xref: /linux/kernel/workqueue.c (revision 8a922b7728a93d837954315c98b84f6b78de0c4f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54 
55 #include "workqueue_internal.h"
56 
57 enum {
58 	/*
59 	 * worker_pool flags
60 	 *
61 	 * A bound pool is either associated or disassociated with its CPU.
62 	 * While associated (!DISASSOCIATED), all workers are bound to the
63 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
64 	 * is in effect.
65 	 *
66 	 * While DISASSOCIATED, the cpu may be offline and all workers have
67 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
68 	 * be executing on any CPU.  The pool behaves as an unbound one.
69 	 *
70 	 * Note that DISASSOCIATED should be flipped only while holding
71 	 * wq_pool_attach_mutex to avoid changing binding state while
72 	 * worker_attach_to_pool() is in progress.
73 	 */
74 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
75 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
76 
77 	/* worker flags */
78 	WORKER_DIE		= 1 << 1,	/* die die die */
79 	WORKER_IDLE		= 1 << 2,	/* is idle */
80 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
81 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
82 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
83 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
84 
85 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
86 				  WORKER_UNBOUND | WORKER_REBOUND,
87 
88 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
89 
90 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
91 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
92 
93 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
94 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
95 
96 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
97 						/* call for help after 10ms
98 						   (min two ticks) */
99 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
100 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
101 
102 	/*
103 	 * Rescue workers are used only on emergencies and shared by
104 	 * all cpus.  Give MIN_NICE.
105 	 */
106 	RESCUER_NICE_LEVEL	= MIN_NICE,
107 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
108 
109 	WQ_NAME_LEN		= 24,
110 };
111 
112 /*
113  * Structure fields follow one of the following exclusion rules.
114  *
115  * I: Modifiable by initialization/destruction paths and read-only for
116  *    everyone else.
117  *
118  * P: Preemption protected.  Disabling preemption is enough and should
119  *    only be modified and accessed from the local cpu.
120  *
121  * L: pool->lock protected.  Access with pool->lock held.
122  *
123  * X: During normal operation, modification requires pool->lock and should
124  *    be done only from local cpu.  Either disabling preemption on local
125  *    cpu or grabbing pool->lock is enough for read access.  If
126  *    POOL_DISASSOCIATED is set, it's identical to L.
127  *
128  * A: wq_pool_attach_mutex protected.
129  *
130  * PL: wq_pool_mutex protected.
131  *
132  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
133  *
134  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
135  *
136  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
137  *      RCU for reads.
138  *
139  * WQ: wq->mutex protected.
140  *
141  * WR: wq->mutex protected for writes.  RCU protected for reads.
142  *
143  * MD: wq_mayday_lock protected.
144  */
145 
146 /* struct worker is defined in workqueue_internal.h */
147 
148 struct worker_pool {
149 	raw_spinlock_t		lock;		/* the pool lock */
150 	int			cpu;		/* I: the associated cpu */
151 	int			node;		/* I: the associated node ID */
152 	int			id;		/* I: pool ID */
153 	unsigned int		flags;		/* X: flags */
154 
155 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
156 
157 	/*
158 	 * The counter is incremented in a process context on the associated CPU
159 	 * w/ preemption disabled, and decremented or reset in the same context
160 	 * but w/ pool->lock held. The readers grab pool->lock and are
161 	 * guaranteed to see if the counter reached zero.
162 	 */
163 	int			nr_running;
164 
165 	struct list_head	worklist;	/* L: list of pending works */
166 
167 	int			nr_workers;	/* L: total number of workers */
168 	int			nr_idle;	/* L: currently idle workers */
169 
170 	struct list_head	idle_list;	/* L: list of idle workers */
171 	struct timer_list	idle_timer;	/* L: worker idle timeout */
172 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
173 
174 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
175 
176 	/* a workers is either on busy_hash or idle_list, or the manager */
177 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
178 						/* L: hash of busy workers */
179 
180 	struct worker		*manager;	/* L: purely informational */
181 	struct list_head	workers;	/* A: attached workers */
182 	struct list_head        dying_workers;  /* A: workers about to die */
183 	struct completion	*detach_completion; /* all workers detached */
184 
185 	struct ida		worker_ida;	/* worker IDs for task name */
186 
187 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
188 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
189 	int			refcnt;		/* PL: refcnt for unbound pools */
190 
191 	/*
192 	 * Destruction of pool is RCU protected to allow dereferences
193 	 * from get_work_pool().
194 	 */
195 	struct rcu_head		rcu;
196 };
197 
198 /*
199  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
200  * of work_struct->data are used for flags and the remaining high bits
201  * point to the pwq; thus, pwqs need to be aligned at two's power of the
202  * number of flag bits.
203  */
204 struct pool_workqueue {
205 	struct worker_pool	*pool;		/* I: the associated pool */
206 	struct workqueue_struct *wq;		/* I: the owning workqueue */
207 	int			work_color;	/* L: current color */
208 	int			flush_color;	/* L: flushing color */
209 	int			refcnt;		/* L: reference count */
210 	int			nr_in_flight[WORK_NR_COLORS];
211 						/* L: nr of in_flight works */
212 
213 	/*
214 	 * nr_active management and WORK_STRUCT_INACTIVE:
215 	 *
216 	 * When pwq->nr_active >= max_active, new work item is queued to
217 	 * pwq->inactive_works instead of pool->worklist and marked with
218 	 * WORK_STRUCT_INACTIVE.
219 	 *
220 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate
221 	 * in pwq->nr_active and all work items in pwq->inactive_works are
222 	 * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
223 	 * work items are in pwq->inactive_works.  Some of them are ready to
224 	 * run in pool->worklist or worker->scheduled.  Those work itmes are
225 	 * only struct wq_barrier which is used for flush_work() and should
226 	 * not participate in pwq->nr_active.  For non-barrier work item, it
227 	 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
228 	 */
229 	int			nr_active;	/* L: nr of active works */
230 	int			max_active;	/* L: max active works */
231 	struct list_head	inactive_works;	/* L: inactive works */
232 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
233 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
234 
235 	/*
236 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
237 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
238 	 * itself is also RCU protected so that the first pwq can be
239 	 * determined without grabbing wq->mutex.
240 	 */
241 	struct work_struct	unbound_release_work;
242 	struct rcu_head		rcu;
243 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
244 
245 /*
246  * Structure used to wait for workqueue flush.
247  */
248 struct wq_flusher {
249 	struct list_head	list;		/* WQ: list of flushers */
250 	int			flush_color;	/* WQ: flush color waiting for */
251 	struct completion	done;		/* flush completion */
252 };
253 
254 struct wq_device;
255 
256 /*
257  * The externally visible workqueue.  It relays the issued work items to
258  * the appropriate worker_pool through its pool_workqueues.
259  */
260 struct workqueue_struct {
261 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
262 	struct list_head	list;		/* PR: list of all workqueues */
263 
264 	struct mutex		mutex;		/* protects this wq */
265 	int			work_color;	/* WQ: current work color */
266 	int			flush_color;	/* WQ: current flush color */
267 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
268 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
269 	struct list_head	flusher_queue;	/* WQ: flush waiters */
270 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
271 
272 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
273 	struct worker		*rescuer;	/* MD: rescue worker */
274 
275 	int			nr_drainers;	/* WQ: drain in progress */
276 	int			saved_max_active; /* WQ: saved pwq max_active */
277 
278 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
279 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
280 
281 #ifdef CONFIG_SYSFS
282 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
283 #endif
284 #ifdef CONFIG_LOCKDEP
285 	char			*lock_name;
286 	struct lock_class_key	key;
287 	struct lockdep_map	lockdep_map;
288 #endif
289 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
290 
291 	/*
292 	 * Destruction of workqueue_struct is RCU protected to allow walking
293 	 * the workqueues list without grabbing wq_pool_mutex.
294 	 * This is used to dump all workqueues from sysrq.
295 	 */
296 	struct rcu_head		rcu;
297 
298 	/* hot fields used during command issue, aligned to cacheline */
299 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
300 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
301 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
302 };
303 
304 static struct kmem_cache *pwq_cache;
305 
306 static cpumask_var_t *wq_numa_possible_cpumask;
307 					/* possible CPUs of each node */
308 
309 static bool wq_disable_numa;
310 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
311 
312 /* see the comment above the definition of WQ_POWER_EFFICIENT */
313 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
314 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
315 
316 static bool wq_online;			/* can kworkers be created yet? */
317 
318 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
319 
320 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
321 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
322 
323 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
324 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
325 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
326 /* wait for manager to go away */
327 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
328 
329 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
330 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
331 
332 /* PL&A: allowable cpus for unbound wqs and work items */
333 static cpumask_var_t wq_unbound_cpumask;
334 
335 /* CPU where unbound work was last round robin scheduled from this CPU */
336 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
337 
338 /*
339  * Local execution of unbound work items is no longer guaranteed.  The
340  * following always forces round-robin CPU selection on unbound work items
341  * to uncover usages which depend on it.
342  */
343 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
344 static bool wq_debug_force_rr_cpu = true;
345 #else
346 static bool wq_debug_force_rr_cpu = false;
347 #endif
348 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
349 
350 /* the per-cpu worker pools */
351 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
352 
353 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
354 
355 /* PL: hash of all unbound pools keyed by pool->attrs */
356 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
357 
358 /* I: attributes used when instantiating standard unbound pools on demand */
359 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
360 
361 /* I: attributes used when instantiating ordered pools on demand */
362 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
363 
364 struct workqueue_struct *system_wq __read_mostly;
365 EXPORT_SYMBOL(system_wq);
366 struct workqueue_struct *system_highpri_wq __read_mostly;
367 EXPORT_SYMBOL_GPL(system_highpri_wq);
368 struct workqueue_struct *system_long_wq __read_mostly;
369 EXPORT_SYMBOL_GPL(system_long_wq);
370 struct workqueue_struct *system_unbound_wq __read_mostly;
371 EXPORT_SYMBOL_GPL(system_unbound_wq);
372 struct workqueue_struct *system_freezable_wq __read_mostly;
373 EXPORT_SYMBOL_GPL(system_freezable_wq);
374 struct workqueue_struct *system_power_efficient_wq __read_mostly;
375 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
376 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
377 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
378 
379 static int worker_thread(void *__worker);
380 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
381 static void show_pwq(struct pool_workqueue *pwq);
382 static void show_one_worker_pool(struct worker_pool *pool);
383 
384 #define CREATE_TRACE_POINTS
385 #include <trace/events/workqueue.h>
386 
387 #define assert_rcu_or_pool_mutex()					\
388 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
389 			 !lockdep_is_held(&wq_pool_mutex),		\
390 			 "RCU or wq_pool_mutex should be held")
391 
392 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
393 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
394 			 !lockdep_is_held(&wq->mutex) &&		\
395 			 !lockdep_is_held(&wq_pool_mutex),		\
396 			 "RCU, wq->mutex or wq_pool_mutex should be held")
397 
398 #define for_each_cpu_worker_pool(pool, cpu)				\
399 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
400 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
401 	     (pool)++)
402 
403 /**
404  * for_each_pool - iterate through all worker_pools in the system
405  * @pool: iteration cursor
406  * @pi: integer used for iteration
407  *
408  * This must be called either with wq_pool_mutex held or RCU read
409  * locked.  If the pool needs to be used beyond the locking in effect, the
410  * caller is responsible for guaranteeing that the pool stays online.
411  *
412  * The if/else clause exists only for the lockdep assertion and can be
413  * ignored.
414  */
415 #define for_each_pool(pool, pi)						\
416 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
417 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
418 		else
419 
420 /**
421  * for_each_pool_worker - iterate through all workers of a worker_pool
422  * @worker: iteration cursor
423  * @pool: worker_pool to iterate workers of
424  *
425  * This must be called with wq_pool_attach_mutex.
426  *
427  * The if/else clause exists only for the lockdep assertion and can be
428  * ignored.
429  */
430 #define for_each_pool_worker(worker, pool)				\
431 	list_for_each_entry((worker), &(pool)->workers, node)		\
432 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
433 		else
434 
435 /**
436  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
437  * @pwq: iteration cursor
438  * @wq: the target workqueue
439  *
440  * This must be called either with wq->mutex held or RCU read locked.
441  * If the pwq needs to be used beyond the locking in effect, the caller is
442  * responsible for guaranteeing that the pwq stays online.
443  *
444  * The if/else clause exists only for the lockdep assertion and can be
445  * ignored.
446  */
447 #define for_each_pwq(pwq, wq)						\
448 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
449 				 lockdep_is_held(&(wq->mutex)))
450 
451 #ifdef CONFIG_DEBUG_OBJECTS_WORK
452 
453 static const struct debug_obj_descr work_debug_descr;
454 
455 static void *work_debug_hint(void *addr)
456 {
457 	return ((struct work_struct *) addr)->func;
458 }
459 
460 static bool work_is_static_object(void *addr)
461 {
462 	struct work_struct *work = addr;
463 
464 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
465 }
466 
467 /*
468  * fixup_init is called when:
469  * - an active object is initialized
470  */
471 static bool work_fixup_init(void *addr, enum debug_obj_state state)
472 {
473 	struct work_struct *work = addr;
474 
475 	switch (state) {
476 	case ODEBUG_STATE_ACTIVE:
477 		cancel_work_sync(work);
478 		debug_object_init(work, &work_debug_descr);
479 		return true;
480 	default:
481 		return false;
482 	}
483 }
484 
485 /*
486  * fixup_free is called when:
487  * - an active object is freed
488  */
489 static bool work_fixup_free(void *addr, enum debug_obj_state state)
490 {
491 	struct work_struct *work = addr;
492 
493 	switch (state) {
494 	case ODEBUG_STATE_ACTIVE:
495 		cancel_work_sync(work);
496 		debug_object_free(work, &work_debug_descr);
497 		return true;
498 	default:
499 		return false;
500 	}
501 }
502 
503 static const struct debug_obj_descr work_debug_descr = {
504 	.name		= "work_struct",
505 	.debug_hint	= work_debug_hint,
506 	.is_static_object = work_is_static_object,
507 	.fixup_init	= work_fixup_init,
508 	.fixup_free	= work_fixup_free,
509 };
510 
511 static inline void debug_work_activate(struct work_struct *work)
512 {
513 	debug_object_activate(work, &work_debug_descr);
514 }
515 
516 static inline void debug_work_deactivate(struct work_struct *work)
517 {
518 	debug_object_deactivate(work, &work_debug_descr);
519 }
520 
521 void __init_work(struct work_struct *work, int onstack)
522 {
523 	if (onstack)
524 		debug_object_init_on_stack(work, &work_debug_descr);
525 	else
526 		debug_object_init(work, &work_debug_descr);
527 }
528 EXPORT_SYMBOL_GPL(__init_work);
529 
530 void destroy_work_on_stack(struct work_struct *work)
531 {
532 	debug_object_free(work, &work_debug_descr);
533 }
534 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
535 
536 void destroy_delayed_work_on_stack(struct delayed_work *work)
537 {
538 	destroy_timer_on_stack(&work->timer);
539 	debug_object_free(&work->work, &work_debug_descr);
540 }
541 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
542 
543 #else
544 static inline void debug_work_activate(struct work_struct *work) { }
545 static inline void debug_work_deactivate(struct work_struct *work) { }
546 #endif
547 
548 /**
549  * worker_pool_assign_id - allocate ID and assign it to @pool
550  * @pool: the pool pointer of interest
551  *
552  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
553  * successfully, -errno on failure.
554  */
555 static int worker_pool_assign_id(struct worker_pool *pool)
556 {
557 	int ret;
558 
559 	lockdep_assert_held(&wq_pool_mutex);
560 
561 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
562 			GFP_KERNEL);
563 	if (ret >= 0) {
564 		pool->id = ret;
565 		return 0;
566 	}
567 	return ret;
568 }
569 
570 /**
571  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
572  * @wq: the target workqueue
573  * @node: the node ID
574  *
575  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
576  * read locked.
577  * If the pwq needs to be used beyond the locking in effect, the caller is
578  * responsible for guaranteeing that the pwq stays online.
579  *
580  * Return: The unbound pool_workqueue for @node.
581  */
582 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
583 						  int node)
584 {
585 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
586 
587 	/*
588 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
589 	 * delayed item is pending.  The plan is to keep CPU -> NODE
590 	 * mapping valid and stable across CPU on/offlines.  Once that
591 	 * happens, this workaround can be removed.
592 	 */
593 	if (unlikely(node == NUMA_NO_NODE))
594 		return wq->dfl_pwq;
595 
596 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
597 }
598 
599 static unsigned int work_color_to_flags(int color)
600 {
601 	return color << WORK_STRUCT_COLOR_SHIFT;
602 }
603 
604 static int get_work_color(unsigned long work_data)
605 {
606 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
607 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
608 }
609 
610 static int work_next_color(int color)
611 {
612 	return (color + 1) % WORK_NR_COLORS;
613 }
614 
615 /*
616  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
617  * contain the pointer to the queued pwq.  Once execution starts, the flag
618  * is cleared and the high bits contain OFFQ flags and pool ID.
619  *
620  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
621  * and clear_work_data() can be used to set the pwq, pool or clear
622  * work->data.  These functions should only be called while the work is
623  * owned - ie. while the PENDING bit is set.
624  *
625  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
626  * corresponding to a work.  Pool is available once the work has been
627  * queued anywhere after initialization until it is sync canceled.  pwq is
628  * available only while the work item is queued.
629  *
630  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
631  * canceled.  While being canceled, a work item may have its PENDING set
632  * but stay off timer and worklist for arbitrarily long and nobody should
633  * try to steal the PENDING bit.
634  */
635 static inline void set_work_data(struct work_struct *work, unsigned long data,
636 				 unsigned long flags)
637 {
638 	WARN_ON_ONCE(!work_pending(work));
639 	atomic_long_set(&work->data, data | flags | work_static(work));
640 }
641 
642 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
643 			 unsigned long extra_flags)
644 {
645 	set_work_data(work, (unsigned long)pwq,
646 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
647 }
648 
649 static void set_work_pool_and_keep_pending(struct work_struct *work,
650 					   int pool_id)
651 {
652 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
653 		      WORK_STRUCT_PENDING);
654 }
655 
656 static void set_work_pool_and_clear_pending(struct work_struct *work,
657 					    int pool_id)
658 {
659 	/*
660 	 * The following wmb is paired with the implied mb in
661 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
662 	 * here are visible to and precede any updates by the next PENDING
663 	 * owner.
664 	 */
665 	smp_wmb();
666 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
667 	/*
668 	 * The following mb guarantees that previous clear of a PENDING bit
669 	 * will not be reordered with any speculative LOADS or STORES from
670 	 * work->current_func, which is executed afterwards.  This possible
671 	 * reordering can lead to a missed execution on attempt to queue
672 	 * the same @work.  E.g. consider this case:
673 	 *
674 	 *   CPU#0                         CPU#1
675 	 *   ----------------------------  --------------------------------
676 	 *
677 	 * 1  STORE event_indicated
678 	 * 2  queue_work_on() {
679 	 * 3    test_and_set_bit(PENDING)
680 	 * 4 }                             set_..._and_clear_pending() {
681 	 * 5                                 set_work_data() # clear bit
682 	 * 6                                 smp_mb()
683 	 * 7                               work->current_func() {
684 	 * 8				      LOAD event_indicated
685 	 *				   }
686 	 *
687 	 * Without an explicit full barrier speculative LOAD on line 8 can
688 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
689 	 * CPU#0 observes the PENDING bit is still set and new execution of
690 	 * a @work is not queued in a hope, that CPU#1 will eventually
691 	 * finish the queued @work.  Meanwhile CPU#1 does not see
692 	 * event_indicated is set, because speculative LOAD was executed
693 	 * before actual STORE.
694 	 */
695 	smp_mb();
696 }
697 
698 static void clear_work_data(struct work_struct *work)
699 {
700 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
701 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
702 }
703 
704 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
705 {
706 	unsigned long data = atomic_long_read(&work->data);
707 
708 	if (data & WORK_STRUCT_PWQ)
709 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
710 	else
711 		return NULL;
712 }
713 
714 /**
715  * get_work_pool - return the worker_pool a given work was associated with
716  * @work: the work item of interest
717  *
718  * Pools are created and destroyed under wq_pool_mutex, and allows read
719  * access under RCU read lock.  As such, this function should be
720  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
721  *
722  * All fields of the returned pool are accessible as long as the above
723  * mentioned locking is in effect.  If the returned pool needs to be used
724  * beyond the critical section, the caller is responsible for ensuring the
725  * returned pool is and stays online.
726  *
727  * Return: The worker_pool @work was last associated with.  %NULL if none.
728  */
729 static struct worker_pool *get_work_pool(struct work_struct *work)
730 {
731 	unsigned long data = atomic_long_read(&work->data);
732 	int pool_id;
733 
734 	assert_rcu_or_pool_mutex();
735 
736 	if (data & WORK_STRUCT_PWQ)
737 		return ((struct pool_workqueue *)
738 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
739 
740 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
741 	if (pool_id == WORK_OFFQ_POOL_NONE)
742 		return NULL;
743 
744 	return idr_find(&worker_pool_idr, pool_id);
745 }
746 
747 /**
748  * get_work_pool_id - return the worker pool ID a given work is associated with
749  * @work: the work item of interest
750  *
751  * Return: The worker_pool ID @work was last associated with.
752  * %WORK_OFFQ_POOL_NONE if none.
753  */
754 static int get_work_pool_id(struct work_struct *work)
755 {
756 	unsigned long data = atomic_long_read(&work->data);
757 
758 	if (data & WORK_STRUCT_PWQ)
759 		return ((struct pool_workqueue *)
760 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
761 
762 	return data >> WORK_OFFQ_POOL_SHIFT;
763 }
764 
765 static void mark_work_canceling(struct work_struct *work)
766 {
767 	unsigned long pool_id = get_work_pool_id(work);
768 
769 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
770 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
771 }
772 
773 static bool work_is_canceling(struct work_struct *work)
774 {
775 	unsigned long data = atomic_long_read(&work->data);
776 
777 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
778 }
779 
780 /*
781  * Policy functions.  These define the policies on how the global worker
782  * pools are managed.  Unless noted otherwise, these functions assume that
783  * they're being called with pool->lock held.
784  */
785 
786 static bool __need_more_worker(struct worker_pool *pool)
787 {
788 	return !pool->nr_running;
789 }
790 
791 /*
792  * Need to wake up a worker?  Called from anything but currently
793  * running workers.
794  *
795  * Note that, because unbound workers never contribute to nr_running, this
796  * function will always return %true for unbound pools as long as the
797  * worklist isn't empty.
798  */
799 static bool need_more_worker(struct worker_pool *pool)
800 {
801 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
802 }
803 
804 /* Can I start working?  Called from busy but !running workers. */
805 static bool may_start_working(struct worker_pool *pool)
806 {
807 	return pool->nr_idle;
808 }
809 
810 /* Do I need to keep working?  Called from currently running workers. */
811 static bool keep_working(struct worker_pool *pool)
812 {
813 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
814 }
815 
816 /* Do we need a new worker?  Called from manager. */
817 static bool need_to_create_worker(struct worker_pool *pool)
818 {
819 	return need_more_worker(pool) && !may_start_working(pool);
820 }
821 
822 /* Do we have too many workers and should some go away? */
823 static bool too_many_workers(struct worker_pool *pool)
824 {
825 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
826 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
827 	int nr_busy = pool->nr_workers - nr_idle;
828 
829 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
830 }
831 
832 /*
833  * Wake up functions.
834  */
835 
836 /* Return the first idle worker.  Called with pool->lock held. */
837 static struct worker *first_idle_worker(struct worker_pool *pool)
838 {
839 	if (unlikely(list_empty(&pool->idle_list)))
840 		return NULL;
841 
842 	return list_first_entry(&pool->idle_list, struct worker, entry);
843 }
844 
845 /**
846  * wake_up_worker - wake up an idle worker
847  * @pool: worker pool to wake worker from
848  *
849  * Wake up the first idle worker of @pool.
850  *
851  * CONTEXT:
852  * raw_spin_lock_irq(pool->lock).
853  */
854 static void wake_up_worker(struct worker_pool *pool)
855 {
856 	struct worker *worker = first_idle_worker(pool);
857 
858 	if (likely(worker))
859 		wake_up_process(worker->task);
860 }
861 
862 /**
863  * wq_worker_running - a worker is running again
864  * @task: task waking up
865  *
866  * This function is called when a worker returns from schedule()
867  */
868 void wq_worker_running(struct task_struct *task)
869 {
870 	struct worker *worker = kthread_data(task);
871 
872 	if (!worker->sleeping)
873 		return;
874 
875 	/*
876 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
877 	 * and the nr_running increment below, we may ruin the nr_running reset
878 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
879 	 * pool. Protect against such race.
