1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/nmi.h> 53 #include <linux/kvm_para.h> 54 55 #include "workqueue_internal.h" 56 57 enum { 58 /* 59 * worker_pool flags 60 * 61 * A bound pool is either associated or disassociated with its CPU. 62 * While associated (!DISASSOCIATED), all workers are bound to the 63 * CPU and none has %WORKER_UNBOUND set and concurrency management 64 * is in effect. 65 * 66 * While DISASSOCIATED, the cpu may be offline and all workers have 67 * %WORKER_UNBOUND set and concurrency management disabled, and may 68 * be executing on any CPU. The pool behaves as an unbound one. 69 * 70 * Note that DISASSOCIATED should be flipped only while holding 71 * wq_pool_attach_mutex to avoid changing binding state while 72 * worker_attach_to_pool() is in progress. 73 */ 74 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 75 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 76 77 /* worker flags */ 78 WORKER_DIE = 1 << 1, /* die die die */ 79 WORKER_IDLE = 1 << 2, /* is idle */ 80 WORKER_PREP = 1 << 3, /* preparing to run works */ 81 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 82 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 83 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 84 85 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 86 WORKER_UNBOUND | WORKER_REBOUND, 87 88 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 89 90 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 92 93 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 94 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 95 96 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 97 /* call for help after 10ms 98 (min two ticks) */ 99 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 100 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 101 102 /* 103 * Rescue workers are used only on emergencies and shared by 104 * all cpus. Give MIN_NICE. 105 */ 106 RESCUER_NICE_LEVEL = MIN_NICE, 107 HIGHPRI_NICE_LEVEL = MIN_NICE, 108 109 WQ_NAME_LEN = 24, 110 }; 111 112 /* 113 * Structure fields follow one of the following exclusion rules. 114 * 115 * I: Modifiable by initialization/destruction paths and read-only for 116 * everyone else. 117 * 118 * P: Preemption protected. Disabling preemption is enough and should 119 * only be modified and accessed from the local cpu. 120 * 121 * L: pool->lock protected. Access with pool->lock held. 122 * 123 * X: During normal operation, modification requires pool->lock and should 124 * be done only from local cpu. Either disabling preemption on local 125 * cpu or grabbing pool->lock is enough for read access. If 126 * POOL_DISASSOCIATED is set, it's identical to L. 127 * 128 * A: wq_pool_attach_mutex protected. 129 * 130 * PL: wq_pool_mutex protected. 131 * 132 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 133 * 134 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 135 * 136 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 137 * RCU for reads. 138 * 139 * WQ: wq->mutex protected. 140 * 141 * WR: wq->mutex protected for writes. RCU protected for reads. 142 * 143 * MD: wq_mayday_lock protected. 144 */ 145 146 /* struct worker is defined in workqueue_internal.h */ 147 148 struct worker_pool { 149 raw_spinlock_t lock; /* the pool lock */ 150 int cpu; /* I: the associated cpu */ 151 int node; /* I: the associated node ID */ 152 int id; /* I: pool ID */ 153 unsigned int flags; /* X: flags */ 154 155 unsigned long watchdog_ts; /* L: watchdog timestamp */ 156 157 struct list_head worklist; /* L: list of pending works */ 158 159 int nr_workers; /* L: total number of workers */ 160 int nr_idle; /* L: currently idle workers */ 161 162 struct list_head idle_list; /* X: list of idle workers */ 163 struct timer_list idle_timer; /* L: worker idle timeout */ 164 struct timer_list mayday_timer; /* L: SOS timer for workers */ 165 166 /* a workers is either on busy_hash or idle_list, or the manager */ 167 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 168 /* L: hash of busy workers */ 169 170 struct worker *manager; /* L: purely informational */ 171 struct list_head workers; /* A: attached workers */ 172 struct completion *detach_completion; /* all workers detached */ 173 174 struct ida worker_ida; /* worker IDs for task name */ 175 176 struct workqueue_attrs *attrs; /* I: worker attributes */ 177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 178 int refcnt; /* PL: refcnt for unbound pools */ 179 180 /* 181 * The current concurrency level. As it's likely to be accessed 182 * from other CPUs during try_to_wake_up(), put it in a separate 183 * cacheline. 184 */ 185 atomic_t nr_running ____cacheline_aligned_in_smp; 186 187 /* 188 * Destruction of pool is RCU protected to allow dereferences 189 * from get_work_pool(). 190 */ 191 struct rcu_head rcu; 192 } ____cacheline_aligned_in_smp; 193 194 /* 195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 196 * of work_struct->data are used for flags and the remaining high bits 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the 198 * number of flag bits. 199 */ 200 struct pool_workqueue { 201 struct worker_pool *pool; /* I: the associated pool */ 202 struct workqueue_struct *wq; /* I: the owning workqueue */ 203 int work_color; /* L: current color */ 204 int flush_color; /* L: flushing color */ 205 int refcnt; /* L: reference count */ 206 int nr_in_flight[WORK_NR_COLORS]; 207 /* L: nr of in_flight works */ 208 209 /* 210 * nr_active management and WORK_STRUCT_INACTIVE: 211 * 212 * When pwq->nr_active >= max_active, new work item is queued to 213 * pwq->inactive_works instead of pool->worklist and marked with 214 * WORK_STRUCT_INACTIVE. 215 * 216 * All work items marked with WORK_STRUCT_INACTIVE do not participate 217 * in pwq->nr_active and all work items in pwq->inactive_works are 218 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE 219 * work items are in pwq->inactive_works. Some of them are ready to 220 * run in pool->worklist or worker->scheduled. Those work itmes are 221 * only struct wq_barrier which is used for flush_work() and should 222 * not participate in pwq->nr_active. For non-barrier work item, it 223 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 224 */ 225 int nr_active; /* L: nr of active works */ 226 int max_active; /* L: max active works */ 227 struct list_head inactive_works; /* L: inactive works */ 228 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 229 struct list_head mayday_node; /* MD: node on wq->maydays */ 230 231 /* 232 * Release of unbound pwq is punted to system_wq. See put_pwq() 233 * and pwq_unbound_release_workfn() for details. pool_workqueue 234 * itself is also RCU protected so that the first pwq can be 235 * determined without grabbing wq->mutex. 236 */ 237 struct work_struct unbound_release_work; 238 struct rcu_head rcu; 239 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 240 241 /* 242 * Structure used to wait for workqueue flush. 243 */ 244 struct wq_flusher { 245 struct list_head list; /* WQ: list of flushers */ 246 int flush_color; /* WQ: flush color waiting for */ 247 struct completion done; /* flush completion */ 248 }; 249 250 struct wq_device; 251 252 /* 253 * The externally visible workqueue. It relays the issued work items to 254 * the appropriate worker_pool through its pool_workqueues. 255 */ 256 struct workqueue_struct { 257 struct list_head pwqs; /* WR: all pwqs of this wq */ 258 struct list_head list; /* PR: list of all workqueues */ 259 260 struct mutex mutex; /* protects this wq */ 261 int work_color; /* WQ: current work color */ 262 int flush_color; /* WQ: current flush color */ 263 atomic_t nr_pwqs_to_flush; /* flush in progress */ 264 struct wq_flusher *first_flusher; /* WQ: first flusher */ 265 struct list_head flusher_queue; /* WQ: flush waiters */ 266 struct list_head flusher_overflow; /* WQ: flush overflow list */ 267 268 struct list_head maydays; /* MD: pwqs requesting rescue */ 269 struct worker *rescuer; /* MD: rescue worker */ 270 271 int nr_drainers; /* WQ: drain in progress */ 272 int saved_max_active; /* WQ: saved pwq max_active */ 273 274 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 275 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 276 277 #ifdef CONFIG_SYSFS 278 struct wq_device *wq_dev; /* I: for sysfs interface */ 279 #endif 280 #ifdef CONFIG_LOCKDEP 281 char *lock_name; 282 struct lock_class_key key; 283 struct lockdep_map lockdep_map; 284 #endif 285 char name[WQ_NAME_LEN]; /* I: workqueue name */ 286 287 /* 288 * Destruction of workqueue_struct is RCU protected to allow walking 289 * the workqueues list without grabbing wq_pool_mutex. 290 * This is used to dump all workqueues from sysrq. 291 */ 292 struct rcu_head rcu; 293 294 /* hot fields used during command issue, aligned to cacheline */ 295 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 296 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 297 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 298 }; 299 300 static struct kmem_cache *pwq_cache; 301 302 static cpumask_var_t *wq_numa_possible_cpumask; 303 /* possible CPUs of each node */ 304 305 static bool wq_disable_numa; 306 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 307 308 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 309 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 310 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 311 312 static bool wq_online; /* can kworkers be created yet? */ 313 314 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 315 316 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 317 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 318 319 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 320 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 321 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 322 /* wait for manager to go away */ 323 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 324 325 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 326 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 327 328 /* PL: allowable cpus for unbound wqs and work items */ 329 static cpumask_var_t wq_unbound_cpumask; 330 331 /* CPU where unbound work was last round robin scheduled from this CPU */ 332 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 333 334 /* 335 * Local execution of unbound work items is no longer guaranteed. The 336 * following always forces round-robin CPU selection on unbound work items 337 * to uncover usages which depend on it. 338 */ 339 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 340 static bool wq_debug_force_rr_cpu = true; 341 #else 342 static bool wq_debug_force_rr_cpu = false; 343 #endif 344 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 345 346 /* the per-cpu worker pools */ 347 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 348 349 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 350 351 /* PL: hash of all unbound pools keyed by pool->attrs */ 352 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 353 354 /* I: attributes used when instantiating standard unbound pools on demand */ 355 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 356 357 /* I: attributes used when instantiating ordered pools on demand */ 358 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 359 360 struct workqueue_struct *system_wq __read_mostly; 361 EXPORT_SYMBOL(system_wq); 362 struct workqueue_struct *system_highpri_wq __read_mostly; 363 EXPORT_SYMBOL_GPL(system_highpri_wq); 364 struct workqueue_struct *system_long_wq __read_mostly; 365 EXPORT_SYMBOL_GPL(system_long_wq); 366 struct workqueue_struct *system_unbound_wq __read_mostly; 367 EXPORT_SYMBOL_GPL(system_unbound_wq); 368 struct workqueue_struct *system_freezable_wq __read_mostly; 369 EXPORT_SYMBOL_GPL(system_freezable_wq); 370 struct workqueue_struct *system_power_efficient_wq __read_mostly; 371 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 372 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 373 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 374 375 static int worker_thread(void *__worker); 376 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 377 static void show_pwq(struct pool_workqueue *pwq); 378 static void show_one_worker_pool(struct worker_pool *pool); 379 380 #define CREATE_TRACE_POINTS 381 #include <trace/events/workqueue.h> 382 383 #define assert_rcu_or_pool_mutex() \ 384 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 385 !lockdep_is_held(&wq_pool_mutex), \ 386 "RCU or wq_pool_mutex should be held") 387 388 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 389 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 390 !lockdep_is_held(&wq->mutex) && \ 391 !lockdep_is_held(&wq_pool_mutex), \ 392 "RCU, wq->mutex or wq_pool_mutex should be held") 393 394 #define for_each_cpu_worker_pool(pool, cpu) \ 395 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 396 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 397 (pool)++) 398 399 /** 400 * for_each_pool - iterate through all worker_pools in the system 401 * @pool: iteration cursor 402 * @pi: integer used for iteration 403 * 404 * This must be called either with wq_pool_mutex held or RCU read 405 * locked. If the pool needs to be used beyond the locking in effect, the 406 * caller is responsible for guaranteeing that the pool stays online. 407 * 408 * The if/else clause exists only for the lockdep assertion and can be 409 * ignored. 410 */ 411 #define for_each_pool(pool, pi) \ 412 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 413 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 414 else 415 416 /** 417 * for_each_pool_worker - iterate through all workers of a worker_pool 418 * @worker: iteration cursor 419 * @pool: worker_pool to iterate workers of 420 * 421 * This must be called with wq_pool_attach_mutex. 422 * 423 * The if/else clause exists only for the lockdep assertion and can be 424 * ignored. 425 */ 426 #define for_each_pool_worker(worker, pool) \ 427 list_for_each_entry((worker), &(pool)->workers, node) \ 428 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 429 else 430 431 /** 432 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 433 * @pwq: iteration cursor 434 * @wq: the target workqueue 435 * 436 * This must be called either with wq->mutex held or RCU read locked. 437 * If the pwq needs to be used beyond the locking in effect, the caller is 438 * responsible for guaranteeing that the pwq stays online. 439 * 440 * The if/else clause exists only for the lockdep assertion and can be 441 * ignored. 442 */ 443 #define for_each_pwq(pwq, wq) \ 444 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 445 lockdep_is_held(&(wq->mutex))) 446 447 #ifdef CONFIG_DEBUG_OBJECTS_WORK 448 449 static const struct debug_obj_descr work_debug_descr; 450 451 static void *work_debug_hint(void *addr) 452 { 453 return ((struct work_struct *) addr)->func; 454 } 455 456 static bool work_is_static_object(void *addr) 457 { 458 struct work_struct *work = addr; 459 460 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 461 } 462 463 /* 464 * fixup_init is called when: 465 * - an active object is initialized 466 */ 467 static bool work_fixup_init(void *addr, enum debug_obj_state state) 468 { 469 struct work_struct *work = addr; 470 471 switch (state) { 472 case ODEBUG_STATE_ACTIVE: 473 cancel_work_sync(work); 474 debug_object_init(work, &work_debug_descr); 475 return true; 476 default: 477 return false; 478 } 479 } 480 481 /* 482 * fixup_free is called when: 483 * - an active object is freed 484 */ 485 static bool work_fixup_free(void *addr, enum debug_obj_state state) 486 { 487 struct work_struct *work = addr; 488 489 switch (state) { 490 case ODEBUG_STATE_ACTIVE: 491 cancel_work_sync(work); 492 debug_object_free(work, &work_debug_descr); 493 return true; 494 default: 495 return false; 496 } 497 } 498 499 static const struct debug_obj_descr work_debug_descr = { 500 .name = "work_struct", 501 .debug_hint = work_debug_hint, 502 .is_static_object = work_is_static_object, 503 .fixup_init = work_fixup_init, 504 .fixup_free = work_fixup_free, 505 }; 506 507 static inline void debug_work_activate(struct work_struct *work) 508 { 509 debug_object_activate(work, &work_debug_descr); 510 } 511 512 static inline void debug_work_deactivate(struct work_struct *work) 513 { 514 debug_object_deactivate(work, &work_debug_descr); 515 } 516 517 void __init_work(struct work_struct *work, int onstack) 518 { 519 if (onstack) 520 debug_object_init_on_stack(work, &work_debug_descr); 521 else 522 debug_object_init(work, &work_debug_descr); 523 } 524 EXPORT_SYMBOL_GPL(__init_work); 525 526 void destroy_work_on_stack(struct work_struct *work) 527 { 528 debug_object_free(work, &work_debug_descr); 529 } 530 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 531 532 void destroy_delayed_work_on_stack(struct delayed_work *work) 533 { 534 destroy_timer_on_stack(&work->timer); 535 debug_object_free(&work->work, &work_debug_descr); 536 } 537 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 538 539 #else 540 static inline void debug_work_activate(struct work_struct *work) { } 541 static inline void debug_work_deactivate(struct work_struct *work) { } 542 #endif 543 544 /** 545 * worker_pool_assign_id - allocate ID and assign it to @pool 546 * @pool: the pool pointer of interest 547 * 548 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 549 * successfully, -errno on failure. 550 */ 551 static int worker_pool_assign_id(struct worker_pool *pool) 552 { 553 int ret; 554 555 lockdep_assert_held(&wq_pool_mutex); 556 557 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 558 GFP_KERNEL); 559 if (ret >= 0) { 560 pool->id = ret; 561 return 0; 562 } 563 return ret; 564 } 565 566 /** 567 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 568 * @wq: the target workqueue 569 * @node: the node ID 570 * 571 * This must be called with any of wq_pool_mutex, wq->mutex or RCU 572 * read locked. 573 * If the pwq needs to be used beyond the locking in effect, the caller is 574 * responsible for guaranteeing that the pwq stays online. 575 * 576 * Return: The unbound pool_workqueue for @node. 577 */ 578 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 579 int node) 580 { 581 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 582 583 /* 584 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 585 * delayed item is pending. The plan is to keep CPU -> NODE 586 * mapping valid and stable across CPU on/offlines. Once that 587 * happens, this workaround can be removed. 588 */ 589 if (unlikely(node == NUMA_NO_NODE)) 590 return wq->dfl_pwq; 591 592 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 593 } 594 595 static unsigned int work_color_to_flags(int color) 596 { 597 return color << WORK_STRUCT_COLOR_SHIFT; 598 } 599 600 static int get_work_color(unsigned long work_data) 601 { 602 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 603 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 604 } 605 606 static int work_next_color(int color) 607 { 608 return (color + 1) % WORK_NR_COLORS; 609 } 610 611 /* 612 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 613 * contain the pointer to the queued pwq. Once execution starts, the flag 614 * is cleared and the high bits contain OFFQ flags and pool ID. 615 * 616 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 617 * and clear_work_data() can be used to set the pwq, pool or clear 618 * work->data. These functions should only be called while the work is 619 * owned - ie. while the PENDING bit is set. 620 * 621 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 622 * corresponding to a work. Pool is available once the work has been 623 * queued anywhere after initialization until it is sync canceled. pwq is 624 * available only while the work item is queued. 625 * 626 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 627 * canceled. While being canceled, a work item may have its PENDING set 628 * but stay off timer and worklist for arbitrarily long and nobody should 629 * try to steal the PENDING bit. 630 */ 631 static inline void set_work_data(struct work_struct *work, unsigned long data, 632 unsigned long flags) 633 { 634 WARN_ON_ONCE(!work_pending(work)); 635 atomic_long_set(&work->data, data | flags | work_static(work)); 636 } 637 638 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 639 unsigned long extra_flags) 640 { 641 set_work_data(work, (unsigned long)pwq, 642 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 643 } 644 645 static void set_work_pool_and_keep_pending(struct work_struct *work, 646 int pool_id) 647 { 648 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 649 WORK_STRUCT_PENDING); 650 } 651 652 static void set_work_pool_and_clear_pending(struct work_struct *work, 653 int pool_id) 654 { 655 /* 656 * The following wmb is paired with the implied mb in 657 * test_and_set_bit(PENDING) and ensures all updates to @work made 658 * here are visible to and precede any updates by the next PENDING 659 * owner. 660 */ 661 smp_wmb(); 662 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 663 /* 664 * The following mb guarantees that previous clear of a PENDING bit 665 * will not be reordered with any speculative LOADS or STORES from 666 * work->current_func, which is executed afterwards. This possible 667 * reordering can lead to a missed execution on attempt to queue 668 * the same @work. E.g. consider this case: 669 * 670 * CPU#0 CPU#1 671 * ---------------------------- -------------------------------- 672 * 673 * 1 STORE event_indicated 674 * 2 queue_work_on() { 675 * 3 test_and_set_bit(PENDING) 676 * 4 } set_..._and_clear_pending() { 677 * 5 set_work_data() # clear bit 678 * 6 smp_mb() 679 * 7 work->current_func() { 680 * 8 LOAD event_indicated 681 * } 682 * 683 * Without an explicit full barrier speculative LOAD on line 8 can 684 * be executed before CPU#0 does STORE on line 1. If that happens, 685 * CPU#0 observes the PENDING bit is still set and new execution of 686 * a @work is not queued in a hope, that CPU#1 will eventually 687 * finish the queued @work. Meanwhile CPU#1 does not see 688 * event_indicated is set, because speculative LOAD was executed 689 * before actual STORE. 690 */ 691 smp_mb(); 692 } 693 694 static void clear_work_data(struct work_struct *work) 695 { 696 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 697 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 698 } 699 700 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 701 { 702 unsigned long data = atomic_long_read(&work->data); 703 704 if (data & WORK_STRUCT_PWQ) 705 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 706 else 707 return NULL; 708 } 709 710 /** 711 * get_work_pool - return the worker_pool a given work was associated with 712 * @work: the work item of interest 713 * 714 * Pools are created and destroyed under wq_pool_mutex, and allows read 715 * access under RCU read lock. As such, this function should be 716 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 717 * 718 * All fields of the returned pool are accessible as long as the above 719 * mentioned locking is in effect. If the returned pool needs to be used 720 * beyond the critical section, the caller is responsible for ensuring the 721 * returned pool is and stays online. 