xref: /linux/kernel/workqueue.c (revision 79b6bb73f888933cbcd20b0ef3976cde67951b72)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 
54 #include "workqueue_internal.h"
55 
56 enum {
57 	/*
58 	 * worker_pool flags
59 	 *
60 	 * A bound pool is either associated or disassociated with its CPU.
61 	 * While associated (!DISASSOCIATED), all workers are bound to the
62 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 	 * is in effect.
64 	 *
65 	 * While DISASSOCIATED, the cpu may be offline and all workers have
66 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
67 	 * be executing on any CPU.  The pool behaves as an unbound one.
68 	 *
69 	 * Note that DISASSOCIATED should be flipped only while holding
70 	 * wq_pool_attach_mutex to avoid changing binding state while
71 	 * worker_attach_to_pool() is in progress.
72 	 */
73 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
74 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
75 
76 	/* worker flags */
77 	WORKER_DIE		= 1 << 1,	/* die die die */
78 	WORKER_IDLE		= 1 << 2,	/* is idle */
79 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
80 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
81 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
82 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
83 
84 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
85 				  WORKER_UNBOUND | WORKER_REBOUND,
86 
87 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
88 
89 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
90 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
91 
92 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
93 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
94 
95 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
96 						/* call for help after 10ms
97 						   (min two ticks) */
98 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
99 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
100 
101 	/*
102 	 * Rescue workers are used only on emergencies and shared by
103 	 * all cpus.  Give MIN_NICE.
104 	 */
105 	RESCUER_NICE_LEVEL	= MIN_NICE,
106 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
107 
108 	WQ_NAME_LEN		= 24,
109 };
110 
111 /*
112  * Structure fields follow one of the following exclusion rules.
113  *
114  * I: Modifiable by initialization/destruction paths and read-only for
115  *    everyone else.
116  *
117  * P: Preemption protected.  Disabling preemption is enough and should
118  *    only be modified and accessed from the local cpu.
119  *
120  * L: pool->lock protected.  Access with pool->lock held.
121  *
122  * X: During normal operation, modification requires pool->lock and should
123  *    be done only from local cpu.  Either disabling preemption on local
124  *    cpu or grabbing pool->lock is enough for read access.  If
125  *    POOL_DISASSOCIATED is set, it's identical to L.
126  *
127  * A: wq_pool_attach_mutex protected.
128  *
129  * PL: wq_pool_mutex protected.
130  *
131  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
132  *
133  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
134  *
135  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
136  *      RCU for reads.
137  *
138  * WQ: wq->mutex protected.
139  *
140  * WR: wq->mutex protected for writes.  RCU protected for reads.
141  *
142  * MD: wq_mayday_lock protected.
143  */
144 
145 /* struct worker is defined in workqueue_internal.h */
146 
147 struct worker_pool {
148 	spinlock_t		lock;		/* the pool lock */
149 	int			cpu;		/* I: the associated cpu */
150 	int			node;		/* I: the associated node ID */
151 	int			id;		/* I: pool ID */
152 	unsigned int		flags;		/* X: flags */
153 
154 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
155 
156 	struct list_head	worklist;	/* L: list of pending works */
157 
158 	int			nr_workers;	/* L: total number of workers */
159 	int			nr_idle;	/* L: currently idle workers */
160 
161 	struct list_head	idle_list;	/* X: list of idle workers */
162 	struct timer_list	idle_timer;	/* L: worker idle timeout */
163 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
164 
165 	/* a workers is either on busy_hash or idle_list, or the manager */
166 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 						/* L: hash of busy workers */
168 
169 	struct worker		*manager;	/* L: purely informational */
170 	struct list_head	workers;	/* A: attached workers */
171 	struct completion	*detach_completion; /* all workers detached */
172 
173 	struct ida		worker_ida;	/* worker IDs for task name */
174 
175 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
176 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
177 	int			refcnt;		/* PL: refcnt for unbound pools */
178 
179 	/*
180 	 * The current concurrency level.  As it's likely to be accessed
181 	 * from other CPUs during try_to_wake_up(), put it in a separate
182 	 * cacheline.
183 	 */
184 	atomic_t		nr_running ____cacheline_aligned_in_smp;
185 
186 	/*
187 	 * Destruction of pool is RCU protected to allow dereferences
188 	 * from get_work_pool().
189 	 */
190 	struct rcu_head		rcu;
191 } ____cacheline_aligned_in_smp;
192 
193 /*
194  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
195  * of work_struct->data are used for flags and the remaining high bits
196  * point to the pwq; thus, pwqs need to be aligned at two's power of the
197  * number of flag bits.
198  */
199 struct pool_workqueue {
200 	struct worker_pool	*pool;		/* I: the associated pool */
201 	struct workqueue_struct *wq;		/* I: the owning workqueue */
202 	int			work_color;	/* L: current color */
203 	int			flush_color;	/* L: flushing color */
204 	int			refcnt;		/* L: reference count */
205 	int			nr_in_flight[WORK_NR_COLORS];
206 						/* L: nr of in_flight works */
207 	int			nr_active;	/* L: nr of active works */
208 	int			max_active;	/* L: max active works */
209 	struct list_head	delayed_works;	/* L: delayed works */
210 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
211 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
212 
213 	/*
214 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
215 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
216 	 * itself is also RCU protected so that the first pwq can be
217 	 * determined without grabbing wq->mutex.
218 	 */
219 	struct work_struct	unbound_release_work;
220 	struct rcu_head		rcu;
221 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
222 
223 /*
224  * Structure used to wait for workqueue flush.
225  */
226 struct wq_flusher {
227 	struct list_head	list;		/* WQ: list of flushers */
228 	int			flush_color;	/* WQ: flush color waiting for */
229 	struct completion	done;		/* flush completion */
230 };
231 
232 struct wq_device;
233 
234 /*
235  * The externally visible workqueue.  It relays the issued work items to
236  * the appropriate worker_pool through its pool_workqueues.
237  */
238 struct workqueue_struct {
239 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
240 	struct list_head	list;		/* PR: list of all workqueues */
241 
242 	struct mutex		mutex;		/* protects this wq */
243 	int			work_color;	/* WQ: current work color */
244 	int			flush_color;	/* WQ: current flush color */
245 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
246 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
247 	struct list_head	flusher_queue;	/* WQ: flush waiters */
248 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
249 
250 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
251 	struct worker		*rescuer;	/* MD: rescue worker */
252 
253 	int			nr_drainers;	/* WQ: drain in progress */
254 	int			saved_max_active; /* WQ: saved pwq max_active */
255 
256 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
257 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
258 
259 #ifdef CONFIG_SYSFS
260 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
261 #endif
262 #ifdef CONFIG_LOCKDEP
263 	char			*lock_name;
264 	struct lock_class_key	key;
265 	struct lockdep_map	lockdep_map;
266 #endif
267 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
268 
269 	/*
270 	 * Destruction of workqueue_struct is RCU protected to allow walking
271 	 * the workqueues list without grabbing wq_pool_mutex.
272 	 * This is used to dump all workqueues from sysrq.
273 	 */
274 	struct rcu_head		rcu;
275 
276 	/* hot fields used during command issue, aligned to cacheline */
277 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280 };
281 
282 static struct kmem_cache *pwq_cache;
283 
284 static cpumask_var_t *wq_numa_possible_cpumask;
285 					/* possible CPUs of each node */
286 
287 static bool wq_disable_numa;
288 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289 
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293 
294 static bool wq_online;			/* can kworkers be created yet? */
295 
296 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
297 
298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300 
301 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
303 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
304 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
305 
306 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
307 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
308 
309 /* PL: allowable cpus for unbound wqs and work items */
310 static cpumask_var_t wq_unbound_cpumask;
311 
312 /* CPU where unbound work was last round robin scheduled from this CPU */
313 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
314 
315 /*
316  * Local execution of unbound work items is no longer guaranteed.  The
317  * following always forces round-robin CPU selection on unbound work items
318  * to uncover usages which depend on it.
319  */
320 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
321 static bool wq_debug_force_rr_cpu = true;
322 #else
323 static bool wq_debug_force_rr_cpu = false;
324 #endif
325 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
326 
327 /* the per-cpu worker pools */
328 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
329 
330 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
331 
332 /* PL: hash of all unbound pools keyed by pool->attrs */
333 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
334 
335 /* I: attributes used when instantiating standard unbound pools on demand */
336 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
337 
338 /* I: attributes used when instantiating ordered pools on demand */
339 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
340 
341 struct workqueue_struct *system_wq __read_mostly;
342 EXPORT_SYMBOL(system_wq);
343 struct workqueue_struct *system_highpri_wq __read_mostly;
344 EXPORT_SYMBOL_GPL(system_highpri_wq);
345 struct workqueue_struct *system_long_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_long_wq);
347 struct workqueue_struct *system_unbound_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_unbound_wq);
349 struct workqueue_struct *system_freezable_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_freezable_wq);
351 struct workqueue_struct *system_power_efficient_wq __read_mostly;
352 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
353 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
354 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
355 
356 static int worker_thread(void *__worker);
357 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
358 static void show_pwq(struct pool_workqueue *pwq);
359 
360 #define CREATE_TRACE_POINTS
361 #include <trace/events/workqueue.h>
362 
363 #define assert_rcu_or_pool_mutex()					\
364 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
365 			 !lockdep_is_held(&wq_pool_mutex),		\
366 			 "RCU or wq_pool_mutex should be held")
367 
368 #define assert_rcu_or_wq_mutex(wq)					\
369 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
370 			 !lockdep_is_held(&wq->mutex),			\
371 			 "RCU or wq->mutex should be held")
372 
373 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
374 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
375 			 !lockdep_is_held(&wq->mutex) &&		\
376 			 !lockdep_is_held(&wq_pool_mutex),		\
377 			 "RCU, wq->mutex or wq_pool_mutex should be held")
378 
379 #define for_each_cpu_worker_pool(pool, cpu)				\
380 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
381 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
382 	     (pool)++)
383 
384 /**
385  * for_each_pool - iterate through all worker_pools in the system
386  * @pool: iteration cursor
387  * @pi: integer used for iteration
388  *
389  * This must be called either with wq_pool_mutex held or RCU read
390  * locked.  If the pool needs to be used beyond the locking in effect, the
391  * caller is responsible for guaranteeing that the pool stays online.
392  *
393  * The if/else clause exists only for the lockdep assertion and can be
394  * ignored.
395  */
396 #define for_each_pool(pool, pi)						\
397 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
398 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
399 		else
400 
401 /**
402  * for_each_pool_worker - iterate through all workers of a worker_pool
403  * @worker: iteration cursor
404  * @pool: worker_pool to iterate workers of
405  *
406  * This must be called with wq_pool_attach_mutex.
407  *
408  * The if/else clause exists only for the lockdep assertion and can be
409  * ignored.
410  */
411 #define for_each_pool_worker(worker, pool)				\
412 	list_for_each_entry((worker), &(pool)->workers, node)		\
413 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
414 		else
415 
416 /**
417  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
418  * @pwq: iteration cursor
419  * @wq: the target workqueue
420  *
421  * This must be called either with wq->mutex held or RCU read locked.
422  * If the pwq needs to be used beyond the locking in effect, the caller is
423  * responsible for guaranteeing that the pwq stays online.
424  *
425  * The if/else clause exists only for the lockdep assertion and can be
426  * ignored.
427  */
428 #define for_each_pwq(pwq, wq)						\
429 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
430 				lockdep_is_held(&wq->mutex))		\
431 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
432 		else
433 
434 #ifdef CONFIG_DEBUG_OBJECTS_WORK
435 
436 static struct debug_obj_descr work_debug_descr;
437 
438 static void *work_debug_hint(void *addr)
439 {
440 	return ((struct work_struct *) addr)->func;
441 }
442 
443 static bool work_is_static_object(void *addr)
444 {
445 	struct work_struct *work = addr;
446 
447 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
448 }
449 
450 /*
451  * fixup_init is called when:
452  * - an active object is initialized
453  */
454 static bool work_fixup_init(void *addr, enum debug_obj_state state)
455 {
456 	struct work_struct *work = addr;
457 
458 	switch (state) {
459 	case ODEBUG_STATE_ACTIVE:
460 		cancel_work_sync(work);
461 		debug_object_init(work, &work_debug_descr);
462 		return true;
463 	default:
464 		return false;
465 	}
466 }
467 
468 /*
469  * fixup_free is called when:
470  * - an active object is freed
471  */
472 static bool work_fixup_free(void *addr, enum debug_obj_state state)
473 {
474 	struct work_struct *work = addr;
475 
476 	switch (state) {
477 	case ODEBUG_STATE_ACTIVE:
478 		cancel_work_sync(work);
479 		debug_object_free(work, &work_debug_descr);
480 		return true;
481 	default:
482 		return false;
483 	}
484 }
485 
486 static struct debug_obj_descr work_debug_descr = {
487 	.name		= "work_struct",
488 	.debug_hint	= work_debug_hint,
489 	.is_static_object = work_is_static_object,
490 	.fixup_init	= work_fixup_init,
491 	.fixup_free	= work_fixup_free,
492 };
493 
494 static inline void debug_work_activate(struct work_struct *work)
495 {
496 	debug_object_activate(work, &work_debug_descr);
497 }
498 
499 static inline void debug_work_deactivate(struct work_struct *work)
500 {
501 	debug_object_deactivate(work, &work_debug_descr);
502 }
503 
504 void __init_work(struct work_struct *work, int onstack)
505 {
506 	if (onstack)
507 		debug_object_init_on_stack(work, &work_debug_descr);
508 	else
509 		debug_object_init(work, &work_debug_descr);
510 }
511 EXPORT_SYMBOL_GPL(__init_work);
512 
513 void destroy_work_on_stack(struct work_struct *work)
514 {
515 	debug_object_free(work, &work_debug_descr);
516 }
517 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
518 
519 void destroy_delayed_work_on_stack(struct delayed_work *work)
520 {
521 	destroy_timer_on_stack(&work->timer);
522 	debug_object_free(&work->work, &work_debug_descr);
523 }
524 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
525 
526 #else
527 static inline void debug_work_activate(struct work_struct *work) { }
528 static inline void debug_work_deactivate(struct work_struct *work) { }
529 #endif
530 
531 /**
532  * worker_pool_assign_id - allocate ID and assing it to @pool
533  * @pool: the pool pointer of interest
534  *
535  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
536  * successfully, -errno on failure.
537  */
538 static int worker_pool_assign_id(struct worker_pool *pool)
539 {
540 	int ret;
541 
542 	lockdep_assert_held(&wq_pool_mutex);
543 
544 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
545 			GFP_KERNEL);
546 	if (ret >= 0) {
547 		pool->id = ret;
548 		return 0;
549 	}
550 	return ret;
551 }
552 
553 /**
554  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
555  * @wq: the target workqueue
556  * @node: the node ID
557  *
558  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
559  * read locked.
560  * If the pwq needs to be used beyond the locking in effect, the caller is
561  * responsible for guaranteeing that the pwq stays online.
562  *
563  * Return: The unbound pool_workqueue for @node.
564  */
565 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
566 						  int node)
567 {
568 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
569 
570 	/*
571 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
572 	 * delayed item is pending.  The plan is to keep CPU -> NODE
573 	 * mapping valid and stable across CPU on/offlines.  Once that
574 	 * happens, this workaround can be removed.
575 	 */
576 	if (unlikely(node == NUMA_NO_NODE))
577 		return wq->dfl_pwq;
578 
579 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
580 }
581 
582 static unsigned int work_color_to_flags(int color)
583 {
584 	return color << WORK_STRUCT_COLOR_SHIFT;
585 }
586 
587 static int get_work_color(struct work_struct *work)
588 {
589 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
590 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
591 }
592 
593 static int work_next_color(int color)
594 {
595 	return (color + 1) % WORK_NR_COLORS;
596 }
597 
598 /*
599  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
600  * contain the pointer to the queued pwq.  Once execution starts, the flag
601  * is cleared and the high bits contain OFFQ flags and pool ID.
602  *
603  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
604  * and clear_work_data() can be used to set the pwq, pool or clear
605  * work->data.  These functions should only be called while the work is
606  * owned - ie. while the PENDING bit is set.
607  *
608  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
609  * corresponding to a work.  Pool is available once the work has been
610  * queued anywhere after initialization until it is sync canceled.  pwq is
611  * available only while the work item is queued.
612  *
613  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
614  * canceled.  While being canceled, a work item may have its PENDING set
615  * but stay off timer and worklist for arbitrarily long and nobody should
616  * try to steal the PENDING bit.
617  */
618 static inline void set_work_data(struct work_struct *work, unsigned long data,
619 				 unsigned long flags)
620 {
621 	WARN_ON_ONCE(!work_pending(work));
622 	atomic_long_set(&work->data, data | flags | work_static(work));
623 }
624 
625 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
626 			 unsigned long extra_flags)
627 {
628 	set_work_data(work, (unsigned long)pwq,
629 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
630 }
631 
632 static void set_work_pool_and_keep_pending(struct work_struct *work,
633 					   int pool_id)
634 {
635 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
636 		      WORK_STRUCT_PENDING);
637 }
638 
639 static void set_work_pool_and_clear_pending(struct work_struct *work,
640 					    int pool_id)
641 {
642 	/*
643 	 * The following wmb is paired with the implied mb in
644 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
645 	 * here are visible to and precede any updates by the next PENDING
646 	 * owner.
647 	 */
648 	smp_wmb();
649 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
650 	/*
651 	 * The following mb guarantees that previous clear of a PENDING bit
652 	 * will not be reordered with any speculative LOADS or STORES from
653 	 * work->current_func, which is executed afterwards.  This possible
654 	 * reordering can lead to a missed execution on attempt to queue
655 	 * the same @work.  E.g. consider this case:
656 	 *
657 	 *   CPU#0                         CPU#1
658 	 *   ----------------------------  --------------------------------
659 	 *
660 	 * 1  STORE event_indicated
661 	 * 2  queue_work_on() {
662 	 * 3    test_and_set_bit(PENDING)
663 	 * 4 }                             set_..._and_clear_pending() {
664 	 * 5                                 set_work_data() # clear bit
665 	 * 6                                 smp_mb()
666 	 * 7                               work->current_func() {
667 	 * 8				      LOAD event_indicated
668 	 *				   }
669 	 *
670 	 * Without an explicit full barrier speculative LOAD on line 8 can
671 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
672 	 * CPU#0 observes the PENDING bit is still set and new execution of
673 	 * a @work is not queued in a hope, that CPU#1 will eventually
674 	 * finish the queued @work.  Meanwhile CPU#1 does not see
675 	 * event_indicated is set, because speculative LOAD was executed
676 	 * before actual STORE.
677 	 */
678 	smp_mb();
679 }
680 
681 static void clear_work_data(struct work_struct *work)
682 {
683 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
684 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
685 }
686 
687 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
688 {
689 	unsigned long data = atomic_long_read(&work->data);
690 
691 	if (data & WORK_STRUCT_PWQ)
692 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
693 	else
694 		return NULL;
695 }
696 
697 /**
698  * get_work_pool - return the worker_pool a given work was associated with
699  * @work: the work item of interest
700  *
701  * Pools are created and destroyed under wq_pool_mutex, and allows read
702  * access under RCU read lock.  As such, this function should be
703  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
704  *
705  * All fields of the returned pool are accessible as long as the above
706  * mentioned locking is in effect.  If the returned pool needs to be used
707  * beyond the critical section, the caller is responsible for ensuring the
708  * returned pool is and stays online.
709  *
710  * Return: The worker_pool @work was last associated with.  %NULL if none.
711  */
712 static struct worker_pool *get_work_pool(struct work_struct *work)
713 {
714 	unsigned long data = atomic_long_read(&work->data);
715 	int pool_id;
716 
717 	assert_rcu_or_pool_mutex();
718 
719 	if (data & WORK_STRUCT_PWQ)
720 		return ((struct pool_workqueue *)
721 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
722 
723 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
724 	if (pool_id == WORK_OFFQ_POOL_NONE)
725 		return NULL;
726 
727 	return idr_find(&worker_pool_idr, pool_id);
728 }
729 
730 /**
731  * get_work_pool_id - return the worker pool ID a given work is associated with
732  * @work: the work item of interest
733  *
734  * Return: The worker_pool ID @work was last associated with.
735  * %WORK_OFFQ_POOL_NONE if none.
736  */
737 static int get_work_pool_id(struct work_struct *work)
738 {
739 	unsigned long data = atomic_long_read(&work->data);
740 
741 	if (data & WORK_STRUCT_PWQ)
742 		return ((struct pool_workqueue *)
743 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
744 
745 	return data >> WORK_OFFQ_POOL_SHIFT;
746 }
747 
748 static void mark_work_canceling(struct work_struct *work)
749 {
750 	unsigned long pool_id = get_work_pool_id(work);
751 
752 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
753 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
754 }
755 
756 static bool work_is_canceling(struct work_struct *work)
757 {
758 	unsigned long data = atomic_long_read(&work->data);
759 
760 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
761 }
762 
763 /*
764  * Policy functions.  These define the policies on how the global worker
765  * pools are managed.  Unless noted otherwise, these functions assume that
766  * they're being called with pool->lock held.
767  */
768 
769 static bool __need_more_worker(struct worker_pool *pool)
770 {
771 	return !atomic_read(&pool->nr_running);
772 }
773 
774 /*
775  * Need to wake up a worker?  Called from anything but currently
776  * running workers.
777  *
778  * Note that, because unbound workers never contribute to nr_running, this
779  * function will always return %true for unbound pools as long as the
780  * worklist isn't empty.
781  */
782 static bool need_more_worker(struct worker_pool *pool)
783 {
784 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
785 }
786 
787 /* Can I start working?  Called from busy but !running workers. */
788 static bool may_start_working(struct worker_pool *pool)
789 {
790 	return pool->nr_idle;
791 }
792 
793 /* Do I need to keep working?  Called from currently running workers. */
794 static bool keep_working(struct worker_pool *pool)
795 {
796 	return !list_empty(&pool->worklist) &&
797 		atomic_read(&pool->nr_running) <= 1;
798 }
799 
800 /* Do we need a new worker?  Called from manager. */
801 static bool need_to_create_worker(struct worker_pool *pool)
802 {
803 	return need_more_worker(pool) && !may_start_working(pool);
804 }
805 
806 /* Do we have too many workers and should some go away? */
807 static bool too_many_workers(struct worker_pool *pool)
808 {
809 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
810 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
811 	int nr_busy = pool->nr_workers - nr_idle;
812 
813 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
814 }
815 
816 /*
817  * Wake up functions.
818  */
819 
820 /* Return the first idle worker.  Safe with preemption disabled */
821 static struct worker *first_idle_worker(struct worker_pool *pool)
822 {
823 	if (unlikely(list_empty(&pool->idle_list)))
824 		return NULL;
825 
826 	return list_first_entry(&pool->idle_list, struct worker, entry);
827 }
828 
829 /**
830  * wake_up_worker - wake up an idle worker
831  * @pool: worker pool to wake worker from
832  *
833  * Wake up the first idle worker of @pool.
834  *
835  * CONTEXT:
836  * spin_lock_irq(pool->lock).
