1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/nmi.h> 53 #include <linux/kvm_para.h> 54 55 #include "workqueue_internal.h" 56 57 enum { 58 /* 59 * worker_pool flags 60 * 61 * A bound pool is either associated or disassociated with its CPU. 62 * While associated (!DISASSOCIATED), all workers are bound to the 63 * CPU and none has %WORKER_UNBOUND set and concurrency management 64 * is in effect. 65 * 66 * While DISASSOCIATED, the cpu may be offline and all workers have 67 * %WORKER_UNBOUND set and concurrency management disabled, and may 68 * be executing on any CPU. The pool behaves as an unbound one. 69 * 70 * Note that DISASSOCIATED should be flipped only while holding 71 * wq_pool_attach_mutex to avoid changing binding state while 72 * worker_attach_to_pool() is in progress. 73 */ 74 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 75 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 76 77 /* worker flags */ 78 WORKER_DIE = 1 << 1, /* die die die */ 79 WORKER_IDLE = 1 << 2, /* is idle */ 80 WORKER_PREP = 1 << 3, /* preparing to run works */ 81 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 82 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 83 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 84 85 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 86 WORKER_UNBOUND | WORKER_REBOUND, 87 88 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 89 90 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 92 93 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 94 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 95 96 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 97 /* call for help after 10ms 98 (min two ticks) */ 99 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 100 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 101 102 /* 103 * Rescue workers are used only on emergencies and shared by 104 * all cpus. Give MIN_NICE. 105 */ 106 RESCUER_NICE_LEVEL = MIN_NICE, 107 HIGHPRI_NICE_LEVEL = MIN_NICE, 108 109 WQ_NAME_LEN = 24, 110 }; 111 112 /* 113 * Structure fields follow one of the following exclusion rules. 114 * 115 * I: Modifiable by initialization/destruction paths and read-only for 116 * everyone else. 117 * 118 * P: Preemption protected. Disabling preemption is enough and should 119 * only be modified and accessed from the local cpu. 120 * 121 * L: pool->lock protected. Access with pool->lock held. 122 * 123 * X: During normal operation, modification requires pool->lock and should 124 * be done only from local cpu. Either disabling preemption on local 125 * cpu or grabbing pool->lock is enough for read access. If 126 * POOL_DISASSOCIATED is set, it's identical to L. 127 * 128 * A: wq_pool_attach_mutex protected. 129 * 130 * PL: wq_pool_mutex protected. 131 * 132 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 133 * 134 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 135 * 136 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 137 * RCU for reads. 138 * 139 * WQ: wq->mutex protected. 140 * 141 * WR: wq->mutex protected for writes. RCU protected for reads. 142 * 143 * MD: wq_mayday_lock protected. 144 */ 145 146 /* struct worker is defined in workqueue_internal.h */ 147 148 struct worker_pool { 149 raw_spinlock_t lock; /* the pool lock */ 150 int cpu; /* I: the associated cpu */ 151 int node; /* I: the associated node ID */ 152 int id; /* I: pool ID */ 153 unsigned int flags; /* X: flags */ 154 155 unsigned long watchdog_ts; /* L: watchdog timestamp */ 156 157 /* 158 * The counter is incremented in a process context on the associated CPU 159 * w/ preemption disabled, and decremented or reset in the same context 160 * but w/ pool->lock held. The readers grab pool->lock and are 161 * guaranteed to see if the counter reached zero. 162 */ 163 int nr_running; 164 165 struct list_head worklist; /* L: list of pending works */ 166 167 int nr_workers; /* L: total number of workers */ 168 int nr_idle; /* L: currently idle workers */ 169 170 struct list_head idle_list; /* L: list of idle workers */ 171 struct timer_list idle_timer; /* L: worker idle timeout */ 172 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 173 174 struct timer_list mayday_timer; /* L: SOS timer for workers */ 175 176 /* a workers is either on busy_hash or idle_list, or the manager */ 177 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 178 /* L: hash of busy workers */ 179 180 struct worker *manager; /* L: purely informational */ 181 struct list_head workers; /* A: attached workers */ 182 struct list_head dying_workers; /* A: workers about to die */ 183 struct completion *detach_completion; /* all workers detached */ 184 185 struct ida worker_ida; /* worker IDs for task name */ 186 187 struct workqueue_attrs *attrs; /* I: worker attributes */ 188 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 189 int refcnt; /* PL: refcnt for unbound pools */ 190 191 /* 192 * Destruction of pool is RCU protected to allow dereferences 193 * from get_work_pool(). 194 */ 195 struct rcu_head rcu; 196 }; 197 198 /* 199 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 200 * of work_struct->data are used for flags and the remaining high bits 201 * point to the pwq; thus, pwqs need to be aligned at two's power of the 202 * number of flag bits. 203 */ 204 struct pool_workqueue { 205 struct worker_pool *pool; /* I: the associated pool */ 206 struct workqueue_struct *wq; /* I: the owning workqueue */ 207 int work_color; /* L: current color */ 208 int flush_color; /* L: flushing color */ 209 int refcnt; /* L: reference count */ 210 int nr_in_flight[WORK_NR_COLORS]; 211 /* L: nr of in_flight works */ 212 213 /* 214 * nr_active management and WORK_STRUCT_INACTIVE: 215 * 216 * When pwq->nr_active >= max_active, new work item is queued to 217 * pwq->inactive_works instead of pool->worklist and marked with 218 * WORK_STRUCT_INACTIVE. 219 * 220 * All work items marked with WORK_STRUCT_INACTIVE do not participate 221 * in pwq->nr_active and all work items in pwq->inactive_works are 222 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE 223 * work items are in pwq->inactive_works. Some of them are ready to 224 * run in pool->worklist or worker->scheduled. Those work itmes are 225 * only struct wq_barrier which is used for flush_work() and should 226 * not participate in pwq->nr_active. For non-barrier work item, it 227 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 228 */ 229 int nr_active; /* L: nr of active works */ 230 int max_active; /* L: max active works */ 231 struct list_head inactive_works; /* L: inactive works */ 232 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 233 struct list_head mayday_node; /* MD: node on wq->maydays */ 234 235 /* 236 * Release of unbound pwq is punted to system_wq. See put_pwq() 237 * and pwq_unbound_release_workfn() for details. pool_workqueue 238 * itself is also RCU protected so that the first pwq can be 239 * determined without grabbing wq->mutex. 240 */ 241 struct work_struct unbound_release_work; 242 struct rcu_head rcu; 243 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 244 245 /* 246 * Structure used to wait for workqueue flush. 247 */ 248 struct wq_flusher { 249 struct list_head list; /* WQ: list of flushers */ 250 int flush_color; /* WQ: flush color waiting for */ 251 struct completion done; /* flush completion */ 252 }; 253 254 struct wq_device; 255 256 /* 257 * The externally visible workqueue. It relays the issued work items to 258 * the appropriate worker_pool through its pool_workqueues. 259 */ 260 struct workqueue_struct { 261 struct list_head pwqs; /* WR: all pwqs of this wq */ 262 struct list_head list; /* PR: list of all workqueues */ 263 264 struct mutex mutex; /* protects this wq */ 265 int work_color; /* WQ: current work color */ 266 int flush_color; /* WQ: current flush color */ 267 atomic_t nr_pwqs_to_flush; /* flush in progress */ 268 struct wq_flusher *first_flusher; /* WQ: first flusher */ 269 struct list_head flusher_queue; /* WQ: flush waiters */ 270 struct list_head flusher_overflow; /* WQ: flush overflow list */ 271 272 struct list_head maydays; /* MD: pwqs requesting rescue */ 273 struct worker *rescuer; /* MD: rescue worker */ 274 275 int nr_drainers; /* WQ: drain in progress */ 276 int saved_max_active; /* WQ: saved pwq max_active */ 277 278 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 279 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 280 281 #ifdef CONFIG_SYSFS 282 struct wq_device *wq_dev; /* I: for sysfs interface */ 283 #endif 284 #ifdef CONFIG_LOCKDEP 285 char *lock_name; 286 struct lock_class_key key; 287 struct lockdep_map lockdep_map; 288 #endif 289 char name[WQ_NAME_LEN]; /* I: workqueue name */ 290 291 /* 292 * Destruction of workqueue_struct is RCU protected to allow walking 293 * the workqueues list without grabbing wq_pool_mutex. 294 * This is used to dump all workqueues from sysrq. 295 */ 296 struct rcu_head rcu; 297 298 /* hot fields used during command issue, aligned to cacheline */ 299 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 300 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 301 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 302 }; 303 304 static struct kmem_cache *pwq_cache; 305 306 static cpumask_var_t *wq_numa_possible_cpumask; 307 /* possible CPUs of each node */ 308 309 static bool wq_disable_numa; 310 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 311 312 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 313 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 314 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 315 316 static bool wq_online; /* can kworkers be created yet? */ 317 318 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 319 320 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 321 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 322 323 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 324 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 325 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 326 /* wait for manager to go away */ 327 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 328 329 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 330 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 331 332 /* PL&A: allowable cpus for unbound wqs and work items */ 333 static cpumask_var_t wq_unbound_cpumask; 334 335 /* CPU where unbound work was last round robin scheduled from this CPU */ 336 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 337 338 /* 339 * Local execution of unbound work items is no longer guaranteed. The 340 * following always forces round-robin CPU selection on unbound work items 341 * to uncover usages which depend on it. 342 */ 343 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 344 static bool wq_debug_force_rr_cpu = true; 345 #else 346 static bool wq_debug_force_rr_cpu = false; 347 #endif 348 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 349 350 /* the per-cpu worker pools */ 351 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 352 353 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 354 355 /* PL: hash of all unbound pools keyed by pool->attrs */ 356 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 357 358 /* I: attributes used when instantiating standard unbound pools on demand */ 359 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 360 361 /* I: attributes used when instantiating ordered pools on demand */ 362 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 363 364 struct workqueue_struct *system_wq __read_mostly; 365 EXPORT_SYMBOL(system_wq); 366 struct workqueue_struct *system_highpri_wq __read_mostly; 367 EXPORT_SYMBOL_GPL(system_highpri_wq); 368 struct workqueue_struct *system_long_wq __read_mostly; 369 EXPORT_SYMBOL_GPL(system_long_wq); 370 struct workqueue_struct *system_unbound_wq __read_mostly; 371 EXPORT_SYMBOL_GPL(system_unbound_wq); 372 struct workqueue_struct *system_freezable_wq __read_mostly; 373 EXPORT_SYMBOL_GPL(system_freezable_wq); 374 struct workqueue_struct *system_power_efficient_wq __read_mostly; 375 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 376 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 377 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 378 379 static int worker_thread(void *__worker); 380 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 381 static void show_pwq(struct pool_workqueue *pwq); 382 static void show_one_worker_pool(struct worker_pool *pool); 383 384 #define CREATE_TRACE_POINTS 385 #include <trace/events/workqueue.h> 386 387 #define assert_rcu_or_pool_mutex() \ 388 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 389 !lockdep_is_held(&wq_pool_mutex), \ 390 "RCU or wq_pool_mutex should be held") 391 392 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 393 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 394 !lockdep_is_held(&wq->mutex) && \ 395 !lockdep_is_held(&wq_pool_mutex), \ 396 "RCU, wq->mutex or wq_pool_mutex should be held") 397 398 #define for_each_cpu_worker_pool(pool, cpu) \ 399 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 400 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 401 (pool)++) 402 403 /** 404 * for_each_pool - iterate through all worker_pools in the system 405 * @pool: iteration cursor 406 * @pi: integer used for iteration 407 * 408 * This must be called either with wq_pool_mutex held or RCU read 409 * locked. If the pool needs to be used beyond the locking in effect, the 410 * caller is responsible for guaranteeing that the pool stays online. 411 * 412 * The if/else clause exists only for the lockdep assertion and can be 413 * ignored. 414 */ 415 #define for_each_pool(pool, pi) \ 416 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 417 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 418 else 419 420 /** 421 * for_each_pool_worker - iterate through all workers of a worker_pool 422 * @worker: iteration cursor 423 * @pool: worker_pool to iterate workers of 424 * 425 * This must be called with wq_pool_attach_mutex. 426 * 427 * The if/else clause exists only for the lockdep assertion and can be 428 * ignored. 429 */ 430 #define for_each_pool_worker(worker, pool) \ 431 list_for_each_entry((worker), &(pool)->workers, node) \ 432 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 433 else 434 435 /** 436 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 437 * @pwq: iteration cursor 438 * @wq: the target workqueue 439 * 440 * This must be called either with wq->mutex held or RCU read locked. 441 * If the pwq needs to be used beyond the locking in effect, the caller is 442 * responsible for guaranteeing that the pwq stays online. 443 * 444 * The if/else clause exists only for the lockdep assertion and can be 445 * ignored. 446 */ 447 #define for_each_pwq(pwq, wq) \ 448 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 449 lockdep_is_held(&(wq->mutex))) 450 451 #ifdef CONFIG_DEBUG_OBJECTS_WORK 452 453 static const struct debug_obj_descr work_debug_descr; 454 455 static void *work_debug_hint(void *addr) 456 { 457 return ((struct work_struct *) addr)->func; 458 } 459 460 static bool work_is_static_object(void *addr) 461 { 462 struct work_struct *work = addr; 463 464 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 465 } 466 467 /* 468 * fixup_init is called when: 469 * - an active object is initialized 470 */ 471 static bool work_fixup_init(void *addr, enum debug_obj_state state) 472 { 473 struct work_struct *work = addr; 474 475 switch (state) { 476 case ODEBUG_STATE_ACTIVE: 477 cancel_work_sync(work); 478 debug_object_init(work, &work_debug_descr); 479 return true; 480 default: 481 return false; 482 } 483 } 484 485 /* 486 * fixup_free is called when: 487 * - an active object is freed 488 */ 489 static bool work_fixup_free(void *addr, enum debug_obj_state state) 490 { 491 struct work_struct *work = addr; 492 493 switch (state) { 494 case ODEBUG_STATE_ACTIVE: 495 cancel_work_sync(work); 496 debug_object_free(work, &work_debug_descr); 497 return true; 498 default: 499 return false; 500 } 501 } 502 503 static const struct debug_obj_descr work_debug_descr = { 504 .name = "work_struct", 505 .debug_hint = work_debug_hint, 506 .is_static_object = work_is_static_object, 507 .fixup_init = work_fixup_init, 508 .fixup_free = work_fixup_free, 509 }; 510 511 static inline void debug_work_activate(struct work_struct *work) 512 { 513 debug_object_activate(work, &work_debug_descr); 514 } 515 516 static inline void debug_work_deactivate(struct work_struct *work) 517 { 518 debug_object_deactivate(work, &work_debug_descr); 519 } 520 521 void __init_work(struct work_struct *work, int onstack) 522 { 523 if (onstack) 524 debug_object_init_on_stack(work, &work_debug_descr); 525 else 526 debug_object_init(work, &work_debug_descr); 527 } 528 EXPORT_SYMBOL_GPL(__init_work); 529 530 void destroy_work_on_stack(struct work_struct *work) 531 { 532 debug_object_free(work, &work_debug_descr); 533 } 534 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 535 536 void destroy_delayed_work_on_stack(struct delayed_work *work) 537 { 538 destroy_timer_on_stack(&work->timer); 539 debug_object_free(&work->work, &work_debug_descr); 540 } 541 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 542 543 #else 544 static inline void debug_work_activate(struct work_struct *work) { } 545 static inline void debug_work_deactivate(struct work_struct *work) { } 546 #endif 547 548 /** 549 * worker_pool_assign_id - allocate ID and assign it to @pool 550 * @pool: the pool pointer of interest 551 * 552 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 553 * successfully, -errno on failure. 554 */ 555 static int worker_pool_assign_id(struct worker_pool *pool) 556 { 557 int ret; 558 559 lockdep_assert_held(&wq_pool_mutex); 560 561 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 562 GFP_KERNEL); 563 if (ret >= 0) { 564 pool->id = ret; 565 return 0; 566 } 567 return ret; 568 } 569 570 /** 571 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 572 * @wq: the target workqueue 573 * @node: the node ID 574 * 575 * This must be called with any of wq_pool_mutex, wq->mutex or RCU 576 * read locked. 577 * If the pwq needs to be used beyond the locking in effect, the caller is 578 * responsible for guaranteeing that the pwq stays online. 579 * 580 * Return: The unbound pool_workqueue for @node. 581 */ 582 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 583 int node) 584 { 585 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 586 587 /* 588 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 589 * delayed item is pending. The plan is to keep CPU -> NODE 590 * mapping valid and stable across CPU on/offlines. Once that 591 * happens, this workaround can be removed. 592 */ 593 if (unlikely(node == NUMA_NO_NODE)) 594 return wq->dfl_pwq; 595 596 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 597 } 598 599 static unsigned int work_color_to_flags(int color) 600 { 601 return color << WORK_STRUCT_COLOR_SHIFT; 602 } 603 604 static int get_work_color(unsigned long work_data) 605 { 606 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 607 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 608 } 609 610 static int work_next_color(int color) 611 { 612 return (color + 1) % WORK_NR_COLORS; 613 } 614 615 /* 616 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 617 * contain the pointer to the queued pwq. Once execution starts, the flag 618 * is cleared and the high bits contain OFFQ flags and pool ID. 619 * 620 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 621 * and clear_work_data() can be used to set the pwq, pool or clear 622 * work->data. These functions should only be called while the work is 623 * owned - ie. while the PENDING bit is set. 624 * 625 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 626 * corresponding to a work. Pool is available once the work has been 627 * queued anywhere after initialization until it is sync canceled. pwq is 628 * available only while the work item is queued. 629 * 630 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 631 * canceled. While being canceled, a work item may have its PENDING set 632 * but stay off timer and worklist for arbitrarily long and nobody should 633 * try to steal the PENDING bit. 634 */ 635 static inline void set_work_data(struct work_struct *work, unsigned long data, 636 unsigned long flags) 637 { 638 WARN_ON_ONCE(!work_pending(work)); 639 atomic_long_set(&work->data, data | flags | work_static(work)); 640 } 641 642 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 643 unsigned long extra_flags) 644 { 645 set_work_data(work, (unsigned long)pwq, 646 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 647 } 648 649 static void set_work_pool_and_keep_pending(struct work_struct *work, 650 int pool_id) 651 { 652 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 653 WORK_STRUCT_PENDING); 654 } 655 656 static void set_work_pool_and_clear_pending(struct work_struct *work, 657 int pool_id) 658 { 659 /* 660 * The following wmb is paired with the implied mb in 661 * test_and_set_bit(PENDING) and ensures all updates to @work made 662 * here are visible to and precede any updates by the next PENDING 663 * owner. 664 */ 665 smp_wmb(); 666 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 667 /* 668 * The following mb guarantees that previous clear of a PENDING bit 669 * will not be reordered with any speculative LOADS or STORES from 670 * work->current_func, which is executed afterwards. This possible 671 * reordering can lead to a missed execution on attempt to queue 672 * the same @work. E.g. consider this case: 673 * 674 * CPU#0 CPU#1 675 * ---------------------------- -------------------------------- 676 * 677 * 1 STORE event_indicated 678 * 2 queue_work_on() { 679 * 3 test_and_set_bit(PENDING) 680 * 4 } set_..._and_clear_pending() { 681 * 5 set_work_data() # clear bit 682 * 6 smp_mb() 683 * 7 work->current_func() { 684 * 8 LOAD event_indicated 685 * } 686 * 687 * Without an explicit full barrier speculative LOAD on line 8 can 688 * be executed before CPU#0 does STORE on line 1. If that happens, 689 * CPU#0 observes the PENDING bit is still set and new execution of 690 * a @work is not queued in a hope, that CPU#1 will eventually 691 * finish the queued @work. Meanwhile CPU#1 does not see 692 * event_indicated is set, because speculative LOAD was executed 693 * before actual STORE. 694 */ 695 smp_mb(); 696 } 697 698 static void clear_work_data(struct work_struct *work) 699 { 700 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 701 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 702 } 703 704 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 705 { 706 unsigned long data = atomic_long_read(&work->data); 707 708 if (data & WORK_STRUCT_PWQ) 709 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 710 else 711 return NULL; 712 } 713 714 /** 715 * get_work_pool - return the worker_pool a given work was associated with 716 * @work: the work item of interest 717 * 718 * Pools are created and destroyed under wq_pool_mutex, and allows read 719 * access under RCU read lock. As such, this function should be 720 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 721 * 722 * All fields of the returned pool are accessible as long as the above 723 * mentioned locking is in effect. If the returned pool needs to be used 724 * beyond the critical section, the caller is responsible for ensuring the 725 * returned pool is and stays online. 