722 * 723 * Return: The worker_pool @work was last associated with. %NULL if none. 724 */ 725 static struct worker_pool *get_work_pool(struct work_struct *work) 726 { 727 unsigned long data = atomic_long_read(&work->data); 728 int pool_id; 729 730 assert_rcu_or_pool_mutex(); 731 732 if (data & WORK_STRUCT_PWQ) 733 return ((struct pool_workqueue *) 734 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 735 736 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 737 if (pool_id == WORK_OFFQ_POOL_NONE) 738 return NULL; 739 740 return idr_find(&worker_pool_idr, pool_id); 741 } 742 743 /** 744 * get_work_pool_id - return the worker pool ID a given work is associated with 745 * @work: the work item of interest 746 * 747 * Return: The worker_pool ID @work was last associated with. 748 * %WORK_OFFQ_POOL_NONE if none. 749 */ 750 static int get_work_pool_id(struct work_struct *work) 751 { 752 unsigned long data = atomic_long_read(&work->data); 753 754 if (data & WORK_STRUCT_PWQ) 755 return ((struct pool_workqueue *) 756 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 757 758 return data >> WORK_OFFQ_POOL_SHIFT; 759 } 760 761 static void mark_work_canceling(struct work_struct *work) 762 { 763 unsigned long pool_id = get_work_pool_id(work); 764 765 pool_id <<= WORK_OFFQ_POOL_SHIFT; 766 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 767 } 768 769 static bool work_is_canceling(struct work_struct *work) 770 { 771 unsigned long data = atomic_long_read(&work->data); 772 773 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 774 } 775 776 /* 777 * Policy functions. These define the policies on how the global worker 778 * pools are managed. Unless noted otherwise, these functions assume that 779 * they're being called with pool->lock held. 780 */ 781 782 static bool __need_more_worker(struct worker_pool *pool) 783 { 784 return !atomic_read(&pool->nr_running); 785 } 786 787 /* 788 * Need to wake up a worker? Called from anything but currently 789 * running workers. 790 * 791 * Note that, because unbound workers never contribute to nr_running, this 792 * function will always return %true for unbound pools as long as the 793 * worklist isn't empty. 794 */ 795 static bool need_more_worker(struct worker_pool *pool) 796 { 797 return !list_empty(&pool->worklist) && __need_more_worker(pool); 798 } 799 800 /* Can I start working? Called from busy but !running workers. */ 801 static bool may_start_working(struct worker_pool *pool) 802 { 803 return pool->nr_idle; 804 } 805 806 /* Do I need to keep working? Called from currently running workers. */ 807 static bool keep_working(struct worker_pool *pool) 808 { 809 return !list_empty(&pool->worklist) && 810 atomic_read(&pool->nr_running) <= 1; 811 } 812 813 /* Do we need a new worker? Called from manager. */ 814 static bool need_to_create_worker(struct worker_pool *pool) 815 { 816 return need_more_worker(pool) && !may_start_working(pool); 817 } 818 819 /* Do we have too many workers and should some go away? */ 820 static bool too_many_workers(struct worker_pool *pool) 821 { 822 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 823 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 824 int nr_busy = pool->nr_workers - nr_idle; 825 826 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 827 } 828 829 /* 830 * Wake up functions. 831 */ 832 833 /* Return the first idle worker. Safe with preemption disabled */ 834 static struct worker *first_idle_worker(struct worker_pool *pool) 835 { 836 if (unlikely(list_empty(&pool->idle_list))) 837 return NULL; 838 839 return list_first_entry(&pool->idle_list, struct worker, entry); 840 } 841 842 /** 843 * wake_up_worker - wake up an idle worker 844 * @pool: worker pool to wake worker from 845 * 846 * Wake up the first idle worker of @pool. 847 * 848 * CONTEXT: 849 * raw_spin_lock_irq(pool->lock). 850 */ 851 static void wake_up_worker(struct worker_pool *pool) 852 { 853 struct worker *worker = first_idle_worker(pool); 854 855 if (likely(worker)) 856 wake_up_process(worker->task); 857 } 858 859 /** 860 * wq_worker_running - a worker is running again 861 * @task: task waking up 862 * 863 * This function is called when a worker returns from schedule() 864 */ 865 void wq_worker_running(struct task_struct *task) 866 { 867 struct worker *worker = kthread_data(task); 868 869 if (!worker->sleeping) 870 return; 871 if (!(worker->flags & WORKER_NOT_RUNNING)) 872 atomic_inc(&worker->pool->nr_running); 873 worker->sleeping = 0; 874 } 875 876 /** 877 * wq_worker_sleeping - a worker is going to sleep 878 * @task: task going to sleep 879 * 880 * This function is called from schedule() when a busy worker is 881 * going to sleep. Preemption needs to be disabled to protect ->sleeping 882 * assignment. 883 */ 884 void wq_worker_sleeping(struct task_struct *task) 885 { 886 struct worker *next, *worker = kthread_data(task); 887 struct worker_pool *pool; 888 889 /* 890 * Rescuers, which may not have all the fields set up like normal 891 * workers, also reach here, let's not access anything before 892 * checking NOT_RUNNING. 893 */ 894 if (worker->flags & WORKER_NOT_RUNNING) 895 return; 896 897 pool = worker->pool; 898 899 /* Return if preempted before wq_worker_running() was reached */ 900 if (worker->sleeping) 901 return; 902 903 worker->sleeping = 1; 904 raw_spin_lock_irq(&pool->lock); 905 906 /* 907 * The counterpart of the following dec_and_test, implied mb, 908 * worklist not empty test sequence is in insert_work(). 909 * Please read comment there. 910 * 911 * NOT_RUNNING is clear. This means that we're bound to and 912 * running on the local cpu w/ rq lock held and preemption 913 * disabled, which in turn means that none else could be 914 * manipulating idle_list, so dereferencing idle_list without pool 915 * lock is safe. 916 */ 917 if (atomic_dec_and_test(&pool->nr_running) && 918 !list_empty(&pool->worklist)) { 919 next = first_idle_worker(pool); 920 if (next) 921 wake_up_process(next->task); 922 } 923 raw_spin_unlock_irq(&pool->lock); 924 } 925 926 /** 927 * wq_worker_last_func - retrieve worker's last work function 928 * @task: Task to retrieve last work function of. 929 * 930 * Determine the last function a worker executed. This is called from 931 * the scheduler to get a worker's last known identity. 932 * 933 * CONTEXT: 934 * raw_spin_lock_irq(rq->lock) 935 * 936 * This function is called during schedule() when a kworker is going 937 * to sleep. It's used by psi to identify aggregation workers during 938 * dequeuing, to allow periodic aggregation to shut-off when that 939 * worker is the last task in the system or cgroup to go to sleep. 940 * 941 * As this function doesn't involve any workqueue-related locking, it 942 * only returns stable values when called from inside the scheduler's 943 * queuing and dequeuing paths, when @task, which must be a kworker, 944 * is guaranteed to not be processing any works. 945 * 946 * Return: 947 * The last work function %current executed as a worker, NULL if it 948 * hasn't executed any work yet. 949 */ 950 work_func_t wq_worker_last_func(struct task_struct *task) 951 { 952 struct worker *worker = kthread_data(task); 953 954 return worker->last_func; 955 } 956 957 /** 958 * worker_set_flags - set worker flags and adjust nr_running accordingly 959 * @worker: self 960 * @flags: flags to set 961 * 962 * Set @flags in @worker->flags and adjust nr_running accordingly. 963 * 964 * CONTEXT: 965 * raw_spin_lock_irq(pool->lock) 966 */ 967 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 968 { 969 struct worker_pool *pool = worker->pool; 970 971 WARN_ON_ONCE(worker->task != current); 972 973 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 974 if ((flags & WORKER_NOT_RUNNING) && 975 !(worker->flags & WORKER_NOT_RUNNING)) { 976 atomic_dec(&pool->nr_running); 977 } 978 979 worker->flags |= flags; 980 } 981 982 /** 983 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 984 * @worker: self 985 * @flags: flags to clear 986 * 987 * Clear @flags in @worker->flags and adjust nr_running accordingly. 988 * 989 * CONTEXT: 990 * raw_spin_lock_irq(pool->lock) 991 */ 992 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 993 { 994 struct worker_pool *pool = worker->pool; 995 unsigned int oflags = worker->flags; 996 997 WARN_ON_ONCE(worker->task != current); 998 999 worker->flags &= ~flags; 1000 1001 /* 1002 * If transitioning out of NOT_RUNNING, increment nr_running. Note 1003 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 1004 * of multiple flags, not a single flag. 1005 */ 1006 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 1007 if (!(worker->flags & WORKER_NOT_RUNNING)) 1008 atomic_inc(&pool->nr_running); 1009 } 1010 1011 /** 1012 * find_worker_executing_work - find worker which is executing a work 1013 * @pool: pool of interest 1014 * @work: work to find worker for 1015 * 1016 * Find a worker which is executing @work on @pool by searching 1017 * @pool->busy_hash which is keyed by the address of @work. For a worker 1018 * to match, its current execution should match the address of @work and 1019 * its work function. This is to avoid unwanted dependency between 1020 * unrelated work executions through a work item being recycled while still 1021 * being executed. 1022 * 1023 * This is a bit tricky. A work item may be freed once its execution 1024 * starts and nothing prevents the freed area from being recycled for 1025 * another work item. If the same work item address ends up being reused 1026 * before the original execution finishes, workqueue will identify the 1027 * recycled work item as currently executing and make it wait until the 1028 * current execution finishes, introducing an unwanted dependency. 1029 * 1030 * This function checks the work item address and work function to avoid 1031 * false positives. Note that this isn't complete as one may construct a 1032 * work function which can introduce dependency onto itself through a 1033 * recycled work item. Well, if somebody wants to shoot oneself in the 1034 * foot that badly, there's only so much we can do, and if such deadlock 1035 * actually occurs, it should be easy to locate the culprit work function. 1036 * 1037 * CONTEXT: 1038 * raw_spin_lock_irq(pool->lock). 1039 * 1040 * Return: 1041 * Pointer to worker which is executing @work if found, %NULL 1042 * otherwise. 1043 */ 1044 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1045 struct work_struct *work) 1046 { 1047 struct worker *worker; 1048 1049 hash_for_each_possible(pool->busy_hash, worker, hentry, 1050 (unsigned long)work) 1051 if (worker->current_work == work && 1052 worker->current_func == work->func) 1053 return worker; 1054 1055 return NULL; 1056 } 1057 1058 /** 1059 * move_linked_works - move linked works to a list 1060 * @work: start of series of works to be scheduled 1061 * @head: target list to append @work to 1062 * @nextp: out parameter for nested worklist walking 1063 * 1064 * Schedule linked works starting from @work to @head. Work series to 1065 * be scheduled starts at @work and includes any consecutive work with 1066 * WORK_STRUCT_LINKED set in its predecessor. 1067 * 1068 * If @nextp is not NULL, it's updated to point to the next work of 1069 * the last scheduled work. This allows move_linked_works() to be 1070 * nested inside outer list_for_each_entry_safe(). 1071 * 1072 * CONTEXT: 1073 * raw_spin_lock_irq(pool->lock). 1074 */ 1075 static void move_linked_works(struct work_struct *work, struct list_head *head, 1076 struct work_struct **nextp) 1077 { 1078 struct work_struct *n; 1079 1080 /* 1081 * Linked worklist will always end before the end of the list, 1082 * use NULL for list head. 1083 */ 1084 list_for_each_entry_safe_from(work, n, NULL, entry) { 1085 list_move_tail(&work->entry, head); 1086 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1087 break; 1088 } 1089 1090 /* 1091 * If we're already inside safe list traversal and have moved 1092 * multiple works to the scheduled queue, the next position 1093 * needs to be updated. 1094 */ 1095 if (nextp) 1096 *nextp = n; 1097 } 1098 1099 /** 1100 * get_pwq - get an extra reference on the specified pool_workqueue 1101 * @pwq: pool_workqueue to get 1102 * 1103 * Obtain an extra reference on @pwq. The caller should guarantee that 1104 * @pwq has positive refcnt and be holding the matching pool->lock. 1105 */ 1106 static void get_pwq(struct pool_workqueue *pwq) 1107 { 1108 lockdep_assert_held(&pwq->pool->lock); 1109 WARN_ON_ONCE(pwq->refcnt <= 0); 1110 pwq->refcnt++; 1111 } 1112 1113 /** 1114 * put_pwq - put a pool_workqueue reference 1115 * @pwq: pool_workqueue to put 1116 * 1117 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1118 * destruction. The caller should be holding the matching pool->lock. 1119 */ 1120 static void put_pwq(struct pool_workqueue *pwq) 1121 { 1122 lockdep_assert_held(&pwq->pool->lock); 1123 if (likely(--pwq->refcnt)) 1124 return; 1125 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1126 return; 1127 /* 1128 * @pwq can't be released under pool->lock, bounce to 1129 * pwq_unbound_release_workfn(). This never recurses on the same 1130 * pool->lock as this path is taken only for unbound workqueues and 1131 * the release work item is scheduled on a per-cpu workqueue. To 1132 * avoid lockdep warning, unbound pool->locks are given lockdep 1133 * subclass of 1 in get_unbound_pool(). 1134 */ 1135 schedule_work(&pwq->unbound_release_work); 1136 } 1137 1138 /** 1139 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1140 * @pwq: pool_workqueue to put (can be %NULL) 1141 * 1142 * put_pwq() with locking. This function also allows %NULL @pwq. 1143 */ 1144 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1145 { 1146 if (pwq) { 1147 /* 1148 * As both pwqs and pools are RCU protected, the 1149 * following lock operations are safe. 1150 */ 1151 raw_spin_lock_irq(&pwq->pool->lock); 1152 put_pwq(pwq); 1153 raw_spin_unlock_irq(&pwq->pool->lock); 1154 } 1155 } 1156 1157 static void pwq_activate_inactive_work(struct work_struct *work) 1158 { 1159 struct pool_workqueue *pwq = get_work_pwq(work); 1160 1161 trace_workqueue_activate_work(work); 1162 if (list_empty(&pwq->pool->worklist)) 1163 pwq->pool->watchdog_ts = jiffies; 1164 move_linked_works(work, &pwq->pool->worklist, NULL); 1165 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work)); 1166 pwq->nr_active++; 1167 } 1168 1169 static void pwq_activate_first_inactive(struct pool_workqueue *pwq) 1170 { 1171 struct work_struct *work = list_first_entry(&pwq->inactive_works, 1172 struct work_struct, entry); 1173 1174 pwq_activate_inactive_work(work); 1175 } 1176 1177 /** 1178 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1179 * @pwq: pwq of interest 1180 * @work_data: work_data of work which left the queue 1181 * 1182 * A work either has completed or is removed from pending queue, 1183 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1184 * 1185 * CONTEXT: 1186 * raw_spin_lock_irq(pool->lock). 1187 */ 1188 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1189 { 1190 int color = get_work_color(work_data); 1191 1192 if (!(work_data & WORK_STRUCT_INACTIVE)) { 1193 pwq->nr_active--; 1194 if (!list_empty(&pwq->inactive_works)) { 1195 /* one down, submit an inactive one */ 1196 if (pwq->nr_active < pwq->max_active) 1197 pwq_activate_first_inactive(pwq); 1198 } 1199 } 1200 1201 pwq->nr_in_flight[color]--; 1202 1203 /* is flush in progress and are we at the flushing tip? */ 1204 if (likely(pwq->flush_color != color)) 1205 goto out_put; 1206 1207 /* are there still in-flight works? */ 1208 if (pwq->nr_in_flight[color]) 1209 goto out_put; 1210 1211 /* this pwq is done, clear flush_color */ 1212 pwq->flush_color = -1; 1213 1214 /* 1215 * If this was the last pwq, wake up the first flusher. It 1216 * will handle the rest. 1217 */ 1218 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1219 complete(&pwq->wq->first_flusher->done); 1220 out_put: 1221 put_pwq(pwq); 1222 } 1223 1224 /** 1225 * try_to_grab_pending - steal work item from worklist and disable irq 1226 * @work: work item to steal 1227 * @is_dwork: @work is a delayed_work 1228 * @flags: place to store irq state 1229 * 1230 * Try to grab PENDING bit of @work. This function can handle @work in any 1231 * stable state - idle, on timer or on worklist. 1232 * 1233 * Return: 1234 * 1235 * ======== ================================================================ 1236 * 1 if @work was pending and we successfully stole PENDING 1237 * 0 if @work was idle and we claimed PENDING 1238 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1239 * -ENOENT if someone else is canceling @work, this state may persist 1240 * for arbitrarily long 1241 * ======== ================================================================ 1242 * 1243 * Note: 1244 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1245 * interrupted while holding PENDING and @work off queue, irq must be 1246 * disabled on entry. This, combined with delayed_work->timer being 1247 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1248 * 1249 * On successful return, >= 0, irq is disabled and the caller is 1250 * responsible for releasing it using local_irq_restore(*@flags). 1251 * 1252 * This function is safe to call from any context including IRQ handler. 1253 */ 1254 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1255 unsigned long *flags) 1256 { 1257 struct worker_pool *pool; 1258 struct pool_workqueue *pwq; 1259 1260 local_irq_save(*flags); 1261 1262 /* try to steal the timer if it exists */ 1263 if (is_dwork) { 1264 struct delayed_work *dwork = to_delayed_work(work); 1265 1266 /* 1267 * dwork->timer is irqsafe. If del_timer() fails, it's 1268 * guaranteed that the timer is not queued anywhere and not 1269 * running on the local CPU. 1270 */ 1271 if (likely(del_timer(&dwork->timer))) 1272 return 1; 1273 } 1274 1275 /* try to claim PENDING the normal way */ 1276 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1277 return 0; 1278 1279 rcu_read_lock(); 1280 /* 1281 * The queueing is in progress, or it is already queued. Try to 1282 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1283 */ 1284 pool = get_work_pool(work); 1285 if (!pool) 1286 goto fail; 1287 1288 raw_spin_lock(&pool->lock); 1289 /* 1290 * work->data is guaranteed to point to pwq only while the work 1291 * item is queued on pwq->wq, and both updating work->data to point 1292 * to pwq on queueing and to pool on dequeueing are done under 1293 * pwq->pool->lock. This in turn guarantees that, if work->data 1294 * points to pwq which is associated with a locked pool, the work 1295 * item is currently queued on that pool. 1296 */ 1297 pwq = get_work_pwq(work); 1298 if (pwq && pwq->pool == pool) { 1299 debug_work_deactivate(work); 1300 1301 /* 1302 * A cancelable inactive work item must be in the 1303 * pwq->inactive_works since a queued barrier can't be 1304 * canceled (see the comments in insert_wq_barrier()). 1305 * 1306 * An inactive work item cannot be grabbed directly because 1307 * it might have linked barrier work items which, if left 1308 * on the inactive_works list, will confuse pwq->nr_active 1309 * management later on and cause stall. Make sure the work 1310 * item is activated before grabbing. 1311 */ 1312 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE) 1313 pwq_activate_inactive_work(work); 1314 1315 list_del_init(&work->entry); 1316 pwq_dec_nr_in_flight(pwq, *work_data_bits(work)); 1317 1318 /* work->data points to pwq iff queued, point to pool */ 1319 set_work_pool_and_keep_pending(work, pool->id); 1320 1321 raw_spin_unlock(&pool->lock); 1322 rcu_read_unlock(); 1323 return 1; 1324 } 1325 raw_spin_unlock(&pool->lock); 1326 fail: 1327 rcu_read_unlock(); 1328 local_irq_restore(*flags); 1329 if (work_is_canceling(work)) 1330 return -ENOENT; 1331 cpu_relax(); 1332 return -EAGAIN; 1333 } 1334 1335 /** 1336 * insert_work - insert a work into a pool 1337 * @pwq: pwq @work belongs to 1338 * @work: work to insert 1339 * @head: insertion point 1340 * @extra_flags: extra WORK_STRUCT_* flags to set 1341 * 1342 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1343 * work_struct flags. 1344 * 1345 * CONTEXT: 1346 * raw_spin_lock_irq(pool->lock). 1347 */ 1348 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1349 struct list_head *head, unsigned int extra_flags) 1350 { 1351 struct worker_pool *pool = pwq->pool; 1352 1353 /* record the work call stack in order to print it in KASAN reports */ 1354 kasan_record_aux_stack_noalloc(work); 1355 1356 /* we own @work, set data and link */ 1357 set_work_pwq(work, pwq, extra_flags); 1358 list_add_tail(&work->entry, head); 1359 get_pwq(pwq); 1360 1361 /* 1362 * Ensure either wq_worker_sleeping() sees the above 1363 * list_add_tail() or we see zero nr_running to avoid workers lying 1364 * around lazily while there are works to be processed. 1365 */ 1366 smp_mb(); 1367 1368 if (__need_more_worker(pool)) 1369 wake_up_worker(pool); 1370 } 1371 1372 /* 1373 * Test whether @work is being queued from another work executing on the 1374 * same workqueue. 1375 */ 1376 static bool is_chained_work(struct workqueue_struct *wq) 1377 { 1378 struct worker *worker; 1379 1380 worker = current_wq_worker(); 1381 /* 1382 * Return %true iff I'm a worker executing a work item on @wq. If 1383 * I'm @worker, it's safe to dereference it without locking. 1384 */ 1385 return worker && worker->current_pwq->wq == wq; 1386 } 1387 1388 /* 1389 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1390 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1391 * avoid perturbing sensitive tasks. 1392 */ 1393 static int wq_select_unbound_cpu(int cpu) 1394 { 1395 static bool printed_dbg_warning; 1396 int new_cpu; 1397 1398 if (likely(!wq_debug_force_rr_cpu)) { 1399 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1400 return cpu; 1401 } else if (!printed_dbg_warning) { 1402 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1403 printed_dbg_warning = true; 1404 } 1405 1406 if (cpumask_empty(wq_unbound_cpumask)) 1407 return cpu; 1408 1409 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1410 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1411 if (unlikely(new_cpu >= nr_cpu_ids)) { 1412 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1413 if (unlikely(new_cpu >= nr_cpu_ids)) 1414 return cpu; 1415 } 1416 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1417 1418 return new_cpu; 1419 } 1420 1421 static void __queue_work(int cpu, struct workqueue_struct *wq, 1422 struct work_struct *work) 1423 { 1424 struct pool_workqueue *pwq; 1425 struct worker_pool *last_pool; 1426 struct list_head *worklist; 1427 unsigned int work_flags; 1428 unsigned int req_cpu = cpu; 1429 1430 /* 1431 * While a work item is PENDING && off queue, a task trying to 1432 * steal the PENDING will busy-loop waiting for it to either get 1433 * queued or lose PENDING. Grabbing PENDING and queueing should 1434 * happen with IRQ disabled. 1435 */ 1436 lockdep_assert_irqs_disabled(); 1437 1438 1439 /* if draining, only works from the same workqueue are allowed */ 1440 if (unlikely(wq->flags & __WQ_DRAINING) && 1441 WARN_ON_ONCE(!is_chained_work(wq))) 1442 return; 1443 rcu_read_lock(); 1444 retry: 1445 /* pwq which will be used unless @work is executing elsewhere */ 1446 if (wq->flags & WQ_UNBOUND) { 1447 if (req_cpu == WORK_CPU_UNBOUND) 1448 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1449 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1450 } else { 1451 if (req_cpu == WORK_CPU_UNBOUND) 1452 cpu = raw_smp_processor_id(); 1453 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1454 } 1455 1456 /* 1457 * If @work was previously on a different pool, it might still be 1458 * running there, in which case the work needs to be queued on that 1459 * pool to guarantee non-reentrancy. 