBUG_STATE_ACTIVE:
627 		cancel_work_sync(work);
628 		debug_object_init(work, &work_debug_descr);
629 		return true;
630 	default:
631 		return false;
632 	}
633 }
634 
635 /*
636  * fixup_free is called when:
637  * - an active object is freed
638  */
639 static bool work_fixup_free(void *addr, enum debug_obj_state state)
640 {
641 	struct work_struct *work = addr;
642 
643 	switch (state) {
644 	case ODEBUG_STATE_ACTIVE:
645 		cancel_work_sync(work);
646 		debug_object_free(work, &work_debug_descr);
647 		return true;
648 	default:
649 		return false;
650 	}
651 }
652 
653 static const struct debug_obj_descr work_debug_descr = {
654 	.name		= "work_struct",
655 	.debug_hint	= work_debug_hint,
656 	.is_static_object = work_is_static_object,
657 	.fixup_init	= work_fixup_init,
658 	.fixup_free	= work_fixup_free,
659 };
660 
661 static inline void debug_work_activate(struct work_struct *work)
662 {
663 	debug_object_activate(work, &work_debug_descr);
664 }
665 
666 static inline void debug_work_deactivate(struct work_struct *work)
667 {
668 	debug_object_deactivate(work, &work_debug_descr);
669 }
670 
671 void __init_work(struct work_struct *work, int onstack)
672 {
673 	if (onstack)
674 		debug_object_init_on_stack(work, &work_debug_descr);
675 	else
676 		debug_object_init(work, &work_debug_descr);
677 }
678 EXPORT_SYMBOL_GPL(__init_work);
679 
680 void destroy_work_on_stack(struct work_struct *work)
681 {
682 	debug_object_free(work, &work_debug_descr);
683 }
684 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
685 
686 void destroy_delayed_work_on_stack(struct delayed_work *work)
687 {
688 	destroy_timer_on_stack(&work->timer);
689 	debug_object_free(&work->work, &work_debug_descr);
690 }
691 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
692 
693 #else
694 static inline void debug_work_activate(struct work_struct *work) { }
695 static inline void debug_work_deactivate(struct work_struct *work) { }
696 #endif
697 
698 /**
699  * worker_pool_assign_id - allocate ID and assign it to @pool
700  * @pool: the pool pointer of interest
701  *
702  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
703  * successfully, -errno on failure.
704  */
705 static int worker_pool_assign_id(struct worker_pool *pool)
706 {
707 	int ret;
708 
709 	lockdep_assert_held(&wq_pool_mutex);
710 
711 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
712 			GFP_KERNEL);
713 	if (ret >= 0) {
714 		pool->id = ret;
715 		return 0;
716 	}
717 	return ret;
718 }
719 
720 static struct pool_workqueue __rcu **
721 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
722 {
723        if (cpu >= 0)
724                return per_cpu_ptr(wq->cpu_pwq, cpu);
725        else
726                return &wq->dfl_pwq;
727 }
728 
729 /* @cpu < 0 for dfl_pwq */
730 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
731 {
732 	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
733 				     lockdep_is_held(&wq_pool_mutex) ||
734 				     lockdep_is_held(&wq->mutex));
735 }
736 
737 /**
738  * unbound_effective_cpumask - effective cpumask of an unbound workqueue
739  * @wq: workqueue of interest
740  *
741  * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
742  * is masked with wq_unbound_cpumask to determine the effective cpumask. The
743  * default pwq is always mapped to the pool with the current effective cpumask.
744  */
745 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
746 {
747 	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
748 }
749 
750 static unsigned int work_color_to_flags(int color)
751 {
752 	return color << WORK_STRUCT_COLOR_SHIFT;
753 }
754 
755 static int get_work_color(unsigned long work_data)
756 {
757 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
758 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
759 }
760 
761 static int work_next_color(int color)
762 {
763 	return (color + 1) % WORK_NR_COLORS;
764 }
765 
766 /*
767  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
768  * contain the pointer to the queued pwq.  Once execution starts, the flag
769  * is cleared and the high bits contain OFFQ flags and pool ID.
770  *
771  * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
772  * can be used to set the pwq, pool or clear work->data. These functions should
773  * only be called while the work is owned - ie. while the PENDING bit is set.
774  *
775  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
776  * corresponding to a work.  Pool is available once the work has been
777  * queued anywhere after initialization until it is sync canceled.  pwq is
778  * available only while the work item is queued.
779  *
780  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
781  * canceled.  While being canceled, a work item may have its PENDING set
782  * but stay off timer and worklist for arbitrarily long and nobody should
783  * try to steal the PENDING bit.
784  */
785 static inline void set_work_data(struct work_struct *work, unsigned long data)
786 {
787 	WARN_ON_ONCE(!work_pending(work));
788 	atomic_long_set(&work->data, data | work_static(work));
789 }
790 
791 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
792 			 unsigned long flags)
793 {
794 	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
795 		      WORK_STRUCT_PWQ | flags);
796 }
797 
798 static void set_work_pool_and_keep_pending(struct work_struct *work,
799 					   int pool_id, unsigned long flags)
800 {
801 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
802 		      WORK_STRUCT_PENDING | flags);
803 }
804 
805 static void set_work_pool_and_clear_pending(struct work_struct *work,
806 					    int pool_id, unsigned long flags)
807 {
808 	/*
809 	 * The following wmb is paired with the implied mb in
810 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
811 	 * here are visible to and precede any updates by the next PENDING
812 	 * owner.
813 	 */
814 	smp_wmb();
815 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
816 		      flags);
817 	/*
818 	 * The following mb guarantees that previous clear of a PENDING bit
819 	 * will not be reordered with any speculative LOADS or STORES from
820 	 * work->current_func, which is executed afterwards.  This possible
821 	 * reordering can lead to a missed execution on attempt to queue
822 	 * the same @work.  E.g. consider this case:
823 	 *
824 	 *   CPU#0                         CPU#1
825 	 *   ----------------------------  --------------------------------
826 	 *
827 	 * 1  STORE event_indicated
828 	 * 2  queue_work_on() {
829 	 * 3    test_and_set_bit(PENDING)
830 	 * 4 }                             set_..._and_clear_pending() {
831 	 * 5                                 set_work_data() # clear bit
832 	 * 6                                 smp_mb()
833 	 * 7                               work->current_func() {
834 	 * 8				      LOAD event_indicated
835 	 *				   }
836 	 *
837 	 * Without an explicit full barrier speculative LOAD on line 8 can
838 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
839 	 * CPU#0 observes the PENDING bit is still set and new execution of
840 	 * a @work is not queued in a hope, that CPU#1 will eventually
841 	 * finish the queued @work.  Meanwhile CPU#1 does not see
842 	 * event_indicated is set, because speculative LOAD was executed
843 	 * before actual STORE.
844 	 */
845 	smp_mb();
846 }
847 
848 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
849 {
850 	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
851 }
852 
853 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
854 {
855 	unsigned long data = atomic_long_read(&work->data);
856 
857 	if (data & WORK_STRUCT_PWQ)
858 		return work_struct_pwq(data);
859 	else
860 		return NULL;
861 }
862 
863 /**
864  * get_work_pool - return the worker_pool a given work was associated with
865  * @work: the work item of interest
866  *
867  * Pools are created and destroyed under wq_pool_mutex, and allows read
868  * access under RCU read lock.  As such, this function should be
869  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
870  *
871  * All fields of the returned pool are accessible as long as the above
872  * mentioned locking is in effect.  If the returned pool needs to be used
873  * beyond the critical section, the caller is responsible for ensuring the
874  * returned pool is and stays online.
875  *
876  * Return: The worker_pool @work was last associated with.  %NULL if none.
877  */
878 static struct worker_pool *get_work_pool(struct work_struct *work)
879 {
880 	unsigned long data = atomic_long_read(&work->data);
881 	int pool_id;
882 
883 	assert_rcu_or_pool_mutex();
884 
885 	if (data & WORK_STRUCT_PWQ)
886 		return work_struct_pwq(data)->pool;
887 
888 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
889 	if (pool_id == WORK_OFFQ_POOL_NONE)
890 		return NULL;
891 
892 	return idr_find(&worker_pool_idr, pool_id);
893 }
894 
895 /**
896  * get_work_pool_id - return the worker pool ID a given work is associated with
897  * @work: the work item of interest
898  *
899  * Return: The worker_pool ID @work was last associated with.
900  * %WORK_OFFQ_POOL_NONE if none.
901  */
902 static int get_work_pool_id(struct work_struct *work)
903 {
904 	unsigned long data = atomic_long_read(&work->data);
905 
906 	if (data & WORK_STRUCT_PWQ)
907 		return work_struct_pwq(data)->pool->id;
908 
909 	return data >> WORK_OFFQ_POOL_SHIFT;
910 }
911 
912 static void mark_work_canceling(struct work_struct *work)
913 {
914 	unsigned long pool_id = get_work_pool_id(work);
915 
916 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
917 	set_work_data(work, pool_id | WORK_STRUCT_PENDING | WORK_OFFQ_CANCELING);
918 }
919 
920 static bool work_is_canceling(struct work_struct *work)
921 {
922 	unsigned long data = atomic_long_read(&work->data);
923 
924 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
925 }
926 
927 /*
928  * Policy functions.  These define the policies on how the global worker
929  * pools are managed.  Unless noted otherwise, these functions assume that
930  * they're being called with pool->lock held.
931  */
932 
933 /*
934  * Need to wake up a worker?  Called from anything but currently
935  * running workers.
936  *
937  * Note that, because unbound workers never contribute to nr_running, this
938  * function will always return %true for unbound pools as long as the
939  * worklist isn't empty.
940  */
941 static bool need_more_worker(struct worker_pool *pool)
942 {
943 	return !list_empty(&pool->worklist) && !pool->nr_running;
944 }
945 
946 /* Can I start working?  Called from busy but !running workers. */
947 static bool may_start_working(struct worker_pool *pool)
948 {
949 	return pool->nr_idle;
950 }
951 
952 /* Do I need to keep working?  Called from currently running workers. */
953 static bool keep_working(struct worker_pool *pool)
954 {
955 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
956 }
957 
958 /* Do we need a new worker?  Called from manager. */
959 static bool need_to_create_worker(struct worker_pool *pool)
960 {
961 	return need_more_worker(pool) && !may_start_working(pool);
962 }
963 
964 /* Do we have too many workers and should some go away? */
965 static bool too_many_workers(struct worker_pool *pool)
966 {
967 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
968 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
969 	int nr_busy = pool->nr_workers - nr_idle;
970 
971 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
972 }
973 
974 /**
975  * worker_set_flags - set worker flags and adjust nr_running accordingly
976  * @worker: self
977  * @flags: flags to set
978  *
979  * Set @flags in @worker->flags and adjust nr_running accordingly.
980  */
981 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
982 {
983 	struct worker_pool *pool = worker->pool;
984 
985 	lockdep_assert_held(&pool->lock);
986 
987 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
988 	if ((flags & WORKER_NOT_RUNNING) &&
989 	    !(worker->flags & WORKER_NOT_RUNNING)) {
990 		pool->nr_running--;
991 	}
992 
993 	worker->flags |= flags;
994 }
995 
996 /**
997  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
998  * @worker: self
999  * @flags: flags to clear
1000  *
1001  * Clear @flags in @worker->flags and adjust nr_running accordingly.
1002  */
1003 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1004 {
1005 	struct worker_pool *pool = worker->pool;
1006 	unsigned int oflags = worker->flags;
1007 
1008 	lockdep_assert_held(&pool->lock);
1009 
1010 	worker->flags &= ~flags;
1011 
1012 	/*
1013 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1014 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1015 	 * of multiple flags, not a single flag.
1016 	 */
1017 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1018 		if (!(worker->flags & WORKER_NOT_RUNNING))
1019 			pool->nr_running++;
1020 }
1021 
1022 /* Return the first idle worker.  Called with pool->lock held. */
1023 static struct worker *first_idle_worker(struct worker_pool *pool)
1024 {
1025 	if (unlikely(list_empty(&pool->idle_list)))
1026 		return NULL;
1027 
1028 	return list_first_entry(&pool->idle_list, struct worker, entry);
1029 }
1030 
1031 /**
1032  * worker_enter_idle - enter idle state
1033  * @worker: worker which is entering idle state
1034  *
1035  * @worker is entering idle state.  Update stats and idle timer if
1036  * necessary.
1037  *
1038  * LOCKING:
1039  * raw_spin_lock_irq(pool->lock).
1040  */
1041 static void worker_enter_idle(struct worker *worker)
1042 {
1043 	struct worker_pool *pool = worker->pool;
1044 
1045 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1046 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1047 			 (worker->hentry.next || worker->hentry.pprev)))
1048 		return;
1049 
1050 	/* can't use worker_set_flags(), also called from create_worker() */
1051 	worker->flags |= WORKER_IDLE;
1052 	pool->nr_idle++;
1053 	worker->last_active = jiffies;
1054 
1055 	/* idle_list is LIFO */
1056 	list_add(&worker->entry, &pool->idle_list);
1057 
1058 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1059 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1060 
1061 	/* Sanity check nr_running. */
1062 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1063 }
1064 
1065 /**
1066  * worker_leave_idle - leave idle state
1067  * @worker: worker which is leaving idle state
1068  *
1069  * @worker is leaving idle state.  Update stats.
1070  *
1071  * LOCKING:
1072  * raw_spin_lock_irq(pool->lock).
1073  */
1074 static void worker_leave_idle(struct worker *worker)
1075 {
1076 	struct worker_pool *pool = worker->pool;
1077 
1078 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1079 		return;
1080 	worker_clr_flags(worker, WORKER_IDLE);
1081 	pool->nr_idle--;
1082 	list_del_init(&worker->entry);
1083 }
1084 
1085 /**
1086  * find_worker_executing_work - find worker which is executing a work
1087  * @pool: pool of interest
1088  * @work: work to find worker for
1089  *
1090  * Find a worker which is executing @work on @pool by searching
1091  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1092  * to match, its current execution should match the address of @work and
1093  * its work function.  This is to avoid unwanted dependency between
1094  * unrelated work executions through a work item being recycled while still
1095  * being executed.
1096  *
1097  * This is a bit tricky.  A work item may be freed once its execution
1098  * starts and nothing prevents the freed area from being recycled for
1099  * another work item.  If the same work item address ends up being reused
1100  * before the original execution finishes, workqueue will identify the
1101  * recycled work item as currently executing and make it wait until the
1102  * current execution finishes, introducing an unwanted dependency.
1103  *
1104  * This function checks the work item address and work function to avoid
1105  * false positives.  Note that this isn't complete as one may construct a
1106  * work function which can introduce dependency onto itself through a
1107  * recycled work item.  Well, if somebody wants to shoot oneself in the
1108  * foot that badly, there's only so much we can do, and if such deadlock
1109  * actually occurs, it should be easy to locate the culprit work function.
1110  *
1111  * CONTEXT:
1112  * raw_spin_lock_irq(pool->lock).
1113  *
1114  * Return:
1115  * Pointer to worker which is executing @work if found, %NULL
1116  * otherwise.
1117  */
1118 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1119 						 struct work_struct *work)
1120 {
1121 	struct worker *worker;
1122 
1123 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1124 			       (unsigned long)work)
1125 		if (worker->current_work == work &&
1126 		    worker->current_func == work->func)
1127 			return worker;
1128 
1129 	return NULL;
1130 }
1131 
1132 /**
1133  * move_linked_works - move linked works to a list
1134  * @work: start of series of works to be scheduled
1135  * @head: target list to append @work to
1136  * @nextp: out parameter for nested worklist walking
1137  *
1138  * Schedule linked works starting from @work to @head. Work series to be
1139  * scheduled starts at @work and includes any consecutive work with
1140  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1141  * @nextp.
1142  *
1143  * CONTEXT:
1144  * raw_spin_lock_irq(pool->lock).
1145  */
1146 static void move_linked_works(struct work_struct *work, struct list_head *head,
1147 			      struct work_struct **nextp)
1148 {
1149 	struct work_struct *n;
1150 
1151 	/*
1152 	 * Linked worklist will always end before the end of the list,
1153 	 * use NULL for list head.
1154 	 */
1155 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1156 		list_move_tail(&work->entry, head);
1157 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1158 			break;
1159 	}
1160 
1161 	/*
1162 	 * If we're already inside safe list traversal and have moved
1163 	 * multiple works to the scheduled queue, the next position
1164 	 * needs to be updated.
1165 	 */
1166 	if (nextp)
1167 		*nextp = n;
1168 }
1169 
1170 /**
1171  * assign_work - assign a work item and its linked work items to a worker
1172  * @work: work to assign
1173  * @worker: worker to assign to
1174  * @nextp: out parameter for nested worklist walking
1175  *
1176  * Assign @work and its linked work items to @worker. If @work is already being
1177  * executed by another worker in the same pool, it'll be punted there.
1178  *
1179  * If @nextp is not NULL, it's updated to point to the next work of the last
1180  * scheduled work. This allows assign_work() to be nested inside
1181  * list_for_each_entry_safe().
1182  *
1183  * Returns %true if @work was successfully assigned to @worker. %false if @work
1184  * was punted to another worker already executing it.
1185  */
1186 static bool assign_work(struct work_struct *work, struct worker *worker,
1187 			struct work_struct **nextp)
1188 {
1189 	struct worker_pool *pool = worker->pool;
1190 	struct worker *collision;
1191 
1192 	lockdep_assert_held(&pool->lock);
1193 
1194 	/*
1195 	 * A single work shouldn't be executed concurrently by multiple workers.
1196 	 * __queue_work() ensures that @work doesn't jump to a different pool
1197 	 * while still running in the previous pool. Here, we should ensure that
1198 	 * @work is not executed concurrently by multiple workers from the same
1199 	 * pool. Check whether anyone is already processing the work. If so,
1200 	 * defer the work to the currently executing one.
1201 	 */
1202 	collision = find_worker_executing_work(pool, work);
1203 	if (unlikely(collision)) {
1204 		move_linked_works(work, &collision->scheduled, nextp);
1205 		return false;
1206 	}
1207 
1208 	move_linked_works(work, &worker->scheduled, nextp);
1209 	return true;
1210 }
1211 
1212 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1213 {
1214 	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1215 
1216 	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1217 }
1218 
1219 static void kick_bh_pool(struct worker_pool *pool)
1220 {
1221 #ifdef CONFIG_SMP
1222 	/* see drain_dead_softirq_workfn() for BH_DRAINING */
1223 	if (unlikely(pool->cpu != smp_processor_id() &&
1224 		     !(pool->flags & POOL_BH_DRAINING))) {
1225 		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1226 		return;
1227 	}
1228 #endif
1229 	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1230 		raise_softirq_irqoff(HI_SOFTIRQ);
1231 	else
1232 		raise_softirq_irqoff(TASKLET_SOFTIRQ);
1233 }
1234 
1235 /**
1236  * kick_pool - wake up an idle worker if necessary
1237  * @pool: pool to kick
1238  *
1239  * @pool may have pending work items. Wake up worker if necessary. Returns
1240  * whether a worker was woken up.
1241  */
1242 static bool kick_pool(struct worker_pool *pool)
1243 {
1244 	struct worker *worker = first_idle_worker(pool);
1245 	struct task_struct *p;
1246 
1247 	lockdep_assert_held(&pool->lock);
1248 
1249 	if (!need_more_worker(pool) || !worker)
1250 		return false;
1251 
1252 	if (pool->flags & POOL_BH) {
1253 		kick_bh_pool(pool);
1254 		return true;
1255 	}
1256 
1257 	p = worker->task;
1258 
1259 #ifdef CONFIG_SMP
1260 	/*
1261 	 * Idle @worker is about to execute @work and waking up provides an
1262 	 * opportunity to migrate @worker at a lower cost by setting the task's
1263 	 * wake_cpu field. Let's see if we want to move @worker to improve
1264 	 * execution locality.
1265 	 *
1266 	 * We're waking the worker that went idle the latest and there's some
1267 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1268 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1269 	 * optimization and the race window is narrow, let's leave as-is for
1270 	 * now. If this becomes pronounced, we can skip over workers which are
1271 	 * still on cpu when picking an idle worker.
1272 	 *
1273 	 * If @pool has non-strict affinity, @worker might have ended up outside
1274 	 * its affinity scope. Repatriate.
1275 	 */
1276 	if (!pool->attrs->affn_strict &&
1277 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1278 		struct work_struct *work = list_first_entry(&pool->worklist,
1279 						struct work_struct, entry);
1280 		int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1281 							  cpu_online_mask);
1282 		if (wake_cpu < nr_cpu_ids) {
1283 			p->wake_cpu = wake_cpu;
1284 			get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1285 		}
1286 	}
1287 #endif
1288 	wake_up_process(p);
1289 	return true;
1290 }
1291 
1292 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1293 
1294 /*
1295  * Concurrency-managed per-cpu work items that hog CPU for longer than
1296  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1297  * which prevents them from stalling other concurrency-managed work items. If a
1298  * work function keeps triggering this mechanism, it's likely that the work item
1299  * should be using an unbound workqueue instead.
1300  *
1301  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1302  * and report them so that they can be examined and converted to use unbound
1303  * workqueues as appropriate. To avoid flooding the console, each violating work
1304  * function is tracked and reported with exponential backoff.
1305  */
1306 #define WCI_MAX_ENTS 128
1307 
1308 struct wci_ent {
1309 	work_func_t		func;
1310 	atomic64_t		cnt;
1311 	struct hlist_node	hash_node;
1312 };
1313 
1314 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1315 static int wci_nr_ents;
1316 static DEFINE_RAW_SPINLOCK(wci_lock);
1317 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1318 
1319 static struct wci_ent *wci_find_ent(work_func_t func)
1320 {
1321 	struct wci_ent *ent;
1322 
1323 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1324 				   (unsigned long)func) {
1325 		if (ent->func == func)
1326 			return ent;
1327 	}
1328 	return NULL;
1329 }
1330 
1331 static void wq_cpu_intensive_report(work_func_t func)
1332 {
1333 	struct wci_ent *ent;
1334 
1335 restart:
1336 	ent = wci_find_ent(func);
1337 	if (ent) {
1338 		u64 cnt;
1339 
1340 		/*
1341 		 * Start reporting from the warning_thresh and back off
1342 		 * exponentially.
1343 		 */
1344 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1345 		if (wq_cpu_intensive_warning_thresh &&
1346 		    cnt >= wq_cpu_intensive_warning_thresh &&
1347 		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1348 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1349 					ent->func, wq_cpu_intensive_thresh_us,
1350 					atomic64_read(&ent->cnt));
1351 		return;
1352 	}
1353 
1354 	/*
1355 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1356 	 * is exhausted, something went really wrong and we probably made enough
1357 	 * noise already.
1358 	 */
1359 	if (wci_nr_ents >= WCI_MAX_ENTS)
1360 		return;
1361 
1362 	raw_spin_lock(&wci_lock);
1363 
1364 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1365 		raw_spin_unlock(&wci_lock);
1366 		return;
1367 	}
1368 
1369 	if (wci_find_ent(func)) {
1370 		raw_spin_unlock(&wci_lock);
1371 		goto restart;
1372 	}
1373 
1374 	ent = &wci_ents[wci_nr_ents++];
1375 	ent->func = func;
1376 	atomic64_set(&ent->cnt, 0);
1377 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1378 
1379 	raw_spin_unlock(&wci_lock);
1380 
1381 	goto restart;
1382 }
1383 
1384 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1385 static void wq_cpu_intensive_report(work_func_t func) {}
1386 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1387 
1388 /**
1389  * wq_worker_running - a worker is running again
1390  * @task: task waking up
1391  *
1392  * This function is called when a worker returns from schedule()
1393  */
1394 void wq_worker_running(struct task_struct *task)
1395 {
1396 	struct worker *worker = kthread_data(task);
1397 
1398 	if (!READ_ONCE(worker->sleeping))
1399 		return;
1400 
1401 	/*
1402 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1403 	 * and the nr_running increment below, we may ruin the nr_running reset
1404 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1405 	 * pool. Protect against such race.
1406 	 */
1407 	preempt_disable();
1408 	if (!(worker->flags & WORKER_NOT_RUNNING))
1409 		worker->pool->nr_running++;
1410 	preempt_enable();
1411 
1412 	/*
1413 	 * CPU intensive auto-detection cares about how long a work item hogged
1414 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1415 	 */
1416 	worker->current_at = worker->task->se.sum_exec_runtime;
1417 
1418 	WRITE_ONCE(worker->sleeping, 0);
1419 }
1420 
1421 /**
1422  * wq_worker_sleeping - a worker is going to sleep
1423  * @task: task going to sleep
1424  *
1425  * This function is called from schedule() when a busy worker is
1426  * going to sleep.
1427  */
1428 void wq_worker_sleeping(struct task_struct *task)
1429 {
1430 	struct worker *worker = kthread_data(task);
1431 	struct worker_pool *pool;
1432 
1433 	/*
1434 	 * Rescuers, which may not have all the fields set up like normal
1435 	 * workers, also reach here, let's not access anything before
1436 	 * checking NOT_RUNNING.
1437 	 */
1438 	if (worker->flags & WORKER_NOT_RUNNING)
1439 		return;
1440 
1441 	pool = worker->pool;
1442 
1443 	/* Return if preempted before wq_worker_running() was reached */
1444 	if (READ_ONCE(worker->sleeping))
1445 		return;
1446 
1447 	WRITE_ONCE(worker->sleeping, 1);
1448 	raw_spin_lock_irq(&pool->lock);
1449 
1450 	/*
1451 	 * Recheck in case unbind_workers() preempted us. We don't
1452 	 * want to decrement nr_running after the worker is unbound
1453 	 * and nr_running has been reset.
1454 	 */
1455 	if (worker->flags & WORKER_NOT_RUNNING) {
1456 		raw_spin_unlock_irq(&pool->lock);
1457 		return;
1458 	}
1459 
1460 	pool->nr_running--;
1461 	if (kick_pool(pool))
1462 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1463 
1464 	raw_spin_unlock_irq(&pool->lock);
1465 }
1466 
1467 /**
1468  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1469  * @task: task currently running
1470  *
1471  * Called from scheduler_tick(). We're in the IRQ context and the current
1472  * worker's fields which follow the 'K' locking rule can be accessed safely.
1473  */
1474 void wq_worker_tick(struct task_struct *task)
1475 {
1476 	struct worker *worker = kthread_data(task);
1477 	struct pool_workqueue *pwq = worker->current_pwq;
1478 	struct worker_pool *pool = worker->pool;
1479 
1480 	if (!pwq)
1481 		return;
1482 
1483 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1484 
1485 	if (!wq_cpu_intensive_thresh_us)
1486 		return;
1487 
1488 	/*
1489 	 * If the current worker is concurrency managed and hogged the CPU for
1490 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1491 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1492 	 *
1493 	 * Set @worker->sleeping means that @worker is in the process of
1494 	 * switching out voluntarily and won't be contributing to
1495 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1496 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1497 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1498 	 * We probably want to make this prettier in the future.
1499 	 */
1500 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1501 	    worker->task->se.sum_exec_runtime - worker->current_at <
1502 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1503 		return;
1504 
1505 	raw_spin_lock(&pool->lock);
1506 
1507 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1508 	wq_cpu_intensive_report(worker->current_func);
1509 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1510 
1511 	if (kick_pool(pool))
1512 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1513 
1514 	raw_spin_unlock(&pool->lock);
1515 }
1516 
1517 /**
1518  * wq_worker_last_func - retrieve worker's last work function
1519  * @task: Task to retrieve last work function of.
1520  *
1521  * Determine the last function a worker executed. This is called from
1522  * the scheduler to get a worker's last known identity.
1523  *
1524  * CONTEXT:
1525  * raw_spin_lock_irq(rq->lock)
1526  *
1527  * This function is called during schedule() when a kworker is going
1528  * to sleep. It's used by psi to identify aggregation workers during
1529  * dequeuing, to allow periodic aggregation to shut-off when that
1530  * worker is the last task in the system or cgroup to go to sleep.
1531  *
1532  * As this function doesn't involve any workqueue-related locking, it
1533  * only returns stable values when called from inside the scheduler's
1534  * queuing and dequeuing paths, when @task, which must be a kworker,
1535  * is guaranteed to not be processing any works.
1536  *
1537  * Return:
1538  * The last work function %current executed as a worker, NULL if it
1539  * hasn't executed any work yet.
1540  */
1541 work_func_t wq_worker_last_func(struct task_struct *task)
1542 {
1543 	struct worker *worker = kthread_data(task);
1544 
1545 	return worker->last_func;
1546 }
1547 
1548 /**
1549  * wq_node_nr_active - Determine wq_node_nr_active to use
1550  * @wq: workqueue of interest
1551  * @node: NUMA node, can be %NUMA_NO_NODE
1552  *
1553  * Determine wq_node_nr_active to use for @wq on @node. Returns:
1554  *
1555  * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1556  *
1557  * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1558  *
1559  * - Otherwise, node_nr_active[@node].