880 	 */
881 	preempt_disable();
882 	if (!(worker->flags & WORKER_NOT_RUNNING))
883 		worker->pool->nr_running++;
884 	preempt_enable();
885 	worker->sleeping = 0;
886 }
887 
888 /**
889  * wq_worker_sleeping - a worker is going to sleep
890  * @task: task going to sleep
891  *
892  * This function is called from schedule() when a busy worker is
893  * going to sleep.
894  */
895 void wq_worker_sleeping(struct task_struct *task)
896 {
897 	struct worker *worker = kthread_data(task);
898 	struct worker_pool *pool;
899 
900 	/*
901 	 * Rescuers, which may not have all the fields set up like normal
902 	 * workers, also reach here, let's not access anything before
903 	 * checking NOT_RUNNING.
904 	 */
905 	if (worker->flags & WORKER_NOT_RUNNING)
906 		return;
907 
908 	pool = worker->pool;
909 
910 	/* Return if preempted before wq_worker_running() was reached */
911 	if (worker->sleeping)
912 		return;
913 
914 	worker->sleeping = 1;
915 	raw_spin_lock_irq(&pool->lock);
916 
917 	/*
918 	 * Recheck in case unbind_workers() preempted us. We don't
919 	 * want to decrement nr_running after the worker is unbound
920 	 * and nr_running has been reset.
921 	 */
922 	if (worker->flags & WORKER_NOT_RUNNING) {
923 		raw_spin_unlock_irq(&pool->lock);
924 		return;
925 	}
926 
927 	pool->nr_running--;
928 	if (need_more_worker(pool))
929 		wake_up_worker(pool);
930 	raw_spin_unlock_irq(&pool->lock);
931 }
932 
933 /**
934  * wq_worker_last_func - retrieve worker's last work function
935  * @task: Task to retrieve last work function of.
936  *
937  * Determine the last function a worker executed. This is called from
938  * the scheduler to get a worker's last known identity.
939  *
940  * CONTEXT:
941  * raw_spin_lock_irq(rq->lock)
942  *
943  * This function is called during schedule() when a kworker is going
944  * to sleep. It's used by psi to identify aggregation workers during
945  * dequeuing, to allow periodic aggregation to shut-off when that
946  * worker is the last task in the system or cgroup to go to sleep.
947  *
948  * As this function doesn't involve any workqueue-related locking, it
949  * only returns stable values when called from inside the scheduler's
950  * queuing and dequeuing paths, when @task, which must be a kworker,
951  * is guaranteed to not be processing any works.
952  *
953  * Return:
954  * The last work function %current executed as a worker, NULL if it
955  * hasn't executed any work yet.
956  */
957 work_func_t wq_worker_last_func(struct task_struct *task)
958 {
959 	struct worker *worker = kthread_data(task);
960 
961 	return worker->last_func;
962 }
963 
964 /**
965  * worker_set_flags - set worker flags and adjust nr_running accordingly
966  * @worker: self
967  * @flags: flags to set
968  *
969  * Set @flags in @worker->flags and adjust nr_running accordingly.
970  *
971  * CONTEXT:
972  * raw_spin_lock_irq(pool->lock)
973  */
974 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
975 {
976 	struct worker_pool *pool = worker->pool;
977 
978 	WARN_ON_ONCE(worker->task != current);
979 
980 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
981 	if ((flags & WORKER_NOT_RUNNING) &&
982 	    !(worker->flags & WORKER_NOT_RUNNING)) {
983 		pool->nr_running--;
984 	}
985 
986 	worker->flags |= flags;
987 }
988 
989 /**
990  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
991  * @worker: self
992  * @flags: flags to clear
993  *
994  * Clear @flags in @worker->flags and adjust nr_running accordingly.
995  *
996  * CONTEXT:
997  * raw_spin_lock_irq(pool->lock)
998  */
999 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1000 {
1001 	struct worker_pool *pool = worker->pool;
1002 	unsigned int oflags = worker->flags;
1003 
1004 	WARN_ON_ONCE(worker->task != current);
1005 
1006 	worker->flags &= ~flags;
1007 
1008 	/*
1009 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1010 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1011 	 * of multiple flags, not a single flag.
1012 	 */
1013 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1014 		if (!(worker->flags & WORKER_NOT_RUNNING))
1015 			pool->nr_running++;
1016 }
1017 
1018 /**
1019  * find_worker_executing_work - find worker which is executing a work
1020  * @pool: pool of interest
1021  * @work: work to find worker for
1022  *
1023  * Find a worker which is executing @work on @pool by searching
1024  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1025  * to match, its current execution should match the address of @work and
1026  * its work function.  This is to avoid unwanted dependency between
1027  * unrelated work executions through a work item being recycled while still
1028  * being executed.
1029  *
1030  * This is a bit tricky.  A work item may be freed once its execution
1031  * starts and nothing prevents the freed area from being recycled for
1032  * another work item.  If the same work item address ends up being reused
1033  * before the original execution finishes, workqueue will identify the
1034  * recycled work item as currently executing and make it wait until the
1035  * current execution finishes, introducing an unwanted dependency.
1036  *
1037  * This function checks the work item address and work function to avoid
1038  * false positives.  Note that this isn't complete as one may construct a
1039  * work function which can introduce dependency onto itself through a
1040  * recycled work item.  Well, if somebody wants to shoot oneself in the
1041  * foot that badly, there's only so much we can do, and if such deadlock
1042  * actually occurs, it should be easy to locate the culprit work function.
1043  *
1044  * CONTEXT:
1045  * raw_spin_lock_irq(pool->lock).
1046  *
1047  * Return:
1048  * Pointer to worker which is executing @work if found, %NULL
1049  * otherwise.
1050  */
1051 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1052 						 struct work_struct *work)
1053 {
1054 	struct worker *worker;
1055 
1056 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1057 			       (unsigned long)work)
1058 		if (worker->current_work == work &&
1059 		    worker->current_func == work->func)
1060 			return worker;
1061 
1062 	return NULL;
1063 }
1064 
1065 /**
1066  * move_linked_works - move linked works to a list
1067  * @work: start of series of works to be scheduled
1068  * @head: target list to append @work to
1069  * @nextp: out parameter for nested worklist walking
1070  *
1071  * Schedule linked works starting from @work to @head.  Work series to
1072  * be scheduled starts at @work and includes any consecutive work with
1073  * WORK_STRUCT_LINKED set in its predecessor.
1074  *
1075  * If @nextp is not NULL, it's updated to point to the next work of
1076  * the last scheduled work.  This allows move_linked_works() to be
1077  * nested inside outer list_for_each_entry_safe().
1078  *
1079  * CONTEXT:
1080  * raw_spin_lock_irq(pool->lock).
1081  */
1082 static void move_linked_works(struct work_struct *work, struct list_head *head,
1083 			      struct work_struct **nextp)
1084 {
1085 	struct work_struct *n;
1086 
1087 	/*
1088 	 * Linked worklist will always end before the end of the list,
1089 	 * use NULL for list head.
1090 	 */
1091 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1092 		list_move_tail(&work->entry, head);
1093 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1094 			break;
1095 	}
1096 
1097 	/*
1098 	 * If we're already inside safe list traversal and have moved
1099 	 * multiple works to the scheduled queue, the next position
1100 	 * needs to be updated.
1101 	 */
1102 	if (nextp)
1103 		*nextp = n;
1104 }
1105 
1106 /**
1107  * get_pwq - get an extra reference on the specified pool_workqueue
1108  * @pwq: pool_workqueue to get
1109  *
1110  * Obtain an extra reference on @pwq.  The caller should guarantee that
1111  * @pwq has positive refcnt and be holding the matching pool->lock.
1112  */
1113 static void get_pwq(struct pool_workqueue *pwq)
1114 {
1115 	lockdep_assert_held(&pwq->pool->lock);
1116 	WARN_ON_ONCE(pwq->refcnt <= 0);
1117 	pwq->refcnt++;
1118 }
1119 
1120 /**
1121  * put_pwq - put a pool_workqueue reference
1122  * @pwq: pool_workqueue to put
1123  *
1124  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1125  * destruction.  The caller should be holding the matching pool->lock.
1126  */
1127 static void put_pwq(struct pool_workqueue *pwq)
1128 {
1129 	lockdep_assert_held(&pwq->pool->lock);
1130 	if (likely(--pwq->refcnt))
1131 		return;
1132 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1133 		return;
1134 	/*
1135 	 * @pwq can't be released under pool->lock, bounce to
1136 	 * pwq_unbound_release_workfn().  This never recurses on the same
1137 	 * pool->lock as this path is taken only for unbound workqueues and
1138 	 * the release work item is scheduled on a per-cpu workqueue.  To
1139 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1140 	 * subclass of 1 in get_unbound_pool().
1141 	 */
1142 	schedule_work(&pwq->unbound_release_work);
1143 }
1144 
1145 /**
1146  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1147  * @pwq: pool_workqueue to put (can be %NULL)
1148  *
1149  * put_pwq() with locking.  This function also allows %NULL @pwq.
1150  */
1151 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1152 {
1153 	if (pwq) {
1154 		/*
1155 		 * As both pwqs and pools are RCU protected, the
1156 		 * following lock operations are safe.
1157 		 */
1158 		raw_spin_lock_irq(&pwq->pool->lock);
1159 		put_pwq(pwq);
1160 		raw_spin_unlock_irq(&pwq->pool->lock);
1161 	}
1162 }
1163 
1164 static void pwq_activate_inactive_work(struct work_struct *work)
1165 {
1166 	struct pool_workqueue *pwq = get_work_pwq(work);
1167 
1168 	trace_workqueue_activate_work(work);
1169 	if (list_empty(&pwq->pool->worklist))
1170 		pwq->pool->watchdog_ts = jiffies;
1171 	move_linked_works(work, &pwq->pool->worklist, NULL);
1172 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1173 	pwq->nr_active++;
1174 }
1175 
1176 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1177 {
1178 	struct work_struct *work = list_first_entry(&pwq->inactive_works,
1179 						    struct work_struct, entry);
1180 
1181 	pwq_activate_inactive_work(work);
1182 }
1183 
1184 /**
1185  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1186  * @pwq: pwq of interest
1187  * @work_data: work_data of work which left the queue
1188  *
1189  * A work either has completed or is removed from pending queue,
1190  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1191  *
1192  * CONTEXT:
1193  * raw_spin_lock_irq(pool->lock).
1194  */
1195 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1196 {
1197 	int color = get_work_color(work_data);
1198 
1199 	if (!(work_data & WORK_STRUCT_INACTIVE)) {
1200 		pwq->nr_active--;
1201 		if (!list_empty(&pwq->inactive_works)) {
1202 			/* one down, submit an inactive one */
1203 			if (pwq->nr_active < pwq->max_active)
1204 				pwq_activate_first_inactive(pwq);
1205 		}
1206 	}
1207 
1208 	pwq->nr_in_flight[color]--;
1209 
1210 	/* is flush in progress and are we at the flushing tip? */
1211 	if (likely(pwq->flush_color != color))
1212 		goto out_put;
1213 
1214 	/* are there still in-flight works? */
1215 	if (pwq->nr_in_flight[color])
1216 		goto out_put;
1217 
1218 	/* this pwq is done, clear flush_color */
1219 	pwq->flush_color = -1;
1220 
1221 	/*
1222 	 * If this was the last pwq, wake up the first flusher.  It
1223 	 * will handle the rest.
1224 	 */
1225 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1226 		complete(&pwq->wq->first_flusher->done);
1227 out_put:
1228 	put_pwq(pwq);
1229 }
1230 
1231 /**
1232  * try_to_grab_pending - steal work item from worklist and disable irq
1233  * @work: work item to steal
1234  * @is_dwork: @work is a delayed_work
1235  * @flags: place to store irq state
1236  *
1237  * Try to grab PENDING bit of @work.  This function can handle @work in any
1238  * stable state - idle, on timer or on worklist.
1239  *
1240  * Return:
1241  *
1242  *  ========	================================================================
1243  *  1		if @work was pending and we successfully stole PENDING
1244  *  0		if @work was idle and we claimed PENDING
1245  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1246  *  -ENOENT	if someone else is canceling @work, this state may persist
1247  *		for arbitrarily long
1248  *  ========	================================================================
1249  *
1250  * Note:
1251  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1252  * interrupted while holding PENDING and @work off queue, irq must be
1253  * disabled on entry.  This, combined with delayed_work->timer being
1254  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1255  *
1256  * On successful return, >= 0, irq is disabled and the caller is
1257  * responsible for releasing it using local_irq_restore(*@flags).
1258  *
1259  * This function is safe to call from any context including IRQ handler.
1260  */
1261 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1262 			       unsigned long *flags)
1263 {
1264 	struct worker_pool *pool;
1265 	struct pool_workqueue *pwq;
1266 
1267 	local_irq_save(*flags);
1268 
1269 	/* try to steal the timer if it exists */
1270 	if (is_dwork) {
1271 		struct delayed_work *dwork = to_delayed_work(work);
1272 
1273 		/*
1274 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1275 		 * guaranteed that the timer is not queued anywhere and not
1276 		 * running on the local CPU.
1277 		 */
1278 		if (likely(del_timer(&dwork->timer)))
1279 			return 1;
1280 	}
1281 
1282 	/* try to claim PENDING the normal way */
1283 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1284 		return 0;
1285 
1286 	rcu_read_lock();
1287 	/*
1288 	 * The queueing is in progress, or it is already queued. Try to
1289 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1290 	 */
1291 	pool = get_work_pool(work);
1292 	if (!pool)
1293 		goto fail;
1294 
1295 	raw_spin_lock(&pool->lock);
1296 	/*
1297 	 * work->data is guaranteed to point to pwq only while the work
1298 	 * item is queued on pwq->wq, and both updating work->data to point
1299 	 * to pwq on queueing and to pool on dequeueing are done under
1300 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1301 	 * points to pwq which is associated with a locked pool, the work
1302 	 * item is currently queued on that pool.
1303 	 */
1304 	pwq = get_work_pwq(work);
1305 	if (pwq && pwq->pool == pool) {
1306 		debug_work_deactivate(work);
1307 
1308 		/*
1309 		 * A cancelable inactive work item must be in the
1310 		 * pwq->inactive_works since a queued barrier can't be
1311 		 * canceled (see the comments in insert_wq_barrier()).
1312 		 *
1313 		 * An inactive work item cannot be grabbed directly because
1314 		 * it might have linked barrier work items which, if left
1315 		 * on the inactive_works list, will confuse pwq->nr_active
1316 		 * management later on and cause stall.  Make sure the work
1317 		 * item is activated before grabbing.
1318 		 */
1319 		if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1320 			pwq_activate_inactive_work(work);
1321 
1322 		list_del_init(&work->entry);
1323 		pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1324 
1325 		/* work->data points to pwq iff queued, point to pool */
1326 		set_work_pool_and_keep_pending(work, pool->id);
1327 
1328 		raw_spin_unlock(&pool->lock);
1329 		rcu_read_unlock();
1330 		return 1;
1331 	}
1332 	raw_spin_unlock(&pool->lock);
1333 fail:
1334 	rcu_read_unlock();
1335 	local_irq_restore(*flags);
1336 	if (work_is_canceling(work))
1337 		return -ENOENT;
1338 	cpu_relax();
1339 	return -EAGAIN;
1340 }
1341 
1342 /**
1343  * insert_work - insert a work into a pool
1344  * @pwq: pwq @work belongs to
1345  * @work: work to insert
1346  * @head: insertion point
1347  * @extra_flags: extra WORK_STRUCT_* flags to set
1348  *
1349  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1350  * work_struct flags.
1351  *
1352  * CONTEXT:
1353  * raw_spin_lock_irq(pool->lock).
1354  */
1355 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1356 			struct list_head *head, unsigned int extra_flags)
1357 {
1358 	struct worker_pool *pool = pwq->pool;
1359 
1360 	/* record the work call stack in order to print it in KASAN reports */
1361 	kasan_record_aux_stack_noalloc(work);
1362 
1363 	/* we own @work, set data and link */
1364 	set_work_pwq(work, pwq, extra_flags);
1365 	list_add_tail(&work->entry, head);
1366 	get_pwq(pwq);
1367 
1368 	if (__need_more_worker(pool))
1369 		wake_up_worker(pool);
1370 }
1371 
1372 /*
1373  * Test whether @work is being queued from another work executing on the
1374  * same workqueue.
1375  */
1376 static bool is_chained_work(struct workqueue_struct *wq)
1377 {
1378 	struct worker *worker;
1379 
1380 	worker = current_wq_worker();
1381 	/*
1382 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1383 	 * I'm @worker, it's safe to dereference it without locking.
1384 	 */
1385 	return worker && worker->current_pwq->wq == wq;
1386 }
1387 
1388 /*
1389  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1390  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1391  * avoid perturbing sensitive tasks.
1392  */
1393 static int wq_select_unbound_cpu(int cpu)
1394 {
1395 	static bool printed_dbg_warning;
1396 	int new_cpu;
1397 
1398 	if (likely(!wq_debug_force_rr_cpu)) {
1399 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1400 			return cpu;
1401 	} else if (!printed_dbg_warning) {
1402 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1403 		printed_dbg_warning = true;
1404 	}
1405 
1406 	if (cpumask_empty(wq_unbound_cpumask))
1407 		return cpu;
1408 
1409 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1410 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1411 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1412 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1413 		if (unlikely(new_cpu >= nr_cpu_ids))
1414 			return cpu;
1415 	}
1416 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1417 
1418 	return new_cpu;
1419 }
1420 
1421 static void __queue_work(int cpu, struct workqueue_struct *wq,
1422 			 struct work_struct *work)
1423 {
1424 	struct pool_workqueue *pwq;
1425 	struct worker_pool *last_pool;
1426 	struct list_head *worklist;
1427 	unsigned int work_flags;
1428 	unsigned int req_cpu = cpu;
1429 
1430 	/*
1431 	 * While a work item is PENDING && off queue, a task trying to
1432 	 * steal the PENDING will busy-loop waiting for it to either get
1433 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1434 	 * happen with IRQ disabled.
1435 	 */
1436 	lockdep_assert_irqs_disabled();
1437 
1438 
1439 	/*
1440 	 * For a draining wq, only works from the same workqueue are
1441 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
1442 	 * queues a new work item to a wq after destroy_workqueue(wq).
1443 	 */
1444 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
1445 		     WARN_ON_ONCE(!is_chained_work(wq))))
1446 		return;
1447 	rcu_read_lock();
1448 retry:
1449 	/* pwq which will be used unless @work is executing elsewhere */
1450 	if (wq->flags & WQ_UNBOUND) {
1451 		if (req_cpu == WORK_CPU_UNBOUND)
1452 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1453 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1454 	} else {
1455 		if (req_cpu == WORK_CPU_UNBOUND)
1456 			cpu = raw_smp_processor_id();
1457 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1458 	}
1459 
1460 	/*
1461 	 * If @work was previously on a different pool, it might still be
1462 	 * running there, in which case the work needs to be queued on that
1463 	 * pool to guarantee non-reentrancy.
1464 	 */
1465 	last_pool = get_work_pool(work);
1466 	if (last_pool && last_pool != pwq->pool) {
1467 		struct worker *worker;
1468 
1469 		raw_spin_lock(&last_pool->lock);
1470 
1471 		worker = find_worker_executing_work(last_pool, work);
1472 
1473 		if (worker && worker->current_pwq->wq == wq) {
1474 			pwq = worker->current_pwq;
1475 		} else {
1476 			/* meh... not running there, queue here */
1477 			raw_spin_unlock(&last_pool->lock);
1478 			raw_spin_lock(&pwq->pool->lock);
1479 		}
1480 	} else {
1481 		raw_spin_lock(&pwq->pool->lock);
1482 	}
1483 
1484 	/*
1485 	 * pwq is determined and locked.  For unbound pools, we could have
1486 	 * raced with pwq release and it could already be dead.  If its
1487 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1488 	 * without another pwq replacing it in the numa_pwq_tbl or while
1489 	 * work items are executing on it, so the retrying is guaranteed to
1490 	 * make forward-progress.
1491 	 */
1492 	if (unlikely(!pwq->refcnt)) {
1493 		if (wq->flags & WQ_UNBOUND) {
1494 			raw_spin_unlock(&pwq->pool->lock);
1495 			cpu_relax();
1496 			goto retry;
1497 		}
1498 		/* oops */
1499 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1500 			  wq->name, cpu);
1501 	}
1502 
1503 	/* pwq determined, queue */
1504 	trace_workqueue_queue_work(req_cpu, pwq, work);
1505 
1506 	if (WARN_ON(!list_empty(&work->entry)))
1507 		goto out;
1508 
1509 	pwq->nr_in_flight[pwq->work_color]++;
1510 	work_flags = work_color_to_flags(pwq->work_color);
1511 
1512 	if (likely(pwq->nr_active < pwq->max_active)) {
1513 		trace_workqueue_activate_work(work);
1514 		pwq->nr_active++;
1515 		worklist = &pwq->pool->worklist;
1516 		if (list_empty(worklist))
1517 			pwq->pool->watchdog_ts = jiffies;
1518 	} else {
1519 		work_flags |= WORK_STRUCT_INACTIVE;
1520 		worklist = &pwq->inactive_works;
1521 	}
1522 
1523 	debug_work_activate(work);
1524 	insert_work(pwq, work, worklist, work_flags);
1525 
1526 out:
1527 	raw_spin_unlock(&pwq->pool->lock);
1528 	rcu_read_unlock();
1529 }
1530 
1531 /**
1532  * queue_work_on - queue work on specific cpu
1533  * @cpu: CPU number to execute work on
1534  * @wq: workqueue to use
1535  * @work: work to queue
1536  *
1537  * We queue the work to a specific CPU, the caller must ensure it
1538  * can't go away.  Callers that fail to ensure that the specified
1539  * CPU cannot go away will execute on a randomly chosen CPU.
1540  *
1541  * Return: %false if @work was already on a queue, %true otherwise.
1542  */
1543 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1544 		   struct work_struct *work)
1545 {
1546 	bool ret = false;
1547 	unsigned long flags;
1548 
1549 	local_irq_save(flags);
1550 
1551 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1552 		__queue_work(cpu, wq, work);
1553 		ret = true;
1554 	}
1555 
1556 	local_irq_restore(flags);
1557 	return ret;
1558 }
1559 EXPORT_SYMBOL(queue_work_on);
1560 
1561 /**
1562  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1563  * @node: NUMA node ID that we want to select a CPU from
1564  *
1565  * This function will attempt to find a "random" cpu available on a given
1566  * node. If there are no CPUs available on the given node it will return
1567  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1568  * available CPU if we need to schedule this work.
1569  */
1570 static int workqueue_select_cpu_near(int node)
1571 {
1572 	int cpu;
1573 
1574 	/* No point in doing this if NUMA isn't enabled for workqueues */
1575 	if (!wq_numa_enabled)
1576 		return WORK_CPU_UNBOUND;
1577 
1578 	/* Delay binding to CPU if node is not valid or online */
1579 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1580 		return WORK_CPU_UNBOUND;
1581 
1582 	/* Use local node/cpu if we are already there */
1583 	cpu = raw_smp_processor_id();
1584 	if (node == cpu_to_node(cpu))
1585 		return cpu;
1586 
1587 	/* Use "random" otherwise know as "first" online CPU of node */
1588 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1589 
1590 	/* If CPU is valid return that, otherwise just defer */
1591 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1592 }
1593 
1594 /**
1595  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1596  * @node: NUMA node that we are targeting the work for
1597  * @wq: workqueue to use
1598  * @work: work to queue
1599  *
1600  * We queue the work to a "random" CPU within a given NUMA node. The basic
1601  * idea here is to provide a way to somehow associate work with a given
1602  * NUMA node.
1603  *
1604  * This function will only make a best effort attempt at getting this onto
1605  * the right NUMA node. If no node is requested or the requested node is
1606  * offline then we just fall back to standard queue_work behavior.
1607  *
1608  * Currently the "random" CPU ends up being the first available CPU in the
1609  * intersection of cpu_online_mask and the cpumask of the node, unless we
1610  * are running on the node. In that case we just use the current CPU.
1611  *
1612  * Return: %false if @work was already on a queue, %true otherwise.
1613  */
1614 bool queue_work_node(int node, struct workqueue_struct *wq,
1615 		     struct work_struct *work)
1616 {
1617 	unsigned long flags;
1618 	bool ret = false;
1619 
1620 	/*
1621 	 * This current implementation is specific to unbound workqueues.
1622 	 * Specifically we only return the first available CPU for a given
1623 	 * node instead of cycling through individual CPUs within the node.
