1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/nmi.h> 53 54 #include "workqueue_internal.h" 55 56 enum { 57 /* 58 * worker_pool flags 59 * 60 * A bound pool is either associated or disassociated with its CPU. 61 * While associated (!DISASSOCIATED), all workers are bound to the 62 * CPU and none has %WORKER_UNBOUND set and concurrency management 63 * is in effect. 64 * 65 * While DISASSOCIATED, the cpu may be offline and all workers have 66 * %WORKER_UNBOUND set and concurrency management disabled, and may 67 * be executing on any CPU. The pool behaves as an unbound one. 68 * 69 * Note that DISASSOCIATED should be flipped only while holding 70 * wq_pool_attach_mutex to avoid changing binding state while 71 * worker_attach_to_pool() is in progress. 72 */ 73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 75 76 /* worker flags */ 77 WORKER_DIE = 1 << 1, /* die die die */ 78 WORKER_IDLE = 1 << 2, /* is idle */ 79 WORKER_PREP = 1 << 3, /* preparing to run works */ 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 83 84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 85 WORKER_UNBOUND | WORKER_REBOUND, 86 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 88 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 91 92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 94 95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 96 /* call for help after 10ms 97 (min two ticks) */ 98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 99 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 100 101 /* 102 * Rescue workers are used only on emergencies and shared by 103 * all cpus. Give MIN_NICE. 104 */ 105 RESCUER_NICE_LEVEL = MIN_NICE, 106 HIGHPRI_NICE_LEVEL = MIN_NICE, 107 108 WQ_NAME_LEN = 24, 109 }; 110 111 /* 112 * Structure fields follow one of the following exclusion rules. 113 * 114 * I: Modifiable by initialization/destruction paths and read-only for 115 * everyone else. 116 * 117 * P: Preemption protected. Disabling preemption is enough and should 118 * only be modified and accessed from the local cpu. 119 * 120 * L: pool->lock protected. Access with pool->lock held. 121 * 122 * X: During normal operation, modification requires pool->lock and should 123 * be done only from local cpu. Either disabling preemption on local 124 * cpu or grabbing pool->lock is enough for read access. If 125 * POOL_DISASSOCIATED is set, it's identical to L. 126 * 127 * A: wq_pool_attach_mutex protected. 128 * 129 * PL: wq_pool_mutex protected. 130 * 131 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 132 * 133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 134 * 135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 136 * RCU for reads. 137 * 138 * WQ: wq->mutex protected. 139 * 140 * WR: wq->mutex protected for writes. RCU protected for reads. 141 * 142 * MD: wq_mayday_lock protected. 143 */ 144 145 /* struct worker is defined in workqueue_internal.h */ 146 147 struct worker_pool { 148 spinlock_t lock; /* the pool lock */ 149 int cpu; /* I: the associated cpu */ 150 int node; /* I: the associated node ID */ 151 int id; /* I: pool ID */ 152 unsigned int flags; /* X: flags */ 153 154 unsigned long watchdog_ts; /* L: watchdog timestamp */ 155 156 struct list_head worklist; /* L: list of pending works */ 157 158 int nr_workers; /* L: total number of workers */ 159 int nr_idle; /* L: currently idle workers */ 160 161 struct list_head idle_list; /* X: list of idle workers */ 162 struct timer_list idle_timer; /* L: worker idle timeout */ 163 struct timer_list mayday_timer; /* L: SOS timer for workers */ 164 165 /* a workers is either on busy_hash or idle_list, or the manager */ 166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 167 /* L: hash of busy workers */ 168 169 struct worker *manager; /* L: purely informational */ 170 struct list_head workers; /* A: attached workers */ 171 struct completion *detach_completion; /* all workers detached */ 172 173 struct ida worker_ida; /* worker IDs for task name */ 174 175 struct workqueue_attrs *attrs; /* I: worker attributes */ 176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 177 int refcnt; /* PL: refcnt for unbound pools */ 178 179 /* 180 * The current concurrency level. As it's likely to be accessed 181 * from other CPUs during try_to_wake_up(), put it in a separate 182 * cacheline. 183 */ 184 atomic_t nr_running ____cacheline_aligned_in_smp; 185 186 /* 187 * Destruction of pool is RCU protected to allow dereferences 188 * from get_work_pool(). 189 */ 190 struct rcu_head rcu; 191 } ____cacheline_aligned_in_smp; 192 193 /* 194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 195 * of work_struct->data are used for flags and the remaining high bits 196 * point to the pwq; thus, pwqs need to be aligned at two's power of the 197 * number of flag bits. 198 */ 199 struct pool_workqueue { 200 struct worker_pool *pool; /* I: the associated pool */ 201 struct workqueue_struct *wq; /* I: the owning workqueue */ 202 int work_color; /* L: current color */ 203 int flush_color; /* L: flushing color */ 204 int refcnt; /* L: reference count */ 205 int nr_in_flight[WORK_NR_COLORS]; 206 /* L: nr of in_flight works */ 207 int nr_active; /* L: nr of active works */ 208 int max_active; /* L: max active works */ 209 struct list_head delayed_works; /* L: delayed works */ 210 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 211 struct list_head mayday_node; /* MD: node on wq->maydays */ 212 213 /* 214 * Release of unbound pwq is punted to system_wq. See put_pwq() 215 * and pwq_unbound_release_workfn() for details. pool_workqueue 216 * itself is also RCU protected so that the first pwq can be 217 * determined without grabbing wq->mutex. 218 */ 219 struct work_struct unbound_release_work; 220 struct rcu_head rcu; 221 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 222 223 /* 224 * Structure used to wait for workqueue flush. 225 */ 226 struct wq_flusher { 227 struct list_head list; /* WQ: list of flushers */ 228 int flush_color; /* WQ: flush color waiting for */ 229 struct completion done; /* flush completion */ 230 }; 231 232 struct wq_device; 233 234 /* 235 * The externally visible workqueue. It relays the issued work items to 236 * the appropriate worker_pool through its pool_workqueues. 237 */ 238 struct workqueue_struct { 239 struct list_head pwqs; /* WR: all pwqs of this wq */ 240 struct list_head list; /* PR: list of all workqueues */ 241 242 struct mutex mutex; /* protects this wq */ 243 int work_color; /* WQ: current work color */ 244 int flush_color; /* WQ: current flush color */ 245 atomic_t nr_pwqs_to_flush; /* flush in progress */ 246 struct wq_flusher *first_flusher; /* WQ: first flusher */ 247 struct list_head flusher_queue; /* WQ: flush waiters */ 248 struct list_head flusher_overflow; /* WQ: flush overflow list */ 249 250 struct list_head maydays; /* MD: pwqs requesting rescue */ 251 struct worker *rescuer; /* MD: rescue worker */ 252 253 int nr_drainers; /* WQ: drain in progress */ 254 int saved_max_active; /* WQ: saved pwq max_active */ 255 256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 258 259 #ifdef CONFIG_SYSFS 260 struct wq_device *wq_dev; /* I: for sysfs interface */ 261 #endif 262 #ifdef CONFIG_LOCKDEP 263 char *lock_name; 264 struct lock_class_key key; 265 struct lockdep_map lockdep_map; 266 #endif 267 char name[WQ_NAME_LEN]; /* I: workqueue name */ 268 269 /* 270 * Destruction of workqueue_struct is RCU protected to allow walking 271 * the workqueues list without grabbing wq_pool_mutex. 272 * This is used to dump all workqueues from sysrq. 273 */ 274 struct rcu_head rcu; 275 276 /* hot fields used during command issue, aligned to cacheline */ 277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 280 }; 281 282 static struct kmem_cache *pwq_cache; 283 284 static cpumask_var_t *wq_numa_possible_cpumask; 285 /* possible CPUs of each node */ 286 287 static bool wq_disable_numa; 288 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 289 290 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 292 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 293 294 static bool wq_online; /* can kworkers be created yet? */ 295 296 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 297 298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 300 301 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 303 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 304 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */ 305 306 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 307 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 308 309 /* PL: allowable cpus for unbound wqs and work items */ 310 static cpumask_var_t wq_unbound_cpumask; 311 312 /* CPU where unbound work was last round robin scheduled from this CPU */ 313 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 314 315 /* 316 * Local execution of unbound work items is no longer guaranteed. The 317 * following always forces round-robin CPU selection on unbound work items 318 * to uncover usages which depend on it. 319 */ 320 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 321 static bool wq_debug_force_rr_cpu = true; 322 #else 323 static bool wq_debug_force_rr_cpu = false; 324 #endif 325 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 326 327 /* the per-cpu worker pools */ 328 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 329 330 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 331 332 /* PL: hash of all unbound pools keyed by pool->attrs */ 333 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 334 335 /* I: attributes used when instantiating standard unbound pools on demand */ 336 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 337 338 /* I: attributes used when instantiating ordered pools on demand */ 339 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 340 341 struct workqueue_struct *system_wq __read_mostly; 342 EXPORT_SYMBOL(system_wq); 343 struct workqueue_struct *system_highpri_wq __read_mostly; 344 EXPORT_SYMBOL_GPL(system_highpri_wq); 345 struct workqueue_struct *system_long_wq __read_mostly; 346 EXPORT_SYMBOL_GPL(system_long_wq); 347 struct workqueue_struct *system_unbound_wq __read_mostly; 348 EXPORT_SYMBOL_GPL(system_unbound_wq); 349 struct workqueue_struct *system_freezable_wq __read_mostly; 350 EXPORT_SYMBOL_GPL(system_freezable_wq); 351 struct workqueue_struct *system_power_efficient_wq __read_mostly; 352 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 353 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 354 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 355 356 static int worker_thread(void *__worker); 357 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 358 static void show_pwq(struct pool_workqueue *pwq); 359 360 #define CREATE_TRACE_POINTS 361 #include <trace/events/workqueue.h> 362 363 #define assert_rcu_or_pool_mutex() \ 364 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 365 !lockdep_is_held(&wq_pool_mutex), \ 366 "RCU or wq_pool_mutex should be held") 367 368 #define assert_rcu_or_wq_mutex(wq) \ 369 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 370 !lockdep_is_held(&wq->mutex), \ 371 "RCU or wq->mutex should be held") 372 373 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 374 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 375 !lockdep_is_held(&wq->mutex) && \ 376 !lockdep_is_held(&wq_pool_mutex), \ 377 "RCU, wq->mutex or wq_pool_mutex should be held") 378 379 #define for_each_cpu_worker_pool(pool, cpu) \ 380 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 381 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 382 (pool)++) 383 384 /** 385 * for_each_pool - iterate through all worker_pools in the system 386 * @pool: iteration cursor 387 * @pi: integer used for iteration 388 * 389 * This must be called either with wq_pool_mutex held or RCU read 390 * locked. If the pool needs to be used beyond the locking in effect, the 391 * caller is responsible for guaranteeing that the pool stays online. 392 * 393 * The if/else clause exists only for the lockdep assertion and can be 394 * ignored. 395 */ 396 #define for_each_pool(pool, pi) \ 397 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 398 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 399 else 400 401 /** 402 * for_each_pool_worker - iterate through all workers of a worker_pool 403 * @worker: iteration cursor 404 * @pool: worker_pool to iterate workers of 405 * 406 * This must be called with wq_pool_attach_mutex. 407 * 408 * The if/else clause exists only for the lockdep assertion and can be 409 * ignored. 410 */ 411 #define for_each_pool_worker(worker, pool) \ 412 list_for_each_entry((worker), &(pool)->workers, node) \ 413 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 414 else 415 416 /** 417 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 418 * @pwq: iteration cursor 419 * @wq: the target workqueue 420 * 421 * This must be called either with wq->mutex held or RCU read locked. 422 * If the pwq needs to be used beyond the locking in effect, the caller is 423 * responsible for guaranteeing that the pwq stays online. 424 * 425 * The if/else clause exists only for the lockdep assertion and can be 426 * ignored. 427 */ 428 #define for_each_pwq(pwq, wq) \ 429 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 430 lockdep_is_held(&wq->mutex)) \ 431 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 432 else 433 434 #ifdef CONFIG_DEBUG_OBJECTS_WORK 435 436 static struct debug_obj_descr work_debug_descr; 437 438 static void *work_debug_hint(void *addr) 439 { 440 return ((struct work_struct *) addr)->func; 441 } 442 443 static bool work_is_static_object(void *addr) 444 { 445 struct work_struct *work = addr; 446 447 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 448 } 449 450 /* 451 * fixup_init is called when: 452 * - an active object is initialized 453 */ 454 static bool work_fixup_init(void *addr, enum debug_obj_state state) 455 { 456 struct work_struct *work = addr; 457 458 switch (state) { 459 case ODEBUG_STATE_ACTIVE: 460 cancel_work_sync(work); 461 debug_object_init(work, &work_debug_descr); 462 return true; 463 default: 464 return false; 465 } 466 } 467 468 /* 469 * fixup_free is called when: 470 * - an active object is freed 471 */ 472 static bool work_fixup_free(void *addr, enum debug_obj_state state) 473 { 474 struct work_struct *work = addr; 475 476 switch (state) { 477 case ODEBUG_STATE_ACTIVE: 478 cancel_work_sync(work); 479 debug_object_free(work, &work_debug_descr); 480 return true; 481 default: 482 return false; 483 } 484 } 485 486 static struct debug_obj_descr work_debug_descr = { 487 .name = "work_struct", 488 .debug_hint = work_debug_hint, 489 .is_static_object = work_is_static_object, 490 .fixup_init = work_fixup_init, 491 .fixup_free = work_fixup_free, 492 }; 493 494 static inline void debug_work_activate(struct work_struct *work) 495 { 496 debug_object_activate(work, &work_debug_descr); 497 } 498 499 static inline void debug_work_deactivate(struct work_struct *work) 500 { 501 debug_object_deactivate(work, &work_debug_descr); 502 } 503 504 void __init_work(struct work_struct *work, int onstack) 505 { 506 if (onstack) 507 debug_object_init_on_stack(work, &work_debug_descr); 508 else 509 debug_object_init(work, &work_debug_descr); 510 } 511 EXPORT_SYMBOL_GPL(__init_work); 512 513 void destroy_work_on_stack(struct work_struct *work) 514 { 515 debug_object_free(work, &work_debug_descr); 516 } 517 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 518 519 void destroy_delayed_work_on_stack(struct delayed_work *work) 520 { 521 destroy_timer_on_stack(&work->timer); 522 debug_object_free(&work->work, &work_debug_descr); 523 } 524 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 525 526 #else 527 static inline void debug_work_activate(struct work_struct *work) { } 528 static inline void debug_work_deactivate(struct work_struct *work) { } 529 #endif 530 531 /** 532 * worker_pool_assign_id - allocate ID and assing it to @pool 533 * @pool: the pool pointer of interest 534 * 535 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 536 * successfully, -errno on failure. 537 */ 538 static int worker_pool_assign_id(struct worker_pool *pool) 539 { 540 int ret; 541 542 lockdep_assert_held(&wq_pool_mutex); 543 544 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 545 GFP_KERNEL); 546 if (ret >= 0) { 547 pool->id = ret; 548 return 0; 549 } 550 return ret; 551 } 552 553 /** 554 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 555 * @wq: the target workqueue 556 * @node: the node ID 557 * 558 * This must be called with any of wq_pool_mutex, wq->mutex or RCU 559 * read locked. 560 * If the pwq needs to be used beyond the locking in effect, the caller is 561 * responsible for guaranteeing that the pwq stays online. 562 * 563 * Return: The unbound pool_workqueue for @node. 564 */ 565 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 566 int node) 567 { 568 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 569 570 /* 571 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 572 * delayed item is pending. The plan is to keep CPU -> NODE 573 * mapping valid and stable across CPU on/offlines. Once that 574 * happens, this workaround can be removed. 575 */ 576 if (unlikely(node == NUMA_NO_NODE)) 577 return wq->dfl_pwq; 578 579 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 580 } 581 582 static unsigned int work_color_to_flags(int color) 583 { 584 return color << WORK_STRUCT_COLOR_SHIFT; 585 } 586 587 static int get_work_color(struct work_struct *work) 588 { 589 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 590 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 591 } 592 593 static int work_next_color(int color) 594 { 595 return (color + 1) % WORK_NR_COLORS; 596 } 597 598 /* 599 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 600 * contain the pointer to the queued pwq. Once execution starts, the flag 601 * is cleared and the high bits contain OFFQ flags and pool ID. 602 * 603 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 604 * and clear_work_data() can be used to set the pwq, pool or clear 605 * work->data. These functions should only be called while the work is 606 * owned - ie. while the PENDING bit is set. 607 * 608 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 609 * corresponding to a work. Pool is available once the work has been 610 * queued anywhere after initialization until it is sync canceled. pwq is 611 * available only while the work item is queued. 612 * 613 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 614 * canceled. While being canceled, a work item may have its PENDING set 615 * but stay off timer and worklist for arbitrarily long and nobody should 616 * try to steal the PENDING bit. 617 */ 618 static inline void set_work_data(struct work_struct *work, unsigned long data, 619 unsigned long flags) 620 { 621 WARN_ON_ONCE(!work_pending(work)); 622 atomic_long_set(&work->data, data | flags | work_static(work)); 623 } 624 625 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 626 unsigned long extra_flags) 627 { 628 set_work_data(work, (unsigned long)pwq, 629 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 630 } 631 632 static void set_work_pool_and_keep_pending(struct work_struct *work, 633 int pool_id) 634 { 635 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 636 WORK_STRUCT_PENDING); 637 } 638 639 static void set_work_pool_and_clear_pending(struct work_struct *work, 640 int pool_id) 641 { 642 /* 643 * The following wmb is paired with the implied mb in 644 * test_and_set_bit(PENDING) and ensures all updates to @work made 645 * here are visible to and precede any updates by the next PENDING 646 * owner. 647 */ 648 smp_wmb(); 649 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 650 /* 651 * The following mb guarantees that previous clear of a PENDING bit 652 * will not be reordered with any speculative LOADS or STORES from 653 * work->current_func, which is executed afterwards. This possible 654 * reordering can lead to a missed execution on attempt to queue 655 * the same @work. E.g. consider this case: 656 * 657 * CPU#0 CPU#1 658 * ---------------------------- -------------------------------- 659 * 660 * 1 STORE event_indicated 661 * 2 queue_work_on() { 662 * 3 test_and_set_bit(PENDING) 663 * 4 } set_..._and_clear_pending() { 664 * 5 set_work_data() # clear bit 665 * 6 smp_mb() 666 * 7 work->current_func() { 667 * 8 LOAD event_indicated 668 * } 669 * 670 * Without an explicit full barrier speculative LOAD on line 8 can 671 * be executed before CPU#0 does STORE on line 1. If that happens, 672 * CPU#0 observes the PENDING bit is still set and new execution of 673 * a @work is not queued in a hope, that CPU#1 will eventually 674 * finish the queued @work. Meanwhile CPU#1 does not see 675 * event_indicated is set, because speculative LOAD was executed 676 * before actual STORE. 