xref: /linux/kernel/workqueue.c (revision 80d443e8876602be2c130f79c4de81e12e2a700d)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/workqueue.txt for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * attach_mutex to avoid changing binding state while
69 	 * worker_attach_to_pool() is in progress.
70 	 */
71 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72 
73 	/* worker flags */
74 	WORKER_DIE		= 1 << 1,	/* die die die */
75 	WORKER_IDLE		= 1 << 2,	/* is idle */
76 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80 
81 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
82 				  WORKER_UNBOUND | WORKER_REBOUND,
83 
84 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85 
86 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
87 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88 
89 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
90 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
91 
92 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
93 						/* call for help after 10ms
94 						   (min two ticks) */
95 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
96 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
97 
98 	/*
99 	 * Rescue workers are used only on emergencies and shared by
100 	 * all cpus.  Give MIN_NICE.
101 	 */
102 	RESCUER_NICE_LEVEL	= MIN_NICE,
103 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 
105 	WQ_NAME_LEN		= 24,
106 };
107 
108 /*
109  * Structure fields follow one of the following exclusion rules.
110  *
111  * I: Modifiable by initialization/destruction paths and read-only for
112  *    everyone else.
113  *
114  * P: Preemption protected.  Disabling preemption is enough and should
115  *    only be modified and accessed from the local cpu.
116  *
117  * L: pool->lock protected.  Access with pool->lock held.
118  *
119  * X: During normal operation, modification requires pool->lock and should
120  *    be done only from local cpu.  Either disabling preemption on local
121  *    cpu or grabbing pool->lock is enough for read access.  If
122  *    POOL_DISASSOCIATED is set, it's identical to L.
123  *
124  * A: pool->attach_mutex protected.
125  *
126  * PL: wq_pool_mutex protected.
127  *
128  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129  *
130  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
131  *
132  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
133  *      sched-RCU for reads.
134  *
135  * WQ: wq->mutex protected.
136  *
137  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
138  *
139  * MD: wq_mayday_lock protected.
140  */
141 
142 /* struct worker is defined in workqueue_internal.h */
143 
144 struct worker_pool {
145 	spinlock_t		lock;		/* the pool lock */
146 	int			cpu;		/* I: the associated cpu */
147 	int			node;		/* I: the associated node ID */
148 	int			id;		/* I: pool ID */
149 	unsigned int		flags;		/* X: flags */
150 
151 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
152 
153 	struct list_head	worklist;	/* L: list of pending works */
154 	int			nr_workers;	/* L: total number of workers */
155 
156 	/* nr_idle includes the ones off idle_list for rebinding */
157 	int			nr_idle;	/* L: currently idle ones */
158 
159 	struct list_head	idle_list;	/* X: list of idle workers */
160 	struct timer_list	idle_timer;	/* L: worker idle timeout */
161 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
162 
163 	/* a workers is either on busy_hash or idle_list, or the manager */
164 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 						/* L: hash of busy workers */
166 
167 	/* see manage_workers() for details on the two manager mutexes */
168 	struct mutex		manager_arb;	/* manager arbitration */
169 	struct worker		*manager;	/* L: purely informational */
170 	struct mutex		attach_mutex;	/* attach/detach exclusion */
171 	struct list_head	workers;	/* A: attached workers */
172 	struct completion	*detach_completion; /* all workers detached */
173 
174 	struct ida		worker_ida;	/* worker IDs for task name */
175 
176 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
177 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
178 	int			refcnt;		/* PL: refcnt for unbound pools */
179 
180 	/*
181 	 * The current concurrency level.  As it's likely to be accessed
182 	 * from other CPUs during try_to_wake_up(), put it in a separate
183 	 * cacheline.
184 	 */
185 	atomic_t		nr_running ____cacheline_aligned_in_smp;
186 
187 	/*
188 	 * Destruction of pool is sched-RCU protected to allow dereferences
189 	 * from get_work_pool().
190 	 */
191 	struct rcu_head		rcu;
192 } ____cacheline_aligned_in_smp;
193 
194 /*
195  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
196  * of work_struct->data are used for flags and the remaining high bits
197  * point to the pwq; thus, pwqs need to be aligned at two's power of the
198  * number of flag bits.
199  */
200 struct pool_workqueue {
201 	struct worker_pool	*pool;		/* I: the associated pool */
202 	struct workqueue_struct *wq;		/* I: the owning workqueue */
203 	int			work_color;	/* L: current color */
204 	int			flush_color;	/* L: flushing color */
205 	int			refcnt;		/* L: reference count */
206 	int			nr_in_flight[WORK_NR_COLORS];
207 						/* L: nr of in_flight works */
208 	int			nr_active;	/* L: nr of active works */
209 	int			max_active;	/* L: max active works */
210 	struct list_head	delayed_works;	/* L: delayed works */
211 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
212 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
213 
214 	/*
215 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
216 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
217 	 * itself is also sched-RCU protected so that the first pwq can be
218 	 * determined without grabbing wq->mutex.
219 	 */
220 	struct work_struct	unbound_release_work;
221 	struct rcu_head		rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223 
224 /*
225  * Structure used to wait for workqueue flush.
226  */
227 struct wq_flusher {
228 	struct list_head	list;		/* WQ: list of flushers */
229 	int			flush_color;	/* WQ: flush color waiting for */
230 	struct completion	done;		/* flush completion */
231 };
232 
233 struct wq_device;
234 
235 /*
236  * The externally visible workqueue.  It relays the issued work items to
237  * the appropriate worker_pool through its pool_workqueues.
238  */
239 struct workqueue_struct {
240 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
241 	struct list_head	list;		/* PR: list of all workqueues */
242 
243 	struct mutex		mutex;		/* protects this wq */
244 	int			work_color;	/* WQ: current work color */
245 	int			flush_color;	/* WQ: current flush color */
246 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
247 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
248 	struct list_head	flusher_queue;	/* WQ: flush waiters */
249 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
250 
251 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
252 	struct worker		*rescuer;	/* I: rescue worker */
253 
254 	int			nr_drainers;	/* WQ: drain in progress */
255 	int			saved_max_active; /* WQ: saved pwq max_active */
256 
257 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
258 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
259 
260 #ifdef CONFIG_SYSFS
261 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 	struct lockdep_map	lockdep_map;
265 #endif
266 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
267 
268 	/*
269 	 * Destruction of workqueue_struct is sched-RCU protected to allow
270 	 * walking the workqueues list without grabbing wq_pool_mutex.
271 	 * This is used to dump all workqueues from sysrq.
272 	 */
273 	struct rcu_head		rcu;
274 
275 	/* hot fields used during command issue, aligned to cacheline */
276 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280 
281 static struct kmem_cache *pwq_cache;
282 
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 					/* possible CPUs of each node */
285 
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288 
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292 
293 static bool wq_online;			/* can kworkers be created yet? */
294 
295 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
296 
297 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
298 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
299 
300 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
301 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
302 
303 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
304 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
305 
306 /* PL: allowable cpus for unbound wqs and work items */
307 static cpumask_var_t wq_unbound_cpumask;
308 
309 /* CPU where unbound work was last round robin scheduled from this CPU */
310 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
311 
312 /*
313  * Local execution of unbound work items is no longer guaranteed.  The
314  * following always forces round-robin CPU selection on unbound work items
315  * to uncover usages which depend on it.
316  */
317 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
318 static bool wq_debug_force_rr_cpu = true;
319 #else
320 static bool wq_debug_force_rr_cpu = false;
321 #endif
322 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
323 
324 /* the per-cpu worker pools */
325 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
326 
327 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
328 
329 /* PL: hash of all unbound pools keyed by pool->attrs */
330 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
331 
332 /* I: attributes used when instantiating standard unbound pools on demand */
333 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
334 
335 /* I: attributes used when instantiating ordered pools on demand */
336 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
337 
338 struct workqueue_struct *system_wq __read_mostly;
339 EXPORT_SYMBOL(system_wq);
340 struct workqueue_struct *system_highpri_wq __read_mostly;
341 EXPORT_SYMBOL_GPL(system_highpri_wq);
342 struct workqueue_struct *system_long_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_long_wq);
344 struct workqueue_struct *system_unbound_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_unbound_wq);
346 struct workqueue_struct *system_freezable_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_freezable_wq);
348 struct workqueue_struct *system_power_efficient_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
350 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
351 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
352 
353 static int worker_thread(void *__worker);
354 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
355 
356 #define CREATE_TRACE_POINTS
357 #include <trace/events/workqueue.h>
358 
359 #define assert_rcu_or_pool_mutex()					\
360 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
361 			 !lockdep_is_held(&wq_pool_mutex),		\
362 			 "sched RCU or wq_pool_mutex should be held")
363 
364 #define assert_rcu_or_wq_mutex(wq)					\
365 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
366 			 !lockdep_is_held(&wq->mutex),			\
367 			 "sched RCU or wq->mutex should be held")
368 
369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
370 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
371 			 !lockdep_is_held(&wq->mutex) &&		\
372 			 !lockdep_is_held(&wq_pool_mutex),		\
373 			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
374 
375 #define for_each_cpu_worker_pool(pool, cpu)				\
376 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
377 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
378 	     (pool)++)
379 
380 /**
381  * for_each_pool - iterate through all worker_pools in the system
382  * @pool: iteration cursor
383  * @pi: integer used for iteration
384  *
385  * This must be called either with wq_pool_mutex held or sched RCU read
386  * locked.  If the pool needs to be used beyond the locking in effect, the
387  * caller is responsible for guaranteeing that the pool stays online.
388  *
389  * The if/else clause exists only for the lockdep assertion and can be
390  * ignored.
391  */
392 #define for_each_pool(pool, pi)						\
393 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
394 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
395 		else
396 
397 /**
398  * for_each_pool_worker - iterate through all workers of a worker_pool
399  * @worker: iteration cursor
400  * @pool: worker_pool to iterate workers of
401  *
402  * This must be called with @pool->attach_mutex.
403  *
404  * The if/else clause exists only for the lockdep assertion and can be
405  * ignored.
406  */
407 #define for_each_pool_worker(worker, pool)				\
408 	list_for_each_entry((worker), &(pool)->workers, node)		\
409 		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
410 		else
411 
412 /**
413  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414  * @pwq: iteration cursor
415  * @wq: the target workqueue
416  *
417  * This must be called either with wq->mutex held or sched RCU read locked.
418  * If the pwq needs to be used beyond the locking in effect, the caller is
419  * responsible for guaranteeing that the pwq stays online.
420  *
421  * The if/else clause exists only for the lockdep assertion and can be
422  * ignored.
423  */
424 #define for_each_pwq(pwq, wq)						\
425 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
426 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
427 		else
428 
429 #ifdef CONFIG_DEBUG_OBJECTS_WORK
430 
431 static struct debug_obj_descr work_debug_descr;
432 
433 static void *work_debug_hint(void *addr)
434 {
435 	return ((struct work_struct *) addr)->func;
436 }
437 
438 static bool work_is_static_object(void *addr)
439 {
440 	struct work_struct *work = addr;
441 
442 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
443 }
444 
445 /*
446  * fixup_init is called when:
447  * - an active object is initialized
448  */
449 static bool work_fixup_init(void *addr, enum debug_obj_state state)
450 {
451 	struct work_struct *work = addr;
452 
453 	switch (state) {
454 	case ODEBUG_STATE_ACTIVE:
455 		cancel_work_sync(work);
456 		debug_object_init(work, &work_debug_descr);
457 		return true;
458 	default:
459 		return false;
460 	}
461 }
462 
463 /*
464  * fixup_free is called when:
465  * - an active object is freed
466  */
467 static bool work_fixup_free(void *addr, enum debug_obj_state state)
468 {
469 	struct work_struct *work = addr;
470 
471 	switch (state) {
472 	case ODEBUG_STATE_ACTIVE:
473 		cancel_work_sync(work);
474 		debug_object_free(work, &work_debug_descr);
475 		return true;
476 	default:
477 		return false;
478 	}
479 }
480 
481 static struct debug_obj_descr work_debug_descr = {
482 	.name		= "work_struct",
483 	.debug_hint	= work_debug_hint,
484 	.is_static_object = work_is_static_object,
485 	.fixup_init	= work_fixup_init,
486 	.fixup_free	= work_fixup_free,
487 };
488 
489 static inline void debug_work_activate(struct work_struct *work)
490 {
491 	debug_object_activate(work, &work_debug_descr);
492 }
493 
494 static inline void debug_work_deactivate(struct work_struct *work)
495 {
496 	debug_object_deactivate(work, &work_debug_descr);
497 }
498 
499 void __init_work(struct work_struct *work, int onstack)
500 {
501 	if (onstack)
502 		debug_object_init_on_stack(work, &work_debug_descr);
503 	else
504 		debug_object_init(work, &work_debug_descr);
505 }
506 EXPORT_SYMBOL_GPL(__init_work);
507 
508 void destroy_work_on_stack(struct work_struct *work)
509 {
510 	debug_object_free(work, &work_debug_descr);
511 }
512 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
513 
514 void destroy_delayed_work_on_stack(struct delayed_work *work)
515 {
516 	destroy_timer_on_stack(&work->timer);
517 	debug_object_free(&work->work, &work_debug_descr);
518 }
519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
520 
521 #else
522 static inline void debug_work_activate(struct work_struct *work) { }
523 static inline void debug_work_deactivate(struct work_struct *work) { }
524 #endif
525 
526 /**
527  * worker_pool_assign_id - allocate ID and assing it to @pool
528  * @pool: the pool pointer of interest
529  *
530  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
531  * successfully, -errno on failure.
532  */
533 static int worker_pool_assign_id(struct worker_pool *pool)
534 {
535 	int ret;
536 
537 	lockdep_assert_held(&wq_pool_mutex);
538 
539 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
540 			GFP_KERNEL);
541 	if (ret >= 0) {
542 		pool->id = ret;
543 		return 0;
544 	}
545 	return ret;
546 }
547 
548 /**
549  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
550  * @wq: the target workqueue
551  * @node: the node ID
552  *
553  * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
554  * read locked.
555  * If the pwq needs to be used beyond the locking in effect, the caller is
556  * responsible for guaranteeing that the pwq stays online.
557  *
558  * Return: The unbound pool_workqueue for @node.
559  */
560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 						  int node)
562 {
563 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
564 
565 	/*
566 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
567 	 * delayed item is pending.  The plan is to keep CPU -> NODE
568 	 * mapping valid and stable across CPU on/offlines.  Once that
569 	 * happens, this workaround can be removed.
570 	 */
571 	if (unlikely(node == NUMA_NO_NODE))
572 		return wq->dfl_pwq;
573 
574 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
575 }
576 
577 static unsigned int work_color_to_flags(int color)
578 {
579 	return color << WORK_STRUCT_COLOR_SHIFT;
580 }
581 
582 static int get_work_color(struct work_struct *work)
583 {
584 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
585 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
586 }
587 
588 static int work_next_color(int color)
589 {
590 	return (color + 1) % WORK_NR_COLORS;
591 }
592 
593 /*
594  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
595  * contain the pointer to the queued pwq.  Once execution starts, the flag
596  * is cleared and the high bits contain OFFQ flags and pool ID.
597  *
598  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
599  * and clear_work_data() can be used to set the pwq, pool or clear
600  * work->data.  These functions should only be called while the work is
601  * owned - ie. while the PENDING bit is set.
602  *
603  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
604  * corresponding to a work.  Pool is available once the work has been
605  * queued anywhere after initialization until it is sync canceled.  pwq is
606  * available only while the work item is queued.
607  *
608  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
609  * canceled.  While being canceled, a work item may have its PENDING set
610  * but stay off timer and worklist for arbitrarily long and nobody should
611  * try to steal the PENDING bit.
612  */
613 static inline void set_work_data(struct work_struct *work, unsigned long data,
614 				 unsigned long flags)
615 {
616 	WARN_ON_ONCE(!work_pending(work));
617 	atomic_long_set(&work->data, data | flags | work_static(work));
618 }
619 
620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
621 			 unsigned long extra_flags)
622 {
623 	set_work_data(work, (unsigned long)pwq,
624 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
625 }
626 
627 static void set_work_pool_and_keep_pending(struct work_struct *work,
628 					   int pool_id)
629 {
630 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
631 		      WORK_STRUCT_PENDING);
632 }
633 
634 static void set_work_pool_and_clear_pending(struct work_struct *work,
635 					    int pool_id)
636 {
637 	/*
638 	 * The following wmb is paired with the implied mb in
639 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
640 	 * here are visible to and precede any updates by the next PENDING
641 	 * owner.
642 	 */
643 	smp_wmb();
644 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
645 	/*
646 	 * The following mb guarantees that previous clear of a PENDING bit
647 	 * will not be reordered with any speculative LOADS or STORES from
648 	 * work->current_func, which is executed afterwards.  This possible
649 	 * reordering can lead to a missed execution on attempt to qeueue
650 	 * the same @work.  E.g. consider this case:
651 	 *
652 	 *   CPU#0                         CPU#1
653 	 *   ----------------------------  --------------------------------
654 	 *
655 	 * 1  STORE event_indicated
656 	 * 2  queue_work_on() {
657 	 * 3    test_and_set_bit(PENDING)
658 	 * 4 }                             set_..._and_clear_pending() {
659 	 * 5                                 set_work_data() # clear bit
660 	 * 6                                 smp_mb()
661 	 * 7                               work->current_func() {
662 	 * 8				      LOAD event_indicated
663 	 *				   }
664 	 *
665 	 * Without an explicit full barrier speculative LOAD on line 8 can
666 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
667 	 * CPU#0 observes the PENDING bit is still set and new execution of
668 	 * a @work is not queued in a hope, that CPU#1 will eventually
669 	 * finish the queued @work.  Meanwhile CPU#1 does not see
670 	 * event_indicated is set, because speculative LOAD was executed
671 	 * before actual STORE.
672 	 */
673 	smp_mb();
674 }
675 
676 static void clear_work_data(struct work_struct *work)
677 {
678 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
679 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
680 }
681 
682 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
683 {
684 	unsigned long data = atomic_long_read(&work->data);
685 
686 	if (data & WORK_STRUCT_PWQ)
687 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
688 	else
689 		return NULL;
690 }
691 
692 /**
693  * get_work_pool - return the worker_pool a given work was associated with
694  * @work: the work item of interest
695  *
696  * Pools are created and destroyed under wq_pool_mutex, and allows read
697  * access under sched-RCU read lock.  As such, this function should be
698  * called under wq_pool_mutex or with preemption disabled.
699  *
700  * All fields of the returned pool are accessible as long as the above
701  * mentioned locking is in effect.  If the returned pool needs to be used
702  * beyond the critical section, the caller is responsible for ensuring the
703  * returned pool is and stays online.
704  *
705  * Return: The worker_pool @work was last associated with.  %NULL if none.
706  */
707 static struct worker_pool *get_work_pool(struct work_struct *work)
708 {
709 	unsigned long data = atomic_long_read(&work->data);
710 	int pool_id;
711 
712 	assert_rcu_or_pool_mutex();
713 
714 	if (data & WORK_STRUCT_PWQ)
715 		return ((struct pool_workqueue *)
716 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
717 
718 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
719 	if (pool_id == WORK_OFFQ_POOL_NONE)
720 		return NULL;
721 
722 	return idr_find(&worker_pool_idr, pool_id);
723 }
724 
725 /**
726  * get_work_pool_id - return the worker pool ID a given work is associated with
727  * @work: the work item of interest
728  *
729  * Return: The worker_pool ID @work was last associated with.
730  * %WORK_OFFQ_POOL_NONE if none.
731  */
732 static int get_work_pool_id(struct work_struct *work)
733 {
734 	unsigned long data = atomic_long_read(&work->data);
735 
736 	if (data & WORK_STRUCT_PWQ)
737 		return ((struct pool_workqueue *)
738 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
739 
740 	return data >> WORK_OFFQ_POOL_SHIFT;
741 }
742 
743 static void mark_work_canceling(struct work_struct *work)
744 {
745 	unsigned long pool_id = get_work_pool_id(work);
746 
747 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
748 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
749 }
750 
751 static bool work_is_canceling(struct work_struct *work)
752 {
753 	unsigned long data = atomic_long_read(&work->data);
754 
755 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
756 }
757 
758 /*
759  * Policy functions.  These define the policies on how the global worker
760  * pools are managed.  Unless noted otherwise, these functions assume that
761  * they're being called with pool->lock held.
762  */
763 
764 static bool __need_more_worker(struct worker_pool *pool)
765 {
766 	return !atomic_read(&pool->nr_running);
767 }
768 
769 /*
770  * Need to wake up a worker?  Called from anything but currently
771  * running workers.
772  *
773  * Note that, because unbound workers never contribute to nr_running, this
774  * function will always return %true for unbound pools as long as the
775  * worklist isn't empty.
776  */
777 static bool need_more_worker(struct worker_pool *pool)
778 {
779 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
780 }
781 
782 /* Can I start working?  Called from busy but !running workers. */
783 static bool may_start_working(struct worker_pool *pool)
784 {
785 	return pool->nr_idle;
786 }
787 
788 /* Do I need to keep working?  Called from currently running workers. */
789 static bool keep_working(struct worker_pool *pool)
790 {
791 	return !list_empty(&pool->worklist) &&
792 		atomic_read(&pool->nr_running) <= 1;
793 }
794 
795 /* Do we need a new worker?  Called from manager. */
796 static bool need_to_create_worker(struct worker_pool *pool)
797 {
798 	return need_more_worker(pool) && !may_start_working(pool);
799 }
800 
801 /* Do we have too many workers and should some go away? */
802 static bool too_many_workers(struct worker_pool *pool)
803 {
804 	bool managing = mutex_is_locked(&pool->manager_arb);
805 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
806 	int nr_busy = pool->nr_workers - nr_idle;
807 
808 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
809 }
810 
811 /*
812  * Wake up functions.