726 * 727 * Return: The worker_pool @work was last associated with. %NULL if none. 728 */ 729 static struct worker_pool *get_work_pool(struct work_struct *work) 730 { 731 unsigned long data = atomic_long_read(&work->data); 732 int pool_id; 733 734 assert_rcu_or_pool_mutex(); 735 736 if (data & WORK_STRUCT_PWQ) 737 return ((struct pool_workqueue *) 738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 739 740 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 741 if (pool_id == WORK_OFFQ_POOL_NONE) 742 return NULL; 743 744 return idr_find(&worker_pool_idr, pool_id); 745 } 746 747 /** 748 * get_work_pool_id - return the worker pool ID a given work is associated with 749 * @work: the work item of interest 750 * 751 * Return: The worker_pool ID @work was last associated with. 752 * %WORK_OFFQ_POOL_NONE if none. 753 */ 754 static int get_work_pool_id(struct work_struct *work) 755 { 756 unsigned long data = atomic_long_read(&work->data); 757 758 if (data & WORK_STRUCT_PWQ) 759 return ((struct pool_workqueue *) 760 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 761 762 return data >> WORK_OFFQ_POOL_SHIFT; 763 } 764 765 static void mark_work_canceling(struct work_struct *work) 766 { 767 unsigned long pool_id = get_work_pool_id(work); 768 769 pool_id <<= WORK_OFFQ_POOL_SHIFT; 770 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 771 } 772 773 static bool work_is_canceling(struct work_struct *work) 774 { 775 unsigned long data = atomic_long_read(&work->data); 776 777 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 778 } 779 780 /* 781 * Policy functions. These define the policies on how the global worker 782 * pools are managed. Unless noted otherwise, these functions assume that 783 * they're being called with pool->lock held. 784 */ 785 786 static bool __need_more_worker(struct worker_pool *pool) 787 { 788 return !pool->nr_running; 789 } 790 791 /* 792 * Need to wake up a worker? Called from anything but currently 793 * running workers. 794 * 795 * Note that, because unbound workers never contribute to nr_running, this 796 * function will always return %true for unbound pools as long as the 797 * worklist isn't empty. 798 */ 799 static bool need_more_worker(struct worker_pool *pool) 800 { 801 return !list_empty(&pool->worklist) && __need_more_worker(pool); 802 } 803 804 /* Can I start working? Called from busy but !running workers. */ 805 static bool may_start_working(struct worker_pool *pool) 806 { 807 return pool->nr_idle; 808 } 809 810 /* Do I need to keep working? Called from currently running workers. */ 811 static bool keep_working(struct worker_pool *pool) 812 { 813 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 814 } 815 816 /* Do we need a new worker? Called from manager. */ 817 static bool need_to_create_worker(struct worker_pool *pool) 818 { 819 return need_more_worker(pool) && !may_start_working(pool); 820 } 821 822 /* Do we have too many workers and should some go away? */ 823 static bool too_many_workers(struct worker_pool *pool) 824 { 825 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 826 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 827 int nr_busy = pool->nr_workers - nr_idle; 828 829 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 830 } 831 832 /* 833 * Wake up functions. 834 */ 835 836 /* Return the first idle worker. Called with pool->lock held. */ 837 static struct worker *first_idle_worker(struct worker_pool *pool) 838 { 839 if (unlikely(list_empty(&pool->idle_list))) 840 return NULL; 841 842 return list_first_entry(&pool->idle_list, struct worker, entry); 843 } 844 845 /** 846 * wake_up_worker - wake up an idle worker 847 * @pool: worker pool to wake worker from 848 * 849 * Wake up the first idle worker of @pool. 850 * 851 * CONTEXT: 852 * raw_spin_lock_irq(pool->lock). 853 */ 854 static void wake_up_worker(struct worker_pool *pool) 855 { 856 struct worker *worker = first_idle_worker(pool); 857 858 if (likely(worker)) 859 wake_up_process(worker->task); 860 } 861 862 /** 863 * wq_worker_running - a worker is running again 864 * @task: task waking up 865 * 866 * This function is called when a worker returns from schedule() 867 */ 868 void wq_worker_running(struct task_struct *task) 869 { 870 struct worker *worker = kthread_data(task); 871 872 if (!worker->sleeping) 873 return; 874 875 /* 876 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 877 * and the nr_running increment below, we may ruin the nr_running reset 878 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 879 * pool. Protect against such race. 880 */ 881 preempt_disable(); 882 if (!(worker->flags & WORKER_NOT_RUNNING)) 883 worker->pool->nr_running++; 884 preempt_enable(); 885 worker->sleeping = 0; 886 } 887 888 /** 889 * wq_worker_sleeping - a worker is going to sleep 890 * @task: task going to sleep 891 * 892 * This function is called from schedule() when a busy worker is 893 * going to sleep. 894 */ 895 void wq_worker_sleeping(struct task_struct *task) 896 { 897 struct worker *worker = kthread_data(task); 898 struct worker_pool *pool; 899 900 /* 901 * Rescuers, which may not have all the fields set up like normal 902 * workers, also reach here, let's not access anything before 903 * checking NOT_RUNNING. 904 */ 905 if (worker->flags & WORKER_NOT_RUNNING) 906 return; 907 908 pool = worker->pool; 909 910 /* Return if preempted before wq_worker_running() was reached */ 911 if (worker->sleeping) 912 return; 913 914 worker->sleeping = 1; 915 raw_spin_lock_irq(&pool->lock); 916 917 /* 918 * Recheck in case unbind_workers() preempted us. We don't 919 * want to decrement nr_running after the worker is unbound 920 * and nr_running has been reset. 921 */ 922 if (worker->flags & WORKER_NOT_RUNNING) { 923 raw_spin_unlock_irq(&pool->lock); 924 return; 925 } 926 927 pool->nr_running--; 928 if (need_more_worker(pool)) 929 wake_up_worker(pool); 930 raw_spin_unlock_irq(&pool->lock); 931 } 932 933 /** 934 * wq_worker_last_func - retrieve worker's last work function 935 * @task: Task to retrieve last work function of. 936 * 937 * Determine the last function a worker executed. This is called from 938 * the scheduler to get a worker's last known identity. 939 * 940 * CONTEXT: 941 * raw_spin_lock_irq(rq->lock) 942 * 943 * This function is called during schedule() when a kworker is going 944 * to sleep. It's used by psi to identify aggregation workers during 945 * dequeuing, to allow periodic aggregation to shut-off when that 946 * worker is the last task in the system or cgroup to go to sleep. 947 * 948 * As this function doesn't involve any workqueue-related locking, it 949 * only returns stable values when called from inside the scheduler's 950 * queuing and dequeuing paths, when @task, which must be a kworker, 951 * is guaranteed to not be processing any works. 952 * 953 * Return: 954 * The last work function %current executed as a worker, NULL if it 955 * hasn't executed any work yet. 956 */ 957 work_func_t wq_worker_last_func(struct task_struct *task) 958 { 959 struct worker *worker = kthread_data(task); 960 961 return worker->last_func; 962 } 963 964 /** 965 * worker_set_flags - set worker flags and adjust nr_running accordingly 966 * @worker: self 967 * @flags: flags to set 968 * 969 * Set @flags in @worker->flags and adjust nr_running accordingly. 970 * 971 * CONTEXT: 972 * raw_spin_lock_irq(pool->lock) 973 */ 974 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 975 { 976 struct worker_pool *pool = worker->pool; 977 978 WARN_ON_ONCE(worker->task != current); 979 980 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 981 if ((flags & WORKER_NOT_RUNNING) && 982 !(worker->flags & WORKER_NOT_RUNNING)) { 983 pool->nr_running--; 984 } 985 986 worker->flags |= flags; 987 } 988 989 /** 990 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 991 * @worker: self 992 * @flags: flags to clear 993 * 994 * Clear @flags in @worker->flags and adjust nr_running accordingly. 995 * 996 * CONTEXT: 997 * raw_spin_lock_irq(pool->lock) 998 */ 999 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 1000 { 1001 struct worker_pool *pool = worker->pool; 1002 unsigned int oflags = worker->flags; 1003 1004 WARN_ON_ONCE(worker->task != current); 1005 1006 worker->flags &= ~flags; 1007 1008 /* 1009 * If transitioning out of NOT_RUNNING, increment nr_running. Note 1010 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 1011 * of multiple flags, not a single flag. 1012 */ 1013 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 1014 if (!(worker->flags & WORKER_NOT_RUNNING)) 1015 pool->nr_running++; 1016 } 1017 1018 /** 1019 * find_worker_executing_work - find worker which is executing a work 1020 * @pool: pool of interest 1021 * @work: work to find worker for 1022 * 1023 * Find a worker which is executing @work on @pool by searching 1024 * @pool->busy_hash which is keyed by the address of @work. For a worker 1025 * to match, its current execution should match the address of @work and 1026 * its work function. This is to avoid unwanted dependency between 1027 * unrelated work executions through a work item being recycled while still 1028 * being executed. 1029 * 1030 * This is a bit tricky. A work item may be freed once its execution 1031 * starts and nothing prevents the freed area from being recycled for 1032 * another work item. If the same work item address ends up being reused 1033 * before the original execution finishes, workqueue will identify the 1034 * recycled work item as currently executing and make it wait until the 1035 * current execution finishes, introducing an unwanted dependency. 1036 * 1037 * This function checks the work item address and work function to avoid 1038 * false positives. Note that this isn't complete as one may construct a 1039 * work function which can introduce dependency onto itself through a 1040 * recycled work item. Well, if somebody wants to shoot oneself in the 1041 * foot that badly, there's only so much we can do, and if such deadlock 1042 * actually occurs, it should be easy to locate the culprit work function. 1043 * 1044 * CONTEXT: 1045 * raw_spin_lock_irq(pool->lock). 1046 * 1047 * Return: 1048 * Pointer to worker which is executing @work if found, %NULL 1049 * otherwise. 1050 */ 1051 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1052 struct work_struct *work) 1053 { 1054 struct worker *worker; 1055 1056 hash_for_each_possible(pool->busy_hash, worker, hentry, 1057 (unsigned long)work) 1058 if (worker->current_work == work && 1059 worker->current_func == work->func) 1060 return worker; 1061 1062 return NULL; 1063 } 1064 1065 /** 1066 * move_linked_works - move linked works to a list 1067 * @work: start of series of works to be scheduled 1068 * @head: target list to append @work to 1069 * @nextp: out parameter for nested worklist walking 1070 * 1071 * Schedule linked works starting from @work to @head. Work series to 1072 * be scheduled starts at @work and includes any consecutive work with 1073 * WORK_STRUCT_LINKED set in its predecessor. 1074 * 1075 * If @nextp is not NULL, it's updated to point to the next work of 1076 * the last scheduled work. This allows move_linked_works() to be 1077 * nested inside outer list_for_each_entry_safe(). 1078 * 1079 * CONTEXT: 1080 * raw_spin_lock_irq(pool->lock). 1081 */ 1082 static void move_linked_works(struct work_struct *work, struct list_head *head, 1083 struct work_struct **nextp) 1084 { 1085 struct work_struct *n; 1086 1087 /* 1088 * Linked worklist will always end before the end of the list, 1089 * use NULL for list head. 1090 */ 1091 list_for_each_entry_safe_from(work, n, NULL, entry) { 1092 list_move_tail(&work->entry, head); 1093 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1094 break; 1095 } 1096 1097 /* 1098 * If we're already inside safe list traversal and have moved 1099 * multiple works to the scheduled queue, the next position 1100 * needs to be updated. 1101 */ 1102 if (nextp) 1103 *nextp = n; 1104 } 1105 1106 /** 1107 * get_pwq - get an extra reference on the specified pool_workqueue 1108 * @pwq: pool_workqueue to get 1109 * 1110 * Obtain an extra reference on @pwq. The caller should guarantee that 1111 * @pwq has positive refcnt and be holding the matching pool->lock. 1112 */ 1113 static void get_pwq(struct pool_workqueue *pwq) 1114 { 1115 lockdep_assert_held(&pwq->pool->lock); 1116 WARN_ON_ONCE(pwq->refcnt <= 0); 1117 pwq->refcnt++; 1118 } 1119 1120 /** 1121 * put_pwq - put a pool_workqueue reference 1122 * @pwq: pool_workqueue to put 1123 * 1124 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1125 * destruction. The caller should be holding the matching pool->lock. 1126 */ 1127 static void put_pwq(struct pool_workqueue *pwq) 1128 { 1129 lockdep_assert_held(&pwq->pool->lock); 1130 if (likely(--pwq->refcnt)) 1131 return; 1132 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1133 return; 1134 /* 1135 * @pwq can't be released under pool->lock, bounce to 1136 * pwq_unbound_release_workfn(). This never recurses on the same 1137 * pool->lock as this path is taken only for unbound workqueues and 1138 * the release work item is scheduled on a per-cpu workqueue. To 1139 * avoid lockdep warning, unbound pool->locks are given lockdep 1140 * subclass of 1 in get_unbound_pool(). 1141 */ 1142 schedule_work(&pwq->unbound_release_work); 1143 } 1144 1145 /** 1146 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1147 * @pwq: pool_workqueue to put (can be %NULL) 1148 * 1149 * put_pwq() with locking. This function also allows %NULL @pwq. 1150 */ 1151 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1152 { 1153 if (pwq) { 1154 /* 1155 * As both pwqs and pools are RCU protected, the 1156 * following lock operations are safe. 1157 */ 1158 raw_spin_lock_irq(&pwq->pool->lock); 1159 put_pwq(pwq); 1160 raw_spin_unlock_irq(&pwq->pool->lock); 1161 } 1162 } 1163 1164 static void pwq_activate_inactive_work(struct work_struct *work) 1165 { 1166 struct pool_workqueue *pwq = get_work_pwq(work); 1167 1168 trace_workqueue_activate_work(work); 1169 if (list_empty(&pwq->pool->worklist)) 1170 pwq->pool->watchdog_ts = jiffies; 1171 move_linked_works(work, &pwq->pool->worklist, NULL); 1172 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work)); 1173 pwq->nr_active++; 1174 } 1175 1176 static void pwq_activate_first_inactive(struct pool_workqueue *pwq) 1177 { 1178 struct work_struct *work = list_first_entry(&pwq->inactive_works, 1179 struct work_struct, entry); 1180 1181 pwq_activate_inactive_work(work); 1182 } 1183 1184 /** 1185 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1186 * @pwq: pwq of interest 1187 * @work_data: work_data of work which left the queue 1188 * 1189 * A work either has completed or is removed from pending queue, 1190 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1191 * 1192 * CONTEXT: 1193 * raw_spin_lock_irq(pool->lock). 1194 */ 1195 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1196 { 1197 int color = get_work_color(work_data); 1198 1199 if (!(work_data & WORK_STRUCT_INACTIVE)) { 1200 pwq->nr_active--; 1201 if (!list_empty(&pwq->inactive_works)) { 1202 /* one down, submit an inactive one */ 1203 if (pwq->nr_active < pwq->max_active) 1204 pwq_activate_first_inactive(pwq); 1205 } 1206 } 1207 1208 pwq->nr_in_flight[color]--; 1209 1210 /* is flush in progress and are we at the flushing tip? */ 1211 if (likely(pwq->flush_color != color)) 1212 goto out_put; 1213 1214 /* are there still in-flight works? */ 1215 if (pwq->nr_in_flight[color]) 1216 goto out_put; 1217 1218 /* this pwq is done, clear flush_color */ 1219 pwq->flush_color = -1; 1220 1221 /* 1222 * If this was the last pwq, wake up the first flusher. It 1223 * will handle the rest. 1224 */ 1225 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1226 complete(&pwq->wq->first_flusher->done); 1227 out_put: 1228 put_pwq(pwq); 1229 } 1230 1231 /** 1232 * try_to_grab_pending - steal work item from worklist and disable irq 1233 * @work: work item to steal 1234 * @is_dwork: @work is a delayed_work 1235 * @flags: place to store irq state 1236 * 1237 * Try to grab PENDING bit of @work. This function can handle @work in any 1238 * stable state - idle, on timer or on worklist. 1239 * 1240 * Return: 1241 * 1242 * ======== ================================================================ 1243 * 1 if @work was pending and we successfully stole PENDING 1244 * 0 if @work was idle and we claimed PENDING 1245 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1246 * -ENOENT if someone else is canceling @work, this state may persist 1247 * for arbitrarily long 1248 * ======== ================================================================ 1249 * 1250 * Note: 1251 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1252 * interrupted while holding PENDING and @work off queue, irq must be 1253 * disabled on entry. This, combined with delayed_work->timer being 1254 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1255 * 1256 * On successful return, >= 0, irq is disabled and the caller is 1257 * responsible for releasing it using local_irq_restore(*@flags). 1258 * 1259 * This function is safe to call from any context including IRQ handler. 1260 */ 1261 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1262 unsigned long *flags) 1263 { 1264 struct worker_pool *pool; 1265 struct pool_workqueue *pwq; 1266 1267 local_irq_save(*flags); 1268 1269 /* try to steal the timer if it exists */ 1270 if (is_dwork) { 1271 struct delayed_work *dwork = to_delayed_work(work); 1272 1273 /* 1274 * dwork->timer is irqsafe. If del_timer() fails, it's 1275 * guaranteed that the timer is not queued anywhere and not 1276 * running on the local CPU. 1277 */ 1278 if (likely(del_timer(&dwork->timer))) 1279 return 1; 1280 } 1281 1282 /* try to claim PENDING the normal way */ 1283 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1284 return 0; 1285 1286 rcu_read_lock(); 1287 /* 1288 * The queueing is in progress, or it is already queued. Try to 1289 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1290 */ 1291 pool = get_work_pool(work); 1292 if (!pool) 1293 goto fail; 1294 1295 raw_spin_lock(&pool->lock); 1296 /* 1297 * work->data is guaranteed to point to pwq only while the work 1298 * item is queued on pwq->wq, and both updating work->data to point 1299 * to pwq on queueing and to pool on dequeueing are done under 1300 * pwq->pool->lock. This in turn guarantees that, if work->data 1301 * points to pwq which is associated with a locked pool, the work 1302 * item is currently queued on that pool. 1303 */ 1304 pwq = get_work_pwq(work); 1305 if (pwq && pwq->pool == pool) { 1306 debug_work_deactivate(work); 1307 1308 /* 1309 * A cancelable inactive work item must be in the 1310 * pwq->inactive_works since a queued barrier can't be 1311 * canceled (see the comments in insert_wq_barrier()). 1312 * 1313 * An inactive work item cannot be grabbed directly because 1314 * it might have linked barrier work items which, if left 1315 * on the inactive_works list, will confuse pwq->nr_active 1316 * management later on and cause stall. Make sure the work 1317 * item is activated before grabbing. 1318 */ 1319 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE) 1320 pwq_activate_inactive_work(work); 1321 1322 list_del_init(&work->entry); 1323 pwq_dec_nr_in_flight(pwq, *work_data_bits(work)); 1324 1325 /* work->data points to pwq iff queued, point to pool */ 1326 set_work_pool_and_keep_pending(work, pool->id); 1327 1328 raw_spin_unlock(&pool->lock); 1329 rcu_read_unlock(); 1330 return 1; 1331 } 1332 raw_spin_unlock(&pool->lock); 1333 fail: 1334 rcu_read_unlock(); 1335 local_irq_restore(*flags); 1336 if (work_is_canceling(work)) 1337 return -ENOENT; 1338 cpu_relax(); 1339 return -EAGAIN; 1340 } 1341 1342 /** 1343 * insert_work - insert a work into a pool 1344 * @pwq: pwq @work belongs to 1345 * @work: work to insert 1346 * @head: insertion point 1347 * @extra_flags: extra WORK_STRUCT_* flags to set 1348 * 1349 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1350 * work_struct flags. 1351 * 1352 * CONTEXT: 1353 * raw_spin_lock_irq(pool->lock). 1354 */ 1355 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1356 struct list_head *head, unsigned int extra_flags) 1357 { 1358 struct worker_pool *pool = pwq->pool; 1359 1360 /* record the work call stack in order to print it in KASAN reports */ 1361 kasan_record_aux_stack_noalloc(work); 1362 1363 /* we own @work, set data and link */ 1364 set_work_pwq(work, pwq, extra_flags); 1365 list_add_tail(&work->entry, head); 1366 get_pwq(pwq); 1367 1368 if (__need_more_worker(pool)) 1369 wake_up_worker(pool); 1370 } 1371 1372 /* 1373 * Test whether @work is being queued from another work executing on the 1374 * same workqueue. 1375 */ 1376 static bool is_chained_work(struct workqueue_struct *wq) 1377 { 1378 struct worker *worker; 1379 1380 worker = current_wq_worker(); 1381 /* 1382 * Return %true iff I'm a worker executing a work item on @wq. If 1383 * I'm @worker, it's safe to dereference it without locking. 1384 */ 1385 return worker && worker->current_pwq->wq == wq; 1386 } 1387 1388 /* 1389 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1390 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1391 * avoid perturbing sensitive tasks. 1392 */ 1393 static int wq_select_unbound_cpu(int cpu) 1394 { 1395 static bool printed_dbg_warning; 1396 int new_cpu; 1397 1398 if (likely(!wq_debug_force_rr_cpu)) { 1399 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1400 return cpu; 1401 } else if (!printed_dbg_warning) { 1402 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1403 printed_dbg_warning = true; 1404 } 1405 1406 if (cpumask_empty(wq_unbound_cpumask)) 1407 return cpu; 1408 1409 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1410 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1411 if (unlikely(new_cpu >= nr_cpu_ids)) { 1412 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1413 if (unlikely(new_cpu >= nr_cpu_ids)) 1414 return cpu; 1415 } 1416 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1417 1418 return new_cpu; 1419 } 1420 1421 static void __queue_work(int cpu, struct workqueue_struct *wq, 1422 struct work_struct *work) 1423 { 1424 struct pool_workqueue *pwq; 1425 struct worker_pool *last_pool; 1426 struct list_head *worklist; 1427 unsigned int work_flags; 1428 unsigned int req_cpu = cpu; 1429 1430 /* 1431 * While a work item is PENDING && off queue, a task trying to 1432 * steal the PENDING will busy-loop waiting for it to either get 1433 * queued or lose PENDING. Grabbing PENDING and queueing should 1434 * happen with IRQ disabled. 1435 */ 1436 lockdep_assert_irqs_disabled(); 1437 1438 1439 /* 1440 * For a draining wq, only works from the same workqueue are 1441 * allowed. The __WQ_DESTROYING helps to spot the issue that 1442 * queues a new work item to a wq after destroy_workqueue(wq). 1443 */ 1444 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 1445 WARN_ON_ONCE(!is_chained_work(wq)))) 1446 return; 1447 rcu_read_lock(); 1448 retry: 1449 /* pwq which will be used unless @work is executing elsewhere */ 1450 if (wq->flags & WQ_UNBOUND) { 1451 if (req_cpu == WORK_CPU_UNBOUND) 1452 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1453 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1454 } else { 1455 if (req_cpu == WORK_CPU_UNBOUND) 1456 cpu = raw_smp_processor_id(); 1457 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1458 } 1459 1460 /* 1461 * If @work was previously on a different pool, it might still be 1462 * running there, in which case the work needs to be queued on that 1463 * pool to guarantee non-reentrancy. 1464 */ 1465 last_pool = get_work_pool(work); 1466 if (last_pool && last_pool != pwq->pool) { 1467 struct worker *worker; 1468 1469 raw_spin_lock(&last_pool->lock); 1470 1471 worker = find_worker_executing_work(last_pool, work); 1472 1473 if (worker && worker->current_pwq->wq == wq) { 1474 pwq = worker->current_pwq; 1475 } else { 1476 /* meh... not running there, queue here */ 1477 raw_spin_unlock(&last_pool->lock); 1478 raw_spin_lock(&pwq->pool->lock); 1479 } 1480 } else { 1481 raw_spin_lock(&pwq->pool->lock); 1482 } 1483 1484 /* 1485 * pwq is determined and locked. For unbound pools, we could have 1486 * raced with pwq release and it could already be dead. If its 1487 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1488 * without another pwq replacing it in the numa_pwq_tbl or while 1489 * work items are executing on it, so the retrying is guaranteed to 1490 * make forward-progress. 