1624 	 *
1625 	 * If this is used with a per-cpu workqueue then the logic in
1626 	 * workqueue_select_cpu_near would need to be updated to allow for
1627 	 * some round robin type logic.
1628 	 */
1629 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1630 
1631 	local_irq_save(flags);
1632 
1633 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1634 		int cpu = workqueue_select_cpu_near(node);
1635 
1636 		__queue_work(cpu, wq, work);
1637 		ret = true;
1638 	}
1639 
1640 	local_irq_restore(flags);
1641 	return ret;
1642 }
1643 EXPORT_SYMBOL_GPL(queue_work_node);
1644 
1645 void delayed_work_timer_fn(struct timer_list *t)
1646 {
1647 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1648 
1649 	/* should have been called from irqsafe timer with irq already off */
1650 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1651 }
1652 EXPORT_SYMBOL(delayed_work_timer_fn);
1653 
1654 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1655 				struct delayed_work *dwork, unsigned long delay)
1656 {
1657 	struct timer_list *timer = &dwork->timer;
1658 	struct work_struct *work = &dwork->work;
1659 
1660 	WARN_ON_ONCE(!wq);
1661 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1662 	WARN_ON_ONCE(timer_pending(timer));
1663 	WARN_ON_ONCE(!list_empty(&work->entry));
1664 
1665 	/*
1666 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1667 	 * both optimization and correctness.  The earliest @timer can
1668 	 * expire is on the closest next tick and delayed_work users depend
1669 	 * on that there's no such delay when @delay is 0.
1670 	 */
1671 	if (!delay) {
1672 		__queue_work(cpu, wq, &dwork->work);
1673 		return;
1674 	}
1675 
1676 	dwork->wq = wq;
1677 	dwork->cpu = cpu;
1678 	timer->expires = jiffies + delay;
1679 
1680 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1681 		add_timer_on(timer, cpu);
1682 	else
1683 		add_timer(timer);
1684 }
1685 
1686 /**
1687  * queue_delayed_work_on - queue work on specific CPU after delay
1688  * @cpu: CPU number to execute work on
1689  * @wq: workqueue to use
1690  * @dwork: work to queue
1691  * @delay: number of jiffies to wait before queueing
1692  *
1693  * Return: %false if @work was already on a queue, %true otherwise.  If
1694  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1695  * execution.
1696  */
1697 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1698 			   struct delayed_work *dwork, unsigned long delay)
1699 {
1700 	struct work_struct *work = &dwork->work;
1701 	bool ret = false;
1702 	unsigned long flags;
1703 
1704 	/* read the comment in __queue_work() */
1705 	local_irq_save(flags);
1706 
1707 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1708 		__queue_delayed_work(cpu, wq, dwork, delay);
1709 		ret = true;
1710 	}
1711 
1712 	local_irq_restore(flags);
1713 	return ret;
1714 }
1715 EXPORT_SYMBOL(queue_delayed_work_on);
1716 
1717 /**
1718  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1719  * @cpu: CPU number to execute work on
1720  * @wq: workqueue to use
1721  * @dwork: work to queue
1722  * @delay: number of jiffies to wait before queueing
1723  *
1724  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1725  * modify @dwork's timer so that it expires after @delay.  If @delay is
1726  * zero, @work is guaranteed to be scheduled immediately regardless of its
1727  * current state.
1728  *
1729  * Return: %false if @dwork was idle and queued, %true if @dwork was
1730  * pending and its timer was modified.
1731  *
1732  * This function is safe to call from any context including IRQ handler.
1733  * See try_to_grab_pending() for details.
1734  */
1735 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1736 			 struct delayed_work *dwork, unsigned long delay)
1737 {
1738 	unsigned long flags;
1739 	int ret;
1740 
1741 	do {
1742 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1743 	} while (unlikely(ret == -EAGAIN));
1744 
1745 	if (likely(ret >= 0)) {
1746 		__queue_delayed_work(cpu, wq, dwork, delay);
1747 		local_irq_restore(flags);
1748 	}
1749 
1750 	/* -ENOENT from try_to_grab_pending() becomes %true */
1751 	return ret;
1752 }
1753 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1754 
1755 static void rcu_work_rcufn(struct rcu_head *rcu)
1756 {
1757 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1758 
1759 	/* read the comment in __queue_work() */
1760 	local_irq_disable();
1761 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1762 	local_irq_enable();
1763 }
1764 
1765 /**
1766  * queue_rcu_work - queue work after a RCU grace period
1767  * @wq: workqueue to use
1768  * @rwork: work to queue
1769  *
1770  * Return: %false if @rwork was already pending, %true otherwise.  Note
1771  * that a full RCU grace period is guaranteed only after a %true return.
1772  * While @rwork is guaranteed to be executed after a %false return, the
1773  * execution may happen before a full RCU grace period has passed.
1774  */
1775 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1776 {
1777 	struct work_struct *work = &rwork->work;
1778 
1779 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1780 		rwork->wq = wq;
1781 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
1782 		return true;
1783 	}
1784 
1785 	return false;
1786 }
1787 EXPORT_SYMBOL(queue_rcu_work);
1788 
1789 /**
1790  * worker_enter_idle - enter idle state
1791  * @worker: worker which is entering idle state
1792  *
1793  * @worker is entering idle state.  Update stats and idle timer if
1794  * necessary.
1795  *
1796  * LOCKING:
1797  * raw_spin_lock_irq(pool->lock).
1798  */
1799 static void worker_enter_idle(struct worker *worker)
1800 {
1801 	struct worker_pool *pool = worker->pool;
1802 
1803 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1804 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1805 			 (worker->hentry.next || worker->hentry.pprev)))
1806 		return;
1807 
1808 	/* can't use worker_set_flags(), also called from create_worker() */
1809 	worker->flags |= WORKER_IDLE;
1810 	pool->nr_idle++;
1811 	worker->last_active = jiffies;
1812 
1813 	/* idle_list is LIFO */
1814 	list_add(&worker->entry, &pool->idle_list);
1815 
1816 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1817 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1818 
1819 	/* Sanity check nr_running. */
1820 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1821 }
1822 
1823 /**
1824  * worker_leave_idle - leave idle state
1825  * @worker: worker which is leaving idle state
1826  *
1827  * @worker is leaving idle state.  Update stats.
1828  *
1829  * LOCKING:
1830  * raw_spin_lock_irq(pool->lock).
1831  */
1832 static void worker_leave_idle(struct worker *worker)
1833 {
1834 	struct worker_pool *pool = worker->pool;
1835 
1836 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1837 		return;
1838 	worker_clr_flags(worker, WORKER_IDLE);
1839 	pool->nr_idle--;
1840 	list_del_init(&worker->entry);
1841 }
1842 
1843 static struct worker *alloc_worker(int node)
1844 {
1845 	struct worker *worker;
1846 
1847 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1848 	if (worker) {
1849 		INIT_LIST_HEAD(&worker->entry);
1850 		INIT_LIST_HEAD(&worker->scheduled);
1851 		INIT_LIST_HEAD(&worker->node);
1852 		/* on creation a worker is in !idle && prep state */
1853 		worker->flags = WORKER_PREP;
1854 	}
1855 	return worker;
1856 }
1857 
1858 /**
1859  * worker_attach_to_pool() - attach a worker to a pool
1860  * @worker: worker to be attached
1861  * @pool: the target pool
1862  *
1863  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1864  * cpu-binding of @worker are kept coordinated with the pool across
1865  * cpu-[un]hotplugs.
1866  */
1867 static void worker_attach_to_pool(struct worker *worker,
1868 				   struct worker_pool *pool)
1869 {
1870 	mutex_lock(&wq_pool_attach_mutex);
1871 
1872 	/*
1873 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1874 	 * stable across this function.  See the comments above the flag
1875 	 * definition for details.
1876 	 */
1877 	if (pool->flags & POOL_DISASSOCIATED)
1878 		worker->flags |= WORKER_UNBOUND;
1879 	else
1880 		kthread_set_per_cpu(worker->task, pool->cpu);
1881 
1882 	if (worker->rescue_wq)
1883 		set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1884 
1885 	list_add_tail(&worker->node, &pool->workers);
1886 	worker->pool = pool;
1887 
1888 	mutex_unlock(&wq_pool_attach_mutex);
1889 }
1890 
1891 /**
1892  * worker_detach_from_pool() - detach a worker from its pool
1893  * @worker: worker which is attached to its pool
1894  *
1895  * Undo the attaching which had been done in worker_attach_to_pool().  The
1896  * caller worker shouldn't access to the pool after detached except it has
1897  * other reference to the pool.
1898  */
1899 static void worker_detach_from_pool(struct worker *worker)
1900 {
1901 	struct worker_pool *pool = worker->pool;
1902 	struct completion *detach_completion = NULL;
1903 
1904 	mutex_lock(&wq_pool_attach_mutex);
1905 
1906 	kthread_set_per_cpu(worker->task, -1);
1907 	list_del(&worker->node);
1908 	worker->pool = NULL;
1909 
1910 	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
1911 		detach_completion = pool->detach_completion;
1912 	mutex_unlock(&wq_pool_attach_mutex);
1913 
1914 	/* clear leftover flags without pool->lock after it is detached */
1915 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1916 
1917 	if (detach_completion)
1918 		complete(detach_completion);
1919 }
1920 
1921 /**
1922  * create_worker - create a new workqueue worker
1923  * @pool: pool the new worker will belong to
1924  *
1925  * Create and start a new worker which is attached to @pool.
1926  *
1927  * CONTEXT:
1928  * Might sleep.  Does GFP_KERNEL allocations.
1929  *
1930  * Return:
1931  * Pointer to the newly created worker.
1932  */
1933 static struct worker *create_worker(struct worker_pool *pool)
1934 {
1935 	struct worker *worker;
1936 	int id;
1937 	char id_buf[16];
1938 
1939 	/* ID is needed to determine kthread name */
1940 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
1941 	if (id < 0)
1942 		return NULL;
1943 
1944 	worker = alloc_worker(pool->node);
1945 	if (!worker)
1946 		goto fail;
1947 
1948 	worker->id = id;
1949 
1950 	if (pool->cpu >= 0)
1951 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1952 			 pool->attrs->nice < 0  ? "H" : "");
1953 	else
1954 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1955 
1956 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1957 					      "kworker/%s", id_buf);
1958 	if (IS_ERR(worker->task))
1959 		goto fail;
1960 
1961 	set_user_nice(worker->task, pool->attrs->nice);
1962 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1963 
1964 	/* successful, attach the worker to the pool */
1965 	worker_attach_to_pool(worker, pool);
1966 
1967 	/* start the newly created worker */
1968 	raw_spin_lock_irq(&pool->lock);
1969 	worker->pool->nr_workers++;
1970 	worker_enter_idle(worker);
1971 	wake_up_process(worker->task);
1972 	raw_spin_unlock_irq(&pool->lock);
1973 
1974 	return worker;
1975 
1976 fail:
1977 	ida_free(&pool->worker_ida, id);
1978 	kfree(worker);
1979 	return NULL;
1980 }
1981 
1982 static void unbind_worker(struct worker *worker)
1983 {
1984 	lockdep_assert_held(&wq_pool_attach_mutex);
1985 
1986 	kthread_set_per_cpu(worker->task, -1);
1987 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
1988 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
1989 	else
1990 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
1991 }
1992 
1993 static void wake_dying_workers(struct list_head *cull_list)
1994 {
1995 	struct worker *worker, *tmp;
1996 
1997 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
1998 		list_del_init(&worker->entry);
1999 		unbind_worker(worker);
2000 		/*
2001 		 * If the worker was somehow already running, then it had to be
2002 		 * in pool->idle_list when set_worker_dying() happened or we
2003 		 * wouldn't have gotten here.
2004 		 *
2005 		 * Thus, the worker must either have observed the WORKER_DIE
2006 		 * flag, or have set its state to TASK_IDLE. Either way, the
2007 		 * below will be observed by the worker and is safe to do
2008 		 * outside of pool->lock.
2009 		 */
2010 		wake_up_process(worker->task);
2011 	}
2012 }
2013 
2014 /**
2015  * set_worker_dying - Tag a worker for destruction
2016  * @worker: worker to be destroyed
2017  * @list: transfer worker away from its pool->idle_list and into list
2018  *
2019  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2020  * should be idle.
2021  *
2022  * CONTEXT:
2023  * raw_spin_lock_irq(pool->lock).
2024  */
2025 static void set_worker_dying(struct worker *worker, struct list_head *list)
2026 {
2027 	struct worker_pool *pool = worker->pool;
2028 
2029 	lockdep_assert_held(&pool->lock);
2030 	lockdep_assert_held(&wq_pool_attach_mutex);
2031 
2032 	/* sanity check frenzy */
2033 	if (WARN_ON(worker->current_work) ||
2034 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2035 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2036 		return;
2037 
2038 	pool->nr_workers--;
2039 	pool->nr_idle--;
2040 
2041 	worker->flags |= WORKER_DIE;
2042 
2043 	list_move(&worker->entry, list);
2044 	list_move(&worker->node, &pool->dying_workers);
2045 }
2046 
2047 /**
2048  * idle_worker_timeout - check if some idle workers can now be deleted.
2049  * @t: The pool's idle_timer that just expired
2050  *
2051  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2052  * worker_leave_idle(), as a worker flicking between idle and active while its
2053  * pool is at the too_many_workers() tipping point would cause too much timer
2054  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2055  * it expire and re-evaluate things from there.
2056  */
2057 static void idle_worker_timeout(struct timer_list *t)
2058 {
2059 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2060 	bool do_cull = false;
2061 
2062 	if (work_pending(&pool->idle_cull_work))
2063 		return;
2064 
2065 	raw_spin_lock_irq(&pool->lock);
2066 
2067 	if (too_many_workers(pool)) {
2068 		struct worker *worker;
2069 		unsigned long expires;
2070 
2071 		/* idle_list is kept in LIFO order, check the last one */
2072 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2073 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2074 		do_cull = !time_before(jiffies, expires);
2075 
2076 		if (!do_cull)
2077 			mod_timer(&pool->idle_timer, expires);
2078 	}
2079 	raw_spin_unlock_irq(&pool->lock);
2080 
2081 	if (do_cull)
2082 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2083 }
2084 
2085 /**
2086  * idle_cull_fn - cull workers that have been idle for too long.
2087  * @work: the pool's work for handling these idle workers
2088  *
2089  * This goes through a pool's idle workers and gets rid of those that have been
2090  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2091  *
2092  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2093  * culled, so this also resets worker affinity. This requires a sleepable
2094  * context, hence the split between timer callback and work item.
2095  */
2096 static void idle_cull_fn(struct work_struct *work)
2097 {
2098 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2099 	struct list_head cull_list;
2100 
2101 	INIT_LIST_HEAD(&cull_list);
2102 	/*
2103 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2104 	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2105 	 * path. This is required as a previously-preempted worker could run after
2106 	 * set_worker_dying() has happened but before wake_dying_workers() did.
2107 	 */
2108 	mutex_lock(&wq_pool_attach_mutex);
2109 	raw_spin_lock_irq(&pool->lock);
2110 
2111 	while (too_many_workers(pool)) {
2112 		struct worker *worker;
2113 		unsigned long expires;
2114 
2115 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2116 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2117 
2118 		if (time_before(jiffies, expires)) {
2119 			mod_timer(&pool->idle_timer, expires);
2120 			break;
2121 		}
2122 
2123 		set_worker_dying(worker, &cull_list);
2124 	}
2125 
2126 	raw_spin_unlock_irq(&pool->lock);
2127 	wake_dying_workers(&cull_list);
2128 	mutex_unlock(&wq_pool_attach_mutex);
2129 }
2130 
2131 static void send_mayday(struct work_struct *work)
2132 {
2133 	struct pool_workqueue *pwq = get_work_pwq(work);
2134 	struct workqueue_struct *wq = pwq->wq;
2135 
2136 	lockdep_assert_held(&wq_mayday_lock);
2137 
2138 	if (!wq->rescuer)
2139 		return;
2140 
2141 	/* mayday mayday mayday */
2142 	if (list_empty(&pwq->mayday_node)) {
2143 		/*
2144 		 * If @pwq is for an unbound wq, its base ref may be put at
2145 		 * any time due to an attribute change.  Pin @pwq until the
2146 		 * rescuer is done with it.
2147 		 */
2148 		get_pwq(pwq);
2149 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2150 		wake_up_process(wq->rescuer->task);
2151 	}
2152 }
2153 
2154 static void pool_mayday_timeout(struct timer_list *t)
2155 {
2156 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2157 	struct work_struct *work;
2158 
2159 	raw_spin_lock_irq(&pool->lock);
2160 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2161 
2162 	if (need_to_create_worker(pool)) {
2163 		/*
2164 		 * We've been trying to create a new worker but
2165 		 * haven't been successful.  We might be hitting an
2166 		 * allocation deadlock.  Send distress signals to
2167 		 * rescuers.
2168 		 */
2169 		list_for_each_entry(work, &pool->worklist, entry)
2170 			send_mayday(work);
2171 	}
2172 
2173 	raw_spin_unlock(&wq_mayday_lock);
2174 	raw_spin_unlock_irq(&pool->lock);
2175 
2176 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2177 }
2178 
2179 /**
2180  * maybe_create_worker - create a new worker if necessary
2181  * @pool: pool to create a new worker for
2182  *
2183  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2184  * have at least one idle worker on return from this function.  If
2185  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2186  * sent to all rescuers with works scheduled on @pool to resolve
2187  * possible allocation deadlock.
2188  *
2189  * On return, need_to_create_worker() is guaranteed to be %false and
2190  * may_start_working() %true.
2191  *
2192  * LOCKING:
2193  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2194  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2195  * manager.
2196  */
2197 static void maybe_create_worker(struct worker_pool *pool)
2198 __releases(&pool->lock)
2199 __acquires(&pool->lock)
2200 {
2201 restart:
2202 	raw_spin_unlock_irq(&pool->lock);
2203 
2204 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2205 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2206 
2207 	while (true) {
2208 		if (create_worker(pool) || !need_to_create_worker(pool))
2209 			break;
2210 
2211 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2212 
2213 		if (!need_to_create_worker(pool))
2214 			break;
2215 	}
2216 
2217 	del_timer_sync(&pool->mayday_timer);
2218 	raw_spin_lock_irq(&pool->lock);
2219 	/*
2220 	 * This is necessary even after a new worker was just successfully
2221 	 * created as @pool->lock was dropped and the new worker might have
2222 	 * already become busy.
2223 	 */
2224 	if (need_to_create_worker(pool))
2225 		goto restart;
2226 }
2227 
2228 /**
2229  * manage_workers - manage worker pool
2230  * @worker: self
2231  *
2232  * Assume the manager role and manage the worker pool @worker belongs
2233  * to.  At any given time, there can be only zero or one manager per
2234  * pool.  The exclusion is handled automatically by this function.
2235  *
2236  * The caller can safely start processing works on false return.  On
2237  * true return, it's guaranteed that need_to_create_worker() is false
2238  * and may_start_working() is true.
2239  *
2240  * CONTEXT:
2241  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2242  * multiple times.  Does GFP_KERNEL allocations.
2243  *
2244  * Return:
2245  * %false if the pool doesn't need management and the caller can safely
2246  * start processing works, %true if management function was performed and
2247  * the conditions that the caller verified before calling the function may
2248  * no longer be true.
2249  */
2250 static bool manage_workers(struct worker *worker)
2251 {
2252 	struct worker_pool *pool = worker->pool;
2253 
2254 	if (pool->flags & POOL_MANAGER_ACTIVE)
2255 		return false;
2256 
2257 	pool->flags |= POOL_MANAGER_ACTIVE;
2258 	pool->manager = worker;
2259 
2260 	maybe_create_worker(pool);
2261 
2262 	pool->manager = NULL;
2263 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2264 	rcuwait_wake_up(&manager_wait);
2265 	return true;
2266 }
2267 
2268 /**
2269  * process_one_work - process single work
2270  * @worker: self
2271  * @work: work to process
2272  *
2273  * Process @work.  This function contains all the logics necessary to
2274  * process a single work including synchronization against and
2275  * interaction with other workers on the same cpu, queueing and
2276  * flushing.  As long as context requirement is met, any worker can
2277  * call this function to process a work.
2278  *
2279  * CONTEXT:
2280  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2281  */
2282 static void process_one_work(struct worker *worker, struct work_struct *work)
2283 __releases(&pool->lock)
2284 __acquires(&pool->lock)
2285 {
2286 	struct pool_workqueue *pwq = get_work_pwq(work);
2287 	struct worker_pool *pool = worker->pool;
2288 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2289 	unsigned long work_data;
2290 	struct worker *collision;
2291 #ifdef CONFIG_LOCKDEP
2292 	/*
2293 	 * It is permissible to free the struct work_struct from
2294 	 * inside the function that is called from it, this we need to
2295 	 * take into account for lockdep too.  To avoid bogus "held
2296 	 * lock freed" warnings as well as problems when looking into
2297 	 * work->lockdep_map, make a copy and use that here.
2298 	 */
2299 	struct lockdep_map lockdep_map;
2300 
2301 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2302 #endif
2303 	/* ensure we're on the correct CPU */
2304 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2305 		     raw_smp_processor_id() != pool->cpu);
2306 
2307 	/*
2308 	 * A single work shouldn't be executed concurrently by
2309 	 * multiple workers on a single cpu.  Check whether anyone is
2310 	 * already processing the work.  If so, defer the work to the
2311 	 * currently executing one.
2312 	 */
2313 	collision = find_worker_executing_work(pool, work);
2314 	if (unlikely(collision)) {
2315 		move_linked_works(work, &collision->scheduled, NULL);
2316 		return;
2317 	}
2318 
2319 	/* claim and dequeue */
2320 	debug_work_deactivate(work);
2321 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2322 	worker->current_work = work;
2323 	worker->current_func = work->func;
2324 	worker->current_pwq = pwq;
2325 	work_data = *work_data_bits(work);
2326 	worker->current_color = get_work_color(work_data);
2327 
2328 	/*
2329 	 * Record wq name for cmdline and debug reporting, may get
2330 	 * overridden through set_worker_desc().
2331 	 */
2332 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2333 
2334 	list_del_init(&work->entry);
2335 
2336 	/*
2337 	 * CPU intensive works don't participate in concurrency management.
2338 	 * They're the scheduler's responsibility.  This takes @worker out
2339 	 * of concurrency management and the next code block will chain
2340 	 * execution of the pending work items.
2341 	 */
2342 	if (unlikely(cpu_intensive))
2343 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2344 
2345 	/*
2346 	 * Wake up another worker if necessary.  The condition is always
2347 	 * false for normal per-cpu workers since nr_running would always
2348 	 * be >= 1 at this point.  This is used to chain execution of the
2349 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2350 	 * UNBOUND and CPU_INTENSIVE ones.
2351 	 */
2352 	if (need_more_worker(pool))
2353 		wake_up_worker(pool);
2354 
2355 	/*
2356 	 * Record the last pool and clear PENDING which should be the last
2357 	 * update to @work.  Also, do this inside @pool->lock so that
2358 	 * PENDING and queued state changes happen together while IRQ is
2359 	 * disabled.
2360 	 */
2361 	set_work_pool_and_clear_pending(work, pool->id);
2362 
2363 	raw_spin_unlock_irq(&pool->lock);
2364 
2365 	lock_map_acquire(&pwq->wq->lockdep_map);
2366 	lock_map_acquire(&lockdep_map);
2367 	/*
2368 	 * Strictly speaking we should mark the invariant state without holding
2369 	 * any locks, that is, before these two lock_map_acquire()'s.
2370 	 *
2371 	 * However, that would result in:
2372 	 *
2373 	 *   A(W1)
2374 	 *   WFC(C)
2375 	 *		A(W1)
2376 	 *		C(C)
2377 	 *
2378 	 * Which would create W1->C->W1 dependencies, even though there is no
2379 	 * actual deadlock possible. There are two solutions, using a
2380 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2381 	 * hit the lockdep limitation on recursive locks, or simply discard
2382 	 * these locks.
2383 	 *
2384 	 * AFAICT there is no possible deadlock scenario between the
2385 	 * flush_work() and complete() primitives (except for single-threaded
2386 	 * workqueues), so hiding them isn't a problem.
2387 	 */
2388 	lockdep_invariant_state(true);
2389 	trace_workqueue_execute_start(work);
2390 	worker->current_func(work);
2391 	/*
2392 	 * While we must be careful to not use "work" after this, the trace
2393 	 * point will only record its address.