837  */
838 static void wake_up_worker(struct worker_pool *pool)
839 {
840 	struct worker *worker = first_idle_worker(pool);
841 
842 	if (likely(worker))
843 		wake_up_process(worker->task);
844 }
845 
846 /**
847  * wq_worker_running - a worker is running again
848  * @task: task waking up
849  *
850  * This function is called when a worker returns from schedule()
851  */
852 void wq_worker_running(struct task_struct *task)
853 {
854 	struct worker *worker = kthread_data(task);
855 
856 	if (!worker->sleeping)
857 		return;
858 	if (!(worker->flags & WORKER_NOT_RUNNING))
859 		atomic_inc(&worker->pool->nr_running);
860 	worker->sleeping = 0;
861 }
862 
863 /**
864  * wq_worker_sleeping - a worker is going to sleep
865  * @task: task going to sleep
866  *
867  * This function is called from schedule() when a busy worker is
868  * going to sleep.
869  */
870 void wq_worker_sleeping(struct task_struct *task)
871 {
872 	struct worker *next, *worker = kthread_data(task);
873 	struct worker_pool *pool;
874 
875 	/*
876 	 * Rescuers, which may not have all the fields set up like normal
877 	 * workers, also reach here, let's not access anything before
878 	 * checking NOT_RUNNING.
879 	 */
880 	if (worker->flags & WORKER_NOT_RUNNING)
881 		return;
882 
883 	pool = worker->pool;
884 
885 	if (WARN_ON_ONCE(worker->sleeping))
886 		return;
887 
888 	worker->sleeping = 1;
889 	spin_lock_irq(&pool->lock);
890 
891 	/*
892 	 * The counterpart of the following dec_and_test, implied mb,
893 	 * worklist not empty test sequence is in insert_work().
894 	 * Please read comment there.
895 	 *
896 	 * NOT_RUNNING is clear.  This means that we're bound to and
897 	 * running on the local cpu w/ rq lock held and preemption
898 	 * disabled, which in turn means that none else could be
899 	 * manipulating idle_list, so dereferencing idle_list without pool
900 	 * lock is safe.
901 	 */
902 	if (atomic_dec_and_test(&pool->nr_running) &&
903 	    !list_empty(&pool->worklist)) {
904 		next = first_idle_worker(pool);
905 		if (next)
906 			wake_up_process(next->task);
907 	}
908 	spin_unlock_irq(&pool->lock);
909 }
910 
911 /**
912  * wq_worker_last_func - retrieve worker's last work function
913  * @task: Task to retrieve last work function of.
914  *
915  * Determine the last function a worker executed. This is called from
916  * the scheduler to get a worker's last known identity.
917  *
918  * CONTEXT:
919  * spin_lock_irq(rq->lock)
920  *
921  * This function is called during schedule() when a kworker is going
922  * to sleep. It's used by psi to identify aggregation workers during
923  * dequeuing, to allow periodic aggregation to shut-off when that
924  * worker is the last task in the system or cgroup to go to sleep.
925  *
926  * As this function doesn't involve any workqueue-related locking, it
927  * only returns stable values when called from inside the scheduler's
928  * queuing and dequeuing paths, when @task, which must be a kworker,
929  * is guaranteed to not be processing any works.
930  *
931  * Return:
932  * The last work function %current executed as a worker, NULL if it
933  * hasn't executed any work yet.
934  */
935 work_func_t wq_worker_last_func(struct task_struct *task)
936 {
937 	struct worker *worker = kthread_data(task);
938 
939 	return worker->last_func;
940 }
941 
942 /**
943  * worker_set_flags - set worker flags and adjust nr_running accordingly
944  * @worker: self
945  * @flags: flags to set
946  *
947  * Set @flags in @worker->flags and adjust nr_running accordingly.
948  *
949  * CONTEXT:
950  * spin_lock_irq(pool->lock)
951  */
952 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
953 {
954 	struct worker_pool *pool = worker->pool;
955 
956 	WARN_ON_ONCE(worker->task != current);
957 
958 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
959 	if ((flags & WORKER_NOT_RUNNING) &&
960 	    !(worker->flags & WORKER_NOT_RUNNING)) {
961 		atomic_dec(&pool->nr_running);
962 	}
963 
964 	worker->flags |= flags;
965 }
966 
967 /**
968  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
969  * @worker: self
970  * @flags: flags to clear
971  *
972  * Clear @flags in @worker->flags and adjust nr_running accordingly.
973  *
974  * CONTEXT:
975  * spin_lock_irq(pool->lock)
976  */
977 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
978 {
979 	struct worker_pool *pool = worker->pool;
980 	unsigned int oflags = worker->flags;
981 
982 	WARN_ON_ONCE(worker->task != current);
983 
984 	worker->flags &= ~flags;
985 
986 	/*
987 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
988 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
989 	 * of multiple flags, not a single flag.
990 	 */
991 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
992 		if (!(worker->flags & WORKER_NOT_RUNNING))
993 			atomic_inc(&pool->nr_running);
994 }
995 
996 /**
997  * find_worker_executing_work - find worker which is executing a work
998  * @pool: pool of interest
999  * @work: work to find worker for
1000  *
1001  * Find a worker which is executing @work on @pool by searching
1002  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1003  * to match, its current execution should match the address of @work and
1004  * its work function.  This is to avoid unwanted dependency between
1005  * unrelated work executions through a work item being recycled while still
1006  * being executed.
1007  *
1008  * This is a bit tricky.  A work item may be freed once its execution
1009  * starts and nothing prevents the freed area from being recycled for
1010  * another work item.  If the same work item address ends up being reused
1011  * before the original execution finishes, workqueue will identify the
1012  * recycled work item as currently executing and make it wait until the
1013  * current execution finishes, introducing an unwanted dependency.
1014  *
1015  * This function checks the work item address and work function to avoid
1016  * false positives.  Note that this isn't complete as one may construct a
1017  * work function which can introduce dependency onto itself through a
1018  * recycled work item.  Well, if somebody wants to shoot oneself in the
1019  * foot that badly, there's only so much we can do, and if such deadlock
1020  * actually occurs, it should be easy to locate the culprit work function.
1021  *
1022  * CONTEXT:
1023  * spin_lock_irq(pool->lock).
1024  *
1025  * Return:
1026  * Pointer to worker which is executing @work if found, %NULL
1027  * otherwise.
1028  */
1029 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1030 						 struct work_struct *work)
1031 {
1032 	struct worker *worker;
1033 
1034 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1035 			       (unsigned long)work)
1036 		if (worker->current_work == work &&
1037 		    worker->current_func == work->func)
1038 			return worker;
1039 
1040 	return NULL;
1041 }
1042 
1043 /**
1044  * move_linked_works - move linked works to a list
1045  * @work: start of series of works to be scheduled
1046  * @head: target list to append @work to
1047  * @nextp: out parameter for nested worklist walking
1048  *
1049  * Schedule linked works starting from @work to @head.  Work series to
1050  * be scheduled starts at @work and includes any consecutive work with
1051  * WORK_STRUCT_LINKED set in its predecessor.
1052  *
1053  * If @nextp is not NULL, it's updated to point to the next work of
1054  * the last scheduled work.  This allows move_linked_works() to be
1055  * nested inside outer list_for_each_entry_safe().
1056  *
1057  * CONTEXT:
1058  * spin_lock_irq(pool->lock).
1059  */
1060 static void move_linked_works(struct work_struct *work, struct list_head *head,
1061 			      struct work_struct **nextp)
1062 {
1063 	struct work_struct *n;
1064 
1065 	/*
1066 	 * Linked worklist will always end before the end of the list,
1067 	 * use NULL for list head.
1068 	 */
1069 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1070 		list_move_tail(&work->entry, head);
1071 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1072 			break;
1073 	}
1074 
1075 	/*
1076 	 * If we're already inside safe list traversal and have moved
1077 	 * multiple works to the scheduled queue, the next position
1078 	 * needs to be updated.
1079 	 */
1080 	if (nextp)
1081 		*nextp = n;
1082 }
1083 
1084 /**
1085  * get_pwq - get an extra reference on the specified pool_workqueue
1086  * @pwq: pool_workqueue to get
1087  *
1088  * Obtain an extra reference on @pwq.  The caller should guarantee that
1089  * @pwq has positive refcnt and be holding the matching pool->lock.
1090  */
1091 static void get_pwq(struct pool_workqueue *pwq)
1092 {
1093 	lockdep_assert_held(&pwq->pool->lock);
1094 	WARN_ON_ONCE(pwq->refcnt <= 0);
1095 	pwq->refcnt++;
1096 }
1097 
1098 /**
1099  * put_pwq - put a pool_workqueue reference
1100  * @pwq: pool_workqueue to put
1101  *
1102  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1103  * destruction.  The caller should be holding the matching pool->lock.
1104  */
1105 static void put_pwq(struct pool_workqueue *pwq)
1106 {
1107 	lockdep_assert_held(&pwq->pool->lock);
1108 	if (likely(--pwq->refcnt))
1109 		return;
1110 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1111 		return;
1112 	/*
1113 	 * @pwq can't be released under pool->lock, bounce to
1114 	 * pwq_unbound_release_workfn().  This never recurses on the same
1115 	 * pool->lock as this path is taken only for unbound workqueues and
1116 	 * the release work item is scheduled on a per-cpu workqueue.  To
1117 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1118 	 * subclass of 1 in get_unbound_pool().
1119 	 */
1120 	schedule_work(&pwq->unbound_release_work);
1121 }
1122 
1123 /**
1124  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1125  * @pwq: pool_workqueue to put (can be %NULL)
1126  *
1127  * put_pwq() with locking.  This function also allows %NULL @pwq.
1128  */
1129 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1130 {
1131 	if (pwq) {
1132 		/*
1133 		 * As both pwqs and pools are RCU protected, the
1134 		 * following lock operations are safe.
1135 		 */
1136 		spin_lock_irq(&pwq->pool->lock);
1137 		put_pwq(pwq);
1138 		spin_unlock_irq(&pwq->pool->lock);
1139 	}
1140 }
1141 
1142 static void pwq_activate_delayed_work(struct work_struct *work)
1143 {
1144 	struct pool_workqueue *pwq = get_work_pwq(work);
1145 
1146 	trace_workqueue_activate_work(work);
1147 	if (list_empty(&pwq->pool->worklist))
1148 		pwq->pool->watchdog_ts = jiffies;
1149 	move_linked_works(work, &pwq->pool->worklist, NULL);
1150 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1151 	pwq->nr_active++;
1152 }
1153 
1154 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1155 {
1156 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1157 						    struct work_struct, entry);
1158 
1159 	pwq_activate_delayed_work(work);
1160 }
1161 
1162 /**
1163  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1164  * @pwq: pwq of interest
1165  * @color: color of work which left the queue
1166  *
1167  * A work either has completed or is removed from pending queue,
1168  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1169  *
1170  * CONTEXT:
1171  * spin_lock_irq(pool->lock).
1172  */
1173 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1174 {
1175 	/* uncolored work items don't participate in flushing or nr_active */
1176 	if (color == WORK_NO_COLOR)
1177 		goto out_put;
1178 
1179 	pwq->nr_in_flight[color]--;
1180 
1181 	pwq->nr_active--;
1182 	if (!list_empty(&pwq->delayed_works)) {
1183 		/* one down, submit a delayed one */
1184 		if (pwq->nr_active < pwq->max_active)
1185 			pwq_activate_first_delayed(pwq);
1186 	}
1187 
1188 	/* is flush in progress and are we at the flushing tip? */
1189 	if (likely(pwq->flush_color != color))
1190 		goto out_put;
1191 
1192 	/* are there still in-flight works? */
1193 	if (pwq->nr_in_flight[color])
1194 		goto out_put;
1195 
1196 	/* this pwq is done, clear flush_color */
1197 	pwq->flush_color = -1;
1198 
1199 	/*
1200 	 * If this was the last pwq, wake up the first flusher.  It
1201 	 * will handle the rest.
1202 	 */
1203 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1204 		complete(&pwq->wq->first_flusher->done);
1205 out_put:
1206 	put_pwq(pwq);
1207 }
1208 
1209 /**
1210  * try_to_grab_pending - steal work item from worklist and disable irq
1211  * @work: work item to steal
1212  * @is_dwork: @work is a delayed_work
1213  * @flags: place to store irq state
1214  *
1215  * Try to grab PENDING bit of @work.  This function can handle @work in any
1216  * stable state - idle, on timer or on worklist.
1217  *
1218  * Return:
1219  *  1		if @work was pending and we successfully stole PENDING
1220  *  0		if @work was idle and we claimed PENDING
1221  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1222  *  -ENOENT	if someone else is canceling @work, this state may persist
1223  *		for arbitrarily long
1224  *
1225  * Note:
1226  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1227  * interrupted while holding PENDING and @work off queue, irq must be
1228  * disabled on entry.  This, combined with delayed_work->timer being
1229  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1230  *
1231  * On successful return, >= 0, irq is disabled and the caller is
1232  * responsible for releasing it using local_irq_restore(*@flags).
1233  *
1234  * This function is safe to call from any context including IRQ handler.
1235  */
1236 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1237 			       unsigned long *flags)
1238 {
1239 	struct worker_pool *pool;
1240 	struct pool_workqueue *pwq;
1241 
1242 	local_irq_save(*flags);
1243 
1244 	/* try to steal the timer if it exists */
1245 	if (is_dwork) {
1246 		struct delayed_work *dwork = to_delayed_work(work);
1247 
1248 		/*
1249 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1250 		 * guaranteed that the timer is not queued anywhere and not
1251 		 * running on the local CPU.
1252 		 */
1253 		if (likely(del_timer(&dwork->timer)))
1254 			return 1;
1255 	}
1256 
1257 	/* try to claim PENDING the normal way */
1258 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1259 		return 0;
1260 
1261 	rcu_read_lock();
1262 	/*
1263 	 * The queueing is in progress, or it is already queued. Try to
1264 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1265 	 */
1266 	pool = get_work_pool(work);
1267 	if (!pool)
1268 		goto fail;
1269 
1270 	spin_lock(&pool->lock);
1271 	/*
1272 	 * work->data is guaranteed to point to pwq only while the work
1273 	 * item is queued on pwq->wq, and both updating work->data to point
1274 	 * to pwq on queueing and to pool on dequeueing are done under
1275 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1276 	 * points to pwq which is associated with a locked pool, the work
1277 	 * item is currently queued on that pool.
1278 	 */
1279 	pwq = get_work_pwq(work);
1280 	if (pwq && pwq->pool == pool) {
1281 		debug_work_deactivate(work);
1282 
1283 		/*
1284 		 * A delayed work item cannot be grabbed directly because
1285 		 * it might have linked NO_COLOR work items which, if left
1286 		 * on the delayed_list, will confuse pwq->nr_active
1287 		 * management later on and cause stall.  Make sure the work
1288 		 * item is activated before grabbing.
1289 		 */
1290 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1291 			pwq_activate_delayed_work(work);
1292 
1293 		list_del_init(&work->entry);
1294 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1295 
1296 		/* work->data points to pwq iff queued, point to pool */
1297 		set_work_pool_and_keep_pending(work, pool->id);
1298 
1299 		spin_unlock(&pool->lock);
1300 		rcu_read_unlock();
1301 		return 1;
1302 	}
1303 	spin_unlock(&pool->lock);
1304 fail:
1305 	rcu_read_unlock();
1306 	local_irq_restore(*flags);
1307 	if (work_is_canceling(work))
1308 		return -ENOENT;
1309 	cpu_relax();
1310 	return -EAGAIN;
1311 }
1312 
1313 /**
1314  * insert_work - insert a work into a pool
1315  * @pwq: pwq @work belongs to
1316  * @work: work to insert
1317  * @head: insertion point
1318  * @extra_flags: extra WORK_STRUCT_* flags to set
1319  *
1320  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1321  * work_struct flags.
1322  *
1323  * CONTEXT:
1324  * spin_lock_irq(pool->lock).
1325  */
1326 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1327 			struct list_head *head, unsigned int extra_flags)
1328 {
1329 	struct worker_pool *pool = pwq->pool;
1330 
1331 	/* we own @work, set data and link */
1332 	set_work_pwq(work, pwq, extra_flags);
1333 	list_add_tail(&work->entry, head);
1334 	get_pwq(pwq);
1335 
1336 	/*
1337 	 * Ensure either wq_worker_sleeping() sees the above
1338 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1339 	 * around lazily while there are works to be processed.
1340 	 */
1341 	smp_mb();
1342 
1343 	if (__need_more_worker(pool))
1344 		wake_up_worker(pool);
1345 }
1346 
1347 /*
1348  * Test whether @work is being queued from another work executing on the
1349  * same workqueue.
1350  */
1351 static bool is_chained_work(struct workqueue_struct *wq)
1352 {
1353 	struct worker *worker;
1354 
1355 	worker = current_wq_worker();
1356 	/*
1357 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1358 	 * I'm @worker, it's safe to dereference it without locking.
1359 	 */
1360 	return worker && worker->current_pwq->wq == wq;
1361 }
1362 
1363 /*
1364  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1365  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1366  * avoid perturbing sensitive tasks.
1367  */
1368 static int wq_select_unbound_cpu(int cpu)
1369 {
1370 	static bool printed_dbg_warning;
1371 	int new_cpu;
1372 
1373 	if (likely(!wq_debug_force_rr_cpu)) {
1374 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1375 			return cpu;
1376 	} else if (!printed_dbg_warning) {
1377 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1378 		printed_dbg_warning = true;
1379 	}
1380 
1381 	if (cpumask_empty(wq_unbound_cpumask))
1382 		return cpu;
1383 
1384 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1385 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1386 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1387 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1388 		if (unlikely(new_cpu >= nr_cpu_ids))
1389 			return cpu;
1390 	}
1391 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1392 
1393 	return new_cpu;
1394 }
1395 
1396 static void __queue_work(int cpu, struct workqueue_struct *wq,
1397 			 struct work_struct *work)
1398 {
1399 	struct pool_workqueue *pwq;
1400 	struct worker_pool *last_pool;
1401 	struct list_head *worklist;
1402 	unsigned int work_flags;
1403 	unsigned int req_cpu = cpu;
1404 
1405 	/*
1406 	 * While a work item is PENDING && off queue, a task trying to
1407 	 * steal the PENDING will busy-loop waiting for it to either get
1408 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1409 	 * happen with IRQ disabled.
1410 	 */
1411 	lockdep_assert_irqs_disabled();
1412 
1413 	debug_work_activate(work);
1414 
1415 	/* if draining, only works from the same workqueue are allowed */
1416 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1417 	    WARN_ON_ONCE(!is_chained_work(wq)))
1418 		return;
1419 	rcu_read_lock();
1420 retry:
1421 	if (req_cpu == WORK_CPU_UNBOUND)
1422 		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1423 
1424 	/* pwq which will be used unless @work is executing elsewhere */
1425 	if (!(wq->flags & WQ_UNBOUND))
1426 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1427 	else
1428 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1429 
1430 	/*
1431 	 * If @work was previously on a different pool, it might still be
1432 	 * running there, in which case the work needs to be queued on that
1433 	 * pool to guarantee non-reentrancy.
1434 	 */
1435 	last_pool = get_work_pool(work);
1436 	if (last_pool && last_pool != pwq->pool) {
1437 		struct worker *worker;
1438 
1439 		spin_lock(&last_pool->lock);
1440 
1441 		worker = find_worker_executing_work(last_pool, work);
1442 
1443 		if (worker && worker->current_pwq->wq == wq) {
1444 			pwq = worker->current_pwq;
1445 		} else {
1446 			/* meh... not running there, queue here */
1447 			spin_unlock(&last_pool->lock);
1448 			spin_lock(&pwq->pool->lock);
1449 		}
1450 	} else {
1451 		spin_lock(&pwq->pool->lock);
1452 	}
1453 
1454 	/*
1455 	 * pwq is determined and locked.  For unbound pools, we could have
1456 	 * raced with pwq release and it could already be dead.  If its
1457 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1458 	 * without another pwq replacing it in the numa_pwq_tbl or while
1459 	 * work items are executing on it, so the retrying is guaranteed to
1460 	 * make forward-progress.
1461 	 */
1462 	if (unlikely(!pwq->refcnt)) {
1463 		if (wq->flags & WQ_UNBOUND) {
1464 			spin_unlock(&pwq->pool->lock);
1465 			cpu_relax();
1466 			goto retry;
1467 		}
1468 		/* oops */
1469 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1470 			  wq->name, cpu);
1471 	}
1472 
1473 	/* pwq determined, queue */
1474 	trace_workqueue_queue_work(req_cpu, pwq, work);
1475 
1476 	if (WARN_ON(!list_empty(&work->entry)))
1477 		goto out;
1478 
1479 	pwq->nr_in_flight[pwq->work_color]++;
1480 	work_flags = work_color_to_flags(pwq->work_color);
1481 
1482 	if (likely(pwq->nr_active < pwq->max_active)) {
1483 		trace_workqueue_activate_work(work);
1484 		pwq->nr_active++;
1485 		worklist = &pwq->pool->worklist;
1486 		if (list_empty(worklist))
1487 			pwq->pool->watchdog_ts = jiffies;
1488 	} else {
1489 		work_flags |= WORK_STRUCT_DELAYED;
1490 		worklist = &pwq->delayed_works;
1491 	}
1492 
1493 	insert_work(pwq, work, worklist, work_flags);
1494 
1495 out:
1496 	spin_unlock(&pwq->pool->lock);
1497 	rcu_read_unlock();
1498 }
1499 
1500 /**
1501  * queue_work_on - queue work on specific cpu
1502  * @cpu: CPU number to execute work on
1503  * @wq: workqueue to use
1504  * @work: work to queue
1505  *
1506  * We queue the work to a specific CPU, the caller must ensure it
1507  * can't go away.
1508  *
1509  * Return: %false if @work was already on a queue, %true otherwise.
1510  */
1511 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1512 		   struct work_struct *work)
1513 {
1514 	bool ret = false;
1515 	unsigned long flags;
1516 
1517 	local_irq_save(flags);
1518 
1519 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1520 		__queue_work(cpu, wq, work);
1521 		ret = true;
1522 	}
1523 
1524 	local_irq_restore(flags);
1525 	return ret;
1526 }
1527 EXPORT_SYMBOL(queue_work_on);
1528 
1529 /**
1530  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1531  * @node: NUMA node ID that we want to select a CPU from
1532  *
1533  * This function will attempt to find a "random" cpu available on a given
1534  * node. If there are no CPUs available on the given node it will return
1535  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1536  * available CPU if we need to schedule this work.
1537  */
1538 static int workqueue_select_cpu_near(int node)
1539 {
1540 	int cpu;
1541 
1542 	/* No point in doing this if NUMA isn't enabled for workqueues */
1543 	if (!wq_numa_enabled)
1544 		return WORK_CPU_UNBOUND;
1545 
1546 	/* Delay binding to CPU if node is not valid or online */
1547 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1548 		return WORK_CPU_UNBOUND;
1549 
1550 	/* Use local node/cpu if we are already there */
1551 	cpu = raw_smp_processor_id();
1552 	if (node == cpu_to_node(cpu))
1553 		return cpu;
1554 
1555 	/* Use "random" otherwise know as "first" online CPU of node */
1556 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1557 
1558 	/* If CPU is valid return that, otherwise just defer */
1559 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1560 }
1561 
1562 /**
1563  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1564  * @node: NUMA node that we are targeting the work for
1565  * @wq: workqueue to use
1566  * @work: work to queue
1567  *
1568  * We queue the work to a "random" CPU within a given NUMA node. The basic
1569  * idea here is to provide a way to somehow associate work with a given
1570  * NUMA node.
1571  *
1572  * This function will only make a best effort attempt at getting this onto
1573  * the right NUMA node. If no node is requested or the requested node is
1574  * offline then we just fall back to standard queue_work behavior.