1491 */ 1492 if (unlikely(!pwq->refcnt)) { 1493 if (wq->flags & WQ_UNBOUND) { 1494 raw_spin_unlock(&pwq->pool->lock); 1495 cpu_relax(); 1496 goto retry; 1497 } 1498 /* oops */ 1499 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1500 wq->name, cpu); 1501 } 1502 1503 /* pwq determined, queue */ 1504 trace_workqueue_queue_work(req_cpu, pwq, work); 1505 1506 if (WARN_ON(!list_empty(&work->entry))) 1507 goto out; 1508 1509 pwq->nr_in_flight[pwq->work_color]++; 1510 work_flags = work_color_to_flags(pwq->work_color); 1511 1512 if (likely(pwq->nr_active < pwq->max_active)) { 1513 trace_workqueue_activate_work(work); 1514 pwq->nr_active++; 1515 worklist = &pwq->pool->worklist; 1516 if (list_empty(worklist)) 1517 pwq->pool->watchdog_ts = jiffies; 1518 } else { 1519 work_flags |= WORK_STRUCT_INACTIVE; 1520 worklist = &pwq->inactive_works; 1521 } 1522 1523 debug_work_activate(work); 1524 insert_work(pwq, work, worklist, work_flags); 1525 1526 out: 1527 raw_spin_unlock(&pwq->pool->lock); 1528 rcu_read_unlock(); 1529 } 1530 1531 /** 1532 * queue_work_on - queue work on specific cpu 1533 * @cpu: CPU number to execute work on 1534 * @wq: workqueue to use 1535 * @work: work to queue 1536 * 1537 * We queue the work to a specific CPU, the caller must ensure it 1538 * can't go away. Callers that fail to ensure that the specified 1539 * CPU cannot go away will execute on a randomly chosen CPU. 1540 * 1541 * Return: %false if @work was already on a queue, %true otherwise. 1542 */ 1543 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1544 struct work_struct *work) 1545 { 1546 bool ret = false; 1547 unsigned long flags; 1548 1549 local_irq_save(flags); 1550 1551 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1552 __queue_work(cpu, wq, work); 1553 ret = true; 1554 } 1555 1556 local_irq_restore(flags); 1557 return ret; 1558 } 1559 EXPORT_SYMBOL(queue_work_on); 1560 1561 /** 1562 * workqueue_select_cpu_near - Select a CPU based on NUMA node 1563 * @node: NUMA node ID that we want to select a CPU from 1564 * 1565 * This function will attempt to find a "random" cpu available on a given 1566 * node. If there are no CPUs available on the given node it will return 1567 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1568 * available CPU if we need to schedule this work. 1569 */ 1570 static int workqueue_select_cpu_near(int node) 1571 { 1572 int cpu; 1573 1574 /* No point in doing this if NUMA isn't enabled for workqueues */ 1575 if (!wq_numa_enabled) 1576 return WORK_CPU_UNBOUND; 1577 1578 /* Delay binding to CPU if node is not valid or online */ 1579 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1580 return WORK_CPU_UNBOUND; 1581 1582 /* Use local node/cpu if we are already there */ 1583 cpu = raw_smp_processor_id(); 1584 if (node == cpu_to_node(cpu)) 1585 return cpu; 1586 1587 /* Use "random" otherwise know as "first" online CPU of node */ 1588 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1589 1590 /* If CPU is valid return that, otherwise just defer */ 1591 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1592 } 1593 1594 /** 1595 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1596 * @node: NUMA node that we are targeting the work for 1597 * @wq: workqueue to use 1598 * @work: work to queue 1599 * 1600 * We queue the work to a "random" CPU within a given NUMA node. The basic 1601 * idea here is to provide a way to somehow associate work with a given 1602 * NUMA node. 1603 * 1604 * This function will only make a best effort attempt at getting this onto 1605 * the right NUMA node. If no node is requested or the requested node is 1606 * offline then we just fall back to standard queue_work behavior. 1607 * 1608 * Currently the "random" CPU ends up being the first available CPU in the 1609 * intersection of cpu_online_mask and the cpumask of the node, unless we 1610 * are running on the node. In that case we just use the current CPU. 1611 * 1612 * Return: %false if @work was already on a queue, %true otherwise. 1613 */ 1614 bool queue_work_node(int node, struct workqueue_struct *wq, 1615 struct work_struct *work) 1616 { 1617 unsigned long flags; 1618 bool ret = false; 1619 1620 /* 1621 * This current implementation is specific to unbound workqueues. 1622 * Specifically we only return the first available CPU for a given 1623 * node instead of cycling through individual CPUs within the node. 1624 * 1625 * If this is used with a per-cpu workqueue then the logic in 1626 * workqueue_select_cpu_near would need to be updated to allow for 1627 * some round robin type logic. 1628 */ 1629 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1630 1631 local_irq_save(flags); 1632 1633 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1634 int cpu = workqueue_select_cpu_near(node); 1635 1636 __queue_work(cpu, wq, work); 1637 ret = true; 1638 } 1639 1640 local_irq_restore(flags); 1641 return ret; 1642 } 1643 EXPORT_SYMBOL_GPL(queue_work_node); 1644 1645 void delayed_work_timer_fn(struct timer_list *t) 1646 { 1647 struct delayed_work *dwork = from_timer(dwork, t, timer); 1648 1649 /* should have been called from irqsafe timer with irq already off */ 1650 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1651 } 1652 EXPORT_SYMBOL(delayed_work_timer_fn); 1653 1654 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1655 struct delayed_work *dwork, unsigned long delay) 1656 { 1657 struct timer_list *timer = &dwork->timer; 1658 struct work_struct *work = &dwork->work; 1659 1660 WARN_ON_ONCE(!wq); 1661 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1662 WARN_ON_ONCE(timer_pending(timer)); 1663 WARN_ON_ONCE(!list_empty(&work->entry)); 1664 1665 /* 1666 * If @delay is 0, queue @dwork->work immediately. This is for 1667 * both optimization and correctness. The earliest @timer can 1668 * expire is on the closest next tick and delayed_work users depend 1669 * on that there's no such delay when @delay is 0. 1670 */ 1671 if (!delay) { 1672 __queue_work(cpu, wq, &dwork->work); 1673 return; 1674 } 1675 1676 dwork->wq = wq; 1677 dwork->cpu = cpu; 1678 timer->expires = jiffies + delay; 1679 1680 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1681 add_timer_on(timer, cpu); 1682 else 1683 add_timer(timer); 1684 } 1685 1686 /** 1687 * queue_delayed_work_on - queue work on specific CPU after delay 1688 * @cpu: CPU number to execute work on 1689 * @wq: workqueue to use 1690 * @dwork: work to queue 1691 * @delay: number of jiffies to wait before queueing 1692 * 1693 * Return: %false if @work was already on a queue, %true otherwise. If 1694 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1695 * execution. 1696 */ 1697 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1698 struct delayed_work *dwork, unsigned long delay) 1699 { 1700 struct work_struct *work = &dwork->work; 1701 bool ret = false; 1702 unsigned long flags; 1703 1704 /* read the comment in __queue_work() */ 1705 local_irq_save(flags); 1706 1707 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1708 __queue_delayed_work(cpu, wq, dwork, delay); 1709 ret = true; 1710 } 1711 1712 local_irq_restore(flags); 1713 return ret; 1714 } 1715 EXPORT_SYMBOL(queue_delayed_work_on); 1716 1717 /** 1718 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1719 * @cpu: CPU number to execute work on 1720 * @wq: workqueue to use 1721 * @dwork: work to queue 1722 * @delay: number of jiffies to wait before queueing 1723 * 1724 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1725 * modify @dwork's timer so that it expires after @delay. If @delay is 1726 * zero, @work is guaranteed to be scheduled immediately regardless of its 1727 * current state. 1728 * 1729 * Return: %false if @dwork was idle and queued, %true if @dwork was 1730 * pending and its timer was modified. 1731 * 1732 * This function is safe to call from any context including IRQ handler. 1733 * See try_to_grab_pending() for details. 1734 */ 1735 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1736 struct delayed_work *dwork, unsigned long delay) 1737 { 1738 unsigned long flags; 1739 int ret; 1740 1741 do { 1742 ret = try_to_grab_pending(&dwork->work, true, &flags); 1743 } while (unlikely(ret == -EAGAIN)); 1744 1745 if (likely(ret >= 0)) { 1746 __queue_delayed_work(cpu, wq, dwork, delay); 1747 local_irq_restore(flags); 1748 } 1749 1750 /* -ENOENT from try_to_grab_pending() becomes %true */ 1751 return ret; 1752 } 1753 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1754 1755 static void rcu_work_rcufn(struct rcu_head *rcu) 1756 { 1757 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1758 1759 /* read the comment in __queue_work() */ 1760 local_irq_disable(); 1761 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1762 local_irq_enable(); 1763 } 1764 1765 /** 1766 * queue_rcu_work - queue work after a RCU grace period 1767 * @wq: workqueue to use 1768 * @rwork: work to queue 1769 * 1770 * Return: %false if @rwork was already pending, %true otherwise. Note 1771 * that a full RCU grace period is guaranteed only after a %true return. 1772 * While @rwork is guaranteed to be executed after a %false return, the 1773 * execution may happen before a full RCU grace period has passed. 1774 */ 1775 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1776 { 1777 struct work_struct *work = &rwork->work; 1778 1779 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1780 rwork->wq = wq; 1781 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 1782 return true; 1783 } 1784 1785 return false; 1786 } 1787 EXPORT_SYMBOL(queue_rcu_work); 1788 1789 /** 1790 * worker_enter_idle - enter idle state 1791 * @worker: worker which is entering idle state 1792 * 1793 * @worker is entering idle state. Update stats and idle timer if 1794 * necessary. 1795 * 1796 * LOCKING: 1797 * raw_spin_lock_irq(pool->lock). 1798 */ 1799 static void worker_enter_idle(struct worker *worker) 1800 { 1801 struct worker_pool *pool = worker->pool; 1802 1803 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1804 WARN_ON_ONCE(!list_empty(&worker->entry) && 1805 (worker->hentry.next || worker->hentry.pprev))) 1806 return; 1807 1808 /* can't use worker_set_flags(), also called from create_worker() */ 1809 worker->flags |= WORKER_IDLE; 1810 pool->nr_idle++; 1811 worker->last_active = jiffies; 1812 1813 /* idle_list is LIFO */ 1814 list_add(&worker->entry, &pool->idle_list); 1815 1816 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1817 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1818 1819 /* Sanity check nr_running. */ 1820 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 1821 } 1822 1823 /** 1824 * worker_leave_idle - leave idle state 1825 * @worker: worker which is leaving idle state 1826 * 1827 * @worker is leaving idle state. Update stats. 1828 * 1829 * LOCKING: 1830 * raw_spin_lock_irq(pool->lock). 1831 */ 1832 static void worker_leave_idle(struct worker *worker) 1833 { 1834 struct worker_pool *pool = worker->pool; 1835 1836 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1837 return; 1838 worker_clr_flags(worker, WORKER_IDLE); 1839 pool->nr_idle--; 1840 list_del_init(&worker->entry); 1841 } 1842 1843 static struct worker *alloc_worker(int node) 1844 { 1845 struct worker *worker; 1846 1847 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1848 if (worker) { 1849 INIT_LIST_HEAD(&worker->entry); 1850 INIT_LIST_HEAD(&worker->scheduled); 1851 INIT_LIST_HEAD(&worker->node); 1852 /* on creation a worker is in !idle && prep state */ 1853 worker->flags = WORKER_PREP; 1854 } 1855 return worker; 1856 } 1857 1858 /** 1859 * worker_attach_to_pool() - attach a worker to a pool 1860 * @worker: worker to be attached 1861 * @pool: the target pool 1862 * 1863 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1864 * cpu-binding of @worker are kept coordinated with the pool across 1865 * cpu-[un]hotplugs. 1866 */ 1867 static void worker_attach_to_pool(struct worker *worker, 1868 struct worker_pool *pool) 1869 { 1870 mutex_lock(&wq_pool_attach_mutex); 1871 1872 /* 1873 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1874 * stable across this function. See the comments above the flag 1875 * definition for details. 1876 */ 1877 if (pool->flags & POOL_DISASSOCIATED) 1878 worker->flags |= WORKER_UNBOUND; 1879 else 1880 kthread_set_per_cpu(worker->task, pool->cpu); 1881 1882 if (worker->rescue_wq) 1883 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1884 1885 list_add_tail(&worker->node, &pool->workers); 1886 worker->pool = pool; 1887 1888 mutex_unlock(&wq_pool_attach_mutex); 1889 } 1890 1891 /** 1892 * worker_detach_from_pool() - detach a worker from its pool 1893 * @worker: worker which is attached to its pool 1894 * 1895 * Undo the attaching which had been done in worker_attach_to_pool(). The 1896 * caller worker shouldn't access to the pool after detached except it has 1897 * other reference to the pool. 1898 */ 1899 static void worker_detach_from_pool(struct worker *worker) 1900 { 1901 struct worker_pool *pool = worker->pool; 1902 struct completion *detach_completion = NULL; 1903 1904 mutex_lock(&wq_pool_attach_mutex); 1905 1906 kthread_set_per_cpu(worker->task, -1); 1907 list_del(&worker->node); 1908 worker->pool = NULL; 1909 1910 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers)) 1911 detach_completion = pool->detach_completion; 1912 mutex_unlock(&wq_pool_attach_mutex); 1913 1914 /* clear leftover flags without pool->lock after it is detached */ 1915 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1916 1917 if (detach_completion) 1918 complete(detach_completion); 1919 } 1920 1921 /** 1922 * create_worker - create a new workqueue worker 1923 * @pool: pool the new worker will belong to 1924 * 1925 * Create and start a new worker which is attached to @pool. 1926 * 1927 * CONTEXT: 1928 * Might sleep. Does GFP_KERNEL allocations. 1929 * 1930 * Return: 1931 * Pointer to the newly created worker. 1932 */ 1933 static struct worker *create_worker(struct worker_pool *pool) 1934 { 1935 struct worker *worker; 1936 int id; 1937 char id_buf[16]; 1938 1939 /* ID is needed to determine kthread name */ 1940 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 1941 if (id < 0) 1942 return NULL; 1943 1944 worker = alloc_worker(pool->node); 1945 if (!worker) 1946 goto fail; 1947 1948 worker->id = id; 1949 1950 if (pool->cpu >= 0) 1951 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1952 pool->attrs->nice < 0 ? "H" : ""); 1953 else 1954 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1955 1956 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1957 "kworker/%s", id_buf); 1958 if (IS_ERR(worker->task)) 1959 goto fail; 1960 1961 set_user_nice(worker->task, pool->attrs->nice); 1962 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1963 1964 /* successful, attach the worker to the pool */ 1965 worker_attach_to_pool(worker, pool); 1966 1967 /* start the newly created worker */ 1968 raw_spin_lock_irq(&pool->lock); 1969 worker->pool->nr_workers++; 1970 worker_enter_idle(worker); 1971 wake_up_process(worker->task); 1972 raw_spin_unlock_irq(&pool->lock); 1973 1974 return worker; 1975 1976 fail: 1977 ida_free(&pool->worker_ida, id); 1978 kfree(worker); 1979 return NULL; 1980 } 1981 1982 static void unbind_worker(struct worker *worker) 1983 { 1984 lockdep_assert_held(&wq_pool_attach_mutex); 1985 1986 kthread_set_per_cpu(worker->task, -1); 1987 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 1988 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 1989 else 1990 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 1991 } 1992 1993 static void wake_dying_workers(struct list_head *cull_list) 1994 { 1995 struct worker *worker, *tmp; 1996 1997 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 1998 list_del_init(&worker->entry); 1999 unbind_worker(worker); 2000 /* 2001 * If the worker was somehow already running, then it had to be 2002 * in pool->idle_list when set_worker_dying() happened or we 2003 * wouldn't have gotten here. 2004 * 2005 * Thus, the worker must either have observed the WORKER_DIE 2006 * flag, or have set its state to TASK_IDLE. Either way, the 2007 * below will be observed by the worker and is safe to do 2008 * outside of pool->lock. 2009 */ 2010 wake_up_process(worker->task); 2011 } 2012 } 2013 2014 /** 2015 * set_worker_dying - Tag a worker for destruction 2016 * @worker: worker to be destroyed 2017 * @list: transfer worker away from its pool->idle_list and into list 2018 * 2019 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2020 * should be idle. 2021 * 2022 * CONTEXT: 2023 * raw_spin_lock_irq(pool->lock). 2024 */ 2025 static void set_worker_dying(struct worker *worker, struct list_head *list) 2026 { 2027 struct worker_pool *pool = worker->pool; 2028 2029 lockdep_assert_held(&pool->lock); 2030 lockdep_assert_held(&wq_pool_attach_mutex); 2031 2032 /* sanity check frenzy */ 2033 if (WARN_ON(worker->current_work) || 2034 WARN_ON(!list_empty(&worker->scheduled)) || 2035 WARN_ON(!(worker->flags & WORKER_IDLE))) 2036 return; 2037 2038 pool->nr_workers--; 2039 pool->nr_idle--; 2040 2041 worker->flags |= WORKER_DIE; 2042 2043 list_move(&worker->entry, list); 2044 list_move(&worker->node, &pool->dying_workers); 2045 } 2046 2047 /** 2048 * idle_worker_timeout - check if some idle workers can now be deleted. 2049 * @t: The pool's idle_timer that just expired 2050 * 2051 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2052 * worker_leave_idle(), as a worker flicking between idle and active while its 2053 * pool is at the too_many_workers() tipping point would cause too much timer 2054 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2055 * it expire and re-evaluate things from there. 2056 */ 2057 static void idle_worker_timeout(struct timer_list *t) 2058 { 2059 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2060 bool do_cull = false; 2061 2062 if (work_pending(&pool->idle_cull_work)) 2063 return; 2064 2065 raw_spin_lock_irq(&pool->lock); 2066 2067 if (too_many_workers(pool)) { 2068 struct worker *worker; 2069 unsigned long expires; 2070 2071 /* idle_list is kept in LIFO order, check the last one */ 2072 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2073 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2074 do_cull = !time_before(jiffies, expires); 2075 2076 if (!do_cull) 2077 mod_timer(&pool->idle_timer, expires); 2078 } 2079 raw_spin_unlock_irq(&pool->lock); 2080 2081 if (do_cull) 2082 queue_work(system_unbound_wq, &pool->idle_cull_work); 2083 } 2084 2085 /** 2086 * idle_cull_fn - cull workers that have been idle for too long. 2087 * @work: the pool's work for handling these idle workers 2088 * 2089 * This goes through a pool's idle workers and gets rid of those that have been 2090 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2091 * 2092 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2093 * culled, so this also resets worker affinity. This requires a sleepable 2094 * context, hence the split between timer callback and work item. 2095 */ 2096 static void idle_cull_fn(struct work_struct *work) 2097 { 2098 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2099 struct list_head cull_list; 2100 2101 INIT_LIST_HEAD(&cull_list); 2102 /* 2103 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2104 * cannot proceed beyong worker_detach_from_pool() in its self-destruct 2105 * path. This is required as a previously-preempted worker could run after 2106 * set_worker_dying() has happened but before wake_dying_workers() did. 2107 */ 2108 mutex_lock(&wq_pool_attach_mutex); 2109 raw_spin_lock_irq(&pool->lock); 2110 2111 while (too_many_workers(pool)) { 2112 struct worker *worker; 2113 unsigned long expires; 2114 2115 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2116 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2117 2118 if (time_before(jiffies, expires)) { 2119 mod_timer(&pool->idle_timer, expires); 2120 break; 2121 } 2122 2123 set_worker_dying(worker, &cull_list); 2124 } 2125 2126 raw_spin_unlock_irq(&pool->lock); 2127 wake_dying_workers(&cull_list); 2128 mutex_unlock(&wq_pool_attach_mutex); 2129 } 2130 2131 static void send_mayday(struct work_struct *work) 2132 { 2133 struct pool_workqueue *pwq = get_work_pwq(work); 2134 struct workqueue_struct *wq = pwq->wq; 2135 2136 lockdep_assert_held(&wq_mayday_lock); 2137 2138 if (!wq->rescuer) 2139 return; 2140 2141 /* mayday mayday mayday */ 2142 if (list_empty(&pwq->mayday_node)) { 2143 /* 2144 * If @pwq is for an unbound wq, its base ref may be put at 2145 * any time due to an attribute change. Pin @pwq until the 2146 * rescuer is done with it. 2147 */ 2148 get_pwq(pwq); 2149 list_add_tail(&pwq->mayday_node, &wq->maydays); 2150 wake_up_process(wq->rescuer->task); 2151 } 2152 } 2153 2154 static void pool_mayday_timeout(struct timer_list *t) 2155 { 2156 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2157 struct work_struct *work; 2158 2159 raw_spin_lock_irq(&pool->lock); 2160 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2161 2162 if (need_to_create_worker(pool)) { 2163 /* 2164 * We've been trying to create a new worker but 2165 * haven't been successful. We might be hitting an 2166 * allocation deadlock. Send distress signals to 2167 * rescuers. 2168 */ 2169 list_for_each_entry(work, &pool->worklist, entry) 2170 send_mayday(work); 2171 } 2172 2173 raw_spin_unlock(&wq_mayday_lock); 2174 raw_spin_unlock_irq(&pool->lock); 2175 2176 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2177 } 2178 2179 /** 2180 * maybe_create_worker - create a new worker if necessary 2181 * @pool: pool to create a new worker for 2182 * 2183 * Create a new worker for @pool if necessary. @pool is guaranteed to 2184 * have at least one idle worker on return from this function. If 2185 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2186 * sent to all rescuers with works scheduled on @pool to resolve 2187 * possible allocation deadlock. 2188 * 2189 * On return, need_to_create_worker() is guaranteed to be %false and 2190 * may_start_working() %true. 2191 * 2192 * LOCKING: 2193 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2194 * multiple times. Does GFP_KERNEL allocations. Called only from 2195 * manager. 2196 */ 2197 static void maybe_create_worker(struct worker_pool *pool) 2198 __releases(&pool->lock) 2199 __acquires(&pool->lock) 2200 { 2201 restart: 2202 raw_spin_unlock_irq(&pool->lock); 2203 2204 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2205 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2206 2207 while (true) { 2208 if (create_worker(pool) || !need_to_create_worker(pool)) 2209 break; 2210 2211 schedule_timeout_interruptible(CREATE_COOLDOWN); 2212 2213 if (!need_to_create_worker(pool)) 2214 break; 2215 } 2216 2217 del_timer_sync(&pool->mayday_timer); 2218 raw_spin_lock_irq(&pool->lock); 2219 /* 2220 * This is necessary even after a new worker was just successfully 2221 * created as @pool->lock was dropped and the new worker might have 2222 * already become busy. 2223 */ 2224 if (need_to_create_worker(pool)) 2225 goto restart; 2226 } 2227 2228 /** 2229 * manage_workers - manage worker pool 2230 * @worker: self 2231 * 2232 * Assume the manager role and manage the worker pool @worker belongs 2233 * to. At any given time, there can be only zero or one manager per 2234 * pool. The exclusion is handled automatically by this function. 2235 * 2236 * The caller can safely start processing works on false return. On 2237 * true return, it's guaranteed that need_to_create_worker() is false 2238 * and may_start_working() is true. 2239 * 2240 * CONTEXT: 2241 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2242 * multiple times. Does GFP_KERNEL allocations. 