1560  */
1561 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1562 						   int node)
1563 {
1564 	if (!(wq->flags & WQ_UNBOUND))
1565 		return NULL;
1566 
1567 	if (node == NUMA_NO_NODE)
1568 		node = nr_node_ids;
1569 
1570 	return wq->node_nr_active[node];
1571 }
1572 
1573 /**
1574  * wq_update_node_max_active - Update per-node max_actives to use
1575  * @wq: workqueue to update
1576  * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1577  *
1578  * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1579  * distributed among nodes according to the proportions of numbers of online
1580  * cpus. The result is always between @wq->min_active and max_active.
1581  */
1582 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1583 {
1584 	struct cpumask *effective = unbound_effective_cpumask(wq);
1585 	int min_active = READ_ONCE(wq->min_active);
1586 	int max_active = READ_ONCE(wq->max_active);
1587 	int total_cpus, node;
1588 
1589 	lockdep_assert_held(&wq->mutex);
1590 
1591 	if (!wq_topo_initialized)
1592 		return;
1593 
1594 	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1595 		off_cpu = -1;
1596 
1597 	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1598 	if (off_cpu >= 0)
1599 		total_cpus--;
1600 
1601 	/* If all CPUs of the wq get offline, use the default values */
1602 	if (unlikely(!total_cpus)) {
1603 		for_each_node(node)
1604 			wq_node_nr_active(wq, node)->max = min_active;
1605 
1606 		wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1607 		return;
1608 	}
1609 
1610 	for_each_node(node) {
1611 		int node_cpus;
1612 
1613 		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1614 		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1615 			node_cpus--;
1616 
1617 		wq_node_nr_active(wq, node)->max =
1618 			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1619 			      min_active, max_active);
1620 	}
1621 
1622 	wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1623 }
1624 
1625 /**
1626  * get_pwq - get an extra reference on the specified pool_workqueue
1627  * @pwq: pool_workqueue to get
1628  *
1629  * Obtain an extra reference on @pwq.  The caller should guarantee that
1630  * @pwq has positive refcnt and be holding the matching pool->lock.
1631  */
1632 static void get_pwq(struct pool_workqueue *pwq)
1633 {
1634 	lockdep_assert_held(&pwq->pool->lock);
1635 	WARN_ON_ONCE(pwq->refcnt <= 0);
1636 	pwq->refcnt++;
1637 }
1638 
1639 /**
1640  * put_pwq - put a pool_workqueue reference
1641  * @pwq: pool_workqueue to put
1642  *
1643  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1644  * destruction.  The caller should be holding the matching pool->lock.
1645  */
1646 static void put_pwq(struct pool_workqueue *pwq)
1647 {
1648 	lockdep_assert_held(&pwq->pool->lock);
1649 	if (likely(--pwq->refcnt))
1650 		return;
1651 	/*
1652 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1653 	 * kthread_worker to avoid A-A deadlocks.
1654 	 */
1655 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1656 }
1657 
1658 /**
1659  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1660  * @pwq: pool_workqueue to put (can be %NULL)
1661  *
1662  * put_pwq() with locking.  This function also allows %NULL @pwq.
1663  */
1664 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1665 {
1666 	if (pwq) {
1667 		/*
1668 		 * As both pwqs and pools are RCU protected, the
1669 		 * following lock operations are safe.
1670 		 */
1671 		raw_spin_lock_irq(&pwq->pool->lock);
1672 		put_pwq(pwq);
1673 		raw_spin_unlock_irq(&pwq->pool->lock);
1674 	}
1675 }
1676 
1677 static bool pwq_is_empty(struct pool_workqueue *pwq)
1678 {
1679 	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1680 }
1681 
1682 static void __pwq_activate_work(struct pool_workqueue *pwq,
1683 				struct work_struct *work)
1684 {
1685 	unsigned long *wdb = work_data_bits(work);
1686 
1687 	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1688 	trace_workqueue_activate_work(work);
1689 	if (list_empty(&pwq->pool->worklist))
1690 		pwq->pool->watchdog_ts = jiffies;
1691 	move_linked_works(work, &pwq->pool->worklist, NULL);
1692 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1693 }
1694 
1695 /**
1696  * pwq_activate_work - Activate a work item if inactive
1697  * @pwq: pool_workqueue @work belongs to
1698  * @work: work item to activate
1699  *
1700  * Returns %true if activated. %false if already active.
1701  */
1702 static bool pwq_activate_work(struct pool_workqueue *pwq,
1703 			      struct work_struct *work)
1704 {
1705 	struct worker_pool *pool = pwq->pool;
1706 	struct wq_node_nr_active *nna;
1707 
1708 	lockdep_assert_held(&pool->lock);
1709 
1710 	if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE))
1711 		return false;
1712 
1713 	nna = wq_node_nr_active(pwq->wq, pool->node);
1714 	if (nna)
1715 		atomic_inc(&nna->nr);
1716 
1717 	pwq->nr_active++;
1718 	__pwq_activate_work(pwq, work);
1719 	return true;
1720 }
1721 
1722 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1723 {
1724 	int max = READ_ONCE(nna->max);
1725 
1726 	while (true) {
1727 		int old, tmp;
1728 
1729 		old = atomic_read(&nna->nr);
1730 		if (old >= max)
1731 			return false;
1732 		tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1733 		if (tmp == old)
1734 			return true;
1735 	}
1736 }
1737 
1738 /**
1739  * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1740  * @pwq: pool_workqueue of interest
1741  * @fill: max_active may have increased, try to increase concurrency level
1742  *
1743  * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1744  * successfully obtained. %false otherwise.
1745  */
1746 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1747 {
1748 	struct workqueue_struct *wq = pwq->wq;
1749 	struct worker_pool *pool = pwq->pool;
1750 	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1751 	bool obtained = false;
1752 
1753 	lockdep_assert_held(&pool->lock);
1754 
1755 	if (!nna) {
1756 		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1757 		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1758 		goto out;
1759 	}
1760 
1761 	if (unlikely(pwq->plugged))
1762 		return false;
1763 
1764 	/*
1765 	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1766 	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1767 	 * concurrency level. Don't jump the line.
1768 	 *
1769 	 * We need to ignore the pending test after max_active has increased as
1770 	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1771 	 * increase it. This is indicated by @fill.
1772 	 */
1773 	if (!list_empty(&pwq->pending_node) && likely(!fill))
1774 		goto out;
1775 
1776 	obtained = tryinc_node_nr_active(nna);
1777 	if (obtained)
1778 		goto out;
1779 
1780 	/*
1781 	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1782 	 * and try again. The smp_mb() is paired with the implied memory barrier
1783 	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1784 	 * we see the decremented $nna->nr or they see non-empty
1785 	 * $nna->pending_pwqs.
1786 	 */
1787 	raw_spin_lock(&nna->lock);
1788 
1789 	if (list_empty(&pwq->pending_node))
1790 		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1791 	else if (likely(!fill))
1792 		goto out_unlock;
1793 
1794 	smp_mb();
1795 
1796 	obtained = tryinc_node_nr_active(nna);
1797 
1798 	/*
1799 	 * If @fill, @pwq might have already been pending. Being spuriously
1800 	 * pending in cold paths doesn't affect anything. Let's leave it be.
1801 	 */
1802 	if (obtained && likely(!fill))
1803 		list_del_init(&pwq->pending_node);
1804 
1805 out_unlock:
1806 	raw_spin_unlock(&nna->lock);
1807 out:
1808 	if (obtained)
1809 		pwq->nr_active++;
1810 	return obtained;
1811 }
1812 
1813 /**
1814  * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1815  * @pwq: pool_workqueue of interest
1816  * @fill: max_active may have increased, try to increase concurrency level
1817  *
1818  * Activate the first inactive work item of @pwq if available and allowed by
1819  * max_active limit.
1820  *
1821  * Returns %true if an inactive work item has been activated. %false if no
1822  * inactive work item is found or max_active limit is reached.
1823  */
1824 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1825 {
1826 	struct work_struct *work =
1827 		list_first_entry_or_null(&pwq->inactive_works,
1828 					 struct work_struct, entry);
1829 
1830 	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1831 		__pwq_activate_work(pwq, work);
1832 		return true;
1833 	} else {
1834 		return false;
1835 	}
1836 }
1837 
1838 /**
1839  * unplug_oldest_pwq - unplug the oldest pool_workqueue
1840  * @wq: workqueue_struct where its oldest pwq is to be unplugged
1841  *
1842  * This function should only be called for ordered workqueues where only the
1843  * oldest pwq is unplugged, the others are plugged to suspend execution to
1844  * ensure proper work item ordering::
1845  *
1846  *    dfl_pwq --------------+     [P] - plugged
1847  *                          |
1848  *                          v
1849  *    pwqs -> A -> B [P] -> C [P] (newest)
1850  *            |    |        |
1851  *            1    3        5
1852  *            |    |        |
1853  *            2    4        6
1854  *
1855  * When the oldest pwq is drained and removed, this function should be called
1856  * to unplug the next oldest one to start its work item execution. Note that
1857  * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1858  * the list is the oldest.
1859  */
1860 static void unplug_oldest_pwq(struct workqueue_struct *wq)
1861 {
1862 	struct pool_workqueue *pwq;
1863 
1864 	lockdep_assert_held(&wq->mutex);
1865 
1866 	/* Caller should make sure that pwqs isn't empty before calling */
1867 	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1868 				       pwqs_node);
1869 	raw_spin_lock_irq(&pwq->pool->lock);
1870 	if (pwq->plugged) {
1871 		pwq->plugged = false;
1872 		if (pwq_activate_first_inactive(pwq, true))
1873 			kick_pool(pwq->pool);
1874 	}
1875 	raw_spin_unlock_irq(&pwq->pool->lock);
1876 }
1877 
1878 /**
1879  * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1880  * @nna: wq_node_nr_active to activate a pending pwq for
1881  * @caller_pool: worker_pool the caller is locking
1882  *
1883  * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1884  * @caller_pool may be unlocked and relocked to lock other worker_pools.
1885  */
1886 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1887 				      struct worker_pool *caller_pool)
1888 {
1889 	struct worker_pool *locked_pool = caller_pool;
1890 	struct pool_workqueue *pwq;
1891 	struct work_struct *work;
1892 
1893 	lockdep_assert_held(&caller_pool->lock);
1894 
1895 	raw_spin_lock(&nna->lock);
1896 retry:
1897 	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1898 				       struct pool_workqueue, pending_node);
1899 	if (!pwq)
1900 		goto out_unlock;
1901 
1902 	/*
1903 	 * If @pwq is for a different pool than @locked_pool, we need to lock
1904 	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1905 	 * / lock dance. For that, we also need to release @nna->lock as it's
1906 	 * nested inside pool locks.
1907 	 */
1908 	if (pwq->pool != locked_pool) {
1909 		raw_spin_unlock(&locked_pool->lock);
1910 		locked_pool = pwq->pool;
1911 		if (!raw_spin_trylock(&locked_pool->lock)) {
1912 			raw_spin_unlock(&nna->lock);
1913 			raw_spin_lock(&locked_pool->lock);
1914 			raw_spin_lock(&nna->lock);
1915 			goto retry;
1916 		}
1917 	}
1918 
1919 	/*
1920 	 * $pwq may not have any inactive work items due to e.g. cancellations.
1921 	 * Drop it from pending_pwqs and see if there's another one.
1922 	 */
1923 	work = list_first_entry_or_null(&pwq->inactive_works,
1924 					struct work_struct, entry);
1925 	if (!work) {
1926 		list_del_init(&pwq->pending_node);
1927 		goto retry;
1928 	}
1929 
1930 	/*
1931 	 * Acquire an nr_active count and activate the inactive work item. If
1932 	 * $pwq still has inactive work items, rotate it to the end of the
1933 	 * pending_pwqs so that we round-robin through them. This means that
1934 	 * inactive work items are not activated in queueing order which is fine
1935 	 * given that there has never been any ordering across different pwqs.
1936 	 */
1937 	if (likely(tryinc_node_nr_active(nna))) {
1938 		pwq->nr_active++;
1939 		__pwq_activate_work(pwq, work);
1940 
1941 		if (list_empty(&pwq->inactive_works))
1942 			list_del_init(&pwq->pending_node);
1943 		else
1944 			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1945 
1946 		/* if activating a foreign pool, make sure it's running */
1947 		if (pwq->pool != caller_pool)
1948 			kick_pool(pwq->pool);
1949 	}
1950 
1951 out_unlock:
1952 	raw_spin_unlock(&nna->lock);
1953 	if (locked_pool != caller_pool) {
1954 		raw_spin_unlock(&locked_pool->lock);
1955 		raw_spin_lock(&caller_pool->lock);
1956 	}
1957 }
1958 
1959 /**
1960  * pwq_dec_nr_active - Retire an active count
1961  * @pwq: pool_workqueue of interest
1962  *
1963  * Decrement @pwq's nr_active and try to activate the first inactive work item.
1964  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1965  */
1966 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1967 {
1968 	struct worker_pool *pool = pwq->pool;
1969 	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1970 
1971 	lockdep_assert_held(&pool->lock);
1972 
1973 	/*
1974 	 * @pwq->nr_active should be decremented for both percpu and unbound
1975 	 * workqueues.
1976 	 */
1977 	pwq->nr_active--;
1978 
1979 	/*
1980 	 * For a percpu workqueue, it's simple. Just need to kick the first
1981 	 * inactive work item on @pwq itself.
1982 	 */
1983 	if (!nna) {
1984 		pwq_activate_first_inactive(pwq, false);
1985 		return;
1986 	}
1987 
1988 	/*
1989 	 * If @pwq is for an unbound workqueue, it's more complicated because
1990 	 * multiple pwqs and pools may be sharing the nr_active count. When a
1991 	 * pwq needs to wait for an nr_active count, it puts itself on
1992 	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1993 	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1994 	 * guarantee that either we see non-empty pending_pwqs or they see
1995 	 * decremented $nna->nr.
1996 	 *
1997 	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1998 	 * max_active gets updated. However, it is guaranteed to be equal to or
1999 	 * larger than @pwq->wq->min_active which is above zero unless freezing.
2000 	 * This maintains the forward progress guarantee.
2001 	 */
2002 	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
2003 		return;
2004 
2005 	if (!list_empty(&nna->pending_pwqs))
2006 		node_activate_pending_pwq(nna, pool);
2007 }
2008 
2009 /**
2010  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
2011  * @pwq: pwq of interest
2012  * @work_data: work_data of work which left the queue
2013  *
2014  * A work either has completed or is removed from pending queue,
2015  * decrement nr_in_flight of its pwq and handle workqueue flushing.
2016  *
2017  * NOTE:
2018  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
2019  * and thus should be called after all other state updates for the in-flight
2020  * work item is complete.
2021  *
2022  * CONTEXT:
2023  * raw_spin_lock_irq(pool->lock).
2024  */
2025 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
2026 {
2027 	int color = get_work_color(work_data);
2028 
2029 	if (!(work_data & WORK_STRUCT_INACTIVE))
2030 		pwq_dec_nr_active(pwq);
2031 
2032 	pwq->nr_in_flight[color]--;
2033 
2034 	/* is flush in progress and are we at the flushing tip? */
2035 	if (likely(pwq->flush_color != color))
2036 		goto out_put;
2037 
2038 	/* are there still in-flight works? */
2039 	if (pwq->nr_in_flight[color])
2040 		goto out_put;
2041 
2042 	/* this pwq is done, clear flush_color */
2043 	pwq->flush_color = -1;
2044 
2045 	/*
2046 	 * If this was the last pwq, wake up the first flusher.  It
2047 	 * will handle the rest.
2048 	 */
2049 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2050 		complete(&pwq->wq->first_flusher->done);
2051 out_put:
2052 	put_pwq(pwq);
2053 }
2054 
2055 /**
2056  * try_to_grab_pending - steal work item from worklist and disable irq
2057  * @work: work item to steal
2058  * @cflags: %WORK_CANCEL_ flags
2059  * @irq_flags: place to store irq state
2060  *
2061  * Try to grab PENDING bit of @work.  This function can handle @work in any
2062  * stable state - idle, on timer or on worklist.
2063  *
2064  * Return:
2065  *
2066  *  ========	================================================================
2067  *  1		if @work was pending and we successfully stole PENDING
2068  *  0		if @work was idle and we claimed PENDING
2069  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
2070  *  -ENOENT	if someone else is canceling @work, this state may persist
2071  *		for arbitrarily long
2072  *  ========	================================================================
2073  *
2074  * Note:
2075  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
2076  * interrupted while holding PENDING and @work off queue, irq must be
2077  * disabled on entry.  This, combined with delayed_work->timer being
2078  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2079  *
2080  * On successful return, >= 0, irq is disabled and the caller is
2081  * responsible for releasing it using local_irq_restore(*@irq_flags).
2082  *
2083  * This function is safe to call from any context including IRQ handler.
2084  */
2085 static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2086 			       unsigned long *irq_flags)
2087 {
2088 	struct worker_pool *pool;
2089 	struct pool_workqueue *pwq;
2090 
2091 	local_irq_save(*irq_flags);
2092 
2093 	/* try to steal the timer if it exists */
2094 	if (cflags & WORK_CANCEL_DELAYED) {
2095 		struct delayed_work *dwork = to_delayed_work(work);
2096 
2097 		/*
2098 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
2099 		 * guaranteed that the timer is not queued anywhere and not
2100 		 * running on the local CPU.
2101 		 */
2102 		if (likely(del_timer(&dwork->timer)))
2103 			return 1;
2104 	}
2105 
2106 	/* try to claim PENDING the normal way */
2107 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2108 		return 0;
2109 
2110 	rcu_read_lock();
2111 	/*
2112 	 * The queueing is in progress, or it is already queued. Try to
2113 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2114 	 */
2115 	pool = get_work_pool(work);
2116 	if (!pool)
2117 		goto fail;
2118 
2119 	raw_spin_lock(&pool->lock);
2120 	/*
2121 	 * work->data is guaranteed to point to pwq only while the work
2122 	 * item is queued on pwq->wq, and both updating work->data to point
2123 	 * to pwq on queueing and to pool on dequeueing are done under
2124 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2125 	 * points to pwq which is associated with a locked pool, the work
2126 	 * item is currently queued on that pool.
2127 	 */
2128 	pwq = get_work_pwq(work);
2129 	if (pwq && pwq->pool == pool) {
2130 		unsigned long work_data;
2131 
2132 		debug_work_deactivate(work);
2133 
2134 		/*
2135 		 * A cancelable inactive work item must be in the
2136 		 * pwq->inactive_works since a queued barrier can't be
2137 		 * canceled (see the comments in insert_wq_barrier()).
2138 		 *
2139 		 * An inactive work item cannot be grabbed directly because
2140 		 * it might have linked barrier work items which, if left
2141 		 * on the inactive_works list, will confuse pwq->nr_active
2142 		 * management later on and cause stall.  Make sure the work
2143 		 * item is activated before grabbing.
2144 		 */
2145 		pwq_activate_work(pwq, work);
2146 
2147 		list_del_init(&work->entry);
2148 
2149 		/*
2150 		 * work->data points to pwq iff queued. Let's point to pool. As
2151 		 * this destroys work->data needed by the next step, stash it.
2152 		 */
2153 		work_data = *work_data_bits(work);
2154 		set_work_pool_and_keep_pending(work, pool->id, 0);
2155 
2156 		/* must be the last step, see the function comment */
2157 		pwq_dec_nr_in_flight(pwq, work_data);
2158 
2159 		raw_spin_unlock(&pool->lock);
2160 		rcu_read_unlock();
2161 		return 1;
2162 	}
2163 	raw_spin_unlock(&pool->lock);
2164 fail:
2165 	rcu_read_unlock();
2166 	local_irq_restore(*irq_flags);
2167 	if (work_is_canceling(work))
2168 		return -ENOENT;
2169 	cpu_relax();
2170 	return -EAGAIN;
2171 }
2172 
2173 struct cwt_wait {
2174 	wait_queue_entry_t	wait;
2175 	struct work_struct	*work;
2176 };
2177 
2178 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2179 {
2180 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2181 
2182 	if (cwait->work != key)
2183 		return 0;
2184 	return autoremove_wake_function(wait, mode, sync, key);
2185 }
2186 
2187 /**
2188  * work_grab_pending - steal work item from worklist and disable irq
2189  * @work: work item to steal
2190  * @cflags: %WORK_CANCEL_ flags
2191  * @irq_flags: place to store IRQ state
2192  *
2193  * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2194  * or on worklist.
2195  *
2196  * Must be called in process context. IRQ is disabled on return with IRQ state
2197  * stored in *@irq_flags. The caller is responsible for re-enabling it using
2198  * local_irq_restore().
2199  *
2200  * Returns %true if @work was pending. %false if idle.
2201  */
2202 static bool work_grab_pending(struct work_struct *work, u32 cflags,
2203 			      unsigned long *irq_flags)
2204 {
2205 	struct cwt_wait cwait;
2206 	int ret;
2207 
2208 	might_sleep();
2209 repeat:
2210 	ret = try_to_grab_pending(work, cflags, irq_flags);
2211 	if (likely(ret >= 0))
2212 		return ret;
2213 	if (ret != -ENOENT)
2214 		goto repeat;
2215 
2216 	/*
2217 	 * Someone is already canceling. Wait for it to finish. flush_work()
2218 	 * doesn't work for PREEMPT_NONE because we may get woken up between
2219 	 * @work's completion and the other canceling task resuming and clearing
2220 	 * CANCELING - flush_work() will return false immediately as @work is no
2221 	 * longer busy, try_to_grab_pending() will return -ENOENT as @work is
2222 	 * still being canceled and the other canceling task won't be able to
2223 	 * clear CANCELING as we're hogging the CPU.
2224 	 *
2225 	 * Let's wait for completion using a waitqueue. As this may lead to the
2226 	 * thundering herd problem, use a custom wake function which matches
2227 	 * @work along with exclusive wait and wakeup.
2228 	 */
2229 	init_wait(&cwait.wait);
2230 	cwait.wait.func = cwt_wakefn;
2231 	cwait.work = work;
2232 
2233 	prepare_to_wait_exclusive(&wq_cancel_waitq, &cwait.wait,
2234 				  TASK_UNINTERRUPTIBLE);
2235 	if (work_is_canceling(work))
2236 		schedule();
2237 	finish_wait(&wq_cancel_waitq, &cwait.wait);
2238 
2239 	goto repeat;
2240 }
2241 
2242 /**
2243  * insert_work - insert a work into a pool
2244  * @pwq: pwq @work belongs to
2245  * @work: work to insert
2246  * @head: insertion point
2247  * @extra_flags: extra WORK_STRUCT_* flags to set
2248  *
2249  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2250  * work_struct flags.
2251  *
2252  * CONTEXT:
2253  * raw_spin_lock_irq(pool->lock).
2254  */
2255 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2256 			struct list_head *head, unsigned int extra_flags)
2257 {
2258 	debug_work_activate(work);
2259 
2260 	/* record the work call stack in order to print it in KASAN reports */
2261 	kasan_record_aux_stack_noalloc(work);
2262 
2263 	/* we own @work, set data and link */
2264 	set_work_pwq(work, pwq, extra_flags);
2265 	list_add_tail(&work->entry, head);
2266 	get_pwq(pwq);
2267 }
2268 
2269 /*
2270  * Test whether @work is being queued from another work executing on the
2271  * same workqueue.
2272  */
2273 static bool is_chained_work(struct workqueue_struct *wq)
2274 {
2275 	struct worker *worker;
2276 
2277 	worker = current_wq_worker();
2278 	/*
2279 	 * Return %true iff I'm a worker executing a work item on @wq.  If
2280 	 * I'm @worker, it's safe to dereference it without locking.
2281 	 */
2282 	return worker && worker->current_pwq->wq == wq;
2283 }
2284 
2285 /*
2286  * When queueing an unbound work item to a wq, prefer local CPU if allowed
2287  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2288  * avoid perturbing sensitive tasks.
2289  */
2290 static int wq_select_unbound_cpu(int cpu)
2291 {
2292 	int new_cpu;
2293 
2294 	if (likely(!wq_debug_force_rr_cpu)) {
2295 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2296 			return cpu;
2297 	} else {
2298 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2299 	}
2300 
2301 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2302 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2303 	if (unlikely(new_cpu >= nr_cpu_ids)) {
2304 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2305 		if (unlikely(new_cpu >= nr_cpu_ids))
2306 			return cpu;
2307 	}
2308 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2309 
2310 	return new_cpu;
2311 }
2312 
2313 static void __queue_work(int cpu, struct workqueue_struct *wq,
2314 			 struct work_struct *work)
2315 {
2316 	struct pool_workqueue *pwq;
2317 	struct worker_pool *last_pool, *pool;
2318 	unsigned int work_flags;
2319 	unsigned int req_cpu = cpu;
2320 
2321 	/*
2322 	 * While a work item is PENDING && off queue, a task trying to
2323 	 * steal the PENDING will busy-loop waiting for it to either get
2324 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2325 	 * happen with IRQ disabled.
2326 	 */
2327 	lockdep_assert_irqs_disabled();
2328 
2329 	/*
2330 	 * For a draining wq, only works from the same workqueue are
2331 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2332 	 * queues a new work item to a wq after destroy_workqueue(wq).
2333 	 */
2334 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2335 		     WARN_ON_ONCE(!is_chained_work(wq))))
2336 		return;
2337 	rcu_read_lock();
2338 retry:
2339 	/* pwq which will be used unless @work is executing elsewhere */
2340 	if (req_cpu == WORK_CPU_UNBOUND) {
2341 		if (wq->flags & WQ_UNBOUND)
2342 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2343 		else
2344 			cpu = raw_smp_processor_id();
2345 	}
2346 
2347 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2348 	pool = pwq->pool;
2349 
2350 	/*
2351 	 * If @work was previously on a different pool, it might still be
2352 	 * running there, in which case the work needs to be queued on that
2353 	 * pool to guarantee non-reentrancy.
2354 	 */
2355 	last_pool = get_work_pool(work);
2356 	if (last_pool && last_pool != pool) {
2357 		struct worker *worker;
2358 
2359 		raw_spin_lock(&last_pool->lock);
2360 
2361 		worker = find_worker_executing_work(last_pool, work);
2362 
2363 		if (worker && worker->current_pwq->wq == wq) {
2364 			pwq = worker->current_pwq;
2365 			pool = pwq->pool;
2366 			WARN_ON_ONCE(pool != last_pool);
2367 		} else {
2368 			/* meh... not running there, queue here */
2369 			raw_spin_unlock(&last_pool->lock);
2370 			raw_spin_lock(&pool->lock);
2371 		}
2372 	} else {
2373 		raw_spin_lock(&pool->lock);
2374 	}
2375 
2376 	/*
2377 	 * pwq is determined and locked. For unbound pools, we could have raced
2378 	 * with pwq release and it could already be dead. If its refcnt is zero,
2379 	 * repeat pwq selection. Note that unbound pwqs never die without
2380 	 * another pwq replacing it in cpu_pwq or while work items are executing
2381 	 * on it, so the retrying is guaranteed to make forward-progress.
2382 	 */
2383 	if (unlikely(!pwq->refcnt)) {
2384 		if (wq->flags & WQ_UNBOUND) {
2385 			raw_spin_unlock(&pool->lock);
2386 			cpu_relax();
2387 			goto retry;
2388 		}
2389 		/* oops */
2390 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2391 			  wq->name, cpu);
2392 	}
2393 
2394 	/* pwq determined, queue */
2395 	trace_workqueue_queue_work(req_cpu, pwq, work);
2396 
2397 	if (WARN_ON(!list_empty(&work->entry)))
2398 		goto out;
2399 
2400 	pwq->nr_in_flight[pwq->work_color]++;
2401 	work_flags = work_color_to_flags(pwq->work_color);
2402 
2403 	/*
2404 	 * Limit the number of concurrently active work items to max_active.
2405 	 * @work must also queue behind existing inactive work items to maintain
2406 	 * ordering when max_active changes. See wq_adjust_max_active().
2407 	 */
2408 	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2409 		if (list_empty(&pool->worklist))
2410 			pool->watchdog_ts = jiffies;
2411 
2412 		trace_workqueue_activate_work(work);
2413 		insert_work(pwq, work, &pool->worklist, work_flags);
2414 		kick_pool(pool);
2415 	} else {
2416 		work_flags |= WORK_STRUCT_INACTIVE;
2417 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2418 	}
2419 
2420 out:
2421 	raw_spin_unlock(&pool->lock);
2422 	rcu_read_unlock();
2423 }
2424 
2425 /**
2426  * queue_work_on - queue work on specific cpu
2427  * @cpu: CPU number to execute work on
2428  * @wq: workqueue to use
2429  * @work: work to queue
2430  *
2431  * We queue the work to a specific CPU, the caller must ensure it
2432  * can't go away.  Callers that fail to ensure that the specified
2433  * CPU cannot go away will execute on a randomly chosen CPU.
2434  * But note well that callers specifying a CPU that never has been
2435  * online will get a splat.
2436  *
2437  * Return: %false if @work was already on a queue, %true otherwise.