677 */ 678 smp_mb(); 679 } 680 681 static void clear_work_data(struct work_struct *work) 682 { 683 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 684 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 685 } 686 687 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 688 { 689 unsigned long data = atomic_long_read(&work->data); 690 691 if (data & WORK_STRUCT_PWQ) 692 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 693 else 694 return NULL; 695 } 696 697 /** 698 * get_work_pool - return the worker_pool a given work was associated with 699 * @work: the work item of interest 700 * 701 * Pools are created and destroyed under wq_pool_mutex, and allows read 702 * access under RCU read lock. As such, this function should be 703 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 704 * 705 * All fields of the returned pool are accessible as long as the above 706 * mentioned locking is in effect. If the returned pool needs to be used 707 * beyond the critical section, the caller is responsible for ensuring the 708 * returned pool is and stays online. 709 * 710 * Return: The worker_pool @work was last associated with. %NULL if none. 711 */ 712 static struct worker_pool *get_work_pool(struct work_struct *work) 713 { 714 unsigned long data = atomic_long_read(&work->data); 715 int pool_id; 716 717 assert_rcu_or_pool_mutex(); 718 719 if (data & WORK_STRUCT_PWQ) 720 return ((struct pool_workqueue *) 721 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 722 723 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 724 if (pool_id == WORK_OFFQ_POOL_NONE) 725 return NULL; 726 727 return idr_find(&worker_pool_idr, pool_id); 728 } 729 730 /** 731 * get_work_pool_id - return the worker pool ID a given work is associated with 732 * @work: the work item of interest 733 * 734 * Return: The worker_pool ID @work was last associated with. 735 * %WORK_OFFQ_POOL_NONE if none. 736 */ 737 static int get_work_pool_id(struct work_struct *work) 738 { 739 unsigned long data = atomic_long_read(&work->data); 740 741 if (data & WORK_STRUCT_PWQ) 742 return ((struct pool_workqueue *) 743 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 744 745 return data >> WORK_OFFQ_POOL_SHIFT; 746 } 747 748 static void mark_work_canceling(struct work_struct *work) 749 { 750 unsigned long pool_id = get_work_pool_id(work); 751 752 pool_id <<= WORK_OFFQ_POOL_SHIFT; 753 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 754 } 755 756 static bool work_is_canceling(struct work_struct *work) 757 { 758 unsigned long data = atomic_long_read(&work->data); 759 760 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 761 } 762 763 /* 764 * Policy functions. These define the policies on how the global worker 765 * pools are managed. Unless noted otherwise, these functions assume that 766 * they're being called with pool->lock held. 767 */ 768 769 static bool __need_more_worker(struct worker_pool *pool) 770 { 771 return !atomic_read(&pool->nr_running); 772 } 773 774 /* 775 * Need to wake up a worker? Called from anything but currently 776 * running workers. 777 * 778 * Note that, because unbound workers never contribute to nr_running, this 779 * function will always return %true for unbound pools as long as the 780 * worklist isn't empty. 781 */ 782 static bool need_more_worker(struct worker_pool *pool) 783 { 784 return !list_empty(&pool->worklist) && __need_more_worker(pool); 785 } 786 787 /* Can I start working? Called from busy but !running workers. */ 788 static bool may_start_working(struct worker_pool *pool) 789 { 790 return pool->nr_idle; 791 } 792 793 /* Do I need to keep working? Called from currently running workers. */ 794 static bool keep_working(struct worker_pool *pool) 795 { 796 return !list_empty(&pool->worklist) && 797 atomic_read(&pool->nr_running) <= 1; 798 } 799 800 /* Do we need a new worker? Called from manager. */ 801 static bool need_to_create_worker(struct worker_pool *pool) 802 { 803 return need_more_worker(pool) && !may_start_working(pool); 804 } 805 806 /* Do we have too many workers and should some go away? */ 807 static bool too_many_workers(struct worker_pool *pool) 808 { 809 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 810 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 811 int nr_busy = pool->nr_workers - nr_idle; 812 813 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 814 } 815 816 /* 817 * Wake up functions. 818 */ 819 820 /* Return the first idle worker. Safe with preemption disabled */ 821 static struct worker *first_idle_worker(struct worker_pool *pool) 822 { 823 if (unlikely(list_empty(&pool->idle_list))) 824 return NULL; 825 826 return list_first_entry(&pool->idle_list, struct worker, entry); 827 } 828 829 /** 830 * wake_up_worker - wake up an idle worker 831 * @pool: worker pool to wake worker from 832 * 833 * Wake up the first idle worker of @pool. 834 * 835 * CONTEXT: 836 * spin_lock_irq(pool->lock). 837 */ 838 static void wake_up_worker(struct worker_pool *pool) 839 { 840 struct worker *worker = first_idle_worker(pool); 841 842 if (likely(worker)) 843 wake_up_process(worker->task); 844 } 845 846 /** 847 * wq_worker_running - a worker is running again 848 * @task: task waking up 849 * 850 * This function is called when a worker returns from schedule() 851 */ 852 void wq_worker_running(struct task_struct *task) 853 { 854 struct worker *worker = kthread_data(task); 855 856 if (!worker->sleeping) 857 return; 858 if (!(worker->flags & WORKER_NOT_RUNNING)) 859 atomic_inc(&worker->pool->nr_running); 860 worker->sleeping = 0; 861 } 862 863 /** 864 * wq_worker_sleeping - a worker is going to sleep 865 * @task: task going to sleep 866 * 867 * This function is called from schedule() when a busy worker is 868 * going to sleep. 869 */ 870 void wq_worker_sleeping(struct task_struct *task) 871 { 872 struct worker *next, *worker = kthread_data(task); 873 struct worker_pool *pool; 874 875 /* 876 * Rescuers, which may not have all the fields set up like normal 877 * workers, also reach here, let's not access anything before 878 * checking NOT_RUNNING. 879 */ 880 if (worker->flags & WORKER_NOT_RUNNING) 881 return; 882 883 pool = worker->pool; 884 885 if (WARN_ON_ONCE(worker->sleeping)) 886 return; 887 888 worker->sleeping = 1; 889 spin_lock_irq(&pool->lock); 890 891 /* 892 * The counterpart of the following dec_and_test, implied mb, 893 * worklist not empty test sequence is in insert_work(). 894 * Please read comment there. 895 * 896 * NOT_RUNNING is clear. This means that we're bound to and 897 * running on the local cpu w/ rq lock held and preemption 898 * disabled, which in turn means that none else could be 899 * manipulating idle_list, so dereferencing idle_list without pool 900 * lock is safe. 901 */ 902 if (atomic_dec_and_test(&pool->nr_running) && 903 !list_empty(&pool->worklist)) { 904 next = first_idle_worker(pool); 905 if (next) 906 wake_up_process(next->task); 907 } 908 spin_unlock_irq(&pool->lock); 909 } 910 911 /** 912 * wq_worker_last_func - retrieve worker's last work function 913 * @task: Task to retrieve last work function of. 914 * 915 * Determine the last function a worker executed. This is called from 916 * the scheduler to get a worker's last known identity. 917 * 918 * CONTEXT: 919 * spin_lock_irq(rq->lock) 920 * 921 * This function is called during schedule() when a kworker is going 922 * to sleep. It's used by psi to identify aggregation workers during 923 * dequeuing, to allow periodic aggregation to shut-off when that 924 * worker is the last task in the system or cgroup to go to sleep. 925 * 926 * As this function doesn't involve any workqueue-related locking, it 927 * only returns stable values when called from inside the scheduler's 928 * queuing and dequeuing paths, when @task, which must be a kworker, 929 * is guaranteed to not be processing any works. 930 * 931 * Return: 932 * The last work function %current executed as a worker, NULL if it 933 * hasn't executed any work yet. 934 */ 935 work_func_t wq_worker_last_func(struct task_struct *task) 936 { 937 struct worker *worker = kthread_data(task); 938 939 return worker->last_func; 940 } 941 942 /** 943 * worker_set_flags - set worker flags and adjust nr_running accordingly 944 * @worker: self 945 * @flags: flags to set 946 * 947 * Set @flags in @worker->flags and adjust nr_running accordingly. 948 * 949 * CONTEXT: 950 * spin_lock_irq(pool->lock) 951 */ 952 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 953 { 954 struct worker_pool *pool = worker->pool; 955 956 WARN_ON_ONCE(worker->task != current); 957 958 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 959 if ((flags & WORKER_NOT_RUNNING) && 960 !(worker->flags & WORKER_NOT_RUNNING)) { 961 atomic_dec(&pool->nr_running); 962 } 963 964 worker->flags |= flags; 965 } 966 967 /** 968 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 969 * @worker: self 970 * @flags: flags to clear 971 * 972 * Clear @flags in @worker->flags and adjust nr_running accordingly. 973 * 974 * CONTEXT: 975 * spin_lock_irq(pool->lock) 976 */ 977 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 978 { 979 struct worker_pool *pool = worker->pool; 980 unsigned int oflags = worker->flags; 981 982 WARN_ON_ONCE(worker->task != current); 983 984 worker->flags &= ~flags; 985 986 /* 987 * If transitioning out of NOT_RUNNING, increment nr_running. Note 988 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 989 * of multiple flags, not a single flag. 990 */ 991 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 992 if (!(worker->flags & WORKER_NOT_RUNNING)) 993 atomic_inc(&pool->nr_running); 994 } 995 996 /** 997 * find_worker_executing_work - find worker which is executing a work 998 * @pool: pool of interest 999 * @work: work to find worker for 1000 * 1001 * Find a worker which is executing @work on @pool by searching 1002 * @pool->busy_hash which is keyed by the address of @work. For a worker 1003 * to match, its current execution should match the address of @work and 1004 * its work function. This is to avoid unwanted dependency between 1005 * unrelated work executions through a work item being recycled while still 1006 * being executed. 1007 * 1008 * This is a bit tricky. A work item may be freed once its execution 1009 * starts and nothing prevents the freed area from being recycled for 1010 * another work item. If the same work item address ends up being reused 1011 * before the original execution finishes, workqueue will identify the 1012 * recycled work item as currently executing and make it wait until the 1013 * current execution finishes, introducing an unwanted dependency. 1014 * 1015 * This function checks the work item address and work function to avoid 1016 * false positives. Note that this isn't complete as one may construct a 1017 * work function which can introduce dependency onto itself through a 1018 * recycled work item. Well, if somebody wants to shoot oneself in the 1019 * foot that badly, there's only so much we can do, and if such deadlock 1020 * actually occurs, it should be easy to locate the culprit work function. 1021 * 1022 * CONTEXT: 1023 * spin_lock_irq(pool->lock). 1024 * 1025 * Return: 1026 * Pointer to worker which is executing @work if found, %NULL 1027 * otherwise. 1028 */ 1029 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1030 struct work_struct *work) 1031 { 1032 struct worker *worker; 1033 1034 hash_for_each_possible(pool->busy_hash, worker, hentry, 1035 (unsigned long)work) 1036 if (worker->current_work == work && 1037 worker->current_func == work->func) 1038 return worker; 1039 1040 return NULL; 1041 } 1042 1043 /** 1044 * move_linked_works - move linked works to a list 1045 * @work: start of series of works to be scheduled 1046 * @head: target list to append @work to 1047 * @nextp: out parameter for nested worklist walking 1048 * 1049 * Schedule linked works starting from @work to @head. Work series to 1050 * be scheduled starts at @work and includes any consecutive work with 1051 * WORK_STRUCT_LINKED set in its predecessor. 1052 * 1053 * If @nextp is not NULL, it's updated to point to the next work of 1054 * the last scheduled work. This allows move_linked_works() to be 1055 * nested inside outer list_for_each_entry_safe(). 1056 * 1057 * CONTEXT: 1058 * spin_lock_irq(pool->lock). 1059 */ 1060 static void move_linked_works(struct work_struct *work, struct list_head *head, 1061 struct work_struct **nextp) 1062 { 1063 struct work_struct *n; 1064 1065 /* 1066 * Linked worklist will always end before the end of the list, 1067 * use NULL for list head. 1068 */ 1069 list_for_each_entry_safe_from(work, n, NULL, entry) { 1070 list_move_tail(&work->entry, head); 1071 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1072 break; 1073 } 1074 1075 /* 1076 * If we're already inside safe list traversal and have moved 1077 * multiple works to the scheduled queue, the next position 1078 * needs to be updated. 1079 */ 1080 if (nextp) 1081 *nextp = n; 1082 } 1083 1084 /** 1085 * get_pwq - get an extra reference on the specified pool_workqueue 1086 * @pwq: pool_workqueue to get 1087 * 1088 * Obtain an extra reference on @pwq. The caller should guarantee that 1089 * @pwq has positive refcnt and be holding the matching pool->lock. 1090 */ 1091 static void get_pwq(struct pool_workqueue *pwq) 1092 { 1093 lockdep_assert_held(&pwq->pool->lock); 1094 WARN_ON_ONCE(pwq->refcnt <= 0); 1095 pwq->refcnt++; 1096 } 1097 1098 /** 1099 * put_pwq - put a pool_workqueue reference 1100 * @pwq: pool_workqueue to put 1101 * 1102 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1103 * destruction. The caller should be holding the matching pool->lock. 1104 */ 1105 static void put_pwq(struct pool_workqueue *pwq) 1106 { 1107 lockdep_assert_held(&pwq->pool->lock); 1108 if (likely(--pwq->refcnt)) 1109 return; 1110 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1111 return; 1112 /* 1113 * @pwq can't be released under pool->lock, bounce to 1114 * pwq_unbound_release_workfn(). This never recurses on the same 1115 * pool->lock as this path is taken only for unbound workqueues and 1116 * the release work item is scheduled on a per-cpu workqueue. To 1117 * avoid lockdep warning, unbound pool->locks are given lockdep 1118 * subclass of 1 in get_unbound_pool(). 1119 */ 1120 schedule_work(&pwq->unbound_release_work); 1121 } 1122 1123 /** 1124 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1125 * @pwq: pool_workqueue to put (can be %NULL) 1126 * 1127 * put_pwq() with locking. This function also allows %NULL @pwq. 1128 */ 1129 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1130 { 1131 if (pwq) { 1132 /* 1133 * As both pwqs and pools are RCU protected, the 1134 * following lock operations are safe. 1135 */ 1136 spin_lock_irq(&pwq->pool->lock); 1137 put_pwq(pwq); 1138 spin_unlock_irq(&pwq->pool->lock); 1139 } 1140 } 1141 1142 static void pwq_activate_delayed_work(struct work_struct *work) 1143 { 1144 struct pool_workqueue *pwq = get_work_pwq(work); 1145 1146 trace_workqueue_activate_work(work); 1147 if (list_empty(&pwq->pool->worklist)) 1148 pwq->pool->watchdog_ts = jiffies; 1149 move_linked_works(work, &pwq->pool->worklist, NULL); 1150 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1151 pwq->nr_active++; 1152 } 1153 1154 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1155 { 1156 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1157 struct work_struct, entry); 1158 1159 pwq_activate_delayed_work(work); 1160 } 1161 1162 /** 1163 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1164 * @pwq: pwq of interest 1165 * @color: color of work which left the queue 1166 * 1167 * A work either has completed or is removed from pending queue, 1168 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1169 * 1170 * CONTEXT: 1171 * spin_lock_irq(pool->lock). 1172 */ 1173 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1174 { 1175 /* uncolored work items don't participate in flushing or nr_active */ 1176 if (color == WORK_NO_COLOR) 1177 goto out_put; 1178 1179 pwq->nr_in_flight[color]--; 1180 1181 pwq->nr_active--; 1182 if (!list_empty(&pwq->delayed_works)) { 1183 /* one down, submit a delayed one */ 1184 if (pwq->nr_active < pwq->max_active) 1185 pwq_activate_first_delayed(pwq); 1186 } 1187 1188 /* is flush in progress and are we at the flushing tip? */ 1189 if (likely(pwq->flush_color != color)) 1190 goto out_put; 1191 1192 /* are there still in-flight works? */ 1193 if (pwq->nr_in_flight[color]) 1194 goto out_put; 1195 1196 /* this pwq is done, clear flush_color */ 1197 pwq->flush_color = -1; 1198 1199 /* 1200 * If this was the last pwq, wake up the first flusher. It 1201 * will handle the rest. 1202 */ 1203 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1204 complete(&pwq->wq->first_flusher->done); 1205 out_put: 1206 put_pwq(pwq); 1207 } 1208 1209 /** 1210 * try_to_grab_pending - steal work item from worklist and disable irq 1211 * @work: work item to steal 1212 * @is_dwork: @work is a delayed_work 1213 * @flags: place to store irq state 1214 * 1215 * Try to grab PENDING bit of @work. This function can handle @work in any 1216 * stable state - idle, on timer or on worklist. 1217 * 1218 * Return: 1219 * 1 if @work was pending and we successfully stole PENDING 1220 * 0 if @work was idle and we claimed PENDING 1221 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1222 * -ENOENT if someone else is canceling @work, this state may persist 1223 * for arbitrarily long 1224 * 1225 * Note: 1226 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1227 * interrupted while holding PENDING and @work off queue, irq must be 1228 * disabled on entry. This, combined with delayed_work->timer being 1229 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1230 * 1231 * On successful return, >= 0, irq is disabled and the caller is 1232 * responsible for releasing it using local_irq_restore(*@flags). 1233 * 1234 * This function is safe to call from any context including IRQ handler. 1235 */ 1236 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1237 unsigned long *flags) 1238 { 1239 struct worker_pool *pool; 1240 struct pool_workqueue *pwq; 1241 1242 local_irq_save(*flags); 1243 1244 /* try to steal the timer if it exists */ 1245 if (is_dwork) { 1246 struct delayed_work *dwork = to_delayed_work(work); 1247 1248 /* 1249 * dwork->timer is irqsafe. If del_timer() fails, it's 1250 * guaranteed that the timer is not queued anywhere and not 1251 * running on the local CPU. 1252 */ 1253 if (likely(del_timer(&dwork->timer))) 1254 return 1; 1255 } 1256 1257 /* try to claim PENDING the normal way */ 1258 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1259 return 0; 1260 1261 rcu_read_lock(); 1262 /* 1263 * The queueing is in progress, or it is already queued. Try to 1264 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1265 */ 1266 pool = get_work_pool(work); 1267 if (!pool) 1268 goto fail; 1269 1270 spin_lock(&pool->lock); 1271 /* 1272 * work->data is guaranteed to point to pwq only while the work 1273 * item is queued on pwq->wq, and both updating work->data to point 1274 * to pwq on queueing and to pool on dequeueing are done under 1275 * pwq->pool->lock. This in turn guarantees that, if work->data 1276 * points to pwq which is associated with a locked pool, the work 1277 * item is currently queued on that pool. 1278 */ 1279 pwq = get_work_pwq(work); 1280 if (pwq && pwq->pool == pool) { 1281 debug_work_deactivate(work); 1282 1283 /* 1284 * A delayed work item cannot be grabbed directly because 1285 * it might have linked NO_COLOR work items which, if left 1286 * on the delayed_list, will confuse pwq->nr_active 1287 * management later on and cause stall. Make sure the work 1288 * item is activated before grabbing. 1289 */ 1290 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1291 pwq_activate_delayed_work(work); 1292 1293 list_del_init(&work->entry); 1294 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1295 1296 /* work->data points to pwq iff queued, point to pool */ 1297 set_work_pool_and_keep_pending(work, pool->id); 1298 1299 spin_unlock(&pool->lock); 1300 rcu_read_unlock(); 1301 return 1; 1302 } 1303 spin_unlock(&pool->lock); 1304 fail: 1305 rcu_read_unlock(); 1306 local_irq_restore(*flags); 1307 if (work_is_canceling(work)) 1308 return -ENOENT; 1309 cpu_relax(); 1310 return -EAGAIN; 1311 } 1312 1313 /** 1314 * insert_work - insert a work into a pool 1315 * @pwq: pwq @work belongs to 1316 * @work: work to insert 1317 * @head: insertion point 1318 * @extra_flags: extra WORK_STRUCT_* flags to set 1319 * 1320 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1321 * work_struct flags. 1322 * 1323 * CONTEXT: 1324 * spin_lock_irq(pool->lock). 1325 */ 1326 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1327 struct list_head *head, unsigned int extra_flags) 1328 { 1329 struct worker_pool *pool = pwq->pool; 1330 1331 /* we own @work, set data and link */ 1332 set_work_pwq(work, pwq, extra_flags); 1333 list_add_tail(&work->entry, head); 1334 get_pwq(pwq); 1335 1336 /* 1337 * Ensure either wq_worker_sleeping() sees the above 1338 * list_add_tail() or we see zero nr_running to avoid workers lying 1339 * around lazily while there are works to be processed. 