2243 * 2244 * Return: 2245 * %false if the pool doesn't need management and the caller can safely 2246 * start processing works, %true if management function was performed and 2247 * the conditions that the caller verified before calling the function may 2248 * no longer be true. 2249 */ 2250 static bool manage_workers(struct worker *worker) 2251 { 2252 struct worker_pool *pool = worker->pool; 2253 2254 if (pool->flags & POOL_MANAGER_ACTIVE) 2255 return false; 2256 2257 pool->flags |= POOL_MANAGER_ACTIVE; 2258 pool->manager = worker; 2259 2260 maybe_create_worker(pool); 2261 2262 pool->manager = NULL; 2263 pool->flags &= ~POOL_MANAGER_ACTIVE; 2264 rcuwait_wake_up(&manager_wait); 2265 return true; 2266 } 2267 2268 /** 2269 * process_one_work - process single work 2270 * @worker: self 2271 * @work: work to process 2272 * 2273 * Process @work. This function contains all the logics necessary to 2274 * process a single work including synchronization against and 2275 * interaction with other workers on the same cpu, queueing and 2276 * flushing. As long as context requirement is met, any worker can 2277 * call this function to process a work. 2278 * 2279 * CONTEXT: 2280 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 2281 */ 2282 static void process_one_work(struct worker *worker, struct work_struct *work) 2283 __releases(&pool->lock) 2284 __acquires(&pool->lock) 2285 { 2286 struct pool_workqueue *pwq = get_work_pwq(work); 2287 struct worker_pool *pool = worker->pool; 2288 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2289 unsigned long work_data; 2290 struct worker *collision; 2291 #ifdef CONFIG_LOCKDEP 2292 /* 2293 * It is permissible to free the struct work_struct from 2294 * inside the function that is called from it, this we need to 2295 * take into account for lockdep too. To avoid bogus "held 2296 * lock freed" warnings as well as problems when looking into 2297 * work->lockdep_map, make a copy and use that here. 2298 */ 2299 struct lockdep_map lockdep_map; 2300 2301 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2302 #endif 2303 /* ensure we're on the correct CPU */ 2304 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2305 raw_smp_processor_id() != pool->cpu); 2306 2307 /* 2308 * A single work shouldn't be executed concurrently by 2309 * multiple workers on a single cpu. Check whether anyone is 2310 * already processing the work. If so, defer the work to the 2311 * currently executing one. 2312 */ 2313 collision = find_worker_executing_work(pool, work); 2314 if (unlikely(collision)) { 2315 move_linked_works(work, &collision->scheduled, NULL); 2316 return; 2317 } 2318 2319 /* claim and dequeue */ 2320 debug_work_deactivate(work); 2321 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2322 worker->current_work = work; 2323 worker->current_func = work->func; 2324 worker->current_pwq = pwq; 2325 work_data = *work_data_bits(work); 2326 worker->current_color = get_work_color(work_data); 2327 2328 /* 2329 * Record wq name for cmdline and debug reporting, may get 2330 * overridden through set_worker_desc(). 2331 */ 2332 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2333 2334 list_del_init(&work->entry); 2335 2336 /* 2337 * CPU intensive works don't participate in concurrency management. 2338 * They're the scheduler's responsibility. This takes @worker out 2339 * of concurrency management and the next code block will chain 2340 * execution of the pending work items. 2341 */ 2342 if (unlikely(cpu_intensive)) 2343 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2344 2345 /* 2346 * Wake up another worker if necessary. The condition is always 2347 * false for normal per-cpu workers since nr_running would always 2348 * be >= 1 at this point. This is used to chain execution of the 2349 * pending work items for WORKER_NOT_RUNNING workers such as the 2350 * UNBOUND and CPU_INTENSIVE ones. 2351 */ 2352 if (need_more_worker(pool)) 2353 wake_up_worker(pool); 2354 2355 /* 2356 * Record the last pool and clear PENDING which should be the last 2357 * update to @work. Also, do this inside @pool->lock so that 2358 * PENDING and queued state changes happen together while IRQ is 2359 * disabled. 2360 */ 2361 set_work_pool_and_clear_pending(work, pool->id); 2362 2363 raw_spin_unlock_irq(&pool->lock); 2364 2365 lock_map_acquire(&pwq->wq->lockdep_map); 2366 lock_map_acquire(&lockdep_map); 2367 /* 2368 * Strictly speaking we should mark the invariant state without holding 2369 * any locks, that is, before these two lock_map_acquire()'s. 2370 * 2371 * However, that would result in: 2372 * 2373 * A(W1) 2374 * WFC(C) 2375 * A(W1) 2376 * C(C) 2377 * 2378 * Which would create W1->C->W1 dependencies, even though there is no 2379 * actual deadlock possible. There are two solutions, using a 2380 * read-recursive acquire on the work(queue) 'locks', but this will then 2381 * hit the lockdep limitation on recursive locks, or simply discard 2382 * these locks. 2383 * 2384 * AFAICT there is no possible deadlock scenario between the 2385 * flush_work() and complete() primitives (except for single-threaded 2386 * workqueues), so hiding them isn't a problem. 2387 */ 2388 lockdep_invariant_state(true); 2389 trace_workqueue_execute_start(work); 2390 worker->current_func(work); 2391 /* 2392 * While we must be careful to not use "work" after this, the trace 2393 * point will only record its address. 2394 */ 2395 trace_workqueue_execute_end(work, worker->current_func); 2396 lock_map_release(&lockdep_map); 2397 lock_map_release(&pwq->wq->lockdep_map); 2398 2399 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2400 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2401 " last function: %ps\n", 2402 current->comm, preempt_count(), task_pid_nr(current), 2403 worker->current_func); 2404 debug_show_held_locks(current); 2405 dump_stack(); 2406 } 2407 2408 /* 2409 * The following prevents a kworker from hogging CPU on !PREEMPTION 2410 * kernels, where a requeueing work item waiting for something to 2411 * happen could deadlock with stop_machine as such work item could 2412 * indefinitely requeue itself while all other CPUs are trapped in 2413 * stop_machine. At the same time, report a quiescent RCU state so 2414 * the same condition doesn't freeze RCU. 2415 */ 2416 cond_resched(); 2417 2418 raw_spin_lock_irq(&pool->lock); 2419 2420 /* clear cpu intensive status */ 2421 if (unlikely(cpu_intensive)) 2422 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2423 2424 /* tag the worker for identification in schedule() */ 2425 worker->last_func = worker->current_func; 2426 2427 /* we're done with it, release */ 2428 hash_del(&worker->hentry); 2429 worker->current_work = NULL; 2430 worker->current_func = NULL; 2431 worker->current_pwq = NULL; 2432 worker->current_color = INT_MAX; 2433 pwq_dec_nr_in_flight(pwq, work_data); 2434 } 2435 2436 /** 2437 * process_scheduled_works - process scheduled works 2438 * @worker: self 2439 * 2440 * Process all scheduled works. Please note that the scheduled list 2441 * may change while processing a work, so this function repeatedly 2442 * fetches a work from the top and executes it. 2443 * 2444 * CONTEXT: 2445 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2446 * multiple times. 2447 */ 2448 static void process_scheduled_works(struct worker *worker) 2449 { 2450 while (!list_empty(&worker->scheduled)) { 2451 struct work_struct *work = list_first_entry(&worker->scheduled, 2452 struct work_struct, entry); 2453 process_one_work(worker, work); 2454 } 2455 } 2456 2457 static void set_pf_worker(bool val) 2458 { 2459 mutex_lock(&wq_pool_attach_mutex); 2460 if (val) 2461 current->flags |= PF_WQ_WORKER; 2462 else 2463 current->flags &= ~PF_WQ_WORKER; 2464 mutex_unlock(&wq_pool_attach_mutex); 2465 } 2466 2467 /** 2468 * worker_thread - the worker thread function 2469 * @__worker: self 2470 * 2471 * The worker thread function. All workers belong to a worker_pool - 2472 * either a per-cpu one or dynamic unbound one. These workers process all 2473 * work items regardless of their specific target workqueue. The only 2474 * exception is work items which belong to workqueues with a rescuer which 2475 * will be explained in rescuer_thread(). 2476 * 2477 * Return: 0 2478 */ 2479 static int worker_thread(void *__worker) 2480 { 2481 struct worker *worker = __worker; 2482 struct worker_pool *pool = worker->pool; 2483 2484 /* tell the scheduler that this is a workqueue worker */ 2485 set_pf_worker(true); 2486 woke_up: 2487 raw_spin_lock_irq(&pool->lock); 2488 2489 /* am I supposed to die? */ 2490 if (unlikely(worker->flags & WORKER_DIE)) { 2491 raw_spin_unlock_irq(&pool->lock); 2492 set_pf_worker(false); 2493 2494 set_task_comm(worker->task, "kworker/dying"); 2495 ida_free(&pool->worker_ida, worker->id); 2496 worker_detach_from_pool(worker); 2497 WARN_ON_ONCE(!list_empty(&worker->entry)); 2498 kfree(worker); 2499 return 0; 2500 } 2501 2502 worker_leave_idle(worker); 2503 recheck: 2504 /* no more worker necessary? */ 2505 if (!need_more_worker(pool)) 2506 goto sleep; 2507 2508 /* do we need to manage? */ 2509 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2510 goto recheck; 2511 2512 /* 2513 * ->scheduled list can only be filled while a worker is 2514 * preparing to process a work or actually processing it. 2515 * Make sure nobody diddled with it while I was sleeping. 2516 */ 2517 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2518 2519 /* 2520 * Finish PREP stage. We're guaranteed to have at least one idle 2521 * worker or that someone else has already assumed the manager 2522 * role. This is where @worker starts participating in concurrency 2523 * management if applicable and concurrency management is restored 2524 * after being rebound. See rebind_workers() for details. 2525 */ 2526 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2527 2528 do { 2529 struct work_struct *work = 2530 list_first_entry(&pool->worklist, 2531 struct work_struct, entry); 2532 2533 pool->watchdog_ts = jiffies; 2534 2535 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2536 /* optimization path, not strictly necessary */ 2537 process_one_work(worker, work); 2538 if (unlikely(!list_empty(&worker->scheduled))) 2539 process_scheduled_works(worker); 2540 } else { 2541 move_linked_works(work, &worker->scheduled, NULL); 2542 process_scheduled_works(worker); 2543 } 2544 } while (keep_working(pool)); 2545 2546 worker_set_flags(worker, WORKER_PREP); 2547 sleep: 2548 /* 2549 * pool->lock is held and there's no work to process and no need to 2550 * manage, sleep. Workers are woken up only while holding 2551 * pool->lock or from local cpu, so setting the current state 2552 * before releasing pool->lock is enough to prevent losing any 2553 * event. 2554 */ 2555 worker_enter_idle(worker); 2556 __set_current_state(TASK_IDLE); 2557 raw_spin_unlock_irq(&pool->lock); 2558 schedule(); 2559 goto woke_up; 2560 } 2561 2562 /** 2563 * rescuer_thread - the rescuer thread function 2564 * @__rescuer: self 2565 * 2566 * Workqueue rescuer thread function. There's one rescuer for each 2567 * workqueue which has WQ_MEM_RECLAIM set. 2568 * 2569 * Regular work processing on a pool may block trying to create a new 2570 * worker which uses GFP_KERNEL allocation which has slight chance of 2571 * developing into deadlock if some works currently on the same queue 2572 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2573 * the problem rescuer solves. 2574 * 2575 * When such condition is possible, the pool summons rescuers of all 2576 * workqueues which have works queued on the pool and let them process 2577 * those works so that forward progress can be guaranteed. 2578 * 2579 * This should happen rarely. 2580 * 2581 * Return: 0 2582 */ 2583 static int rescuer_thread(void *__rescuer) 2584 { 2585 struct worker *rescuer = __rescuer; 2586 struct workqueue_struct *wq = rescuer->rescue_wq; 2587 struct list_head *scheduled = &rescuer->scheduled; 2588 bool should_stop; 2589 2590 set_user_nice(current, RESCUER_NICE_LEVEL); 2591 2592 /* 2593 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2594 * doesn't participate in concurrency management. 2595 */ 2596 set_pf_worker(true); 2597 repeat: 2598 set_current_state(TASK_IDLE); 2599 2600 /* 2601 * By the time the rescuer is requested to stop, the workqueue 2602 * shouldn't have any work pending, but @wq->maydays may still have 2603 * pwq(s) queued. This can happen by non-rescuer workers consuming 2604 * all the work items before the rescuer got to them. Go through 2605 * @wq->maydays processing before acting on should_stop so that the 2606 * list is always empty on exit. 2607 */ 2608 should_stop = kthread_should_stop(); 2609 2610 /* see whether any pwq is asking for help */ 2611 raw_spin_lock_irq(&wq_mayday_lock); 2612 2613 while (!list_empty(&wq->maydays)) { 2614 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2615 struct pool_workqueue, mayday_node); 2616 struct worker_pool *pool = pwq->pool; 2617 struct work_struct *work, *n; 2618 bool first = true; 2619 2620 __set_current_state(TASK_RUNNING); 2621 list_del_init(&pwq->mayday_node); 2622 2623 raw_spin_unlock_irq(&wq_mayday_lock); 2624 2625 worker_attach_to_pool(rescuer, pool); 2626 2627 raw_spin_lock_irq(&pool->lock); 2628 2629 /* 2630 * Slurp in all works issued via this workqueue and 2631 * process'em. 2632 */ 2633 WARN_ON_ONCE(!list_empty(scheduled)); 2634 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2635 if (get_work_pwq(work) == pwq) { 2636 if (first) 2637 pool->watchdog_ts = jiffies; 2638 move_linked_works(work, scheduled, &n); 2639 } 2640 first = false; 2641 } 2642 2643 if (!list_empty(scheduled)) { 2644 process_scheduled_works(rescuer); 2645 2646 /* 2647 * The above execution of rescued work items could 2648 * have created more to rescue through 2649 * pwq_activate_first_inactive() or chained 2650 * queueing. Let's put @pwq back on mayday list so 2651 * that such back-to-back work items, which may be 2652 * being used to relieve memory pressure, don't 2653 * incur MAYDAY_INTERVAL delay inbetween. 2654 */ 2655 if (pwq->nr_active && need_to_create_worker(pool)) { 2656 raw_spin_lock(&wq_mayday_lock); 2657 /* 2658 * Queue iff we aren't racing destruction 2659 * and somebody else hasn't queued it already. 2660 */ 2661 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 2662 get_pwq(pwq); 2663 list_add_tail(&pwq->mayday_node, &wq->maydays); 2664 } 2665 raw_spin_unlock(&wq_mayday_lock); 2666 } 2667 } 2668 2669 /* 2670 * Put the reference grabbed by send_mayday(). @pool won't 2671 * go away while we're still attached to it. 2672 */ 2673 put_pwq(pwq); 2674 2675 /* 2676 * Leave this pool. If need_more_worker() is %true, notify a 2677 * regular worker; otherwise, we end up with 0 concurrency 2678 * and stalling the execution. 2679 */ 2680 if (need_more_worker(pool)) 2681 wake_up_worker(pool); 2682 2683 raw_spin_unlock_irq(&pool->lock); 2684 2685 worker_detach_from_pool(rescuer); 2686 2687 raw_spin_lock_irq(&wq_mayday_lock); 2688 } 2689 2690 raw_spin_unlock_irq(&wq_mayday_lock); 2691 2692 if (should_stop) { 2693 __set_current_state(TASK_RUNNING); 2694 set_pf_worker(false); 2695 return 0; 2696 } 2697 2698 /* rescuers should never participate in concurrency management */ 2699 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2700 schedule(); 2701 goto repeat; 2702 } 2703 2704 /** 2705 * check_flush_dependency - check for flush dependency sanity 2706 * @target_wq: workqueue being flushed 2707 * @target_work: work item being flushed (NULL for workqueue flushes) 2708 * 2709 * %current is trying to flush the whole @target_wq or @target_work on it. 2710 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2711 * reclaiming memory or running on a workqueue which doesn't have 2712 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2713 * a deadlock. 2714 */ 2715 static void check_flush_dependency(struct workqueue_struct *target_wq, 2716 struct work_struct *target_work) 2717 { 2718 work_func_t target_func = target_work ? target_work->func : NULL; 2719 struct worker *worker; 2720 2721 if (target_wq->flags & WQ_MEM_RECLAIM) 2722 return; 2723 2724 worker = current_wq_worker(); 2725 2726 WARN_ONCE(current->flags & PF_MEMALLOC, 2727 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 2728 current->pid, current->comm, target_wq->name, target_func); 2729 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2730 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2731 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 2732 worker->current_pwq->wq->name, worker->current_func, 2733 target_wq->name, target_func); 2734 } 2735 2736 struct wq_barrier { 2737 struct work_struct work; 2738 struct completion done; 2739 struct task_struct *task; /* purely informational */ 2740 }; 2741 2742 static void wq_barrier_func(struct work_struct *work) 2743 { 2744 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2745 complete(&barr->done); 2746 } 2747 2748 /** 2749 * insert_wq_barrier - insert a barrier work 2750 * @pwq: pwq to insert barrier into 2751 * @barr: wq_barrier to insert 2752 * @target: target work to attach @barr to 2753 * @worker: worker currently executing @target, NULL if @target is not executing 2754 * 2755 * @barr is linked to @target such that @barr is completed only after 2756 * @target finishes execution. Please note that the ordering 2757 * guarantee is observed only with respect to @target and on the local 2758 * cpu. 2759 * 2760 * Currently, a queued barrier can't be canceled. This is because 2761 * try_to_grab_pending() can't determine whether the work to be 2762 * grabbed is at the head of the queue and thus can't clear LINKED 2763 * flag of the previous work while there must be a valid next work 2764 * after a work with LINKED flag set. 2765 * 2766 * Note that when @worker is non-NULL, @target may be modified 2767 * underneath us, so we can't reliably determine pwq from @target. 2768 * 2769 * CONTEXT: 2770 * raw_spin_lock_irq(pool->lock). 2771 */ 2772 static void insert_wq_barrier(struct pool_workqueue *pwq, 2773 struct wq_barrier *barr, 2774 struct work_struct *target, struct worker *worker) 2775 { 2776 unsigned int work_flags = 0; 2777 unsigned int work_color; 2778 struct list_head *head; 2779 2780 /* 2781 * debugobject calls are safe here even with pool->lock locked 2782 * as we know for sure that this will not trigger any of the 2783 * checks and call back into the fixup functions where we 2784 * might deadlock. 2785 */ 2786 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2787 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2788 2789 init_completion_map(&barr->done, &target->lockdep_map); 2790 2791 barr->task = current; 2792 2793 /* The barrier work item does not participate in pwq->nr_active. */ 2794 work_flags |= WORK_STRUCT_INACTIVE; 2795 2796 /* 2797 * If @target is currently being executed, schedule the 2798 * barrier to the worker; otherwise, put it after @target. 2799 */ 2800 if (worker) { 2801 head = worker->scheduled.next; 2802 work_color = worker->current_color; 2803 } else { 2804 unsigned long *bits = work_data_bits(target); 2805 2806 head = target->entry.next; 2807 /* there can already be other linked works, inherit and set */ 2808 work_flags |= *bits & WORK_STRUCT_LINKED; 2809 work_color = get_work_color(*bits); 2810 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2811 } 2812 2813 pwq->nr_in_flight[work_color]++; 2814 work_flags |= work_color_to_flags(work_color); 2815 2816 debug_work_activate(&barr->work); 2817 insert_work(pwq, &barr->work, head, work_flags); 2818 } 2819 2820 /** 2821 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2822 * @wq: workqueue being flushed 2823 * @flush_color: new flush color, < 0 for no-op 2824 * @work_color: new work color, < 0 for no-op 2825 * 2826 * Prepare pwqs for workqueue flushing. 2827 * 2828 * If @flush_color is non-negative, flush_color on all pwqs should be 2829 * -1. If no pwq has in-flight commands at the specified color, all 2830 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2831 * has in flight commands, its pwq->flush_color is set to 2832 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2833 * wakeup logic is armed and %true is returned. 2834 * 2835 * The caller should have initialized @wq->first_flusher prior to 2836 * calling this function with non-negative @flush_color. If 2837 * @flush_color is negative, no flush color update is done and %false 2838 * is returned. 2839 * 2840 * If @work_color is non-negative, all pwqs should have the same 2841 * work_color which is previous to @work_color and all will be 2842 * advanced to @work_color. 2843 * 2844 * CONTEXT: 2845 * mutex_lock(wq->mutex). 2846 * 2847 * Return: 2848 * %true if @flush_color >= 0 and there's something to flush. %false 2849 * otherwise. 2850 */ 2851 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2852 int flush_color, int work_color) 2853 { 2854 bool wait = false; 2855 struct pool_workqueue *pwq; 2856 2857 if (flush_color >= 0) { 2858 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2859 atomic_set(&wq->nr_pwqs_to_flush, 1); 2860 } 2861 2862 for_each_pwq(pwq, wq) { 2863 struct worker_pool *pool = pwq->pool; 2864 2865 raw_spin_lock_irq(&pool->lock); 2866 2867 if (flush_color >= 0) { 2868 WARN_ON_ONCE(pwq->flush_color != -1); 2869 2870 if (pwq->nr_in_flight[flush_color]) { 2871 pwq->flush_color = flush_color; 2872 atomic_inc(&wq->nr_pwqs_to_flush); 2873 wait = true; 2874 } 2875 } 2876 2877 if (work_color >= 0) { 2878 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2879 pwq->work_color = work_color; 2880 } 2881 2882 raw_spin_unlock_irq(&pool->lock); 2883 } 2884 2885 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2886 complete(&wq->first_flusher->done); 2887 2888 return wait; 2889 } 2890 2891 /** 2892 * __flush_workqueue - ensure that any scheduled work has run to completion. 2893 * @wq: workqueue to flush 2894 * 2895 * This function sleeps until all work items which were queued on entry 2896 * have finished execution, but it is not livelocked by new incoming ones. 2897 */ 2898 void __flush_workqueue(struct workqueue_struct *wq) 2899 { 2900 struct wq_flusher this_flusher = { 2901 .list = LIST_HEAD_INIT(this_flusher.list), 2902 .flush_color = -1, 2903 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2904 }; 2905 int next_color; 2906 2907 if (WARN_ON(!wq_online)) 2908 return; 2909 2910 lock_map_acquire(&wq->lockdep_map); 2911 lock_map_release(&wq->lockdep_map); 2912 2913 mutex_lock(&wq->mutex); 2914 2915 /* 2916 * Start-to-wait phase 2917 */ 2918 next_color = work_next_color(wq->work_color); 2919 2920 if (next_color != wq->flush_color) { 2921 /* 2922 * Color space is not full. The current work_color 2923 * becomes our flush_color and work_color is advanced 2924 * by one. 2925 */ 2926 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2927 this_flusher.flush_color = wq->work_color; 2928 wq->work_color = next_color; 2929 2930 if (!wq->first_flusher) { 2931 /* no flush in progress, become the first flusher */ 2932 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2933 2934 wq->first_flusher = &this_flusher; 2935 2936 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2937 wq->work_color)) { 2938 /* nothing to flush, done */ 2939 wq->flush_color = next_color; 2940 wq->first_flusher = NULL; 2941 goto out_unlock; 2942 } 2943 } else { 2944 /* wait in queue */ 2945 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2946 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2947 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2948 } 2949 } else { 2950 /* 2951 * Oops, color space is full, wait on overflow queue. 2952 * The next flush completion will assign us 2953 * flush_color and transfer to flusher_queue. 2954 */ 2955 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2956 } 2957 2958 check_flush_dependency(wq, NULL); 2959 2960 mutex_unlock(&wq->mutex); 2961 2962 wait_for_completion(&this_flusher.done); 2963 2964 /* 2965 * Wake-up-and-cascade phase 2966 * 2967 * First flushers are responsible for cascading flushes and 2968 * handling overflow. Non-first flushers can simply return. 