813  */
814 
815 /* Return the first idle worker.  Safe with preemption disabled */
816 static struct worker *first_idle_worker(struct worker_pool *pool)
817 {
818 	if (unlikely(list_empty(&pool->idle_list)))
819 		return NULL;
820 
821 	return list_first_entry(&pool->idle_list, struct worker, entry);
822 }
823 
824 /**
825  * wake_up_worker - wake up an idle worker
826  * @pool: worker pool to wake worker from
827  *
828  * Wake up the first idle worker of @pool.
829  *
830  * CONTEXT:
831  * spin_lock_irq(pool->lock).
832  */
833 static void wake_up_worker(struct worker_pool *pool)
834 {
835 	struct worker *worker = first_idle_worker(pool);
836 
837 	if (likely(worker))
838 		wake_up_process(worker->task);
839 }
840 
841 /**
842  * wq_worker_waking_up - a worker is waking up
843  * @task: task waking up
844  * @cpu: CPU @task is waking up to
845  *
846  * This function is called during try_to_wake_up() when a worker is
847  * being awoken.
848  *
849  * CONTEXT:
850  * spin_lock_irq(rq->lock)
851  */
852 void wq_worker_waking_up(struct task_struct *task, int cpu)
853 {
854 	struct worker *worker = kthread_data(task);
855 
856 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
857 		WARN_ON_ONCE(worker->pool->cpu != cpu);
858 		atomic_inc(&worker->pool->nr_running);
859 	}
860 }
861 
862 /**
863  * wq_worker_sleeping - a worker is going to sleep
864  * @task: task going to sleep
865  *
866  * This function is called during schedule() when a busy worker is
867  * going to sleep.  Worker on the same cpu can be woken up by
868  * returning pointer to its task.
869  *
870  * CONTEXT:
871  * spin_lock_irq(rq->lock)
872  *
873  * Return:
874  * Worker task on @cpu to wake up, %NULL if none.
875  */
876 struct task_struct *wq_worker_sleeping(struct task_struct *task)
877 {
878 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
879 	struct worker_pool *pool;
880 
881 	/*
882 	 * Rescuers, which may not have all the fields set up like normal
883 	 * workers, also reach here, let's not access anything before
884 	 * checking NOT_RUNNING.
885 	 */
886 	if (worker->flags & WORKER_NOT_RUNNING)
887 		return NULL;
888 
889 	pool = worker->pool;
890 
891 	/* this can only happen on the local cpu */
892 	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
893 		return NULL;
894 
895 	/*
896 	 * The counterpart of the following dec_and_test, implied mb,
897 	 * worklist not empty test sequence is in insert_work().
898 	 * Please read comment there.
899 	 *
900 	 * NOT_RUNNING is clear.  This means that we're bound to and
901 	 * running on the local cpu w/ rq lock held and preemption
902 	 * disabled, which in turn means that none else could be
903 	 * manipulating idle_list, so dereferencing idle_list without pool
904 	 * lock is safe.
905 	 */
906 	if (atomic_dec_and_test(&pool->nr_running) &&
907 	    !list_empty(&pool->worklist))
908 		to_wakeup = first_idle_worker(pool);
909 	return to_wakeup ? to_wakeup->task : NULL;
910 }
911 
912 /**
913  * worker_set_flags - set worker flags and adjust nr_running accordingly
914  * @worker: self
915  * @flags: flags to set
916  *
917  * Set @flags in @worker->flags and adjust nr_running accordingly.
918  *
919  * CONTEXT:
920  * spin_lock_irq(pool->lock)
921  */
922 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
923 {
924 	struct worker_pool *pool = worker->pool;
925 
926 	WARN_ON_ONCE(worker->task != current);
927 
928 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
929 	if ((flags & WORKER_NOT_RUNNING) &&
930 	    !(worker->flags & WORKER_NOT_RUNNING)) {
931 		atomic_dec(&pool->nr_running);
932 	}
933 
934 	worker->flags |= flags;
935 }
936 
937 /**
938  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
939  * @worker: self
940  * @flags: flags to clear
941  *
942  * Clear @flags in @worker->flags and adjust nr_running accordingly.
943  *
944  * CONTEXT:
945  * spin_lock_irq(pool->lock)
946  */
947 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
948 {
949 	struct worker_pool *pool = worker->pool;
950 	unsigned int oflags = worker->flags;
951 
952 	WARN_ON_ONCE(worker->task != current);
953 
954 	worker->flags &= ~flags;
955 
956 	/*
957 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
958 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
959 	 * of multiple flags, not a single flag.
960 	 */
961 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
962 		if (!(worker->flags & WORKER_NOT_RUNNING))
963 			atomic_inc(&pool->nr_running);
964 }
965 
966 /**
967  * find_worker_executing_work - find worker which is executing a work
968  * @pool: pool of interest
969  * @work: work to find worker for
970  *
971  * Find a worker which is executing @work on @pool by searching
972  * @pool->busy_hash which is keyed by the address of @work.  For a worker
973  * to match, its current execution should match the address of @work and
974  * its work function.  This is to avoid unwanted dependency between
975  * unrelated work executions through a work item being recycled while still
976  * being executed.
977  *
978  * This is a bit tricky.  A work item may be freed once its execution
979  * starts and nothing prevents the freed area from being recycled for
980  * another work item.  If the same work item address ends up being reused
981  * before the original execution finishes, workqueue will identify the
982  * recycled work item as currently executing and make it wait until the
983  * current execution finishes, introducing an unwanted dependency.
984  *
985  * This function checks the work item address and work function to avoid
986  * false positives.  Note that this isn't complete as one may construct a
987  * work function which can introduce dependency onto itself through a
988  * recycled work item.  Well, if somebody wants to shoot oneself in the
989  * foot that badly, there's only so much we can do, and if such deadlock
990  * actually occurs, it should be easy to locate the culprit work function.
991  *
992  * CONTEXT:
993  * spin_lock_irq(pool->lock).
994  *
995  * Return:
996  * Pointer to worker which is executing @work if found, %NULL
997  * otherwise.
998  */
999 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1000 						 struct work_struct *work)
1001 {
1002 	struct worker *worker;
1003 
1004 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1005 			       (unsigned long)work)
1006 		if (worker->current_work == work &&
1007 		    worker->current_func == work->func)
1008 			return worker;
1009 
1010 	return NULL;
1011 }
1012 
1013 /**
1014  * move_linked_works - move linked works to a list
1015  * @work: start of series of works to be scheduled
1016  * @head: target list to append @work to
1017  * @nextp: out parameter for nested worklist walking
1018  *
1019  * Schedule linked works starting from @work to @head.  Work series to
1020  * be scheduled starts at @work and includes any consecutive work with
1021  * WORK_STRUCT_LINKED set in its predecessor.
1022  *
1023  * If @nextp is not NULL, it's updated to point to the next work of
1024  * the last scheduled work.  This allows move_linked_works() to be
1025  * nested inside outer list_for_each_entry_safe().
1026  *
1027  * CONTEXT:
1028  * spin_lock_irq(pool->lock).
1029  */
1030 static void move_linked_works(struct work_struct *work, struct list_head *head,
1031 			      struct work_struct **nextp)
1032 {
1033 	struct work_struct *n;
1034 
1035 	/*
1036 	 * Linked worklist will always end before the end of the list,
1037 	 * use NULL for list head.
1038 	 */
1039 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1040 		list_move_tail(&work->entry, head);
1041 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1042 			break;
1043 	}
1044 
1045 	/*
1046 	 * If we're already inside safe list traversal and have moved
1047 	 * multiple works to the scheduled queue, the next position
1048 	 * needs to be updated.
1049 	 */
1050 	if (nextp)
1051 		*nextp = n;
1052 }
1053 
1054 /**
1055  * get_pwq - get an extra reference on the specified pool_workqueue
1056  * @pwq: pool_workqueue to get
1057  *
1058  * Obtain an extra reference on @pwq.  The caller should guarantee that
1059  * @pwq has positive refcnt and be holding the matching pool->lock.
1060  */
1061 static void get_pwq(struct pool_workqueue *pwq)
1062 {
1063 	lockdep_assert_held(&pwq->pool->lock);
1064 	WARN_ON_ONCE(pwq->refcnt <= 0);
1065 	pwq->refcnt++;
1066 }
1067 
1068 /**
1069  * put_pwq - put a pool_workqueue reference
1070  * @pwq: pool_workqueue to put
1071  *
1072  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1073  * destruction.  The caller should be holding the matching pool->lock.
1074  */
1075 static void put_pwq(struct pool_workqueue *pwq)
1076 {
1077 	lockdep_assert_held(&pwq->pool->lock);
1078 	if (likely(--pwq->refcnt))
1079 		return;
1080 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1081 		return;
1082 	/*
1083 	 * @pwq can't be released under pool->lock, bounce to
1084 	 * pwq_unbound_release_workfn().  This never recurses on the same
1085 	 * pool->lock as this path is taken only for unbound workqueues and
1086 	 * the release work item is scheduled on a per-cpu workqueue.  To
1087 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1088 	 * subclass of 1 in get_unbound_pool().
1089 	 */
1090 	schedule_work(&pwq->unbound_release_work);
1091 }
1092 
1093 /**
1094  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1095  * @pwq: pool_workqueue to put (can be %NULL)
1096  *
1097  * put_pwq() with locking.  This function also allows %NULL @pwq.
1098  */
1099 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1100 {
1101 	if (pwq) {
1102 		/*
1103 		 * As both pwqs and pools are sched-RCU protected, the
1104 		 * following lock operations are safe.
1105 		 */
1106 		spin_lock_irq(&pwq->pool->lock);
1107 		put_pwq(pwq);
1108 		spin_unlock_irq(&pwq->pool->lock);
1109 	}
1110 }
1111 
1112 static void pwq_activate_delayed_work(struct work_struct *work)
1113 {
1114 	struct pool_workqueue *pwq = get_work_pwq(work);
1115 
1116 	trace_workqueue_activate_work(work);
1117 	if (list_empty(&pwq->pool->worklist))
1118 		pwq->pool->watchdog_ts = jiffies;
1119 	move_linked_works(work, &pwq->pool->worklist, NULL);
1120 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1121 	pwq->nr_active++;
1122 }
1123 
1124 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1125 {
1126 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1127 						    struct work_struct, entry);
1128 
1129 	pwq_activate_delayed_work(work);
1130 }
1131 
1132 /**
1133  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1134  * @pwq: pwq of interest
1135  * @color: color of work which left the queue
1136  *
1137  * A work either has completed or is removed from pending queue,
1138  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1139  *
1140  * CONTEXT:
1141  * spin_lock_irq(pool->lock).
1142  */
1143 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1144 {
1145 	/* uncolored work items don't participate in flushing or nr_active */
1146 	if (color == WORK_NO_COLOR)
1147 		goto out_put;
1148 
1149 	pwq->nr_in_flight[color]--;
1150 
1151 	pwq->nr_active--;
1152 	if (!list_empty(&pwq->delayed_works)) {
1153 		/* one down, submit a delayed one */
1154 		if (pwq->nr_active < pwq->max_active)
1155 			pwq_activate_first_delayed(pwq);
1156 	}
1157 
1158 	/* is flush in progress and are we at the flushing tip? */
1159 	if (likely(pwq->flush_color != color))
1160 		goto out_put;
1161 
1162 	/* are there still in-flight works? */
1163 	if (pwq->nr_in_flight[color])
1164 		goto out_put;
1165 
1166 	/* this pwq is done, clear flush_color */
1167 	pwq->flush_color = -1;
1168 
1169 	/*
1170 	 * If this was the last pwq, wake up the first flusher.  It
1171 	 * will handle the rest.
1172 	 */
1173 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1174 		complete(&pwq->wq->first_flusher->done);
1175 out_put:
1176 	put_pwq(pwq);
1177 }
1178 
1179 /**
1180  * try_to_grab_pending - steal work item from worklist and disable irq
1181  * @work: work item to steal
1182  * @is_dwork: @work is a delayed_work
1183  * @flags: place to store irq state
1184  *
1185  * Try to grab PENDING bit of @work.  This function can handle @work in any
1186  * stable state - idle, on timer or on worklist.
1187  *
1188  * Return:
1189  *  1		if @work was pending and we successfully stole PENDING
1190  *  0		if @work was idle and we claimed PENDING
1191  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1192  *  -ENOENT	if someone else is canceling @work, this state may persist
1193  *		for arbitrarily long
1194  *
1195  * Note:
1196  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1197  * interrupted while holding PENDING and @work off queue, irq must be
1198  * disabled on entry.  This, combined with delayed_work->timer being
1199  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1200  *
1201  * On successful return, >= 0, irq is disabled and the caller is
1202  * responsible for releasing it using local_irq_restore(*@flags).
1203  *
1204  * This function is safe to call from any context including IRQ handler.
1205  */
1206 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1207 			       unsigned long *flags)
1208 {
1209 	struct worker_pool *pool;
1210 	struct pool_workqueue *pwq;
1211 
1212 	local_irq_save(*flags);
1213 
1214 	/* try to steal the timer if it exists */
1215 	if (is_dwork) {
1216 		struct delayed_work *dwork = to_delayed_work(work);
1217 
1218 		/*
1219 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1220 		 * guaranteed that the timer is not queued anywhere and not
1221 		 * running on the local CPU.
1222 		 */
1223 		if (likely(del_timer(&dwork->timer)))
1224 			return 1;
1225 	}
1226 
1227 	/* try to claim PENDING the normal way */
1228 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1229 		return 0;
1230 
1231 	/*
1232 	 * The queueing is in progress, or it is already queued. Try to
1233 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1234 	 */
1235 	pool = get_work_pool(work);
1236 	if (!pool)
1237 		goto fail;
1238 
1239 	spin_lock(&pool->lock);
1240 	/*
1241 	 * work->data is guaranteed to point to pwq only while the work
1242 	 * item is queued on pwq->wq, and both updating work->data to point
1243 	 * to pwq on queueing and to pool on dequeueing are done under
1244 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1245 	 * points to pwq which is associated with a locked pool, the work
1246 	 * item is currently queued on that pool.
1247 	 */
1248 	pwq = get_work_pwq(work);
1249 	if (pwq && pwq->pool == pool) {
1250 		debug_work_deactivate(work);
1251 
1252 		/*
1253 		 * A delayed work item cannot be grabbed directly because
1254 		 * it might have linked NO_COLOR work items which, if left
1255 		 * on the delayed_list, will confuse pwq->nr_active
1256 		 * management later on and cause stall.  Make sure the work
1257 		 * item is activated before grabbing.
1258 		 */
1259 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1260 			pwq_activate_delayed_work(work);
1261 
1262 		list_del_init(&work->entry);
1263 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1264 
1265 		/* work->data points to pwq iff queued, point to pool */
1266 		set_work_pool_and_keep_pending(work, pool->id);
1267 
1268 		spin_unlock(&pool->lock);
1269 		return 1;
1270 	}
1271 	spin_unlock(&pool->lock);
1272 fail:
1273 	local_irq_restore(*flags);
1274 	if (work_is_canceling(work))
1275 		return -ENOENT;
1276 	cpu_relax();
1277 	return -EAGAIN;
1278 }
1279 
1280 /**
1281  * insert_work - insert a work into a pool
1282  * @pwq: pwq @work belongs to
1283  * @work: work to insert
1284  * @head: insertion point
1285  * @extra_flags: extra WORK_STRUCT_* flags to set
1286  *
1287  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1288  * work_struct flags.
1289  *
1290  * CONTEXT:
1291  * spin_lock_irq(pool->lock).
1292  */
1293 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1294 			struct list_head *head, unsigned int extra_flags)
1295 {
1296 	struct worker_pool *pool = pwq->pool;
1297 
1298 	/* we own @work, set data and link */
1299 	set_work_pwq(work, pwq, extra_flags);
1300 	list_add_tail(&work->entry, head);
1301 	get_pwq(pwq);
1302 
1303 	/*
1304 	 * Ensure either wq_worker_sleeping() sees the above
1305 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1306 	 * around lazily while there are works to be processed.
1307 	 */
1308 	smp_mb();
1309 
1310 	if (__need_more_worker(pool))
1311 		wake_up_worker(pool);
1312 }
1313 
1314 /*
1315  * Test whether @work is being queued from another work executing on the
1316  * same workqueue.
1317  */
1318 static bool is_chained_work(struct workqueue_struct *wq)
1319 {
1320 	struct worker *worker;
1321 
1322 	worker = current_wq_worker();
1323 	/*
1324 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1325 	 * I'm @worker, it's safe to dereference it without locking.
1326 	 */
1327 	return worker && worker->current_pwq->wq == wq;
1328 }
1329 
1330 /*
1331  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1332  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1333  * avoid perturbing sensitive tasks.
1334  */
1335 static int wq_select_unbound_cpu(int cpu)
1336 {
1337 	static bool printed_dbg_warning;
1338 	int new_cpu;
1339 
1340 	if (likely(!wq_debug_force_rr_cpu)) {
1341 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1342 			return cpu;
1343 	} else if (!printed_dbg_warning) {
1344 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1345 		printed_dbg_warning = true;
1346 	}
1347 
1348 	if (cpumask_empty(wq_unbound_cpumask))
1349 		return cpu;
1350 
1351 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1352 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1353 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1354 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1355 		if (unlikely(new_cpu >= nr_cpu_ids))
1356 			return cpu;
1357 	}
1358 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1359 
1360 	return new_cpu;
1361 }
1362 
1363 static void __queue_work(int cpu, struct workqueue_struct *wq,
1364 			 struct work_struct *work)
1365 {
1366 	struct pool_workqueue *pwq;
1367 	struct worker_pool *last_pool;
1368 	struct list_head *worklist;
1369 	unsigned int work_flags;
1370 	unsigned int req_cpu = cpu;
1371 
1372 	/*
1373 	 * While a work item is PENDING && off queue, a task trying to
1374 	 * steal the PENDING will busy-loop waiting for it to either get
1375 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1376 	 * happen with IRQ disabled.
1377 	 */
1378 	WARN_ON_ONCE(!irqs_disabled());
1379 
1380 	debug_work_activate(work);
1381 
1382 	/* if draining, only works from the same workqueue are allowed */
1383 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1384 	    WARN_ON_ONCE(!is_chained_work(wq)))
1385 		return;
1386 retry:
1387 	if (req_cpu == WORK_CPU_UNBOUND)
1388 		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1389 
1390 	/* pwq which will be used unless @work is executing elsewhere */
1391 	if (!(wq->flags & WQ_UNBOUND))
1392 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1393 	else
1394 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1395 
1396 	/*
1397 	 * If @work was previously on a different pool, it might still be
1398 	 * running there, in which case the work needs to be queued on that
1399 	 * pool to guarantee non-reentrancy.
1400 	 */
1401 	last_pool = get_work_pool(work);
1402 	if (last_pool && last_pool != pwq->pool) {
1403 		struct worker *worker;
1404 
1405 		spin_lock(&last_pool->lock);
1406 
1407 		worker = find_worker_executing_work(last_pool, work);
1408 
1409 		if (worker && worker->current_pwq->wq == wq) {
1410 			pwq = worker->current_pwq;
1411 		} else {
1412 			/* meh... not running there, queue here */
1413 			spin_unlock(&last_pool->lock);
1414 			spin_lock(&pwq->pool->lock);
1415 		}
1416 	} else {
1417 		spin_lock(&pwq->pool->lock);
1418 	}
1419 
1420 	/*
1421 	 * pwq is determined and locked.  For unbound pools, we could have
1422 	 * raced with pwq release and it could already be dead.  If its
1423 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1424 	 * without another pwq replacing it in the numa_pwq_tbl or while
1425 	 * work items are executing on it, so the retrying is guaranteed to
1426 	 * make forward-progress.
1427 	 */
1428 	if (unlikely(!pwq->refcnt)) {
1429 		if (wq->flags & WQ_UNBOUND) {
1430 			spin_unlock(&pwq->pool->lock);
1431 			cpu_relax();
1432 			goto retry;
1433 		}
1434 		/* oops */
1435 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1436 			  wq->name, cpu);
1437 	}
1438 
1439 	/* pwq determined, queue */
1440 	trace_workqueue_queue_work(req_cpu, pwq, work);
1441 
1442 	if (WARN_ON(!list_empty(&work->entry))) {
1443 		spin_unlock(&pwq->pool->lock);
1444 		return;
1445 	}
1446 
1447 	pwq->nr_in_flight[pwq->work_color]++;
1448 	work_flags = work_color_to_flags(pwq->work_color);
1449 
1450 	if (likely(pwq->nr_active < pwq->max_active)) {
1451 		trace_workqueue_activate_work(work);
1452 		pwq->nr_active++;
1453 		worklist = &pwq->pool->worklist;
1454 		if (list_empty(worklist))
1455 			pwq->pool->watchdog_ts = jiffies;
1456 	} else {
1457 		work_flags |= WORK_STRUCT_DELAYED;
1458 		worklist = &pwq->delayed_works;
1459 	}
1460 
1461 	insert_work(pwq, work, worklist, work_flags);
1462 
1463 	spin_unlock(&pwq->pool->lock);
1464 }
1465 
1466 /**
1467  * queue_work_on - queue work on specific cpu
1468  * @cpu: CPU number to execute work on
1469  * @wq: workqueue to use
1470  * @work: work to queue
1471  *
1472  * We queue the work to a specific CPU, the caller must ensure it
1473  * can't go away.
1474  *
1475  * Return: %false if @work was already on a queue, %true otherwise.
