1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/workqueue.txt for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/kallsyms.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 52 #include "workqueue_internal.h" 53 54 enum { 55 /* 56 * worker_pool flags 57 * 58 * A bound pool is either associated or disassociated with its CPU. 59 * While associated (!DISASSOCIATED), all workers are bound to the 60 * CPU and none has %WORKER_UNBOUND set and concurrency management 61 * is in effect. 62 * 63 * While DISASSOCIATED, the cpu may be offline and all workers have 64 * %WORKER_UNBOUND set and concurrency management disabled, and may 65 * be executing on any CPU. The pool behaves as an unbound one. 66 * 67 * Note that DISASSOCIATED should be flipped only while holding 68 * attach_mutex to avoid changing binding state while 69 * worker_attach_to_pool() is in progress. 70 */ 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 72 73 /* worker flags */ 74 WORKER_DIE = 1 << 1, /* die die die */ 75 WORKER_IDLE = 1 << 2, /* is idle */ 76 WORKER_PREP = 1 << 3, /* preparing to run works */ 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 80 81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 82 WORKER_UNBOUND | WORKER_REBOUND, 83 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 85 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 88 89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 91 92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 93 /* call for help after 10ms 94 (min two ticks) */ 95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 96 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 97 98 /* 99 * Rescue workers are used only on emergencies and shared by 100 * all cpus. Give MIN_NICE. 101 */ 102 RESCUER_NICE_LEVEL = MIN_NICE, 103 HIGHPRI_NICE_LEVEL = MIN_NICE, 104 105 WQ_NAME_LEN = 24, 106 }; 107 108 /* 109 * Structure fields follow one of the following exclusion rules. 110 * 111 * I: Modifiable by initialization/destruction paths and read-only for 112 * everyone else. 113 * 114 * P: Preemption protected. Disabling preemption is enough and should 115 * only be modified and accessed from the local cpu. 116 * 117 * L: pool->lock protected. Access with pool->lock held. 118 * 119 * X: During normal operation, modification requires pool->lock and should 120 * be done only from local cpu. Either disabling preemption on local 121 * cpu or grabbing pool->lock is enough for read access. If 122 * POOL_DISASSOCIATED is set, it's identical to L. 123 * 124 * A: pool->attach_mutex protected. 125 * 126 * PL: wq_pool_mutex protected. 127 * 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 129 * 130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 131 * 132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 133 * sched-RCU for reads. 134 * 135 * WQ: wq->mutex protected. 136 * 137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 138 * 139 * MD: wq_mayday_lock protected. 140 */ 141 142 /* struct worker is defined in workqueue_internal.h */ 143 144 struct worker_pool { 145 spinlock_t lock; /* the pool lock */ 146 int cpu; /* I: the associated cpu */ 147 int node; /* I: the associated node ID */ 148 int id; /* I: pool ID */ 149 unsigned int flags; /* X: flags */ 150 151 unsigned long watchdog_ts; /* L: watchdog timestamp */ 152 153 struct list_head worklist; /* L: list of pending works */ 154 int nr_workers; /* L: total number of workers */ 155 156 /* nr_idle includes the ones off idle_list for rebinding */ 157 int nr_idle; /* L: currently idle ones */ 158 159 struct list_head idle_list; /* X: list of idle workers */ 160 struct timer_list idle_timer; /* L: worker idle timeout */ 161 struct timer_list mayday_timer; /* L: SOS timer for workers */ 162 163 /* a workers is either on busy_hash or idle_list, or the manager */ 164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 165 /* L: hash of busy workers */ 166 167 /* see manage_workers() for details on the two manager mutexes */ 168 struct mutex manager_arb; /* manager arbitration */ 169 struct worker *manager; /* L: purely informational */ 170 struct mutex attach_mutex; /* attach/detach exclusion */ 171 struct list_head workers; /* A: attached workers */ 172 struct completion *detach_completion; /* all workers detached */ 173 174 struct ida worker_ida; /* worker IDs for task name */ 175 176 struct workqueue_attrs *attrs; /* I: worker attributes */ 177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 178 int refcnt; /* PL: refcnt for unbound pools */ 179 180 /* 181 * The current concurrency level. As it's likely to be accessed 182 * from other CPUs during try_to_wake_up(), put it in a separate 183 * cacheline. 184 */ 185 atomic_t nr_running ____cacheline_aligned_in_smp; 186 187 /* 188 * Destruction of pool is sched-RCU protected to allow dereferences 189 * from get_work_pool(). 190 */ 191 struct rcu_head rcu; 192 } ____cacheline_aligned_in_smp; 193 194 /* 195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 196 * of work_struct->data are used for flags and the remaining high bits 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the 198 * number of flag bits. 199 */ 200 struct pool_workqueue { 201 struct worker_pool *pool; /* I: the associated pool */ 202 struct workqueue_struct *wq; /* I: the owning workqueue */ 203 int work_color; /* L: current color */ 204 int flush_color; /* L: flushing color */ 205 int refcnt; /* L: reference count */ 206 int nr_in_flight[WORK_NR_COLORS]; 207 /* L: nr of in_flight works */ 208 int nr_active; /* L: nr of active works */ 209 int max_active; /* L: max active works */ 210 struct list_head delayed_works; /* L: delayed works */ 211 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 212 struct list_head mayday_node; /* MD: node on wq->maydays */ 213 214 /* 215 * Release of unbound pwq is punted to system_wq. See put_pwq() 216 * and pwq_unbound_release_workfn() for details. pool_workqueue 217 * itself is also sched-RCU protected so that the first pwq can be 218 * determined without grabbing wq->mutex. 219 */ 220 struct work_struct unbound_release_work; 221 struct rcu_head rcu; 222 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 223 224 /* 225 * Structure used to wait for workqueue flush. 226 */ 227 struct wq_flusher { 228 struct list_head list; /* WQ: list of flushers */ 229 int flush_color; /* WQ: flush color waiting for */ 230 struct completion done; /* flush completion */ 231 }; 232 233 struct wq_device; 234 235 /* 236 * The externally visible workqueue. It relays the issued work items to 237 * the appropriate worker_pool through its pool_workqueues. 238 */ 239 struct workqueue_struct { 240 struct list_head pwqs; /* WR: all pwqs of this wq */ 241 struct list_head list; /* PR: list of all workqueues */ 242 243 struct mutex mutex; /* protects this wq */ 244 int work_color; /* WQ: current work color */ 245 int flush_color; /* WQ: current flush color */ 246 atomic_t nr_pwqs_to_flush; /* flush in progress */ 247 struct wq_flusher *first_flusher; /* WQ: first flusher */ 248 struct list_head flusher_queue; /* WQ: flush waiters */ 249 struct list_head flusher_overflow; /* WQ: flush overflow list */ 250 251 struct list_head maydays; /* MD: pwqs requesting rescue */ 252 struct worker *rescuer; /* I: rescue worker */ 253 254 int nr_drainers; /* WQ: drain in progress */ 255 int saved_max_active; /* WQ: saved pwq max_active */ 256 257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 259 260 #ifdef CONFIG_SYSFS 261 struct wq_device *wq_dev; /* I: for sysfs interface */ 262 #endif 263 #ifdef CONFIG_LOCKDEP 264 struct lockdep_map lockdep_map; 265 #endif 266 char name[WQ_NAME_LEN]; /* I: workqueue name */ 267 268 /* 269 * Destruction of workqueue_struct is sched-RCU protected to allow 270 * walking the workqueues list without grabbing wq_pool_mutex. 271 * This is used to dump all workqueues from sysrq. 272 */ 273 struct rcu_head rcu; 274 275 /* hot fields used during command issue, aligned to cacheline */ 276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 279 }; 280 281 static struct kmem_cache *pwq_cache; 282 283 static cpumask_var_t *wq_numa_possible_cpumask; 284 /* possible CPUs of each node */ 285 286 static bool wq_disable_numa; 287 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 288 289 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 291 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 292 293 static bool wq_online; /* can kworkers be created yet? */ 294 295 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 296 297 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 298 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 299 300 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 301 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 302 303 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 304 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 305 306 /* PL: allowable cpus for unbound wqs and work items */ 307 static cpumask_var_t wq_unbound_cpumask; 308 309 /* CPU where unbound work was last round robin scheduled from this CPU */ 310 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 311 312 /* 313 * Local execution of unbound work items is no longer guaranteed. The 314 * following always forces round-robin CPU selection on unbound work items 315 * to uncover usages which depend on it. 316 */ 317 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 318 static bool wq_debug_force_rr_cpu = true; 319 #else 320 static bool wq_debug_force_rr_cpu = false; 321 #endif 322 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 323 324 /* the per-cpu worker pools */ 325 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 326 327 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 328 329 /* PL: hash of all unbound pools keyed by pool->attrs */ 330 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 331 332 /* I: attributes used when instantiating standard unbound pools on demand */ 333 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 334 335 /* I: attributes used when instantiating ordered pools on demand */ 336 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 337 338 struct workqueue_struct *system_wq __read_mostly; 339 EXPORT_SYMBOL(system_wq); 340 struct workqueue_struct *system_highpri_wq __read_mostly; 341 EXPORT_SYMBOL_GPL(system_highpri_wq); 342 struct workqueue_struct *system_long_wq __read_mostly; 343 EXPORT_SYMBOL_GPL(system_long_wq); 344 struct workqueue_struct *system_unbound_wq __read_mostly; 345 EXPORT_SYMBOL_GPL(system_unbound_wq); 346 struct workqueue_struct *system_freezable_wq __read_mostly; 347 EXPORT_SYMBOL_GPL(system_freezable_wq); 348 struct workqueue_struct *system_power_efficient_wq __read_mostly; 349 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 350 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 351 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 352 353 static int worker_thread(void *__worker); 354 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 355 356 #define CREATE_TRACE_POINTS 357 #include <trace/events/workqueue.h> 358 359 #define assert_rcu_or_pool_mutex() \ 360 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 361 !lockdep_is_held(&wq_pool_mutex), \ 362 "sched RCU or wq_pool_mutex should be held") 363 364 #define assert_rcu_or_wq_mutex(wq) \ 365 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 366 !lockdep_is_held(&wq->mutex), \ 367 "sched RCU or wq->mutex should be held") 368 369 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 370 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 371 !lockdep_is_held(&wq->mutex) && \ 372 !lockdep_is_held(&wq_pool_mutex), \ 373 "sched RCU, wq->mutex or wq_pool_mutex should be held") 374 375 #define for_each_cpu_worker_pool(pool, cpu) \ 376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 378 (pool)++) 379 380 /** 381 * for_each_pool - iterate through all worker_pools in the system 382 * @pool: iteration cursor 383 * @pi: integer used for iteration 384 * 385 * This must be called either with wq_pool_mutex held or sched RCU read 386 * locked. If the pool needs to be used beyond the locking in effect, the 387 * caller is responsible for guaranteeing that the pool stays online. 388 * 389 * The if/else clause exists only for the lockdep assertion and can be 390 * ignored. 391 */ 392 #define for_each_pool(pool, pi) \ 393 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 395 else 396 397 /** 398 * for_each_pool_worker - iterate through all workers of a worker_pool 399 * @worker: iteration cursor 400 * @pool: worker_pool to iterate workers of 401 * 402 * This must be called with @pool->attach_mutex. 403 * 404 * The if/else clause exists only for the lockdep assertion and can be 405 * ignored. 406 */ 407 #define for_each_pool_worker(worker, pool) \ 408 list_for_each_entry((worker), &(pool)->workers, node) \ 409 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \ 410 else 411 412 /** 413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 414 * @pwq: iteration cursor 415 * @wq: the target workqueue 416 * 417 * This must be called either with wq->mutex held or sched RCU read locked. 418 * If the pwq needs to be used beyond the locking in effect, the caller is 419 * responsible for guaranteeing that the pwq stays online. 420 * 421 * The if/else clause exists only for the lockdep assertion and can be 422 * ignored. 423 */ 424 #define for_each_pwq(pwq, wq) \ 425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 426 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 427 else 428 429 #ifdef CONFIG_DEBUG_OBJECTS_WORK 430 431 static struct debug_obj_descr work_debug_descr; 432 433 static void *work_debug_hint(void *addr) 434 { 435 return ((struct work_struct *) addr)->func; 436 } 437 438 static bool work_is_static_object(void *addr) 439 { 440 struct work_struct *work = addr; 441 442 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 443 } 444 445 /* 446 * fixup_init is called when: 447 * - an active object is initialized 448 */ 449 static bool work_fixup_init(void *addr, enum debug_obj_state state) 450 { 451 struct work_struct *work = addr; 452 453 switch (state) { 454 case ODEBUG_STATE_ACTIVE: 455 cancel_work_sync(work); 456 debug_object_init(work, &work_debug_descr); 457 return true; 458 default: 459 return false; 460 } 461 } 462 463 /* 464 * fixup_free is called when: 465 * - an active object is freed 466 */ 467 static bool work_fixup_free(void *addr, enum debug_obj_state state) 468 { 469 struct work_struct *work = addr; 470 471 switch (state) { 472 case ODEBUG_STATE_ACTIVE: 473 cancel_work_sync(work); 474 debug_object_free(work, &work_debug_descr); 475 return true; 476 default: 477 return false; 478 } 479 } 480 481 static struct debug_obj_descr work_debug_descr = { 482 .name = "work_struct", 483 .debug_hint = work_debug_hint, 484 .is_static_object = work_is_static_object, 485 .fixup_init = work_fixup_init, 486 .fixup_free = work_fixup_free, 487 }; 488 489 static inline void debug_work_activate(struct work_struct *work) 490 { 491 debug_object_activate(work, &work_debug_descr); 492 } 493 494 static inline void debug_work_deactivate(struct work_struct *work) 495 { 496 debug_object_deactivate(work, &work_debug_descr); 497 } 498 499 void __init_work(struct work_struct *work, int onstack) 500 { 501 if (onstack) 502 debug_object_init_on_stack(work, &work_debug_descr); 503 else 504 debug_object_init(work, &work_debug_descr); 505 } 506 EXPORT_SYMBOL_GPL(__init_work); 507 508 void destroy_work_on_stack(struct work_struct *work) 509 { 510 debug_object_free(work, &work_debug_descr); 511 } 512 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 513 514 void destroy_delayed_work_on_stack(struct delayed_work *work) 515 { 516 destroy_timer_on_stack(&work->timer); 517 debug_object_free(&work->work, &work_debug_descr); 518 } 519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 520 521 #else 522 static inline void debug_work_activate(struct work_struct *work) { } 523 static inline void debug_work_deactivate(struct work_struct *work) { } 524 #endif 525 526 /** 527 * worker_pool_assign_id - allocate ID and assing it to @pool 528 * @pool: the pool pointer of interest 529 * 530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 531 * successfully, -errno on failure. 532 */ 533 static int worker_pool_assign_id(struct worker_pool *pool) 534 { 535 int ret; 536 537 lockdep_assert_held(&wq_pool_mutex); 538 539 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 540 GFP_KERNEL); 541 if (ret >= 0) { 542 pool->id = ret; 543 return 0; 544 } 545 return ret; 546 } 547 548 /** 549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 550 * @wq: the target workqueue 551 * @node: the node ID 552 * 553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU 554 * read locked. 555 * If the pwq needs to be used beyond the locking in effect, the caller is 556 * responsible for guaranteeing that the pwq stays online. 557 * 558 * Return: The unbound pool_workqueue for @node. 559 */ 560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 561 int node) 562 { 563 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 564 565 /* 566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 567 * delayed item is pending. The plan is to keep CPU -> NODE 568 * mapping valid and stable across CPU on/offlines. Once that 569 * happens, this workaround can be removed. 570 */ 571 if (unlikely(node == NUMA_NO_NODE)) 572 return wq->dfl_pwq; 573 574 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 575 } 576 577 static unsigned int work_color_to_flags(int color) 578 { 579 return color << WORK_STRUCT_COLOR_SHIFT; 580 } 581 582 static int get_work_color(struct work_struct *work) 583 { 584 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 585 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 586 } 587 588 static int work_next_color(int color) 589 { 590 return (color + 1) % WORK_NR_COLORS; 591 } 592 593 /* 594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 595 * contain the pointer to the queued pwq. Once execution starts, the flag 596 * is cleared and the high bits contain OFFQ flags and pool ID. 597 * 598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 599 * and clear_work_data() can be used to set the pwq, pool or clear 600 * work->data. These functions should only be called while the work is 601 * owned - ie. while the PENDING bit is set. 602 * 603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 604 * corresponding to a work. Pool is available once the work has been 605 * queued anywhere after initialization until it is sync canceled. pwq is 606 * available only while the work item is queued. 607 * 608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 609 * canceled. While being canceled, a work item may have its PENDING set 610 * but stay off timer and worklist for arbitrarily long and nobody should 611 * try to steal the PENDING bit. 612 */ 613 static inline void set_work_data(struct work_struct *work, unsigned long data, 614 unsigned long flags) 615 { 616 WARN_ON_ONCE(!work_pending(work)); 617 atomic_long_set(&work->data, data | flags | work_static(work)); 618 } 619 620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 621 unsigned long extra_flags) 622 { 623 set_work_data(work, (unsigned long)pwq, 624 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 625 } 626 627 static void set_work_pool_and_keep_pending(struct work_struct *work, 628 int pool_id) 629 { 630 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 631 WORK_STRUCT_PENDING); 632 } 633 634 static void set_work_pool_and_clear_pending(struct work_struct *work, 635 int pool_id) 636 { 637 /* 638 * The following wmb is paired with the implied mb in 639 * test_and_set_bit(PENDING) and ensures all updates to @work made 640 * here are visible to and precede any updates by the next PENDING 641 * owner. 642 */ 643 smp_wmb(); 644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 645 /* 646 * The following mb guarantees that previous clear of a PENDING bit 647 * will not be reordered with any speculative LOADS or STORES from 648 * work->current_func, which is executed afterwards. This possible 649 * reordering can lead to a missed execution on attempt to qeueue 650 * the same @work. E.g. consider this case: 651 * 652 * CPU#0 CPU#1 653 * ---------------------------- -------------------------------- 654 * 655 * 1 STORE event_indicated 656 * 2 queue_work_on() { 657 * 3 test_and_set_bit(PENDING) 658 * 4 } set_..._and_clear_pending() { 659 * 5 set_work_data() # clear bit 660 * 6 smp_mb() 661 * 7 work->current_func() { 662 * 8 LOAD event_indicated 663 * } 664 * 665 * Without an explicit full barrier speculative LOAD on line 8 can 666 * be executed before CPU#0 does STORE on line 1. If that happens, 667 * CPU#0 observes the PENDING bit is still set and new execution of 668 * a @work is not queued in a hope, that CPU#1 will eventually 669 * finish the queued @work. Meanwhile CPU#1 does not see 670 * event_indicated is set, because speculative LOAD was executed 671 * before actual STORE. 