1575  *
1576  * Currently the "random" CPU ends up being the first available CPU in the
1577  * intersection of cpu_online_mask and the cpumask of the node, unless we
1578  * are running on the node. In that case we just use the current CPU.
1579  *
1580  * Return: %false if @work was already on a queue, %true otherwise.
1581  */
1582 bool queue_work_node(int node, struct workqueue_struct *wq,
1583 		     struct work_struct *work)
1584 {
1585 	unsigned long flags;
1586 	bool ret = false;
1587 
1588 	/*
1589 	 * This current implementation is specific to unbound workqueues.
1590 	 * Specifically we only return the first available CPU for a given
1591 	 * node instead of cycling through individual CPUs within the node.
1592 	 *
1593 	 * If this is used with a per-cpu workqueue then the logic in
1594 	 * workqueue_select_cpu_near would need to be updated to allow for
1595 	 * some round robin type logic.
1596 	 */
1597 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1598 
1599 	local_irq_save(flags);
1600 
1601 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1602 		int cpu = workqueue_select_cpu_near(node);
1603 
1604 		__queue_work(cpu, wq, work);
1605 		ret = true;
1606 	}
1607 
1608 	local_irq_restore(flags);
1609 	return ret;
1610 }
1611 EXPORT_SYMBOL_GPL(queue_work_node);
1612 
1613 void delayed_work_timer_fn(struct timer_list *t)
1614 {
1615 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1616 
1617 	/* should have been called from irqsafe timer with irq already off */
1618 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1619 }
1620 EXPORT_SYMBOL(delayed_work_timer_fn);
1621 
1622 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1623 				struct delayed_work *dwork, unsigned long delay)
1624 {
1625 	struct timer_list *timer = &dwork->timer;
1626 	struct work_struct *work = &dwork->work;
1627 
1628 	WARN_ON_ONCE(!wq);
1629 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1630 	WARN_ON_ONCE(timer_pending(timer));
1631 	WARN_ON_ONCE(!list_empty(&work->entry));
1632 
1633 	/*
1634 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1635 	 * both optimization and correctness.  The earliest @timer can
1636 	 * expire is on the closest next tick and delayed_work users depend
1637 	 * on that there's no such delay when @delay is 0.
1638 	 */
1639 	if (!delay) {
1640 		__queue_work(cpu, wq, &dwork->work);
1641 		return;
1642 	}
1643 
1644 	dwork->wq = wq;
1645 	dwork->cpu = cpu;
1646 	timer->expires = jiffies + delay;
1647 
1648 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1649 		add_timer_on(timer, cpu);
1650 	else
1651 		add_timer(timer);
1652 }
1653 
1654 /**
1655  * queue_delayed_work_on - queue work on specific CPU after delay
1656  * @cpu: CPU number to execute work on
1657  * @wq: workqueue to use
1658  * @dwork: work to queue
1659  * @delay: number of jiffies to wait before queueing
1660  *
1661  * Return: %false if @work was already on a queue, %true otherwise.  If
1662  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1663  * execution.
1664  */
1665 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1666 			   struct delayed_work *dwork, unsigned long delay)
1667 {
1668 	struct work_struct *work = &dwork->work;
1669 	bool ret = false;
1670 	unsigned long flags;
1671 
1672 	/* read the comment in __queue_work() */
1673 	local_irq_save(flags);
1674 
1675 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1676 		__queue_delayed_work(cpu, wq, dwork, delay);
1677 		ret = true;
1678 	}
1679 
1680 	local_irq_restore(flags);
1681 	return ret;
1682 }
1683 EXPORT_SYMBOL(queue_delayed_work_on);
1684 
1685 /**
1686  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1687  * @cpu: CPU number to execute work on
1688  * @wq: workqueue to use
1689  * @dwork: work to queue
1690  * @delay: number of jiffies to wait before queueing
1691  *
1692  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1693  * modify @dwork's timer so that it expires after @delay.  If @delay is
1694  * zero, @work is guaranteed to be scheduled immediately regardless of its
1695  * current state.
1696  *
1697  * Return: %false if @dwork was idle and queued, %true if @dwork was
1698  * pending and its timer was modified.
1699  *
1700  * This function is safe to call from any context including IRQ handler.
1701  * See try_to_grab_pending() for details.
1702  */
1703 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1704 			 struct delayed_work *dwork, unsigned long delay)
1705 {
1706 	unsigned long flags;
1707 	int ret;
1708 
1709 	do {
1710 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1711 	} while (unlikely(ret == -EAGAIN));
1712 
1713 	if (likely(ret >= 0)) {
1714 		__queue_delayed_work(cpu, wq, dwork, delay);
1715 		local_irq_restore(flags);
1716 	}
1717 
1718 	/* -ENOENT from try_to_grab_pending() becomes %true */
1719 	return ret;
1720 }
1721 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1722 
1723 static void rcu_work_rcufn(struct rcu_head *rcu)
1724 {
1725 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1726 
1727 	/* read the comment in __queue_work() */
1728 	local_irq_disable();
1729 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1730 	local_irq_enable();
1731 }
1732 
1733 /**
1734  * queue_rcu_work - queue work after a RCU grace period
1735  * @wq: workqueue to use
1736  * @rwork: work to queue
1737  *
1738  * Return: %false if @rwork was already pending, %true otherwise.  Note
1739  * that a full RCU grace period is guaranteed only after a %true return.
1740  * While @rwork is guaranteed to be executed after a %false return, the
1741  * execution may happen before a full RCU grace period has passed.
1742  */
1743 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1744 {
1745 	struct work_struct *work = &rwork->work;
1746 
1747 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1748 		rwork->wq = wq;
1749 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1750 		return true;
1751 	}
1752 
1753 	return false;
1754 }
1755 EXPORT_SYMBOL(queue_rcu_work);
1756 
1757 /**
1758  * worker_enter_idle - enter idle state
1759  * @worker: worker which is entering idle state
1760  *
1761  * @worker is entering idle state.  Update stats and idle timer if
1762  * necessary.
1763  *
1764  * LOCKING:
1765  * spin_lock_irq(pool->lock).
1766  */
1767 static void worker_enter_idle(struct worker *worker)
1768 {
1769 	struct worker_pool *pool = worker->pool;
1770 
1771 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1772 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1773 			 (worker->hentry.next || worker->hentry.pprev)))
1774 		return;
1775 
1776 	/* can't use worker_set_flags(), also called from create_worker() */
1777 	worker->flags |= WORKER_IDLE;
1778 	pool->nr_idle++;
1779 	worker->last_active = jiffies;
1780 
1781 	/* idle_list is LIFO */
1782 	list_add(&worker->entry, &pool->idle_list);
1783 
1784 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1785 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1786 
1787 	/*
1788 	 * Sanity check nr_running.  Because unbind_workers() releases
1789 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1790 	 * nr_running, the warning may trigger spuriously.  Check iff
1791 	 * unbind is not in progress.
1792 	 */
1793 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1794 		     pool->nr_workers == pool->nr_idle &&
1795 		     atomic_read(&pool->nr_running));
1796 }
1797 
1798 /**
1799  * worker_leave_idle - leave idle state
1800  * @worker: worker which is leaving idle state
1801  *
1802  * @worker is leaving idle state.  Update stats.
1803  *
1804  * LOCKING:
1805  * spin_lock_irq(pool->lock).
1806  */
1807 static void worker_leave_idle(struct worker *worker)
1808 {
1809 	struct worker_pool *pool = worker->pool;
1810 
1811 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1812 		return;
1813 	worker_clr_flags(worker, WORKER_IDLE);
1814 	pool->nr_idle--;
1815 	list_del_init(&worker->entry);
1816 }
1817 
1818 static struct worker *alloc_worker(int node)
1819 {
1820 	struct worker *worker;
1821 
1822 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1823 	if (worker) {
1824 		INIT_LIST_HEAD(&worker->entry);
1825 		INIT_LIST_HEAD(&worker->scheduled);
1826 		INIT_LIST_HEAD(&worker->node);
1827 		/* on creation a worker is in !idle && prep state */
1828 		worker->flags = WORKER_PREP;
1829 	}
1830 	return worker;
1831 }
1832 
1833 /**
1834  * worker_attach_to_pool() - attach a worker to a pool
1835  * @worker: worker to be attached
1836  * @pool: the target pool
1837  *
1838  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1839  * cpu-binding of @worker are kept coordinated with the pool across
1840  * cpu-[un]hotplugs.
1841  */
1842 static void worker_attach_to_pool(struct worker *worker,
1843 				   struct worker_pool *pool)
1844 {
1845 	mutex_lock(&wq_pool_attach_mutex);
1846 
1847 	/*
1848 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1849 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1850 	 */
1851 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1852 
1853 	/*
1854 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1855 	 * stable across this function.  See the comments above the flag
1856 	 * definition for details.
1857 	 */
1858 	if (pool->flags & POOL_DISASSOCIATED)
1859 		worker->flags |= WORKER_UNBOUND;
1860 
1861 	list_add_tail(&worker->node, &pool->workers);
1862 	worker->pool = pool;
1863 
1864 	mutex_unlock(&wq_pool_attach_mutex);
1865 }
1866 
1867 /**
1868  * worker_detach_from_pool() - detach a worker from its pool
1869  * @worker: worker which is attached to its pool
1870  *
1871  * Undo the attaching which had been done in worker_attach_to_pool().  The
1872  * caller worker shouldn't access to the pool after detached except it has
1873  * other reference to the pool.
1874  */
1875 static void worker_detach_from_pool(struct worker *worker)
1876 {
1877 	struct worker_pool *pool = worker->pool;
1878 	struct completion *detach_completion = NULL;
1879 
1880 	mutex_lock(&wq_pool_attach_mutex);
1881 
1882 	list_del(&worker->node);
1883 	worker->pool = NULL;
1884 
1885 	if (list_empty(&pool->workers))
1886 		detach_completion = pool->detach_completion;
1887 	mutex_unlock(&wq_pool_attach_mutex);
1888 
1889 	/* clear leftover flags without pool->lock after it is detached */
1890 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1891 
1892 	if (detach_completion)
1893 		complete(detach_completion);
1894 }
1895 
1896 /**
1897  * create_worker - create a new workqueue worker
1898  * @pool: pool the new worker will belong to
1899  *
1900  * Create and start a new worker which is attached to @pool.
1901  *
1902  * CONTEXT:
1903  * Might sleep.  Does GFP_KERNEL allocations.
1904  *
1905  * Return:
1906  * Pointer to the newly created worker.
1907  */
1908 static struct worker *create_worker(struct worker_pool *pool)
1909 {
1910 	struct worker *worker = NULL;
1911 	int id = -1;
1912 	char id_buf[16];
1913 
1914 	/* ID is needed to determine kthread name */
1915 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1916 	if (id < 0)
1917 		goto fail;
1918 
1919 	worker = alloc_worker(pool->node);
1920 	if (!worker)
1921 		goto fail;
1922 
1923 	worker->id = id;
1924 
1925 	if (pool->cpu >= 0)
1926 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1927 			 pool->attrs->nice < 0  ? "H" : "");
1928 	else
1929 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1930 
1931 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1932 					      "kworker/%s", id_buf);
1933 	if (IS_ERR(worker->task))
1934 		goto fail;
1935 
1936 	set_user_nice(worker->task, pool->attrs->nice);
1937 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1938 
1939 	/* successful, attach the worker to the pool */
1940 	worker_attach_to_pool(worker, pool);
1941 
1942 	/* start the newly created worker */
1943 	spin_lock_irq(&pool->lock);
1944 	worker->pool->nr_workers++;
1945 	worker_enter_idle(worker);
1946 	wake_up_process(worker->task);
1947 	spin_unlock_irq(&pool->lock);
1948 
1949 	return worker;
1950 
1951 fail:
1952 	if (id >= 0)
1953 		ida_simple_remove(&pool->worker_ida, id);
1954 	kfree(worker);
1955 	return NULL;
1956 }
1957 
1958 /**
1959  * destroy_worker - destroy a workqueue worker
1960  * @worker: worker to be destroyed
1961  *
1962  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1963  * be idle.
1964  *
1965  * CONTEXT:
1966  * spin_lock_irq(pool->lock).
1967  */
1968 static void destroy_worker(struct worker *worker)
1969 {
1970 	struct worker_pool *pool = worker->pool;
1971 
1972 	lockdep_assert_held(&pool->lock);
1973 
1974 	/* sanity check frenzy */
1975 	if (WARN_ON(worker->current_work) ||
1976 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1977 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1978 		return;
1979 
1980 	pool->nr_workers--;
1981 	pool->nr_idle--;
1982 
1983 	list_del_init(&worker->entry);
1984 	worker->flags |= WORKER_DIE;
1985 	wake_up_process(worker->task);
1986 }
1987 
1988 static void idle_worker_timeout(struct timer_list *t)
1989 {
1990 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1991 
1992 	spin_lock_irq(&pool->lock);
1993 
1994 	while (too_many_workers(pool)) {
1995 		struct worker *worker;
1996 		unsigned long expires;
1997 
1998 		/* idle_list is kept in LIFO order, check the last one */
1999 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2000 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2001 
2002 		if (time_before(jiffies, expires)) {
2003 			mod_timer(&pool->idle_timer, expires);
2004 			break;
2005 		}
2006 
2007 		destroy_worker(worker);
2008 	}
2009 
2010 	spin_unlock_irq(&pool->lock);
2011 }
2012 
2013 static void send_mayday(struct work_struct *work)
2014 {
2015 	struct pool_workqueue *pwq = get_work_pwq(work);
2016 	struct workqueue_struct *wq = pwq->wq;
2017 
2018 	lockdep_assert_held(&wq_mayday_lock);
2019 
2020 	if (!wq->rescuer)
2021 		return;
2022 
2023 	/* mayday mayday mayday */
2024 	if (list_empty(&pwq->mayday_node)) {
2025 		/*
2026 		 * If @pwq is for an unbound wq, its base ref may be put at
2027 		 * any time due to an attribute change.  Pin @pwq until the
2028 		 * rescuer is done with it.
2029 		 */
2030 		get_pwq(pwq);
2031 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2032 		wake_up_process(wq->rescuer->task);
2033 	}
2034 }
2035 
2036 static void pool_mayday_timeout(struct timer_list *t)
2037 {
2038 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2039 	struct work_struct *work;
2040 
2041 	spin_lock_irq(&pool->lock);
2042 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2043 
2044 	if (need_to_create_worker(pool)) {
2045 		/*
2046 		 * We've been trying to create a new worker but
2047 		 * haven't been successful.  We might be hitting an
2048 		 * allocation deadlock.  Send distress signals to
2049 		 * rescuers.
2050 		 */
2051 		list_for_each_entry(work, &pool->worklist, entry)
2052 			send_mayday(work);
2053 	}
2054 
2055 	spin_unlock(&wq_mayday_lock);
2056 	spin_unlock_irq(&pool->lock);
2057 
2058 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2059 }
2060 
2061 /**
2062  * maybe_create_worker - create a new worker if necessary
2063  * @pool: pool to create a new worker for
2064  *
2065  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2066  * have at least one idle worker on return from this function.  If
2067  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2068  * sent to all rescuers with works scheduled on @pool to resolve
2069  * possible allocation deadlock.
2070  *
2071  * On return, need_to_create_worker() is guaranteed to be %false and
2072  * may_start_working() %true.
2073  *
2074  * LOCKING:
2075  * spin_lock_irq(pool->lock) which may be released and regrabbed
2076  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2077  * manager.
2078  */
2079 static void maybe_create_worker(struct worker_pool *pool)
2080 __releases(&pool->lock)
2081 __acquires(&pool->lock)
2082 {
2083 restart:
2084 	spin_unlock_irq(&pool->lock);
2085 
2086 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2087 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2088 
2089 	while (true) {
2090 		if (create_worker(pool) || !need_to_create_worker(pool))
2091 			break;
2092 
2093 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2094 
2095 		if (!need_to_create_worker(pool))
2096 			break;
2097 	}
2098 
2099 	del_timer_sync(&pool->mayday_timer);
2100 	spin_lock_irq(&pool->lock);
2101 	/*
2102 	 * This is necessary even after a new worker was just successfully
2103 	 * created as @pool->lock was dropped and the new worker might have
2104 	 * already become busy.
2105 	 */
2106 	if (need_to_create_worker(pool))
2107 		goto restart;
2108 }
2109 
2110 /**
2111  * manage_workers - manage worker pool
2112  * @worker: self
2113  *
2114  * Assume the manager role and manage the worker pool @worker belongs
2115  * to.  At any given time, there can be only zero or one manager per
2116  * pool.  The exclusion is handled automatically by this function.
2117  *
2118  * The caller can safely start processing works on false return.  On
2119  * true return, it's guaranteed that need_to_create_worker() is false
2120  * and may_start_working() is true.
2121  *
2122  * CONTEXT:
2123  * spin_lock_irq(pool->lock) which may be released and regrabbed
2124  * multiple times.  Does GFP_KERNEL allocations.
2125  *
2126  * Return:
2127  * %false if the pool doesn't need management and the caller can safely
2128  * start processing works, %true if management function was performed and
2129  * the conditions that the caller verified before calling the function may
2130  * no longer be true.
2131  */
2132 static bool manage_workers(struct worker *worker)
2133 {
2134 	struct worker_pool *pool = worker->pool;
2135 
2136 	if (pool->flags & POOL_MANAGER_ACTIVE)
2137 		return false;
2138 
2139 	pool->flags |= POOL_MANAGER_ACTIVE;
2140 	pool->manager = worker;
2141 
2142 	maybe_create_worker(pool);
2143 
2144 	pool->manager = NULL;
2145 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2146 	wake_up(&wq_manager_wait);
2147 	return true;
2148 }
2149 
2150 /**
2151  * process_one_work - process single work
2152  * @worker: self
2153  * @work: work to process
2154  *
2155  * Process @work.  This function contains all the logics necessary to
2156  * process a single work including synchronization against and
2157  * interaction with other workers on the same cpu, queueing and
2158  * flushing.  As long as context requirement is met, any worker can
2159  * call this function to process a work.
2160  *
2161  * CONTEXT:
2162  * spin_lock_irq(pool->lock) which is released and regrabbed.
2163  */
2164 static void process_one_work(struct worker *worker, struct work_struct *work)
2165 __releases(&pool->lock)
2166 __acquires(&pool->lock)
2167 {
2168 	struct pool_workqueue *pwq = get_work_pwq(work);
2169 	struct worker_pool *pool = worker->pool;
2170 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2171 	int work_color;
2172 	struct worker *collision;
2173 #ifdef CONFIG_LOCKDEP
2174 	/*
2175 	 * It is permissible to free the struct work_struct from
2176 	 * inside the function that is called from it, this we need to
2177 	 * take into account for lockdep too.  To avoid bogus "held
2178 	 * lock freed" warnings as well as problems when looking into
2179 	 * work->lockdep_map, make a copy and use that here.
2180 	 */
2181 	struct lockdep_map lockdep_map;
2182 
2183 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2184 #endif
2185 	/* ensure we're on the correct CPU */
2186 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2187 		     raw_smp_processor_id() != pool->cpu);
2188 
2189 	/*
2190 	 * A single work shouldn't be executed concurrently by
2191 	 * multiple workers on a single cpu.  Check whether anyone is
2192 	 * already processing the work.  If so, defer the work to the
2193 	 * currently executing one.
2194 	 */
2195 	collision = find_worker_executing_work(pool, work);
2196 	if (unlikely(collision)) {
2197 		move_linked_works(work, &collision->scheduled, NULL);
2198 		return;
2199 	}
2200 
2201 	/* claim and dequeue */
2202 	debug_work_deactivate(work);
2203 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2204 	worker->current_work = work;
2205 	worker->current_func = work->func;
2206 	worker->current_pwq = pwq;
2207 	work_color = get_work_color(work);
2208 
2209 	/*
2210 	 * Record wq name for cmdline and debug reporting, may get
2211 	 * overridden through set_worker_desc().
2212 	 */
2213 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2214 
2215 	list_del_init(&work->entry);
2216 
2217 	/*
2218 	 * CPU intensive works don't participate in concurrency management.
2219 	 * They're the scheduler's responsibility.  This takes @worker out
2220 	 * of concurrency management and the next code block will chain
2221 	 * execution of the pending work items.
2222 	 */
2223 	if (unlikely(cpu_intensive))
2224 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2225 
2226 	/*
2227 	 * Wake up another worker if necessary.  The condition is always
2228 	 * false for normal per-cpu workers since nr_running would always
2229 	 * be >= 1 at this point.  This is used to chain execution of the
2230 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2231 	 * UNBOUND and CPU_INTENSIVE ones.
2232 	 */
2233 	if (need_more_worker(pool))
2234 		wake_up_worker(pool);
2235 
2236 	/*
2237 	 * Record the last pool and clear PENDING which should be the last
2238 	 * update to @work.  Also, do this inside @pool->lock so that
2239 	 * PENDING and queued state changes happen together while IRQ is
2240 	 * disabled.
2241 	 */
2242 	set_work_pool_and_clear_pending(work, pool->id);
2243 
2244 	spin_unlock_irq(&pool->lock);
2245 
2246 	lock_map_acquire(&pwq->wq->lockdep_map);
2247 	lock_map_acquire(&lockdep_map);
2248 	/*
2249 	 * Strictly speaking we should mark the invariant state without holding
2250 	 * any locks, that is, before these two lock_map_acquire()'s.
2251 	 *
2252 	 * However, that would result in:
2253 	 *
2254 	 *   A(W1)
2255 	 *   WFC(C)
2256 	 *		A(W1)
2257 	 *		C(C)
2258 	 *
2259 	 * Which would create W1->C->W1 dependencies, even though there is no
2260 	 * actual deadlock possible. There are two solutions, using a
2261 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2262 	 * hit the lockdep limitation on recursive locks, or simply discard
2263 	 * these locks.
2264 	 *
2265 	 * AFAICT there is no possible deadlock scenario between the
2266 	 * flush_work() and complete() primitives (except for single-threaded
2267 	 * workqueues), so hiding them isn't a problem.
2268 	 */
2269 	lockdep_invariant_state(true);
2270 	trace_workqueue_execute_start(work);
2271 	worker->current_func(work);
2272 	/*
2273 	 * While we must be careful to not use "work" after this, the trace
2274 	 * point will only record its address.
2275 	 */
2276 	trace_workqueue_execute_end(work);
2277 	lock_map_release(&lockdep_map);
2278 	lock_map_release(&pwq->wq->lockdep_map);
2279 
2280 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2281 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2282 		       "     last function: %ps\n",
2283 		       current->comm, preempt_count(), task_pid_nr(current),
2284 		       worker->current_func);
2285 		debug_show_held_locks(current);
2286 		dump_stack();
2287 	}
2288 
2289 	/*
2290 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2291 	 * kernels, where a requeueing work item waiting for something to
2292 	 * happen could deadlock with stop_machine as such work item could
2293 	 * indefinitely requeue itself while all other CPUs are trapped in
2294 	 * stop_machine. At the same time, report a quiescent RCU state so
2295 	 * the same condition doesn't freeze RCU.
2296 	 */
2297 	cond_resched();
2298 
2299 	spin_lock_irq(&pool->lock);
2300 
2301 	/* clear cpu intensive status */
2302 	if (unlikely(cpu_intensive))
2303 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2304 
2305 	/* tag the worker for identification in schedule() */
2306 	worker->last_func = worker->current_func;
2307 
2308 	/* we're done with it, release */
2309 	hash_del(&worker->hentry);
2310 	worker->current_work = NULL;
2311 	worker->current_func = NULL;
2312 	worker->current_pwq = NULL;
2313 	pwq_dec_nr_in_flight(pwq, work_color);
2314 }
2315 
2316 /**
2317  * process_scheduled_works - process scheduled works
2318  * @worker: self
2319  *
2320  * Process all scheduled works.  Please note that the scheduled list
2321  * may change while processing a work, so this function repeatedly
2322  * fetches a work from the top and executes it.