1476  */
1477 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1478 		   struct work_struct *work)
1479 {
1480 	bool ret = false;
1481 	unsigned long flags;
1482 
1483 	local_irq_save(flags);
1484 
1485 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1486 		__queue_work(cpu, wq, work);
1487 		ret = true;
1488 	}
1489 
1490 	local_irq_restore(flags);
1491 	return ret;
1492 }
1493 EXPORT_SYMBOL(queue_work_on);
1494 
1495 void delayed_work_timer_fn(unsigned long __data)
1496 {
1497 	struct delayed_work *dwork = (struct delayed_work *)__data;
1498 
1499 	/* should have been called from irqsafe timer with irq already off */
1500 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1501 }
1502 EXPORT_SYMBOL(delayed_work_timer_fn);
1503 
1504 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1505 				struct delayed_work *dwork, unsigned long delay)
1506 {
1507 	struct timer_list *timer = &dwork->timer;
1508 	struct work_struct *work = &dwork->work;
1509 
1510 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1511 		     timer->data != (unsigned long)dwork);
1512 	WARN_ON_ONCE(timer_pending(timer));
1513 	WARN_ON_ONCE(!list_empty(&work->entry));
1514 
1515 	/*
1516 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1517 	 * both optimization and correctness.  The earliest @timer can
1518 	 * expire is on the closest next tick and delayed_work users depend
1519 	 * on that there's no such delay when @delay is 0.
1520 	 */
1521 	if (!delay) {
1522 		__queue_work(cpu, wq, &dwork->work);
1523 		return;
1524 	}
1525 
1526 	timer_stats_timer_set_start_info(&dwork->timer);
1527 
1528 	dwork->wq = wq;
1529 	dwork->cpu = cpu;
1530 	timer->expires = jiffies + delay;
1531 
1532 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1533 		add_timer_on(timer, cpu);
1534 	else
1535 		add_timer(timer);
1536 }
1537 
1538 /**
1539  * queue_delayed_work_on - queue work on specific CPU after delay
1540  * @cpu: CPU number to execute work on
1541  * @wq: workqueue to use
1542  * @dwork: work to queue
1543  * @delay: number of jiffies to wait before queueing
1544  *
1545  * Return: %false if @work was already on a queue, %true otherwise.  If
1546  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1547  * execution.
1548  */
1549 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1550 			   struct delayed_work *dwork, unsigned long delay)
1551 {
1552 	struct work_struct *work = &dwork->work;
1553 	bool ret = false;
1554 	unsigned long flags;
1555 
1556 	/* read the comment in __queue_work() */
1557 	local_irq_save(flags);
1558 
1559 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1560 		__queue_delayed_work(cpu, wq, dwork, delay);
1561 		ret = true;
1562 	}
1563 
1564 	local_irq_restore(flags);
1565 	return ret;
1566 }
1567 EXPORT_SYMBOL(queue_delayed_work_on);
1568 
1569 /**
1570  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1571  * @cpu: CPU number to execute work on
1572  * @wq: workqueue to use
1573  * @dwork: work to queue
1574  * @delay: number of jiffies to wait before queueing
1575  *
1576  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1577  * modify @dwork's timer so that it expires after @delay.  If @delay is
1578  * zero, @work is guaranteed to be scheduled immediately regardless of its
1579  * current state.
1580  *
1581  * Return: %false if @dwork was idle and queued, %true if @dwork was
1582  * pending and its timer was modified.
1583  *
1584  * This function is safe to call from any context including IRQ handler.
1585  * See try_to_grab_pending() for details.
1586  */
1587 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1588 			 struct delayed_work *dwork, unsigned long delay)
1589 {
1590 	unsigned long flags;
1591 	int ret;
1592 
1593 	do {
1594 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1595 	} while (unlikely(ret == -EAGAIN));
1596 
1597 	if (likely(ret >= 0)) {
1598 		__queue_delayed_work(cpu, wq, dwork, delay);
1599 		local_irq_restore(flags);
1600 	}
1601 
1602 	/* -ENOENT from try_to_grab_pending() becomes %true */
1603 	return ret;
1604 }
1605 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1606 
1607 /**
1608  * worker_enter_idle - enter idle state
1609  * @worker: worker which is entering idle state
1610  *
1611  * @worker is entering idle state.  Update stats and idle timer if
1612  * necessary.
1613  *
1614  * LOCKING:
1615  * spin_lock_irq(pool->lock).
1616  */
1617 static void worker_enter_idle(struct worker *worker)
1618 {
1619 	struct worker_pool *pool = worker->pool;
1620 
1621 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1622 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1623 			 (worker->hentry.next || worker->hentry.pprev)))
1624 		return;
1625 
1626 	/* can't use worker_set_flags(), also called from create_worker() */
1627 	worker->flags |= WORKER_IDLE;
1628 	pool->nr_idle++;
1629 	worker->last_active = jiffies;
1630 
1631 	/* idle_list is LIFO */
1632 	list_add(&worker->entry, &pool->idle_list);
1633 
1634 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1635 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1636 
1637 	/*
1638 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1639 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1640 	 * nr_running, the warning may trigger spuriously.  Check iff
1641 	 * unbind is not in progress.
1642 	 */
1643 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1644 		     pool->nr_workers == pool->nr_idle &&
1645 		     atomic_read(&pool->nr_running));
1646 }
1647 
1648 /**
1649  * worker_leave_idle - leave idle state
1650  * @worker: worker which is leaving idle state
1651  *
1652  * @worker is leaving idle state.  Update stats.
1653  *
1654  * LOCKING:
1655  * spin_lock_irq(pool->lock).
1656  */
1657 static void worker_leave_idle(struct worker *worker)
1658 {
1659 	struct worker_pool *pool = worker->pool;
1660 
1661 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1662 		return;
1663 	worker_clr_flags(worker, WORKER_IDLE);
1664 	pool->nr_idle--;
1665 	list_del_init(&worker->entry);
1666 }
1667 
1668 static struct worker *alloc_worker(int node)
1669 {
1670 	struct worker *worker;
1671 
1672 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1673 	if (worker) {
1674 		INIT_LIST_HEAD(&worker->entry);
1675 		INIT_LIST_HEAD(&worker->scheduled);
1676 		INIT_LIST_HEAD(&worker->node);
1677 		/* on creation a worker is in !idle && prep state */
1678 		worker->flags = WORKER_PREP;
1679 	}
1680 	return worker;
1681 }
1682 
1683 /**
1684  * worker_attach_to_pool() - attach a worker to a pool
1685  * @worker: worker to be attached
1686  * @pool: the target pool
1687  *
1688  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1689  * cpu-binding of @worker are kept coordinated with the pool across
1690  * cpu-[un]hotplugs.
1691  */
1692 static void worker_attach_to_pool(struct worker *worker,
1693 				   struct worker_pool *pool)
1694 {
1695 	mutex_lock(&pool->attach_mutex);
1696 
1697 	/*
1698 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1699 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1700 	 */
1701 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1702 
1703 	/*
1704 	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1705 	 * stable across this function.  See the comments above the
1706 	 * flag definition for details.
1707 	 */
1708 	if (pool->flags & POOL_DISASSOCIATED)
1709 		worker->flags |= WORKER_UNBOUND;
1710 
1711 	list_add_tail(&worker->node, &pool->workers);
1712 
1713 	mutex_unlock(&pool->attach_mutex);
1714 }
1715 
1716 /**
1717  * worker_detach_from_pool() - detach a worker from its pool
1718  * @worker: worker which is attached to its pool
1719  * @pool: the pool @worker is attached to
1720  *
1721  * Undo the attaching which had been done in worker_attach_to_pool().  The
1722  * caller worker shouldn't access to the pool after detached except it has
1723  * other reference to the pool.
1724  */
1725 static void worker_detach_from_pool(struct worker *worker,
1726 				    struct worker_pool *pool)
1727 {
1728 	struct completion *detach_completion = NULL;
1729 
1730 	mutex_lock(&pool->attach_mutex);
1731 	list_del(&worker->node);
1732 	if (list_empty(&pool->workers))
1733 		detach_completion = pool->detach_completion;
1734 	mutex_unlock(&pool->attach_mutex);
1735 
1736 	/* clear leftover flags without pool->lock after it is detached */
1737 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1738 
1739 	if (detach_completion)
1740 		complete(detach_completion);
1741 }
1742 
1743 /**
1744  * create_worker - create a new workqueue worker
1745  * @pool: pool the new worker will belong to
1746  *
1747  * Create and start a new worker which is attached to @pool.
1748  *
1749  * CONTEXT:
1750  * Might sleep.  Does GFP_KERNEL allocations.
1751  *
1752  * Return:
1753  * Pointer to the newly created worker.
1754  */
1755 static struct worker *create_worker(struct worker_pool *pool)
1756 {
1757 	struct worker *worker = NULL;
1758 	int id = -1;
1759 	char id_buf[16];
1760 
1761 	/* ID is needed to determine kthread name */
1762 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1763 	if (id < 0)
1764 		goto fail;
1765 
1766 	worker = alloc_worker(pool->node);
1767 	if (!worker)
1768 		goto fail;
1769 
1770 	worker->pool = pool;
1771 	worker->id = id;
1772 
1773 	if (pool->cpu >= 0)
1774 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1775 			 pool->attrs->nice < 0  ? "H" : "");
1776 	else
1777 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1778 
1779 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1780 					      "kworker/%s", id_buf);
1781 	if (IS_ERR(worker->task))
1782 		goto fail;
1783 
1784 	set_user_nice(worker->task, pool->attrs->nice);
1785 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1786 
1787 	/* successful, attach the worker to the pool */
1788 	worker_attach_to_pool(worker, pool);
1789 
1790 	/* start the newly created worker */
1791 	spin_lock_irq(&pool->lock);
1792 	worker->pool->nr_workers++;
1793 	worker_enter_idle(worker);
1794 	wake_up_process(worker->task);
1795 	spin_unlock_irq(&pool->lock);
1796 
1797 	return worker;
1798 
1799 fail:
1800 	if (id >= 0)
1801 		ida_simple_remove(&pool->worker_ida, id);
1802 	kfree(worker);
1803 	return NULL;
1804 }
1805 
1806 /**
1807  * destroy_worker - destroy a workqueue worker
1808  * @worker: worker to be destroyed
1809  *
1810  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1811  * be idle.
1812  *
1813  * CONTEXT:
1814  * spin_lock_irq(pool->lock).
1815  */
1816 static void destroy_worker(struct worker *worker)
1817 {
1818 	struct worker_pool *pool = worker->pool;
1819 
1820 	lockdep_assert_held(&pool->lock);
1821 
1822 	/* sanity check frenzy */
1823 	if (WARN_ON(worker->current_work) ||
1824 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1825 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1826 		return;
1827 
1828 	pool->nr_workers--;
1829 	pool->nr_idle--;
1830 
1831 	list_del_init(&worker->entry);
1832 	worker->flags |= WORKER_DIE;
1833 	wake_up_process(worker->task);
1834 }
1835 
1836 static void idle_worker_timeout(unsigned long __pool)
1837 {
1838 	struct worker_pool *pool = (void *)__pool;
1839 
1840 	spin_lock_irq(&pool->lock);
1841 
1842 	while (too_many_workers(pool)) {
1843 		struct worker *worker;
1844 		unsigned long expires;
1845 
1846 		/* idle_list is kept in LIFO order, check the last one */
1847 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1848 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1849 
1850 		if (time_before(jiffies, expires)) {
1851 			mod_timer(&pool->idle_timer, expires);
1852 			break;
1853 		}
1854 
1855 		destroy_worker(worker);
1856 	}
1857 
1858 	spin_unlock_irq(&pool->lock);
1859 }
1860 
1861 static void send_mayday(struct work_struct *work)
1862 {
1863 	struct pool_workqueue *pwq = get_work_pwq(work);
1864 	struct workqueue_struct *wq = pwq->wq;
1865 
1866 	lockdep_assert_held(&wq_mayday_lock);
1867 
1868 	if (!wq->rescuer)
1869 		return;
1870 
1871 	/* mayday mayday mayday */
1872 	if (list_empty(&pwq->mayday_node)) {
1873 		/*
1874 		 * If @pwq is for an unbound wq, its base ref may be put at
1875 		 * any time due to an attribute change.  Pin @pwq until the
1876 		 * rescuer is done with it.
1877 		 */
1878 		get_pwq(pwq);
1879 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1880 		wake_up_process(wq->rescuer->task);
1881 	}
1882 }
1883 
1884 static void pool_mayday_timeout(unsigned long __pool)
1885 {
1886 	struct worker_pool *pool = (void *)__pool;
1887 	struct work_struct *work;
1888 
1889 	spin_lock_irq(&pool->lock);
1890 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1891 
1892 	if (need_to_create_worker(pool)) {
1893 		/*
1894 		 * We've been trying to create a new worker but
1895 		 * haven't been successful.  We might be hitting an
1896 		 * allocation deadlock.  Send distress signals to
1897 		 * rescuers.
1898 		 */
1899 		list_for_each_entry(work, &pool->worklist, entry)
1900 			send_mayday(work);
1901 	}
1902 
1903 	spin_unlock(&wq_mayday_lock);
1904 	spin_unlock_irq(&pool->lock);
1905 
1906 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1907 }
1908 
1909 /**
1910  * maybe_create_worker - create a new worker if necessary
1911  * @pool: pool to create a new worker for
1912  *
1913  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1914  * have at least one idle worker on return from this function.  If
1915  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1916  * sent to all rescuers with works scheduled on @pool to resolve
1917  * possible allocation deadlock.
1918  *
1919  * On return, need_to_create_worker() is guaranteed to be %false and
1920  * may_start_working() %true.
1921  *
1922  * LOCKING:
1923  * spin_lock_irq(pool->lock) which may be released and regrabbed
1924  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1925  * manager.
1926  */
1927 static void maybe_create_worker(struct worker_pool *pool)
1928 __releases(&pool->lock)
1929 __acquires(&pool->lock)
1930 {
1931 restart:
1932 	spin_unlock_irq(&pool->lock);
1933 
1934 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1935 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1936 
1937 	while (true) {
1938 		if (create_worker(pool) || !need_to_create_worker(pool))
1939 			break;
1940 
1941 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1942 
1943 		if (!need_to_create_worker(pool))
1944 			break;
1945 	}
1946 
1947 	del_timer_sync(&pool->mayday_timer);
1948 	spin_lock_irq(&pool->lock);
1949 	/*
1950 	 * This is necessary even after a new worker was just successfully
1951 	 * created as @pool->lock was dropped and the new worker might have
1952 	 * already become busy.
1953 	 */
1954 	if (need_to_create_worker(pool))
1955 		goto restart;
1956 }
1957 
1958 /**
1959  * manage_workers - manage worker pool
1960  * @worker: self
1961  *
1962  * Assume the manager role and manage the worker pool @worker belongs
1963  * to.  At any given time, there can be only zero or one manager per
1964  * pool.  The exclusion is handled automatically by this function.
1965  *
1966  * The caller can safely start processing works on false return.  On
1967  * true return, it's guaranteed that need_to_create_worker() is false
1968  * and may_start_working() is true.
1969  *
1970  * CONTEXT:
1971  * spin_lock_irq(pool->lock) which may be released and regrabbed
1972  * multiple times.  Does GFP_KERNEL allocations.
1973  *
1974  * Return:
1975  * %false if the pool doesn't need management and the caller can safely
1976  * start processing works, %true if management function was performed and
1977  * the conditions that the caller verified before calling the function may
1978  * no longer be true.
1979  */
1980 static bool manage_workers(struct worker *worker)
1981 {
1982 	struct worker_pool *pool = worker->pool;
1983 
1984 	/*
1985 	 * Anyone who successfully grabs manager_arb wins the arbitration
1986 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
1987 	 * failure while holding pool->lock reliably indicates that someone
1988 	 * else is managing the pool and the worker which failed trylock
1989 	 * can proceed to executing work items.  This means that anyone
1990 	 * grabbing manager_arb is responsible for actually performing
1991 	 * manager duties.  If manager_arb is grabbed and released without
1992 	 * actual management, the pool may stall indefinitely.
1993 	 */
1994 	if (!mutex_trylock(&pool->manager_arb))
1995 		return false;
1996 	pool->manager = worker;
1997 
1998 	maybe_create_worker(pool);
1999 
2000 	pool->manager = NULL;
2001 	mutex_unlock(&pool->manager_arb);
2002 	return true;
2003 }
2004 
2005 /**
2006  * process_one_work - process single work
2007  * @worker: self
2008  * @work: work to process
2009  *
2010  * Process @work.  This function contains all the logics necessary to
2011  * process a single work including synchronization against and
2012  * interaction with other workers on the same cpu, queueing and
2013  * flushing.  As long as context requirement is met, any worker can
2014  * call this function to process a work.
2015  *
2016  * CONTEXT:
2017  * spin_lock_irq(pool->lock) which is released and regrabbed.
2018  */
2019 static void process_one_work(struct worker *worker, struct work_struct *work)
2020 __releases(&pool->lock)
2021 __acquires(&pool->lock)
2022 {
2023 	struct pool_workqueue *pwq = get_work_pwq(work);
2024 	struct worker_pool *pool = worker->pool;
2025 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2026 	int work_color;
2027 	struct worker *collision;
2028 #ifdef CONFIG_LOCKDEP
2029 	/*
2030 	 * It is permissible to free the struct work_struct from
2031 	 * inside the function that is called from it, this we need to
2032 	 * take into account for lockdep too.  To avoid bogus "held
2033 	 * lock freed" warnings as well as problems when looking into
2034 	 * work->lockdep_map, make a copy and use that here.
2035 	 */
2036 	struct lockdep_map lockdep_map;
2037 
2038 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2039 #endif
2040 	/* ensure we're on the correct CPU */
2041 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2042 		     raw_smp_processor_id() != pool->cpu);
2043 
2044 	/*
2045 	 * A single work shouldn't be executed concurrently by
2046 	 * multiple workers on a single cpu.  Check whether anyone is
2047 	 * already processing the work.  If so, defer the work to the
2048 	 * currently executing one.
2049 	 */
2050 	collision = find_worker_executing_work(pool, work);
2051 	if (unlikely(collision)) {
2052 		move_linked_works(work, &collision->scheduled, NULL);
2053 		return;
2054 	}
2055 
2056 	/* claim and dequeue */
2057 	debug_work_deactivate(work);
2058 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2059 	worker->current_work = work;
2060 	worker->current_func = work->func;
2061 	worker->current_pwq = pwq;
2062 	work_color = get_work_color(work);
2063 
2064 	list_del_init(&work->entry);
2065 
2066 	/*
2067 	 * CPU intensive works don't participate in concurrency management.
2068 	 * They're the scheduler's responsibility.  This takes @worker out
2069 	 * of concurrency management and the next code block will chain
2070 	 * execution of the pending work items.
2071 	 */
2072 	if (unlikely(cpu_intensive))
2073 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2074 
2075 	/*
2076 	 * Wake up another worker if necessary.  The condition is always
2077 	 * false for normal per-cpu workers since nr_running would always
2078 	 * be >= 1 at this point.  This is used to chain execution of the
2079 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2080 	 * UNBOUND and CPU_INTENSIVE ones.
2081 	 */
2082 	if (need_more_worker(pool))
2083 		wake_up_worker(pool);
2084 
2085 	/*
2086 	 * Record the last pool and clear PENDING which should be the last
2087 	 * update to @work.  Also, do this inside @pool->lock so that
2088 	 * PENDING and queued state changes happen together while IRQ is
2089 	 * disabled.
2090 	 */
2091 	set_work_pool_and_clear_pending(work, pool->id);
2092 
2093 	spin_unlock_irq(&pool->lock);
2094 
2095 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2096 	lock_map_acquire(&lockdep_map);
2097 	trace_workqueue_execute_start(work);
2098 	worker->current_func(work);
2099 	/*
2100 	 * While we must be careful to not use "work" after this, the trace
2101 	 * point will only record its address.
2102 	 */
2103 	trace_workqueue_execute_end(work);
2104 	lock_map_release(&lockdep_map);
2105 	lock_map_release(&pwq->wq->lockdep_map);
2106 
2107 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2108 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2109 		       "     last function: %pf\n",
2110 		       current->comm, preempt_count(), task_pid_nr(current),
2111 		       worker->current_func);
2112 		debug_show_held_locks(current);
2113 		dump_stack();
2114 	}
2115 
2116 	/*
2117 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2118 	 * kernels, where a requeueing work item waiting for something to
2119 	 * happen could deadlock with stop_machine as such work item could
2120 	 * indefinitely requeue itself while all other CPUs are trapped in
2121 	 * stop_machine. At the same time, report a quiescent RCU state so
2122 	 * the same condition doesn't freeze RCU.
2123 	 */
2124 	cond_resched_rcu_qs();
2125 
2126 	spin_lock_irq(&pool->lock);
2127 
2128 	/* clear cpu intensive status */
2129 	if (unlikely(cpu_intensive))
2130 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2131 
2132 	/* we're done with it, release */
2133 	hash_del(&worker->hentry);
2134 	worker->current_work = NULL;
2135 	worker->current_func = NULL;
2136 	worker->current_pwq = NULL;
2137 	worker->desc_valid = false;
2138 	pwq_dec_nr_in_flight(pwq, work_color);
2139 }
2140 
2141 /**
2142  * process_scheduled_works - process scheduled works
2143  * @worker: self
2144  *
2145  * Process all scheduled works.  Please note that the scheduled list
2146  * may change while processing a work, so this function repeatedly
2147  * fetches a work from the top and executes it.
2148  *
2149  * CONTEXT:
2150  * spin_lock_irq(pool->lock) which may be released and regrabbed
2151  * multiple times.
2152  */
2153 static void process_scheduled_works(struct worker *worker)
2154 {
2155 	while (!list_empty(&worker->scheduled)) {
2156 		struct work_struct *work = list_first_entry(&worker->scheduled,
2157 						struct work_struct, entry);
2158 		process_one_work(worker, work);
2159 	}
2160 }
2161 
2162 /**
2163  * worker_thread - the worker thread function
2164  * @__worker: self
2165  *
2166  * The worker thread function.  All workers belong to a worker_pool -
2167  * either a per-cpu one or dynamic unbound one.  These workers process all
2168  * work items regardless of their specific target workqueue.  The only
2169  * exception is work items which belong to workqueues with a rescuer which
2170  * will be explained in rescuer_thread().