2438  */
2439 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2440 		   struct work_struct *work)
2441 {
2442 	bool ret = false;
2443 	unsigned long irq_flags;
2444 
2445 	local_irq_save(irq_flags);
2446 
2447 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2448 		__queue_work(cpu, wq, work);
2449 		ret = true;
2450 	}
2451 
2452 	local_irq_restore(irq_flags);
2453 	return ret;
2454 }
2455 EXPORT_SYMBOL(queue_work_on);
2456 
2457 /**
2458  * select_numa_node_cpu - Select a CPU based on NUMA node
2459  * @node: NUMA node ID that we want to select a CPU from
2460  *
2461  * This function will attempt to find a "random" cpu available on a given
2462  * node. If there are no CPUs available on the given node it will return
2463  * WORK_CPU_UNBOUND indicating that we should just schedule to any
2464  * available CPU if we need to schedule this work.
2465  */
2466 static int select_numa_node_cpu(int node)
2467 {
2468 	int cpu;
2469 
2470 	/* Delay binding to CPU if node is not valid or online */
2471 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2472 		return WORK_CPU_UNBOUND;
2473 
2474 	/* Use local node/cpu if we are already there */
2475 	cpu = raw_smp_processor_id();
2476 	if (node == cpu_to_node(cpu))
2477 		return cpu;
2478 
2479 	/* Use "random" otherwise know as "first" online CPU of node */
2480 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2481 
2482 	/* If CPU is valid return that, otherwise just defer */
2483 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2484 }
2485 
2486 /**
2487  * queue_work_node - queue work on a "random" cpu for a given NUMA node
2488  * @node: NUMA node that we are targeting the work for
2489  * @wq: workqueue to use
2490  * @work: work to queue
2491  *
2492  * We queue the work to a "random" CPU within a given NUMA node. The basic
2493  * idea here is to provide a way to somehow associate work with a given
2494  * NUMA node.
2495  *
2496  * This function will only make a best effort attempt at getting this onto
2497  * the right NUMA node. If no node is requested or the requested node is
2498  * offline then we just fall back to standard queue_work behavior.
2499  *
2500  * Currently the "random" CPU ends up being the first available CPU in the
2501  * intersection of cpu_online_mask and the cpumask of the node, unless we
2502  * are running on the node. In that case we just use the current CPU.
2503  *
2504  * Return: %false if @work was already on a queue, %true otherwise.
2505  */
2506 bool queue_work_node(int node, struct workqueue_struct *wq,
2507 		     struct work_struct *work)
2508 {
2509 	unsigned long irq_flags;
2510 	bool ret = false;
2511 
2512 	/*
2513 	 * This current implementation is specific to unbound workqueues.
2514 	 * Specifically we only return the first available CPU for a given
2515 	 * node instead of cycling through individual CPUs within the node.
2516 	 *
2517 	 * If this is used with a per-cpu workqueue then the logic in
2518 	 * workqueue_select_cpu_near would need to be updated to allow for
2519 	 * some round robin type logic.
2520 	 */
2521 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2522 
2523 	local_irq_save(irq_flags);
2524 
2525 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2526 		int cpu = select_numa_node_cpu(node);
2527 
2528 		__queue_work(cpu, wq, work);
2529 		ret = true;
2530 	}
2531 
2532 	local_irq_restore(irq_flags);
2533 	return ret;
2534 }
2535 EXPORT_SYMBOL_GPL(queue_work_node);
2536 
2537 void delayed_work_timer_fn(struct timer_list *t)
2538 {
2539 	struct delayed_work *dwork = from_timer(dwork, t, timer);
2540 
2541 	/* should have been called from irqsafe timer with irq already off */
2542 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2543 }
2544 EXPORT_SYMBOL(delayed_work_timer_fn);
2545 
2546 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2547 				struct delayed_work *dwork, unsigned long delay)
2548 {
2549 	struct timer_list *timer = &dwork->timer;
2550 	struct work_struct *work = &dwork->work;
2551 
2552 	WARN_ON_ONCE(!wq);
2553 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2554 	WARN_ON_ONCE(timer_pending(timer));
2555 	WARN_ON_ONCE(!list_empty(&work->entry));
2556 
2557 	/*
2558 	 * If @delay is 0, queue @dwork->work immediately.  This is for
2559 	 * both optimization and correctness.  The earliest @timer can
2560 	 * expire is on the closest next tick and delayed_work users depend
2561 	 * on that there's no such delay when @delay is 0.
2562 	 */
2563 	if (!delay) {
2564 		__queue_work(cpu, wq, &dwork->work);
2565 		return;
2566 	}
2567 
2568 	dwork->wq = wq;
2569 	dwork->cpu = cpu;
2570 	timer->expires = jiffies + delay;
2571 
2572 	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2573 		/* If the current cpu is a housekeeping cpu, use it. */
2574 		cpu = smp_processor_id();
2575 		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2576 			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2577 		add_timer_on(timer, cpu);
2578 	} else {
2579 		if (likely(cpu == WORK_CPU_UNBOUND))
2580 			add_timer_global(timer);
2581 		else
2582 			add_timer_on(timer, cpu);
2583 	}
2584 }
2585 
2586 /**
2587  * queue_delayed_work_on - queue work on specific CPU after delay
2588  * @cpu: CPU number to execute work on
2589  * @wq: workqueue to use
2590  * @dwork: work to queue
2591  * @delay: number of jiffies to wait before queueing
2592  *
2593  * Return: %false if @work was already on a queue, %true otherwise.  If
2594  * @delay is zero and @dwork is idle, it will be scheduled for immediate
2595  * execution.
2596  */
2597 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2598 			   struct delayed_work *dwork, unsigned long delay)
2599 {
2600 	struct work_struct *work = &dwork->work;
2601 	bool ret = false;
2602 	unsigned long irq_flags;
2603 
2604 	/* read the comment in __queue_work() */
2605 	local_irq_save(irq_flags);
2606 
2607 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2608 		__queue_delayed_work(cpu, wq, dwork, delay);
2609 		ret = true;
2610 	}
2611 
2612 	local_irq_restore(irq_flags);
2613 	return ret;
2614 }
2615 EXPORT_SYMBOL(queue_delayed_work_on);
2616 
2617 /**
2618  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2619  * @cpu: CPU number to execute work on
2620  * @wq: workqueue to use
2621  * @dwork: work to queue
2622  * @delay: number of jiffies to wait before queueing
2623  *
2624  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2625  * modify @dwork's timer so that it expires after @delay.  If @delay is
2626  * zero, @work is guaranteed to be scheduled immediately regardless of its
2627  * current state.
2628  *
2629  * Return: %false if @dwork was idle and queued, %true if @dwork was
2630  * pending and its timer was modified.
2631  *
2632  * This function is safe to call from any context including IRQ handler.
2633  * See try_to_grab_pending() for details.
2634  */
2635 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2636 			 struct delayed_work *dwork, unsigned long delay)
2637 {
2638 	unsigned long irq_flags;
2639 	int ret;
2640 
2641 	do {
2642 		ret = try_to_grab_pending(&dwork->work, WORK_CANCEL_DELAYED,
2643 					  &irq_flags);
2644 	} while (unlikely(ret == -EAGAIN));
2645 
2646 	if (likely(ret >= 0)) {
2647 		__queue_delayed_work(cpu, wq, dwork, delay);
2648 		local_irq_restore(irq_flags);
2649 	}
2650 
2651 	/* -ENOENT from try_to_grab_pending() becomes %true */
2652 	return ret;
2653 }
2654 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2655 
2656 static void rcu_work_rcufn(struct rcu_head *rcu)
2657 {
2658 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2659 
2660 	/* read the comment in __queue_work() */
2661 	local_irq_disable();
2662 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2663 	local_irq_enable();
2664 }
2665 
2666 /**
2667  * queue_rcu_work - queue work after a RCU grace period
2668  * @wq: workqueue to use
2669  * @rwork: work to queue
2670  *
2671  * Return: %false if @rwork was already pending, %true otherwise.  Note
2672  * that a full RCU grace period is guaranteed only after a %true return.
2673  * While @rwork is guaranteed to be executed after a %false return, the
2674  * execution may happen before a full RCU grace period has passed.
2675  */
2676 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2677 {
2678 	struct work_struct *work = &rwork->work;
2679 
2680 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
2681 		rwork->wq = wq;
2682 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2683 		return true;
2684 	}
2685 
2686 	return false;
2687 }
2688 EXPORT_SYMBOL(queue_rcu_work);
2689 
2690 static struct worker *alloc_worker(int node)
2691 {
2692 	struct worker *worker;
2693 
2694 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2695 	if (worker) {
2696 		INIT_LIST_HEAD(&worker->entry);
2697 		INIT_LIST_HEAD(&worker->scheduled);
2698 		INIT_LIST_HEAD(&worker->node);
2699 		/* on creation a worker is in !idle && prep state */
2700 		worker->flags = WORKER_PREP;
2701 	}
2702 	return worker;
2703 }
2704 
2705 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2706 {
2707 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2708 		return pool->attrs->__pod_cpumask;
2709 	else
2710 		return pool->attrs->cpumask;
2711 }
2712 
2713 /**
2714  * worker_attach_to_pool() - attach a worker to a pool
2715  * @worker: worker to be attached
2716  * @pool: the target pool
2717  *
2718  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2719  * cpu-binding of @worker are kept coordinated with the pool across
2720  * cpu-[un]hotplugs.
2721  */
2722 static void worker_attach_to_pool(struct worker *worker,
2723 				  struct worker_pool *pool)
2724 {
2725 	mutex_lock(&wq_pool_attach_mutex);
2726 
2727 	/*
2728 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2729 	 * across this function. See the comments above the flag definition for
2730 	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2731 	 */
2732 	if (pool->flags & POOL_DISASSOCIATED) {
2733 		worker->flags |= WORKER_UNBOUND;
2734 	} else {
2735 		WARN_ON_ONCE(pool->flags & POOL_BH);
2736 		kthread_set_per_cpu(worker->task, pool->cpu);
2737 	}
2738 
2739 	if (worker->rescue_wq)
2740 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2741 
2742 	list_add_tail(&worker->node, &pool->workers);
2743 	worker->pool = pool;
2744 
2745 	mutex_unlock(&wq_pool_attach_mutex);
2746 }
2747 
2748 /**
2749  * worker_detach_from_pool() - detach a worker from its pool
2750  * @worker: worker which is attached to its pool
2751  *
2752  * Undo the attaching which had been done in worker_attach_to_pool().  The
2753  * caller worker shouldn't access to the pool after detached except it has
2754  * other reference to the pool.
2755  */
2756 static void worker_detach_from_pool(struct worker *worker)
2757 {
2758 	struct worker_pool *pool = worker->pool;
2759 	struct completion *detach_completion = NULL;
2760 
2761 	/* there is one permanent BH worker per CPU which should never detach */
2762 	WARN_ON_ONCE(pool->flags & POOL_BH);
2763 
2764 	mutex_lock(&wq_pool_attach_mutex);
2765 
2766 	kthread_set_per_cpu(worker->task, -1);
2767 	list_del(&worker->node);
2768 	worker->pool = NULL;
2769 
2770 	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2771 		detach_completion = pool->detach_completion;
2772 	mutex_unlock(&wq_pool_attach_mutex);
2773 
2774 	/* clear leftover flags without pool->lock after it is detached */
2775 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2776 
2777 	if (detach_completion)
2778 		complete(detach_completion);
2779 }
2780 
2781 /**
2782  * create_worker - create a new workqueue worker
2783  * @pool: pool the new worker will belong to
2784  *
2785  * Create and start a new worker which is attached to @pool.
2786  *
2787  * CONTEXT:
2788  * Might sleep.  Does GFP_KERNEL allocations.
2789  *
2790  * Return:
2791  * Pointer to the newly created worker.
2792  */
2793 static struct worker *create_worker(struct worker_pool *pool)
2794 {
2795 	struct worker *worker;
2796 	int id;
2797 	char id_buf[23];
2798 
2799 	/* ID is needed to determine kthread name */
2800 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2801 	if (id < 0) {
2802 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2803 			    ERR_PTR(id));
2804 		return NULL;
2805 	}
2806 
2807 	worker = alloc_worker(pool->node);
2808 	if (!worker) {
2809 		pr_err_once("workqueue: Failed to allocate a worker\n");
2810 		goto fail;
2811 	}
2812 
2813 	worker->id = id;
2814 
2815 	if (!(pool->flags & POOL_BH)) {
2816 		if (pool->cpu >= 0)
2817 			snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2818 				 pool->attrs->nice < 0  ? "H" : "");
2819 		else
2820 			snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2821 
2822 		worker->task = kthread_create_on_node(worker_thread, worker,
2823 					pool->node, "kworker/%s", id_buf);
2824 		if (IS_ERR(worker->task)) {
2825 			if (PTR_ERR(worker->task) == -EINTR) {
2826 				pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2827 				       id_buf);
2828 			} else {
2829 				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2830 					    worker->task);
2831 			}
2832 			goto fail;
2833 		}
2834 
2835 		set_user_nice(worker->task, pool->attrs->nice);
2836 		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2837 	}
2838 
2839 	/* successful, attach the worker to the pool */
2840 	worker_attach_to_pool(worker, pool);
2841 
2842 	/* start the newly created worker */
2843 	raw_spin_lock_irq(&pool->lock);
2844 
2845 	worker->pool->nr_workers++;
2846 	worker_enter_idle(worker);
2847 
2848 	/*
2849 	 * @worker is waiting on a completion in kthread() and will trigger hung
2850 	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2851 	 * wake it up explicitly.
2852 	 */
2853 	if (worker->task)
2854 		wake_up_process(worker->task);
2855 
2856 	raw_spin_unlock_irq(&pool->lock);
2857 
2858 	return worker;
2859 
2860 fail:
2861 	ida_free(&pool->worker_ida, id);
2862 	kfree(worker);
2863 	return NULL;
2864 }
2865 
2866 static void unbind_worker(struct worker *worker)
2867 {
2868 	lockdep_assert_held(&wq_pool_attach_mutex);
2869 
2870 	kthread_set_per_cpu(worker->task, -1);
2871 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2872 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2873 	else
2874 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2875 }
2876 
2877 static void wake_dying_workers(struct list_head *cull_list)
2878 {
2879 	struct worker *worker, *tmp;
2880 
2881 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2882 		list_del_init(&worker->entry);
2883 		unbind_worker(worker);
2884 		/*
2885 		 * If the worker was somehow already running, then it had to be
2886 		 * in pool->idle_list when set_worker_dying() happened or we
2887 		 * wouldn't have gotten here.
2888 		 *
2889 		 * Thus, the worker must either have observed the WORKER_DIE
2890 		 * flag, or have set its state to TASK_IDLE. Either way, the
2891 		 * below will be observed by the worker and is safe to do
2892 		 * outside of pool->lock.
2893 		 */
2894 		wake_up_process(worker->task);
2895 	}
2896 }
2897 
2898 /**
2899  * set_worker_dying - Tag a worker for destruction
2900  * @worker: worker to be destroyed
2901  * @list: transfer worker away from its pool->idle_list and into list
2902  *
2903  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2904  * should be idle.
2905  *
2906  * CONTEXT:
2907  * raw_spin_lock_irq(pool->lock).
2908  */
2909 static void set_worker_dying(struct worker *worker, struct list_head *list)
2910 {
2911 	struct worker_pool *pool = worker->pool;
2912 
2913 	lockdep_assert_held(&pool->lock);
2914 	lockdep_assert_held(&wq_pool_attach_mutex);
2915 
2916 	/* sanity check frenzy */
2917 	if (WARN_ON(worker->current_work) ||
2918 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2919 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2920 		return;
2921 
2922 	pool->nr_workers--;
2923 	pool->nr_idle--;
2924 
2925 	worker->flags |= WORKER_DIE;
2926 
2927 	list_move(&worker->entry, list);
2928 	list_move(&worker->node, &pool->dying_workers);
2929 }
2930 
2931 /**
2932  * idle_worker_timeout - check if some idle workers can now be deleted.
2933  * @t: The pool's idle_timer that just expired
2934  *
2935  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2936  * worker_leave_idle(), as a worker flicking between idle and active while its
2937  * pool is at the too_many_workers() tipping point would cause too much timer
2938  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2939  * it expire and re-evaluate things from there.
2940  */
2941 static void idle_worker_timeout(struct timer_list *t)
2942 {
2943 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2944 	bool do_cull = false;
2945 
2946 	if (work_pending(&pool->idle_cull_work))
2947 		return;
2948 
2949 	raw_spin_lock_irq(&pool->lock);
2950 
2951 	if (too_many_workers(pool)) {
2952 		struct worker *worker;
2953 		unsigned long expires;
2954 
2955 		/* idle_list is kept in LIFO order, check the last one */
2956 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2957 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2958 		do_cull = !time_before(jiffies, expires);
2959 
2960 		if (!do_cull)
2961 			mod_timer(&pool->idle_timer, expires);
2962 	}
2963 	raw_spin_unlock_irq(&pool->lock);
2964 
2965 	if (do_cull)
2966 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2967 }
2968 
2969 /**
2970  * idle_cull_fn - cull workers that have been idle for too long.
2971  * @work: the pool's work for handling these idle workers
2972  *
2973  * This goes through a pool's idle workers and gets rid of those that have been
2974  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2975  *
2976  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2977  * culled, so this also resets worker affinity. This requires a sleepable
2978  * context, hence the split between timer callback and work item.
2979  */
2980 static void idle_cull_fn(struct work_struct *work)
2981 {
2982 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2983 	LIST_HEAD(cull_list);
2984 
2985 	/*
2986 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2987 	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2988 	 * path. This is required as a previously-preempted worker could run after
2989 	 * set_worker_dying() has happened but before wake_dying_workers() did.
2990 	 */
2991 	mutex_lock(&wq_pool_attach_mutex);
2992 	raw_spin_lock_irq(&pool->lock);
2993 
2994 	while (too_many_workers(pool)) {
2995 		struct worker *worker;
2996 		unsigned long expires;
2997 
2998 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2999 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
3000 
3001 		if (time_before(jiffies, expires)) {
3002 			mod_timer(&pool->idle_timer, expires);
3003 			break;
3004 		}
3005 
3006 		set_worker_dying(worker, &cull_list);
3007 	}
3008 
3009 	raw_spin_unlock_irq(&pool->lock);
3010 	wake_dying_workers(&cull_list);
3011 	mutex_unlock(&wq_pool_attach_mutex);
3012 }
3013 
3014 static void send_mayday(struct work_struct *work)
3015 {
3016 	struct pool_workqueue *pwq = get_work_pwq(work);
3017 	struct workqueue_struct *wq = pwq->wq;
3018 
3019 	lockdep_assert_held(&wq_mayday_lock);
3020 
3021 	if (!wq->rescuer)
3022 		return;
3023 
3024 	/* mayday mayday mayday */
3025 	if (list_empty(&pwq->mayday_node)) {
3026 		/*
3027 		 * If @pwq is for an unbound wq, its base ref may be put at
3028 		 * any time due to an attribute change.  Pin @pwq until the
3029 		 * rescuer is done with it.
3030 		 */
3031 		get_pwq(pwq);
3032 		list_add_tail(&pwq->mayday_node, &wq->maydays);
3033 		wake_up_process(wq->rescuer->task);
3034 		pwq->stats[PWQ_STAT_MAYDAY]++;
3035 	}
3036 }
3037 
3038 static void pool_mayday_timeout(struct timer_list *t)
3039 {
3040 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
3041 	struct work_struct *work;
3042 
3043 	raw_spin_lock_irq(&pool->lock);
3044 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
3045 
3046 	if (need_to_create_worker(pool)) {
3047 		/*
3048 		 * We've been trying to create a new worker but
3049 		 * haven't been successful.  We might be hitting an
3050 		 * allocation deadlock.  Send distress signals to
3051 		 * rescuers.
3052 		 */
3053 		list_for_each_entry(work, &pool->worklist, entry)
3054 			send_mayday(work);
3055 	}
3056 
3057 	raw_spin_unlock(&wq_mayday_lock);
3058 	raw_spin_unlock_irq(&pool->lock);
3059 
3060 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3061 }
3062 
3063 /**
3064  * maybe_create_worker - create a new worker if necessary
3065  * @pool: pool to create a new worker for
3066  *
3067  * Create a new worker for @pool if necessary.  @pool is guaranteed to
3068  * have at least one idle worker on return from this function.  If
3069  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3070  * sent to all rescuers with works scheduled on @pool to resolve
3071  * possible allocation deadlock.
3072  *
3073  * On return, need_to_create_worker() is guaranteed to be %false and
3074  * may_start_working() %true.
3075  *
3076  * LOCKING:
3077  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3078  * multiple times.  Does GFP_KERNEL allocations.  Called only from
3079  * manager.
3080  */
3081 static void maybe_create_worker(struct worker_pool *pool)
3082 __releases(&pool->lock)
3083 __acquires(&pool->lock)
3084 {
3085 restart:
3086 	raw_spin_unlock_irq(&pool->lock);
3087 
3088 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3089 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3090 
3091 	while (true) {
3092 		if (create_worker(pool) || !need_to_create_worker(pool))
3093 			break;
3094 
3095 		schedule_timeout_interruptible(CREATE_COOLDOWN);
3096 
3097 		if (!need_to_create_worker(pool))
3098 			break;
3099 	}
3100 
3101 	del_timer_sync(&pool->mayday_timer);
3102 	raw_spin_lock_irq(&pool->lock);
3103 	/*
3104 	 * This is necessary even after a new worker was just successfully
3105 	 * created as @pool->lock was dropped and the new worker might have
3106 	 * already become busy.
3107 	 */
3108 	if (need_to_create_worker(pool))
3109 		goto restart;
3110 }
3111 
3112 /**
3113  * manage_workers - manage worker pool
3114  * @worker: self
3115  *
3116  * Assume the manager role and manage the worker pool @worker belongs
3117  * to.  At any given time, there can be only zero or one manager per
3118  * pool.  The exclusion is handled automatically by this function.
3119  *
3120  * The caller can safely start processing works on false return.  On
3121  * true return, it's guaranteed that need_to_create_worker() is false
3122  * and may_start_working() is true.
3123  *
3124  * CONTEXT:
3125  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3126  * multiple times.  Does GFP_KERNEL allocations.
3127  *
3128  * Return:
3129  * %false if the pool doesn't need management and the caller can safely
3130  * start processing works, %true if management function was performed and
3131  * the conditions that the caller verified before calling the function may
3132  * no longer be true.
3133  */
3134 static bool manage_workers(struct worker *worker)
3135 {
3136 	struct worker_pool *pool = worker->pool;
3137 
3138 	if (pool->flags & POOL_MANAGER_ACTIVE)
3139 		return false;
3140 
3141 	pool->flags |= POOL_MANAGER_ACTIVE;
3142 	pool->manager = worker;
3143 
3144 	maybe_create_worker(pool);
3145 
3146 	pool->manager = NULL;
3147 	pool->flags &= ~POOL_MANAGER_ACTIVE;
3148 	rcuwait_wake_up(&manager_wait);
3149 	return true;
3150 }
3151 
3152 /**
3153  * process_one_work - process single work
3154  * @worker: self
3155  * @work: work to process
3156  *
3157  * Process @work.  This function contains all the logics necessary to
3158  * process a single work including synchronization against and
3159  * interaction with other workers on the same cpu, queueing and
3160  * flushing.  As long as context requirement is met, any worker can
3161  * call this function to process a work.
3162  *
3163  * CONTEXT:
3164  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3165  */
3166 static void process_one_work(struct worker *worker, struct work_struct *work)
3167 __releases(&pool->lock)
3168 __acquires(&pool->lock)
3169 {
3170 	struct pool_workqueue *pwq = get_work_pwq(work);
3171 	struct worker_pool *pool = worker->pool;
3172 	unsigned long work_data;
3173 	int lockdep_start_depth, rcu_start_depth;
3174 	bool bh_draining = pool->flags & POOL_BH_DRAINING;
3175 #ifdef CONFIG_LOCKDEP
3176 	/*
3177 	 * It is permissible to free the struct work_struct from
3178 	 * inside the function that is called from it, this we need to
3179 	 * take into account for lockdep too.  To avoid bogus "held
3180 	 * lock freed" warnings as well as problems when looking into
3181 	 * work->lockdep_map, make a copy and use that here.
3182 	 */
3183 	struct lockdep_map lockdep_map;
3184 
3185 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3186 #endif
3187 	/* ensure we're on the correct CPU */
3188 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3189 		     raw_smp_processor_id() != pool->cpu);
3190 
3191 	/* claim and dequeue */
3192 	debug_work_deactivate(work);
3193 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3194 	worker->current_work = work;
3195 	worker->current_func = work->func;
3196 	worker->current_pwq = pwq;
3197 	if (worker->task)
3198 		worker->current_at = worker->task->se.sum_exec_runtime;
3199 	work_data = *work_data_bits(work);
3200 	worker->current_color = get_work_color(work_data);
3201 
3202 	/*
3203 	 * Record wq name for cmdline and debug reporting, may get
3204 	 * overridden through set_worker_desc().
3205 	 */
3206 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3207 
3208 	list_del_init(&work->entry);
3209 
3210 	/*
3211 	 * CPU intensive works don't participate in concurrency management.
3212 	 * They're the scheduler's responsibility.  This takes @worker out
3213 	 * of concurrency management and the next code block will chain
3214 	 * execution of the pending work items.
3215 	 */
3216 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3217 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3218 
3219 	/*
3220 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3221 	 * since nr_running would always be >= 1 at this point. This is used to
3222 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3223 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3224 	 */
3225 	kick_pool(pool);
3226 
3227 	/*
3228 	 * Record the last pool and clear PENDING which should be the last
3229 	 * update to @work.  Also, do this inside @pool->lock so that
3230 	 * PENDING and queued state changes happen together while IRQ is
3231 	 * disabled.
3232 	 */
3233 	set_work_pool_and_clear_pending(work, pool->id, 0);
3234 
3235 	pwq->stats[PWQ_STAT_STARTED]++;
3236 	raw_spin_unlock_irq(&pool->lock);
3237 
3238 	rcu_start_depth = rcu_preempt_depth();
3239 	lockdep_start_depth = lockdep_depth(current);
3240 	/* see drain_dead_softirq_workfn() */
3241 	if (!bh_draining)
3242 		lock_map_acquire(&pwq->wq->lockdep_map);
3243 	lock_map_acquire(&lockdep_map);
3244 	/*
3245 	 * Strictly speaking we should mark the invariant state without holding
3246 	 * any locks, that is, before these two lock_map_acquire()'s.
3247 	 *
3248 	 * However, that would result in:
3249 	 *
3250 	 *   A(W1)
3251 	 *   WFC(C)
3252 	 *		A(W1)
3253 	 *		C(C)
3254 	 *
3255 	 * Which would create W1->C->W1 dependencies, even though there is no
3256 	 * actual deadlock possible. There are two solutions, using a
3257 	 * read-recursive acquire on the work(queue) 'locks', but this will then
3258 	 * hit the lockdep limitation on recursive locks, or simply discard
3259 	 * these locks.
3260 	 *
3261 	 * AFAICT there is no possible deadlock scenario between the
3262 	 * flush_work() and complete() primitives (except for single-threaded
3263 	 * workqueues), so hiding them isn't a problem.
3264 	 */
3265 	lockdep_invariant_state(true);
3266 	trace_workqueue_execute_start(work);
3267 	worker->current_func(work);
3268 	/*
3269 	 * While we must be careful to not use "work" after this, the trace
3270 	 * point will only record its address.
3271 	 */
3272 	trace_workqueue_execute_end(work, worker->current_func);
3273 	pwq->stats[PWQ_STAT_COMPLETED]++;
3274 	lock_map_release(&lockdep_map);
3275 	if (!bh_draining)
3276 		lock_map_release(&pwq->wq->lockdep_map);
3277 
3278 	if (unlikely((worker->task && in_atomic()) ||
3279 		     lockdep_depth(current) != lockdep_start_depth ||
3280 		     rcu_preempt_depth() != rcu_start_depth)) {
3281 		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3282 		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3283 		       current->comm, task_pid_nr(current), preempt_count(),
3284 		       lockdep_start_depth, lockdep_depth(current),
3285 		       rcu_start_depth, rcu_preempt_depth(),
3286 		       worker->current_func);
3287 		debug_show_held_locks(current);
3288 		dump_stack();
3289 	}
3290 
3291 	/*
3292 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3293 	 * kernels, where a requeueing work item waiting for something to
3294 	 * happen could deadlock with stop_machine as such work item could
3295 	 * indefinitely requeue itself while all other CPUs are trapped in
3296 	 * stop_machine. At the same time, report a quiescent RCU state so
3297 	 * the same condition doesn't freeze RCU.
3298 	 */
3299 	if (worker->task)
3300 		cond_resched();
3301 
3302 	raw_spin_lock_irq(&pool->lock);
3303 
3304 	/*
3305 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3306 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3307 	 * wq_cpu_intensive_thresh_us. Clear it.
3308 	 */
3309 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3310 
3311 	/* tag the worker for identification in schedule() */
3312 	worker->last_func = worker->current_func;
3313 
3314 	/* we're done with it, release */
3315 	hash_del(&worker->hentry);
3316 	worker->current_work = NULL;
3317 	worker->current_func = NULL;
3318 	worker->current_pwq = NULL;
3319 	worker->current_color = INT_MAX;
3320 
3321 	/* must be the last step, see the function comment */
3322 	pwq_dec_nr_in_flight(pwq, work_data);
3323 }
3324 
3325 /**
3326  * process_scheduled_works - process scheduled works
3327  * @worker: self
3328  *
3329  * Process all scheduled works.  Please note that the scheduled list
3330  * may change while processing a work, so this function repeatedly
3331  * fetches a work from the top and executes it.