672 */ 673 smp_mb(); 674 } 675 676 static void clear_work_data(struct work_struct *work) 677 { 678 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 679 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 680 } 681 682 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 683 { 684 unsigned long data = atomic_long_read(&work->data); 685 686 if (data & WORK_STRUCT_PWQ) 687 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 688 else 689 return NULL; 690 } 691 692 /** 693 * get_work_pool - return the worker_pool a given work was associated with 694 * @work: the work item of interest 695 * 696 * Pools are created and destroyed under wq_pool_mutex, and allows read 697 * access under sched-RCU read lock. As such, this function should be 698 * called under wq_pool_mutex or with preemption disabled. 699 * 700 * All fields of the returned pool are accessible as long as the above 701 * mentioned locking is in effect. If the returned pool needs to be used 702 * beyond the critical section, the caller is responsible for ensuring the 703 * returned pool is and stays online. 704 * 705 * Return: The worker_pool @work was last associated with. %NULL if none. 706 */ 707 static struct worker_pool *get_work_pool(struct work_struct *work) 708 { 709 unsigned long data = atomic_long_read(&work->data); 710 int pool_id; 711 712 assert_rcu_or_pool_mutex(); 713 714 if (data & WORK_STRUCT_PWQ) 715 return ((struct pool_workqueue *) 716 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 717 718 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 719 if (pool_id == WORK_OFFQ_POOL_NONE) 720 return NULL; 721 722 return idr_find(&worker_pool_idr, pool_id); 723 } 724 725 /** 726 * get_work_pool_id - return the worker pool ID a given work is associated with 727 * @work: the work item of interest 728 * 729 * Return: The worker_pool ID @work was last associated with. 730 * %WORK_OFFQ_POOL_NONE if none. 731 */ 732 static int get_work_pool_id(struct work_struct *work) 733 { 734 unsigned long data = atomic_long_read(&work->data); 735 736 if (data & WORK_STRUCT_PWQ) 737 return ((struct pool_workqueue *) 738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 739 740 return data >> WORK_OFFQ_POOL_SHIFT; 741 } 742 743 static void mark_work_canceling(struct work_struct *work) 744 { 745 unsigned long pool_id = get_work_pool_id(work); 746 747 pool_id <<= WORK_OFFQ_POOL_SHIFT; 748 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 749 } 750 751 static bool work_is_canceling(struct work_struct *work) 752 { 753 unsigned long data = atomic_long_read(&work->data); 754 755 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 756 } 757 758 /* 759 * Policy functions. These define the policies on how the global worker 760 * pools are managed. Unless noted otherwise, these functions assume that 761 * they're being called with pool->lock held. 762 */ 763 764 static bool __need_more_worker(struct worker_pool *pool) 765 { 766 return !atomic_read(&pool->nr_running); 767 } 768 769 /* 770 * Need to wake up a worker? Called from anything but currently 771 * running workers. 772 * 773 * Note that, because unbound workers never contribute to nr_running, this 774 * function will always return %true for unbound pools as long as the 775 * worklist isn't empty. 776 */ 777 static bool need_more_worker(struct worker_pool *pool) 778 { 779 return !list_empty(&pool->worklist) && __need_more_worker(pool); 780 } 781 782 /* Can I start working? Called from busy but !running workers. */ 783 static bool may_start_working(struct worker_pool *pool) 784 { 785 return pool->nr_idle; 786 } 787 788 /* Do I need to keep working? Called from currently running workers. */ 789 static bool keep_working(struct worker_pool *pool) 790 { 791 return !list_empty(&pool->worklist) && 792 atomic_read(&pool->nr_running) <= 1; 793 } 794 795 /* Do we need a new worker? Called from manager. */ 796 static bool need_to_create_worker(struct worker_pool *pool) 797 { 798 return need_more_worker(pool) && !may_start_working(pool); 799 } 800 801 /* Do we have too many workers and should some go away? */ 802 static bool too_many_workers(struct worker_pool *pool) 803 { 804 bool managing = mutex_is_locked(&pool->manager_arb); 805 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 806 int nr_busy = pool->nr_workers - nr_idle; 807 808 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 809 } 810 811 /* 812 * Wake up functions. 813 */ 814 815 /* Return the first idle worker. Safe with preemption disabled */ 816 static struct worker *first_idle_worker(struct worker_pool *pool) 817 { 818 if (unlikely(list_empty(&pool->idle_list))) 819 return NULL; 820 821 return list_first_entry(&pool->idle_list, struct worker, entry); 822 } 823 824 /** 825 * wake_up_worker - wake up an idle worker 826 * @pool: worker pool to wake worker from 827 * 828 * Wake up the first idle worker of @pool. 829 * 830 * CONTEXT: 831 * spin_lock_irq(pool->lock). 832 */ 833 static void wake_up_worker(struct worker_pool *pool) 834 { 835 struct worker *worker = first_idle_worker(pool); 836 837 if (likely(worker)) 838 wake_up_process(worker->task); 839 } 840 841 /** 842 * wq_worker_waking_up - a worker is waking up 843 * @task: task waking up 844 * @cpu: CPU @task is waking up to 845 * 846 * This function is called during try_to_wake_up() when a worker is 847 * being awoken. 848 * 849 * CONTEXT: 850 * spin_lock_irq(rq->lock) 851 */ 852 void wq_worker_waking_up(struct task_struct *task, int cpu) 853 { 854 struct worker *worker = kthread_data(task); 855 856 if (!(worker->flags & WORKER_NOT_RUNNING)) { 857 WARN_ON_ONCE(worker->pool->cpu != cpu); 858 atomic_inc(&worker->pool->nr_running); 859 } 860 } 861 862 /** 863 * wq_worker_sleeping - a worker is going to sleep 864 * @task: task going to sleep 865 * 866 * This function is called during schedule() when a busy worker is 867 * going to sleep. Worker on the same cpu can be woken up by 868 * returning pointer to its task. 869 * 870 * CONTEXT: 871 * spin_lock_irq(rq->lock) 872 * 873 * Return: 874 * Worker task on @cpu to wake up, %NULL if none. 875 */ 876 struct task_struct *wq_worker_sleeping(struct task_struct *task) 877 { 878 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 879 struct worker_pool *pool; 880 881 /* 882 * Rescuers, which may not have all the fields set up like normal 883 * workers, also reach here, let's not access anything before 884 * checking NOT_RUNNING. 885 */ 886 if (worker->flags & WORKER_NOT_RUNNING) 887 return NULL; 888 889 pool = worker->pool; 890 891 /* this can only happen on the local cpu */ 892 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id())) 893 return NULL; 894 895 /* 896 * The counterpart of the following dec_and_test, implied mb, 897 * worklist not empty test sequence is in insert_work(). 898 * Please read comment there. 899 * 900 * NOT_RUNNING is clear. This means that we're bound to and 901 * running on the local cpu w/ rq lock held and preemption 902 * disabled, which in turn means that none else could be 903 * manipulating idle_list, so dereferencing idle_list without pool 904 * lock is safe. 905 */ 906 if (atomic_dec_and_test(&pool->nr_running) && 907 !list_empty(&pool->worklist)) 908 to_wakeup = first_idle_worker(pool); 909 return to_wakeup ? to_wakeup->task : NULL; 910 } 911 912 /** 913 * worker_set_flags - set worker flags and adjust nr_running accordingly 914 * @worker: self 915 * @flags: flags to set 916 * 917 * Set @flags in @worker->flags and adjust nr_running accordingly. 918 * 919 * CONTEXT: 920 * spin_lock_irq(pool->lock) 921 */ 922 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 923 { 924 struct worker_pool *pool = worker->pool; 925 926 WARN_ON_ONCE(worker->task != current); 927 928 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 929 if ((flags & WORKER_NOT_RUNNING) && 930 !(worker->flags & WORKER_NOT_RUNNING)) { 931 atomic_dec(&pool->nr_running); 932 } 933 934 worker->flags |= flags; 935 } 936 937 /** 938 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 939 * @worker: self 940 * @flags: flags to clear 941 * 942 * Clear @flags in @worker->flags and adjust nr_running accordingly. 943 * 944 * CONTEXT: 945 * spin_lock_irq(pool->lock) 946 */ 947 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 948 { 949 struct worker_pool *pool = worker->pool; 950 unsigned int oflags = worker->flags; 951 952 WARN_ON_ONCE(worker->task != current); 953 954 worker->flags &= ~flags; 955 956 /* 957 * If transitioning out of NOT_RUNNING, increment nr_running. Note 958 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 959 * of multiple flags, not a single flag. 960 */ 961 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 962 if (!(worker->flags & WORKER_NOT_RUNNING)) 963 atomic_inc(&pool->nr_running); 964 } 965 966 /** 967 * find_worker_executing_work - find worker which is executing a work 968 * @pool: pool of interest 969 * @work: work to find worker for 970 * 971 * Find a worker which is executing @work on @pool by searching 972 * @pool->busy_hash which is keyed by the address of @work. For a worker 973 * to match, its current execution should match the address of @work and 974 * its work function. This is to avoid unwanted dependency between 975 * unrelated work executions through a work item being recycled while still 976 * being executed. 977 * 978 * This is a bit tricky. A work item may be freed once its execution 979 * starts and nothing prevents the freed area from being recycled for 980 * another work item. If the same work item address ends up being reused 981 * before the original execution finishes, workqueue will identify the 982 * recycled work item as currently executing and make it wait until the 983 * current execution finishes, introducing an unwanted dependency. 984 * 985 * This function checks the work item address and work function to avoid 986 * false positives. Note that this isn't complete as one may construct a 987 * work function which can introduce dependency onto itself through a 988 * recycled work item. Well, if somebody wants to shoot oneself in the 989 * foot that badly, there's only so much we can do, and if such deadlock 990 * actually occurs, it should be easy to locate the culprit work function. 991 * 992 * CONTEXT: 993 * spin_lock_irq(pool->lock). 994 * 995 * Return: 996 * Pointer to worker which is executing @work if found, %NULL 997 * otherwise. 998 */ 999 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1000 struct work_struct *work) 1001 { 1002 struct worker *worker; 1003 1004 hash_for_each_possible(pool->busy_hash, worker, hentry, 1005 (unsigned long)work) 1006 if (worker->current_work == work && 1007 worker->current_func == work->func) 1008 return worker; 1009 1010 return NULL; 1011 } 1012 1013 /** 1014 * move_linked_works - move linked works to a list 1015 * @work: start of series of works to be scheduled 1016 * @head: target list to append @work to 1017 * @nextp: out parameter for nested worklist walking 1018 * 1019 * Schedule linked works starting from @work to @head. Work series to 1020 * be scheduled starts at @work and includes any consecutive work with 1021 * WORK_STRUCT_LINKED set in its predecessor. 1022 * 1023 * If @nextp is not NULL, it's updated to point to the next work of 1024 * the last scheduled work. This allows move_linked_works() to be 1025 * nested inside outer list_for_each_entry_safe(). 1026 * 1027 * CONTEXT: 1028 * spin_lock_irq(pool->lock). 1029 */ 1030 static void move_linked_works(struct work_struct *work, struct list_head *head, 1031 struct work_struct **nextp) 1032 { 1033 struct work_struct *n; 1034 1035 /* 1036 * Linked worklist will always end before the end of the list, 1037 * use NULL for list head. 1038 */ 1039 list_for_each_entry_safe_from(work, n, NULL, entry) { 1040 list_move_tail(&work->entry, head); 1041 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1042 break; 1043 } 1044 1045 /* 1046 * If we're already inside safe list traversal and have moved 1047 * multiple works to the scheduled queue, the next position 1048 * needs to be updated. 1049 */ 1050 if (nextp) 1051 *nextp = n; 1052 } 1053 1054 /** 1055 * get_pwq - get an extra reference on the specified pool_workqueue 1056 * @pwq: pool_workqueue to get 1057 * 1058 * Obtain an extra reference on @pwq. The caller should guarantee that 1059 * @pwq has positive refcnt and be holding the matching pool->lock. 1060 */ 1061 static void get_pwq(struct pool_workqueue *pwq) 1062 { 1063 lockdep_assert_held(&pwq->pool->lock); 1064 WARN_ON_ONCE(pwq->refcnt <= 0); 1065 pwq->refcnt++; 1066 } 1067 1068 /** 1069 * put_pwq - put a pool_workqueue reference 1070 * @pwq: pool_workqueue to put 1071 * 1072 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1073 * destruction. The caller should be holding the matching pool->lock. 1074 */ 1075 static void put_pwq(struct pool_workqueue *pwq) 1076 { 1077 lockdep_assert_held(&pwq->pool->lock); 1078 if (likely(--pwq->refcnt)) 1079 return; 1080 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1081 return; 1082 /* 1083 * @pwq can't be released under pool->lock, bounce to 1084 * pwq_unbound_release_workfn(). This never recurses on the same 1085 * pool->lock as this path is taken only for unbound workqueues and 1086 * the release work item is scheduled on a per-cpu workqueue. To 1087 * avoid lockdep warning, unbound pool->locks are given lockdep 1088 * subclass of 1 in get_unbound_pool(). 1089 */ 1090 schedule_work(&pwq->unbound_release_work); 1091 } 1092 1093 /** 1094 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1095 * @pwq: pool_workqueue to put (can be %NULL) 1096 * 1097 * put_pwq() with locking. This function also allows %NULL @pwq. 1098 */ 1099 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1100 { 1101 if (pwq) { 1102 /* 1103 * As both pwqs and pools are sched-RCU protected, the 1104 * following lock operations are safe. 1105 */ 1106 spin_lock_irq(&pwq->pool->lock); 1107 put_pwq(pwq); 1108 spin_unlock_irq(&pwq->pool->lock); 1109 } 1110 } 1111 1112 static void pwq_activate_delayed_work(struct work_struct *work) 1113 { 1114 struct pool_workqueue *pwq = get_work_pwq(work); 1115 1116 trace_workqueue_activate_work(work); 1117 if (list_empty(&pwq->pool->worklist)) 1118 pwq->pool->watchdog_ts = jiffies; 1119 move_linked_works(work, &pwq->pool->worklist, NULL); 1120 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1121 pwq->nr_active++; 1122 } 1123 1124 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1125 { 1126 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1127 struct work_struct, entry); 1128 1129 pwq_activate_delayed_work(work); 1130 } 1131 1132 /** 1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1134 * @pwq: pwq of interest 1135 * @color: color of work which left the queue 1136 * 1137 * A work either has completed or is removed from pending queue, 1138 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1139 * 1140 * CONTEXT: 1141 * spin_lock_irq(pool->lock). 1142 */ 1143 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1144 { 1145 /* uncolored work items don't participate in flushing or nr_active */ 1146 if (color == WORK_NO_COLOR) 1147 goto out_put; 1148 1149 pwq->nr_in_flight[color]--; 1150 1151 pwq->nr_active--; 1152 if (!list_empty(&pwq->delayed_works)) { 1153 /* one down, submit a delayed one */ 1154 if (pwq->nr_active < pwq->max_active) 1155 pwq_activate_first_delayed(pwq); 1156 } 1157 1158 /* is flush in progress and are we at the flushing tip? */ 1159 if (likely(pwq->flush_color != color)) 1160 goto out_put; 1161 1162 /* are there still in-flight works? */ 1163 if (pwq->nr_in_flight[color]) 1164 goto out_put; 1165 1166 /* this pwq is done, clear flush_color */ 1167 pwq->flush_color = -1; 1168 1169 /* 1170 * If this was the last pwq, wake up the first flusher. It 1171 * will handle the rest. 1172 */ 1173 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1174 complete(&pwq->wq->first_flusher->done); 1175 out_put: 1176 put_pwq(pwq); 1177 } 1178 1179 /** 1180 * try_to_grab_pending - steal work item from worklist and disable irq 1181 * @work: work item to steal 1182 * @is_dwork: @work is a delayed_work 1183 * @flags: place to store irq state 1184 * 1185 * Try to grab PENDING bit of @work. This function can handle @work in any 1186 * stable state - idle, on timer or on worklist. 1187 * 1188 * Return: 1189 * 1 if @work was pending and we successfully stole PENDING 1190 * 0 if @work was idle and we claimed PENDING 1191 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1192 * -ENOENT if someone else is canceling @work, this state may persist 1193 * for arbitrarily long 1194 * 1195 * Note: 1196 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1197 * interrupted while holding PENDING and @work off queue, irq must be 1198 * disabled on entry. This, combined with delayed_work->timer being 1199 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1200 * 1201 * On successful return, >= 0, irq is disabled and the caller is 1202 * responsible for releasing it using local_irq_restore(*@flags). 1203 * 1204 * This function is safe to call from any context including IRQ handler. 1205 */ 1206 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1207 unsigned long *flags) 1208 { 1209 struct worker_pool *pool; 1210 struct pool_workqueue *pwq; 1211 1212 local_irq_save(*flags); 1213 1214 /* try to steal the timer if it exists */ 1215 if (is_dwork) { 1216 struct delayed_work *dwork = to_delayed_work(work); 1217 1218 /* 1219 * dwork->timer is irqsafe. If del_timer() fails, it's 1220 * guaranteed that the timer is not queued anywhere and not 1221 * running on the local CPU. 1222 */ 1223 if (likely(del_timer(&dwork->timer))) 1224 return 1; 1225 } 1226 1227 /* try to claim PENDING the normal way */ 1228 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1229 return 0; 1230 1231 /* 1232 * The queueing is in progress, or it is already queued. Try to 1233 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1234 */ 1235 pool = get_work_pool(work); 1236 if (!pool) 1237 goto fail; 1238 1239 spin_lock(&pool->lock); 1240 /* 1241 * work->data is guaranteed to point to pwq only while the work 1242 * item is queued on pwq->wq, and both updating work->data to point 1243 * to pwq on queueing and to pool on dequeueing are done under 1244 * pwq->pool->lock. This in turn guarantees that, if work->data 1245 * points to pwq which is associated with a locked pool, the work 1246 * item is currently queued on that pool. 1247 */ 1248 pwq = get_work_pwq(work); 1249 if (pwq && pwq->pool == pool) { 1250 debug_work_deactivate(work); 1251 1252 /* 1253 * A delayed work item cannot be grabbed directly because 1254 * it might have linked NO_COLOR work items which, if left 1255 * on the delayed_list, will confuse pwq->nr_active 1256 * management later on and cause stall. Make sure the work 1257 * item is activated before grabbing. 1258 */ 1259 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1260 pwq_activate_delayed_work(work); 1261 1262 list_del_init(&work->entry); 1263 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1264 1265 /* work->data points to pwq iff queued, point to pool */ 1266 set_work_pool_and_keep_pending(work, pool->id); 1267 1268 spin_unlock(&pool->lock); 1269 return 1; 1270 } 1271 spin_unlock(&pool->lock); 1272 fail: 1273 local_irq_restore(*flags); 1274 if (work_is_canceling(work)) 1275 return -ENOENT; 1276 cpu_relax(); 1277 return -EAGAIN; 1278 } 1279 1280 /** 1281 * insert_work - insert a work into a pool 1282 * @pwq: pwq @work belongs to 1283 * @work: work to insert 1284 * @head: insertion point 1285 * @extra_flags: extra WORK_STRUCT_* flags to set 1286 * 1287 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1288 * work_struct flags. 1289 * 1290 * CONTEXT: 1291 * spin_lock_irq(pool->lock). 1292 */ 1293 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1294 struct list_head *head, unsigned int extra_flags) 1295 { 1296 struct worker_pool *pool = pwq->pool; 1297 1298 /* we own @work, set data and link */ 1299 set_work_pwq(work, pwq, extra_flags); 1300 list_add_tail(&work->entry, head); 1301 get_pwq(pwq); 1302 1303 /* 1304 * Ensure either wq_worker_sleeping() sees the above 1305 * list_add_tail() or we see zero nr_running to avoid workers lying 1306 * around lazily while there are works to be processed. 1307 */ 1308 smp_mb(); 1309 1310 if (__need_more_worker(pool)) 1311 wake_up_worker(pool); 1312 } 1313 1314 /* 1315 * Test whether @work is being queued from another work executing on the 1316 * same workqueue. 1317 */ 1318 static bool is_chained_work(struct workqueue_struct *wq) 1319 { 1320 struct worker *worker; 1321 1322 worker = current_wq_worker(); 1323 /* 1324 * Return %true iff I'm a worker execuing a work item on @wq. If 1325 * I'm @worker, it's safe to dereference it without locking. 1326 */ 1327 return worker && worker->current_pwq->wq == wq; 1328 } 1329 1330 /* 1331 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1332 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1333 * avoid perturbing sensitive tasks. 1334 */ 1335 static int wq_select_unbound_cpu(int cpu) 1336 { 1337 static bool printed_dbg_warning; 1338 int new_cpu; 1339 1340 if (likely(!wq_debug_force_rr_cpu)) { 1341 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1342 return cpu; 1343 } else if (!printed_dbg_warning) { 1344 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1345 printed_dbg_warning = true; 1346 } 1347 1348 if (cpumask_empty(wq_unbound_cpumask)) 1349 return cpu; 1350 1351 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1352 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1353 if (unlikely(new_cpu >= nr_cpu_ids)) { 1354 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1355 if (unlikely(new_cpu >= nr_cpu_ids)) 1356 return cpu; 1357 } 1358 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1359 1360 return new_cpu; 1361 } 1362 1363 static void __queue_work(int cpu, struct workqueue_struct *wq, 1364 struct work_struct *work) 1365 { 1366 struct pool_workqueue *pwq; 1367 struct worker_pool *last_pool; 1368 struct list_head *worklist; 1369 unsigned int work_flags; 1370 unsigned int req_cpu = cpu; 1371 1372 /* 1373 * While a work item is PENDING && off queue, a task trying to 1374 * steal the PENDING will busy-loop waiting for it to either get 1375 * queued or lose PENDING. Grabbing PENDING and queueing should 1376 * happen with IRQ disabled. 