2171  *
2172  * Return: 0
2173  */
2174 static int worker_thread(void *__worker)
2175 {
2176 	struct worker *worker = __worker;
2177 	struct worker_pool *pool = worker->pool;
2178 
2179 	/* tell the scheduler that this is a workqueue worker */
2180 	worker->task->flags |= PF_WQ_WORKER;
2181 woke_up:
2182 	spin_lock_irq(&pool->lock);
2183 
2184 	/* am I supposed to die? */
2185 	if (unlikely(worker->flags & WORKER_DIE)) {
2186 		spin_unlock_irq(&pool->lock);
2187 		WARN_ON_ONCE(!list_empty(&worker->entry));
2188 		worker->task->flags &= ~PF_WQ_WORKER;
2189 
2190 		set_task_comm(worker->task, "kworker/dying");
2191 		ida_simple_remove(&pool->worker_ida, worker->id);
2192 		worker_detach_from_pool(worker, pool);
2193 		kfree(worker);
2194 		return 0;
2195 	}
2196 
2197 	worker_leave_idle(worker);
2198 recheck:
2199 	/* no more worker necessary? */
2200 	if (!need_more_worker(pool))
2201 		goto sleep;
2202 
2203 	/* do we need to manage? */
2204 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2205 		goto recheck;
2206 
2207 	/*
2208 	 * ->scheduled list can only be filled while a worker is
2209 	 * preparing to process a work or actually processing it.
2210 	 * Make sure nobody diddled with it while I was sleeping.
2211 	 */
2212 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2213 
2214 	/*
2215 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2216 	 * worker or that someone else has already assumed the manager
2217 	 * role.  This is where @worker starts participating in concurrency
2218 	 * management if applicable and concurrency management is restored
2219 	 * after being rebound.  See rebind_workers() for details.
2220 	 */
2221 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2222 
2223 	do {
2224 		struct work_struct *work =
2225 			list_first_entry(&pool->worklist,
2226 					 struct work_struct, entry);
2227 
2228 		pool->watchdog_ts = jiffies;
2229 
2230 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2231 			/* optimization path, not strictly necessary */
2232 			process_one_work(worker, work);
2233 			if (unlikely(!list_empty(&worker->scheduled)))
2234 				process_scheduled_works(worker);
2235 		} else {
2236 			move_linked_works(work, &worker->scheduled, NULL);
2237 			process_scheduled_works(worker);
2238 		}
2239 	} while (keep_working(pool));
2240 
2241 	worker_set_flags(worker, WORKER_PREP);
2242 sleep:
2243 	/*
2244 	 * pool->lock is held and there's no work to process and no need to
2245 	 * manage, sleep.  Workers are woken up only while holding
2246 	 * pool->lock or from local cpu, so setting the current state
2247 	 * before releasing pool->lock is enough to prevent losing any
2248 	 * event.
2249 	 */
2250 	worker_enter_idle(worker);
2251 	__set_current_state(TASK_INTERRUPTIBLE);
2252 	spin_unlock_irq(&pool->lock);
2253 	schedule();
2254 	goto woke_up;
2255 }
2256 
2257 /**
2258  * rescuer_thread - the rescuer thread function
2259  * @__rescuer: self
2260  *
2261  * Workqueue rescuer thread function.  There's one rescuer for each
2262  * workqueue which has WQ_MEM_RECLAIM set.
2263  *
2264  * Regular work processing on a pool may block trying to create a new
2265  * worker which uses GFP_KERNEL allocation which has slight chance of
2266  * developing into deadlock if some works currently on the same queue
2267  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2268  * the problem rescuer solves.
2269  *
2270  * When such condition is possible, the pool summons rescuers of all
2271  * workqueues which have works queued on the pool and let them process
2272  * those works so that forward progress can be guaranteed.
2273  *
2274  * This should happen rarely.
2275  *
2276  * Return: 0
2277  */
2278 static int rescuer_thread(void *__rescuer)
2279 {
2280 	struct worker *rescuer = __rescuer;
2281 	struct workqueue_struct *wq = rescuer->rescue_wq;
2282 	struct list_head *scheduled = &rescuer->scheduled;
2283 	bool should_stop;
2284 
2285 	set_user_nice(current, RESCUER_NICE_LEVEL);
2286 
2287 	/*
2288 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2289 	 * doesn't participate in concurrency management.
2290 	 */
2291 	rescuer->task->flags |= PF_WQ_WORKER;
2292 repeat:
2293 	set_current_state(TASK_INTERRUPTIBLE);
2294 
2295 	/*
2296 	 * By the time the rescuer is requested to stop, the workqueue
2297 	 * shouldn't have any work pending, but @wq->maydays may still have
2298 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2299 	 * all the work items before the rescuer got to them.  Go through
2300 	 * @wq->maydays processing before acting on should_stop so that the
2301 	 * list is always empty on exit.
2302 	 */
2303 	should_stop = kthread_should_stop();
2304 
2305 	/* see whether any pwq is asking for help */
2306 	spin_lock_irq(&wq_mayday_lock);
2307 
2308 	while (!list_empty(&wq->maydays)) {
2309 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2310 					struct pool_workqueue, mayday_node);
2311 		struct worker_pool *pool = pwq->pool;
2312 		struct work_struct *work, *n;
2313 		bool first = true;
2314 
2315 		__set_current_state(TASK_RUNNING);
2316 		list_del_init(&pwq->mayday_node);
2317 
2318 		spin_unlock_irq(&wq_mayday_lock);
2319 
2320 		worker_attach_to_pool(rescuer, pool);
2321 
2322 		spin_lock_irq(&pool->lock);
2323 		rescuer->pool = pool;
2324 
2325 		/*
2326 		 * Slurp in all works issued via this workqueue and
2327 		 * process'em.
2328 		 */
2329 		WARN_ON_ONCE(!list_empty(scheduled));
2330 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2331 			if (get_work_pwq(work) == pwq) {
2332 				if (first)
2333 					pool->watchdog_ts = jiffies;
2334 				move_linked_works(work, scheduled, &n);
2335 			}
2336 			first = false;
2337 		}
2338 
2339 		if (!list_empty(scheduled)) {
2340 			process_scheduled_works(rescuer);
2341 
2342 			/*
2343 			 * The above execution of rescued work items could
2344 			 * have created more to rescue through
2345 			 * pwq_activate_first_delayed() or chained
2346 			 * queueing.  Let's put @pwq back on mayday list so
2347 			 * that such back-to-back work items, which may be
2348 			 * being used to relieve memory pressure, don't
2349 			 * incur MAYDAY_INTERVAL delay inbetween.
2350 			 */
2351 			if (need_to_create_worker(pool)) {
2352 				spin_lock(&wq_mayday_lock);
2353 				get_pwq(pwq);
2354 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2355 				spin_unlock(&wq_mayday_lock);
2356 			}
2357 		}
2358 
2359 		/*
2360 		 * Put the reference grabbed by send_mayday().  @pool won't
2361 		 * go away while we're still attached to it.
2362 		 */
2363 		put_pwq(pwq);
2364 
2365 		/*
2366 		 * Leave this pool.  If need_more_worker() is %true, notify a
2367 		 * regular worker; otherwise, we end up with 0 concurrency
2368 		 * and stalling the execution.
2369 		 */
2370 		if (need_more_worker(pool))
2371 			wake_up_worker(pool);
2372 
2373 		rescuer->pool = NULL;
2374 		spin_unlock_irq(&pool->lock);
2375 
2376 		worker_detach_from_pool(rescuer, pool);
2377 
2378 		spin_lock_irq(&wq_mayday_lock);
2379 	}
2380 
2381 	spin_unlock_irq(&wq_mayday_lock);
2382 
2383 	if (should_stop) {
2384 		__set_current_state(TASK_RUNNING);
2385 		rescuer->task->flags &= ~PF_WQ_WORKER;
2386 		return 0;
2387 	}
2388 
2389 	/* rescuers should never participate in concurrency management */
2390 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2391 	schedule();
2392 	goto repeat;
2393 }
2394 
2395 /**
2396  * check_flush_dependency - check for flush dependency sanity
2397  * @target_wq: workqueue being flushed
2398  * @target_work: work item being flushed (NULL for workqueue flushes)
2399  *
2400  * %current is trying to flush the whole @target_wq or @target_work on it.
2401  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2402  * reclaiming memory or running on a workqueue which doesn't have
2403  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2404  * a deadlock.
2405  */
2406 static void check_flush_dependency(struct workqueue_struct *target_wq,
2407 				   struct work_struct *target_work)
2408 {
2409 	work_func_t target_func = target_work ? target_work->func : NULL;
2410 	struct worker *worker;
2411 
2412 	if (target_wq->flags & WQ_MEM_RECLAIM)
2413 		return;
2414 
2415 	worker = current_wq_worker();
2416 
2417 	WARN_ONCE(current->flags & PF_MEMALLOC,
2418 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2419 		  current->pid, current->comm, target_wq->name, target_func);
2420 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2421 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2422 		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2423 		  worker->current_pwq->wq->name, worker->current_func,
2424 		  target_wq->name, target_func);
2425 }
2426 
2427 struct wq_barrier {
2428 	struct work_struct	work;
2429 	struct completion	done;
2430 	struct task_struct	*task;	/* purely informational */
2431 };
2432 
2433 static void wq_barrier_func(struct work_struct *work)
2434 {
2435 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2436 	complete(&barr->done);
2437 }
2438 
2439 /**
2440  * insert_wq_barrier - insert a barrier work
2441  * @pwq: pwq to insert barrier into
2442  * @barr: wq_barrier to insert
2443  * @target: target work to attach @barr to
2444  * @worker: worker currently executing @target, NULL if @target is not executing
2445  *
2446  * @barr is linked to @target such that @barr is completed only after
2447  * @target finishes execution.  Please note that the ordering
2448  * guarantee is observed only with respect to @target and on the local
2449  * cpu.
2450  *
2451  * Currently, a queued barrier can't be canceled.  This is because
2452  * try_to_grab_pending() can't determine whether the work to be
2453  * grabbed is at the head of the queue and thus can't clear LINKED
2454  * flag of the previous work while there must be a valid next work
2455  * after a work with LINKED flag set.
2456  *
2457  * Note that when @worker is non-NULL, @target may be modified
2458  * underneath us, so we can't reliably determine pwq from @target.
2459  *
2460  * CONTEXT:
2461  * spin_lock_irq(pool->lock).
2462  */
2463 static void insert_wq_barrier(struct pool_workqueue *pwq,
2464 			      struct wq_barrier *barr,
2465 			      struct work_struct *target, struct worker *worker)
2466 {
2467 	struct list_head *head;
2468 	unsigned int linked = 0;
2469 
2470 	/*
2471 	 * debugobject calls are safe here even with pool->lock locked
2472 	 * as we know for sure that this will not trigger any of the
2473 	 * checks and call back into the fixup functions where we
2474 	 * might deadlock.
2475 	 */
2476 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2477 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2478 	init_completion(&barr->done);
2479 	barr->task = current;
2480 
2481 	/*
2482 	 * If @target is currently being executed, schedule the
2483 	 * barrier to the worker; otherwise, put it after @target.
2484 	 */
2485 	if (worker)
2486 		head = worker->scheduled.next;
2487 	else {
2488 		unsigned long *bits = work_data_bits(target);
2489 
2490 		head = target->entry.next;
2491 		/* there can already be other linked works, inherit and set */
2492 		linked = *bits & WORK_STRUCT_LINKED;
2493 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2494 	}
2495 
2496 	debug_work_activate(&barr->work);
2497 	insert_work(pwq, &barr->work, head,
2498 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2499 }
2500 
2501 /**
2502  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2503  * @wq: workqueue being flushed
2504  * @flush_color: new flush color, < 0 for no-op
2505  * @work_color: new work color, < 0 for no-op
2506  *
2507  * Prepare pwqs for workqueue flushing.
2508  *
2509  * If @flush_color is non-negative, flush_color on all pwqs should be
2510  * -1.  If no pwq has in-flight commands at the specified color, all
2511  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2512  * has in flight commands, its pwq->flush_color is set to
2513  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2514  * wakeup logic is armed and %true is returned.
2515  *
2516  * The caller should have initialized @wq->first_flusher prior to
2517  * calling this function with non-negative @flush_color.  If
2518  * @flush_color is negative, no flush color update is done and %false
2519  * is returned.
2520  *
2521  * If @work_color is non-negative, all pwqs should have the same
2522  * work_color which is previous to @work_color and all will be
2523  * advanced to @work_color.
2524  *
2525  * CONTEXT:
2526  * mutex_lock(wq->mutex).
2527  *
2528  * Return:
2529  * %true if @flush_color >= 0 and there's something to flush.  %false
2530  * otherwise.
2531  */
2532 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2533 				      int flush_color, int work_color)
2534 {
2535 	bool wait = false;
2536 	struct pool_workqueue *pwq;
2537 
2538 	if (flush_color >= 0) {
2539 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2540 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2541 	}
2542 
2543 	for_each_pwq(pwq, wq) {
2544 		struct worker_pool *pool = pwq->pool;
2545 
2546 		spin_lock_irq(&pool->lock);
2547 
2548 		if (flush_color >= 0) {
2549 			WARN_ON_ONCE(pwq->flush_color != -1);
2550 
2551 			if (pwq->nr_in_flight[flush_color]) {
2552 				pwq->flush_color = flush_color;
2553 				atomic_inc(&wq->nr_pwqs_to_flush);
2554 				wait = true;
2555 			}
2556 		}
2557 
2558 		if (work_color >= 0) {
2559 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2560 			pwq->work_color = work_color;
2561 		}
2562 
2563 		spin_unlock_irq(&pool->lock);
2564 	}
2565 
2566 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2567 		complete(&wq->first_flusher->done);
2568 
2569 	return wait;
2570 }
2571 
2572 /**
2573  * flush_workqueue - ensure that any scheduled work has run to completion.
2574  * @wq: workqueue to flush
2575  *
2576  * This function sleeps until all work items which were queued on entry
2577  * have finished execution, but it is not livelocked by new incoming ones.
2578  */
2579 void flush_workqueue(struct workqueue_struct *wq)
2580 {
2581 	struct wq_flusher this_flusher = {
2582 		.list = LIST_HEAD_INIT(this_flusher.list),
2583 		.flush_color = -1,
2584 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2585 	};
2586 	int next_color;
2587 
2588 	if (WARN_ON(!wq_online))
2589 		return;
2590 
2591 	lock_map_acquire(&wq->lockdep_map);
2592 	lock_map_release(&wq->lockdep_map);
2593 
2594 	mutex_lock(&wq->mutex);
2595 
2596 	/*
2597 	 * Start-to-wait phase
2598 	 */
2599 	next_color = work_next_color(wq->work_color);
2600 
2601 	if (next_color != wq->flush_color) {
2602 		/*
2603 		 * Color space is not full.  The current work_color
2604 		 * becomes our flush_color and work_color is advanced
2605 		 * by one.
2606 		 */
2607 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2608 		this_flusher.flush_color = wq->work_color;
2609 		wq->work_color = next_color;
2610 
2611 		if (!wq->first_flusher) {
2612 			/* no flush in progress, become the first flusher */
2613 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2614 
2615 			wq->first_flusher = &this_flusher;
2616 
2617 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2618 						       wq->work_color)) {
2619 				/* nothing to flush, done */
2620 				wq->flush_color = next_color;
2621 				wq->first_flusher = NULL;
2622 				goto out_unlock;
2623 			}
2624 		} else {
2625 			/* wait in queue */
2626 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2627 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2628 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2629 		}
2630 	} else {
2631 		/*
2632 		 * Oops, color space is full, wait on overflow queue.
2633 		 * The next flush completion will assign us
2634 		 * flush_color and transfer to flusher_queue.
2635 		 */
2636 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2637 	}
2638 
2639 	check_flush_dependency(wq, NULL);
2640 
2641 	mutex_unlock(&wq->mutex);
2642 
2643 	wait_for_completion(&this_flusher.done);
2644 
2645 	/*
2646 	 * Wake-up-and-cascade phase
2647 	 *
2648 	 * First flushers are responsible for cascading flushes and
2649 	 * handling overflow.  Non-first flushers can simply return.
2650 	 */
2651 	if (wq->first_flusher != &this_flusher)
2652 		return;
2653 
2654 	mutex_lock(&wq->mutex);
2655 
2656 	/* we might have raced, check again with mutex held */
2657 	if (wq->first_flusher != &this_flusher)
2658 		goto out_unlock;
2659 
2660 	wq->first_flusher = NULL;
2661 
2662 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2663 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2664 
2665 	while (true) {
2666 		struct wq_flusher *next, *tmp;
2667 
2668 		/* complete all the flushers sharing the current flush color */
2669 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2670 			if (next->flush_color != wq->flush_color)
2671 				break;
2672 			list_del_init(&next->list);
2673 			complete(&next->done);
2674 		}
2675 
2676 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2677 			     wq->flush_color != work_next_color(wq->work_color));
2678 
2679 		/* this flush_color is finished, advance by one */
2680 		wq->flush_color = work_next_color(wq->flush_color);
2681 
2682 		/* one color has been freed, handle overflow queue */
2683 		if (!list_empty(&wq->flusher_overflow)) {
2684 			/*
2685 			 * Assign the same color to all overflowed
2686 			 * flushers, advance work_color and append to
2687 			 * flusher_queue.  This is the start-to-wait
2688 			 * phase for these overflowed flushers.
2689 			 */
2690 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2691 				tmp->flush_color = wq->work_color;
2692 
2693 			wq->work_color = work_next_color(wq->work_color);
2694 
2695 			list_splice_tail_init(&wq->flusher_overflow,
2696 					      &wq->flusher_queue);
2697 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2698 		}
2699 
2700 		if (list_empty(&wq->flusher_queue)) {
2701 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2702 			break;
2703 		}
2704 
2705 		/*
2706 		 * Need to flush more colors.  Make the next flusher
2707 		 * the new first flusher and arm pwqs.
2708 		 */
2709 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2710 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2711 
2712 		list_del_init(&next->list);
2713 		wq->first_flusher = next;
2714 
2715 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2716 			break;
2717 
2718 		/*
2719 		 * Meh... this color is already done, clear first
2720 		 * flusher and repeat cascading.
2721 		 */
2722 		wq->first_flusher = NULL;
2723 	}
2724 
2725 out_unlock:
2726 	mutex_unlock(&wq->mutex);
2727 }
2728 EXPORT_SYMBOL(flush_workqueue);
2729 
2730 /**
2731  * drain_workqueue - drain a workqueue
2732  * @wq: workqueue to drain
2733  *
2734  * Wait until the workqueue becomes empty.  While draining is in progress,
2735  * only chain queueing is allowed.  IOW, only currently pending or running
2736  * work items on @wq can queue further work items on it.  @wq is flushed
2737  * repeatedly until it becomes empty.  The number of flushing is determined
2738  * by the depth of chaining and should be relatively short.  Whine if it
2739  * takes too long.
2740  */
2741 void drain_workqueue(struct workqueue_struct *wq)
2742 {
2743 	unsigned int flush_cnt = 0;
2744 	struct pool_workqueue *pwq;
2745 
2746 	/*
2747 	 * __queue_work() needs to test whether there are drainers, is much
2748 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2749 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2750 	 */
2751 	mutex_lock(&wq->mutex);
2752 	if (!wq->nr_drainers++)
2753 		wq->flags |= __WQ_DRAINING;
2754 	mutex_unlock(&wq->mutex);
2755 reflush:
2756 	flush_workqueue(wq);
2757 
2758 	mutex_lock(&wq->mutex);
2759 
2760 	for_each_pwq(pwq, wq) {
2761 		bool drained;
2762 
2763 		spin_lock_irq(&pwq->pool->lock);
2764 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2765 		spin_unlock_irq(&pwq->pool->lock);
2766 
2767 		if (drained)
2768 			continue;
2769 
2770 		if (++flush_cnt == 10 ||
2771 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2772 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2773 				wq->name, flush_cnt);
2774 
2775 		mutex_unlock(&wq->mutex);
2776 		goto reflush;
2777 	}
2778 
2779 	if (!--wq->nr_drainers)
2780 		wq->flags &= ~__WQ_DRAINING;
2781 	mutex_unlock(&wq->mutex);
2782 }
2783 EXPORT_SYMBOL_GPL(drain_workqueue);
2784 
2785 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2786 {
2787 	struct worker *worker = NULL;
2788 	struct worker_pool *pool;
2789 	struct pool_workqueue *pwq;
2790 
2791 	might_sleep();
2792 
2793 	local_irq_disable();
2794 	pool = get_work_pool(work);
2795 	if (!pool) {
2796 		local_irq_enable();
2797 		return false;
2798 	}
2799 
2800 	spin_lock(&pool->lock);
2801 	/* see the comment in try_to_grab_pending() with the same code */
2802 	pwq = get_work_pwq(work);
2803 	if (pwq) {
2804 		if (unlikely(pwq->pool != pool))
2805 			goto already_gone;
2806 	} else {
2807 		worker = find_worker_executing_work(pool, work);
2808 		if (!worker)
2809 			goto already_gone;
2810 		pwq = worker->current_pwq;
2811 	}
2812 
2813 	check_flush_dependency(pwq->wq, work);
2814 
2815 	insert_wq_barrier(pwq, barr, work, worker);
2816 	spin_unlock_irq(&pool->lock);
2817 
2818 	/*
2819 	 * If @max_active is 1 or rescuer is in use, flushing another work
2820 	 * item on the same workqueue may lead to deadlock.  Make sure the
2821 	 * flusher is not running on the same workqueue by verifying write
2822 	 * access.