2323  *
2324  * CONTEXT:
2325  * spin_lock_irq(pool->lock) which may be released and regrabbed
2326  * multiple times.
2327  */
2328 static void process_scheduled_works(struct worker *worker)
2329 {
2330 	while (!list_empty(&worker->scheduled)) {
2331 		struct work_struct *work = list_first_entry(&worker->scheduled,
2332 						struct work_struct, entry);
2333 		process_one_work(worker, work);
2334 	}
2335 }
2336 
2337 static void set_pf_worker(bool val)
2338 {
2339 	mutex_lock(&wq_pool_attach_mutex);
2340 	if (val)
2341 		current->flags |= PF_WQ_WORKER;
2342 	else
2343 		current->flags &= ~PF_WQ_WORKER;
2344 	mutex_unlock(&wq_pool_attach_mutex);
2345 }
2346 
2347 /**
2348  * worker_thread - the worker thread function
2349  * @__worker: self
2350  *
2351  * The worker thread function.  All workers belong to a worker_pool -
2352  * either a per-cpu one or dynamic unbound one.  These workers process all
2353  * work items regardless of their specific target workqueue.  The only
2354  * exception is work items which belong to workqueues with a rescuer which
2355  * will be explained in rescuer_thread().
2356  *
2357  * Return: 0
2358  */
2359 static int worker_thread(void *__worker)
2360 {
2361 	struct worker *worker = __worker;
2362 	struct worker_pool *pool = worker->pool;
2363 
2364 	/* tell the scheduler that this is a workqueue worker */
2365 	set_pf_worker(true);
2366 woke_up:
2367 	spin_lock_irq(&pool->lock);
2368 
2369 	/* am I supposed to die? */
2370 	if (unlikely(worker->flags & WORKER_DIE)) {
2371 		spin_unlock_irq(&pool->lock);
2372 		WARN_ON_ONCE(!list_empty(&worker->entry));
2373 		set_pf_worker(false);
2374 
2375 		set_task_comm(worker->task, "kworker/dying");
2376 		ida_simple_remove(&pool->worker_ida, worker->id);
2377 		worker_detach_from_pool(worker);
2378 		kfree(worker);
2379 		return 0;
2380 	}
2381 
2382 	worker_leave_idle(worker);
2383 recheck:
2384 	/* no more worker necessary? */
2385 	if (!need_more_worker(pool))
2386 		goto sleep;
2387 
2388 	/* do we need to manage? */
2389 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2390 		goto recheck;
2391 
2392 	/*
2393 	 * ->scheduled list can only be filled while a worker is
2394 	 * preparing to process a work or actually processing it.
2395 	 * Make sure nobody diddled with it while I was sleeping.
2396 	 */
2397 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2398 
2399 	/*
2400 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2401 	 * worker or that someone else has already assumed the manager
2402 	 * role.  This is where @worker starts participating in concurrency
2403 	 * management if applicable and concurrency management is restored
2404 	 * after being rebound.  See rebind_workers() for details.
2405 	 */
2406 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2407 
2408 	do {
2409 		struct work_struct *work =
2410 			list_first_entry(&pool->worklist,
2411 					 struct work_struct, entry);
2412 
2413 		pool->watchdog_ts = jiffies;
2414 
2415 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2416 			/* optimization path, not strictly necessary */
2417 			process_one_work(worker, work);
2418 			if (unlikely(!list_empty(&worker->scheduled)))
2419 				process_scheduled_works(worker);
2420 		} else {
2421 			move_linked_works(work, &worker->scheduled, NULL);
2422 			process_scheduled_works(worker);
2423 		}
2424 	} while (keep_working(pool));
2425 
2426 	worker_set_flags(worker, WORKER_PREP);
2427 sleep:
2428 	/*
2429 	 * pool->lock is held and there's no work to process and no need to
2430 	 * manage, sleep.  Workers are woken up only while holding
2431 	 * pool->lock or from local cpu, so setting the current state
2432 	 * before releasing pool->lock is enough to prevent losing any
2433 	 * event.
2434 	 */
2435 	worker_enter_idle(worker);
2436 	__set_current_state(TASK_IDLE);
2437 	spin_unlock_irq(&pool->lock);
2438 	schedule();
2439 	goto woke_up;
2440 }
2441 
2442 /**
2443  * rescuer_thread - the rescuer thread function
2444  * @__rescuer: self
2445  *
2446  * Workqueue rescuer thread function.  There's one rescuer for each
2447  * workqueue which has WQ_MEM_RECLAIM set.
2448  *
2449  * Regular work processing on a pool may block trying to create a new
2450  * worker which uses GFP_KERNEL allocation which has slight chance of
2451  * developing into deadlock if some works currently on the same queue
2452  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2453  * the problem rescuer solves.
2454  *
2455  * When such condition is possible, the pool summons rescuers of all
2456  * workqueues which have works queued on the pool and let them process
2457  * those works so that forward progress can be guaranteed.
2458  *
2459  * This should happen rarely.
2460  *
2461  * Return: 0
2462  */
2463 static int rescuer_thread(void *__rescuer)
2464 {
2465 	struct worker *rescuer = __rescuer;
2466 	struct workqueue_struct *wq = rescuer->rescue_wq;
2467 	struct list_head *scheduled = &rescuer->scheduled;
2468 	bool should_stop;
2469 
2470 	set_user_nice(current, RESCUER_NICE_LEVEL);
2471 
2472 	/*
2473 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2474 	 * doesn't participate in concurrency management.
2475 	 */
2476 	set_pf_worker(true);
2477 repeat:
2478 	set_current_state(TASK_IDLE);
2479 
2480 	/*
2481 	 * By the time the rescuer is requested to stop, the workqueue
2482 	 * shouldn't have any work pending, but @wq->maydays may still have
2483 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2484 	 * all the work items before the rescuer got to them.  Go through
2485 	 * @wq->maydays processing before acting on should_stop so that the
2486 	 * list is always empty on exit.
2487 	 */
2488 	should_stop = kthread_should_stop();
2489 
2490 	/* see whether any pwq is asking for help */
2491 	spin_lock_irq(&wq_mayday_lock);
2492 
2493 	while (!list_empty(&wq->maydays)) {
2494 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2495 					struct pool_workqueue, mayday_node);
2496 		struct worker_pool *pool = pwq->pool;
2497 		struct work_struct *work, *n;
2498 		bool first = true;
2499 
2500 		__set_current_state(TASK_RUNNING);
2501 		list_del_init(&pwq->mayday_node);
2502 
2503 		spin_unlock_irq(&wq_mayday_lock);
2504 
2505 		worker_attach_to_pool(rescuer, pool);
2506 
2507 		spin_lock_irq(&pool->lock);
2508 
2509 		/*
2510 		 * Slurp in all works issued via this workqueue and
2511 		 * process'em.
2512 		 */
2513 		WARN_ON_ONCE(!list_empty(scheduled));
2514 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2515 			if (get_work_pwq(work) == pwq) {
2516 				if (first)
2517 					pool->watchdog_ts = jiffies;
2518 				move_linked_works(work, scheduled, &n);
2519 			}
2520 			first = false;
2521 		}
2522 
2523 		if (!list_empty(scheduled)) {
2524 			process_scheduled_works(rescuer);
2525 
2526 			/*
2527 			 * The above execution of rescued work items could
2528 			 * have created more to rescue through
2529 			 * pwq_activate_first_delayed() or chained
2530 			 * queueing.  Let's put @pwq back on mayday list so
2531 			 * that such back-to-back work items, which may be
2532 			 * being used to relieve memory pressure, don't
2533 			 * incur MAYDAY_INTERVAL delay inbetween.
2534 			 */
2535 			if (need_to_create_worker(pool)) {
2536 				spin_lock(&wq_mayday_lock);
2537 				/*
2538 				 * Queue iff we aren't racing destruction
2539 				 * and somebody else hasn't queued it already.
2540 				 */
2541 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2542 					get_pwq(pwq);
2543 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2544 				}
2545 				spin_unlock(&wq_mayday_lock);
2546 			}
2547 		}
2548 
2549 		/*
2550 		 * Put the reference grabbed by send_mayday().  @pool won't
2551 		 * go away while we're still attached to it.
2552 		 */
2553 		put_pwq(pwq);
2554 
2555 		/*
2556 		 * Leave this pool.  If need_more_worker() is %true, notify a
2557 		 * regular worker; otherwise, we end up with 0 concurrency
2558 		 * and stalling the execution.
2559 		 */
2560 		if (need_more_worker(pool))
2561 			wake_up_worker(pool);
2562 
2563 		spin_unlock_irq(&pool->lock);
2564 
2565 		worker_detach_from_pool(rescuer);
2566 
2567 		spin_lock_irq(&wq_mayday_lock);
2568 	}
2569 
2570 	spin_unlock_irq(&wq_mayday_lock);
2571 
2572 	if (should_stop) {
2573 		__set_current_state(TASK_RUNNING);
2574 		set_pf_worker(false);
2575 		return 0;
2576 	}
2577 
2578 	/* rescuers should never participate in concurrency management */
2579 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2580 	schedule();
2581 	goto repeat;
2582 }
2583 
2584 /**
2585  * check_flush_dependency - check for flush dependency sanity
2586  * @target_wq: workqueue being flushed
2587  * @target_work: work item being flushed (NULL for workqueue flushes)
2588  *
2589  * %current is trying to flush the whole @target_wq or @target_work on it.
2590  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2591  * reclaiming memory or running on a workqueue which doesn't have
2592  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2593  * a deadlock.
2594  */
2595 static void check_flush_dependency(struct workqueue_struct *target_wq,
2596 				   struct work_struct *target_work)
2597 {
2598 	work_func_t target_func = target_work ? target_work->func : NULL;
2599 	struct worker *worker;
2600 
2601 	if (target_wq->flags & WQ_MEM_RECLAIM)
2602 		return;
2603 
2604 	worker = current_wq_worker();
2605 
2606 	WARN_ONCE(current->flags & PF_MEMALLOC,
2607 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2608 		  current->pid, current->comm, target_wq->name, target_func);
2609 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2610 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2611 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2612 		  worker->current_pwq->wq->name, worker->current_func,
2613 		  target_wq->name, target_func);
2614 }
2615 
2616 struct wq_barrier {
2617 	struct work_struct	work;
2618 	struct completion	done;
2619 	struct task_struct	*task;	/* purely informational */
2620 };
2621 
2622 static void wq_barrier_func(struct work_struct *work)
2623 {
2624 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2625 	complete(&barr->done);
2626 }
2627 
2628 /**
2629  * insert_wq_barrier - insert a barrier work
2630  * @pwq: pwq to insert barrier into
2631  * @barr: wq_barrier to insert
2632  * @target: target work to attach @barr to
2633  * @worker: worker currently executing @target, NULL if @target is not executing
2634  *
2635  * @barr is linked to @target such that @barr is completed only after
2636  * @target finishes execution.  Please note that the ordering
2637  * guarantee is observed only with respect to @target and on the local
2638  * cpu.
2639  *
2640  * Currently, a queued barrier can't be canceled.  This is because
2641  * try_to_grab_pending() can't determine whether the work to be
2642  * grabbed is at the head of the queue and thus can't clear LINKED
2643  * flag of the previous work while there must be a valid next work
2644  * after a work with LINKED flag set.
2645  *
2646  * Note that when @worker is non-NULL, @target may be modified
2647  * underneath us, so we can't reliably determine pwq from @target.
2648  *
2649  * CONTEXT:
2650  * spin_lock_irq(pool->lock).
2651  */
2652 static void insert_wq_barrier(struct pool_workqueue *pwq,
2653 			      struct wq_barrier *barr,
2654 			      struct work_struct *target, struct worker *worker)
2655 {
2656 	struct list_head *head;
2657 	unsigned int linked = 0;
2658 
2659 	/*
2660 	 * debugobject calls are safe here even with pool->lock locked
2661 	 * as we know for sure that this will not trigger any of the
2662 	 * checks and call back into the fixup functions where we
2663 	 * might deadlock.
2664 	 */
2665 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2666 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2667 
2668 	init_completion_map(&barr->done, &target->lockdep_map);
2669 
2670 	barr->task = current;
2671 
2672 	/*
2673 	 * If @target is currently being executed, schedule the
2674 	 * barrier to the worker; otherwise, put it after @target.
2675 	 */
2676 	if (worker)
2677 		head = worker->scheduled.next;
2678 	else {
2679 		unsigned long *bits = work_data_bits(target);
2680 
2681 		head = target->entry.next;
2682 		/* there can already be other linked works, inherit and set */
2683 		linked = *bits & WORK_STRUCT_LINKED;
2684 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2685 	}
2686 
2687 	debug_work_activate(&barr->work);
2688 	insert_work(pwq, &barr->work, head,
2689 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2690 }
2691 
2692 /**
2693  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2694  * @wq: workqueue being flushed
2695  * @flush_color: new flush color, < 0 for no-op
2696  * @work_color: new work color, < 0 for no-op
2697  *
2698  * Prepare pwqs for workqueue flushing.
2699  *
2700  * If @flush_color is non-negative, flush_color on all pwqs should be
2701  * -1.  If no pwq has in-flight commands at the specified color, all
2702  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2703  * has in flight commands, its pwq->flush_color is set to
2704  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2705  * wakeup logic is armed and %true is returned.
2706  *
2707  * The caller should have initialized @wq->first_flusher prior to
2708  * calling this function with non-negative @flush_color.  If
2709  * @flush_color is negative, no flush color update is done and %false
2710  * is returned.
2711  *
2712  * If @work_color is non-negative, all pwqs should have the same
2713  * work_color which is previous to @work_color and all will be
2714  * advanced to @work_color.
2715  *
2716  * CONTEXT:
2717  * mutex_lock(wq->mutex).
2718  *
2719  * Return:
2720  * %true if @flush_color >= 0 and there's something to flush.  %false
2721  * otherwise.
2722  */
2723 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2724 				      int flush_color, int work_color)
2725 {
2726 	bool wait = false;
2727 	struct pool_workqueue *pwq;
2728 
2729 	if (flush_color >= 0) {
2730 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2731 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2732 	}
2733 
2734 	for_each_pwq(pwq, wq) {
2735 		struct worker_pool *pool = pwq->pool;
2736 
2737 		spin_lock_irq(&pool->lock);
2738 
2739 		if (flush_color >= 0) {
2740 			WARN_ON_ONCE(pwq->flush_color != -1);
2741 
2742 			if (pwq->nr_in_flight[flush_color]) {
2743 				pwq->flush_color = flush_color;
2744 				atomic_inc(&wq->nr_pwqs_to_flush);
2745 				wait = true;
2746 			}
2747 		}
2748 
2749 		if (work_color >= 0) {
2750 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2751 			pwq->work_color = work_color;
2752 		}
2753 
2754 		spin_unlock_irq(&pool->lock);
2755 	}
2756 
2757 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2758 		complete(&wq->first_flusher->done);
2759 
2760 	return wait;
2761 }
2762 
2763 /**
2764  * flush_workqueue - ensure that any scheduled work has run to completion.
2765  * @wq: workqueue to flush
2766  *
2767  * This function sleeps until all work items which were queued on entry
2768  * have finished execution, but it is not livelocked by new incoming ones.
2769  */
2770 void flush_workqueue(struct workqueue_struct *wq)
2771 {
2772 	struct wq_flusher this_flusher = {
2773 		.list = LIST_HEAD_INIT(this_flusher.list),
2774 		.flush_color = -1,
2775 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2776 	};
2777 	int next_color;
2778 
2779 	if (WARN_ON(!wq_online))
2780 		return;
2781 
2782 	lock_map_acquire(&wq->lockdep_map);
2783 	lock_map_release(&wq->lockdep_map);
2784 
2785 	mutex_lock(&wq->mutex);
2786 
2787 	/*
2788 	 * Start-to-wait phase
2789 	 */
2790 	next_color = work_next_color(wq->work_color);
2791 
2792 	if (next_color != wq->flush_color) {
2793 		/*
2794 		 * Color space is not full.  The current work_color
2795 		 * becomes our flush_color and work_color is advanced
2796 		 * by one.
2797 		 */
2798 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2799 		this_flusher.flush_color = wq->work_color;
2800 		wq->work_color = next_color;
2801 
2802 		if (!wq->first_flusher) {
2803 			/* no flush in progress, become the first flusher */
2804 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2805 
2806 			wq->first_flusher = &this_flusher;
2807 
2808 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2809 						       wq->work_color)) {
2810 				/* nothing to flush, done */
2811 				wq->flush_color = next_color;
2812 				wq->first_flusher = NULL;
2813 				goto out_unlock;
2814 			}
2815 		} else {
2816 			/* wait in queue */
2817 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2818 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2819 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2820 		}
2821 	} else {
2822 		/*
2823 		 * Oops, color space is full, wait on overflow queue.
2824 		 * The next flush completion will assign us
2825 		 * flush_color and transfer to flusher_queue.
2826 		 */
2827 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2828 	}
2829 
2830 	check_flush_dependency(wq, NULL);
2831 
2832 	mutex_unlock(&wq->mutex);
2833 
2834 	wait_for_completion(&this_flusher.done);
2835 
2836 	/*
2837 	 * Wake-up-and-cascade phase
2838 	 *
2839 	 * First flushers are responsible for cascading flushes and
2840 	 * handling overflow.  Non-first flushers can simply return.
2841 	 */
2842 	if (wq->first_flusher != &this_flusher)
2843 		return;
2844 
2845 	mutex_lock(&wq->mutex);
2846 
2847 	/* we might have raced, check again with mutex held */
2848 	if (wq->first_flusher != &this_flusher)
2849 		goto out_unlock;
2850 
2851 	wq->first_flusher = NULL;
2852 
2853 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2854 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2855 
2856 	while (true) {
2857 		struct wq_flusher *next, *tmp;
2858 
2859 		/* complete all the flushers sharing the current flush color */
2860 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2861 			if (next->flush_color != wq->flush_color)
2862 				break;
2863 			list_del_init(&next->list);
2864 			complete(&next->done);
2865 		}
2866 
2867 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2868 			     wq->flush_color != work_next_color(wq->work_color));
2869 
2870 		/* this flush_color is finished, advance by one */
2871 		wq->flush_color = work_next_color(wq->flush_color);
2872 
2873 		/* one color has been freed, handle overflow queue */
2874 		if (!list_empty(&wq->flusher_overflow)) {
2875 			/*
2876 			 * Assign the same color to all overflowed
2877 			 * flushers, advance work_color and append to
2878 			 * flusher_queue.  This is the start-to-wait
2879 			 * phase for these overflowed flushers.
2880 			 */
2881 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2882 				tmp->flush_color = wq->work_color;
2883 
2884 			wq->work_color = work_next_color(wq->work_color);
2885 
2886 			list_splice_tail_init(&wq->flusher_overflow,
2887 					      &wq->flusher_queue);
2888 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2889 		}
2890 
2891 		if (list_empty(&wq->flusher_queue)) {
2892 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2893 			break;
2894 		}
2895 
2896 		/*
2897 		 * Need to flush more colors.  Make the next flusher
2898 		 * the new first flusher and arm pwqs.
2899 		 */
2900 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2901 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2902 
2903 		list_del_init(&next->list);
2904 		wq->first_flusher = next;
2905 
2906 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2907 			break;
2908 
2909 		/*
2910 		 * Meh... this color is already done, clear first
2911 		 * flusher and repeat cascading.
2912 		 */
2913 		wq->first_flusher = NULL;
2914 	}
2915 
2916 out_unlock:
2917 	mutex_unlock(&wq->mutex);
2918 }
2919 EXPORT_SYMBOL(flush_workqueue);
2920 
2921 /**
2922  * drain_workqueue - drain a workqueue
2923  * @wq: workqueue to drain
2924  *
2925  * Wait until the workqueue becomes empty.  While draining is in progress,
2926  * only chain queueing is allowed.  IOW, only currently pending or running
2927  * work items on @wq can queue further work items on it.  @wq is flushed
2928  * repeatedly until it becomes empty.  The number of flushing is determined
2929  * by the depth of chaining and should be relatively short.  Whine if it
2930  * takes too long.
2931  */
2932 void drain_workqueue(struct workqueue_struct *wq)
2933 {
2934 	unsigned int flush_cnt = 0;
2935 	struct pool_workqueue *pwq;
2936 
2937 	/*
2938 	 * __queue_work() needs to test whether there are drainers, is much
2939 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2940 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2941 	 */
2942 	mutex_lock(&wq->mutex);
2943 	if (!wq->nr_drainers++)
2944 		wq->flags |= __WQ_DRAINING;
2945 	mutex_unlock(&wq->mutex);
2946 reflush:
2947 	flush_workqueue(wq);
2948 
2949 	mutex_lock(&wq->mutex);
2950 
2951 	for_each_pwq(pwq, wq) {
2952 		bool drained;
2953 
2954 		spin_lock_irq(&pwq->pool->lock);
2955 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2956 		spin_unlock_irq(&pwq->pool->lock);
2957 
2958 		if (drained)
2959 			continue;
2960 
2961 		if (++flush_cnt == 10 ||
2962 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2963 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2964 				wq->name, flush_cnt);
2965 
2966 		mutex_unlock(&wq->mutex);
2967 		goto reflush;
2968 	}
2969 
2970 	if (!--wq->nr_drainers)
2971 		wq->flags &= ~__WQ_DRAINING;
2972 	mutex_unlock(&wq->mutex);
2973 }
2974 EXPORT_SYMBOL_GPL(drain_workqueue);
2975 
2976 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2977 			     bool from_cancel)
2978 {
2979 	struct worker *worker = NULL;
2980 	struct worker_pool *pool;
2981 	struct pool_workqueue *pwq;
2982 
2983 	might_sleep();
2984 
2985 	rcu_read_lock();
2986 	pool = get_work_pool(work);
2987 	if (!pool) {
2988 		rcu_read_unlock();
2989 		return false;
2990 	}
2991 
2992 	spin_lock_irq(&pool->lock);
2993 	/* see the comment in try_to_grab_pending() with the same code */
2994 	pwq = get_work_pwq(work);
2995 	if (pwq) {
2996 		if (unlikely(pwq->pool != pool))
2997 			goto already_gone;
2998 	} else {
2999 		worker = find_worker_executing_work(pool, work);
3000 		if (!worker)
3001 			goto already_gone;
3002 		pwq = worker->current_pwq;
3003 	}
3004 
3005 	check_flush_dependency(pwq->wq, work);
3006 
3007 	insert_wq_barrier(pwq, barr, work, worker);
3008 	spin_unlock_irq(&pool->lock);
3009 
3010 	/*
3011 	 * Force a lock recursion deadlock when using flush_work() inside a
3012 	 * single-threaded or rescuer equipped workqueue.
3013 	 *
3014 	 * For single threaded workqueues the deadlock happens when the work
3015 	 * is after the work issuing the flush_work(). For rescuer equipped
3016 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3017 	 * forward progress.