1377 */ 1378 WARN_ON_ONCE(!irqs_disabled()); 1379 1380 debug_work_activate(work); 1381 1382 /* if draining, only works from the same workqueue are allowed */ 1383 if (unlikely(wq->flags & __WQ_DRAINING) && 1384 WARN_ON_ONCE(!is_chained_work(wq))) 1385 return; 1386 retry: 1387 if (req_cpu == WORK_CPU_UNBOUND) 1388 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1389 1390 /* pwq which will be used unless @work is executing elsewhere */ 1391 if (!(wq->flags & WQ_UNBOUND)) 1392 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1393 else 1394 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1395 1396 /* 1397 * If @work was previously on a different pool, it might still be 1398 * running there, in which case the work needs to be queued on that 1399 * pool to guarantee non-reentrancy. 1400 */ 1401 last_pool = get_work_pool(work); 1402 if (last_pool && last_pool != pwq->pool) { 1403 struct worker *worker; 1404 1405 spin_lock(&last_pool->lock); 1406 1407 worker = find_worker_executing_work(last_pool, work); 1408 1409 if (worker && worker->current_pwq->wq == wq) { 1410 pwq = worker->current_pwq; 1411 } else { 1412 /* meh... not running there, queue here */ 1413 spin_unlock(&last_pool->lock); 1414 spin_lock(&pwq->pool->lock); 1415 } 1416 } else { 1417 spin_lock(&pwq->pool->lock); 1418 } 1419 1420 /* 1421 * pwq is determined and locked. For unbound pools, we could have 1422 * raced with pwq release and it could already be dead. If its 1423 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1424 * without another pwq replacing it in the numa_pwq_tbl or while 1425 * work items are executing on it, so the retrying is guaranteed to 1426 * make forward-progress. 1427 */ 1428 if (unlikely(!pwq->refcnt)) { 1429 if (wq->flags & WQ_UNBOUND) { 1430 spin_unlock(&pwq->pool->lock); 1431 cpu_relax(); 1432 goto retry; 1433 } 1434 /* oops */ 1435 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1436 wq->name, cpu); 1437 } 1438 1439 /* pwq determined, queue */ 1440 trace_workqueue_queue_work(req_cpu, pwq, work); 1441 1442 if (WARN_ON(!list_empty(&work->entry))) { 1443 spin_unlock(&pwq->pool->lock); 1444 return; 1445 } 1446 1447 pwq->nr_in_flight[pwq->work_color]++; 1448 work_flags = work_color_to_flags(pwq->work_color); 1449 1450 if (likely(pwq->nr_active < pwq->max_active)) { 1451 trace_workqueue_activate_work(work); 1452 pwq->nr_active++; 1453 worklist = &pwq->pool->worklist; 1454 if (list_empty(worklist)) 1455 pwq->pool->watchdog_ts = jiffies; 1456 } else { 1457 work_flags |= WORK_STRUCT_DELAYED; 1458 worklist = &pwq->delayed_works; 1459 } 1460 1461 insert_work(pwq, work, worklist, work_flags); 1462 1463 spin_unlock(&pwq->pool->lock); 1464 } 1465 1466 /** 1467 * queue_work_on - queue work on specific cpu 1468 * @cpu: CPU number to execute work on 1469 * @wq: workqueue to use 1470 * @work: work to queue 1471 * 1472 * We queue the work to a specific CPU, the caller must ensure it 1473 * can't go away. 1474 * 1475 * Return: %false if @work was already on a queue, %true otherwise. 1476 */ 1477 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1478 struct work_struct *work) 1479 { 1480 bool ret = false; 1481 unsigned long flags; 1482 1483 local_irq_save(flags); 1484 1485 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1486 __queue_work(cpu, wq, work); 1487 ret = true; 1488 } 1489 1490 local_irq_restore(flags); 1491 return ret; 1492 } 1493 EXPORT_SYMBOL(queue_work_on); 1494 1495 void delayed_work_timer_fn(unsigned long __data) 1496 { 1497 struct delayed_work *dwork = (struct delayed_work *)__data; 1498 1499 /* should have been called from irqsafe timer with irq already off */ 1500 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1501 } 1502 EXPORT_SYMBOL(delayed_work_timer_fn); 1503 1504 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1505 struct delayed_work *dwork, unsigned long delay) 1506 { 1507 struct timer_list *timer = &dwork->timer; 1508 struct work_struct *work = &dwork->work; 1509 1510 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1511 timer->data != (unsigned long)dwork); 1512 WARN_ON_ONCE(timer_pending(timer)); 1513 WARN_ON_ONCE(!list_empty(&work->entry)); 1514 1515 /* 1516 * If @delay is 0, queue @dwork->work immediately. This is for 1517 * both optimization and correctness. The earliest @timer can 1518 * expire is on the closest next tick and delayed_work users depend 1519 * on that there's no such delay when @delay is 0. 1520 */ 1521 if (!delay) { 1522 __queue_work(cpu, wq, &dwork->work); 1523 return; 1524 } 1525 1526 timer_stats_timer_set_start_info(&dwork->timer); 1527 1528 dwork->wq = wq; 1529 dwork->cpu = cpu; 1530 timer->expires = jiffies + delay; 1531 1532 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1533 add_timer_on(timer, cpu); 1534 else 1535 add_timer(timer); 1536 } 1537 1538 /** 1539 * queue_delayed_work_on - queue work on specific CPU after delay 1540 * @cpu: CPU number to execute work on 1541 * @wq: workqueue to use 1542 * @dwork: work to queue 1543 * @delay: number of jiffies to wait before queueing 1544 * 1545 * Return: %false if @work was already on a queue, %true otherwise. If 1546 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1547 * execution. 1548 */ 1549 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1550 struct delayed_work *dwork, unsigned long delay) 1551 { 1552 struct work_struct *work = &dwork->work; 1553 bool ret = false; 1554 unsigned long flags; 1555 1556 /* read the comment in __queue_work() */ 1557 local_irq_save(flags); 1558 1559 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1560 __queue_delayed_work(cpu, wq, dwork, delay); 1561 ret = true; 1562 } 1563 1564 local_irq_restore(flags); 1565 return ret; 1566 } 1567 EXPORT_SYMBOL(queue_delayed_work_on); 1568 1569 /** 1570 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1571 * @cpu: CPU number to execute work on 1572 * @wq: workqueue to use 1573 * @dwork: work to queue 1574 * @delay: number of jiffies to wait before queueing 1575 * 1576 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1577 * modify @dwork's timer so that it expires after @delay. If @delay is 1578 * zero, @work is guaranteed to be scheduled immediately regardless of its 1579 * current state. 1580 * 1581 * Return: %false if @dwork was idle and queued, %true if @dwork was 1582 * pending and its timer was modified. 1583 * 1584 * This function is safe to call from any context including IRQ handler. 1585 * See try_to_grab_pending() for details. 1586 */ 1587 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1588 struct delayed_work *dwork, unsigned long delay) 1589 { 1590 unsigned long flags; 1591 int ret; 1592 1593 do { 1594 ret = try_to_grab_pending(&dwork->work, true, &flags); 1595 } while (unlikely(ret == -EAGAIN)); 1596 1597 if (likely(ret >= 0)) { 1598 __queue_delayed_work(cpu, wq, dwork, delay); 1599 local_irq_restore(flags); 1600 } 1601 1602 /* -ENOENT from try_to_grab_pending() becomes %true */ 1603 return ret; 1604 } 1605 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1606 1607 /** 1608 * worker_enter_idle - enter idle state 1609 * @worker: worker which is entering idle state 1610 * 1611 * @worker is entering idle state. Update stats and idle timer if 1612 * necessary. 1613 * 1614 * LOCKING: 1615 * spin_lock_irq(pool->lock). 1616 */ 1617 static void worker_enter_idle(struct worker *worker) 1618 { 1619 struct worker_pool *pool = worker->pool; 1620 1621 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1622 WARN_ON_ONCE(!list_empty(&worker->entry) && 1623 (worker->hentry.next || worker->hentry.pprev))) 1624 return; 1625 1626 /* can't use worker_set_flags(), also called from create_worker() */ 1627 worker->flags |= WORKER_IDLE; 1628 pool->nr_idle++; 1629 worker->last_active = jiffies; 1630 1631 /* idle_list is LIFO */ 1632 list_add(&worker->entry, &pool->idle_list); 1633 1634 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1635 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1636 1637 /* 1638 * Sanity check nr_running. Because wq_unbind_fn() releases 1639 * pool->lock between setting %WORKER_UNBOUND and zapping 1640 * nr_running, the warning may trigger spuriously. Check iff 1641 * unbind is not in progress. 1642 */ 1643 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1644 pool->nr_workers == pool->nr_idle && 1645 atomic_read(&pool->nr_running)); 1646 } 1647 1648 /** 1649 * worker_leave_idle - leave idle state 1650 * @worker: worker which is leaving idle state 1651 * 1652 * @worker is leaving idle state. Update stats. 1653 * 1654 * LOCKING: 1655 * spin_lock_irq(pool->lock). 1656 */ 1657 static void worker_leave_idle(struct worker *worker) 1658 { 1659 struct worker_pool *pool = worker->pool; 1660 1661 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1662 return; 1663 worker_clr_flags(worker, WORKER_IDLE); 1664 pool->nr_idle--; 1665 list_del_init(&worker->entry); 1666 } 1667 1668 static struct worker *alloc_worker(int node) 1669 { 1670 struct worker *worker; 1671 1672 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1673 if (worker) { 1674 INIT_LIST_HEAD(&worker->entry); 1675 INIT_LIST_HEAD(&worker->scheduled); 1676 INIT_LIST_HEAD(&worker->node); 1677 /* on creation a worker is in !idle && prep state */ 1678 worker->flags = WORKER_PREP; 1679 } 1680 return worker; 1681 } 1682 1683 /** 1684 * worker_attach_to_pool() - attach a worker to a pool 1685 * @worker: worker to be attached 1686 * @pool: the target pool 1687 * 1688 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1689 * cpu-binding of @worker are kept coordinated with the pool across 1690 * cpu-[un]hotplugs. 1691 */ 1692 static void worker_attach_to_pool(struct worker *worker, 1693 struct worker_pool *pool) 1694 { 1695 mutex_lock(&pool->attach_mutex); 1696 1697 /* 1698 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1699 * online CPUs. It'll be re-applied when any of the CPUs come up. 1700 */ 1701 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1702 1703 /* 1704 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains 1705 * stable across this function. See the comments above the 1706 * flag definition for details. 1707 */ 1708 if (pool->flags & POOL_DISASSOCIATED) 1709 worker->flags |= WORKER_UNBOUND; 1710 1711 list_add_tail(&worker->node, &pool->workers); 1712 1713 mutex_unlock(&pool->attach_mutex); 1714 } 1715 1716 /** 1717 * worker_detach_from_pool() - detach a worker from its pool 1718 * @worker: worker which is attached to its pool 1719 * @pool: the pool @worker is attached to 1720 * 1721 * Undo the attaching which had been done in worker_attach_to_pool(). The 1722 * caller worker shouldn't access to the pool after detached except it has 1723 * other reference to the pool. 1724 */ 1725 static void worker_detach_from_pool(struct worker *worker, 1726 struct worker_pool *pool) 1727 { 1728 struct completion *detach_completion = NULL; 1729 1730 mutex_lock(&pool->attach_mutex); 1731 list_del(&worker->node); 1732 if (list_empty(&pool->workers)) 1733 detach_completion = pool->detach_completion; 1734 mutex_unlock(&pool->attach_mutex); 1735 1736 /* clear leftover flags without pool->lock after it is detached */ 1737 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1738 1739 if (detach_completion) 1740 complete(detach_completion); 1741 } 1742 1743 /** 1744 * create_worker - create a new workqueue worker 1745 * @pool: pool the new worker will belong to 1746 * 1747 * Create and start a new worker which is attached to @pool. 1748 * 1749 * CONTEXT: 1750 * Might sleep. Does GFP_KERNEL allocations. 1751 * 1752 * Return: 1753 * Pointer to the newly created worker. 1754 */ 1755 static struct worker *create_worker(struct worker_pool *pool) 1756 { 1757 struct worker *worker = NULL; 1758 int id = -1; 1759 char id_buf[16]; 1760 1761 /* ID is needed to determine kthread name */ 1762 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1763 if (id < 0) 1764 goto fail; 1765 1766 worker = alloc_worker(pool->node); 1767 if (!worker) 1768 goto fail; 1769 1770 worker->pool = pool; 1771 worker->id = id; 1772 1773 if (pool->cpu >= 0) 1774 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1775 pool->attrs->nice < 0 ? "H" : ""); 1776 else 1777 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1778 1779 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1780 "kworker/%s", id_buf); 1781 if (IS_ERR(worker->task)) 1782 goto fail; 1783 1784 set_user_nice(worker->task, pool->attrs->nice); 1785 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1786 1787 /* successful, attach the worker to the pool */ 1788 worker_attach_to_pool(worker, pool); 1789 1790 /* start the newly created worker */ 1791 spin_lock_irq(&pool->lock); 1792 worker->pool->nr_workers++; 1793 worker_enter_idle(worker); 1794 wake_up_process(worker->task); 1795 spin_unlock_irq(&pool->lock); 1796 1797 return worker; 1798 1799 fail: 1800 if (id >= 0) 1801 ida_simple_remove(&pool->worker_ida, id); 1802 kfree(worker); 1803 return NULL; 1804 } 1805 1806 /** 1807 * destroy_worker - destroy a workqueue worker 1808 * @worker: worker to be destroyed 1809 * 1810 * Destroy @worker and adjust @pool stats accordingly. The worker should 1811 * be idle. 1812 * 1813 * CONTEXT: 1814 * spin_lock_irq(pool->lock). 1815 */ 1816 static void destroy_worker(struct worker *worker) 1817 { 1818 struct worker_pool *pool = worker->pool; 1819 1820 lockdep_assert_held(&pool->lock); 1821 1822 /* sanity check frenzy */ 1823 if (WARN_ON(worker->current_work) || 1824 WARN_ON(!list_empty(&worker->scheduled)) || 1825 WARN_ON(!(worker->flags & WORKER_IDLE))) 1826 return; 1827 1828 pool->nr_workers--; 1829 pool->nr_idle--; 1830 1831 list_del_init(&worker->entry); 1832 worker->flags |= WORKER_DIE; 1833 wake_up_process(worker->task); 1834 } 1835 1836 static void idle_worker_timeout(unsigned long __pool) 1837 { 1838 struct worker_pool *pool = (void *)__pool; 1839 1840 spin_lock_irq(&pool->lock); 1841 1842 while (too_many_workers(pool)) { 1843 struct worker *worker; 1844 unsigned long expires; 1845 1846 /* idle_list is kept in LIFO order, check the last one */ 1847 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1848 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1849 1850 if (time_before(jiffies, expires)) { 1851 mod_timer(&pool->idle_timer, expires); 1852 break; 1853 } 1854 1855 destroy_worker(worker); 1856 } 1857 1858 spin_unlock_irq(&pool->lock); 1859 } 1860 1861 static void send_mayday(struct work_struct *work) 1862 { 1863 struct pool_workqueue *pwq = get_work_pwq(work); 1864 struct workqueue_struct *wq = pwq->wq; 1865 1866 lockdep_assert_held(&wq_mayday_lock); 1867 1868 if (!wq->rescuer) 1869 return; 1870 1871 /* mayday mayday mayday */ 1872 if (list_empty(&pwq->mayday_node)) { 1873 /* 1874 * If @pwq is for an unbound wq, its base ref may be put at 1875 * any time due to an attribute change. Pin @pwq until the 1876 * rescuer is done with it. 1877 */ 1878 get_pwq(pwq); 1879 list_add_tail(&pwq->mayday_node, &wq->maydays); 1880 wake_up_process(wq->rescuer->task); 1881 } 1882 } 1883 1884 static void pool_mayday_timeout(unsigned long __pool) 1885 { 1886 struct worker_pool *pool = (void *)__pool; 1887 struct work_struct *work; 1888 1889 spin_lock_irq(&pool->lock); 1890 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 1891 1892 if (need_to_create_worker(pool)) { 1893 /* 1894 * We've been trying to create a new worker but 1895 * haven't been successful. We might be hitting an 1896 * allocation deadlock. Send distress signals to 1897 * rescuers. 1898 */ 1899 list_for_each_entry(work, &pool->worklist, entry) 1900 send_mayday(work); 1901 } 1902 1903 spin_unlock(&wq_mayday_lock); 1904 spin_unlock_irq(&pool->lock); 1905 1906 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1907 } 1908 1909 /** 1910 * maybe_create_worker - create a new worker if necessary 1911 * @pool: pool to create a new worker for 1912 * 1913 * Create a new worker for @pool if necessary. @pool is guaranteed to 1914 * have at least one idle worker on return from this function. If 1915 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1916 * sent to all rescuers with works scheduled on @pool to resolve 1917 * possible allocation deadlock. 1918 * 1919 * On return, need_to_create_worker() is guaranteed to be %false and 1920 * may_start_working() %true. 1921 * 1922 * LOCKING: 1923 * spin_lock_irq(pool->lock) which may be released and regrabbed 1924 * multiple times. Does GFP_KERNEL allocations. Called only from 1925 * manager. 1926 */ 1927 static void maybe_create_worker(struct worker_pool *pool) 1928 __releases(&pool->lock) 1929 __acquires(&pool->lock) 1930 { 1931 restart: 1932 spin_unlock_irq(&pool->lock); 1933 1934 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1935 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1936 1937 while (true) { 1938 if (create_worker(pool) || !need_to_create_worker(pool)) 1939 break; 1940 1941 schedule_timeout_interruptible(CREATE_COOLDOWN); 1942 1943 if (!need_to_create_worker(pool)) 1944 break; 1945 } 1946 1947 del_timer_sync(&pool->mayday_timer); 1948 spin_lock_irq(&pool->lock); 1949 /* 1950 * This is necessary even after a new worker was just successfully 1951 * created as @pool->lock was dropped and the new worker might have 1952 * already become busy. 1953 */ 1954 if (need_to_create_worker(pool)) 1955 goto restart; 1956 } 1957 1958 /** 1959 * manage_workers - manage worker pool 1960 * @worker: self 1961 * 1962 * Assume the manager role and manage the worker pool @worker belongs 1963 * to. At any given time, there can be only zero or one manager per 1964 * pool. The exclusion is handled automatically by this function. 1965 * 1966 * The caller can safely start processing works on false return. On 1967 * true return, it's guaranteed that need_to_create_worker() is false 1968 * and may_start_working() is true. 1969 * 1970 * CONTEXT: 1971 * spin_lock_irq(pool->lock) which may be released and regrabbed 1972 * multiple times. Does GFP_KERNEL allocations. 1973 * 1974 * Return: 1975 * %false if the pool doesn't need management and the caller can safely 1976 * start processing works, %true if management function was performed and 1977 * the conditions that the caller verified before calling the function may 1978 * no longer be true. 1979 */ 1980 static bool manage_workers(struct worker *worker) 1981 { 1982 struct worker_pool *pool = worker->pool; 1983 1984 /* 1985 * Anyone who successfully grabs manager_arb wins the arbitration 1986 * and becomes the manager. mutex_trylock() on pool->manager_arb 1987 * failure while holding pool->lock reliably indicates that someone 1988 * else is managing the pool and the worker which failed trylock 1989 * can proceed to executing work items. This means that anyone 1990 * grabbing manager_arb is responsible for actually performing 1991 * manager duties. If manager_arb is grabbed and released without 1992 * actual management, the pool may stall indefinitely. 1993 */ 1994 if (!mutex_trylock(&pool->manager_arb)) 1995 return false; 1996 pool->manager = worker; 1997 1998 maybe_create_worker(pool); 1999 2000 pool->manager = NULL; 2001 mutex_unlock(&pool->manager_arb); 2002 return true; 2003 } 2004 2005 /** 2006 * process_one_work - process single work 2007 * @worker: self 2008 * @work: work to process 2009 * 2010 * Process @work. This function contains all the logics necessary to 2011 * process a single work including synchronization against and 2012 * interaction with other workers on the same cpu, queueing and 2013 * flushing. As long as context requirement is met, any worker can 2014 * call this function to process a work. 2015 * 2016 * CONTEXT: 2017 * spin_lock_irq(pool->lock) which is released and regrabbed. 2018 */ 2019 static void process_one_work(struct worker *worker, struct work_struct *work) 2020 __releases(&pool->lock) 2021 __acquires(&pool->lock) 2022 { 2023 struct pool_workqueue *pwq = get_work_pwq(work); 2024 struct worker_pool *pool = worker->pool; 2025 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2026 int work_color; 2027 struct worker *collision; 2028 #ifdef CONFIG_LOCKDEP 2029 /* 2030 * It is permissible to free the struct work_struct from 2031 * inside the function that is called from it, this we need to 2032 * take into account for lockdep too. To avoid bogus "held 2033 * lock freed" warnings as well as problems when looking into 2034 * work->lockdep_map, make a copy and use that here. 2035 */ 2036 struct lockdep_map lockdep_map; 2037 2038 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2039 #endif 2040 /* ensure we're on the correct CPU */ 2041 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2042 raw_smp_processor_id() != pool->cpu); 2043 2044 /* 2045 * A single work shouldn't be executed concurrently by 2046 * multiple workers on a single cpu. Check whether anyone is 2047 * already processing the work. If so, defer the work to the 2048 * currently executing one. 2049 */ 2050 collision = find_worker_executing_work(pool, work); 2051 if (unlikely(collision)) { 2052 move_linked_works(work, &collision->scheduled, NULL); 2053 return; 2054 } 2055 2056 /* claim and dequeue */ 2057 debug_work_deactivate(work); 2058 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2059 worker->current_work = work; 2060 worker->current_func = work->func; 2061 worker->current_pwq = pwq; 2062 work_color = get_work_color(work); 2063 2064 list_del_init(&work->entry); 2065 2066 /* 2067 * CPU intensive works don't participate in concurrency management. 