2823 	 */
2824 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2825 		lock_map_acquire(&pwq->wq->lockdep_map);
2826 	else
2827 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2828 	lock_map_release(&pwq->wq->lockdep_map);
2829 
2830 	return true;
2831 already_gone:
2832 	spin_unlock_irq(&pool->lock);
2833 	return false;
2834 }
2835 
2836 /**
2837  * flush_work - wait for a work to finish executing the last queueing instance
2838  * @work: the work to flush
2839  *
2840  * Wait until @work has finished execution.  @work is guaranteed to be idle
2841  * on return if it hasn't been requeued since flush started.
2842  *
2843  * Return:
2844  * %true if flush_work() waited for the work to finish execution,
2845  * %false if it was already idle.
2846  */
2847 bool flush_work(struct work_struct *work)
2848 {
2849 	struct wq_barrier barr;
2850 
2851 	if (WARN_ON(!wq_online))
2852 		return false;
2853 
2854 	lock_map_acquire(&work->lockdep_map);
2855 	lock_map_release(&work->lockdep_map);
2856 
2857 	if (start_flush_work(work, &barr)) {
2858 		wait_for_completion(&barr.done);
2859 		destroy_work_on_stack(&barr.work);
2860 		return true;
2861 	} else {
2862 		return false;
2863 	}
2864 }
2865 EXPORT_SYMBOL_GPL(flush_work);
2866 
2867 struct cwt_wait {
2868 	wait_queue_t		wait;
2869 	struct work_struct	*work;
2870 };
2871 
2872 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2873 {
2874 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2875 
2876 	if (cwait->work != key)
2877 		return 0;
2878 	return autoremove_wake_function(wait, mode, sync, key);
2879 }
2880 
2881 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2882 {
2883 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2884 	unsigned long flags;
2885 	int ret;
2886 
2887 	do {
2888 		ret = try_to_grab_pending(work, is_dwork, &flags);
2889 		/*
2890 		 * If someone else is already canceling, wait for it to
2891 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2892 		 * because we may get scheduled between @work's completion
2893 		 * and the other canceling task resuming and clearing
2894 		 * CANCELING - flush_work() will return false immediately
2895 		 * as @work is no longer busy, try_to_grab_pending() will
2896 		 * return -ENOENT as @work is still being canceled and the
2897 		 * other canceling task won't be able to clear CANCELING as
2898 		 * we're hogging the CPU.
2899 		 *
2900 		 * Let's wait for completion using a waitqueue.  As this
2901 		 * may lead to the thundering herd problem, use a custom
2902 		 * wake function which matches @work along with exclusive
2903 		 * wait and wakeup.
2904 		 */
2905 		if (unlikely(ret == -ENOENT)) {
2906 			struct cwt_wait cwait;
2907 
2908 			init_wait(&cwait.wait);
2909 			cwait.wait.func = cwt_wakefn;
2910 			cwait.work = work;
2911 
2912 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2913 						  TASK_UNINTERRUPTIBLE);
2914 			if (work_is_canceling(work))
2915 				schedule();
2916 			finish_wait(&cancel_waitq, &cwait.wait);
2917 		}
2918 	} while (unlikely(ret < 0));
2919 
2920 	/* tell other tasks trying to grab @work to back off */
2921 	mark_work_canceling(work);
2922 	local_irq_restore(flags);
2923 
2924 	/*
2925 	 * This allows canceling during early boot.  We know that @work
2926 	 * isn't executing.
2927 	 */
2928 	if (wq_online)
2929 		flush_work(work);
2930 
2931 	clear_work_data(work);
2932 
2933 	/*
2934 	 * Paired with prepare_to_wait() above so that either
2935 	 * waitqueue_active() is visible here or !work_is_canceling() is
2936 	 * visible there.
2937 	 */
2938 	smp_mb();
2939 	if (waitqueue_active(&cancel_waitq))
2940 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2941 
2942 	return ret;
2943 }
2944 
2945 /**
2946  * cancel_work_sync - cancel a work and wait for it to finish
2947  * @work: the work to cancel
2948  *
2949  * Cancel @work and wait for its execution to finish.  This function
2950  * can be used even if the work re-queues itself or migrates to
2951  * another workqueue.  On return from this function, @work is
2952  * guaranteed to be not pending or executing on any CPU.
2953  *
2954  * cancel_work_sync(&delayed_work->work) must not be used for
2955  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2956  *
2957  * The caller must ensure that the workqueue on which @work was last
2958  * queued can't be destroyed before this function returns.
2959  *
2960  * Return:
2961  * %true if @work was pending, %false otherwise.
2962  */
2963 bool cancel_work_sync(struct work_struct *work)
2964 {
2965 	return __cancel_work_timer(work, false);
2966 }
2967 EXPORT_SYMBOL_GPL(cancel_work_sync);
2968 
2969 /**
2970  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2971  * @dwork: the delayed work to flush
2972  *
2973  * Delayed timer is cancelled and the pending work is queued for
2974  * immediate execution.  Like flush_work(), this function only
2975  * considers the last queueing instance of @dwork.
2976  *
2977  * Return:
2978  * %true if flush_work() waited for the work to finish execution,
2979  * %false if it was already idle.
2980  */
2981 bool flush_delayed_work(struct delayed_work *dwork)
2982 {
2983 	local_irq_disable();
2984 	if (del_timer_sync(&dwork->timer))
2985 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2986 	local_irq_enable();
2987 	return flush_work(&dwork->work);
2988 }
2989 EXPORT_SYMBOL(flush_delayed_work);
2990 
2991 static bool __cancel_work(struct work_struct *work, bool is_dwork)
2992 {
2993 	unsigned long flags;
2994 	int ret;
2995 
2996 	do {
2997 		ret = try_to_grab_pending(work, is_dwork, &flags);
2998 	} while (unlikely(ret == -EAGAIN));
2999 
3000 	if (unlikely(ret < 0))
3001 		return false;
3002 
3003 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3004 	local_irq_restore(flags);
3005 	return ret;
3006 }
3007 
3008 /*
3009  * See cancel_delayed_work()
3010  */
3011 bool cancel_work(struct work_struct *work)
3012 {
3013 	return __cancel_work(work, false);
3014 }
3015 
3016 /**
3017  * cancel_delayed_work - cancel a delayed work
3018  * @dwork: delayed_work to cancel
3019  *
3020  * Kill off a pending delayed_work.
3021  *
3022  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3023  * pending.
3024  *
3025  * Note:
3026  * The work callback function may still be running on return, unless
3027  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3028  * use cancel_delayed_work_sync() to wait on it.
3029  *
3030  * This function is safe to call from any context including IRQ handler.
3031  */
3032 bool cancel_delayed_work(struct delayed_work *dwork)
3033 {
3034 	return __cancel_work(&dwork->work, true);
3035 }
3036 EXPORT_SYMBOL(cancel_delayed_work);
3037 
3038 /**
3039  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3040  * @dwork: the delayed work cancel
3041  *
3042  * This is cancel_work_sync() for delayed works.
3043  *
3044  * Return:
3045  * %true if @dwork was pending, %false otherwise.
3046  */
3047 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3048 {
3049 	return __cancel_work_timer(&dwork->work, true);
3050 }
3051 EXPORT_SYMBOL(cancel_delayed_work_sync);
3052 
3053 /**
3054  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3055  * @func: the function to call
3056  *
3057  * schedule_on_each_cpu() executes @func on each online CPU using the
3058  * system workqueue and blocks until all CPUs have completed.
3059  * schedule_on_each_cpu() is very slow.
3060  *
3061  * Return:
3062  * 0 on success, -errno on failure.
3063  */
3064 int schedule_on_each_cpu(work_func_t func)
3065 {
3066 	int cpu;
3067 	struct work_struct __percpu *works;
3068 
3069 	works = alloc_percpu(struct work_struct);
3070 	if (!works)
3071 		return -ENOMEM;
3072 
3073 	get_online_cpus();
3074 
3075 	for_each_online_cpu(cpu) {
3076 		struct work_struct *work = per_cpu_ptr(works, cpu);
3077 
3078 		INIT_WORK(work, func);
3079 		schedule_work_on(cpu, work);
3080 	}
3081 
3082 	for_each_online_cpu(cpu)
3083 		flush_work(per_cpu_ptr(works, cpu));
3084 
3085 	put_online_cpus();
3086 	free_percpu(works);
3087 	return 0;
3088 }
3089 
3090 /**
3091  * execute_in_process_context - reliably execute the routine with user context
3092  * @fn:		the function to execute
3093  * @ew:		guaranteed storage for the execute work structure (must
3094  *		be available when the work executes)
3095  *
3096  * Executes the function immediately if process context is available,
3097  * otherwise schedules the function for delayed execution.
3098  *
3099  * Return:	0 - function was executed
3100  *		1 - function was scheduled for execution
3101  */
3102 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3103 {
3104 	if (!in_interrupt()) {
3105 		fn(&ew->work);
3106 		return 0;
3107 	}
3108 
3109 	INIT_WORK(&ew->work, fn);
3110 	schedule_work(&ew->work);
3111 
3112 	return 1;
3113 }
3114 EXPORT_SYMBOL_GPL(execute_in_process_context);
3115 
3116 /**
3117  * free_workqueue_attrs - free a workqueue_attrs
3118  * @attrs: workqueue_attrs to free
3119  *
3120  * Undo alloc_workqueue_attrs().
3121  */
3122 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3123 {
3124 	if (attrs) {
3125 		free_cpumask_var(attrs->cpumask);
3126 		kfree(attrs);
3127 	}
3128 }
3129 
3130 /**
3131  * alloc_workqueue_attrs - allocate a workqueue_attrs
3132  * @gfp_mask: allocation mask to use
3133  *
3134  * Allocate a new workqueue_attrs, initialize with default settings and
3135  * return it.
3136  *
3137  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3138  */
3139 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3140 {
3141 	struct workqueue_attrs *attrs;
3142 
3143 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3144 	if (!attrs)
3145 		goto fail;
3146 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3147 		goto fail;
3148 
3149 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3150 	return attrs;
3151 fail:
3152 	free_workqueue_attrs(attrs);
3153 	return NULL;
3154 }
3155 
3156 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3157 				 const struct workqueue_attrs *from)
3158 {
3159 	to->nice = from->nice;
3160 	cpumask_copy(to->cpumask, from->cpumask);
3161 	/*
3162 	 * Unlike hash and equality test, this function doesn't ignore
3163 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3164 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3165 	 */
3166 	to->no_numa = from->no_numa;
3167 }
3168 
3169 /* hash value of the content of @attr */
3170 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3171 {
3172 	u32 hash = 0;
3173 
3174 	hash = jhash_1word(attrs->nice, hash);
3175 	hash = jhash(cpumask_bits(attrs->cpumask),
3176 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3177 	return hash;
3178 }
3179 
3180 /* content equality test */
3181 static bool wqattrs_equal(const struct workqueue_attrs *a,
3182 			  const struct workqueue_attrs *b)
3183 {
3184 	if (a->nice != b->nice)
3185 		return false;
3186 	if (!cpumask_equal(a->cpumask, b->cpumask))
3187 		return false;
3188 	return true;
3189 }
3190 
3191 /**
3192  * init_worker_pool - initialize a newly zalloc'd worker_pool
3193  * @pool: worker_pool to initialize
3194  *
3195  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3196  *
3197  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3198  * inside @pool proper are initialized and put_unbound_pool() can be called
3199  * on @pool safely to release it.
3200  */
3201 static int init_worker_pool(struct worker_pool *pool)
3202 {
3203 	spin_lock_init(&pool->lock);
3204 	pool->id = -1;
3205 	pool->cpu = -1;
3206 	pool->node = NUMA_NO_NODE;
3207 	pool->flags |= POOL_DISASSOCIATED;
3208 	pool->watchdog_ts = jiffies;
3209 	INIT_LIST_HEAD(&pool->worklist);
3210 	INIT_LIST_HEAD(&pool->idle_list);
3211 	hash_init(pool->busy_hash);
3212 
3213 	init_timer_deferrable(&pool->idle_timer);
3214 	pool->idle_timer.function = idle_worker_timeout;
3215 	pool->idle_timer.data = (unsigned long)pool;
3216 
3217 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3218 		    (unsigned long)pool);
3219 
3220 	mutex_init(&pool->manager_arb);
3221 	mutex_init(&pool->attach_mutex);
3222 	INIT_LIST_HEAD(&pool->workers);
3223 
3224 	ida_init(&pool->worker_ida);
3225 	INIT_HLIST_NODE(&pool->hash_node);
3226 	pool->refcnt = 1;
3227 
3228 	/* shouldn't fail above this point */
3229 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3230 	if (!pool->attrs)
3231 		return -ENOMEM;
3232 	return 0;
3233 }
3234 
3235 static void rcu_free_wq(struct rcu_head *rcu)
3236 {
3237 	struct workqueue_struct *wq =
3238 		container_of(rcu, struct workqueue_struct, rcu);
3239 
3240 	if (!(wq->flags & WQ_UNBOUND))
3241 		free_percpu(wq->cpu_pwqs);
3242 	else
3243 		free_workqueue_attrs(wq->unbound_attrs);
3244 
3245 	kfree(wq->rescuer);
3246 	kfree(wq);
3247 }
3248 
3249 static void rcu_free_pool(struct rcu_head *rcu)
3250 {
3251 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3252 
3253 	ida_destroy(&pool->worker_ida);
3254 	free_workqueue_attrs(pool->attrs);
3255 	kfree(pool);
3256 }
3257 
3258 /**
3259  * put_unbound_pool - put a worker_pool
3260  * @pool: worker_pool to put
3261  *
3262  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3263  * safe manner.  get_unbound_pool() calls this function on its failure path
3264  * and this function should be able to release pools which went through,
3265  * successfully or not, init_worker_pool().
3266  *
3267  * Should be called with wq_pool_mutex held.
3268  */
3269 static void put_unbound_pool(struct worker_pool *pool)
3270 {
3271 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3272 	struct worker *worker;
3273 
3274 	lockdep_assert_held(&wq_pool_mutex);
3275 
3276 	if (--pool->refcnt)
3277 		return;
3278 
3279 	/* sanity checks */
3280 	if (WARN_ON(!(pool->cpu < 0)) ||
3281 	    WARN_ON(!list_empty(&pool->worklist)))
3282 		return;
3283 
3284 	/* release id and unhash */
3285 	if (pool->id >= 0)
3286 		idr_remove(&worker_pool_idr, pool->id);
3287 	hash_del(&pool->hash_node);
3288 
3289 	/*
3290 	 * Become the manager and destroy all workers.  Grabbing
3291 	 * manager_arb prevents @pool's workers from blocking on
3292 	 * attach_mutex.
3293 	 */
3294 	mutex_lock(&pool->manager_arb);
3295 
3296 	spin_lock_irq(&pool->lock);
3297 	while ((worker = first_idle_worker(pool)))
3298 		destroy_worker(worker);
3299 	WARN_ON(pool->nr_workers || pool->nr_idle);
3300 	spin_unlock_irq(&pool->lock);
3301 
3302 	mutex_lock(&pool->attach_mutex);
3303 	if (!list_empty(&pool->workers))
3304 		pool->detach_completion = &detach_completion;
3305 	mutex_unlock(&pool->attach_mutex);
3306 
3307 	if (pool->detach_completion)
3308 		wait_for_completion(pool->detach_completion);
3309 
3310 	mutex_unlock(&pool->manager_arb);
3311 
3312 	/* shut down the timers */
3313 	del_timer_sync(&pool->idle_timer);
3314 	del_timer_sync(&pool->mayday_timer);
3315 
3316 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3317 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3318 }
3319 
3320 /**
3321  * get_unbound_pool - get a worker_pool with the specified attributes
3322  * @attrs: the attributes of the worker_pool to get
3323  *
3324  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3325  * reference count and return it.  If there already is a matching
3326  * worker_pool, it will be used; otherwise, this function attempts to
3327  * create a new one.
3328  *
3329  * Should be called with wq_pool_mutex held.
3330  *
3331  * Return: On success, a worker_pool with the same attributes as @attrs.
3332  * On failure, %NULL.
3333  */
3334 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3335 {
3336 	u32 hash = wqattrs_hash(attrs);
3337 	struct worker_pool *pool;
3338 	int node;
3339 	int target_node = NUMA_NO_NODE;
3340 
3341 	lockdep_assert_held(&wq_pool_mutex);
3342 
3343 	/* do we already have a matching pool? */
3344 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3345 		if (wqattrs_equal(pool->attrs, attrs)) {
3346 			pool->refcnt++;
3347 			return pool;
3348 		}
3349 	}
3350 
3351 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3352 	if (wq_numa_enabled) {
3353 		for_each_node(node) {
3354 			if (cpumask_subset(attrs->cpumask,
3355 					   wq_numa_possible_cpumask[node])) {
3356 				target_node = node;
3357 				break;
3358 			}
3359 		}
3360 	}
3361 
3362 	/* nope, create a new one */
3363 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3364 	if (!pool || init_worker_pool(pool) < 0)
3365 		goto fail;
3366 
3367 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3368 	copy_workqueue_attrs(pool->attrs, attrs);
3369 	pool->node = target_node;
3370 
3371 	/*
3372 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3373 	 * 'struct workqueue_attrs' comments for detail.
3374 	 */
3375 	pool->attrs->no_numa = false;
3376 
3377 	if (worker_pool_assign_id(pool) < 0)
3378 		goto fail;
3379 
3380 	/* create and start the initial worker */
3381 	if (wq_online && !create_worker(pool))
3382 		goto fail;
3383 
3384 	/* install */
3385 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3386 
3387 	return pool;
3388 fail:
3389 	if (pool)
3390 		put_unbound_pool(pool);
3391 	return NULL;
3392 }
3393 
3394 static void rcu_free_pwq(struct rcu_head *rcu)
3395 {
3396 	kmem_cache_free(pwq_cache,
3397 			container_of(rcu, struct pool_workqueue, rcu));
3398 }
3399 
3400 /*
3401  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3402  * and needs to be destroyed.
3403  */
3404 static void pwq_unbound_release_workfn(struct work_struct *work)
3405 {
3406 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3407 						  unbound_release_work);
3408 	struct workqueue_struct *wq = pwq->wq;
3409 	struct worker_pool *pool = pwq->pool;
3410 	bool is_last;
3411 
3412 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3413 		return;
3414 
3415 	mutex_lock(&wq->mutex);
3416 	list_del_rcu(&pwq->pwqs_node);
3417 	is_last = list_empty(&wq->pwqs);
3418 	mutex_unlock(&wq->mutex);
3419 
3420 	mutex_lock(&wq_pool_mutex);
3421 	put_unbound_pool(pool);
3422 	mutex_unlock(&wq_pool_mutex);
3423 
3424 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3425 
3426 	/*
3427 	 * If we're the last pwq going away, @wq is already dead and no one
3428 	 * is gonna access it anymore.  Schedule RCU free.
3429 	 */
3430 	if (is_last)
3431 		call_rcu_sched(&wq->rcu, rcu_free_wq);
3432 }
3433 
3434 /**
3435  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3436  * @pwq: target pool_workqueue
3437  *
3438  * If @pwq isn't freezing, set @pwq->max_active to the associated
3439  * workqueue's saved_max_active and activate delayed work items
3440  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3441  */
3442 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3443 {
3444 	struct workqueue_struct *wq = pwq->wq;
3445 	bool freezable = wq->flags & WQ_FREEZABLE;
3446 	unsigned long flags;
3447 
3448 	/* for @wq->saved_max_active */
3449 	lockdep_assert_held(&wq->mutex);
3450 
3451 	/* fast exit for non-freezable wqs */
3452 	if (!freezable && pwq->max_active == wq->saved_max_active)
3453 		return;
3454 
3455 	/* this function can be called during early boot w/ irq disabled */
3456 	spin_lock_irqsave(&pwq->pool->lock, flags);
3457 
3458 	/*
3459 	 * During [un]freezing, the caller is responsible for ensuring that
3460 	 * this function is called at least once after @workqueue_freezing
3461 	 * is updated and visible.
3462 	 */
3463 	if (!freezable || !workqueue_freezing) {
3464 		pwq->max_active = wq->saved_max_active;
3465 
3466 		while (!list_empty(&pwq->delayed_works) &&
3467 		       pwq->nr_active < pwq->max_active)
3468 			pwq_activate_first_delayed(pwq);
3469 
3470 		/*
3471 		 * Need to kick a worker after thawed or an unbound wq's
3472 		 * max_active is bumped.  It's a slow path.  Do it always.
3473 		 */
3474 		wake_up_worker(pwq->pool);
3475 	} else {
3476 		pwq->max_active = 0;
3477 	}
3478 
3479 	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3480 }
3481 
3482 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3483 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3484 		     struct worker_pool *pool)
3485 {
3486 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3487 
3488 	memset(pwq, 0, sizeof(*pwq));
3489 
3490 	pwq->pool = pool;
3491 	pwq->wq = wq;
3492 	pwq->flush_color = -1;
3493 	pwq->refcnt = 1;
3494 	INIT_LIST_HEAD(&pwq->delayed_works);
3495 	INIT_LIST_HEAD(&pwq->pwqs_node);
3496 	INIT_LIST_HEAD(&pwq->mayday_node);
3497 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3498 }
3499 
3500 /* sync @pwq with the current state of its associated wq and link it */
3501 static void link_pwq(struct pool_workqueue *pwq)
3502 {
3503 	struct workqueue_struct *wq = pwq->wq;
3504 
3505 	lockdep_assert_held(&wq->mutex);
3506 
3507 	/* may be called multiple times, ignore if already linked */
3508 	if (!list_empty(&pwq->pwqs_node))
3509 		return;
3510 
3511 	/* set the matching work_color */
3512 	pwq->work_color = wq->work_color;
3513 
3514 	/* sync max_active to the current setting */
3515 	pwq_adjust_max_active(pwq);
3516 
3517 	/* link in @pwq */
3518 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3519 }
3520 
3521 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3522 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3523 					const struct workqueue_attrs *attrs)
3524 {
3525 	struct worker_pool *pool;
3526 	struct pool_workqueue *pwq;
3527 
3528 	lockdep_assert_held(&wq_pool_mutex);
3529 
3530 	pool = get_unbound_pool(attrs);
3531 	if (!pool)
3532 		return NULL;
3533 
3534 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3535 	if (!pwq) {
3536 		put_unbound_pool(pool);
3537 		return NULL;
3538 	}
3539 
3540 	init_pwq(pwq, wq, pool);
3541 	return pwq;
3542 }
3543 
3544 /**
3545  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3546  * @attrs: the wq_attrs of the default pwq of the target workqueue
3547  * @node: the target NUMA node
3548  * @cpu_going_down: if >= 0, the CPU to consider as offline
3549  * @cpumask: outarg, the resulting cpumask
3550  *
3551  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3552  * @cpu_going_down is >= 0, that cpu is considered offline during
3553  * calculation.  The result is stored in @cpumask.