3018 	 */
3019 	if (!from_cancel &&
3020 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3021 		lock_map_acquire(&pwq->wq->lockdep_map);
3022 		lock_map_release(&pwq->wq->lockdep_map);
3023 	}
3024 	rcu_read_unlock();
3025 	return true;
3026 already_gone:
3027 	spin_unlock_irq(&pool->lock);
3028 	rcu_read_unlock();
3029 	return false;
3030 }
3031 
3032 static bool __flush_work(struct work_struct *work, bool from_cancel)
3033 {
3034 	struct wq_barrier barr;
3035 
3036 	if (WARN_ON(!wq_online))
3037 		return false;
3038 
3039 	if (WARN_ON(!work->func))
3040 		return false;
3041 
3042 	if (!from_cancel) {
3043 		lock_map_acquire(&work->lockdep_map);
3044 		lock_map_release(&work->lockdep_map);
3045 	}
3046 
3047 	if (start_flush_work(work, &barr, from_cancel)) {
3048 		wait_for_completion(&barr.done);
3049 		destroy_work_on_stack(&barr.work);
3050 		return true;
3051 	} else {
3052 		return false;
3053 	}
3054 }
3055 
3056 /**
3057  * flush_work - wait for a work to finish executing the last queueing instance
3058  * @work: the work to flush
3059  *
3060  * Wait until @work has finished execution.  @work is guaranteed to be idle
3061  * on return if it hasn't been requeued since flush started.
3062  *
3063  * Return:
3064  * %true if flush_work() waited for the work to finish execution,
3065  * %false if it was already idle.
3066  */
3067 bool flush_work(struct work_struct *work)
3068 {
3069 	return __flush_work(work, false);
3070 }
3071 EXPORT_SYMBOL_GPL(flush_work);
3072 
3073 struct cwt_wait {
3074 	wait_queue_entry_t		wait;
3075 	struct work_struct	*work;
3076 };
3077 
3078 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3079 {
3080 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3081 
3082 	if (cwait->work != key)
3083 		return 0;
3084 	return autoremove_wake_function(wait, mode, sync, key);
3085 }
3086 
3087 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3088 {
3089 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3090 	unsigned long flags;
3091 	int ret;
3092 
3093 	do {
3094 		ret = try_to_grab_pending(work, is_dwork, &flags);
3095 		/*
3096 		 * If someone else is already canceling, wait for it to
3097 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3098 		 * because we may get scheduled between @work's completion
3099 		 * and the other canceling task resuming and clearing
3100 		 * CANCELING - flush_work() will return false immediately
3101 		 * as @work is no longer busy, try_to_grab_pending() will
3102 		 * return -ENOENT as @work is still being canceled and the
3103 		 * other canceling task won't be able to clear CANCELING as
3104 		 * we're hogging the CPU.
3105 		 *
3106 		 * Let's wait for completion using a waitqueue.  As this
3107 		 * may lead to the thundering herd problem, use a custom
3108 		 * wake function which matches @work along with exclusive
3109 		 * wait and wakeup.
3110 		 */
3111 		if (unlikely(ret == -ENOENT)) {
3112 			struct cwt_wait cwait;
3113 
3114 			init_wait(&cwait.wait);
3115 			cwait.wait.func = cwt_wakefn;
3116 			cwait.work = work;
3117 
3118 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3119 						  TASK_UNINTERRUPTIBLE);
3120 			if (work_is_canceling(work))
3121 				schedule();
3122 			finish_wait(&cancel_waitq, &cwait.wait);
3123 		}
3124 	} while (unlikely(ret < 0));
3125 
3126 	/* tell other tasks trying to grab @work to back off */
3127 	mark_work_canceling(work);
3128 	local_irq_restore(flags);
3129 
3130 	/*
3131 	 * This allows canceling during early boot.  We know that @work
3132 	 * isn't executing.
3133 	 */
3134 	if (wq_online)
3135 		__flush_work(work, true);
3136 
3137 	clear_work_data(work);
3138 
3139 	/*
3140 	 * Paired with prepare_to_wait() above so that either
3141 	 * waitqueue_active() is visible here or !work_is_canceling() is
3142 	 * visible there.
3143 	 */
3144 	smp_mb();
3145 	if (waitqueue_active(&cancel_waitq))
3146 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3147 
3148 	return ret;
3149 }
3150 
3151 /**
3152  * cancel_work_sync - cancel a work and wait for it to finish
3153  * @work: the work to cancel
3154  *
3155  * Cancel @work and wait for its execution to finish.  This function
3156  * can be used even if the work re-queues itself or migrates to
3157  * another workqueue.  On return from this function, @work is
3158  * guaranteed to be not pending or executing on any CPU.
3159  *
3160  * cancel_work_sync(&delayed_work->work) must not be used for
3161  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3162  *
3163  * The caller must ensure that the workqueue on which @work was last
3164  * queued can't be destroyed before this function returns.
3165  *
3166  * Return:
3167  * %true if @work was pending, %false otherwise.
3168  */
3169 bool cancel_work_sync(struct work_struct *work)
3170 {
3171 	return __cancel_work_timer(work, false);
3172 }
3173 EXPORT_SYMBOL_GPL(cancel_work_sync);
3174 
3175 /**
3176  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3177  * @dwork: the delayed work to flush
3178  *
3179  * Delayed timer is cancelled and the pending work is queued for
3180  * immediate execution.  Like flush_work(), this function only
3181  * considers the last queueing instance of @dwork.
3182  *
3183  * Return:
3184  * %true if flush_work() waited for the work to finish execution,
3185  * %false if it was already idle.
3186  */
3187 bool flush_delayed_work(struct delayed_work *dwork)
3188 {
3189 	local_irq_disable();
3190 	if (del_timer_sync(&dwork->timer))
3191 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3192 	local_irq_enable();
3193 	return flush_work(&dwork->work);
3194 }
3195 EXPORT_SYMBOL(flush_delayed_work);
3196 
3197 /**
3198  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3199  * @rwork: the rcu work to flush
3200  *
3201  * Return:
3202  * %true if flush_rcu_work() waited for the work to finish execution,
3203  * %false if it was already idle.
3204  */
3205 bool flush_rcu_work(struct rcu_work *rwork)
3206 {
3207 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3208 		rcu_barrier();
3209 		flush_work(&rwork->work);
3210 		return true;
3211 	} else {
3212 		return flush_work(&rwork->work);
3213 	}
3214 }
3215 EXPORT_SYMBOL(flush_rcu_work);
3216 
3217 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3218 {
3219 	unsigned long flags;
3220 	int ret;
3221 
3222 	do {
3223 		ret = try_to_grab_pending(work, is_dwork, &flags);
3224 	} while (unlikely(ret == -EAGAIN));
3225 
3226 	if (unlikely(ret < 0))
3227 		return false;
3228 
3229 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3230 	local_irq_restore(flags);
3231 	return ret;
3232 }
3233 
3234 /**
3235  * cancel_delayed_work - cancel a delayed work
3236  * @dwork: delayed_work to cancel
3237  *
3238  * Kill off a pending delayed_work.
3239  *
3240  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3241  * pending.
3242  *
3243  * Note:
3244  * The work callback function may still be running on return, unless
3245  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3246  * use cancel_delayed_work_sync() to wait on it.
3247  *
3248  * This function is safe to call from any context including IRQ handler.
3249  */
3250 bool cancel_delayed_work(struct delayed_work *dwork)
3251 {
3252 	return __cancel_work(&dwork->work, true);
3253 }
3254 EXPORT_SYMBOL(cancel_delayed_work);
3255 
3256 /**
3257  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3258  * @dwork: the delayed work cancel
3259  *
3260  * This is cancel_work_sync() for delayed works.
3261  *
3262  * Return:
3263  * %true if @dwork was pending, %false otherwise.
3264  */
3265 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3266 {
3267 	return __cancel_work_timer(&dwork->work, true);
3268 }
3269 EXPORT_SYMBOL(cancel_delayed_work_sync);
3270 
3271 /**
3272  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3273  * @func: the function to call
3274  *
3275  * schedule_on_each_cpu() executes @func on each online CPU using the
3276  * system workqueue and blocks until all CPUs have completed.
3277  * schedule_on_each_cpu() is very slow.
3278  *
3279  * Return:
3280  * 0 on success, -errno on failure.
3281  */
3282 int schedule_on_each_cpu(work_func_t func)
3283 {
3284 	int cpu;
3285 	struct work_struct __percpu *works;
3286 
3287 	works = alloc_percpu(struct work_struct);
3288 	if (!works)
3289 		return -ENOMEM;
3290 
3291 	get_online_cpus();
3292 
3293 	for_each_online_cpu(cpu) {
3294 		struct work_struct *work = per_cpu_ptr(works, cpu);
3295 
3296 		INIT_WORK(work, func);
3297 		schedule_work_on(cpu, work);
3298 	}
3299 
3300 	for_each_online_cpu(cpu)
3301 		flush_work(per_cpu_ptr(works, cpu));
3302 
3303 	put_online_cpus();
3304 	free_percpu(works);
3305 	return 0;
3306 }
3307 
3308 /**
3309  * execute_in_process_context - reliably execute the routine with user context
3310  * @fn:		the function to execute
3311  * @ew:		guaranteed storage for the execute work structure (must
3312  *		be available when the work executes)
3313  *
3314  * Executes the function immediately if process context is available,
3315  * otherwise schedules the function for delayed execution.
3316  *
3317  * Return:	0 - function was executed
3318  *		1 - function was scheduled for execution
3319  */
3320 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3321 {
3322 	if (!in_interrupt()) {
3323 		fn(&ew->work);
3324 		return 0;
3325 	}
3326 
3327 	INIT_WORK(&ew->work, fn);
3328 	schedule_work(&ew->work);
3329 
3330 	return 1;
3331 }
3332 EXPORT_SYMBOL_GPL(execute_in_process_context);
3333 
3334 /**
3335  * free_workqueue_attrs - free a workqueue_attrs
3336  * @attrs: workqueue_attrs to free
3337  *
3338  * Undo alloc_workqueue_attrs().
3339  */
3340 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3341 {
3342 	if (attrs) {
3343 		free_cpumask_var(attrs->cpumask);
3344 		kfree(attrs);
3345 	}
3346 }
3347 
3348 /**
3349  * alloc_workqueue_attrs - allocate a workqueue_attrs
3350  *
3351  * Allocate a new workqueue_attrs, initialize with default settings and
3352  * return it.
3353  *
3354  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3355  */
3356 struct workqueue_attrs *alloc_workqueue_attrs(void)
3357 {
3358 	struct workqueue_attrs *attrs;
3359 
3360 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3361 	if (!attrs)
3362 		goto fail;
3363 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3364 		goto fail;
3365 
3366 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3367 	return attrs;
3368 fail:
3369 	free_workqueue_attrs(attrs);
3370 	return NULL;
3371 }
3372 
3373 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3374 				 const struct workqueue_attrs *from)
3375 {
3376 	to->nice = from->nice;
3377 	cpumask_copy(to->cpumask, from->cpumask);
3378 	/*
3379 	 * Unlike hash and equality test, this function doesn't ignore
3380 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3381 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3382 	 */
3383 	to->no_numa = from->no_numa;
3384 }
3385 
3386 /* hash value of the content of @attr */
3387 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3388 {
3389 	u32 hash = 0;
3390 
3391 	hash = jhash_1word(attrs->nice, hash);
3392 	hash = jhash(cpumask_bits(attrs->cpumask),
3393 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3394 	return hash;
3395 }
3396 
3397 /* content equality test */
3398 static bool wqattrs_equal(const struct workqueue_attrs *a,
3399 			  const struct workqueue_attrs *b)
3400 {
3401 	if (a->nice != b->nice)
3402 		return false;
3403 	if (!cpumask_equal(a->cpumask, b->cpumask))
3404 		return false;
3405 	return true;
3406 }
3407 
3408 /**
3409  * init_worker_pool - initialize a newly zalloc'd worker_pool
3410  * @pool: worker_pool to initialize
3411  *
3412  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3413  *
3414  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3415  * inside @pool proper are initialized and put_unbound_pool() can be called
3416  * on @pool safely to release it.
3417  */
3418 static int init_worker_pool(struct worker_pool *pool)
3419 {
3420 	spin_lock_init(&pool->lock);
3421 	pool->id = -1;
3422 	pool->cpu = -1;
3423 	pool->node = NUMA_NO_NODE;
3424 	pool->flags |= POOL_DISASSOCIATED;
3425 	pool->watchdog_ts = jiffies;
3426 	INIT_LIST_HEAD(&pool->worklist);
3427 	INIT_LIST_HEAD(&pool->idle_list);
3428 	hash_init(pool->busy_hash);
3429 
3430 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3431 
3432 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3433 
3434 	INIT_LIST_HEAD(&pool->workers);
3435 
3436 	ida_init(&pool->worker_ida);
3437 	INIT_HLIST_NODE(&pool->hash_node);
3438 	pool->refcnt = 1;
3439 
3440 	/* shouldn't fail above this point */
3441 	pool->attrs = alloc_workqueue_attrs();
3442 	if (!pool->attrs)
3443 		return -ENOMEM;
3444 	return 0;
3445 }
3446 
3447 #ifdef CONFIG_LOCKDEP
3448 static void wq_init_lockdep(struct workqueue_struct *wq)
3449 {
3450 	char *lock_name;
3451 
3452 	lockdep_register_key(&wq->key);
3453 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3454 	if (!lock_name)
3455 		lock_name = wq->name;
3456 
3457 	wq->lock_name = lock_name;
3458 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3459 }
3460 
3461 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3462 {
3463 	lockdep_unregister_key(&wq->key);
3464 }
3465 
3466 static void wq_free_lockdep(struct workqueue_struct *wq)
3467 {
3468 	if (wq->lock_name != wq->name)
3469 		kfree(wq->lock_name);
3470 }
3471 #else
3472 static void wq_init_lockdep(struct workqueue_struct *wq)
3473 {
3474 }
3475 
3476 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3477 {
3478 }
3479 
3480 static void wq_free_lockdep(struct workqueue_struct *wq)
3481 {
3482 }
3483 #endif
3484 
3485 static void rcu_free_wq(struct rcu_head *rcu)
3486 {
3487 	struct workqueue_struct *wq =
3488 		container_of(rcu, struct workqueue_struct, rcu);
3489 
3490 	wq_free_lockdep(wq);
3491 
3492 	if (!(wq->flags & WQ_UNBOUND))
3493 		free_percpu(wq->cpu_pwqs);
3494 	else
3495 		free_workqueue_attrs(wq->unbound_attrs);
3496 
3497 	kfree(wq->rescuer);
3498 	kfree(wq);
3499 }
3500 
3501 static void rcu_free_pool(struct rcu_head *rcu)
3502 {
3503 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3504 
3505 	ida_destroy(&pool->worker_ida);
3506 	free_workqueue_attrs(pool->attrs);
3507 	kfree(pool);
3508 }
3509 
3510 /**
3511  * put_unbound_pool - put a worker_pool
3512  * @pool: worker_pool to put
3513  *
3514  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3515  * safe manner.  get_unbound_pool() calls this function on its failure path
3516  * and this function should be able to release pools which went through,
3517  * successfully or not, init_worker_pool().
3518  *
3519  * Should be called with wq_pool_mutex held.
3520  */
3521 static void put_unbound_pool(struct worker_pool *pool)
3522 {
3523 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3524 	struct worker *worker;
3525 
3526 	lockdep_assert_held(&wq_pool_mutex);
3527 
3528 	if (--pool->refcnt)
3529 		return;
3530 
3531 	/* sanity checks */
3532 	if (WARN_ON(!(pool->cpu < 0)) ||
3533 	    WARN_ON(!list_empty(&pool->worklist)))
3534 		return;
3535 
3536 	/* release id and unhash */
3537 	if (pool->id >= 0)
3538 		idr_remove(&worker_pool_idr, pool->id);
3539 	hash_del(&pool->hash_node);
3540 
3541 	/*
3542 	 * Become the manager and destroy all workers.  This prevents
3543 	 * @pool's workers from blocking on attach_mutex.  We're the last
3544 	 * manager and @pool gets freed with the flag set.
3545 	 */
3546 	spin_lock_irq(&pool->lock);
3547 	wait_event_lock_irq(wq_manager_wait,
3548 			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3549 	pool->flags |= POOL_MANAGER_ACTIVE;
3550 
3551 	while ((worker = first_idle_worker(pool)))
3552 		destroy_worker(worker);
3553 	WARN_ON(pool->nr_workers || pool->nr_idle);
3554 	spin_unlock_irq(&pool->lock);
3555 
3556 	mutex_lock(&wq_pool_attach_mutex);
3557 	if (!list_empty(&pool->workers))
3558 		pool->detach_completion = &detach_completion;
3559 	mutex_unlock(&wq_pool_attach_mutex);
3560 
3561 	if (pool->detach_completion)
3562 		wait_for_completion(pool->detach_completion);
3563 
3564 	/* shut down the timers */
3565 	del_timer_sync(&pool->idle_timer);
3566 	del_timer_sync(&pool->mayday_timer);
3567 
3568 	/* RCU protected to allow dereferences from get_work_pool() */
3569 	call_rcu(&pool->rcu, rcu_free_pool);
3570 }
3571 
3572 /**
3573  * get_unbound_pool - get a worker_pool with the specified attributes
3574  * @attrs: the attributes of the worker_pool to get
3575  *
3576  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3577  * reference count and return it.  If there already is a matching
3578  * worker_pool, it will be used; otherwise, this function attempts to
3579  * create a new one.
3580  *
3581  * Should be called with wq_pool_mutex held.
3582  *
3583  * Return: On success, a worker_pool with the same attributes as @attrs.
3584  * On failure, %NULL.
3585  */
3586 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3587 {
3588 	u32 hash = wqattrs_hash(attrs);
3589 	struct worker_pool *pool;
3590 	int node;
3591 	int target_node = NUMA_NO_NODE;
3592 
3593 	lockdep_assert_held(&wq_pool_mutex);
3594 
3595 	/* do we already have a matching pool? */
3596 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3597 		if (wqattrs_equal(pool->attrs, attrs)) {
3598 			pool->refcnt++;
3599 			return pool;
3600 		}
3601 	}
3602 
3603 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3604 	if (wq_numa_enabled) {
3605 		for_each_node(node) {
3606 			if (cpumask_subset(attrs->cpumask,
3607 					   wq_numa_possible_cpumask[node])) {
3608 				target_node = node;
3609 				break;
3610 			}
3611 		}
3612 	}
3613 
3614 	/* nope, create a new one */
3615 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3616 	if (!pool || init_worker_pool(pool) < 0)
3617 		goto fail;
3618 
3619 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3620 	copy_workqueue_attrs(pool->attrs, attrs);
3621 	pool->node = target_node;
3622 
3623 	/*
3624 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3625 	 * 'struct workqueue_attrs' comments for detail.
3626 	 */
3627 	pool->attrs->no_numa = false;
3628 
3629 	if (worker_pool_assign_id(pool) < 0)
3630 		goto fail;
3631 
3632 	/* create and start the initial worker */
3633 	if (wq_online && !create_worker(pool))
3634 		goto fail;
3635 
3636 	/* install */
3637 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3638 
3639 	return pool;
3640 fail:
3641 	if (pool)
3642 		put_unbound_pool(pool);
3643 	return NULL;
3644 }
3645 
3646 static void rcu_free_pwq(struct rcu_head *rcu)
3647 {
3648 	kmem_cache_free(pwq_cache,
3649 			container_of(rcu, struct pool_workqueue, rcu));
3650 }
3651 
3652 /*
3653  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3654  * and needs to be destroyed.
3655  */
3656 static void pwq_unbound_release_workfn(struct work_struct *work)
3657 {
3658 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3659 						  unbound_release_work);
3660 	struct workqueue_struct *wq = pwq->wq;
3661 	struct worker_pool *pool = pwq->pool;
3662 	bool is_last;
3663 
3664 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3665 		return;
3666 
3667 	mutex_lock(&wq->mutex);
3668 	list_del_rcu(&pwq->pwqs_node);
3669 	is_last = list_empty(&wq->pwqs);
3670 	mutex_unlock(&wq->mutex);
3671 
3672 	mutex_lock(&wq_pool_mutex);
3673 	put_unbound_pool(pool);
3674 	mutex_unlock(&wq_pool_mutex);
3675 
3676 	call_rcu(&pwq->rcu, rcu_free_pwq);
3677 
3678 	/*
3679 	 * If we're the last pwq going away, @wq is already dead and no one
3680 	 * is gonna access it anymore.  Schedule RCU free.
3681 	 */
3682 	if (is_last) {
3683 		wq_unregister_lockdep(wq);
3684 		call_rcu(&wq->rcu, rcu_free_wq);
3685 	}
3686 }
3687 
3688 /**
3689  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3690  * @pwq: target pool_workqueue
3691  *
3692  * If @pwq isn't freezing, set @pwq->max_active to the associated
3693  * workqueue's saved_max_active and activate delayed work items
3694  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3695  */
3696 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3697 {
3698 	struct workqueue_struct *wq = pwq->wq;
3699 	bool freezable = wq->flags & WQ_FREEZABLE;
3700 	unsigned long flags;
3701 
3702 	/* for @wq->saved_max_active */
3703 	lockdep_assert_held(&wq->mutex);
3704 
3705 	/* fast exit for non-freezable wqs */
3706 	if (!freezable && pwq->max_active == wq->saved_max_active)
3707 		return;
3708 
3709 	/* this function can be called during early boot w/ irq disabled */
3710 	spin_lock_irqsave(&pwq->pool->lock, flags);
3711 
3712 	/*
3713 	 * During [un]freezing, the caller is responsible for ensuring that
3714 	 * this function is called at least once after @workqueue_freezing
3715 	 * is updated and visible.
3716 	 */
3717 	if (!freezable || !workqueue_freezing) {
3718 		pwq->max_active = wq->saved_max_active;
3719 
3720 		while (!list_empty(&pwq->delayed_works) &&
3721 		       pwq->nr_active < pwq->max_active)
3722 			pwq_activate_first_delayed(pwq);
3723 
3724 		/*
3725 		 * Need to kick a worker after thawed or an unbound wq's
3726 		 * max_active is bumped.  It's a slow path.  Do it always.
3727 		 */
3728 		wake_up_worker(pwq->pool);
3729 	} else {
3730 		pwq->max_active = 0;
3731 	}
3732 
3733 	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3734 }
3735 
3736 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3737 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3738 		     struct worker_pool *pool)
3739 {
3740 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3741 
3742 	memset(pwq, 0, sizeof(*pwq));
3743 
3744 	pwq->pool = pool;
3745 	pwq->wq = wq;
3746 	pwq->flush_color = -1;
3747 	pwq->refcnt = 1;
3748 	INIT_LIST_HEAD(&pwq->delayed_works);
3749 	INIT_LIST_HEAD(&pwq->pwqs_node);
3750 	INIT_LIST_HEAD(&pwq->mayday_node);
3751 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3752 }
3753 
3754 /* sync @pwq with the current state of its associated wq and link it */
3755 static void link_pwq(struct pool_workqueue *pwq)
3756 {
3757 	struct workqueue_struct *wq = pwq->wq;
3758 
3759 	lockdep_assert_held(&wq->mutex);
3760 
3761 	/* may be called multiple times, ignore if already linked */
3762 	if (!list_empty(&pwq->pwqs_node))
3763 		return;
3764 
3765 	/* set the matching work_color */
3766 	pwq->work_color = wq->work_color;
3767 
3768 	/* sync max_active to the current setting */
3769 	pwq_adjust_max_active(pwq);
3770 
3771 	/* link in @pwq */
3772 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3773 }
3774 
3775 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3776 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3777 					const struct workqueue_attrs *attrs)
3778 {
3779 	struct worker_pool *pool;
3780 	struct pool_workqueue *pwq;
3781 
3782 	lockdep_assert_held(&wq_pool_mutex);
3783 
3784 	pool = get_unbound_pool(attrs);
3785 	if (!pool)
3786 		return NULL;
3787 
3788 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3789 	if (!pwq) {
3790 		put_unbound_pool(pool);
3791 		return NULL;
3792 	}
3793 
3794 	init_pwq(pwq, wq, pool);
3795 	return pwq;
3796 }
3797 
3798 /**
3799  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3800  * @attrs: the wq_attrs of the default pwq of the target workqueue
3801  * @node: the target NUMA node
3802  * @cpu_going_down: if >= 0, the CPU to consider as offline
3803  * @cpumask: outarg, the resulting cpumask
3804  *
3805  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3806  * @cpu_going_down is >= 0, that cpu is considered offline during
3807  * calculation.  The result is stored in @cpumask.