3332  *
3333  * CONTEXT:
3334  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3335  * multiple times.
3336  */
3337 static void process_scheduled_works(struct worker *worker)
3338 {
3339 	struct work_struct *work;
3340 	bool first = true;
3341 
3342 	while ((work = list_first_entry_or_null(&worker->scheduled,
3343 						struct work_struct, entry))) {
3344 		if (first) {
3345 			worker->pool->watchdog_ts = jiffies;
3346 			first = false;
3347 		}
3348 		process_one_work(worker, work);
3349 	}
3350 }
3351 
3352 static void set_pf_worker(bool val)
3353 {
3354 	mutex_lock(&wq_pool_attach_mutex);
3355 	if (val)
3356 		current->flags |= PF_WQ_WORKER;
3357 	else
3358 		current->flags &= ~PF_WQ_WORKER;
3359 	mutex_unlock(&wq_pool_attach_mutex);
3360 }
3361 
3362 /**
3363  * worker_thread - the worker thread function
3364  * @__worker: self
3365  *
3366  * The worker thread function.  All workers belong to a worker_pool -
3367  * either a per-cpu one or dynamic unbound one.  These workers process all
3368  * work items regardless of their specific target workqueue.  The only
3369  * exception is work items which belong to workqueues with a rescuer which
3370  * will be explained in rescuer_thread().
3371  *
3372  * Return: 0
3373  */
3374 static int worker_thread(void *__worker)
3375 {
3376 	struct worker *worker = __worker;
3377 	struct worker_pool *pool = worker->pool;
3378 
3379 	/* tell the scheduler that this is a workqueue worker */
3380 	set_pf_worker(true);
3381 woke_up:
3382 	raw_spin_lock_irq(&pool->lock);
3383 
3384 	/* am I supposed to die? */
3385 	if (unlikely(worker->flags & WORKER_DIE)) {
3386 		raw_spin_unlock_irq(&pool->lock);
3387 		set_pf_worker(false);
3388 
3389 		set_task_comm(worker->task, "kworker/dying");
3390 		ida_free(&pool->worker_ida, worker->id);
3391 		worker_detach_from_pool(worker);
3392 		WARN_ON_ONCE(!list_empty(&worker->entry));
3393 		kfree(worker);
3394 		return 0;
3395 	}
3396 
3397 	worker_leave_idle(worker);
3398 recheck:
3399 	/* no more worker necessary? */
3400 	if (!need_more_worker(pool))
3401 		goto sleep;
3402 
3403 	/* do we need to manage? */
3404 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3405 		goto recheck;
3406 
3407 	/*
3408 	 * ->scheduled list can only be filled while a worker is
3409 	 * preparing to process a work or actually processing it.
3410 	 * Make sure nobody diddled with it while I was sleeping.
3411 	 */
3412 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3413 
3414 	/*
3415 	 * Finish PREP stage.  We're guaranteed to have at least one idle
3416 	 * worker or that someone else has already assumed the manager
3417 	 * role.  This is where @worker starts participating in concurrency
3418 	 * management if applicable and concurrency management is restored
3419 	 * after being rebound.  See rebind_workers() for details.
3420 	 */
3421 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3422 
3423 	do {
3424 		struct work_struct *work =
3425 			list_first_entry(&pool->worklist,
3426 					 struct work_struct, entry);
3427 
3428 		if (assign_work(work, worker, NULL))
3429 			process_scheduled_works(worker);
3430 	} while (keep_working(pool));
3431 
3432 	worker_set_flags(worker, WORKER_PREP);
3433 sleep:
3434 	/*
3435 	 * pool->lock is held and there's no work to process and no need to
3436 	 * manage, sleep.  Workers are woken up only while holding
3437 	 * pool->lock or from local cpu, so setting the current state
3438 	 * before releasing pool->lock is enough to prevent losing any
3439 	 * event.
3440 	 */
3441 	worker_enter_idle(worker);
3442 	__set_current_state(TASK_IDLE);
3443 	raw_spin_unlock_irq(&pool->lock);
3444 	schedule();
3445 	goto woke_up;
3446 }
3447 
3448 /**
3449  * rescuer_thread - the rescuer thread function
3450  * @__rescuer: self
3451  *
3452  * Workqueue rescuer thread function.  There's one rescuer for each
3453  * workqueue which has WQ_MEM_RECLAIM set.
3454  *
3455  * Regular work processing on a pool may block trying to create a new
3456  * worker which uses GFP_KERNEL allocation which has slight chance of
3457  * developing into deadlock if some works currently on the same queue
3458  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3459  * the problem rescuer solves.
3460  *
3461  * When such condition is possible, the pool summons rescuers of all
3462  * workqueues which have works queued on the pool and let them process
3463  * those works so that forward progress can be guaranteed.
3464  *
3465  * This should happen rarely.
3466  *
3467  * Return: 0
3468  */
3469 static int rescuer_thread(void *__rescuer)
3470 {
3471 	struct worker *rescuer = __rescuer;
3472 	struct workqueue_struct *wq = rescuer->rescue_wq;
3473 	bool should_stop;
3474 
3475 	set_user_nice(current, RESCUER_NICE_LEVEL);
3476 
3477 	/*
3478 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3479 	 * doesn't participate in concurrency management.
3480 	 */
3481 	set_pf_worker(true);
3482 repeat:
3483 	set_current_state(TASK_IDLE);
3484 
3485 	/*
3486 	 * By the time the rescuer is requested to stop, the workqueue
3487 	 * shouldn't have any work pending, but @wq->maydays may still have
3488 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3489 	 * all the work items before the rescuer got to them.  Go through
3490 	 * @wq->maydays processing before acting on should_stop so that the
3491 	 * list is always empty on exit.
3492 	 */
3493 	should_stop = kthread_should_stop();
3494 
3495 	/* see whether any pwq is asking for help */
3496 	raw_spin_lock_irq(&wq_mayday_lock);
3497 
3498 	while (!list_empty(&wq->maydays)) {
3499 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3500 					struct pool_workqueue, mayday_node);
3501 		struct worker_pool *pool = pwq->pool;
3502 		struct work_struct *work, *n;
3503 
3504 		__set_current_state(TASK_RUNNING);
3505 		list_del_init(&pwq->mayday_node);
3506 
3507 		raw_spin_unlock_irq(&wq_mayday_lock);
3508 
3509 		worker_attach_to_pool(rescuer, pool);
3510 
3511 		raw_spin_lock_irq(&pool->lock);
3512 
3513 		/*
3514 		 * Slurp in all works issued via this workqueue and
3515 		 * process'em.
3516 		 */
3517 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3518 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3519 			if (get_work_pwq(work) == pwq &&
3520 			    assign_work(work, rescuer, &n))
3521 				pwq->stats[PWQ_STAT_RESCUED]++;
3522 		}
3523 
3524 		if (!list_empty(&rescuer->scheduled)) {
3525 			process_scheduled_works(rescuer);
3526 
3527 			/*
3528 			 * The above execution of rescued work items could
3529 			 * have created more to rescue through
3530 			 * pwq_activate_first_inactive() or chained
3531 			 * queueing.  Let's put @pwq back on mayday list so
3532 			 * that such back-to-back work items, which may be
3533 			 * being used to relieve memory pressure, don't
3534 			 * incur MAYDAY_INTERVAL delay inbetween.
3535 			 */
3536 			if (pwq->nr_active && need_to_create_worker(pool)) {
3537 				raw_spin_lock(&wq_mayday_lock);
3538 				/*
3539 				 * Queue iff we aren't racing destruction
3540 				 * and somebody else hasn't queued it already.
3541 				 */
3542 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3543 					get_pwq(pwq);
3544 					list_add_tail(&pwq->mayday_node, &wq->maydays);
3545 				}
3546 				raw_spin_unlock(&wq_mayday_lock);
3547 			}
3548 		}
3549 
3550 		/*
3551 		 * Put the reference grabbed by send_mayday().  @pool won't
3552 		 * go away while we're still attached to it.
3553 		 */
3554 		put_pwq(pwq);
3555 
3556 		/*
3557 		 * Leave this pool. Notify regular workers; otherwise, we end up
3558 		 * with 0 concurrency and stalling the execution.
3559 		 */
3560 		kick_pool(pool);
3561 
3562 		raw_spin_unlock_irq(&pool->lock);
3563 
3564 		worker_detach_from_pool(rescuer);
3565 
3566 		raw_spin_lock_irq(&wq_mayday_lock);
3567 	}
3568 
3569 	raw_spin_unlock_irq(&wq_mayday_lock);
3570 
3571 	if (should_stop) {
3572 		__set_current_state(TASK_RUNNING);
3573 		set_pf_worker(false);
3574 		return 0;
3575 	}
3576 
3577 	/* rescuers should never participate in concurrency management */
3578 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3579 	schedule();
3580 	goto repeat;
3581 }
3582 
3583 static void bh_worker(struct worker *worker)
3584 {
3585 	struct worker_pool *pool = worker->pool;
3586 	int nr_restarts = BH_WORKER_RESTARTS;
3587 	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3588 
3589 	raw_spin_lock_irq(&pool->lock);
3590 	worker_leave_idle(worker);
3591 
3592 	/*
3593 	 * This function follows the structure of worker_thread(). See there for
3594 	 * explanations on each step.
3595 	 */
3596 	if (!need_more_worker(pool))
3597 		goto done;
3598 
3599 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3600 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3601 
3602 	do {
3603 		struct work_struct *work =
3604 			list_first_entry(&pool->worklist,
3605 					 struct work_struct, entry);
3606 
3607 		if (assign_work(work, worker, NULL))
3608 			process_scheduled_works(worker);
3609 	} while (keep_working(pool) &&
3610 		 --nr_restarts && time_before(jiffies, end));
3611 
3612 	worker_set_flags(worker, WORKER_PREP);
3613 done:
3614 	worker_enter_idle(worker);
3615 	kick_pool(pool);
3616 	raw_spin_unlock_irq(&pool->lock);
3617 }
3618 
3619 /*
3620  * TODO: Convert all tasklet users to workqueue and use softirq directly.
3621  *
3622  * This is currently called from tasklet[_hi]action() and thus is also called
3623  * whenever there are tasklets to run. Let's do an early exit if there's nothing
3624  * queued. Once conversion from tasklet is complete, the need_more_worker() test
3625  * can be dropped.
3626  *
3627  * After full conversion, we'll add worker->softirq_action, directly use the
3628  * softirq action and obtain the worker pointer from the softirq_action pointer.
3629  */
3630 void workqueue_softirq_action(bool highpri)
3631 {
3632 	struct worker_pool *pool =
3633 		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3634 	if (need_more_worker(pool))
3635 		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3636 }
3637 
3638 struct wq_drain_dead_softirq_work {
3639 	struct work_struct	work;
3640 	struct worker_pool	*pool;
3641 	struct completion	done;
3642 };
3643 
3644 static void drain_dead_softirq_workfn(struct work_struct *work)
3645 {
3646 	struct wq_drain_dead_softirq_work *dead_work =
3647 		container_of(work, struct wq_drain_dead_softirq_work, work);
3648 	struct worker_pool *pool = dead_work->pool;
3649 	bool repeat;
3650 
3651 	/*
3652 	 * @pool's CPU is dead and we want to execute its still pending work
3653 	 * items from this BH work item which is running on a different CPU. As
3654 	 * its CPU is dead, @pool can't be kicked and, as work execution path
3655 	 * will be nested, a lockdep annotation needs to be suppressed. Mark
3656 	 * @pool with %POOL_BH_DRAINING for the special treatments.
3657 	 */
3658 	raw_spin_lock_irq(&pool->lock);
3659 	pool->flags |= POOL_BH_DRAINING;
3660 	raw_spin_unlock_irq(&pool->lock);
3661 
3662 	bh_worker(list_first_entry(&pool->workers, struct worker, node));
3663 
3664 	raw_spin_lock_irq(&pool->lock);
3665 	pool->flags &= ~POOL_BH_DRAINING;
3666 	repeat = need_more_worker(pool);
3667 	raw_spin_unlock_irq(&pool->lock);
3668 
3669 	/*
3670 	 * bh_worker() might hit consecutive execution limit and bail. If there
3671 	 * still are pending work items, reschedule self and return so that we
3672 	 * don't hog this CPU's BH.
3673 	 */
3674 	if (repeat) {
3675 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3676 			queue_work(system_bh_highpri_wq, work);
3677 		else
3678 			queue_work(system_bh_wq, work);
3679 	} else {
3680 		complete(&dead_work->done);
3681 	}
3682 }
3683 
3684 /*
3685  * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3686  * possible to allocate dead_work per CPU and avoid flushing. However, then we
3687  * have to worry about draining overlapping with CPU coming back online or
3688  * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3689  * on). Let's keep it simple and drain them synchronously. These are BH work
3690  * items which shouldn't be requeued on the same pool. Shouldn't take long.
3691  */
3692 void workqueue_softirq_dead(unsigned int cpu)
3693 {
3694 	int i;
3695 
3696 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3697 		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3698 		struct wq_drain_dead_softirq_work dead_work;
3699 
3700 		if (!need_more_worker(pool))
3701 			continue;
3702 
3703 		INIT_WORK(&dead_work.work, drain_dead_softirq_workfn);
3704 		dead_work.pool = pool;
3705 		init_completion(&dead_work.done);
3706 
3707 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3708 			queue_work(system_bh_highpri_wq, &dead_work.work);
3709 		else
3710 			queue_work(system_bh_wq, &dead_work.work);
3711 
3712 		wait_for_completion(&dead_work.done);
3713 	}
3714 }
3715 
3716 /**
3717  * check_flush_dependency - check for flush dependency sanity
3718  * @target_wq: workqueue being flushed
3719  * @target_work: work item being flushed (NULL for workqueue flushes)
3720  *
3721  * %current is trying to flush the whole @target_wq or @target_work on it.
3722  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3723  * reclaiming memory or running on a workqueue which doesn't have
3724  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3725  * a deadlock.
3726  */
3727 static void check_flush_dependency(struct workqueue_struct *target_wq,
3728 				   struct work_struct *target_work)
3729 {
3730 	work_func_t target_func = target_work ? target_work->func : NULL;
3731 	struct worker *worker;
3732 
3733 	if (target_wq->flags & WQ_MEM_RECLAIM)
3734 		return;
3735 
3736 	worker = current_wq_worker();
3737 
3738 	WARN_ONCE(current->flags & PF_MEMALLOC,
3739 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3740 		  current->pid, current->comm, target_wq->name, target_func);
3741 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3742 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3743 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3744 		  worker->current_pwq->wq->name, worker->current_func,
3745 		  target_wq->name, target_func);
3746 }
3747 
3748 struct wq_barrier {
3749 	struct work_struct	work;
3750 	struct completion	done;
3751 	struct task_struct	*task;	/* purely informational */
3752 };
3753 
3754 static void wq_barrier_func(struct work_struct *work)
3755 {
3756 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3757 	complete(&barr->done);
3758 }
3759 
3760 /**
3761  * insert_wq_barrier - insert a barrier work
3762  * @pwq: pwq to insert barrier into
3763  * @barr: wq_barrier to insert
3764  * @target: target work to attach @barr to
3765  * @worker: worker currently executing @target, NULL if @target is not executing
3766  *
3767  * @barr is linked to @target such that @barr is completed only after
3768  * @target finishes execution.  Please note that the ordering
3769  * guarantee is observed only with respect to @target and on the local
3770  * cpu.
3771  *
3772  * Currently, a queued barrier can't be canceled.  This is because
3773  * try_to_grab_pending() can't determine whether the work to be
3774  * grabbed is at the head of the queue and thus can't clear LINKED
3775  * flag of the previous work while there must be a valid next work
3776  * after a work with LINKED flag set.
3777  *
3778  * Note that when @worker is non-NULL, @target may be modified
3779  * underneath us, so we can't reliably determine pwq from @target.
3780  *
3781  * CONTEXT:
3782  * raw_spin_lock_irq(pool->lock).
3783  */
3784 static void insert_wq_barrier(struct pool_workqueue *pwq,
3785 			      struct wq_barrier *barr,
3786 			      struct work_struct *target, struct worker *worker)
3787 {
3788 	static __maybe_unused struct lock_class_key bh_key, thr_key;
3789 	unsigned int work_flags = 0;
3790 	unsigned int work_color;
3791 	struct list_head *head;
3792 
3793 	/*
3794 	 * debugobject calls are safe here even with pool->lock locked
3795 	 * as we know for sure that this will not trigger any of the
3796 	 * checks and call back into the fixup functions where we
3797 	 * might deadlock.
3798 	 *
3799 	 * BH and threaded workqueues need separate lockdep keys to avoid
3800 	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3801 	 * usage".
3802 	 */
3803 	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3804 			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3805 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3806 
3807 	init_completion_map(&barr->done, &target->lockdep_map);
3808 
3809 	barr->task = current;
3810 
3811 	/* The barrier work item does not participate in nr_active. */
3812 	work_flags |= WORK_STRUCT_INACTIVE;
3813 
3814 	/*
3815 	 * If @target is currently being executed, schedule the
3816 	 * barrier to the worker; otherwise, put it after @target.
3817 	 */
3818 	if (worker) {
3819 		head = worker->scheduled.next;
3820 		work_color = worker->current_color;
3821 	} else {
3822 		unsigned long *bits = work_data_bits(target);
3823 
3824 		head = target->entry.next;
3825 		/* there can already be other linked works, inherit and set */
3826 		work_flags |= *bits & WORK_STRUCT_LINKED;
3827 		work_color = get_work_color(*bits);
3828 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3829 	}
3830 
3831 	pwq->nr_in_flight[work_color]++;
3832 	work_flags |= work_color_to_flags(work_color);
3833 
3834 	insert_work(pwq, &barr->work, head, work_flags);
3835 }
3836 
3837 /**
3838  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3839  * @wq: workqueue being flushed
3840  * @flush_color: new flush color, < 0 for no-op
3841  * @work_color: new work color, < 0 for no-op
3842  *
3843  * Prepare pwqs for workqueue flushing.
3844  *
3845  * If @flush_color is non-negative, flush_color on all pwqs should be
3846  * -1.  If no pwq has in-flight commands at the specified color, all
3847  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3848  * has in flight commands, its pwq->flush_color is set to
3849  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3850  * wakeup logic is armed and %true is returned.
3851  *
3852  * The caller should have initialized @wq->first_flusher prior to
3853  * calling this function with non-negative @flush_color.  If
3854  * @flush_color is negative, no flush color update is done and %false
3855  * is returned.
3856  *
3857  * If @work_color is non-negative, all pwqs should have the same
3858  * work_color which is previous to @work_color and all will be
3859  * advanced to @work_color.
3860  *
3861  * CONTEXT:
3862  * mutex_lock(wq->mutex).
3863  *
3864  * Return:
3865  * %true if @flush_color >= 0 and there's something to flush.  %false
3866  * otherwise.
3867  */
3868 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3869 				      int flush_color, int work_color)
3870 {
3871 	bool wait = false;
3872 	struct pool_workqueue *pwq;
3873 
3874 	if (flush_color >= 0) {
3875 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3876 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3877 	}
3878 
3879 	for_each_pwq(pwq, wq) {
3880 		struct worker_pool *pool = pwq->pool;
3881 
3882 		raw_spin_lock_irq(&pool->lock);
3883 
3884 		if (flush_color >= 0) {
3885 			WARN_ON_ONCE(pwq->flush_color != -1);
3886 
3887 			if (pwq->nr_in_flight[flush_color]) {
3888 				pwq->flush_color = flush_color;
3889 				atomic_inc(&wq->nr_pwqs_to_flush);
3890 				wait = true;
3891 			}
3892 		}
3893 
3894 		if (work_color >= 0) {
3895 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3896 			pwq->work_color = work_color;
3897 		}
3898 
3899 		raw_spin_unlock_irq(&pool->lock);
3900 	}
3901 
3902 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3903 		complete(&wq->first_flusher->done);
3904 
3905 	return wait;
3906 }
3907 
3908 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3909 {
3910 #ifdef CONFIG_LOCKDEP
3911 	if (wq->flags & WQ_BH)
3912 		local_bh_disable();
3913 
3914 	lock_map_acquire(&wq->lockdep_map);
3915 	lock_map_release(&wq->lockdep_map);
3916 
3917 	if (wq->flags & WQ_BH)
3918 		local_bh_enable();
3919 #endif
3920 }
3921 
3922 static void touch_work_lockdep_map(struct work_struct *work,
3923 				   struct workqueue_struct *wq)
3924 {
3925 #ifdef CONFIG_LOCKDEP
3926 	if (wq->flags & WQ_BH)
3927 		local_bh_disable();
3928 
3929 	lock_map_acquire(&work->lockdep_map);
3930 	lock_map_release(&work->lockdep_map);
3931 
3932 	if (wq->flags & WQ_BH)
3933 		local_bh_enable();
3934 #endif
3935 }
3936 
3937 /**
3938  * __flush_workqueue - ensure that any scheduled work has run to completion.
3939  * @wq: workqueue to flush
3940  *
3941  * This function sleeps until all work items which were queued on entry
3942  * have finished execution, but it is not livelocked by new incoming ones.
3943  */
3944 void __flush_workqueue(struct workqueue_struct *wq)
3945 {
3946 	struct wq_flusher this_flusher = {
3947 		.list = LIST_HEAD_INIT(this_flusher.list),
3948 		.flush_color = -1,
3949 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3950 	};
3951 	int next_color;
3952 
3953 	if (WARN_ON(!wq_online))
3954 		return;
3955 
3956 	touch_wq_lockdep_map(wq);
3957 
3958 	mutex_lock(&wq->mutex);
3959 
3960 	/*
3961 	 * Start-to-wait phase
3962 	 */
3963 	next_color = work_next_color(wq->work_color);
3964 
3965 	if (next_color != wq->flush_color) {
3966 		/*
3967 		 * Color space is not full.  The current work_color
3968 		 * becomes our flush_color and work_color is advanced
3969 		 * by one.
3970 		 */
3971 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3972 		this_flusher.flush_color = wq->work_color;
3973 		wq->work_color = next_color;
3974 
3975 		if (!wq->first_flusher) {
3976 			/* no flush in progress, become the first flusher */
3977 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3978 
3979 			wq->first_flusher = &this_flusher;
3980 
3981 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3982 						       wq->work_color)) {
3983 				/* nothing to flush, done */
3984 				wq->flush_color = next_color;
3985 				wq->first_flusher = NULL;
3986 				goto out_unlock;
3987 			}
3988 		} else {
3989 			/* wait in queue */
3990 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3991 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3992 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3993 		}
3994 	} else {
3995 		/*
3996 		 * Oops, color space is full, wait on overflow queue.
3997 		 * The next flush completion will assign us
3998 		 * flush_color and transfer to flusher_queue.
3999 		 */
4000 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
4001 	}
4002 
4003 	check_flush_dependency(wq, NULL);
4004 
4005 	mutex_unlock(&wq->mutex);
4006 
4007 	wait_for_completion(&this_flusher.done);
4008 
4009 	/*
4010 	 * Wake-up-and-cascade phase
4011 	 *
4012 	 * First flushers are responsible for cascading flushes and
4013 	 * handling overflow.  Non-first flushers can simply return.
4014 	 */
4015 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
4016 		return;
4017 
4018 	mutex_lock(&wq->mutex);
4019 
4020 	/* we might have raced, check again with mutex held */
4021 	if (wq->first_flusher != &this_flusher)
4022 		goto out_unlock;
4023 
4024 	WRITE_ONCE(wq->first_flusher, NULL);
4025 
4026 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
4027 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
4028 
4029 	while (true) {
4030 		struct wq_flusher *next, *tmp;
4031 
4032 		/* complete all the flushers sharing the current flush color */
4033 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
4034 			if (next->flush_color != wq->flush_color)
4035 				break;
4036 			list_del_init(&next->list);
4037 			complete(&next->done);
4038 		}
4039 
4040 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4041 			     wq->flush_color != work_next_color(wq->work_color));
4042 
4043 		/* this flush_color is finished, advance by one */
4044 		wq->flush_color = work_next_color(wq->flush_color);
4045 
4046 		/* one color has been freed, handle overflow queue */
4047 		if (!list_empty(&wq->flusher_overflow)) {
4048 			/*
4049 			 * Assign the same color to all overflowed
4050 			 * flushers, advance work_color and append to
4051 			 * flusher_queue.  This is the start-to-wait
4052 			 * phase for these overflowed flushers.
4053 			 */
4054 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
4055 				tmp->flush_color = wq->work_color;
4056 
4057 			wq->work_color = work_next_color(wq->work_color);
4058 
4059 			list_splice_tail_init(&wq->flusher_overflow,
4060 					      &wq->flusher_queue);
4061 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4062 		}
4063 
4064 		if (list_empty(&wq->flusher_queue)) {
4065 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
4066 			break;
4067 		}
4068 
4069 		/*
4070 		 * Need to flush more colors.  Make the next flusher
4071 		 * the new first flusher and arm pwqs.
4072 		 */
4073 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
4074 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
4075 
4076 		list_del_init(&next->list);
4077 		wq->first_flusher = next;
4078 
4079 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4080 			break;
4081 
4082 		/*
4083 		 * Meh... this color is already done, clear first
4084 		 * flusher and repeat cascading.
4085 		 */
4086 		wq->first_flusher = NULL;
4087 	}
4088 
4089 out_unlock:
4090 	mutex_unlock(&wq->mutex);
4091 }
4092 EXPORT_SYMBOL(__flush_workqueue);
4093 
4094 /**
4095  * drain_workqueue - drain a workqueue
4096  * @wq: workqueue to drain
4097  *
4098  * Wait until the workqueue becomes empty.  While draining is in progress,
4099  * only chain queueing is allowed.  IOW, only currently pending or running
4100  * work items on @wq can queue further work items on it.  @wq is flushed
4101  * repeatedly until it becomes empty.  The number of flushing is determined
4102  * by the depth of chaining and should be relatively short.  Whine if it
4103  * takes too long.
4104  */
4105 void drain_workqueue(struct workqueue_struct *wq)
4106 {
4107 	unsigned int flush_cnt = 0;
4108 	struct pool_workqueue *pwq;
4109 
4110 	/*
4111 	 * __queue_work() needs to test whether there are drainers, is much
4112 	 * hotter than drain_workqueue() and already looks at @wq->flags.
4113 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4114 	 */
4115 	mutex_lock(&wq->mutex);
4116 	if (!wq->nr_drainers++)
4117 		wq->flags |= __WQ_DRAINING;
4118 	mutex_unlock(&wq->mutex);
4119 reflush:
4120 	__flush_workqueue(wq);
4121 
4122 	mutex_lock(&wq->mutex);
4123 
4124 	for_each_pwq(pwq, wq) {
4125 		bool drained;
4126 
4127 		raw_spin_lock_irq(&pwq->pool->lock);
4128 		drained = pwq_is_empty(pwq);
4129 		raw_spin_unlock_irq(&pwq->pool->lock);
4130 
4131 		if (drained)
4132 			continue;
4133 
4134 		if (++flush_cnt == 10 ||
4135 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4136 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4137 				wq->name, __func__, flush_cnt);
4138 
4139 		mutex_unlock(&wq->mutex);
4140 		goto reflush;
4141 	}
4142 
4143 	if (!--wq->nr_drainers)
4144 		wq->flags &= ~__WQ_DRAINING;
4145 	mutex_unlock(&wq->mutex);
4146 }
4147 EXPORT_SYMBOL_GPL(drain_workqueue);
4148 
4149 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4150 			     bool from_cancel)
4151 {
4152 	struct worker *worker = NULL;
4153 	struct worker_pool *pool;
4154 	struct pool_workqueue *pwq;
4155 	struct workqueue_struct *wq;
4156 
4157 	might_sleep();
4158 
4159 	rcu_read_lock();
4160 	pool = get_work_pool(work);
4161 	if (!pool) {
4162 		rcu_read_unlock();
4163 		return false;
4164 	}
4165 
4166 	raw_spin_lock_irq(&pool->lock);
4167 	/* see the comment in try_to_grab_pending() with the same code */
4168 	pwq = get_work_pwq(work);
4169 	if (pwq) {
4170 		if (unlikely(pwq->pool != pool))
4171 			goto already_gone;
4172 	} else {
4173 		worker = find_worker_executing_work(pool, work);
4174 		if (!worker)
4175 			goto already_gone;
4176 		pwq = worker->current_pwq;
4177 	}
4178 
4179 	wq = pwq->wq;
4180 	check_flush_dependency(wq, work);
4181 
4182 	insert_wq_barrier(pwq, barr, work, worker);
4183 	raw_spin_unlock_irq(&pool->lock);
4184 
4185 	touch_work_lockdep_map(work, wq);
4186 
4187 	/*
4188 	 * Force a lock recursion deadlock when using flush_work() inside a
4189 	 * single-threaded or rescuer equipped workqueue.
4190 	 *
4191 	 * For single threaded workqueues the deadlock happens when the work
4192 	 * is after the work issuing the flush_work(). For rescuer equipped
4193 	 * workqueues the deadlock happens when the rescuer stalls, blocking
4194 	 * forward progress.