1460 */ 1461 last_pool = get_work_pool(work); 1462 if (last_pool && last_pool != pwq->pool) { 1463 struct worker *worker; 1464 1465 raw_spin_lock(&last_pool->lock); 1466 1467 worker = find_worker_executing_work(last_pool, work); 1468 1469 if (worker && worker->current_pwq->wq == wq) { 1470 pwq = worker->current_pwq; 1471 } else { 1472 /* meh... not running there, queue here */ 1473 raw_spin_unlock(&last_pool->lock); 1474 raw_spin_lock(&pwq->pool->lock); 1475 } 1476 } else { 1477 raw_spin_lock(&pwq->pool->lock); 1478 } 1479 1480 /* 1481 * pwq is determined and locked. For unbound pools, we could have 1482 * raced with pwq release and it could already be dead. If its 1483 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1484 * without another pwq replacing it in the numa_pwq_tbl or while 1485 * work items are executing on it, so the retrying is guaranteed to 1486 * make forward-progress. 1487 */ 1488 if (unlikely(!pwq->refcnt)) { 1489 if (wq->flags & WQ_UNBOUND) { 1490 raw_spin_unlock(&pwq->pool->lock); 1491 cpu_relax(); 1492 goto retry; 1493 } 1494 /* oops */ 1495 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1496 wq->name, cpu); 1497 } 1498 1499 /* pwq determined, queue */ 1500 trace_workqueue_queue_work(req_cpu, pwq, work); 1501 1502 if (WARN_ON(!list_empty(&work->entry))) 1503 goto out; 1504 1505 pwq->nr_in_flight[pwq->work_color]++; 1506 work_flags = work_color_to_flags(pwq->work_color); 1507 1508 if (likely(pwq->nr_active < pwq->max_active)) { 1509 trace_workqueue_activate_work(work); 1510 pwq->nr_active++; 1511 worklist = &pwq->pool->worklist; 1512 if (list_empty(worklist)) 1513 pwq->pool->watchdog_ts = jiffies; 1514 } else { 1515 work_flags |= WORK_STRUCT_INACTIVE; 1516 worklist = &pwq->inactive_works; 1517 } 1518 1519 debug_work_activate(work); 1520 insert_work(pwq, work, worklist, work_flags); 1521 1522 out: 1523 raw_spin_unlock(&pwq->pool->lock); 1524 rcu_read_unlock(); 1525 } 1526 1527 /** 1528 * queue_work_on - queue work on specific cpu 1529 * @cpu: CPU number to execute work on 1530 * @wq: workqueue to use 1531 * @work: work to queue 1532 * 1533 * We queue the work to a specific CPU, the caller must ensure it 1534 * can't go away. 1535 * 1536 * Return: %false if @work was already on a queue, %true otherwise. 1537 */ 1538 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1539 struct work_struct *work) 1540 { 1541 bool ret = false; 1542 unsigned long flags; 1543 1544 local_irq_save(flags); 1545 1546 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1547 __queue_work(cpu, wq, work); 1548 ret = true; 1549 } 1550 1551 local_irq_restore(flags); 1552 return ret; 1553 } 1554 EXPORT_SYMBOL(queue_work_on); 1555 1556 /** 1557 * workqueue_select_cpu_near - Select a CPU based on NUMA node 1558 * @node: NUMA node ID that we want to select a CPU from 1559 * 1560 * This function will attempt to find a "random" cpu available on a given 1561 * node. If there are no CPUs available on the given node it will return 1562 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1563 * available CPU if we need to schedule this work. 1564 */ 1565 static int workqueue_select_cpu_near(int node) 1566 { 1567 int cpu; 1568 1569 /* No point in doing this if NUMA isn't enabled for workqueues */ 1570 if (!wq_numa_enabled) 1571 return WORK_CPU_UNBOUND; 1572 1573 /* Delay binding to CPU if node is not valid or online */ 1574 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1575 return WORK_CPU_UNBOUND; 1576 1577 /* Use local node/cpu if we are already there */ 1578 cpu = raw_smp_processor_id(); 1579 if (node == cpu_to_node(cpu)) 1580 return cpu; 1581 1582 /* Use "random" otherwise know as "first" online CPU of node */ 1583 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1584 1585 /* If CPU is valid return that, otherwise just defer */ 1586 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1587 } 1588 1589 /** 1590 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1591 * @node: NUMA node that we are targeting the work for 1592 * @wq: workqueue to use 1593 * @work: work to queue 1594 * 1595 * We queue the work to a "random" CPU within a given NUMA node. The basic 1596 * idea here is to provide a way to somehow associate work with a given 1597 * NUMA node. 1598 * 1599 * This function will only make a best effort attempt at getting this onto 1600 * the right NUMA node. If no node is requested or the requested node is 1601 * offline then we just fall back to standard queue_work behavior. 1602 * 1603 * Currently the "random" CPU ends up being the first available CPU in the 1604 * intersection of cpu_online_mask and the cpumask of the node, unless we 1605 * are running on the node. In that case we just use the current CPU. 1606 * 1607 * Return: %false if @work was already on a queue, %true otherwise. 1608 */ 1609 bool queue_work_node(int node, struct workqueue_struct *wq, 1610 struct work_struct *work) 1611 { 1612 unsigned long flags; 1613 bool ret = false; 1614 1615 /* 1616 * This current implementation is specific to unbound workqueues. 1617 * Specifically we only return the first available CPU for a given 1618 * node instead of cycling through individual CPUs within the node. 1619 * 1620 * If this is used with a per-cpu workqueue then the logic in 1621 * workqueue_select_cpu_near would need to be updated to allow for 1622 * some round robin type logic. 1623 */ 1624 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1625 1626 local_irq_save(flags); 1627 1628 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1629 int cpu = workqueue_select_cpu_near(node); 1630 1631 __queue_work(cpu, wq, work); 1632 ret = true; 1633 } 1634 1635 local_irq_restore(flags); 1636 return ret; 1637 } 1638 EXPORT_SYMBOL_GPL(queue_work_node); 1639 1640 void delayed_work_timer_fn(struct timer_list *t) 1641 { 1642 struct delayed_work *dwork = from_timer(dwork, t, timer); 1643 1644 /* should have been called from irqsafe timer with irq already off */ 1645 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1646 } 1647 EXPORT_SYMBOL(delayed_work_timer_fn); 1648 1649 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1650 struct delayed_work *dwork, unsigned long delay) 1651 { 1652 struct timer_list *timer = &dwork->timer; 1653 struct work_struct *work = &dwork->work; 1654 1655 WARN_ON_ONCE(!wq); 1656 WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn); 1657 WARN_ON_ONCE(timer_pending(timer)); 1658 WARN_ON_ONCE(!list_empty(&work->entry)); 1659 1660 /* 1661 * If @delay is 0, queue @dwork->work immediately. This is for 1662 * both optimization and correctness. The earliest @timer can 1663 * expire is on the closest next tick and delayed_work users depend 1664 * on that there's no such delay when @delay is 0. 1665 */ 1666 if (!delay) { 1667 __queue_work(cpu, wq, &dwork->work); 1668 return; 1669 } 1670 1671 dwork->wq = wq; 1672 dwork->cpu = cpu; 1673 timer->expires = jiffies + delay; 1674 1675 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1676 add_timer_on(timer, cpu); 1677 else 1678 add_timer(timer); 1679 } 1680 1681 /** 1682 * queue_delayed_work_on - queue work on specific CPU after delay 1683 * @cpu: CPU number to execute work on 1684 * @wq: workqueue to use 1685 * @dwork: work to queue 1686 * @delay: number of jiffies to wait before queueing 1687 * 1688 * Return: %false if @work was already on a queue, %true otherwise. If 1689 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1690 * execution. 1691 */ 1692 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1693 struct delayed_work *dwork, unsigned long delay) 1694 { 1695 struct work_struct *work = &dwork->work; 1696 bool ret = false; 1697 unsigned long flags; 1698 1699 /* read the comment in __queue_work() */ 1700 local_irq_save(flags); 1701 1702 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1703 __queue_delayed_work(cpu, wq, dwork, delay); 1704 ret = true; 1705 } 1706 1707 local_irq_restore(flags); 1708 return ret; 1709 } 1710 EXPORT_SYMBOL(queue_delayed_work_on); 1711 1712 /** 1713 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1714 * @cpu: CPU number to execute work on 1715 * @wq: workqueue to use 1716 * @dwork: work to queue 1717 * @delay: number of jiffies to wait before queueing 1718 * 1719 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1720 * modify @dwork's timer so that it expires after @delay. If @delay is 1721 * zero, @work is guaranteed to be scheduled immediately regardless of its 1722 * current state. 1723 * 1724 * Return: %false if @dwork was idle and queued, %true if @dwork was 1725 * pending and its timer was modified. 1726 * 1727 * This function is safe to call from any context including IRQ handler. 1728 * See try_to_grab_pending() for details. 1729 */ 1730 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1731 struct delayed_work *dwork, unsigned long delay) 1732 { 1733 unsigned long flags; 1734 int ret; 1735 1736 do { 1737 ret = try_to_grab_pending(&dwork->work, true, &flags); 1738 } while (unlikely(ret == -EAGAIN)); 1739 1740 if (likely(ret >= 0)) { 1741 __queue_delayed_work(cpu, wq, dwork, delay); 1742 local_irq_restore(flags); 1743 } 1744 1745 /* -ENOENT from try_to_grab_pending() becomes %true */ 1746 return ret; 1747 } 1748 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1749 1750 static void rcu_work_rcufn(struct rcu_head *rcu) 1751 { 1752 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1753 1754 /* read the comment in __queue_work() */ 1755 local_irq_disable(); 1756 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1757 local_irq_enable(); 1758 } 1759 1760 /** 1761 * queue_rcu_work - queue work after a RCU grace period 1762 * @wq: workqueue to use 1763 * @rwork: work to queue 1764 * 1765 * Return: %false if @rwork was already pending, %true otherwise. Note 1766 * that a full RCU grace period is guaranteed only after a %true return. 1767 * While @rwork is guaranteed to be executed after a %false return, the 1768 * execution may happen before a full RCU grace period has passed. 1769 */ 1770 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1771 { 1772 struct work_struct *work = &rwork->work; 1773 1774 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1775 rwork->wq = wq; 1776 call_rcu(&rwork->rcu, rcu_work_rcufn); 1777 return true; 1778 } 1779 1780 return false; 1781 } 1782 EXPORT_SYMBOL(queue_rcu_work); 1783 1784 /** 1785 * worker_enter_idle - enter idle state 1786 * @worker: worker which is entering idle state 1787 * 1788 * @worker is entering idle state. Update stats and idle timer if 1789 * necessary. 1790 * 1791 * LOCKING: 1792 * raw_spin_lock_irq(pool->lock). 1793 */ 1794 static void worker_enter_idle(struct worker *worker) 1795 { 1796 struct worker_pool *pool = worker->pool; 1797 1798 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1799 WARN_ON_ONCE(!list_empty(&worker->entry) && 1800 (worker->hentry.next || worker->hentry.pprev))) 1801 return; 1802 1803 /* can't use worker_set_flags(), also called from create_worker() */ 1804 worker->flags |= WORKER_IDLE; 1805 pool->nr_idle++; 1806 worker->last_active = jiffies; 1807 1808 /* idle_list is LIFO */ 1809 list_add(&worker->entry, &pool->idle_list); 1810 1811 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1812 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1813 1814 /* 1815 * Sanity check nr_running. Because unbind_workers() releases 1816 * pool->lock between setting %WORKER_UNBOUND and zapping 1817 * nr_running, the warning may trigger spuriously. Check iff 1818 * unbind is not in progress. 1819 */ 1820 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1821 pool->nr_workers == pool->nr_idle && 1822 atomic_read(&pool->nr_running)); 1823 } 1824 1825 /** 1826 * worker_leave_idle - leave idle state 1827 * @worker: worker which is leaving idle state 1828 * 1829 * @worker is leaving idle state. Update stats. 1830 * 1831 * LOCKING: 1832 * raw_spin_lock_irq(pool->lock). 1833 */ 1834 static void worker_leave_idle(struct worker *worker) 1835 { 1836 struct worker_pool *pool = worker->pool; 1837 1838 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1839 return; 1840 worker_clr_flags(worker, WORKER_IDLE); 1841 pool->nr_idle--; 1842 list_del_init(&worker->entry); 1843 } 1844 1845 static struct worker *alloc_worker(int node) 1846 { 1847 struct worker *worker; 1848 1849 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1850 if (worker) { 1851 INIT_LIST_HEAD(&worker->entry); 1852 INIT_LIST_HEAD(&worker->scheduled); 1853 INIT_LIST_HEAD(&worker->node); 1854 /* on creation a worker is in !idle && prep state */ 1855 worker->flags = WORKER_PREP; 1856 } 1857 return worker; 1858 } 1859 1860 /** 1861 * worker_attach_to_pool() - attach a worker to a pool 1862 * @worker: worker to be attached 1863 * @pool: the target pool 1864 * 1865 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1866 * cpu-binding of @worker are kept coordinated with the pool across 1867 * cpu-[un]hotplugs. 1868 */ 1869 static void worker_attach_to_pool(struct worker *worker, 1870 struct worker_pool *pool) 1871 { 1872 mutex_lock(&wq_pool_attach_mutex); 1873 1874 /* 1875 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1876 * stable across this function. See the comments above the flag 1877 * definition for details. 1878 */ 1879 if (pool->flags & POOL_DISASSOCIATED) 1880 worker->flags |= WORKER_UNBOUND; 1881 else 1882 kthread_set_per_cpu(worker->task, pool->cpu); 1883 1884 if (worker->rescue_wq) 1885 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1886 1887 list_add_tail(&worker->node, &pool->workers); 1888 worker->pool = pool; 1889 1890 mutex_unlock(&wq_pool_attach_mutex); 1891 } 1892 1893 /** 1894 * worker_detach_from_pool() - detach a worker from its pool 1895 * @worker: worker which is attached to its pool 1896 * 1897 * Undo the attaching which had been done in worker_attach_to_pool(). The 1898 * caller worker shouldn't access to the pool after detached except it has 1899 * other reference to the pool. 1900 */ 1901 static void worker_detach_from_pool(struct worker *worker) 1902 { 1903 struct worker_pool *pool = worker->pool; 1904 struct completion *detach_completion = NULL; 1905 1906 mutex_lock(&wq_pool_attach_mutex); 1907 1908 kthread_set_per_cpu(worker->task, -1); 1909 list_del(&worker->node); 1910 worker->pool = NULL; 1911 1912 if (list_empty(&pool->workers)) 1913 detach_completion = pool->detach_completion; 1914 mutex_unlock(&wq_pool_attach_mutex); 1915 1916 /* clear leftover flags without pool->lock after it is detached */ 1917 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1918 1919 if (detach_completion) 1920 complete(detach_completion); 1921 } 1922 1923 /** 1924 * create_worker - create a new workqueue worker 1925 * @pool: pool the new worker will belong to 1926 * 1927 * Create and start a new worker which is attached to @pool. 1928 * 1929 * CONTEXT: 1930 * Might sleep. Does GFP_KERNEL allocations. 1931 * 1932 * Return: 1933 * Pointer to the newly created worker. 1934 */ 1935 static struct worker *create_worker(struct worker_pool *pool) 1936 { 1937 struct worker *worker; 1938 int id; 1939 char id_buf[16]; 1940 1941 /* ID is needed to determine kthread name */ 1942 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 1943 if (id < 0) 1944 return NULL; 1945 1946 worker = alloc_worker(pool->node); 1947 if (!worker) 1948 goto fail; 1949 1950 worker->id = id; 1951 1952 if (pool->cpu >= 0) 1953 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1954 pool->attrs->nice < 0 ? "H" : ""); 1955 else 1956 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1957 1958 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1959 "kworker/%s", id_buf); 1960 if (IS_ERR(worker->task)) 1961 goto fail; 1962 1963 set_user_nice(worker->task, pool->attrs->nice); 1964 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1965 1966 /* successful, attach the worker to the pool */ 1967 worker_attach_to_pool(worker, pool); 1968 1969 /* start the newly created worker */ 1970 raw_spin_lock_irq(&pool->lock); 1971 worker->pool->nr_workers++; 1972 worker_enter_idle(worker); 1973 wake_up_process(worker->task); 1974 raw_spin_unlock_irq(&pool->lock); 1975 1976 return worker; 1977 1978 fail: 1979 ida_free(&pool->worker_ida, id); 1980 kfree(worker); 1981 return NULL; 1982 } 1983 1984 /** 1985 * destroy_worker - destroy a workqueue worker 1986 * @worker: worker to be destroyed 1987 * 1988 * Destroy @worker and adjust @pool stats accordingly. The worker should 1989 * be idle. 1990 * 1991 * CONTEXT: 1992 * raw_spin_lock_irq(pool->lock). 1993 */ 1994 static void destroy_worker(struct worker *worker) 1995 { 1996 struct worker_pool *pool = worker->pool; 1997 1998 lockdep_assert_held(&pool->lock); 1999 2000 /* sanity check frenzy */ 2001 if (WARN_ON(worker->current_work) || 2002 WARN_ON(!list_empty(&worker->scheduled)) || 2003 WARN_ON(!(worker->flags & WORKER_IDLE))) 2004 return; 2005 2006 pool->nr_workers--; 2007 pool->nr_idle--; 2008 2009 list_del_init(&worker->entry); 2010 worker->flags |= WORKER_DIE; 2011 wake_up_process(worker->task); 2012 } 2013 2014 static void idle_worker_timeout(struct timer_list *t) 2015 { 2016 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2017 2018 raw_spin_lock_irq(&pool->lock); 2019 2020 while (too_many_workers(pool)) { 2021 struct worker *worker; 2022 unsigned long expires; 2023 2024 /* idle_list is kept in LIFO order, check the last one */ 2025 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2026 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2027 2028 if (time_before(jiffies, expires)) { 2029 mod_timer(&pool->idle_timer, expires); 2030 break; 2031 } 2032 2033 destroy_worker(worker); 2034 } 2035 2036 raw_spin_unlock_irq(&pool->lock); 2037 } 2038 2039 static void send_mayday(struct work_struct *work) 2040 { 2041 struct pool_workqueue *pwq = get_work_pwq(work); 2042 struct workqueue_struct *wq = pwq->wq; 2043 2044 lockdep_assert_held(&wq_mayday_lock); 2045 2046 if (!wq->rescuer) 2047 return; 2048 2049 /* mayday mayday mayday */ 2050 if (list_empty(&pwq->mayday_node)) { 2051 /* 2052 * If @pwq is for an unbound wq, its base ref may be put at 2053 * any time due to an attribute change. Pin @pwq until the 2054 * rescuer is done with it. 2055 */ 2056 get_pwq(pwq); 2057 list_add_tail(&pwq->mayday_node, &wq->maydays); 2058 wake_up_process(wq->rescuer->task); 2059 } 2060 } 2061 2062 static void pool_mayday_timeout(struct timer_list *t) 2063 { 2064 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2065 struct work_struct *work; 2066 2067 raw_spin_lock_irq(&pool->lock); 2068 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2069 2070 if (need_to_create_worker(pool)) { 2071 /* 2072 * We've been trying to create a new worker but 2073 * haven't been successful. We might be hitting an 2074 * allocation deadlock. Send distress signals to 2075 * rescuers. 2076 */ 2077 list_for_each_entry(work, &pool->worklist, entry) 2078 send_mayday(work); 2079 } 2080 2081 raw_spin_unlock(&wq_mayday_lock); 2082 raw_spin_unlock_irq(&pool->lock); 2083 2084 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2085 } 2086 2087 /** 2088 * maybe_create_worker - create a new worker if necessary 2089 * @pool: pool to create a new worker for 2090 * 2091 * Create a new worker for @pool if necessary. @pool is guaranteed to 2092 * have at least one idle worker on return from this function. If 2093 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2094 * sent to all rescuers with works scheduled on @pool to resolve 2095 * possible allocation deadlock. 2096 * 2097 * On return, need_to_create_worker() is guaranteed to be %false and 2098 * may_start_working() %true. 2099 * 2100 * LOCKING: 2101 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2102 * multiple times. Does GFP_KERNEL allocations. Called only from 2103 * manager. 2104 */ 2105 static void maybe_create_worker(struct worker_pool *pool) 2106 __releases(&pool->lock) 2107 __acquires(&pool->lock) 2108 { 2109 restart: 2110 raw_spin_unlock_irq(&pool->lock); 2111 2112 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2113 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2114 2115 while (true) { 2116 if (create_worker(pool) || !need_to_create_worker(pool)) 2117 break; 2118 2119 schedule_timeout_interruptible(CREATE_COOLDOWN); 2120 2121 if (!need_to_create_worker(pool)) 2122 break; 2123 } 2124 2125 del_timer_sync(&pool->mayday_timer); 2126 raw_spin_lock_irq(&pool->lock); 2127 /* 2128 * This is necessary even after a new worker was just successfully 2129 * created as @pool->lock was dropped and the new worker might have 2130 * already become busy. 2131 */ 2132 if (need_to_create_worker(pool)) 2133 goto restart; 2134 } 2135 2136 /** 2137 * manage_workers - manage worker pool 2138 * @worker: self 2139 * 2140 * Assume the manager role and manage the worker pool @worker belongs 2141 * to. At any given time, there can be only zero or one manager per 2142 * pool. The exclusion is handled automatically by this function. 2143 * 2144 * The caller can safely start processing works on false return. On 2145 * true return, it's guaranteed that need_to_create_worker() is false 2146 * and may_start_working() is true. 2147 * 2148 * CONTEXT: 2149 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2150 * multiple times. Does GFP_KERNEL allocations. 2151 * 2152 * Return: 2153 * %false if the pool doesn't need management and the caller can safely 2154 * start processing works, %true if management function was performed and 2155 * the conditions that the caller verified before calling the function may 2156 * no longer be true. 2157 */ 2158 static bool manage_workers(struct worker *worker) 2159 { 2160 struct worker_pool *pool = worker->pool; 2161 2162 if (pool->flags & POOL_MANAGER_ACTIVE) 2163 return false; 2164 2165 pool->flags |= POOL_MANAGER_ACTIVE; 2166 pool->manager = worker; 2167 2168 maybe_create_worker(pool); 2169 2170 pool->manager = NULL; 2171 pool->flags &= ~POOL_MANAGER_ACTIVE; 2172 rcuwait_wake_up(&manager_wait); 2173 return true; 2174 } 2175 2176 /** 2177 * process_one_work - process single work 2178 * @worker: self 2179 * @work: work to process 2180 * 2181 * Process @work. This function contains all the logics necessary to 2182 * process a single work including synchronization against and 2183 * interaction with other workers on the same cpu, queueing and 2184 * flushing. As long as context requirement is met, any worker can 2185 * call this function to process a work. 2186 * 2187 * CONTEXT: 2188 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 2189 */ 2190 static void process_one_work(struct worker *worker, struct work_struct *work) 2191 __releases(&pool->lock) 2192 __acquires(&pool->lock) 2193 { 2194 struct pool_workqueue *pwq = get_work_pwq(work); 2195 struct worker_pool *pool = worker->pool; 2196 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2197 unsigned long work_data; 2198 struct worker *collision; 2199 #ifdef CONFIG_LOCKDEP 2200 /* 2201 * It is permissible to free the struct work_struct from 2202 * inside the function that is called from it, this we need to 2203 * take into account for lockdep too. To avoid bogus "held 2204 * lock freed" warnings as well as problems when looking into 2205 * work->lockdep_map, make a copy and use that here. 2206 */ 2207 struct lockdep_map lockdep_map; 2208 2209 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2210 #endif 2211 /* ensure we're on the correct CPU */ 2212 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2213 raw_smp_processor_id() != pool->cpu); 2214 2215 /* 2216 * A single work shouldn't be executed concurrently by 2217 * multiple workers on a single cpu. Check whether anyone is 2218 * already processing the work. If so, defer the work to the 2219 * currently executing one. 2220 */ 2221 collision = find_worker_executing_work(pool, work); 2222 if (unlikely(collision)) { 2223 move_linked_works(work, &collision->scheduled, NULL); 2224 return; 2225 } 2226 2227 /* claim and dequeue */ 2228 debug_work_deactivate(work); 2229 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2230 worker->current_work = work; 2231 worker->current_func = work->func; 2232 worker->current_pwq = pwq; 2233 work_data = *work_data_bits(work); 2234 worker->current_color = get_work_color(work_data); 2235 2236 /* 2237 * Record wq name for cmdline and debug reporting, may get 2238 * overridden through set_worker_desc(). 