2068 * They're the scheduler's responsibility. This takes @worker out 2069 * of concurrency management and the next code block will chain 2070 * execution of the pending work items. 2071 */ 2072 if (unlikely(cpu_intensive)) 2073 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2074 2075 /* 2076 * Wake up another worker if necessary. The condition is always 2077 * false for normal per-cpu workers since nr_running would always 2078 * be >= 1 at this point. This is used to chain execution of the 2079 * pending work items for WORKER_NOT_RUNNING workers such as the 2080 * UNBOUND and CPU_INTENSIVE ones. 2081 */ 2082 if (need_more_worker(pool)) 2083 wake_up_worker(pool); 2084 2085 /* 2086 * Record the last pool and clear PENDING which should be the last 2087 * update to @work. Also, do this inside @pool->lock so that 2088 * PENDING and queued state changes happen together while IRQ is 2089 * disabled. 2090 */ 2091 set_work_pool_and_clear_pending(work, pool->id); 2092 2093 spin_unlock_irq(&pool->lock); 2094 2095 lock_map_acquire_read(&pwq->wq->lockdep_map); 2096 lock_map_acquire(&lockdep_map); 2097 trace_workqueue_execute_start(work); 2098 worker->current_func(work); 2099 /* 2100 * While we must be careful to not use "work" after this, the trace 2101 * point will only record its address. 2102 */ 2103 trace_workqueue_execute_end(work); 2104 lock_map_release(&lockdep_map); 2105 lock_map_release(&pwq->wq->lockdep_map); 2106 2107 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2108 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2109 " last function: %pf\n", 2110 current->comm, preempt_count(), task_pid_nr(current), 2111 worker->current_func); 2112 debug_show_held_locks(current); 2113 dump_stack(); 2114 } 2115 2116 /* 2117 * The following prevents a kworker from hogging CPU on !PREEMPT 2118 * kernels, where a requeueing work item waiting for something to 2119 * happen could deadlock with stop_machine as such work item could 2120 * indefinitely requeue itself while all other CPUs are trapped in 2121 * stop_machine. At the same time, report a quiescent RCU state so 2122 * the same condition doesn't freeze RCU. 2123 */ 2124 cond_resched_rcu_qs(); 2125 2126 spin_lock_irq(&pool->lock); 2127 2128 /* clear cpu intensive status */ 2129 if (unlikely(cpu_intensive)) 2130 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2131 2132 /* we're done with it, release */ 2133 hash_del(&worker->hentry); 2134 worker->current_work = NULL; 2135 worker->current_func = NULL; 2136 worker->current_pwq = NULL; 2137 worker->desc_valid = false; 2138 pwq_dec_nr_in_flight(pwq, work_color); 2139 } 2140 2141 /** 2142 * process_scheduled_works - process scheduled works 2143 * @worker: self 2144 * 2145 * Process all scheduled works. Please note that the scheduled list 2146 * may change while processing a work, so this function repeatedly 2147 * fetches a work from the top and executes it. 2148 * 2149 * CONTEXT: 2150 * spin_lock_irq(pool->lock) which may be released and regrabbed 2151 * multiple times. 2152 */ 2153 static void process_scheduled_works(struct worker *worker) 2154 { 2155 while (!list_empty(&worker->scheduled)) { 2156 struct work_struct *work = list_first_entry(&worker->scheduled, 2157 struct work_struct, entry); 2158 process_one_work(worker, work); 2159 } 2160 } 2161 2162 /** 2163 * worker_thread - the worker thread function 2164 * @__worker: self 2165 * 2166 * The worker thread function. All workers belong to a worker_pool - 2167 * either a per-cpu one or dynamic unbound one. These workers process all 2168 * work items regardless of their specific target workqueue. The only 2169 * exception is work items which belong to workqueues with a rescuer which 2170 * will be explained in rescuer_thread(). 2171 * 2172 * Return: 0 2173 */ 2174 static int worker_thread(void *__worker) 2175 { 2176 struct worker *worker = __worker; 2177 struct worker_pool *pool = worker->pool; 2178 2179 /* tell the scheduler that this is a workqueue worker */ 2180 worker->task->flags |= PF_WQ_WORKER; 2181 woke_up: 2182 spin_lock_irq(&pool->lock); 2183 2184 /* am I supposed to die? */ 2185 if (unlikely(worker->flags & WORKER_DIE)) { 2186 spin_unlock_irq(&pool->lock); 2187 WARN_ON_ONCE(!list_empty(&worker->entry)); 2188 worker->task->flags &= ~PF_WQ_WORKER; 2189 2190 set_task_comm(worker->task, "kworker/dying"); 2191 ida_simple_remove(&pool->worker_ida, worker->id); 2192 worker_detach_from_pool(worker, pool); 2193 kfree(worker); 2194 return 0; 2195 } 2196 2197 worker_leave_idle(worker); 2198 recheck: 2199 /* no more worker necessary? */ 2200 if (!need_more_worker(pool)) 2201 goto sleep; 2202 2203 /* do we need to manage? */ 2204 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2205 goto recheck; 2206 2207 /* 2208 * ->scheduled list can only be filled while a worker is 2209 * preparing to process a work or actually processing it. 2210 * Make sure nobody diddled with it while I was sleeping. 2211 */ 2212 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2213 2214 /* 2215 * Finish PREP stage. We're guaranteed to have at least one idle 2216 * worker or that someone else has already assumed the manager 2217 * role. This is where @worker starts participating in concurrency 2218 * management if applicable and concurrency management is restored 2219 * after being rebound. See rebind_workers() for details. 2220 */ 2221 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2222 2223 do { 2224 struct work_struct *work = 2225 list_first_entry(&pool->worklist, 2226 struct work_struct, entry); 2227 2228 pool->watchdog_ts = jiffies; 2229 2230 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2231 /* optimization path, not strictly necessary */ 2232 process_one_work(worker, work); 2233 if (unlikely(!list_empty(&worker->scheduled))) 2234 process_scheduled_works(worker); 2235 } else { 2236 move_linked_works(work, &worker->scheduled, NULL); 2237 process_scheduled_works(worker); 2238 } 2239 } while (keep_working(pool)); 2240 2241 worker_set_flags(worker, WORKER_PREP); 2242 sleep: 2243 /* 2244 * pool->lock is held and there's no work to process and no need to 2245 * manage, sleep. Workers are woken up only while holding 2246 * pool->lock or from local cpu, so setting the current state 2247 * before releasing pool->lock is enough to prevent losing any 2248 * event. 2249 */ 2250 worker_enter_idle(worker); 2251 __set_current_state(TASK_INTERRUPTIBLE); 2252 spin_unlock_irq(&pool->lock); 2253 schedule(); 2254 goto woke_up; 2255 } 2256 2257 /** 2258 * rescuer_thread - the rescuer thread function 2259 * @__rescuer: self 2260 * 2261 * Workqueue rescuer thread function. There's one rescuer for each 2262 * workqueue which has WQ_MEM_RECLAIM set. 2263 * 2264 * Regular work processing on a pool may block trying to create a new 2265 * worker which uses GFP_KERNEL allocation which has slight chance of 2266 * developing into deadlock if some works currently on the same queue 2267 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2268 * the problem rescuer solves. 2269 * 2270 * When such condition is possible, the pool summons rescuers of all 2271 * workqueues which have works queued on the pool and let them process 2272 * those works so that forward progress can be guaranteed. 2273 * 2274 * This should happen rarely. 2275 * 2276 * Return: 0 2277 */ 2278 static int rescuer_thread(void *__rescuer) 2279 { 2280 struct worker *rescuer = __rescuer; 2281 struct workqueue_struct *wq = rescuer->rescue_wq; 2282 struct list_head *scheduled = &rescuer->scheduled; 2283 bool should_stop; 2284 2285 set_user_nice(current, RESCUER_NICE_LEVEL); 2286 2287 /* 2288 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2289 * doesn't participate in concurrency management. 2290 */ 2291 rescuer->task->flags |= PF_WQ_WORKER; 2292 repeat: 2293 set_current_state(TASK_INTERRUPTIBLE); 2294 2295 /* 2296 * By the time the rescuer is requested to stop, the workqueue 2297 * shouldn't have any work pending, but @wq->maydays may still have 2298 * pwq(s) queued. This can happen by non-rescuer workers consuming 2299 * all the work items before the rescuer got to them. Go through 2300 * @wq->maydays processing before acting on should_stop so that the 2301 * list is always empty on exit. 2302 */ 2303 should_stop = kthread_should_stop(); 2304 2305 /* see whether any pwq is asking for help */ 2306 spin_lock_irq(&wq_mayday_lock); 2307 2308 while (!list_empty(&wq->maydays)) { 2309 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2310 struct pool_workqueue, mayday_node); 2311 struct worker_pool *pool = pwq->pool; 2312 struct work_struct *work, *n; 2313 bool first = true; 2314 2315 __set_current_state(TASK_RUNNING); 2316 list_del_init(&pwq->mayday_node); 2317 2318 spin_unlock_irq(&wq_mayday_lock); 2319 2320 worker_attach_to_pool(rescuer, pool); 2321 2322 spin_lock_irq(&pool->lock); 2323 rescuer->pool = pool; 2324 2325 /* 2326 * Slurp in all works issued via this workqueue and 2327 * process'em. 2328 */ 2329 WARN_ON_ONCE(!list_empty(scheduled)); 2330 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2331 if (get_work_pwq(work) == pwq) { 2332 if (first) 2333 pool->watchdog_ts = jiffies; 2334 move_linked_works(work, scheduled, &n); 2335 } 2336 first = false; 2337 } 2338 2339 if (!list_empty(scheduled)) { 2340 process_scheduled_works(rescuer); 2341 2342 /* 2343 * The above execution of rescued work items could 2344 * have created more to rescue through 2345 * pwq_activate_first_delayed() or chained 2346 * queueing. Let's put @pwq back on mayday list so 2347 * that such back-to-back work items, which may be 2348 * being used to relieve memory pressure, don't 2349 * incur MAYDAY_INTERVAL delay inbetween. 2350 */ 2351 if (need_to_create_worker(pool)) { 2352 spin_lock(&wq_mayday_lock); 2353 get_pwq(pwq); 2354 list_move_tail(&pwq->mayday_node, &wq->maydays); 2355 spin_unlock(&wq_mayday_lock); 2356 } 2357 } 2358 2359 /* 2360 * Put the reference grabbed by send_mayday(). @pool won't 2361 * go away while we're still attached to it. 2362 */ 2363 put_pwq(pwq); 2364 2365 /* 2366 * Leave this pool. If need_more_worker() is %true, notify a 2367 * regular worker; otherwise, we end up with 0 concurrency 2368 * and stalling the execution. 2369 */ 2370 if (need_more_worker(pool)) 2371 wake_up_worker(pool); 2372 2373 rescuer->pool = NULL; 2374 spin_unlock_irq(&pool->lock); 2375 2376 worker_detach_from_pool(rescuer, pool); 2377 2378 spin_lock_irq(&wq_mayday_lock); 2379 } 2380 2381 spin_unlock_irq(&wq_mayday_lock); 2382 2383 if (should_stop) { 2384 __set_current_state(TASK_RUNNING); 2385 rescuer->task->flags &= ~PF_WQ_WORKER; 2386 return 0; 2387 } 2388 2389 /* rescuers should never participate in concurrency management */ 2390 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2391 schedule(); 2392 goto repeat; 2393 } 2394 2395 /** 2396 * check_flush_dependency - check for flush dependency sanity 2397 * @target_wq: workqueue being flushed 2398 * @target_work: work item being flushed (NULL for workqueue flushes) 2399 * 2400 * %current is trying to flush the whole @target_wq or @target_work on it. 2401 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2402 * reclaiming memory or running on a workqueue which doesn't have 2403 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2404 * a deadlock. 2405 */ 2406 static void check_flush_dependency(struct workqueue_struct *target_wq, 2407 struct work_struct *target_work) 2408 { 2409 work_func_t target_func = target_work ? target_work->func : NULL; 2410 struct worker *worker; 2411 2412 if (target_wq->flags & WQ_MEM_RECLAIM) 2413 return; 2414 2415 worker = current_wq_worker(); 2416 2417 WARN_ONCE(current->flags & PF_MEMALLOC, 2418 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf", 2419 current->pid, current->comm, target_wq->name, target_func); 2420 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2421 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2422 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf", 2423 worker->current_pwq->wq->name, worker->current_func, 2424 target_wq->name, target_func); 2425 } 2426 2427 struct wq_barrier { 2428 struct work_struct work; 2429 struct completion done; 2430 struct task_struct *task; /* purely informational */ 2431 }; 2432 2433 static void wq_barrier_func(struct work_struct *work) 2434 { 2435 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2436 complete(&barr->done); 2437 } 2438 2439 /** 2440 * insert_wq_barrier - insert a barrier work 2441 * @pwq: pwq to insert barrier into 2442 * @barr: wq_barrier to insert 2443 * @target: target work to attach @barr to 2444 * @worker: worker currently executing @target, NULL if @target is not executing 2445 * 2446 * @barr is linked to @target such that @barr is completed only after 2447 * @target finishes execution. Please note that the ordering 2448 * guarantee is observed only with respect to @target and on the local 2449 * cpu. 2450 * 2451 * Currently, a queued barrier can't be canceled. This is because 2452 * try_to_grab_pending() can't determine whether the work to be 2453 * grabbed is at the head of the queue and thus can't clear LINKED 2454 * flag of the previous work while there must be a valid next work 2455 * after a work with LINKED flag set. 2456 * 2457 * Note that when @worker is non-NULL, @target may be modified 2458 * underneath us, so we can't reliably determine pwq from @target. 2459 * 2460 * CONTEXT: 2461 * spin_lock_irq(pool->lock). 2462 */ 2463 static void insert_wq_barrier(struct pool_workqueue *pwq, 2464 struct wq_barrier *barr, 2465 struct work_struct *target, struct worker *worker) 2466 { 2467 struct list_head *head; 2468 unsigned int linked = 0; 2469 2470 /* 2471 * debugobject calls are safe here even with pool->lock locked 2472 * as we know for sure that this will not trigger any of the 2473 * checks and call back into the fixup functions where we 2474 * might deadlock. 2475 */ 2476 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2477 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2478 init_completion(&barr->done); 2479 barr->task = current; 2480 2481 /* 2482 * If @target is currently being executed, schedule the 2483 * barrier to the worker; otherwise, put it after @target. 2484 */ 2485 if (worker) 2486 head = worker->scheduled.next; 2487 else { 2488 unsigned long *bits = work_data_bits(target); 2489 2490 head = target->entry.next; 2491 /* there can already be other linked works, inherit and set */ 2492 linked = *bits & WORK_STRUCT_LINKED; 2493 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2494 } 2495 2496 debug_work_activate(&barr->work); 2497 insert_work(pwq, &barr->work, head, 2498 work_color_to_flags(WORK_NO_COLOR) | linked); 2499 } 2500 2501 /** 2502 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2503 * @wq: workqueue being flushed 2504 * @flush_color: new flush color, < 0 for no-op 2505 * @work_color: new work color, < 0 for no-op 2506 * 2507 * Prepare pwqs for workqueue flushing. 2508 * 2509 * If @flush_color is non-negative, flush_color on all pwqs should be 2510 * -1. If no pwq has in-flight commands at the specified color, all 2511 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2512 * has in flight commands, its pwq->flush_color is set to 2513 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2514 * wakeup logic is armed and %true is returned. 2515 * 2516 * The caller should have initialized @wq->first_flusher prior to 2517 * calling this function with non-negative @flush_color. If 2518 * @flush_color is negative, no flush color update is done and %false 2519 * is returned. 2520 * 2521 * If @work_color is non-negative, all pwqs should have the same 2522 * work_color which is previous to @work_color and all will be 2523 * advanced to @work_color. 2524 * 2525 * CONTEXT: 2526 * mutex_lock(wq->mutex). 2527 * 2528 * Return: 2529 * %true if @flush_color >= 0 and there's something to flush. %false 2530 * otherwise. 2531 */ 2532 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2533 int flush_color, int work_color) 2534 { 2535 bool wait = false; 2536 struct pool_workqueue *pwq; 2537 2538 if (flush_color >= 0) { 2539 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2540 atomic_set(&wq->nr_pwqs_to_flush, 1); 2541 } 2542 2543 for_each_pwq(pwq, wq) { 2544 struct worker_pool *pool = pwq->pool; 2545 2546 spin_lock_irq(&pool->lock); 2547 2548 if (flush_color >= 0) { 2549 WARN_ON_ONCE(pwq->flush_color != -1); 2550 2551 if (pwq->nr_in_flight[flush_color]) { 2552 pwq->flush_color = flush_color; 2553 atomic_inc(&wq->nr_pwqs_to_flush); 2554 wait = true; 2555 } 2556 } 2557 2558 if (work_color >= 0) { 2559 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2560 pwq->work_color = work_color; 2561 } 2562 2563 spin_unlock_irq(&pool->lock); 2564 } 2565 2566 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2567 complete(&wq->first_flusher->done); 2568 2569 return wait; 2570 } 2571 2572 /** 2573 * flush_workqueue - ensure that any scheduled work has run to completion. 2574 * @wq: workqueue to flush 2575 * 2576 * This function sleeps until all work items which were queued on entry 2577 * have finished execution, but it is not livelocked by new incoming ones. 2578 */ 2579 void flush_workqueue(struct workqueue_struct *wq) 2580 { 2581 struct wq_flusher this_flusher = { 2582 .list = LIST_HEAD_INIT(this_flusher.list), 2583 .flush_color = -1, 2584 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2585 }; 2586 int next_color; 2587 2588 if (WARN_ON(!wq_online)) 2589 return; 2590 2591 lock_map_acquire(&wq->lockdep_map); 2592 lock_map_release(&wq->lockdep_map); 2593 2594 mutex_lock(&wq->mutex); 2595 2596 /* 2597 * Start-to-wait phase 2598 */ 2599 next_color = work_next_color(wq->work_color); 2600 2601 if (next_color != wq->flush_color) { 2602 /* 2603 * Color space is not full. The current work_color 2604 * becomes our flush_color and work_color is advanced 2605 * by one. 2606 */ 2607 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2608 this_flusher.flush_color = wq->work_color; 2609 wq->work_color = next_color; 2610 2611 if (!wq->first_flusher) { 2612 /* no flush in progress, become the first flusher */ 2613 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2614 2615 wq->first_flusher = &this_flusher; 2616 2617 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2618 wq->work_color)) { 2619 /* nothing to flush, done */ 2620 wq->flush_color = next_color; 2621 wq->first_flusher = NULL; 2622 goto out_unlock; 2623 } 2624 } else { 2625 /* wait in queue */ 2626 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2627 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2628 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2629 } 2630 } else { 2631 /* 2632 * Oops, color space is full, wait on overflow queue. 2633 * The next flush completion will assign us 2634 * flush_color and transfer to flusher_queue. 2635 */ 2636 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2637 } 2638 2639 check_flush_dependency(wq, NULL); 2640 2641 mutex_unlock(&wq->mutex); 2642 2643 wait_for_completion(&this_flusher.done); 2644 2645 /* 2646 * Wake-up-and-cascade phase 2647 * 2648 * First flushers are responsible for cascading flushes and 2649 * handling overflow. Non-first flushers can simply return. 2650 */ 2651 if (wq->first_flusher != &this_flusher) 2652 return; 2653 2654 mutex_lock(&wq->mutex); 2655 2656 /* we might have raced, check again with mutex held */ 2657 if (wq->first_flusher != &this_flusher) 2658 goto out_unlock; 2659 2660 wq->first_flusher = NULL; 2661 2662 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2663 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2664 2665 while (true) { 2666 struct wq_flusher *next, *tmp; 2667 2668 /* complete all the flushers sharing the current flush color */ 2669 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2670 if (next->flush_color != wq->flush_color) 2671 break; 2672 list_del_init(&next->list); 2673 complete(&next->done); 2674 } 2675 2676 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2677 wq->flush_color != work_next_color(wq->work_color)); 2678 2679 /* this flush_color is finished, advance by one */ 2680 wq->flush_color = work_next_color(wq->flush_color); 2681 2682 /* one color has been freed, handle overflow queue */ 2683 if (!list_empty(&wq->flusher_overflow)) { 2684 /* 2685 * Assign the same color to all overflowed 2686 * flushers, advance work_color and append to 2687 * flusher_queue. This is the start-to-wait 2688 * phase for these overflowed flushers. 