3554  *
3555  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3556  * enabled and @node has online CPUs requested by @attrs, the returned
3557  * cpumask is the intersection of the possible CPUs of @node and
3558  * @attrs->cpumask.
3559  *
3560  * The caller is responsible for ensuring that the cpumask of @node stays
3561  * stable.
3562  *
3563  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3564  * %false if equal.
3565  */
3566 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3567 				 int cpu_going_down, cpumask_t *cpumask)
3568 {
3569 	if (!wq_numa_enabled || attrs->no_numa)
3570 		goto use_dfl;
3571 
3572 	/* does @node have any online CPUs @attrs wants? */
3573 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3574 	if (cpu_going_down >= 0)
3575 		cpumask_clear_cpu(cpu_going_down, cpumask);
3576 
3577 	if (cpumask_empty(cpumask))
3578 		goto use_dfl;
3579 
3580 	/* yeap, return possible CPUs in @node that @attrs wants */
3581 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3582 	return !cpumask_equal(cpumask, attrs->cpumask);
3583 
3584 use_dfl:
3585 	cpumask_copy(cpumask, attrs->cpumask);
3586 	return false;
3587 }
3588 
3589 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3590 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3591 						   int node,
3592 						   struct pool_workqueue *pwq)
3593 {
3594 	struct pool_workqueue *old_pwq;
3595 
3596 	lockdep_assert_held(&wq_pool_mutex);
3597 	lockdep_assert_held(&wq->mutex);
3598 
3599 	/* link_pwq() can handle duplicate calls */
3600 	link_pwq(pwq);
3601 
3602 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3603 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3604 	return old_pwq;
3605 }
3606 
3607 /* context to store the prepared attrs & pwqs before applying */
3608 struct apply_wqattrs_ctx {
3609 	struct workqueue_struct	*wq;		/* target workqueue */
3610 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3611 	struct list_head	list;		/* queued for batching commit */
3612 	struct pool_workqueue	*dfl_pwq;
3613 	struct pool_workqueue	*pwq_tbl[];
3614 };
3615 
3616 /* free the resources after success or abort */
3617 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3618 {
3619 	if (ctx) {
3620 		int node;
3621 
3622 		for_each_node(node)
3623 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3624 		put_pwq_unlocked(ctx->dfl_pwq);
3625 
3626 		free_workqueue_attrs(ctx->attrs);
3627 
3628 		kfree(ctx);
3629 	}
3630 }
3631 
3632 /* allocate the attrs and pwqs for later installation */
3633 static struct apply_wqattrs_ctx *
3634 apply_wqattrs_prepare(struct workqueue_struct *wq,
3635 		      const struct workqueue_attrs *attrs)
3636 {
3637 	struct apply_wqattrs_ctx *ctx;
3638 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3639 	int node;
3640 
3641 	lockdep_assert_held(&wq_pool_mutex);
3642 
3643 	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3644 		      GFP_KERNEL);
3645 
3646 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3647 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3648 	if (!ctx || !new_attrs || !tmp_attrs)
3649 		goto out_free;
3650 
3651 	/*
3652 	 * Calculate the attrs of the default pwq.
3653 	 * If the user configured cpumask doesn't overlap with the
3654 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3655 	 */
3656 	copy_workqueue_attrs(new_attrs, attrs);
3657 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3658 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3659 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3660 
3661 	/*
3662 	 * We may create multiple pwqs with differing cpumasks.  Make a
3663 	 * copy of @new_attrs which will be modified and used to obtain
3664 	 * pools.
3665 	 */
3666 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3667 
3668 	/*
3669 	 * If something goes wrong during CPU up/down, we'll fall back to
3670 	 * the default pwq covering whole @attrs->cpumask.  Always create
3671 	 * it even if we don't use it immediately.
3672 	 */
3673 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3674 	if (!ctx->dfl_pwq)
3675 		goto out_free;
3676 
3677 	for_each_node(node) {
3678 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3679 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3680 			if (!ctx->pwq_tbl[node])
3681 				goto out_free;
3682 		} else {
3683 			ctx->dfl_pwq->refcnt++;
3684 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3685 		}
3686 	}
3687 
3688 	/* save the user configured attrs and sanitize it. */
3689 	copy_workqueue_attrs(new_attrs, attrs);
3690 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3691 	ctx->attrs = new_attrs;
3692 
3693 	ctx->wq = wq;
3694 	free_workqueue_attrs(tmp_attrs);
3695 	return ctx;
3696 
3697 out_free:
3698 	free_workqueue_attrs(tmp_attrs);
3699 	free_workqueue_attrs(new_attrs);
3700 	apply_wqattrs_cleanup(ctx);
3701 	return NULL;
3702 }
3703 
3704 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3705 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3706 {
3707 	int node;
3708 
3709 	/* all pwqs have been created successfully, let's install'em */
3710 	mutex_lock(&ctx->wq->mutex);
3711 
3712 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3713 
3714 	/* save the previous pwq and install the new one */
3715 	for_each_node(node)
3716 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3717 							  ctx->pwq_tbl[node]);
3718 
3719 	/* @dfl_pwq might not have been used, ensure it's linked */
3720 	link_pwq(ctx->dfl_pwq);
3721 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3722 
3723 	mutex_unlock(&ctx->wq->mutex);
3724 }
3725 
3726 static void apply_wqattrs_lock(void)
3727 {
3728 	/* CPUs should stay stable across pwq creations and installations */
3729 	get_online_cpus();
3730 	mutex_lock(&wq_pool_mutex);
3731 }
3732 
3733 static void apply_wqattrs_unlock(void)
3734 {
3735 	mutex_unlock(&wq_pool_mutex);
3736 	put_online_cpus();
3737 }
3738 
3739 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3740 					const struct workqueue_attrs *attrs)
3741 {
3742 	struct apply_wqattrs_ctx *ctx;
3743 
3744 	/* only unbound workqueues can change attributes */
3745 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3746 		return -EINVAL;
3747 
3748 	/* creating multiple pwqs breaks ordering guarantee */
3749 	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3750 		return -EINVAL;
3751 
3752 	ctx = apply_wqattrs_prepare(wq, attrs);
3753 	if (!ctx)
3754 		return -ENOMEM;
3755 
3756 	/* the ctx has been prepared successfully, let's commit it */
3757 	apply_wqattrs_commit(ctx);
3758 	apply_wqattrs_cleanup(ctx);
3759 
3760 	return 0;
3761 }
3762 
3763 /**
3764  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3765  * @wq: the target workqueue
3766  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3767  *
3768  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3769  * machines, this function maps a separate pwq to each NUMA node with
3770  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3771  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3772  * items finish.  Note that a work item which repeatedly requeues itself
3773  * back-to-back will stay on its current pwq.
3774  *
3775  * Performs GFP_KERNEL allocations.
3776  *
3777  * Return: 0 on success and -errno on failure.
3778  */
3779 int apply_workqueue_attrs(struct workqueue_struct *wq,
3780 			  const struct workqueue_attrs *attrs)
3781 {
3782 	int ret;
3783 
3784 	apply_wqattrs_lock();
3785 	ret = apply_workqueue_attrs_locked(wq, attrs);
3786 	apply_wqattrs_unlock();
3787 
3788 	return ret;
3789 }
3790 
3791 /**
3792  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3793  * @wq: the target workqueue
3794  * @cpu: the CPU coming up or going down
3795  * @online: whether @cpu is coming up or going down
3796  *
3797  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3798  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3799  * @wq accordingly.
3800  *
3801  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3802  * falls back to @wq->dfl_pwq which may not be optimal but is always
3803  * correct.
3804  *
3805  * Note that when the last allowed CPU of a NUMA node goes offline for a
3806  * workqueue with a cpumask spanning multiple nodes, the workers which were
3807  * already executing the work items for the workqueue will lose their CPU
3808  * affinity and may execute on any CPU.  This is similar to how per-cpu
3809  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3810  * affinity, it's the user's responsibility to flush the work item from
3811  * CPU_DOWN_PREPARE.
3812  */
3813 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3814 				   bool online)
3815 {
3816 	int node = cpu_to_node(cpu);
3817 	int cpu_off = online ? -1 : cpu;
3818 	struct pool_workqueue *old_pwq = NULL, *pwq;
3819 	struct workqueue_attrs *target_attrs;
3820 	cpumask_t *cpumask;
3821 
3822 	lockdep_assert_held(&wq_pool_mutex);
3823 
3824 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3825 	    wq->unbound_attrs->no_numa)
3826 		return;
3827 
3828 	/*
3829 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3830 	 * Let's use a preallocated one.  The following buf is protected by
3831 	 * CPU hotplug exclusion.
3832 	 */
3833 	target_attrs = wq_update_unbound_numa_attrs_buf;
3834 	cpumask = target_attrs->cpumask;
3835 
3836 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3837 	pwq = unbound_pwq_by_node(wq, node);
3838 
3839 	/*
3840 	 * Let's determine what needs to be done.  If the target cpumask is
3841 	 * different from the default pwq's, we need to compare it to @pwq's
3842 	 * and create a new one if they don't match.  If the target cpumask
3843 	 * equals the default pwq's, the default pwq should be used.
3844 	 */
3845 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3846 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3847 			return;
3848 	} else {
3849 		goto use_dfl_pwq;
3850 	}
3851 
3852 	/* create a new pwq */
3853 	pwq = alloc_unbound_pwq(wq, target_attrs);
3854 	if (!pwq) {
3855 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3856 			wq->name);
3857 		goto use_dfl_pwq;
3858 	}
3859 
3860 	/* Install the new pwq. */
3861 	mutex_lock(&wq->mutex);
3862 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3863 	goto out_unlock;
3864 
3865 use_dfl_pwq:
3866 	mutex_lock(&wq->mutex);
3867 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3868 	get_pwq(wq->dfl_pwq);
3869 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3870 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3871 out_unlock:
3872 	mutex_unlock(&wq->mutex);
3873 	put_pwq_unlocked(old_pwq);
3874 }
3875 
3876 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3877 {
3878 	bool highpri = wq->flags & WQ_HIGHPRI;
3879 	int cpu, ret;
3880 
3881 	if (!(wq->flags & WQ_UNBOUND)) {
3882 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3883 		if (!wq->cpu_pwqs)
3884 			return -ENOMEM;
3885 
3886 		for_each_possible_cpu(cpu) {
3887 			struct pool_workqueue *pwq =
3888 				per_cpu_ptr(wq->cpu_pwqs, cpu);
3889 			struct worker_pool *cpu_pools =
3890 				per_cpu(cpu_worker_pools, cpu);
3891 
3892 			init_pwq(pwq, wq, &cpu_pools[highpri]);
3893 
3894 			mutex_lock(&wq->mutex);
3895 			link_pwq(pwq);
3896 			mutex_unlock(&wq->mutex);
3897 		}
3898 		return 0;
3899 	} else if (wq->flags & __WQ_ORDERED) {
3900 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3901 		/* there should only be single pwq for ordering guarantee */
3902 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3903 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3904 		     "ordering guarantee broken for workqueue %s\n", wq->name);
3905 		return ret;
3906 	} else {
3907 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3908 	}
3909 }
3910 
3911 static int wq_clamp_max_active(int max_active, unsigned int flags,
3912 			       const char *name)
3913 {
3914 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3915 
3916 	if (max_active < 1 || max_active > lim)
3917 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3918 			max_active, name, 1, lim);
3919 
3920 	return clamp_val(max_active, 1, lim);
3921 }
3922 
3923 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3924 					       unsigned int flags,
3925 					       int max_active,
3926 					       struct lock_class_key *key,
3927 					       const char *lock_name, ...)
3928 {
3929 	size_t tbl_size = 0;
3930 	va_list args;
3931 	struct workqueue_struct *wq;
3932 	struct pool_workqueue *pwq;
3933 
3934 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
3935 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3936 		flags |= WQ_UNBOUND;
3937 
3938 	/* allocate wq and format name */
3939 	if (flags & WQ_UNBOUND)
3940 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3941 
3942 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3943 	if (!wq)
3944 		return NULL;
3945 
3946 	if (flags & WQ_UNBOUND) {
3947 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3948 		if (!wq->unbound_attrs)
3949 			goto err_free_wq;
3950 	}
3951 
3952 	va_start(args, lock_name);
3953 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3954 	va_end(args);
3955 
3956 	max_active = max_active ?: WQ_DFL_ACTIVE;
3957 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3958 
3959 	/* init wq */
3960 	wq->flags = flags;
3961 	wq->saved_max_active = max_active;
3962 	mutex_init(&wq->mutex);
3963 	atomic_set(&wq->nr_pwqs_to_flush, 0);
3964 	INIT_LIST_HEAD(&wq->pwqs);
3965 	INIT_LIST_HEAD(&wq->flusher_queue);
3966 	INIT_LIST_HEAD(&wq->flusher_overflow);
3967 	INIT_LIST_HEAD(&wq->maydays);
3968 
3969 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3970 	INIT_LIST_HEAD(&wq->list);
3971 
3972 	if (alloc_and_link_pwqs(wq) < 0)
3973 		goto err_free_wq;
3974 
3975 	/*
3976 	 * Workqueues which may be used during memory reclaim should
3977 	 * have a rescuer to guarantee forward progress.
3978 	 */
3979 	if (flags & WQ_MEM_RECLAIM) {
3980 		struct worker *rescuer;
3981 
3982 		rescuer = alloc_worker(NUMA_NO_NODE);
3983 		if (!rescuer)
3984 			goto err_destroy;
3985 
3986 		rescuer->rescue_wq = wq;
3987 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3988 					       wq->name);
3989 		if (IS_ERR(rescuer->task)) {
3990 			kfree(rescuer);
3991 			goto err_destroy;
3992 		}
3993 
3994 		wq->rescuer = rescuer;
3995 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
3996 		wake_up_process(rescuer->task);
3997 	}
3998 
3999 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4000 		goto err_destroy;
4001 
4002 	/*
4003 	 * wq_pool_mutex protects global freeze state and workqueues list.
4004 	 * Grab it, adjust max_active and add the new @wq to workqueues
4005 	 * list.
4006 	 */
4007 	mutex_lock(&wq_pool_mutex);
4008 
4009 	mutex_lock(&wq->mutex);
4010 	for_each_pwq(pwq, wq)
4011 		pwq_adjust_max_active(pwq);
4012 	mutex_unlock(&wq->mutex);
4013 
4014 	list_add_tail_rcu(&wq->list, &workqueues);
4015 
4016 	mutex_unlock(&wq_pool_mutex);
4017 
4018 	return wq;
4019 
4020 err_free_wq:
4021 	free_workqueue_attrs(wq->unbound_attrs);
4022 	kfree(wq);
4023 	return NULL;
4024 err_destroy:
4025 	destroy_workqueue(wq);
4026 	return NULL;
4027 }
4028 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4029 
4030 /**
4031  * destroy_workqueue - safely terminate a workqueue
4032  * @wq: target workqueue
4033  *
4034  * Safely destroy a workqueue. All work currently pending will be done first.
4035  */
4036 void destroy_workqueue(struct workqueue_struct *wq)
4037 {
4038 	struct pool_workqueue *pwq;
4039 	int node;
4040 
4041 	/* drain it before proceeding with destruction */
4042 	drain_workqueue(wq);
4043 
4044 	/* sanity checks */
4045 	mutex_lock(&wq->mutex);
4046 	for_each_pwq(pwq, wq) {
4047 		int i;
4048 
4049 		for (i = 0; i < WORK_NR_COLORS; i++) {
4050 			if (WARN_ON(pwq->nr_in_flight[i])) {
4051 				mutex_unlock(&wq->mutex);
4052 				show_workqueue_state();
4053 				return;
4054 			}
4055 		}
4056 
4057 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4058 		    WARN_ON(pwq->nr_active) ||
4059 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4060 			mutex_unlock(&wq->mutex);
4061 			show_workqueue_state();
4062 			return;
4063 		}
4064 	}
4065 	mutex_unlock(&wq->mutex);
4066 
4067 	/*
4068 	 * wq list is used to freeze wq, remove from list after
4069 	 * flushing is complete in case freeze races us.
4070 	 */
4071 	mutex_lock(&wq_pool_mutex);
4072 	list_del_rcu(&wq->list);
4073 	mutex_unlock(&wq_pool_mutex);
4074 
4075 	workqueue_sysfs_unregister(wq);
4076 
4077 	if (wq->rescuer)
4078 		kthread_stop(wq->rescuer->task);
4079 
4080 	if (!(wq->flags & WQ_UNBOUND)) {
4081 		/*
4082 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4083 		 * schedule RCU free.
4084 		 */
4085 		call_rcu_sched(&wq->rcu, rcu_free_wq);
4086 	} else {
4087 		/*
4088 		 * We're the sole accessor of @wq at this point.  Directly
4089 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4090 		 * @wq will be freed when the last pwq is released.
4091 		 */
4092 		for_each_node(node) {
4093 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4094 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4095 			put_pwq_unlocked(pwq);
4096 		}
4097 
4098 		/*
4099 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4100 		 * put.  Don't access it afterwards.
4101 		 */
4102 		pwq = wq->dfl_pwq;
4103 		wq->dfl_pwq = NULL;
4104 		put_pwq_unlocked(pwq);
4105 	}
4106 }
4107 EXPORT_SYMBOL_GPL(destroy_workqueue);
4108 
4109 /**
4110  * workqueue_set_max_active - adjust max_active of a workqueue
4111  * @wq: target workqueue
4112  * @max_active: new max_active value.
4113  *
4114  * Set max_active of @wq to @max_active.
4115  *
4116  * CONTEXT:
4117  * Don't call from IRQ context.
4118  */
4119 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4120 {
4121 	struct pool_workqueue *pwq;
4122 
4123 	/* disallow meddling with max_active for ordered workqueues */
4124 	if (WARN_ON(wq->flags & __WQ_ORDERED))
4125 		return;
4126 
4127 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4128 
4129 	mutex_lock(&wq->mutex);
4130 
4131 	wq->saved_max_active = max_active;
4132 
4133 	for_each_pwq(pwq, wq)
4134 		pwq_adjust_max_active(pwq);
4135 
4136 	mutex_unlock(&wq->mutex);
4137 }
4138 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4139 
4140 /**
4141  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4142  *
4143  * Determine whether %current is a workqueue rescuer.  Can be used from
4144  * work functions to determine whether it's being run off the rescuer task.
4145  *
4146  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4147  */
4148 bool current_is_workqueue_rescuer(void)
4149 {
4150 	struct worker *worker = current_wq_worker();
4151 
4152 	return worker && worker->rescue_wq;
4153 }
4154 
4155 /**
4156  * workqueue_congested - test whether a workqueue is congested
4157  * @cpu: CPU in question
4158  * @wq: target workqueue
4159  *
4160  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4161  * no synchronization around this function and the test result is
4162  * unreliable and only useful as advisory hints or for debugging.
4163  *
4164  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4165  * Note that both per-cpu and unbound workqueues may be associated with
4166  * multiple pool_workqueues which have separate congested states.  A
4167  * workqueue being congested on one CPU doesn't mean the workqueue is also
4168  * contested on other CPUs / NUMA nodes.
4169  *
4170  * Return:
4171  * %true if congested, %false otherwise.
4172  */
4173 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4174 {
4175 	struct pool_workqueue *pwq;
4176 	bool ret;
4177 
4178 	rcu_read_lock_sched();
4179 
4180 	if (cpu == WORK_CPU_UNBOUND)
4181 		cpu = smp_processor_id();
4182 
4183 	if (!(wq->flags & WQ_UNBOUND))
4184 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4185 	else
4186 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4187 
4188 	ret = !list_empty(&pwq->delayed_works);
4189 	rcu_read_unlock_sched();
4190 
4191 	return ret;
4192 }
4193 EXPORT_SYMBOL_GPL(workqueue_congested);
4194 
4195 /**
4196  * work_busy - test whether a work is currently pending or running
4197  * @work: the work to be tested
4198  *
4199  * Test whether @work is currently pending or running.  There is no
4200  * synchronization around this function and the test result is
4201  * unreliable and only useful as advisory hints or for debugging.
4202  *
4203  * Return:
4204  * OR'd bitmask of WORK_BUSY_* bits.