2239 */ 2240 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2241 2242 list_del_init(&work->entry); 2243 2244 /* 2245 * CPU intensive works don't participate in concurrency management. 2246 * They're the scheduler's responsibility. This takes @worker out 2247 * of concurrency management and the next code block will chain 2248 * execution of the pending work items. 2249 */ 2250 if (unlikely(cpu_intensive)) 2251 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2252 2253 /* 2254 * Wake up another worker if necessary. The condition is always 2255 * false for normal per-cpu workers since nr_running would always 2256 * be >= 1 at this point. This is used to chain execution of the 2257 * pending work items for WORKER_NOT_RUNNING workers such as the 2258 * UNBOUND and CPU_INTENSIVE ones. 2259 */ 2260 if (need_more_worker(pool)) 2261 wake_up_worker(pool); 2262 2263 /* 2264 * Record the last pool and clear PENDING which should be the last 2265 * update to @work. Also, do this inside @pool->lock so that 2266 * PENDING and queued state changes happen together while IRQ is 2267 * disabled. 2268 */ 2269 set_work_pool_and_clear_pending(work, pool->id); 2270 2271 raw_spin_unlock_irq(&pool->lock); 2272 2273 lock_map_acquire(&pwq->wq->lockdep_map); 2274 lock_map_acquire(&lockdep_map); 2275 /* 2276 * Strictly speaking we should mark the invariant state without holding 2277 * any locks, that is, before these two lock_map_acquire()'s. 2278 * 2279 * However, that would result in: 2280 * 2281 * A(W1) 2282 * WFC(C) 2283 * A(W1) 2284 * C(C) 2285 * 2286 * Which would create W1->C->W1 dependencies, even though there is no 2287 * actual deadlock possible. There are two solutions, using a 2288 * read-recursive acquire on the work(queue) 'locks', but this will then 2289 * hit the lockdep limitation on recursive locks, or simply discard 2290 * these locks. 2291 * 2292 * AFAICT there is no possible deadlock scenario between the 2293 * flush_work() and complete() primitives (except for single-threaded 2294 * workqueues), so hiding them isn't a problem. 2295 */ 2296 lockdep_invariant_state(true); 2297 trace_workqueue_execute_start(work); 2298 worker->current_func(work); 2299 /* 2300 * While we must be careful to not use "work" after this, the trace 2301 * point will only record its address. 2302 */ 2303 trace_workqueue_execute_end(work, worker->current_func); 2304 lock_map_release(&lockdep_map); 2305 lock_map_release(&pwq->wq->lockdep_map); 2306 2307 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2308 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2309 " last function: %ps\n", 2310 current->comm, preempt_count(), task_pid_nr(current), 2311 worker->current_func); 2312 debug_show_held_locks(current); 2313 dump_stack(); 2314 } 2315 2316 /* 2317 * The following prevents a kworker from hogging CPU on !PREEMPTION 2318 * kernels, where a requeueing work item waiting for something to 2319 * happen could deadlock with stop_machine as such work item could 2320 * indefinitely requeue itself while all other CPUs are trapped in 2321 * stop_machine. At the same time, report a quiescent RCU state so 2322 * the same condition doesn't freeze RCU. 2323 */ 2324 cond_resched(); 2325 2326 raw_spin_lock_irq(&pool->lock); 2327 2328 /* clear cpu intensive status */ 2329 if (unlikely(cpu_intensive)) 2330 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2331 2332 /* tag the worker for identification in schedule() */ 2333 worker->last_func = worker->current_func; 2334 2335 /* we're done with it, release */ 2336 hash_del(&worker->hentry); 2337 worker->current_work = NULL; 2338 worker->current_func = NULL; 2339 worker->current_pwq = NULL; 2340 worker->current_color = INT_MAX; 2341 pwq_dec_nr_in_flight(pwq, work_data); 2342 } 2343 2344 /** 2345 * process_scheduled_works - process scheduled works 2346 * @worker: self 2347 * 2348 * Process all scheduled works. Please note that the scheduled list 2349 * may change while processing a work, so this function repeatedly 2350 * fetches a work from the top and executes it. 2351 * 2352 * CONTEXT: 2353 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2354 * multiple times. 2355 */ 2356 static void process_scheduled_works(struct worker *worker) 2357 { 2358 while (!list_empty(&worker->scheduled)) { 2359 struct work_struct *work = list_first_entry(&worker->scheduled, 2360 struct work_struct, entry); 2361 process_one_work(worker, work); 2362 } 2363 } 2364 2365 static void set_pf_worker(bool val) 2366 { 2367 mutex_lock(&wq_pool_attach_mutex); 2368 if (val) 2369 current->flags |= PF_WQ_WORKER; 2370 else 2371 current->flags &= ~PF_WQ_WORKER; 2372 mutex_unlock(&wq_pool_attach_mutex); 2373 } 2374 2375 /** 2376 * worker_thread - the worker thread function 2377 * @__worker: self 2378 * 2379 * The worker thread function. All workers belong to a worker_pool - 2380 * either a per-cpu one or dynamic unbound one. These workers process all 2381 * work items regardless of their specific target workqueue. The only 2382 * exception is work items which belong to workqueues with a rescuer which 2383 * will be explained in rescuer_thread(). 2384 * 2385 * Return: 0 2386 */ 2387 static int worker_thread(void *__worker) 2388 { 2389 struct worker *worker = __worker; 2390 struct worker_pool *pool = worker->pool; 2391 2392 /* tell the scheduler that this is a workqueue worker */ 2393 set_pf_worker(true); 2394 woke_up: 2395 raw_spin_lock_irq(&pool->lock); 2396 2397 /* am I supposed to die? */ 2398 if (unlikely(worker->flags & WORKER_DIE)) { 2399 raw_spin_unlock_irq(&pool->lock); 2400 WARN_ON_ONCE(!list_empty(&worker->entry)); 2401 set_pf_worker(false); 2402 2403 set_task_comm(worker->task, "kworker/dying"); 2404 ida_free(&pool->worker_ida, worker->id); 2405 worker_detach_from_pool(worker); 2406 kfree(worker); 2407 return 0; 2408 } 2409 2410 worker_leave_idle(worker); 2411 recheck: 2412 /* no more worker necessary? */ 2413 if (!need_more_worker(pool)) 2414 goto sleep; 2415 2416 /* do we need to manage? */ 2417 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2418 goto recheck; 2419 2420 /* 2421 * ->scheduled list can only be filled while a worker is 2422 * preparing to process a work or actually processing it. 2423 * Make sure nobody diddled with it while I was sleeping. 2424 */ 2425 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2426 2427 /* 2428 * Finish PREP stage. We're guaranteed to have at least one idle 2429 * worker or that someone else has already assumed the manager 2430 * role. This is where @worker starts participating in concurrency 2431 * management if applicable and concurrency management is restored 2432 * after being rebound. See rebind_workers() for details. 2433 */ 2434 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2435 2436 do { 2437 struct work_struct *work = 2438 list_first_entry(&pool->worklist, 2439 struct work_struct, entry); 2440 2441 pool->watchdog_ts = jiffies; 2442 2443 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2444 /* optimization path, not strictly necessary */ 2445 process_one_work(worker, work); 2446 if (unlikely(!list_empty(&worker->scheduled))) 2447 process_scheduled_works(worker); 2448 } else { 2449 move_linked_works(work, &worker->scheduled, NULL); 2450 process_scheduled_works(worker); 2451 } 2452 } while (keep_working(pool)); 2453 2454 worker_set_flags(worker, WORKER_PREP); 2455 sleep: 2456 /* 2457 * pool->lock is held and there's no work to process and no need to 2458 * manage, sleep. Workers are woken up only while holding 2459 * pool->lock or from local cpu, so setting the current state 2460 * before releasing pool->lock is enough to prevent losing any 2461 * event. 2462 */ 2463 worker_enter_idle(worker); 2464 __set_current_state(TASK_IDLE); 2465 raw_spin_unlock_irq(&pool->lock); 2466 schedule(); 2467 goto woke_up; 2468 } 2469 2470 /** 2471 * rescuer_thread - the rescuer thread function 2472 * @__rescuer: self 2473 * 2474 * Workqueue rescuer thread function. There's one rescuer for each 2475 * workqueue which has WQ_MEM_RECLAIM set. 2476 * 2477 * Regular work processing on a pool may block trying to create a new 2478 * worker which uses GFP_KERNEL allocation which has slight chance of 2479 * developing into deadlock if some works currently on the same queue 2480 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2481 * the problem rescuer solves. 2482 * 2483 * When such condition is possible, the pool summons rescuers of all 2484 * workqueues which have works queued on the pool and let them process 2485 * those works so that forward progress can be guaranteed. 2486 * 2487 * This should happen rarely. 2488 * 2489 * Return: 0 2490 */ 2491 static int rescuer_thread(void *__rescuer) 2492 { 2493 struct worker *rescuer = __rescuer; 2494 struct workqueue_struct *wq = rescuer->rescue_wq; 2495 struct list_head *scheduled = &rescuer->scheduled; 2496 bool should_stop; 2497 2498 set_user_nice(current, RESCUER_NICE_LEVEL); 2499 2500 /* 2501 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2502 * doesn't participate in concurrency management. 2503 */ 2504 set_pf_worker(true); 2505 repeat: 2506 set_current_state(TASK_IDLE); 2507 2508 /* 2509 * By the time the rescuer is requested to stop, the workqueue 2510 * shouldn't have any work pending, but @wq->maydays may still have 2511 * pwq(s) queued. This can happen by non-rescuer workers consuming 2512 * all the work items before the rescuer got to them. Go through 2513 * @wq->maydays processing before acting on should_stop so that the 2514 * list is always empty on exit. 2515 */ 2516 should_stop = kthread_should_stop(); 2517 2518 /* see whether any pwq is asking for help */ 2519 raw_spin_lock_irq(&wq_mayday_lock); 2520 2521 while (!list_empty(&wq->maydays)) { 2522 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2523 struct pool_workqueue, mayday_node); 2524 struct worker_pool *pool = pwq->pool; 2525 struct work_struct *work, *n; 2526 bool first = true; 2527 2528 __set_current_state(TASK_RUNNING); 2529 list_del_init(&pwq->mayday_node); 2530 2531 raw_spin_unlock_irq(&wq_mayday_lock); 2532 2533 worker_attach_to_pool(rescuer, pool); 2534 2535 raw_spin_lock_irq(&pool->lock); 2536 2537 /* 2538 * Slurp in all works issued via this workqueue and 2539 * process'em. 2540 */ 2541 WARN_ON_ONCE(!list_empty(scheduled)); 2542 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2543 if (get_work_pwq(work) == pwq) { 2544 if (first) 2545 pool->watchdog_ts = jiffies; 2546 move_linked_works(work, scheduled, &n); 2547 } 2548 first = false; 2549 } 2550 2551 if (!list_empty(scheduled)) { 2552 process_scheduled_works(rescuer); 2553 2554 /* 2555 * The above execution of rescued work items could 2556 * have created more to rescue through 2557 * pwq_activate_first_inactive() or chained 2558 * queueing. Let's put @pwq back on mayday list so 2559 * that such back-to-back work items, which may be 2560 * being used to relieve memory pressure, don't 2561 * incur MAYDAY_INTERVAL delay inbetween. 2562 */ 2563 if (pwq->nr_active && need_to_create_worker(pool)) { 2564 raw_spin_lock(&wq_mayday_lock); 2565 /* 2566 * Queue iff we aren't racing destruction 2567 * and somebody else hasn't queued it already. 2568 */ 2569 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 2570 get_pwq(pwq); 2571 list_add_tail(&pwq->mayday_node, &wq->maydays); 2572 } 2573 raw_spin_unlock(&wq_mayday_lock); 2574 } 2575 } 2576 2577 /* 2578 * Put the reference grabbed by send_mayday(). @pool won't 2579 * go away while we're still attached to it. 2580 */ 2581 put_pwq(pwq); 2582 2583 /* 2584 * Leave this pool. If need_more_worker() is %true, notify a 2585 * regular worker; otherwise, we end up with 0 concurrency 2586 * and stalling the execution. 2587 */ 2588 if (need_more_worker(pool)) 2589 wake_up_worker(pool); 2590 2591 raw_spin_unlock_irq(&pool->lock); 2592 2593 worker_detach_from_pool(rescuer); 2594 2595 raw_spin_lock_irq(&wq_mayday_lock); 2596 } 2597 2598 raw_spin_unlock_irq(&wq_mayday_lock); 2599 2600 if (should_stop) { 2601 __set_current_state(TASK_RUNNING); 2602 set_pf_worker(false); 2603 return 0; 2604 } 2605 2606 /* rescuers should never participate in concurrency management */ 2607 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2608 schedule(); 2609 goto repeat; 2610 } 2611 2612 /** 2613 * check_flush_dependency - check for flush dependency sanity 2614 * @target_wq: workqueue being flushed 2615 * @target_work: work item being flushed (NULL for workqueue flushes) 2616 * 2617 * %current is trying to flush the whole @target_wq or @target_work on it. 2618 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2619 * reclaiming memory or running on a workqueue which doesn't have 2620 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2621 * a deadlock. 2622 */ 2623 static void check_flush_dependency(struct workqueue_struct *target_wq, 2624 struct work_struct *target_work) 2625 { 2626 work_func_t target_func = target_work ? target_work->func : NULL; 2627 struct worker *worker; 2628 2629 if (target_wq->flags & WQ_MEM_RECLAIM) 2630 return; 2631 2632 worker = current_wq_worker(); 2633 2634 WARN_ONCE(current->flags & PF_MEMALLOC, 2635 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 2636 current->pid, current->comm, target_wq->name, target_func); 2637 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2638 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2639 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 2640 worker->current_pwq->wq->name, worker->current_func, 2641 target_wq->name, target_func); 2642 } 2643 2644 struct wq_barrier { 2645 struct work_struct work; 2646 struct completion done; 2647 struct task_struct *task; /* purely informational */ 2648 }; 2649 2650 static void wq_barrier_func(struct work_struct *work) 2651 { 2652 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2653 complete(&barr->done); 2654 } 2655 2656 /** 2657 * insert_wq_barrier - insert a barrier work 2658 * @pwq: pwq to insert barrier into 2659 * @barr: wq_barrier to insert 2660 * @target: target work to attach @barr to 2661 * @worker: worker currently executing @target, NULL if @target is not executing 2662 * 2663 * @barr is linked to @target such that @barr is completed only after 2664 * @target finishes execution. Please note that the ordering 2665 * guarantee is observed only with respect to @target and on the local 2666 * cpu. 2667 * 2668 * Currently, a queued barrier can't be canceled. This is because 2669 * try_to_grab_pending() can't determine whether the work to be 2670 * grabbed is at the head of the queue and thus can't clear LINKED 2671 * flag of the previous work while there must be a valid next work 2672 * after a work with LINKED flag set. 2673 * 2674 * Note that when @worker is non-NULL, @target may be modified 2675 * underneath us, so we can't reliably determine pwq from @target. 2676 * 2677 * CONTEXT: 2678 * raw_spin_lock_irq(pool->lock). 2679 */ 2680 static void insert_wq_barrier(struct pool_workqueue *pwq, 2681 struct wq_barrier *barr, 2682 struct work_struct *target, struct worker *worker) 2683 { 2684 unsigned int work_flags = 0; 2685 unsigned int work_color; 2686 struct list_head *head; 2687 2688 /* 2689 * debugobject calls are safe here even with pool->lock locked 2690 * as we know for sure that this will not trigger any of the 2691 * checks and call back into the fixup functions where we 2692 * might deadlock. 2693 */ 2694 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2695 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2696 2697 init_completion_map(&barr->done, &target->lockdep_map); 2698 2699 barr->task = current; 2700 2701 /* The barrier work item does not participate in pwq->nr_active. */ 2702 work_flags |= WORK_STRUCT_INACTIVE; 2703 2704 /* 2705 * If @target is currently being executed, schedule the 2706 * barrier to the worker; otherwise, put it after @target. 2707 */ 2708 if (worker) { 2709 head = worker->scheduled.next; 2710 work_color = worker->current_color; 2711 } else { 2712 unsigned long *bits = work_data_bits(target); 2713 2714 head = target->entry.next; 2715 /* there can already be other linked works, inherit and set */ 2716 work_flags |= *bits & WORK_STRUCT_LINKED; 2717 work_color = get_work_color(*bits); 2718 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2719 } 2720 2721 pwq->nr_in_flight[work_color]++; 2722 work_flags |= work_color_to_flags(work_color); 2723 2724 debug_work_activate(&barr->work); 2725 insert_work(pwq, &barr->work, head, work_flags); 2726 } 2727 2728 /** 2729 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2730 * @wq: workqueue being flushed 2731 * @flush_color: new flush color, < 0 for no-op 2732 * @work_color: new work color, < 0 for no-op 2733 * 2734 * Prepare pwqs for workqueue flushing. 2735 * 2736 * If @flush_color is non-negative, flush_color on all pwqs should be 2737 * -1. If no pwq has in-flight commands at the specified color, all 2738 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2739 * has in flight commands, its pwq->flush_color is set to 2740 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2741 * wakeup logic is armed and %true is returned. 2742 * 2743 * The caller should have initialized @wq->first_flusher prior to 2744 * calling this function with non-negative @flush_color. If 2745 * @flush_color is negative, no flush color update is done and %false 2746 * is returned. 2747 * 2748 * If @work_color is non-negative, all pwqs should have the same 2749 * work_color which is previous to @work_color and all will be 2750 * advanced to @work_color. 2751 * 2752 * CONTEXT: 2753 * mutex_lock(wq->mutex). 2754 * 2755 * Return: 2756 * %true if @flush_color >= 0 and there's something to flush. %false 2757 * otherwise. 2758 */ 2759 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2760 int flush_color, int work_color) 2761 { 2762 bool wait = false; 2763 struct pool_workqueue *pwq; 2764 2765 if (flush_color >= 0) { 2766 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2767 atomic_set(&wq->nr_pwqs_to_flush, 1); 2768 } 2769 2770 for_each_pwq(pwq, wq) { 2771 struct worker_pool *pool = pwq->pool; 2772 2773 raw_spin_lock_irq(&pool->lock); 2774 2775 if (flush_color >= 0) { 2776 WARN_ON_ONCE(pwq->flush_color != -1); 2777 2778 if (pwq->nr_in_flight[flush_color]) { 2779 pwq->flush_color = flush_color; 2780 atomic_inc(&wq->nr_pwqs_to_flush); 2781 wait = true; 2782 } 2783 } 2784 2785 if (work_color >= 0) { 2786 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2787 pwq->work_color = work_color; 2788 } 2789 2790 raw_spin_unlock_irq(&pool->lock); 2791 } 2792 2793 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2794 complete(&wq->first_flusher->done); 2795 2796 return wait; 2797 } 2798 2799 /** 2800 * flush_workqueue - ensure that any scheduled work has run to completion. 2801 * @wq: workqueue to flush 2802 * 2803 * This function sleeps until all work items which were queued on entry 2804 * have finished execution, but it is not livelocked by new incoming ones. 2805 */ 2806 void flush_workqueue(struct workqueue_struct *wq) 2807 { 2808 struct wq_flusher this_flusher = { 2809 .list = LIST_HEAD_INIT(this_flusher.list), 2810 .flush_color = -1, 2811 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2812 }; 2813 int next_color; 2814 2815 if (WARN_ON(!wq_online)) 2816 return; 2817 2818 lock_map_acquire(&wq->lockdep_map); 2819 lock_map_release(&wq->lockdep_map); 2820 2821 mutex_lock(&wq->mutex); 2822 2823 /* 2824 * Start-to-wait phase 2825 */ 2826 next_color = work_next_color(wq->work_color); 2827 2828 if (next_color != wq->flush_color) { 2829 /* 2830 * Color space is not full. The current work_color 2831 * becomes our flush_color and work_color is advanced 2832 * by one. 2833 */ 2834 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2835 this_flusher.flush_color = wq->work_color; 2836 wq->work_color = next_color; 2837 2838 if (!wq->first_flusher) { 2839 /* no flush in progress, become the first flusher */ 2840 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2841 2842 wq->first_flusher = &this_flusher; 2843 2844 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2845 wq->work_color)) { 2846 /* nothing to flush, done */ 2847 wq->flush_color = next_color; 2848 wq->first_flusher = NULL; 2849 goto out_unlock; 2850 } 2851 } else { 2852 /* wait in queue */ 2853 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2854 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2855 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2856 } 2857 } else { 2858 /* 2859 * Oops, color space is full, wait on overflow queue. 2860 * The next flush completion will assign us 2861 * flush_color and transfer to flusher_queue. 2862 */ 2863 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2864 } 2865 2866 check_flush_dependency(wq, NULL); 2867 2868 mutex_unlock(&wq->mutex); 2869 2870 wait_for_completion(&this_flusher.done); 2871 2872 /* 2873 * Wake-up-and-cascade phase 2874 * 2875 * First flushers are responsible for cascading flushes and 2876 * handling overflow. Non-first flushers can simply return. 2877 */ 2878 if (READ_ONCE(wq->first_flusher) != &this_flusher) 2879 return; 2880 2881 mutex_lock(&wq->mutex); 2882 2883 /* we might have raced, check again with mutex held */ 2884 if (wq->first_flusher != &this_flusher) 2885 goto out_unlock; 2886 2887 WRITE_ONCE(wq->first_flusher, NULL); 2888 2889 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2890 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2891 2892 while (true) { 2893 struct wq_flusher *next, *tmp; 2894 2895 /* complete all the flushers sharing the current flush color */ 2896 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2897 if (next->flush_color != wq->flush_color) 2898 break; 2899 list_del_init(&next->list); 2900 complete(&next->done); 2901 } 2902 2903 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2904 wq->flush_color != work_next_color(wq->work_color)); 2905 2906 /* this flush_color is finished, advance by one */ 2907 wq->flush_color = work_next_color(wq->flush_color); 2908 2909 /* one color has been freed, handle overflow queue */ 2910 if (!list_empty(&wq->flusher_overflow)) { 2911 /* 2912 * Assign the same color to all overflowed 2913 * flushers, advance work_color and append to 2914 * flusher_queue. This is the start-to-wait 2915 * phase for these overflowed flushers. 