2394 	 */
2395 	trace_workqueue_execute_end(work, worker->current_func);
2396 	lock_map_release(&lockdep_map);
2397 	lock_map_release(&pwq->wq->lockdep_map);
2398 
2399 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2400 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2401 		       "     last function: %ps\n",
2402 		       current->comm, preempt_count(), task_pid_nr(current),
2403 		       worker->current_func);
2404 		debug_show_held_locks(current);
2405 		dump_stack();
2406 	}
2407 
2408 	/*
2409 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2410 	 * kernels, where a requeueing work item waiting for something to
2411 	 * happen could deadlock with stop_machine as such work item could
2412 	 * indefinitely requeue itself while all other CPUs are trapped in
2413 	 * stop_machine. At the same time, report a quiescent RCU state so
2414 	 * the same condition doesn't freeze RCU.
2415 	 */
2416 	cond_resched();
2417 
2418 	raw_spin_lock_irq(&pool->lock);
2419 
2420 	/* clear cpu intensive status */
2421 	if (unlikely(cpu_intensive))
2422 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2423 
2424 	/* tag the worker for identification in schedule() */
2425 	worker->last_func = worker->current_func;
2426 
2427 	/* we're done with it, release */
2428 	hash_del(&worker->hentry);
2429 	worker->current_work = NULL;
2430 	worker->current_func = NULL;
2431 	worker->current_pwq = NULL;
2432 	worker->current_color = INT_MAX;
2433 	pwq_dec_nr_in_flight(pwq, work_data);
2434 }
2435 
2436 /**
2437  * process_scheduled_works - process scheduled works
2438  * @worker: self
2439  *
2440  * Process all scheduled works.  Please note that the scheduled list
2441  * may change while processing a work, so this function repeatedly
2442  * fetches a work from the top and executes it.
2443  *
2444  * CONTEXT:
2445  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2446  * multiple times.
2447  */
2448 static void process_scheduled_works(struct worker *worker)
2449 {
2450 	while (!list_empty(&worker->scheduled)) {
2451 		struct work_struct *work = list_first_entry(&worker->scheduled,
2452 						struct work_struct, entry);
2453 		process_one_work(worker, work);
2454 	}
2455 }
2456 
2457 static void set_pf_worker(bool val)
2458 {
2459 	mutex_lock(&wq_pool_attach_mutex);
2460 	if (val)
2461 		current->flags |= PF_WQ_WORKER;
2462 	else
2463 		current->flags &= ~PF_WQ_WORKER;
2464 	mutex_unlock(&wq_pool_attach_mutex);
2465 }
2466 
2467 /**
2468  * worker_thread - the worker thread function
2469  * @__worker: self
2470  *
2471  * The worker thread function.  All workers belong to a worker_pool -
2472  * either a per-cpu one or dynamic unbound one.  These workers process all
2473  * work items regardless of their specific target workqueue.  The only
2474  * exception is work items which belong to workqueues with a rescuer which
2475  * will be explained in rescuer_thread().
2476  *
2477  * Return: 0
2478  */
2479 static int worker_thread(void *__worker)
2480 {
2481 	struct worker *worker = __worker;
2482 	struct worker_pool *pool = worker->pool;
2483 
2484 	/* tell the scheduler that this is a workqueue worker */
2485 	set_pf_worker(true);
2486 woke_up:
2487 	raw_spin_lock_irq(&pool->lock);
2488 
2489 	/* am I supposed to die? */
2490 	if (unlikely(worker->flags & WORKER_DIE)) {
2491 		raw_spin_unlock_irq(&pool->lock);
2492 		set_pf_worker(false);
2493 
2494 		set_task_comm(worker->task, "kworker/dying");
2495 		ida_free(&pool->worker_ida, worker->id);
2496 		worker_detach_from_pool(worker);
2497 		WARN_ON_ONCE(!list_empty(&worker->entry));
2498 		kfree(worker);
2499 		return 0;
2500 	}
2501 
2502 	worker_leave_idle(worker);
2503 recheck:
2504 	/* no more worker necessary? */
2505 	if (!need_more_worker(pool))
2506 		goto sleep;
2507 
2508 	/* do we need to manage? */
2509 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2510 		goto recheck;
2511 
2512 	/*
2513 	 * ->scheduled list can only be filled while a worker is
2514 	 * preparing to process a work or actually processing it.
2515 	 * Make sure nobody diddled with it while I was sleeping.
2516 	 */
2517 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2518 
2519 	/*
2520 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2521 	 * worker or that someone else has already assumed the manager
2522 	 * role.  This is where @worker starts participating in concurrency
2523 	 * management if applicable and concurrency management is restored
2524 	 * after being rebound.  See rebind_workers() for details.
2525 	 */
2526 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2527 
2528 	do {
2529 		struct work_struct *work =
2530 			list_first_entry(&pool->worklist,
2531 					 struct work_struct, entry);
2532 
2533 		pool->watchdog_ts = jiffies;
2534 
2535 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2536 			/* optimization path, not strictly necessary */
2537 			process_one_work(worker, work);
2538 			if (unlikely(!list_empty(&worker->scheduled)))
2539 				process_scheduled_works(worker);
2540 		} else {
2541 			move_linked_works(work, &worker->scheduled, NULL);
2542 			process_scheduled_works(worker);
2543 		}
2544 	} while (keep_working(pool));
2545 
2546 	worker_set_flags(worker, WORKER_PREP);
2547 sleep:
2548 	/*
2549 	 * pool->lock is held and there's no work to process and no need to
2550 	 * manage, sleep.  Workers are woken up only while holding
2551 	 * pool->lock or from local cpu, so setting the current state
2552 	 * before releasing pool->lock is enough to prevent losing any
2553 	 * event.
2554 	 */
2555 	worker_enter_idle(worker);
2556 	__set_current_state(TASK_IDLE);
2557 	raw_spin_unlock_irq(&pool->lock);
2558 	schedule();
2559 	goto woke_up;
2560 }
2561 
2562 /**
2563  * rescuer_thread - the rescuer thread function
2564  * @__rescuer: self
2565  *
2566  * Workqueue rescuer thread function.  There's one rescuer for each
2567  * workqueue which has WQ_MEM_RECLAIM set.
2568  *
2569  * Regular work processing on a pool may block trying to create a new
2570  * worker which uses GFP_KERNEL allocation which has slight chance of
2571  * developing into deadlock if some works currently on the same queue
2572  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2573  * the problem rescuer solves.
2574  *
2575  * When such condition is possible, the pool summons rescuers of all
2576  * workqueues which have works queued on the pool and let them process
2577  * those works so that forward progress can be guaranteed.
2578  *
2579  * This should happen rarely.
2580  *
2581  * Return: 0
2582  */
2583 static int rescuer_thread(void *__rescuer)
2584 {
2585 	struct worker *rescuer = __rescuer;
2586 	struct workqueue_struct *wq = rescuer->rescue_wq;
2587 	struct list_head *scheduled = &rescuer->scheduled;
2588 	bool should_stop;
2589 
2590 	set_user_nice(current, RESCUER_NICE_LEVEL);
2591 
2592 	/*
2593 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2594 	 * doesn't participate in concurrency management.
2595 	 */
2596 	set_pf_worker(true);
2597 repeat:
2598 	set_current_state(TASK_IDLE);
2599 
2600 	/*
2601 	 * By the time the rescuer is requested to stop, the workqueue
2602 	 * shouldn't have any work pending, but @wq->maydays may still have
2603 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2604 	 * all the work items before the rescuer got to them.  Go through
2605 	 * @wq->maydays processing before acting on should_stop so that the
2606 	 * list is always empty on exit.
2607 	 */
2608 	should_stop = kthread_should_stop();
2609 
2610 	/* see whether any pwq is asking for help */
2611 	raw_spin_lock_irq(&wq_mayday_lock);
2612 
2613 	while (!list_empty(&wq->maydays)) {
2614 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2615 					struct pool_workqueue, mayday_node);
2616 		struct worker_pool *pool = pwq->pool;
2617 		struct work_struct *work, *n;
2618 		bool first = true;
2619 
2620 		__set_current_state(TASK_RUNNING);
2621 		list_del_init(&pwq->mayday_node);
2622 
2623 		raw_spin_unlock_irq(&wq_mayday_lock);
2624 
2625 		worker_attach_to_pool(rescuer, pool);
2626 
2627 		raw_spin_lock_irq(&pool->lock);
2628 
2629 		/*
2630 		 * Slurp in all works issued via this workqueue and
2631 		 * process'em.
2632 		 */
2633 		WARN_ON_ONCE(!list_empty(scheduled));
2634 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2635 			if (get_work_pwq(work) == pwq) {
2636 				if (first)
2637 					pool->watchdog_ts = jiffies;
2638 				move_linked_works(work, scheduled, &n);
2639 			}
2640 			first = false;
2641 		}
2642 
2643 		if (!list_empty(scheduled)) {
2644 			process_scheduled_works(rescuer);
2645 
2646 			/*
2647 			 * The above execution of rescued work items could
2648 			 * have created more to rescue through
2649 			 * pwq_activate_first_inactive() or chained
2650 			 * queueing.  Let's put @pwq back on mayday list so
2651 			 * that such back-to-back work items, which may be
2652 			 * being used to relieve memory pressure, don't
2653 			 * incur MAYDAY_INTERVAL delay inbetween.
2654 			 */
2655 			if (pwq->nr_active && need_to_create_worker(pool)) {
2656 				raw_spin_lock(&wq_mayday_lock);
2657 				/*
2658 				 * Queue iff we aren't racing destruction
2659 				 * and somebody else hasn't queued it already.
2660 				 */
2661 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2662 					get_pwq(pwq);
2663 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2664 				}
2665 				raw_spin_unlock(&wq_mayday_lock);
2666 			}
2667 		}
2668 
2669 		/*
2670 		 * Put the reference grabbed by send_mayday().  @pool won't
2671 		 * go away while we're still attached to it.
2672 		 */
2673 		put_pwq(pwq);
2674 
2675 		/*
2676 		 * Leave this pool.  If need_more_worker() is %true, notify a
2677 		 * regular worker; otherwise, we end up with 0 concurrency
2678 		 * and stalling the execution.
2679 		 */
2680 		if (need_more_worker(pool))
2681 			wake_up_worker(pool);
2682 
2683 		raw_spin_unlock_irq(&pool->lock);
2684 
2685 		worker_detach_from_pool(rescuer);
2686 
2687 		raw_spin_lock_irq(&wq_mayday_lock);
2688 	}
2689 
2690 	raw_spin_unlock_irq(&wq_mayday_lock);
2691 
2692 	if (should_stop) {
2693 		__set_current_state(TASK_RUNNING);
2694 		set_pf_worker(false);
2695 		return 0;
2696 	}
2697 
2698 	/* rescuers should never participate in concurrency management */
2699 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2700 	schedule();
2701 	goto repeat;
2702 }
2703 
2704 /**
2705  * check_flush_dependency - check for flush dependency sanity
2706  * @target_wq: workqueue being flushed
2707  * @target_work: work item being flushed (NULL for workqueue flushes)
2708  *
2709  * %current is trying to flush the whole @target_wq or @target_work on it.
2710  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2711  * reclaiming memory or running on a workqueue which doesn't have
2712  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2713  * a deadlock.
2714  */
2715 static void check_flush_dependency(struct workqueue_struct *target_wq,
2716 				   struct work_struct *target_work)
2717 {
2718 	work_func_t target_func = target_work ? target_work->func : NULL;
2719 	struct worker *worker;
2720 
2721 	if (target_wq->flags & WQ_MEM_RECLAIM)
2722 		return;
2723 
2724 	worker = current_wq_worker();
2725 
2726 	WARN_ONCE(current->flags & PF_MEMALLOC,
2727 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2728 		  current->pid, current->comm, target_wq->name, target_func);
2729 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2730 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2731 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2732 		  worker->current_pwq->wq->name, worker->current_func,
2733 		  target_wq->name, target_func);
2734 }
2735 
2736 struct wq_barrier {
2737 	struct work_struct	work;
2738 	struct completion	done;
2739 	struct task_struct	*task;	/* purely informational */
2740 };
2741 
2742 static void wq_barrier_func(struct work_struct *work)
2743 {
2744 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2745 	complete(&barr->done);
2746 }
2747 
2748 /**
2749  * insert_wq_barrier - insert a barrier work
2750  * @pwq: pwq to insert barrier into
2751  * @barr: wq_barrier to insert
2752  * @target: target work to attach @barr to
2753  * @worker: worker currently executing @target, NULL if @target is not executing
2754  *
2755  * @barr is linked to @target such that @barr is completed only after
2756  * @target finishes execution.  Please note that the ordering
2757  * guarantee is observed only with respect to @target and on the local
2758  * cpu.
2759  *
2760  * Currently, a queued barrier can't be canceled.  This is because
2761  * try_to_grab_pending() can't determine whether the work to be
2762  * grabbed is at the head of the queue and thus can't clear LINKED
2763  * flag of the previous work while there must be a valid next work
2764  * after a work with LINKED flag set.
2765  *
2766  * Note that when @worker is non-NULL, @target may be modified
2767  * underneath us, so we can't reliably determine pwq from @target.
2768  *
2769  * CONTEXT:
2770  * raw_spin_lock_irq(pool->lock).
2771  */
2772 static void insert_wq_barrier(struct pool_workqueue *pwq,
2773 			      struct wq_barrier *barr,
2774 			      struct work_struct *target, struct worker *worker)
2775 {
2776 	unsigned int work_flags = 0;
2777 	unsigned int work_color;
2778 	struct list_head *head;
2779 
2780 	/*
2781 	 * debugobject calls are safe here even with pool->lock locked
2782 	 * as we know for sure that this will not trigger any of the
2783 	 * checks and call back into the fixup functions where we
2784 	 * might deadlock.
2785 	 */
2786 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2787 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2788 
2789 	init_completion_map(&barr->done, &target->lockdep_map);
2790 
2791 	barr->task = current;
2792 
2793 	/* The barrier work item does not participate in pwq->nr_active. */
2794 	work_flags |= WORK_STRUCT_INACTIVE;
2795 
2796 	/*
2797 	 * If @target is currently being executed, schedule the
2798 	 * barrier to the worker; otherwise, put it after @target.
2799 	 */
2800 	if (worker) {
2801 		head = worker->scheduled.next;
2802 		work_color = worker->current_color;
2803 	} else {
2804 		unsigned long *bits = work_data_bits(target);
2805 
2806 		head = target->entry.next;
2807 		/* there can already be other linked works, inherit and set */
2808 		work_flags |= *bits & WORK_STRUCT_LINKED;
2809 		work_color = get_work_color(*bits);
2810 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2811 	}
2812 
2813 	pwq->nr_in_flight[work_color]++;
2814 	work_flags |= work_color_to_flags(work_color);
2815 
2816 	debug_work_activate(&barr->work);
2817 	insert_work(pwq, &barr->work, head, work_flags);
2818 }
2819 
2820 /**
2821  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2822  * @wq: workqueue being flushed
2823  * @flush_color: new flush color, < 0 for no-op
2824  * @work_color: new work color, < 0 for no-op
2825  *
2826  * Prepare pwqs for workqueue flushing.
2827  *
2828  * If @flush_color is non-negative, flush_color on all pwqs should be
2829  * -1.  If no pwq has in-flight commands at the specified color, all
2830  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2831  * has in flight commands, its pwq->flush_color is set to
2832  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2833  * wakeup logic is armed and %true is returned.
2834  *
2835  * The caller should have initialized @wq->first_flusher prior to
2836  * calling this function with non-negative @flush_color.  If
2837  * @flush_color is negative, no flush color update is done and %false
2838  * is returned.
2839  *
2840  * If @work_color is non-negative, all pwqs should have the same
2841  * work_color which is previous to @work_color and all will be
2842  * advanced to @work_color.
2843  *
2844  * CONTEXT:
2845  * mutex_lock(wq->mutex).
2846  *
2847  * Return:
2848  * %true if @flush_color >= 0 and there's something to flush.  %false
2849  * otherwise.
2850  */
2851 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2852 				      int flush_color, int work_color)
2853 {
2854 	bool wait = false;
2855 	struct pool_workqueue *pwq;
2856 
2857 	if (flush_color >= 0) {
2858 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2859 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2860 	}
2861 
2862 	for_each_pwq(pwq, wq) {
2863 		struct worker_pool *pool = pwq->pool;
2864 
2865 		raw_spin_lock_irq(&pool->lock);
2866 
2867 		if (flush_color >= 0) {
2868 			WARN_ON_ONCE(pwq->flush_color != -1);
2869 
2870 			if (pwq->nr_in_flight[flush_color]) {
2871 				pwq->flush_color = flush_color;
2872 				atomic_inc(&wq->nr_pwqs_to_flush);
2873 				wait = true;
2874 			}
2875 		}
2876 
2877 		if (work_color >= 0) {
2878 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2879 			pwq->work_color = work_color;
2880 		}
2881 
2882 		raw_spin_unlock_irq(&pool->lock);
2883 	}
2884 
2885 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2886 		complete(&wq->first_flusher->done);
2887 
2888 	return wait;
2889 }
2890 
2891 /**
2892  * __flush_workqueue - ensure that any scheduled work has run to completion.
2893  * @wq: workqueue to flush
2894  *
2895  * This function sleeps until all work items which were queued on entry
2896  * have finished execution, but it is not livelocked by new incoming ones.
2897  */
2898 void __flush_workqueue(struct workqueue_struct *wq)
2899 {
2900 	struct wq_flusher this_flusher = {
2901 		.list = LIST_HEAD_INIT(this_flusher.list),
2902 		.flush_color = -1,
2903 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2904 	};
2905 	int next_color;
2906 
2907 	if (WARN_ON(!wq_online))
2908 		return;
2909 
2910 	lock_map_acquire(&wq->lockdep_map);
2911 	lock_map_release(&wq->lockdep_map);
2912 
2913 	mutex_lock(&wq->mutex);
2914 
2915 	/*
2916 	 * Start-to-wait phase
2917 	 */
2918 	next_color = work_next_color(wq->work_color);
2919 
2920 	if (next_color != wq->flush_color) {
2921 		/*
2922 		 * Color space is not full.  The current work_color
2923 		 * becomes our flush_color and work_color is advanced
2924 		 * by one.
2925 		 */
2926 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2927 		this_flusher.flush_color = wq->work_color;
2928 		wq->work_color = next_color;
2929 
2930 		if (!wq->first_flusher) {
2931 			/* no flush in progress, become the first flusher */
2932 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2933 
2934 			wq->first_flusher = &this_flusher;
2935 
2936 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2937 						       wq->work_color)) {
2938 				/* nothing to flush, done */
2939 				wq->flush_color = next_color;
2940 				wq->first_flusher = NULL;
2941 				goto out_unlock;
2942 			}
2943 		} else {
2944 			/* wait in queue */
2945 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2946 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2947 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2948 		}
2949 	} else {
2950 		/*
2951 		 * Oops, color space is full, wait on overflow queue.
2952 		 * The next flush completion will assign us
2953 		 * flush_color and transfer to flusher_queue.
2954 		 */
2955 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2956 	}
2957 
2958 	check_flush_dependency(wq, NULL);
2959 
2960 	mutex_unlock(&wq->mutex);
2961 
2962 	wait_for_completion(&this_flusher.done);
2963 
2964 	/*
2965 	 * Wake-up-and-cascade phase
2966 	 *
2967 	 * First flushers are responsible for cascading flushes and
2968 	 * handling overflow.  Non-first flushers can simply return.
2969 	 */
2970 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
2971 		return;
2972 
2973 	mutex_lock(&wq->mutex);
2974 
2975 	/* we might have raced, check again with mutex held */
2976 	if (wq->first_flusher != &this_flusher)
2977 		goto out_unlock;
2978 
2979 	WRITE_ONCE(wq->first_flusher, NULL);
2980 
2981 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2982 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2983 
2984 	while (true) {
2985 		struct wq_flusher *next, *tmp;
2986 
2987 		/* complete all the flushers sharing the current flush color */
2988 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2989 			if (next->flush_color != wq->flush_color)
2990 				break;
2991 			list_del_init(&next->list);
2992 			complete(&next->done);
2993 		}
2994 
2995 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2996 			     wq->flush_color != work_next_color(wq->work_color));
2997 
2998 		/* this flush_color is finished, advance by one */
2999 		wq->flush_color = work_next_color(wq->flush_color);
3000 
3001 		/* one color has been freed, handle overflow queue */
3002 		if (!list_empty(&wq->flusher_overflow)) {
3003 			/*
3004 			 * Assign the same color to all overflowed
3005 			 * flushers, advance work_color and append to
3006 			 * flusher_queue.  This is the start-to-wait
3007 			 * phase for these overflowed flushers.
3008 			 */
3009 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
3010 				tmp->flush_color = wq->work_color;
3011 
3012 			wq->work_color = work_next_color(wq->work_color);
3013 
3014 			list_splice_tail_init(&wq->flusher_overflow,
3015 					      &wq->flusher_queue);
3016 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3017 		}
3018 
3019 		if (list_empty(&wq->flusher_queue)) {
3020 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
3021 			break;
3022 		}
3023 
3024 		/*
3025 		 * Need to flush more colors.  Make the next flusher
3026 		 * the new first flusher and arm pwqs.
3027 		 */
3028 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
3029 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
3030 
3031 		list_del_init(&next->list);
3032 		wq->first_flusher = next;
3033 
3034 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
3035 			break;
3036 
3037 		/*
3038 		 * Meh... this color is already done, clear first
3039 		 * flusher and repeat cascading.
3040 		 */
3041 		wq->first_flusher = NULL;
3042 	}
3043 
3044 out_unlock:
3045 	mutex_unlock(&wq->mutex);
3046 }
3047 EXPORT_SYMBOL(__flush_workqueue);
3048 
3049 /**
3050  * drain_workqueue - drain a workqueue
3051  * @wq: workqueue to drain
3052  *
3053  * Wait until the workqueue becomes empty.  While draining is in progress,
3054  * only chain queueing is allowed.  IOW, only currently pending or running
3055  * work items on @wq can queue further work items on it.  @wq is flushed
3056  * repeatedly until it becomes empty.  The number of flushing is determined
3057  * by the depth of chaining and should be relatively short.  Whine if it
3058  * takes too long.
3059  */
3060 void drain_workqueue(struct workqueue_struct *wq)
3061 {
3062 	unsigned int flush_cnt = 0;
3063 	struct pool_workqueue *pwq;
3064 
3065 	/*
3066 	 * __queue_work() needs to test whether there are drainers, is much
3067 	 * hotter than drain_workqueue() and already looks at @wq->flags.
3068 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
3069 	 */
3070 	mutex_lock(&wq->mutex);
3071 	if (!wq->nr_drainers++)
3072 		wq->flags |= __WQ_DRAINING;
3073 	mutex_unlock(&wq->mutex);
3074 reflush:
3075 	__flush_workqueue(wq);
3076 
3077 	mutex_lock(&wq->mutex);
3078 
3079 	for_each_pwq(pwq, wq) {
3080 		bool drained;
3081 
3082 		raw_spin_lock_irq(&pwq->pool->lock);
3083 		drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
3084 		raw_spin_unlock_irq(&pwq->pool->lock);
3085 
3086 		if (drained)
3087 			continue;
3088 
3089 		if (++flush_cnt == 10 ||
3090 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3091 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3092 				wq->name, __func__, flush_cnt);
3093 
3094 		mutex_unlock(&wq->mutex);
3095 		goto reflush;
3096 	}
3097 
3098 	if (!--wq->nr_drainers)
3099 		wq->flags &= ~__WQ_DRAINING;
3100 	mutex_unlock(&wq->mutex);
3101 }
3102 EXPORT_SYMBOL_GPL(drain_workqueue);
3103 
3104 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3105 			     bool from_cancel)
3106 {
3107 	struct worker *worker = NULL;
3108 	struct worker_pool *pool;
3109 	struct pool_workqueue *pwq;
3110 
3111 	might_sleep();
3112 
3113 	rcu_read_lock();
3114 	pool = get_work_pool(work);
3115 	if (!pool) {
3116 		rcu_read_unlock();
3117 		return false;
3118 	}
3119 
3120 	raw_spin_lock_irq(&pool->lock);
3121 	/* see the comment in try_to_grab_pending() with the same code */
3122 	pwq = get_work_pwq(work);
3123 	if (pwq) {
3124 		if (unlikely(pwq->pool != pool))
3125 			goto already_gone;
3126 	} else {
3127 		worker = find_worker_executing_work(pool, work);
3128 		if (!worker)
3129 			goto already_gone;
3130 		pwq = worker->current_pwq;
3131 	}
3132 
3133 	check_flush_dependency(pwq->wq, work);
3134 
3135 	insert_wq_barrier(pwq, barr, work, worker);
3136 	raw_spin_unlock_irq(&pool->lock);
3137 
3138 	/*
3139 	 * Force a lock recursion deadlock when using flush_work() inside a
3140 	 * single-threaded or rescuer equipped workqueue.