2689 */ 2690 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2691 tmp->flush_color = wq->work_color; 2692 2693 wq->work_color = work_next_color(wq->work_color); 2694 2695 list_splice_tail_init(&wq->flusher_overflow, 2696 &wq->flusher_queue); 2697 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2698 } 2699 2700 if (list_empty(&wq->flusher_queue)) { 2701 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2702 break; 2703 } 2704 2705 /* 2706 * Need to flush more colors. Make the next flusher 2707 * the new first flusher and arm pwqs. 2708 */ 2709 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2710 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2711 2712 list_del_init(&next->list); 2713 wq->first_flusher = next; 2714 2715 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2716 break; 2717 2718 /* 2719 * Meh... this color is already done, clear first 2720 * flusher and repeat cascading. 2721 */ 2722 wq->first_flusher = NULL; 2723 } 2724 2725 out_unlock: 2726 mutex_unlock(&wq->mutex); 2727 } 2728 EXPORT_SYMBOL(flush_workqueue); 2729 2730 /** 2731 * drain_workqueue - drain a workqueue 2732 * @wq: workqueue to drain 2733 * 2734 * Wait until the workqueue becomes empty. While draining is in progress, 2735 * only chain queueing is allowed. IOW, only currently pending or running 2736 * work items on @wq can queue further work items on it. @wq is flushed 2737 * repeatedly until it becomes empty. The number of flushing is determined 2738 * by the depth of chaining and should be relatively short. Whine if it 2739 * takes too long. 2740 */ 2741 void drain_workqueue(struct workqueue_struct *wq) 2742 { 2743 unsigned int flush_cnt = 0; 2744 struct pool_workqueue *pwq; 2745 2746 /* 2747 * __queue_work() needs to test whether there are drainers, is much 2748 * hotter than drain_workqueue() and already looks at @wq->flags. 2749 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2750 */ 2751 mutex_lock(&wq->mutex); 2752 if (!wq->nr_drainers++) 2753 wq->flags |= __WQ_DRAINING; 2754 mutex_unlock(&wq->mutex); 2755 reflush: 2756 flush_workqueue(wq); 2757 2758 mutex_lock(&wq->mutex); 2759 2760 for_each_pwq(pwq, wq) { 2761 bool drained; 2762 2763 spin_lock_irq(&pwq->pool->lock); 2764 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2765 spin_unlock_irq(&pwq->pool->lock); 2766 2767 if (drained) 2768 continue; 2769 2770 if (++flush_cnt == 10 || 2771 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2772 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2773 wq->name, flush_cnt); 2774 2775 mutex_unlock(&wq->mutex); 2776 goto reflush; 2777 } 2778 2779 if (!--wq->nr_drainers) 2780 wq->flags &= ~__WQ_DRAINING; 2781 mutex_unlock(&wq->mutex); 2782 } 2783 EXPORT_SYMBOL_GPL(drain_workqueue); 2784 2785 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2786 { 2787 struct worker *worker = NULL; 2788 struct worker_pool *pool; 2789 struct pool_workqueue *pwq; 2790 2791 might_sleep(); 2792 2793 local_irq_disable(); 2794 pool = get_work_pool(work); 2795 if (!pool) { 2796 local_irq_enable(); 2797 return false; 2798 } 2799 2800 spin_lock(&pool->lock); 2801 /* see the comment in try_to_grab_pending() with the same code */ 2802 pwq = get_work_pwq(work); 2803 if (pwq) { 2804 if (unlikely(pwq->pool != pool)) 2805 goto already_gone; 2806 } else { 2807 worker = find_worker_executing_work(pool, work); 2808 if (!worker) 2809 goto already_gone; 2810 pwq = worker->current_pwq; 2811 } 2812 2813 check_flush_dependency(pwq->wq, work); 2814 2815 insert_wq_barrier(pwq, barr, work, worker); 2816 spin_unlock_irq(&pool->lock); 2817 2818 /* 2819 * If @max_active is 1 or rescuer is in use, flushing another work 2820 * item on the same workqueue may lead to deadlock. Make sure the 2821 * flusher is not running on the same workqueue by verifying write 2822 * access. 2823 */ 2824 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) 2825 lock_map_acquire(&pwq->wq->lockdep_map); 2826 else 2827 lock_map_acquire_read(&pwq->wq->lockdep_map); 2828 lock_map_release(&pwq->wq->lockdep_map); 2829 2830 return true; 2831 already_gone: 2832 spin_unlock_irq(&pool->lock); 2833 return false; 2834 } 2835 2836 /** 2837 * flush_work - wait for a work to finish executing the last queueing instance 2838 * @work: the work to flush 2839 * 2840 * Wait until @work has finished execution. @work is guaranteed to be idle 2841 * on return if it hasn't been requeued since flush started. 2842 * 2843 * Return: 2844 * %true if flush_work() waited for the work to finish execution, 2845 * %false if it was already idle. 2846 */ 2847 bool flush_work(struct work_struct *work) 2848 { 2849 struct wq_barrier barr; 2850 2851 if (WARN_ON(!wq_online)) 2852 return false; 2853 2854 lock_map_acquire(&work->lockdep_map); 2855 lock_map_release(&work->lockdep_map); 2856 2857 if (start_flush_work(work, &barr)) { 2858 wait_for_completion(&barr.done); 2859 destroy_work_on_stack(&barr.work); 2860 return true; 2861 } else { 2862 return false; 2863 } 2864 } 2865 EXPORT_SYMBOL_GPL(flush_work); 2866 2867 struct cwt_wait { 2868 wait_queue_t wait; 2869 struct work_struct *work; 2870 }; 2871 2872 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key) 2873 { 2874 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 2875 2876 if (cwait->work != key) 2877 return 0; 2878 return autoremove_wake_function(wait, mode, sync, key); 2879 } 2880 2881 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2882 { 2883 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 2884 unsigned long flags; 2885 int ret; 2886 2887 do { 2888 ret = try_to_grab_pending(work, is_dwork, &flags); 2889 /* 2890 * If someone else is already canceling, wait for it to 2891 * finish. flush_work() doesn't work for PREEMPT_NONE 2892 * because we may get scheduled between @work's completion 2893 * and the other canceling task resuming and clearing 2894 * CANCELING - flush_work() will return false immediately 2895 * as @work is no longer busy, try_to_grab_pending() will 2896 * return -ENOENT as @work is still being canceled and the 2897 * other canceling task won't be able to clear CANCELING as 2898 * we're hogging the CPU. 2899 * 2900 * Let's wait for completion using a waitqueue. As this 2901 * may lead to the thundering herd problem, use a custom 2902 * wake function which matches @work along with exclusive 2903 * wait and wakeup. 2904 */ 2905 if (unlikely(ret == -ENOENT)) { 2906 struct cwt_wait cwait; 2907 2908 init_wait(&cwait.wait); 2909 cwait.wait.func = cwt_wakefn; 2910 cwait.work = work; 2911 2912 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 2913 TASK_UNINTERRUPTIBLE); 2914 if (work_is_canceling(work)) 2915 schedule(); 2916 finish_wait(&cancel_waitq, &cwait.wait); 2917 } 2918 } while (unlikely(ret < 0)); 2919 2920 /* tell other tasks trying to grab @work to back off */ 2921 mark_work_canceling(work); 2922 local_irq_restore(flags); 2923 2924 /* 2925 * This allows canceling during early boot. We know that @work 2926 * isn't executing. 2927 */ 2928 if (wq_online) 2929 flush_work(work); 2930 2931 clear_work_data(work); 2932 2933 /* 2934 * Paired with prepare_to_wait() above so that either 2935 * waitqueue_active() is visible here or !work_is_canceling() is 2936 * visible there. 2937 */ 2938 smp_mb(); 2939 if (waitqueue_active(&cancel_waitq)) 2940 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 2941 2942 return ret; 2943 } 2944 2945 /** 2946 * cancel_work_sync - cancel a work and wait for it to finish 2947 * @work: the work to cancel 2948 * 2949 * Cancel @work and wait for its execution to finish. This function 2950 * can be used even if the work re-queues itself or migrates to 2951 * another workqueue. On return from this function, @work is 2952 * guaranteed to be not pending or executing on any CPU. 2953 * 2954 * cancel_work_sync(&delayed_work->work) must not be used for 2955 * delayed_work's. Use cancel_delayed_work_sync() instead. 2956 * 2957 * The caller must ensure that the workqueue on which @work was last 2958 * queued can't be destroyed before this function returns. 2959 * 2960 * Return: 2961 * %true if @work was pending, %false otherwise. 2962 */ 2963 bool cancel_work_sync(struct work_struct *work) 2964 { 2965 return __cancel_work_timer(work, false); 2966 } 2967 EXPORT_SYMBOL_GPL(cancel_work_sync); 2968 2969 /** 2970 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2971 * @dwork: the delayed work to flush 2972 * 2973 * Delayed timer is cancelled and the pending work is queued for 2974 * immediate execution. Like flush_work(), this function only 2975 * considers the last queueing instance of @dwork. 2976 * 2977 * Return: 2978 * %true if flush_work() waited for the work to finish execution, 2979 * %false if it was already idle. 2980 */ 2981 bool flush_delayed_work(struct delayed_work *dwork) 2982 { 2983 local_irq_disable(); 2984 if (del_timer_sync(&dwork->timer)) 2985 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2986 local_irq_enable(); 2987 return flush_work(&dwork->work); 2988 } 2989 EXPORT_SYMBOL(flush_delayed_work); 2990 2991 static bool __cancel_work(struct work_struct *work, bool is_dwork) 2992 { 2993 unsigned long flags; 2994 int ret; 2995 2996 do { 2997 ret = try_to_grab_pending(work, is_dwork, &flags); 2998 } while (unlikely(ret == -EAGAIN)); 2999 3000 if (unlikely(ret < 0)) 3001 return false; 3002 3003 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3004 local_irq_restore(flags); 3005 return ret; 3006 } 3007 3008 /* 3009 * See cancel_delayed_work() 3010 */ 3011 bool cancel_work(struct work_struct *work) 3012 { 3013 return __cancel_work(work, false); 3014 } 3015 3016 /** 3017 * cancel_delayed_work - cancel a delayed work 3018 * @dwork: delayed_work to cancel 3019 * 3020 * Kill off a pending delayed_work. 3021 * 3022 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3023 * pending. 3024 * 3025 * Note: 3026 * The work callback function may still be running on return, unless 3027 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3028 * use cancel_delayed_work_sync() to wait on it. 3029 * 3030 * This function is safe to call from any context including IRQ handler. 3031 */ 3032 bool cancel_delayed_work(struct delayed_work *dwork) 3033 { 3034 return __cancel_work(&dwork->work, true); 3035 } 3036 EXPORT_SYMBOL(cancel_delayed_work); 3037 3038 /** 3039 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3040 * @dwork: the delayed work cancel 3041 * 3042 * This is cancel_work_sync() for delayed works. 3043 * 3044 * Return: 3045 * %true if @dwork was pending, %false otherwise. 3046 */ 3047 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3048 { 3049 return __cancel_work_timer(&dwork->work, true); 3050 } 3051 EXPORT_SYMBOL(cancel_delayed_work_sync); 3052 3053 /** 3054 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3055 * @func: the function to call 3056 * 3057 * schedule_on_each_cpu() executes @func on each online CPU using the 3058 * system workqueue and blocks until all CPUs have completed. 3059 * schedule_on_each_cpu() is very slow. 3060 * 3061 * Return: 3062 * 0 on success, -errno on failure. 3063 */ 3064 int schedule_on_each_cpu(work_func_t func) 3065 { 3066 int cpu; 3067 struct work_struct __percpu *works; 3068 3069 works = alloc_percpu(struct work_struct); 3070 if (!works) 3071 return -ENOMEM; 3072 3073 get_online_cpus(); 3074 3075 for_each_online_cpu(cpu) { 3076 struct work_struct *work = per_cpu_ptr(works, cpu); 3077 3078 INIT_WORK(work, func); 3079 schedule_work_on(cpu, work); 3080 } 3081 3082 for_each_online_cpu(cpu) 3083 flush_work(per_cpu_ptr(works, cpu)); 3084 3085 put_online_cpus(); 3086 free_percpu(works); 3087 return 0; 3088 } 3089 3090 /** 3091 * execute_in_process_context - reliably execute the routine with user context 3092 * @fn: the function to execute 3093 * @ew: guaranteed storage for the execute work structure (must 3094 * be available when the work executes) 3095 * 3096 * Executes the function immediately if process context is available, 3097 * otherwise schedules the function for delayed execution. 3098 * 3099 * Return: 0 - function was executed 3100 * 1 - function was scheduled for execution 3101 */ 3102 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3103 { 3104 if (!in_interrupt()) { 3105 fn(&ew->work); 3106 return 0; 3107 } 3108 3109 INIT_WORK(&ew->work, fn); 3110 schedule_work(&ew->work); 3111 3112 return 1; 3113 } 3114 EXPORT_SYMBOL_GPL(execute_in_process_context); 3115 3116 /** 3117 * free_workqueue_attrs - free a workqueue_attrs 3118 * @attrs: workqueue_attrs to free 3119 * 3120 * Undo alloc_workqueue_attrs(). 3121 */ 3122 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3123 { 3124 if (attrs) { 3125 free_cpumask_var(attrs->cpumask); 3126 kfree(attrs); 3127 } 3128 } 3129 3130 /** 3131 * alloc_workqueue_attrs - allocate a workqueue_attrs 3132 * @gfp_mask: allocation mask to use 3133 * 3134 * Allocate a new workqueue_attrs, initialize with default settings and 3135 * return it. 3136 * 3137 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3138 */ 3139 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3140 { 3141 struct workqueue_attrs *attrs; 3142 3143 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3144 if (!attrs) 3145 goto fail; 3146 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3147 goto fail; 3148 3149 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3150 return attrs; 3151 fail: 3152 free_workqueue_attrs(attrs); 3153 return NULL; 3154 } 3155 3156 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3157 const struct workqueue_attrs *from) 3158 { 3159 to->nice = from->nice; 3160 cpumask_copy(to->cpumask, from->cpumask); 3161 /* 3162 * Unlike hash and equality test, this function doesn't ignore 3163 * ->no_numa as it is used for both pool and wq attrs. Instead, 3164 * get_unbound_pool() explicitly clears ->no_numa after copying. 3165 */ 3166 to->no_numa = from->no_numa; 3167 } 3168 3169 /* hash value of the content of @attr */ 3170 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3171 { 3172 u32 hash = 0; 3173 3174 hash = jhash_1word(attrs->nice, hash); 3175 hash = jhash(cpumask_bits(attrs->cpumask), 3176 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3177 return hash; 3178 } 3179 3180 /* content equality test */ 3181 static bool wqattrs_equal(const struct workqueue_attrs *a, 3182 const struct workqueue_attrs *b) 3183 { 3184 if (a->nice != b->nice) 3185 return false; 3186 if (!cpumask_equal(a->cpumask, b->cpumask)) 3187 return false; 3188 return true; 3189 } 3190 3191 /** 3192 * init_worker_pool - initialize a newly zalloc'd worker_pool 3193 * @pool: worker_pool to initialize 3194 * 3195 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3196 * 3197 * Return: 0 on success, -errno on failure. Even on failure, all fields 3198 * inside @pool proper are initialized and put_unbound_pool() can be called 3199 * on @pool safely to release it. 3200 */ 3201 static int init_worker_pool(struct worker_pool *pool) 3202 { 3203 spin_lock_init(&pool->lock); 3204 pool->id = -1; 3205 pool->cpu = -1; 3206 pool->node = NUMA_NO_NODE; 3207 pool->flags |= POOL_DISASSOCIATED; 3208 pool->watchdog_ts = jiffies; 3209 INIT_LIST_HEAD(&pool->worklist); 3210 INIT_LIST_HEAD(&pool->idle_list); 3211 hash_init(pool->busy_hash); 3212 3213 init_timer_deferrable(&pool->idle_timer); 3214 pool->idle_timer.function = idle_worker_timeout; 3215 pool->idle_timer.data = (unsigned long)pool; 3216 3217 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3218 (unsigned long)pool); 3219 3220 mutex_init(&pool->manager_arb); 3221 mutex_init(&pool->attach_mutex); 3222 INIT_LIST_HEAD(&pool->workers); 3223 3224 ida_init(&pool->worker_ida); 3225 INIT_HLIST_NODE(&pool->hash_node); 3226 pool->refcnt = 1; 3227 3228 /* shouldn't fail above this point */ 3229 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3230 if (!pool->attrs) 3231 return -ENOMEM; 3232 return 0; 3233 } 3234 3235 static void rcu_free_wq(struct rcu_head *rcu) 3236 { 3237 struct workqueue_struct *wq = 3238 container_of(rcu, struct workqueue_struct, rcu); 3239 3240 if (!(wq->flags & WQ_UNBOUND)) 3241 free_percpu(wq->cpu_pwqs); 3242 else 3243 free_workqueue_attrs(wq->unbound_attrs); 3244 3245 kfree(wq->rescuer); 3246 kfree(wq); 3247 } 3248 3249 static void rcu_free_pool(struct rcu_head *rcu) 3250 { 3251 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3252 3253 ida_destroy(&pool->worker_ida); 3254 free_workqueue_attrs(pool->attrs); 3255 kfree(pool); 3256 } 3257 3258 /** 3259 * put_unbound_pool - put a worker_pool 3260 * @pool: worker_pool to put 3261 * 3262 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3263 * safe manner. get_unbound_pool() calls this function on its failure path 3264 * and this function should be able to release pools which went through, 3265 * successfully or not, init_worker_pool(). 3266 * 3267 * Should be called with wq_pool_mutex held. 3268 */ 3269 static void put_unbound_pool(struct worker_pool *pool) 3270 { 3271 DECLARE_COMPLETION_ONSTACK(detach_completion); 3272 struct worker *worker; 3273 3274 lockdep_assert_held(&wq_pool_mutex); 3275 3276 if (--pool->refcnt) 3277 return; 3278 3279 /* sanity checks */ 3280 if (WARN_ON(!(pool->cpu < 0)) || 3281 WARN_ON(!list_empty(&pool->worklist))) 3282 return; 3283 3284 /* release id and unhash */ 3285 if (pool->id >= 0) 3286 idr_remove(&worker_pool_idr, pool->id); 3287 hash_del(&pool->hash_node); 3288 3289 /* 3290 * Become the manager and destroy all workers. Grabbing 3291 * manager_arb prevents @pool's workers from blocking on 3292 * attach_mutex. 3293 */ 3294 mutex_lock(&pool->manager_arb); 3295 3296 spin_lock_irq(&pool->lock); 3297 while ((worker = first_idle_worker(pool))) 3298 destroy_worker(worker); 3299 WARN_ON(pool->nr_workers || pool->nr_idle); 3300 spin_unlock_irq(&pool->lock); 3301 3302 mutex_lock(&pool->attach_mutex); 3303 if (!list_empty(&pool->workers)) 3304 pool->detach_completion = &detach_completion; 3305 mutex_unlock(&pool->attach_mutex); 3306 3307 if (pool->detach_completion) 3308 wait_for_completion(pool->detach_completion); 3309 3310 mutex_unlock(&pool->manager_arb); 3311 3312 /* shut down the timers */ 3313 del_timer_sync(&pool->idle_timer); 3314 del_timer_sync(&pool->mayday_timer); 3315 3316 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3317 call_rcu_sched(&pool->rcu, rcu_free_pool); 3318 } 3319 3320 /** 3321 * get_unbound_pool - get a worker_pool with the specified attributes 3322 * @attrs: the attributes of the worker_pool to get 3323 * 3324 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3325 * reference count and return it. If there already is a matching 3326 * worker_pool, it will be used; otherwise, this function attempts to 3327 * create a new one. 3328 * 3329 * Should be called with wq_pool_mutex held. 3330 * 3331 * Return: On success, a worker_pool with the same attributes as @attrs. 3332 * On failure, %NULL. 3333 */ 3334 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3335 { 3336 u32 hash = wqattrs_hash(attrs); 3337 struct worker_pool *pool; 3338 int node; 3339 int target_node = NUMA_NO_NODE; 3340 3341 lockdep_assert_held(&wq_pool_mutex); 3342 3343 /* do we already have a matching pool? */ 3344 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3345 if (wqattrs_equal(pool->attrs, attrs)) { 3346 pool->refcnt++; 3347 return pool; 3348 } 3349 } 3350 3351 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3352 if (wq_numa_enabled) { 3353 for_each_node(node) { 3354 if (cpumask_subset(attrs->cpumask, 3355 wq_numa_possible_cpumask[node])) { 3356 target_node = node; 3357 break; 3358 } 3359 } 3360 } 3361 3362 /* nope, create a new one */ 3363 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3364 if (!pool || init_worker_pool(pool) < 0) 3365 goto fail; 3366 3367 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3368 copy_workqueue_attrs(pool->attrs, attrs); 3369 pool->node = target_node; 3370 3371 /* 3372 * no_numa isn't a worker_pool attribute, always clear it. See 3373 * 'struct workqueue_attrs' comments for detail. 3374 */ 3375 pool->attrs->no_numa = false; 3376 3377 if (worker_pool_assign_id(pool) < 0) 3378 goto fail; 3379 3380 /* create and start the initial worker */ 3381 if (wq_online && !create_worker(pool)) 3382 goto fail; 3383 3384 /* install */ 3385 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3386 3387 return pool; 3388 fail: 3389 if (pool) 3390 put_unbound_pool(pool); 3391 return NULL; 3392 } 3393 3394 static void rcu_free_pwq(struct rcu_head *rcu) 3395 { 3396 kmem_cache_free(pwq_cache, 3397 container_of(rcu, struct pool_workqueue, rcu)); 3398 } 3399 3400 /* 3401 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3402 * and needs to be destroyed. 3403 */ 3404 static void pwq_unbound_release_workfn(struct work_struct *work) 3405 { 3406 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3407 unbound_release_work); 3408 struct workqueue_struct *wq = pwq->wq; 3409 struct worker_pool *pool = pwq->pool; 3410 bool is_last; 3411 3412 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3413 return; 3414 3415 mutex_lock(&wq->mutex); 3416 list_del_rcu(&pwq->pwqs_node); 3417 is_last = list_empty(&wq->pwqs); 3418 mutex_unlock(&wq->mutex); 3419 3420 mutex_lock(&wq_pool_mutex); 3421 put_unbound_pool(pool); 3422 mutex_unlock(&wq_pool_mutex); 3423 3424 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3425 3426 /* 3427 * If we're the last pwq going away, @wq is already dead and no one 3428 * is gonna access it anymore. Schedule RCU free. 3429 */ 3430 if (is_last) 3431 call_rcu_sched(&wq->rcu, rcu_free_wq); 3432 } 3433 3434 /** 3435 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3436 * @pwq: target pool_workqueue 3437 * 3438 * If @pwq isn't freezing, set @pwq->max_active to the associated 3439 * workqueue's saved_max_active and activate delayed work items 3440 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3441 */ 3442 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3443 { 3444 struct workqueue_struct *wq = pwq->wq; 3445 bool freezable = wq->flags & WQ_FREEZABLE; 3446 unsigned long flags; 3447 3448 /* for @wq->saved_max_active */ 3449 lockdep_assert_held(&wq->mutex); 3450 3451 /* fast exit for non-freezable wqs */ 3452 if (!freezable && pwq->max_active == wq->saved_max_active) 3453 return; 3454 3455 /* this function can be called during early boot w/ irq disabled */ 3456 spin_lock_irqsave(&pwq->pool->lock, flags); 3457 3458 /* 3459 * During [un]freezing, the caller is responsible for ensuring that 3460 * this function is called at least once after @workqueue_freezing 3461 * is updated and visible. 