2969 */ 2970 if (READ_ONCE(wq->first_flusher) != &this_flusher) 2971 return; 2972 2973 mutex_lock(&wq->mutex); 2974 2975 /* we might have raced, check again with mutex held */ 2976 if (wq->first_flusher != &this_flusher) 2977 goto out_unlock; 2978 2979 WRITE_ONCE(wq->first_flusher, NULL); 2980 2981 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2982 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2983 2984 while (true) { 2985 struct wq_flusher *next, *tmp; 2986 2987 /* complete all the flushers sharing the current flush color */ 2988 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2989 if (next->flush_color != wq->flush_color) 2990 break; 2991 list_del_init(&next->list); 2992 complete(&next->done); 2993 } 2994 2995 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2996 wq->flush_color != work_next_color(wq->work_color)); 2997 2998 /* this flush_color is finished, advance by one */ 2999 wq->flush_color = work_next_color(wq->flush_color); 3000 3001 /* one color has been freed, handle overflow queue */ 3002 if (!list_empty(&wq->flusher_overflow)) { 3003 /* 3004 * Assign the same color to all overflowed 3005 * flushers, advance work_color and append to 3006 * flusher_queue. This is the start-to-wait 3007 * phase for these overflowed flushers. 3008 */ 3009 list_for_each_entry(tmp, &wq->flusher_overflow, list) 3010 tmp->flush_color = wq->work_color; 3011 3012 wq->work_color = work_next_color(wq->work_color); 3013 3014 list_splice_tail_init(&wq->flusher_overflow, 3015 &wq->flusher_queue); 3016 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3017 } 3018 3019 if (list_empty(&wq->flusher_queue)) { 3020 WARN_ON_ONCE(wq->flush_color != wq->work_color); 3021 break; 3022 } 3023 3024 /* 3025 * Need to flush more colors. Make the next flusher 3026 * the new first flusher and arm pwqs. 3027 */ 3028 WARN_ON_ONCE(wq->flush_color == wq->work_color); 3029 WARN_ON_ONCE(wq->flush_color != next->flush_color); 3030 3031 list_del_init(&next->list); 3032 wq->first_flusher = next; 3033 3034 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 3035 break; 3036 3037 /* 3038 * Meh... this color is already done, clear first 3039 * flusher and repeat cascading. 3040 */ 3041 wq->first_flusher = NULL; 3042 } 3043 3044 out_unlock: 3045 mutex_unlock(&wq->mutex); 3046 } 3047 EXPORT_SYMBOL(__flush_workqueue); 3048 3049 /** 3050 * drain_workqueue - drain a workqueue 3051 * @wq: workqueue to drain 3052 * 3053 * Wait until the workqueue becomes empty. While draining is in progress, 3054 * only chain queueing is allowed. IOW, only currently pending or running 3055 * work items on @wq can queue further work items on it. @wq is flushed 3056 * repeatedly until it becomes empty. The number of flushing is determined 3057 * by the depth of chaining and should be relatively short. Whine if it 3058 * takes too long. 3059 */ 3060 void drain_workqueue(struct workqueue_struct *wq) 3061 { 3062 unsigned int flush_cnt = 0; 3063 struct pool_workqueue *pwq; 3064 3065 /* 3066 * __queue_work() needs to test whether there are drainers, is much 3067 * hotter than drain_workqueue() and already looks at @wq->flags. 3068 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 3069 */ 3070 mutex_lock(&wq->mutex); 3071 if (!wq->nr_drainers++) 3072 wq->flags |= __WQ_DRAINING; 3073 mutex_unlock(&wq->mutex); 3074 reflush: 3075 __flush_workqueue(wq); 3076 3077 mutex_lock(&wq->mutex); 3078 3079 for_each_pwq(pwq, wq) { 3080 bool drained; 3081 3082 raw_spin_lock_irq(&pwq->pool->lock); 3083 drained = !pwq->nr_active && list_empty(&pwq->inactive_works); 3084 raw_spin_unlock_irq(&pwq->pool->lock); 3085 3086 if (drained) 3087 continue; 3088 3089 if (++flush_cnt == 10 || 3090 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 3091 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 3092 wq->name, __func__, flush_cnt); 3093 3094 mutex_unlock(&wq->mutex); 3095 goto reflush; 3096 } 3097 3098 if (!--wq->nr_drainers) 3099 wq->flags &= ~__WQ_DRAINING; 3100 mutex_unlock(&wq->mutex); 3101 } 3102 EXPORT_SYMBOL_GPL(drain_workqueue); 3103 3104 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 3105 bool from_cancel) 3106 { 3107 struct worker *worker = NULL; 3108 struct worker_pool *pool; 3109 struct pool_workqueue *pwq; 3110 3111 might_sleep(); 3112 3113 rcu_read_lock(); 3114 pool = get_work_pool(work); 3115 if (!pool) { 3116 rcu_read_unlock(); 3117 return false; 3118 } 3119 3120 raw_spin_lock_irq(&pool->lock); 3121 /* see the comment in try_to_grab_pending() with the same code */ 3122 pwq = get_work_pwq(work); 3123 if (pwq) { 3124 if (unlikely(pwq->pool != pool)) 3125 goto already_gone; 3126 } else { 3127 worker = find_worker_executing_work(pool, work); 3128 if (!worker) 3129 goto already_gone; 3130 pwq = worker->current_pwq; 3131 } 3132 3133 check_flush_dependency(pwq->wq, work); 3134 3135 insert_wq_barrier(pwq, barr, work, worker); 3136 raw_spin_unlock_irq(&pool->lock); 3137 3138 /* 3139 * Force a lock recursion deadlock when using flush_work() inside a 3140 * single-threaded or rescuer equipped workqueue. 3141 * 3142 * For single threaded workqueues the deadlock happens when the work 3143 * is after the work issuing the flush_work(). For rescuer equipped 3144 * workqueues the deadlock happens when the rescuer stalls, blocking 3145 * forward progress. 3146 */ 3147 if (!from_cancel && 3148 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3149 lock_map_acquire(&pwq->wq->lockdep_map); 3150 lock_map_release(&pwq->wq->lockdep_map); 3151 } 3152 rcu_read_unlock(); 3153 return true; 3154 already_gone: 3155 raw_spin_unlock_irq(&pool->lock); 3156 rcu_read_unlock(); 3157 return false; 3158 } 3159 3160 static bool __flush_work(struct work_struct *work, bool from_cancel) 3161 { 3162 struct wq_barrier barr; 3163 3164 if (WARN_ON(!wq_online)) 3165 return false; 3166 3167 if (WARN_ON(!work->func)) 3168 return false; 3169 3170 lock_map_acquire(&work->lockdep_map); 3171 lock_map_release(&work->lockdep_map); 3172 3173 if (start_flush_work(work, &barr, from_cancel)) { 3174 wait_for_completion(&barr.done); 3175 destroy_work_on_stack(&barr.work); 3176 return true; 3177 } else { 3178 return false; 3179 } 3180 } 3181 3182 /** 3183 * flush_work - wait for a work to finish executing the last queueing instance 3184 * @work: the work to flush 3185 * 3186 * Wait until @work has finished execution. @work is guaranteed to be idle 3187 * on return if it hasn't been requeued since flush started. 3188 * 3189 * Return: 3190 * %true if flush_work() waited for the work to finish execution, 3191 * %false if it was already idle. 3192 */ 3193 bool flush_work(struct work_struct *work) 3194 { 3195 return __flush_work(work, false); 3196 } 3197 EXPORT_SYMBOL_GPL(flush_work); 3198 3199 struct cwt_wait { 3200 wait_queue_entry_t wait; 3201 struct work_struct *work; 3202 }; 3203 3204 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3205 { 3206 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3207 3208 if (cwait->work != key) 3209 return 0; 3210 return autoremove_wake_function(wait, mode, sync, key); 3211 } 3212 3213 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3214 { 3215 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3216 unsigned long flags; 3217 int ret; 3218 3219 do { 3220 ret = try_to_grab_pending(work, is_dwork, &flags); 3221 /* 3222 * If someone else is already canceling, wait for it to 3223 * finish. flush_work() doesn't work for PREEMPT_NONE 3224 * because we may get scheduled between @work's completion 3225 * and the other canceling task resuming and clearing 3226 * CANCELING - flush_work() will return false immediately 3227 * as @work is no longer busy, try_to_grab_pending() will 3228 * return -ENOENT as @work is still being canceled and the 3229 * other canceling task won't be able to clear CANCELING as 3230 * we're hogging the CPU. 3231 * 3232 * Let's wait for completion using a waitqueue. As this 3233 * may lead to the thundering herd problem, use a custom 3234 * wake function which matches @work along with exclusive 3235 * wait and wakeup. 3236 */ 3237 if (unlikely(ret == -ENOENT)) { 3238 struct cwt_wait cwait; 3239 3240 init_wait(&cwait.wait); 3241 cwait.wait.func = cwt_wakefn; 3242 cwait.work = work; 3243 3244 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3245 TASK_UNINTERRUPTIBLE); 3246 if (work_is_canceling(work)) 3247 schedule(); 3248 finish_wait(&cancel_waitq, &cwait.wait); 3249 } 3250 } while (unlikely(ret < 0)); 3251 3252 /* tell other tasks trying to grab @work to back off */ 3253 mark_work_canceling(work); 3254 local_irq_restore(flags); 3255 3256 /* 3257 * This allows canceling during early boot. We know that @work 3258 * isn't executing. 3259 */ 3260 if (wq_online) 3261 __flush_work(work, true); 3262 3263 clear_work_data(work); 3264 3265 /* 3266 * Paired with prepare_to_wait() above so that either 3267 * waitqueue_active() is visible here or !work_is_canceling() is 3268 * visible there. 3269 */ 3270 smp_mb(); 3271 if (waitqueue_active(&cancel_waitq)) 3272 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3273 3274 return ret; 3275 } 3276 3277 /** 3278 * cancel_work_sync - cancel a work and wait for it to finish 3279 * @work: the work to cancel 3280 * 3281 * Cancel @work and wait for its execution to finish. This function 3282 * can be used even if the work re-queues itself or migrates to 3283 * another workqueue. On return from this function, @work is 3284 * guaranteed to be not pending or executing on any CPU. 3285 * 3286 * cancel_work_sync(&delayed_work->work) must not be used for 3287 * delayed_work's. Use cancel_delayed_work_sync() instead. 3288 * 3289 * The caller must ensure that the workqueue on which @work was last 3290 * queued can't be destroyed before this function returns. 3291 * 3292 * Return: 3293 * %true if @work was pending, %false otherwise. 3294 */ 3295 bool cancel_work_sync(struct work_struct *work) 3296 { 3297 return __cancel_work_timer(work, false); 3298 } 3299 EXPORT_SYMBOL_GPL(cancel_work_sync); 3300 3301 /** 3302 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3303 * @dwork: the delayed work to flush 3304 * 3305 * Delayed timer is cancelled and the pending work is queued for 3306 * immediate execution. Like flush_work(), this function only 3307 * considers the last queueing instance of @dwork. 3308 * 3309 * Return: 3310 * %true if flush_work() waited for the work to finish execution, 3311 * %false if it was already idle. 3312 */ 3313 bool flush_delayed_work(struct delayed_work *dwork) 3314 { 3315 local_irq_disable(); 3316 if (del_timer_sync(&dwork->timer)) 3317 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3318 local_irq_enable(); 3319 return flush_work(&dwork->work); 3320 } 3321 EXPORT_SYMBOL(flush_delayed_work); 3322 3323 /** 3324 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3325 * @rwork: the rcu work to flush 3326 * 3327 * Return: 3328 * %true if flush_rcu_work() waited for the work to finish execution, 3329 * %false if it was already idle. 3330 */ 3331 bool flush_rcu_work(struct rcu_work *rwork) 3332 { 3333 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3334 rcu_barrier(); 3335 flush_work(&rwork->work); 3336 return true; 3337 } else { 3338 return flush_work(&rwork->work); 3339 } 3340 } 3341 EXPORT_SYMBOL(flush_rcu_work); 3342 3343 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3344 { 3345 unsigned long flags; 3346 int ret; 3347 3348 do { 3349 ret = try_to_grab_pending(work, is_dwork, &flags); 3350 } while (unlikely(ret == -EAGAIN)); 3351 3352 if (unlikely(ret < 0)) 3353 return false; 3354 3355 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3356 local_irq_restore(flags); 3357 return ret; 3358 } 3359 3360 /* 3361 * See cancel_delayed_work() 3362 */ 3363 bool cancel_work(struct work_struct *work) 3364 { 3365 return __cancel_work(work, false); 3366 } 3367 EXPORT_SYMBOL(cancel_work); 3368 3369 /** 3370 * cancel_delayed_work - cancel a delayed work 3371 * @dwork: delayed_work to cancel 3372 * 3373 * Kill off a pending delayed_work. 3374 * 3375 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3376 * pending. 3377 * 3378 * Note: 3379 * The work callback function may still be running on return, unless 3380 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3381 * use cancel_delayed_work_sync() to wait on it. 3382 * 3383 * This function is safe to call from any context including IRQ handler. 3384 */ 3385 bool cancel_delayed_work(struct delayed_work *dwork) 3386 { 3387 return __cancel_work(&dwork->work, true); 3388 } 3389 EXPORT_SYMBOL(cancel_delayed_work); 3390 3391 /** 3392 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3393 * @dwork: the delayed work cancel 3394 * 3395 * This is cancel_work_sync() for delayed works. 3396 * 3397 * Return: 3398 * %true if @dwork was pending, %false otherwise. 3399 */ 3400 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3401 { 3402 return __cancel_work_timer(&dwork->work, true); 3403 } 3404 EXPORT_SYMBOL(cancel_delayed_work_sync); 3405 3406 /** 3407 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3408 * @func: the function to call 3409 * 3410 * schedule_on_each_cpu() executes @func on each online CPU using the 3411 * system workqueue and blocks until all CPUs have completed. 3412 * schedule_on_each_cpu() is very slow. 3413 * 3414 * Return: 3415 * 0 on success, -errno on failure. 3416 */ 3417 int schedule_on_each_cpu(work_func_t func) 3418 { 3419 int cpu; 3420 struct work_struct __percpu *works; 3421 3422 works = alloc_percpu(struct work_struct); 3423 if (!works) 3424 return -ENOMEM; 3425 3426 cpus_read_lock(); 3427 3428 for_each_online_cpu(cpu) { 3429 struct work_struct *work = per_cpu_ptr(works, cpu); 3430 3431 INIT_WORK(work, func); 3432 schedule_work_on(cpu, work); 3433 } 3434 3435 for_each_online_cpu(cpu) 3436 flush_work(per_cpu_ptr(works, cpu)); 3437 3438 cpus_read_unlock(); 3439 free_percpu(works); 3440 return 0; 3441 } 3442 3443 /** 3444 * execute_in_process_context - reliably execute the routine with user context 3445 * @fn: the function to execute 3446 * @ew: guaranteed storage for the execute work structure (must 3447 * be available when the work executes) 3448 * 3449 * Executes the function immediately if process context is available, 3450 * otherwise schedules the function for delayed execution. 3451 * 3452 * Return: 0 - function was executed 3453 * 1 - function was scheduled for execution 3454 */ 3455 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3456 { 3457 if (!in_interrupt()) { 3458 fn(&ew->work); 3459 return 0; 3460 } 3461 3462 INIT_WORK(&ew->work, fn); 3463 schedule_work(&ew->work); 3464 3465 return 1; 3466 } 3467 EXPORT_SYMBOL_GPL(execute_in_process_context); 3468 3469 /** 3470 * free_workqueue_attrs - free a workqueue_attrs 3471 * @attrs: workqueue_attrs to free 3472 * 3473 * Undo alloc_workqueue_attrs(). 3474 */ 3475 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3476 { 3477 if (attrs) { 3478 free_cpumask_var(attrs->cpumask); 3479 kfree(attrs); 3480 } 3481 } 3482 3483 /** 3484 * alloc_workqueue_attrs - allocate a workqueue_attrs 3485 * 3486 * Allocate a new workqueue_attrs, initialize with default settings and 3487 * return it. 3488 * 3489 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3490 */ 3491 struct workqueue_attrs *alloc_workqueue_attrs(void) 3492 { 3493 struct workqueue_attrs *attrs; 3494 3495 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 3496 if (!attrs) 3497 goto fail; 3498 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 3499 goto fail; 3500 3501 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3502 return attrs; 3503 fail: 3504 free_workqueue_attrs(attrs); 3505 return NULL; 3506 } 3507 3508 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3509 const struct workqueue_attrs *from) 3510 { 3511 to->nice = from->nice; 3512 cpumask_copy(to->cpumask, from->cpumask); 3513 /* 3514 * Unlike hash and equality test, this function doesn't ignore 3515 * ->no_numa as it is used for both pool and wq attrs. Instead, 3516 * get_unbound_pool() explicitly clears ->no_numa after copying. 3517 */ 3518 to->no_numa = from->no_numa; 3519 } 3520 3521 /* hash value of the content of @attr */ 3522 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3523 { 3524 u32 hash = 0; 3525 3526 hash = jhash_1word(attrs->nice, hash); 3527 hash = jhash(cpumask_bits(attrs->cpumask), 3528 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3529 return hash; 3530 } 3531 3532 /* content equality test */ 3533 static bool wqattrs_equal(const struct workqueue_attrs *a, 3534 const struct workqueue_attrs *b) 3535 { 3536 if (a->nice != b->nice) 3537 return false; 3538 if (!cpumask_equal(a->cpumask, b->cpumask)) 3539 return false; 3540 return true; 3541 } 3542 3543 /** 3544 * init_worker_pool - initialize a newly zalloc'd worker_pool 3545 * @pool: worker_pool to initialize 3546 * 3547 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3548 * 3549 * Return: 0 on success, -errno on failure. Even on failure, all fields 3550 * inside @pool proper are initialized and put_unbound_pool() can be called 3551 * on @pool safely to release it. 3552 */ 3553 static int init_worker_pool(struct worker_pool *pool) 3554 { 3555 raw_spin_lock_init(&pool->lock); 3556 pool->id = -1; 3557 pool->cpu = -1; 3558 pool->node = NUMA_NO_NODE; 3559 pool->flags |= POOL_DISASSOCIATED; 3560 pool->watchdog_ts = jiffies; 3561 INIT_LIST_HEAD(&pool->worklist); 3562 INIT_LIST_HEAD(&pool->idle_list); 3563 hash_init(pool->busy_hash); 3564 3565 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3566 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 3567 3568 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3569 3570 INIT_LIST_HEAD(&pool->workers); 3571 INIT_LIST_HEAD(&pool->dying_workers); 3572 3573 ida_init(&pool->worker_ida); 3574 INIT_HLIST_NODE(&pool->hash_node); 3575 pool->refcnt = 1; 3576 3577 /* shouldn't fail above this point */ 3578 pool->attrs = alloc_workqueue_attrs(); 3579 if (!pool->attrs) 3580 return -ENOMEM; 3581 return 0; 3582 } 3583 3584 #ifdef CONFIG_LOCKDEP 3585 static void wq_init_lockdep(struct workqueue_struct *wq) 3586 { 3587 char *lock_name; 3588 3589 lockdep_register_key(&wq->key); 3590 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3591 if (!lock_name) 3592 lock_name = wq->name; 3593 3594 wq->lock_name = lock_name; 3595 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3596 } 3597 3598 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3599 { 3600 lockdep_unregister_key(&wq->key); 3601 } 3602 3603 static void wq_free_lockdep(struct workqueue_struct *wq) 3604 { 3605 if (wq->lock_name != wq->name) 3606 kfree(wq->lock_name); 3607 } 3608 #else 3609 static void wq_init_lockdep(struct workqueue_struct *wq) 3610 { 3611 } 3612 3613 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3614 { 3615 } 3616 3617 static void wq_free_lockdep(struct workqueue_struct *wq) 3618 { 3619 } 3620 #endif 3621 3622 static void rcu_free_wq(struct rcu_head *rcu) 3623 { 3624 struct workqueue_struct *wq = 3625 container_of(rcu, struct workqueue_struct, rcu); 3626 3627 wq_free_lockdep(wq); 3628 3629 if (!(wq->flags & WQ_UNBOUND)) 3630 free_percpu(wq->cpu_pwqs); 3631 else 3632 free_workqueue_attrs(wq->unbound_attrs); 3633 3634 kfree(wq); 3635 } 3636 3637 static void rcu_free_pool(struct rcu_head *rcu) 3638 { 3639 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3640 3641 ida_destroy(&pool->worker_ida); 3642 free_workqueue_attrs(pool->attrs); 3643 kfree(pool); 3644 } 3645 3646 /** 3647 * put_unbound_pool - put a worker_pool 3648 * @pool: worker_pool to put 3649 * 3650 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 3651 * safe manner. get_unbound_pool() calls this function on its failure path 3652 * and this function should be able to release pools which went through, 3653 * successfully or not, init_worker_pool(). 3654 * 3655 * Should be called with wq_pool_mutex held. 3656 */ 3657 static void put_unbound_pool(struct worker_pool *pool) 3658 { 3659 DECLARE_COMPLETION_ONSTACK(detach_completion); 3660 struct list_head cull_list; 3661 struct worker *worker; 3662 3663 INIT_LIST_HEAD(&cull_list); 3664 3665 lockdep_assert_held(&wq_pool_mutex); 3666 3667 if (--pool->refcnt) 3668 return; 3669 3670 /* sanity checks */ 3671 if (WARN_ON(!(pool->cpu < 0)) || 3672 WARN_ON(!list_empty(&pool->worklist))) 3673 return; 3674 3675 /* release id and unhash */ 3676 if (pool->id >= 0) 3677 idr_remove(&worker_pool_idr, pool->id); 3678 hash_del(&pool->hash_node); 3679 3680 /* 3681 * Become the manager and destroy all workers. This prevents 3682 * @pool's workers from blocking on attach_mutex. We're the last 3683 * manager and @pool gets freed with the flag set. 3684 * 3685 * Having a concurrent manager is quite unlikely to happen as we can 3686 * only get here with 3687 * pwq->refcnt == pool->refcnt == 0 3688 * which implies no work queued to the pool, which implies no worker can 3689 * become the manager. However a worker could have taken the role of 3690 * manager before the refcnts dropped to 0, since maybe_create_worker() 3691 * drops pool->lock 3692 */ 3693 while (true) { 3694 rcuwait_wait_event(&manager_wait, 3695 !(pool->flags & POOL_MANAGER_ACTIVE), 3696 TASK_UNINTERRUPTIBLE); 3697 3698 mutex_lock(&wq_pool_attach_mutex); 3699 raw_spin_lock_irq(&pool->lock); 3700 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 3701 pool->flags |= POOL_MANAGER_ACTIVE; 3702 break; 3703 } 3704 raw_spin_unlock_irq(&pool->lock); 3705 mutex_unlock(&wq_pool_attach_mutex); 3706 } 3707 3708 while ((worker = first_idle_worker(pool))) 3709 set_worker_dying(worker, &cull_list); 3710 WARN_ON(pool->nr_workers || pool->nr_idle); 3711 raw_spin_unlock_irq(&pool->lock); 3712 3713 wake_dying_workers(&cull_list); 3714 3715 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers)) 3716 pool->detach_completion = &detach_completion; 3717 mutex_unlock(&wq_pool_attach_mutex); 3718 3719 if (pool->detach_completion) 3720 wait_for_completion(pool->detach_completion); 3721 3722 /* shut down the timers */ 3723 del_timer_sync(&pool->idle_timer); 3724 cancel_work_sync(&pool->idle_cull_work); 3725 del_timer_sync(&pool->mayday_timer); 3726 3727 /* RCU protected to allow dereferences from get_work_pool() */ 3728 call_rcu(&pool->rcu, rcu_free_pool); 3729 } 3730 3731 /** 3732 * get_unbound_pool - get a worker_pool with the specified attributes 3733 * @attrs: the attributes of the worker_pool to get 3734 * 3735 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3736 * reference count and return it. If there already is a matching 3737 * worker_pool, it will be used; otherwise, this function attempts to 3738 * create a new one. 3739 * 3740 * Should be called with wq_pool_mutex held. 3741 * 3742 * Return: On success, a worker_pool with the same attributes as @attrs. 3743 * On failure, %NULL. 3744 */ 3745 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3746 { 3747 u32 hash = wqattrs_hash(attrs); 3748 struct worker_pool *pool; 3749 int node; 3750 int target_node = NUMA_NO_NODE; 3751 3752 lockdep_assert_held(&wq_pool_mutex); 3753 3754 /* do we already have a matching pool? */ 3755 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3756 if (wqattrs_equal(pool->attrs, attrs)) { 3757 pool->refcnt++; 3758 return pool; 3759 } 3760 } 3761 3762 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3763 if (wq_numa_enabled) { 3764 for_each_node(node) { 3765 if (cpumask_subset(attrs->cpumask, 3766 wq_numa_possible_cpumask[node])) { 3767 target_node = node; 3768 break; 3769 } 3770 } 3771 } 3772 3773 /* nope, create a new one */ 3774 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3775 if (!pool || init_worker_pool(pool) < 0) 3776 goto fail; 3777 3778 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3779 copy_workqueue_attrs(pool->attrs, attrs); 3780 pool->node = target_node; 3781 3782 /* 3783 * no_numa isn't a worker_pool attribute, always clear it. See 3784 * 'struct workqueue_attrs' comments for detail. 3785 */ 3786 pool->attrs->no_numa = false; 3787 3788 if (worker_pool_assign_id(pool) < 0) 3789 goto fail; 3790 3791 /* create and start the initial worker */ 3792 if (wq_online && !create_worker(pool)) 3793 goto fail; 3794 3795 /* install */ 3796 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3797 3798 return pool; 3799 fail: 3800 if (pool) 3801 put_unbound_pool(pool); 3802 return NULL; 3803 } 3804 3805 static void rcu_free_pwq(struct rcu_head *rcu) 3806 { 3807 kmem_cache_free(pwq_cache, 3808 container_of(rcu, struct pool_workqueue, rcu)); 3809 } 3810 3811 /* 3812 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3813 * and needs to be destroyed. 