1340 */ 1341 smp_mb(); 1342 1343 if (__need_more_worker(pool)) 1344 wake_up_worker(pool); 1345 } 1346 1347 /* 1348 * Test whether @work is being queued from another work executing on the 1349 * same workqueue. 1350 */ 1351 static bool is_chained_work(struct workqueue_struct *wq) 1352 { 1353 struct worker *worker; 1354 1355 worker = current_wq_worker(); 1356 /* 1357 * Return %true iff I'm a worker executing a work item on @wq. If 1358 * I'm @worker, it's safe to dereference it without locking. 1359 */ 1360 return worker && worker->current_pwq->wq == wq; 1361 } 1362 1363 /* 1364 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1365 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1366 * avoid perturbing sensitive tasks. 1367 */ 1368 static int wq_select_unbound_cpu(int cpu) 1369 { 1370 static bool printed_dbg_warning; 1371 int new_cpu; 1372 1373 if (likely(!wq_debug_force_rr_cpu)) { 1374 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1375 return cpu; 1376 } else if (!printed_dbg_warning) { 1377 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1378 printed_dbg_warning = true; 1379 } 1380 1381 if (cpumask_empty(wq_unbound_cpumask)) 1382 return cpu; 1383 1384 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1385 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1386 if (unlikely(new_cpu >= nr_cpu_ids)) { 1387 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1388 if (unlikely(new_cpu >= nr_cpu_ids)) 1389 return cpu; 1390 } 1391 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1392 1393 return new_cpu; 1394 } 1395 1396 static void __queue_work(int cpu, struct workqueue_struct *wq, 1397 struct work_struct *work) 1398 { 1399 struct pool_workqueue *pwq; 1400 struct worker_pool *last_pool; 1401 struct list_head *worklist; 1402 unsigned int work_flags; 1403 unsigned int req_cpu = cpu; 1404 1405 /* 1406 * While a work item is PENDING && off queue, a task trying to 1407 * steal the PENDING will busy-loop waiting for it to either get 1408 * queued or lose PENDING. Grabbing PENDING and queueing should 1409 * happen with IRQ disabled. 1410 */ 1411 lockdep_assert_irqs_disabled(); 1412 1413 debug_work_activate(work); 1414 1415 /* if draining, only works from the same workqueue are allowed */ 1416 if (unlikely(wq->flags & __WQ_DRAINING) && 1417 WARN_ON_ONCE(!is_chained_work(wq))) 1418 return; 1419 rcu_read_lock(); 1420 retry: 1421 if (req_cpu == WORK_CPU_UNBOUND) 1422 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1423 1424 /* pwq which will be used unless @work is executing elsewhere */ 1425 if (!(wq->flags & WQ_UNBOUND)) 1426 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1427 else 1428 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1429 1430 /* 1431 * If @work was previously on a different pool, it might still be 1432 * running there, in which case the work needs to be queued on that 1433 * pool to guarantee non-reentrancy. 1434 */ 1435 last_pool = get_work_pool(work); 1436 if (last_pool && last_pool != pwq->pool) { 1437 struct worker *worker; 1438 1439 spin_lock(&last_pool->lock); 1440 1441 worker = find_worker_executing_work(last_pool, work); 1442 1443 if (worker && worker->current_pwq->wq == wq) { 1444 pwq = worker->current_pwq; 1445 } else { 1446 /* meh... not running there, queue here */ 1447 spin_unlock(&last_pool->lock); 1448 spin_lock(&pwq->pool->lock); 1449 } 1450 } else { 1451 spin_lock(&pwq->pool->lock); 1452 } 1453 1454 /* 1455 * pwq is determined and locked. For unbound pools, we could have 1456 * raced with pwq release and it could already be dead. If its 1457 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1458 * without another pwq replacing it in the numa_pwq_tbl or while 1459 * work items are executing on it, so the retrying is guaranteed to 1460 * make forward-progress. 1461 */ 1462 if (unlikely(!pwq->refcnt)) { 1463 if (wq->flags & WQ_UNBOUND) { 1464 spin_unlock(&pwq->pool->lock); 1465 cpu_relax(); 1466 goto retry; 1467 } 1468 /* oops */ 1469 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1470 wq->name, cpu); 1471 } 1472 1473 /* pwq determined, queue */ 1474 trace_workqueue_queue_work(req_cpu, pwq, work); 1475 1476 if (WARN_ON(!list_empty(&work->entry))) 1477 goto out; 1478 1479 pwq->nr_in_flight[pwq->work_color]++; 1480 work_flags = work_color_to_flags(pwq->work_color); 1481 1482 if (likely(pwq->nr_active < pwq->max_active)) { 1483 trace_workqueue_activate_work(work); 1484 pwq->nr_active++; 1485 worklist = &pwq->pool->worklist; 1486 if (list_empty(worklist)) 1487 pwq->pool->watchdog_ts = jiffies; 1488 } else { 1489 work_flags |= WORK_STRUCT_DELAYED; 1490 worklist = &pwq->delayed_works; 1491 } 1492 1493 insert_work(pwq, work, worklist, work_flags); 1494 1495 out: 1496 spin_unlock(&pwq->pool->lock); 1497 rcu_read_unlock(); 1498 } 1499 1500 /** 1501 * queue_work_on - queue work on specific cpu 1502 * @cpu: CPU number to execute work on 1503 * @wq: workqueue to use 1504 * @work: work to queue 1505 * 1506 * We queue the work to a specific CPU, the caller must ensure it 1507 * can't go away. 1508 * 1509 * Return: %false if @work was already on a queue, %true otherwise. 1510 */ 1511 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1512 struct work_struct *work) 1513 { 1514 bool ret = false; 1515 unsigned long flags; 1516 1517 local_irq_save(flags); 1518 1519 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1520 __queue_work(cpu, wq, work); 1521 ret = true; 1522 } 1523 1524 local_irq_restore(flags); 1525 return ret; 1526 } 1527 EXPORT_SYMBOL(queue_work_on); 1528 1529 /** 1530 * workqueue_select_cpu_near - Select a CPU based on NUMA node 1531 * @node: NUMA node ID that we want to select a CPU from 1532 * 1533 * This function will attempt to find a "random" cpu available on a given 1534 * node. If there are no CPUs available on the given node it will return 1535 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1536 * available CPU if we need to schedule this work. 1537 */ 1538 static int workqueue_select_cpu_near(int node) 1539 { 1540 int cpu; 1541 1542 /* No point in doing this if NUMA isn't enabled for workqueues */ 1543 if (!wq_numa_enabled) 1544 return WORK_CPU_UNBOUND; 1545 1546 /* Delay binding to CPU if node is not valid or online */ 1547 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1548 return WORK_CPU_UNBOUND; 1549 1550 /* Use local node/cpu if we are already there */ 1551 cpu = raw_smp_processor_id(); 1552 if (node == cpu_to_node(cpu)) 1553 return cpu; 1554 1555 /* Use "random" otherwise know as "first" online CPU of node */ 1556 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1557 1558 /* If CPU is valid return that, otherwise just defer */ 1559 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1560 } 1561 1562 /** 1563 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1564 * @node: NUMA node that we are targeting the work for 1565 * @wq: workqueue to use 1566 * @work: work to queue 1567 * 1568 * We queue the work to a "random" CPU within a given NUMA node. The basic 1569 * idea here is to provide a way to somehow associate work with a given 1570 * NUMA node. 1571 * 1572 * This function will only make a best effort attempt at getting this onto 1573 * the right NUMA node. If no node is requested or the requested node is 1574 * offline then we just fall back to standard queue_work behavior. 1575 * 1576 * Currently the "random" CPU ends up being the first available CPU in the 1577 * intersection of cpu_online_mask and the cpumask of the node, unless we 1578 * are running on the node. In that case we just use the current CPU. 1579 * 1580 * Return: %false if @work was already on a queue, %true otherwise. 1581 */ 1582 bool queue_work_node(int node, struct workqueue_struct *wq, 1583 struct work_struct *work) 1584 { 1585 unsigned long flags; 1586 bool ret = false; 1587 1588 /* 1589 * This current implementation is specific to unbound workqueues. 1590 * Specifically we only return the first available CPU for a given 1591 * node instead of cycling through individual CPUs within the node. 1592 * 1593 * If this is used with a per-cpu workqueue then the logic in 1594 * workqueue_select_cpu_near would need to be updated to allow for 1595 * some round robin type logic. 1596 */ 1597 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1598 1599 local_irq_save(flags); 1600 1601 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1602 int cpu = workqueue_select_cpu_near(node); 1603 1604 __queue_work(cpu, wq, work); 1605 ret = true; 1606 } 1607 1608 local_irq_restore(flags); 1609 return ret; 1610 } 1611 EXPORT_SYMBOL_GPL(queue_work_node); 1612 1613 void delayed_work_timer_fn(struct timer_list *t) 1614 { 1615 struct delayed_work *dwork = from_timer(dwork, t, timer); 1616 1617 /* should have been called from irqsafe timer with irq already off */ 1618 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1619 } 1620 EXPORT_SYMBOL(delayed_work_timer_fn); 1621 1622 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1623 struct delayed_work *dwork, unsigned long delay) 1624 { 1625 struct timer_list *timer = &dwork->timer; 1626 struct work_struct *work = &dwork->work; 1627 1628 WARN_ON_ONCE(!wq); 1629 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1630 WARN_ON_ONCE(timer_pending(timer)); 1631 WARN_ON_ONCE(!list_empty(&work->entry)); 1632 1633 /* 1634 * If @delay is 0, queue @dwork->work immediately. This is for 1635 * both optimization and correctness. The earliest @timer can 1636 * expire is on the closest next tick and delayed_work users depend 1637 * on that there's no such delay when @delay is 0. 1638 */ 1639 if (!delay) { 1640 __queue_work(cpu, wq, &dwork->work); 1641 return; 1642 } 1643 1644 dwork->wq = wq; 1645 dwork->cpu = cpu; 1646 timer->expires = jiffies + delay; 1647 1648 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1649 add_timer_on(timer, cpu); 1650 else 1651 add_timer(timer); 1652 } 1653 1654 /** 1655 * queue_delayed_work_on - queue work on specific CPU after delay 1656 * @cpu: CPU number to execute work on 1657 * @wq: workqueue to use 1658 * @dwork: work to queue 1659 * @delay: number of jiffies to wait before queueing 1660 * 1661 * Return: %false if @work was already on a queue, %true otherwise. If 1662 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1663 * execution. 1664 */ 1665 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1666 struct delayed_work *dwork, unsigned long delay) 1667 { 1668 struct work_struct *work = &dwork->work; 1669 bool ret = false; 1670 unsigned long flags; 1671 1672 /* read the comment in __queue_work() */ 1673 local_irq_save(flags); 1674 1675 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1676 __queue_delayed_work(cpu, wq, dwork, delay); 1677 ret = true; 1678 } 1679 1680 local_irq_restore(flags); 1681 return ret; 1682 } 1683 EXPORT_SYMBOL(queue_delayed_work_on); 1684 1685 /** 1686 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1687 * @cpu: CPU number to execute work on 1688 * @wq: workqueue to use 1689 * @dwork: work to queue 1690 * @delay: number of jiffies to wait before queueing 1691 * 1692 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1693 * modify @dwork's timer so that it expires after @delay. If @delay is 1694 * zero, @work is guaranteed to be scheduled immediately regardless of its 1695 * current state. 1696 * 1697 * Return: %false if @dwork was idle and queued, %true if @dwork was 1698 * pending and its timer was modified. 1699 * 1700 * This function is safe to call from any context including IRQ handler. 1701 * See try_to_grab_pending() for details. 1702 */ 1703 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1704 struct delayed_work *dwork, unsigned long delay) 1705 { 1706 unsigned long flags; 1707 int ret; 1708 1709 do { 1710 ret = try_to_grab_pending(&dwork->work, true, &flags); 1711 } while (unlikely(ret == -EAGAIN)); 1712 1713 if (likely(ret >= 0)) { 1714 __queue_delayed_work(cpu, wq, dwork, delay); 1715 local_irq_restore(flags); 1716 } 1717 1718 /* -ENOENT from try_to_grab_pending() becomes %true */ 1719 return ret; 1720 } 1721 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1722 1723 static void rcu_work_rcufn(struct rcu_head *rcu) 1724 { 1725 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1726 1727 /* read the comment in __queue_work() */ 1728 local_irq_disable(); 1729 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1730 local_irq_enable(); 1731 } 1732 1733 /** 1734 * queue_rcu_work - queue work after a RCU grace period 1735 * @wq: workqueue to use 1736 * @rwork: work to queue 1737 * 1738 * Return: %false if @rwork was already pending, %true otherwise. Note 1739 * that a full RCU grace period is guaranteed only after a %true return. 1740 * While @rwork is guaranteed to be executed after a %false return, the 1741 * execution may happen before a full RCU grace period has passed. 1742 */ 1743 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1744 { 1745 struct work_struct *work = &rwork->work; 1746 1747 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1748 rwork->wq = wq; 1749 call_rcu(&rwork->rcu, rcu_work_rcufn); 1750 return true; 1751 } 1752 1753 return false; 1754 } 1755 EXPORT_SYMBOL(queue_rcu_work); 1756 1757 /** 1758 * worker_enter_idle - enter idle state 1759 * @worker: worker which is entering idle state 1760 * 1761 * @worker is entering idle state. Update stats and idle timer if 1762 * necessary. 1763 * 1764 * LOCKING: 1765 * spin_lock_irq(pool->lock). 1766 */ 1767 static void worker_enter_idle(struct worker *worker) 1768 { 1769 struct worker_pool *pool = worker->pool; 1770 1771 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1772 WARN_ON_ONCE(!list_empty(&worker->entry) && 1773 (worker->hentry.next || worker->hentry.pprev))) 1774 return; 1775 1776 /* can't use worker_set_flags(), also called from create_worker() */ 1777 worker->flags |= WORKER_IDLE; 1778 pool->nr_idle++; 1779 worker->last_active = jiffies; 1780 1781 /* idle_list is LIFO */ 1782 list_add(&worker->entry, &pool->idle_list); 1783 1784 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1785 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1786 1787 /* 1788 * Sanity check nr_running. Because unbind_workers() releases 1789 * pool->lock between setting %WORKER_UNBOUND and zapping 1790 * nr_running, the warning may trigger spuriously. Check iff 1791 * unbind is not in progress. 1792 */ 1793 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1794 pool->nr_workers == pool->nr_idle && 1795 atomic_read(&pool->nr_running)); 1796 } 1797 1798 /** 1799 * worker_leave_idle - leave idle state 1800 * @worker: worker which is leaving idle state 1801 * 1802 * @worker is leaving idle state. Update stats. 1803 * 1804 * LOCKING: 1805 * spin_lock_irq(pool->lock). 1806 */ 1807 static void worker_leave_idle(struct worker *worker) 1808 { 1809 struct worker_pool *pool = worker->pool; 1810 1811 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1812 return; 1813 worker_clr_flags(worker, WORKER_IDLE); 1814 pool->nr_idle--; 1815 list_del_init(&worker->entry); 1816 } 1817 1818 static struct worker *alloc_worker(int node) 1819 { 1820 struct worker *worker; 1821 1822 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1823 if (worker) { 1824 INIT_LIST_HEAD(&worker->entry); 1825 INIT_LIST_HEAD(&worker->scheduled); 1826 INIT_LIST_HEAD(&worker->node); 1827 /* on creation a worker is in !idle && prep state */ 1828 worker->flags = WORKER_PREP; 1829 } 1830 return worker; 1831 } 1832 1833 /** 1834 * worker_attach_to_pool() - attach a worker to a pool 1835 * @worker: worker to be attached 1836 * @pool: the target pool 1837 * 1838 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1839 * cpu-binding of @worker are kept coordinated with the pool across 1840 * cpu-[un]hotplugs. 1841 */ 1842 static void worker_attach_to_pool(struct worker *worker, 1843 struct worker_pool *pool) 1844 { 1845 mutex_lock(&wq_pool_attach_mutex); 1846 1847 /* 1848 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1849 * online CPUs. It'll be re-applied when any of the CPUs come up. 1850 */ 1851 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1852 1853 /* 1854 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1855 * stable across this function. See the comments above the flag 1856 * definition for details. 1857 */ 1858 if (pool->flags & POOL_DISASSOCIATED) 1859 worker->flags |= WORKER_UNBOUND; 1860 1861 list_add_tail(&worker->node, &pool->workers); 1862 worker->pool = pool; 1863 1864 mutex_unlock(&wq_pool_attach_mutex); 1865 } 1866 1867 /** 1868 * worker_detach_from_pool() - detach a worker from its pool 1869 * @worker: worker which is attached to its pool 1870 * 1871 * Undo the attaching which had been done in worker_attach_to_pool(). The 1872 * caller worker shouldn't access to the pool after detached except it has 1873 * other reference to the pool. 1874 */ 1875 static void worker_detach_from_pool(struct worker *worker) 1876 { 1877 struct worker_pool *pool = worker->pool; 1878 struct completion *detach_completion = NULL; 1879 1880 mutex_lock(&wq_pool_attach_mutex); 1881 1882 list_del(&worker->node); 1883 worker->pool = NULL; 1884 1885 if (list_empty(&pool->workers)) 1886 detach_completion = pool->detach_completion; 1887 mutex_unlock(&wq_pool_attach_mutex); 1888 1889 /* clear leftover flags without pool->lock after it is detached */ 1890 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1891 1892 if (detach_completion) 1893 complete(detach_completion); 1894 } 1895 1896 /** 1897 * create_worker - create a new workqueue worker 1898 * @pool: pool the new worker will belong to 1899 * 1900 * Create and start a new worker which is attached to @pool. 1901 * 1902 * CONTEXT: 1903 * Might sleep. Does GFP_KERNEL allocations. 1904 * 1905 * Return: 1906 * Pointer to the newly created worker. 1907 */ 1908 static struct worker *create_worker(struct worker_pool *pool) 1909 { 1910 struct worker *worker = NULL; 1911 int id = -1; 1912 char id_buf[16]; 1913 1914 /* ID is needed to determine kthread name */ 1915 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1916 if (id < 0) 1917 goto fail; 1918 1919 worker = alloc_worker(pool->node); 1920 if (!worker) 1921 goto fail; 1922 1923 worker->id = id; 1924 1925 if (pool->cpu >= 0) 1926 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1927 pool->attrs->nice < 0 ? "H" : ""); 1928 else 1929 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1930 1931 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1932 "kworker/%s", id_buf); 1933 if (IS_ERR(worker->task)) 1934 goto fail; 1935 1936 set_user_nice(worker->task, pool->attrs->nice); 1937 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1938 1939 /* successful, attach the worker to the pool */ 1940 worker_attach_to_pool(worker, pool); 1941 1942 /* start the newly created worker */ 1943 spin_lock_irq(&pool->lock); 1944 worker->pool->nr_workers++; 1945 worker_enter_idle(worker); 1946 wake_up_process(worker->task); 1947 spin_unlock_irq(&pool->lock); 1948 1949 return worker; 1950 1951 fail: 1952 if (id >= 0) 1953 ida_simple_remove(&pool->worker_ida, id); 1954 kfree(worker); 1955 return NULL; 1956 } 1957 1958 /** 1959 * destroy_worker - destroy a workqueue worker 1960 * @worker: worker to be destroyed 1961 * 1962 * Destroy @worker and adjust @pool stats accordingly. The worker should 1963 * be idle. 1964 * 1965 * CONTEXT: 1966 * spin_lock_irq(pool->lock). 1967 */ 1968 static void destroy_worker(struct worker *worker) 1969 { 1970 struct worker_pool *pool = worker->pool; 1971 1972 lockdep_assert_held(&pool->lock); 1973 1974 /* sanity check frenzy */ 1975 if (WARN_ON(worker->current_work) || 1976 WARN_ON(!list_empty(&worker->scheduled)) || 1977 WARN_ON(!(worker->flags & WORKER_IDLE))) 1978 return; 1979 1980 pool->nr_workers--; 1981 pool->nr_idle--; 1982 1983 list_del_init(&worker->entry); 1984 worker->flags |= WORKER_DIE; 1985 wake_up_process(worker->task); 1986 } 1987 1988 static void idle_worker_timeout(struct timer_list *t) 1989 { 1990 struct worker_pool *pool = from_timer(pool, t, idle_timer); 1991 1992 spin_lock_irq(&pool->lock); 1993 1994 while (too_many_workers(pool)) { 1995 struct worker *worker; 1996 unsigned long expires; 1997 1998 /* idle_list is kept in LIFO order, check the last one */ 1999 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2000 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2001 2002 if (time_before(jiffies, expires)) { 2003 mod_timer(&pool->idle_timer, expires); 2004 break; 2005 } 2006 2007 destroy_worker(worker); 2008 } 2009 2010 spin_unlock_irq(&pool->lock); 2011 } 2012 2013 static void send_mayday(struct work_struct *work) 2014 { 2015 struct pool_workqueue *pwq = get_work_pwq(work); 2016 struct workqueue_struct *wq = pwq->wq; 2017 2018 lockdep_assert_held(&wq_mayday_lock); 2019 2020 if (!wq->rescuer) 2021 return; 2022 2023 /* mayday mayday mayday */ 2024 if (list_empty(&pwq->mayday_node)) { 2025 /* 2026 * If @pwq is for an unbound wq, its base ref may be put at 2027 * any time due to an attribute change. Pin @pwq until the 2028 * rescuer is done with it. 2029 */ 2030 get_pwq(pwq); 2031 list_add_tail(&pwq->mayday_node, &wq->maydays); 2032 wake_up_process(wq->rescuer->task); 2033 } 2034 } 2035 2036 static void pool_mayday_timeout(struct timer_list *t) 2037 { 2038 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2039 struct work_struct *work; 2040 2041 spin_lock_irq(&pool->lock); 2042 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2043 2044 if (need_to_create_worker(pool)) { 2045 /* 2046 * We've been trying to create a new worker but 2047 * haven't been successful. We might be hitting an 2048 * allocation deadlock. Send distress signals to 2049 * rescuers. 