2916 */ 2917 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2918 tmp->flush_color = wq->work_color; 2919 2920 wq->work_color = work_next_color(wq->work_color); 2921 2922 list_splice_tail_init(&wq->flusher_overflow, 2923 &wq->flusher_queue); 2924 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2925 } 2926 2927 if (list_empty(&wq->flusher_queue)) { 2928 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2929 break; 2930 } 2931 2932 /* 2933 * Need to flush more colors. Make the next flusher 2934 * the new first flusher and arm pwqs. 2935 */ 2936 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2937 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2938 2939 list_del_init(&next->list); 2940 wq->first_flusher = next; 2941 2942 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2943 break; 2944 2945 /* 2946 * Meh... this color is already done, clear first 2947 * flusher and repeat cascading. 2948 */ 2949 wq->first_flusher = NULL; 2950 } 2951 2952 out_unlock: 2953 mutex_unlock(&wq->mutex); 2954 } 2955 EXPORT_SYMBOL(flush_workqueue); 2956 2957 /** 2958 * drain_workqueue - drain a workqueue 2959 * @wq: workqueue to drain 2960 * 2961 * Wait until the workqueue becomes empty. While draining is in progress, 2962 * only chain queueing is allowed. IOW, only currently pending or running 2963 * work items on @wq can queue further work items on it. @wq is flushed 2964 * repeatedly until it becomes empty. The number of flushing is determined 2965 * by the depth of chaining and should be relatively short. Whine if it 2966 * takes too long. 2967 */ 2968 void drain_workqueue(struct workqueue_struct *wq) 2969 { 2970 unsigned int flush_cnt = 0; 2971 struct pool_workqueue *pwq; 2972 2973 /* 2974 * __queue_work() needs to test whether there are drainers, is much 2975 * hotter than drain_workqueue() and already looks at @wq->flags. 2976 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2977 */ 2978 mutex_lock(&wq->mutex); 2979 if (!wq->nr_drainers++) 2980 wq->flags |= __WQ_DRAINING; 2981 mutex_unlock(&wq->mutex); 2982 reflush: 2983 flush_workqueue(wq); 2984 2985 mutex_lock(&wq->mutex); 2986 2987 for_each_pwq(pwq, wq) { 2988 bool drained; 2989 2990 raw_spin_lock_irq(&pwq->pool->lock); 2991 drained = !pwq->nr_active && list_empty(&pwq->inactive_works); 2992 raw_spin_unlock_irq(&pwq->pool->lock); 2993 2994 if (drained) 2995 continue; 2996 2997 if (++flush_cnt == 10 || 2998 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2999 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 3000 wq->name, __func__, flush_cnt); 3001 3002 mutex_unlock(&wq->mutex); 3003 goto reflush; 3004 } 3005 3006 if (!--wq->nr_drainers) 3007 wq->flags &= ~__WQ_DRAINING; 3008 mutex_unlock(&wq->mutex); 3009 } 3010 EXPORT_SYMBOL_GPL(drain_workqueue); 3011 3012 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 3013 bool from_cancel) 3014 { 3015 struct worker *worker = NULL; 3016 struct worker_pool *pool; 3017 struct pool_workqueue *pwq; 3018 3019 might_sleep(); 3020 3021 rcu_read_lock(); 3022 pool = get_work_pool(work); 3023 if (!pool) { 3024 rcu_read_unlock(); 3025 return false; 3026 } 3027 3028 raw_spin_lock_irq(&pool->lock); 3029 /* see the comment in try_to_grab_pending() with the same code */ 3030 pwq = get_work_pwq(work); 3031 if (pwq) { 3032 if (unlikely(pwq->pool != pool)) 3033 goto already_gone; 3034 } else { 3035 worker = find_worker_executing_work(pool, work); 3036 if (!worker) 3037 goto already_gone; 3038 pwq = worker->current_pwq; 3039 } 3040 3041 check_flush_dependency(pwq->wq, work); 3042 3043 insert_wq_barrier(pwq, barr, work, worker); 3044 raw_spin_unlock_irq(&pool->lock); 3045 3046 /* 3047 * Force a lock recursion deadlock when using flush_work() inside a 3048 * single-threaded or rescuer equipped workqueue. 3049 * 3050 * For single threaded workqueues the deadlock happens when the work 3051 * is after the work issuing the flush_work(). For rescuer equipped 3052 * workqueues the deadlock happens when the rescuer stalls, blocking 3053 * forward progress. 3054 */ 3055 if (!from_cancel && 3056 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3057 lock_map_acquire(&pwq->wq->lockdep_map); 3058 lock_map_release(&pwq->wq->lockdep_map); 3059 } 3060 rcu_read_unlock(); 3061 return true; 3062 already_gone: 3063 raw_spin_unlock_irq(&pool->lock); 3064 rcu_read_unlock(); 3065 return false; 3066 } 3067 3068 static bool __flush_work(struct work_struct *work, bool from_cancel) 3069 { 3070 struct wq_barrier barr; 3071 3072 if (WARN_ON(!wq_online)) 3073 return false; 3074 3075 if (WARN_ON(!work->func)) 3076 return false; 3077 3078 if (!from_cancel) { 3079 lock_map_acquire(&work->lockdep_map); 3080 lock_map_release(&work->lockdep_map); 3081 } 3082 3083 if (start_flush_work(work, &barr, from_cancel)) { 3084 wait_for_completion(&barr.done); 3085 destroy_work_on_stack(&barr.work); 3086 return true; 3087 } else { 3088 return false; 3089 } 3090 } 3091 3092 /** 3093 * flush_work - wait for a work to finish executing the last queueing instance 3094 * @work: the work to flush 3095 * 3096 * Wait until @work has finished execution. @work is guaranteed to be idle 3097 * on return if it hasn't been requeued since flush started. 3098 * 3099 * Return: 3100 * %true if flush_work() waited for the work to finish execution, 3101 * %false if it was already idle. 3102 */ 3103 bool flush_work(struct work_struct *work) 3104 { 3105 return __flush_work(work, false); 3106 } 3107 EXPORT_SYMBOL_GPL(flush_work); 3108 3109 struct cwt_wait { 3110 wait_queue_entry_t wait; 3111 struct work_struct *work; 3112 }; 3113 3114 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3115 { 3116 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3117 3118 if (cwait->work != key) 3119 return 0; 3120 return autoremove_wake_function(wait, mode, sync, key); 3121 } 3122 3123 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3124 { 3125 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3126 unsigned long flags; 3127 int ret; 3128 3129 do { 3130 ret = try_to_grab_pending(work, is_dwork, &flags); 3131 /* 3132 * If someone else is already canceling, wait for it to 3133 * finish. flush_work() doesn't work for PREEMPT_NONE 3134 * because we may get scheduled between @work's completion 3135 * and the other canceling task resuming and clearing 3136 * CANCELING - flush_work() will return false immediately 3137 * as @work is no longer busy, try_to_grab_pending() will 3138 * return -ENOENT as @work is still being canceled and the 3139 * other canceling task won't be able to clear CANCELING as 3140 * we're hogging the CPU. 3141 * 3142 * Let's wait for completion using a waitqueue. As this 3143 * may lead to the thundering herd problem, use a custom 3144 * wake function which matches @work along with exclusive 3145 * wait and wakeup. 3146 */ 3147 if (unlikely(ret == -ENOENT)) { 3148 struct cwt_wait cwait; 3149 3150 init_wait(&cwait.wait); 3151 cwait.wait.func = cwt_wakefn; 3152 cwait.work = work; 3153 3154 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3155 TASK_UNINTERRUPTIBLE); 3156 if (work_is_canceling(work)) 3157 schedule(); 3158 finish_wait(&cancel_waitq, &cwait.wait); 3159 } 3160 } while (unlikely(ret < 0)); 3161 3162 /* tell other tasks trying to grab @work to back off */ 3163 mark_work_canceling(work); 3164 local_irq_restore(flags); 3165 3166 /* 3167 * This allows canceling during early boot. We know that @work 3168 * isn't executing. 3169 */ 3170 if (wq_online) 3171 __flush_work(work, true); 3172 3173 clear_work_data(work); 3174 3175 /* 3176 * Paired with prepare_to_wait() above so that either 3177 * waitqueue_active() is visible here or !work_is_canceling() is 3178 * visible there. 3179 */ 3180 smp_mb(); 3181 if (waitqueue_active(&cancel_waitq)) 3182 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3183 3184 return ret; 3185 } 3186 3187 /** 3188 * cancel_work_sync - cancel a work and wait for it to finish 3189 * @work: the work to cancel 3190 * 3191 * Cancel @work and wait for its execution to finish. This function 3192 * can be used even if the work re-queues itself or migrates to 3193 * another workqueue. On return from this function, @work is 3194 * guaranteed to be not pending or executing on any CPU. 3195 * 3196 * cancel_work_sync(&delayed_work->work) must not be used for 3197 * delayed_work's. Use cancel_delayed_work_sync() instead. 3198 * 3199 * The caller must ensure that the workqueue on which @work was last 3200 * queued can't be destroyed before this function returns. 3201 * 3202 * Return: 3203 * %true if @work was pending, %false otherwise. 3204 */ 3205 bool cancel_work_sync(struct work_struct *work) 3206 { 3207 return __cancel_work_timer(work, false); 3208 } 3209 EXPORT_SYMBOL_GPL(cancel_work_sync); 3210 3211 /** 3212 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3213 * @dwork: the delayed work to flush 3214 * 3215 * Delayed timer is cancelled and the pending work is queued for 3216 * immediate execution. Like flush_work(), this function only 3217 * considers the last queueing instance of @dwork. 3218 * 3219 * Return: 3220 * %true if flush_work() waited for the work to finish execution, 3221 * %false if it was already idle. 3222 */ 3223 bool flush_delayed_work(struct delayed_work *dwork) 3224 { 3225 local_irq_disable(); 3226 if (del_timer_sync(&dwork->timer)) 3227 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3228 local_irq_enable(); 3229 return flush_work(&dwork->work); 3230 } 3231 EXPORT_SYMBOL(flush_delayed_work); 3232 3233 /** 3234 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3235 * @rwork: the rcu work to flush 3236 * 3237 * Return: 3238 * %true if flush_rcu_work() waited for the work to finish execution, 3239 * %false if it was already idle. 3240 */ 3241 bool flush_rcu_work(struct rcu_work *rwork) 3242 { 3243 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3244 rcu_barrier(); 3245 flush_work(&rwork->work); 3246 return true; 3247 } else { 3248 return flush_work(&rwork->work); 3249 } 3250 } 3251 EXPORT_SYMBOL(flush_rcu_work); 3252 3253 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3254 { 3255 unsigned long flags; 3256 int ret; 3257 3258 do { 3259 ret = try_to_grab_pending(work, is_dwork, &flags); 3260 } while (unlikely(ret == -EAGAIN)); 3261 3262 if (unlikely(ret < 0)) 3263 return false; 3264 3265 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3266 local_irq_restore(flags); 3267 return ret; 3268 } 3269 3270 /** 3271 * cancel_delayed_work - cancel a delayed work 3272 * @dwork: delayed_work to cancel 3273 * 3274 * Kill off a pending delayed_work. 3275 * 3276 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3277 * pending. 3278 * 3279 * Note: 3280 * The work callback function may still be running on return, unless 3281 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3282 * use cancel_delayed_work_sync() to wait on it. 3283 * 3284 * This function is safe to call from any context including IRQ handler. 3285 */ 3286 bool cancel_delayed_work(struct delayed_work *dwork) 3287 { 3288 return __cancel_work(&dwork->work, true); 3289 } 3290 EXPORT_SYMBOL(cancel_delayed_work); 3291 3292 /** 3293 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3294 * @dwork: the delayed work cancel 3295 * 3296 * This is cancel_work_sync() for delayed works. 3297 * 3298 * Return: 3299 * %true if @dwork was pending, %false otherwise. 3300 */ 3301 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3302 { 3303 return __cancel_work_timer(&dwork->work, true); 3304 } 3305 EXPORT_SYMBOL(cancel_delayed_work_sync); 3306 3307 /** 3308 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3309 * @func: the function to call 3310 * 3311 * schedule_on_each_cpu() executes @func on each online CPU using the 3312 * system workqueue and blocks until all CPUs have completed. 3313 * schedule_on_each_cpu() is very slow. 3314 * 3315 * Return: 3316 * 0 on success, -errno on failure. 3317 */ 3318 int schedule_on_each_cpu(work_func_t func) 3319 { 3320 int cpu; 3321 struct work_struct __percpu *works; 3322 3323 works = alloc_percpu(struct work_struct); 3324 if (!works) 3325 return -ENOMEM; 3326 3327 cpus_read_lock(); 3328 3329 for_each_online_cpu(cpu) { 3330 struct work_struct *work = per_cpu_ptr(works, cpu); 3331 3332 INIT_WORK(work, func); 3333 schedule_work_on(cpu, work); 3334 } 3335 3336 for_each_online_cpu(cpu) 3337 flush_work(per_cpu_ptr(works, cpu)); 3338 3339 cpus_read_unlock(); 3340 free_percpu(works); 3341 return 0; 3342 } 3343 3344 /** 3345 * execute_in_process_context - reliably execute the routine with user context 3346 * @fn: the function to execute 3347 * @ew: guaranteed storage for the execute work structure (must 3348 * be available when the work executes) 3349 * 3350 * Executes the function immediately if process context is available, 3351 * otherwise schedules the function for delayed execution. 3352 * 3353 * Return: 0 - function was executed 3354 * 1 - function was scheduled for execution 3355 */ 3356 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3357 { 3358 if (!in_interrupt()) { 3359 fn(&ew->work); 3360 return 0; 3361 } 3362 3363 INIT_WORK(&ew->work, fn); 3364 schedule_work(&ew->work); 3365 3366 return 1; 3367 } 3368 EXPORT_SYMBOL_GPL(execute_in_process_context); 3369 3370 /** 3371 * free_workqueue_attrs - free a workqueue_attrs 3372 * @attrs: workqueue_attrs to free 3373 * 3374 * Undo alloc_workqueue_attrs(). 3375 */ 3376 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3377 { 3378 if (attrs) { 3379 free_cpumask_var(attrs->cpumask); 3380 kfree(attrs); 3381 } 3382 } 3383 3384 /** 3385 * alloc_workqueue_attrs - allocate a workqueue_attrs 3386 * 3387 * Allocate a new workqueue_attrs, initialize with default settings and 3388 * return it. 3389 * 3390 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3391 */ 3392 struct workqueue_attrs *alloc_workqueue_attrs(void) 3393 { 3394 struct workqueue_attrs *attrs; 3395 3396 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 3397 if (!attrs) 3398 goto fail; 3399 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 3400 goto fail; 3401 3402 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3403 return attrs; 3404 fail: 3405 free_workqueue_attrs(attrs); 3406 return NULL; 3407 } 3408 3409 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3410 const struct workqueue_attrs *from) 3411 { 3412 to->nice = from->nice; 3413 cpumask_copy(to->cpumask, from->cpumask); 3414 /* 3415 * Unlike hash and equality test, this function doesn't ignore 3416 * ->no_numa as it is used for both pool and wq attrs. Instead, 3417 * get_unbound_pool() explicitly clears ->no_numa after copying. 3418 */ 3419 to->no_numa = from->no_numa; 3420 } 3421 3422 /* hash value of the content of @attr */ 3423 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3424 { 3425 u32 hash = 0; 3426 3427 hash = jhash_1word(attrs->nice, hash); 3428 hash = jhash(cpumask_bits(attrs->cpumask), 3429 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3430 return hash; 3431 } 3432 3433 /* content equality test */ 3434 static bool wqattrs_equal(const struct workqueue_attrs *a, 3435 const struct workqueue_attrs *b) 3436 { 3437 if (a->nice != b->nice) 3438 return false; 3439 if (!cpumask_equal(a->cpumask, b->cpumask)) 3440 return false; 3441 return true; 3442 } 3443 3444 /** 3445 * init_worker_pool - initialize a newly zalloc'd worker_pool 3446 * @pool: worker_pool to initialize 3447 * 3448 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3449 * 3450 * Return: 0 on success, -errno on failure. Even on failure, all fields 3451 * inside @pool proper are initialized and put_unbound_pool() can be called 3452 * on @pool safely to release it. 3453 */ 3454 static int init_worker_pool(struct worker_pool *pool) 3455 { 3456 raw_spin_lock_init(&pool->lock); 3457 pool->id = -1; 3458 pool->cpu = -1; 3459 pool->node = NUMA_NO_NODE; 3460 pool->flags |= POOL_DISASSOCIATED; 3461 pool->watchdog_ts = jiffies; 3462 INIT_LIST_HEAD(&pool->worklist); 3463 INIT_LIST_HEAD(&pool->idle_list); 3464 hash_init(pool->busy_hash); 3465 3466 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3467 3468 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3469 3470 INIT_LIST_HEAD(&pool->workers); 3471 3472 ida_init(&pool->worker_ida); 3473 INIT_HLIST_NODE(&pool->hash_node); 3474 pool->refcnt = 1; 3475 3476 /* shouldn't fail above this point */ 3477 pool->attrs = alloc_workqueue_attrs(); 3478 if (!pool->attrs) 3479 return -ENOMEM; 3480 return 0; 3481 } 3482 3483 #ifdef CONFIG_LOCKDEP 3484 static void wq_init_lockdep(struct workqueue_struct *wq) 3485 { 3486 char *lock_name; 3487 3488 lockdep_register_key(&wq->key); 3489 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3490 if (!lock_name) 3491 lock_name = wq->name; 3492 3493 wq->lock_name = lock_name; 3494 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3495 } 3496 3497 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3498 { 3499 lockdep_unregister_key(&wq->key); 3500 } 3501 3502 static void wq_free_lockdep(struct workqueue_struct *wq) 3503 { 3504 if (wq->lock_name != wq->name) 3505 kfree(wq->lock_name); 3506 } 3507 #else 3508 static void wq_init_lockdep(struct workqueue_struct *wq) 3509 { 3510 } 3511 3512 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3513 { 3514 } 3515 3516 static void wq_free_lockdep(struct workqueue_struct *wq) 3517 { 3518 } 3519 #endif 3520 3521 static void rcu_free_wq(struct rcu_head *rcu) 3522 { 3523 struct workqueue_struct *wq = 3524 container_of(rcu, struct workqueue_struct, rcu); 3525 3526 wq_free_lockdep(wq); 3527 3528 if (!(wq->flags & WQ_UNBOUND)) 3529 free_percpu(wq->cpu_pwqs); 3530 else 3531 free_workqueue_attrs(wq->unbound_attrs); 3532 3533 kfree(wq); 3534 } 3535 3536 static void rcu_free_pool(struct rcu_head *rcu) 3537 { 3538 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3539 3540 ida_destroy(&pool->worker_ida); 3541 free_workqueue_attrs(pool->attrs); 3542 kfree(pool); 3543 } 3544 3545 /* This returns with the lock held on success (pool manager is inactive). */ 3546 static bool wq_manager_inactive(struct worker_pool *pool) 3547 { 3548 raw_spin_lock_irq(&pool->lock); 3549 3550 if (pool->flags & POOL_MANAGER_ACTIVE) { 3551 raw_spin_unlock_irq(&pool->lock); 3552 return false; 3553 } 3554 return true; 3555 } 3556 3557 /** 3558 * put_unbound_pool - put a worker_pool 3559 * @pool: worker_pool to put 3560 * 3561 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 3562 * safe manner. get_unbound_pool() calls this function on its failure path 3563 * and this function should be able to release pools which went through, 3564 * successfully or not, init_worker_pool(). 3565 * 3566 * Should be called with wq_pool_mutex held. 3567 */ 3568 static void put_unbound_pool(struct worker_pool *pool) 3569 { 3570 DECLARE_COMPLETION_ONSTACK(detach_completion); 3571 struct worker *worker; 3572 3573 lockdep_assert_held(&wq_pool_mutex); 3574 3575 if (--pool->refcnt) 3576 return; 3577 3578 /* sanity checks */ 3579 if (WARN_ON(!(pool->cpu < 0)) || 3580 WARN_ON(!list_empty(&pool->worklist))) 3581 return; 3582 3583 /* release id and unhash */ 3584 if (pool->id >= 0) 3585 idr_remove(&worker_pool_idr, pool->id); 3586 hash_del(&pool->hash_node); 3587 3588 /* 3589 * Become the manager and destroy all workers. This prevents 3590 * @pool's workers from blocking on attach_mutex. We're the last 3591 * manager and @pool gets freed with the flag set. 3592 * Because of how wq_manager_inactive() works, we will hold the 3593 * spinlock after a successful wait. 3594 */ 3595 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool), 3596 TASK_UNINTERRUPTIBLE); 3597 pool->flags |= POOL_MANAGER_ACTIVE; 3598 3599 while ((worker = first_idle_worker(pool))) 3600 destroy_worker(worker); 3601 WARN_ON(pool->nr_workers || pool->nr_idle); 3602 raw_spin_unlock_irq(&pool->lock); 3603 3604 mutex_lock(&wq_pool_attach_mutex); 3605 if (!list_empty(&pool->workers)) 3606 pool->detach_completion = &detach_completion; 3607 mutex_unlock(&wq_pool_attach_mutex); 3608 3609 if (pool->detach_completion) 3610 wait_for_completion(pool->detach_completion); 3611 3612 /* shut down the timers */ 3613 del_timer_sync(&pool->idle_timer); 3614 del_timer_sync(&pool->mayday_timer); 3615 3616 /* RCU protected to allow dereferences from get_work_pool() */ 3617 call_rcu(&pool->rcu, rcu_free_pool); 3618 } 3619 3620 /** 3621 * get_unbound_pool - get a worker_pool with the specified attributes 3622 * @attrs: the attributes of the worker_pool to get 3623 * 3624 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3625 * reference count and return it. If there already is a matching 3626 * worker_pool, it will be used; otherwise, this function attempts to 3627 * create a new one. 3628 * 3629 * Should be called with wq_pool_mutex held. 3630 * 3631 * Return: On success, a worker_pool with the same attributes as @attrs. 3632 * On failure, %NULL. 3633 */ 3634 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3635 { 3636 u32 hash = wqattrs_hash(attrs); 3637 struct worker_pool *pool; 3638 int node; 3639 int target_node = NUMA_NO_NODE; 3640 3641 lockdep_assert_held(&wq_pool_mutex); 3642 3643 /* do we already have a matching pool? */ 3644 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3645 if (wqattrs_equal(pool->attrs, attrs)) { 3646 pool->refcnt++; 3647 return pool; 3648 } 3649 } 3650 3651 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3652 if (wq_numa_enabled) { 3653 for_each_node(node) { 3654 if (cpumask_subset(attrs->cpumask, 3655 wq_numa_possible_cpumask[node])) { 3656 target_node = node; 3657 break; 3658 } 3659 } 3660 } 3661 3662 /* nope, create a new one */ 3663 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3664 if (!pool || init_worker_pool(pool) < 0) 3665 goto fail; 3666 3667 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3668 copy_workqueue_attrs(pool->attrs, attrs); 3669 pool->node = target_node; 3670 3671 /* 3672 * no_numa isn't a worker_pool attribute, always clear it. See 3673 * 'struct workqueue_attrs' comments for detail. 3674 */ 3675 pool->attrs->no_numa = false; 3676 3677 if (worker_pool_assign_id(pool) < 0) 3678 goto fail; 3679 3680 /* create and start the initial worker */ 3681 if (wq_online && !create_worker(pool)) 3682 goto fail; 3683 3684 /* install */ 3685 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3686 3687 return pool; 3688 fail: 3689 if (pool) 3690 put_unbound_pool(pool); 3691 return NULL; 3692 } 3693 3694 static void rcu_free_pwq(struct rcu_head *rcu) 3695 { 3696 kmem_cache_free(pwq_cache, 3697 container_of(rcu, struct pool_workqueue, rcu)); 3698 } 3699 3700 /* 3701 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3702 * and needs to be destroyed. 3703 */ 3704 static void pwq_unbound_release_workfn(struct work_struct *work) 3705 { 3706 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3707 unbound_release_work); 3708 struct workqueue_struct *wq = pwq->wq; 3709 struct worker_pool *pool = pwq->pool; 3710 bool is_last = false; 3711 3712 /* 3713 * when @pwq is not linked, it doesn't hold any reference to the 3714 * @wq, and @wq is invalid to access. 