3808  *
3809  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3810  * enabled and @node has online CPUs requested by @attrs, the returned
3811  * cpumask is the intersection of the possible CPUs of @node and
3812  * @attrs->cpumask.
3813  *
3814  * The caller is responsible for ensuring that the cpumask of @node stays
3815  * stable.
3816  *
3817  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3818  * %false if equal.
3819  */
3820 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3821 				 int cpu_going_down, cpumask_t *cpumask)
3822 {
3823 	if (!wq_numa_enabled || attrs->no_numa)
3824 		goto use_dfl;
3825 
3826 	/* does @node have any online CPUs @attrs wants? */
3827 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3828 	if (cpu_going_down >= 0)
3829 		cpumask_clear_cpu(cpu_going_down, cpumask);
3830 
3831 	if (cpumask_empty(cpumask))
3832 		goto use_dfl;
3833 
3834 	/* yeap, return possible CPUs in @node that @attrs wants */
3835 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3836 
3837 	if (cpumask_empty(cpumask)) {
3838 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3839 				"possible intersect\n");
3840 		return false;
3841 	}
3842 
3843 	return !cpumask_equal(cpumask, attrs->cpumask);
3844 
3845 use_dfl:
3846 	cpumask_copy(cpumask, attrs->cpumask);
3847 	return false;
3848 }
3849 
3850 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3851 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3852 						   int node,
3853 						   struct pool_workqueue *pwq)
3854 {
3855 	struct pool_workqueue *old_pwq;
3856 
3857 	lockdep_assert_held(&wq_pool_mutex);
3858 	lockdep_assert_held(&wq->mutex);
3859 
3860 	/* link_pwq() can handle duplicate calls */
3861 	link_pwq(pwq);
3862 
3863 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3864 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3865 	return old_pwq;
3866 }
3867 
3868 /* context to store the prepared attrs & pwqs before applying */
3869 struct apply_wqattrs_ctx {
3870 	struct workqueue_struct	*wq;		/* target workqueue */
3871 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3872 	struct list_head	list;		/* queued for batching commit */
3873 	struct pool_workqueue	*dfl_pwq;
3874 	struct pool_workqueue	*pwq_tbl[];
3875 };
3876 
3877 /* free the resources after success or abort */
3878 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3879 {
3880 	if (ctx) {
3881 		int node;
3882 
3883 		for_each_node(node)
3884 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3885 		put_pwq_unlocked(ctx->dfl_pwq);
3886 
3887 		free_workqueue_attrs(ctx->attrs);
3888 
3889 		kfree(ctx);
3890 	}
3891 }
3892 
3893 /* allocate the attrs and pwqs for later installation */
3894 static struct apply_wqattrs_ctx *
3895 apply_wqattrs_prepare(struct workqueue_struct *wq,
3896 		      const struct workqueue_attrs *attrs)
3897 {
3898 	struct apply_wqattrs_ctx *ctx;
3899 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3900 	int node;
3901 
3902 	lockdep_assert_held(&wq_pool_mutex);
3903 
3904 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3905 
3906 	new_attrs = alloc_workqueue_attrs();
3907 	tmp_attrs = alloc_workqueue_attrs();
3908 	if (!ctx || !new_attrs || !tmp_attrs)
3909 		goto out_free;
3910 
3911 	/*
3912 	 * Calculate the attrs of the default pwq.
3913 	 * If the user configured cpumask doesn't overlap with the
3914 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3915 	 */
3916 	copy_workqueue_attrs(new_attrs, attrs);
3917 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3918 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3919 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3920 
3921 	/*
3922 	 * We may create multiple pwqs with differing cpumasks.  Make a
3923 	 * copy of @new_attrs which will be modified and used to obtain
3924 	 * pools.
3925 	 */
3926 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3927 
3928 	/*
3929 	 * If something goes wrong during CPU up/down, we'll fall back to
3930 	 * the default pwq covering whole @attrs->cpumask.  Always create
3931 	 * it even if we don't use it immediately.
3932 	 */
3933 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3934 	if (!ctx->dfl_pwq)
3935 		goto out_free;
3936 
3937 	for_each_node(node) {
3938 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3939 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3940 			if (!ctx->pwq_tbl[node])
3941 				goto out_free;
3942 		} else {
3943 			ctx->dfl_pwq->refcnt++;
3944 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3945 		}
3946 	}
3947 
3948 	/* save the user configured attrs and sanitize it. */
3949 	copy_workqueue_attrs(new_attrs, attrs);
3950 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3951 	ctx->attrs = new_attrs;
3952 
3953 	ctx->wq = wq;
3954 	free_workqueue_attrs(tmp_attrs);
3955 	return ctx;
3956 
3957 out_free:
3958 	free_workqueue_attrs(tmp_attrs);
3959 	free_workqueue_attrs(new_attrs);
3960 	apply_wqattrs_cleanup(ctx);
3961 	return NULL;
3962 }
3963 
3964 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3965 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3966 {
3967 	int node;
3968 
3969 	/* all pwqs have been created successfully, let's install'em */
3970 	mutex_lock(&ctx->wq->mutex);
3971 
3972 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3973 
3974 	/* save the previous pwq and install the new one */
3975 	for_each_node(node)
3976 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3977 							  ctx->pwq_tbl[node]);
3978 
3979 	/* @dfl_pwq might not have been used, ensure it's linked */
3980 	link_pwq(ctx->dfl_pwq);
3981 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3982 
3983 	mutex_unlock(&ctx->wq->mutex);
3984 }
3985 
3986 static void apply_wqattrs_lock(void)
3987 {
3988 	/* CPUs should stay stable across pwq creations and installations */
3989 	get_online_cpus();
3990 	mutex_lock(&wq_pool_mutex);
3991 }
3992 
3993 static void apply_wqattrs_unlock(void)
3994 {
3995 	mutex_unlock(&wq_pool_mutex);
3996 	put_online_cpus();
3997 }
3998 
3999 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4000 					const struct workqueue_attrs *attrs)
4001 {
4002 	struct apply_wqattrs_ctx *ctx;
4003 
4004 	/* only unbound workqueues can change attributes */
4005 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4006 		return -EINVAL;
4007 
4008 	/* creating multiple pwqs breaks ordering guarantee */
4009 	if (!list_empty(&wq->pwqs)) {
4010 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4011 			return -EINVAL;
4012 
4013 		wq->flags &= ~__WQ_ORDERED;
4014 	}
4015 
4016 	ctx = apply_wqattrs_prepare(wq, attrs);
4017 	if (!ctx)
4018 		return -ENOMEM;
4019 
4020 	/* the ctx has been prepared successfully, let's commit it */
4021 	apply_wqattrs_commit(ctx);
4022 	apply_wqattrs_cleanup(ctx);
4023 
4024 	return 0;
4025 }
4026 
4027 /**
4028  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4029  * @wq: the target workqueue
4030  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4031  *
4032  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4033  * machines, this function maps a separate pwq to each NUMA node with
4034  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4035  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4036  * items finish.  Note that a work item which repeatedly requeues itself
4037  * back-to-back will stay on its current pwq.
4038  *
4039  * Performs GFP_KERNEL allocations.
4040  *
4041  * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4042  *
4043  * Return: 0 on success and -errno on failure.
4044  */
4045 int apply_workqueue_attrs(struct workqueue_struct *wq,
4046 			  const struct workqueue_attrs *attrs)
4047 {
4048 	int ret;
4049 
4050 	lockdep_assert_cpus_held();
4051 
4052 	mutex_lock(&wq_pool_mutex);
4053 	ret = apply_workqueue_attrs_locked(wq, attrs);
4054 	mutex_unlock(&wq_pool_mutex);
4055 
4056 	return ret;
4057 }
4058 
4059 /**
4060  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4061  * @wq: the target workqueue
4062  * @cpu: the CPU coming up or going down
4063  * @online: whether @cpu is coming up or going down
4064  *
4065  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4066  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4067  * @wq accordingly.
4068  *
4069  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4070  * falls back to @wq->dfl_pwq which may not be optimal but is always
4071  * correct.
4072  *
4073  * Note that when the last allowed CPU of a NUMA node goes offline for a
4074  * workqueue with a cpumask spanning multiple nodes, the workers which were
4075  * already executing the work items for the workqueue will lose their CPU
4076  * affinity and may execute on any CPU.  This is similar to how per-cpu
4077  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4078  * affinity, it's the user's responsibility to flush the work item from
4079  * CPU_DOWN_PREPARE.
4080  */
4081 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4082 				   bool online)
4083 {
4084 	int node = cpu_to_node(cpu);
4085 	int cpu_off = online ? -1 : cpu;
4086 	struct pool_workqueue *old_pwq = NULL, *pwq;
4087 	struct workqueue_attrs *target_attrs;
4088 	cpumask_t *cpumask;
4089 
4090 	lockdep_assert_held(&wq_pool_mutex);
4091 
4092 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4093 	    wq->unbound_attrs->no_numa)
4094 		return;
4095 
4096 	/*
4097 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4098 	 * Let's use a preallocated one.  The following buf is protected by
4099 	 * CPU hotplug exclusion.
4100 	 */
4101 	target_attrs = wq_update_unbound_numa_attrs_buf;
4102 	cpumask = target_attrs->cpumask;
4103 
4104 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4105 	pwq = unbound_pwq_by_node(wq, node);
4106 
4107 	/*
4108 	 * Let's determine what needs to be done.  If the target cpumask is
4109 	 * different from the default pwq's, we need to compare it to @pwq's
4110 	 * and create a new one if they don't match.  If the target cpumask
4111 	 * equals the default pwq's, the default pwq should be used.
4112 	 */
4113 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4114 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4115 			return;
4116 	} else {
4117 		goto use_dfl_pwq;
4118 	}
4119 
4120 	/* create a new pwq */
4121 	pwq = alloc_unbound_pwq(wq, target_attrs);
4122 	if (!pwq) {
4123 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4124 			wq->name);
4125 		goto use_dfl_pwq;
4126 	}
4127 
4128 	/* Install the new pwq. */
4129 	mutex_lock(&wq->mutex);
4130 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4131 	goto out_unlock;
4132 
4133 use_dfl_pwq:
4134 	mutex_lock(&wq->mutex);
4135 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4136 	get_pwq(wq->dfl_pwq);
4137 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4138 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4139 out_unlock:
4140 	mutex_unlock(&wq->mutex);
4141 	put_pwq_unlocked(old_pwq);
4142 }
4143 
4144 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4145 {
4146 	bool highpri = wq->flags & WQ_HIGHPRI;
4147 	int cpu, ret;
4148 
4149 	if (!(wq->flags & WQ_UNBOUND)) {
4150 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4151 		if (!wq->cpu_pwqs)
4152 			return -ENOMEM;
4153 
4154 		for_each_possible_cpu(cpu) {
4155 			struct pool_workqueue *pwq =
4156 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4157 			struct worker_pool *cpu_pools =
4158 				per_cpu(cpu_worker_pools, cpu);
4159 
4160 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4161 
4162 			mutex_lock(&wq->mutex);
4163 			link_pwq(pwq);
4164 			mutex_unlock(&wq->mutex);
4165 		}
4166 		return 0;
4167 	}
4168 
4169 	get_online_cpus();
4170 	if (wq->flags & __WQ_ORDERED) {
4171 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4172 		/* there should only be single pwq for ordering guarantee */
4173 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4174 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4175 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4176 	} else {
4177 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4178 	}
4179 	put_online_cpus();
4180 
4181 	return ret;
4182 }
4183 
4184 static int wq_clamp_max_active(int max_active, unsigned int flags,
4185 			       const char *name)
4186 {
4187 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4188 
4189 	if (max_active < 1 || max_active > lim)
4190 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4191 			max_active, name, 1, lim);
4192 
4193 	return clamp_val(max_active, 1, lim);
4194 }
4195 
4196 /*
4197  * Workqueues which may be used during memory reclaim should have a rescuer
4198  * to guarantee forward progress.
4199  */
4200 static int init_rescuer(struct workqueue_struct *wq)
4201 {
4202 	struct worker *rescuer;
4203 	int ret;
4204 
4205 	if (!(wq->flags & WQ_MEM_RECLAIM))
4206 		return 0;
4207 
4208 	rescuer = alloc_worker(NUMA_NO_NODE);
4209 	if (!rescuer)
4210 		return -ENOMEM;
4211 
4212 	rescuer->rescue_wq = wq;
4213 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4214 	ret = PTR_ERR_OR_ZERO(rescuer->task);
4215 	if (ret) {
4216 		kfree(rescuer);
4217 		return ret;
4218 	}
4219 
4220 	wq->rescuer = rescuer;
4221 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4222 	wake_up_process(rescuer->task);
4223 
4224 	return 0;
4225 }
4226 
4227 __printf(1, 4)
4228 struct workqueue_struct *alloc_workqueue(const char *fmt,
4229 					 unsigned int flags,
4230 					 int max_active, ...)
4231 {
4232 	size_t tbl_size = 0;
4233 	va_list args;
4234 	struct workqueue_struct *wq;
4235 	struct pool_workqueue *pwq;
4236 
4237 	/*
4238 	 * Unbound && max_active == 1 used to imply ordered, which is no
4239 	 * longer the case on NUMA machines due to per-node pools.  While
4240 	 * alloc_ordered_workqueue() is the right way to create an ordered
4241 	 * workqueue, keep the previous behavior to avoid subtle breakages
4242 	 * on NUMA.
4243 	 */
4244 	if ((flags & WQ_UNBOUND) && max_active == 1)
4245 		flags |= __WQ_ORDERED;
4246 
4247 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4248 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4249 		flags |= WQ_UNBOUND;
4250 
4251 	/* allocate wq and format name */
4252 	if (flags & WQ_UNBOUND)
4253 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4254 
4255 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4256 	if (!wq)
4257 		return NULL;
4258 
4259 	if (flags & WQ_UNBOUND) {
4260 		wq->unbound_attrs = alloc_workqueue_attrs();
4261 		if (!wq->unbound_attrs)
4262 			goto err_free_wq;
4263 	}
4264 
4265 	va_start(args, max_active);
4266 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4267 	va_end(args);
4268 
4269 	max_active = max_active ?: WQ_DFL_ACTIVE;
4270 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4271 
4272 	/* init wq */
4273 	wq->flags = flags;
4274 	wq->saved_max_active = max_active;
4275 	mutex_init(&wq->mutex);
4276 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4277 	INIT_LIST_HEAD(&wq->pwqs);
4278 	INIT_LIST_HEAD(&wq->flusher_queue);
4279 	INIT_LIST_HEAD(&wq->flusher_overflow);
4280 	INIT_LIST_HEAD(&wq->maydays);
4281 
4282 	wq_init_lockdep(wq);
4283 	INIT_LIST_HEAD(&wq->list);
4284 
4285 	if (alloc_and_link_pwqs(wq) < 0)
4286 		goto err_unreg_lockdep;
4287 
4288 	if (wq_online && init_rescuer(wq) < 0)
4289 		goto err_destroy;
4290 
4291 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4292 		goto err_destroy;
4293 
4294 	/*
4295 	 * wq_pool_mutex protects global freeze state and workqueues list.
4296 	 * Grab it, adjust max_active and add the new @wq to workqueues
4297 	 * list.
4298 	 */
4299 	mutex_lock(&wq_pool_mutex);
4300 
4301 	mutex_lock(&wq->mutex);
4302 	for_each_pwq(pwq, wq)
4303 		pwq_adjust_max_active(pwq);
4304 	mutex_unlock(&wq->mutex);
4305 
4306 	list_add_tail_rcu(&wq->list, &workqueues);
4307 
4308 	mutex_unlock(&wq_pool_mutex);
4309 
4310 	return wq;
4311 
4312 err_unreg_lockdep:
4313 	wq_unregister_lockdep(wq);
4314 	wq_free_lockdep(wq);
4315 err_free_wq:
4316 	free_workqueue_attrs(wq->unbound_attrs);
4317 	kfree(wq);
4318 	return NULL;
4319 err_destroy:
4320 	destroy_workqueue(wq);
4321 	return NULL;
4322 }
4323 EXPORT_SYMBOL_GPL(alloc_workqueue);
4324 
4325 static bool pwq_busy(struct pool_workqueue *pwq)
4326 {
4327 	int i;
4328 
4329 	for (i = 0; i < WORK_NR_COLORS; i++)
4330 		if (pwq->nr_in_flight[i])
4331 			return true;
4332 
4333 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4334 		return true;
4335 	if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4336 		return true;
4337 
4338 	return false;
4339 }
4340 
4341 /**
4342  * destroy_workqueue - safely terminate a workqueue
4343  * @wq: target workqueue
4344  *
4345  * Safely destroy a workqueue. All work currently pending will be done first.
4346  */
4347 void destroy_workqueue(struct workqueue_struct *wq)
4348 {
4349 	struct pool_workqueue *pwq;
4350 	int node;
4351 
4352 	/*
4353 	 * Remove it from sysfs first so that sanity check failure doesn't
4354 	 * lead to sysfs name conflicts.
4355 	 */
4356 	workqueue_sysfs_unregister(wq);
4357 
4358 	/* drain it before proceeding with destruction */
4359 	drain_workqueue(wq);
4360 
4361 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4362 	if (wq->rescuer) {
4363 		struct worker *rescuer = wq->rescuer;
4364 
4365 		/* this prevents new queueing */
4366 		spin_lock_irq(&wq_mayday_lock);
4367 		wq->rescuer = NULL;
4368 		spin_unlock_irq(&wq_mayday_lock);
4369 
4370 		/* rescuer will empty maydays list before exiting */
4371 		kthread_stop(rescuer->task);
4372 		kfree(rescuer);
4373 	}
4374 
4375 	/*
4376 	 * Sanity checks - grab all the locks so that we wait for all
4377 	 * in-flight operations which may do put_pwq().
4378 	 */
4379 	mutex_lock(&wq_pool_mutex);
4380 	mutex_lock(&wq->mutex);
4381 	for_each_pwq(pwq, wq) {
4382 		spin_lock_irq(&pwq->pool->lock);
4383 		if (WARN_ON(pwq_busy(pwq))) {
4384 			pr_warning("%s: %s has the following busy pwq\n",
4385 				   __func__, wq->name);
4386 			show_pwq(pwq);
4387 			spin_unlock_irq(&pwq->pool->lock);
4388 			mutex_unlock(&wq->mutex);
4389 			mutex_unlock(&wq_pool_mutex);
4390 			show_workqueue_state();
4391 			return;
4392 		}
4393 		spin_unlock_irq(&pwq->pool->lock);
4394 	}
4395 	mutex_unlock(&wq->mutex);
4396 	mutex_unlock(&wq_pool_mutex);
4397 
4398 	/*
4399 	 * wq list is used to freeze wq, remove from list after
4400 	 * flushing is complete in case freeze races us.
4401 	 */
4402 	mutex_lock(&wq_pool_mutex);
4403 	list_del_rcu(&wq->list);
4404 	mutex_unlock(&wq_pool_mutex);
4405 
4406 	if (!(wq->flags & WQ_UNBOUND)) {
4407 		wq_unregister_lockdep(wq);
4408 		/*
4409 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4410 		 * schedule RCU free.
4411 		 */
4412 		call_rcu(&wq->rcu, rcu_free_wq);
4413 	} else {
4414 		/*
4415 		 * We're the sole accessor of @wq at this point.  Directly
4416 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4417 		 * @wq will be freed when the last pwq is released.
4418 		 */
4419 		for_each_node(node) {
4420 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4421 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4422 			put_pwq_unlocked(pwq);
4423 		}
4424 
4425 		/*
4426 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4427 		 * put.  Don't access it afterwards.
4428 		 */
4429 		pwq = wq->dfl_pwq;
4430 		wq->dfl_pwq = NULL;
4431 		put_pwq_unlocked(pwq);
4432 	}
4433 }
4434 EXPORT_SYMBOL_GPL(destroy_workqueue);
4435 
4436 /**
4437  * workqueue_set_max_active - adjust max_active of a workqueue
4438  * @wq: target workqueue
4439  * @max_active: new max_active value.
4440  *
4441  * Set max_active of @wq to @max_active.
4442  *
4443  * CONTEXT:
4444  * Don't call from IRQ context.
4445  */
4446 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4447 {
4448 	struct pool_workqueue *pwq;
4449 
4450 	/* disallow meddling with max_active for ordered workqueues */
4451 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4452 		return;
4453 
4454 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4455 
4456 	mutex_lock(&wq->mutex);
4457 
4458 	wq->flags &= ~__WQ_ORDERED;
4459 	wq->saved_max_active = max_active;
4460 
4461 	for_each_pwq(pwq, wq)
4462 		pwq_adjust_max_active(pwq);
4463 
4464 	mutex_unlock(&wq->mutex);
4465 }
4466 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4467 
4468 /**
4469  * current_work - retrieve %current task's work struct
4470  *
4471  * Determine if %current task is a workqueue worker and what it's working on.
4472  * Useful to find out the context that the %current task is running in.
4473  *
4474  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4475  */
4476 struct work_struct *current_work(void)
4477 {
4478 	struct worker *worker = current_wq_worker();
4479 
4480 	return worker ? worker->current_work : NULL;
4481 }
4482 EXPORT_SYMBOL(current_work);
4483 
4484 /**
4485  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4486  *
4487  * Determine whether %current is a workqueue rescuer.  Can be used from
4488  * work functions to determine whether it's being run off the rescuer task.
4489  *
4490  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4491  */
4492 bool current_is_workqueue_rescuer(void)
4493 {
4494 	struct worker *worker = current_wq_worker();
4495 
4496 	return worker && worker->rescue_wq;
4497 }
4498 
4499 /**
4500  * workqueue_congested - test whether a workqueue is congested
4501  * @cpu: CPU in question
4502  * @wq: target workqueue
4503  *
4504  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4505  * no synchronization around this function and the test result is
4506  * unreliable and only useful as advisory hints or for debugging.
4507  *
4508  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4509  * Note that both per-cpu and unbound workqueues may be associated with
4510  * multiple pool_workqueues which have separate congested states.  A
4511  * workqueue being congested on one CPU doesn't mean the workqueue is also
4512  * contested on other CPUs / NUMA nodes.
4513  *
4514  * Return:
4515  * %true if congested, %false otherwise.