2050 */ 2051 list_for_each_entry(work, &pool->worklist, entry) 2052 send_mayday(work); 2053 } 2054 2055 spin_unlock(&wq_mayday_lock); 2056 spin_unlock_irq(&pool->lock); 2057 2058 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2059 } 2060 2061 /** 2062 * maybe_create_worker - create a new worker if necessary 2063 * @pool: pool to create a new worker for 2064 * 2065 * Create a new worker for @pool if necessary. @pool is guaranteed to 2066 * have at least one idle worker on return from this function. If 2067 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2068 * sent to all rescuers with works scheduled on @pool to resolve 2069 * possible allocation deadlock. 2070 * 2071 * On return, need_to_create_worker() is guaranteed to be %false and 2072 * may_start_working() %true. 2073 * 2074 * LOCKING: 2075 * spin_lock_irq(pool->lock) which may be released and regrabbed 2076 * multiple times. Does GFP_KERNEL allocations. Called only from 2077 * manager. 2078 */ 2079 static void maybe_create_worker(struct worker_pool *pool) 2080 __releases(&pool->lock) 2081 __acquires(&pool->lock) 2082 { 2083 restart: 2084 spin_unlock_irq(&pool->lock); 2085 2086 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2087 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2088 2089 while (true) { 2090 if (create_worker(pool) || !need_to_create_worker(pool)) 2091 break; 2092 2093 schedule_timeout_interruptible(CREATE_COOLDOWN); 2094 2095 if (!need_to_create_worker(pool)) 2096 break; 2097 } 2098 2099 del_timer_sync(&pool->mayday_timer); 2100 spin_lock_irq(&pool->lock); 2101 /* 2102 * This is necessary even after a new worker was just successfully 2103 * created as @pool->lock was dropped and the new worker might have 2104 * already become busy. 2105 */ 2106 if (need_to_create_worker(pool)) 2107 goto restart; 2108 } 2109 2110 /** 2111 * manage_workers - manage worker pool 2112 * @worker: self 2113 * 2114 * Assume the manager role and manage the worker pool @worker belongs 2115 * to. At any given time, there can be only zero or one manager per 2116 * pool. The exclusion is handled automatically by this function. 2117 * 2118 * The caller can safely start processing works on false return. On 2119 * true return, it's guaranteed that need_to_create_worker() is false 2120 * and may_start_working() is true. 2121 * 2122 * CONTEXT: 2123 * spin_lock_irq(pool->lock) which may be released and regrabbed 2124 * multiple times. Does GFP_KERNEL allocations. 2125 * 2126 * Return: 2127 * %false if the pool doesn't need management and the caller can safely 2128 * start processing works, %true if management function was performed and 2129 * the conditions that the caller verified before calling the function may 2130 * no longer be true. 2131 */ 2132 static bool manage_workers(struct worker *worker) 2133 { 2134 struct worker_pool *pool = worker->pool; 2135 2136 if (pool->flags & POOL_MANAGER_ACTIVE) 2137 return false; 2138 2139 pool->flags |= POOL_MANAGER_ACTIVE; 2140 pool->manager = worker; 2141 2142 maybe_create_worker(pool); 2143 2144 pool->manager = NULL; 2145 pool->flags &= ~POOL_MANAGER_ACTIVE; 2146 wake_up(&wq_manager_wait); 2147 return true; 2148 } 2149 2150 /** 2151 * process_one_work - process single work 2152 * @worker: self 2153 * @work: work to process 2154 * 2155 * Process @work. This function contains all the logics necessary to 2156 * process a single work including synchronization against and 2157 * interaction with other workers on the same cpu, queueing and 2158 * flushing. As long as context requirement is met, any worker can 2159 * call this function to process a work. 2160 * 2161 * CONTEXT: 2162 * spin_lock_irq(pool->lock) which is released and regrabbed. 2163 */ 2164 static void process_one_work(struct worker *worker, struct work_struct *work) 2165 __releases(&pool->lock) 2166 __acquires(&pool->lock) 2167 { 2168 struct pool_workqueue *pwq = get_work_pwq(work); 2169 struct worker_pool *pool = worker->pool; 2170 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2171 int work_color; 2172 struct worker *collision; 2173 #ifdef CONFIG_LOCKDEP 2174 /* 2175 * It is permissible to free the struct work_struct from 2176 * inside the function that is called from it, this we need to 2177 * take into account for lockdep too. To avoid bogus "held 2178 * lock freed" warnings as well as problems when looking into 2179 * work->lockdep_map, make a copy and use that here. 2180 */ 2181 struct lockdep_map lockdep_map; 2182 2183 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2184 #endif 2185 /* ensure we're on the correct CPU */ 2186 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2187 raw_smp_processor_id() != pool->cpu); 2188 2189 /* 2190 * A single work shouldn't be executed concurrently by 2191 * multiple workers on a single cpu. Check whether anyone is 2192 * already processing the work. If so, defer the work to the 2193 * currently executing one. 2194 */ 2195 collision = find_worker_executing_work(pool, work); 2196 if (unlikely(collision)) { 2197 move_linked_works(work, &collision->scheduled, NULL); 2198 return; 2199 } 2200 2201 /* claim and dequeue */ 2202 debug_work_deactivate(work); 2203 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2204 worker->current_work = work; 2205 worker->current_func = work->func; 2206 worker->current_pwq = pwq; 2207 work_color = get_work_color(work); 2208 2209 /* 2210 * Record wq name for cmdline and debug reporting, may get 2211 * overridden through set_worker_desc(). 2212 */ 2213 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2214 2215 list_del_init(&work->entry); 2216 2217 /* 2218 * CPU intensive works don't participate in concurrency management. 2219 * They're the scheduler's responsibility. This takes @worker out 2220 * of concurrency management and the next code block will chain 2221 * execution of the pending work items. 2222 */ 2223 if (unlikely(cpu_intensive)) 2224 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2225 2226 /* 2227 * Wake up another worker if necessary. The condition is always 2228 * false for normal per-cpu workers since nr_running would always 2229 * be >= 1 at this point. This is used to chain execution of the 2230 * pending work items for WORKER_NOT_RUNNING workers such as the 2231 * UNBOUND and CPU_INTENSIVE ones. 2232 */ 2233 if (need_more_worker(pool)) 2234 wake_up_worker(pool); 2235 2236 /* 2237 * Record the last pool and clear PENDING which should be the last 2238 * update to @work. Also, do this inside @pool->lock so that 2239 * PENDING and queued state changes happen together while IRQ is 2240 * disabled. 2241 */ 2242 set_work_pool_and_clear_pending(work, pool->id); 2243 2244 spin_unlock_irq(&pool->lock); 2245 2246 lock_map_acquire(&pwq->wq->lockdep_map); 2247 lock_map_acquire(&lockdep_map); 2248 /* 2249 * Strictly speaking we should mark the invariant state without holding 2250 * any locks, that is, before these two lock_map_acquire()'s. 2251 * 2252 * However, that would result in: 2253 * 2254 * A(W1) 2255 * WFC(C) 2256 * A(W1) 2257 * C(C) 2258 * 2259 * Which would create W1->C->W1 dependencies, even though there is no 2260 * actual deadlock possible. There are two solutions, using a 2261 * read-recursive acquire on the work(queue) 'locks', but this will then 2262 * hit the lockdep limitation on recursive locks, or simply discard 2263 * these locks. 2264 * 2265 * AFAICT there is no possible deadlock scenario between the 2266 * flush_work() and complete() primitives (except for single-threaded 2267 * workqueues), so hiding them isn't a problem. 2268 */ 2269 lockdep_invariant_state(true); 2270 trace_workqueue_execute_start(work); 2271 worker->current_func(work); 2272 /* 2273 * While we must be careful to not use "work" after this, the trace 2274 * point will only record its address. 2275 */ 2276 trace_workqueue_execute_end(work); 2277 lock_map_release(&lockdep_map); 2278 lock_map_release(&pwq->wq->lockdep_map); 2279 2280 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2281 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2282 " last function: %ps\n", 2283 current->comm, preempt_count(), task_pid_nr(current), 2284 worker->current_func); 2285 debug_show_held_locks(current); 2286 dump_stack(); 2287 } 2288 2289 /* 2290 * The following prevents a kworker from hogging CPU on !PREEMPT 2291 * kernels, where a requeueing work item waiting for something to 2292 * happen could deadlock with stop_machine as such work item could 2293 * indefinitely requeue itself while all other CPUs are trapped in 2294 * stop_machine. At the same time, report a quiescent RCU state so 2295 * the same condition doesn't freeze RCU. 2296 */ 2297 cond_resched(); 2298 2299 spin_lock_irq(&pool->lock); 2300 2301 /* clear cpu intensive status */ 2302 if (unlikely(cpu_intensive)) 2303 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2304 2305 /* tag the worker for identification in schedule() */ 2306 worker->last_func = worker->current_func; 2307 2308 /* we're done with it, release */ 2309 hash_del(&worker->hentry); 2310 worker->current_work = NULL; 2311 worker->current_func = NULL; 2312 worker->current_pwq = NULL; 2313 pwq_dec_nr_in_flight(pwq, work_color); 2314 } 2315 2316 /** 2317 * process_scheduled_works - process scheduled works 2318 * @worker: self 2319 * 2320 * Process all scheduled works. Please note that the scheduled list 2321 * may change while processing a work, so this function repeatedly 2322 * fetches a work from the top and executes it. 2323 * 2324 * CONTEXT: 2325 * spin_lock_irq(pool->lock) which may be released and regrabbed 2326 * multiple times. 2327 */ 2328 static void process_scheduled_works(struct worker *worker) 2329 { 2330 while (!list_empty(&worker->scheduled)) { 2331 struct work_struct *work = list_first_entry(&worker->scheduled, 2332 struct work_struct, entry); 2333 process_one_work(worker, work); 2334 } 2335 } 2336 2337 static void set_pf_worker(bool val) 2338 { 2339 mutex_lock(&wq_pool_attach_mutex); 2340 if (val) 2341 current->flags |= PF_WQ_WORKER; 2342 else 2343 current->flags &= ~PF_WQ_WORKER; 2344 mutex_unlock(&wq_pool_attach_mutex); 2345 } 2346 2347 /** 2348 * worker_thread - the worker thread function 2349 * @__worker: self 2350 * 2351 * The worker thread function. All workers belong to a worker_pool - 2352 * either a per-cpu one or dynamic unbound one. These workers process all 2353 * work items regardless of their specific target workqueue. The only 2354 * exception is work items which belong to workqueues with a rescuer which 2355 * will be explained in rescuer_thread(). 2356 * 2357 * Return: 0 2358 */ 2359 static int worker_thread(void *__worker) 2360 { 2361 struct worker *worker = __worker; 2362 struct worker_pool *pool = worker->pool; 2363 2364 /* tell the scheduler that this is a workqueue worker */ 2365 set_pf_worker(true); 2366 woke_up: 2367 spin_lock_irq(&pool->lock); 2368 2369 /* am I supposed to die? */ 2370 if (unlikely(worker->flags & WORKER_DIE)) { 2371 spin_unlock_irq(&pool->lock); 2372 WARN_ON_ONCE(!list_empty(&worker->entry)); 2373 set_pf_worker(false); 2374 2375 set_task_comm(worker->task, "kworker/dying"); 2376 ida_simple_remove(&pool->worker_ida, worker->id); 2377 worker_detach_from_pool(worker); 2378 kfree(worker); 2379 return 0; 2380 } 2381 2382 worker_leave_idle(worker); 2383 recheck: 2384 /* no more worker necessary? */ 2385 if (!need_more_worker(pool)) 2386 goto sleep; 2387 2388 /* do we need to manage? */ 2389 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2390 goto recheck; 2391 2392 /* 2393 * ->scheduled list can only be filled while a worker is 2394 * preparing to process a work or actually processing it. 2395 * Make sure nobody diddled with it while I was sleeping. 2396 */ 2397 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2398 2399 /* 2400 * Finish PREP stage. We're guaranteed to have at least one idle 2401 * worker or that someone else has already assumed the manager 2402 * role. This is where @worker starts participating in concurrency 2403 * management if applicable and concurrency management is restored 2404 * after being rebound. See rebind_workers() for details. 2405 */ 2406 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2407 2408 do { 2409 struct work_struct *work = 2410 list_first_entry(&pool->worklist, 2411 struct work_struct, entry); 2412 2413 pool->watchdog_ts = jiffies; 2414 2415 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2416 /* optimization path, not strictly necessary */ 2417 process_one_work(worker, work); 2418 if (unlikely(!list_empty(&worker->scheduled))) 2419 process_scheduled_works(worker); 2420 } else { 2421 move_linked_works(work, &worker->scheduled, NULL); 2422 process_scheduled_works(worker); 2423 } 2424 } while (keep_working(pool)); 2425 2426 worker_set_flags(worker, WORKER_PREP); 2427 sleep: 2428 /* 2429 * pool->lock is held and there's no work to process and no need to 2430 * manage, sleep. Workers are woken up only while holding 2431 * pool->lock or from local cpu, so setting the current state 2432 * before releasing pool->lock is enough to prevent losing any 2433 * event. 2434 */ 2435 worker_enter_idle(worker); 2436 __set_current_state(TASK_IDLE); 2437 spin_unlock_irq(&pool->lock); 2438 schedule(); 2439 goto woke_up; 2440 } 2441 2442 /** 2443 * rescuer_thread - the rescuer thread function 2444 * @__rescuer: self 2445 * 2446 * Workqueue rescuer thread function. There's one rescuer for each 2447 * workqueue which has WQ_MEM_RECLAIM set. 2448 * 2449 * Regular work processing on a pool may block trying to create a new 2450 * worker which uses GFP_KERNEL allocation which has slight chance of 2451 * developing into deadlock if some works currently on the same queue 2452 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2453 * the problem rescuer solves. 2454 * 2455 * When such condition is possible, the pool summons rescuers of all 2456 * workqueues which have works queued on the pool and let them process 2457 * those works so that forward progress can be guaranteed. 2458 * 2459 * This should happen rarely. 2460 * 2461 * Return: 0 2462 */ 2463 static int rescuer_thread(void *__rescuer) 2464 { 2465 struct worker *rescuer = __rescuer; 2466 struct workqueue_struct *wq = rescuer->rescue_wq; 2467 struct list_head *scheduled = &rescuer->scheduled; 2468 bool should_stop; 2469 2470 set_user_nice(current, RESCUER_NICE_LEVEL); 2471 2472 /* 2473 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2474 * doesn't participate in concurrency management. 2475 */ 2476 set_pf_worker(true); 2477 repeat: 2478 set_current_state(TASK_IDLE); 2479 2480 /* 2481 * By the time the rescuer is requested to stop, the workqueue 2482 * shouldn't have any work pending, but @wq->maydays may still have 2483 * pwq(s) queued. This can happen by non-rescuer workers consuming 2484 * all the work items before the rescuer got to them. Go through 2485 * @wq->maydays processing before acting on should_stop so that the 2486 * list is always empty on exit. 2487 */ 2488 should_stop = kthread_should_stop(); 2489 2490 /* see whether any pwq is asking for help */ 2491 spin_lock_irq(&wq_mayday_lock); 2492 2493 while (!list_empty(&wq->maydays)) { 2494 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2495 struct pool_workqueue, mayday_node); 2496 struct worker_pool *pool = pwq->pool; 2497 struct work_struct *work, *n; 2498 bool first = true; 2499 2500 __set_current_state(TASK_RUNNING); 2501 list_del_init(&pwq->mayday_node); 2502 2503 spin_unlock_irq(&wq_mayday_lock); 2504 2505 worker_attach_to_pool(rescuer, pool); 2506 2507 spin_lock_irq(&pool->lock); 2508 2509 /* 2510 * Slurp in all works issued via this workqueue and 2511 * process'em. 2512 */ 2513 WARN_ON_ONCE(!list_empty(scheduled)); 2514 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2515 if (get_work_pwq(work) == pwq) { 2516 if (first) 2517 pool->watchdog_ts = jiffies; 2518 move_linked_works(work, scheduled, &n); 2519 } 2520 first = false; 2521 } 2522 2523 if (!list_empty(scheduled)) { 2524 process_scheduled_works(rescuer); 2525 2526 /* 2527 * The above execution of rescued work items could 2528 * have created more to rescue through 2529 * pwq_activate_first_delayed() or chained 2530 * queueing. Let's put @pwq back on mayday list so 2531 * that such back-to-back work items, which may be 2532 * being used to relieve memory pressure, don't 2533 * incur MAYDAY_INTERVAL delay inbetween. 2534 */ 2535 if (need_to_create_worker(pool)) { 2536 spin_lock(&wq_mayday_lock); 2537 /* 2538 * Queue iff we aren't racing destruction 2539 * and somebody else hasn't queued it already. 2540 */ 2541 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 2542 get_pwq(pwq); 2543 list_add_tail(&pwq->mayday_node, &wq->maydays); 2544 } 2545 spin_unlock(&wq_mayday_lock); 2546 } 2547 } 2548 2549 /* 2550 * Put the reference grabbed by send_mayday(). @pool won't 2551 * go away while we're still attached to it. 2552 */ 2553 put_pwq(pwq); 2554 2555 /* 2556 * Leave this pool. If need_more_worker() is %true, notify a 2557 * regular worker; otherwise, we end up with 0 concurrency 2558 * and stalling the execution. 2559 */ 2560 if (need_more_worker(pool)) 2561 wake_up_worker(pool); 2562 2563 spin_unlock_irq(&pool->lock); 2564 2565 worker_detach_from_pool(rescuer); 2566 2567 spin_lock_irq(&wq_mayday_lock); 2568 } 2569 2570 spin_unlock_irq(&wq_mayday_lock); 2571 2572 if (should_stop) { 2573 __set_current_state(TASK_RUNNING); 2574 set_pf_worker(false); 2575 return 0; 2576 } 2577 2578 /* rescuers should never participate in concurrency management */ 2579 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2580 schedule(); 2581 goto repeat; 2582 } 2583 2584 /** 2585 * check_flush_dependency - check for flush dependency sanity 2586 * @target_wq: workqueue being flushed 2587 * @target_work: work item being flushed (NULL for workqueue flushes) 2588 * 2589 * %current is trying to flush the whole @target_wq or @target_work on it. 2590 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2591 * reclaiming memory or running on a workqueue which doesn't have 2592 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2593 * a deadlock. 2594 */ 2595 static void check_flush_dependency(struct workqueue_struct *target_wq, 2596 struct work_struct *target_work) 2597 { 2598 work_func_t target_func = target_work ? target_work->func : NULL; 2599 struct worker *worker; 2600 2601 if (target_wq->flags & WQ_MEM_RECLAIM) 2602 return; 2603 2604 worker = current_wq_worker(); 2605 2606 WARN_ONCE(current->flags & PF_MEMALLOC, 2607 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 2608 current->pid, current->comm, target_wq->name, target_func); 2609 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2610 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2611 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 2612 worker->current_pwq->wq->name, worker->current_func, 2613 target_wq->name, target_func); 2614 } 2615 2616 struct wq_barrier { 2617 struct work_struct work; 2618 struct completion done; 2619 struct task_struct *task; /* purely informational */ 2620 }; 2621 2622 static void wq_barrier_func(struct work_struct *work) 2623 { 2624 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2625 complete(&barr->done); 2626 } 2627 2628 /** 2629 * insert_wq_barrier - insert a barrier work 2630 * @pwq: pwq to insert barrier into 2631 * @barr: wq_barrier to insert 2632 * @target: target work to attach @barr to 2633 * @worker: worker currently executing @target, NULL if @target is not executing 2634 * 2635 * @barr is linked to @target such that @barr is completed only after 2636 * @target finishes execution. Please note that the ordering 2637 * guarantee is observed only with respect to @target and on the local 2638 * cpu. 2639 * 2640 * Currently, a queued barrier can't be canceled. This is because 2641 * try_to_grab_pending() can't determine whether the work to be 2642 * grabbed is at the head of the queue and thus can't clear LINKED 2643 * flag of the previous work while there must be a valid next work 2644 * after a work with LINKED flag set. 2645 * 2646 * Note that when @worker is non-NULL, @target may be modified 2647 * underneath us, so we can't reliably determine pwq from @target. 2648 * 2649 * CONTEXT: 2650 * spin_lock_irq(pool->lock). 