3814 */ 3815 static void pwq_unbound_release_workfn(struct work_struct *work) 3816 { 3817 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3818 unbound_release_work); 3819 struct workqueue_struct *wq = pwq->wq; 3820 struct worker_pool *pool = pwq->pool; 3821 bool is_last = false; 3822 3823 /* 3824 * when @pwq is not linked, it doesn't hold any reference to the 3825 * @wq, and @wq is invalid to access. 3826 */ 3827 if (!list_empty(&pwq->pwqs_node)) { 3828 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3829 return; 3830 3831 mutex_lock(&wq->mutex); 3832 list_del_rcu(&pwq->pwqs_node); 3833 is_last = list_empty(&wq->pwqs); 3834 mutex_unlock(&wq->mutex); 3835 } 3836 3837 mutex_lock(&wq_pool_mutex); 3838 put_unbound_pool(pool); 3839 mutex_unlock(&wq_pool_mutex); 3840 3841 call_rcu(&pwq->rcu, rcu_free_pwq); 3842 3843 /* 3844 * If we're the last pwq going away, @wq is already dead and no one 3845 * is gonna access it anymore. Schedule RCU free. 3846 */ 3847 if (is_last) { 3848 wq_unregister_lockdep(wq); 3849 call_rcu(&wq->rcu, rcu_free_wq); 3850 } 3851 } 3852 3853 /** 3854 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3855 * @pwq: target pool_workqueue 3856 * 3857 * If @pwq isn't freezing, set @pwq->max_active to the associated 3858 * workqueue's saved_max_active and activate inactive work items 3859 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3860 */ 3861 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3862 { 3863 struct workqueue_struct *wq = pwq->wq; 3864 bool freezable = wq->flags & WQ_FREEZABLE; 3865 unsigned long flags; 3866 3867 /* for @wq->saved_max_active */ 3868 lockdep_assert_held(&wq->mutex); 3869 3870 /* fast exit for non-freezable wqs */ 3871 if (!freezable && pwq->max_active == wq->saved_max_active) 3872 return; 3873 3874 /* this function can be called during early boot w/ irq disabled */ 3875 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 3876 3877 /* 3878 * During [un]freezing, the caller is responsible for ensuring that 3879 * this function is called at least once after @workqueue_freezing 3880 * is updated and visible. 3881 */ 3882 if (!freezable || !workqueue_freezing) { 3883 bool kick = false; 3884 3885 pwq->max_active = wq->saved_max_active; 3886 3887 while (!list_empty(&pwq->inactive_works) && 3888 pwq->nr_active < pwq->max_active) { 3889 pwq_activate_first_inactive(pwq); 3890 kick = true; 3891 } 3892 3893 /* 3894 * Need to kick a worker after thawed or an unbound wq's 3895 * max_active is bumped. In realtime scenarios, always kicking a 3896 * worker will cause interference on the isolated cpu cores, so 3897 * let's kick iff work items were activated. 3898 */ 3899 if (kick) 3900 wake_up_worker(pwq->pool); 3901 } else { 3902 pwq->max_active = 0; 3903 } 3904 3905 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 3906 } 3907 3908 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 3909 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3910 struct worker_pool *pool) 3911 { 3912 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3913 3914 memset(pwq, 0, sizeof(*pwq)); 3915 3916 pwq->pool = pool; 3917 pwq->wq = wq; 3918 pwq->flush_color = -1; 3919 pwq->refcnt = 1; 3920 INIT_LIST_HEAD(&pwq->inactive_works); 3921 INIT_LIST_HEAD(&pwq->pwqs_node); 3922 INIT_LIST_HEAD(&pwq->mayday_node); 3923 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3924 } 3925 3926 /* sync @pwq with the current state of its associated wq and link it */ 3927 static void link_pwq(struct pool_workqueue *pwq) 3928 { 3929 struct workqueue_struct *wq = pwq->wq; 3930 3931 lockdep_assert_held(&wq->mutex); 3932 3933 /* may be called multiple times, ignore if already linked */ 3934 if (!list_empty(&pwq->pwqs_node)) 3935 return; 3936 3937 /* set the matching work_color */ 3938 pwq->work_color = wq->work_color; 3939 3940 /* sync max_active to the current setting */ 3941 pwq_adjust_max_active(pwq); 3942 3943 /* link in @pwq */ 3944 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3945 } 3946 3947 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3948 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3949 const struct workqueue_attrs *attrs) 3950 { 3951 struct worker_pool *pool; 3952 struct pool_workqueue *pwq; 3953 3954 lockdep_assert_held(&wq_pool_mutex); 3955 3956 pool = get_unbound_pool(attrs); 3957 if (!pool) 3958 return NULL; 3959 3960 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3961 if (!pwq) { 3962 put_unbound_pool(pool); 3963 return NULL; 3964 } 3965 3966 init_pwq(pwq, wq, pool); 3967 return pwq; 3968 } 3969 3970 /** 3971 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3972 * @attrs: the wq_attrs of the default pwq of the target workqueue 3973 * @node: the target NUMA node 3974 * @cpu_going_down: if >= 0, the CPU to consider as offline 3975 * @cpumask: outarg, the resulting cpumask 3976 * 3977 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3978 * @cpu_going_down is >= 0, that cpu is considered offline during 3979 * calculation. The result is stored in @cpumask. 3980 * 3981 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3982 * enabled and @node has online CPUs requested by @attrs, the returned 3983 * cpumask is the intersection of the possible CPUs of @node and 3984 * @attrs->cpumask. 3985 * 3986 * The caller is responsible for ensuring that the cpumask of @node stays 3987 * stable. 3988 * 3989 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3990 * %false if equal. 3991 */ 3992 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3993 int cpu_going_down, cpumask_t *cpumask) 3994 { 3995 if (!wq_numa_enabled || attrs->no_numa) 3996 goto use_dfl; 3997 3998 /* does @node have any online CPUs @attrs wants? */ 3999 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 4000 if (cpu_going_down >= 0) 4001 cpumask_clear_cpu(cpu_going_down, cpumask); 4002 4003 if (cpumask_empty(cpumask)) 4004 goto use_dfl; 4005 4006 /* yeap, return possible CPUs in @node that @attrs wants */ 4007 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 4008 4009 if (cpumask_empty(cpumask)) { 4010 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 4011 "possible intersect\n"); 4012 return false; 4013 } 4014 4015 return !cpumask_equal(cpumask, attrs->cpumask); 4016 4017 use_dfl: 4018 cpumask_copy(cpumask, attrs->cpumask); 4019 return false; 4020 } 4021 4022 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 4023 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 4024 int node, 4025 struct pool_workqueue *pwq) 4026 { 4027 struct pool_workqueue *old_pwq; 4028 4029 lockdep_assert_held(&wq_pool_mutex); 4030 lockdep_assert_held(&wq->mutex); 4031 4032 /* link_pwq() can handle duplicate calls */ 4033 link_pwq(pwq); 4034 4035 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4036 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 4037 return old_pwq; 4038 } 4039 4040 /* context to store the prepared attrs & pwqs before applying */ 4041 struct apply_wqattrs_ctx { 4042 struct workqueue_struct *wq; /* target workqueue */ 4043 struct workqueue_attrs *attrs; /* attrs to apply */ 4044 struct list_head list; /* queued for batching commit */ 4045 struct pool_workqueue *dfl_pwq; 4046 struct pool_workqueue *pwq_tbl[]; 4047 }; 4048 4049 /* free the resources after success or abort */ 4050 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 4051 { 4052 if (ctx) { 4053 int node; 4054 4055 for_each_node(node) 4056 put_pwq_unlocked(ctx->pwq_tbl[node]); 4057 put_pwq_unlocked(ctx->dfl_pwq); 4058 4059 free_workqueue_attrs(ctx->attrs); 4060 4061 kfree(ctx); 4062 } 4063 } 4064 4065 /* allocate the attrs and pwqs for later installation */ 4066 static struct apply_wqattrs_ctx * 4067 apply_wqattrs_prepare(struct workqueue_struct *wq, 4068 const struct workqueue_attrs *attrs, 4069 const cpumask_var_t unbound_cpumask) 4070 { 4071 struct apply_wqattrs_ctx *ctx; 4072 struct workqueue_attrs *new_attrs, *tmp_attrs; 4073 int node; 4074 4075 lockdep_assert_held(&wq_pool_mutex); 4076 4077 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 4078 4079 new_attrs = alloc_workqueue_attrs(); 4080 tmp_attrs = alloc_workqueue_attrs(); 4081 if (!ctx || !new_attrs || !tmp_attrs) 4082 goto out_free; 4083 4084 /* 4085 * Calculate the attrs of the default pwq with unbound_cpumask 4086 * which is wq_unbound_cpumask or to set to wq_unbound_cpumask. 4087 * If the user configured cpumask doesn't overlap with the 4088 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 4089 */ 4090 copy_workqueue_attrs(new_attrs, attrs); 4091 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, unbound_cpumask); 4092 if (unlikely(cpumask_empty(new_attrs->cpumask))) 4093 cpumask_copy(new_attrs->cpumask, unbound_cpumask); 4094 4095 /* 4096 * We may create multiple pwqs with differing cpumasks. Make a 4097 * copy of @new_attrs which will be modified and used to obtain 4098 * pools. 4099 */ 4100 copy_workqueue_attrs(tmp_attrs, new_attrs); 4101 4102 /* 4103 * If something goes wrong during CPU up/down, we'll fall back to 4104 * the default pwq covering whole @attrs->cpumask. Always create 4105 * it even if we don't use it immediately. 4106 */ 4107 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 4108 if (!ctx->dfl_pwq) 4109 goto out_free; 4110 4111 for_each_node(node) { 4112 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 4113 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 4114 if (!ctx->pwq_tbl[node]) 4115 goto out_free; 4116 } else { 4117 ctx->dfl_pwq->refcnt++; 4118 ctx->pwq_tbl[node] = ctx->dfl_pwq; 4119 } 4120 } 4121 4122 /* save the user configured attrs and sanitize it. */ 4123 copy_workqueue_attrs(new_attrs, attrs); 4124 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 4125 ctx->attrs = new_attrs; 4126 4127 ctx->wq = wq; 4128 free_workqueue_attrs(tmp_attrs); 4129 return ctx; 4130 4131 out_free: 4132 free_workqueue_attrs(tmp_attrs); 4133 free_workqueue_attrs(new_attrs); 4134 apply_wqattrs_cleanup(ctx); 4135 return NULL; 4136 } 4137 4138 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 4139 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 4140 { 4141 int node; 4142 4143 /* all pwqs have been created successfully, let's install'em */ 4144 mutex_lock(&ctx->wq->mutex); 4145 4146 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 4147 4148 /* save the previous pwq and install the new one */ 4149 for_each_node(node) 4150 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 4151 ctx->pwq_tbl[node]); 4152 4153 /* @dfl_pwq might not have been used, ensure it's linked */ 4154 link_pwq(ctx->dfl_pwq); 4155 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 4156 4157 mutex_unlock(&ctx->wq->mutex); 4158 } 4159 4160 static void apply_wqattrs_lock(void) 4161 { 4162 /* CPUs should stay stable across pwq creations and installations */ 4163 cpus_read_lock(); 4164 mutex_lock(&wq_pool_mutex); 4165 } 4166 4167 static void apply_wqattrs_unlock(void) 4168 { 4169 mutex_unlock(&wq_pool_mutex); 4170 cpus_read_unlock(); 4171 } 4172 4173 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 4174 const struct workqueue_attrs *attrs) 4175 { 4176 struct apply_wqattrs_ctx *ctx; 4177 4178 /* only unbound workqueues can change attributes */ 4179 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 4180 return -EINVAL; 4181 4182 /* creating multiple pwqs breaks ordering guarantee */ 4183 if (!list_empty(&wq->pwqs)) { 4184 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4185 return -EINVAL; 4186 4187 wq->flags &= ~__WQ_ORDERED; 4188 } 4189 4190 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 4191 if (!ctx) 4192 return -ENOMEM; 4193 4194 /* the ctx has been prepared successfully, let's commit it */ 4195 apply_wqattrs_commit(ctx); 4196 apply_wqattrs_cleanup(ctx); 4197 4198 return 0; 4199 } 4200 4201 /** 4202 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4203 * @wq: the target workqueue 4204 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4205 * 4206 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 4207 * machines, this function maps a separate pwq to each NUMA node with 4208 * possibles CPUs in @attrs->cpumask so that work items are affine to the 4209 * NUMA node it was issued on. Older pwqs are released as in-flight work 4210 * items finish. Note that a work item which repeatedly requeues itself 4211 * back-to-back will stay on its current pwq. 4212 * 4213 * Performs GFP_KERNEL allocations. 4214 * 4215 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). 4216 * 4217 * Return: 0 on success and -errno on failure. 4218 */ 4219 int apply_workqueue_attrs(struct workqueue_struct *wq, 4220 const struct workqueue_attrs *attrs) 4221 { 4222 int ret; 4223 4224 lockdep_assert_cpus_held(); 4225 4226 mutex_lock(&wq_pool_mutex); 4227 ret = apply_workqueue_attrs_locked(wq, attrs); 4228 mutex_unlock(&wq_pool_mutex); 4229 4230 return ret; 4231 } 4232 4233 /** 4234 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4235 * @wq: the target workqueue 4236 * @cpu: the CPU coming up or going down 4237 * @online: whether @cpu is coming up or going down 4238 * 4239 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4240 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4241 * @wq accordingly. 4242 * 4243 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4244 * falls back to @wq->dfl_pwq which may not be optimal but is always 4245 * correct. 4246 * 4247 * Note that when the last allowed CPU of a NUMA node goes offline for a 4248 * workqueue with a cpumask spanning multiple nodes, the workers which were 4249 * already executing the work items for the workqueue will lose their CPU 4250 * affinity and may execute on any CPU. This is similar to how per-cpu 4251 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4252 * affinity, it's the user's responsibility to flush the work item from 4253 * CPU_DOWN_PREPARE. 4254 */ 4255 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4256 bool online) 4257 { 4258 int node = cpu_to_node(cpu); 4259 int cpu_off = online ? -1 : cpu; 4260 struct pool_workqueue *old_pwq = NULL, *pwq; 4261 struct workqueue_attrs *target_attrs; 4262 cpumask_t *cpumask; 4263 4264 lockdep_assert_held(&wq_pool_mutex); 4265 4266 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 4267 wq->unbound_attrs->no_numa) 4268 return; 4269 4270 /* 4271 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4272 * Let's use a preallocated one. The following buf is protected by 4273 * CPU hotplug exclusion. 4274 */ 4275 target_attrs = wq_update_unbound_numa_attrs_buf; 4276 cpumask = target_attrs->cpumask; 4277 4278 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4279 pwq = unbound_pwq_by_node(wq, node); 4280 4281 /* 4282 * Let's determine what needs to be done. If the target cpumask is 4283 * different from the default pwq's, we need to compare it to @pwq's 4284 * and create a new one if they don't match. If the target cpumask 4285 * equals the default pwq's, the default pwq should be used. 4286 */ 4287 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4288 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4289 return; 4290 } else { 4291 goto use_dfl_pwq; 4292 } 4293 4294 /* create a new pwq */ 4295 pwq = alloc_unbound_pwq(wq, target_attrs); 4296 if (!pwq) { 4297 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4298 wq->name); 4299 goto use_dfl_pwq; 4300 } 4301 4302 /* Install the new pwq. */ 4303 mutex_lock(&wq->mutex); 4304 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4305 goto out_unlock; 4306 4307 use_dfl_pwq: 4308 mutex_lock(&wq->mutex); 4309 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock); 4310 get_pwq(wq->dfl_pwq); 4311 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4312 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4313 out_unlock: 4314 mutex_unlock(&wq->mutex); 4315 put_pwq_unlocked(old_pwq); 4316 } 4317 4318 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4319 { 4320 bool highpri = wq->flags & WQ_HIGHPRI; 4321 int cpu, ret; 4322 4323 if (!(wq->flags & WQ_UNBOUND)) { 4324 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4325 if (!wq->cpu_pwqs) 4326 return -ENOMEM; 4327 4328 for_each_possible_cpu(cpu) { 4329 struct pool_workqueue *pwq = 4330 per_cpu_ptr(wq->cpu_pwqs, cpu); 4331 struct worker_pool *cpu_pools = 4332 per_cpu(cpu_worker_pools, cpu); 4333 4334 init_pwq(pwq, wq, &cpu_pools[highpri]); 4335 4336 mutex_lock(&wq->mutex); 4337 link_pwq(pwq); 4338 mutex_unlock(&wq->mutex); 4339 } 4340 return 0; 4341 } 4342 4343 cpus_read_lock(); 4344 if (wq->flags & __WQ_ORDERED) { 4345 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4346 /* there should only be single pwq for ordering guarantee */ 4347 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4348 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4349 "ordering guarantee broken for workqueue %s\n", wq->name); 4350 } else { 4351 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4352 } 4353 cpus_read_unlock(); 4354 4355 return ret; 4356 } 4357 4358 static int wq_clamp_max_active(int max_active, unsigned int flags, 4359 const char *name) 4360 { 4361 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4362 4363 if (max_active < 1 || max_active > lim) 4364 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4365 max_active, name, 1, lim); 4366 4367 return clamp_val(max_active, 1, lim); 4368 } 4369 4370 /* 4371 * Workqueues which may be used during memory reclaim should have a rescuer 4372 * to guarantee forward progress. 4373 */ 4374 static int init_rescuer(struct workqueue_struct *wq) 4375 { 4376 struct worker *rescuer; 4377 int ret; 4378 4379 if (!(wq->flags & WQ_MEM_RECLAIM)) 4380 return 0; 4381 4382 rescuer = alloc_worker(NUMA_NO_NODE); 4383 if (!rescuer) 4384 return -ENOMEM; 4385 4386 rescuer->rescue_wq = wq; 4387 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4388 if (IS_ERR(rescuer->task)) { 4389 ret = PTR_ERR(rescuer->task); 4390 kfree(rescuer); 4391 return ret; 4392 } 4393 4394 wq->rescuer = rescuer; 4395 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4396 wake_up_process(rescuer->task); 4397 4398 return 0; 4399 } 4400 4401 __printf(1, 4) 4402 struct workqueue_struct *alloc_workqueue(const char *fmt, 4403 unsigned int flags, 4404 int max_active, ...) 4405 { 4406 size_t tbl_size = 0; 4407 va_list args; 4408 struct workqueue_struct *wq; 4409 struct pool_workqueue *pwq; 4410 4411 /* 4412 * Unbound && max_active == 1 used to imply ordered, which is no 4413 * longer the case on NUMA machines due to per-node pools. While 4414 * alloc_ordered_workqueue() is the right way to create an ordered 4415 * workqueue, keep the previous behavior to avoid subtle breakages 4416 * on NUMA. 4417 */ 4418 if ((flags & WQ_UNBOUND) && max_active == 1) 4419 flags |= __WQ_ORDERED; 4420 4421 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4422 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4423 flags |= WQ_UNBOUND; 4424 4425 /* allocate wq and format name */ 4426 if (flags & WQ_UNBOUND) 4427 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4428 4429 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4430 if (!wq) 4431 return NULL; 4432 4433 if (flags & WQ_UNBOUND) { 4434 wq->unbound_attrs = alloc_workqueue_attrs(); 4435 if (!wq->unbound_attrs) 4436 goto err_free_wq; 4437 } 4438 4439 va_start(args, max_active); 4440 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4441 va_end(args); 4442 4443 max_active = max_active ?: WQ_DFL_ACTIVE; 4444 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4445 4446 /* init wq */ 4447 wq->flags = flags; 4448 wq->saved_max_active = max_active; 4449 mutex_init(&wq->mutex); 4450 atomic_set(&wq->nr_pwqs_to_flush, 0); 4451 INIT_LIST_HEAD(&wq->pwqs); 4452 INIT_LIST_HEAD(&wq->flusher_queue); 4453 INIT_LIST_HEAD(&wq->flusher_overflow); 4454 INIT_LIST_HEAD(&wq->maydays); 4455 4456 wq_init_lockdep(wq); 4457 INIT_LIST_HEAD(&wq->list); 4458 4459 if (alloc_and_link_pwqs(wq) < 0) 4460 goto err_unreg_lockdep; 4461 4462 if (wq_online && init_rescuer(wq) < 0) 4463 goto err_destroy; 4464 4465 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4466 goto err_destroy; 4467 4468 /* 4469 * wq_pool_mutex protects global freeze state and workqueues list. 4470 * Grab it, adjust max_active and add the new @wq to workqueues 4471 * list. 4472 */ 4473 mutex_lock(&wq_pool_mutex); 4474 4475 mutex_lock(&wq->mutex); 4476 for_each_pwq(pwq, wq) 4477 pwq_adjust_max_active(pwq); 4478 mutex_unlock(&wq->mutex); 4479 4480 list_add_tail_rcu(&wq->list, &workqueues); 4481 4482 mutex_unlock(&wq_pool_mutex); 4483 4484 return wq; 4485 4486 err_unreg_lockdep: 4487 wq_unregister_lockdep(wq); 4488 wq_free_lockdep(wq); 4489 err_free_wq: 4490 free_workqueue_attrs(wq->unbound_attrs); 4491 kfree(wq); 4492 return NULL; 4493 err_destroy: 4494 destroy_workqueue(wq); 4495 return NULL; 4496 } 4497 EXPORT_SYMBOL_GPL(alloc_workqueue); 4498 4499 static bool pwq_busy(struct pool_workqueue *pwq) 4500 { 4501 int i; 4502 4503 for (i = 0; i < WORK_NR_COLORS; i++) 4504 if (pwq->nr_in_flight[i]) 4505 return true; 4506 4507 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1)) 4508 return true; 4509 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) 4510 return true; 4511 4512 return false; 4513 } 4514 4515 /** 4516 * destroy_workqueue - safely terminate a workqueue 4517 * @wq: target workqueue 4518 * 4519 * Safely destroy a workqueue. All work currently pending will be done first. 4520 */ 4521 void destroy_workqueue(struct workqueue_struct *wq) 4522 { 4523 struct pool_workqueue *pwq; 4524 int node; 4525 4526 /* 4527 * Remove it from sysfs first so that sanity check failure doesn't 4528 * lead to sysfs name conflicts. 4529 */ 4530 workqueue_sysfs_unregister(wq); 4531 4532 /* mark the workqueue destruction is in progress */ 4533 mutex_lock(&wq->mutex); 4534 wq->flags |= __WQ_DESTROYING; 4535 mutex_unlock(&wq->mutex); 4536 4537 /* drain it before proceeding with destruction */ 4538 drain_workqueue(wq); 4539 4540 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 4541 if (wq->rescuer) { 4542 struct worker *rescuer = wq->rescuer; 4543 4544 /* this prevents new queueing */ 4545 raw_spin_lock_irq(&wq_mayday_lock); 4546 wq->rescuer = NULL; 4547 raw_spin_unlock_irq(&wq_mayday_lock); 4548 4549 /* rescuer will empty maydays list before exiting */ 4550 kthread_stop(rescuer->task); 4551 kfree(rescuer); 4552 } 4553 4554 /* 4555 * Sanity checks - grab all the locks so that we wait for all 4556 * in-flight operations which may do put_pwq(). 4557 */ 4558 mutex_lock(&wq_pool_mutex); 4559 mutex_lock(&wq->mutex); 4560 for_each_pwq(pwq, wq) { 4561 raw_spin_lock_irq(&pwq->pool->lock); 4562 if (WARN_ON(pwq_busy(pwq))) { 4563 pr_warn("%s: %s has the following busy pwq\n", 4564 __func__, wq->name); 4565 show_pwq(pwq); 4566 raw_spin_unlock_irq(&pwq->pool->lock); 4567 mutex_unlock(&wq->mutex); 4568 mutex_unlock(&wq_pool_mutex); 4569 show_one_workqueue(wq); 4570 return; 4571 } 4572 raw_spin_unlock_irq(&pwq->pool->lock); 4573 } 4574 mutex_unlock(&wq->mutex); 4575 4576 /* 4577 * wq list is used to freeze wq, remove from list after 4578 * flushing is complete in case freeze races us. 4579 */ 4580 list_del_rcu(&wq->list); 4581 mutex_unlock(&wq_pool_mutex); 4582 4583 if (!(wq->flags & WQ_UNBOUND)) { 4584 wq_unregister_lockdep(wq); 4585 /* 4586 * The base ref is never dropped on per-cpu pwqs. Directly 4587 * schedule RCU free. 4588 */ 4589 call_rcu(&wq->rcu, rcu_free_wq); 4590 } else { 4591 /* 4592 * We're the sole accessor of @wq at this point. Directly 4593 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4594 * @wq will be freed when the last pwq is released. 4595 */ 4596 for_each_node(node) { 4597 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4598 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4599 put_pwq_unlocked(pwq); 4600 } 4601 4602 /* 4603 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4604 * put. Don't access it afterwards. 4605 */ 4606 pwq = wq->dfl_pwq; 4607 wq->dfl_pwq = NULL; 4608 put_pwq_unlocked(pwq); 4609 } 4610 } 4611 EXPORT_SYMBOL_GPL(destroy_workqueue); 4612 4613 /** 4614 * workqueue_set_max_active - adjust max_active of a workqueue 4615 * @wq: target workqueue 4616 * @max_active: new max_active value. 