3141 	 *
3142 	 * For single threaded workqueues the deadlock happens when the work
3143 	 * is after the work issuing the flush_work(). For rescuer equipped
3144 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3145 	 * forward progress.
3146 	 */
3147 	if (!from_cancel &&
3148 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3149 		lock_map_acquire(&pwq->wq->lockdep_map);
3150 		lock_map_release(&pwq->wq->lockdep_map);
3151 	}
3152 	rcu_read_unlock();
3153 	return true;
3154 already_gone:
3155 	raw_spin_unlock_irq(&pool->lock);
3156 	rcu_read_unlock();
3157 	return false;
3158 }
3159 
3160 static bool __flush_work(struct work_struct *work, bool from_cancel)
3161 {
3162 	struct wq_barrier barr;
3163 
3164 	if (WARN_ON(!wq_online))
3165 		return false;
3166 
3167 	if (WARN_ON(!work->func))
3168 		return false;
3169 
3170 	lock_map_acquire(&work->lockdep_map);
3171 	lock_map_release(&work->lockdep_map);
3172 
3173 	if (start_flush_work(work, &barr, from_cancel)) {
3174 		wait_for_completion(&barr.done);
3175 		destroy_work_on_stack(&barr.work);
3176 		return true;
3177 	} else {
3178 		return false;
3179 	}
3180 }
3181 
3182 /**
3183  * flush_work - wait for a work to finish executing the last queueing instance
3184  * @work: the work to flush
3185  *
3186  * Wait until @work has finished execution.  @work is guaranteed to be idle
3187  * on return if it hasn't been requeued since flush started.
3188  *
3189  * Return:
3190  * %true if flush_work() waited for the work to finish execution,
3191  * %false if it was already idle.
3192  */
3193 bool flush_work(struct work_struct *work)
3194 {
3195 	return __flush_work(work, false);
3196 }
3197 EXPORT_SYMBOL_GPL(flush_work);
3198 
3199 struct cwt_wait {
3200 	wait_queue_entry_t		wait;
3201 	struct work_struct	*work;
3202 };
3203 
3204 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3205 {
3206 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3207 
3208 	if (cwait->work != key)
3209 		return 0;
3210 	return autoremove_wake_function(wait, mode, sync, key);
3211 }
3212 
3213 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3214 {
3215 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3216 	unsigned long flags;
3217 	int ret;
3218 
3219 	do {
3220 		ret = try_to_grab_pending(work, is_dwork, &flags);
3221 		/*
3222 		 * If someone else is already canceling, wait for it to
3223 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3224 		 * because we may get scheduled between @work's completion
3225 		 * and the other canceling task resuming and clearing
3226 		 * CANCELING - flush_work() will return false immediately
3227 		 * as @work is no longer busy, try_to_grab_pending() will
3228 		 * return -ENOENT as @work is still being canceled and the
3229 		 * other canceling task won't be able to clear CANCELING as
3230 		 * we're hogging the CPU.
3231 		 *
3232 		 * Let's wait for completion using a waitqueue.  As this
3233 		 * may lead to the thundering herd problem, use a custom
3234 		 * wake function which matches @work along with exclusive
3235 		 * wait and wakeup.
3236 		 */
3237 		if (unlikely(ret == -ENOENT)) {
3238 			struct cwt_wait cwait;
3239 
3240 			init_wait(&cwait.wait);
3241 			cwait.wait.func = cwt_wakefn;
3242 			cwait.work = work;
3243 
3244 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3245 						  TASK_UNINTERRUPTIBLE);
3246 			if (work_is_canceling(work))
3247 				schedule();
3248 			finish_wait(&cancel_waitq, &cwait.wait);
3249 		}
3250 	} while (unlikely(ret < 0));
3251 
3252 	/* tell other tasks trying to grab @work to back off */
3253 	mark_work_canceling(work);
3254 	local_irq_restore(flags);
3255 
3256 	/*
3257 	 * This allows canceling during early boot.  We know that @work
3258 	 * isn't executing.
3259 	 */
3260 	if (wq_online)
3261 		__flush_work(work, true);
3262 
3263 	clear_work_data(work);
3264 
3265 	/*
3266 	 * Paired with prepare_to_wait() above so that either
3267 	 * waitqueue_active() is visible here or !work_is_canceling() is
3268 	 * visible there.
3269 	 */
3270 	smp_mb();
3271 	if (waitqueue_active(&cancel_waitq))
3272 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3273 
3274 	return ret;
3275 }
3276 
3277 /**
3278  * cancel_work_sync - cancel a work and wait for it to finish
3279  * @work: the work to cancel
3280  *
3281  * Cancel @work and wait for its execution to finish.  This function
3282  * can be used even if the work re-queues itself or migrates to
3283  * another workqueue.  On return from this function, @work is
3284  * guaranteed to be not pending or executing on any CPU.
3285  *
3286  * cancel_work_sync(&delayed_work->work) must not be used for
3287  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3288  *
3289  * The caller must ensure that the workqueue on which @work was last
3290  * queued can't be destroyed before this function returns.
3291  *
3292  * Return:
3293  * %true if @work was pending, %false otherwise.
3294  */
3295 bool cancel_work_sync(struct work_struct *work)
3296 {
3297 	return __cancel_work_timer(work, false);
3298 }
3299 EXPORT_SYMBOL_GPL(cancel_work_sync);
3300 
3301 /**
3302  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3303  * @dwork: the delayed work to flush
3304  *
3305  * Delayed timer is cancelled and the pending work is queued for
3306  * immediate execution.  Like flush_work(), this function only
3307  * considers the last queueing instance of @dwork.
3308  *
3309  * Return:
3310  * %true if flush_work() waited for the work to finish execution,
3311  * %false if it was already idle.
3312  */
3313 bool flush_delayed_work(struct delayed_work *dwork)
3314 {
3315 	local_irq_disable();
3316 	if (del_timer_sync(&dwork->timer))
3317 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3318 	local_irq_enable();
3319 	return flush_work(&dwork->work);
3320 }
3321 EXPORT_SYMBOL(flush_delayed_work);
3322 
3323 /**
3324  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3325  * @rwork: the rcu work to flush
3326  *
3327  * Return:
3328  * %true if flush_rcu_work() waited for the work to finish execution,
3329  * %false if it was already idle.
3330  */
3331 bool flush_rcu_work(struct rcu_work *rwork)
3332 {
3333 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3334 		rcu_barrier();
3335 		flush_work(&rwork->work);
3336 		return true;
3337 	} else {
3338 		return flush_work(&rwork->work);
3339 	}
3340 }
3341 EXPORT_SYMBOL(flush_rcu_work);
3342 
3343 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3344 {
3345 	unsigned long flags;
3346 	int ret;
3347 
3348 	do {
3349 		ret = try_to_grab_pending(work, is_dwork, &flags);
3350 	} while (unlikely(ret == -EAGAIN));
3351 
3352 	if (unlikely(ret < 0))
3353 		return false;
3354 
3355 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3356 	local_irq_restore(flags);
3357 	return ret;
3358 }
3359 
3360 /*
3361  * See cancel_delayed_work()
3362  */
3363 bool cancel_work(struct work_struct *work)
3364 {
3365 	return __cancel_work(work, false);
3366 }
3367 EXPORT_SYMBOL(cancel_work);
3368 
3369 /**
3370  * cancel_delayed_work - cancel a delayed work
3371  * @dwork: delayed_work to cancel
3372  *
3373  * Kill off a pending delayed_work.
3374  *
3375  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3376  * pending.
3377  *
3378  * Note:
3379  * The work callback function may still be running on return, unless
3380  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3381  * use cancel_delayed_work_sync() to wait on it.
3382  *
3383  * This function is safe to call from any context including IRQ handler.
3384  */
3385 bool cancel_delayed_work(struct delayed_work *dwork)
3386 {
3387 	return __cancel_work(&dwork->work, true);
3388 }
3389 EXPORT_SYMBOL(cancel_delayed_work);
3390 
3391 /**
3392  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3393  * @dwork: the delayed work cancel
3394  *
3395  * This is cancel_work_sync() for delayed works.
3396  *
3397  * Return:
3398  * %true if @dwork was pending, %false otherwise.
3399  */
3400 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3401 {
3402 	return __cancel_work_timer(&dwork->work, true);
3403 }
3404 EXPORT_SYMBOL(cancel_delayed_work_sync);
3405 
3406 /**
3407  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3408  * @func: the function to call
3409  *
3410  * schedule_on_each_cpu() executes @func on each online CPU using the
3411  * system workqueue and blocks until all CPUs have completed.
3412  * schedule_on_each_cpu() is very slow.
3413  *
3414  * Return:
3415  * 0 on success, -errno on failure.
3416  */
3417 int schedule_on_each_cpu(work_func_t func)
3418 {
3419 	int cpu;
3420 	struct work_struct __percpu *works;
3421 
3422 	works = alloc_percpu(struct work_struct);
3423 	if (!works)
3424 		return -ENOMEM;
3425 
3426 	cpus_read_lock();
3427 
3428 	for_each_online_cpu(cpu) {
3429 		struct work_struct *work = per_cpu_ptr(works, cpu);
3430 
3431 		INIT_WORK(work, func);
3432 		schedule_work_on(cpu, work);
3433 	}
3434 
3435 	for_each_online_cpu(cpu)
3436 		flush_work(per_cpu_ptr(works, cpu));
3437 
3438 	cpus_read_unlock();
3439 	free_percpu(works);
3440 	return 0;
3441 }
3442 
3443 /**
3444  * execute_in_process_context - reliably execute the routine with user context
3445  * @fn:		the function to execute
3446  * @ew:		guaranteed storage for the execute work structure (must
3447  *		be available when the work executes)
3448  *
3449  * Executes the function immediately if process context is available,
3450  * otherwise schedules the function for delayed execution.
3451  *
3452  * Return:	0 - function was executed
3453  *		1 - function was scheduled for execution
3454  */
3455 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3456 {
3457 	if (!in_interrupt()) {
3458 		fn(&ew->work);
3459 		return 0;
3460 	}
3461 
3462 	INIT_WORK(&ew->work, fn);
3463 	schedule_work(&ew->work);
3464 
3465 	return 1;
3466 }
3467 EXPORT_SYMBOL_GPL(execute_in_process_context);
3468 
3469 /**
3470  * free_workqueue_attrs - free a workqueue_attrs
3471  * @attrs: workqueue_attrs to free
3472  *
3473  * Undo alloc_workqueue_attrs().
3474  */
3475 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3476 {
3477 	if (attrs) {
3478 		free_cpumask_var(attrs->cpumask);
3479 		kfree(attrs);
3480 	}
3481 }
3482 
3483 /**
3484  * alloc_workqueue_attrs - allocate a workqueue_attrs
3485  *
3486  * Allocate a new workqueue_attrs, initialize with default settings and
3487  * return it.
3488  *
3489  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3490  */
3491 struct workqueue_attrs *alloc_workqueue_attrs(void)
3492 {
3493 	struct workqueue_attrs *attrs;
3494 
3495 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3496 	if (!attrs)
3497 		goto fail;
3498 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3499 		goto fail;
3500 
3501 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3502 	return attrs;
3503 fail:
3504 	free_workqueue_attrs(attrs);
3505 	return NULL;
3506 }
3507 
3508 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3509 				 const struct workqueue_attrs *from)
3510 {
3511 	to->nice = from->nice;
3512 	cpumask_copy(to->cpumask, from->cpumask);
3513 	/*
3514 	 * Unlike hash and equality test, this function doesn't ignore
3515 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3516 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3517 	 */
3518 	to->no_numa = from->no_numa;
3519 }
3520 
3521 /* hash value of the content of @attr */
3522 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3523 {
3524 	u32 hash = 0;
3525 
3526 	hash = jhash_1word(attrs->nice, hash);
3527 	hash = jhash(cpumask_bits(attrs->cpumask),
3528 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3529 	return hash;
3530 }
3531 
3532 /* content equality test */
3533 static bool wqattrs_equal(const struct workqueue_attrs *a,
3534 			  const struct workqueue_attrs *b)
3535 {
3536 	if (a->nice != b->nice)
3537 		return false;
3538 	if (!cpumask_equal(a->cpumask, b->cpumask))
3539 		return false;
3540 	return true;
3541 }
3542 
3543 /**
3544  * init_worker_pool - initialize a newly zalloc'd worker_pool
3545  * @pool: worker_pool to initialize
3546  *
3547  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3548  *
3549  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3550  * inside @pool proper are initialized and put_unbound_pool() can be called
3551  * on @pool safely to release it.
3552  */
3553 static int init_worker_pool(struct worker_pool *pool)
3554 {
3555 	raw_spin_lock_init(&pool->lock);
3556 	pool->id = -1;
3557 	pool->cpu = -1;
3558 	pool->node = NUMA_NO_NODE;
3559 	pool->flags |= POOL_DISASSOCIATED;
3560 	pool->watchdog_ts = jiffies;
3561 	INIT_LIST_HEAD(&pool->worklist);
3562 	INIT_LIST_HEAD(&pool->idle_list);
3563 	hash_init(pool->busy_hash);
3564 
3565 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3566 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
3567 
3568 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3569 
3570 	INIT_LIST_HEAD(&pool->workers);
3571 	INIT_LIST_HEAD(&pool->dying_workers);
3572 
3573 	ida_init(&pool->worker_ida);
3574 	INIT_HLIST_NODE(&pool->hash_node);
3575 	pool->refcnt = 1;
3576 
3577 	/* shouldn't fail above this point */
3578 	pool->attrs = alloc_workqueue_attrs();
3579 	if (!pool->attrs)
3580 		return -ENOMEM;
3581 	return 0;
3582 }
3583 
3584 #ifdef CONFIG_LOCKDEP
3585 static void wq_init_lockdep(struct workqueue_struct *wq)
3586 {
3587 	char *lock_name;
3588 
3589 	lockdep_register_key(&wq->key);
3590 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3591 	if (!lock_name)
3592 		lock_name = wq->name;
3593 
3594 	wq->lock_name = lock_name;
3595 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3596 }
3597 
3598 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3599 {
3600 	lockdep_unregister_key(&wq->key);
3601 }
3602 
3603 static void wq_free_lockdep(struct workqueue_struct *wq)
3604 {
3605 	if (wq->lock_name != wq->name)
3606 		kfree(wq->lock_name);
3607 }
3608 #else
3609 static void wq_init_lockdep(struct workqueue_struct *wq)
3610 {
3611 }
3612 
3613 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3614 {
3615 }
3616 
3617 static void wq_free_lockdep(struct workqueue_struct *wq)
3618 {
3619 }
3620 #endif
3621 
3622 static void rcu_free_wq(struct rcu_head *rcu)
3623 {
3624 	struct workqueue_struct *wq =
3625 		container_of(rcu, struct workqueue_struct, rcu);
3626 
3627 	wq_free_lockdep(wq);
3628 
3629 	if (!(wq->flags & WQ_UNBOUND))
3630 		free_percpu(wq->cpu_pwqs);
3631 	else
3632 		free_workqueue_attrs(wq->unbound_attrs);
3633 
3634 	kfree(wq);
3635 }
3636 
3637 static void rcu_free_pool(struct rcu_head *rcu)
3638 {
3639 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3640 
3641 	ida_destroy(&pool->worker_ida);
3642 	free_workqueue_attrs(pool->attrs);
3643 	kfree(pool);
3644 }
3645 
3646 /**
3647  * put_unbound_pool - put a worker_pool
3648  * @pool: worker_pool to put
3649  *
3650  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3651  * safe manner.  get_unbound_pool() calls this function on its failure path
3652  * and this function should be able to release pools which went through,
3653  * successfully or not, init_worker_pool().
3654  *
3655  * Should be called with wq_pool_mutex held.
3656  */
3657 static void put_unbound_pool(struct worker_pool *pool)
3658 {
3659 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3660 	struct list_head cull_list;
3661 	struct worker *worker;
3662 
3663 	INIT_LIST_HEAD(&cull_list);
3664 
3665 	lockdep_assert_held(&wq_pool_mutex);
3666 
3667 	if (--pool->refcnt)
3668 		return;
3669 
3670 	/* sanity checks */
3671 	if (WARN_ON(!(pool->cpu < 0)) ||
3672 	    WARN_ON(!list_empty(&pool->worklist)))
3673 		return;
3674 
3675 	/* release id and unhash */
3676 	if (pool->id >= 0)
3677 		idr_remove(&worker_pool_idr, pool->id);
3678 	hash_del(&pool->hash_node);
3679 
3680 	/*
3681 	 * Become the manager and destroy all workers.  This prevents
3682 	 * @pool's workers from blocking on attach_mutex.  We're the last
3683 	 * manager and @pool gets freed with the flag set.
3684 	 *
3685 	 * Having a concurrent manager is quite unlikely to happen as we can
3686 	 * only get here with
3687 	 *   pwq->refcnt == pool->refcnt == 0
3688 	 * which implies no work queued to the pool, which implies no worker can
3689 	 * become the manager. However a worker could have taken the role of
3690 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
3691 	 * drops pool->lock
3692 	 */
3693 	while (true) {
3694 		rcuwait_wait_event(&manager_wait,
3695 				   !(pool->flags & POOL_MANAGER_ACTIVE),
3696 				   TASK_UNINTERRUPTIBLE);
3697 
3698 		mutex_lock(&wq_pool_attach_mutex);
3699 		raw_spin_lock_irq(&pool->lock);
3700 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
3701 			pool->flags |= POOL_MANAGER_ACTIVE;
3702 			break;
3703 		}
3704 		raw_spin_unlock_irq(&pool->lock);
3705 		mutex_unlock(&wq_pool_attach_mutex);
3706 	}
3707 
3708 	while ((worker = first_idle_worker(pool)))
3709 		set_worker_dying(worker, &cull_list);
3710 	WARN_ON(pool->nr_workers || pool->nr_idle);
3711 	raw_spin_unlock_irq(&pool->lock);
3712 
3713 	wake_dying_workers(&cull_list);
3714 
3715 	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
3716 		pool->detach_completion = &detach_completion;
3717 	mutex_unlock(&wq_pool_attach_mutex);
3718 
3719 	if (pool->detach_completion)
3720 		wait_for_completion(pool->detach_completion);
3721 
3722 	/* shut down the timers */
3723 	del_timer_sync(&pool->idle_timer);
3724 	cancel_work_sync(&pool->idle_cull_work);
3725 	del_timer_sync(&pool->mayday_timer);
3726 
3727 	/* RCU protected to allow dereferences from get_work_pool() */
3728 	call_rcu(&pool->rcu, rcu_free_pool);
3729 }
3730 
3731 /**
3732  * get_unbound_pool - get a worker_pool with the specified attributes
3733  * @attrs: the attributes of the worker_pool to get
3734  *
3735  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3736  * reference count and return it.  If there already is a matching
3737  * worker_pool, it will be used; otherwise, this function attempts to
3738  * create a new one.
3739  *
3740  * Should be called with wq_pool_mutex held.
3741  *
3742  * Return: On success, a worker_pool with the same attributes as @attrs.
3743  * On failure, %NULL.
3744  */
3745 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3746 {
3747 	u32 hash = wqattrs_hash(attrs);
3748 	struct worker_pool *pool;
3749 	int node;
3750 	int target_node = NUMA_NO_NODE;
3751 
3752 	lockdep_assert_held(&wq_pool_mutex);
3753 
3754 	/* do we already have a matching pool? */
3755 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3756 		if (wqattrs_equal(pool->attrs, attrs)) {
3757 			pool->refcnt++;
3758 			return pool;
3759 		}
3760 	}
3761 
3762 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3763 	if (wq_numa_enabled) {
3764 		for_each_node(node) {
3765 			if (cpumask_subset(attrs->cpumask,
3766 					   wq_numa_possible_cpumask[node])) {
3767 				target_node = node;
3768 				break;
3769 			}
3770 		}
3771 	}
3772 
3773 	/* nope, create a new one */
3774 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3775 	if (!pool || init_worker_pool(pool) < 0)
3776 		goto fail;
3777 
3778 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3779 	copy_workqueue_attrs(pool->attrs, attrs);
3780 	pool->node = target_node;
3781 
3782 	/*
3783 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3784 	 * 'struct workqueue_attrs' comments for detail.
3785 	 */
3786 	pool->attrs->no_numa = false;
3787 
3788 	if (worker_pool_assign_id(pool) < 0)
3789 		goto fail;
3790 
3791 	/* create and start the initial worker */
3792 	if (wq_online && !create_worker(pool))
3793 		goto fail;
3794 
3795 	/* install */
3796 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3797 
3798 	return pool;
3799 fail:
3800 	if (pool)
3801 		put_unbound_pool(pool);
3802 	return NULL;
3803 }
3804 
3805 static void rcu_free_pwq(struct rcu_head *rcu)
3806 {
3807 	kmem_cache_free(pwq_cache,
3808 			container_of(rcu, struct pool_workqueue, rcu));
3809 }
3810 
3811 /*
3812  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3813  * and needs to be destroyed.
3814  */
3815 static void pwq_unbound_release_workfn(struct work_struct *work)
3816 {
3817 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3818 						  unbound_release_work);
3819 	struct workqueue_struct *wq = pwq->wq;
3820 	struct worker_pool *pool = pwq->pool;
3821 	bool is_last = false;
3822 
3823 	/*
3824 	 * when @pwq is not linked, it doesn't hold any reference to the
3825 	 * @wq, and @wq is invalid to access.
3826 	 */
3827 	if (!list_empty(&pwq->pwqs_node)) {
3828 		if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3829 			return;
3830 
3831 		mutex_lock(&wq->mutex);
3832 		list_del_rcu(&pwq->pwqs_node);
3833 		is_last = list_empty(&wq->pwqs);
3834 		mutex_unlock(&wq->mutex);
3835 	}
3836 
3837 	mutex_lock(&wq_pool_mutex);
3838 	put_unbound_pool(pool);
3839 	mutex_unlock(&wq_pool_mutex);
3840 
3841 	call_rcu(&pwq->rcu, rcu_free_pwq);
3842 
3843 	/*
3844 	 * If we're the last pwq going away, @wq is already dead and no one
3845 	 * is gonna access it anymore.  Schedule RCU free.
3846 	 */
3847 	if (is_last) {
3848 		wq_unregister_lockdep(wq);
3849 		call_rcu(&wq->rcu, rcu_free_wq);
3850 	}
3851 }
3852 
3853 /**
3854  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3855  * @pwq: target pool_workqueue
3856  *
3857  * If @pwq isn't freezing, set @pwq->max_active to the associated
3858  * workqueue's saved_max_active and activate inactive work items
3859  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3860  */
3861 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3862 {
3863 	struct workqueue_struct *wq = pwq->wq;
3864 	bool freezable = wq->flags & WQ_FREEZABLE;
3865 	unsigned long flags;
3866 
3867 	/* for @wq->saved_max_active */
3868 	lockdep_assert_held(&wq->mutex);
3869 
3870 	/* fast exit for non-freezable wqs */
3871 	if (!freezable && pwq->max_active == wq->saved_max_active)
3872 		return;
3873 
3874 	/* this function can be called during early boot w/ irq disabled */
3875 	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3876 
3877 	/*
3878 	 * During [un]freezing, the caller is responsible for ensuring that
3879 	 * this function is called at least once after @workqueue_freezing
3880 	 * is updated and visible.
3881 	 */
3882 	if (!freezable || !workqueue_freezing) {
3883 		bool kick = false;
3884 
3885 		pwq->max_active = wq->saved_max_active;
3886 
3887 		while (!list_empty(&pwq->inactive_works) &&
3888 		       pwq->nr_active < pwq->max_active) {
3889 			pwq_activate_first_inactive(pwq);
3890 			kick = true;
3891 		}
3892 
3893 		/*
3894 		 * Need to kick a worker after thawed or an unbound wq's
3895 		 * max_active is bumped. In realtime scenarios, always kicking a
3896 		 * worker will cause interference on the isolated cpu cores, so
3897 		 * let's kick iff work items were activated.