4195 	 */
4196 	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4197 		touch_wq_lockdep_map(wq);
4198 
4199 	rcu_read_unlock();
4200 	return true;
4201 already_gone:
4202 	raw_spin_unlock_irq(&pool->lock);
4203 	rcu_read_unlock();
4204 	return false;
4205 }
4206 
4207 static bool __flush_work(struct work_struct *work, bool from_cancel)
4208 {
4209 	struct wq_barrier barr;
4210 
4211 	if (WARN_ON(!wq_online))
4212 		return false;
4213 
4214 	if (WARN_ON(!work->func))
4215 		return false;
4216 
4217 	if (start_flush_work(work, &barr, from_cancel)) {
4218 		wait_for_completion(&barr.done);
4219 		destroy_work_on_stack(&barr.work);
4220 		return true;
4221 	} else {
4222 		return false;
4223 	}
4224 }
4225 
4226 /**
4227  * flush_work - wait for a work to finish executing the last queueing instance
4228  * @work: the work to flush
4229  *
4230  * Wait until @work has finished execution.  @work is guaranteed to be idle
4231  * on return if it hasn't been requeued since flush started.
4232  *
4233  * Return:
4234  * %true if flush_work() waited for the work to finish execution,
4235  * %false if it was already idle.
4236  */
4237 bool flush_work(struct work_struct *work)
4238 {
4239 	return __flush_work(work, false);
4240 }
4241 EXPORT_SYMBOL_GPL(flush_work);
4242 
4243 /**
4244  * flush_delayed_work - wait for a dwork to finish executing the last queueing
4245  * @dwork: the delayed work to flush
4246  *
4247  * Delayed timer is cancelled and the pending work is queued for
4248  * immediate execution.  Like flush_work(), this function only
4249  * considers the last queueing instance of @dwork.
4250  *
4251  * Return:
4252  * %true if flush_work() waited for the work to finish execution,
4253  * %false if it was already idle.
4254  */
4255 bool flush_delayed_work(struct delayed_work *dwork)
4256 {
4257 	local_irq_disable();
4258 	if (del_timer_sync(&dwork->timer))
4259 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4260 	local_irq_enable();
4261 	return flush_work(&dwork->work);
4262 }
4263 EXPORT_SYMBOL(flush_delayed_work);
4264 
4265 /**
4266  * flush_rcu_work - wait for a rwork to finish executing the last queueing
4267  * @rwork: the rcu work to flush
4268  *
4269  * Return:
4270  * %true if flush_rcu_work() waited for the work to finish execution,
4271  * %false if it was already idle.
4272  */
4273 bool flush_rcu_work(struct rcu_work *rwork)
4274 {
4275 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4276 		rcu_barrier();
4277 		flush_work(&rwork->work);
4278 		return true;
4279 	} else {
4280 		return flush_work(&rwork->work);
4281 	}
4282 }
4283 EXPORT_SYMBOL(flush_rcu_work);
4284 
4285 static bool __cancel_work(struct work_struct *work, u32 cflags)
4286 {
4287 	unsigned long irq_flags;
4288 	int ret;
4289 
4290 	do {
4291 		ret = try_to_grab_pending(work, cflags, &irq_flags);
4292 	} while (unlikely(ret == -EAGAIN));
4293 
4294 	if (unlikely(ret < 0))
4295 		return false;
4296 
4297 	set_work_pool_and_clear_pending(work, get_work_pool_id(work), 0);
4298 	local_irq_restore(irq_flags);
4299 	return ret;
4300 }
4301 
4302 static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4303 {
4304 	unsigned long irq_flags;
4305 	bool ret;
4306 
4307 	/* claim @work and tell other tasks trying to grab @work to back off */
4308 	ret = work_grab_pending(work, cflags, &irq_flags);
4309 	mark_work_canceling(work);
4310 	local_irq_restore(irq_flags);
4311 
4312 	/*
4313 	 * Skip __flush_work() during early boot when we know that @work isn't
4314 	 * executing. This allows canceling during early boot.
4315 	 */
4316 	if (wq_online)
4317 		__flush_work(work, true);
4318 
4319 	/*
4320 	 * smp_mb() at the end of set_work_pool_and_clear_pending() is paired
4321 	 * with prepare_to_wait() above so that either waitqueue_active() is
4322 	 * visible here or !work_is_canceling() is visible there.
4323 	 */
4324 	set_work_pool_and_clear_pending(work, WORK_OFFQ_POOL_NONE, 0);
4325 
4326 	if (waitqueue_active(&wq_cancel_waitq))
4327 		__wake_up(&wq_cancel_waitq, TASK_NORMAL, 1, work);
4328 
4329 	return ret;
4330 }
4331 
4332 /*
4333  * See cancel_delayed_work()
4334  */
4335 bool cancel_work(struct work_struct *work)
4336 {
4337 	return __cancel_work(work, 0);
4338 }
4339 EXPORT_SYMBOL(cancel_work);
4340 
4341 /**
4342  * cancel_work_sync - cancel a work and wait for it to finish
4343  * @work: the work to cancel
4344  *
4345  * Cancel @work and wait for its execution to finish.  This function
4346  * can be used even if the work re-queues itself or migrates to
4347  * another workqueue.  On return from this function, @work is
4348  * guaranteed to be not pending or executing on any CPU.
4349  *
4350  * cancel_work_sync(&delayed_work->work) must not be used for
4351  * delayed_work's.  Use cancel_delayed_work_sync() instead.
4352  *
4353  * The caller must ensure that the workqueue on which @work was last
4354  * queued can't be destroyed before this function returns.
4355  *
4356  * Return:
4357  * %true if @work was pending, %false otherwise.
4358  */
4359 bool cancel_work_sync(struct work_struct *work)
4360 {
4361 	return __cancel_work_sync(work, 0);
4362 }
4363 EXPORT_SYMBOL_GPL(cancel_work_sync);
4364 
4365 /**
4366  * cancel_delayed_work - cancel a delayed work
4367  * @dwork: delayed_work to cancel
4368  *
4369  * Kill off a pending delayed_work.
4370  *
4371  * Return: %true if @dwork was pending and canceled; %false if it wasn't
4372  * pending.
4373  *
4374  * Note:
4375  * The work callback function may still be running on return, unless
4376  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4377  * use cancel_delayed_work_sync() to wait on it.
4378  *
4379  * This function is safe to call from any context including IRQ handler.
4380  */
4381 bool cancel_delayed_work(struct delayed_work *dwork)
4382 {
4383 	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4384 }
4385 EXPORT_SYMBOL(cancel_delayed_work);
4386 
4387 /**
4388  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4389  * @dwork: the delayed work cancel
4390  *
4391  * This is cancel_work_sync() for delayed works.
4392  *
4393  * Return:
4394  * %true if @dwork was pending, %false otherwise.
4395  */
4396 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4397 {
4398 	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4399 }
4400 EXPORT_SYMBOL(cancel_delayed_work_sync);
4401 
4402 /**
4403  * schedule_on_each_cpu - execute a function synchronously on each online CPU
4404  * @func: the function to call
4405  *
4406  * schedule_on_each_cpu() executes @func on each online CPU using the
4407  * system workqueue and blocks until all CPUs have completed.
4408  * schedule_on_each_cpu() is very slow.
4409  *
4410  * Return:
4411  * 0 on success, -errno on failure.
4412  */
4413 int schedule_on_each_cpu(work_func_t func)
4414 {
4415 	int cpu;
4416 	struct work_struct __percpu *works;
4417 
4418 	works = alloc_percpu(struct work_struct);
4419 	if (!works)
4420 		return -ENOMEM;
4421 
4422 	cpus_read_lock();
4423 
4424 	for_each_online_cpu(cpu) {
4425 		struct work_struct *work = per_cpu_ptr(works, cpu);
4426 
4427 		INIT_WORK(work, func);
4428 		schedule_work_on(cpu, work);
4429 	}
4430 
4431 	for_each_online_cpu(cpu)
4432 		flush_work(per_cpu_ptr(works, cpu));
4433 
4434 	cpus_read_unlock();
4435 	free_percpu(works);
4436 	return 0;
4437 }
4438 
4439 /**
4440  * execute_in_process_context - reliably execute the routine with user context
4441  * @fn:		the function to execute
4442  * @ew:		guaranteed storage for the execute work structure (must
4443  *		be available when the work executes)
4444  *
4445  * Executes the function immediately if process context is available,
4446  * otherwise schedules the function for delayed execution.
4447  *
4448  * Return:	0 - function was executed
4449  *		1 - function was scheduled for execution
4450  */
4451 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4452 {
4453 	if (!in_interrupt()) {
4454 		fn(&ew->work);
4455 		return 0;
4456 	}
4457 
4458 	INIT_WORK(&ew->work, fn);
4459 	schedule_work(&ew->work);
4460 
4461 	return 1;
4462 }
4463 EXPORT_SYMBOL_GPL(execute_in_process_context);
4464 
4465 /**
4466  * free_workqueue_attrs - free a workqueue_attrs
4467  * @attrs: workqueue_attrs to free
4468  *
4469  * Undo alloc_workqueue_attrs().
4470  */
4471 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4472 {
4473 	if (attrs) {
4474 		free_cpumask_var(attrs->cpumask);
4475 		free_cpumask_var(attrs->__pod_cpumask);
4476 		kfree(attrs);
4477 	}
4478 }
4479 
4480 /**
4481  * alloc_workqueue_attrs - allocate a workqueue_attrs
4482  *
4483  * Allocate a new workqueue_attrs, initialize with default settings and
4484  * return it.
4485  *
4486  * Return: The allocated new workqueue_attr on success. %NULL on failure.
4487  */
4488 struct workqueue_attrs *alloc_workqueue_attrs(void)
4489 {
4490 	struct workqueue_attrs *attrs;
4491 
4492 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4493 	if (!attrs)
4494 		goto fail;
4495 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4496 		goto fail;
4497 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4498 		goto fail;
4499 
4500 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4501 	attrs->affn_scope = WQ_AFFN_DFL;
4502 	return attrs;
4503 fail:
4504 	free_workqueue_attrs(attrs);
4505 	return NULL;
4506 }
4507 
4508 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4509 				 const struct workqueue_attrs *from)
4510 {
4511 	to->nice = from->nice;
4512 	cpumask_copy(to->cpumask, from->cpumask);
4513 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4514 	to->affn_strict = from->affn_strict;
4515 
4516 	/*
4517 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4518 	 * fields as copying is used for both pool and wq attrs. Instead,
4519 	 * get_unbound_pool() explicitly clears the fields.
4520 	 */
4521 	to->affn_scope = from->affn_scope;
4522 	to->ordered = from->ordered;
4523 }
4524 
4525 /*
4526  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4527  * comments in 'struct workqueue_attrs' definition.
4528  */
4529 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4530 {
4531 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4532 	attrs->ordered = false;
4533 }
4534 
4535 /* hash value of the content of @attr */
4536 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4537 {
4538 	u32 hash = 0;
4539 
4540 	hash = jhash_1word(attrs->nice, hash);
4541 	hash = jhash(cpumask_bits(attrs->cpumask),
4542 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4543 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4544 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4545 	hash = jhash_1word(attrs->affn_strict, hash);
4546 	return hash;
4547 }
4548 
4549 /* content equality test */
4550 static bool wqattrs_equal(const struct workqueue_attrs *a,
4551 			  const struct workqueue_attrs *b)
4552 {
4553 	if (a->nice != b->nice)
4554 		return false;
4555 	if (!cpumask_equal(a->cpumask, b->cpumask))
4556 		return false;
4557 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4558 		return false;
4559 	if (a->affn_strict != b->affn_strict)
4560 		return false;
4561 	return true;
4562 }
4563 
4564 /* Update @attrs with actually available CPUs */
4565 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4566 				      const cpumask_t *unbound_cpumask)
4567 {
4568 	/*
4569 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4570 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4571 	 * @unbound_cpumask.
4572 	 */
4573 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4574 	if (unlikely(cpumask_empty(attrs->cpumask)))
4575 		cpumask_copy(attrs->cpumask, unbound_cpumask);
4576 }
4577 
4578 /* find wq_pod_type to use for @attrs */
4579 static const struct wq_pod_type *
4580 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4581 {
4582 	enum wq_affn_scope scope;
4583 	struct wq_pod_type *pt;
4584 
4585 	/* to synchronize access to wq_affn_dfl */
4586 	lockdep_assert_held(&wq_pool_mutex);
4587 
4588 	if (attrs->affn_scope == WQ_AFFN_DFL)
4589 		scope = wq_affn_dfl;
4590 	else
4591 		scope = attrs->affn_scope;
4592 
4593 	pt = &wq_pod_types[scope];
4594 
4595 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4596 	    likely(pt->nr_pods))
4597 		return pt;
4598 
4599 	/*
4600 	 * Before workqueue_init_topology(), only SYSTEM is available which is
4601 	 * initialized in workqueue_init_early().
4602 	 */
4603 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4604 	BUG_ON(!pt->nr_pods);
4605 	return pt;
4606 }
4607 
4608 /**
4609  * init_worker_pool - initialize a newly zalloc'd worker_pool
4610  * @pool: worker_pool to initialize
4611  *
4612  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4613  *
4614  * Return: 0 on success, -errno on failure.  Even on failure, all fields
4615  * inside @pool proper are initialized and put_unbound_pool() can be called
4616  * on @pool safely to release it.
4617  */
4618 static int init_worker_pool(struct worker_pool *pool)
4619 {
4620 	raw_spin_lock_init(&pool->lock);
4621 	pool->id = -1;
4622 	pool->cpu = -1;
4623 	pool->node = NUMA_NO_NODE;
4624 	pool->flags |= POOL_DISASSOCIATED;
4625 	pool->watchdog_ts = jiffies;
4626 	INIT_LIST_HEAD(&pool->worklist);
4627 	INIT_LIST_HEAD(&pool->idle_list);
4628 	hash_init(pool->busy_hash);
4629 
4630 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4631 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4632 
4633 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4634 
4635 	INIT_LIST_HEAD(&pool->workers);
4636 	INIT_LIST_HEAD(&pool->dying_workers);
4637 
4638 	ida_init(&pool->worker_ida);
4639 	INIT_HLIST_NODE(&pool->hash_node);
4640 	pool->refcnt = 1;
4641 
4642 	/* shouldn't fail above this point */
4643 	pool->attrs = alloc_workqueue_attrs();
4644 	if (!pool->attrs)
4645 		return -ENOMEM;
4646 
4647 	wqattrs_clear_for_pool(pool->attrs);
4648 
4649 	return 0;
4650 }
4651 
4652 #ifdef CONFIG_LOCKDEP
4653 static void wq_init_lockdep(struct workqueue_struct *wq)
4654 {
4655 	char *lock_name;
4656 
4657 	lockdep_register_key(&wq->key);
4658 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4659 	if (!lock_name)
4660 		lock_name = wq->name;
4661 
4662 	wq->lock_name = lock_name;
4663 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
4664 }
4665 
4666 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4667 {
4668 	lockdep_unregister_key(&wq->key);
4669 }
4670 
4671 static void wq_free_lockdep(struct workqueue_struct *wq)
4672 {
4673 	if (wq->lock_name != wq->name)
4674 		kfree(wq->lock_name);
4675 }
4676 #else
4677 static void wq_init_lockdep(struct workqueue_struct *wq)
4678 {
4679 }
4680 
4681 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4682 {
4683 }
4684 
4685 static void wq_free_lockdep(struct workqueue_struct *wq)
4686 {
4687 }
4688 #endif
4689 
4690 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4691 {
4692 	int node;
4693 
4694 	for_each_node(node) {
4695 		kfree(nna_ar[node]);
4696 		nna_ar[node] = NULL;
4697 	}
4698 
4699 	kfree(nna_ar[nr_node_ids]);
4700 	nna_ar[nr_node_ids] = NULL;
4701 }
4702 
4703 static void init_node_nr_active(struct wq_node_nr_active *nna)
4704 {
4705 	nna->max = WQ_DFL_MIN_ACTIVE;
4706 	atomic_set(&nna->nr, 0);
4707 	raw_spin_lock_init(&nna->lock);
4708 	INIT_LIST_HEAD(&nna->pending_pwqs);
4709 }
4710 
4711 /*
4712  * Each node's nr_active counter will be accessed mostly from its own node and
4713  * should be allocated in the node.
4714  */
4715 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4716 {
4717 	struct wq_node_nr_active *nna;
4718 	int node;
4719 
4720 	for_each_node(node) {
4721 		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4722 		if (!nna)
4723 			goto err_free;
4724 		init_node_nr_active(nna);
4725 		nna_ar[node] = nna;
4726 	}
4727 
4728 	/* [nr_node_ids] is used as the fallback */
4729 	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4730 	if (!nna)
4731 		goto err_free;
4732 	init_node_nr_active(nna);
4733 	nna_ar[nr_node_ids] = nna;
4734 
4735 	return 0;
4736 
4737 err_free:
4738 	free_node_nr_active(nna_ar);
4739 	return -ENOMEM;
4740 }
4741 
4742 static void rcu_free_wq(struct rcu_head *rcu)
4743 {
4744 	struct workqueue_struct *wq =
4745 		container_of(rcu, struct workqueue_struct, rcu);
4746 
4747 	if (wq->flags & WQ_UNBOUND)
4748 		free_node_nr_active(wq->node_nr_active);
4749 
4750 	wq_free_lockdep(wq);
4751 	free_percpu(wq->cpu_pwq);
4752 	free_workqueue_attrs(wq->unbound_attrs);
4753 	kfree(wq);
4754 }
4755 
4756 static void rcu_free_pool(struct rcu_head *rcu)
4757 {
4758 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4759 
4760 	ida_destroy(&pool->worker_ida);
4761 	free_workqueue_attrs(pool->attrs);
4762 	kfree(pool);
4763 }
4764 
4765 /**
4766  * put_unbound_pool - put a worker_pool
4767  * @pool: worker_pool to put
4768  *
4769  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4770  * safe manner.  get_unbound_pool() calls this function on its failure path
4771  * and this function should be able to release pools which went through,
4772  * successfully or not, init_worker_pool().
4773  *
4774  * Should be called with wq_pool_mutex held.
4775  */
4776 static void put_unbound_pool(struct worker_pool *pool)
4777 {
4778 	DECLARE_COMPLETION_ONSTACK(detach_completion);
4779 	struct worker *worker;
4780 	LIST_HEAD(cull_list);
4781 
4782 	lockdep_assert_held(&wq_pool_mutex);
4783 
4784 	if (--pool->refcnt)
4785 		return;
4786 
4787 	/* sanity checks */
4788 	if (WARN_ON(!(pool->cpu < 0)) ||
4789 	    WARN_ON(!list_empty(&pool->worklist)))
4790 		return;
4791 
4792 	/* release id and unhash */
4793 	if (pool->id >= 0)
4794 		idr_remove(&worker_pool_idr, pool->id);
4795 	hash_del(&pool->hash_node);
4796 
4797 	/*
4798 	 * Become the manager and destroy all workers.  This prevents
4799 	 * @pool's workers from blocking on attach_mutex.  We're the last
4800 	 * manager and @pool gets freed with the flag set.
4801 	 *
4802 	 * Having a concurrent manager is quite unlikely to happen as we can
4803 	 * only get here with
4804 	 *   pwq->refcnt == pool->refcnt == 0
4805 	 * which implies no work queued to the pool, which implies no worker can
4806 	 * become the manager. However a worker could have taken the role of
4807 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4808 	 * drops pool->lock
4809 	 */
4810 	while (true) {
4811 		rcuwait_wait_event(&manager_wait,
4812 				   !(pool->flags & POOL_MANAGER_ACTIVE),
4813 				   TASK_UNINTERRUPTIBLE);
4814 
4815 		mutex_lock(&wq_pool_attach_mutex);
4816 		raw_spin_lock_irq(&pool->lock);
4817 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4818 			pool->flags |= POOL_MANAGER_ACTIVE;
4819 			break;
4820 		}
4821 		raw_spin_unlock_irq(&pool->lock);
4822 		mutex_unlock(&wq_pool_attach_mutex);
4823 	}
4824 
4825 	while ((worker = first_idle_worker(pool)))
4826 		set_worker_dying(worker, &cull_list);
4827 	WARN_ON(pool->nr_workers || pool->nr_idle);
4828 	raw_spin_unlock_irq(&pool->lock);
4829 
4830 	wake_dying_workers(&cull_list);
4831 
4832 	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
4833 		pool->detach_completion = &detach_completion;
4834 	mutex_unlock(&wq_pool_attach_mutex);
4835 
4836 	if (pool->detach_completion)
4837 		wait_for_completion(pool->detach_completion);
4838 
4839 	/* shut down the timers */
4840 	del_timer_sync(&pool->idle_timer);
4841 	cancel_work_sync(&pool->idle_cull_work);
4842 	del_timer_sync(&pool->mayday_timer);
4843 
4844 	/* RCU protected to allow dereferences from get_work_pool() */
4845 	call_rcu(&pool->rcu, rcu_free_pool);
4846 }
4847 
4848 /**
4849  * get_unbound_pool - get a worker_pool with the specified attributes
4850  * @attrs: the attributes of the worker_pool to get
4851  *
4852  * Obtain a worker_pool which has the same attributes as @attrs, bump the
4853  * reference count and return it.  If there already is a matching
4854  * worker_pool, it will be used; otherwise, this function attempts to
4855  * create a new one.
4856  *
4857  * Should be called with wq_pool_mutex held.
4858  *
4859  * Return: On success, a worker_pool with the same attributes as @attrs.
4860  * On failure, %NULL.
4861  */
4862 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4863 {
4864 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4865 	u32 hash = wqattrs_hash(attrs);
4866 	struct worker_pool *pool;
4867 	int pod, node = NUMA_NO_NODE;
4868 
4869 	lockdep_assert_held(&wq_pool_mutex);
4870 
4871 	/* do we already have a matching pool? */
4872 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4873 		if (wqattrs_equal(pool->attrs, attrs)) {
4874 			pool->refcnt++;
4875 			return pool;
4876 		}
4877 	}
4878 
4879 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4880 	for (pod = 0; pod < pt->nr_pods; pod++) {
4881 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4882 			node = pt->pod_node[pod];
4883 			break;
4884 		}
4885 	}
4886 
4887 	/* nope, create a new one */
4888 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
4889 	if (!pool || init_worker_pool(pool) < 0)
4890 		goto fail;
4891 
4892 	pool->node = node;
4893 	copy_workqueue_attrs(pool->attrs, attrs);
4894 	wqattrs_clear_for_pool(pool->attrs);
4895 
4896 	if (worker_pool_assign_id(pool) < 0)
4897 		goto fail;
4898 
4899 	/* create and start the initial worker */
4900 	if (wq_online && !create_worker(pool))
4901 		goto fail;
4902 
4903 	/* install */
4904 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
4905 
4906 	return pool;
4907 fail:
4908 	if (pool)
4909 		put_unbound_pool(pool);
4910 	return NULL;
4911 }
4912 
4913 static void rcu_free_pwq(struct rcu_head *rcu)
4914 {
4915 	kmem_cache_free(pwq_cache,
4916 			container_of(rcu, struct pool_workqueue, rcu));
4917 }
4918 
4919 /*
4920  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
4921  * refcnt and needs to be destroyed.
4922  */
4923 static void pwq_release_workfn(struct kthread_work *work)
4924 {
4925 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
4926 						  release_work);
4927 	struct workqueue_struct *wq = pwq->wq;
4928 	struct worker_pool *pool = pwq->pool;
4929 	bool is_last = false;
4930 
4931 	/*
4932 	 * When @pwq is not linked, it doesn't hold any reference to the
4933 	 * @wq, and @wq is invalid to access.
4934 	 */
4935 	if (!list_empty(&pwq->pwqs_node)) {
4936 		mutex_lock(&wq->mutex);
4937 		list_del_rcu(&pwq->pwqs_node);
4938 		is_last = list_empty(&wq->pwqs);
4939 
4940 		/*
4941 		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
4942 		 */
4943 		if (!is_last && (wq->flags & __WQ_ORDERED))
4944 			unplug_oldest_pwq(wq);
4945 
4946 		mutex_unlock(&wq->mutex);
4947 	}
4948 
4949 	if (wq->flags & WQ_UNBOUND) {
4950 		mutex_lock(&wq_pool_mutex);
4951 		put_unbound_pool(pool);
4952 		mutex_unlock(&wq_pool_mutex);
4953 	}
4954 
4955 	if (!list_empty(&pwq->pending_node)) {
4956 		struct wq_node_nr_active *nna =
4957 			wq_node_nr_active(pwq->wq, pwq->pool->node);
4958 
4959 		raw_spin_lock_irq(&nna->lock);
4960 		list_del_init(&pwq->pending_node);
4961 		raw_spin_unlock_irq(&nna->lock);
4962 	}
4963 
4964 	call_rcu(&pwq->rcu, rcu_free_pwq);
4965 
4966 	/*
4967 	 * If we're the last pwq going away, @wq is already dead and no one
4968 	 * is gonna access it anymore.  Schedule RCU free.
4969 	 */
4970 	if (is_last) {
4971 		wq_unregister_lockdep(wq);
4972 		call_rcu(&wq->rcu, rcu_free_wq);
4973 	}
4974 }
4975 
4976 /* initialize newly allocated @pwq which is associated with @wq and @pool */
4977 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4978 		     struct worker_pool *pool)
4979 {
4980 	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
4981 
4982 	memset(pwq, 0, sizeof(*pwq));
4983 
4984 	pwq->pool = pool;
4985 	pwq->wq = wq;
4986 	pwq->flush_color = -1;
4987 	pwq->refcnt = 1;
4988 	INIT_LIST_HEAD(&pwq->inactive_works);
4989 	INIT_LIST_HEAD(&pwq->pending_node);
4990 	INIT_LIST_HEAD(&pwq->pwqs_node);
4991 	INIT_LIST_HEAD(&pwq->mayday_node);
4992 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
4993 }
4994 
4995 /* sync @pwq with the current state of its associated wq and link it */
4996 static void link_pwq(struct pool_workqueue *pwq)
4997 {
4998 	struct workqueue_struct *wq = pwq->wq;
4999 
5000 	lockdep_assert_held(&wq->mutex);
5001 
5002 	/* may be called multiple times, ignore if already linked */
5003 	if (!list_empty(&pwq->pwqs_node))
5004 		return;
5005 
5006 	/* set the matching work_color */
5007 	pwq->work_color = wq->work_color;
5008 
5009 	/* link in @pwq */
5010 	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5011 }
5012 
5013 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
5014 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5015 					const struct workqueue_attrs *attrs)
5016 {
5017 	struct worker_pool *pool;
5018 	struct pool_workqueue *pwq;
5019 
5020 	lockdep_assert_held(&wq_pool_mutex);
5021 
5022 	pool = get_unbound_pool(attrs);
5023 	if (!pool)
5024 		return NULL;
5025 
5026 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5027 	if (!pwq) {
5028 		put_unbound_pool(pool);
5029 		return NULL;
5030 	}
5031 
5032 	init_pwq(pwq, wq, pool);
5033 	return pwq;
5034 }
5035 
5036 /**
5037  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5038  * @attrs: the wq_attrs of the default pwq of the target workqueue
5039  * @cpu: the target CPU
5040  * @cpu_going_down: if >= 0, the CPU to consider as offline
5041  *
5042  * Calculate the cpumask a workqueue with @attrs should use on @pod. If
5043  * @cpu_going_down is >= 0, that cpu is considered offline during calculation.
5044  * The result is stored in @attrs->__pod_cpumask.
5045  *
5046  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5047  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5048  * intersection of the possible CPUs of @pod and @attrs->cpumask.