4617 * 4618 * Set max_active of @wq to @max_active. 4619 * 4620 * CONTEXT: 4621 * Don't call from IRQ context. 4622 */ 4623 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4624 { 4625 struct pool_workqueue *pwq; 4626 4627 /* disallow meddling with max_active for ordered workqueues */ 4628 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4629 return; 4630 4631 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4632 4633 mutex_lock(&wq->mutex); 4634 4635 wq->flags &= ~__WQ_ORDERED; 4636 wq->saved_max_active = max_active; 4637 4638 for_each_pwq(pwq, wq) 4639 pwq_adjust_max_active(pwq); 4640 4641 mutex_unlock(&wq->mutex); 4642 } 4643 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4644 4645 /** 4646 * current_work - retrieve %current task's work struct 4647 * 4648 * Determine if %current task is a workqueue worker and what it's working on. 4649 * Useful to find out the context that the %current task is running in. 4650 * 4651 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4652 */ 4653 struct work_struct *current_work(void) 4654 { 4655 struct worker *worker = current_wq_worker(); 4656 4657 return worker ? worker->current_work : NULL; 4658 } 4659 EXPORT_SYMBOL(current_work); 4660 4661 /** 4662 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4663 * 4664 * Determine whether %current is a workqueue rescuer. Can be used from 4665 * work functions to determine whether it's being run off the rescuer task. 4666 * 4667 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4668 */ 4669 bool current_is_workqueue_rescuer(void) 4670 { 4671 struct worker *worker = current_wq_worker(); 4672 4673 return worker && worker->rescue_wq; 4674 } 4675 4676 /** 4677 * workqueue_congested - test whether a workqueue is congested 4678 * @cpu: CPU in question 4679 * @wq: target workqueue 4680 * 4681 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4682 * no synchronization around this function and the test result is 4683 * unreliable and only useful as advisory hints or for debugging. 4684 * 4685 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4686 * Note that both per-cpu and unbound workqueues may be associated with 4687 * multiple pool_workqueues which have separate congested states. A 4688 * workqueue being congested on one CPU doesn't mean the workqueue is also 4689 * contested on other CPUs / NUMA nodes. 4690 * 4691 * Return: 4692 * %true if congested, %false otherwise. 4693 */ 4694 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4695 { 4696 struct pool_workqueue *pwq; 4697 bool ret; 4698 4699 rcu_read_lock(); 4700 preempt_disable(); 4701 4702 if (cpu == WORK_CPU_UNBOUND) 4703 cpu = smp_processor_id(); 4704 4705 if (!(wq->flags & WQ_UNBOUND)) 4706 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4707 else 4708 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4709 4710 ret = !list_empty(&pwq->inactive_works); 4711 preempt_enable(); 4712 rcu_read_unlock(); 4713 4714 return ret; 4715 } 4716 EXPORT_SYMBOL_GPL(workqueue_congested); 4717 4718 /** 4719 * work_busy - test whether a work is currently pending or running 4720 * @work: the work to be tested 4721 * 4722 * Test whether @work is currently pending or running. There is no 4723 * synchronization around this function and the test result is 4724 * unreliable and only useful as advisory hints or for debugging. 4725 * 4726 * Return: 4727 * OR'd bitmask of WORK_BUSY_* bits. 4728 */ 4729 unsigned int work_busy(struct work_struct *work) 4730 { 4731 struct worker_pool *pool; 4732 unsigned long flags; 4733 unsigned int ret = 0; 4734 4735 if (work_pending(work)) 4736 ret |= WORK_BUSY_PENDING; 4737 4738 rcu_read_lock(); 4739 pool = get_work_pool(work); 4740 if (pool) { 4741 raw_spin_lock_irqsave(&pool->lock, flags); 4742 if (find_worker_executing_work(pool, work)) 4743 ret |= WORK_BUSY_RUNNING; 4744 raw_spin_unlock_irqrestore(&pool->lock, flags); 4745 } 4746 rcu_read_unlock(); 4747 4748 return ret; 4749 } 4750 EXPORT_SYMBOL_GPL(work_busy); 4751 4752 /** 4753 * set_worker_desc - set description for the current work item 4754 * @fmt: printf-style format string 4755 * @...: arguments for the format string 4756 * 4757 * This function can be called by a running work function to describe what 4758 * the work item is about. If the worker task gets dumped, this 4759 * information will be printed out together to help debugging. The 4760 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4761 */ 4762 void set_worker_desc(const char *fmt, ...) 4763 { 4764 struct worker *worker = current_wq_worker(); 4765 va_list args; 4766 4767 if (worker) { 4768 va_start(args, fmt); 4769 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4770 va_end(args); 4771 } 4772 } 4773 EXPORT_SYMBOL_GPL(set_worker_desc); 4774 4775 /** 4776 * print_worker_info - print out worker information and description 4777 * @log_lvl: the log level to use when printing 4778 * @task: target task 4779 * 4780 * If @task is a worker and currently executing a work item, print out the 4781 * name of the workqueue being serviced and worker description set with 4782 * set_worker_desc() by the currently executing work item. 4783 * 4784 * This function can be safely called on any task as long as the 4785 * task_struct itself is accessible. While safe, this function isn't 4786 * synchronized and may print out mixups or garbages of limited length. 4787 */ 4788 void print_worker_info(const char *log_lvl, struct task_struct *task) 4789 { 4790 work_func_t *fn = NULL; 4791 char name[WQ_NAME_LEN] = { }; 4792 char desc[WORKER_DESC_LEN] = { }; 4793 struct pool_workqueue *pwq = NULL; 4794 struct workqueue_struct *wq = NULL; 4795 struct worker *worker; 4796 4797 if (!(task->flags & PF_WQ_WORKER)) 4798 return; 4799 4800 /* 4801 * This function is called without any synchronization and @task 4802 * could be in any state. Be careful with dereferences. 4803 */ 4804 worker = kthread_probe_data(task); 4805 4806 /* 4807 * Carefully copy the associated workqueue's workfn, name and desc. 4808 * Keep the original last '\0' in case the original is garbage. 4809 */ 4810 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 4811 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 4812 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 4813 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 4814 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 4815 4816 if (fn || name[0] || desc[0]) { 4817 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 4818 if (strcmp(name, desc)) 4819 pr_cont(" (%s)", desc); 4820 pr_cont("\n"); 4821 } 4822 } 4823 4824 static void pr_cont_pool_info(struct worker_pool *pool) 4825 { 4826 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4827 if (pool->node != NUMA_NO_NODE) 4828 pr_cont(" node=%d", pool->node); 4829 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4830 } 4831 4832 struct pr_cont_work_struct { 4833 bool comma; 4834 work_func_t func; 4835 long ctr; 4836 }; 4837 4838 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 4839 { 4840 if (!pcwsp->ctr) 4841 goto out_record; 4842 if (func == pcwsp->func) { 4843 pcwsp->ctr++; 4844 return; 4845 } 4846 if (pcwsp->ctr == 1) 4847 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 4848 else 4849 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 4850 pcwsp->ctr = 0; 4851 out_record: 4852 if ((long)func == -1L) 4853 return; 4854 pcwsp->comma = comma; 4855 pcwsp->func = func; 4856 pcwsp->ctr = 1; 4857 } 4858 4859 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 4860 { 4861 if (work->func == wq_barrier_func) { 4862 struct wq_barrier *barr; 4863 4864 barr = container_of(work, struct wq_barrier, work); 4865 4866 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 4867 pr_cont("%s BAR(%d)", comma ? "," : "", 4868 task_pid_nr(barr->task)); 4869 } else { 4870 if (!comma) 4871 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 4872 pr_cont_work_flush(comma, work->func, pcwsp); 4873 } 4874 } 4875 4876 static void show_pwq(struct pool_workqueue *pwq) 4877 { 4878 struct pr_cont_work_struct pcws = { .ctr = 0, }; 4879 struct worker_pool *pool = pwq->pool; 4880 struct work_struct *work; 4881 struct worker *worker; 4882 bool has_in_flight = false, has_pending = false; 4883 int bkt; 4884 4885 pr_info(" pwq %d:", pool->id); 4886 pr_cont_pool_info(pool); 4887 4888 pr_cont(" active=%d/%d refcnt=%d%s\n", 4889 pwq->nr_active, pwq->max_active, pwq->refcnt, 4890 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4891 4892 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4893 if (worker->current_pwq == pwq) { 4894 has_in_flight = true; 4895 break; 4896 } 4897 } 4898 if (has_in_flight) { 4899 bool comma = false; 4900 4901 pr_info(" in-flight:"); 4902 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4903 if (worker->current_pwq != pwq) 4904 continue; 4905 4906 pr_cont("%s %d%s:%ps", comma ? "," : "", 4907 task_pid_nr(worker->task), 4908 worker->rescue_wq ? "(RESCUER)" : "", 4909 worker->current_func); 4910 list_for_each_entry(work, &worker->scheduled, entry) 4911 pr_cont_work(false, work, &pcws); 4912 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 4913 comma = true; 4914 } 4915 pr_cont("\n"); 4916 } 4917 4918 list_for_each_entry(work, &pool->worklist, entry) { 4919 if (get_work_pwq(work) == pwq) { 4920 has_pending = true; 4921 break; 4922 } 4923 } 4924 if (has_pending) { 4925 bool comma = false; 4926 4927 pr_info(" pending:"); 4928 list_for_each_entry(work, &pool->worklist, entry) { 4929 if (get_work_pwq(work) != pwq) 4930 continue; 4931 4932 pr_cont_work(comma, work, &pcws); 4933 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4934 } 4935 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 4936 pr_cont("\n"); 4937 } 4938 4939 if (!list_empty(&pwq->inactive_works)) { 4940 bool comma = false; 4941 4942 pr_info(" inactive:"); 4943 list_for_each_entry(work, &pwq->inactive_works, entry) { 4944 pr_cont_work(comma, work, &pcws); 4945 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4946 } 4947 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 4948 pr_cont("\n"); 4949 } 4950 } 4951 4952 /** 4953 * show_one_workqueue - dump state of specified workqueue 4954 * @wq: workqueue whose state will be printed 4955 */ 4956 void show_one_workqueue(struct workqueue_struct *wq) 4957 { 4958 struct pool_workqueue *pwq; 4959 bool idle = true; 4960 unsigned long flags; 4961 4962 for_each_pwq(pwq, wq) { 4963 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 4964 idle = false; 4965 break; 4966 } 4967 } 4968 if (idle) /* Nothing to print for idle workqueue */ 4969 return; 4970 4971 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4972 4973 for_each_pwq(pwq, wq) { 4974 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 4975 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 4976 /* 4977 * Defer printing to avoid deadlocks in console 4978 * drivers that queue work while holding locks 4979 * also taken in their write paths. 4980 */ 4981 printk_deferred_enter(); 4982 show_pwq(pwq); 4983 printk_deferred_exit(); 4984 } 4985 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 4986 /* 4987 * We could be printing a lot from atomic context, e.g. 4988 * sysrq-t -> show_all_workqueues(). Avoid triggering 4989 * hard lockup. 4990 */ 4991 touch_nmi_watchdog(); 4992 } 4993 4994 } 4995 4996 /** 4997 * show_one_worker_pool - dump state of specified worker pool 4998 * @pool: worker pool whose state will be printed 4999 */ 5000 static void show_one_worker_pool(struct worker_pool *pool) 5001 { 5002 struct worker *worker; 5003 bool first = true; 5004 unsigned long flags; 5005 5006 raw_spin_lock_irqsave(&pool->lock, flags); 5007 if (pool->nr_workers == pool->nr_idle) 5008 goto next_pool; 5009 /* 5010 * Defer printing to avoid deadlocks in console drivers that 5011 * queue work while holding locks also taken in their write 5012 * paths. 5013 */ 5014 printk_deferred_enter(); 5015 pr_info("pool %d:", pool->id); 5016 pr_cont_pool_info(pool); 5017 pr_cont(" hung=%us workers=%d", 5018 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 5019 pool->nr_workers); 5020 if (pool->manager) 5021 pr_cont(" manager: %d", 5022 task_pid_nr(pool->manager->task)); 5023 list_for_each_entry(worker, &pool->idle_list, entry) { 5024 pr_cont(" %s%d", first ? "idle: " : "", 5025 task_pid_nr(worker->task)); 5026 first = false; 5027 } 5028 pr_cont("\n"); 5029 printk_deferred_exit(); 5030 next_pool: 5031 raw_spin_unlock_irqrestore(&pool->lock, flags); 5032 /* 5033 * We could be printing a lot from atomic context, e.g. 5034 * sysrq-t -> show_all_workqueues(). Avoid triggering 5035 * hard lockup. 5036 */ 5037 touch_nmi_watchdog(); 5038 5039 } 5040 5041 /** 5042 * show_all_workqueues - dump workqueue state 5043 * 5044 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 5045 * all busy workqueues and pools. 5046 */ 5047 void show_all_workqueues(void) 5048 { 5049 struct workqueue_struct *wq; 5050 struct worker_pool *pool; 5051 int pi; 5052 5053 rcu_read_lock(); 5054 5055 pr_info("Showing busy workqueues and worker pools:\n"); 5056 5057 list_for_each_entry_rcu(wq, &workqueues, list) 5058 show_one_workqueue(wq); 5059 5060 for_each_pool(pool, pi) 5061 show_one_worker_pool(pool); 5062 5063 rcu_read_unlock(); 5064 } 5065 5066 /* used to show worker information through /proc/PID/{comm,stat,status} */ 5067 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 5068 { 5069 int off; 5070 5071 /* always show the actual comm */ 5072 off = strscpy(buf, task->comm, size); 5073 if (off < 0) 5074 return; 5075 5076 /* stabilize PF_WQ_WORKER and worker pool association */ 5077 mutex_lock(&wq_pool_attach_mutex); 5078 5079 if (task->flags & PF_WQ_WORKER) { 5080 struct worker *worker = kthread_data(task); 5081 struct worker_pool *pool = worker->pool; 5082 5083 if (pool) { 5084 raw_spin_lock_irq(&pool->lock); 5085 /* 5086 * ->desc tracks information (wq name or 5087 * set_worker_desc()) for the latest execution. If 5088 * current, prepend '+', otherwise '-'. 5089 */ 5090 if (worker->desc[0] != '\0') { 5091 if (worker->current_work) 5092 scnprintf(buf + off, size - off, "+%s", 5093 worker->desc); 5094 else 5095 scnprintf(buf + off, size - off, "-%s", 5096 worker->desc); 5097 } 5098 raw_spin_unlock_irq(&pool->lock); 5099 } 5100 } 5101 5102 mutex_unlock(&wq_pool_attach_mutex); 5103 } 5104 5105 #ifdef CONFIG_SMP 5106 5107 /* 5108 * CPU hotplug. 5109 * 5110 * There are two challenges in supporting CPU hotplug. Firstly, there 5111 * are a lot of assumptions on strong associations among work, pwq and 5112 * pool which make migrating pending and scheduled works very 5113 * difficult to implement without impacting hot paths. Secondly, 5114 * worker pools serve mix of short, long and very long running works making 5115 * blocked draining impractical. 5116 * 5117 * This is solved by allowing the pools to be disassociated from the CPU 5118 * running as an unbound one and allowing it to be reattached later if the 5119 * cpu comes back online. 5120 */ 5121 5122 static void unbind_workers(int cpu) 5123 { 5124 struct worker_pool *pool; 5125 struct worker *worker; 5126 5127 for_each_cpu_worker_pool(pool, cpu) { 5128 mutex_lock(&wq_pool_attach_mutex); 5129 raw_spin_lock_irq(&pool->lock); 5130 5131 /* 5132 * We've blocked all attach/detach operations. Make all workers 5133 * unbound and set DISASSOCIATED. Before this, all workers 5134 * must be on the cpu. After this, they may become diasporas. 5135 * And the preemption disabled section in their sched callbacks 5136 * are guaranteed to see WORKER_UNBOUND since the code here 5137 * is on the same cpu. 5138 */ 5139 for_each_pool_worker(worker, pool) 5140 worker->flags |= WORKER_UNBOUND; 5141 5142 pool->flags |= POOL_DISASSOCIATED; 5143 5144 /* 5145 * The handling of nr_running in sched callbacks are disabled 5146 * now. Zap nr_running. After this, nr_running stays zero and 5147 * need_more_worker() and keep_working() are always true as 5148 * long as the worklist is not empty. This pool now behaves as 5149 * an unbound (in terms of concurrency management) pool which 5150 * are served by workers tied to the pool. 5151 */ 5152 pool->nr_running = 0; 5153 5154 /* 5155 * With concurrency management just turned off, a busy 5156 * worker blocking could lead to lengthy stalls. Kick off 5157 * unbound chain execution of currently pending work items. 5158 */ 5159 wake_up_worker(pool); 5160 5161 raw_spin_unlock_irq(&pool->lock); 5162 5163 for_each_pool_worker(worker, pool) 5164 unbind_worker(worker); 5165 5166 mutex_unlock(&wq_pool_attach_mutex); 5167 } 5168 } 5169 5170 /** 5171 * rebind_workers - rebind all workers of a pool to the associated CPU 5172 * @pool: pool of interest 5173 * 5174 * @pool->cpu is coming online. Rebind all workers to the CPU. 5175 */ 5176 static void rebind_workers(struct worker_pool *pool) 5177 { 5178 struct worker *worker; 5179 5180 lockdep_assert_held(&wq_pool_attach_mutex); 5181 5182 /* 5183 * Restore CPU affinity of all workers. As all idle workers should 5184 * be on the run-queue of the associated CPU before any local 5185 * wake-ups for concurrency management happen, restore CPU affinity 5186 * of all workers first and then clear UNBOUND. As we're called 5187 * from CPU_ONLINE, the following shouldn't fail. 5188 */ 5189 for_each_pool_worker(worker, pool) { 5190 kthread_set_per_cpu(worker->task, pool->cpu); 5191 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 5192 pool->attrs->cpumask) < 0); 5193 } 5194 5195 raw_spin_lock_irq(&pool->lock); 5196 5197 pool->flags &= ~POOL_DISASSOCIATED; 5198 5199 for_each_pool_worker(worker, pool) { 5200 unsigned int worker_flags = worker->flags; 5201 5202 /* 5203 * We want to clear UNBOUND but can't directly call 5204 * worker_clr_flags() or adjust nr_running. Atomically 5205 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 5206 * @worker will clear REBOUND using worker_clr_flags() when 5207 * it initiates the next execution cycle thus restoring 5208 * concurrency management. Note that when or whether 5209 * @worker clears REBOUND doesn't affect correctness. 5210 * 5211 * WRITE_ONCE() is necessary because @worker->flags may be 5212 * tested without holding any lock in 5213 * wq_worker_running(). Without it, NOT_RUNNING test may 5214 * fail incorrectly leading to premature concurrency 5215 * management operations. 5216 */ 5217 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 5218 worker_flags |= WORKER_REBOUND; 5219 worker_flags &= ~WORKER_UNBOUND; 5220 WRITE_ONCE(worker->flags, worker_flags); 5221 } 5222 5223 raw_spin_unlock_irq(&pool->lock); 5224 } 5225 5226 /** 5227 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 5228 * @pool: unbound pool of interest 5229 * @cpu: the CPU which is coming up 5230 * 5231 * An unbound pool may end up with a cpumask which doesn't have any online 5232 * CPUs. When a worker of such pool get scheduled, the scheduler resets 5233 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 5234 * online CPU before, cpus_allowed of all its workers should be restored. 5235 */ 5236 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 5237 { 5238 static cpumask_t cpumask; 5239 struct worker *worker; 5240 5241 lockdep_assert_held(&wq_pool_attach_mutex); 5242 5243 /* is @cpu allowed for @pool? */ 5244 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 5245 return; 5246 5247 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 5248 5249 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 5250 for_each_pool_worker(worker, pool) 5251 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 5252 } 5253 5254 int workqueue_prepare_cpu(unsigned int cpu) 5255 { 5256 struct worker_pool *pool; 5257 5258 for_each_cpu_worker_pool(pool, cpu) { 5259 if (pool->nr_workers) 5260 continue; 5261 if (!create_worker(pool)) 5262 return -ENOMEM; 5263 } 5264 return 0; 5265 } 5266 5267 int workqueue_online_cpu(unsigned int cpu) 5268 { 5269 struct worker_pool *pool; 5270 struct workqueue_struct *wq; 5271 int pi; 5272 5273 mutex_lock(&wq_pool_mutex); 5274 5275 for_each_pool(pool, pi) { 5276 mutex_lock(&wq_pool_attach_mutex); 5277 5278 if (pool->cpu == cpu) 5279 rebind_workers(pool); 5280 else if (pool->cpu < 0) 5281 restore_unbound_workers_cpumask(pool, cpu); 5282 5283 mutex_unlock(&wq_pool_attach_mutex); 5284 } 5285 5286 /* update NUMA affinity of unbound workqueues */ 5287 list_for_each_entry(wq, &workqueues, list) 5288 wq_update_unbound_numa(wq, cpu, true); 5289 5290 mutex_unlock(&wq_pool_mutex); 5291 return 0; 5292 } 5293 5294 int workqueue_offline_cpu(unsigned int cpu) 5295 { 5296 struct workqueue_struct *wq; 5297 5298 /* unbinding per-cpu workers should happen on the local CPU */ 5299 if (WARN_ON(cpu != smp_processor_id())) 5300 return -1; 5301 5302 unbind_workers(cpu); 5303 5304 /* update NUMA affinity of unbound workqueues */ 5305 mutex_lock(&wq_pool_mutex); 5306 list_for_each_entry(wq, &workqueues, list) 5307 wq_update_unbound_numa(wq, cpu, false); 5308 mutex_unlock(&wq_pool_mutex); 5309 5310 return 0; 5311 } 5312 5313 struct work_for_cpu { 5314 struct work_struct work; 5315 long (*fn)(void *); 5316 void *arg; 5317 long ret; 5318 }; 5319 5320 static void work_for_cpu_fn(struct work_struct *work) 5321 { 5322 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5323 5324 wfc->ret = wfc->fn(wfc->arg); 5325 } 5326 5327 /** 5328 * work_on_cpu - run a function in thread context on a particular cpu 5329 * @cpu: the cpu to run on 5330 * @fn: the function to run 5331 * @arg: the function arg 5332 * 5333 * It is up to the caller to ensure that the cpu doesn't go offline. 5334 * The caller must not hold any locks which would prevent @fn from completing. 5335 * 5336 * Return: The value @fn returns. 5337 */ 5338 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 5339 { 5340 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5341 5342 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 5343 schedule_work_on(cpu, &wfc.work); 5344 flush_work(&wfc.work); 5345 destroy_work_on_stack(&wfc.work); 5346 return wfc.ret; 5347 } 5348 EXPORT_SYMBOL_GPL(work_on_cpu); 5349 5350 /** 5351 * work_on_cpu_safe - run a function in thread context on a particular cpu 5352 * @cpu: the cpu to run on 5353 * @fn: the function to run 5354 * @arg: the function argument 5355 * 5356 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5357 * any locks which would prevent @fn from completing. 5358 * 5359 * Return: The value @fn returns. 5360 */ 5361 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 5362 { 5363 long ret = -ENODEV; 5364 5365 cpus_read_lock(); 5366 if (cpu_online(cpu)) 5367 ret = work_on_cpu(cpu, fn, arg); 5368 cpus_read_unlock(); 5369 return ret; 5370 } 5371 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 5372 #endif /* CONFIG_SMP */ 5373 5374 #ifdef CONFIG_FREEZER 5375 5376 /** 5377 * freeze_workqueues_begin - begin freezing workqueues 5378 * 5379 * Start freezing workqueues. After this function returns, all freezable 5380 * workqueues will queue new works to their inactive_works list instead of 5381 * pool->worklist. 5382 * 5383 * CONTEXT: 5384 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5385 */ 5386 void freeze_workqueues_begin(void) 5387 { 5388 struct workqueue_struct *wq; 5389 struct pool_workqueue *pwq; 5390 5391 mutex_lock(&wq_pool_mutex); 5392 5393 WARN_ON_ONCE(workqueue_freezing); 5394 workqueue_freezing = true; 5395 5396 list_for_each_entry(wq, &workqueues, list) { 5397 mutex_lock(&wq->mutex); 5398 for_each_pwq(pwq, wq) 5399 pwq_adjust_max_active(pwq); 5400 mutex_unlock(&wq->mutex); 5401 } 5402 5403 mutex_unlock(&wq_pool_mutex); 5404 } 5405 5406 /** 5407 * freeze_workqueues_busy - are freezable workqueues still busy? 5408 * 5409 * Check whether freezing is complete. This function must be called 5410 * between freeze_workqueues_begin() and thaw_workqueues(). 5411 * 5412 * CONTEXT: 5413 * Grabs and releases wq_pool_mutex. 5414 * 5415 * Return: 5416 * %true if some freezable workqueues are still busy. %false if freezing 5417 * is complete. 