3898 		 */
3899 		if (kick)
3900 			wake_up_worker(pwq->pool);
3901 	} else {
3902 		pwq->max_active = 0;
3903 	}
3904 
3905 	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3906 }
3907 
3908 /* initialize newly allocated @pwq which is associated with @wq and @pool */
3909 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3910 		     struct worker_pool *pool)
3911 {
3912 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3913 
3914 	memset(pwq, 0, sizeof(*pwq));
3915 
3916 	pwq->pool = pool;
3917 	pwq->wq = wq;
3918 	pwq->flush_color = -1;
3919 	pwq->refcnt = 1;
3920 	INIT_LIST_HEAD(&pwq->inactive_works);
3921 	INIT_LIST_HEAD(&pwq->pwqs_node);
3922 	INIT_LIST_HEAD(&pwq->mayday_node);
3923 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3924 }
3925 
3926 /* sync @pwq with the current state of its associated wq and link it */
3927 static void link_pwq(struct pool_workqueue *pwq)
3928 {
3929 	struct workqueue_struct *wq = pwq->wq;
3930 
3931 	lockdep_assert_held(&wq->mutex);
3932 
3933 	/* may be called multiple times, ignore if already linked */
3934 	if (!list_empty(&pwq->pwqs_node))
3935 		return;
3936 
3937 	/* set the matching work_color */
3938 	pwq->work_color = wq->work_color;
3939 
3940 	/* sync max_active to the current setting */
3941 	pwq_adjust_max_active(pwq);
3942 
3943 	/* link in @pwq */
3944 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3945 }
3946 
3947 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3948 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3949 					const struct workqueue_attrs *attrs)
3950 {
3951 	struct worker_pool *pool;
3952 	struct pool_workqueue *pwq;
3953 
3954 	lockdep_assert_held(&wq_pool_mutex);
3955 
3956 	pool = get_unbound_pool(attrs);
3957 	if (!pool)
3958 		return NULL;
3959 
3960 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3961 	if (!pwq) {
3962 		put_unbound_pool(pool);
3963 		return NULL;
3964 	}
3965 
3966 	init_pwq(pwq, wq, pool);
3967 	return pwq;
3968 }
3969 
3970 /**
3971  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3972  * @attrs: the wq_attrs of the default pwq of the target workqueue
3973  * @node: the target NUMA node
3974  * @cpu_going_down: if >= 0, the CPU to consider as offline
3975  * @cpumask: outarg, the resulting cpumask
3976  *
3977  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3978  * @cpu_going_down is >= 0, that cpu is considered offline during
3979  * calculation.  The result is stored in @cpumask.
3980  *
3981  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3982  * enabled and @node has online CPUs requested by @attrs, the returned
3983  * cpumask is the intersection of the possible CPUs of @node and
3984  * @attrs->cpumask.
3985  *
3986  * The caller is responsible for ensuring that the cpumask of @node stays
3987  * stable.
3988  *
3989  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3990  * %false if equal.
3991  */
3992 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3993 				 int cpu_going_down, cpumask_t *cpumask)
3994 {
3995 	if (!wq_numa_enabled || attrs->no_numa)
3996 		goto use_dfl;
3997 
3998 	/* does @node have any online CPUs @attrs wants? */
3999 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
4000 	if (cpu_going_down >= 0)
4001 		cpumask_clear_cpu(cpu_going_down, cpumask);
4002 
4003 	if (cpumask_empty(cpumask))
4004 		goto use_dfl;
4005 
4006 	/* yeap, return possible CPUs in @node that @attrs wants */
4007 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
4008 
4009 	if (cpumask_empty(cpumask)) {
4010 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4011 				"possible intersect\n");
4012 		return false;
4013 	}
4014 
4015 	return !cpumask_equal(cpumask, attrs->cpumask);
4016 
4017 use_dfl:
4018 	cpumask_copy(cpumask, attrs->cpumask);
4019 	return false;
4020 }
4021 
4022 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
4023 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
4024 						   int node,
4025 						   struct pool_workqueue *pwq)
4026 {
4027 	struct pool_workqueue *old_pwq;
4028 
4029 	lockdep_assert_held(&wq_pool_mutex);
4030 	lockdep_assert_held(&wq->mutex);
4031 
4032 	/* link_pwq() can handle duplicate calls */
4033 	link_pwq(pwq);
4034 
4035 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4036 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
4037 	return old_pwq;
4038 }
4039 
4040 /* context to store the prepared attrs & pwqs before applying */
4041 struct apply_wqattrs_ctx {
4042 	struct workqueue_struct	*wq;		/* target workqueue */
4043 	struct workqueue_attrs	*attrs;		/* attrs to apply */
4044 	struct list_head	list;		/* queued for batching commit */
4045 	struct pool_workqueue	*dfl_pwq;
4046 	struct pool_workqueue	*pwq_tbl[];
4047 };
4048 
4049 /* free the resources after success or abort */
4050 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4051 {
4052 	if (ctx) {
4053 		int node;
4054 
4055 		for_each_node(node)
4056 			put_pwq_unlocked(ctx->pwq_tbl[node]);
4057 		put_pwq_unlocked(ctx->dfl_pwq);
4058 
4059 		free_workqueue_attrs(ctx->attrs);
4060 
4061 		kfree(ctx);
4062 	}
4063 }
4064 
4065 /* allocate the attrs and pwqs for later installation */
4066 static struct apply_wqattrs_ctx *
4067 apply_wqattrs_prepare(struct workqueue_struct *wq,
4068 		      const struct workqueue_attrs *attrs,
4069 		      const cpumask_var_t unbound_cpumask)
4070 {
4071 	struct apply_wqattrs_ctx *ctx;
4072 	struct workqueue_attrs *new_attrs, *tmp_attrs;
4073 	int node;
4074 
4075 	lockdep_assert_held(&wq_pool_mutex);
4076 
4077 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
4078 
4079 	new_attrs = alloc_workqueue_attrs();
4080 	tmp_attrs = alloc_workqueue_attrs();
4081 	if (!ctx || !new_attrs || !tmp_attrs)
4082 		goto out_free;
4083 
4084 	/*
4085 	 * Calculate the attrs of the default pwq with unbound_cpumask
4086 	 * which is wq_unbound_cpumask or to set to wq_unbound_cpumask.
4087 	 * If the user configured cpumask doesn't overlap with the
4088 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
4089 	 */
4090 	copy_workqueue_attrs(new_attrs, attrs);
4091 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, unbound_cpumask);
4092 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
4093 		cpumask_copy(new_attrs->cpumask, unbound_cpumask);
4094 
4095 	/*
4096 	 * We may create multiple pwqs with differing cpumasks.  Make a
4097 	 * copy of @new_attrs which will be modified and used to obtain
4098 	 * pools.
4099 	 */
4100 	copy_workqueue_attrs(tmp_attrs, new_attrs);
4101 
4102 	/*
4103 	 * If something goes wrong during CPU up/down, we'll fall back to
4104 	 * the default pwq covering whole @attrs->cpumask.  Always create
4105 	 * it even if we don't use it immediately.
4106 	 */
4107 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4108 	if (!ctx->dfl_pwq)
4109 		goto out_free;
4110 
4111 	for_each_node(node) {
4112 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
4113 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4114 			if (!ctx->pwq_tbl[node])
4115 				goto out_free;
4116 		} else {
4117 			ctx->dfl_pwq->refcnt++;
4118 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
4119 		}
4120 	}
4121 
4122 	/* save the user configured attrs and sanitize it. */
4123 	copy_workqueue_attrs(new_attrs, attrs);
4124 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4125 	ctx->attrs = new_attrs;
4126 
4127 	ctx->wq = wq;
4128 	free_workqueue_attrs(tmp_attrs);
4129 	return ctx;
4130 
4131 out_free:
4132 	free_workqueue_attrs(tmp_attrs);
4133 	free_workqueue_attrs(new_attrs);
4134 	apply_wqattrs_cleanup(ctx);
4135 	return NULL;
4136 }
4137 
4138 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4139 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4140 {
4141 	int node;
4142 
4143 	/* all pwqs have been created successfully, let's install'em */
4144 	mutex_lock(&ctx->wq->mutex);
4145 
4146 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4147 
4148 	/* save the previous pwq and install the new one */
4149 	for_each_node(node)
4150 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4151 							  ctx->pwq_tbl[node]);
4152 
4153 	/* @dfl_pwq might not have been used, ensure it's linked */
4154 	link_pwq(ctx->dfl_pwq);
4155 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4156 
4157 	mutex_unlock(&ctx->wq->mutex);
4158 }
4159 
4160 static void apply_wqattrs_lock(void)
4161 {
4162 	/* CPUs should stay stable across pwq creations and installations */
4163 	cpus_read_lock();
4164 	mutex_lock(&wq_pool_mutex);
4165 }
4166 
4167 static void apply_wqattrs_unlock(void)
4168 {
4169 	mutex_unlock(&wq_pool_mutex);
4170 	cpus_read_unlock();
4171 }
4172 
4173 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4174 					const struct workqueue_attrs *attrs)
4175 {
4176 	struct apply_wqattrs_ctx *ctx;
4177 
4178 	/* only unbound workqueues can change attributes */
4179 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4180 		return -EINVAL;
4181 
4182 	/* creating multiple pwqs breaks ordering guarantee */
4183 	if (!list_empty(&wq->pwqs)) {
4184 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4185 			return -EINVAL;
4186 
4187 		wq->flags &= ~__WQ_ORDERED;
4188 	}
4189 
4190 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
4191 	if (!ctx)
4192 		return -ENOMEM;
4193 
4194 	/* the ctx has been prepared successfully, let's commit it */
4195 	apply_wqattrs_commit(ctx);
4196 	apply_wqattrs_cleanup(ctx);
4197 
4198 	return 0;
4199 }
4200 
4201 /**
4202  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4203  * @wq: the target workqueue
4204  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4205  *
4206  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4207  * machines, this function maps a separate pwq to each NUMA node with
4208  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4209  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4210  * items finish.  Note that a work item which repeatedly requeues itself
4211  * back-to-back will stay on its current pwq.
4212  *
4213  * Performs GFP_KERNEL allocations.
4214  *
4215  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4216  *
4217  * Return: 0 on success and -errno on failure.
4218  */
4219 int apply_workqueue_attrs(struct workqueue_struct *wq,
4220 			  const struct workqueue_attrs *attrs)
4221 {
4222 	int ret;
4223 
4224 	lockdep_assert_cpus_held();
4225 
4226 	mutex_lock(&wq_pool_mutex);
4227 	ret = apply_workqueue_attrs_locked(wq, attrs);
4228 	mutex_unlock(&wq_pool_mutex);
4229 
4230 	return ret;
4231 }
4232 
4233 /**
4234  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4235  * @wq: the target workqueue
4236  * @cpu: the CPU coming up or going down
4237  * @online: whether @cpu is coming up or going down
4238  *
4239  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4240  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4241  * @wq accordingly.
4242  *
4243  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4244  * falls back to @wq->dfl_pwq which may not be optimal but is always
4245  * correct.
4246  *
4247  * Note that when the last allowed CPU of a NUMA node goes offline for a
4248  * workqueue with a cpumask spanning multiple nodes, the workers which were
4249  * already executing the work items for the workqueue will lose their CPU
4250  * affinity and may execute on any CPU.  This is similar to how per-cpu
4251  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4252  * affinity, it's the user's responsibility to flush the work item from
4253  * CPU_DOWN_PREPARE.
4254  */
4255 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4256 				   bool online)
4257 {
4258 	int node = cpu_to_node(cpu);
4259 	int cpu_off = online ? -1 : cpu;
4260 	struct pool_workqueue *old_pwq = NULL, *pwq;
4261 	struct workqueue_attrs *target_attrs;
4262 	cpumask_t *cpumask;
4263 
4264 	lockdep_assert_held(&wq_pool_mutex);
4265 
4266 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4267 	    wq->unbound_attrs->no_numa)
4268 		return;
4269 
4270 	/*
4271 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4272 	 * Let's use a preallocated one.  The following buf is protected by
4273 	 * CPU hotplug exclusion.
4274 	 */
4275 	target_attrs = wq_update_unbound_numa_attrs_buf;
4276 	cpumask = target_attrs->cpumask;
4277 
4278 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4279 	pwq = unbound_pwq_by_node(wq, node);
4280 
4281 	/*
4282 	 * Let's determine what needs to be done.  If the target cpumask is
4283 	 * different from the default pwq's, we need to compare it to @pwq's
4284 	 * and create a new one if they don't match.  If the target cpumask
4285 	 * equals the default pwq's, the default pwq should be used.
4286 	 */
4287 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4288 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4289 			return;
4290 	} else {
4291 		goto use_dfl_pwq;
4292 	}
4293 
4294 	/* create a new pwq */
4295 	pwq = alloc_unbound_pwq(wq, target_attrs);
4296 	if (!pwq) {
4297 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4298 			wq->name);
4299 		goto use_dfl_pwq;
4300 	}
4301 
4302 	/* Install the new pwq. */
4303 	mutex_lock(&wq->mutex);
4304 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4305 	goto out_unlock;
4306 
4307 use_dfl_pwq:
4308 	mutex_lock(&wq->mutex);
4309 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4310 	get_pwq(wq->dfl_pwq);
4311 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4312 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4313 out_unlock:
4314 	mutex_unlock(&wq->mutex);
4315 	put_pwq_unlocked(old_pwq);
4316 }
4317 
4318 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4319 {
4320 	bool highpri = wq->flags & WQ_HIGHPRI;
4321 	int cpu, ret;
4322 
4323 	if (!(wq->flags & WQ_UNBOUND)) {
4324 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4325 		if (!wq->cpu_pwqs)
4326 			return -ENOMEM;
4327 
4328 		for_each_possible_cpu(cpu) {
4329 			struct pool_workqueue *pwq =
4330 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4331 			struct worker_pool *cpu_pools =
4332 				per_cpu(cpu_worker_pools, cpu);
4333 
4334 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4335 
4336 			mutex_lock(&wq->mutex);
4337 			link_pwq(pwq);
4338 			mutex_unlock(&wq->mutex);
4339 		}
4340 		return 0;
4341 	}
4342 
4343 	cpus_read_lock();
4344 	if (wq->flags & __WQ_ORDERED) {
4345 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4346 		/* there should only be single pwq for ordering guarantee */
4347 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4348 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4349 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4350 	} else {
4351 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4352 	}
4353 	cpus_read_unlock();
4354 
4355 	return ret;
4356 }
4357 
4358 static int wq_clamp_max_active(int max_active, unsigned int flags,
4359 			       const char *name)
4360 {
4361 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4362 
4363 	if (max_active < 1 || max_active > lim)
4364 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4365 			max_active, name, 1, lim);
4366 
4367 	return clamp_val(max_active, 1, lim);
4368 }
4369 
4370 /*
4371  * Workqueues which may be used during memory reclaim should have a rescuer
4372  * to guarantee forward progress.
4373  */
4374 static int init_rescuer(struct workqueue_struct *wq)
4375 {
4376 	struct worker *rescuer;
4377 	int ret;
4378 
4379 	if (!(wq->flags & WQ_MEM_RECLAIM))
4380 		return 0;
4381 
4382 	rescuer = alloc_worker(NUMA_NO_NODE);
4383 	if (!rescuer)
4384 		return -ENOMEM;
4385 
4386 	rescuer->rescue_wq = wq;
4387 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4388 	if (IS_ERR(rescuer->task)) {
4389 		ret = PTR_ERR(rescuer->task);
4390 		kfree(rescuer);
4391 		return ret;
4392 	}
4393 
4394 	wq->rescuer = rescuer;
4395 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4396 	wake_up_process(rescuer->task);
4397 
4398 	return 0;
4399 }
4400 
4401 __printf(1, 4)
4402 struct workqueue_struct *alloc_workqueue(const char *fmt,
4403 					 unsigned int flags,
4404 					 int max_active, ...)
4405 {
4406 	size_t tbl_size = 0;
4407 	va_list args;
4408 	struct workqueue_struct *wq;
4409 	struct pool_workqueue *pwq;
4410 
4411 	/*
4412 	 * Unbound && max_active == 1 used to imply ordered, which is no
4413 	 * longer the case on NUMA machines due to per-node pools.  While
4414 	 * alloc_ordered_workqueue() is the right way to create an ordered
4415 	 * workqueue, keep the previous behavior to avoid subtle breakages
4416 	 * on NUMA.
4417 	 */
4418 	if ((flags & WQ_UNBOUND) && max_active == 1)
4419 		flags |= __WQ_ORDERED;
4420 
4421 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4422 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4423 		flags |= WQ_UNBOUND;
4424 
4425 	/* allocate wq and format name */
4426 	if (flags & WQ_UNBOUND)
4427 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4428 
4429 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4430 	if (!wq)
4431 		return NULL;
4432 
4433 	if (flags & WQ_UNBOUND) {
4434 		wq->unbound_attrs = alloc_workqueue_attrs();
4435 		if (!wq->unbound_attrs)
4436 			goto err_free_wq;
4437 	}
4438 
4439 	va_start(args, max_active);
4440 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4441 	va_end(args);
4442 
4443 	max_active = max_active ?: WQ_DFL_ACTIVE;
4444 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4445 
4446 	/* init wq */
4447 	wq->flags = flags;
4448 	wq->saved_max_active = max_active;
4449 	mutex_init(&wq->mutex);
4450 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4451 	INIT_LIST_HEAD(&wq->pwqs);
4452 	INIT_LIST_HEAD(&wq->flusher_queue);
4453 	INIT_LIST_HEAD(&wq->flusher_overflow);
4454 	INIT_LIST_HEAD(&wq->maydays);
4455 
4456 	wq_init_lockdep(wq);
4457 	INIT_LIST_HEAD(&wq->list);
4458 
4459 	if (alloc_and_link_pwqs(wq) < 0)
4460 		goto err_unreg_lockdep;
4461 
4462 	if (wq_online && init_rescuer(wq) < 0)
4463 		goto err_destroy;
4464 
4465 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4466 		goto err_destroy;
4467 
4468 	/*
4469 	 * wq_pool_mutex protects global freeze state and workqueues list.
4470 	 * Grab it, adjust max_active and add the new @wq to workqueues
4471 	 * list.
4472 	 */
4473 	mutex_lock(&wq_pool_mutex);
4474 
4475 	mutex_lock(&wq->mutex);
4476 	for_each_pwq(pwq, wq)
4477 		pwq_adjust_max_active(pwq);
4478 	mutex_unlock(&wq->mutex);
4479 
4480 	list_add_tail_rcu(&wq->list, &workqueues);
4481 
4482 	mutex_unlock(&wq_pool_mutex);
4483 
4484 	return wq;
4485 
4486 err_unreg_lockdep:
4487 	wq_unregister_lockdep(wq);
4488 	wq_free_lockdep(wq);
4489 err_free_wq:
4490 	free_workqueue_attrs(wq->unbound_attrs);
4491 	kfree(wq);
4492 	return NULL;
4493 err_destroy:
4494 	destroy_workqueue(wq);
4495 	return NULL;
4496 }
4497 EXPORT_SYMBOL_GPL(alloc_workqueue);
4498 
4499 static bool pwq_busy(struct pool_workqueue *pwq)
4500 {
4501 	int i;
4502 
4503 	for (i = 0; i < WORK_NR_COLORS; i++)
4504 		if (pwq->nr_in_flight[i])
4505 			return true;
4506 
4507 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4508 		return true;
4509 	if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4510 		return true;
4511 
4512 	return false;
4513 }
4514 
4515 /**
4516  * destroy_workqueue - safely terminate a workqueue
4517  * @wq: target workqueue
4518  *
4519  * Safely destroy a workqueue. All work currently pending will be done first.
4520  */
4521 void destroy_workqueue(struct workqueue_struct *wq)
4522 {
4523 	struct pool_workqueue *pwq;
4524 	int node;
4525 
4526 	/*
4527 	 * Remove it from sysfs first so that sanity check failure doesn't
4528 	 * lead to sysfs name conflicts.
4529 	 */
4530 	workqueue_sysfs_unregister(wq);
4531 
4532 	/* mark the workqueue destruction is in progress */
4533 	mutex_lock(&wq->mutex);
4534 	wq->flags |= __WQ_DESTROYING;
4535 	mutex_unlock(&wq->mutex);
4536 
4537 	/* drain it before proceeding with destruction */
4538 	drain_workqueue(wq);
4539 
4540 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4541 	if (wq->rescuer) {
4542 		struct worker *rescuer = wq->rescuer;
4543 
4544 		/* this prevents new queueing */
4545 		raw_spin_lock_irq(&wq_mayday_lock);
4546 		wq->rescuer = NULL;
4547 		raw_spin_unlock_irq(&wq_mayday_lock);
4548 
4549 		/* rescuer will empty maydays list before exiting */
4550 		kthread_stop(rescuer->task);
4551 		kfree(rescuer);
4552 	}
4553 
4554 	/*
4555 	 * Sanity checks - grab all the locks so that we wait for all
4556 	 * in-flight operations which may do put_pwq().
4557 	 */
4558 	mutex_lock(&wq_pool_mutex);
4559 	mutex_lock(&wq->mutex);
4560 	for_each_pwq(pwq, wq) {
4561 		raw_spin_lock_irq(&pwq->pool->lock);
4562 		if (WARN_ON(pwq_busy(pwq))) {
4563 			pr_warn("%s: %s has the following busy pwq\n",
4564 				__func__, wq->name);
4565 			show_pwq(pwq);
4566 			raw_spin_unlock_irq(&pwq->pool->lock);
4567 			mutex_unlock(&wq->mutex);
4568 			mutex_unlock(&wq_pool_mutex);
4569 			show_one_workqueue(wq);
4570 			return;
4571 		}
4572 		raw_spin_unlock_irq(&pwq->pool->lock);
4573 	}
4574 	mutex_unlock(&wq->mutex);
4575 
4576 	/*
4577 	 * wq list is used to freeze wq, remove from list after
4578 	 * flushing is complete in case freeze races us.
4579 	 */
4580 	list_del_rcu(&wq->list);
4581 	mutex_unlock(&wq_pool_mutex);
4582 
4583 	if (!(wq->flags & WQ_UNBOUND)) {
4584 		wq_unregister_lockdep(wq);
4585 		/*
4586 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4587 		 * schedule RCU free.
4588 		 */
4589 		call_rcu(&wq->rcu, rcu_free_wq);
4590 	} else {
4591 		/*
4592 		 * We're the sole accessor of @wq at this point.  Directly
4593 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4594 		 * @wq will be freed when the last pwq is released.
4595 		 */
4596 		for_each_node(node) {
4597 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4598 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4599 			put_pwq_unlocked(pwq);
4600 		}
4601 
4602 		/*
4603 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4604 		 * put.  Don't access it afterwards.
4605 		 */
4606 		pwq = wq->dfl_pwq;
4607 		wq->dfl_pwq = NULL;
4608 		put_pwq_unlocked(pwq);
4609 	}
4610 }
4611 EXPORT_SYMBOL_GPL(destroy_workqueue);
4612 
4613 /**
4614  * workqueue_set_max_active - adjust max_active of a workqueue
4615  * @wq: target workqueue
4616  * @max_active: new max_active value.
4617  *
4618  * Set max_active of @wq to @max_active.
4619  *
4620  * CONTEXT:
4621  * Don't call from IRQ context.
4622  */
4623 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4624 {
4625 	struct pool_workqueue *pwq;
4626 
4627 	/* disallow meddling with max_active for ordered workqueues */
4628 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4629 		return;
4630 
4631 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4632 
4633 	mutex_lock(&wq->mutex);
4634 
4635 	wq->flags &= ~__WQ_ORDERED;
4636 	wq->saved_max_active = max_active;
4637 
4638 	for_each_pwq(pwq, wq)
4639 		pwq_adjust_max_active(pwq);
4640 
4641 	mutex_unlock(&wq->mutex);
4642 }
4643 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4644 
4645 /**
4646  * current_work - retrieve %current task's work struct
4647  *
4648  * Determine if %current task is a workqueue worker and what it's working on.
4649  * Useful to find out the context that the %current task is running in.
4650  *
4651  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4652  */
4653 struct work_struct *current_work(void)
4654 {
4655 	struct worker *worker = current_wq_worker();
4656 
4657 	return worker ? worker->current_work : NULL;
4658 }
4659 EXPORT_SYMBOL(current_work);
4660 
4661 /**
4662  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4663  *
4664  * Determine whether %current is a workqueue rescuer.  Can be used from
4665  * work functions to determine whether it's being run off the rescuer task.
4666  *
4667  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4668  */
4669 bool current_is_workqueue_rescuer(void)
4670 {
4671 	struct worker *worker = current_wq_worker();
4672 
4673 	return worker && worker->rescue_wq;
4674 }
4675 
4676 /**
4677  * workqueue_congested - test whether a workqueue is congested
4678  * @cpu: CPU in question
4679  * @wq: target workqueue
4680  *
4681  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4682  * no synchronization around this function and the test result is
4683  * unreliable and only useful as advisory hints or for debugging.
4684  *
4685  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4686  * Note that both per-cpu and unbound workqueues may be associated with
4687  * multiple pool_workqueues which have separate congested states.  A
4688  * workqueue being congested on one CPU doesn't mean the workqueue is also
4689  * contested on other CPUs / NUMA nodes.