2651 */ 2652 static void insert_wq_barrier(struct pool_workqueue *pwq, 2653 struct wq_barrier *barr, 2654 struct work_struct *target, struct worker *worker) 2655 { 2656 struct list_head *head; 2657 unsigned int linked = 0; 2658 2659 /* 2660 * debugobject calls are safe here even with pool->lock locked 2661 * as we know for sure that this will not trigger any of the 2662 * checks and call back into the fixup functions where we 2663 * might deadlock. 2664 */ 2665 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2666 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2667 2668 init_completion_map(&barr->done, &target->lockdep_map); 2669 2670 barr->task = current; 2671 2672 /* 2673 * If @target is currently being executed, schedule the 2674 * barrier to the worker; otherwise, put it after @target. 2675 */ 2676 if (worker) 2677 head = worker->scheduled.next; 2678 else { 2679 unsigned long *bits = work_data_bits(target); 2680 2681 head = target->entry.next; 2682 /* there can already be other linked works, inherit and set */ 2683 linked = *bits & WORK_STRUCT_LINKED; 2684 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2685 } 2686 2687 debug_work_activate(&barr->work); 2688 insert_work(pwq, &barr->work, head, 2689 work_color_to_flags(WORK_NO_COLOR) | linked); 2690 } 2691 2692 /** 2693 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2694 * @wq: workqueue being flushed 2695 * @flush_color: new flush color, < 0 for no-op 2696 * @work_color: new work color, < 0 for no-op 2697 * 2698 * Prepare pwqs for workqueue flushing. 2699 * 2700 * If @flush_color is non-negative, flush_color on all pwqs should be 2701 * -1. If no pwq has in-flight commands at the specified color, all 2702 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2703 * has in flight commands, its pwq->flush_color is set to 2704 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2705 * wakeup logic is armed and %true is returned. 2706 * 2707 * The caller should have initialized @wq->first_flusher prior to 2708 * calling this function with non-negative @flush_color. If 2709 * @flush_color is negative, no flush color update is done and %false 2710 * is returned. 2711 * 2712 * If @work_color is non-negative, all pwqs should have the same 2713 * work_color which is previous to @work_color and all will be 2714 * advanced to @work_color. 2715 * 2716 * CONTEXT: 2717 * mutex_lock(wq->mutex). 2718 * 2719 * Return: 2720 * %true if @flush_color >= 0 and there's something to flush. %false 2721 * otherwise. 2722 */ 2723 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2724 int flush_color, int work_color) 2725 { 2726 bool wait = false; 2727 struct pool_workqueue *pwq; 2728 2729 if (flush_color >= 0) { 2730 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2731 atomic_set(&wq->nr_pwqs_to_flush, 1); 2732 } 2733 2734 for_each_pwq(pwq, wq) { 2735 struct worker_pool *pool = pwq->pool; 2736 2737 spin_lock_irq(&pool->lock); 2738 2739 if (flush_color >= 0) { 2740 WARN_ON_ONCE(pwq->flush_color != -1); 2741 2742 if (pwq->nr_in_flight[flush_color]) { 2743 pwq->flush_color = flush_color; 2744 atomic_inc(&wq->nr_pwqs_to_flush); 2745 wait = true; 2746 } 2747 } 2748 2749 if (work_color >= 0) { 2750 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2751 pwq->work_color = work_color; 2752 } 2753 2754 spin_unlock_irq(&pool->lock); 2755 } 2756 2757 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2758 complete(&wq->first_flusher->done); 2759 2760 return wait; 2761 } 2762 2763 /** 2764 * flush_workqueue - ensure that any scheduled work has run to completion. 2765 * @wq: workqueue to flush 2766 * 2767 * This function sleeps until all work items which were queued on entry 2768 * have finished execution, but it is not livelocked by new incoming ones. 2769 */ 2770 void flush_workqueue(struct workqueue_struct *wq) 2771 { 2772 struct wq_flusher this_flusher = { 2773 .list = LIST_HEAD_INIT(this_flusher.list), 2774 .flush_color = -1, 2775 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2776 }; 2777 int next_color; 2778 2779 if (WARN_ON(!wq_online)) 2780 return; 2781 2782 lock_map_acquire(&wq->lockdep_map); 2783 lock_map_release(&wq->lockdep_map); 2784 2785 mutex_lock(&wq->mutex); 2786 2787 /* 2788 * Start-to-wait phase 2789 */ 2790 next_color = work_next_color(wq->work_color); 2791 2792 if (next_color != wq->flush_color) { 2793 /* 2794 * Color space is not full. The current work_color 2795 * becomes our flush_color and work_color is advanced 2796 * by one. 2797 */ 2798 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2799 this_flusher.flush_color = wq->work_color; 2800 wq->work_color = next_color; 2801 2802 if (!wq->first_flusher) { 2803 /* no flush in progress, become the first flusher */ 2804 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2805 2806 wq->first_flusher = &this_flusher; 2807 2808 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2809 wq->work_color)) { 2810 /* nothing to flush, done */ 2811 wq->flush_color = next_color; 2812 wq->first_flusher = NULL; 2813 goto out_unlock; 2814 } 2815 } else { 2816 /* wait in queue */ 2817 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2818 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2819 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2820 } 2821 } else { 2822 /* 2823 * Oops, color space is full, wait on overflow queue. 2824 * The next flush completion will assign us 2825 * flush_color and transfer to flusher_queue. 2826 */ 2827 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2828 } 2829 2830 check_flush_dependency(wq, NULL); 2831 2832 mutex_unlock(&wq->mutex); 2833 2834 wait_for_completion(&this_flusher.done); 2835 2836 /* 2837 * Wake-up-and-cascade phase 2838 * 2839 * First flushers are responsible for cascading flushes and 2840 * handling overflow. Non-first flushers can simply return. 2841 */ 2842 if (wq->first_flusher != &this_flusher) 2843 return; 2844 2845 mutex_lock(&wq->mutex); 2846 2847 /* we might have raced, check again with mutex held */ 2848 if (wq->first_flusher != &this_flusher) 2849 goto out_unlock; 2850 2851 wq->first_flusher = NULL; 2852 2853 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2854 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2855 2856 while (true) { 2857 struct wq_flusher *next, *tmp; 2858 2859 /* complete all the flushers sharing the current flush color */ 2860 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2861 if (next->flush_color != wq->flush_color) 2862 break; 2863 list_del_init(&next->list); 2864 complete(&next->done); 2865 } 2866 2867 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2868 wq->flush_color != work_next_color(wq->work_color)); 2869 2870 /* this flush_color is finished, advance by one */ 2871 wq->flush_color = work_next_color(wq->flush_color); 2872 2873 /* one color has been freed, handle overflow queue */ 2874 if (!list_empty(&wq->flusher_overflow)) { 2875 /* 2876 * Assign the same color to all overflowed 2877 * flushers, advance work_color and append to 2878 * flusher_queue. This is the start-to-wait 2879 * phase for these overflowed flushers. 2880 */ 2881 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2882 tmp->flush_color = wq->work_color; 2883 2884 wq->work_color = work_next_color(wq->work_color); 2885 2886 list_splice_tail_init(&wq->flusher_overflow, 2887 &wq->flusher_queue); 2888 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2889 } 2890 2891 if (list_empty(&wq->flusher_queue)) { 2892 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2893 break; 2894 } 2895 2896 /* 2897 * Need to flush more colors. Make the next flusher 2898 * the new first flusher and arm pwqs. 2899 */ 2900 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2901 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2902 2903 list_del_init(&next->list); 2904 wq->first_flusher = next; 2905 2906 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2907 break; 2908 2909 /* 2910 * Meh... this color is already done, clear first 2911 * flusher and repeat cascading. 2912 */ 2913 wq->first_flusher = NULL; 2914 } 2915 2916 out_unlock: 2917 mutex_unlock(&wq->mutex); 2918 } 2919 EXPORT_SYMBOL(flush_workqueue); 2920 2921 /** 2922 * drain_workqueue - drain a workqueue 2923 * @wq: workqueue to drain 2924 * 2925 * Wait until the workqueue becomes empty. While draining is in progress, 2926 * only chain queueing is allowed. IOW, only currently pending or running 2927 * work items on @wq can queue further work items on it. @wq is flushed 2928 * repeatedly until it becomes empty. The number of flushing is determined 2929 * by the depth of chaining and should be relatively short. Whine if it 2930 * takes too long. 2931 */ 2932 void drain_workqueue(struct workqueue_struct *wq) 2933 { 2934 unsigned int flush_cnt = 0; 2935 struct pool_workqueue *pwq; 2936 2937 /* 2938 * __queue_work() needs to test whether there are drainers, is much 2939 * hotter than drain_workqueue() and already looks at @wq->flags. 2940 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2941 */ 2942 mutex_lock(&wq->mutex); 2943 if (!wq->nr_drainers++) 2944 wq->flags |= __WQ_DRAINING; 2945 mutex_unlock(&wq->mutex); 2946 reflush: 2947 flush_workqueue(wq); 2948 2949 mutex_lock(&wq->mutex); 2950 2951 for_each_pwq(pwq, wq) { 2952 bool drained; 2953 2954 spin_lock_irq(&pwq->pool->lock); 2955 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2956 spin_unlock_irq(&pwq->pool->lock); 2957 2958 if (drained) 2959 continue; 2960 2961 if (++flush_cnt == 10 || 2962 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2963 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2964 wq->name, flush_cnt); 2965 2966 mutex_unlock(&wq->mutex); 2967 goto reflush; 2968 } 2969 2970 if (!--wq->nr_drainers) 2971 wq->flags &= ~__WQ_DRAINING; 2972 mutex_unlock(&wq->mutex); 2973 } 2974 EXPORT_SYMBOL_GPL(drain_workqueue); 2975 2976 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2977 bool from_cancel) 2978 { 2979 struct worker *worker = NULL; 2980 struct worker_pool *pool; 2981 struct pool_workqueue *pwq; 2982 2983 might_sleep(); 2984 2985 rcu_read_lock(); 2986 pool = get_work_pool(work); 2987 if (!pool) { 2988 rcu_read_unlock(); 2989 return false; 2990 } 2991 2992 spin_lock_irq(&pool->lock); 2993 /* see the comment in try_to_grab_pending() with the same code */ 2994 pwq = get_work_pwq(work); 2995 if (pwq) { 2996 if (unlikely(pwq->pool != pool)) 2997 goto already_gone; 2998 } else { 2999 worker = find_worker_executing_work(pool, work); 3000 if (!worker) 3001 goto already_gone; 3002 pwq = worker->current_pwq; 3003 } 3004 3005 check_flush_dependency(pwq->wq, work); 3006 3007 insert_wq_barrier(pwq, barr, work, worker); 3008 spin_unlock_irq(&pool->lock); 3009 3010 /* 3011 * Force a lock recursion deadlock when using flush_work() inside a 3012 * single-threaded or rescuer equipped workqueue. 3013 * 3014 * For single threaded workqueues the deadlock happens when the work 3015 * is after the work issuing the flush_work(). For rescuer equipped 3016 * workqueues the deadlock happens when the rescuer stalls, blocking 3017 * forward progress. 3018 */ 3019 if (!from_cancel && 3020 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3021 lock_map_acquire(&pwq->wq->lockdep_map); 3022 lock_map_release(&pwq->wq->lockdep_map); 3023 } 3024 rcu_read_unlock(); 3025 return true; 3026 already_gone: 3027 spin_unlock_irq(&pool->lock); 3028 rcu_read_unlock(); 3029 return false; 3030 } 3031 3032 static bool __flush_work(struct work_struct *work, bool from_cancel) 3033 { 3034 struct wq_barrier barr; 3035 3036 if (WARN_ON(!wq_online)) 3037 return false; 3038 3039 if (WARN_ON(!work->func)) 3040 return false; 3041 3042 if (!from_cancel) { 3043 lock_map_acquire(&work->lockdep_map); 3044 lock_map_release(&work->lockdep_map); 3045 } 3046 3047 if (start_flush_work(work, &barr, from_cancel)) { 3048 wait_for_completion(&barr.done); 3049 destroy_work_on_stack(&barr.work); 3050 return true; 3051 } else { 3052 return false; 3053 } 3054 } 3055 3056 /** 3057 * flush_work - wait for a work to finish executing the last queueing instance 3058 * @work: the work to flush 3059 * 3060 * Wait until @work has finished execution. @work is guaranteed to be idle 3061 * on return if it hasn't been requeued since flush started. 3062 * 3063 * Return: 3064 * %true if flush_work() waited for the work to finish execution, 3065 * %false if it was already idle. 3066 */ 3067 bool flush_work(struct work_struct *work) 3068 { 3069 return __flush_work(work, false); 3070 } 3071 EXPORT_SYMBOL_GPL(flush_work); 3072 3073 struct cwt_wait { 3074 wait_queue_entry_t wait; 3075 struct work_struct *work; 3076 }; 3077 3078 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3079 { 3080 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3081 3082 if (cwait->work != key) 3083 return 0; 3084 return autoremove_wake_function(wait, mode, sync, key); 3085 } 3086 3087 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3088 { 3089 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3090 unsigned long flags; 3091 int ret; 3092 3093 do { 3094 ret = try_to_grab_pending(work, is_dwork, &flags); 3095 /* 3096 * If someone else is already canceling, wait for it to 3097 * finish. flush_work() doesn't work for PREEMPT_NONE 3098 * because we may get scheduled between @work's completion 3099 * and the other canceling task resuming and clearing 3100 * CANCELING - flush_work() will return false immediately 3101 * as @work is no longer busy, try_to_grab_pending() will 3102 * return -ENOENT as @work is still being canceled and the 3103 * other canceling task won't be able to clear CANCELING as 3104 * we're hogging the CPU. 3105 * 3106 * Let's wait for completion using a waitqueue. As this 3107 * may lead to the thundering herd problem, use a custom 3108 * wake function which matches @work along with exclusive 3109 * wait and wakeup. 3110 */ 3111 if (unlikely(ret == -ENOENT)) { 3112 struct cwt_wait cwait; 3113 3114 init_wait(&cwait.wait); 3115 cwait.wait.func = cwt_wakefn; 3116 cwait.work = work; 3117 3118 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3119 TASK_UNINTERRUPTIBLE); 3120 if (work_is_canceling(work)) 3121 schedule(); 3122 finish_wait(&cancel_waitq, &cwait.wait); 3123 } 3124 } while (unlikely(ret < 0)); 3125 3126 /* tell other tasks trying to grab @work to back off */ 3127 mark_work_canceling(work); 3128 local_irq_restore(flags); 3129 3130 /* 3131 * This allows canceling during early boot. We know that @work 3132 * isn't executing. 3133 */ 3134 if (wq_online) 3135 __flush_work(work, true); 3136 3137 clear_work_data(work); 3138 3139 /* 3140 * Paired with prepare_to_wait() above so that either 3141 * waitqueue_active() is visible here or !work_is_canceling() is 3142 * visible there. 3143 */ 3144 smp_mb(); 3145 if (waitqueue_active(&cancel_waitq)) 3146 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3147 3148 return ret; 3149 } 3150 3151 /** 3152 * cancel_work_sync - cancel a work and wait for it to finish 3153 * @work: the work to cancel 3154 * 3155 * Cancel @work and wait for its execution to finish. This function 3156 * can be used even if the work re-queues itself or migrates to 3157 * another workqueue. On return from this function, @work is 3158 * guaranteed to be not pending or executing on any CPU. 3159 * 3160 * cancel_work_sync(&delayed_work->work) must not be used for 3161 * delayed_work's. Use cancel_delayed_work_sync() instead. 3162 * 3163 * The caller must ensure that the workqueue on which @work was last 3164 * queued can't be destroyed before this function returns. 3165 * 3166 * Return: 3167 * %true if @work was pending, %false otherwise. 3168 */ 3169 bool cancel_work_sync(struct work_struct *work) 3170 { 3171 return __cancel_work_timer(work, false); 3172 } 3173 EXPORT_SYMBOL_GPL(cancel_work_sync); 3174 3175 /** 3176 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3177 * @dwork: the delayed work to flush 3178 * 3179 * Delayed timer is cancelled and the pending work is queued for 3180 * immediate execution. Like flush_work(), this function only 3181 * considers the last queueing instance of @dwork. 3182 * 3183 * Return: 3184 * %true if flush_work() waited for the work to finish execution, 3185 * %false if it was already idle. 3186 */ 3187 bool flush_delayed_work(struct delayed_work *dwork) 3188 { 3189 local_irq_disable(); 3190 if (del_timer_sync(&dwork->timer)) 3191 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3192 local_irq_enable(); 3193 return flush_work(&dwork->work); 3194 } 3195 EXPORT_SYMBOL(flush_delayed_work); 3196 3197 /** 3198 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3199 * @rwork: the rcu work to flush 3200 * 3201 * Return: 3202 * %true if flush_rcu_work() waited for the work to finish execution, 3203 * %false if it was already idle. 3204 */ 3205 bool flush_rcu_work(struct rcu_work *rwork) 3206 { 3207 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3208 rcu_barrier(); 3209 flush_work(&rwork->work); 3210 return true; 3211 } else { 3212 return flush_work(&rwork->work); 3213 } 3214 } 3215 EXPORT_SYMBOL(flush_rcu_work); 3216 3217 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3218 { 3219 unsigned long flags; 3220 int ret; 3221 3222 do { 3223 ret = try_to_grab_pending(work, is_dwork, &flags); 3224 } while (unlikely(ret == -EAGAIN)); 3225 3226 if (unlikely(ret < 0)) 3227 return false; 3228 3229 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3230 local_irq_restore(flags); 3231 return ret; 3232 } 3233 3234 /** 3235 * cancel_delayed_work - cancel a delayed work 3236 * @dwork: delayed_work to cancel 3237 * 3238 * Kill off a pending delayed_work. 3239 * 3240 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3241 * pending. 3242 * 3243 * Note: 3244 * The work callback function may still be running on return, unless 3245 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3246 * use cancel_delayed_work_sync() to wait on it. 3247 * 3248 * This function is safe to call from any context including IRQ handler. 3249 */ 3250 bool cancel_delayed_work(struct delayed_work *dwork) 3251 { 3252 return __cancel_work(&dwork->work, true); 3253 } 3254 EXPORT_SYMBOL(cancel_delayed_work); 3255 3256 /** 3257 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3258 * @dwork: the delayed work cancel 3259 * 3260 * This is cancel_work_sync() for delayed works. 3261 * 3262 * Return: 3263 * %true if @dwork was pending, %false otherwise. 3264 */ 3265 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3266 { 3267 return __cancel_work_timer(&dwork->work, true); 3268 } 3269 EXPORT_SYMBOL(cancel_delayed_work_sync); 3270 3271 /** 3272 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3273 * @func: the function to call 3274 * 3275 * schedule_on_each_cpu() executes @func on each online CPU using the 3276 * system workqueue and blocks until all CPUs have completed. 3277 * schedule_on_each_cpu() is very slow. 3278 * 3279 * Return: 3280 * 0 on success, -errno on failure. 3281 */ 3282 int schedule_on_each_cpu(work_func_t func) 3283 { 3284 int cpu; 3285 struct work_struct __percpu *works; 3286 3287 works = alloc_percpu(struct work_struct); 3288 if (!works) 3289 return -ENOMEM; 3290 3291 get_online_cpus(); 3292 3293 for_each_online_cpu(cpu) { 3294 struct work_struct *work = per_cpu_ptr(works, cpu); 3295 3296 INIT_WORK(work, func); 3297 schedule_work_on(cpu, work); 3298 } 3299 3300 for_each_online_cpu(cpu) 3301 flush_work(per_cpu_ptr(works, cpu)); 3302 3303 put_online_cpus(); 3304 free_percpu(works); 3305 return 0; 3306 } 3307 3308 /** 3309 * execute_in_process_context - reliably execute the routine with user context 3310 * @fn: the function to execute 3311 * @ew: guaranteed storage for the execute work structure (must 3312 * be available when the work executes) 3313 * 3314 * Executes the function immediately if process context is available, 3315 * otherwise schedules the function for delayed execution. 3316 * 3317 * Return: 0 - function was executed 3318 * 1 - function was scheduled for execution 3319 */ 3320 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3321 { 3322 if (!in_interrupt()) { 3323 fn(&ew->work); 3324 return 0; 3325 } 3326 3327 INIT_WORK(&ew->work, fn); 3328 schedule_work(&ew->work); 3329 3330 return 1; 3331 } 3332 EXPORT_SYMBOL_GPL(execute_in_process_context); 3333 3334 /** 3335 * free_workqueue_attrs - free a workqueue_attrs 3336 * @attrs: workqueue_attrs to free 3337 * 3338 * Undo alloc_workqueue_attrs(). 3339 */ 3340 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3341 { 3342 if (attrs) { 3343 free_cpumask_var(attrs->cpumask); 3344 kfree(attrs); 3345 } 3346 } 3347 3348 /** 3349 * alloc_workqueue_attrs - allocate a workqueue_attrs 3350 * 3351 * Allocate a new workqueue_attrs, initialize with default settings and 3352 * return it. 3353 * 3354 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3355 */ 3356 struct workqueue_attrs *alloc_workqueue_attrs(void) 3357 { 3358 struct workqueue_attrs *attrs; 3359 3360 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 3361 if (!attrs) 3362 goto fail; 3363 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 3364 goto fail; 3365 3366 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3367 return attrs; 3368 fail: 3369 free_workqueue_attrs(attrs); 3370 return NULL; 3371 } 3372 3373 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3374 const struct workqueue_attrs *from) 3375 { 3376 to->nice = from->nice; 3377 cpumask_copy(to->cpumask, from->cpumask); 3378 /* 3379 * Unlike hash and equality test, this function doesn't ignore 3380 * ->no_numa as it is used for both pool and wq attrs. Instead, 3381 * get_unbound_pool() explicitly clears ->no_numa after copying. 