3715 */ 3716 if (!list_empty(&pwq->pwqs_node)) { 3717 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3718 return; 3719 3720 mutex_lock(&wq->mutex); 3721 list_del_rcu(&pwq->pwqs_node); 3722 is_last = list_empty(&wq->pwqs); 3723 mutex_unlock(&wq->mutex); 3724 } 3725 3726 mutex_lock(&wq_pool_mutex); 3727 put_unbound_pool(pool); 3728 mutex_unlock(&wq_pool_mutex); 3729 3730 call_rcu(&pwq->rcu, rcu_free_pwq); 3731 3732 /* 3733 * If we're the last pwq going away, @wq is already dead and no one 3734 * is gonna access it anymore. Schedule RCU free. 3735 */ 3736 if (is_last) { 3737 wq_unregister_lockdep(wq); 3738 call_rcu(&wq->rcu, rcu_free_wq); 3739 } 3740 } 3741 3742 /** 3743 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3744 * @pwq: target pool_workqueue 3745 * 3746 * If @pwq isn't freezing, set @pwq->max_active to the associated 3747 * workqueue's saved_max_active and activate inactive work items 3748 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3749 */ 3750 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3751 { 3752 struct workqueue_struct *wq = pwq->wq; 3753 bool freezable = wq->flags & WQ_FREEZABLE; 3754 unsigned long flags; 3755 3756 /* for @wq->saved_max_active */ 3757 lockdep_assert_held(&wq->mutex); 3758 3759 /* fast exit for non-freezable wqs */ 3760 if (!freezable && pwq->max_active == wq->saved_max_active) 3761 return; 3762 3763 /* this function can be called during early boot w/ irq disabled */ 3764 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 3765 3766 /* 3767 * During [un]freezing, the caller is responsible for ensuring that 3768 * this function is called at least once after @workqueue_freezing 3769 * is updated and visible. 3770 */ 3771 if (!freezable || !workqueue_freezing) { 3772 bool kick = false; 3773 3774 pwq->max_active = wq->saved_max_active; 3775 3776 while (!list_empty(&pwq->inactive_works) && 3777 pwq->nr_active < pwq->max_active) { 3778 pwq_activate_first_inactive(pwq); 3779 kick = true; 3780 } 3781 3782 /* 3783 * Need to kick a worker after thawed or an unbound wq's 3784 * max_active is bumped. In realtime scenarios, always kicking a 3785 * worker will cause interference on the isolated cpu cores, so 3786 * let's kick iff work items were activated. 3787 */ 3788 if (kick) 3789 wake_up_worker(pwq->pool); 3790 } else { 3791 pwq->max_active = 0; 3792 } 3793 3794 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 3795 } 3796 3797 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 3798 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3799 struct worker_pool *pool) 3800 { 3801 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3802 3803 memset(pwq, 0, sizeof(*pwq)); 3804 3805 pwq->pool = pool; 3806 pwq->wq = wq; 3807 pwq->flush_color = -1; 3808 pwq->refcnt = 1; 3809 INIT_LIST_HEAD(&pwq->inactive_works); 3810 INIT_LIST_HEAD(&pwq->pwqs_node); 3811 INIT_LIST_HEAD(&pwq->mayday_node); 3812 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3813 } 3814 3815 /* sync @pwq with the current state of its associated wq and link it */ 3816 static void link_pwq(struct pool_workqueue *pwq) 3817 { 3818 struct workqueue_struct *wq = pwq->wq; 3819 3820 lockdep_assert_held(&wq->mutex); 3821 3822 /* may be called multiple times, ignore if already linked */ 3823 if (!list_empty(&pwq->pwqs_node)) 3824 return; 3825 3826 /* set the matching work_color */ 3827 pwq->work_color = wq->work_color; 3828 3829 /* sync max_active to the current setting */ 3830 pwq_adjust_max_active(pwq); 3831 3832 /* link in @pwq */ 3833 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3834 } 3835 3836 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3837 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3838 const struct workqueue_attrs *attrs) 3839 { 3840 struct worker_pool *pool; 3841 struct pool_workqueue *pwq; 3842 3843 lockdep_assert_held(&wq_pool_mutex); 3844 3845 pool = get_unbound_pool(attrs); 3846 if (!pool) 3847 return NULL; 3848 3849 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3850 if (!pwq) { 3851 put_unbound_pool(pool); 3852 return NULL; 3853 } 3854 3855 init_pwq(pwq, wq, pool); 3856 return pwq; 3857 } 3858 3859 /** 3860 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3861 * @attrs: the wq_attrs of the default pwq of the target workqueue 3862 * @node: the target NUMA node 3863 * @cpu_going_down: if >= 0, the CPU to consider as offline 3864 * @cpumask: outarg, the resulting cpumask 3865 * 3866 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3867 * @cpu_going_down is >= 0, that cpu is considered offline during 3868 * calculation. The result is stored in @cpumask. 3869 * 3870 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3871 * enabled and @node has online CPUs requested by @attrs, the returned 3872 * cpumask is the intersection of the possible CPUs of @node and 3873 * @attrs->cpumask. 3874 * 3875 * The caller is responsible for ensuring that the cpumask of @node stays 3876 * stable. 3877 * 3878 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3879 * %false if equal. 3880 */ 3881 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3882 int cpu_going_down, cpumask_t *cpumask) 3883 { 3884 if (!wq_numa_enabled || attrs->no_numa) 3885 goto use_dfl; 3886 3887 /* does @node have any online CPUs @attrs wants? */ 3888 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3889 if (cpu_going_down >= 0) 3890 cpumask_clear_cpu(cpu_going_down, cpumask); 3891 3892 if (cpumask_empty(cpumask)) 3893 goto use_dfl; 3894 3895 /* yeap, return possible CPUs in @node that @attrs wants */ 3896 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3897 3898 if (cpumask_empty(cpumask)) { 3899 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3900 "possible intersect\n"); 3901 return false; 3902 } 3903 3904 return !cpumask_equal(cpumask, attrs->cpumask); 3905 3906 use_dfl: 3907 cpumask_copy(cpumask, attrs->cpumask); 3908 return false; 3909 } 3910 3911 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3912 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3913 int node, 3914 struct pool_workqueue *pwq) 3915 { 3916 struct pool_workqueue *old_pwq; 3917 3918 lockdep_assert_held(&wq_pool_mutex); 3919 lockdep_assert_held(&wq->mutex); 3920 3921 /* link_pwq() can handle duplicate calls */ 3922 link_pwq(pwq); 3923 3924 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3925 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3926 return old_pwq; 3927 } 3928 3929 /* context to store the prepared attrs & pwqs before applying */ 3930 struct apply_wqattrs_ctx { 3931 struct workqueue_struct *wq; /* target workqueue */ 3932 struct workqueue_attrs *attrs; /* attrs to apply */ 3933 struct list_head list; /* queued for batching commit */ 3934 struct pool_workqueue *dfl_pwq; 3935 struct pool_workqueue *pwq_tbl[]; 3936 }; 3937 3938 /* free the resources after success or abort */ 3939 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3940 { 3941 if (ctx) { 3942 int node; 3943 3944 for_each_node(node) 3945 put_pwq_unlocked(ctx->pwq_tbl[node]); 3946 put_pwq_unlocked(ctx->dfl_pwq); 3947 3948 free_workqueue_attrs(ctx->attrs); 3949 3950 kfree(ctx); 3951 } 3952 } 3953 3954 /* allocate the attrs and pwqs for later installation */ 3955 static struct apply_wqattrs_ctx * 3956 apply_wqattrs_prepare(struct workqueue_struct *wq, 3957 const struct workqueue_attrs *attrs) 3958 { 3959 struct apply_wqattrs_ctx *ctx; 3960 struct workqueue_attrs *new_attrs, *tmp_attrs; 3961 int node; 3962 3963 lockdep_assert_held(&wq_pool_mutex); 3964 3965 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 3966 3967 new_attrs = alloc_workqueue_attrs(); 3968 tmp_attrs = alloc_workqueue_attrs(); 3969 if (!ctx || !new_attrs || !tmp_attrs) 3970 goto out_free; 3971 3972 /* 3973 * Calculate the attrs of the default pwq. 3974 * If the user configured cpumask doesn't overlap with the 3975 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3976 */ 3977 copy_workqueue_attrs(new_attrs, attrs); 3978 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3979 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3980 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3981 3982 /* 3983 * We may create multiple pwqs with differing cpumasks. Make a 3984 * copy of @new_attrs which will be modified and used to obtain 3985 * pools. 3986 */ 3987 copy_workqueue_attrs(tmp_attrs, new_attrs); 3988 3989 /* 3990 * If something goes wrong during CPU up/down, we'll fall back to 3991 * the default pwq covering whole @attrs->cpumask. Always create 3992 * it even if we don't use it immediately. 3993 */ 3994 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3995 if (!ctx->dfl_pwq) 3996 goto out_free; 3997 3998 for_each_node(node) { 3999 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 4000 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 4001 if (!ctx->pwq_tbl[node]) 4002 goto out_free; 4003 } else { 4004 ctx->dfl_pwq->refcnt++; 4005 ctx->pwq_tbl[node] = ctx->dfl_pwq; 4006 } 4007 } 4008 4009 /* save the user configured attrs and sanitize it. */ 4010 copy_workqueue_attrs(new_attrs, attrs); 4011 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 4012 ctx->attrs = new_attrs; 4013 4014 ctx->wq = wq; 4015 free_workqueue_attrs(tmp_attrs); 4016 return ctx; 4017 4018 out_free: 4019 free_workqueue_attrs(tmp_attrs); 4020 free_workqueue_attrs(new_attrs); 4021 apply_wqattrs_cleanup(ctx); 4022 return NULL; 4023 } 4024 4025 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 4026 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 4027 { 4028 int node; 4029 4030 /* all pwqs have been created successfully, let's install'em */ 4031 mutex_lock(&ctx->wq->mutex); 4032 4033 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 4034 4035 /* save the previous pwq and install the new one */ 4036 for_each_node(node) 4037 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 4038 ctx->pwq_tbl[node]); 4039 4040 /* @dfl_pwq might not have been used, ensure it's linked */ 4041 link_pwq(ctx->dfl_pwq); 4042 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 4043 4044 mutex_unlock(&ctx->wq->mutex); 4045 } 4046 4047 static void apply_wqattrs_lock(void) 4048 { 4049 /* CPUs should stay stable across pwq creations and installations */ 4050 cpus_read_lock(); 4051 mutex_lock(&wq_pool_mutex); 4052 } 4053 4054 static void apply_wqattrs_unlock(void) 4055 { 4056 mutex_unlock(&wq_pool_mutex); 4057 cpus_read_unlock(); 4058 } 4059 4060 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 4061 const struct workqueue_attrs *attrs) 4062 { 4063 struct apply_wqattrs_ctx *ctx; 4064 4065 /* only unbound workqueues can change attributes */ 4066 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 4067 return -EINVAL; 4068 4069 /* creating multiple pwqs breaks ordering guarantee */ 4070 if (!list_empty(&wq->pwqs)) { 4071 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4072 return -EINVAL; 4073 4074 wq->flags &= ~__WQ_ORDERED; 4075 } 4076 4077 ctx = apply_wqattrs_prepare(wq, attrs); 4078 if (!ctx) 4079 return -ENOMEM; 4080 4081 /* the ctx has been prepared successfully, let's commit it */ 4082 apply_wqattrs_commit(ctx); 4083 apply_wqattrs_cleanup(ctx); 4084 4085 return 0; 4086 } 4087 4088 /** 4089 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4090 * @wq: the target workqueue 4091 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4092 * 4093 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 4094 * machines, this function maps a separate pwq to each NUMA node with 4095 * possibles CPUs in @attrs->cpumask so that work items are affine to the 4096 * NUMA node it was issued on. Older pwqs are released as in-flight work 4097 * items finish. Note that a work item which repeatedly requeues itself 4098 * back-to-back will stay on its current pwq. 4099 * 4100 * Performs GFP_KERNEL allocations. 4101 * 4102 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). 4103 * 4104 * Return: 0 on success and -errno on failure. 4105 */ 4106 int apply_workqueue_attrs(struct workqueue_struct *wq, 4107 const struct workqueue_attrs *attrs) 4108 { 4109 int ret; 4110 4111 lockdep_assert_cpus_held(); 4112 4113 mutex_lock(&wq_pool_mutex); 4114 ret = apply_workqueue_attrs_locked(wq, attrs); 4115 mutex_unlock(&wq_pool_mutex); 4116 4117 return ret; 4118 } 4119 4120 /** 4121 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4122 * @wq: the target workqueue 4123 * @cpu: the CPU coming up or going down 4124 * @online: whether @cpu is coming up or going down 4125 * 4126 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4127 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4128 * @wq accordingly. 4129 * 4130 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4131 * falls back to @wq->dfl_pwq which may not be optimal but is always 4132 * correct. 4133 * 4134 * Note that when the last allowed CPU of a NUMA node goes offline for a 4135 * workqueue with a cpumask spanning multiple nodes, the workers which were 4136 * already executing the work items for the workqueue will lose their CPU 4137 * affinity and may execute on any CPU. This is similar to how per-cpu 4138 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4139 * affinity, it's the user's responsibility to flush the work item from 4140 * CPU_DOWN_PREPARE. 4141 */ 4142 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4143 bool online) 4144 { 4145 int node = cpu_to_node(cpu); 4146 int cpu_off = online ? -1 : cpu; 4147 struct pool_workqueue *old_pwq = NULL, *pwq; 4148 struct workqueue_attrs *target_attrs; 4149 cpumask_t *cpumask; 4150 4151 lockdep_assert_held(&wq_pool_mutex); 4152 4153 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 4154 wq->unbound_attrs->no_numa) 4155 return; 4156 4157 /* 4158 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4159 * Let's use a preallocated one. The following buf is protected by 4160 * CPU hotplug exclusion. 4161 */ 4162 target_attrs = wq_update_unbound_numa_attrs_buf; 4163 cpumask = target_attrs->cpumask; 4164 4165 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4166 pwq = unbound_pwq_by_node(wq, node); 4167 4168 /* 4169 * Let's determine what needs to be done. If the target cpumask is 4170 * different from the default pwq's, we need to compare it to @pwq's 4171 * and create a new one if they don't match. If the target cpumask 4172 * equals the default pwq's, the default pwq should be used. 4173 */ 4174 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4175 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4176 return; 4177 } else { 4178 goto use_dfl_pwq; 4179 } 4180 4181 /* create a new pwq */ 4182 pwq = alloc_unbound_pwq(wq, target_attrs); 4183 if (!pwq) { 4184 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4185 wq->name); 4186 goto use_dfl_pwq; 4187 } 4188 4189 /* Install the new pwq. */ 4190 mutex_lock(&wq->mutex); 4191 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4192 goto out_unlock; 4193 4194 use_dfl_pwq: 4195 mutex_lock(&wq->mutex); 4196 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock); 4197 get_pwq(wq->dfl_pwq); 4198 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4199 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4200 out_unlock: 4201 mutex_unlock(&wq->mutex); 4202 put_pwq_unlocked(old_pwq); 4203 } 4204 4205 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4206 { 4207 bool highpri = wq->flags & WQ_HIGHPRI; 4208 int cpu, ret; 4209 4210 if (!(wq->flags & WQ_UNBOUND)) { 4211 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4212 if (!wq->cpu_pwqs) 4213 return -ENOMEM; 4214 4215 for_each_possible_cpu(cpu) { 4216 struct pool_workqueue *pwq = 4217 per_cpu_ptr(wq->cpu_pwqs, cpu); 4218 struct worker_pool *cpu_pools = 4219 per_cpu(cpu_worker_pools, cpu); 4220 4221 init_pwq(pwq, wq, &cpu_pools[highpri]); 4222 4223 mutex_lock(&wq->mutex); 4224 link_pwq(pwq); 4225 mutex_unlock(&wq->mutex); 4226 } 4227 return 0; 4228 } 4229 4230 cpus_read_lock(); 4231 if (wq->flags & __WQ_ORDERED) { 4232 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4233 /* there should only be single pwq for ordering guarantee */ 4234 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4235 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4236 "ordering guarantee broken for workqueue %s\n", wq->name); 4237 } else { 4238 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4239 } 4240 cpus_read_unlock(); 4241 4242 return ret; 4243 } 4244 4245 static int wq_clamp_max_active(int max_active, unsigned int flags, 4246 const char *name) 4247 { 4248 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4249 4250 if (max_active < 1 || max_active > lim) 4251 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4252 max_active, name, 1, lim); 4253 4254 return clamp_val(max_active, 1, lim); 4255 } 4256 4257 /* 4258 * Workqueues which may be used during memory reclaim should have a rescuer 4259 * to guarantee forward progress. 4260 */ 4261 static int init_rescuer(struct workqueue_struct *wq) 4262 { 4263 struct worker *rescuer; 4264 int ret; 4265 4266 if (!(wq->flags & WQ_MEM_RECLAIM)) 4267 return 0; 4268 4269 rescuer = alloc_worker(NUMA_NO_NODE); 4270 if (!rescuer) 4271 return -ENOMEM; 4272 4273 rescuer->rescue_wq = wq; 4274 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4275 if (IS_ERR(rescuer->task)) { 4276 ret = PTR_ERR(rescuer->task); 4277 kfree(rescuer); 4278 return ret; 4279 } 4280 4281 wq->rescuer = rescuer; 4282 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4283 wake_up_process(rescuer->task); 4284 4285 return 0; 4286 } 4287 4288 __printf(1, 4) 4289 struct workqueue_struct *alloc_workqueue(const char *fmt, 4290 unsigned int flags, 4291 int max_active, ...) 4292 { 4293 size_t tbl_size = 0; 4294 va_list args; 4295 struct workqueue_struct *wq; 4296 struct pool_workqueue *pwq; 4297 4298 /* 4299 * Unbound && max_active == 1 used to imply ordered, which is no 4300 * longer the case on NUMA machines due to per-node pools. While 4301 * alloc_ordered_workqueue() is the right way to create an ordered 4302 * workqueue, keep the previous behavior to avoid subtle breakages 4303 * on NUMA. 4304 */ 4305 if ((flags & WQ_UNBOUND) && max_active == 1) 4306 flags |= __WQ_ORDERED; 4307 4308 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4309 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4310 flags |= WQ_UNBOUND; 4311 4312 /* allocate wq and format name */ 4313 if (flags & WQ_UNBOUND) 4314 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4315 4316 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4317 if (!wq) 4318 return NULL; 4319 4320 if (flags & WQ_UNBOUND) { 4321 wq->unbound_attrs = alloc_workqueue_attrs(); 4322 if (!wq->unbound_attrs) 4323 goto err_free_wq; 4324 } 4325 4326 va_start(args, max_active); 4327 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4328 va_end(args); 4329 4330 max_active = max_active ?: WQ_DFL_ACTIVE; 4331 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4332 4333 /* init wq */ 4334 wq->flags = flags; 4335 wq->saved_max_active = max_active; 4336 mutex_init(&wq->mutex); 4337 atomic_set(&wq->nr_pwqs_to_flush, 0); 4338 INIT_LIST_HEAD(&wq->pwqs); 4339 INIT_LIST_HEAD(&wq->flusher_queue); 4340 INIT_LIST_HEAD(&wq->flusher_overflow); 4341 INIT_LIST_HEAD(&wq->maydays); 4342 4343 wq_init_lockdep(wq); 4344 INIT_LIST_HEAD(&wq->list); 4345 4346 if (alloc_and_link_pwqs(wq) < 0) 4347 goto err_unreg_lockdep; 4348 4349 if (wq_online && init_rescuer(wq) < 0) 4350 goto err_destroy; 4351 4352 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4353 goto err_destroy; 4354 4355 /* 4356 * wq_pool_mutex protects global freeze state and workqueues list. 4357 * Grab it, adjust max_active and add the new @wq to workqueues 4358 * list. 4359 */ 4360 mutex_lock(&wq_pool_mutex); 4361 4362 mutex_lock(&wq->mutex); 4363 for_each_pwq(pwq, wq) 4364 pwq_adjust_max_active(pwq); 4365 mutex_unlock(&wq->mutex); 4366 4367 list_add_tail_rcu(&wq->list, &workqueues); 4368 4369 mutex_unlock(&wq_pool_mutex); 4370 4371 return wq; 4372 4373 err_unreg_lockdep: 4374 wq_unregister_lockdep(wq); 4375 wq_free_lockdep(wq); 4376 err_free_wq: 4377 free_workqueue_attrs(wq->unbound_attrs); 4378 kfree(wq); 4379 return NULL; 4380 err_destroy: 4381 destroy_workqueue(wq); 4382 return NULL; 4383 } 4384 EXPORT_SYMBOL_GPL(alloc_workqueue); 4385 4386 static bool pwq_busy(struct pool_workqueue *pwq) 4387 { 4388 int i; 4389 4390 for (i = 0; i < WORK_NR_COLORS; i++) 4391 if (pwq->nr_in_flight[i]) 4392 return true; 4393 4394 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1)) 4395 return true; 4396 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) 4397 return true; 4398 4399 return false; 4400 } 4401 4402 /** 4403 * destroy_workqueue - safely terminate a workqueue 4404 * @wq: target workqueue 4405 * 4406 * Safely destroy a workqueue. All work currently pending will be done first. 4407 */ 4408 void destroy_workqueue(struct workqueue_struct *wq) 4409 { 4410 struct pool_workqueue *pwq; 4411 int node; 4412 4413 /* 4414 * Remove it from sysfs first so that sanity check failure doesn't 4415 * lead to sysfs name conflicts. 4416 */ 4417 workqueue_sysfs_unregister(wq); 4418 4419 /* drain it before proceeding with destruction */ 4420 drain_workqueue(wq); 4421 4422 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 4423 if (wq->rescuer) { 4424 struct worker *rescuer = wq->rescuer; 4425 4426 /* this prevents new queueing */ 4427 raw_spin_lock_irq(&wq_mayday_lock); 4428 wq->rescuer = NULL; 4429 raw_spin_unlock_irq(&wq_mayday_lock); 4430 4431 /* rescuer will empty maydays list before exiting */ 4432 kthread_stop(rescuer->task); 4433 kfree(rescuer); 4434 } 4435 4436 /* 4437 * Sanity checks - grab all the locks so that we wait for all 4438 * in-flight operations which may do put_pwq(). 4439 */ 4440 mutex_lock(&wq_pool_mutex); 4441 mutex_lock(&wq->mutex); 4442 for_each_pwq(pwq, wq) { 4443 raw_spin_lock_irq(&pwq->pool->lock); 4444 if (WARN_ON(pwq_busy(pwq))) { 4445 pr_warn("%s: %s has the following busy pwq\n", 4446 __func__, wq->name); 4447 show_pwq(pwq); 4448 raw_spin_unlock_irq(&pwq->pool->lock); 4449 mutex_unlock(&wq->mutex); 4450 mutex_unlock(&wq_pool_mutex); 4451 show_one_workqueue(wq); 4452 return; 4453 } 4454 raw_spin_unlock_irq(&pwq->pool->lock); 4455 } 4456 mutex_unlock(&wq->mutex); 4457 4458 /* 4459 * wq list is used to freeze wq, remove from list after 4460 * flushing is complete in case freeze races us. 4461 */ 4462 list_del_rcu(&wq->list); 4463 mutex_unlock(&wq_pool_mutex); 4464 4465 if (!(wq->flags & WQ_UNBOUND)) { 4466 wq_unregister_lockdep(wq); 4467 /* 4468 * The base ref is never dropped on per-cpu pwqs. Directly 4469 * schedule RCU free. 4470 */ 4471 call_rcu(&wq->rcu, rcu_free_wq); 4472 } else { 4473 /* 4474 * We're the sole accessor of @wq at this point. Directly 4475 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4476 * @wq will be freed when the last pwq is released. 4477 */ 4478 for_each_node(node) { 4479 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4480 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4481 put_pwq_unlocked(pwq); 4482 } 4483 4484 /* 4485 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4486 * put. Don't access it afterwards. 4487 */ 4488 pwq = wq->dfl_pwq; 4489 wq->dfl_pwq = NULL; 4490 put_pwq_unlocked(pwq); 4491 } 4492 } 4493 EXPORT_SYMBOL_GPL(destroy_workqueue); 4494 4495 /** 4496 * workqueue_set_max_active - adjust max_active of a workqueue 4497 * @wq: target workqueue 4498 * @max_active: new max_active value. 4499 * 4500 * Set max_active of @wq to @max_active. 4501 * 4502 * CONTEXT: 4503 * Don't call from IRQ context. 