4690  *
4691  * Return:
4692  * %true if congested, %false otherwise.
4693  */
4694 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4695 {
4696 	struct pool_workqueue *pwq;
4697 	bool ret;
4698 
4699 	rcu_read_lock();
4700 	preempt_disable();
4701 
4702 	if (cpu == WORK_CPU_UNBOUND)
4703 		cpu = smp_processor_id();
4704 
4705 	if (!(wq->flags & WQ_UNBOUND))
4706 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4707 	else
4708 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4709 
4710 	ret = !list_empty(&pwq->inactive_works);
4711 	preempt_enable();
4712 	rcu_read_unlock();
4713 
4714 	return ret;
4715 }
4716 EXPORT_SYMBOL_GPL(workqueue_congested);
4717 
4718 /**
4719  * work_busy - test whether a work is currently pending or running
4720  * @work: the work to be tested
4721  *
4722  * Test whether @work is currently pending or running.  There is no
4723  * synchronization around this function and the test result is
4724  * unreliable and only useful as advisory hints or for debugging.
4725  *
4726  * Return:
4727  * OR'd bitmask of WORK_BUSY_* bits.
4728  */
4729 unsigned int work_busy(struct work_struct *work)
4730 {
4731 	struct worker_pool *pool;
4732 	unsigned long flags;
4733 	unsigned int ret = 0;
4734 
4735 	if (work_pending(work))
4736 		ret |= WORK_BUSY_PENDING;
4737 
4738 	rcu_read_lock();
4739 	pool = get_work_pool(work);
4740 	if (pool) {
4741 		raw_spin_lock_irqsave(&pool->lock, flags);
4742 		if (find_worker_executing_work(pool, work))
4743 			ret |= WORK_BUSY_RUNNING;
4744 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4745 	}
4746 	rcu_read_unlock();
4747 
4748 	return ret;
4749 }
4750 EXPORT_SYMBOL_GPL(work_busy);
4751 
4752 /**
4753  * set_worker_desc - set description for the current work item
4754  * @fmt: printf-style format string
4755  * @...: arguments for the format string
4756  *
4757  * This function can be called by a running work function to describe what
4758  * the work item is about.  If the worker task gets dumped, this
4759  * information will be printed out together to help debugging.  The
4760  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4761  */
4762 void set_worker_desc(const char *fmt, ...)
4763 {
4764 	struct worker *worker = current_wq_worker();
4765 	va_list args;
4766 
4767 	if (worker) {
4768 		va_start(args, fmt);
4769 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4770 		va_end(args);
4771 	}
4772 }
4773 EXPORT_SYMBOL_GPL(set_worker_desc);
4774 
4775 /**
4776  * print_worker_info - print out worker information and description
4777  * @log_lvl: the log level to use when printing
4778  * @task: target task
4779  *
4780  * If @task is a worker and currently executing a work item, print out the
4781  * name of the workqueue being serviced and worker description set with
4782  * set_worker_desc() by the currently executing work item.
4783  *
4784  * This function can be safely called on any task as long as the
4785  * task_struct itself is accessible.  While safe, this function isn't
4786  * synchronized and may print out mixups or garbages of limited length.
4787  */
4788 void print_worker_info(const char *log_lvl, struct task_struct *task)
4789 {
4790 	work_func_t *fn = NULL;
4791 	char name[WQ_NAME_LEN] = { };
4792 	char desc[WORKER_DESC_LEN] = { };
4793 	struct pool_workqueue *pwq = NULL;
4794 	struct workqueue_struct *wq = NULL;
4795 	struct worker *worker;
4796 
4797 	if (!(task->flags & PF_WQ_WORKER))
4798 		return;
4799 
4800 	/*
4801 	 * This function is called without any synchronization and @task
4802 	 * could be in any state.  Be careful with dereferences.
4803 	 */
4804 	worker = kthread_probe_data(task);
4805 
4806 	/*
4807 	 * Carefully copy the associated workqueue's workfn, name and desc.
4808 	 * Keep the original last '\0' in case the original is garbage.
4809 	 */
4810 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4811 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4812 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4813 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4814 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4815 
4816 	if (fn || name[0] || desc[0]) {
4817 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4818 		if (strcmp(name, desc))
4819 			pr_cont(" (%s)", desc);
4820 		pr_cont("\n");
4821 	}
4822 }
4823 
4824 static void pr_cont_pool_info(struct worker_pool *pool)
4825 {
4826 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4827 	if (pool->node != NUMA_NO_NODE)
4828 		pr_cont(" node=%d", pool->node);
4829 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4830 }
4831 
4832 struct pr_cont_work_struct {
4833 	bool comma;
4834 	work_func_t func;
4835 	long ctr;
4836 };
4837 
4838 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
4839 {
4840 	if (!pcwsp->ctr)
4841 		goto out_record;
4842 	if (func == pcwsp->func) {
4843 		pcwsp->ctr++;
4844 		return;
4845 	}
4846 	if (pcwsp->ctr == 1)
4847 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
4848 	else
4849 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
4850 	pcwsp->ctr = 0;
4851 out_record:
4852 	if ((long)func == -1L)
4853 		return;
4854 	pcwsp->comma = comma;
4855 	pcwsp->func = func;
4856 	pcwsp->ctr = 1;
4857 }
4858 
4859 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
4860 {
4861 	if (work->func == wq_barrier_func) {
4862 		struct wq_barrier *barr;
4863 
4864 		barr = container_of(work, struct wq_barrier, work);
4865 
4866 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
4867 		pr_cont("%s BAR(%d)", comma ? "," : "",
4868 			task_pid_nr(barr->task));
4869 	} else {
4870 		if (!comma)
4871 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
4872 		pr_cont_work_flush(comma, work->func, pcwsp);
4873 	}
4874 }
4875 
4876 static void show_pwq(struct pool_workqueue *pwq)
4877 {
4878 	struct pr_cont_work_struct pcws = { .ctr = 0, };
4879 	struct worker_pool *pool = pwq->pool;
4880 	struct work_struct *work;
4881 	struct worker *worker;
4882 	bool has_in_flight = false, has_pending = false;
4883 	int bkt;
4884 
4885 	pr_info("  pwq %d:", pool->id);
4886 	pr_cont_pool_info(pool);
4887 
4888 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4889 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4890 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4891 
4892 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4893 		if (worker->current_pwq == pwq) {
4894 			has_in_flight = true;
4895 			break;
4896 		}
4897 	}
4898 	if (has_in_flight) {
4899 		bool comma = false;
4900 
4901 		pr_info("    in-flight:");
4902 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4903 			if (worker->current_pwq != pwq)
4904 				continue;
4905 
4906 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4907 				task_pid_nr(worker->task),
4908 				worker->rescue_wq ? "(RESCUER)" : "",
4909 				worker->current_func);
4910 			list_for_each_entry(work, &worker->scheduled, entry)
4911 				pr_cont_work(false, work, &pcws);
4912 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
4913 			comma = true;
4914 		}
4915 		pr_cont("\n");
4916 	}
4917 
4918 	list_for_each_entry(work, &pool->worklist, entry) {
4919 		if (get_work_pwq(work) == pwq) {
4920 			has_pending = true;
4921 			break;
4922 		}
4923 	}
4924 	if (has_pending) {
4925 		bool comma = false;
4926 
4927 		pr_info("    pending:");
4928 		list_for_each_entry(work, &pool->worklist, entry) {
4929 			if (get_work_pwq(work) != pwq)
4930 				continue;
4931 
4932 			pr_cont_work(comma, work, &pcws);
4933 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4934 		}
4935 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
4936 		pr_cont("\n");
4937 	}
4938 
4939 	if (!list_empty(&pwq->inactive_works)) {
4940 		bool comma = false;
4941 
4942 		pr_info("    inactive:");
4943 		list_for_each_entry(work, &pwq->inactive_works, entry) {
4944 			pr_cont_work(comma, work, &pcws);
4945 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4946 		}
4947 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
4948 		pr_cont("\n");
4949 	}
4950 }
4951 
4952 /**
4953  * show_one_workqueue - dump state of specified workqueue
4954  * @wq: workqueue whose state will be printed
4955  */
4956 void show_one_workqueue(struct workqueue_struct *wq)
4957 {
4958 	struct pool_workqueue *pwq;
4959 	bool idle = true;
4960 	unsigned long flags;
4961 
4962 	for_each_pwq(pwq, wq) {
4963 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4964 			idle = false;
4965 			break;
4966 		}
4967 	}
4968 	if (idle) /* Nothing to print for idle workqueue */
4969 		return;
4970 
4971 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4972 
4973 	for_each_pwq(pwq, wq) {
4974 		raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4975 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4976 			/*
4977 			 * Defer printing to avoid deadlocks in console
4978 			 * drivers that queue work while holding locks
4979 			 * also taken in their write paths.
4980 			 */
4981 			printk_deferred_enter();
4982 			show_pwq(pwq);
4983 			printk_deferred_exit();
4984 		}
4985 		raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4986 		/*
4987 		 * We could be printing a lot from atomic context, e.g.
4988 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
4989 		 * hard lockup.
4990 		 */
4991 		touch_nmi_watchdog();
4992 	}
4993 
4994 }
4995 
4996 /**
4997  * show_one_worker_pool - dump state of specified worker pool
4998  * @pool: worker pool whose state will be printed
4999  */
5000 static void show_one_worker_pool(struct worker_pool *pool)
5001 {
5002 	struct worker *worker;
5003 	bool first = true;
5004 	unsigned long flags;
5005 
5006 	raw_spin_lock_irqsave(&pool->lock, flags);
5007 	if (pool->nr_workers == pool->nr_idle)
5008 		goto next_pool;
5009 	/*
5010 	 * Defer printing to avoid deadlocks in console drivers that
5011 	 * queue work while holding locks also taken in their write
5012 	 * paths.
5013 	 */
5014 	printk_deferred_enter();
5015 	pr_info("pool %d:", pool->id);
5016 	pr_cont_pool_info(pool);
5017 	pr_cont(" hung=%us workers=%d",
5018 		jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
5019 		pool->nr_workers);
5020 	if (pool->manager)
5021 		pr_cont(" manager: %d",
5022 			task_pid_nr(pool->manager->task));
5023 	list_for_each_entry(worker, &pool->idle_list, entry) {
5024 		pr_cont(" %s%d", first ? "idle: " : "",
5025 			task_pid_nr(worker->task));
5026 		first = false;
5027 	}
5028 	pr_cont("\n");
5029 	printk_deferred_exit();
5030 next_pool:
5031 	raw_spin_unlock_irqrestore(&pool->lock, flags);
5032 	/*
5033 	 * We could be printing a lot from atomic context, e.g.
5034 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
5035 	 * hard lockup.
5036 	 */
5037 	touch_nmi_watchdog();
5038 
5039 }
5040 
5041 /**
5042  * show_all_workqueues - dump workqueue state
5043  *
5044  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
5045  * all busy workqueues and pools.
5046  */
5047 void show_all_workqueues(void)
5048 {
5049 	struct workqueue_struct *wq;
5050 	struct worker_pool *pool;
5051 	int pi;
5052 
5053 	rcu_read_lock();
5054 
5055 	pr_info("Showing busy workqueues and worker pools:\n");
5056 
5057 	list_for_each_entry_rcu(wq, &workqueues, list)
5058 		show_one_workqueue(wq);
5059 
5060 	for_each_pool(pool, pi)
5061 		show_one_worker_pool(pool);
5062 
5063 	rcu_read_unlock();
5064 }
5065 
5066 /* used to show worker information through /proc/PID/{comm,stat,status} */
5067 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5068 {
5069 	int off;
5070 
5071 	/* always show the actual comm */
5072 	off = strscpy(buf, task->comm, size);
5073 	if (off < 0)
5074 		return;
5075 
5076 	/* stabilize PF_WQ_WORKER and worker pool association */
5077 	mutex_lock(&wq_pool_attach_mutex);
5078 
5079 	if (task->flags & PF_WQ_WORKER) {
5080 		struct worker *worker = kthread_data(task);
5081 		struct worker_pool *pool = worker->pool;
5082 
5083 		if (pool) {
5084 			raw_spin_lock_irq(&pool->lock);
5085 			/*
5086 			 * ->desc tracks information (wq name or
5087 			 * set_worker_desc()) for the latest execution.  If
5088 			 * current, prepend '+', otherwise '-'.
5089 			 */
5090 			if (worker->desc[0] != '\0') {
5091 				if (worker->current_work)
5092 					scnprintf(buf + off, size - off, "+%s",
5093 						  worker->desc);
5094 				else
5095 					scnprintf(buf + off, size - off, "-%s",
5096 						  worker->desc);
5097 			}
5098 			raw_spin_unlock_irq(&pool->lock);
5099 		}
5100 	}
5101 
5102 	mutex_unlock(&wq_pool_attach_mutex);
5103 }
5104 
5105 #ifdef CONFIG_SMP
5106 
5107 /*
5108  * CPU hotplug.
5109  *
5110  * There are two challenges in supporting CPU hotplug.  Firstly, there
5111  * are a lot of assumptions on strong associations among work, pwq and
5112  * pool which make migrating pending and scheduled works very
5113  * difficult to implement without impacting hot paths.  Secondly,
5114  * worker pools serve mix of short, long and very long running works making
5115  * blocked draining impractical.
5116  *
5117  * This is solved by allowing the pools to be disassociated from the CPU
5118  * running as an unbound one and allowing it to be reattached later if the
5119  * cpu comes back online.
5120  */
5121 
5122 static void unbind_workers(int cpu)
5123 {
5124 	struct worker_pool *pool;
5125 	struct worker *worker;
5126 
5127 	for_each_cpu_worker_pool(pool, cpu) {
5128 		mutex_lock(&wq_pool_attach_mutex);
5129 		raw_spin_lock_irq(&pool->lock);
5130 
5131 		/*
5132 		 * We've blocked all attach/detach operations. Make all workers
5133 		 * unbound and set DISASSOCIATED.  Before this, all workers
5134 		 * must be on the cpu.  After this, they may become diasporas.
5135 		 * And the preemption disabled section in their sched callbacks
5136 		 * are guaranteed to see WORKER_UNBOUND since the code here
5137 		 * is on the same cpu.
5138 		 */
5139 		for_each_pool_worker(worker, pool)
5140 			worker->flags |= WORKER_UNBOUND;
5141 
5142 		pool->flags |= POOL_DISASSOCIATED;
5143 
5144 		/*
5145 		 * The handling of nr_running in sched callbacks are disabled
5146 		 * now.  Zap nr_running.  After this, nr_running stays zero and
5147 		 * need_more_worker() and keep_working() are always true as
5148 		 * long as the worklist is not empty.  This pool now behaves as
5149 		 * an unbound (in terms of concurrency management) pool which
5150 		 * are served by workers tied to the pool.
5151 		 */
5152 		pool->nr_running = 0;
5153 
5154 		/*
5155 		 * With concurrency management just turned off, a busy
5156 		 * worker blocking could lead to lengthy stalls.  Kick off
5157 		 * unbound chain execution of currently pending work items.
5158 		 */
5159 		wake_up_worker(pool);
5160 
5161 		raw_spin_unlock_irq(&pool->lock);
5162 
5163 		for_each_pool_worker(worker, pool)
5164 			unbind_worker(worker);
5165 
5166 		mutex_unlock(&wq_pool_attach_mutex);
5167 	}
5168 }
5169 
5170 /**
5171  * rebind_workers - rebind all workers of a pool to the associated CPU
5172  * @pool: pool of interest
5173  *
5174  * @pool->cpu is coming online.  Rebind all workers to the CPU.
5175  */
5176 static void rebind_workers(struct worker_pool *pool)
5177 {
5178 	struct worker *worker;
5179 
5180 	lockdep_assert_held(&wq_pool_attach_mutex);
5181 
5182 	/*
5183 	 * Restore CPU affinity of all workers.  As all idle workers should
5184 	 * be on the run-queue of the associated CPU before any local
5185 	 * wake-ups for concurrency management happen, restore CPU affinity
5186 	 * of all workers first and then clear UNBOUND.  As we're called
5187 	 * from CPU_ONLINE, the following shouldn't fail.
5188 	 */
5189 	for_each_pool_worker(worker, pool) {
5190 		kthread_set_per_cpu(worker->task, pool->cpu);
5191 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5192 						  pool->attrs->cpumask) < 0);
5193 	}
5194 
5195 	raw_spin_lock_irq(&pool->lock);
5196 
5197 	pool->flags &= ~POOL_DISASSOCIATED;
5198 
5199 	for_each_pool_worker(worker, pool) {
5200 		unsigned int worker_flags = worker->flags;
5201 
5202 		/*
5203 		 * We want to clear UNBOUND but can't directly call
5204 		 * worker_clr_flags() or adjust nr_running.  Atomically
5205 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5206 		 * @worker will clear REBOUND using worker_clr_flags() when
5207 		 * it initiates the next execution cycle thus restoring
5208 		 * concurrency management.  Note that when or whether
5209 		 * @worker clears REBOUND doesn't affect correctness.
5210 		 *
5211 		 * WRITE_ONCE() is necessary because @worker->flags may be
5212 		 * tested without holding any lock in
5213 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5214 		 * fail incorrectly leading to premature concurrency
5215 		 * management operations.
5216 		 */
5217 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5218 		worker_flags |= WORKER_REBOUND;
5219 		worker_flags &= ~WORKER_UNBOUND;
5220 		WRITE_ONCE(worker->flags, worker_flags);
5221 	}
5222 
5223 	raw_spin_unlock_irq(&pool->lock);
5224 }
5225 
5226 /**
5227  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5228  * @pool: unbound pool of interest
5229  * @cpu: the CPU which is coming up
5230  *
5231  * An unbound pool may end up with a cpumask which doesn't have any online
5232  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5233  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5234  * online CPU before, cpus_allowed of all its workers should be restored.
5235  */
5236 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5237 {
5238 	static cpumask_t cpumask;
5239 	struct worker *worker;
5240 
5241 	lockdep_assert_held(&wq_pool_attach_mutex);
5242 
5243 	/* is @cpu allowed for @pool? */
5244 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5245 		return;
5246 
5247 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5248 
5249 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5250 	for_each_pool_worker(worker, pool)
5251 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5252 }
5253 
5254 int workqueue_prepare_cpu(unsigned int cpu)
5255 {
5256 	struct worker_pool *pool;
5257 
5258 	for_each_cpu_worker_pool(pool, cpu) {
5259 		if (pool->nr_workers)
5260 			continue;
5261 		if (!create_worker(pool))
5262 			return -ENOMEM;
5263 	}
5264 	return 0;
5265 }
5266 
5267 int workqueue_online_cpu(unsigned int cpu)
5268 {
5269 	struct worker_pool *pool;
5270 	struct workqueue_struct *wq;
5271 	int pi;
5272 
5273 	mutex_lock(&wq_pool_mutex);
5274 
5275 	for_each_pool(pool, pi) {
5276 		mutex_lock(&wq_pool_attach_mutex);
5277 
5278 		if (pool->cpu == cpu)
5279 			rebind_workers(pool);
5280 		else if (pool->cpu < 0)
5281 			restore_unbound_workers_cpumask(pool, cpu);
5282 
5283 		mutex_unlock(&wq_pool_attach_mutex);
5284 	}
5285 
5286 	/* update NUMA affinity of unbound workqueues */
5287 	list_for_each_entry(wq, &workqueues, list)
5288 		wq_update_unbound_numa(wq, cpu, true);
5289 
5290 	mutex_unlock(&wq_pool_mutex);
5291 	return 0;
5292 }
5293 
5294 int workqueue_offline_cpu(unsigned int cpu)
5295 {
5296 	struct workqueue_struct *wq;
5297 
5298 	/* unbinding per-cpu workers should happen on the local CPU */
5299 	if (WARN_ON(cpu != smp_processor_id()))
5300 		return -1;
5301 
5302 	unbind_workers(cpu);
5303 
5304 	/* update NUMA affinity of unbound workqueues */
5305 	mutex_lock(&wq_pool_mutex);
5306 	list_for_each_entry(wq, &workqueues, list)
5307 		wq_update_unbound_numa(wq, cpu, false);
5308 	mutex_unlock(&wq_pool_mutex);
5309 
5310 	return 0;
5311 }
5312 
5313 struct work_for_cpu {
5314 	struct work_struct work;
5315 	long (*fn)(void *);
5316 	void *arg;
5317 	long ret;
5318 };
5319 
5320 static void work_for_cpu_fn(struct work_struct *work)
5321 {
5322 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5323 
5324 	wfc->ret = wfc->fn(wfc->arg);
5325 }
5326 
5327 /**
5328  * work_on_cpu - run a function in thread context on a particular cpu
5329  * @cpu: the cpu to run on
5330  * @fn: the function to run
5331  * @arg: the function arg
5332  *
5333  * It is up to the caller to ensure that the cpu doesn't go offline.
5334  * The caller must not hold any locks which would prevent @fn from completing.
5335  *
5336  * Return: The value @fn returns.
5337  */
5338 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5339 {
5340 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5341 
5342 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5343 	schedule_work_on(cpu, &wfc.work);
5344 	flush_work(&wfc.work);
5345 	destroy_work_on_stack(&wfc.work);
5346 	return wfc.ret;
5347 }
5348 EXPORT_SYMBOL_GPL(work_on_cpu);
5349 
5350 /**
5351  * work_on_cpu_safe - run a function in thread context on a particular cpu
5352  * @cpu: the cpu to run on
5353  * @fn:  the function to run
5354  * @arg: the function argument
5355  *
5356  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5357  * any locks which would prevent @fn from completing.
5358  *
5359  * Return: The value @fn returns.
5360  */
5361 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5362 {
5363 	long ret = -ENODEV;
5364 
5365 	cpus_read_lock();
5366 	if (cpu_online(cpu))
5367 		ret = work_on_cpu(cpu, fn, arg);
5368 	cpus_read_unlock();
5369 	return ret;
5370 }
5371 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5372 #endif /* CONFIG_SMP */
5373 
5374 #ifdef CONFIG_FREEZER
5375 
5376 /**
5377  * freeze_workqueues_begin - begin freezing workqueues
5378  *
5379  * Start freezing workqueues.  After this function returns, all freezable
5380  * workqueues will queue new works to their inactive_works list instead of
5381  * pool->worklist.
5382  *
5383  * CONTEXT:
5384  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5385  */
5386 void freeze_workqueues_begin(void)
5387 {
5388 	struct workqueue_struct *wq;
5389 	struct pool_workqueue *pwq;
5390 
5391 	mutex_lock(&wq_pool_mutex);
5392 
5393 	WARN_ON_ONCE(workqueue_freezing);
5394 	workqueue_freezing = true;
5395 
5396 	list_for_each_entry(wq, &workqueues, list) {
5397 		mutex_lock(&wq->mutex);
5398 		for_each_pwq(pwq, wq)
5399 			pwq_adjust_max_active(pwq);
5400 		mutex_unlock(&wq->mutex);
5401 	}
5402 
5403 	mutex_unlock(&wq_pool_mutex);
5404 }
5405 
5406 /**
5407  * freeze_workqueues_busy - are freezable workqueues still busy?
5408  *
5409  * Check whether freezing is complete.  This function must be called
5410  * between freeze_workqueues_begin() and thaw_workqueues().
5411  *
5412  * CONTEXT:
5413  * Grabs and releases wq_pool_mutex.
5414  *
5415  * Return:
5416  * %true if some freezable workqueues are still busy.  %false if freezing
5417  * is complete.
5418  */
5419 bool freeze_workqueues_busy(void)
5420 {
5421 	bool busy = false;
5422 	struct workqueue_struct *wq;
5423 	struct pool_workqueue *pwq;
5424 
5425 	mutex_lock(&wq_pool_mutex);
5426 
5427 	WARN_ON_ONCE(!workqueue_freezing);
5428 
5429 	list_for_each_entry(wq, &workqueues, list) {
5430 		if (!(wq->flags & WQ_FREEZABLE))
5431 			continue;
5432 		/*
5433 		 * nr_active is monotonically decreasing.  It's safe
5434 		 * to peek without lock.
5435 		 */
5436 		rcu_read_lock();
5437 		for_each_pwq(pwq, wq) {
5438 			WARN_ON_ONCE(pwq->nr_active < 0);
5439 			if (pwq->nr_active) {
5440 				busy = true;
5441 				rcu_read_unlock();
5442 				goto out_unlock;
5443 			}
5444 		}
5445 		rcu_read_unlock();
5446 	}
5447 out_unlock:
5448 	mutex_unlock(&wq_pool_mutex);
5449 	return busy;
5450 }
5451 
5452 /**
5453  * thaw_workqueues - thaw workqueues
5454  *
5455  * Thaw workqueues.  Normal queueing is restored and all collected
5456  * frozen works are transferred to their respective pool worklists.