3462 */ 3463 if (!freezable || !workqueue_freezing) { 3464 pwq->max_active = wq->saved_max_active; 3465 3466 while (!list_empty(&pwq->delayed_works) && 3467 pwq->nr_active < pwq->max_active) 3468 pwq_activate_first_delayed(pwq); 3469 3470 /* 3471 * Need to kick a worker after thawed or an unbound wq's 3472 * max_active is bumped. It's a slow path. Do it always. 3473 */ 3474 wake_up_worker(pwq->pool); 3475 } else { 3476 pwq->max_active = 0; 3477 } 3478 3479 spin_unlock_irqrestore(&pwq->pool->lock, flags); 3480 } 3481 3482 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3483 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3484 struct worker_pool *pool) 3485 { 3486 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3487 3488 memset(pwq, 0, sizeof(*pwq)); 3489 3490 pwq->pool = pool; 3491 pwq->wq = wq; 3492 pwq->flush_color = -1; 3493 pwq->refcnt = 1; 3494 INIT_LIST_HEAD(&pwq->delayed_works); 3495 INIT_LIST_HEAD(&pwq->pwqs_node); 3496 INIT_LIST_HEAD(&pwq->mayday_node); 3497 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3498 } 3499 3500 /* sync @pwq with the current state of its associated wq and link it */ 3501 static void link_pwq(struct pool_workqueue *pwq) 3502 { 3503 struct workqueue_struct *wq = pwq->wq; 3504 3505 lockdep_assert_held(&wq->mutex); 3506 3507 /* may be called multiple times, ignore if already linked */ 3508 if (!list_empty(&pwq->pwqs_node)) 3509 return; 3510 3511 /* set the matching work_color */ 3512 pwq->work_color = wq->work_color; 3513 3514 /* sync max_active to the current setting */ 3515 pwq_adjust_max_active(pwq); 3516 3517 /* link in @pwq */ 3518 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3519 } 3520 3521 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3522 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3523 const struct workqueue_attrs *attrs) 3524 { 3525 struct worker_pool *pool; 3526 struct pool_workqueue *pwq; 3527 3528 lockdep_assert_held(&wq_pool_mutex); 3529 3530 pool = get_unbound_pool(attrs); 3531 if (!pool) 3532 return NULL; 3533 3534 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3535 if (!pwq) { 3536 put_unbound_pool(pool); 3537 return NULL; 3538 } 3539 3540 init_pwq(pwq, wq, pool); 3541 return pwq; 3542 } 3543 3544 /** 3545 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3546 * @attrs: the wq_attrs of the default pwq of the target workqueue 3547 * @node: the target NUMA node 3548 * @cpu_going_down: if >= 0, the CPU to consider as offline 3549 * @cpumask: outarg, the resulting cpumask 3550 * 3551 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3552 * @cpu_going_down is >= 0, that cpu is considered offline during 3553 * calculation. The result is stored in @cpumask. 3554 * 3555 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3556 * enabled and @node has online CPUs requested by @attrs, the returned 3557 * cpumask is the intersection of the possible CPUs of @node and 3558 * @attrs->cpumask. 3559 * 3560 * The caller is responsible for ensuring that the cpumask of @node stays 3561 * stable. 3562 * 3563 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3564 * %false if equal. 3565 */ 3566 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3567 int cpu_going_down, cpumask_t *cpumask) 3568 { 3569 if (!wq_numa_enabled || attrs->no_numa) 3570 goto use_dfl; 3571 3572 /* does @node have any online CPUs @attrs wants? */ 3573 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3574 if (cpu_going_down >= 0) 3575 cpumask_clear_cpu(cpu_going_down, cpumask); 3576 3577 if (cpumask_empty(cpumask)) 3578 goto use_dfl; 3579 3580 /* yeap, return possible CPUs in @node that @attrs wants */ 3581 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3582 return !cpumask_equal(cpumask, attrs->cpumask); 3583 3584 use_dfl: 3585 cpumask_copy(cpumask, attrs->cpumask); 3586 return false; 3587 } 3588 3589 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3590 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3591 int node, 3592 struct pool_workqueue *pwq) 3593 { 3594 struct pool_workqueue *old_pwq; 3595 3596 lockdep_assert_held(&wq_pool_mutex); 3597 lockdep_assert_held(&wq->mutex); 3598 3599 /* link_pwq() can handle duplicate calls */ 3600 link_pwq(pwq); 3601 3602 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3603 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3604 return old_pwq; 3605 } 3606 3607 /* context to store the prepared attrs & pwqs before applying */ 3608 struct apply_wqattrs_ctx { 3609 struct workqueue_struct *wq; /* target workqueue */ 3610 struct workqueue_attrs *attrs; /* attrs to apply */ 3611 struct list_head list; /* queued for batching commit */ 3612 struct pool_workqueue *dfl_pwq; 3613 struct pool_workqueue *pwq_tbl[]; 3614 }; 3615 3616 /* free the resources after success or abort */ 3617 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3618 { 3619 if (ctx) { 3620 int node; 3621 3622 for_each_node(node) 3623 put_pwq_unlocked(ctx->pwq_tbl[node]); 3624 put_pwq_unlocked(ctx->dfl_pwq); 3625 3626 free_workqueue_attrs(ctx->attrs); 3627 3628 kfree(ctx); 3629 } 3630 } 3631 3632 /* allocate the attrs and pwqs for later installation */ 3633 static struct apply_wqattrs_ctx * 3634 apply_wqattrs_prepare(struct workqueue_struct *wq, 3635 const struct workqueue_attrs *attrs) 3636 { 3637 struct apply_wqattrs_ctx *ctx; 3638 struct workqueue_attrs *new_attrs, *tmp_attrs; 3639 int node; 3640 3641 lockdep_assert_held(&wq_pool_mutex); 3642 3643 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]), 3644 GFP_KERNEL); 3645 3646 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3647 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3648 if (!ctx || !new_attrs || !tmp_attrs) 3649 goto out_free; 3650 3651 /* 3652 * Calculate the attrs of the default pwq. 3653 * If the user configured cpumask doesn't overlap with the 3654 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3655 */ 3656 copy_workqueue_attrs(new_attrs, attrs); 3657 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3658 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3659 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3660 3661 /* 3662 * We may create multiple pwqs with differing cpumasks. Make a 3663 * copy of @new_attrs which will be modified and used to obtain 3664 * pools. 3665 */ 3666 copy_workqueue_attrs(tmp_attrs, new_attrs); 3667 3668 /* 3669 * If something goes wrong during CPU up/down, we'll fall back to 3670 * the default pwq covering whole @attrs->cpumask. Always create 3671 * it even if we don't use it immediately. 3672 */ 3673 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3674 if (!ctx->dfl_pwq) 3675 goto out_free; 3676 3677 for_each_node(node) { 3678 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3679 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3680 if (!ctx->pwq_tbl[node]) 3681 goto out_free; 3682 } else { 3683 ctx->dfl_pwq->refcnt++; 3684 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3685 } 3686 } 3687 3688 /* save the user configured attrs and sanitize it. */ 3689 copy_workqueue_attrs(new_attrs, attrs); 3690 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3691 ctx->attrs = new_attrs; 3692 3693 ctx->wq = wq; 3694 free_workqueue_attrs(tmp_attrs); 3695 return ctx; 3696 3697 out_free: 3698 free_workqueue_attrs(tmp_attrs); 3699 free_workqueue_attrs(new_attrs); 3700 apply_wqattrs_cleanup(ctx); 3701 return NULL; 3702 } 3703 3704 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3705 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3706 { 3707 int node; 3708 3709 /* all pwqs have been created successfully, let's install'em */ 3710 mutex_lock(&ctx->wq->mutex); 3711 3712 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3713 3714 /* save the previous pwq and install the new one */ 3715 for_each_node(node) 3716 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3717 ctx->pwq_tbl[node]); 3718 3719 /* @dfl_pwq might not have been used, ensure it's linked */ 3720 link_pwq(ctx->dfl_pwq); 3721 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3722 3723 mutex_unlock(&ctx->wq->mutex); 3724 } 3725 3726 static void apply_wqattrs_lock(void) 3727 { 3728 /* CPUs should stay stable across pwq creations and installations */ 3729 get_online_cpus(); 3730 mutex_lock(&wq_pool_mutex); 3731 } 3732 3733 static void apply_wqattrs_unlock(void) 3734 { 3735 mutex_unlock(&wq_pool_mutex); 3736 put_online_cpus(); 3737 } 3738 3739 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3740 const struct workqueue_attrs *attrs) 3741 { 3742 struct apply_wqattrs_ctx *ctx; 3743 3744 /* only unbound workqueues can change attributes */ 3745 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3746 return -EINVAL; 3747 3748 /* creating multiple pwqs breaks ordering guarantee */ 3749 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) 3750 return -EINVAL; 3751 3752 ctx = apply_wqattrs_prepare(wq, attrs); 3753 if (!ctx) 3754 return -ENOMEM; 3755 3756 /* the ctx has been prepared successfully, let's commit it */ 3757 apply_wqattrs_commit(ctx); 3758 apply_wqattrs_cleanup(ctx); 3759 3760 return 0; 3761 } 3762 3763 /** 3764 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3765 * @wq: the target workqueue 3766 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3767 * 3768 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3769 * machines, this function maps a separate pwq to each NUMA node with 3770 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3771 * NUMA node it was issued on. Older pwqs are released as in-flight work 3772 * items finish. Note that a work item which repeatedly requeues itself 3773 * back-to-back will stay on its current pwq. 3774 * 3775 * Performs GFP_KERNEL allocations. 3776 * 3777 * Return: 0 on success and -errno on failure. 3778 */ 3779 int apply_workqueue_attrs(struct workqueue_struct *wq, 3780 const struct workqueue_attrs *attrs) 3781 { 3782 int ret; 3783 3784 apply_wqattrs_lock(); 3785 ret = apply_workqueue_attrs_locked(wq, attrs); 3786 apply_wqattrs_unlock(); 3787 3788 return ret; 3789 } 3790 3791 /** 3792 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3793 * @wq: the target workqueue 3794 * @cpu: the CPU coming up or going down 3795 * @online: whether @cpu is coming up or going down 3796 * 3797 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3798 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3799 * @wq accordingly. 3800 * 3801 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3802 * falls back to @wq->dfl_pwq which may not be optimal but is always 3803 * correct. 3804 * 3805 * Note that when the last allowed CPU of a NUMA node goes offline for a 3806 * workqueue with a cpumask spanning multiple nodes, the workers which were 3807 * already executing the work items for the workqueue will lose their CPU 3808 * affinity and may execute on any CPU. This is similar to how per-cpu 3809 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3810 * affinity, it's the user's responsibility to flush the work item from 3811 * CPU_DOWN_PREPARE. 3812 */ 3813 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3814 bool online) 3815 { 3816 int node = cpu_to_node(cpu); 3817 int cpu_off = online ? -1 : cpu; 3818 struct pool_workqueue *old_pwq = NULL, *pwq; 3819 struct workqueue_attrs *target_attrs; 3820 cpumask_t *cpumask; 3821 3822 lockdep_assert_held(&wq_pool_mutex); 3823 3824 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 3825 wq->unbound_attrs->no_numa) 3826 return; 3827 3828 /* 3829 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3830 * Let's use a preallocated one. The following buf is protected by 3831 * CPU hotplug exclusion. 3832 */ 3833 target_attrs = wq_update_unbound_numa_attrs_buf; 3834 cpumask = target_attrs->cpumask; 3835 3836 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3837 pwq = unbound_pwq_by_node(wq, node); 3838 3839 /* 3840 * Let's determine what needs to be done. If the target cpumask is 3841 * different from the default pwq's, we need to compare it to @pwq's 3842 * and create a new one if they don't match. If the target cpumask 3843 * equals the default pwq's, the default pwq should be used. 3844 */ 3845 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 3846 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 3847 return; 3848 } else { 3849 goto use_dfl_pwq; 3850 } 3851 3852 /* create a new pwq */ 3853 pwq = alloc_unbound_pwq(wq, target_attrs); 3854 if (!pwq) { 3855 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 3856 wq->name); 3857 goto use_dfl_pwq; 3858 } 3859 3860 /* Install the new pwq. */ 3861 mutex_lock(&wq->mutex); 3862 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 3863 goto out_unlock; 3864 3865 use_dfl_pwq: 3866 mutex_lock(&wq->mutex); 3867 spin_lock_irq(&wq->dfl_pwq->pool->lock); 3868 get_pwq(wq->dfl_pwq); 3869 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 3870 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 3871 out_unlock: 3872 mutex_unlock(&wq->mutex); 3873 put_pwq_unlocked(old_pwq); 3874 } 3875 3876 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 3877 { 3878 bool highpri = wq->flags & WQ_HIGHPRI; 3879 int cpu, ret; 3880 3881 if (!(wq->flags & WQ_UNBOUND)) { 3882 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 3883 if (!wq->cpu_pwqs) 3884 return -ENOMEM; 3885 3886 for_each_possible_cpu(cpu) { 3887 struct pool_workqueue *pwq = 3888 per_cpu_ptr(wq->cpu_pwqs, cpu); 3889 struct worker_pool *cpu_pools = 3890 per_cpu(cpu_worker_pools, cpu); 3891 3892 init_pwq(pwq, wq, &cpu_pools[highpri]); 3893 3894 mutex_lock(&wq->mutex); 3895 link_pwq(pwq); 3896 mutex_unlock(&wq->mutex); 3897 } 3898 return 0; 3899 } else if (wq->flags & __WQ_ORDERED) { 3900 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 3901 /* there should only be single pwq for ordering guarantee */ 3902 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 3903 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 3904 "ordering guarantee broken for workqueue %s\n", wq->name); 3905 return ret; 3906 } else { 3907 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 3908 } 3909 } 3910 3911 static int wq_clamp_max_active(int max_active, unsigned int flags, 3912 const char *name) 3913 { 3914 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 3915 3916 if (max_active < 1 || max_active > lim) 3917 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 3918 max_active, name, 1, lim); 3919 3920 return clamp_val(max_active, 1, lim); 3921 } 3922 3923 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 3924 unsigned int flags, 3925 int max_active, 3926 struct lock_class_key *key, 3927 const char *lock_name, ...) 3928 { 3929 size_t tbl_size = 0; 3930 va_list args; 3931 struct workqueue_struct *wq; 3932 struct pool_workqueue *pwq; 3933 3934 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 3935 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 3936 flags |= WQ_UNBOUND; 3937 3938 /* allocate wq and format name */ 3939 if (flags & WQ_UNBOUND) 3940 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 3941 3942 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 3943 if (!wq) 3944 return NULL; 3945 3946 if (flags & WQ_UNBOUND) { 3947 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3948 if (!wq->unbound_attrs) 3949 goto err_free_wq; 3950 } 3951 3952 va_start(args, lock_name); 3953 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 3954 va_end(args); 3955 3956 max_active = max_active ?: WQ_DFL_ACTIVE; 3957 max_active = wq_clamp_max_active(max_active, flags, wq->name); 3958 3959 /* init wq */ 3960 wq->flags = flags; 3961 wq->saved_max_active = max_active; 3962 mutex_init(&wq->mutex); 3963 atomic_set(&wq->nr_pwqs_to_flush, 0); 3964 INIT_LIST_HEAD(&wq->pwqs); 3965 INIT_LIST_HEAD(&wq->flusher_queue); 3966 INIT_LIST_HEAD(&wq->flusher_overflow); 3967 INIT_LIST_HEAD(&wq->maydays); 3968 3969 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 3970 INIT_LIST_HEAD(&wq->list); 3971 3972 if (alloc_and_link_pwqs(wq) < 0) 3973 goto err_free_wq; 3974 3975 /* 3976 * Workqueues which may be used during memory reclaim should 3977 * have a rescuer to guarantee forward progress. 3978 */ 3979 if (flags & WQ_MEM_RECLAIM) { 3980 struct worker *rescuer; 3981 3982 rescuer = alloc_worker(NUMA_NO_NODE); 3983 if (!rescuer) 3984 goto err_destroy; 3985 3986 rescuer->rescue_wq = wq; 3987 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 3988 wq->name); 3989 if (IS_ERR(rescuer->task)) { 3990 kfree(rescuer); 3991 goto err_destroy; 3992 } 3993 3994 wq->rescuer = rescuer; 3995 kthread_bind_mask(rescuer->task, cpu_possible_mask); 3996 wake_up_process(rescuer->task); 3997 } 3998 3999 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4000 goto err_destroy; 4001 4002 /* 4003 * wq_pool_mutex protects global freeze state and workqueues list. 4004 * Grab it, adjust max_active and add the new @wq to workqueues 4005 * list. 4006 */ 4007 mutex_lock(&wq_pool_mutex); 4008 4009 mutex_lock(&wq->mutex); 4010 for_each_pwq(pwq, wq) 4011 pwq_adjust_max_active(pwq); 4012 mutex_unlock(&wq->mutex); 4013 4014 list_add_tail_rcu(&wq->list, &workqueues); 4015 4016 mutex_unlock(&wq_pool_mutex); 4017 4018 return wq; 4019 4020 err_free_wq: 4021 free_workqueue_attrs(wq->unbound_attrs); 4022 kfree(wq); 4023 return NULL; 4024 err_destroy: 4025 destroy_workqueue(wq); 4026 return NULL; 4027 } 4028 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 4029 4030 /** 4031 * destroy_workqueue - safely terminate a workqueue 4032 * @wq: target workqueue 4033 * 4034 * Safely destroy a workqueue. All work currently pending will be done first. 4035 */ 4036 void destroy_workqueue(struct workqueue_struct *wq) 4037 { 4038 struct pool_workqueue *pwq; 4039 int node; 4040 4041 /* drain it before proceeding with destruction */ 4042 drain_workqueue(wq); 4043 4044 /* sanity checks */ 4045 mutex_lock(&wq->mutex); 4046 for_each_pwq(pwq, wq) { 4047 int i; 4048 4049 for (i = 0; i < WORK_NR_COLORS; i++) { 4050 if (WARN_ON(pwq->nr_in_flight[i])) { 4051 mutex_unlock(&wq->mutex); 4052 show_workqueue_state(); 4053 return; 4054 } 4055 } 4056 4057 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4058 WARN_ON(pwq->nr_active) || 4059 WARN_ON(!list_empty(&pwq->delayed_works))) { 4060 mutex_unlock(&wq->mutex); 4061 show_workqueue_state(); 4062 return; 4063 } 4064 } 4065 mutex_unlock(&wq->mutex); 4066 4067 /* 4068 * wq list is used to freeze wq, remove from list after 4069 * flushing is complete in case freeze races us. 4070 */ 4071 mutex_lock(&wq_pool_mutex); 4072 list_del_rcu(&wq->list); 4073 mutex_unlock(&wq_pool_mutex); 4074 4075 workqueue_sysfs_unregister(wq); 4076 4077 if (wq->rescuer) 4078 kthread_stop(wq->rescuer->task); 4079 4080 if (!(wq->flags & WQ_UNBOUND)) { 4081 /* 4082 * The base ref is never dropped on per-cpu pwqs. Directly 4083 * schedule RCU free. 4084 */ 4085 call_rcu_sched(&wq->rcu, rcu_free_wq); 4086 } else { 4087 /* 4088 * We're the sole accessor of @wq at this point. Directly 4089 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4090 * @wq will be freed when the last pwq is released. 4091 */ 4092 for_each_node(node) { 4093 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4094 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4095 put_pwq_unlocked(pwq); 4096 } 4097 4098 /* 4099 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4100 * put. Don't access it afterwards. 4101 */ 4102 pwq = wq->dfl_pwq; 4103 wq->dfl_pwq = NULL; 4104 put_pwq_unlocked(pwq); 4105 } 4106 } 4107 EXPORT_SYMBOL_GPL(destroy_workqueue); 4108 4109 /** 4110 * workqueue_set_max_active - adjust max_active of a workqueue 4111 * @wq: target workqueue 4112 * @max_active: new max_active value. 4113 * 4114 * Set max_active of @wq to @max_active. 4115 * 4116 * CONTEXT: 4117 * Don't call from IRQ context. 4118 */ 4119 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4120 { 4121 struct pool_workqueue *pwq; 4122 4123 /* disallow meddling with max_active for ordered workqueues */ 4124 if (WARN_ON(wq->flags & __WQ_ORDERED)) 4125 return; 4126 4127 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4128 4129 mutex_lock(&wq->mutex); 4130 4131 wq->saved_max_active = max_active; 4132 4133 for_each_pwq(pwq, wq) 4134 pwq_adjust_max_active(pwq); 4135 4136 mutex_unlock(&wq->mutex); 4137 } 4138 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4139 4140 /** 4141 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4142 * 4143 * Determine whether %current is a workqueue rescuer. Can be used from 4144 * work functions to determine whether it's being run off the rescuer task. 4145 * 4146 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4147 */ 4148 bool current_is_workqueue_rescuer(void) 4149 { 4150 struct worker *worker = current_wq_worker(); 4151 4152 return worker && worker->rescue_wq; 4153 } 4154 4155 /** 4156 * workqueue_congested - test whether a workqueue is congested 4157 * @cpu: CPU in question 4158 * @wq: target workqueue 4159 * 4160 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4161 * no synchronization around this function and the test result is 4162 * unreliable and only useful as advisory hints or for debugging. 