4504 */ 4505 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4506 { 4507 struct pool_workqueue *pwq; 4508 4509 /* disallow meddling with max_active for ordered workqueues */ 4510 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4511 return; 4512 4513 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4514 4515 mutex_lock(&wq->mutex); 4516 4517 wq->flags &= ~__WQ_ORDERED; 4518 wq->saved_max_active = max_active; 4519 4520 for_each_pwq(pwq, wq) 4521 pwq_adjust_max_active(pwq); 4522 4523 mutex_unlock(&wq->mutex); 4524 } 4525 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4526 4527 /** 4528 * current_work - retrieve %current task's work struct 4529 * 4530 * Determine if %current task is a workqueue worker and what it's working on. 4531 * Useful to find out the context that the %current task is running in. 4532 * 4533 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4534 */ 4535 struct work_struct *current_work(void) 4536 { 4537 struct worker *worker = current_wq_worker(); 4538 4539 return worker ? worker->current_work : NULL; 4540 } 4541 EXPORT_SYMBOL(current_work); 4542 4543 /** 4544 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4545 * 4546 * Determine whether %current is a workqueue rescuer. Can be used from 4547 * work functions to determine whether it's being run off the rescuer task. 4548 * 4549 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4550 */ 4551 bool current_is_workqueue_rescuer(void) 4552 { 4553 struct worker *worker = current_wq_worker(); 4554 4555 return worker && worker->rescue_wq; 4556 } 4557 4558 /** 4559 * workqueue_congested - test whether a workqueue is congested 4560 * @cpu: CPU in question 4561 * @wq: target workqueue 4562 * 4563 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4564 * no synchronization around this function and the test result is 4565 * unreliable and only useful as advisory hints or for debugging. 4566 * 4567 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4568 * Note that both per-cpu and unbound workqueues may be associated with 4569 * multiple pool_workqueues which have separate congested states. A 4570 * workqueue being congested on one CPU doesn't mean the workqueue is also 4571 * contested on other CPUs / NUMA nodes. 4572 * 4573 * Return: 4574 * %true if congested, %false otherwise. 4575 */ 4576 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4577 { 4578 struct pool_workqueue *pwq; 4579 bool ret; 4580 4581 rcu_read_lock(); 4582 preempt_disable(); 4583 4584 if (cpu == WORK_CPU_UNBOUND) 4585 cpu = smp_processor_id(); 4586 4587 if (!(wq->flags & WQ_UNBOUND)) 4588 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4589 else 4590 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4591 4592 ret = !list_empty(&pwq->inactive_works); 4593 preempt_enable(); 4594 rcu_read_unlock(); 4595 4596 return ret; 4597 } 4598 EXPORT_SYMBOL_GPL(workqueue_congested); 4599 4600 /** 4601 * work_busy - test whether a work is currently pending or running 4602 * @work: the work to be tested 4603 * 4604 * Test whether @work is currently pending or running. There is no 4605 * synchronization around this function and the test result is 4606 * unreliable and only useful as advisory hints or for debugging. 4607 * 4608 * Return: 4609 * OR'd bitmask of WORK_BUSY_* bits. 4610 */ 4611 unsigned int work_busy(struct work_struct *work) 4612 { 4613 struct worker_pool *pool; 4614 unsigned long flags; 4615 unsigned int ret = 0; 4616 4617 if (work_pending(work)) 4618 ret |= WORK_BUSY_PENDING; 4619 4620 rcu_read_lock(); 4621 pool = get_work_pool(work); 4622 if (pool) { 4623 raw_spin_lock_irqsave(&pool->lock, flags); 4624 if (find_worker_executing_work(pool, work)) 4625 ret |= WORK_BUSY_RUNNING; 4626 raw_spin_unlock_irqrestore(&pool->lock, flags); 4627 } 4628 rcu_read_unlock(); 4629 4630 return ret; 4631 } 4632 EXPORT_SYMBOL_GPL(work_busy); 4633 4634 /** 4635 * set_worker_desc - set description for the current work item 4636 * @fmt: printf-style format string 4637 * @...: arguments for the format string 4638 * 4639 * This function can be called by a running work function to describe what 4640 * the work item is about. If the worker task gets dumped, this 4641 * information will be printed out together to help debugging. The 4642 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4643 */ 4644 void set_worker_desc(const char *fmt, ...) 4645 { 4646 struct worker *worker = current_wq_worker(); 4647 va_list args; 4648 4649 if (worker) { 4650 va_start(args, fmt); 4651 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4652 va_end(args); 4653 } 4654 } 4655 EXPORT_SYMBOL_GPL(set_worker_desc); 4656 4657 /** 4658 * print_worker_info - print out worker information and description 4659 * @log_lvl: the log level to use when printing 4660 * @task: target task 4661 * 4662 * If @task is a worker and currently executing a work item, print out the 4663 * name of the workqueue being serviced and worker description set with 4664 * set_worker_desc() by the currently executing work item. 4665 * 4666 * This function can be safely called on any task as long as the 4667 * task_struct itself is accessible. While safe, this function isn't 4668 * synchronized and may print out mixups or garbages of limited length. 4669 */ 4670 void print_worker_info(const char *log_lvl, struct task_struct *task) 4671 { 4672 work_func_t *fn = NULL; 4673 char name[WQ_NAME_LEN] = { }; 4674 char desc[WORKER_DESC_LEN] = { }; 4675 struct pool_workqueue *pwq = NULL; 4676 struct workqueue_struct *wq = NULL; 4677 struct worker *worker; 4678 4679 if (!(task->flags & PF_WQ_WORKER)) 4680 return; 4681 4682 /* 4683 * This function is called without any synchronization and @task 4684 * could be in any state. Be careful with dereferences. 4685 */ 4686 worker = kthread_probe_data(task); 4687 4688 /* 4689 * Carefully copy the associated workqueue's workfn, name and desc. 4690 * Keep the original last '\0' in case the original is garbage. 4691 */ 4692 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 4693 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 4694 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 4695 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 4696 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 4697 4698 if (fn || name[0] || desc[0]) { 4699 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 4700 if (strcmp(name, desc)) 4701 pr_cont(" (%s)", desc); 4702 pr_cont("\n"); 4703 } 4704 } 4705 4706 static void pr_cont_pool_info(struct worker_pool *pool) 4707 { 4708 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4709 if (pool->node != NUMA_NO_NODE) 4710 pr_cont(" node=%d", pool->node); 4711 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4712 } 4713 4714 static void pr_cont_work(bool comma, struct work_struct *work) 4715 { 4716 if (work->func == wq_barrier_func) { 4717 struct wq_barrier *barr; 4718 4719 barr = container_of(work, struct wq_barrier, work); 4720 4721 pr_cont("%s BAR(%d)", comma ? "," : "", 4722 task_pid_nr(barr->task)); 4723 } else { 4724 pr_cont("%s %ps", comma ? "," : "", work->func); 4725 } 4726 } 4727 4728 static void show_pwq(struct pool_workqueue *pwq) 4729 { 4730 struct worker_pool *pool = pwq->pool; 4731 struct work_struct *work; 4732 struct worker *worker; 4733 bool has_in_flight = false, has_pending = false; 4734 int bkt; 4735 4736 pr_info(" pwq %d:", pool->id); 4737 pr_cont_pool_info(pool); 4738 4739 pr_cont(" active=%d/%d refcnt=%d%s\n", 4740 pwq->nr_active, pwq->max_active, pwq->refcnt, 4741 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4742 4743 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4744 if (worker->current_pwq == pwq) { 4745 has_in_flight = true; 4746 break; 4747 } 4748 } 4749 if (has_in_flight) { 4750 bool comma = false; 4751 4752 pr_info(" in-flight:"); 4753 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4754 if (worker->current_pwq != pwq) 4755 continue; 4756 4757 pr_cont("%s %d%s:%ps", comma ? "," : "", 4758 task_pid_nr(worker->task), 4759 worker->rescue_wq ? "(RESCUER)" : "", 4760 worker->current_func); 4761 list_for_each_entry(work, &worker->scheduled, entry) 4762 pr_cont_work(false, work); 4763 comma = true; 4764 } 4765 pr_cont("\n"); 4766 } 4767 4768 list_for_each_entry(work, &pool->worklist, entry) { 4769 if (get_work_pwq(work) == pwq) { 4770 has_pending = true; 4771 break; 4772 } 4773 } 4774 if (has_pending) { 4775 bool comma = false; 4776 4777 pr_info(" pending:"); 4778 list_for_each_entry(work, &pool->worklist, entry) { 4779 if (get_work_pwq(work) != pwq) 4780 continue; 4781 4782 pr_cont_work(comma, work); 4783 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4784 } 4785 pr_cont("\n"); 4786 } 4787 4788 if (!list_empty(&pwq->inactive_works)) { 4789 bool comma = false; 4790 4791 pr_info(" inactive:"); 4792 list_for_each_entry(work, &pwq->inactive_works, entry) { 4793 pr_cont_work(comma, work); 4794 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4795 } 4796 pr_cont("\n"); 4797 } 4798 } 4799 4800 /** 4801 * show_one_workqueue - dump state of specified workqueue 4802 * @wq: workqueue whose state will be printed 4803 */ 4804 void show_one_workqueue(struct workqueue_struct *wq) 4805 { 4806 struct pool_workqueue *pwq; 4807 bool idle = true; 4808 unsigned long flags; 4809 4810 for_each_pwq(pwq, wq) { 4811 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 4812 idle = false; 4813 break; 4814 } 4815 } 4816 if (idle) /* Nothing to print for idle workqueue */ 4817 return; 4818 4819 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4820 4821 for_each_pwq(pwq, wq) { 4822 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 4823 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 4824 /* 4825 * Defer printing to avoid deadlocks in console 4826 * drivers that queue work while holding locks 4827 * also taken in their write paths. 4828 */ 4829 printk_deferred_enter(); 4830 show_pwq(pwq); 4831 printk_deferred_exit(); 4832 } 4833 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 4834 /* 4835 * We could be printing a lot from atomic context, e.g. 4836 * sysrq-t -> show_all_workqueues(). Avoid triggering 4837 * hard lockup. 4838 */ 4839 touch_nmi_watchdog(); 4840 } 4841 4842 } 4843 4844 /** 4845 * show_one_worker_pool - dump state of specified worker pool 4846 * @pool: worker pool whose state will be printed 4847 */ 4848 static void show_one_worker_pool(struct worker_pool *pool) 4849 { 4850 struct worker *worker; 4851 bool first = true; 4852 unsigned long flags; 4853 4854 raw_spin_lock_irqsave(&pool->lock, flags); 4855 if (pool->nr_workers == pool->nr_idle) 4856 goto next_pool; 4857 /* 4858 * Defer printing to avoid deadlocks in console drivers that 4859 * queue work while holding locks also taken in their write 4860 * paths. 4861 */ 4862 printk_deferred_enter(); 4863 pr_info("pool %d:", pool->id); 4864 pr_cont_pool_info(pool); 4865 pr_cont(" hung=%us workers=%d", 4866 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4867 pool->nr_workers); 4868 if (pool->manager) 4869 pr_cont(" manager: %d", 4870 task_pid_nr(pool->manager->task)); 4871 list_for_each_entry(worker, &pool->idle_list, entry) { 4872 pr_cont(" %s%d", first ? "idle: " : "", 4873 task_pid_nr(worker->task)); 4874 first = false; 4875 } 4876 pr_cont("\n"); 4877 printk_deferred_exit(); 4878 next_pool: 4879 raw_spin_unlock_irqrestore(&pool->lock, flags); 4880 /* 4881 * We could be printing a lot from atomic context, e.g. 4882 * sysrq-t -> show_all_workqueues(). Avoid triggering 4883 * hard lockup. 4884 */ 4885 touch_nmi_watchdog(); 4886 4887 } 4888 4889 /** 4890 * show_all_workqueues - dump workqueue state 4891 * 4892 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4893 * all busy workqueues and pools. 4894 */ 4895 void show_all_workqueues(void) 4896 { 4897 struct workqueue_struct *wq; 4898 struct worker_pool *pool; 4899 int pi; 4900 4901 rcu_read_lock(); 4902 4903 pr_info("Showing busy workqueues and worker pools:\n"); 4904 4905 list_for_each_entry_rcu(wq, &workqueues, list) 4906 show_one_workqueue(wq); 4907 4908 for_each_pool(pool, pi) 4909 show_one_worker_pool(pool); 4910 4911 rcu_read_unlock(); 4912 } 4913 4914 /* used to show worker information through /proc/PID/{comm,stat,status} */ 4915 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 4916 { 4917 int off; 4918 4919 /* always show the actual comm */ 4920 off = strscpy(buf, task->comm, size); 4921 if (off < 0) 4922 return; 4923 4924 /* stabilize PF_WQ_WORKER and worker pool association */ 4925 mutex_lock(&wq_pool_attach_mutex); 4926 4927 if (task->flags & PF_WQ_WORKER) { 4928 struct worker *worker = kthread_data(task); 4929 struct worker_pool *pool = worker->pool; 4930 4931 if (pool) { 4932 raw_spin_lock_irq(&pool->lock); 4933 /* 4934 * ->desc tracks information (wq name or 4935 * set_worker_desc()) for the latest execution. If 4936 * current, prepend '+', otherwise '-'. 4937 */ 4938 if (worker->desc[0] != '\0') { 4939 if (worker->current_work) 4940 scnprintf(buf + off, size - off, "+%s", 4941 worker->desc); 4942 else 4943 scnprintf(buf + off, size - off, "-%s", 4944 worker->desc); 4945 } 4946 raw_spin_unlock_irq(&pool->lock); 4947 } 4948 } 4949 4950 mutex_unlock(&wq_pool_attach_mutex); 4951 } 4952 4953 #ifdef CONFIG_SMP 4954 4955 /* 4956 * CPU hotplug. 4957 * 4958 * There are two challenges in supporting CPU hotplug. Firstly, there 4959 * are a lot of assumptions on strong associations among work, pwq and 4960 * pool which make migrating pending and scheduled works very 4961 * difficult to implement without impacting hot paths. Secondly, 4962 * worker pools serve mix of short, long and very long running works making 4963 * blocked draining impractical. 4964 * 4965 * This is solved by allowing the pools to be disassociated from the CPU 4966 * running as an unbound one and allowing it to be reattached later if the 4967 * cpu comes back online. 4968 */ 4969 4970 static void unbind_workers(int cpu) 4971 { 4972 struct worker_pool *pool; 4973 struct worker *worker; 4974 4975 for_each_cpu_worker_pool(pool, cpu) { 4976 mutex_lock(&wq_pool_attach_mutex); 4977 raw_spin_lock_irq(&pool->lock); 4978 4979 /* 4980 * We've blocked all attach/detach operations. Make all workers 4981 * unbound and set DISASSOCIATED. Before this, all workers 4982 * except for the ones which are still executing works from 4983 * before the last CPU down must be on the cpu. After 4984 * this, they may become diasporas. 4985 */ 4986 for_each_pool_worker(worker, pool) 4987 worker->flags |= WORKER_UNBOUND; 4988 4989 pool->flags |= POOL_DISASSOCIATED; 4990 4991 raw_spin_unlock_irq(&pool->lock); 4992 4993 for_each_pool_worker(worker, pool) { 4994 kthread_set_per_cpu(worker->task, -1); 4995 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 4996 } 4997 4998 mutex_unlock(&wq_pool_attach_mutex); 4999 5000 /* 5001 * Call schedule() so that we cross rq->lock and thus can 5002 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 5003 * This is necessary as scheduler callbacks may be invoked 5004 * from other cpus. 5005 */ 5006 schedule(); 5007 5008 /* 5009 * Sched callbacks are disabled now. Zap nr_running. 5010 * After this, nr_running stays zero and need_more_worker() 5011 * and keep_working() are always true as long as the 5012 * worklist is not empty. This pool now behaves as an 5013 * unbound (in terms of concurrency management) pool which 5014 * are served by workers tied to the pool. 5015 */ 5016 atomic_set(&pool->nr_running, 0); 5017 5018 /* 5019 * With concurrency management just turned off, a busy 5020 * worker blocking could lead to lengthy stalls. Kick off 5021 * unbound chain execution of currently pending work items. 5022 */ 5023 raw_spin_lock_irq(&pool->lock); 5024 wake_up_worker(pool); 5025 raw_spin_unlock_irq(&pool->lock); 5026 } 5027 } 5028 5029 /** 5030 * rebind_workers - rebind all workers of a pool to the associated CPU 5031 * @pool: pool of interest 5032 * 5033 * @pool->cpu is coming online. Rebind all workers to the CPU. 5034 */ 5035 static void rebind_workers(struct worker_pool *pool) 5036 { 5037 struct worker *worker; 5038 5039 lockdep_assert_held(&wq_pool_attach_mutex); 5040 5041 /* 5042 * Restore CPU affinity of all workers. As all idle workers should 5043 * be on the run-queue of the associated CPU before any local 5044 * wake-ups for concurrency management happen, restore CPU affinity 5045 * of all workers first and then clear UNBOUND. As we're called 5046 * from CPU_ONLINE, the following shouldn't fail. 5047 */ 5048 for_each_pool_worker(worker, pool) { 5049 kthread_set_per_cpu(worker->task, pool->cpu); 5050 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 5051 pool->attrs->cpumask) < 0); 5052 } 5053 5054 raw_spin_lock_irq(&pool->lock); 5055 5056 pool->flags &= ~POOL_DISASSOCIATED; 5057 5058 for_each_pool_worker(worker, pool) { 5059 unsigned int worker_flags = worker->flags; 5060 5061 /* 5062 * A bound idle worker should actually be on the runqueue 5063 * of the associated CPU for local wake-ups targeting it to 5064 * work. Kick all idle workers so that they migrate to the 5065 * associated CPU. Doing this in the same loop as 5066 * replacing UNBOUND with REBOUND is safe as no worker will 5067 * be bound before @pool->lock is released. 5068 */ 5069 if (worker_flags & WORKER_IDLE) 5070 wake_up_process(worker->task); 5071 5072 /* 5073 * We want to clear UNBOUND but can't directly call 5074 * worker_clr_flags() or adjust nr_running. Atomically 5075 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 5076 * @worker will clear REBOUND using worker_clr_flags() when 5077 * it initiates the next execution cycle thus restoring 5078 * concurrency management. Note that when or whether 5079 * @worker clears REBOUND doesn't affect correctness. 5080 * 5081 * WRITE_ONCE() is necessary because @worker->flags may be 5082 * tested without holding any lock in 5083 * wq_worker_running(). Without it, NOT_RUNNING test may 5084 * fail incorrectly leading to premature concurrency 5085 * management operations. 5086 */ 5087 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 5088 worker_flags |= WORKER_REBOUND; 5089 worker_flags &= ~WORKER_UNBOUND; 5090 WRITE_ONCE(worker->flags, worker_flags); 5091 } 5092 5093 raw_spin_unlock_irq(&pool->lock); 5094 } 5095 5096 /** 5097 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 5098 * @pool: unbound pool of interest 5099 * @cpu: the CPU which is coming up 5100 * 5101 * An unbound pool may end up with a cpumask which doesn't have any online 5102 * CPUs. When a worker of such pool get scheduled, the scheduler resets 5103 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 5104 * online CPU before, cpus_allowed of all its workers should be restored. 5105 */ 5106 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 5107 { 5108 static cpumask_t cpumask; 5109 struct worker *worker; 5110 5111 lockdep_assert_held(&wq_pool_attach_mutex); 5112 5113 /* is @cpu allowed for @pool? */ 5114 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 5115 return; 5116 5117 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 5118 5119 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 5120 for_each_pool_worker(worker, pool) 5121 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 5122 } 5123 5124 int workqueue_prepare_cpu(unsigned int cpu) 5125 { 5126 struct worker_pool *pool; 5127 5128 for_each_cpu_worker_pool(pool, cpu) { 5129 if (pool->nr_workers) 5130 continue; 5131 if (!create_worker(pool)) 5132 return -ENOMEM; 5133 } 5134 return 0; 5135 } 5136 5137 int workqueue_online_cpu(unsigned int cpu) 5138 { 5139 struct worker_pool *pool; 5140 struct workqueue_struct *wq; 5141 int pi; 5142 5143 mutex_lock(&wq_pool_mutex); 5144 5145 for_each_pool(pool, pi) { 5146 mutex_lock(&wq_pool_attach_mutex); 5147 5148 if (pool->cpu == cpu) 5149 rebind_workers(pool); 5150 else if (pool->cpu < 0) 5151 restore_unbound_workers_cpumask(pool, cpu); 5152 5153 mutex_unlock(&wq_pool_attach_mutex); 5154 } 5155 5156 /* update NUMA affinity of unbound workqueues */ 5157 list_for_each_entry(wq, &workqueues, list) 5158 wq_update_unbound_numa(wq, cpu, true); 5159 5160 mutex_unlock(&wq_pool_mutex); 5161 return 0; 5162 } 5163 5164 int workqueue_offline_cpu(unsigned int cpu) 5165 { 5166 struct workqueue_struct *wq; 5167 5168 /* unbinding per-cpu workers should happen on the local CPU */ 5169 if (WARN_ON(cpu != smp_processor_id())) 5170 return -1; 5171 5172 unbind_workers(cpu); 5173 5174 /* update NUMA affinity of unbound workqueues */ 5175 mutex_lock(&wq_pool_mutex); 5176 list_for_each_entry(wq, &workqueues, list) 5177 wq_update_unbound_numa(wq, cpu, false); 5178 mutex_unlock(&wq_pool_mutex); 5179 5180 return 0; 5181 } 5182 5183 struct work_for_cpu { 5184 struct work_struct work; 5185 long (*fn)(void *); 5186 void *arg; 5187 long ret; 5188 }; 5189 5190 static void work_for_cpu_fn(struct work_struct *work) 5191 { 5192 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5193 5194 wfc->ret = wfc->fn(wfc->arg); 5195 } 5196 5197 /** 5198 * work_on_cpu - run a function in thread context on a particular cpu 5199 * @cpu: the cpu to run on 5200 * @fn: the function to run 5201 * @arg: the function arg 5202 * 5203 * It is up to the caller to ensure that the cpu doesn't go offline. 5204 * The caller must not hold any locks which would prevent @fn from completing. 5205 * 5206 * Return: The value @fn returns. 5207 */ 5208 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 5209 { 5210 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5211 5212 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 5213 schedule_work_on(cpu, &wfc.work); 5214 flush_work(&wfc.work); 5215 destroy_work_on_stack(&wfc.work); 5216 return wfc.ret; 5217 } 5218 EXPORT_SYMBOL_GPL(work_on_cpu); 5219 5220 /** 5221 * work_on_cpu_safe - run a function in thread context on a particular cpu 5222 * @cpu: the cpu to run on 5223 * @fn: the function to run 5224 * @arg: the function argument 5225 * 5226 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5227 * any locks which would prevent @fn from completing. 5228 * 5229 * Return: The value @fn returns. 5230 */ 5231 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 5232 { 5233 long ret = -ENODEV; 5234 5235 cpus_read_lock(); 5236 if (cpu_online(cpu)) 5237 ret = work_on_cpu(cpu, fn, arg); 5238 cpus_read_unlock(); 5239 return ret; 5240 } 5241 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 5242 #endif /* CONFIG_SMP */ 5243 5244 #ifdef CONFIG_FREEZER 5245 5246 /** 5247 * freeze_workqueues_begin - begin freezing workqueues 5248 * 5249 * Start freezing workqueues. After this function returns, all freezable 5250 * workqueues will queue new works to their inactive_works list instead of 5251 * pool->worklist. 5252 * 5253 * CONTEXT: 5254 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5255 */ 5256 void freeze_workqueues_begin(void) 5257 { 5258 struct workqueue_struct *wq; 5259 struct pool_workqueue *pwq; 5260 5261 mutex_lock(&wq_pool_mutex); 5262 5263 WARN_ON_ONCE(workqueue_freezing); 5264 workqueue_freezing = true; 5265 5266 list_for_each_entry(wq, &workqueues, list) { 5267 mutex_lock(&wq->mutex); 5268 for_each_pwq(pwq, wq) 5269 pwq_adjust_max_active(pwq); 5270 mutex_unlock(&wq->mutex); 5271 } 5272 5273 mutex_unlock(&wq_pool_mutex); 5274 } 5275 5276 /** 5277 * freeze_workqueues_busy - are freezable workqueues still busy? 5278 * 5279 * Check whether freezing is complete. This function must be called 5280 * between freeze_workqueues_begin() and thaw_workqueues(). 5281 * 5282 * CONTEXT: 5283 * Grabs and releases wq_pool_mutex. 5284 * 5285 * Return: 5286 * %true if some freezable workqueues are still busy. %false if freezing 5287 * is complete. 5288 */ 5289 bool freeze_workqueues_busy(void) 5290 { 5291 bool busy = false; 5292 struct workqueue_struct *wq; 5293 struct pool_workqueue *pwq; 5294 5295 mutex_lock(&wq_pool_mutex); 5296 5297 WARN_ON_ONCE(!workqueue_freezing); 5298 5299 list_for_each_entry(wq, &workqueues, list) { 5300 if (!