5418 */ 5419 bool freeze_workqueues_busy(void) 5420 { 5421 bool busy = false; 5422 struct workqueue_struct *wq; 5423 struct pool_workqueue *pwq; 5424 5425 mutex_lock(&wq_pool_mutex); 5426 5427 WARN_ON_ONCE(!workqueue_freezing); 5428 5429 list_for_each_entry(wq, &workqueues, list) { 5430 if (!(wq->flags & WQ_FREEZABLE)) 5431 continue; 5432 /* 5433 * nr_active is monotonically decreasing. It's safe 5434 * to peek without lock. 5435 */ 5436 rcu_read_lock(); 5437 for_each_pwq(pwq, wq) { 5438 WARN_ON_ONCE(pwq->nr_active < 0); 5439 if (pwq->nr_active) { 5440 busy = true; 5441 rcu_read_unlock(); 5442 goto out_unlock; 5443 } 5444 } 5445 rcu_read_unlock(); 5446 } 5447 out_unlock: 5448 mutex_unlock(&wq_pool_mutex); 5449 return busy; 5450 } 5451 5452 /** 5453 * thaw_workqueues - thaw workqueues 5454 * 5455 * Thaw workqueues. Normal queueing is restored and all collected 5456 * frozen works are transferred to their respective pool worklists. 5457 * 5458 * CONTEXT: 5459 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5460 */ 5461 void thaw_workqueues(void) 5462 { 5463 struct workqueue_struct *wq; 5464 struct pool_workqueue *pwq; 5465 5466 mutex_lock(&wq_pool_mutex); 5467 5468 if (!workqueue_freezing) 5469 goto out_unlock; 5470 5471 workqueue_freezing = false; 5472 5473 /* restore max_active and repopulate worklist */ 5474 list_for_each_entry(wq, &workqueues, list) { 5475 mutex_lock(&wq->mutex); 5476 for_each_pwq(pwq, wq) 5477 pwq_adjust_max_active(pwq); 5478 mutex_unlock(&wq->mutex); 5479 } 5480 5481 out_unlock: 5482 mutex_unlock(&wq_pool_mutex); 5483 } 5484 #endif /* CONFIG_FREEZER */ 5485 5486 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 5487 { 5488 LIST_HEAD(ctxs); 5489 int ret = 0; 5490 struct workqueue_struct *wq; 5491 struct apply_wqattrs_ctx *ctx, *n; 5492 5493 lockdep_assert_held(&wq_pool_mutex); 5494 5495 list_for_each_entry(wq, &workqueues, list) { 5496 if (!(wq->flags & WQ_UNBOUND)) 5497 continue; 5498 /* creating multiple pwqs breaks ordering guarantee */ 5499 if (wq->flags & __WQ_ORDERED) 5500 continue; 5501 5502 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 5503 if (!ctx) { 5504 ret = -ENOMEM; 5505 break; 5506 } 5507 5508 list_add_tail(&ctx->list, &ctxs); 5509 } 5510 5511 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5512 if (!ret) 5513 apply_wqattrs_commit(ctx); 5514 apply_wqattrs_cleanup(ctx); 5515 } 5516 5517 if (!ret) { 5518 mutex_lock(&wq_pool_attach_mutex); 5519 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 5520 mutex_unlock(&wq_pool_attach_mutex); 5521 } 5522 return ret; 5523 } 5524 5525 /** 5526 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5527 * @cpumask: the cpumask to set 5528 * 5529 * The low-level workqueues cpumask is a global cpumask that limits 5530 * the affinity of all unbound workqueues. This function check the @cpumask 5531 * and apply it to all unbound workqueues and updates all pwqs of them. 5532 * 5533 * Return: 0 - Success 5534 * -EINVAL - Invalid @cpumask 5535 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5536 */ 5537 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5538 { 5539 int ret = -EINVAL; 5540 5541 /* 5542 * Not excluding isolated cpus on purpose. 5543 * If the user wishes to include them, we allow that. 5544 */ 5545 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5546 if (!cpumask_empty(cpumask)) { 5547 apply_wqattrs_lock(); 5548 if (cpumask_equal(cpumask, wq_unbound_cpumask)) { 5549 ret = 0; 5550 goto out_unlock; 5551 } 5552 5553 ret = workqueue_apply_unbound_cpumask(cpumask); 5554 5555 out_unlock: 5556 apply_wqattrs_unlock(); 5557 } 5558 5559 return ret; 5560 } 5561 5562 #ifdef CONFIG_SYSFS 5563 /* 5564 * Workqueues with WQ_SYSFS flag set is visible to userland via 5565 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5566 * following attributes. 5567 * 5568 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5569 * max_active RW int : maximum number of in-flight work items 5570 * 5571 * Unbound workqueues have the following extra attributes. 5572 * 5573 * pool_ids RO int : the associated pool IDs for each node 5574 * nice RW int : nice value of the workers 5575 * cpumask RW mask : bitmask of allowed CPUs for the workers 5576 * numa RW bool : whether enable NUMA affinity 5577 */ 5578 struct wq_device { 5579 struct workqueue_struct *wq; 5580 struct device dev; 5581 }; 5582 5583 static struct workqueue_struct *dev_to_wq(struct device *dev) 5584 { 5585 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5586 5587 return wq_dev->wq; 5588 } 5589 5590 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5591 char *buf) 5592 { 5593 struct workqueue_struct *wq = dev_to_wq(dev); 5594 5595 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5596 } 5597 static DEVICE_ATTR_RO(per_cpu); 5598 5599 static ssize_t max_active_show(struct device *dev, 5600 struct device_attribute *attr, char *buf) 5601 { 5602 struct workqueue_struct *wq = dev_to_wq(dev); 5603 5604 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5605 } 5606 5607 static ssize_t max_active_store(struct device *dev, 5608 struct device_attribute *attr, const char *buf, 5609 size_t count) 5610 { 5611 struct workqueue_struct *wq = dev_to_wq(dev); 5612 int val; 5613 5614 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5615 return -EINVAL; 5616 5617 workqueue_set_max_active(wq, val); 5618 return count; 5619 } 5620 static DEVICE_ATTR_RW(max_active); 5621 5622 static struct attribute *wq_sysfs_attrs[] = { 5623 &dev_attr_per_cpu.attr, 5624 &dev_attr_max_active.attr, 5625 NULL, 5626 }; 5627 ATTRIBUTE_GROUPS(wq_sysfs); 5628 5629 static ssize_t wq_pool_ids_show(struct device *dev, 5630 struct device_attribute *attr, char *buf) 5631 { 5632 struct workqueue_struct *wq = dev_to_wq(dev); 5633 const char *delim = ""; 5634 int node, written = 0; 5635 5636 cpus_read_lock(); 5637 rcu_read_lock(); 5638 for_each_node(node) { 5639 written += scnprintf(buf + written, PAGE_SIZE - written, 5640 "%s%d:%d", delim, node, 5641 unbound_pwq_by_node(wq, node)->pool->id); 5642 delim = " "; 5643 } 5644 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5645 rcu_read_unlock(); 5646 cpus_read_unlock(); 5647 5648 return written; 5649 } 5650 5651 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5652 char *buf) 5653 { 5654 struct workqueue_struct *wq = dev_to_wq(dev); 5655 int written; 5656 5657 mutex_lock(&wq->mutex); 5658 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5659 mutex_unlock(&wq->mutex); 5660 5661 return written; 5662 } 5663 5664 /* prepare workqueue_attrs for sysfs store operations */ 5665 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5666 { 5667 struct workqueue_attrs *attrs; 5668 5669 lockdep_assert_held(&wq_pool_mutex); 5670 5671 attrs = alloc_workqueue_attrs(); 5672 if (!attrs) 5673 return NULL; 5674 5675 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5676 return attrs; 5677 } 5678 5679 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5680 const char *buf, size_t count) 5681 { 5682 struct workqueue_struct *wq = dev_to_wq(dev); 5683 struct workqueue_attrs *attrs; 5684 int ret = -ENOMEM; 5685 5686 apply_wqattrs_lock(); 5687 5688 attrs = wq_sysfs_prep_attrs(wq); 5689 if (!attrs) 5690 goto out_unlock; 5691 5692 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5693 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5694 ret = apply_workqueue_attrs_locked(wq, attrs); 5695 else 5696 ret = -EINVAL; 5697 5698 out_unlock: 5699 apply_wqattrs_unlock(); 5700 free_workqueue_attrs(attrs); 5701 return ret ?: count; 5702 } 5703 5704 static ssize_t wq_cpumask_show(struct device *dev, 5705 struct device_attribute *attr, char *buf) 5706 { 5707 struct workqueue_struct *wq = dev_to_wq(dev); 5708 int written; 5709 5710 mutex_lock(&wq->mutex); 5711 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5712 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5713 mutex_unlock(&wq->mutex); 5714 return written; 5715 } 5716 5717 static ssize_t wq_cpumask_store(struct device *dev, 5718 struct device_attribute *attr, 5719 const char *buf, size_t count) 5720 { 5721 struct workqueue_struct *wq = dev_to_wq(dev); 5722 struct workqueue_attrs *attrs; 5723 int ret = -ENOMEM; 5724 5725 apply_wqattrs_lock(); 5726 5727 attrs = wq_sysfs_prep_attrs(wq); 5728 if (!attrs) 5729 goto out_unlock; 5730 5731 ret = cpumask_parse(buf, attrs->cpumask); 5732 if (!ret) 5733 ret = apply_workqueue_attrs_locked(wq, attrs); 5734 5735 out_unlock: 5736 apply_wqattrs_unlock(); 5737 free_workqueue_attrs(attrs); 5738 return ret ?: count; 5739 } 5740 5741 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5742 char *buf) 5743 { 5744 struct workqueue_struct *wq = dev_to_wq(dev); 5745 int written; 5746 5747 mutex_lock(&wq->mutex); 5748 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5749 !wq->unbound_attrs->no_numa); 5750 mutex_unlock(&wq->mutex); 5751 5752 return written; 5753 } 5754 5755 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5756 const char *buf, size_t count) 5757 { 5758 struct workqueue_struct *wq = dev_to_wq(dev); 5759 struct workqueue_attrs *attrs; 5760 int v, ret = -ENOMEM; 5761 5762 apply_wqattrs_lock(); 5763 5764 attrs = wq_sysfs_prep_attrs(wq); 5765 if (!attrs) 5766 goto out_unlock; 5767 5768 ret = -EINVAL; 5769 if (sscanf(buf, "%d", &v) == 1) { 5770 attrs->no_numa = !v; 5771 ret = apply_workqueue_attrs_locked(wq, attrs); 5772 } 5773 5774 out_unlock: 5775 apply_wqattrs_unlock(); 5776 free_workqueue_attrs(attrs); 5777 return ret ?: count; 5778 } 5779 5780 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5781 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5782 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5783 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5784 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5785 __ATTR_NULL, 5786 }; 5787 5788 static struct bus_type wq_subsys = { 5789 .name = "workqueue", 5790 .dev_groups = wq_sysfs_groups, 5791 }; 5792 5793 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5794 struct device_attribute *attr, char *buf) 5795 { 5796 int written; 5797 5798 mutex_lock(&wq_pool_mutex); 5799 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5800 cpumask_pr_args(wq_unbound_cpumask)); 5801 mutex_unlock(&wq_pool_mutex); 5802 5803 return written; 5804 } 5805 5806 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5807 struct device_attribute *attr, const char *buf, size_t count) 5808 { 5809 cpumask_var_t cpumask; 5810 int ret; 5811 5812 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5813 return -ENOMEM; 5814 5815 ret = cpumask_parse(buf, cpumask); 5816 if (!ret) 5817 ret = workqueue_set_unbound_cpumask(cpumask); 5818 5819 free_cpumask_var(cpumask); 5820 return ret ? ret : count; 5821 } 5822 5823 static struct device_attribute wq_sysfs_cpumask_attr = 5824 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5825 wq_unbound_cpumask_store); 5826 5827 static int __init wq_sysfs_init(void) 5828 { 5829 struct device *dev_root; 5830 int err; 5831 5832 err = subsys_virtual_register(&wq_subsys, NULL); 5833 if (err) 5834 return err; 5835 5836 dev_root = bus_get_dev_root(&wq_subsys); 5837 if (dev_root) { 5838 err = device_create_file(dev_root, &wq_sysfs_cpumask_attr); 5839 put_device(dev_root); 5840 } 5841 return err; 5842 } 5843 core_initcall(wq_sysfs_init); 5844 5845 static void wq_device_release(struct device *dev) 5846 { 5847 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5848 5849 kfree(wq_dev); 5850 } 5851 5852 /** 5853 * workqueue_sysfs_register - make a workqueue visible in sysfs 5854 * @wq: the workqueue to register 5855 * 5856 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5857 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5858 * which is the preferred method. 5859 * 5860 * Workqueue user should use this function directly iff it wants to apply 5861 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5862 * apply_workqueue_attrs() may race against userland updating the 5863 * attributes. 5864 * 5865 * Return: 0 on success, -errno on failure. 5866 */ 5867 int workqueue_sysfs_register(struct workqueue_struct *wq) 5868 { 5869 struct wq_device *wq_dev; 5870 int ret; 5871 5872 /* 5873 * Adjusting max_active or creating new pwqs by applying 5874 * attributes breaks ordering guarantee. Disallow exposing ordered 5875 * workqueues. 5876 */ 5877 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5878 return -EINVAL; 5879 5880 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5881 if (!wq_dev) 5882 return -ENOMEM; 5883 5884 wq_dev->wq = wq; 5885 wq_dev->dev.bus = &wq_subsys; 5886 wq_dev->dev.release = wq_device_release; 5887 dev_set_name(&wq_dev->dev, "%s", wq->name); 5888 5889 /* 5890 * unbound_attrs are created separately. Suppress uevent until 5891 * everything is ready. 5892 */ 5893 dev_set_uevent_suppress(&wq_dev->dev, true); 5894 5895 ret = device_register(&wq_dev->dev); 5896 if (ret) { 5897 put_device(&wq_dev->dev); 5898 wq->wq_dev = NULL; 5899 return ret; 5900 } 5901 5902 if (wq->flags & WQ_UNBOUND) { 5903 struct device_attribute *attr; 5904 5905 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5906 ret = device_create_file(&wq_dev->dev, attr); 5907 if (ret) { 5908 device_unregister(&wq_dev->dev); 5909 wq->wq_dev = NULL; 5910 return ret; 5911 } 5912 } 5913 } 5914 5915 dev_set_uevent_suppress(&wq_dev->dev, false); 5916 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5917 return 0; 5918 } 5919 5920 /** 5921 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5922 * @wq: the workqueue to unregister 5923 * 5924 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5925 */ 5926 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5927 { 5928 struct wq_device *wq_dev = wq->wq_dev; 5929 5930 if (!wq->wq_dev) 5931 return; 5932 5933 wq->wq_dev = NULL; 5934 device_unregister(&wq_dev->dev); 5935 } 5936 #else /* CONFIG_SYSFS */ 5937 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5938 #endif /* CONFIG_SYSFS */ 5939 5940 /* 5941 * Workqueue watchdog. 5942 * 5943 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5944 * flush dependency, a concurrency managed work item which stays RUNNING 5945 * indefinitely. Workqueue stalls can be very difficult to debug as the 5946 * usual warning mechanisms don't trigger and internal workqueue state is 5947 * largely opaque. 5948 * 5949 * Workqueue watchdog monitors all worker pools periodically and dumps 5950 * state if some pools failed to make forward progress for a while where 5951 * forward progress is defined as the first item on ->worklist changing. 5952 * 5953 * This mechanism is controlled through the kernel parameter 5954 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5955 * corresponding sysfs parameter file. 5956 */ 5957 #ifdef CONFIG_WQ_WATCHDOG 5958 5959 static unsigned long wq_watchdog_thresh = 30; 5960 static struct timer_list wq_watchdog_timer; 5961 5962 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5963 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5964 5965 static void wq_watchdog_reset_touched(void) 5966 { 5967 int cpu; 5968 5969 wq_watchdog_touched = jiffies; 5970 for_each_possible_cpu(cpu) 5971 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5972 } 5973 5974 static void wq_watchdog_timer_fn(struct timer_list *unused) 5975 { 5976 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5977 bool lockup_detected = false; 5978 unsigned long now = jiffies; 5979 struct worker_pool *pool; 5980 int pi; 5981 5982 if (!thresh) 5983 return; 5984 5985 rcu_read_lock(); 5986 5987 for_each_pool(pool, pi) { 5988 unsigned long pool_ts, touched, ts; 5989 5990 if (list_empty(&pool->worklist)) 5991 continue; 5992 5993 /* 5994 * If a virtual machine is stopped by the host it can look to 5995 * the watchdog like a stall. 5996 */ 5997 kvm_check_and_clear_guest_paused(); 5998 5999 /* get the latest of pool and touched timestamps */ 6000 if (pool->cpu >= 0) 6001 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 6002 else 6003 touched = READ_ONCE(wq_watchdog_touched); 6004 pool_ts = READ_ONCE(pool->watchdog_ts); 6005 6006 if (time_after(pool_ts, touched)) 6007 ts = pool_ts; 6008 else 6009 ts = touched; 6010 6011 /* did we stall? */ 6012 if (time_after(now, ts + thresh)) { 6013 lockup_detected = true; 6014 pr_emerg("BUG: workqueue lockup - pool"); 6015 pr_cont_pool_info(pool); 6016 pr_cont(" stuck for %us!\n", 6017 jiffies_to_msecs(now - pool_ts) / 1000); 6018 } 6019 } 6020 6021 rcu_read_unlock(); 6022 6023 if (lockup_detected) 6024 show_all_workqueues(); 6025 6026 wq_watchdog_reset_touched(); 6027 mod_timer(&wq_watchdog_timer, jiffies + thresh); 6028 } 6029 6030 notrace void wq_watchdog_touch(int cpu) 6031 { 6032 if (cpu >= 0) 6033 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 6034 6035 wq_watchdog_touched = jiffies; 6036 } 6037 6038 static void wq_watchdog_set_thresh(unsigned long thresh) 6039 { 6040 wq_watchdog_thresh = 0; 6041 del_timer_sync(&wq_watchdog_timer); 6042 6043 if (thresh) { 6044 wq_watchdog_thresh = thresh; 6045 wq_watchdog_reset_touched(); 6046 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 6047 } 6048 } 6049 6050 static int wq_watchdog_param_set_thresh(const char *val, 6051 const struct kernel_param *kp) 6052 { 6053 unsigned long thresh; 6054 int ret; 6055 6056 ret = kstrtoul(val, 0, &thresh); 6057 if (ret) 6058 return ret; 6059 6060 if (system_wq) 6061 wq_watchdog_set_thresh(thresh); 6062 else 6063 wq_watchdog_thresh = thresh; 6064 6065 return 0; 6066 } 6067 6068 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 6069 .set = wq_watchdog_param_set_thresh, 6070 .get = param_get_ulong, 6071 }; 6072 6073 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 6074 0644); 6075 6076 static void wq_watchdog_init(void) 6077 { 6078 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 6079 wq_watchdog_set_thresh(wq_watchdog_thresh); 6080 } 6081 6082 #else /* CONFIG_WQ_WATCHDOG */ 6083 6084 static inline void wq_watchdog_init(void) { } 6085 6086 #endif /* CONFIG_WQ_WATCHDOG */ 6087 6088 static void __init wq_numa_init(void) 6089 { 6090 cpumask_var_t *tbl; 6091 int node, cpu; 6092 6093 if (num_possible_nodes() <= 1) 6094 return; 6095 6096 if (wq_disable_numa) { 6097 pr_info("workqueue: NUMA affinity support disabled\n"); 6098 return; 6099 } 6100 6101 for_each_possible_cpu(cpu) { 6102 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) { 6103 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 6104 return; 6105 } 6106 } 6107 6108 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(); 6109 BUG_ON(!wq_update_unbound_numa_attrs_buf); 6110 6111 /* 6112 * We want masks of possible CPUs of each node which isn't readily 6113 * available. Build one from cpu_to_node() which should have been 6114 * fully initialized by now. 6115 */ 6116 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 6117 BUG_ON(!tbl); 6118 6119 for_each_node(node) 6120 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 6121 node_online(node) ? node : NUMA_NO_NODE)); 6122 6123 for_each_possible_cpu(cpu) { 6124 node = cpu_to_node(cpu); 6125 cpumask_set_cpu(cpu, tbl[node]); 6126 } 6127 6128 wq_numa_possible_cpumask = tbl; 6129 wq_numa_enabled = true; 6130 } 6131 6132 /** 6133 * workqueue_init_early - early init for workqueue subsystem 6134 * 6135 * This is the first half of two-staged workqueue subsystem initialization 6136 * and invoked as soon as the bare basics - memory allocation, cpumasks and 6137 * idr are up. It sets up all the data structures and system workqueues 6138 * and allows early boot code to create workqueues and queue/cancel work 6139 * items. Actual work item execution starts only after kthreads can be 6140 * created and scheduled right before early initcalls. 6141 */ 6142 void __init workqueue_init_early(void) 6143 { 6144 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 6145 int i, cpu; 6146 6147 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 6148 6149 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 6150 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ)); 6151 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN)); 6152 6153 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 6154 6155 /* initialize CPU pools */ 6156 for_each_possible_cpu(cpu) { 6157 struct worker_pool *pool; 6158 6159 i = 0; 6160 for_each_cpu_worker_pool(pool, cpu) { 6161 BUG_ON(init_worker_pool(pool)); 6162 pool->cpu = cpu; 6163 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 6164 pool->attrs->nice = std_nice[i++]; 6165 pool->node = cpu_to_node(cpu); 6166 6167 /* alloc pool ID */ 6168 mutex_lock(&wq_pool_mutex); 6169 BUG_ON(worker_pool_assign_id(pool)); 6170 mutex_unlock(&wq_pool_mutex); 6171 } 6172 } 6173 6174 /* create default unbound and ordered wq attrs */ 6175 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 6176 struct workqueue_attrs *attrs; 6177 6178 BUG_ON(!(attrs = alloc_workqueue_attrs())); 6179 attrs->nice = std_nice[i]; 6180 unbound_std_wq_attrs[i] = attrs; 6181 6182 /* 6183 * An ordered wq should have only one pwq as ordering is 6184 * guaranteed by max_active which is enforced by pwqs. 6185 * Turn off NUMA so that dfl_pwq is used for all nodes. 6186 */ 6187 BUG_ON(!(attrs = alloc_workqueue_attrs())); 6188 attrs->nice = std_nice[i]; 6189 attrs->no_numa = true; 6190 ordered_wq_attrs[i] = attrs; 6191 } 6192 6193 system_wq = alloc_workqueue("events", 0, 0); 6194 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 6195 system_long_wq = alloc_workqueue("events_long", 0, 0); 6196 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 6197 WQ_UNBOUND_MAX_ACTIVE); 6198 system_freezable_wq = alloc_workqueue("events_freezable", 6199 WQ_FREEZABLE, 0); 6200 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 6201 WQ_POWER_EFFICIENT, 0); 6202 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 6203 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 6204 0); 6205 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 6206 !system_unbound_wq || !system_freezable_wq || 6207 !system_power_efficient_wq || 6208 !system_freezable_power_efficient_wq); 6209 } 6210 6211 /** 6212 * workqueue_init - bring workqueue subsystem fully online 6213 * 6214 * This is the latter half of two-staged workqueue subsystem initialization 6215 * and invoked as soon as kthreads can be created and scheduled. 6216 * Workqueues have been created and work items queued on them, but there 6217 * are no kworkers executing the work items yet. Populate the worker pools 6218 * with the initial workers and enable future kworker creations. 6219 */ 6220 void __init workqueue_init(void) 6221 { 6222 struct workqueue_struct *wq; 6223 struct worker_pool *pool; 6224 int cpu, bkt; 6225 6226 /* 6227 * It'd be simpler to initialize NUMA in workqueue_init_early() but 6228 * CPU to node mapping may not be available that early on some 6229 * archs such as power and arm64. As per-cpu pools created 6230 * previously could be missing node hint and unbound pools NUMA 6231 * affinity, fix them up. 6232 * 6233 * Also, while iterating workqueues, create rescuers if requested. 6234 */ 6235 wq_numa_init(); 6236 6237 mutex_lock(&wq_pool_mutex); 6238 6239 for_each_possible_cpu(cpu) { 6240 for_each_cpu_worker_pool(pool, cpu) { 6241 pool->node = cpu_to_node(cpu); 6242 } 6243 } 6244 6245 list_for_each_entry(wq, &workqueues, list) { 6246 wq_update_unbound_numa(wq, smp_processor_id(), true); 6247 WARN(init_rescuer(wq), 6248 "workqueue: failed to create early rescuer for %s", 6249 wq->name); 6250 } 6251 6252 mutex_unlock(&wq_pool_mutex); 6253 6254 /* create the initial workers */ 6255 for_each_online_cpu(cpu) { 6256 for_each_cpu_worker_pool(pool, cpu) { 6257 pool->flags &= ~POOL_DISASSOCIATED; 6258 BUG_ON(!create_worker(pool)); 6259 } 6260 } 6261 6262 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 6263 BUG_ON(!create_worker(pool)); 6264 6265 wq_online = true; 6266 wq_watchdog_init(); 6267 } 6268 6269 /* 6270 * Despite the naming, this is a no-op function which is here only for avoiding 6271 * link error. Since compile-time warning may fail to catch, we will need to 6272 * emit run-time warning from __flush_workqueue(). 6273 */ 6274 void __warn_flushing_systemwide_wq(void) { } 6275 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 6276