3382 */ 3383 to->no_numa = from->no_numa; 3384 } 3385 3386 /* hash value of the content of @attr */ 3387 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3388 { 3389 u32 hash = 0; 3390 3391 hash = jhash_1word(attrs->nice, hash); 3392 hash = jhash(cpumask_bits(attrs->cpumask), 3393 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3394 return hash; 3395 } 3396 3397 /* content equality test */ 3398 static bool wqattrs_equal(const struct workqueue_attrs *a, 3399 const struct workqueue_attrs *b) 3400 { 3401 if (a->nice != b->nice) 3402 return false; 3403 if (!cpumask_equal(a->cpumask, b->cpumask)) 3404 return false; 3405 return true; 3406 } 3407 3408 /** 3409 * init_worker_pool - initialize a newly zalloc'd worker_pool 3410 * @pool: worker_pool to initialize 3411 * 3412 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3413 * 3414 * Return: 0 on success, -errno on failure. Even on failure, all fields 3415 * inside @pool proper are initialized and put_unbound_pool() can be called 3416 * on @pool safely to release it. 3417 */ 3418 static int init_worker_pool(struct worker_pool *pool) 3419 { 3420 spin_lock_init(&pool->lock); 3421 pool->id = -1; 3422 pool->cpu = -1; 3423 pool->node = NUMA_NO_NODE; 3424 pool->flags |= POOL_DISASSOCIATED; 3425 pool->watchdog_ts = jiffies; 3426 INIT_LIST_HEAD(&pool->worklist); 3427 INIT_LIST_HEAD(&pool->idle_list); 3428 hash_init(pool->busy_hash); 3429 3430 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3431 3432 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3433 3434 INIT_LIST_HEAD(&pool->workers); 3435 3436 ida_init(&pool->worker_ida); 3437 INIT_HLIST_NODE(&pool->hash_node); 3438 pool->refcnt = 1; 3439 3440 /* shouldn't fail above this point */ 3441 pool->attrs = alloc_workqueue_attrs(); 3442 if (!pool->attrs) 3443 return -ENOMEM; 3444 return 0; 3445 } 3446 3447 #ifdef CONFIG_LOCKDEP 3448 static void wq_init_lockdep(struct workqueue_struct *wq) 3449 { 3450 char *lock_name; 3451 3452 lockdep_register_key(&wq->key); 3453 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3454 if (!lock_name) 3455 lock_name = wq->name; 3456 3457 wq->lock_name = lock_name; 3458 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3459 } 3460 3461 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3462 { 3463 lockdep_unregister_key(&wq->key); 3464 } 3465 3466 static void wq_free_lockdep(struct workqueue_struct *wq) 3467 { 3468 if (wq->lock_name != wq->name) 3469 kfree(wq->lock_name); 3470 } 3471 #else 3472 static void wq_init_lockdep(struct workqueue_struct *wq) 3473 { 3474 } 3475 3476 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3477 { 3478 } 3479 3480 static void wq_free_lockdep(struct workqueue_struct *wq) 3481 { 3482 } 3483 #endif 3484 3485 static void rcu_free_wq(struct rcu_head *rcu) 3486 { 3487 struct workqueue_struct *wq = 3488 container_of(rcu, struct workqueue_struct, rcu); 3489 3490 wq_free_lockdep(wq); 3491 3492 if (!(wq->flags & WQ_UNBOUND)) 3493 free_percpu(wq->cpu_pwqs); 3494 else 3495 free_workqueue_attrs(wq->unbound_attrs); 3496 3497 kfree(wq->rescuer); 3498 kfree(wq); 3499 } 3500 3501 static void rcu_free_pool(struct rcu_head *rcu) 3502 { 3503 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3504 3505 ida_destroy(&pool->worker_ida); 3506 free_workqueue_attrs(pool->attrs); 3507 kfree(pool); 3508 } 3509 3510 /** 3511 * put_unbound_pool - put a worker_pool 3512 * @pool: worker_pool to put 3513 * 3514 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 3515 * safe manner. get_unbound_pool() calls this function on its failure path 3516 * and this function should be able to release pools which went through, 3517 * successfully or not, init_worker_pool(). 3518 * 3519 * Should be called with wq_pool_mutex held. 3520 */ 3521 static void put_unbound_pool(struct worker_pool *pool) 3522 { 3523 DECLARE_COMPLETION_ONSTACK(detach_completion); 3524 struct worker *worker; 3525 3526 lockdep_assert_held(&wq_pool_mutex); 3527 3528 if (--pool->refcnt) 3529 return; 3530 3531 /* sanity checks */ 3532 if (WARN_ON(!(pool->cpu < 0)) || 3533 WARN_ON(!list_empty(&pool->worklist))) 3534 return; 3535 3536 /* release id and unhash */ 3537 if (pool->id >= 0) 3538 idr_remove(&worker_pool_idr, pool->id); 3539 hash_del(&pool->hash_node); 3540 3541 /* 3542 * Become the manager and destroy all workers. This prevents 3543 * @pool's workers from blocking on attach_mutex. We're the last 3544 * manager and @pool gets freed with the flag set. 3545 */ 3546 spin_lock_irq(&pool->lock); 3547 wait_event_lock_irq(wq_manager_wait, 3548 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock); 3549 pool->flags |= POOL_MANAGER_ACTIVE; 3550 3551 while ((worker = first_idle_worker(pool))) 3552 destroy_worker(worker); 3553 WARN_ON(pool->nr_workers || pool->nr_idle); 3554 spin_unlock_irq(&pool->lock); 3555 3556 mutex_lock(&wq_pool_attach_mutex); 3557 if (!list_empty(&pool->workers)) 3558 pool->detach_completion = &detach_completion; 3559 mutex_unlock(&wq_pool_attach_mutex); 3560 3561 if (pool->detach_completion) 3562 wait_for_completion(pool->detach_completion); 3563 3564 /* shut down the timers */ 3565 del_timer_sync(&pool->idle_timer); 3566 del_timer_sync(&pool->mayday_timer); 3567 3568 /* RCU protected to allow dereferences from get_work_pool() */ 3569 call_rcu(&pool->rcu, rcu_free_pool); 3570 } 3571 3572 /** 3573 * get_unbound_pool - get a worker_pool with the specified attributes 3574 * @attrs: the attributes of the worker_pool to get 3575 * 3576 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3577 * reference count and return it. If there already is a matching 3578 * worker_pool, it will be used; otherwise, this function attempts to 3579 * create a new one. 3580 * 3581 * Should be called with wq_pool_mutex held. 3582 * 3583 * Return: On success, a worker_pool with the same attributes as @attrs. 3584 * On failure, %NULL. 3585 */ 3586 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3587 { 3588 u32 hash = wqattrs_hash(attrs); 3589 struct worker_pool *pool; 3590 int node; 3591 int target_node = NUMA_NO_NODE; 3592 3593 lockdep_assert_held(&wq_pool_mutex); 3594 3595 /* do we already have a matching pool? */ 3596 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3597 if (wqattrs_equal(pool->attrs, attrs)) { 3598 pool->refcnt++; 3599 return pool; 3600 } 3601 } 3602 3603 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3604 if (wq_numa_enabled) { 3605 for_each_node(node) { 3606 if (cpumask_subset(attrs->cpumask, 3607 wq_numa_possible_cpumask[node])) { 3608 target_node = node; 3609 break; 3610 } 3611 } 3612 } 3613 3614 /* nope, create a new one */ 3615 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3616 if (!pool || init_worker_pool(pool) < 0) 3617 goto fail; 3618 3619 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3620 copy_workqueue_attrs(pool->attrs, attrs); 3621 pool->node = target_node; 3622 3623 /* 3624 * no_numa isn't a worker_pool attribute, always clear it. See 3625 * 'struct workqueue_attrs' comments for detail. 3626 */ 3627 pool->attrs->no_numa = false; 3628 3629 if (worker_pool_assign_id(pool) < 0) 3630 goto fail; 3631 3632 /* create and start the initial worker */ 3633 if (wq_online && !create_worker(pool)) 3634 goto fail; 3635 3636 /* install */ 3637 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3638 3639 return pool; 3640 fail: 3641 if (pool) 3642 put_unbound_pool(pool); 3643 return NULL; 3644 } 3645 3646 static void rcu_free_pwq(struct rcu_head *rcu) 3647 { 3648 kmem_cache_free(pwq_cache, 3649 container_of(rcu, struct pool_workqueue, rcu)); 3650 } 3651 3652 /* 3653 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3654 * and needs to be destroyed. 3655 */ 3656 static void pwq_unbound_release_workfn(struct work_struct *work) 3657 { 3658 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3659 unbound_release_work); 3660 struct workqueue_struct *wq = pwq->wq; 3661 struct worker_pool *pool = pwq->pool; 3662 bool is_last; 3663 3664 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3665 return; 3666 3667 mutex_lock(&wq->mutex); 3668 list_del_rcu(&pwq->pwqs_node); 3669 is_last = list_empty(&wq->pwqs); 3670 mutex_unlock(&wq->mutex); 3671 3672 mutex_lock(&wq_pool_mutex); 3673 put_unbound_pool(pool); 3674 mutex_unlock(&wq_pool_mutex); 3675 3676 call_rcu(&pwq->rcu, rcu_free_pwq); 3677 3678 /* 3679 * If we're the last pwq going away, @wq is already dead and no one 3680 * is gonna access it anymore. Schedule RCU free. 3681 */ 3682 if (is_last) { 3683 wq_unregister_lockdep(wq); 3684 call_rcu(&wq->rcu, rcu_free_wq); 3685 } 3686 } 3687 3688 /** 3689 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3690 * @pwq: target pool_workqueue 3691 * 3692 * If @pwq isn't freezing, set @pwq->max_active to the associated 3693 * workqueue's saved_max_active and activate delayed work items 3694 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3695 */ 3696 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3697 { 3698 struct workqueue_struct *wq = pwq->wq; 3699 bool freezable = wq->flags & WQ_FREEZABLE; 3700 unsigned long flags; 3701 3702 /* for @wq->saved_max_active */ 3703 lockdep_assert_held(&wq->mutex); 3704 3705 /* fast exit for non-freezable wqs */ 3706 if (!freezable && pwq->max_active == wq->saved_max_active) 3707 return; 3708 3709 /* this function can be called during early boot w/ irq disabled */ 3710 spin_lock_irqsave(&pwq->pool->lock, flags); 3711 3712 /* 3713 * During [un]freezing, the caller is responsible for ensuring that 3714 * this function is called at least once after @workqueue_freezing 3715 * is updated and visible. 3716 */ 3717 if (!freezable || !workqueue_freezing) { 3718 pwq->max_active = wq->saved_max_active; 3719 3720 while (!list_empty(&pwq->delayed_works) && 3721 pwq->nr_active < pwq->max_active) 3722 pwq_activate_first_delayed(pwq); 3723 3724 /* 3725 * Need to kick a worker after thawed or an unbound wq's 3726 * max_active is bumped. It's a slow path. Do it always. 3727 */ 3728 wake_up_worker(pwq->pool); 3729 } else { 3730 pwq->max_active = 0; 3731 } 3732 3733 spin_unlock_irqrestore(&pwq->pool->lock, flags); 3734 } 3735 3736 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3737 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3738 struct worker_pool *pool) 3739 { 3740 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3741 3742 memset(pwq, 0, sizeof(*pwq)); 3743 3744 pwq->pool = pool; 3745 pwq->wq = wq; 3746 pwq->flush_color = -1; 3747 pwq->refcnt = 1; 3748 INIT_LIST_HEAD(&pwq->delayed_works); 3749 INIT_LIST_HEAD(&pwq->pwqs_node); 3750 INIT_LIST_HEAD(&pwq->mayday_node); 3751 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3752 } 3753 3754 /* sync @pwq with the current state of its associated wq and link it */ 3755 static void link_pwq(struct pool_workqueue *pwq) 3756 { 3757 struct workqueue_struct *wq = pwq->wq; 3758 3759 lockdep_assert_held(&wq->mutex); 3760 3761 /* may be called multiple times, ignore if already linked */ 3762 if (!list_empty(&pwq->pwqs_node)) 3763 return; 3764 3765 /* set the matching work_color */ 3766 pwq->work_color = wq->work_color; 3767 3768 /* sync max_active to the current setting */ 3769 pwq_adjust_max_active(pwq); 3770 3771 /* link in @pwq */ 3772 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3773 } 3774 3775 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3776 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3777 const struct workqueue_attrs *attrs) 3778 { 3779 struct worker_pool *pool; 3780 struct pool_workqueue *pwq; 3781 3782 lockdep_assert_held(&wq_pool_mutex); 3783 3784 pool = get_unbound_pool(attrs); 3785 if (!pool) 3786 return NULL; 3787 3788 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3789 if (!pwq) { 3790 put_unbound_pool(pool); 3791 return NULL; 3792 } 3793 3794 init_pwq(pwq, wq, pool); 3795 return pwq; 3796 } 3797 3798 /** 3799 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3800 * @attrs: the wq_attrs of the default pwq of the target workqueue 3801 * @node: the target NUMA node 3802 * @cpu_going_down: if >= 0, the CPU to consider as offline 3803 * @cpumask: outarg, the resulting cpumask 3804 * 3805 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3806 * @cpu_going_down is >= 0, that cpu is considered offline during 3807 * calculation. The result is stored in @cpumask. 3808 * 3809 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3810 * enabled and @node has online CPUs requested by @attrs, the returned 3811 * cpumask is the intersection of the possible CPUs of @node and 3812 * @attrs->cpumask. 3813 * 3814 * The caller is responsible for ensuring that the cpumask of @node stays 3815 * stable. 3816 * 3817 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3818 * %false if equal. 3819 */ 3820 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3821 int cpu_going_down, cpumask_t *cpumask) 3822 { 3823 if (!wq_numa_enabled || attrs->no_numa) 3824 goto use_dfl; 3825 3826 /* does @node have any online CPUs @attrs wants? */ 3827 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3828 if (cpu_going_down >= 0) 3829 cpumask_clear_cpu(cpu_going_down, cpumask); 3830 3831 if (cpumask_empty(cpumask)) 3832 goto use_dfl; 3833 3834 /* yeap, return possible CPUs in @node that @attrs wants */ 3835 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3836 3837 if (cpumask_empty(cpumask)) { 3838 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3839 "possible intersect\n"); 3840 return false; 3841 } 3842 3843 return !cpumask_equal(cpumask, attrs->cpumask); 3844 3845 use_dfl: 3846 cpumask_copy(cpumask, attrs->cpumask); 3847 return false; 3848 } 3849 3850 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3851 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3852 int node, 3853 struct pool_workqueue *pwq) 3854 { 3855 struct pool_workqueue *old_pwq; 3856 3857 lockdep_assert_held(&wq_pool_mutex); 3858 lockdep_assert_held(&wq->mutex); 3859 3860 /* link_pwq() can handle duplicate calls */ 3861 link_pwq(pwq); 3862 3863 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3864 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3865 return old_pwq; 3866 } 3867 3868 /* context to store the prepared attrs & pwqs before applying */ 3869 struct apply_wqattrs_ctx { 3870 struct workqueue_struct *wq; /* target workqueue */ 3871 struct workqueue_attrs *attrs; /* attrs to apply */ 3872 struct list_head list; /* queued for batching commit */ 3873 struct pool_workqueue *dfl_pwq; 3874 struct pool_workqueue *pwq_tbl[]; 3875 }; 3876 3877 /* free the resources after success or abort */ 3878 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3879 { 3880 if (ctx) { 3881 int node; 3882 3883 for_each_node(node) 3884 put_pwq_unlocked(ctx->pwq_tbl[node]); 3885 put_pwq_unlocked(ctx->dfl_pwq); 3886 3887 free_workqueue_attrs(ctx->attrs); 3888 3889 kfree(ctx); 3890 } 3891 } 3892 3893 /* allocate the attrs and pwqs for later installation */ 3894 static struct apply_wqattrs_ctx * 3895 apply_wqattrs_prepare(struct workqueue_struct *wq, 3896 const struct workqueue_attrs *attrs) 3897 { 3898 struct apply_wqattrs_ctx *ctx; 3899 struct workqueue_attrs *new_attrs, *tmp_attrs; 3900 int node; 3901 3902 lockdep_assert_held(&wq_pool_mutex); 3903 3904 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 3905 3906 new_attrs = alloc_workqueue_attrs(); 3907 tmp_attrs = alloc_workqueue_attrs(); 3908 if (!ctx || !new_attrs || !tmp_attrs) 3909 goto out_free; 3910 3911 /* 3912 * Calculate the attrs of the default pwq. 3913 * If the user configured cpumask doesn't overlap with the 3914 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3915 */ 3916 copy_workqueue_attrs(new_attrs, attrs); 3917 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3918 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3919 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3920 3921 /* 3922 * We may create multiple pwqs with differing cpumasks. Make a 3923 * copy of @new_attrs which will be modified and used to obtain 3924 * pools. 3925 */ 3926 copy_workqueue_attrs(tmp_attrs, new_attrs); 3927 3928 /* 3929 * If something goes wrong during CPU up/down, we'll fall back to 3930 * the default pwq covering whole @attrs->cpumask. Always create 3931 * it even if we don't use it immediately. 3932 */ 3933 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3934 if (!ctx->dfl_pwq) 3935 goto out_free; 3936 3937 for_each_node(node) { 3938 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3939 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3940 if (!ctx->pwq_tbl[node]) 3941 goto out_free; 3942 } else { 3943 ctx->dfl_pwq->refcnt++; 3944 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3945 } 3946 } 3947 3948 /* save the user configured attrs and sanitize it. */ 3949 copy_workqueue_attrs(new_attrs, attrs); 3950 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3951 ctx->attrs = new_attrs; 3952 3953 ctx->wq = wq; 3954 free_workqueue_attrs(tmp_attrs); 3955 return ctx; 3956 3957 out_free: 3958 free_workqueue_attrs(tmp_attrs); 3959 free_workqueue_attrs(new_attrs); 3960 apply_wqattrs_cleanup(ctx); 3961 return NULL; 3962 } 3963 3964 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3965 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3966 { 3967 int node; 3968 3969 /* all pwqs have been created successfully, let's install'em */ 3970 mutex_lock(&ctx->wq->mutex); 3971 3972 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3973 3974 /* save the previous pwq and install the new one */ 3975 for_each_node(node) 3976 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3977 ctx->pwq_tbl[node]); 3978 3979 /* @dfl_pwq might not have been used, ensure it's linked */ 3980 link_pwq(ctx->dfl_pwq); 3981 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3982 3983 mutex_unlock(&ctx->wq->mutex); 3984 } 3985 3986 static void apply_wqattrs_lock(void) 3987 { 3988 /* CPUs should stay stable across pwq creations and installations */ 3989 get_online_cpus(); 3990 mutex_lock(&wq_pool_mutex); 3991 } 3992 3993 static void apply_wqattrs_unlock(void) 3994 { 3995 mutex_unlock(&wq_pool_mutex); 3996 put_online_cpus(); 3997 } 3998 3999 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 4000 const struct workqueue_attrs *attrs) 4001 { 4002 struct apply_wqattrs_ctx *ctx; 4003 4004 /* only unbound workqueues can change attributes */ 4005 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 4006 return -EINVAL; 4007 4008 /* creating multiple pwqs breaks ordering guarantee */ 4009 if (!list_empty(&wq->pwqs)) { 4010 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4011 return -EINVAL; 4012 4013 wq->flags &= ~__WQ_ORDERED; 4014 } 4015 4016 ctx = apply_wqattrs_prepare(wq, attrs); 4017 if (!ctx) 4018 return -ENOMEM; 4019 4020 /* the ctx has been prepared successfully, let's commit it */ 4021 apply_wqattrs_commit(ctx); 4022 apply_wqattrs_cleanup(ctx); 4023 4024 return 0; 4025 } 4026 4027 /** 4028 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4029 * @wq: the target workqueue 4030 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4031 * 4032 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 4033 * machines, this function maps a separate pwq to each NUMA node with 4034 * possibles CPUs in @attrs->cpumask so that work items are affine to the 4035 * NUMA node it was issued on. Older pwqs are released as in-flight work 4036 * items finish. Note that a work item which repeatedly requeues itself 4037 * back-to-back will stay on its current pwq. 4038 * 4039 * Performs GFP_KERNEL allocations. 4040 * 4041 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus(). 4042 * 4043 * Return: 0 on success and -errno on failure. 4044 */ 4045 int apply_workqueue_attrs(struct workqueue_struct *wq, 4046 const struct workqueue_attrs *attrs) 4047 { 4048 int ret; 4049 4050 lockdep_assert_cpus_held(); 4051 4052 mutex_lock(&wq_pool_mutex); 4053 ret = apply_workqueue_attrs_locked(wq, attrs); 4054 mutex_unlock(&wq_pool_mutex); 4055 4056 return ret; 4057 } 4058 4059 /** 4060 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4061 * @wq: the target workqueue 4062 * @cpu: the CPU coming up or going down 4063 * @online: whether @cpu is coming up or going down 4064 * 4065 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4066 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4067 * @wq accordingly. 4068 * 4069 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4070 * falls back to @wq->dfl_pwq which may not be optimal but is always 4071 * correct. 4072 * 4073 * Note that when the last allowed CPU of a NUMA node goes offline for a 4074 * workqueue with a cpumask spanning multiple nodes, the workers which were 4075 * already executing the work items for the workqueue will lose their CPU 4076 * affinity and may execute on any CPU. This is similar to how per-cpu 4077 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4078 * affinity, it's the user's responsibility to flush the work item from 4079 * CPU_DOWN_PREPARE. 