4516  */
4517 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4518 {
4519 	struct pool_workqueue *pwq;
4520 	bool ret;
4521 
4522 	rcu_read_lock();
4523 	preempt_disable();
4524 
4525 	if (cpu == WORK_CPU_UNBOUND)
4526 		cpu = smp_processor_id();
4527 
4528 	if (!(wq->flags & WQ_UNBOUND))
4529 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4530 	else
4531 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4532 
4533 	ret = !list_empty(&pwq->delayed_works);
4534 	preempt_enable();
4535 	rcu_read_unlock();
4536 
4537 	return ret;
4538 }
4539 EXPORT_SYMBOL_GPL(workqueue_congested);
4540 
4541 /**
4542  * work_busy - test whether a work is currently pending or running
4543  * @work: the work to be tested
4544  *
4545  * Test whether @work is currently pending or running.  There is no
4546  * synchronization around this function and the test result is
4547  * unreliable and only useful as advisory hints or for debugging.
4548  *
4549  * Return:
4550  * OR'd bitmask of WORK_BUSY_* bits.
4551  */
4552 unsigned int work_busy(struct work_struct *work)
4553 {
4554 	struct worker_pool *pool;
4555 	unsigned long flags;
4556 	unsigned int ret = 0;
4557 
4558 	if (work_pending(work))
4559 		ret |= WORK_BUSY_PENDING;
4560 
4561 	rcu_read_lock();
4562 	pool = get_work_pool(work);
4563 	if (pool) {
4564 		spin_lock_irqsave(&pool->lock, flags);
4565 		if (find_worker_executing_work(pool, work))
4566 			ret |= WORK_BUSY_RUNNING;
4567 		spin_unlock_irqrestore(&pool->lock, flags);
4568 	}
4569 	rcu_read_unlock();
4570 
4571 	return ret;
4572 }
4573 EXPORT_SYMBOL_GPL(work_busy);
4574 
4575 /**
4576  * set_worker_desc - set description for the current work item
4577  * @fmt: printf-style format string
4578  * @...: arguments for the format string
4579  *
4580  * This function can be called by a running work function to describe what
4581  * the work item is about.  If the worker task gets dumped, this
4582  * information will be printed out together to help debugging.  The
4583  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4584  */
4585 void set_worker_desc(const char *fmt, ...)
4586 {
4587 	struct worker *worker = current_wq_worker();
4588 	va_list args;
4589 
4590 	if (worker) {
4591 		va_start(args, fmt);
4592 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4593 		va_end(args);
4594 	}
4595 }
4596 EXPORT_SYMBOL_GPL(set_worker_desc);
4597 
4598 /**
4599  * print_worker_info - print out worker information and description
4600  * @log_lvl: the log level to use when printing
4601  * @task: target task
4602  *
4603  * If @task is a worker and currently executing a work item, print out the
4604  * name of the workqueue being serviced and worker description set with
4605  * set_worker_desc() by the currently executing work item.
4606  *
4607  * This function can be safely called on any task as long as the
4608  * task_struct itself is accessible.  While safe, this function isn't
4609  * synchronized and may print out mixups or garbages of limited length.
4610  */
4611 void print_worker_info(const char *log_lvl, struct task_struct *task)
4612 {
4613 	work_func_t *fn = NULL;
4614 	char name[WQ_NAME_LEN] = { };
4615 	char desc[WORKER_DESC_LEN] = { };
4616 	struct pool_workqueue *pwq = NULL;
4617 	struct workqueue_struct *wq = NULL;
4618 	struct worker *worker;
4619 
4620 	if (!(task->flags & PF_WQ_WORKER))
4621 		return;
4622 
4623 	/*
4624 	 * This function is called without any synchronization and @task
4625 	 * could be in any state.  Be careful with dereferences.
4626 	 */
4627 	worker = kthread_probe_data(task);
4628 
4629 	/*
4630 	 * Carefully copy the associated workqueue's workfn, name and desc.
4631 	 * Keep the original last '\0' in case the original is garbage.
4632 	 */
4633 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4634 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4635 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4636 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4637 	probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4638 
4639 	if (fn || name[0] || desc[0]) {
4640 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4641 		if (strcmp(name, desc))
4642 			pr_cont(" (%s)", desc);
4643 		pr_cont("\n");
4644 	}
4645 }
4646 
4647 static void pr_cont_pool_info(struct worker_pool *pool)
4648 {
4649 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4650 	if (pool->node != NUMA_NO_NODE)
4651 		pr_cont(" node=%d", pool->node);
4652 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4653 }
4654 
4655 static void pr_cont_work(bool comma, struct work_struct *work)
4656 {
4657 	if (work->func == wq_barrier_func) {
4658 		struct wq_barrier *barr;
4659 
4660 		barr = container_of(work, struct wq_barrier, work);
4661 
4662 		pr_cont("%s BAR(%d)", comma ? "," : "",
4663 			task_pid_nr(barr->task));
4664 	} else {
4665 		pr_cont("%s %ps", comma ? "," : "", work->func);
4666 	}
4667 }
4668 
4669 static void show_pwq(struct pool_workqueue *pwq)
4670 {
4671 	struct worker_pool *pool = pwq->pool;
4672 	struct work_struct *work;
4673 	struct worker *worker;
4674 	bool has_in_flight = false, has_pending = false;
4675 	int bkt;
4676 
4677 	pr_info("  pwq %d:", pool->id);
4678 	pr_cont_pool_info(pool);
4679 
4680 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4681 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4682 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4683 
4684 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4685 		if (worker->current_pwq == pwq) {
4686 			has_in_flight = true;
4687 			break;
4688 		}
4689 	}
4690 	if (has_in_flight) {
4691 		bool comma = false;
4692 
4693 		pr_info("    in-flight:");
4694 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4695 			if (worker->current_pwq != pwq)
4696 				continue;
4697 
4698 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4699 				task_pid_nr(worker->task),
4700 				worker->rescue_wq ? "(RESCUER)" : "",
4701 				worker->current_func);
4702 			list_for_each_entry(work, &worker->scheduled, entry)
4703 				pr_cont_work(false, work);
4704 			comma = true;
4705 		}
4706 		pr_cont("\n");
4707 	}
4708 
4709 	list_for_each_entry(work, &pool->worklist, entry) {
4710 		if (get_work_pwq(work) == pwq) {
4711 			has_pending = true;
4712 			break;
4713 		}
4714 	}
4715 	if (has_pending) {
4716 		bool comma = false;
4717 
4718 		pr_info("    pending:");
4719 		list_for_each_entry(work, &pool->worklist, entry) {
4720 			if (get_work_pwq(work) != pwq)
4721 				continue;
4722 
4723 			pr_cont_work(comma, work);
4724 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4725 		}
4726 		pr_cont("\n");
4727 	}
4728 
4729 	if (!list_empty(&pwq->delayed_works)) {
4730 		bool comma = false;
4731 
4732 		pr_info("    delayed:");
4733 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4734 			pr_cont_work(comma, work);
4735 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4736 		}
4737 		pr_cont("\n");
4738 	}
4739 }
4740 
4741 /**
4742  * show_workqueue_state - dump workqueue state
4743  *
4744  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4745  * all busy workqueues and pools.
4746  */
4747 void show_workqueue_state(void)
4748 {
4749 	struct workqueue_struct *wq;
4750 	struct worker_pool *pool;
4751 	unsigned long flags;
4752 	int pi;
4753 
4754 	rcu_read_lock();
4755 
4756 	pr_info("Showing busy workqueues and worker pools:\n");
4757 
4758 	list_for_each_entry_rcu(wq, &workqueues, list) {
4759 		struct pool_workqueue *pwq;
4760 		bool idle = true;
4761 
4762 		for_each_pwq(pwq, wq) {
4763 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4764 				idle = false;
4765 				break;
4766 			}
4767 		}
4768 		if (idle)
4769 			continue;
4770 
4771 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4772 
4773 		for_each_pwq(pwq, wq) {
4774 			spin_lock_irqsave(&pwq->pool->lock, flags);
4775 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4776 				show_pwq(pwq);
4777 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4778 			/*
4779 			 * We could be printing a lot from atomic context, e.g.
4780 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4781 			 * hard lockup.
4782 			 */
4783 			touch_nmi_watchdog();
4784 		}
4785 	}
4786 
4787 	for_each_pool(pool, pi) {
4788 		struct worker *worker;
4789 		bool first = true;
4790 
4791 		spin_lock_irqsave(&pool->lock, flags);
4792 		if (pool->nr_workers == pool->nr_idle)
4793 			goto next_pool;
4794 
4795 		pr_info("pool %d:", pool->id);
4796 		pr_cont_pool_info(pool);
4797 		pr_cont(" hung=%us workers=%d",
4798 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4799 			pool->nr_workers);
4800 		if (pool->manager)
4801 			pr_cont(" manager: %d",
4802 				task_pid_nr(pool->manager->task));
4803 		list_for_each_entry(worker, &pool->idle_list, entry) {
4804 			pr_cont(" %s%d", first ? "idle: " : "",
4805 				task_pid_nr(worker->task));
4806 			first = false;
4807 		}
4808 		pr_cont("\n");
4809 	next_pool:
4810 		spin_unlock_irqrestore(&pool->lock, flags);
4811 		/*
4812 		 * We could be printing a lot from atomic context, e.g.
4813 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4814 		 * hard lockup.
4815 		 */
4816 		touch_nmi_watchdog();
4817 	}
4818 
4819 	rcu_read_unlock();
4820 }
4821 
4822 /* used to show worker information through /proc/PID/{comm,stat,status} */
4823 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4824 {
4825 	int off;
4826 
4827 	/* always show the actual comm */
4828 	off = strscpy(buf, task->comm, size);
4829 	if (off < 0)
4830 		return;
4831 
4832 	/* stabilize PF_WQ_WORKER and worker pool association */
4833 	mutex_lock(&wq_pool_attach_mutex);
4834 
4835 	if (task->flags & PF_WQ_WORKER) {
4836 		struct worker *worker = kthread_data(task);
4837 		struct worker_pool *pool = worker->pool;
4838 
4839 		if (pool) {
4840 			spin_lock_irq(&pool->lock);
4841 			/*
4842 			 * ->desc tracks information (wq name or
4843 			 * set_worker_desc()) for the latest execution.  If
4844 			 * current, prepend '+', otherwise '-'.
4845 			 */
4846 			if (worker->desc[0] != '\0') {
4847 				if (worker->current_work)
4848 					scnprintf(buf + off, size - off, "+%s",
4849 						  worker->desc);
4850 				else
4851 					scnprintf(buf + off, size - off, "-%s",
4852 						  worker->desc);
4853 			}
4854 			spin_unlock_irq(&pool->lock);
4855 		}
4856 	}
4857 
4858 	mutex_unlock(&wq_pool_attach_mutex);
4859 }
4860 
4861 #ifdef CONFIG_SMP
4862 
4863 /*
4864  * CPU hotplug.
4865  *
4866  * There are two challenges in supporting CPU hotplug.  Firstly, there
4867  * are a lot of assumptions on strong associations among work, pwq and
4868  * pool which make migrating pending and scheduled works very
4869  * difficult to implement without impacting hot paths.  Secondly,
4870  * worker pools serve mix of short, long and very long running works making
4871  * blocked draining impractical.
4872  *
4873  * This is solved by allowing the pools to be disassociated from the CPU
4874  * running as an unbound one and allowing it to be reattached later if the
4875  * cpu comes back online.
4876  */
4877 
4878 static void unbind_workers(int cpu)
4879 {
4880 	struct worker_pool *pool;
4881 	struct worker *worker;
4882 
4883 	for_each_cpu_worker_pool(pool, cpu) {
4884 		mutex_lock(&wq_pool_attach_mutex);
4885 		spin_lock_irq(&pool->lock);
4886 
4887 		/*
4888 		 * We've blocked all attach/detach operations. Make all workers
4889 		 * unbound and set DISASSOCIATED.  Before this, all workers
4890 		 * except for the ones which are still executing works from
4891 		 * before the last CPU down must be on the cpu.  After
4892 		 * this, they may become diasporas.
4893 		 */
4894 		for_each_pool_worker(worker, pool)
4895 			worker->flags |= WORKER_UNBOUND;
4896 
4897 		pool->flags |= POOL_DISASSOCIATED;
4898 
4899 		spin_unlock_irq(&pool->lock);
4900 		mutex_unlock(&wq_pool_attach_mutex);
4901 
4902 		/*
4903 		 * Call schedule() so that we cross rq->lock and thus can
4904 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4905 		 * This is necessary as scheduler callbacks may be invoked
4906 		 * from other cpus.
4907 		 */
4908 		schedule();
4909 
4910 		/*
4911 		 * Sched callbacks are disabled now.  Zap nr_running.
4912 		 * After this, nr_running stays zero and need_more_worker()
4913 		 * and keep_working() are always true as long as the
4914 		 * worklist is not empty.  This pool now behaves as an
4915 		 * unbound (in terms of concurrency management) pool which
4916 		 * are served by workers tied to the pool.
4917 		 */
4918 		atomic_set(&pool->nr_running, 0);
4919 
4920 		/*
4921 		 * With concurrency management just turned off, a busy
4922 		 * worker blocking could lead to lengthy stalls.  Kick off
4923 		 * unbound chain execution of currently pending work items.
4924 		 */
4925 		spin_lock_irq(&pool->lock);
4926 		wake_up_worker(pool);
4927 		spin_unlock_irq(&pool->lock);
4928 	}
4929 }
4930 
4931 /**
4932  * rebind_workers - rebind all workers of a pool to the associated CPU
4933  * @pool: pool of interest
4934  *
4935  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4936  */
4937 static void rebind_workers(struct worker_pool *pool)
4938 {
4939 	struct worker *worker;
4940 
4941 	lockdep_assert_held(&wq_pool_attach_mutex);
4942 
4943 	/*
4944 	 * Restore CPU affinity of all workers.  As all idle workers should
4945 	 * be on the run-queue of the associated CPU before any local
4946 	 * wake-ups for concurrency management happen, restore CPU affinity
4947 	 * of all workers first and then clear UNBOUND.  As we're called
4948 	 * from CPU_ONLINE, the following shouldn't fail.
4949 	 */
4950 	for_each_pool_worker(worker, pool)
4951 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4952 						  pool->attrs->cpumask) < 0);
4953 
4954 	spin_lock_irq(&pool->lock);
4955 
4956 	pool->flags &= ~POOL_DISASSOCIATED;
4957 
4958 	for_each_pool_worker(worker, pool) {
4959 		unsigned int worker_flags = worker->flags;
4960 
4961 		/*
4962 		 * A bound idle worker should actually be on the runqueue
4963 		 * of the associated CPU for local wake-ups targeting it to
4964 		 * work.  Kick all idle workers so that they migrate to the
4965 		 * associated CPU.  Doing this in the same loop as
4966 		 * replacing UNBOUND with REBOUND is safe as no worker will
4967 		 * be bound before @pool->lock is released.
4968 		 */
4969 		if (worker_flags & WORKER_IDLE)
4970 			wake_up_process(worker->task);
4971 
4972 		/*
4973 		 * We want to clear UNBOUND but can't directly call
4974 		 * worker_clr_flags() or adjust nr_running.  Atomically
4975 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4976 		 * @worker will clear REBOUND using worker_clr_flags() when
4977 		 * it initiates the next execution cycle thus restoring
4978 		 * concurrency management.  Note that when or whether
4979 		 * @worker clears REBOUND doesn't affect correctness.
4980 		 *
4981 		 * WRITE_ONCE() is necessary because @worker->flags may be
4982 		 * tested without holding any lock in
4983 		 * wq_worker_running().  Without it, NOT_RUNNING test may
4984 		 * fail incorrectly leading to premature concurrency
4985 		 * management operations.
4986 		 */
4987 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4988 		worker_flags |= WORKER_REBOUND;
4989 		worker_flags &= ~WORKER_UNBOUND;
4990 		WRITE_ONCE(worker->flags, worker_flags);
4991 	}
4992 
4993 	spin_unlock_irq(&pool->lock);
4994 }
4995 
4996 /**
4997  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4998  * @pool: unbound pool of interest
4999  * @cpu: the CPU which is coming up
5000  *
5001  * An unbound pool may end up with a cpumask which doesn't have any online
5002  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5003  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5004  * online CPU before, cpus_allowed of all its workers should be restored.
5005  */
5006 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5007 {
5008 	static cpumask_t cpumask;
5009 	struct worker *worker;
5010 
5011 	lockdep_assert_held(&wq_pool_attach_mutex);
5012 
5013 	/* is @cpu allowed for @pool? */
5014 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5015 		return;
5016 
5017 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5018 
5019 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5020 	for_each_pool_worker(worker, pool)
5021 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5022 }
5023 
5024 int workqueue_prepare_cpu(unsigned int cpu)
5025 {
5026 	struct worker_pool *pool;
5027 
5028 	for_each_cpu_worker_pool(pool, cpu) {
5029 		if (pool->nr_workers)
5030 			continue;
5031 		if (!create_worker(pool))
5032 			return -ENOMEM;
5033 	}
5034 	return 0;
5035 }
5036 
5037 int workqueue_online_cpu(unsigned int cpu)
5038 {
5039 	struct worker_pool *pool;
5040 	struct workqueue_struct *wq;
5041 	int pi;
5042 
5043 	mutex_lock(&wq_pool_mutex);
5044 
5045 	for_each_pool(pool, pi) {
5046 		mutex_lock(&wq_pool_attach_mutex);
5047 
5048 		if (pool->cpu == cpu)
5049 			rebind_workers(pool);
5050 		else if (pool->cpu < 0)
5051 			restore_unbound_workers_cpumask(pool, cpu);
5052 
5053 		mutex_unlock(&wq_pool_attach_mutex);
5054 	}
5055 
5056 	/* update NUMA affinity of unbound workqueues */
5057 	list_for_each_entry(wq, &workqueues, list)
5058 		wq_update_unbound_numa(wq, cpu, true);
5059 
5060 	mutex_unlock(&wq_pool_mutex);
5061 	return 0;
5062 }
5063 
5064 int workqueue_offline_cpu(unsigned int cpu)
5065 {
5066 	struct workqueue_struct *wq;
5067 
5068 	/* unbinding per-cpu workers should happen on the local CPU */
5069 	if (WARN_ON(cpu != smp_processor_id()))
5070 		return -1;
5071 
5072 	unbind_workers(cpu);
5073 
5074 	/* update NUMA affinity of unbound workqueues */
5075 	mutex_lock(&wq_pool_mutex);
5076 	list_for_each_entry(wq, &workqueues, list)
5077 		wq_update_unbound_numa(wq, cpu, false);
5078 	mutex_unlock(&wq_pool_mutex);
5079 
5080 	return 0;
5081 }
5082 
5083 struct work_for_cpu {
5084 	struct work_struct work;
5085 	long (*fn)(void *);
5086 	void *arg;
5087 	long ret;
5088 };
5089 
5090 static void work_for_cpu_fn(struct work_struct *work)
5091 {
5092 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5093 
5094 	wfc->ret = wfc->fn(wfc->arg);
5095 }
5096 
5097 /**
5098  * work_on_cpu - run a function in thread context on a particular cpu
5099  * @cpu: the cpu to run on
5100  * @fn: the function to run
5101  * @arg: the function arg
5102  *
5103  * It is up to the caller to ensure that the cpu doesn't go offline.
5104  * The caller must not hold any locks which would prevent @fn from completing.
5105  *
5106  * Return: The value @fn returns.
5107  */
5108 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5109 {
5110 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5111 
5112 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5113 	schedule_work_on(cpu, &wfc.work);
5114 	flush_work(&wfc.work);
5115 	destroy_work_on_stack(&wfc.work);
5116 	return wfc.ret;
5117 }
5118 EXPORT_SYMBOL_GPL(work_on_cpu);
5119 
5120 /**
5121  * work_on_cpu_safe - run a function in thread context on a particular cpu
5122  * @cpu: the cpu to run on
5123  * @fn:  the function to run
5124  * @arg: the function argument
5125  *
5126  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5127  * any locks which would prevent @fn from completing.
5128  *
5129  * Return: The value @fn returns.
5130  */
5131 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5132 {
5133 	long ret = -ENODEV;
5134 
5135 	get_online_cpus();
5136 	if (cpu_online(cpu))
5137 		ret = work_on_cpu(cpu, fn, arg);
5138 	put_online_cpus();
5139 	return ret;
5140 }
5141 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5142 #endif /* CONFIG_SMP */
5143 
5144 #ifdef CONFIG_FREEZER
5145 
5146 /**
5147  * freeze_workqueues_begin - begin freezing workqueues
5148  *
5149  * Start freezing workqueues.  After this function returns, all freezable
5150  * workqueues will queue new works to their delayed_works list instead of
5151  * pool->worklist.
5152  *
5153  * CONTEXT:
5154  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5155  */
5156 void freeze_workqueues_begin(void)
5157 {
5158 	struct workqueue_struct *wq;
5159 	struct pool_workqueue *pwq;
5160 
5161 	mutex_lock(&wq_pool_mutex);
5162 
5163 	WARN_ON_ONCE(workqueue_freezing);
5164 	workqueue_freezing = true;
5165 
5166 	list_for_each_entry(wq, &workqueues, list) {
5167 		mutex_lock(&wq->mutex);
5168 		for_each_pwq(pwq, wq)
5169 			pwq_adjust_max_active(pwq);
5170 		mutex_unlock(&wq->mutex);
5171 	}
5172 
5173 	mutex_unlock(&wq_pool_mutex);
5174 }
5175 
5176 /**
5177  * freeze_workqueues_busy - are freezable workqueues still busy?
5178  *
5179  * Check whether freezing is complete.  This function must be called
5180  * between freeze_workqueues_begin() and thaw_workqueues().
5181  *
5182  * CONTEXT:
5183  * Grabs and releases wq_pool_mutex.
5184  *
5185  * Return:
5186  * %true if some freezable workqueues are still busy.  %false if freezing
5187  * is complete.
5188  */
5189 bool freeze_workqueues_busy(void)
5190 {
5191 	bool busy = false;
5192 	struct workqueue_struct *wq;
5193 	struct pool_workqueue *pwq;
5194 
5195 	mutex_lock(&wq_pool_mutex);
5196 
5197 	WARN_ON_ONCE(!workqueue_freezing);
5198 
5199 	list_for_each_entry(wq, &workqueues, list) {
5200 		if (!(wq->flags & WQ_FREEZABLE))
5201 			continue;
5202 		/*
5203 		 * nr_active is monotonically decreasing.  It's safe
5204 		 * to peek without lock.
5205 		 */
5206 		rcu_read_lock();
5207 		for_each_pwq(pwq, wq) {
5208 			WARN_ON_ONCE(pwq->nr_active < 0);
5209 			if (pwq->nr_active) {
5210 				busy = true;
5211 				rcu_read_unlock();
5212 				goto out_unlock;
5213 			}
5214 		}
5215 		rcu_read_unlock();
5216 	}
5217 out_unlock:
5218 	mutex_unlock(&wq_pool_mutex);
5219 	return busy;
5220 }
5221 
5222 /**
5223  * thaw_workqueues - thaw workqueues
5224  *
5225  * Thaw workqueues.  Normal queueing is restored and all collected
5226  * frozen works are transferred to their respective pool worklists.