5049  *
5050  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5051  */
5052 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu,
5053 				int cpu_going_down)
5054 {
5055 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5056 	int pod = pt->cpu_pod[cpu];
5057 
5058 	/* does @pod have any online CPUs @attrs wants? */
5059 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5060 	cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask);
5061 	if (cpu_going_down >= 0)
5062 		cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask);
5063 
5064 	if (cpumask_empty(attrs->__pod_cpumask)) {
5065 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5066 		return;
5067 	}
5068 
5069 	/* yeap, return possible CPUs in @pod that @attrs wants */
5070 	cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]);
5071 
5072 	if (cpumask_empty(attrs->__pod_cpumask))
5073 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
5074 				"possible intersect\n");
5075 }
5076 
5077 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
5078 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5079 					int cpu, struct pool_workqueue *pwq)
5080 {
5081 	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5082 	struct pool_workqueue *old_pwq;
5083 
5084 	lockdep_assert_held(&wq_pool_mutex);
5085 	lockdep_assert_held(&wq->mutex);
5086 
5087 	/* link_pwq() can handle duplicate calls */
5088 	link_pwq(pwq);
5089 
5090 	old_pwq = rcu_access_pointer(*slot);
5091 	rcu_assign_pointer(*slot, pwq);
5092 	return old_pwq;
5093 }
5094 
5095 /* context to store the prepared attrs & pwqs before applying */
5096 struct apply_wqattrs_ctx {
5097 	struct workqueue_struct	*wq;		/* target workqueue */
5098 	struct workqueue_attrs	*attrs;		/* attrs to apply */
5099 	struct list_head	list;		/* queued for batching commit */
5100 	struct pool_workqueue	*dfl_pwq;
5101 	struct pool_workqueue	*pwq_tbl[];
5102 };
5103 
5104 /* free the resources after success or abort */
5105 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5106 {
5107 	if (ctx) {
5108 		int cpu;
5109 
5110 		for_each_possible_cpu(cpu)
5111 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5112 		put_pwq_unlocked(ctx->dfl_pwq);
5113 
5114 		free_workqueue_attrs(ctx->attrs);
5115 
5116 		kfree(ctx);
5117 	}
5118 }
5119 
5120 /* allocate the attrs and pwqs for later installation */
5121 static struct apply_wqattrs_ctx *
5122 apply_wqattrs_prepare(struct workqueue_struct *wq,
5123 		      const struct workqueue_attrs *attrs,
5124 		      const cpumask_var_t unbound_cpumask)
5125 {
5126 	struct apply_wqattrs_ctx *ctx;
5127 	struct workqueue_attrs *new_attrs;
5128 	int cpu;
5129 
5130 	lockdep_assert_held(&wq_pool_mutex);
5131 
5132 	if (WARN_ON(attrs->affn_scope < 0 ||
5133 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5134 		return ERR_PTR(-EINVAL);
5135 
5136 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5137 
5138 	new_attrs = alloc_workqueue_attrs();
5139 	if (!ctx || !new_attrs)
5140 		goto out_free;
5141 
5142 	/*
5143 	 * If something goes wrong during CPU up/down, we'll fall back to
5144 	 * the default pwq covering whole @attrs->cpumask.  Always create
5145 	 * it even if we don't use it immediately.
5146 	 */
5147 	copy_workqueue_attrs(new_attrs, attrs);
5148 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5149 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5150 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5151 	if (!ctx->dfl_pwq)
5152 		goto out_free;
5153 
5154 	for_each_possible_cpu(cpu) {
5155 		if (new_attrs->ordered) {
5156 			ctx->dfl_pwq->refcnt++;
5157 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5158 		} else {
5159 			wq_calc_pod_cpumask(new_attrs, cpu, -1);
5160 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5161 			if (!ctx->pwq_tbl[cpu])
5162 				goto out_free;
5163 		}
5164 	}
5165 
5166 	/* save the user configured attrs and sanitize it. */
5167 	copy_workqueue_attrs(new_attrs, attrs);
5168 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5169 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5170 	ctx->attrs = new_attrs;
5171 
5172 	/*
5173 	 * For initialized ordered workqueues, there should only be one pwq
5174 	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5175 	 * of newly queued work items until execution of older work items in
5176 	 * the old pwq's have completed.
5177 	 */
5178 	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5179 		ctx->dfl_pwq->plugged = true;
5180 
5181 	ctx->wq = wq;
5182 	return ctx;
5183 
5184 out_free:
5185 	free_workqueue_attrs(new_attrs);
5186 	apply_wqattrs_cleanup(ctx);
5187 	return ERR_PTR(-ENOMEM);
5188 }
5189 
5190 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
5191 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5192 {
5193 	int cpu;
5194 
5195 	/* all pwqs have been created successfully, let's install'em */
5196 	mutex_lock(&ctx->wq->mutex);
5197 
5198 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5199 
5200 	/* save the previous pwqs and install the new ones */
5201 	for_each_possible_cpu(cpu)
5202 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5203 							ctx->pwq_tbl[cpu]);
5204 	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5205 
5206 	/* update node_nr_active->max */
5207 	wq_update_node_max_active(ctx->wq, -1);
5208 
5209 	/* rescuer needs to respect wq cpumask changes */
5210 	if (ctx->wq->rescuer)
5211 		set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5212 				     unbound_effective_cpumask(ctx->wq));
5213 
5214 	mutex_unlock(&ctx->wq->mutex);
5215 }
5216 
5217 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5218 					const struct workqueue_attrs *attrs)
5219 {
5220 	struct apply_wqattrs_ctx *ctx;
5221 
5222 	/* only unbound workqueues can change attributes */
5223 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5224 		return -EINVAL;
5225 
5226 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5227 	if (IS_ERR(ctx))
5228 		return PTR_ERR(ctx);
5229 
5230 	/* the ctx has been prepared successfully, let's commit it */
5231 	apply_wqattrs_commit(ctx);
5232 	apply_wqattrs_cleanup(ctx);
5233 
5234 	return 0;
5235 }
5236 
5237 /**
5238  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5239  * @wq: the target workqueue
5240  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5241  *
5242  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5243  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5244  * work items are affine to the pod it was issued on. Older pwqs are released as
5245  * in-flight work items finish. Note that a work item which repeatedly requeues
5246  * itself back-to-back will stay on its current pwq.
5247  *
5248  * Performs GFP_KERNEL allocations.
5249  *
5250  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
5251  *
5252  * Return: 0 on success and -errno on failure.
5253  */
5254 int apply_workqueue_attrs(struct workqueue_struct *wq,
5255 			  const struct workqueue_attrs *attrs)
5256 {
5257 	int ret;
5258 
5259 	lockdep_assert_cpus_held();
5260 
5261 	mutex_lock(&wq_pool_mutex);
5262 	ret = apply_workqueue_attrs_locked(wq, attrs);
5263 	mutex_unlock(&wq_pool_mutex);
5264 
5265 	return ret;
5266 }
5267 
5268 /**
5269  * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug
5270  * @wq: the target workqueue
5271  * @cpu: the CPU to update pool association for
5272  * @hotplug_cpu: the CPU coming up or going down
5273  * @online: whether @cpu is coming up or going down
5274  *
5275  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5276  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update pod affinity of
5277  * @wq accordingly.
5278  *
5279  *
5280  * If pod affinity can't be adjusted due to memory allocation failure, it falls
5281  * back to @wq->dfl_pwq which may not be optimal but is always correct.
5282  *
5283  * Note that when the last allowed CPU of a pod goes offline for a workqueue
5284  * with a cpumask spanning multiple pods, the workers which were already
5285  * executing the work items for the workqueue will lose their CPU affinity and
5286  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5287  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5288  * responsibility to flush the work item from CPU_DOWN_PREPARE.
5289  */
5290 static void wq_update_pod(struct workqueue_struct *wq, int cpu,
5291 			  int hotplug_cpu, bool online)
5292 {
5293 	int off_cpu = online ? -1 : hotplug_cpu;
5294 	struct pool_workqueue *old_pwq = NULL, *pwq;
5295 	struct workqueue_attrs *target_attrs;
5296 
5297 	lockdep_assert_held(&wq_pool_mutex);
5298 
5299 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5300 		return;
5301 
5302 	/*
5303 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5304 	 * Let's use a preallocated one.  The following buf is protected by
5305 	 * CPU hotplug exclusion.
5306 	 */
5307 	target_attrs = wq_update_pod_attrs_buf;
5308 
5309 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5310 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5311 
5312 	/* nothing to do if the target cpumask matches the current pwq */
5313 	wq_calc_pod_cpumask(target_attrs, cpu, off_cpu);
5314 	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5315 		return;
5316 
5317 	/* create a new pwq */
5318 	pwq = alloc_unbound_pwq(wq, target_attrs);
5319 	if (!pwq) {
5320 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5321 			wq->name);
5322 		goto use_dfl_pwq;
5323 	}
5324 
5325 	/* Install the new pwq. */
5326 	mutex_lock(&wq->mutex);
5327 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5328 	goto out_unlock;
5329 
5330 use_dfl_pwq:
5331 	mutex_lock(&wq->mutex);
5332 	pwq = unbound_pwq(wq, -1);
5333 	raw_spin_lock_irq(&pwq->pool->lock);
5334 	get_pwq(pwq);
5335 	raw_spin_unlock_irq(&pwq->pool->lock);
5336 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5337 out_unlock:
5338 	mutex_unlock(&wq->mutex);
5339 	put_pwq_unlocked(old_pwq);
5340 }
5341 
5342 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5343 {
5344 	bool highpri = wq->flags & WQ_HIGHPRI;
5345 	int cpu, ret;
5346 
5347 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5348 	if (!wq->cpu_pwq)
5349 		goto enomem;
5350 
5351 	if (!(wq->flags & WQ_UNBOUND)) {
5352 		for_each_possible_cpu(cpu) {
5353 			struct pool_workqueue **pwq_p;
5354 			struct worker_pool __percpu *pools;
5355 			struct worker_pool *pool;
5356 
5357 			if (wq->flags & WQ_BH)
5358 				pools = bh_worker_pools;
5359 			else
5360 				pools = cpu_worker_pools;
5361 
5362 			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5363 			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5364 
5365 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5366 						       pool->node);
5367 			if (!*pwq_p)
5368 				goto enomem;
5369 
5370 			init_pwq(*pwq_p, wq, pool);
5371 
5372 			mutex_lock(&wq->mutex);
5373 			link_pwq(*pwq_p);
5374 			mutex_unlock(&wq->mutex);
5375 		}
5376 		return 0;
5377 	}
5378 
5379 	cpus_read_lock();
5380 	if (wq->flags & __WQ_ORDERED) {
5381 		struct pool_workqueue *dfl_pwq;
5382 
5383 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
5384 		/* there should only be single pwq for ordering guarantee */
5385 		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5386 		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5387 			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5388 		     "ordering guarantee broken for workqueue %s\n", wq->name);
5389 	} else {
5390 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
5391 	}
5392 	cpus_read_unlock();
5393 
5394 	/* for unbound pwq, flush the pwq_release_worker ensures that the
5395 	 * pwq_release_workfn() completes before calling kfree(wq).
5396 	 */
5397 	if (ret)
5398 		kthread_flush_worker(pwq_release_worker);
5399 
5400 	return ret;
5401 
5402 enomem:
5403 	if (wq->cpu_pwq) {
5404 		for_each_possible_cpu(cpu) {
5405 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5406 
5407 			if (pwq)
5408 				kmem_cache_free(pwq_cache, pwq);
5409 		}
5410 		free_percpu(wq->cpu_pwq);
5411 		wq->cpu_pwq = NULL;
5412 	}
5413 	return -ENOMEM;
5414 }
5415 
5416 static int wq_clamp_max_active(int max_active, unsigned int flags,
5417 			       const char *name)
5418 {
5419 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5420 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5421 			max_active, name, 1, WQ_MAX_ACTIVE);
5422 
5423 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5424 }
5425 
5426 /*
5427  * Workqueues which may be used during memory reclaim should have a rescuer
5428  * to guarantee forward progress.
5429  */
5430 static int init_rescuer(struct workqueue_struct *wq)
5431 {
5432 	struct worker *rescuer;
5433 	int ret;
5434 
5435 	if (!(wq->flags & WQ_MEM_RECLAIM))
5436 		return 0;
5437 
5438 	rescuer = alloc_worker(NUMA_NO_NODE);
5439 	if (!rescuer) {
5440 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5441 		       wq->name);
5442 		return -ENOMEM;
5443 	}
5444 
5445 	rescuer->rescue_wq = wq;
5446 	rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name);
5447 	if (IS_ERR(rescuer->task)) {
5448 		ret = PTR_ERR(rescuer->task);
5449 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5450 		       wq->name, ERR_PTR(ret));
5451 		kfree(rescuer);
5452 		return ret;
5453 	}
5454 
5455 	wq->rescuer = rescuer;
5456 	if (wq->flags & WQ_UNBOUND)
5457 		kthread_bind_mask(rescuer->task, wq_unbound_cpumask);
5458 	else
5459 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5460 	wake_up_process(rescuer->task);
5461 
5462 	return 0;
5463 }
5464 
5465 /**
5466  * wq_adjust_max_active - update a wq's max_active to the current setting
5467  * @wq: target workqueue
5468  *
5469  * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5470  * activate inactive work items accordingly. If @wq is freezing, clear
5471  * @wq->max_active to zero.
5472  */
5473 static void wq_adjust_max_active(struct workqueue_struct *wq)
5474 {
5475 	bool activated;
5476 	int new_max, new_min;
5477 
5478 	lockdep_assert_held(&wq->mutex);
5479 
5480 	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5481 		new_max = 0;
5482 		new_min = 0;
5483 	} else {
5484 		new_max = wq->saved_max_active;
5485 		new_min = wq->saved_min_active;
5486 	}
5487 
5488 	if (wq->max_active == new_max && wq->min_active == new_min)
5489 		return;
5490 
5491 	/*
5492 	 * Update @wq->max/min_active and then kick inactive work items if more
5493 	 * active work items are allowed. This doesn't break work item ordering
5494 	 * because new work items are always queued behind existing inactive
5495 	 * work items if there are any.
5496 	 */
5497 	WRITE_ONCE(wq->max_active, new_max);
5498 	WRITE_ONCE(wq->min_active, new_min);
5499 
5500 	if (wq->flags & WQ_UNBOUND)
5501 		wq_update_node_max_active(wq, -1);
5502 
5503 	if (new_max == 0)
5504 		return;
5505 
5506 	/*
5507 	 * Round-robin through pwq's activating the first inactive work item
5508 	 * until max_active is filled.
5509 	 */
5510 	do {
5511 		struct pool_workqueue *pwq;
5512 
5513 		activated = false;
5514 		for_each_pwq(pwq, wq) {
5515 			unsigned long irq_flags;
5516 
5517 			/* can be called during early boot w/ irq disabled */
5518 			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5519 			if (pwq_activate_first_inactive(pwq, true)) {
5520 				activated = true;
5521 				kick_pool(pwq->pool);
5522 			}
5523 			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5524 		}
5525 	} while (activated);
5526 }
5527 
5528 __printf(1, 4)
5529 struct workqueue_struct *alloc_workqueue(const char *fmt,
5530 					 unsigned int flags,
5531 					 int max_active, ...)
5532 {
5533 	va_list args;
5534 	struct workqueue_struct *wq;
5535 	size_t wq_size;
5536 	int name_len;
5537 
5538 	if (flags & WQ_BH) {
5539 		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5540 			return NULL;
5541 		if (WARN_ON_ONCE(max_active))
5542 			return NULL;
5543 	}
5544 
5545 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5546 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5547 		flags |= WQ_UNBOUND;
5548 
5549 	/* allocate wq and format name */
5550 	if (flags & WQ_UNBOUND)
5551 		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5552 	else
5553 		wq_size = sizeof(*wq);
5554 
5555 	wq = kzalloc(wq_size, GFP_KERNEL);
5556 	if (!wq)
5557 		return NULL;
5558 
5559 	if (flags & WQ_UNBOUND) {
5560 		wq->unbound_attrs = alloc_workqueue_attrs();
5561 		if (!wq->unbound_attrs)
5562 			goto err_free_wq;
5563 	}
5564 
5565 	va_start(args, max_active);
5566 	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5567 	va_end(args);
5568 
5569 	if (name_len >= WQ_NAME_LEN)
5570 		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5571 			     wq->name);
5572 
5573 	if (flags & WQ_BH) {
5574 		/*
5575 		 * BH workqueues always share a single execution context per CPU
5576 		 * and don't impose any max_active limit.
5577 		 */
5578 		max_active = INT_MAX;
5579 	} else {
5580 		max_active = max_active ?: WQ_DFL_ACTIVE;
5581 		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5582 	}
5583 
5584 	/* init wq */
5585 	wq->flags = flags;
5586 	wq->max_active = max_active;
5587 	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5588 	wq->saved_max_active = wq->max_active;
5589 	wq->saved_min_active = wq->min_active;
5590 	mutex_init(&wq->mutex);
5591 	atomic_set(&wq->nr_pwqs_to_flush, 0);
5592 	INIT_LIST_HEAD(&wq->pwqs);
5593 	INIT_LIST_HEAD(&wq->flusher_queue);
5594 	INIT_LIST_HEAD(&wq->flusher_overflow);
5595 	INIT_LIST_HEAD(&wq->maydays);
5596 
5597 	wq_init_lockdep(wq);
5598 	INIT_LIST_HEAD(&wq->list);
5599 
5600 	if (flags & WQ_UNBOUND) {
5601 		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5602 			goto err_unreg_lockdep;
5603 	}
5604 
5605 	if (alloc_and_link_pwqs(wq) < 0)
5606 		goto err_free_node_nr_active;
5607 
5608 	if (wq_online && init_rescuer(wq) < 0)
5609 		goto err_destroy;
5610 
5611 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5612 		goto err_destroy;
5613 
5614 	/*
5615 	 * wq_pool_mutex protects global freeze state and workqueues list.
5616 	 * Grab it, adjust max_active and add the new @wq to workqueues
5617 	 * list.
5618 	 */
5619 	mutex_lock(&wq_pool_mutex);
5620 
5621 	mutex_lock(&wq->mutex);
5622 	wq_adjust_max_active(wq);
5623 	mutex_unlock(&wq->mutex);
5624 
5625 	list_add_tail_rcu(&wq->list, &workqueues);
5626 
5627 	mutex_unlock(&wq_pool_mutex);
5628 
5629 	return wq;
5630 
5631 err_free_node_nr_active:
5632 	if (wq->flags & WQ_UNBOUND)
5633 		free_node_nr_active(wq->node_nr_active);
5634 err_unreg_lockdep:
5635 	wq_unregister_lockdep(wq);
5636 	wq_free_lockdep(wq);
5637 err_free_wq:
5638 	free_workqueue_attrs(wq->unbound_attrs);
5639 	kfree(wq);
5640 	return NULL;
5641 err_destroy:
5642 	destroy_workqueue(wq);
5643 	return NULL;
5644 }
5645 EXPORT_SYMBOL_GPL(alloc_workqueue);
5646 
5647 static bool pwq_busy(struct pool_workqueue *pwq)
5648 {
5649 	int i;
5650 
5651 	for (i = 0; i < WORK_NR_COLORS; i++)
5652 		if (pwq->nr_in_flight[i])
5653 			return true;
5654 
5655 	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5656 		return true;
5657 	if (!pwq_is_empty(pwq))
5658 		return true;
5659 
5660 	return false;
5661 }
5662 
5663 /**
5664  * destroy_workqueue - safely terminate a workqueue
5665  * @wq: target workqueue
5666  *
5667  * Safely destroy a workqueue. All work currently pending will be done first.
5668  */
5669 void destroy_workqueue(struct workqueue_struct *wq)
5670 {
5671 	struct pool_workqueue *pwq;
5672 	int cpu;
5673 
5674 	/*
5675 	 * Remove it from sysfs first so that sanity check failure doesn't
5676 	 * lead to sysfs name conflicts.
5677 	 */
5678 	workqueue_sysfs_unregister(wq);
5679 
5680 	/* mark the workqueue destruction is in progress */
5681 	mutex_lock(&wq->mutex);
5682 	wq->flags |= __WQ_DESTROYING;
5683 	mutex_unlock(&wq->mutex);
5684 
5685 	/* drain it before proceeding with destruction */
5686 	drain_workqueue(wq);
5687 
5688 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5689 	if (wq->rescuer) {
5690 		struct worker *rescuer = wq->rescuer;
5691 
5692 		/* this prevents new queueing */
5693 		raw_spin_lock_irq(&wq_mayday_lock);
5694 		wq->rescuer = NULL;
5695 		raw_spin_unlock_irq(&wq_mayday_lock);
5696 
5697 		/* rescuer will empty maydays list before exiting */
5698 		kthread_stop(rescuer->task);
5699 		kfree(rescuer);
5700 	}
5701 
5702 	/*
5703 	 * Sanity checks - grab all the locks so that we wait for all
5704 	 * in-flight operations which may do put_pwq().
5705 	 */
5706 	mutex_lock(&wq_pool_mutex);
5707 	mutex_lock(&wq->mutex);
5708 	for_each_pwq(pwq, wq) {
5709 		raw_spin_lock_irq(&pwq->pool->lock);
5710 		if (WARN_ON(pwq_busy(pwq))) {
5711 			pr_warn("%s: %s has the following busy pwq\n",
5712 				__func__, wq->name);
5713 			show_pwq(pwq);
5714 			raw_spin_unlock_irq(&pwq->pool->lock);
5715 			mutex_unlock(&wq->mutex);
5716 			mutex_unlock(&wq_pool_mutex);
5717 			show_one_workqueue(wq);
5718 			return;
5719 		}
5720 		raw_spin_unlock_irq(&pwq->pool->lock);
5721 	}
5722 	mutex_unlock(&wq->mutex);
5723 
5724 	/*
5725 	 * wq list is used to freeze wq, remove from list after
5726 	 * flushing is complete in case freeze races us.
5727 	 */
5728 	list_del_rcu(&wq->list);
5729 	mutex_unlock(&wq_pool_mutex);
5730 
5731 	/*
5732 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5733 	 * to put the base refs. @wq will be auto-destroyed from the last
5734 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5735 	 */
5736 	rcu_read_lock();
5737 
5738 	for_each_possible_cpu(cpu) {
5739 		put_pwq_unlocked(unbound_pwq(wq, cpu));
5740 		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5741 	}
5742 
5743 	put_pwq_unlocked(unbound_pwq(wq, -1));
5744 	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5745 
5746 	rcu_read_unlock();
5747 }
5748 EXPORT_SYMBOL_GPL(destroy_workqueue);
5749 
5750 /**
5751  * workqueue_set_max_active - adjust max_active of a workqueue
5752  * @wq: target workqueue
5753  * @max_active: new max_active value.
5754  *
5755  * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5756  * comment.
5757  *
5758  * CONTEXT:
5759  * Don't call from IRQ context.
5760  */
5761 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5762 {
5763 	/* max_active doesn't mean anything for BH workqueues */
5764 	if (WARN_ON(wq->flags & WQ_BH))
5765 		return;
5766 	/* disallow meddling with max_active for ordered workqueues */
5767 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5768 		return;
5769 
5770 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5771 
5772 	mutex_lock(&wq->mutex);
5773 
5774 	wq->saved_max_active = max_active;
5775 	if (wq->flags & WQ_UNBOUND)
5776 		wq->saved_min_active = min(wq->saved_min_active, max_active);
5777 
5778 	wq_adjust_max_active(wq);
5779 
5780 	mutex_unlock(&wq->mutex);
5781 }
5782 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5783 
5784 /**
5785  * workqueue_set_min_active - adjust min_active of an unbound workqueue
5786  * @wq: target unbound workqueue
5787  * @min_active: new min_active value
5788  *
5789  * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5790  * unbound workqueue is not guaranteed to be able to process max_active
5791  * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5792  * able to process min_active number of interdependent work items which is
5793  * %WQ_DFL_MIN_ACTIVE by default.
5794  *
5795  * Use this function to adjust the min_active value between 0 and the current
5796  * max_active.
5797  */
5798 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5799 {
5800 	/* min_active is only meaningful for non-ordered unbound workqueues */
5801 	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5802 		    WQ_UNBOUND))
5803 		return;
5804 
5805 	mutex_lock(&wq->mutex);
5806 	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5807 	wq_adjust_max_active(wq);
5808 	mutex_unlock(&wq->mutex);
5809 }
5810 
5811 /**
5812  * current_work - retrieve %current task's work struct
5813  *
5814  * Determine if %current task is a workqueue worker and what it's working on.
5815  * Useful to find out the context that the %current task is running in.
5816  *
5817  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5818  */
5819 struct work_struct *current_work(void)
5820 {
5821 	struct worker *worker = current_wq_worker();
5822 
5823 	return worker ? worker->current_work : NULL;
5824 }
5825 EXPORT_SYMBOL(current_work);
5826 
5827 /**
5828  * current_is_workqueue_rescuer - is %current workqueue rescuer?
5829  *
5830  * Determine whether %current is a workqueue rescuer.  Can be used from
5831  * work functions to determine whether it's being run off the rescuer task.
5832  *
5833  * Return: %true if %current is a workqueue rescuer. %false otherwise.
5834  */
5835 bool current_is_workqueue_rescuer(void)
5836 {
5837 	struct worker *worker = current_wq_worker();
5838 
5839 	return worker && worker->rescue_wq;
5840 }
5841 
5842 /**
5843  * workqueue_congested - test whether a workqueue is congested
5844  * @cpu: CPU in question
5845  * @wq: target workqueue
5846  *
5847  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
5848  * no synchronization around this function and the test result is
5849  * unreliable and only useful as advisory hints or for debugging.
5850  *
5851  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
5852  *
5853  * With the exception of ordered workqueues, all workqueues have per-cpu
5854  * pool_workqueues, each with its own congested state. A workqueue being
5855  * congested on one CPU doesn't mean that the workqueue is contested on any
5856  * other CPUs.
5857  *
5858  * Return:
5859  * %true if congested, %false otherwise.
5860  */
5861 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
5862 {
5863 	struct pool_workqueue *pwq;
5864 	bool ret;
5865 
5866 	rcu_read_lock();
5867 	preempt_disable();
5868 
5869 	if (cpu == WORK_CPU_UNBOUND)
5870 		cpu = smp_processor_id();
5871 
5872 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5873 	ret = !list_empty(&pwq->inactive_works);
5874 
5875 	preempt_enable();
5876 	rcu_read_unlock();
5877 
5878 	return ret;
5879 }
5880 EXPORT_SYMBOL_GPL(workqueue_congested);
5881 
5882 /**
5883  * work_busy - test whether a work is currently pending or running
5884  * @work: the work to be tested
5885  *
5886  * Test whether @work is currently pending or running.  There is no
5887  * synchronization around this function and the test result is
5888  * unreliable and only useful as advisory hints or for debugging.
5889  *
5890  * Return:
5891  * OR'd bitmask of WORK_BUSY_* bits.
5892  */
5893 unsigned int work_busy(struct work_struct *work)
5894 {
5895 	struct worker_pool *pool;
5896 	unsigned long irq_flags;
5897 	unsigned int ret = 0;
5898 
5899 	if (work_pending(work))
5900 		ret |= WORK_BUSY_PENDING;
5901 
5902 	rcu_read_lock();
5903 	pool = get_work_pool(work);
5904 	if (pool) {
5905 		raw_spin_lock_irqsave(&pool->lock, irq_flags);
5906 		if (find_worker_executing_work(pool, work))
5907 			ret |= WORK_BUSY_RUNNING;
5908 		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
5909 	}
5910 	rcu_read_unlock();
5911 
5912 	return ret;
5913 }
5914 EXPORT_SYMBOL_GPL(work_busy);
5915 
5916 /**
5917  * set_worker_desc - set description for the current work item
5918  * @fmt: printf-style format string
5919  * @...: arguments for the format string
5920  *
5921  * This function can be called by a running work function to describe what
5922  * the work item is about.  If the worker task gets dumped, this
5923  * information will be printed out together to help debugging.  The
5924  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
5925  */
5926 void set_worker_desc(const char *fmt, ...)
5927 {
5928 	struct worker *worker = current_wq_worker();
5929 	va_list args;
5930 
5931 	if (worker) {
5932 		va_start(args, fmt);
5933 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
5934 		va_end(args);
5935 	}
5936 }
5937 EXPORT_SYMBOL_GPL(set_worker_desc);
5938 
5939 /**
5940  * print_worker_info - print out worker information and description
5941  * @log_lvl: the log level to use when printing
5942  * @task: target task
5943  *
5944  * If @task is a worker and currently executing a work item, print out the
5945  * name of the workqueue being serviced and worker description set with
5946  * set_worker_desc() by the currently executing work item.
5947  *
5948  * This function can be safely called on any task as long as the
5949  * task_struct itself is accessible.  While safe, this function isn't
5950  * synchronized and may print out mixups or garbages of limited length.
5951  */
5952 void print_worker_info(const char *log_lvl, struct task_struct *task)
5953 {
5954 	work_func_t *fn = NULL;
5955 	char name[WQ_NAME_LEN] = { };
5956 	char desc[WORKER_DESC_LEN] = { };
5957 	struct pool_workqueue *pwq = NULL;
5958 	struct workqueue_struct *wq = NULL;
5959 	struct worker *worker;
5960 
5961 	if (!(task->flags & PF_WQ_WORKER))
5962 		return;
5963 
5964 	/*
5965 	 * This function is called without any synchronization and @task
5966 	 * could be in any state.  Be careful with dereferences.
5967 	 */
5968 	worker = kthread_probe_data(task);
5969 
5970 	/*
5971 	 * Carefully copy the associated workqueue's workfn, name and desc.
5972 	 * Keep the original last '\0' in case the original is garbage.