4205  */
4206 unsigned int work_busy(struct work_struct *work)
4207 {
4208 	struct worker_pool *pool;
4209 	unsigned long flags;
4210 	unsigned int ret = 0;
4211 
4212 	if (work_pending(work))
4213 		ret |= WORK_BUSY_PENDING;
4214 
4215 	local_irq_save(flags);
4216 	pool = get_work_pool(work);
4217 	if (pool) {
4218 		spin_lock(&pool->lock);
4219 		if (find_worker_executing_work(pool, work))
4220 			ret |= WORK_BUSY_RUNNING;
4221 		spin_unlock(&pool->lock);
4222 	}
4223 	local_irq_restore(flags);
4224 
4225 	return ret;
4226 }
4227 EXPORT_SYMBOL_GPL(work_busy);
4228 
4229 /**
4230  * set_worker_desc - set description for the current work item
4231  * @fmt: printf-style format string
4232  * @...: arguments for the format string
4233  *
4234  * This function can be called by a running work function to describe what
4235  * the work item is about.  If the worker task gets dumped, this
4236  * information will be printed out together to help debugging.  The
4237  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4238  */
4239 void set_worker_desc(const char *fmt, ...)
4240 {
4241 	struct worker *worker = current_wq_worker();
4242 	va_list args;
4243 
4244 	if (worker) {
4245 		va_start(args, fmt);
4246 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4247 		va_end(args);
4248 		worker->desc_valid = true;
4249 	}
4250 }
4251 
4252 /**
4253  * print_worker_info - print out worker information and description
4254  * @log_lvl: the log level to use when printing
4255  * @task: target task
4256  *
4257  * If @task is a worker and currently executing a work item, print out the
4258  * name of the workqueue being serviced and worker description set with
4259  * set_worker_desc() by the currently executing work item.
4260  *
4261  * This function can be safely called on any task as long as the
4262  * task_struct itself is accessible.  While safe, this function isn't
4263  * synchronized and may print out mixups or garbages of limited length.
4264  */
4265 void print_worker_info(const char *log_lvl, struct task_struct *task)
4266 {
4267 	work_func_t *fn = NULL;
4268 	char name[WQ_NAME_LEN] = { };
4269 	char desc[WORKER_DESC_LEN] = { };
4270 	struct pool_workqueue *pwq = NULL;
4271 	struct workqueue_struct *wq = NULL;
4272 	bool desc_valid = false;
4273 	struct worker *worker;
4274 
4275 	if (!(task->flags & PF_WQ_WORKER))
4276 		return;
4277 
4278 	/*
4279 	 * This function is called without any synchronization and @task
4280 	 * could be in any state.  Be careful with dereferences.
4281 	 */
4282 	worker = kthread_probe_data(task);
4283 
4284 	/*
4285 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4286 	 * the original last '\0' in case the original contains garbage.
4287 	 */
4288 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4289 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4290 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4291 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4292 
4293 	/* copy worker description */
4294 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4295 	if (desc_valid)
4296 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4297 
4298 	if (fn || name[0] || desc[0]) {
4299 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4300 		if (desc[0])
4301 			pr_cont(" (%s)", desc);
4302 		pr_cont("\n");
4303 	}
4304 }
4305 
4306 static void pr_cont_pool_info(struct worker_pool *pool)
4307 {
4308 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4309 	if (pool->node != NUMA_NO_NODE)
4310 		pr_cont(" node=%d", pool->node);
4311 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4312 }
4313 
4314 static void pr_cont_work(bool comma, struct work_struct *work)
4315 {
4316 	if (work->func == wq_barrier_func) {
4317 		struct wq_barrier *barr;
4318 
4319 		barr = container_of(work, struct wq_barrier, work);
4320 
4321 		pr_cont("%s BAR(%d)", comma ? "," : "",
4322 			task_pid_nr(barr->task));
4323 	} else {
4324 		pr_cont("%s %pf", comma ? "," : "", work->func);
4325 	}
4326 }
4327 
4328 static void show_pwq(struct pool_workqueue *pwq)
4329 {
4330 	struct worker_pool *pool = pwq->pool;
4331 	struct work_struct *work;
4332 	struct worker *worker;
4333 	bool has_in_flight = false, has_pending = false;
4334 	int bkt;
4335 
4336 	pr_info("  pwq %d:", pool->id);
4337 	pr_cont_pool_info(pool);
4338 
4339 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4340 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4341 
4342 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4343 		if (worker->current_pwq == pwq) {
4344 			has_in_flight = true;
4345 			break;
4346 		}
4347 	}
4348 	if (has_in_flight) {
4349 		bool comma = false;
4350 
4351 		pr_info("    in-flight:");
4352 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4353 			if (worker->current_pwq != pwq)
4354 				continue;
4355 
4356 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4357 				task_pid_nr(worker->task),
4358 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4359 				worker->current_func);
4360 			list_for_each_entry(work, &worker->scheduled, entry)
4361 				pr_cont_work(false, work);
4362 			comma = true;
4363 		}
4364 		pr_cont("\n");
4365 	}
4366 
4367 	list_for_each_entry(work, &pool->worklist, entry) {
4368 		if (get_work_pwq(work) == pwq) {
4369 			has_pending = true;
4370 			break;
4371 		}
4372 	}
4373 	if (has_pending) {
4374 		bool comma = false;
4375 
4376 		pr_info("    pending:");
4377 		list_for_each_entry(work, &pool->worklist, entry) {
4378 			if (get_work_pwq(work) != pwq)
4379 				continue;
4380 
4381 			pr_cont_work(comma, work);
4382 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4383 		}
4384 		pr_cont("\n");
4385 	}
4386 
4387 	if (!list_empty(&pwq->delayed_works)) {
4388 		bool comma = false;
4389 
4390 		pr_info("    delayed:");
4391 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4392 			pr_cont_work(comma, work);
4393 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4394 		}
4395 		pr_cont("\n");
4396 	}
4397 }
4398 
4399 /**
4400  * show_workqueue_state - dump workqueue state
4401  *
4402  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4403  * all busy workqueues and pools.
4404  */
4405 void show_workqueue_state(void)
4406 {
4407 	struct workqueue_struct *wq;
4408 	struct worker_pool *pool;
4409 	unsigned long flags;
4410 	int pi;
4411 
4412 	rcu_read_lock_sched();
4413 
4414 	pr_info("Showing busy workqueues and worker pools:\n");
4415 
4416 	list_for_each_entry_rcu(wq, &workqueues, list) {
4417 		struct pool_workqueue *pwq;
4418 		bool idle = true;
4419 
4420 		for_each_pwq(pwq, wq) {
4421 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4422 				idle = false;
4423 				break;
4424 			}
4425 		}
4426 		if (idle)
4427 			continue;
4428 
4429 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4430 
4431 		for_each_pwq(pwq, wq) {
4432 			spin_lock_irqsave(&pwq->pool->lock, flags);
4433 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4434 				show_pwq(pwq);
4435 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4436 		}
4437 	}
4438 
4439 	for_each_pool(pool, pi) {
4440 		struct worker *worker;
4441 		bool first = true;
4442 
4443 		spin_lock_irqsave(&pool->lock, flags);
4444 		if (pool->nr_workers == pool->nr_idle)
4445 			goto next_pool;
4446 
4447 		pr_info("pool %d:", pool->id);
4448 		pr_cont_pool_info(pool);
4449 		pr_cont(" hung=%us workers=%d",
4450 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4451 			pool->nr_workers);
4452 		if (pool->manager)
4453 			pr_cont(" manager: %d",
4454 				task_pid_nr(pool->manager->task));
4455 		list_for_each_entry(worker, &pool->idle_list, entry) {
4456 			pr_cont(" %s%d", first ? "idle: " : "",
4457 				task_pid_nr(worker->task));
4458 			first = false;
4459 		}
4460 		pr_cont("\n");
4461 	next_pool:
4462 		spin_unlock_irqrestore(&pool->lock, flags);
4463 	}
4464 
4465 	rcu_read_unlock_sched();
4466 }
4467 
4468 /*
4469  * CPU hotplug.
4470  *
4471  * There are two challenges in supporting CPU hotplug.  Firstly, there
4472  * are a lot of assumptions on strong associations among work, pwq and
4473  * pool which make migrating pending and scheduled works very
4474  * difficult to implement without impacting hot paths.  Secondly,
4475  * worker pools serve mix of short, long and very long running works making
4476  * blocked draining impractical.
4477  *
4478  * This is solved by allowing the pools to be disassociated from the CPU
4479  * running as an unbound one and allowing it to be reattached later if the
4480  * cpu comes back online.
4481  */
4482 
4483 static void wq_unbind_fn(struct work_struct *work)
4484 {
4485 	int cpu = smp_processor_id();
4486 	struct worker_pool *pool;
4487 	struct worker *worker;
4488 
4489 	for_each_cpu_worker_pool(pool, cpu) {
4490 		mutex_lock(&pool->attach_mutex);
4491 		spin_lock_irq(&pool->lock);
4492 
4493 		/*
4494 		 * We've blocked all attach/detach operations. Make all workers
4495 		 * unbound and set DISASSOCIATED.  Before this, all workers
4496 		 * except for the ones which are still executing works from
4497 		 * before the last CPU down must be on the cpu.  After
4498 		 * this, they may become diasporas.
4499 		 */
4500 		for_each_pool_worker(worker, pool)
4501 			worker->flags |= WORKER_UNBOUND;
4502 
4503 		pool->flags |= POOL_DISASSOCIATED;
4504 
4505 		spin_unlock_irq(&pool->lock);
4506 		mutex_unlock(&pool->attach_mutex);
4507 
4508 		/*
4509 		 * Call schedule() so that we cross rq->lock and thus can
4510 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4511 		 * This is necessary as scheduler callbacks may be invoked
4512 		 * from other cpus.
4513 		 */
4514 		schedule();
4515 
4516 		/*
4517 		 * Sched callbacks are disabled now.  Zap nr_running.
4518 		 * After this, nr_running stays zero and need_more_worker()
4519 		 * and keep_working() are always true as long as the
4520 		 * worklist is not empty.  This pool now behaves as an
4521 		 * unbound (in terms of concurrency management) pool which
4522 		 * are served by workers tied to the pool.
4523 		 */
4524 		atomic_set(&pool->nr_running, 0);
4525 
4526 		/*
4527 		 * With concurrency management just turned off, a busy
4528 		 * worker blocking could lead to lengthy stalls.  Kick off
4529 		 * unbound chain execution of currently pending work items.
4530 		 */
4531 		spin_lock_irq(&pool->lock);
4532 		wake_up_worker(pool);
4533 		spin_unlock_irq(&pool->lock);
4534 	}
4535 }
4536 
4537 /**
4538  * rebind_workers - rebind all workers of a pool to the associated CPU
4539  * @pool: pool of interest
4540  *
4541  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4542  */
4543 static void rebind_workers(struct worker_pool *pool)
4544 {
4545 	struct worker *worker;
4546 
4547 	lockdep_assert_held(&pool->attach_mutex);
4548 
4549 	/*
4550 	 * Restore CPU affinity of all workers.  As all idle workers should
4551 	 * be on the run-queue of the associated CPU before any local
4552 	 * wake-ups for concurrency management happen, restore CPU affinity
4553 	 * of all workers first and then clear UNBOUND.  As we're called
4554 	 * from CPU_ONLINE, the following shouldn't fail.
4555 	 */
4556 	for_each_pool_worker(worker, pool)
4557 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4558 						  pool->attrs->cpumask) < 0);
4559 
4560 	spin_lock_irq(&pool->lock);
4561 
4562 	/*
4563 	 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4564 	 * w/o preceding DOWN_PREPARE.  Work around it.  CPU hotplug is
4565 	 * being reworked and this can go away in time.
4566 	 */
4567 	if (!(pool->flags & POOL_DISASSOCIATED)) {
4568 		spin_unlock_irq(&pool->lock);
4569 		return;
4570 	}
4571 
4572 	pool->flags &= ~POOL_DISASSOCIATED;
4573 
4574 	for_each_pool_worker(worker, pool) {
4575 		unsigned int worker_flags = worker->flags;
4576 
4577 		/*
4578 		 * A bound idle worker should actually be on the runqueue
4579 		 * of the associated CPU for local wake-ups targeting it to
4580 		 * work.  Kick all idle workers so that they migrate to the
4581 		 * associated CPU.  Doing this in the same loop as
4582 		 * replacing UNBOUND with REBOUND is safe as no worker will
4583 		 * be bound before @pool->lock is released.
4584 		 */
4585 		if (worker_flags & WORKER_IDLE)
4586 			wake_up_process(worker->task);
4587 
4588 		/*
4589 		 * We want to clear UNBOUND but can't directly call
4590 		 * worker_clr_flags() or adjust nr_running.  Atomically
4591 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4592 		 * @worker will clear REBOUND using worker_clr_flags() when
4593 		 * it initiates the next execution cycle thus restoring
4594 		 * concurrency management.  Note that when or whether
4595 		 * @worker clears REBOUND doesn't affect correctness.
4596 		 *
4597 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4598 		 * tested without holding any lock in
4599 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4600 		 * fail incorrectly leading to premature concurrency
4601 		 * management operations.
4602 		 */
4603 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4604 		worker_flags |= WORKER_REBOUND;
4605 		worker_flags &= ~WORKER_UNBOUND;
4606 		ACCESS_ONCE(worker->flags) = worker_flags;
4607 	}
4608 
4609 	spin_unlock_irq(&pool->lock);
4610 }
4611 
4612 /**
4613  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4614  * @pool: unbound pool of interest
4615  * @cpu: the CPU which is coming up
4616  *
4617  * An unbound pool may end up with a cpumask which doesn't have any online
4618  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4619  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4620  * online CPU before, cpus_allowed of all its workers should be restored.
4621  */
4622 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4623 {
4624 	static cpumask_t cpumask;
4625 	struct worker *worker;
4626 
4627 	lockdep_assert_held(&pool->attach_mutex);
4628 
4629 	/* is @cpu allowed for @pool? */
4630 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4631 		return;
4632 
4633 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4634 
4635 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4636 	for_each_pool_worker(worker, pool)
4637 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4638 }
4639 
4640 int workqueue_prepare_cpu(unsigned int cpu)
4641 {
4642 	struct worker_pool *pool;
4643 
4644 	for_each_cpu_worker_pool(pool, cpu) {
4645 		if (pool->nr_workers)
4646 			continue;
4647 		if (!create_worker(pool))
4648 			return -ENOMEM;
4649 	}
4650 	return 0;
4651 }
4652 
4653 int workqueue_online_cpu(unsigned int cpu)
4654 {
4655 	struct worker_pool *pool;
4656 	struct workqueue_struct *wq;
4657 	int pi;
4658 
4659 	mutex_lock(&wq_pool_mutex);
4660 
4661 	for_each_pool(pool, pi) {
4662 		mutex_lock(&pool->attach_mutex);
4663 
4664 		if (pool->cpu == cpu)
4665 			rebind_workers(pool);
4666 		else if (pool->cpu < 0)
4667 			restore_unbound_workers_cpumask(pool, cpu);
4668 
4669 		mutex_unlock(&pool->attach_mutex);
4670 	}
4671 
4672 	/* update NUMA affinity of unbound workqueues */
4673 	list_for_each_entry(wq, &workqueues, list)
4674 		wq_update_unbound_numa(wq, cpu, true);
4675 
4676 	mutex_unlock(&wq_pool_mutex);
4677 	return 0;
4678 }
4679 
4680 int workqueue_offline_cpu(unsigned int cpu)
4681 {
4682 	struct work_struct unbind_work;
4683 	struct workqueue_struct *wq;
4684 
4685 	/* unbinding per-cpu workers should happen on the local CPU */
4686 	INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4687 	queue_work_on(cpu, system_highpri_wq, &unbind_work);
4688 
4689 	/* update NUMA affinity of unbound workqueues */
4690 	mutex_lock(&wq_pool_mutex);
4691 	list_for_each_entry(wq, &workqueues, list)
4692 		wq_update_unbound_numa(wq, cpu, false);
4693 	mutex_unlock(&wq_pool_mutex);
4694 
4695 	/* wait for per-cpu unbinding to finish */
4696 	flush_work(&unbind_work);
4697 	destroy_work_on_stack(&unbind_work);
4698 	return 0;
4699 }
4700 
4701 #ifdef CONFIG_SMP
4702 
4703 struct work_for_cpu {
4704 	struct work_struct work;
4705 	long (*fn)(void *);
4706 	void *arg;
4707 	long ret;
4708 };
4709 
4710 static void work_for_cpu_fn(struct work_struct *work)
4711 {
4712 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4713 
4714 	wfc->ret = wfc->fn(wfc->arg);
4715 }
4716 
4717 /**
4718  * work_on_cpu - run a function in thread context on a particular cpu
4719  * @cpu: the cpu to run on
4720  * @fn: the function to run
4721  * @arg: the function arg
4722  *
4723  * It is up to the caller to ensure that the cpu doesn't go offline.
4724  * The caller must not hold any locks which would prevent @fn from completing.
4725  *
4726  * Return: The value @fn returns.
4727  */
4728 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4729 {
4730 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4731 
4732 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4733 	schedule_work_on(cpu, &wfc.work);
4734 	flush_work(&wfc.work);
4735 	destroy_work_on_stack(&wfc.work);
4736 	return wfc.ret;
4737 }
4738 EXPORT_SYMBOL_GPL(work_on_cpu);
4739 #endif /* CONFIG_SMP */
4740 
4741 #ifdef CONFIG_FREEZER
4742 
4743 /**
4744  * freeze_workqueues_begin - begin freezing workqueues
4745  *
4746  * Start freezing workqueues.  After this function returns, all freezable
4747  * workqueues will queue new works to their delayed_works list instead of
4748  * pool->worklist.
4749  *
4750  * CONTEXT:
4751  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4752  */
4753 void freeze_workqueues_begin(void)
4754 {
4755 	struct workqueue_struct *wq;
4756 	struct pool_workqueue *pwq;
4757 
4758 	mutex_lock(&wq_pool_mutex);
4759 
4760 	WARN_ON_ONCE(workqueue_freezing);
4761 	workqueue_freezing = true;
4762 
4763 	list_for_each_entry(wq, &workqueues, list) {
4764 		mutex_lock(&wq->mutex);
4765 		for_each_pwq(pwq, wq)
4766 			pwq_adjust_max_active(pwq);
4767 		mutex_unlock(&wq->mutex);
4768 	}
4769 
4770 	mutex_unlock(&wq_pool_mutex);
4771 }
4772 
4773 /**
4774  * freeze_workqueues_busy - are freezable workqueues still busy?
4775  *
4776  * Check whether freezing is complete.  This function must be called
4777  * between freeze_workqueues_begin() and thaw_workqueues().
4778  *
4779  * CONTEXT:
4780  * Grabs and releases wq_pool_mutex.
4781  *
4782  * Return:
4783  * %true if some freezable workqueues are still busy.  %false if freezing
4784  * is complete.
4785  */
4786 bool freeze_workqueues_busy(void)
4787 {
4788 	bool busy = false;
4789 	struct workqueue_struct *wq;
4790 	struct pool_workqueue *pwq;
4791 
4792 	mutex_lock(&wq_pool_mutex);
4793 
4794 	WARN_ON_ONCE(!workqueue_freezing);
4795 
4796 	list_for_each_entry(wq, &workqueues, list) {
4797 		if (!(wq->flags & WQ_FREEZABLE))
4798 			continue;
4799 		/*
4800 		 * nr_active is monotonically decreasing.  It's safe
4801 		 * to peek without lock.
4802 		 */
4803 		rcu_read_lock_sched();
4804 		for_each_pwq(pwq, wq) {
4805 			WARN_ON_ONCE(pwq->nr_active < 0);
4806 			if (pwq->nr_active) {
4807 				busy = true;
4808 				rcu_read_unlock_sched();
4809 				goto out_unlock;
4810 			}
4811 		}
4812 		rcu_read_unlock_sched();
4813 	}
4814 out_unlock:
4815 	mutex_unlock(&wq_pool_mutex);
4816 	return busy;
4817 }
4818 
4819 /**
4820  * thaw_workqueues - thaw workqueues
4821  *
4822  * Thaw workqueues.  Normal queueing is restored and all collected
4823  * frozen works are transferred to their respective pool worklists.
4824  *
4825  * CONTEXT:
4826  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4827  */
4828 void thaw_workqueues(void)
4829 {
4830 	struct workqueue_struct *wq;
4831 	struct pool_workqueue *pwq;
4832 
4833 	mutex_lock(&wq_pool_mutex);
4834 
4835 	if (!workqueue_freezing)
4836 		goto out_unlock;
4837 
4838 	workqueue_freezing = false;
4839 
4840 	/* restore max_active and repopulate worklist */
4841 	list_for_each_entry(wq, &workqueues, list) {
4842 		mutex_lock(&wq->mutex);
4843 		for_each_pwq(pwq, wq)
4844 			pwq_adjust_max_active(pwq);
4845 		mutex_unlock(&wq->mutex);
4846 	}
4847 
4848 out_unlock:
4849 	mutex_unlock(&wq_pool_mutex);
4850 }
4851 #endif /* CONFIG_FREEZER */
4852 
4853 static int workqueue_apply_unbound_cpumask(void)
4854 {
4855 	LIST_HEAD(ctxs);
4856 	int ret = 0;
4857 	struct workqueue_struct *wq;
4858 	struct apply_wqattrs_ctx *ctx, *n;
4859 
4860 	lockdep_assert_held(&wq_pool_mutex);
4861 
4862 	list_for_each_entry(wq, &workqueues, list) {
4863 		if (!(wq->flags & WQ_UNBOUND))
4864 			continue;
4865 		/* creating multiple pwqs breaks ordering guarantee */
4866 		if (wq->flags & __WQ_ORDERED)
4867 			continue;
4868 
4869 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4870 		if (!ctx) {
4871 			ret = -ENOMEM;
4872 			break;
4873 		}
4874 
4875 		list_add_tail(&ctx->list, &ctxs);
4876 	}
4877 
4878 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
4879 		if (!ret)
4880 			apply_wqattrs_commit(ctx);
4881 		apply_wqattrs_cleanup(ctx);
4882 	}
4883 
4884 	return ret;
4885 }
4886 
4887 /**
4888  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4889  *  @cpumask: the cpumask to set
4890  *
4891  *  The low-level workqueues cpumask is a global cpumask that limits
4892  *  the affinity of all unbound workqueues.  This function check the @cpumask
4893  *  and apply it to all unbound workqueues and updates all pwqs of them.