5227  *
5228  * CONTEXT:
5229  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5230  */
5231 void thaw_workqueues(void)
5232 {
5233 	struct workqueue_struct *wq;
5234 	struct pool_workqueue *pwq;
5235 
5236 	mutex_lock(&wq_pool_mutex);
5237 
5238 	if (!workqueue_freezing)
5239 		goto out_unlock;
5240 
5241 	workqueue_freezing = false;
5242 
5243 	/* restore max_active and repopulate worklist */
5244 	list_for_each_entry(wq, &workqueues, list) {
5245 		mutex_lock(&wq->mutex);
5246 		for_each_pwq(pwq, wq)
5247 			pwq_adjust_max_active(pwq);
5248 		mutex_unlock(&wq->mutex);
5249 	}
5250 
5251 out_unlock:
5252 	mutex_unlock(&wq_pool_mutex);
5253 }
5254 #endif /* CONFIG_FREEZER */
5255 
5256 static int workqueue_apply_unbound_cpumask(void)
5257 {
5258 	LIST_HEAD(ctxs);
5259 	int ret = 0;
5260 	struct workqueue_struct *wq;
5261 	struct apply_wqattrs_ctx *ctx, *n;
5262 
5263 	lockdep_assert_held(&wq_pool_mutex);
5264 
5265 	list_for_each_entry(wq, &workqueues, list) {
5266 		if (!(wq->flags & WQ_UNBOUND))
5267 			continue;
5268 		/* creating multiple pwqs breaks ordering guarantee */
5269 		if (wq->flags & __WQ_ORDERED)
5270 			continue;
5271 
5272 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5273 		if (!ctx) {
5274 			ret = -ENOMEM;
5275 			break;
5276 		}
5277 
5278 		list_add_tail(&ctx->list, &ctxs);
5279 	}
5280 
5281 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5282 		if (!ret)
5283 			apply_wqattrs_commit(ctx);
5284 		apply_wqattrs_cleanup(ctx);
5285 	}
5286 
5287 	return ret;
5288 }
5289 
5290 /**
5291  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5292  *  @cpumask: the cpumask to set
5293  *
5294  *  The low-level workqueues cpumask is a global cpumask that limits
5295  *  the affinity of all unbound workqueues.  This function check the @cpumask
5296  *  and apply it to all unbound workqueues and updates all pwqs of them.
5297  *
5298  *  Retun:	0	- Success
5299  *  		-EINVAL	- Invalid @cpumask
5300  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5301  */
5302 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5303 {
5304 	int ret = -EINVAL;
5305 	cpumask_var_t saved_cpumask;
5306 
5307 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5308 		return -ENOMEM;
5309 
5310 	/*
5311 	 * Not excluding isolated cpus on purpose.
5312 	 * If the user wishes to include them, we allow that.
5313 	 */
5314 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5315 	if (!cpumask_empty(cpumask)) {
5316 		apply_wqattrs_lock();
5317 
5318 		/* save the old wq_unbound_cpumask. */
5319 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5320 
5321 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5322 		cpumask_copy(wq_unbound_cpumask, cpumask);
5323 		ret = workqueue_apply_unbound_cpumask();
5324 
5325 		/* restore the wq_unbound_cpumask when failed. */
5326 		if (ret < 0)
5327 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5328 
5329 		apply_wqattrs_unlock();
5330 	}
5331 
5332 	free_cpumask_var(saved_cpumask);
5333 	return ret;
5334 }
5335 
5336 #ifdef CONFIG_SYSFS
5337 /*
5338  * Workqueues with WQ_SYSFS flag set is visible to userland via
5339  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5340  * following attributes.
5341  *
5342  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5343  *  max_active	RW int	: maximum number of in-flight work items
5344  *
5345  * Unbound workqueues have the following extra attributes.
5346  *
5347  *  pool_ids	RO int	: the associated pool IDs for each node
5348  *  nice	RW int	: nice value of the workers
5349  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5350  *  numa	RW bool	: whether enable NUMA affinity
5351  */
5352 struct wq_device {
5353 	struct workqueue_struct		*wq;
5354 	struct device			dev;
5355 };
5356 
5357 static struct workqueue_struct *dev_to_wq(struct device *dev)
5358 {
5359 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5360 
5361 	return wq_dev->wq;
5362 }
5363 
5364 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5365 			    char *buf)
5366 {
5367 	struct workqueue_struct *wq = dev_to_wq(dev);
5368 
5369 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5370 }
5371 static DEVICE_ATTR_RO(per_cpu);
5372 
5373 static ssize_t max_active_show(struct device *dev,
5374 			       struct device_attribute *attr, char *buf)
5375 {
5376 	struct workqueue_struct *wq = dev_to_wq(dev);
5377 
5378 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5379 }
5380 
5381 static ssize_t max_active_store(struct device *dev,
5382 				struct device_attribute *attr, const char *buf,
5383 				size_t count)
5384 {
5385 	struct workqueue_struct *wq = dev_to_wq(dev);
5386 	int val;
5387 
5388 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5389 		return -EINVAL;
5390 
5391 	workqueue_set_max_active(wq, val);
5392 	return count;
5393 }
5394 static DEVICE_ATTR_RW(max_active);
5395 
5396 static struct attribute *wq_sysfs_attrs[] = {
5397 	&dev_attr_per_cpu.attr,
5398 	&dev_attr_max_active.attr,
5399 	NULL,
5400 };
5401 ATTRIBUTE_GROUPS(wq_sysfs);
5402 
5403 static ssize_t wq_pool_ids_show(struct device *dev,
5404 				struct device_attribute *attr, char *buf)
5405 {
5406 	struct workqueue_struct *wq = dev_to_wq(dev);
5407 	const char *delim = "";
5408 	int node, written = 0;
5409 
5410 	get_online_cpus();
5411 	rcu_read_lock();
5412 	for_each_node(node) {
5413 		written += scnprintf(buf + written, PAGE_SIZE - written,
5414 				     "%s%d:%d", delim, node,
5415 				     unbound_pwq_by_node(wq, node)->pool->id);
5416 		delim = " ";
5417 	}
5418 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5419 	rcu_read_unlock();
5420 	put_online_cpus();
5421 
5422 	return written;
5423 }
5424 
5425 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5426 			    char *buf)
5427 {
5428 	struct workqueue_struct *wq = dev_to_wq(dev);
5429 	int written;
5430 
5431 	mutex_lock(&wq->mutex);
5432 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5433 	mutex_unlock(&wq->mutex);
5434 
5435 	return written;
5436 }
5437 
5438 /* prepare workqueue_attrs for sysfs store operations */
5439 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5440 {
5441 	struct workqueue_attrs *attrs;
5442 
5443 	lockdep_assert_held(&wq_pool_mutex);
5444 
5445 	attrs = alloc_workqueue_attrs();
5446 	if (!attrs)
5447 		return NULL;
5448 
5449 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5450 	return attrs;
5451 }
5452 
5453 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5454 			     const char *buf, size_t count)
5455 {
5456 	struct workqueue_struct *wq = dev_to_wq(dev);
5457 	struct workqueue_attrs *attrs;
5458 	int ret = -ENOMEM;
5459 
5460 	apply_wqattrs_lock();
5461 
5462 	attrs = wq_sysfs_prep_attrs(wq);
5463 	if (!attrs)
5464 		goto out_unlock;
5465 
5466 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5467 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5468 		ret = apply_workqueue_attrs_locked(wq, attrs);
5469 	else
5470 		ret = -EINVAL;
5471 
5472 out_unlock:
5473 	apply_wqattrs_unlock();
5474 	free_workqueue_attrs(attrs);
5475 	return ret ?: count;
5476 }
5477 
5478 static ssize_t wq_cpumask_show(struct device *dev,
5479 			       struct device_attribute *attr, char *buf)
5480 {
5481 	struct workqueue_struct *wq = dev_to_wq(dev);
5482 	int written;
5483 
5484 	mutex_lock(&wq->mutex);
5485 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5486 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5487 	mutex_unlock(&wq->mutex);
5488 	return written;
5489 }
5490 
5491 static ssize_t wq_cpumask_store(struct device *dev,
5492 				struct device_attribute *attr,
5493 				const char *buf, size_t count)
5494 {
5495 	struct workqueue_struct *wq = dev_to_wq(dev);
5496 	struct workqueue_attrs *attrs;
5497 	int ret = -ENOMEM;
5498 
5499 	apply_wqattrs_lock();
5500 
5501 	attrs = wq_sysfs_prep_attrs(wq);
5502 	if (!attrs)
5503 		goto out_unlock;
5504 
5505 	ret = cpumask_parse(buf, attrs->cpumask);
5506 	if (!ret)
5507 		ret = apply_workqueue_attrs_locked(wq, attrs);
5508 
5509 out_unlock:
5510 	apply_wqattrs_unlock();
5511 	free_workqueue_attrs(attrs);
5512 	return ret ?: count;
5513 }
5514 
5515 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5516 			    char *buf)
5517 {
5518 	struct workqueue_struct *wq = dev_to_wq(dev);
5519 	int written;
5520 
5521 	mutex_lock(&wq->mutex);
5522 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5523 			    !wq->unbound_attrs->no_numa);
5524 	mutex_unlock(&wq->mutex);
5525 
5526 	return written;
5527 }
5528 
5529 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5530 			     const char *buf, size_t count)
5531 {
5532 	struct workqueue_struct *wq = dev_to_wq(dev);
5533 	struct workqueue_attrs *attrs;
5534 	int v, ret = -ENOMEM;
5535 
5536 	apply_wqattrs_lock();
5537 
5538 	attrs = wq_sysfs_prep_attrs(wq);
5539 	if (!attrs)
5540 		goto out_unlock;
5541 
5542 	ret = -EINVAL;
5543 	if (sscanf(buf, "%d", &v) == 1) {
5544 		attrs->no_numa = !v;
5545 		ret = apply_workqueue_attrs_locked(wq, attrs);
5546 	}
5547 
5548 out_unlock:
5549 	apply_wqattrs_unlock();
5550 	free_workqueue_attrs(attrs);
5551 	return ret ?: count;
5552 }
5553 
5554 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5555 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5556 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5557 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5558 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5559 	__ATTR_NULL,
5560 };
5561 
5562 static struct bus_type wq_subsys = {
5563 	.name				= "workqueue",
5564 	.dev_groups			= wq_sysfs_groups,
5565 };
5566 
5567 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5568 		struct device_attribute *attr, char *buf)
5569 {
5570 	int written;
5571 
5572 	mutex_lock(&wq_pool_mutex);
5573 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5574 			    cpumask_pr_args(wq_unbound_cpumask));
5575 	mutex_unlock(&wq_pool_mutex);
5576 
5577 	return written;
5578 }
5579 
5580 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5581 		struct device_attribute *attr, const char *buf, size_t count)
5582 {
5583 	cpumask_var_t cpumask;
5584 	int ret;
5585 
5586 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5587 		return -ENOMEM;
5588 
5589 	ret = cpumask_parse(buf, cpumask);
5590 	if (!ret)
5591 		ret = workqueue_set_unbound_cpumask(cpumask);
5592 
5593 	free_cpumask_var(cpumask);
5594 	return ret ? ret : count;
5595 }
5596 
5597 static struct device_attribute wq_sysfs_cpumask_attr =
5598 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5599 	       wq_unbound_cpumask_store);
5600 
5601 static int __init wq_sysfs_init(void)
5602 {
5603 	int err;
5604 
5605 	err = subsys_virtual_register(&wq_subsys, NULL);
5606 	if (err)
5607 		return err;
5608 
5609 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5610 }
5611 core_initcall(wq_sysfs_init);
5612 
5613 static void wq_device_release(struct device *dev)
5614 {
5615 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5616 
5617 	kfree(wq_dev);
5618 }
5619 
5620 /**
5621  * workqueue_sysfs_register - make a workqueue visible in sysfs
5622  * @wq: the workqueue to register
5623  *
5624  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5625  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5626  * which is the preferred method.
5627  *
5628  * Workqueue user should use this function directly iff it wants to apply
5629  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5630  * apply_workqueue_attrs() may race against userland updating the
5631  * attributes.
5632  *
5633  * Return: 0 on success, -errno on failure.
5634  */
5635 int workqueue_sysfs_register(struct workqueue_struct *wq)
5636 {
5637 	struct wq_device *wq_dev;
5638 	int ret;
5639 
5640 	/*
5641 	 * Adjusting max_active or creating new pwqs by applying
5642 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5643 	 * workqueues.
5644 	 */
5645 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5646 		return -EINVAL;
5647 
5648 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5649 	if (!wq_dev)
5650 		return -ENOMEM;
5651 
5652 	wq_dev->wq = wq;
5653 	wq_dev->dev.bus = &wq_subsys;
5654 	wq_dev->dev.release = wq_device_release;
5655 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5656 
5657 	/*
5658 	 * unbound_attrs are created separately.  Suppress uevent until
5659 	 * everything is ready.
5660 	 */
5661 	dev_set_uevent_suppress(&wq_dev->dev, true);
5662 
5663 	ret = device_register(&wq_dev->dev);
5664 	if (ret) {
5665 		put_device(&wq_dev->dev);
5666 		wq->wq_dev = NULL;
5667 		return ret;
5668 	}
5669 
5670 	if (wq->flags & WQ_UNBOUND) {
5671 		struct device_attribute *attr;
5672 
5673 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5674 			ret = device_create_file(&wq_dev->dev, attr);
5675 			if (ret) {
5676 				device_unregister(&wq_dev->dev);
5677 				wq->wq_dev = NULL;
5678 				return ret;
5679 			}
5680 		}
5681 	}
5682 
5683 	dev_set_uevent_suppress(&wq_dev->dev, false);
5684 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5685 	return 0;
5686 }
5687 
5688 /**
5689  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5690  * @wq: the workqueue to unregister
5691  *
5692  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5693  */
5694 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5695 {
5696 	struct wq_device *wq_dev = wq->wq_dev;
5697 
5698 	if (!wq->wq_dev)
5699 		return;
5700 
5701 	wq->wq_dev = NULL;
5702 	device_unregister(&wq_dev->dev);
5703 }
5704 #else	/* CONFIG_SYSFS */
5705 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5706 #endif	/* CONFIG_SYSFS */
5707 
5708 /*
5709  * Workqueue watchdog.
5710  *
5711  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5712  * flush dependency, a concurrency managed work item which stays RUNNING
5713  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5714  * usual warning mechanisms don't trigger and internal workqueue state is
5715  * largely opaque.
5716  *
5717  * Workqueue watchdog monitors all worker pools periodically and dumps
5718  * state if some pools failed to make forward progress for a while where
5719  * forward progress is defined as the first item on ->worklist changing.
5720  *
5721  * This mechanism is controlled through the kernel parameter
5722  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5723  * corresponding sysfs parameter file.
5724  */
5725 #ifdef CONFIG_WQ_WATCHDOG
5726 
5727 static unsigned long wq_watchdog_thresh = 30;
5728 static struct timer_list wq_watchdog_timer;
5729 
5730 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5731 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5732 
5733 static void wq_watchdog_reset_touched(void)
5734 {
5735 	int cpu;
5736 
5737 	wq_watchdog_touched = jiffies;
5738 	for_each_possible_cpu(cpu)
5739 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5740 }
5741 
5742 static void wq_watchdog_timer_fn(struct timer_list *unused)
5743 {
5744 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5745 	bool lockup_detected = false;
5746 	struct worker_pool *pool;
5747 	int pi;
5748 
5749 	if (!thresh)
5750 		return;
5751 
5752 	rcu_read_lock();
5753 
5754 	for_each_pool(pool, pi) {
5755 		unsigned long pool_ts, touched, ts;
5756 
5757 		if (list_empty(&pool->worklist))
5758 			continue;
5759 
5760 		/* get the latest of pool and touched timestamps */
5761 		pool_ts = READ_ONCE(pool->watchdog_ts);
5762 		touched = READ_ONCE(wq_watchdog_touched);
5763 
5764 		if (time_after(pool_ts, touched))
5765 			ts = pool_ts;
5766 		else
5767 			ts = touched;
5768 
5769 		if (pool->cpu >= 0) {
5770 			unsigned long cpu_touched =
5771 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5772 						  pool->cpu));
5773 			if (time_after(cpu_touched, ts))
5774 				ts = cpu_touched;
5775 		}
5776 
5777 		/* did we stall? */
5778 		if (time_after(jiffies, ts + thresh)) {
5779 			lockup_detected = true;
5780 			pr_emerg("BUG: workqueue lockup - pool");
5781 			pr_cont_pool_info(pool);
5782 			pr_cont(" stuck for %us!\n",
5783 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5784 		}
5785 	}
5786 
5787 	rcu_read_unlock();
5788 
5789 	if (lockup_detected)
5790 		show_workqueue_state();
5791 
5792 	wq_watchdog_reset_touched();
5793 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5794 }
5795 
5796 notrace void wq_watchdog_touch(int cpu)
5797 {
5798 	if (cpu >= 0)
5799 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5800 	else
5801 		wq_watchdog_touched = jiffies;
5802 }
5803 
5804 static void wq_watchdog_set_thresh(unsigned long thresh)
5805 {
5806 	wq_watchdog_thresh = 0;
5807 	del_timer_sync(&wq_watchdog_timer);
5808 
5809 	if (thresh) {
5810 		wq_watchdog_thresh = thresh;
5811 		wq_watchdog_reset_touched();
5812 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5813 	}
5814 }
5815 
5816 static int wq_watchdog_param_set_thresh(const char *val,
5817 					const struct kernel_param *kp)
5818 {
5819 	unsigned long thresh;
5820 	int ret;
5821 
5822 	ret = kstrtoul(val, 0, &thresh);
5823 	if (ret)
5824 		return ret;
5825 
5826 	if (system_wq)
5827 		wq_watchdog_set_thresh(thresh);
5828 	else
5829 		wq_watchdog_thresh = thresh;
5830 
5831 	return 0;
5832 }
5833 
5834 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5835 	.set	= wq_watchdog_param_set_thresh,
5836 	.get	= param_get_ulong,
5837 };
5838 
5839 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5840 		0644);
5841 
5842 static void wq_watchdog_init(void)
5843 {
5844 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5845 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5846 }
5847 
5848 #else	/* CONFIG_WQ_WATCHDOG */
5849 
5850 static inline void wq_watchdog_init(void) { }
5851 
5852 #endif	/* CONFIG_WQ_WATCHDOG */
5853 
5854 static void __init wq_numa_init(void)
5855 {
5856 	cpumask_var_t *tbl;
5857 	int node, cpu;
5858 
5859 	if (num_possible_nodes() <= 1)
5860 		return;
5861 
5862 	if (wq_disable_numa) {
5863 		pr_info("workqueue: NUMA affinity support disabled\n");
5864 		return;
5865 	}
5866 
5867 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5868 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5869 
5870 	/*
5871 	 * We want masks of possible CPUs of each node which isn't readily
5872 	 * available.  Build one from cpu_to_node() which should have been
5873 	 * fully initialized by now.
5874 	 */
5875 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5876 	BUG_ON(!tbl);
5877 
5878 	for_each_node(node)
5879 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5880 				node_online(node) ? node : NUMA_NO_NODE));
5881 
5882 	for_each_possible_cpu(cpu) {
5883 		node = cpu_to_node(cpu);
5884 		if (WARN_ON(node == NUMA_NO_NODE)) {
5885 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5886 			/* happens iff arch is bonkers, let's just proceed */
5887 			return;
5888 		}
5889 		cpumask_set_cpu(cpu, tbl[node]);
5890 	}
5891 
5892 	wq_numa_possible_cpumask = tbl;
5893 	wq_numa_enabled = true;
5894 }
5895 
5896 /**
5897  * workqueue_init_early - early init for workqueue subsystem
5898  *
5899  * This is the first half of two-staged workqueue subsystem initialization
5900  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5901  * idr are up.  It sets up all the data structures and system workqueues
5902  * and allows early boot code to create workqueues and queue/cancel work
5903  * items.  Actual work item execution starts only after kthreads can be
5904  * created and scheduled right before early initcalls.
5905  */
5906 int __init workqueue_init_early(void)
5907 {
5908 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5909 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5910 	int i, cpu;
5911 
5912 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5913 
5914 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5915 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5916 
5917 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5918 
5919 	/* initialize CPU pools */
5920 	for_each_possible_cpu(cpu) {
5921 		struct worker_pool *pool;
5922 
5923 		i = 0;
5924 		for_each_cpu_worker_pool(pool, cpu) {
5925 			BUG_ON(init_worker_pool(pool));
5926 			pool->cpu = cpu;
5927 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5928 			pool->attrs->nice = std_nice[i++];
5929 			pool->node = cpu_to_node(cpu);
5930 
5931 			/* alloc pool ID */
5932 			mutex_lock(&wq_pool_mutex);
5933 			BUG_ON(worker_pool_assign_id(pool));
5934 			mutex_unlock(&wq_pool_mutex);
5935 		}
5936 	}
5937 
5938 	/* create default unbound and ordered wq attrs */
5939 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5940 		struct workqueue_attrs *attrs;
5941 
5942 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5943 		attrs->nice = std_nice[i];
5944 		unbound_std_wq_attrs[i] = attrs;
5945 
5946 		/*
5947 		 * An ordered wq should have only one pwq as ordering is
5948 		 * guaranteed by max_active which is enforced by pwqs.
5949 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5950 		 */
5951 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5952 		attrs->nice = std_nice[i];
5953 		attrs->no_numa = true;
5954 		ordered_wq_attrs[i] = attrs;
5955 	}
5956 
5957 	system_wq = alloc_workqueue("events", 0, 0);
5958 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5959 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5960 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5961 					    WQ_UNBOUND_MAX_ACTIVE);
5962 	system_freezable_wq = alloc_workqueue("events_freezable",
5963 					      WQ_FREEZABLE, 0);
5964 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5965 					      WQ_POWER_EFFICIENT, 0);
5966 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5967 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5968 					      0);
5969 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5970 	       !system_unbound_wq || !system_freezable_wq ||
5971 	       !system_power_efficient_wq ||
5972 	       !system_freezable_power_efficient_wq);
5973 
5974 	return 0;
5975 }
5976 
5977 /**
5978  * workqueue_init - bring workqueue subsystem fully online
5979  *
5980  * This is the latter half of two-staged workqueue subsystem initialization
5981  * and invoked as soon as kthreads can be created and scheduled.
5982  * Workqueues have been created and work items queued on them, but there
5983  * are no kworkers executing the work items yet.  Populate the worker pools
5984  * with the initial workers and enable future kworker creations.
5985  */
5986 int __init workqueue_init(void)
5987 {
5988 	struct workqueue_struct *wq;
5989 	struct worker_pool *pool;
5990 	int cpu, bkt;
5991 
5992 	/*
5993 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5994 	 * CPU to node mapping may not be available that early on some
5995 	 * archs such as power and arm64.  As per-cpu pools created
5996 	 * previously could be missing node hint and unbound pools NUMA
5997 	 * affinity, fix them up.
5998 	 *
5999 	 * Also, while iterating workqueues, create rescuers if requested.
6000 	 */
6001 	wq_numa_init();
6002 
6003 	mutex_lock(&wq_pool_mutex);
6004 
6005 	for_each_possible_cpu(cpu) {
6006 		for_each_cpu_worker_pool(pool, cpu) {
6007 			pool->node = cpu_to_node(cpu);
6008 		}
6009 	}
6010 
6011 	list_for_each_entry(wq, &workqueues, list) {
6012 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6013 		WARN(init_rescuer(wq),
6014 		     "workqueue: failed to create early rescuer for %s",
6015 		     wq->name);
6016 	}
6017 
6018 	mutex_unlock(&wq_pool_mutex);
6019 
6020 	/* create the initial workers */
6021 	for_each_online_cpu(cpu) {
6022 		for_each_cpu_worker_pool(pool, cpu) {
6023 			pool->flags &= ~POOL_DISASSOCIATED;
6024 			BUG_ON(!create_worker(pool));
6025 		}
6026 	}
6027 
6028 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6029 		BUG_ON(!create_worker(pool));
6030 
6031 	wq_online = true;
6032 	wq_watchdog_init();
6033 
6034 	return 0;
6035 }
6036