5457  *
5458  * CONTEXT:
5459  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5460  */
5461 void thaw_workqueues(void)
5462 {
5463 	struct workqueue_struct *wq;
5464 	struct pool_workqueue *pwq;
5465 
5466 	mutex_lock(&wq_pool_mutex);
5467 
5468 	if (!workqueue_freezing)
5469 		goto out_unlock;
5470 
5471 	workqueue_freezing = false;
5472 
5473 	/* restore max_active and repopulate worklist */
5474 	list_for_each_entry(wq, &workqueues, list) {
5475 		mutex_lock(&wq->mutex);
5476 		for_each_pwq(pwq, wq)
5477 			pwq_adjust_max_active(pwq);
5478 		mutex_unlock(&wq->mutex);
5479 	}
5480 
5481 out_unlock:
5482 	mutex_unlock(&wq_pool_mutex);
5483 }
5484 #endif /* CONFIG_FREEZER */
5485 
5486 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
5487 {
5488 	LIST_HEAD(ctxs);
5489 	int ret = 0;
5490 	struct workqueue_struct *wq;
5491 	struct apply_wqattrs_ctx *ctx, *n;
5492 
5493 	lockdep_assert_held(&wq_pool_mutex);
5494 
5495 	list_for_each_entry(wq, &workqueues, list) {
5496 		if (!(wq->flags & WQ_UNBOUND))
5497 			continue;
5498 		/* creating multiple pwqs breaks ordering guarantee */
5499 		if (wq->flags & __WQ_ORDERED)
5500 			continue;
5501 
5502 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
5503 		if (!ctx) {
5504 			ret = -ENOMEM;
5505 			break;
5506 		}
5507 
5508 		list_add_tail(&ctx->list, &ctxs);
5509 	}
5510 
5511 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5512 		if (!ret)
5513 			apply_wqattrs_commit(ctx);
5514 		apply_wqattrs_cleanup(ctx);
5515 	}
5516 
5517 	if (!ret) {
5518 		mutex_lock(&wq_pool_attach_mutex);
5519 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
5520 		mutex_unlock(&wq_pool_attach_mutex);
5521 	}
5522 	return ret;
5523 }
5524 
5525 /**
5526  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5527  *  @cpumask: the cpumask to set
5528  *
5529  *  The low-level workqueues cpumask is a global cpumask that limits
5530  *  the affinity of all unbound workqueues.  This function check the @cpumask
5531  *  and apply it to all unbound workqueues and updates all pwqs of them.
5532  *
5533  *  Return:	0	- Success
5534  *  		-EINVAL	- Invalid @cpumask
5535  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5536  */
5537 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5538 {
5539 	int ret = -EINVAL;
5540 
5541 	/*
5542 	 * Not excluding isolated cpus on purpose.
5543 	 * If the user wishes to include them, we allow that.
5544 	 */
5545 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5546 	if (!cpumask_empty(cpumask)) {
5547 		apply_wqattrs_lock();
5548 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5549 			ret = 0;
5550 			goto out_unlock;
5551 		}
5552 
5553 		ret = workqueue_apply_unbound_cpumask(cpumask);
5554 
5555 out_unlock:
5556 		apply_wqattrs_unlock();
5557 	}
5558 
5559 	return ret;
5560 }
5561 
5562 #ifdef CONFIG_SYSFS
5563 /*
5564  * Workqueues with WQ_SYSFS flag set is visible to userland via
5565  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5566  * following attributes.
5567  *
5568  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5569  *  max_active	RW int	: maximum number of in-flight work items
5570  *
5571  * Unbound workqueues have the following extra attributes.
5572  *
5573  *  pool_ids	RO int	: the associated pool IDs for each node
5574  *  nice	RW int	: nice value of the workers
5575  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5576  *  numa	RW bool	: whether enable NUMA affinity
5577  */
5578 struct wq_device {
5579 	struct workqueue_struct		*wq;
5580 	struct device			dev;
5581 };
5582 
5583 static struct workqueue_struct *dev_to_wq(struct device *dev)
5584 {
5585 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5586 
5587 	return wq_dev->wq;
5588 }
5589 
5590 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5591 			    char *buf)
5592 {
5593 	struct workqueue_struct *wq = dev_to_wq(dev);
5594 
5595 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5596 }
5597 static DEVICE_ATTR_RO(per_cpu);
5598 
5599 static ssize_t max_active_show(struct device *dev,
5600 			       struct device_attribute *attr, char *buf)
5601 {
5602 	struct workqueue_struct *wq = dev_to_wq(dev);
5603 
5604 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5605 }
5606 
5607 static ssize_t max_active_store(struct device *dev,
5608 				struct device_attribute *attr, const char *buf,
5609 				size_t count)
5610 {
5611 	struct workqueue_struct *wq = dev_to_wq(dev);
5612 	int val;
5613 
5614 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5615 		return -EINVAL;
5616 
5617 	workqueue_set_max_active(wq, val);
5618 	return count;
5619 }
5620 static DEVICE_ATTR_RW(max_active);
5621 
5622 static struct attribute *wq_sysfs_attrs[] = {
5623 	&dev_attr_per_cpu.attr,
5624 	&dev_attr_max_active.attr,
5625 	NULL,
5626 };
5627 ATTRIBUTE_GROUPS(wq_sysfs);
5628 
5629 static ssize_t wq_pool_ids_show(struct device *dev,
5630 				struct device_attribute *attr, char *buf)
5631 {
5632 	struct workqueue_struct *wq = dev_to_wq(dev);
5633 	const char *delim = "";
5634 	int node, written = 0;
5635 
5636 	cpus_read_lock();
5637 	rcu_read_lock();
5638 	for_each_node(node) {
5639 		written += scnprintf(buf + written, PAGE_SIZE - written,
5640 				     "%s%d:%d", delim, node,
5641 				     unbound_pwq_by_node(wq, node)->pool->id);
5642 		delim = " ";
5643 	}
5644 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5645 	rcu_read_unlock();
5646 	cpus_read_unlock();
5647 
5648 	return written;
5649 }
5650 
5651 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5652 			    char *buf)
5653 {
5654 	struct workqueue_struct *wq = dev_to_wq(dev);
5655 	int written;
5656 
5657 	mutex_lock(&wq->mutex);
5658 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5659 	mutex_unlock(&wq->mutex);
5660 
5661 	return written;
5662 }
5663 
5664 /* prepare workqueue_attrs for sysfs store operations */
5665 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5666 {
5667 	struct workqueue_attrs *attrs;
5668 
5669 	lockdep_assert_held(&wq_pool_mutex);
5670 
5671 	attrs = alloc_workqueue_attrs();
5672 	if (!attrs)
5673 		return NULL;
5674 
5675 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5676 	return attrs;
5677 }
5678 
5679 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5680 			     const char *buf, size_t count)
5681 {
5682 	struct workqueue_struct *wq = dev_to_wq(dev);
5683 	struct workqueue_attrs *attrs;
5684 	int ret = -ENOMEM;
5685 
5686 	apply_wqattrs_lock();
5687 
5688 	attrs = wq_sysfs_prep_attrs(wq);
5689 	if (!attrs)
5690 		goto out_unlock;
5691 
5692 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5693 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5694 		ret = apply_workqueue_attrs_locked(wq, attrs);
5695 	else
5696 		ret = -EINVAL;
5697 
5698 out_unlock:
5699 	apply_wqattrs_unlock();
5700 	free_workqueue_attrs(attrs);
5701 	return ret ?: count;
5702 }
5703 
5704 static ssize_t wq_cpumask_show(struct device *dev,
5705 			       struct device_attribute *attr, char *buf)
5706 {
5707 	struct workqueue_struct *wq = dev_to_wq(dev);
5708 	int written;
5709 
5710 	mutex_lock(&wq->mutex);
5711 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5712 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5713 	mutex_unlock(&wq->mutex);
5714 	return written;
5715 }
5716 
5717 static ssize_t wq_cpumask_store(struct device *dev,
5718 				struct device_attribute *attr,
5719 				const char *buf, size_t count)
5720 {
5721 	struct workqueue_struct *wq = dev_to_wq(dev);
5722 	struct workqueue_attrs *attrs;
5723 	int ret = -ENOMEM;
5724 
5725 	apply_wqattrs_lock();
5726 
5727 	attrs = wq_sysfs_prep_attrs(wq);
5728 	if (!attrs)
5729 		goto out_unlock;
5730 
5731 	ret = cpumask_parse(buf, attrs->cpumask);
5732 	if (!ret)
5733 		ret = apply_workqueue_attrs_locked(wq, attrs);
5734 
5735 out_unlock:
5736 	apply_wqattrs_unlock();
5737 	free_workqueue_attrs(attrs);
5738 	return ret ?: count;
5739 }
5740 
5741 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5742 			    char *buf)
5743 {
5744 	struct workqueue_struct *wq = dev_to_wq(dev);
5745 	int written;
5746 
5747 	mutex_lock(&wq->mutex);
5748 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5749 			    !wq->unbound_attrs->no_numa);
5750 	mutex_unlock(&wq->mutex);
5751 
5752 	return written;
5753 }
5754 
5755 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5756 			     const char *buf, size_t count)
5757 {
5758 	struct workqueue_struct *wq = dev_to_wq(dev);
5759 	struct workqueue_attrs *attrs;
5760 	int v, ret = -ENOMEM;
5761 
5762 	apply_wqattrs_lock();
5763 
5764 	attrs = wq_sysfs_prep_attrs(wq);
5765 	if (!attrs)
5766 		goto out_unlock;
5767 
5768 	ret = -EINVAL;
5769 	if (sscanf(buf, "%d", &v) == 1) {
5770 		attrs->no_numa = !v;
5771 		ret = apply_workqueue_attrs_locked(wq, attrs);
5772 	}
5773 
5774 out_unlock:
5775 	apply_wqattrs_unlock();
5776 	free_workqueue_attrs(attrs);
5777 	return ret ?: count;
5778 }
5779 
5780 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5781 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5782 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5783 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5784 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5785 	__ATTR_NULL,
5786 };
5787 
5788 static struct bus_type wq_subsys = {
5789 	.name				= "workqueue",
5790 	.dev_groups			= wq_sysfs_groups,
5791 };
5792 
5793 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5794 		struct device_attribute *attr, char *buf)
5795 {
5796 	int written;
5797 
5798 	mutex_lock(&wq_pool_mutex);
5799 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5800 			    cpumask_pr_args(wq_unbound_cpumask));
5801 	mutex_unlock(&wq_pool_mutex);
5802 
5803 	return written;
5804 }
5805 
5806 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5807 		struct device_attribute *attr, const char *buf, size_t count)
5808 {
5809 	cpumask_var_t cpumask;
5810 	int ret;
5811 
5812 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5813 		return -ENOMEM;
5814 
5815 	ret = cpumask_parse(buf, cpumask);
5816 	if (!ret)
5817 		ret = workqueue_set_unbound_cpumask(cpumask);
5818 
5819 	free_cpumask_var(cpumask);
5820 	return ret ? ret : count;
5821 }
5822 
5823 static struct device_attribute wq_sysfs_cpumask_attr =
5824 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5825 	       wq_unbound_cpumask_store);
5826 
5827 static int __init wq_sysfs_init(void)
5828 {
5829 	int err;
5830 
5831 	err = subsys_virtual_register(&wq_subsys, NULL);
5832 	if (err)
5833 		return err;
5834 
5835 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5836 }
5837 core_initcall(wq_sysfs_init);
5838 
5839 static void wq_device_release(struct device *dev)
5840 {
5841 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5842 
5843 	kfree(wq_dev);
5844 }
5845 
5846 /**
5847  * workqueue_sysfs_register - make a workqueue visible in sysfs
5848  * @wq: the workqueue to register
5849  *
5850  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5851  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5852  * which is the preferred method.
5853  *
5854  * Workqueue user should use this function directly iff it wants to apply
5855  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5856  * apply_workqueue_attrs() may race against userland updating the
5857  * attributes.
5858  *
5859  * Return: 0 on success, -errno on failure.
5860  */
5861 int workqueue_sysfs_register(struct workqueue_struct *wq)
5862 {
5863 	struct wq_device *wq_dev;
5864 	int ret;
5865 
5866 	/*
5867 	 * Adjusting max_active or creating new pwqs by applying
5868 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5869 	 * workqueues.
5870 	 */
5871 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5872 		return -EINVAL;
5873 
5874 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5875 	if (!wq_dev)
5876 		return -ENOMEM;
5877 
5878 	wq_dev->wq = wq;
5879 	wq_dev->dev.bus = &wq_subsys;
5880 	wq_dev->dev.release = wq_device_release;
5881 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5882 
5883 	/*
5884 	 * unbound_attrs are created separately.  Suppress uevent until
5885 	 * everything is ready.
5886 	 */
5887 	dev_set_uevent_suppress(&wq_dev->dev, true);
5888 
5889 	ret = device_register(&wq_dev->dev);
5890 	if (ret) {
5891 		put_device(&wq_dev->dev);
5892 		wq->wq_dev = NULL;
5893 		return ret;
5894 	}
5895 
5896 	if (wq->flags & WQ_UNBOUND) {
5897 		struct device_attribute *attr;
5898 
5899 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5900 			ret = device_create_file(&wq_dev->dev, attr);
5901 			if (ret) {
5902 				device_unregister(&wq_dev->dev);
5903 				wq->wq_dev = NULL;
5904 				return ret;
5905 			}
5906 		}
5907 	}
5908 
5909 	dev_set_uevent_suppress(&wq_dev->dev, false);
5910 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5911 	return 0;
5912 }
5913 
5914 /**
5915  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5916  * @wq: the workqueue to unregister
5917  *
5918  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5919  */
5920 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5921 {
5922 	struct wq_device *wq_dev = wq->wq_dev;
5923 
5924 	if (!wq->wq_dev)
5925 		return;
5926 
5927 	wq->wq_dev = NULL;
5928 	device_unregister(&wq_dev->dev);
5929 }
5930 #else	/* CONFIG_SYSFS */
5931 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5932 #endif	/* CONFIG_SYSFS */
5933 
5934 /*
5935  * Workqueue watchdog.
5936  *
5937  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5938  * flush dependency, a concurrency managed work item which stays RUNNING
5939  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5940  * usual warning mechanisms don't trigger and internal workqueue state is
5941  * largely opaque.
5942  *
5943  * Workqueue watchdog monitors all worker pools periodically and dumps
5944  * state if some pools failed to make forward progress for a while where
5945  * forward progress is defined as the first item on ->worklist changing.
5946  *
5947  * This mechanism is controlled through the kernel parameter
5948  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5949  * corresponding sysfs parameter file.
5950  */
5951 #ifdef CONFIG_WQ_WATCHDOG
5952 
5953 static unsigned long wq_watchdog_thresh = 30;
5954 static struct timer_list wq_watchdog_timer;
5955 
5956 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5957 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5958 
5959 static void wq_watchdog_reset_touched(void)
5960 {
5961 	int cpu;
5962 
5963 	wq_watchdog_touched = jiffies;
5964 	for_each_possible_cpu(cpu)
5965 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5966 }
5967 
5968 static void wq_watchdog_timer_fn(struct timer_list *unused)
5969 {
5970 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5971 	bool lockup_detected = false;
5972 	unsigned long now = jiffies;
5973 	struct worker_pool *pool;
5974 	int pi;
5975 
5976 	if (!thresh)
5977 		return;
5978 
5979 	rcu_read_lock();
5980 
5981 	for_each_pool(pool, pi) {
5982 		unsigned long pool_ts, touched, ts;
5983 
5984 		if (list_empty(&pool->worklist))
5985 			continue;
5986 
5987 		/*
5988 		 * If a virtual machine is stopped by the host it can look to
5989 		 * the watchdog like a stall.
5990 		 */
5991 		kvm_check_and_clear_guest_paused();
5992 
5993 		/* get the latest of pool and touched timestamps */
5994 		if (pool->cpu >= 0)
5995 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5996 		else
5997 			touched = READ_ONCE(wq_watchdog_touched);
5998 		pool_ts = READ_ONCE(pool->watchdog_ts);
5999 
6000 		if (time_after(pool_ts, touched))
6001 			ts = pool_ts;
6002 		else
6003 			ts = touched;
6004 
6005 		/* did we stall? */
6006 		if (time_after(now, ts + thresh)) {
6007 			lockup_detected = true;
6008 			pr_emerg("BUG: workqueue lockup - pool");
6009 			pr_cont_pool_info(pool);
6010 			pr_cont(" stuck for %us!\n",
6011 				jiffies_to_msecs(now - pool_ts) / 1000);
6012 		}
6013 	}
6014 
6015 	rcu_read_unlock();
6016 
6017 	if (lockup_detected)
6018 		show_all_workqueues();
6019 
6020 	wq_watchdog_reset_touched();
6021 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
6022 }
6023 
6024 notrace void wq_watchdog_touch(int cpu)
6025 {
6026 	if (cpu >= 0)
6027 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6028 
6029 	wq_watchdog_touched = jiffies;
6030 }
6031 
6032 static void wq_watchdog_set_thresh(unsigned long thresh)
6033 {
6034 	wq_watchdog_thresh = 0;
6035 	del_timer_sync(&wq_watchdog_timer);
6036 
6037 	if (thresh) {
6038 		wq_watchdog_thresh = thresh;
6039 		wq_watchdog_reset_touched();
6040 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
6041 	}
6042 }
6043 
6044 static int wq_watchdog_param_set_thresh(const char *val,
6045 					const struct kernel_param *kp)
6046 {
6047 	unsigned long thresh;
6048 	int ret;
6049 
6050 	ret = kstrtoul(val, 0, &thresh);
6051 	if (ret)
6052 		return ret;
6053 
6054 	if (system_wq)
6055 		wq_watchdog_set_thresh(thresh);
6056 	else
6057 		wq_watchdog_thresh = thresh;
6058 
6059 	return 0;
6060 }
6061 
6062 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
6063 	.set	= wq_watchdog_param_set_thresh,
6064 	.get	= param_get_ulong,
6065 };
6066 
6067 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
6068 		0644);
6069 
6070 static void wq_watchdog_init(void)
6071 {
6072 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
6073 	wq_watchdog_set_thresh(wq_watchdog_thresh);
6074 }
6075 
6076 #else	/* CONFIG_WQ_WATCHDOG */
6077 
6078 static inline void wq_watchdog_init(void) { }
6079 
6080 #endif	/* CONFIG_WQ_WATCHDOG */
6081 
6082 static void __init wq_numa_init(void)
6083 {
6084 	cpumask_var_t *tbl;
6085 	int node, cpu;
6086 
6087 	if (num_possible_nodes() <= 1)
6088 		return;
6089 
6090 	if (wq_disable_numa) {
6091 		pr_info("workqueue: NUMA affinity support disabled\n");
6092 		return;
6093 	}
6094 
6095 	for_each_possible_cpu(cpu) {
6096 		if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
6097 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
6098 			return;
6099 		}
6100 	}
6101 
6102 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
6103 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
6104 
6105 	/*
6106 	 * We want masks of possible CPUs of each node which isn't readily
6107 	 * available.  Build one from cpu_to_node() which should have been
6108 	 * fully initialized by now.
6109 	 */
6110 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
6111 	BUG_ON(!tbl);
6112 
6113 	for_each_node(node)
6114 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
6115 				node_online(node) ? node : NUMA_NO_NODE));
6116 
6117 	for_each_possible_cpu(cpu) {
6118 		node = cpu_to_node(cpu);
6119 		cpumask_set_cpu(cpu, tbl[node]);
6120 	}
6121 
6122 	wq_numa_possible_cpumask = tbl;
6123 	wq_numa_enabled = true;
6124 }
6125 
6126 /**
6127  * workqueue_init_early - early init for workqueue subsystem
6128  *
6129  * This is the first half of two-staged workqueue subsystem initialization
6130  * and invoked as soon as the bare basics - memory allocation, cpumasks and
6131  * idr are up.  It sets up all the data structures and system workqueues
6132  * and allows early boot code to create workqueues and queue/cancel work
6133  * items.  Actual work item execution starts only after kthreads can be
6134  * created and scheduled right before early initcalls.
6135  */
6136 void __init workqueue_init_early(void)
6137 {
6138 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6139 	int i, cpu;
6140 
6141 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6142 
6143 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6144 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ));
6145 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN));
6146 
6147 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6148 
6149 	/* initialize CPU pools */
6150 	for_each_possible_cpu(cpu) {
6151 		struct worker_pool *pool;
6152 
6153 		i = 0;
6154 		for_each_cpu_worker_pool(pool, cpu) {
6155 			BUG_ON(init_worker_pool(pool));
6156 			pool->cpu = cpu;
6157 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6158 			pool->attrs->nice = std_nice[i++];
6159 			pool->node = cpu_to_node(cpu);
6160 
6161 			/* alloc pool ID */
6162 			mutex_lock(&wq_pool_mutex);
6163 			BUG_ON(worker_pool_assign_id(pool));
6164 			mutex_unlock(&wq_pool_mutex);
6165 		}
6166 	}
6167 
6168 	/* create default unbound and ordered wq attrs */
6169 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6170 		struct workqueue_attrs *attrs;
6171 
6172 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6173 		attrs->nice = std_nice[i];
6174 		unbound_std_wq_attrs[i] = attrs;
6175 
6176 		/*
6177 		 * An ordered wq should have only one pwq as ordering is
6178 		 * guaranteed by max_active which is enforced by pwqs.
6179 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
6180 		 */
6181 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6182 		attrs->nice = std_nice[i];
6183 		attrs->no_numa = true;
6184 		ordered_wq_attrs[i] = attrs;
6185 	}
6186 
6187 	system_wq = alloc_workqueue("events", 0, 0);
6188 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6189 	system_long_wq = alloc_workqueue("events_long", 0, 0);
6190 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6191 					    WQ_UNBOUND_MAX_ACTIVE);
6192 	system_freezable_wq = alloc_workqueue("events_freezable",
6193 					      WQ_FREEZABLE, 0);
6194 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6195 					      WQ_POWER_EFFICIENT, 0);
6196 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6197 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6198 					      0);
6199 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6200 	       !system_unbound_wq || !system_freezable_wq ||
6201 	       !system_power_efficient_wq ||
6202 	       !system_freezable_power_efficient_wq);
6203 }
6204 
6205 /**
6206  * workqueue_init - bring workqueue subsystem fully online
6207  *
6208  * This is the latter half of two-staged workqueue subsystem initialization
6209  * and invoked as soon as kthreads can be created and scheduled.
6210  * Workqueues have been created and work items queued on them, but there
6211  * are no kworkers executing the work items yet.  Populate the worker pools
6212  * with the initial workers and enable future kworker creations.
6213  */
6214 void __init workqueue_init(void)
6215 {
6216 	struct workqueue_struct *wq;
6217 	struct worker_pool *pool;
6218 	int cpu, bkt;
6219 
6220 	/*
6221 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6222 	 * CPU to node mapping may not be available that early on some
6223 	 * archs such as power and arm64.  As per-cpu pools created
6224 	 * previously could be missing node hint and unbound pools NUMA
6225 	 * affinity, fix them up.
6226 	 *
6227 	 * Also, while iterating workqueues, create rescuers if requested.
6228 	 */
6229 	wq_numa_init();
6230 
6231 	mutex_lock(&wq_pool_mutex);
6232 
6233 	for_each_possible_cpu(cpu) {
6234 		for_each_cpu_worker_pool(pool, cpu) {
6235 			pool->node = cpu_to_node(cpu);
6236 		}
6237 	}
6238 
6239 	list_for_each_entry(wq, &workqueues, list) {
6240 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6241 		WARN(init_rescuer(wq),
6242 		     "workqueue: failed to create early rescuer for %s",
6243 		     wq->name);
6244 	}
6245 
6246 	mutex_unlock(&wq_pool_mutex);
6247 
6248 	/* create the initial workers */
6249 	for_each_online_cpu(cpu) {
6250 		for_each_cpu_worker_pool(pool, cpu) {
6251 			pool->flags &= ~POOL_DISASSOCIATED;
6252 			BUG_ON(!create_worker(pool));
6253 		}
6254 	}
6255 
6256 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6257 		BUG_ON(!create_worker(pool));
6258 
6259 	wq_online = true;
6260 	wq_watchdog_init();
6261 }
6262 
6263 /*
6264  * Despite the naming, this is a no-op function which is here only for avoiding
6265  * link error. Since compile-time warning may fail to catch, we will need to
6266  * emit run-time warning from __flush_workqueue().
6267  */
6268 void __warn_flushing_systemwide_wq(void) { }
6269 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
6270