4894  *
4895  *  Retun:	0	- Success
4896  *  		-EINVAL	- Invalid @cpumask
4897  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
4898  */
4899 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4900 {
4901 	int ret = -EINVAL;
4902 	cpumask_var_t saved_cpumask;
4903 
4904 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4905 		return -ENOMEM;
4906 
4907 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
4908 	if (!cpumask_empty(cpumask)) {
4909 		apply_wqattrs_lock();
4910 
4911 		/* save the old wq_unbound_cpumask. */
4912 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4913 
4914 		/* update wq_unbound_cpumask at first and apply it to wqs. */
4915 		cpumask_copy(wq_unbound_cpumask, cpumask);
4916 		ret = workqueue_apply_unbound_cpumask();
4917 
4918 		/* restore the wq_unbound_cpumask when failed. */
4919 		if (ret < 0)
4920 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4921 
4922 		apply_wqattrs_unlock();
4923 	}
4924 
4925 	free_cpumask_var(saved_cpumask);
4926 	return ret;
4927 }
4928 
4929 #ifdef CONFIG_SYSFS
4930 /*
4931  * Workqueues with WQ_SYSFS flag set is visible to userland via
4932  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
4933  * following attributes.
4934  *
4935  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
4936  *  max_active	RW int	: maximum number of in-flight work items
4937  *
4938  * Unbound workqueues have the following extra attributes.
4939  *
4940  *  id		RO int	: the associated pool ID
4941  *  nice	RW int	: nice value of the workers
4942  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
4943  */
4944 struct wq_device {
4945 	struct workqueue_struct		*wq;
4946 	struct device			dev;
4947 };
4948 
4949 static struct workqueue_struct *dev_to_wq(struct device *dev)
4950 {
4951 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4952 
4953 	return wq_dev->wq;
4954 }
4955 
4956 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4957 			    char *buf)
4958 {
4959 	struct workqueue_struct *wq = dev_to_wq(dev);
4960 
4961 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4962 }
4963 static DEVICE_ATTR_RO(per_cpu);
4964 
4965 static ssize_t max_active_show(struct device *dev,
4966 			       struct device_attribute *attr, char *buf)
4967 {
4968 	struct workqueue_struct *wq = dev_to_wq(dev);
4969 
4970 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4971 }
4972 
4973 static ssize_t max_active_store(struct device *dev,
4974 				struct device_attribute *attr, const char *buf,
4975 				size_t count)
4976 {
4977 	struct workqueue_struct *wq = dev_to_wq(dev);
4978 	int val;
4979 
4980 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4981 		return -EINVAL;
4982 
4983 	workqueue_set_max_active(wq, val);
4984 	return count;
4985 }
4986 static DEVICE_ATTR_RW(max_active);
4987 
4988 static struct attribute *wq_sysfs_attrs[] = {
4989 	&dev_attr_per_cpu.attr,
4990 	&dev_attr_max_active.attr,
4991 	NULL,
4992 };
4993 ATTRIBUTE_GROUPS(wq_sysfs);
4994 
4995 static ssize_t wq_pool_ids_show(struct device *dev,
4996 				struct device_attribute *attr, char *buf)
4997 {
4998 	struct workqueue_struct *wq = dev_to_wq(dev);
4999 	const char *delim = "";
5000 	int node, written = 0;
5001 
5002 	rcu_read_lock_sched();
5003 	for_each_node(node) {
5004 		written += scnprintf(buf + written, PAGE_SIZE - written,
5005 				     "%s%d:%d", delim, node,
5006 				     unbound_pwq_by_node(wq, node)->pool->id);
5007 		delim = " ";
5008 	}
5009 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5010 	rcu_read_unlock_sched();
5011 
5012 	return written;
5013 }
5014 
5015 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5016 			    char *buf)
5017 {
5018 	struct workqueue_struct *wq = dev_to_wq(dev);
5019 	int written;
5020 
5021 	mutex_lock(&wq->mutex);
5022 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5023 	mutex_unlock(&wq->mutex);
5024 
5025 	return written;
5026 }
5027 
5028 /* prepare workqueue_attrs for sysfs store operations */
5029 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5030 {
5031 	struct workqueue_attrs *attrs;
5032 
5033 	lockdep_assert_held(&wq_pool_mutex);
5034 
5035 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5036 	if (!attrs)
5037 		return NULL;
5038 
5039 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5040 	return attrs;
5041 }
5042 
5043 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5044 			     const char *buf, size_t count)
5045 {
5046 	struct workqueue_struct *wq = dev_to_wq(dev);
5047 	struct workqueue_attrs *attrs;
5048 	int ret = -ENOMEM;
5049 
5050 	apply_wqattrs_lock();
5051 
5052 	attrs = wq_sysfs_prep_attrs(wq);
5053 	if (!attrs)
5054 		goto out_unlock;
5055 
5056 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5057 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5058 		ret = apply_workqueue_attrs_locked(wq, attrs);
5059 	else
5060 		ret = -EINVAL;
5061 
5062 out_unlock:
5063 	apply_wqattrs_unlock();
5064 	free_workqueue_attrs(attrs);
5065 	return ret ?: count;
5066 }
5067 
5068 static ssize_t wq_cpumask_show(struct device *dev,
5069 			       struct device_attribute *attr, char *buf)
5070 {
5071 	struct workqueue_struct *wq = dev_to_wq(dev);
5072 	int written;
5073 
5074 	mutex_lock(&wq->mutex);
5075 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5076 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5077 	mutex_unlock(&wq->mutex);
5078 	return written;
5079 }
5080 
5081 static ssize_t wq_cpumask_store(struct device *dev,
5082 				struct device_attribute *attr,
5083 				const char *buf, size_t count)
5084 {
5085 	struct workqueue_struct *wq = dev_to_wq(dev);
5086 	struct workqueue_attrs *attrs;
5087 	int ret = -ENOMEM;
5088 
5089 	apply_wqattrs_lock();
5090 
5091 	attrs = wq_sysfs_prep_attrs(wq);
5092 	if (!attrs)
5093 		goto out_unlock;
5094 
5095 	ret = cpumask_parse(buf, attrs->cpumask);
5096 	if (!ret)
5097 		ret = apply_workqueue_attrs_locked(wq, attrs);
5098 
5099 out_unlock:
5100 	apply_wqattrs_unlock();
5101 	free_workqueue_attrs(attrs);
5102 	return ret ?: count;
5103 }
5104 
5105 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5106 			    char *buf)
5107 {
5108 	struct workqueue_struct *wq = dev_to_wq(dev);
5109 	int written;
5110 
5111 	mutex_lock(&wq->mutex);
5112 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5113 			    !wq->unbound_attrs->no_numa);
5114 	mutex_unlock(&wq->mutex);
5115 
5116 	return written;
5117 }
5118 
5119 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5120 			     const char *buf, size_t count)
5121 {
5122 	struct workqueue_struct *wq = dev_to_wq(dev);
5123 	struct workqueue_attrs *attrs;
5124 	int v, ret = -ENOMEM;
5125 
5126 	apply_wqattrs_lock();
5127 
5128 	attrs = wq_sysfs_prep_attrs(wq);
5129 	if (!attrs)
5130 		goto out_unlock;
5131 
5132 	ret = -EINVAL;
5133 	if (sscanf(buf, "%d", &v) == 1) {
5134 		attrs->no_numa = !v;
5135 		ret = apply_workqueue_attrs_locked(wq, attrs);
5136 	}
5137 
5138 out_unlock:
5139 	apply_wqattrs_unlock();
5140 	free_workqueue_attrs(attrs);
5141 	return ret ?: count;
5142 }
5143 
5144 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5145 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5146 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5147 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5148 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5149 	__ATTR_NULL,
5150 };
5151 
5152 static struct bus_type wq_subsys = {
5153 	.name				= "workqueue",
5154 	.dev_groups			= wq_sysfs_groups,
5155 };
5156 
5157 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5158 		struct device_attribute *attr, char *buf)
5159 {
5160 	int written;
5161 
5162 	mutex_lock(&wq_pool_mutex);
5163 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5164 			    cpumask_pr_args(wq_unbound_cpumask));
5165 	mutex_unlock(&wq_pool_mutex);
5166 
5167 	return written;
5168 }
5169 
5170 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5171 		struct device_attribute *attr, const char *buf, size_t count)
5172 {
5173 	cpumask_var_t cpumask;
5174 	int ret;
5175 
5176 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5177 		return -ENOMEM;
5178 
5179 	ret = cpumask_parse(buf, cpumask);
5180 	if (!ret)
5181 		ret = workqueue_set_unbound_cpumask(cpumask);
5182 
5183 	free_cpumask_var(cpumask);
5184 	return ret ? ret : count;
5185 }
5186 
5187 static struct device_attribute wq_sysfs_cpumask_attr =
5188 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5189 	       wq_unbound_cpumask_store);
5190 
5191 static int __init wq_sysfs_init(void)
5192 {
5193 	int err;
5194 
5195 	err = subsys_virtual_register(&wq_subsys, NULL);
5196 	if (err)
5197 		return err;
5198 
5199 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5200 }
5201 core_initcall(wq_sysfs_init);
5202 
5203 static void wq_device_release(struct device *dev)
5204 {
5205 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5206 
5207 	kfree(wq_dev);
5208 }
5209 
5210 /**
5211  * workqueue_sysfs_register - make a workqueue visible in sysfs
5212  * @wq: the workqueue to register
5213  *
5214  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5215  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5216  * which is the preferred method.
5217  *
5218  * Workqueue user should use this function directly iff it wants to apply
5219  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5220  * apply_workqueue_attrs() may race against userland updating the
5221  * attributes.
5222  *
5223  * Return: 0 on success, -errno on failure.
5224  */
5225 int workqueue_sysfs_register(struct workqueue_struct *wq)
5226 {
5227 	struct wq_device *wq_dev;
5228 	int ret;
5229 
5230 	/*
5231 	 * Adjusting max_active or creating new pwqs by applying
5232 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5233 	 * workqueues.
5234 	 */
5235 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5236 		return -EINVAL;
5237 
5238 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5239 	if (!wq_dev)
5240 		return -ENOMEM;
5241 
5242 	wq_dev->wq = wq;
5243 	wq_dev->dev.bus = &wq_subsys;
5244 	wq_dev->dev.release = wq_device_release;
5245 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5246 
5247 	/*
5248 	 * unbound_attrs are created separately.  Suppress uevent until
5249 	 * everything is ready.
5250 	 */
5251 	dev_set_uevent_suppress(&wq_dev->dev, true);
5252 
5253 	ret = device_register(&wq_dev->dev);
5254 	if (ret) {
5255 		kfree(wq_dev);
5256 		wq->wq_dev = NULL;
5257 		return ret;
5258 	}
5259 
5260 	if (wq->flags & WQ_UNBOUND) {
5261 		struct device_attribute *attr;
5262 
5263 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5264 			ret = device_create_file(&wq_dev->dev, attr);
5265 			if (ret) {
5266 				device_unregister(&wq_dev->dev);
5267 				wq->wq_dev = NULL;
5268 				return ret;
5269 			}
5270 		}
5271 	}
5272 
5273 	dev_set_uevent_suppress(&wq_dev->dev, false);
5274 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5275 	return 0;
5276 }
5277 
5278 /**
5279  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5280  * @wq: the workqueue to unregister
5281  *
5282  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5283  */
5284 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5285 {
5286 	struct wq_device *wq_dev = wq->wq_dev;
5287 
5288 	if (!wq->wq_dev)
5289 		return;
5290 
5291 	wq->wq_dev = NULL;
5292 	device_unregister(&wq_dev->dev);
5293 }
5294 #else	/* CONFIG_SYSFS */
5295 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5296 #endif	/* CONFIG_SYSFS */
5297 
5298 /*
5299  * Workqueue watchdog.
5300  *
5301  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5302  * flush dependency, a concurrency managed work item which stays RUNNING
5303  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5304  * usual warning mechanisms don't trigger and internal workqueue state is
5305  * largely opaque.
5306  *
5307  * Workqueue watchdog monitors all worker pools periodically and dumps
5308  * state if some pools failed to make forward progress for a while where
5309  * forward progress is defined as the first item on ->worklist changing.
5310  *
5311  * This mechanism is controlled through the kernel parameter
5312  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5313  * corresponding sysfs parameter file.
5314  */
5315 #ifdef CONFIG_WQ_WATCHDOG
5316 
5317 static void wq_watchdog_timer_fn(unsigned long data);
5318 
5319 static unsigned long wq_watchdog_thresh = 30;
5320 static struct timer_list wq_watchdog_timer =
5321 	TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5322 
5323 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5324 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5325 
5326 static void wq_watchdog_reset_touched(void)
5327 {
5328 	int cpu;
5329 
5330 	wq_watchdog_touched = jiffies;
5331 	for_each_possible_cpu(cpu)
5332 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5333 }
5334 
5335 static void wq_watchdog_timer_fn(unsigned long data)
5336 {
5337 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5338 	bool lockup_detected = false;
5339 	struct worker_pool *pool;
5340 	int pi;
5341 
5342 	if (!thresh)
5343 		return;
5344 
5345 	rcu_read_lock();
5346 
5347 	for_each_pool(pool, pi) {
5348 		unsigned long pool_ts, touched, ts;
5349 
5350 		if (list_empty(&pool->worklist))
5351 			continue;
5352 
5353 		/* get the latest of pool and touched timestamps */
5354 		pool_ts = READ_ONCE(pool->watchdog_ts);
5355 		touched = READ_ONCE(wq_watchdog_touched);
5356 
5357 		if (time_after(pool_ts, touched))
5358 			ts = pool_ts;
5359 		else
5360 			ts = touched;
5361 
5362 		if (pool->cpu >= 0) {
5363 			unsigned long cpu_touched =
5364 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5365 						  pool->cpu));
5366 			if (time_after(cpu_touched, ts))
5367 				ts = cpu_touched;
5368 		}
5369 
5370 		/* did we stall? */
5371 		if (time_after(jiffies, ts + thresh)) {
5372 			lockup_detected = true;
5373 			pr_emerg("BUG: workqueue lockup - pool");
5374 			pr_cont_pool_info(pool);
5375 			pr_cont(" stuck for %us!\n",
5376 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5377 		}
5378 	}
5379 
5380 	rcu_read_unlock();
5381 
5382 	if (lockup_detected)
5383 		show_workqueue_state();
5384 
5385 	wq_watchdog_reset_touched();
5386 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5387 }
5388 
5389 void wq_watchdog_touch(int cpu)
5390 {
5391 	if (cpu >= 0)
5392 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5393 	else
5394 		wq_watchdog_touched = jiffies;
5395 }
5396 
5397 static void wq_watchdog_set_thresh(unsigned long thresh)
5398 {
5399 	wq_watchdog_thresh = 0;
5400 	del_timer_sync(&wq_watchdog_timer);
5401 
5402 	if (thresh) {
5403 		wq_watchdog_thresh = thresh;
5404 		wq_watchdog_reset_touched();
5405 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5406 	}
5407 }
5408 
5409 static int wq_watchdog_param_set_thresh(const char *val,
5410 					const struct kernel_param *kp)
5411 {
5412 	unsigned long thresh;
5413 	int ret;
5414 
5415 	ret = kstrtoul(val, 0, &thresh);
5416 	if (ret)
5417 		return ret;
5418 
5419 	if (system_wq)
5420 		wq_watchdog_set_thresh(thresh);
5421 	else
5422 		wq_watchdog_thresh = thresh;
5423 
5424 	return 0;
5425 }
5426 
5427 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5428 	.set	= wq_watchdog_param_set_thresh,
5429 	.get	= param_get_ulong,
5430 };
5431 
5432 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5433 		0644);
5434 
5435 static void wq_watchdog_init(void)
5436 {
5437 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5438 }
5439 
5440 #else	/* CONFIG_WQ_WATCHDOG */
5441 
5442 static inline void wq_watchdog_init(void) { }
5443 
5444 #endif	/* CONFIG_WQ_WATCHDOG */
5445 
5446 static void __init wq_numa_init(void)
5447 {
5448 	cpumask_var_t *tbl;
5449 	int node, cpu;
5450 
5451 	if (num_possible_nodes() <= 1)
5452 		return;
5453 
5454 	if (wq_disable_numa) {
5455 		pr_info("workqueue: NUMA affinity support disabled\n");
5456 		return;
5457 	}
5458 
5459 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5460 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5461 
5462 	/*
5463 	 * We want masks of possible CPUs of each node which isn't readily
5464 	 * available.  Build one from cpu_to_node() which should have been
5465 	 * fully initialized by now.
5466 	 */
5467 	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5468 	BUG_ON(!tbl);
5469 
5470 	for_each_node(node)
5471 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5472 				node_online(node) ? node : NUMA_NO_NODE));
5473 
5474 	for_each_possible_cpu(cpu) {
5475 		node = cpu_to_node(cpu);
5476 		if (WARN_ON(node == NUMA_NO_NODE)) {
5477 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5478 			/* happens iff arch is bonkers, let's just proceed */
5479 			return;
5480 		}
5481 		cpumask_set_cpu(cpu, tbl[node]);
5482 	}
5483 
5484 	wq_numa_possible_cpumask = tbl;
5485 	wq_numa_enabled = true;
5486 }
5487 
5488 /**
5489  * workqueue_init_early - early init for workqueue subsystem
5490  *
5491  * This is the first half of two-staged workqueue subsystem initialization
5492  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5493  * idr are up.  It sets up all the data structures and system workqueues
5494  * and allows early boot code to create workqueues and queue/cancel work
5495  * items.  Actual work item execution starts only after kthreads can be
5496  * created and scheduled right before early initcalls.
5497  */
5498 int __init workqueue_init_early(void)
5499 {
5500 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5501 	int i, cpu;
5502 
5503 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5504 
5505 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5506 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5507 
5508 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5509 
5510 	/* initialize CPU pools */
5511 	for_each_possible_cpu(cpu) {
5512 		struct worker_pool *pool;
5513 
5514 		i = 0;
5515 		for_each_cpu_worker_pool(pool, cpu) {
5516 			BUG_ON(init_worker_pool(pool));
5517 			pool->cpu = cpu;
5518 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5519 			pool->attrs->nice = std_nice[i++];
5520 			pool->node = cpu_to_node(cpu);
5521 
5522 			/* alloc pool ID */
5523 			mutex_lock(&wq_pool_mutex);
5524 			BUG_ON(worker_pool_assign_id(pool));
5525 			mutex_unlock(&wq_pool_mutex);
5526 		}
5527 	}
5528 
5529 	/* create default unbound and ordered wq attrs */
5530 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5531 		struct workqueue_attrs *attrs;
5532 
5533 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5534 		attrs->nice = std_nice[i];
5535 		unbound_std_wq_attrs[i] = attrs;
5536 
5537 		/*
5538 		 * An ordered wq should have only one pwq as ordering is
5539 		 * guaranteed by max_active which is enforced by pwqs.
5540 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5541 		 */
5542 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5543 		attrs->nice = std_nice[i];
5544 		attrs->no_numa = true;
5545 		ordered_wq_attrs[i] = attrs;
5546 	}
5547 
5548 	system_wq = alloc_workqueue("events", 0, 0);
5549 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5550 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5551 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5552 					    WQ_UNBOUND_MAX_ACTIVE);
5553 	system_freezable_wq = alloc_workqueue("events_freezable",
5554 					      WQ_FREEZABLE, 0);
5555 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5556 					      WQ_POWER_EFFICIENT, 0);
5557 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5558 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5559 					      0);
5560 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5561 	       !system_unbound_wq || !system_freezable_wq ||
5562 	       !system_power_efficient_wq ||
5563 	       !system_freezable_power_efficient_wq);
5564 
5565 	return 0;
5566 }
5567 
5568 /**
5569  * workqueue_init - bring workqueue subsystem fully online
5570  *
5571  * This is the latter half of two-staged workqueue subsystem initialization
5572  * and invoked as soon as kthreads can be created and scheduled.
5573  * Workqueues have been created and work items queued on them, but there
5574  * are no kworkers executing the work items yet.  Populate the worker pools
5575  * with the initial workers and enable future kworker creations.
5576  */
5577 int __init workqueue_init(void)
5578 {
5579 	struct workqueue_struct *wq;
5580 	struct worker_pool *pool;
5581 	int cpu, bkt;
5582 
5583 	/*
5584 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5585 	 * CPU to node mapping may not be available that early on some
5586 	 * archs such as power and arm64.  As per-cpu pools created
5587 	 * previously could be missing node hint and unbound pools NUMA
5588 	 * affinity, fix them up.
5589 	 */
5590 	wq_numa_init();
5591 
5592 	mutex_lock(&wq_pool_mutex);
5593 
5594 	for_each_possible_cpu(cpu) {
5595 		for_each_cpu_worker_pool(pool, cpu) {
5596 			pool->node = cpu_to_node(cpu);
5597 		}
5598 	}
5599 
5600 	list_for_each_entry(wq, &workqueues, list)
5601 		wq_update_unbound_numa(wq, smp_processor_id(), true);
5602 
5603 	mutex_unlock(&wq_pool_mutex);
5604 
5605 	/* create the initial workers */
5606 	for_each_online_cpu(cpu) {
5607 		for_each_cpu_worker_pool(pool, cpu) {
5608 			pool->flags &= ~POOL_DISASSOCIATED;
5609 			BUG_ON(!create_worker(pool));
5610 		}
5611 	}
5612 
5613 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5614 		BUG_ON(!create_worker(pool));
5615 
5616 	wq_online = true;
5617 	wq_watchdog_init();
5618 
5619 	return 0;
5620 }
5621