4080 */ 4081 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4082 bool online) 4083 { 4084 int node = cpu_to_node(cpu); 4085 int cpu_off = online ? -1 : cpu; 4086 struct pool_workqueue *old_pwq = NULL, *pwq; 4087 struct workqueue_attrs *target_attrs; 4088 cpumask_t *cpumask; 4089 4090 lockdep_assert_held(&wq_pool_mutex); 4091 4092 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 4093 wq->unbound_attrs->no_numa) 4094 return; 4095 4096 /* 4097 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4098 * Let's use a preallocated one. The following buf is protected by 4099 * CPU hotplug exclusion. 4100 */ 4101 target_attrs = wq_update_unbound_numa_attrs_buf; 4102 cpumask = target_attrs->cpumask; 4103 4104 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4105 pwq = unbound_pwq_by_node(wq, node); 4106 4107 /* 4108 * Let's determine what needs to be done. If the target cpumask is 4109 * different from the default pwq's, we need to compare it to @pwq's 4110 * and create a new one if they don't match. If the target cpumask 4111 * equals the default pwq's, the default pwq should be used. 4112 */ 4113 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4114 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4115 return; 4116 } else { 4117 goto use_dfl_pwq; 4118 } 4119 4120 /* create a new pwq */ 4121 pwq = alloc_unbound_pwq(wq, target_attrs); 4122 if (!pwq) { 4123 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4124 wq->name); 4125 goto use_dfl_pwq; 4126 } 4127 4128 /* Install the new pwq. */ 4129 mutex_lock(&wq->mutex); 4130 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4131 goto out_unlock; 4132 4133 use_dfl_pwq: 4134 mutex_lock(&wq->mutex); 4135 spin_lock_irq(&wq->dfl_pwq->pool->lock); 4136 get_pwq(wq->dfl_pwq); 4137 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4138 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4139 out_unlock: 4140 mutex_unlock(&wq->mutex); 4141 put_pwq_unlocked(old_pwq); 4142 } 4143 4144 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4145 { 4146 bool highpri = wq->flags & WQ_HIGHPRI; 4147 int cpu, ret; 4148 4149 if (!(wq->flags & WQ_UNBOUND)) { 4150 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4151 if (!wq->cpu_pwqs) 4152 return -ENOMEM; 4153 4154 for_each_possible_cpu(cpu) { 4155 struct pool_workqueue *pwq = 4156 per_cpu_ptr(wq->cpu_pwqs, cpu); 4157 struct worker_pool *cpu_pools = 4158 per_cpu(cpu_worker_pools, cpu); 4159 4160 init_pwq(pwq, wq, &cpu_pools[highpri]); 4161 4162 mutex_lock(&wq->mutex); 4163 link_pwq(pwq); 4164 mutex_unlock(&wq->mutex); 4165 } 4166 return 0; 4167 } 4168 4169 get_online_cpus(); 4170 if (wq->flags & __WQ_ORDERED) { 4171 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4172 /* there should only be single pwq for ordering guarantee */ 4173 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4174 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4175 "ordering guarantee broken for workqueue %s\n", wq->name); 4176 } else { 4177 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4178 } 4179 put_online_cpus(); 4180 4181 return ret; 4182 } 4183 4184 static int wq_clamp_max_active(int max_active, unsigned int flags, 4185 const char *name) 4186 { 4187 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4188 4189 if (max_active < 1 || max_active > lim) 4190 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4191 max_active, name, 1, lim); 4192 4193 return clamp_val(max_active, 1, lim); 4194 } 4195 4196 /* 4197 * Workqueues which may be used during memory reclaim should have a rescuer 4198 * to guarantee forward progress. 4199 */ 4200 static int init_rescuer(struct workqueue_struct *wq) 4201 { 4202 struct worker *rescuer; 4203 int ret; 4204 4205 if (!(wq->flags & WQ_MEM_RECLAIM)) 4206 return 0; 4207 4208 rescuer = alloc_worker(NUMA_NO_NODE); 4209 if (!rescuer) 4210 return -ENOMEM; 4211 4212 rescuer->rescue_wq = wq; 4213 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4214 ret = PTR_ERR_OR_ZERO(rescuer->task); 4215 if (ret) { 4216 kfree(rescuer); 4217 return ret; 4218 } 4219 4220 wq->rescuer = rescuer; 4221 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4222 wake_up_process(rescuer->task); 4223 4224 return 0; 4225 } 4226 4227 __printf(1, 4) 4228 struct workqueue_struct *alloc_workqueue(const char *fmt, 4229 unsigned int flags, 4230 int max_active, ...) 4231 { 4232 size_t tbl_size = 0; 4233 va_list args; 4234 struct workqueue_struct *wq; 4235 struct pool_workqueue *pwq; 4236 4237 /* 4238 * Unbound && max_active == 1 used to imply ordered, which is no 4239 * longer the case on NUMA machines due to per-node pools. While 4240 * alloc_ordered_workqueue() is the right way to create an ordered 4241 * workqueue, keep the previous behavior to avoid subtle breakages 4242 * on NUMA. 4243 */ 4244 if ((flags & WQ_UNBOUND) && max_active == 1) 4245 flags |= __WQ_ORDERED; 4246 4247 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4248 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4249 flags |= WQ_UNBOUND; 4250 4251 /* allocate wq and format name */ 4252 if (flags & WQ_UNBOUND) 4253 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4254 4255 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4256 if (!wq) 4257 return NULL; 4258 4259 if (flags & WQ_UNBOUND) { 4260 wq->unbound_attrs = alloc_workqueue_attrs(); 4261 if (!wq->unbound_attrs) 4262 goto err_free_wq; 4263 } 4264 4265 va_start(args, max_active); 4266 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4267 va_end(args); 4268 4269 max_active = max_active ?: WQ_DFL_ACTIVE; 4270 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4271 4272 /* init wq */ 4273 wq->flags = flags; 4274 wq->saved_max_active = max_active; 4275 mutex_init(&wq->mutex); 4276 atomic_set(&wq->nr_pwqs_to_flush, 0); 4277 INIT_LIST_HEAD(&wq->pwqs); 4278 INIT_LIST_HEAD(&wq->flusher_queue); 4279 INIT_LIST_HEAD(&wq->flusher_overflow); 4280 INIT_LIST_HEAD(&wq->maydays); 4281 4282 wq_init_lockdep(wq); 4283 INIT_LIST_HEAD(&wq->list); 4284 4285 if (alloc_and_link_pwqs(wq) < 0) 4286 goto err_unreg_lockdep; 4287 4288 if (wq_online && init_rescuer(wq) < 0) 4289 goto err_destroy; 4290 4291 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4292 goto err_destroy; 4293 4294 /* 4295 * wq_pool_mutex protects global freeze state and workqueues list. 4296 * Grab it, adjust max_active and add the new @wq to workqueues 4297 * list. 4298 */ 4299 mutex_lock(&wq_pool_mutex); 4300 4301 mutex_lock(&wq->mutex); 4302 for_each_pwq(pwq, wq) 4303 pwq_adjust_max_active(pwq); 4304 mutex_unlock(&wq->mutex); 4305 4306 list_add_tail_rcu(&wq->list, &workqueues); 4307 4308 mutex_unlock(&wq_pool_mutex); 4309 4310 return wq; 4311 4312 err_unreg_lockdep: 4313 wq_unregister_lockdep(wq); 4314 wq_free_lockdep(wq); 4315 err_free_wq: 4316 free_workqueue_attrs(wq->unbound_attrs); 4317 kfree(wq); 4318 return NULL; 4319 err_destroy: 4320 destroy_workqueue(wq); 4321 return NULL; 4322 } 4323 EXPORT_SYMBOL_GPL(alloc_workqueue); 4324 4325 static bool pwq_busy(struct pool_workqueue *pwq) 4326 { 4327 int i; 4328 4329 for (i = 0; i < WORK_NR_COLORS; i++) 4330 if (pwq->nr_in_flight[i]) 4331 return true; 4332 4333 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1)) 4334 return true; 4335 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4336 return true; 4337 4338 return false; 4339 } 4340 4341 /** 4342 * destroy_workqueue - safely terminate a workqueue 4343 * @wq: target workqueue 4344 * 4345 * Safely destroy a workqueue. All work currently pending will be done first. 4346 */ 4347 void destroy_workqueue(struct workqueue_struct *wq) 4348 { 4349 struct pool_workqueue *pwq; 4350 int node; 4351 4352 /* 4353 * Remove it from sysfs first so that sanity check failure doesn't 4354 * lead to sysfs name conflicts. 4355 */ 4356 workqueue_sysfs_unregister(wq); 4357 4358 /* drain it before proceeding with destruction */ 4359 drain_workqueue(wq); 4360 4361 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 4362 if (wq->rescuer) { 4363 struct worker *rescuer = wq->rescuer; 4364 4365 /* this prevents new queueing */ 4366 spin_lock_irq(&wq_mayday_lock); 4367 wq->rescuer = NULL; 4368 spin_unlock_irq(&wq_mayday_lock); 4369 4370 /* rescuer will empty maydays list before exiting */ 4371 kthread_stop(rescuer->task); 4372 kfree(rescuer); 4373 } 4374 4375 /* 4376 * Sanity checks - grab all the locks so that we wait for all 4377 * in-flight operations which may do put_pwq(). 4378 */ 4379 mutex_lock(&wq_pool_mutex); 4380 mutex_lock(&wq->mutex); 4381 for_each_pwq(pwq, wq) { 4382 spin_lock_irq(&pwq->pool->lock); 4383 if (WARN_ON(pwq_busy(pwq))) { 4384 pr_warning("%s: %s has the following busy pwq\n", 4385 __func__, wq->name); 4386 show_pwq(pwq); 4387 spin_unlock_irq(&pwq->pool->lock); 4388 mutex_unlock(&wq->mutex); 4389 mutex_unlock(&wq_pool_mutex); 4390 show_workqueue_state(); 4391 return; 4392 } 4393 spin_unlock_irq(&pwq->pool->lock); 4394 } 4395 mutex_unlock(&wq->mutex); 4396 mutex_unlock(&wq_pool_mutex); 4397 4398 /* 4399 * wq list is used to freeze wq, remove from list after 4400 * flushing is complete in case freeze races us. 4401 */ 4402 mutex_lock(&wq_pool_mutex); 4403 list_del_rcu(&wq->list); 4404 mutex_unlock(&wq_pool_mutex); 4405 4406 if (!(wq->flags & WQ_UNBOUND)) { 4407 wq_unregister_lockdep(wq); 4408 /* 4409 * The base ref is never dropped on per-cpu pwqs. Directly 4410 * schedule RCU free. 4411 */ 4412 call_rcu(&wq->rcu, rcu_free_wq); 4413 } else { 4414 /* 4415 * We're the sole accessor of @wq at this point. Directly 4416 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4417 * @wq will be freed when the last pwq is released. 4418 */ 4419 for_each_node(node) { 4420 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4421 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4422 put_pwq_unlocked(pwq); 4423 } 4424 4425 /* 4426 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4427 * put. Don't access it afterwards. 4428 */ 4429 pwq = wq->dfl_pwq; 4430 wq->dfl_pwq = NULL; 4431 put_pwq_unlocked(pwq); 4432 } 4433 } 4434 EXPORT_SYMBOL_GPL(destroy_workqueue); 4435 4436 /** 4437 * workqueue_set_max_active - adjust max_active of a workqueue 4438 * @wq: target workqueue 4439 * @max_active: new max_active value. 4440 * 4441 * Set max_active of @wq to @max_active. 4442 * 4443 * CONTEXT: 4444 * Don't call from IRQ context. 4445 */ 4446 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4447 { 4448 struct pool_workqueue *pwq; 4449 4450 /* disallow meddling with max_active for ordered workqueues */ 4451 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4452 return; 4453 4454 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4455 4456 mutex_lock(&wq->mutex); 4457 4458 wq->flags &= ~__WQ_ORDERED; 4459 wq->saved_max_active = max_active; 4460 4461 for_each_pwq(pwq, wq) 4462 pwq_adjust_max_active(pwq); 4463 4464 mutex_unlock(&wq->mutex); 4465 } 4466 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4467 4468 /** 4469 * current_work - retrieve %current task's work struct 4470 * 4471 * Determine if %current task is a workqueue worker and what it's working on. 4472 * Useful to find out the context that the %current task is running in. 4473 * 4474 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4475 */ 4476 struct work_struct *current_work(void) 4477 { 4478 struct worker *worker = current_wq_worker(); 4479 4480 return worker ? worker->current_work : NULL; 4481 } 4482 EXPORT_SYMBOL(current_work); 4483 4484 /** 4485 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4486 * 4487 * Determine whether %current is a workqueue rescuer. Can be used from 4488 * work functions to determine whether it's being run off the rescuer task. 4489 * 4490 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4491 */ 4492 bool current_is_workqueue_rescuer(void) 4493 { 4494 struct worker *worker = current_wq_worker(); 4495 4496 return worker && worker->rescue_wq; 4497 } 4498 4499 /** 4500 * workqueue_congested - test whether a workqueue is congested 4501 * @cpu: CPU in question 4502 * @wq: target workqueue 4503 * 4504 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4505 * no synchronization around this function and the test result is 4506 * unreliable and only useful as advisory hints or for debugging. 4507 * 4508 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4509 * Note that both per-cpu and unbound workqueues may be associated with 4510 * multiple pool_workqueues which have separate congested states. A 4511 * workqueue being congested on one CPU doesn't mean the workqueue is also 4512 * contested on other CPUs / NUMA nodes. 4513 * 4514 * Return: 4515 * %true if congested, %false otherwise. 4516 */ 4517 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4518 { 4519 struct pool_workqueue *pwq; 4520 bool ret; 4521 4522 rcu_read_lock(); 4523 preempt_disable(); 4524 4525 if (cpu == WORK_CPU_UNBOUND) 4526 cpu = smp_processor_id(); 4527 4528 if (!(wq->flags & WQ_UNBOUND)) 4529 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4530 else 4531 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4532 4533 ret = !list_empty(&pwq->delayed_works); 4534 preempt_enable(); 4535 rcu_read_unlock(); 4536 4537 return ret; 4538 } 4539 EXPORT_SYMBOL_GPL(workqueue_congested); 4540 4541 /** 4542 * work_busy - test whether a work is currently pending or running 4543 * @work: the work to be tested 4544 * 4545 * Test whether @work is currently pending or running. There is no 4546 * synchronization around this function and the test result is 4547 * unreliable and only useful as advisory hints or for debugging. 4548 * 4549 * Return: 4550 * OR'd bitmask of WORK_BUSY_* bits. 4551 */ 4552 unsigned int work_busy(struct work_struct *work) 4553 { 4554 struct worker_pool *pool; 4555 unsigned long flags; 4556 unsigned int ret = 0; 4557 4558 if (work_pending(work)) 4559 ret |= WORK_BUSY_PENDING; 4560 4561 rcu_read_lock(); 4562 pool = get_work_pool(work); 4563 if (pool) { 4564 spin_lock_irqsave(&pool->lock, flags); 4565 if (find_worker_executing_work(pool, work)) 4566 ret |= WORK_BUSY_RUNNING; 4567 spin_unlock_irqrestore(&pool->lock, flags); 4568 } 4569 rcu_read_unlock(); 4570 4571 return ret; 4572 } 4573 EXPORT_SYMBOL_GPL(work_busy); 4574 4575 /** 4576 * set_worker_desc - set description for the current work item 4577 * @fmt: printf-style format string 4578 * @...: arguments for the format string 4579 * 4580 * This function can be called by a running work function to describe what 4581 * the work item is about. If the worker task gets dumped, this 4582 * information will be printed out together to help debugging. The 4583 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4584 */ 4585 void set_worker_desc(const char *fmt, ...) 4586 { 4587 struct worker *worker = current_wq_worker(); 4588 va_list args; 4589 4590 if (worker) { 4591 va_start(args, fmt); 4592 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4593 va_end(args); 4594 } 4595 } 4596 EXPORT_SYMBOL_GPL(set_worker_desc); 4597 4598 /** 4599 * print_worker_info - print out worker information and description 4600 * @log_lvl: the log level to use when printing 4601 * @task: target task 4602 * 4603 * If @task is a worker and currently executing a work item, print out the 4604 * name of the workqueue being serviced and worker description set with 4605 * set_worker_desc() by the currently executing work item. 4606 * 4607 * This function can be safely called on any task as long as the 4608 * task_struct itself is accessible. While safe, this function isn't 4609 * synchronized and may print out mixups or garbages of limited length. 4610 */ 4611 void print_worker_info(const char *log_lvl, struct task_struct *task) 4612 { 4613 work_func_t *fn = NULL; 4614 char name[WQ_NAME_LEN] = { }; 4615 char desc[WORKER_DESC_LEN] = { }; 4616 struct pool_workqueue *pwq = NULL; 4617 struct workqueue_struct *wq = NULL; 4618 struct worker *worker; 4619 4620 if (!(task->flags & PF_WQ_WORKER)) 4621 return; 4622 4623 /* 4624 * This function is called without any synchronization and @task 4625 * could be in any state. Be careful with dereferences. 4626 */ 4627 worker = kthread_probe_data(task); 4628 4629 /* 4630 * Carefully copy the associated workqueue's workfn, name and desc. 4631 * Keep the original last '\0' in case the original is garbage. 4632 */ 4633 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4634 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4635 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4636 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4637 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4638 4639 if (fn || name[0] || desc[0]) { 4640 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 4641 if (strcmp(name, desc)) 4642 pr_cont(" (%s)", desc); 4643 pr_cont("\n"); 4644 } 4645 } 4646 4647 static void pr_cont_pool_info(struct worker_pool *pool) 4648 { 4649 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4650 if (pool->node != NUMA_NO_NODE) 4651 pr_cont(" node=%d", pool->node); 4652 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4653 } 4654 4655 static void pr_cont_work(bool comma, struct work_struct *work) 4656 { 4657 if (work->func == wq_barrier_func) { 4658 struct wq_barrier *barr; 4659 4660 barr = container_of(work, struct wq_barrier, work); 4661 4662 pr_cont("%s BAR(%d)", comma ? "," : "", 4663 task_pid_nr(barr->task)); 4664 } else { 4665 pr_cont("%s %ps", comma ? "," : "", work->func); 4666 } 4667 } 4668 4669 static void show_pwq(struct pool_workqueue *pwq) 4670 { 4671 struct worker_pool *pool = pwq->pool; 4672 struct work_struct *work; 4673 struct worker *worker; 4674 bool has_in_flight = false, has_pending = false; 4675 int bkt; 4676 4677 pr_info(" pwq %d:", pool->id); 4678 pr_cont_pool_info(pool); 4679 4680 pr_cont(" active=%d/%d refcnt=%d%s\n", 4681 pwq->nr_active, pwq->max_active, pwq->refcnt, 4682 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4683 4684 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4685 if (worker->current_pwq == pwq) { 4686 has_in_flight = true; 4687 break; 4688 } 4689 } 4690 if (has_in_flight) { 4691 bool comma = false; 4692 4693 pr_info(" in-flight:"); 4694 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4695 if (worker->current_pwq != pwq) 4696 continue; 4697 4698 pr_cont("%s %d%s:%ps", comma ? "," : "", 4699 task_pid_nr(worker->task), 4700 worker->rescue_wq ? "(RESCUER)" : "", 4701 worker->current_func); 4702 list_for_each_entry(work, &worker->scheduled, entry) 4703 pr_cont_work(false, work); 4704 comma = true; 4705 } 4706 pr_cont("\n"); 4707 } 4708 4709 list_for_each_entry(work, &pool->worklist, entry) { 4710 if (get_work_pwq(work) == pwq) { 4711 has_pending = true; 4712 break; 4713 } 4714 } 4715 if (has_pending) { 4716 bool comma = false; 4717 4718 pr_info(" pending:"); 4719 list_for_each_entry(work, &pool->worklist, entry) { 4720 if (get_work_pwq(work) != pwq) 4721 continue; 4722 4723 pr_cont_work(comma, work); 4724 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4725 } 4726 pr_cont("\n"); 4727 } 4728 4729 if (!list_empty(&pwq->delayed_works)) { 4730 bool comma = false; 4731 4732 pr_info(" delayed:"); 4733 list_for_each_entry(work, &pwq->delayed_works, entry) { 4734 pr_cont_work(comma, work); 4735 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4736 } 4737 pr_cont("\n"); 4738 } 4739 } 4740 4741 /** 4742 * show_workqueue_state - dump workqueue state 4743 * 4744 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4745 * all busy workqueues and pools. 4746 */ 4747 void show_workqueue_state(void) 4748 { 4749 struct workqueue_struct *wq; 4750 struct worker_pool *pool; 4751 unsigned long flags; 4752 int pi; 4753 4754 rcu_read_lock(); 4755 4756 pr_info("Showing busy workqueues and worker pools:\n"); 4757 4758 list_for_each_entry_rcu(wq, &workqueues, list) { 4759 struct pool_workqueue *pwq; 4760 bool idle = true; 4761 4762 for_each_pwq(pwq, wq) { 4763 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4764 idle = false; 4765 break; 4766 } 4767 } 4768 if (idle) 4769 continue; 4770 4771 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4772 4773 for_each_pwq(pwq, wq) { 4774 spin_lock_irqsave(&pwq->pool->lock, flags); 4775 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4776 show_pwq(pwq); 4777 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4778 /* 4779 * We could be printing a lot from atomic context, e.g. 4780 * sysrq-t -> show_workqueue_state(). Avoid triggering 4781 * hard lockup. 