4163 * 4164 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4165 * Note that both per-cpu and unbound workqueues may be associated with 4166 * multiple pool_workqueues which have separate congested states. A 4167 * workqueue being congested on one CPU doesn't mean the workqueue is also 4168 * contested on other CPUs / NUMA nodes. 4169 * 4170 * Return: 4171 * %true if congested, %false otherwise. 4172 */ 4173 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4174 { 4175 struct pool_workqueue *pwq; 4176 bool ret; 4177 4178 rcu_read_lock_sched(); 4179 4180 if (cpu == WORK_CPU_UNBOUND) 4181 cpu = smp_processor_id(); 4182 4183 if (!(wq->flags & WQ_UNBOUND)) 4184 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4185 else 4186 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4187 4188 ret = !list_empty(&pwq->delayed_works); 4189 rcu_read_unlock_sched(); 4190 4191 return ret; 4192 } 4193 EXPORT_SYMBOL_GPL(workqueue_congested); 4194 4195 /** 4196 * work_busy - test whether a work is currently pending or running 4197 * @work: the work to be tested 4198 * 4199 * Test whether @work is currently pending or running. There is no 4200 * synchronization around this function and the test result is 4201 * unreliable and only useful as advisory hints or for debugging. 4202 * 4203 * Return: 4204 * OR'd bitmask of WORK_BUSY_* bits. 4205 */ 4206 unsigned int work_busy(struct work_struct *work) 4207 { 4208 struct worker_pool *pool; 4209 unsigned long flags; 4210 unsigned int ret = 0; 4211 4212 if (work_pending(work)) 4213 ret |= WORK_BUSY_PENDING; 4214 4215 local_irq_save(flags); 4216 pool = get_work_pool(work); 4217 if (pool) { 4218 spin_lock(&pool->lock); 4219 if (find_worker_executing_work(pool, work)) 4220 ret |= WORK_BUSY_RUNNING; 4221 spin_unlock(&pool->lock); 4222 } 4223 local_irq_restore(flags); 4224 4225 return ret; 4226 } 4227 EXPORT_SYMBOL_GPL(work_busy); 4228 4229 /** 4230 * set_worker_desc - set description for the current work item 4231 * @fmt: printf-style format string 4232 * @...: arguments for the format string 4233 * 4234 * This function can be called by a running work function to describe what 4235 * the work item is about. If the worker task gets dumped, this 4236 * information will be printed out together to help debugging. The 4237 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4238 */ 4239 void set_worker_desc(const char *fmt, ...) 4240 { 4241 struct worker *worker = current_wq_worker(); 4242 va_list args; 4243 4244 if (worker) { 4245 va_start(args, fmt); 4246 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4247 va_end(args); 4248 worker->desc_valid = true; 4249 } 4250 } 4251 4252 /** 4253 * print_worker_info - print out worker information and description 4254 * @log_lvl: the log level to use when printing 4255 * @task: target task 4256 * 4257 * If @task is a worker and currently executing a work item, print out the 4258 * name of the workqueue being serviced and worker description set with 4259 * set_worker_desc() by the currently executing work item. 4260 * 4261 * This function can be safely called on any task as long as the 4262 * task_struct itself is accessible. While safe, this function isn't 4263 * synchronized and may print out mixups or garbages of limited length. 4264 */ 4265 void print_worker_info(const char *log_lvl, struct task_struct *task) 4266 { 4267 work_func_t *fn = NULL; 4268 char name[WQ_NAME_LEN] = { }; 4269 char desc[WORKER_DESC_LEN] = { }; 4270 struct pool_workqueue *pwq = NULL; 4271 struct workqueue_struct *wq = NULL; 4272 bool desc_valid = false; 4273 struct worker *worker; 4274 4275 if (!(task->flags & PF_WQ_WORKER)) 4276 return; 4277 4278 /* 4279 * This function is called without any synchronization and @task 4280 * could be in any state. Be careful with dereferences. 4281 */ 4282 worker = kthread_probe_data(task); 4283 4284 /* 4285 * Carefully copy the associated workqueue's workfn and name. Keep 4286 * the original last '\0' in case the original contains garbage. 4287 */ 4288 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4289 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4290 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4291 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4292 4293 /* copy worker description */ 4294 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4295 if (desc_valid) 4296 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4297 4298 if (fn || name[0] || desc[0]) { 4299 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4300 if (desc[0]) 4301 pr_cont(" (%s)", desc); 4302 pr_cont("\n"); 4303 } 4304 } 4305 4306 static void pr_cont_pool_info(struct worker_pool *pool) 4307 { 4308 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4309 if (pool->node != NUMA_NO_NODE) 4310 pr_cont(" node=%d", pool->node); 4311 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4312 } 4313 4314 static void pr_cont_work(bool comma, struct work_struct *work) 4315 { 4316 if (work->func == wq_barrier_func) { 4317 struct wq_barrier *barr; 4318 4319 barr = container_of(work, struct wq_barrier, work); 4320 4321 pr_cont("%s BAR(%d)", comma ? "," : "", 4322 task_pid_nr(barr->task)); 4323 } else { 4324 pr_cont("%s %pf", comma ? "," : "", work->func); 4325 } 4326 } 4327 4328 static void show_pwq(struct pool_workqueue *pwq) 4329 { 4330 struct worker_pool *pool = pwq->pool; 4331 struct work_struct *work; 4332 struct worker *worker; 4333 bool has_in_flight = false, has_pending = false; 4334 int bkt; 4335 4336 pr_info(" pwq %d:", pool->id); 4337 pr_cont_pool_info(pool); 4338 4339 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4340 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4341 4342 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4343 if (worker->current_pwq == pwq) { 4344 has_in_flight = true; 4345 break; 4346 } 4347 } 4348 if (has_in_flight) { 4349 bool comma = false; 4350 4351 pr_info(" in-flight:"); 4352 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4353 if (worker->current_pwq != pwq) 4354 continue; 4355 4356 pr_cont("%s %d%s:%pf", comma ? "," : "", 4357 task_pid_nr(worker->task), 4358 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4359 worker->current_func); 4360 list_for_each_entry(work, &worker->scheduled, entry) 4361 pr_cont_work(false, work); 4362 comma = true; 4363 } 4364 pr_cont("\n"); 4365 } 4366 4367 list_for_each_entry(work, &pool->worklist, entry) { 4368 if (get_work_pwq(work) == pwq) { 4369 has_pending = true; 4370 break; 4371 } 4372 } 4373 if (has_pending) { 4374 bool comma = false; 4375 4376 pr_info(" pending:"); 4377 list_for_each_entry(work, &pool->worklist, entry) { 4378 if (get_work_pwq(work) != pwq) 4379 continue; 4380 4381 pr_cont_work(comma, work); 4382 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4383 } 4384 pr_cont("\n"); 4385 } 4386 4387 if (!list_empty(&pwq->delayed_works)) { 4388 bool comma = false; 4389 4390 pr_info(" delayed:"); 4391 list_for_each_entry(work, &pwq->delayed_works, entry) { 4392 pr_cont_work(comma, work); 4393 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4394 } 4395 pr_cont("\n"); 4396 } 4397 } 4398 4399 /** 4400 * show_workqueue_state - dump workqueue state 4401 * 4402 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4403 * all busy workqueues and pools. 4404 */ 4405 void show_workqueue_state(void) 4406 { 4407 struct workqueue_struct *wq; 4408 struct worker_pool *pool; 4409 unsigned long flags; 4410 int pi; 4411 4412 rcu_read_lock_sched(); 4413 4414 pr_info("Showing busy workqueues and worker pools:\n"); 4415 4416 list_for_each_entry_rcu(wq, &workqueues, list) { 4417 struct pool_workqueue *pwq; 4418 bool idle = true; 4419 4420 for_each_pwq(pwq, wq) { 4421 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4422 idle = false; 4423 break; 4424 } 4425 } 4426 if (idle) 4427 continue; 4428 4429 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4430 4431 for_each_pwq(pwq, wq) { 4432 spin_lock_irqsave(&pwq->pool->lock, flags); 4433 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4434 show_pwq(pwq); 4435 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4436 } 4437 } 4438 4439 for_each_pool(pool, pi) { 4440 struct worker *worker; 4441 bool first = true; 4442 4443 spin_lock_irqsave(&pool->lock, flags); 4444 if (pool->nr_workers == pool->nr_idle) 4445 goto next_pool; 4446 4447 pr_info("pool %d:", pool->id); 4448 pr_cont_pool_info(pool); 4449 pr_cont(" hung=%us workers=%d", 4450 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4451 pool->nr_workers); 4452 if (pool->manager) 4453 pr_cont(" manager: %d", 4454 task_pid_nr(pool->manager->task)); 4455 list_for_each_entry(worker, &pool->idle_list, entry) { 4456 pr_cont(" %s%d", first ? "idle: " : "", 4457 task_pid_nr(worker->task)); 4458 first = false; 4459 } 4460 pr_cont("\n"); 4461 next_pool: 4462 spin_unlock_irqrestore(&pool->lock, flags); 4463 } 4464 4465 rcu_read_unlock_sched(); 4466 } 4467 4468 /* 4469 * CPU hotplug. 4470 * 4471 * There are two challenges in supporting CPU hotplug. Firstly, there 4472 * are a lot of assumptions on strong associations among work, pwq and 4473 * pool which make migrating pending and scheduled works very 4474 * difficult to implement without impacting hot paths. Secondly, 4475 * worker pools serve mix of short, long and very long running works making 4476 * blocked draining impractical. 4477 * 4478 * This is solved by allowing the pools to be disassociated from the CPU 4479 * running as an unbound one and allowing it to be reattached later if the 4480 * cpu comes back online. 4481 */ 4482 4483 static void wq_unbind_fn(struct work_struct *work) 4484 { 4485 int cpu = smp_processor_id(); 4486 struct worker_pool *pool; 4487 struct worker *worker; 4488 4489 for_each_cpu_worker_pool(pool, cpu) { 4490 mutex_lock(&pool->attach_mutex); 4491 spin_lock_irq(&pool->lock); 4492 4493 /* 4494 * We've blocked all attach/detach operations. Make all workers 4495 * unbound and set DISASSOCIATED. Before this, all workers 4496 * except for the ones which are still executing works from 4497 * before the last CPU down must be on the cpu. After 4498 * this, they may become diasporas. 4499 */ 4500 for_each_pool_worker(worker, pool) 4501 worker->flags |= WORKER_UNBOUND; 4502 4503 pool->flags |= POOL_DISASSOCIATED; 4504 4505 spin_unlock_irq(&pool->lock); 4506 mutex_unlock(&pool->attach_mutex); 4507 4508 /* 4509 * Call schedule() so that we cross rq->lock and thus can 4510 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4511 * This is necessary as scheduler callbacks may be invoked 4512 * from other cpus. 4513 */ 4514 schedule(); 4515 4516 /* 4517 * Sched callbacks are disabled now. Zap nr_running. 4518 * After this, nr_running stays zero and need_more_worker() 4519 * and keep_working() are always true as long as the 4520 * worklist is not empty. This pool now behaves as an 4521 * unbound (in terms of concurrency management) pool which 4522 * are served by workers tied to the pool. 4523 */ 4524 atomic_set(&pool->nr_running, 0); 4525 4526 /* 4527 * With concurrency management just turned off, a busy 4528 * worker blocking could lead to lengthy stalls. Kick off 4529 * unbound chain execution of currently pending work items. 4530 */ 4531 spin_lock_irq(&pool->lock); 4532 wake_up_worker(pool); 4533 spin_unlock_irq(&pool->lock); 4534 } 4535 } 4536 4537 /** 4538 * rebind_workers - rebind all workers of a pool to the associated CPU 4539 * @pool: pool of interest 4540 * 4541 * @pool->cpu is coming online. Rebind all workers to the CPU. 4542 */ 4543 static void rebind_workers(struct worker_pool *pool) 4544 { 4545 struct worker *worker; 4546 4547 lockdep_assert_held(&pool->attach_mutex); 4548 4549 /* 4550 * Restore CPU affinity of all workers. As all idle workers should 4551 * be on the run-queue of the associated CPU before any local 4552 * wake-ups for concurrency management happen, restore CPU affinity 4553 * of all workers first and then clear UNBOUND. As we're called 4554 * from CPU_ONLINE, the following shouldn't fail. 4555 */ 4556 for_each_pool_worker(worker, pool) 4557 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4558 pool->attrs->cpumask) < 0); 4559 4560 spin_lock_irq(&pool->lock); 4561 4562 /* 4563 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED 4564 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is 4565 * being reworked and this can go away in time. 4566 */ 4567 if (!(pool->flags & POOL_DISASSOCIATED)) { 4568 spin_unlock_irq(&pool->lock); 4569 return; 4570 } 4571 4572 pool->flags &= ~POOL_DISASSOCIATED; 4573 4574 for_each_pool_worker(worker, pool) { 4575 unsigned int worker_flags = worker->flags; 4576 4577 /* 4578 * A bound idle worker should actually be on the runqueue 4579 * of the associated CPU for local wake-ups targeting it to 4580 * work. Kick all idle workers so that they migrate to the 4581 * associated CPU. Doing this in the same loop as 4582 * replacing UNBOUND with REBOUND is safe as no worker will 4583 * be bound before @pool->lock is released. 4584 */ 4585 if (worker_flags & WORKER_IDLE) 4586 wake_up_process(worker->task); 4587 4588 /* 4589 * We want to clear UNBOUND but can't directly call 4590 * worker_clr_flags() or adjust nr_running. Atomically 4591 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4592 * @worker will clear REBOUND using worker_clr_flags() when 4593 * it initiates the next execution cycle thus restoring 4594 * concurrency management. Note that when or whether 4595 * @worker clears REBOUND doesn't affect correctness. 4596 * 4597 * ACCESS_ONCE() is necessary because @worker->flags may be 4598 * tested without holding any lock in 4599 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4600 * fail incorrectly leading to premature concurrency 4601 * management operations. 4602 */ 4603 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4604 worker_flags |= WORKER_REBOUND; 4605 worker_flags &= ~WORKER_UNBOUND; 4606 ACCESS_ONCE(worker->flags) = worker_flags; 4607 } 4608 4609 spin_unlock_irq(&pool->lock); 4610 } 4611 4612 /** 4613 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4614 * @pool: unbound pool of interest 4615 * @cpu: the CPU which is coming up 4616 * 4617 * An unbound pool may end up with a cpumask which doesn't have any online 4618 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4619 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4620 * online CPU before, cpus_allowed of all its workers should be restored. 4621 */ 4622 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4623 { 4624 static cpumask_t cpumask; 4625 struct worker *worker; 4626 4627 lockdep_assert_held(&pool->attach_mutex); 4628 4629 /* is @cpu allowed for @pool? */ 4630 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4631 return; 4632 4633 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4634 4635 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4636 for_each_pool_worker(worker, pool) 4637 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 4638 } 4639 4640 int workqueue_prepare_cpu(unsigned int cpu) 4641 { 4642 struct worker_pool *pool; 4643 4644 for_each_cpu_worker_pool(pool, cpu) { 4645 if (pool->nr_workers) 4646 continue; 4647 if (!create_worker(pool)) 4648 return -ENOMEM; 4649 } 4650 return 0; 4651 } 4652 4653 int workqueue_online_cpu(unsigned int cpu) 4654 { 4655 struct worker_pool *pool; 4656 struct workqueue_struct *wq; 4657 int pi; 4658 4659 mutex_lock(&wq_pool_mutex); 4660 4661 for_each_pool(pool, pi) { 4662 mutex_lock(&pool->attach_mutex); 4663 4664 if (pool->cpu == cpu) 4665 rebind_workers(pool); 4666 else if (pool->cpu < 0) 4667 restore_unbound_workers_cpumask(pool, cpu); 4668 4669 mutex_unlock(&pool->attach_mutex); 4670 } 4671 4672 /* update NUMA affinity of unbound workqueues */ 4673 list_for_each_entry(wq, &workqueues, list) 4674 wq_update_unbound_numa(wq, cpu, true); 4675 4676 mutex_unlock(&wq_pool_mutex); 4677 return 0; 4678 } 4679 4680 int workqueue_offline_cpu(unsigned int cpu) 4681 { 4682 struct work_struct unbind_work; 4683 struct workqueue_struct *wq; 4684 4685 /* unbinding per-cpu workers should happen on the local CPU */ 4686 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4687 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4688 4689 /* update NUMA affinity of unbound workqueues */ 4690 mutex_lock(&wq_pool_mutex); 4691 list_for_each_entry(wq, &workqueues, list) 4692 wq_update_unbound_numa(wq, cpu, false); 4693 mutex_unlock(&wq_pool_mutex); 4694 4695 /* wait for per-cpu unbinding to finish */ 4696 flush_work(&unbind_work); 4697 destroy_work_on_stack(&unbind_work); 4698 return 0; 4699 } 4700 4701 #ifdef CONFIG_SMP 4702 4703 struct work_for_cpu { 4704 struct work_struct work; 4705 long (*fn)(void *); 4706 void *arg; 4707 long ret; 4708 }; 4709 4710 static void work_for_cpu_fn(struct work_struct *work) 4711 { 4712 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4713 4714 wfc->ret = wfc->fn(wfc->arg); 4715 } 4716 4717 /** 4718 * work_on_cpu - run a function in thread context on a particular cpu 4719 * @cpu: the cpu to run on 4720 * @fn: the function to run 4721 * @arg: the function arg 4722 * 4723 * It is up to the caller to ensure that the cpu doesn't go offline. 4724 * The caller must not hold any locks which would prevent @fn from completing. 4725 * 4726 * Return: The value @fn returns. 4727 */ 4728 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4729 { 4730 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4731 4732 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4733 schedule_work_on(cpu, &wfc.work); 4734 flush_work(&wfc.work); 4735 destroy_work_on_stack(&wfc.work); 4736 return wfc.ret; 4737 } 4738 EXPORT_SYMBOL_GPL(work_on_cpu); 4739 #endif /* CONFIG_SMP */ 4740 4741 #ifdef CONFIG_FREEZER 4742 4743 /** 4744 * freeze_workqueues_begin - begin freezing workqueues 4745 * 4746 * Start freezing workqueues. After this function returns, all freezable 4747 * workqueues will queue new works to their delayed_works list instead of 4748 * pool->worklist. 4749 * 4750 * CONTEXT: 4751 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4752 */ 4753 void freeze_workqueues_begin(void) 4754 { 4755 struct workqueue_struct *wq; 4756 struct pool_workqueue *pwq; 4757 4758 mutex_lock(&wq_pool_mutex); 4759 4760 WARN_ON_ONCE(workqueue_freezing); 4761 workqueue_freezing = true; 4762 4763 list_for_each_entry(wq, &workqueues, list) { 4764 mutex_lock(&wq->mutex); 4765 for_each_pwq(pwq, wq) 4766 pwq_adjust_max_active(pwq); 4767 mutex_unlock(&wq->mutex); 4768 } 4769 4770 mutex_unlock(&wq_pool_mutex); 4771 } 4772 4773 /** 4774 * freeze_workqueues_busy - are freezable workqueues still busy? 4775 * 4776 * Check whether freezing is complete. This function must be called 4777 * between freeze_workqueues_begin() and thaw_workqueues(). 4778 * 4779 * CONTEXT: 4780 * Grabs and releases wq_pool_mutex. 4781 * 4782 * Return: 4783 * %true if some freezable workqueues are still busy. %false if freezing 4784 * is complete. 4785 */ 4786 bool freeze_workqueues_busy(void) 4787 { 4788 bool busy = false; 4789 struct workqueue_struct *wq; 4790 struct pool_workqueue *pwq; 4791 4792 mutex_lock(&wq_pool_mutex); 4793 4794 WARN_ON_ONCE(!workqueue_freezing); 4795 4796 list_for_each_entry(wq, &workqueues, list) { 4797 if (!(wq->flags & WQ_FREEZABLE)) 4798 continue; 4799 /* 4800 * nr_active is monotonically decreasing. It's safe 4801 * to peek without lock. 4802 */ 4803 rcu_read_lock_sched(); 4804 for_each_pwq(pwq, wq) { 4805 WARN_ON_ONCE(pwq->nr_active < 0); 4806 if (pwq->nr_active) { 4807 busy = true; 4808 rcu_read_unlock_sched(); 4809 goto out_unlock; 4810 } 4811 } 4812 rcu_read_unlock_sched(); 4813 } 4814 out_unlock: 4815 mutex_unlock(&wq_pool_mutex); 4816 return busy; 4817 } 4818 4819 /** 4820 * thaw_workqueues - thaw workqueues 4821 * 4822 * Thaw workqueues. Normal queueing is restored and all collected 4823 * frozen works are transferred to their respective pool worklists. 4824 * 4825 * CONTEXT: 4826 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4827 */ 4828 void thaw_workqueues(void) 4829 { 4830 struct workqueue_struct *wq; 4831 struct pool_workqueue *pwq; 4832 4833 mutex_lock(&wq_pool_mutex); 4834 4835 if (!workqueue_freezing) 4836 goto out_unlock; 4837 4838 workqueue_freezing = false; 4839 4840 /* restore max_active and repopulate worklist */ 4841 list_for_each_entry(wq, &workqueues, list) { 4842 mutex_lock(&wq->mutex); 4843 for_each_pwq(pwq, wq) 4844 pwq_adjust_max_active(pwq); 4845 mutex_unlock(&wq->mutex); 4846 } 4847 4848 out_unlock: 4849 mutex_unlock(&wq_pool_mutex); 4850 } 4851 #endif /* CONFIG_FREEZER */ 4852 4853 static int workqueue_apply_unbound_cpumask(void) 4854 { 4855 LIST_HEAD(ctxs); 4856 int ret = 0; 4857 struct workqueue_struct *wq; 4858 struct apply_wqattrs_ctx *ctx, *n; 4859 4860 lockdep_assert_held(&wq_pool_mutex); 4861 4862 list_for_each_entry(wq, &workqueues, list) { 4863 if (!