(wq->flags & WQ_FREEZABLE)) 5301 continue; 5302 /* 5303 * nr_active is monotonically decreasing. It's safe 5304 * to peek without lock. 5305 */ 5306 rcu_read_lock(); 5307 for_each_pwq(pwq, wq) { 5308 WARN_ON_ONCE(pwq->nr_active < 0); 5309 if (pwq->nr_active) { 5310 busy = true; 5311 rcu_read_unlock(); 5312 goto out_unlock; 5313 } 5314 } 5315 rcu_read_unlock(); 5316 } 5317 out_unlock: 5318 mutex_unlock(&wq_pool_mutex); 5319 return busy; 5320 } 5321 5322 /** 5323 * thaw_workqueues - thaw workqueues 5324 * 5325 * Thaw workqueues. Normal queueing is restored and all collected 5326 * frozen works are transferred to their respective pool worklists. 5327 * 5328 * CONTEXT: 5329 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5330 */ 5331 void thaw_workqueues(void) 5332 { 5333 struct workqueue_struct *wq; 5334 struct pool_workqueue *pwq; 5335 5336 mutex_lock(&wq_pool_mutex); 5337 5338 if (!workqueue_freezing) 5339 goto out_unlock; 5340 5341 workqueue_freezing = false; 5342 5343 /* restore max_active and repopulate worklist */ 5344 list_for_each_entry(wq, &workqueues, list) { 5345 mutex_lock(&wq->mutex); 5346 for_each_pwq(pwq, wq) 5347 pwq_adjust_max_active(pwq); 5348 mutex_unlock(&wq->mutex); 5349 } 5350 5351 out_unlock: 5352 mutex_unlock(&wq_pool_mutex); 5353 } 5354 #endif /* CONFIG_FREEZER */ 5355 5356 static int workqueue_apply_unbound_cpumask(void) 5357 { 5358 LIST_HEAD(ctxs); 5359 int ret = 0; 5360 struct workqueue_struct *wq; 5361 struct apply_wqattrs_ctx *ctx, *n; 5362 5363 lockdep_assert_held(&wq_pool_mutex); 5364 5365 list_for_each_entry(wq, &workqueues, list) { 5366 if (!(wq->flags & WQ_UNBOUND)) 5367 continue; 5368 /* creating multiple pwqs breaks ordering guarantee */ 5369 if (wq->flags & __WQ_ORDERED) 5370 continue; 5371 5372 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 5373 if (!ctx) { 5374 ret = -ENOMEM; 5375 break; 5376 } 5377 5378 list_add_tail(&ctx->list, &ctxs); 5379 } 5380 5381 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5382 if (!ret) 5383 apply_wqattrs_commit(ctx); 5384 apply_wqattrs_cleanup(ctx); 5385 } 5386 5387 return ret; 5388 } 5389 5390 /** 5391 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5392 * @cpumask: the cpumask to set 5393 * 5394 * The low-level workqueues cpumask is a global cpumask that limits 5395 * the affinity of all unbound workqueues. This function check the @cpumask 5396 * and apply it to all unbound workqueues and updates all pwqs of them. 5397 * 5398 * Return: 0 - Success 5399 * -EINVAL - Invalid @cpumask 5400 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5401 */ 5402 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5403 { 5404 int ret = -EINVAL; 5405 cpumask_var_t saved_cpumask; 5406 5407 /* 5408 * Not excluding isolated cpus on purpose. 5409 * If the user wishes to include them, we allow that. 5410 */ 5411 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5412 if (!cpumask_empty(cpumask)) { 5413 apply_wqattrs_lock(); 5414 if (cpumask_equal(cpumask, wq_unbound_cpumask)) { 5415 ret = 0; 5416 goto out_unlock; 5417 } 5418 5419 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) { 5420 ret = -ENOMEM; 5421 goto out_unlock; 5422 } 5423 5424 /* save the old wq_unbound_cpumask. */ 5425 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 5426 5427 /* update wq_unbound_cpumask at first and apply it to wqs. */ 5428 cpumask_copy(wq_unbound_cpumask, cpumask); 5429 ret = workqueue_apply_unbound_cpumask(); 5430 5431 /* restore the wq_unbound_cpumask when failed. */ 5432 if (ret < 0) 5433 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5434 5435 free_cpumask_var(saved_cpumask); 5436 out_unlock: 5437 apply_wqattrs_unlock(); 5438 } 5439 5440 return ret; 5441 } 5442 5443 #ifdef CONFIG_SYSFS 5444 /* 5445 * Workqueues with WQ_SYSFS flag set is visible to userland via 5446 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5447 * following attributes. 5448 * 5449 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5450 * max_active RW int : maximum number of in-flight work items 5451 * 5452 * Unbound workqueues have the following extra attributes. 5453 * 5454 * pool_ids RO int : the associated pool IDs for each node 5455 * nice RW int : nice value of the workers 5456 * cpumask RW mask : bitmask of allowed CPUs for the workers 5457 * numa RW bool : whether enable NUMA affinity 5458 */ 5459 struct wq_device { 5460 struct workqueue_struct *wq; 5461 struct device dev; 5462 }; 5463 5464 static struct workqueue_struct *dev_to_wq(struct device *dev) 5465 { 5466 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5467 5468 return wq_dev->wq; 5469 } 5470 5471 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5472 char *buf) 5473 { 5474 struct workqueue_struct *wq = dev_to_wq(dev); 5475 5476 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5477 } 5478 static DEVICE_ATTR_RO(per_cpu); 5479 5480 static ssize_t max_active_show(struct device *dev, 5481 struct device_attribute *attr, char *buf) 5482 { 5483 struct workqueue_struct *wq = dev_to_wq(dev); 5484 5485 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5486 } 5487 5488 static ssize_t max_active_store(struct device *dev, 5489 struct device_attribute *attr, const char *buf, 5490 size_t count) 5491 { 5492 struct workqueue_struct *wq = dev_to_wq(dev); 5493 int val; 5494 5495 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5496 return -EINVAL; 5497 5498 workqueue_set_max_active(wq, val); 5499 return count; 5500 } 5501 static DEVICE_ATTR_RW(max_active); 5502 5503 static struct attribute *wq_sysfs_attrs[] = { 5504 &dev_attr_per_cpu.attr, 5505 &dev_attr_max_active.attr, 5506 NULL, 5507 }; 5508 ATTRIBUTE_GROUPS(wq_sysfs); 5509 5510 static ssize_t wq_pool_ids_show(struct device *dev, 5511 struct device_attribute *attr, char *buf) 5512 { 5513 struct workqueue_struct *wq = dev_to_wq(dev); 5514 const char *delim = ""; 5515 int node, written = 0; 5516 5517 cpus_read_lock(); 5518 rcu_read_lock(); 5519 for_each_node(node) { 5520 written += scnprintf(buf + written, PAGE_SIZE - written, 5521 "%s%d:%d", delim, node, 5522 unbound_pwq_by_node(wq, node)->pool->id); 5523 delim = " "; 5524 } 5525 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5526 rcu_read_unlock(); 5527 cpus_read_unlock(); 5528 5529 return written; 5530 } 5531 5532 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5533 char *buf) 5534 { 5535 struct workqueue_struct *wq = dev_to_wq(dev); 5536 int written; 5537 5538 mutex_lock(&wq->mutex); 5539 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5540 mutex_unlock(&wq->mutex); 5541 5542 return written; 5543 } 5544 5545 /* prepare workqueue_attrs for sysfs store operations */ 5546 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5547 { 5548 struct workqueue_attrs *attrs; 5549 5550 lockdep_assert_held(&wq_pool_mutex); 5551 5552 attrs = alloc_workqueue_attrs(); 5553 if (!attrs) 5554 return NULL; 5555 5556 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5557 return attrs; 5558 } 5559 5560 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5561 const char *buf, size_t count) 5562 { 5563 struct workqueue_struct *wq = dev_to_wq(dev); 5564 struct workqueue_attrs *attrs; 5565 int ret = -ENOMEM; 5566 5567 apply_wqattrs_lock(); 5568 5569 attrs = wq_sysfs_prep_attrs(wq); 5570 if (!attrs) 5571 goto out_unlock; 5572 5573 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5574 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5575 ret = apply_workqueue_attrs_locked(wq, attrs); 5576 else 5577 ret = -EINVAL; 5578 5579 out_unlock: 5580 apply_wqattrs_unlock(); 5581 free_workqueue_attrs(attrs); 5582 return ret ?: count; 5583 } 5584 5585 static ssize_t wq_cpumask_show(struct device *dev, 5586 struct device_attribute *attr, char *buf) 5587 { 5588 struct workqueue_struct *wq = dev_to_wq(dev); 5589 int written; 5590 5591 mutex_lock(&wq->mutex); 5592 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5593 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5594 mutex_unlock(&wq->mutex); 5595 return written; 5596 } 5597 5598 static ssize_t wq_cpumask_store(struct device *dev, 5599 struct device_attribute *attr, 5600 const char *buf, size_t count) 5601 { 5602 struct workqueue_struct *wq = dev_to_wq(dev); 5603 struct workqueue_attrs *attrs; 5604 int ret = -ENOMEM; 5605 5606 apply_wqattrs_lock(); 5607 5608 attrs = wq_sysfs_prep_attrs(wq); 5609 if (!attrs) 5610 goto out_unlock; 5611 5612 ret = cpumask_parse(buf, attrs->cpumask); 5613 if (!ret) 5614 ret = apply_workqueue_attrs_locked(wq, attrs); 5615 5616 out_unlock: 5617 apply_wqattrs_unlock(); 5618 free_workqueue_attrs(attrs); 5619 return ret ?: count; 5620 } 5621 5622 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5623 char *buf) 5624 { 5625 struct workqueue_struct *wq = dev_to_wq(dev); 5626 int written; 5627 5628 mutex_lock(&wq->mutex); 5629 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5630 !wq->unbound_attrs->no_numa); 5631 mutex_unlock(&wq->mutex); 5632 5633 return written; 5634 } 5635 5636 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5637 const char *buf, size_t count) 5638 { 5639 struct workqueue_struct *wq = dev_to_wq(dev); 5640 struct workqueue_attrs *attrs; 5641 int v, ret = -ENOMEM; 5642 5643 apply_wqattrs_lock(); 5644 5645 attrs = wq_sysfs_prep_attrs(wq); 5646 if (!attrs) 5647 goto out_unlock; 5648 5649 ret = -EINVAL; 5650 if (sscanf(buf, "%d", &v) == 1) { 5651 attrs->no_numa = !v; 5652 ret = apply_workqueue_attrs_locked(wq, attrs); 5653 } 5654 5655 out_unlock: 5656 apply_wqattrs_unlock(); 5657 free_workqueue_attrs(attrs); 5658 return ret ?: count; 5659 } 5660 5661 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5662 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5663 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5664 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5665 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5666 __ATTR_NULL, 5667 }; 5668 5669 static struct bus_type wq_subsys = { 5670 .name = "workqueue", 5671 .dev_groups = wq_sysfs_groups, 5672 }; 5673 5674 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5675 struct device_attribute *attr, char *buf) 5676 { 5677 int written; 5678 5679 mutex_lock(&wq_pool_mutex); 5680 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5681 cpumask_pr_args(wq_unbound_cpumask)); 5682 mutex_unlock(&wq_pool_mutex); 5683 5684 return written; 5685 } 5686 5687 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5688 struct device_attribute *attr, const char *buf, size_t count) 5689 { 5690 cpumask_var_t cpumask; 5691 int ret; 5692 5693 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5694 return -ENOMEM; 5695 5696 ret = cpumask_parse(buf, cpumask); 5697 if (!ret) 5698 ret = workqueue_set_unbound_cpumask(cpumask); 5699 5700 free_cpumask_var(cpumask); 5701 return ret ? ret : count; 5702 } 5703 5704 static struct device_attribute wq_sysfs_cpumask_attr = 5705 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5706 wq_unbound_cpumask_store); 5707 5708 static int __init wq_sysfs_init(void) 5709 { 5710 int err; 5711 5712 err = subsys_virtual_register(&wq_subsys, NULL); 5713 if (err) 5714 return err; 5715 5716 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5717 } 5718 core_initcall(wq_sysfs_init); 5719 5720 static void wq_device_release(struct device *dev) 5721 { 5722 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5723 5724 kfree(wq_dev); 5725 } 5726 5727 /** 5728 * workqueue_sysfs_register - make a workqueue visible in sysfs 5729 * @wq: the workqueue to register 5730 * 5731 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5732 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5733 * which is the preferred method. 5734 * 5735 * Workqueue user should use this function directly iff it wants to apply 5736 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5737 * apply_workqueue_attrs() may race against userland updating the 5738 * attributes. 5739 * 5740 * Return: 0 on success, -errno on failure. 5741 */ 5742 int workqueue_sysfs_register(struct workqueue_struct *wq) 5743 { 5744 struct wq_device *wq_dev; 5745 int ret; 5746 5747 /* 5748 * Adjusting max_active or creating new pwqs by applying 5749 * attributes breaks ordering guarantee. Disallow exposing ordered 5750 * workqueues. 5751 */ 5752 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5753 return -EINVAL; 5754 5755 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5756 if (!wq_dev) 5757 return -ENOMEM; 5758 5759 wq_dev->wq = wq; 5760 wq_dev->dev.bus = &wq_subsys; 5761 wq_dev->dev.release = wq_device_release; 5762 dev_set_name(&wq_dev->dev, "%s", wq->name); 5763 5764 /* 5765 * unbound_attrs are created separately. Suppress uevent until 5766 * everything is ready. 5767 */ 5768 dev_set_uevent_suppress(&wq_dev->dev, true); 5769 5770 ret = device_register(&wq_dev->dev); 5771 if (ret) { 5772 put_device(&wq_dev->dev); 5773 wq->wq_dev = NULL; 5774 return ret; 5775 } 5776 5777 if (wq->flags & WQ_UNBOUND) { 5778 struct device_attribute *attr; 5779 5780 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5781 ret = device_create_file(&wq_dev->dev, attr); 5782 if (ret) { 5783 device_unregister(&wq_dev->dev); 5784 wq->wq_dev = NULL; 5785 return ret; 5786 } 5787 } 5788 } 5789 5790 dev_set_uevent_suppress(&wq_dev->dev, false); 5791 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5792 return 0; 5793 } 5794 5795 /** 5796 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5797 * @wq: the workqueue to unregister 5798 * 5799 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5800 */ 5801 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5802 { 5803 struct wq_device *wq_dev = wq->wq_dev; 5804 5805 if (!wq->wq_dev) 5806 return; 5807 5808 wq->wq_dev = NULL; 5809 device_unregister(&wq_dev->dev); 5810 } 5811 #else /* CONFIG_SYSFS */ 5812 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5813 #endif /* CONFIG_SYSFS */ 5814 5815 /* 5816 * Workqueue watchdog. 5817 * 5818 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5819 * flush dependency, a concurrency managed work item which stays RUNNING 5820 * indefinitely. Workqueue stalls can be very difficult to debug as the 5821 * usual warning mechanisms don't trigger and internal workqueue state is 5822 * largely opaque. 5823 * 5824 * Workqueue watchdog monitors all worker pools periodically and dumps 5825 * state if some pools failed to make forward progress for a while where 5826 * forward progress is defined as the first item on ->worklist changing. 5827 * 5828 * This mechanism is controlled through the kernel parameter 5829 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5830 * corresponding sysfs parameter file. 5831 */ 5832 #ifdef CONFIG_WQ_WATCHDOG 5833 5834 static unsigned long wq_watchdog_thresh = 30; 5835 static struct timer_list wq_watchdog_timer; 5836 5837 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5838 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5839 5840 static void wq_watchdog_reset_touched(void) 5841 { 5842 int cpu; 5843 5844 wq_watchdog_touched = jiffies; 5845 for_each_possible_cpu(cpu) 5846 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5847 } 5848 5849 static void wq_watchdog_timer_fn(struct timer_list *unused) 5850 { 5851 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5852 bool lockup_detected = false; 5853 unsigned long now = jiffies; 5854 struct worker_pool *pool; 5855 int pi; 5856 5857 if (!thresh) 5858 return; 5859 5860 rcu_read_lock(); 5861 5862 for_each_pool(pool, pi) { 5863 unsigned long pool_ts, touched, ts; 5864 5865 if (list_empty(&pool->worklist)) 5866 continue; 5867 5868 /* 5869 * If a virtual machine is stopped by the host it can look to 5870 * the watchdog like a stall. 5871 */ 5872 kvm_check_and_clear_guest_paused(); 5873 5874 /* get the latest of pool and touched timestamps */ 5875 if (pool->cpu >= 0) 5876 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 5877 else 5878 touched = READ_ONCE(wq_watchdog_touched); 5879 pool_ts = READ_ONCE(pool->watchdog_ts); 5880 5881 if (time_after(pool_ts, touched)) 5882 ts = pool_ts; 5883 else 5884 ts = touched; 5885 5886 /* did we stall? */ 5887 if (time_after(now, ts + thresh)) { 5888 lockup_detected = true; 5889 pr_emerg("BUG: workqueue lockup - pool"); 5890 pr_cont_pool_info(pool); 5891 pr_cont(" stuck for %us!\n", 5892 jiffies_to_msecs(now - pool_ts) / 1000); 5893 } 5894 } 5895 5896 rcu_read_unlock(); 5897 5898 if (lockup_detected) 5899 show_all_workqueues(); 5900 5901 wq_watchdog_reset_touched(); 5902 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5903 } 5904 5905 notrace void wq_watchdog_touch(int cpu) 5906 { 5907 if (cpu >= 0) 5908 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5909 5910 wq_watchdog_touched = jiffies; 5911 } 5912 5913 static void wq_watchdog_set_thresh(unsigned long thresh) 5914 { 5915 wq_watchdog_thresh = 0; 5916 del_timer_sync(&wq_watchdog_timer); 5917 5918 if (thresh) { 5919 wq_watchdog_thresh = thresh; 5920 wq_watchdog_reset_touched(); 5921 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5922 } 5923 } 5924 5925 static int wq_watchdog_param_set_thresh(const char *val, 5926 const struct kernel_param *kp) 5927 { 5928 unsigned long thresh; 5929 int ret; 5930 5931 ret = kstrtoul(val, 0, &thresh); 5932 if (ret) 5933 return ret; 5934 5935 if (system_wq) 5936 wq_watchdog_set_thresh(thresh); 5937 else 5938 wq_watchdog_thresh = thresh; 5939 5940 return 0; 5941 } 5942 5943 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5944 .set = wq_watchdog_param_set_thresh, 5945 .get = param_get_ulong, 5946 }; 5947 5948 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5949 0644); 5950 5951 static void wq_watchdog_init(void) 5952 { 5953 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5954 wq_watchdog_set_thresh(wq_watchdog_thresh); 5955 } 5956 5957 #else /* CONFIG_WQ_WATCHDOG */ 5958 5959 static inline void wq_watchdog_init(void) { } 5960 5961 #endif /* CONFIG_WQ_WATCHDOG */ 5962 5963 static void __init wq_numa_init(void) 5964 { 5965 cpumask_var_t *tbl; 5966 int node, cpu; 5967 5968 if (num_possible_nodes() <= 1) 5969 return; 5970 5971 if (wq_disable_numa) { 5972 pr_info("workqueue: NUMA affinity support disabled\n"); 5973 return; 5974 } 5975 5976 for_each_possible_cpu(cpu) { 5977 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) { 5978 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5979 return; 5980 } 5981 } 5982 5983 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(); 5984 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5985 5986 /* 5987 * We want masks of possible CPUs of each node which isn't readily 5988 * available. Build one from cpu_to_node() which should have been 5989 * fully initialized by now. 5990 */ 5991 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 5992 BUG_ON(!tbl); 5993 5994 for_each_node(node) 5995 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5996 node_online(node) ? node : NUMA_NO_NODE)); 5997 5998 for_each_possible_cpu(cpu) { 5999 node = cpu_to_node(cpu); 6000 cpumask_set_cpu(cpu, tbl[node]); 6001 } 6002 6003 wq_numa_possible_cpumask = tbl; 6004 wq_numa_enabled = true; 6005 } 6006 6007 /** 6008 * workqueue_init_early - early init for workqueue subsystem 6009 * 6010 * This is the first half of two-staged workqueue subsystem initialization 6011 * and invoked as soon as the bare basics - memory allocation, cpumasks and 6012 * idr are up. It sets up all the data structures and system workqueues 6013 * and allows early boot code to create workqueues and queue/cancel work 6014 * items. Actual work item execution starts only after kthreads can be 6015 * created and scheduled right before early initcalls. 6016 */ 6017 void __init workqueue_init_early(void) 6018 { 6019 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 6020 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 6021 int i, cpu; 6022 6023 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 6024 6025 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 6026 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags)); 6027 6028 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 6029 6030 /* initialize CPU pools */ 6031 for_each_possible_cpu(cpu) { 6032 struct worker_pool *pool; 6033 6034 i = 0; 6035 for_each_cpu_worker_pool(pool, cpu) { 6036 BUG_ON(init_worker_pool(pool)); 6037 pool->cpu = cpu; 6038 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 6039 pool->attrs->nice = std_nice[i++]; 6040 pool->node = cpu_to_node(cpu); 6041 6042 /* alloc pool ID */ 6043 mutex_lock(&wq_pool_mutex); 6044 BUG_ON(worker_pool_assign_id(pool)); 6045 mutex_unlock(&wq_pool_mutex); 6046 } 6047 } 6048 6049 /* create default unbound and ordered wq attrs */ 6050 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 6051 struct workqueue_attrs *attrs; 6052 6053 BUG_ON(!(attrs = alloc_workqueue_attrs())); 6054 attrs->nice = std_nice[i]; 6055 unbound_std_wq_attrs[i] = attrs; 6056 6057 /* 6058 * An ordered wq should have only one pwq as ordering is 6059 * guaranteed by max_active which is enforced by pwqs. 6060 * Turn off NUMA so that dfl_pwq is used for all nodes. 6061 */ 6062 BUG_ON(!(attrs = alloc_workqueue_attrs())); 6063 attrs->nice = std_nice[i]; 6064 attrs->no_numa = true; 6065 ordered_wq_attrs[i] = attrs; 6066 } 6067 6068 system_wq = alloc_workqueue("events", 0, 0); 6069 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 6070 system_long_wq = alloc_workqueue("events_long", 0, 0); 6071 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 6072 WQ_UNBOUND_MAX_ACTIVE); 6073 system_freezable_wq = alloc_workqueue("events_freezable", 6074 WQ_FREEZABLE, 0); 6075 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 6076 WQ_POWER_EFFICIENT, 0); 6077 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 6078 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 6079 0); 6080 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 6081 !system_unbound_wq || !system_freezable_wq || 6082 !system_power_efficient_wq || 6083 !system_freezable_power_efficient_wq); 6084 } 6085 6086 /** 6087 * workqueue_init - bring workqueue subsystem fully online 6088 * 6089 * This is the latter half of two-staged workqueue subsystem initialization 6090 * and invoked as soon as kthreads can be created and scheduled. 6091 * Workqueues have been created and work items queued on them, but there 6092 * are no kworkers executing the work items yet. Populate the worker pools 6093 * with the initial workers and enable future kworker creations. 6094 */ 6095 void __init workqueue_init(void) 6096 { 6097 struct workqueue_struct *wq; 6098 struct worker_pool *pool; 6099 int cpu, bkt; 6100 6101 /* 6102 * It'd be simpler to initialize NUMA in workqueue_init_early() but 6103 * CPU to node mapping may not be available that early on some 6104 * archs such as power and arm64. As per-cpu pools created 6105 * previously could be missing node hint and unbound pools NUMA 6106 * affinity, fix them up. 6107 * 6108 * Also, while iterating workqueues, create rescuers if requested. 6109 */ 6110 wq_numa_init(); 6111 6112 mutex_lock(&wq_pool_mutex); 6113 6114 for_each_possible_cpu(cpu) { 6115 for_each_cpu_worker_pool(pool, cpu) { 6116 pool->node = cpu_to_node(cpu); 6117 } 6118 } 6119 6120 list_for_each_entry(wq, &workqueues, list) { 6121 wq_update_unbound_numa(wq, smp_processor_id(), true); 6122 WARN(init_rescuer(wq), 6123 "workqueue: failed to create early rescuer for %s", 6124 wq->name); 6125 } 6126 6127 mutex_unlock(&wq_pool_mutex); 6128 6129 /* create the initial workers */ 6130 for_each_online_cpu(cpu) { 6131 for_each_cpu_worker_pool(pool, cpu) { 6132 pool->flags &= ~POOL_DISASSOCIATED; 6133 BUG_ON(!create_worker(pool)); 6134 } 6135 } 6136 6137 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 6138 BUG_ON(!create_worker(pool)); 6139 6140 wq_online = true; 6141 wq_watchdog_init(); 6142 } 6143