5973 	 */
5974 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5975 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5976 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5977 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5978 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
5979 
5980 	if (fn || name[0] || desc[0]) {
5981 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
5982 		if (strcmp(name, desc))
5983 			pr_cont(" (%s)", desc);
5984 		pr_cont("\n");
5985 	}
5986 }
5987 
5988 static void pr_cont_pool_info(struct worker_pool *pool)
5989 {
5990 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5991 	if (pool->node != NUMA_NO_NODE)
5992 		pr_cont(" node=%d", pool->node);
5993 	pr_cont(" flags=0x%x", pool->flags);
5994 	if (pool->flags & POOL_BH)
5995 		pr_cont(" bh%s",
5996 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
5997 	else
5998 		pr_cont(" nice=%d", pool->attrs->nice);
5999 }
6000 
6001 static void pr_cont_worker_id(struct worker *worker)
6002 {
6003 	struct worker_pool *pool = worker->pool;
6004 
6005 	if (pool->flags & WQ_BH)
6006 		pr_cont("bh%s",
6007 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6008 	else
6009 		pr_cont("%d%s", task_pid_nr(worker->task),
6010 			worker->rescue_wq ? "(RESCUER)" : "");
6011 }
6012 
6013 struct pr_cont_work_struct {
6014 	bool comma;
6015 	work_func_t func;
6016 	long ctr;
6017 };
6018 
6019 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6020 {
6021 	if (!pcwsp->ctr)
6022 		goto out_record;
6023 	if (func == pcwsp->func) {
6024 		pcwsp->ctr++;
6025 		return;
6026 	}
6027 	if (pcwsp->ctr == 1)
6028 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6029 	else
6030 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6031 	pcwsp->ctr = 0;
6032 out_record:
6033 	if ((long)func == -1L)
6034 		return;
6035 	pcwsp->comma = comma;
6036 	pcwsp->func = func;
6037 	pcwsp->ctr = 1;
6038 }
6039 
6040 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6041 {
6042 	if (work->func == wq_barrier_func) {
6043 		struct wq_barrier *barr;
6044 
6045 		barr = container_of(work, struct wq_barrier, work);
6046 
6047 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6048 		pr_cont("%s BAR(%d)", comma ? "," : "",
6049 			task_pid_nr(barr->task));
6050 	} else {
6051 		if (!comma)
6052 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6053 		pr_cont_work_flush(comma, work->func, pcwsp);
6054 	}
6055 }
6056 
6057 static void show_pwq(struct pool_workqueue *pwq)
6058 {
6059 	struct pr_cont_work_struct pcws = { .ctr = 0, };
6060 	struct worker_pool *pool = pwq->pool;
6061 	struct work_struct *work;
6062 	struct worker *worker;
6063 	bool has_in_flight = false, has_pending = false;
6064 	int bkt;
6065 
6066 	pr_info("  pwq %d:", pool->id);
6067 	pr_cont_pool_info(pool);
6068 
6069 	pr_cont(" active=%d refcnt=%d%s\n",
6070 		pwq->nr_active, pwq->refcnt,
6071 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6072 
6073 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6074 		if (worker->current_pwq == pwq) {
6075 			has_in_flight = true;
6076 			break;
6077 		}
6078 	}
6079 	if (has_in_flight) {
6080 		bool comma = false;
6081 
6082 		pr_info("    in-flight:");
6083 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6084 			if (worker->current_pwq != pwq)
6085 				continue;
6086 
6087 			pr_cont(" %s", comma ? "," : "");
6088 			pr_cont_worker_id(worker);
6089 			pr_cont(":%ps", worker->current_func);
6090 			list_for_each_entry(work, &worker->scheduled, entry)
6091 				pr_cont_work(false, work, &pcws);
6092 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6093 			comma = true;
6094 		}
6095 		pr_cont("\n");
6096 	}
6097 
6098 	list_for_each_entry(work, &pool->worklist, entry) {
6099 		if (get_work_pwq(work) == pwq) {
6100 			has_pending = true;
6101 			break;
6102 		}
6103 	}
6104 	if (has_pending) {
6105 		bool comma = false;
6106 
6107 		pr_info("    pending:");
6108 		list_for_each_entry(work, &pool->worklist, entry) {
6109 			if (get_work_pwq(work) != pwq)
6110 				continue;
6111 
6112 			pr_cont_work(comma, work, &pcws);
6113 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6114 		}
6115 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6116 		pr_cont("\n");
6117 	}
6118 
6119 	if (!list_empty(&pwq->inactive_works)) {
6120 		bool comma = false;
6121 
6122 		pr_info("    inactive:");
6123 		list_for_each_entry(work, &pwq->inactive_works, entry) {
6124 			pr_cont_work(comma, work, &pcws);
6125 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6126 		}
6127 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6128 		pr_cont("\n");
6129 	}
6130 }
6131 
6132 /**
6133  * show_one_workqueue - dump state of specified workqueue
6134  * @wq: workqueue whose state will be printed
6135  */
6136 void show_one_workqueue(struct workqueue_struct *wq)
6137 {
6138 	struct pool_workqueue *pwq;
6139 	bool idle = true;
6140 	unsigned long irq_flags;
6141 
6142 	for_each_pwq(pwq, wq) {
6143 		if (!pwq_is_empty(pwq)) {
6144 			idle = false;
6145 			break;
6146 		}
6147 	}
6148 	if (idle) /* Nothing to print for idle workqueue */
6149 		return;
6150 
6151 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6152 
6153 	for_each_pwq(pwq, wq) {
6154 		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6155 		if (!pwq_is_empty(pwq)) {
6156 			/*
6157 			 * Defer printing to avoid deadlocks in console
6158 			 * drivers that queue work while holding locks
6159 			 * also taken in their write paths.
6160 			 */
6161 			printk_deferred_enter();
6162 			show_pwq(pwq);
6163 			printk_deferred_exit();
6164 		}
6165 		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6166 		/*
6167 		 * We could be printing a lot from atomic context, e.g.
6168 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
6169 		 * hard lockup.
6170 		 */
6171 		touch_nmi_watchdog();
6172 	}
6173 
6174 }
6175 
6176 /**
6177  * show_one_worker_pool - dump state of specified worker pool
6178  * @pool: worker pool whose state will be printed
6179  */
6180 static void show_one_worker_pool(struct worker_pool *pool)
6181 {
6182 	struct worker *worker;
6183 	bool first = true;
6184 	unsigned long irq_flags;
6185 	unsigned long hung = 0;
6186 
6187 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
6188 	if (pool->nr_workers == pool->nr_idle)
6189 		goto next_pool;
6190 
6191 	/* How long the first pending work is waiting for a worker. */
6192 	if (!list_empty(&pool->worklist))
6193 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6194 
6195 	/*
6196 	 * Defer printing to avoid deadlocks in console drivers that
6197 	 * queue work while holding locks also taken in their write
6198 	 * paths.
6199 	 */
6200 	printk_deferred_enter();
6201 	pr_info("pool %d:", pool->id);
6202 	pr_cont_pool_info(pool);
6203 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6204 	if (pool->manager)
6205 		pr_cont(" manager: %d",
6206 			task_pid_nr(pool->manager->task));
6207 	list_for_each_entry(worker, &pool->idle_list, entry) {
6208 		pr_cont(" %s", first ? "idle: " : "");
6209 		pr_cont_worker_id(worker);
6210 		first = false;
6211 	}
6212 	pr_cont("\n");
6213 	printk_deferred_exit();
6214 next_pool:
6215 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6216 	/*
6217 	 * We could be printing a lot from atomic context, e.g.
6218 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
6219 	 * hard lockup.
6220 	 */
6221 	touch_nmi_watchdog();
6222 
6223 }
6224 
6225 /**
6226  * show_all_workqueues - dump workqueue state
6227  *
6228  * Called from a sysrq handler and prints out all busy workqueues and pools.
6229  */
6230 void show_all_workqueues(void)
6231 {
6232 	struct workqueue_struct *wq;
6233 	struct worker_pool *pool;
6234 	int pi;
6235 
6236 	rcu_read_lock();
6237 
6238 	pr_info("Showing busy workqueues and worker pools:\n");
6239 
6240 	list_for_each_entry_rcu(wq, &workqueues, list)
6241 		show_one_workqueue(wq);
6242 
6243 	for_each_pool(pool, pi)
6244 		show_one_worker_pool(pool);
6245 
6246 	rcu_read_unlock();
6247 }
6248 
6249 /**
6250  * show_freezable_workqueues - dump freezable workqueue state
6251  *
6252  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6253  * still busy.
6254  */
6255 void show_freezable_workqueues(void)
6256 {
6257 	struct workqueue_struct *wq;
6258 
6259 	rcu_read_lock();
6260 
6261 	pr_info("Showing freezable workqueues that are still busy:\n");
6262 
6263 	list_for_each_entry_rcu(wq, &workqueues, list) {
6264 		if (!(wq->flags & WQ_FREEZABLE))
6265 			continue;
6266 		show_one_workqueue(wq);
6267 	}
6268 
6269 	rcu_read_unlock();
6270 }
6271 
6272 /* used to show worker information through /proc/PID/{comm,stat,status} */
6273 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6274 {
6275 	int off;
6276 
6277 	/* always show the actual comm */
6278 	off = strscpy(buf, task->comm, size);
6279 	if (off < 0)
6280 		return;
6281 
6282 	/* stabilize PF_WQ_WORKER and worker pool association */
6283 	mutex_lock(&wq_pool_attach_mutex);
6284 
6285 	if (task->flags & PF_WQ_WORKER) {
6286 		struct worker *worker = kthread_data(task);
6287 		struct worker_pool *pool = worker->pool;
6288 
6289 		if (pool) {
6290 			raw_spin_lock_irq(&pool->lock);
6291 			/*
6292 			 * ->desc tracks information (wq name or
6293 			 * set_worker_desc()) for the latest execution.  If
6294 			 * current, prepend '+', otherwise '-'.
6295 			 */
6296 			if (worker->desc[0] != '\0') {
6297 				if (worker->current_work)
6298 					scnprintf(buf + off, size - off, "+%s",
6299 						  worker->desc);
6300 				else
6301 					scnprintf(buf + off, size - off, "-%s",
6302 						  worker->desc);
6303 			}
6304 			raw_spin_unlock_irq(&pool->lock);
6305 		}
6306 	}
6307 
6308 	mutex_unlock(&wq_pool_attach_mutex);
6309 }
6310 
6311 #ifdef CONFIG_SMP
6312 
6313 /*
6314  * CPU hotplug.
6315  *
6316  * There are two challenges in supporting CPU hotplug.  Firstly, there
6317  * are a lot of assumptions on strong associations among work, pwq and
6318  * pool which make migrating pending and scheduled works very
6319  * difficult to implement without impacting hot paths.  Secondly,
6320  * worker pools serve mix of short, long and very long running works making
6321  * blocked draining impractical.
6322  *
6323  * This is solved by allowing the pools to be disassociated from the CPU
6324  * running as an unbound one and allowing it to be reattached later if the
6325  * cpu comes back online.
6326  */
6327 
6328 static void unbind_workers(int cpu)
6329 {
6330 	struct worker_pool *pool;
6331 	struct worker *worker;
6332 
6333 	for_each_cpu_worker_pool(pool, cpu) {
6334 		mutex_lock(&wq_pool_attach_mutex);
6335 		raw_spin_lock_irq(&pool->lock);
6336 
6337 		/*
6338 		 * We've blocked all attach/detach operations. Make all workers
6339 		 * unbound and set DISASSOCIATED.  Before this, all workers
6340 		 * must be on the cpu.  After this, they may become diasporas.
6341 		 * And the preemption disabled section in their sched callbacks
6342 		 * are guaranteed to see WORKER_UNBOUND since the code here
6343 		 * is on the same cpu.
6344 		 */
6345 		for_each_pool_worker(worker, pool)
6346 			worker->flags |= WORKER_UNBOUND;
6347 
6348 		pool->flags |= POOL_DISASSOCIATED;
6349 
6350 		/*
6351 		 * The handling of nr_running in sched callbacks are disabled
6352 		 * now.  Zap nr_running.  After this, nr_running stays zero and
6353 		 * need_more_worker() and keep_working() are always true as
6354 		 * long as the worklist is not empty.  This pool now behaves as
6355 		 * an unbound (in terms of concurrency management) pool which
6356 		 * are served by workers tied to the pool.
6357 		 */
6358 		pool->nr_running = 0;
6359 
6360 		/*
6361 		 * With concurrency management just turned off, a busy
6362 		 * worker blocking could lead to lengthy stalls.  Kick off
6363 		 * unbound chain execution of currently pending work items.
6364 		 */
6365 		kick_pool(pool);
6366 
6367 		raw_spin_unlock_irq(&pool->lock);
6368 
6369 		for_each_pool_worker(worker, pool)
6370 			unbind_worker(worker);
6371 
6372 		mutex_unlock(&wq_pool_attach_mutex);
6373 	}
6374 }
6375 
6376 /**
6377  * rebind_workers - rebind all workers of a pool to the associated CPU
6378  * @pool: pool of interest
6379  *
6380  * @pool->cpu is coming online.  Rebind all workers to the CPU.
6381  */
6382 static void rebind_workers(struct worker_pool *pool)
6383 {
6384 	struct worker *worker;
6385 
6386 	lockdep_assert_held(&wq_pool_attach_mutex);
6387 
6388 	/*
6389 	 * Restore CPU affinity of all workers.  As all idle workers should
6390 	 * be on the run-queue of the associated CPU before any local
6391 	 * wake-ups for concurrency management happen, restore CPU affinity
6392 	 * of all workers first and then clear UNBOUND.  As we're called
6393 	 * from CPU_ONLINE, the following shouldn't fail.
6394 	 */
6395 	for_each_pool_worker(worker, pool) {
6396 		kthread_set_per_cpu(worker->task, pool->cpu);
6397 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6398 						  pool_allowed_cpus(pool)) < 0);
6399 	}
6400 
6401 	raw_spin_lock_irq(&pool->lock);
6402 
6403 	pool->flags &= ~POOL_DISASSOCIATED;
6404 
6405 	for_each_pool_worker(worker, pool) {
6406 		unsigned int worker_flags = worker->flags;
6407 
6408 		/*
6409 		 * We want to clear UNBOUND but can't directly call
6410 		 * worker_clr_flags() or adjust nr_running.  Atomically
6411 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6412 		 * @worker will clear REBOUND using worker_clr_flags() when
6413 		 * it initiates the next execution cycle thus restoring
6414 		 * concurrency management.  Note that when or whether
6415 		 * @worker clears REBOUND doesn't affect correctness.
6416 		 *
6417 		 * WRITE_ONCE() is necessary because @worker->flags may be
6418 		 * tested without holding any lock in
6419 		 * wq_worker_running().  Without it, NOT_RUNNING test may
6420 		 * fail incorrectly leading to premature concurrency
6421 		 * management operations.
6422 		 */
6423 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6424 		worker_flags |= WORKER_REBOUND;
6425 		worker_flags &= ~WORKER_UNBOUND;
6426 		WRITE_ONCE(worker->flags, worker_flags);
6427 	}
6428 
6429 	raw_spin_unlock_irq(&pool->lock);
6430 }
6431 
6432 /**
6433  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6434  * @pool: unbound pool of interest
6435  * @cpu: the CPU which is coming up
6436  *
6437  * An unbound pool may end up with a cpumask which doesn't have any online
6438  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6439  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6440  * online CPU before, cpus_allowed of all its workers should be restored.
6441  */
6442 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6443 {
6444 	static cpumask_t cpumask;
6445 	struct worker *worker;
6446 
6447 	lockdep_assert_held(&wq_pool_attach_mutex);
6448 
6449 	/* is @cpu allowed for @pool? */
6450 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6451 		return;
6452 
6453 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6454 
6455 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6456 	for_each_pool_worker(worker, pool)
6457 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6458 }
6459 
6460 int workqueue_prepare_cpu(unsigned int cpu)
6461 {
6462 	struct worker_pool *pool;
6463 
6464 	for_each_cpu_worker_pool(pool, cpu) {
6465 		if (pool->nr_workers)
6466 			continue;
6467 		if (!create_worker(pool))
6468 			return -ENOMEM;
6469 	}
6470 	return 0;
6471 }
6472 
6473 int workqueue_online_cpu(unsigned int cpu)
6474 {
6475 	struct worker_pool *pool;
6476 	struct workqueue_struct *wq;
6477 	int pi;
6478 
6479 	mutex_lock(&wq_pool_mutex);
6480 
6481 	for_each_pool(pool, pi) {
6482 		/* BH pools aren't affected by hotplug */
6483 		if (pool->flags & POOL_BH)
6484 			continue;
6485 
6486 		mutex_lock(&wq_pool_attach_mutex);
6487 		if (pool->cpu == cpu)
6488 			rebind_workers(pool);
6489 		else if (pool->cpu < 0)
6490 			restore_unbound_workers_cpumask(pool, cpu);
6491 		mutex_unlock(&wq_pool_attach_mutex);
6492 	}
6493 
6494 	/* update pod affinity of unbound workqueues */
6495 	list_for_each_entry(wq, &workqueues, list) {
6496 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6497 
6498 		if (attrs) {
6499 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6500 			int tcpu;
6501 
6502 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6503 				wq_update_pod(wq, tcpu, cpu, true);
6504 
6505 			mutex_lock(&wq->mutex);
6506 			wq_update_node_max_active(wq, -1);
6507 			mutex_unlock(&wq->mutex);
6508 		}
6509 	}
6510 
6511 	mutex_unlock(&wq_pool_mutex);
6512 	return 0;
6513 }
6514 
6515 int workqueue_offline_cpu(unsigned int cpu)
6516 {
6517 	struct workqueue_struct *wq;
6518 
6519 	/* unbinding per-cpu workers should happen on the local CPU */
6520 	if (WARN_ON(cpu != smp_processor_id()))
6521 		return -1;
6522 
6523 	unbind_workers(cpu);
6524 
6525 	/* update pod affinity of unbound workqueues */
6526 	mutex_lock(&wq_pool_mutex);
6527 	list_for_each_entry(wq, &workqueues, list) {
6528 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6529 
6530 		if (attrs) {
6531 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6532 			int tcpu;
6533 
6534 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6535 				wq_update_pod(wq, tcpu, cpu, false);
6536 
6537 			mutex_lock(&wq->mutex);
6538 			wq_update_node_max_active(wq, cpu);
6539 			mutex_unlock(&wq->mutex);
6540 		}
6541 	}
6542 	mutex_unlock(&wq_pool_mutex);
6543 
6544 	return 0;
6545 }
6546 
6547 struct work_for_cpu {
6548 	struct work_struct work;
6549 	long (*fn)(void *);
6550 	void *arg;
6551 	long ret;
6552 };
6553 
6554 static void work_for_cpu_fn(struct work_struct *work)
6555 {
6556 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6557 
6558 	wfc->ret = wfc->fn(wfc->arg);
6559 }
6560 
6561 /**
6562  * work_on_cpu_key - run a function in thread context on a particular cpu
6563  * @cpu: the cpu to run on
6564  * @fn: the function to run
6565  * @arg: the function arg
6566  * @key: The lock class key for lock debugging purposes
6567  *
6568  * It is up to the caller to ensure that the cpu doesn't go offline.
6569  * The caller must not hold any locks which would prevent @fn from completing.
6570  *
6571  * Return: The value @fn returns.
6572  */
6573 long work_on_cpu_key(int cpu, long (*fn)(void *),
6574 		     void *arg, struct lock_class_key *key)
6575 {
6576 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6577 
6578 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6579 	schedule_work_on(cpu, &wfc.work);
6580 	flush_work(&wfc.work);
6581 	destroy_work_on_stack(&wfc.work);
6582 	return wfc.ret;
6583 }
6584 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6585 
6586 /**
6587  * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6588  * @cpu: the cpu to run on
6589  * @fn:  the function to run
6590  * @arg: the function argument
6591  * @key: The lock class key for lock debugging purposes
6592  *
6593  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6594  * any locks which would prevent @fn from completing.
6595  *
6596  * Return: The value @fn returns.
6597  */
6598 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6599 			  void *arg, struct lock_class_key *key)
6600 {
6601 	long ret = -ENODEV;
6602 
6603 	cpus_read_lock();
6604 	if (cpu_online(cpu))
6605 		ret = work_on_cpu_key(cpu, fn, arg, key);
6606 	cpus_read_unlock();
6607 	return ret;
6608 }
6609 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6610 #endif /* CONFIG_SMP */
6611 
6612 #ifdef CONFIG_FREEZER
6613 
6614 /**
6615  * freeze_workqueues_begin - begin freezing workqueues
6616  *
6617  * Start freezing workqueues.  After this function returns, all freezable
6618  * workqueues will queue new works to their inactive_works list instead of
6619  * pool->worklist.
6620  *
6621  * CONTEXT:
6622  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6623  */
6624 void freeze_workqueues_begin(void)
6625 {
6626 	struct workqueue_struct *wq;
6627 
6628 	mutex_lock(&wq_pool_mutex);
6629 
6630 	WARN_ON_ONCE(workqueue_freezing);
6631 	workqueue_freezing = true;
6632 
6633 	list_for_each_entry(wq, &workqueues, list) {
6634 		mutex_lock(&wq->mutex);
6635 		wq_adjust_max_active(wq);
6636 		mutex_unlock(&wq->mutex);
6637 	}
6638 
6639 	mutex_unlock(&wq_pool_mutex);
6640 }
6641 
6642 /**
6643  * freeze_workqueues_busy - are freezable workqueues still busy?
6644  *
6645  * Check whether freezing is complete.  This function must be called
6646  * between freeze_workqueues_begin() and thaw_workqueues().
6647  *
6648  * CONTEXT:
6649  * Grabs and releases wq_pool_mutex.
6650  *
6651  * Return:
6652  * %true if some freezable workqueues are still busy.  %false if freezing
6653  * is complete.
6654  */
6655 bool freeze_workqueues_busy(void)
6656 {
6657 	bool busy = false;
6658 	struct workqueue_struct *wq;
6659 	struct pool_workqueue *pwq;
6660 
6661 	mutex_lock(&wq_pool_mutex);
6662 
6663 	WARN_ON_ONCE(!workqueue_freezing);
6664 
6665 	list_for_each_entry(wq, &workqueues, list) {
6666 		if (!(wq->flags & WQ_FREEZABLE))
6667 			continue;
6668 		/*
6669 		 * nr_active is monotonically decreasing.  It's safe
6670 		 * to peek without lock.
6671 		 */
6672 		rcu_read_lock();
6673 		for_each_pwq(pwq, wq) {
6674 			WARN_ON_ONCE(pwq->nr_active < 0);
6675 			if (pwq->nr_active) {
6676 				busy = true;
6677 				rcu_read_unlock();
6678 				goto out_unlock;
6679 			}
6680 		}
6681 		rcu_read_unlock();
6682 	}
6683 out_unlock:
6684 	mutex_unlock(&wq_pool_mutex);
6685 	return busy;
6686 }
6687 
6688 /**
6689  * thaw_workqueues - thaw workqueues
6690  *
6691  * Thaw workqueues.  Normal queueing is restored and all collected
6692  * frozen works are transferred to their respective pool worklists.
6693  *
6694  * CONTEXT:
6695  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6696  */
6697 void thaw_workqueues(void)
6698 {
6699 	struct workqueue_struct *wq;
6700 
6701 	mutex_lock(&wq_pool_mutex);
6702 
6703 	if (!workqueue_freezing)
6704 		goto out_unlock;
6705 
6706 	workqueue_freezing = false;
6707 
6708 	/* restore max_active and repopulate worklist */
6709 	list_for_each_entry(wq, &workqueues, list) {
6710 		mutex_lock(&wq->mutex);
6711 		wq_adjust_max_active(wq);
6712 		mutex_unlock(&wq->mutex);
6713 	}
6714 
6715 out_unlock:
6716 	mutex_unlock(&wq_pool_mutex);
6717 }
6718 #endif /* CONFIG_FREEZER */
6719 
6720 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6721 {
6722 	LIST_HEAD(ctxs);
6723 	int ret = 0;
6724 	struct workqueue_struct *wq;
6725 	struct apply_wqattrs_ctx *ctx, *n;
6726 
6727 	lockdep_assert_held(&wq_pool_mutex);
6728 
6729 	list_for_each_entry(wq, &workqueues, list) {
6730 		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6731 			continue;
6732 
6733 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6734 		if (IS_ERR(ctx)) {
6735 			ret = PTR_ERR(ctx);
6736 			break;
6737 		}
6738 
6739 		list_add_tail(&ctx->list, &ctxs);
6740 	}
6741 
6742 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6743 		if (!ret)
6744 			apply_wqattrs_commit(ctx);
6745 		apply_wqattrs_cleanup(ctx);
6746 	}
6747 
6748 	if (!ret) {
6749 		mutex_lock(&wq_pool_attach_mutex);
6750 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6751 		mutex_unlock(&wq_pool_attach_mutex);
6752 	}
6753 	return ret;
6754 }
6755 
6756 /**
6757  * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6758  * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6759  *
6760  * This function can be called from cpuset code to provide a set of isolated
6761  * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold
6762  * either cpus_read_lock or cpus_write_lock.
6763  */
6764 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6765 {
6766 	cpumask_var_t cpumask;
6767 	int ret = 0;
6768 
6769 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6770 		return -ENOMEM;
6771 
6772 	lockdep_assert_cpus_held();
6773 	mutex_lock(&wq_pool_mutex);
6774 
6775 	/* Save the current isolated cpumask & export it via sysfs */
6776 	cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6777 
6778 	/*
6779 	 * If the operation fails, it will fall back to
6780 	 * wq_requested_unbound_cpumask which is initially set to
6781 	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6782 	 * by any subsequent write to workqueue/cpumask sysfs file.
6783 	 */
6784 	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6785 		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6786 	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6787 		ret = workqueue_apply_unbound_cpumask(cpumask);
6788 
6789 	mutex_unlock(&wq_pool_mutex);
6790 	free_cpumask_var(cpumask);
6791 	return ret;
6792 }
6793 
6794 static int parse_affn_scope(const char *val)
6795 {
6796 	int i;
6797 
6798 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6799 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6800 			return i;
6801 	}
6802 	return -EINVAL;
6803 }
6804 
6805 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6806 {
6807 	struct workqueue_struct *wq;
6808 	int affn, cpu;
6809 
6810 	affn = parse_affn_scope(val);
6811 	if (affn < 0)
6812 		return affn;
6813 	if (affn == WQ_AFFN_DFL)
6814 		return -EINVAL;
6815 
6816 	cpus_read_lock();
6817 	mutex_lock(&wq_pool_mutex);
6818 
6819 	wq_affn_dfl = affn;
6820 
6821 	list_for_each_entry(wq, &workqueues, list) {
6822 		for_each_online_cpu(cpu) {
6823 			wq_update_pod(wq, cpu, cpu, true);
6824 		}
6825 	}
6826 
6827 	mutex_unlock(&wq_pool_mutex);
6828 	cpus_read_unlock();
6829 
6830 	return 0;
6831 }
6832 
6833 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6834 {
6835 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6836 }
6837 
6838 static const struct kernel_param_ops wq_affn_dfl_ops = {
6839 	.set	= wq_affn_dfl_set,
6840 	.get	= wq_affn_dfl_get,
6841 };
6842 
6843 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6844 
6845 #ifdef CONFIG_SYSFS
6846 /*
6847  * Workqueues with WQ_SYSFS flag set is visible to userland via
6848  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
6849  * following attributes.
6850  *
6851  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
6852  *  max_active		RW int	: maximum number of in-flight work items
6853  *
6854  * Unbound workqueues have the following extra attributes.