(wq->flags & WQ_UNBOUND)) 4864 continue; 4865 /* creating multiple pwqs breaks ordering guarantee */ 4866 if (wq->flags & __WQ_ORDERED) 4867 continue; 4868 4869 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 4870 if (!ctx) { 4871 ret = -ENOMEM; 4872 break; 4873 } 4874 4875 list_add_tail(&ctx->list, &ctxs); 4876 } 4877 4878 list_for_each_entry_safe(ctx, n, &ctxs, list) { 4879 if (!ret) 4880 apply_wqattrs_commit(ctx); 4881 apply_wqattrs_cleanup(ctx); 4882 } 4883 4884 return ret; 4885 } 4886 4887 /** 4888 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 4889 * @cpumask: the cpumask to set 4890 * 4891 * The low-level workqueues cpumask is a global cpumask that limits 4892 * the affinity of all unbound workqueues. This function check the @cpumask 4893 * and apply it to all unbound workqueues and updates all pwqs of them. 4894 * 4895 * Retun: 0 - Success 4896 * -EINVAL - Invalid @cpumask 4897 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 4898 */ 4899 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 4900 { 4901 int ret = -EINVAL; 4902 cpumask_var_t saved_cpumask; 4903 4904 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 4905 return -ENOMEM; 4906 4907 cpumask_and(cpumask, cpumask, cpu_possible_mask); 4908 if (!cpumask_empty(cpumask)) { 4909 apply_wqattrs_lock(); 4910 4911 /* save the old wq_unbound_cpumask. */ 4912 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 4913 4914 /* update wq_unbound_cpumask at first and apply it to wqs. */ 4915 cpumask_copy(wq_unbound_cpumask, cpumask); 4916 ret = workqueue_apply_unbound_cpumask(); 4917 4918 /* restore the wq_unbound_cpumask when failed. */ 4919 if (ret < 0) 4920 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 4921 4922 apply_wqattrs_unlock(); 4923 } 4924 4925 free_cpumask_var(saved_cpumask); 4926 return ret; 4927 } 4928 4929 #ifdef CONFIG_SYSFS 4930 /* 4931 * Workqueues with WQ_SYSFS flag set is visible to userland via 4932 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 4933 * following attributes. 4934 * 4935 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 4936 * max_active RW int : maximum number of in-flight work items 4937 * 4938 * Unbound workqueues have the following extra attributes. 4939 * 4940 * id RO int : the associated pool ID 4941 * nice RW int : nice value of the workers 4942 * cpumask RW mask : bitmask of allowed CPUs for the workers 4943 */ 4944 struct wq_device { 4945 struct workqueue_struct *wq; 4946 struct device dev; 4947 }; 4948 4949 static struct workqueue_struct *dev_to_wq(struct device *dev) 4950 { 4951 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 4952 4953 return wq_dev->wq; 4954 } 4955 4956 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 4957 char *buf) 4958 { 4959 struct workqueue_struct *wq = dev_to_wq(dev); 4960 4961 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 4962 } 4963 static DEVICE_ATTR_RO(per_cpu); 4964 4965 static ssize_t max_active_show(struct device *dev, 4966 struct device_attribute *attr, char *buf) 4967 { 4968 struct workqueue_struct *wq = dev_to_wq(dev); 4969 4970 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 4971 } 4972 4973 static ssize_t max_active_store(struct device *dev, 4974 struct device_attribute *attr, const char *buf, 4975 size_t count) 4976 { 4977 struct workqueue_struct *wq = dev_to_wq(dev); 4978 int val; 4979 4980 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 4981 return -EINVAL; 4982 4983 workqueue_set_max_active(wq, val); 4984 return count; 4985 } 4986 static DEVICE_ATTR_RW(max_active); 4987 4988 static struct attribute *wq_sysfs_attrs[] = { 4989 &dev_attr_per_cpu.attr, 4990 &dev_attr_max_active.attr, 4991 NULL, 4992 }; 4993 ATTRIBUTE_GROUPS(wq_sysfs); 4994 4995 static ssize_t wq_pool_ids_show(struct device *dev, 4996 struct device_attribute *attr, char *buf) 4997 { 4998 struct workqueue_struct *wq = dev_to_wq(dev); 4999 const char *delim = ""; 5000 int node, written = 0; 5001 5002 rcu_read_lock_sched(); 5003 for_each_node(node) { 5004 written += scnprintf(buf + written, PAGE_SIZE - written, 5005 "%s%d:%d", delim, node, 5006 unbound_pwq_by_node(wq, node)->pool->id); 5007 delim = " "; 5008 } 5009 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5010 rcu_read_unlock_sched(); 5011 5012 return written; 5013 } 5014 5015 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5016 char *buf) 5017 { 5018 struct workqueue_struct *wq = dev_to_wq(dev); 5019 int written; 5020 5021 mutex_lock(&wq->mutex); 5022 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5023 mutex_unlock(&wq->mutex); 5024 5025 return written; 5026 } 5027 5028 /* prepare workqueue_attrs for sysfs store operations */ 5029 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5030 { 5031 struct workqueue_attrs *attrs; 5032 5033 lockdep_assert_held(&wq_pool_mutex); 5034 5035 attrs = alloc_workqueue_attrs(GFP_KERNEL); 5036 if (!attrs) 5037 return NULL; 5038 5039 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5040 return attrs; 5041 } 5042 5043 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5044 const char *buf, size_t count) 5045 { 5046 struct workqueue_struct *wq = dev_to_wq(dev); 5047 struct workqueue_attrs *attrs; 5048 int ret = -ENOMEM; 5049 5050 apply_wqattrs_lock(); 5051 5052 attrs = wq_sysfs_prep_attrs(wq); 5053 if (!attrs) 5054 goto out_unlock; 5055 5056 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5057 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5058 ret = apply_workqueue_attrs_locked(wq, attrs); 5059 else 5060 ret = -EINVAL; 5061 5062 out_unlock: 5063 apply_wqattrs_unlock(); 5064 free_workqueue_attrs(attrs); 5065 return ret ?: count; 5066 } 5067 5068 static ssize_t wq_cpumask_show(struct device *dev, 5069 struct device_attribute *attr, char *buf) 5070 { 5071 struct workqueue_struct *wq = dev_to_wq(dev); 5072 int written; 5073 5074 mutex_lock(&wq->mutex); 5075 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5076 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5077 mutex_unlock(&wq->mutex); 5078 return written; 5079 } 5080 5081 static ssize_t wq_cpumask_store(struct device *dev, 5082 struct device_attribute *attr, 5083 const char *buf, size_t count) 5084 { 5085 struct workqueue_struct *wq = dev_to_wq(dev); 5086 struct workqueue_attrs *attrs; 5087 int ret = -ENOMEM; 5088 5089 apply_wqattrs_lock(); 5090 5091 attrs = wq_sysfs_prep_attrs(wq); 5092 if (!attrs) 5093 goto out_unlock; 5094 5095 ret = cpumask_parse(buf, attrs->cpumask); 5096 if (!ret) 5097 ret = apply_workqueue_attrs_locked(wq, attrs); 5098 5099 out_unlock: 5100 apply_wqattrs_unlock(); 5101 free_workqueue_attrs(attrs); 5102 return ret ?: count; 5103 } 5104 5105 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5106 char *buf) 5107 { 5108 struct workqueue_struct *wq = dev_to_wq(dev); 5109 int written; 5110 5111 mutex_lock(&wq->mutex); 5112 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5113 !wq->unbound_attrs->no_numa); 5114 mutex_unlock(&wq->mutex); 5115 5116 return written; 5117 } 5118 5119 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5120 const char *buf, size_t count) 5121 { 5122 struct workqueue_struct *wq = dev_to_wq(dev); 5123 struct workqueue_attrs *attrs; 5124 int v, ret = -ENOMEM; 5125 5126 apply_wqattrs_lock(); 5127 5128 attrs = wq_sysfs_prep_attrs(wq); 5129 if (!attrs) 5130 goto out_unlock; 5131 5132 ret = -EINVAL; 5133 if (sscanf(buf, "%d", &v) == 1) { 5134 attrs->no_numa = !v; 5135 ret = apply_workqueue_attrs_locked(wq, attrs); 5136 } 5137 5138 out_unlock: 5139 apply_wqattrs_unlock(); 5140 free_workqueue_attrs(attrs); 5141 return ret ?: count; 5142 } 5143 5144 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5145 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5146 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5147 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5148 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5149 __ATTR_NULL, 5150 }; 5151 5152 static struct bus_type wq_subsys = { 5153 .name = "workqueue", 5154 .dev_groups = wq_sysfs_groups, 5155 }; 5156 5157 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5158 struct device_attribute *attr, char *buf) 5159 { 5160 int written; 5161 5162 mutex_lock(&wq_pool_mutex); 5163 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5164 cpumask_pr_args(wq_unbound_cpumask)); 5165 mutex_unlock(&wq_pool_mutex); 5166 5167 return written; 5168 } 5169 5170 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5171 struct device_attribute *attr, const char *buf, size_t count) 5172 { 5173 cpumask_var_t cpumask; 5174 int ret; 5175 5176 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5177 return -ENOMEM; 5178 5179 ret = cpumask_parse(buf, cpumask); 5180 if (!ret) 5181 ret = workqueue_set_unbound_cpumask(cpumask); 5182 5183 free_cpumask_var(cpumask); 5184 return ret ? ret : count; 5185 } 5186 5187 static struct device_attribute wq_sysfs_cpumask_attr = 5188 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5189 wq_unbound_cpumask_store); 5190 5191 static int __init wq_sysfs_init(void) 5192 { 5193 int err; 5194 5195 err = subsys_virtual_register(&wq_subsys, NULL); 5196 if (err) 5197 return err; 5198 5199 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5200 } 5201 core_initcall(wq_sysfs_init); 5202 5203 static void wq_device_release(struct device *dev) 5204 { 5205 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5206 5207 kfree(wq_dev); 5208 } 5209 5210 /** 5211 * workqueue_sysfs_register - make a workqueue visible in sysfs 5212 * @wq: the workqueue to register 5213 * 5214 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5215 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5216 * which is the preferred method. 5217 * 5218 * Workqueue user should use this function directly iff it wants to apply 5219 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5220 * apply_workqueue_attrs() may race against userland updating the 5221 * attributes. 5222 * 5223 * Return: 0 on success, -errno on failure. 5224 */ 5225 int workqueue_sysfs_register(struct workqueue_struct *wq) 5226 { 5227 struct wq_device *wq_dev; 5228 int ret; 5229 5230 /* 5231 * Adjusting max_active or creating new pwqs by applying 5232 * attributes breaks ordering guarantee. Disallow exposing ordered 5233 * workqueues. 5234 */ 5235 if (WARN_ON(wq->flags & __WQ_ORDERED)) 5236 return -EINVAL; 5237 5238 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5239 if (!wq_dev) 5240 return -ENOMEM; 5241 5242 wq_dev->wq = wq; 5243 wq_dev->dev.bus = &wq_subsys; 5244 wq_dev->dev.release = wq_device_release; 5245 dev_set_name(&wq_dev->dev, "%s", wq->name); 5246 5247 /* 5248 * unbound_attrs are created separately. Suppress uevent until 5249 * everything is ready. 5250 */ 5251 dev_set_uevent_suppress(&wq_dev->dev, true); 5252 5253 ret = device_register(&wq_dev->dev); 5254 if (ret) { 5255 kfree(wq_dev); 5256 wq->wq_dev = NULL; 5257 return ret; 5258 } 5259 5260 if (wq->flags & WQ_UNBOUND) { 5261 struct device_attribute *attr; 5262 5263 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5264 ret = device_create_file(&wq_dev->dev, attr); 5265 if (ret) { 5266 device_unregister(&wq_dev->dev); 5267 wq->wq_dev = NULL; 5268 return ret; 5269 } 5270 } 5271 } 5272 5273 dev_set_uevent_suppress(&wq_dev->dev, false); 5274 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5275 return 0; 5276 } 5277 5278 /** 5279 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5280 * @wq: the workqueue to unregister 5281 * 5282 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5283 */ 5284 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5285 { 5286 struct wq_device *wq_dev = wq->wq_dev; 5287 5288 if (!wq->wq_dev) 5289 return; 5290 5291 wq->wq_dev = NULL; 5292 device_unregister(&wq_dev->dev); 5293 } 5294 #else /* CONFIG_SYSFS */ 5295 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5296 #endif /* CONFIG_SYSFS */ 5297 5298 /* 5299 * Workqueue watchdog. 5300 * 5301 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5302 * flush dependency, a concurrency managed work item which stays RUNNING 5303 * indefinitely. Workqueue stalls can be very difficult to debug as the 5304 * usual warning mechanisms don't trigger and internal workqueue state is 5305 * largely opaque. 5306 * 5307 * Workqueue watchdog monitors all worker pools periodically and dumps 5308 * state if some pools failed to make forward progress for a while where 5309 * forward progress is defined as the first item on ->worklist changing. 5310 * 5311 * This mechanism is controlled through the kernel parameter 5312 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5313 * corresponding sysfs parameter file. 5314 */ 5315 #ifdef CONFIG_WQ_WATCHDOG 5316 5317 static void wq_watchdog_timer_fn(unsigned long data); 5318 5319 static unsigned long wq_watchdog_thresh = 30; 5320 static struct timer_list wq_watchdog_timer = 5321 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0); 5322 5323 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5324 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5325 5326 static void wq_watchdog_reset_touched(void) 5327 { 5328 int cpu; 5329 5330 wq_watchdog_touched = jiffies; 5331 for_each_possible_cpu(cpu) 5332 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5333 } 5334 5335 static void wq_watchdog_timer_fn(unsigned long data) 5336 { 5337 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5338 bool lockup_detected = false; 5339 struct worker_pool *pool; 5340 int pi; 5341 5342 if (!thresh) 5343 return; 5344 5345 rcu_read_lock(); 5346 5347 for_each_pool(pool, pi) { 5348 unsigned long pool_ts, touched, ts; 5349 5350 if (list_empty(&pool->worklist)) 5351 continue; 5352 5353 /* get the latest of pool and touched timestamps */ 5354 pool_ts = READ_ONCE(pool->watchdog_ts); 5355 touched = READ_ONCE(wq_watchdog_touched); 5356 5357 if (time_after(pool_ts, touched)) 5358 ts = pool_ts; 5359 else 5360 ts = touched; 5361 5362 if (pool->cpu >= 0) { 5363 unsigned long cpu_touched = 5364 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5365 pool->cpu)); 5366 if (time_after(cpu_touched, ts)) 5367 ts = cpu_touched; 5368 } 5369 5370 /* did we stall? */ 5371 if (time_after(jiffies, ts + thresh)) { 5372 lockup_detected = true; 5373 pr_emerg("BUG: workqueue lockup - pool"); 5374 pr_cont_pool_info(pool); 5375 pr_cont(" stuck for %us!\n", 5376 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5377 } 5378 } 5379 5380 rcu_read_unlock(); 5381 5382 if (lockup_detected) 5383 show_workqueue_state(); 5384 5385 wq_watchdog_reset_touched(); 5386 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5387 } 5388 5389 void wq_watchdog_touch(int cpu) 5390 { 5391 if (cpu >= 0) 5392 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5393 else 5394 wq_watchdog_touched = jiffies; 5395 } 5396 5397 static void wq_watchdog_set_thresh(unsigned long thresh) 5398 { 5399 wq_watchdog_thresh = 0; 5400 del_timer_sync(&wq_watchdog_timer); 5401 5402 if (thresh) { 5403 wq_watchdog_thresh = thresh; 5404 wq_watchdog_reset_touched(); 5405 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5406 } 5407 } 5408 5409 static int wq_watchdog_param_set_thresh(const char *val, 5410 const struct kernel_param *kp) 5411 { 5412 unsigned long thresh; 5413 int ret; 5414 5415 ret = kstrtoul(val, 0, &thresh); 5416 if (ret) 5417 return ret; 5418 5419 if (system_wq) 5420 wq_watchdog_set_thresh(thresh); 5421 else 5422 wq_watchdog_thresh = thresh; 5423 5424 return 0; 5425 } 5426 5427 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5428 .set = wq_watchdog_param_set_thresh, 5429 .get = param_get_ulong, 5430 }; 5431 5432 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5433 0644); 5434 5435 static void wq_watchdog_init(void) 5436 { 5437 wq_watchdog_set_thresh(wq_watchdog_thresh); 5438 } 5439 5440 #else /* CONFIG_WQ_WATCHDOG */ 5441 5442 static inline void wq_watchdog_init(void) { } 5443 5444 #endif /* CONFIG_WQ_WATCHDOG */ 5445 5446 static void __init wq_numa_init(void) 5447 { 5448 cpumask_var_t *tbl; 5449 int node, cpu; 5450 5451 if (num_possible_nodes() <= 1) 5452 return; 5453 5454 if (wq_disable_numa) { 5455 pr_info("workqueue: NUMA affinity support disabled\n"); 5456 return; 5457 } 5458 5459 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5460 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5461 5462 /* 5463 * We want masks of possible CPUs of each node which isn't readily 5464 * available. Build one from cpu_to_node() which should have been 5465 * fully initialized by now. 5466 */ 5467 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL); 5468 BUG_ON(!tbl); 5469 5470 for_each_node(node) 5471 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5472 node_online(node) ? node : NUMA_NO_NODE)); 5473 5474 for_each_possible_cpu(cpu) { 5475 node = cpu_to_node(cpu); 5476 if (WARN_ON(node == NUMA_NO_NODE)) { 5477 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5478 /* happens iff arch is bonkers, let's just proceed */ 5479 return; 5480 } 5481 cpumask_set_cpu(cpu, tbl[node]); 5482 } 5483 5484 wq_numa_possible_cpumask = tbl; 5485 wq_numa_enabled = true; 5486 } 5487 5488 /** 5489 * workqueue_init_early - early init for workqueue subsystem 5490 * 5491 * This is the first half of two-staged workqueue subsystem initialization 5492 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5493 * idr are up. It sets up all the data structures and system workqueues 5494 * and allows early boot code to create workqueues and queue/cancel work 5495 * items. Actual work item execution starts only after kthreads can be 5496 * created and scheduled right before early initcalls. 5497 */ 5498 int __init workqueue_init_early(void) 5499 { 5500 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5501 int i, cpu; 5502 5503 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5504 5505 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5506 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 5507 5508 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5509 5510 /* initialize CPU pools */ 5511 for_each_possible_cpu(cpu) { 5512 struct worker_pool *pool; 5513 5514 i = 0; 5515 for_each_cpu_worker_pool(pool, cpu) { 5516 BUG_ON(init_worker_pool(pool)); 5517 pool->cpu = cpu; 5518 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5519 pool->attrs->nice = std_nice[i++]; 5520 pool->node = cpu_to_node(cpu); 5521 5522 /* alloc pool ID */ 5523 mutex_lock(&wq_pool_mutex); 5524 BUG_ON(worker_pool_assign_id(pool)); 5525 mutex_unlock(&wq_pool_mutex); 5526 } 5527 } 5528 5529 /* create default unbound and ordered wq attrs */ 5530 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5531 struct workqueue_attrs *attrs; 5532 5533 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5534 attrs->nice = std_nice[i]; 5535 unbound_std_wq_attrs[i] = attrs; 5536 5537 /* 5538 * An ordered wq should have only one pwq as ordering is 5539 * guaranteed by max_active which is enforced by pwqs. 5540 * Turn off NUMA so that dfl_pwq is used for all nodes. 5541 */ 5542 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5543 attrs->nice = std_nice[i]; 5544 attrs->no_numa = true; 5545 ordered_wq_attrs[i] = attrs; 5546 } 5547 5548 system_wq = alloc_workqueue("events", 0, 0); 5549 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5550 system_long_wq = alloc_workqueue("events_long", 0, 0); 5551 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5552 WQ_UNBOUND_MAX_ACTIVE); 5553 system_freezable_wq = alloc_workqueue("events_freezable", 5554 WQ_FREEZABLE, 0); 5555 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5556 WQ_POWER_EFFICIENT, 0); 5557 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5558 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5559 0); 5560 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5561 !system_unbound_wq || !system_freezable_wq || 5562 !system_power_efficient_wq || 5563 !system_freezable_power_efficient_wq); 5564 5565 return 0; 5566 } 5567 5568 /** 5569 * workqueue_init - bring workqueue subsystem fully online 5570 * 5571 * This is the latter half of two-staged workqueue subsystem initialization 5572 * and invoked as soon as kthreads can be created and scheduled. 5573 * Workqueues have been created and work items queued on them, but there 5574 * are no kworkers executing the work items yet. Populate the worker pools 5575 * with the initial workers and enable future kworker creations. 5576 */ 5577 int __init workqueue_init(void) 5578 { 5579 struct workqueue_struct *wq; 5580 struct worker_pool *pool; 5581 int cpu, bkt; 5582 5583 /* 5584 * It'd be simpler to initialize NUMA in workqueue_init_early() but 5585 * CPU to node mapping may not be available that early on some 5586 * archs such as power and arm64. As per-cpu pools created 5587 * previously could be missing node hint and unbound pools NUMA 5588 * affinity, fix them up. 5589 */ 5590 wq_numa_init(); 5591 5592 mutex_lock(&wq_pool_mutex); 5593 5594 for_each_possible_cpu(cpu) { 5595 for_each_cpu_worker_pool(pool, cpu) { 5596 pool->node = cpu_to_node(cpu); 5597 } 5598 } 5599 5600 list_for_each_entry(wq, &workqueues, list) 5601 wq_update_unbound_numa(wq, smp_processor_id(), true); 5602 5603 mutex_unlock(&wq_pool_mutex); 5604 5605 /* create the initial workers */ 5606 for_each_online_cpu(cpu) { 5607 for_each_cpu_worker_pool(pool, cpu) { 5608 pool->flags &= ~POOL_DISASSOCIATED; 5609 BUG_ON(!create_worker(pool)); 5610 } 5611 } 5612 5613 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 5614 BUG_ON(!create_worker(pool)); 5615 5616 wq_online = true; 5617 wq_watchdog_init(); 5618 5619 return 0; 5620 } 5621