6855  *
6856  *  nice		RW int	: nice value of the workers
6857  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
6858  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
6859  *  affinity_strict	RW bool : worker CPU affinity is strict
6860  */
6861 struct wq_device {
6862 	struct workqueue_struct		*wq;
6863 	struct device			dev;
6864 };
6865 
6866 static struct workqueue_struct *dev_to_wq(struct device *dev)
6867 {
6868 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6869 
6870 	return wq_dev->wq;
6871 }
6872 
6873 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6874 			    char *buf)
6875 {
6876 	struct workqueue_struct *wq = dev_to_wq(dev);
6877 
6878 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6879 }
6880 static DEVICE_ATTR_RO(per_cpu);
6881 
6882 static ssize_t max_active_show(struct device *dev,
6883 			       struct device_attribute *attr, char *buf)
6884 {
6885 	struct workqueue_struct *wq = dev_to_wq(dev);
6886 
6887 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
6888 }
6889 
6890 static ssize_t max_active_store(struct device *dev,
6891 				struct device_attribute *attr, const char *buf,
6892 				size_t count)
6893 {
6894 	struct workqueue_struct *wq = dev_to_wq(dev);
6895 	int val;
6896 
6897 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
6898 		return -EINVAL;
6899 
6900 	workqueue_set_max_active(wq, val);
6901 	return count;
6902 }
6903 static DEVICE_ATTR_RW(max_active);
6904 
6905 static struct attribute *wq_sysfs_attrs[] = {
6906 	&dev_attr_per_cpu.attr,
6907 	&dev_attr_max_active.attr,
6908 	NULL,
6909 };
6910 ATTRIBUTE_GROUPS(wq_sysfs);
6911 
6912 static void apply_wqattrs_lock(void)
6913 {
6914 	/* CPUs should stay stable across pwq creations and installations */
6915 	cpus_read_lock();
6916 	mutex_lock(&wq_pool_mutex);
6917 }
6918 
6919 static void apply_wqattrs_unlock(void)
6920 {
6921 	mutex_unlock(&wq_pool_mutex);
6922 	cpus_read_unlock();
6923 }
6924 
6925 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
6926 			    char *buf)
6927 {
6928 	struct workqueue_struct *wq = dev_to_wq(dev);
6929 	int written;
6930 
6931 	mutex_lock(&wq->mutex);
6932 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
6933 	mutex_unlock(&wq->mutex);
6934 
6935 	return written;
6936 }
6937 
6938 /* prepare workqueue_attrs for sysfs store operations */
6939 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
6940 {
6941 	struct workqueue_attrs *attrs;
6942 
6943 	lockdep_assert_held(&wq_pool_mutex);
6944 
6945 	attrs = alloc_workqueue_attrs();
6946 	if (!attrs)
6947 		return NULL;
6948 
6949 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
6950 	return attrs;
6951 }
6952 
6953 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
6954 			     const char *buf, size_t count)
6955 {
6956 	struct workqueue_struct *wq = dev_to_wq(dev);
6957 	struct workqueue_attrs *attrs;
6958 	int ret = -ENOMEM;
6959 
6960 	apply_wqattrs_lock();
6961 
6962 	attrs = wq_sysfs_prep_attrs(wq);
6963 	if (!attrs)
6964 		goto out_unlock;
6965 
6966 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
6967 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
6968 		ret = apply_workqueue_attrs_locked(wq, attrs);
6969 	else
6970 		ret = -EINVAL;
6971 
6972 out_unlock:
6973 	apply_wqattrs_unlock();
6974 	free_workqueue_attrs(attrs);
6975 	return ret ?: count;
6976 }
6977 
6978 static ssize_t wq_cpumask_show(struct device *dev,
6979 			       struct device_attribute *attr, char *buf)
6980 {
6981 	struct workqueue_struct *wq = dev_to_wq(dev);
6982 	int written;
6983 
6984 	mutex_lock(&wq->mutex);
6985 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6986 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
6987 	mutex_unlock(&wq->mutex);
6988 	return written;
6989 }
6990 
6991 static ssize_t wq_cpumask_store(struct device *dev,
6992 				struct device_attribute *attr,
6993 				const char *buf, size_t count)
6994 {
6995 	struct workqueue_struct *wq = dev_to_wq(dev);
6996 	struct workqueue_attrs *attrs;
6997 	int ret = -ENOMEM;
6998 
6999 	apply_wqattrs_lock();
7000 
7001 	attrs = wq_sysfs_prep_attrs(wq);
7002 	if (!attrs)
7003 		goto out_unlock;
7004 
7005 	ret = cpumask_parse(buf, attrs->cpumask);
7006 	if (!ret)
7007 		ret = apply_workqueue_attrs_locked(wq, attrs);
7008 
7009 out_unlock:
7010 	apply_wqattrs_unlock();
7011 	free_workqueue_attrs(attrs);
7012 	return ret ?: count;
7013 }
7014 
7015 static ssize_t wq_affn_scope_show(struct device *dev,
7016 				  struct device_attribute *attr, char *buf)
7017 {
7018 	struct workqueue_struct *wq = dev_to_wq(dev);
7019 	int written;
7020 
7021 	mutex_lock(&wq->mutex);
7022 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7023 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7024 				    wq_affn_names[WQ_AFFN_DFL],
7025 				    wq_affn_names[wq_affn_dfl]);
7026 	else
7027 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
7028 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
7029 	mutex_unlock(&wq->mutex);
7030 
7031 	return written;
7032 }
7033 
7034 static ssize_t wq_affn_scope_store(struct device *dev,
7035 				   struct device_attribute *attr,
7036 				   const char *buf, size_t count)
7037 {
7038 	struct workqueue_struct *wq = dev_to_wq(dev);
7039 	struct workqueue_attrs *attrs;
7040 	int affn, ret = -ENOMEM;
7041 
7042 	affn = parse_affn_scope(buf);
7043 	if (affn < 0)
7044 		return affn;
7045 
7046 	apply_wqattrs_lock();
7047 	attrs = wq_sysfs_prep_attrs(wq);
7048 	if (attrs) {
7049 		attrs->affn_scope = affn;
7050 		ret = apply_workqueue_attrs_locked(wq, attrs);
7051 	}
7052 	apply_wqattrs_unlock();
7053 	free_workqueue_attrs(attrs);
7054 	return ret ?: count;
7055 }
7056 
7057 static ssize_t wq_affinity_strict_show(struct device *dev,
7058 				       struct device_attribute *attr, char *buf)
7059 {
7060 	struct workqueue_struct *wq = dev_to_wq(dev);
7061 
7062 	return scnprintf(buf, PAGE_SIZE, "%d\n",
7063 			 wq->unbound_attrs->affn_strict);
7064 }
7065 
7066 static ssize_t wq_affinity_strict_store(struct device *dev,
7067 					struct device_attribute *attr,
7068 					const char *buf, size_t count)
7069 {
7070 	struct workqueue_struct *wq = dev_to_wq(dev);
7071 	struct workqueue_attrs *attrs;
7072 	int v, ret = -ENOMEM;
7073 
7074 	if (sscanf(buf, "%d", &v) != 1)
7075 		return -EINVAL;
7076 
7077 	apply_wqattrs_lock();
7078 	attrs = wq_sysfs_prep_attrs(wq);
7079 	if (attrs) {
7080 		attrs->affn_strict = (bool)v;
7081 		ret = apply_workqueue_attrs_locked(wq, attrs);
7082 	}
7083 	apply_wqattrs_unlock();
7084 	free_workqueue_attrs(attrs);
7085 	return ret ?: count;
7086 }
7087 
7088 static struct device_attribute wq_sysfs_unbound_attrs[] = {
7089 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7090 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7091 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7092 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7093 	__ATTR_NULL,
7094 };
7095 
7096 static const struct bus_type wq_subsys = {
7097 	.name				= "workqueue",
7098 	.dev_groups			= wq_sysfs_groups,
7099 };
7100 
7101 /**
7102  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7103  *  @cpumask: the cpumask to set
7104  *
7105  *  The low-level workqueues cpumask is a global cpumask that limits
7106  *  the affinity of all unbound workqueues.  This function check the @cpumask
7107  *  and apply it to all unbound workqueues and updates all pwqs of them.
7108  *
7109  *  Return:	0	- Success
7110  *		-EINVAL	- Invalid @cpumask
7111  *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
7112  */
7113 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7114 {
7115 	int ret = -EINVAL;
7116 
7117 	/*
7118 	 * Not excluding isolated cpus on purpose.
7119 	 * If the user wishes to include them, we allow that.
7120 	 */
7121 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
7122 	if (!cpumask_empty(cpumask)) {
7123 		apply_wqattrs_lock();
7124 		cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7125 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
7126 			ret = 0;
7127 			goto out_unlock;
7128 		}
7129 
7130 		ret = workqueue_apply_unbound_cpumask(cpumask);
7131 
7132 out_unlock:
7133 		apply_wqattrs_unlock();
7134 	}
7135 
7136 	return ret;
7137 }
7138 
7139 static ssize_t __wq_cpumask_show(struct device *dev,
7140 		struct device_attribute *attr, char *buf, cpumask_var_t mask)
7141 {
7142 	int written;
7143 
7144 	mutex_lock(&wq_pool_mutex);
7145 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7146 	mutex_unlock(&wq_pool_mutex);
7147 
7148 	return written;
7149 }
7150 
7151 static ssize_t wq_unbound_cpumask_show(struct device *dev,
7152 		struct device_attribute *attr, char *buf)
7153 {
7154 	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7155 }
7156 
7157 static ssize_t wq_requested_cpumask_show(struct device *dev,
7158 		struct device_attribute *attr, char *buf)
7159 {
7160 	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7161 }
7162 
7163 static ssize_t wq_isolated_cpumask_show(struct device *dev,
7164 		struct device_attribute *attr, char *buf)
7165 {
7166 	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7167 }
7168 
7169 static ssize_t wq_unbound_cpumask_store(struct device *dev,
7170 		struct device_attribute *attr, const char *buf, size_t count)
7171 {
7172 	cpumask_var_t cpumask;
7173 	int ret;
7174 
7175 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7176 		return -ENOMEM;
7177 
7178 	ret = cpumask_parse(buf, cpumask);
7179 	if (!ret)
7180 		ret = workqueue_set_unbound_cpumask(cpumask);
7181 
7182 	free_cpumask_var(cpumask);
7183 	return ret ? ret : count;
7184 }
7185 
7186 static struct device_attribute wq_sysfs_cpumask_attrs[] = {
7187 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
7188 	       wq_unbound_cpumask_store),
7189 	__ATTR(cpumask_requested, 0444, wq_requested_cpumask_show, NULL),
7190 	__ATTR(cpumask_isolated, 0444, wq_isolated_cpumask_show, NULL),
7191 	__ATTR_NULL,
7192 };
7193 
7194 static int __init wq_sysfs_init(void)
7195 {
7196 	struct device *dev_root;
7197 	int err;
7198 
7199 	err = subsys_virtual_register(&wq_subsys, NULL);
7200 	if (err)
7201 		return err;
7202 
7203 	dev_root = bus_get_dev_root(&wq_subsys);
7204 	if (dev_root) {
7205 		struct device_attribute *attr;
7206 
7207 		for (attr = wq_sysfs_cpumask_attrs; attr->attr.name; attr++) {
7208 			err = device_create_file(dev_root, attr);
7209 			if (err)
7210 				break;
7211 		}
7212 		put_device(dev_root);
7213 	}
7214 	return err;
7215 }
7216 core_initcall(wq_sysfs_init);
7217 
7218 static void wq_device_release(struct device *dev)
7219 {
7220 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7221 
7222 	kfree(wq_dev);
7223 }
7224 
7225 /**
7226  * workqueue_sysfs_register - make a workqueue visible in sysfs
7227  * @wq: the workqueue to register
7228  *
7229  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7230  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7231  * which is the preferred method.
7232  *
7233  * Workqueue user should use this function directly iff it wants to apply
7234  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7235  * apply_workqueue_attrs() may race against userland updating the
7236  * attributes.
7237  *
7238  * Return: 0 on success, -errno on failure.
7239  */
7240 int workqueue_sysfs_register(struct workqueue_struct *wq)
7241 {
7242 	struct wq_device *wq_dev;
7243 	int ret;
7244 
7245 	/*
7246 	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
7247 	 * ordered workqueues.
7248 	 */
7249 	if (WARN_ON(wq->flags & __WQ_ORDERED))
7250 		return -EINVAL;
7251 
7252 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7253 	if (!wq_dev)
7254 		return -ENOMEM;
7255 
7256 	wq_dev->wq = wq;
7257 	wq_dev->dev.bus = &wq_subsys;
7258 	wq_dev->dev.release = wq_device_release;
7259 	dev_set_name(&wq_dev->dev, "%s", wq->name);
7260 
7261 	/*
7262 	 * unbound_attrs are created separately.  Suppress uevent until
7263 	 * everything is ready.
7264 	 */
7265 	dev_set_uevent_suppress(&wq_dev->dev, true);
7266 
7267 	ret = device_register(&wq_dev->dev);
7268 	if (ret) {
7269 		put_device(&wq_dev->dev);
7270 		wq->wq_dev = NULL;
7271 		return ret;
7272 	}
7273 
7274 	if (wq->flags & WQ_UNBOUND) {
7275 		struct device_attribute *attr;
7276 
7277 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7278 			ret = device_create_file(&wq_dev->dev, attr);
7279 			if (ret) {
7280 				device_unregister(&wq_dev->dev);
7281 				wq->wq_dev = NULL;
7282 				return ret;
7283 			}
7284 		}
7285 	}
7286 
7287 	dev_set_uevent_suppress(&wq_dev->dev, false);
7288 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7289 	return 0;
7290 }
7291 
7292 /**
7293  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7294  * @wq: the workqueue to unregister
7295  *
7296  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7297  */
7298 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7299 {
7300 	struct wq_device *wq_dev = wq->wq_dev;
7301 
7302 	if (!wq->wq_dev)
7303 		return;
7304 
7305 	wq->wq_dev = NULL;
7306 	device_unregister(&wq_dev->dev);
7307 }
7308 #else	/* CONFIG_SYSFS */
7309 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7310 #endif	/* CONFIG_SYSFS */
7311 
7312 /*
7313  * Workqueue watchdog.
7314  *
7315  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7316  * flush dependency, a concurrency managed work item which stays RUNNING
7317  * indefinitely.  Workqueue stalls can be very difficult to debug as the
7318  * usual warning mechanisms don't trigger and internal workqueue state is
7319  * largely opaque.
7320  *
7321  * Workqueue watchdog monitors all worker pools periodically and dumps
7322  * state if some pools failed to make forward progress for a while where
7323  * forward progress is defined as the first item on ->worklist changing.
7324  *
7325  * This mechanism is controlled through the kernel parameter
7326  * "workqueue.watchdog_thresh" which can be updated at runtime through the
7327  * corresponding sysfs parameter file.
7328  */
7329 #ifdef CONFIG_WQ_WATCHDOG
7330 
7331 static unsigned long wq_watchdog_thresh = 30;
7332 static struct timer_list wq_watchdog_timer;
7333 
7334 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7335 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7336 
7337 /*
7338  * Show workers that might prevent the processing of pending work items.
7339  * The only candidates are CPU-bound workers in the running state.
7340  * Pending work items should be handled by another idle worker
7341  * in all other situations.
7342  */
7343 static void show_cpu_pool_hog(struct worker_pool *pool)
7344 {
7345 	struct worker *worker;
7346 	unsigned long irq_flags;
7347 	int bkt;
7348 
7349 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
7350 
7351 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7352 		if (task_is_running(worker->task)) {
7353 			/*
7354 			 * Defer printing to avoid deadlocks in console
7355 			 * drivers that queue work while holding locks
7356 			 * also taken in their write paths.
7357 			 */
7358 			printk_deferred_enter();
7359 
7360 			pr_info("pool %d:\n", pool->id);
7361 			sched_show_task(worker->task);
7362 
7363 			printk_deferred_exit();
7364 		}
7365 	}
7366 
7367 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7368 }
7369 
7370 static void show_cpu_pools_hogs(void)
7371 {
7372 	struct worker_pool *pool;
7373 	int pi;
7374 
7375 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7376 
7377 	rcu_read_lock();
7378 
7379 	for_each_pool(pool, pi) {
7380 		if (pool->cpu_stall)
7381 			show_cpu_pool_hog(pool);
7382 
7383 	}
7384 
7385 	rcu_read_unlock();
7386 }
7387 
7388 static void wq_watchdog_reset_touched(void)
7389 {
7390 	int cpu;
7391 
7392 	wq_watchdog_touched = jiffies;
7393 	for_each_possible_cpu(cpu)
7394 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7395 }
7396 
7397 static void wq_watchdog_timer_fn(struct timer_list *unused)
7398 {
7399 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7400 	bool lockup_detected = false;
7401 	bool cpu_pool_stall = false;
7402 	unsigned long now = jiffies;
7403 	struct worker_pool *pool;
7404 	int pi;
7405 
7406 	if (!thresh)
7407 		return;
7408 
7409 	rcu_read_lock();
7410 
7411 	for_each_pool(pool, pi) {
7412 		unsigned long pool_ts, touched, ts;
7413 
7414 		pool->cpu_stall = false;
7415 		if (list_empty(&pool->worklist))
7416 			continue;
7417 
7418 		/*
7419 		 * If a virtual machine is stopped by the host it can look to
7420 		 * the watchdog like a stall.
7421 		 */
7422 		kvm_check_and_clear_guest_paused();
7423 
7424 		/* get the latest of pool and touched timestamps */
7425 		if (pool->cpu >= 0)
7426 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7427 		else
7428 			touched = READ_ONCE(wq_watchdog_touched);
7429 		pool_ts = READ_ONCE(pool->watchdog_ts);
7430 
7431 		if (time_after(pool_ts, touched))
7432 			ts = pool_ts;
7433 		else
7434 			ts = touched;
7435 
7436 		/* did we stall? */
7437 		if (time_after(now, ts + thresh)) {
7438 			lockup_detected = true;
7439 			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7440 				pool->cpu_stall = true;
7441 				cpu_pool_stall = true;
7442 			}
7443 			pr_emerg("BUG: workqueue lockup - pool");
7444 			pr_cont_pool_info(pool);
7445 			pr_cont(" stuck for %us!\n",
7446 				jiffies_to_msecs(now - pool_ts) / 1000);
7447 		}
7448 
7449 
7450 	}
7451 
7452 	rcu_read_unlock();
7453 
7454 	if (lockup_detected)
7455 		show_all_workqueues();
7456 
7457 	if (cpu_pool_stall)
7458 		show_cpu_pools_hogs();
7459 
7460 	wq_watchdog_reset_touched();
7461 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7462 }
7463 
7464 notrace void wq_watchdog_touch(int cpu)
7465 {
7466 	if (cpu >= 0)
7467 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7468 
7469 	wq_watchdog_touched = jiffies;
7470 }
7471 
7472 static void wq_watchdog_set_thresh(unsigned long thresh)
7473 {
7474 	wq_watchdog_thresh = 0;
7475 	del_timer_sync(&wq_watchdog_timer);
7476 
7477 	if (thresh) {
7478 		wq_watchdog_thresh = thresh;
7479 		wq_watchdog_reset_touched();
7480 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7481 	}
7482 }
7483 
7484 static int wq_watchdog_param_set_thresh(const char *val,
7485 					const struct kernel_param *kp)
7486 {
7487 	unsigned long thresh;
7488 	int ret;
7489 
7490 	ret = kstrtoul(val, 0, &thresh);
7491 	if (ret)
7492 		return ret;
7493 
7494 	if (system_wq)
7495 		wq_watchdog_set_thresh(thresh);
7496 	else
7497 		wq_watchdog_thresh = thresh;
7498 
7499 	return 0;
7500 }
7501 
7502 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7503 	.set	= wq_watchdog_param_set_thresh,
7504 	.get	= param_get_ulong,
7505 };
7506 
7507 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7508 		0644);
7509 
7510 static void wq_watchdog_init(void)
7511 {
7512 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7513 	wq_watchdog_set_thresh(wq_watchdog_thresh);
7514 }
7515 
7516 #else	/* CONFIG_WQ_WATCHDOG */
7517 
7518 static inline void wq_watchdog_init(void) { }
7519 
7520 #endif	/* CONFIG_WQ_WATCHDOG */
7521 
7522 static void bh_pool_kick_normal(struct irq_work *irq_work)
7523 {
7524 	raise_softirq_irqoff(TASKLET_SOFTIRQ);
7525 }
7526 
7527 static void bh_pool_kick_highpri(struct irq_work *irq_work)
7528 {
7529 	raise_softirq_irqoff(HI_SOFTIRQ);
7530 }
7531 
7532 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7533 {
7534 	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7535 		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7536 			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7537 		return;
7538 	}
7539 
7540 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7541 }
7542 
7543 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7544 {
7545 	BUG_ON(init_worker_pool(pool));
7546 	pool->cpu = cpu;
7547 	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7548 	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7549 	pool->attrs->nice = nice;
7550 	pool->attrs->affn_strict = true;
7551 	pool->node = cpu_to_node(cpu);
7552 
7553 	/* alloc pool ID */
7554 	mutex_lock(&wq_pool_mutex);
7555 	BUG_ON(worker_pool_assign_id(pool));
7556 	mutex_unlock(&wq_pool_mutex);
7557 }
7558 
7559 /**
7560  * workqueue_init_early - early init for workqueue subsystem
7561  *
7562  * This is the first step of three-staged workqueue subsystem initialization and
7563  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7564  * up. It sets up all the data structures and system workqueues and allows early
7565  * boot code to create workqueues and queue/cancel work items. Actual work item
7566  * execution starts only after kthreads can be created and scheduled right
7567  * before early initcalls.
7568  */
7569 void __init workqueue_init_early(void)
7570 {
7571 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7572 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7573 	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7574 						       bh_pool_kick_highpri };
7575 	int i, cpu;
7576 
7577 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7578 
7579 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7580 	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7581 	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7582 
7583 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7584 	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7585 	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7586 	if (!cpumask_empty(&wq_cmdline_cpumask))
7587 		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7588 
7589 	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7590 
7591 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7592 
7593 	wq_update_pod_attrs_buf = alloc_workqueue_attrs();
7594 	BUG_ON(!wq_update_pod_attrs_buf);
7595 
7596 	/*
7597 	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7598 	 * This allows workqueue items to be moved to HK CPUs.
7599 	 */
7600 	if (housekeeping_enabled(HK_TYPE_TICK))
7601 		wq_power_efficient = true;
7602 
7603 	/* initialize WQ_AFFN_SYSTEM pods */
7604 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7605 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7606 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7607 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7608 
7609 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7610 
7611 	pt->nr_pods = 1;
7612 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7613 	pt->pod_node[0] = NUMA_NO_NODE;
7614 	pt->cpu_pod[0] = 0;
7615 
7616 	/* initialize BH and CPU pools */
7617 	for_each_possible_cpu(cpu) {
7618 		struct worker_pool *pool;
7619 
7620 		i = 0;
7621 		for_each_bh_worker_pool(pool, cpu) {
7622 			init_cpu_worker_pool(pool, cpu, std_nice[i]);
7623 			pool->flags |= POOL_BH;
7624 			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7625 			i++;
7626 		}
7627 
7628 		i = 0;
7629 		for_each_cpu_worker_pool(pool, cpu)
7630 			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7631 	}
7632 
7633 	/* create default unbound and ordered wq attrs */
7634 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7635 		struct workqueue_attrs *attrs;
7636 
7637 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7638 		attrs->nice = std_nice[i];
7639 		unbound_std_wq_attrs[i] = attrs;
7640 
7641 		/*
7642 		 * An ordered wq should have only one pwq as ordering is
7643 		 * guaranteed by max_active which is enforced by pwqs.
7644 		 */
7645 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7646 		attrs->nice = std_nice[i];
7647 		attrs->ordered = true;
7648 		ordered_wq_attrs[i] = attrs;
7649 	}
7650 
7651 	system_wq = alloc_workqueue("events", 0, 0);
7652 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7653 	system_long_wq = alloc_workqueue("events_long", 0, 0);
7654 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7655 					    WQ_MAX_ACTIVE);
7656 	system_freezable_wq = alloc_workqueue("events_freezable",
7657 					      WQ_FREEZABLE, 0);
7658 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7659 					      WQ_POWER_EFFICIENT, 0);
7660 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7661 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7662 					      0);
7663 	system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7664 	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7665 					       WQ_BH | WQ_HIGHPRI, 0);
7666 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7667 	       !system_unbound_wq || !system_freezable_wq ||
7668 	       !system_power_efficient_wq ||
7669 	       !system_freezable_power_efficient_wq ||
7670 	       !system_bh_wq || !system_bh_highpri_wq);
7671 }
7672 
7673 static void __init wq_cpu_intensive_thresh_init(void)
7674 {
7675 	unsigned long thresh;
7676 	unsigned long bogo;
7677 
7678 	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7679 	BUG_ON(IS_ERR(pwq_release_worker));
7680 
7681 	/* if the user set it to a specific value, keep it */
7682 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7683 		return;
7684 
7685 	/*
7686 	 * The default of 10ms is derived from the fact that most modern (as of
7687 	 * 2023) processors can do a lot in 10ms and that it's just below what
7688 	 * most consider human-perceivable. However, the kernel also runs on a
7689 	 * lot slower CPUs including microcontrollers where the threshold is way
7690 	 * too low.
7691 	 *
7692 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7693 	 * This is by no means accurate but it doesn't have to be. The mechanism
7694 	 * is still useful even when the threshold is fully scaled up. Also, as
7695 	 * the reports would usually be applicable to everyone, some machines
7696 	 * operating on longer thresholds won't significantly diminish their
7697 	 * usefulness.
7698 	 */
7699 	thresh = 10 * USEC_PER_MSEC;
7700 
7701 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7702 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7703 	if (bogo < 4000)
7704 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7705 
7706 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7707 		 loops_per_jiffy, bogo, thresh);
7708 
7709 	wq_cpu_intensive_thresh_us = thresh;
7710 }
7711 
7712 /**
7713  * workqueue_init - bring workqueue subsystem fully online
7714  *
7715  * This is the second step of three-staged workqueue subsystem initialization
7716  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7717  * been created and work items queued on them, but there are no kworkers
7718  * executing the work items yet. Populate the worker pools with the initial
7719  * workers and enable future kworker creations.
7720  */
7721 void __init workqueue_init(void)
7722 {
7723 	struct workqueue_struct *wq;
7724 	struct worker_pool *pool;
7725 	int cpu, bkt;
7726 
7727 	wq_cpu_intensive_thresh_init();
7728 
7729 	mutex_lock(&wq_pool_mutex);
7730 
7731 	/*
7732 	 * Per-cpu pools created earlier could be missing node hint. Fix them
7733 	 * up. Also, create a rescuer for workqueues that requested it.
7734 	 */
7735 	for_each_possible_cpu(cpu) {
7736 		for_each_bh_worker_pool(pool, cpu)
7737 			pool->node = cpu_to_node(cpu);
7738 		for_each_cpu_worker_pool(pool, cpu)
7739 			pool->node = cpu_to_node(cpu);
7740 	}
7741 
7742 	list_for_each_entry(wq, &workqueues, list) {
7743 		WARN(init_rescuer(wq),
7744 		     "workqueue: failed to create early rescuer for %s",
7745 		     wq->name);
7746 	}
7747 
7748 	mutex_unlock(&wq_pool_mutex);
7749 
7750 	/*
7751 	 * Create the initial workers. A BH pool has one pseudo worker that
7752 	 * represents the shared BH execution context and thus doesn't get
7753 	 * affected by hotplug events. Create the BH pseudo workers for all
7754 	 * possible CPUs here.
7755 	 */
7756 	for_each_possible_cpu(cpu)
7757 		for_each_bh_worker_pool(pool, cpu)
7758 			BUG_ON(!create_worker(pool));
7759 
7760 	for_each_online_cpu(cpu) {
7761 		for_each_cpu_worker_pool(pool, cpu) {
7762 			pool->flags &= ~POOL_DISASSOCIATED;
7763 			BUG_ON(!create_worker(pool));
7764 		}
7765 	}
7766 
7767 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7768 		BUG_ON(!create_worker(pool));
7769 
7770 	wq_online = true;
7771 	wq_watchdog_init();
7772 }
7773 
7774 /*
7775  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7776  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7777  * and consecutive pod ID. The rest of @pt is initialized accordingly.
7778  */
7779 static void __init init_pod_type(struct wq_pod_type *pt,
7780 				 bool (*cpus_share_pod)(int, int))
7781 {
7782 	int cur, pre, cpu, pod;
7783 
7784 	pt->nr_pods = 0;
7785 
7786 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7787 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7788 	BUG_ON(!pt->cpu_pod);
7789 
7790 	for_each_possible_cpu(cur) {
7791 		for_each_possible_cpu(pre) {
7792 			if (pre >= cur) {
7793 				pt->cpu_pod[cur] = pt->nr_pods++;
7794 				break;
7795 			}
7796 			if (cpus_share_pod(cur, pre)) {
7797 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7798 				break;
7799 			}
7800 		}
7801 	}
7802 
7803 	/* init the rest to match @pt->cpu_pod[] */
7804 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7805 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7806 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
7807 
7808 	for (pod = 0; pod < pt->nr_pods; pod++)
7809 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7810 
7811 	for_each_possible_cpu(cpu) {
7812 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7813 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7814 	}
7815 }
7816 
7817 static bool __init cpus_dont_share(int cpu0, int cpu1)
7818 {
7819 	return false;
7820 }
7821 
7822 static bool __init cpus_share_smt(int cpu0, int cpu1)
7823 {
7824 #ifdef CONFIG_SCHED_SMT
7825 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7826 #else
7827 	return false;
7828 #endif
7829 }
7830 
7831 static bool __init cpus_share_numa(int cpu0, int cpu1)
7832 {
7833 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7834 }
7835 
7836 /**
7837  * workqueue_init_topology - initialize CPU pods for unbound workqueues
7838  *
7839  * This is the third step of three-staged workqueue subsystem initialization and
7840  * invoked after SMP and topology information are fully initialized. It
7841  * initializes the unbound CPU pods accordingly.
7842  */
7843 void __init workqueue_init_topology(void)
7844 {
7845 	struct workqueue_struct *wq;
7846 	int cpu;
7847 
7848 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7849 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7850 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
7851 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
7852 
7853 	wq_topo_initialized = true;
7854 
7855 	mutex_lock(&wq_pool_mutex);
7856 
7857 	/*
7858 	 * Workqueues allocated earlier would have all CPUs sharing the default
7859 	 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU
7860 	 * combinations to apply per-pod sharing.
7861 	 */
7862 	list_for_each_entry(wq, &workqueues, list) {
7863 		for_each_online_cpu(cpu)
7864 			wq_update_pod(wq, cpu, cpu, true);
7865 		if (wq->flags & WQ_UNBOUND) {
7866 			mutex_lock(&wq->mutex);
7867 			wq_update_node_max_active(wq, -1);
7868 			mutex_unlock(&wq->mutex);
7869 		}
7870 	}
7871 
7872 	mutex_unlock(&wq_pool_mutex);
7873 }
7874 
7875 void __warn_flushing_systemwide_wq(void)
7876 {
7877 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
7878 	dump_stack();
7879 }
7880 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
7881 
7882 static int __init workqueue_unbound_cpus_setup(char *str)
7883 {
7884 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
7885 		cpumask_clear(&wq_cmdline_cpumask);
7886 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
7887 	}
7888 
7889 	return 1;
7890 }
7891 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
7892