4782 */ 4783 touch_nmi_watchdog(); 4784 } 4785 } 4786 4787 for_each_pool(pool, pi) { 4788 struct worker *worker; 4789 bool first = true; 4790 4791 spin_lock_irqsave(&pool->lock, flags); 4792 if (pool->nr_workers == pool->nr_idle) 4793 goto next_pool; 4794 4795 pr_info("pool %d:", pool->id); 4796 pr_cont_pool_info(pool); 4797 pr_cont(" hung=%us workers=%d", 4798 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4799 pool->nr_workers); 4800 if (pool->manager) 4801 pr_cont(" manager: %d", 4802 task_pid_nr(pool->manager->task)); 4803 list_for_each_entry(worker, &pool->idle_list, entry) { 4804 pr_cont(" %s%d", first ? "idle: " : "", 4805 task_pid_nr(worker->task)); 4806 first = false; 4807 } 4808 pr_cont("\n"); 4809 next_pool: 4810 spin_unlock_irqrestore(&pool->lock, flags); 4811 /* 4812 * We could be printing a lot from atomic context, e.g. 4813 * sysrq-t -> show_workqueue_state(). Avoid triggering 4814 * hard lockup. 4815 */ 4816 touch_nmi_watchdog(); 4817 } 4818 4819 rcu_read_unlock(); 4820 } 4821 4822 /* used to show worker information through /proc/PID/{comm,stat,status} */ 4823 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 4824 { 4825 int off; 4826 4827 /* always show the actual comm */ 4828 off = strscpy(buf, task->comm, size); 4829 if (off < 0) 4830 return; 4831 4832 /* stabilize PF_WQ_WORKER and worker pool association */ 4833 mutex_lock(&wq_pool_attach_mutex); 4834 4835 if (task->flags & PF_WQ_WORKER) { 4836 struct worker *worker = kthread_data(task); 4837 struct worker_pool *pool = worker->pool; 4838 4839 if (pool) { 4840 spin_lock_irq(&pool->lock); 4841 /* 4842 * ->desc tracks information (wq name or 4843 * set_worker_desc()) for the latest execution. If 4844 * current, prepend '+', otherwise '-'. 4845 */ 4846 if (worker->desc[0] != '\0') { 4847 if (worker->current_work) 4848 scnprintf(buf + off, size - off, "+%s", 4849 worker->desc); 4850 else 4851 scnprintf(buf + off, size - off, "-%s", 4852 worker->desc); 4853 } 4854 spin_unlock_irq(&pool->lock); 4855 } 4856 } 4857 4858 mutex_unlock(&wq_pool_attach_mutex); 4859 } 4860 4861 #ifdef CONFIG_SMP 4862 4863 /* 4864 * CPU hotplug. 4865 * 4866 * There are two challenges in supporting CPU hotplug. Firstly, there 4867 * are a lot of assumptions on strong associations among work, pwq and 4868 * pool which make migrating pending and scheduled works very 4869 * difficult to implement without impacting hot paths. Secondly, 4870 * worker pools serve mix of short, long and very long running works making 4871 * blocked draining impractical. 4872 * 4873 * This is solved by allowing the pools to be disassociated from the CPU 4874 * running as an unbound one and allowing it to be reattached later if the 4875 * cpu comes back online. 4876 */ 4877 4878 static void unbind_workers(int cpu) 4879 { 4880 struct worker_pool *pool; 4881 struct worker *worker; 4882 4883 for_each_cpu_worker_pool(pool, cpu) { 4884 mutex_lock(&wq_pool_attach_mutex); 4885 spin_lock_irq(&pool->lock); 4886 4887 /* 4888 * We've blocked all attach/detach operations. Make all workers 4889 * unbound and set DISASSOCIATED. Before this, all workers 4890 * except for the ones which are still executing works from 4891 * before the last CPU down must be on the cpu. After 4892 * this, they may become diasporas. 4893 */ 4894 for_each_pool_worker(worker, pool) 4895 worker->flags |= WORKER_UNBOUND; 4896 4897 pool->flags |= POOL_DISASSOCIATED; 4898 4899 spin_unlock_irq(&pool->lock); 4900 mutex_unlock(&wq_pool_attach_mutex); 4901 4902 /* 4903 * Call schedule() so that we cross rq->lock and thus can 4904 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4905 * This is necessary as scheduler callbacks may be invoked 4906 * from other cpus. 4907 */ 4908 schedule(); 4909 4910 /* 4911 * Sched callbacks are disabled now. Zap nr_running. 4912 * After this, nr_running stays zero and need_more_worker() 4913 * and keep_working() are always true as long as the 4914 * worklist is not empty. This pool now behaves as an 4915 * unbound (in terms of concurrency management) pool which 4916 * are served by workers tied to the pool. 4917 */ 4918 atomic_set(&pool->nr_running, 0); 4919 4920 /* 4921 * With concurrency management just turned off, a busy 4922 * worker blocking could lead to lengthy stalls. Kick off 4923 * unbound chain execution of currently pending work items. 4924 */ 4925 spin_lock_irq(&pool->lock); 4926 wake_up_worker(pool); 4927 spin_unlock_irq(&pool->lock); 4928 } 4929 } 4930 4931 /** 4932 * rebind_workers - rebind all workers of a pool to the associated CPU 4933 * @pool: pool of interest 4934 * 4935 * @pool->cpu is coming online. Rebind all workers to the CPU. 4936 */ 4937 static void rebind_workers(struct worker_pool *pool) 4938 { 4939 struct worker *worker; 4940 4941 lockdep_assert_held(&wq_pool_attach_mutex); 4942 4943 /* 4944 * Restore CPU affinity of all workers. As all idle workers should 4945 * be on the run-queue of the associated CPU before any local 4946 * wake-ups for concurrency management happen, restore CPU affinity 4947 * of all workers first and then clear UNBOUND. As we're called 4948 * from CPU_ONLINE, the following shouldn't fail. 4949 */ 4950 for_each_pool_worker(worker, pool) 4951 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4952 pool->attrs->cpumask) < 0); 4953 4954 spin_lock_irq(&pool->lock); 4955 4956 pool->flags &= ~POOL_DISASSOCIATED; 4957 4958 for_each_pool_worker(worker, pool) { 4959 unsigned int worker_flags = worker->flags; 4960 4961 /* 4962 * A bound idle worker should actually be on the runqueue 4963 * of the associated CPU for local wake-ups targeting it to 4964 * work. Kick all idle workers so that they migrate to the 4965 * associated CPU. Doing this in the same loop as 4966 * replacing UNBOUND with REBOUND is safe as no worker will 4967 * be bound before @pool->lock is released. 4968 */ 4969 if (worker_flags & WORKER_IDLE) 4970 wake_up_process(worker->task); 4971 4972 /* 4973 * We want to clear UNBOUND but can't directly call 4974 * worker_clr_flags() or adjust nr_running. Atomically 4975 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4976 * @worker will clear REBOUND using worker_clr_flags() when 4977 * it initiates the next execution cycle thus restoring 4978 * concurrency management. Note that when or whether 4979 * @worker clears REBOUND doesn't affect correctness. 4980 * 4981 * WRITE_ONCE() is necessary because @worker->flags may be 4982 * tested without holding any lock in 4983 * wq_worker_running(). Without it, NOT_RUNNING test may 4984 * fail incorrectly leading to premature concurrency 4985 * management operations. 4986 */ 4987 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4988 worker_flags |= WORKER_REBOUND; 4989 worker_flags &= ~WORKER_UNBOUND; 4990 WRITE_ONCE(worker->flags, worker_flags); 4991 } 4992 4993 spin_unlock_irq(&pool->lock); 4994 } 4995 4996 /** 4997 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4998 * @pool: unbound pool of interest 4999 * @cpu: the CPU which is coming up 5000 * 5001 * An unbound pool may end up with a cpumask which doesn't have any online 5002 * CPUs. When a worker of such pool get scheduled, the scheduler resets 5003 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 5004 * online CPU before, cpus_allowed of all its workers should be restored. 5005 */ 5006 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 5007 { 5008 static cpumask_t cpumask; 5009 struct worker *worker; 5010 5011 lockdep_assert_held(&wq_pool_attach_mutex); 5012 5013 /* is @cpu allowed for @pool? */ 5014 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 5015 return; 5016 5017 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 5018 5019 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 5020 for_each_pool_worker(worker, pool) 5021 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 5022 } 5023 5024 int workqueue_prepare_cpu(unsigned int cpu) 5025 { 5026 struct worker_pool *pool; 5027 5028 for_each_cpu_worker_pool(pool, cpu) { 5029 if (pool->nr_workers) 5030 continue; 5031 if (!create_worker(pool)) 5032 return -ENOMEM; 5033 } 5034 return 0; 5035 } 5036 5037 int workqueue_online_cpu(unsigned int cpu) 5038 { 5039 struct worker_pool *pool; 5040 struct workqueue_struct *wq; 5041 int pi; 5042 5043 mutex_lock(&wq_pool_mutex); 5044 5045 for_each_pool(pool, pi) { 5046 mutex_lock(&wq_pool_attach_mutex); 5047 5048 if (pool->cpu == cpu) 5049 rebind_workers(pool); 5050 else if (pool->cpu < 0) 5051 restore_unbound_workers_cpumask(pool, cpu); 5052 5053 mutex_unlock(&wq_pool_attach_mutex); 5054 } 5055 5056 /* update NUMA affinity of unbound workqueues */ 5057 list_for_each_entry(wq, &workqueues, list) 5058 wq_update_unbound_numa(wq, cpu, true); 5059 5060 mutex_unlock(&wq_pool_mutex); 5061 return 0; 5062 } 5063 5064 int workqueue_offline_cpu(unsigned int cpu) 5065 { 5066 struct workqueue_struct *wq; 5067 5068 /* unbinding per-cpu workers should happen on the local CPU */ 5069 if (WARN_ON(cpu != smp_processor_id())) 5070 return -1; 5071 5072 unbind_workers(cpu); 5073 5074 /* update NUMA affinity of unbound workqueues */ 5075 mutex_lock(&wq_pool_mutex); 5076 list_for_each_entry(wq, &workqueues, list) 5077 wq_update_unbound_numa(wq, cpu, false); 5078 mutex_unlock(&wq_pool_mutex); 5079 5080 return 0; 5081 } 5082 5083 struct work_for_cpu { 5084 struct work_struct work; 5085 long (*fn)(void *); 5086 void *arg; 5087 long ret; 5088 }; 5089 5090 static void work_for_cpu_fn(struct work_struct *work) 5091 { 5092 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5093 5094 wfc->ret = wfc->fn(wfc->arg); 5095 } 5096 5097 /** 5098 * work_on_cpu - run a function in thread context on a particular cpu 5099 * @cpu: the cpu to run on 5100 * @fn: the function to run 5101 * @arg: the function arg 5102 * 5103 * It is up to the caller to ensure that the cpu doesn't go offline. 5104 * The caller must not hold any locks which would prevent @fn from completing. 5105 * 5106 * Return: The value @fn returns. 5107 */ 5108 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 5109 { 5110 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5111 5112 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 5113 schedule_work_on(cpu, &wfc.work); 5114 flush_work(&wfc.work); 5115 destroy_work_on_stack(&wfc.work); 5116 return wfc.ret; 5117 } 5118 EXPORT_SYMBOL_GPL(work_on_cpu); 5119 5120 /** 5121 * work_on_cpu_safe - run a function in thread context on a particular cpu 5122 * @cpu: the cpu to run on 5123 * @fn: the function to run 5124 * @arg: the function argument 5125 * 5126 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5127 * any locks which would prevent @fn from completing. 5128 * 5129 * Return: The value @fn returns. 5130 */ 5131 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 5132 { 5133 long ret = -ENODEV; 5134 5135 get_online_cpus(); 5136 if (cpu_online(cpu)) 5137 ret = work_on_cpu(cpu, fn, arg); 5138 put_online_cpus(); 5139 return ret; 5140 } 5141 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 5142 #endif /* CONFIG_SMP */ 5143 5144 #ifdef CONFIG_FREEZER 5145 5146 /** 5147 * freeze_workqueues_begin - begin freezing workqueues 5148 * 5149 * Start freezing workqueues. After this function returns, all freezable 5150 * workqueues will queue new works to their delayed_works list instead of 5151 * pool->worklist. 5152 * 5153 * CONTEXT: 5154 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5155 */ 5156 void freeze_workqueues_begin(void) 5157 { 5158 struct workqueue_struct *wq; 5159 struct pool_workqueue *pwq; 5160 5161 mutex_lock(&wq_pool_mutex); 5162 5163 WARN_ON_ONCE(workqueue_freezing); 5164 workqueue_freezing = true; 5165 5166 list_for_each_entry(wq, &workqueues, list) { 5167 mutex_lock(&wq->mutex); 5168 for_each_pwq(pwq, wq) 5169 pwq_adjust_max_active(pwq); 5170 mutex_unlock(&wq->mutex); 5171 } 5172 5173 mutex_unlock(&wq_pool_mutex); 5174 } 5175 5176 /** 5177 * freeze_workqueues_busy - are freezable workqueues still busy? 5178 * 5179 * Check whether freezing is complete. This function must be called 5180 * between freeze_workqueues_begin() and thaw_workqueues(). 5181 * 5182 * CONTEXT: 5183 * Grabs and releases wq_pool_mutex. 5184 * 5185 * Return: 5186 * %true if some freezable workqueues are still busy. %false if freezing 5187 * is complete. 5188 */ 5189 bool freeze_workqueues_busy(void) 5190 { 5191 bool busy = false; 5192 struct workqueue_struct *wq; 5193 struct pool_workqueue *pwq; 5194 5195 mutex_lock(&wq_pool_mutex); 5196 5197 WARN_ON_ONCE(!workqueue_freezing); 5198 5199 list_for_each_entry(wq, &workqueues, list) { 5200 if (!(wq->flags & WQ_FREEZABLE)) 5201 continue; 5202 /* 5203 * nr_active is monotonically decreasing. It's safe 5204 * to peek without lock. 5205 */ 5206 rcu_read_lock(); 5207 for_each_pwq(pwq, wq) { 5208 WARN_ON_ONCE(pwq->nr_active < 0); 5209 if (pwq->nr_active) { 5210 busy = true; 5211 rcu_read_unlock(); 5212 goto out_unlock; 5213 } 5214 } 5215 rcu_read_unlock(); 5216 } 5217 out_unlock: 5218 mutex_unlock(&wq_pool_mutex); 5219 return busy; 5220 } 5221 5222 /** 5223 * thaw_workqueues - thaw workqueues 5224 * 5225 * Thaw workqueues. Normal queueing is restored and all collected 5226 * frozen works are transferred to their respective pool worklists. 5227 * 5228 * CONTEXT: 5229 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5230 */ 5231 void thaw_workqueues(void) 5232 { 5233 struct workqueue_struct *wq; 5234 struct pool_workqueue *pwq; 5235 5236 mutex_lock(&wq_pool_mutex); 5237 5238 if (!workqueue_freezing) 5239 goto out_unlock; 5240 5241 workqueue_freezing = false; 5242 5243 /* restore max_active and repopulate worklist */ 5244 list_for_each_entry(wq, &workqueues, list) { 5245 mutex_lock(&wq->mutex); 5246 for_each_pwq(pwq, wq) 5247 pwq_adjust_max_active(pwq); 5248 mutex_unlock(&wq->mutex); 5249 } 5250 5251 out_unlock: 5252 mutex_unlock(&wq_pool_mutex); 5253 } 5254 #endif /* CONFIG_FREEZER */ 5255 5256 static int workqueue_apply_unbound_cpumask(void) 5257 { 5258 LIST_HEAD(ctxs); 5259 int ret = 0; 5260 struct workqueue_struct *wq; 5261 struct apply_wqattrs_ctx *ctx, *n; 5262 5263 lockdep_assert_held(&wq_pool_mutex); 5264 5265 list_for_each_entry(wq, &workqueues, list) { 5266 if (!(wq->flags & WQ_UNBOUND)) 5267 continue; 5268 /* creating multiple pwqs breaks ordering guarantee */ 5269 if (wq->flags & __WQ_ORDERED) 5270 continue; 5271 5272 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 5273 if (!ctx) { 5274 ret = -ENOMEM; 5275 break; 5276 } 5277 5278 list_add_tail(&ctx->list, &ctxs); 5279 } 5280 5281 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5282 if (!ret) 5283 apply_wqattrs_commit(ctx); 5284 apply_wqattrs_cleanup(ctx); 5285 } 5286 5287 return ret; 5288 } 5289 5290 /** 5291 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5292 * @cpumask: the cpumask to set 5293 * 5294 * The low-level workqueues cpumask is a global cpumask that limits 5295 * the affinity of all unbound workqueues. This function check the @cpumask 5296 * and apply it to all unbound workqueues and updates all pwqs of them. 5297 * 5298 * Retun: 0 - Success 5299 * -EINVAL - Invalid @cpumask 5300 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5301 */ 5302 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5303 { 5304 int ret = -EINVAL; 5305 cpumask_var_t saved_cpumask; 5306 5307 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 5308 return -ENOMEM; 5309 5310 /* 5311 * Not excluding isolated cpus on purpose. 5312 * If the user wishes to include them, we allow that. 5313 */ 5314 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5315 if (!cpumask_empty(cpumask)) { 5316 apply_wqattrs_lock(); 5317 5318 /* save the old wq_unbound_cpumask. */ 5319 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 5320 5321 /* update wq_unbound_cpumask at first and apply it to wqs. */ 5322 cpumask_copy(wq_unbound_cpumask, cpumask); 5323 ret = workqueue_apply_unbound_cpumask(); 5324 5325 /* restore the wq_unbound_cpumask when failed. */ 5326 if (ret < 0) 5327 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5328 5329 apply_wqattrs_unlock(); 5330 } 5331 5332 free_cpumask_var(saved_cpumask); 5333 return ret; 5334 } 5335 5336 #ifdef CONFIG_SYSFS 5337 /* 5338 * Workqueues with WQ_SYSFS flag set is visible to userland via 5339 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5340 * following attributes. 5341 * 5342 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5343 * max_active RW int : maximum number of in-flight work items 5344 * 5345 * Unbound workqueues have the following extra attributes. 5346 * 5347 * pool_ids RO int : the associated pool IDs for each node 5348 * nice RW int : nice value of the workers 5349 * cpumask RW mask : bitmask of allowed CPUs for the workers 5350 * numa RW bool : whether enable NUMA affinity 5351 */ 5352 struct wq_device { 5353 struct workqueue_struct *wq; 5354 struct device dev; 5355 }; 5356 5357 static struct workqueue_struct *dev_to_wq(struct device *dev) 5358 { 5359 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5360 5361 return wq_dev->wq; 5362 } 5363 5364 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5365 char *buf) 5366 { 5367 struct workqueue_struct *wq = dev_to_wq(dev); 5368 5369 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5370 } 5371 static DEVICE_ATTR_RO(per_cpu); 5372 5373 static ssize_t max_active_show(struct device *dev, 5374 struct device_attribute *attr, char *buf) 5375 { 5376 struct workqueue_struct *wq = dev_to_wq(dev); 5377 5378 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5379 } 5380 5381 static ssize_t max_active_store(struct device *dev, 5382 struct device_attribute *attr, const char *buf, 5383 size_t count) 5384 { 5385 struct workqueue_struct *wq = dev_to_wq(dev); 5386 int val; 5387 5388 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5389 return -EINVAL; 5390 5391 workqueue_set_max_active(wq, val); 5392 return count; 5393 } 5394 static DEVICE_ATTR_RW(max_active); 5395 5396 static struct attribute *wq_sysfs_attrs[] = { 5397 &dev_attr_per_cpu.attr, 5398 &dev_attr_max_active.attr, 5399 NULL, 5400 }; 5401 ATTRIBUTE_GROUPS(wq_sysfs); 5402 5403 static ssize_t wq_pool_ids_show(struct device *dev, 5404 struct device_attribute *attr, char *buf) 5405 { 5406 struct workqueue_struct *wq = dev_to_wq(dev); 5407 const char *delim = ""; 5408 int node, written = 0; 5409 5410 get_online_cpus(); 5411 rcu_read_lock(); 5412 for_each_node(node) { 5413 written += scnprintf(buf + written, PAGE_SIZE - written, 5414 "%s%d:%d", delim, node, 5415 unbound_pwq_by_node(wq, node)->pool->id); 5416 delim = " "; 5417 } 5418 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5419 rcu_read_unlock(); 5420 put_online_cpus(); 5421 5422 return written; 5423 } 5424 5425 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5426 char *buf) 5427 { 5428 struct workqueue_struct *wq = dev_to_wq(dev); 5429 int written; 5430 5431 mutex_lock(&wq->mutex); 5432 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5433 mutex_unlock(&wq->mutex); 5434 5435 return written; 5436 } 5437 5438 /* prepare workqueue_attrs for sysfs store operations */ 5439 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5440 { 5441 struct workqueue_attrs *attrs; 5442 5443 lockdep_assert_held(&wq_pool_mutex); 5444 5445 attrs = alloc_workqueue_attrs(); 5446 if (!attrs) 5447 return NULL; 5448 5449 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5450 return attrs; 5451 } 5452 5453 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5454 const char *buf, size_t count) 5455 { 5456 struct workqueue_struct *wq = dev_to_wq(dev); 5457 struct workqueue_attrs *attrs; 5458 int ret = -ENOMEM; 5459 5460 apply_wqattrs_lock(); 5461 5462 attrs = wq_sysfs_prep_attrs(wq); 5463 if (!attrs) 5464 goto out_unlock; 5465 5466 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5467 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5468 ret = apply_workqueue_attrs_locked(wq, attrs); 5469 else 5470 ret = -EINVAL; 5471 5472 out_unlock: 5473 apply_wqattrs_unlock(); 5474 free_workqueue_attrs(attrs); 5475 return ret ?: count; 5476 } 5477 5478 static ssize_t wq_cpumask_show(struct device *dev, 5479 struct device_attribute *attr, char *buf) 5480 { 5481 struct workqueue_struct *wq = dev_to_wq(dev); 5482 int written; 5483 5484 mutex_lock(&wq->mutex); 5485 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5486 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5487 mutex_unlock(&wq->mutex); 5488 return written; 5489 } 5490 5491 static ssize_t wq_cpumask_store(struct device *dev, 5492 struct device_attribute *attr, 5493 const char *buf, size_t count) 5494 { 5495 struct workqueue_struct *wq = dev_to_wq(dev); 5496 struct workqueue_attrs *attrs; 5497 int ret = -ENOMEM; 5498 5499 apply_wqattrs_lock(); 5500 5501 attrs = wq_sysfs_prep_attrs(wq); 5502 if (!attrs) 5503 goto out_unlock; 5504 5505 ret = cpumask_parse(buf, attrs->cpumask); 5506 if (!ret) 5507 ret = apply_workqueue_attrs_locked(wq, attrs); 5508 5509 out_unlock: 5510 apply_wqattrs_unlock(); 5511 free_workqueue_attrs(attrs); 5512 return ret ?: count; 5513 } 5514 5515 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5516 char *buf) 5517 { 5518 struct workqueue_struct *wq = dev_to_wq(dev); 5519 int written; 5520 5521 mutex_lock(&wq->mutex); 5522 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5523 !wq->unbound_attrs->no_numa); 5524 mutex_unlock(&wq->mutex); 5525 5526 return written; 5527 } 5528 5529 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5530 const char *buf, size_t count) 5531 { 5532 struct workqueue_struct *wq = dev_to_wq(dev); 5533 struct workqueue_attrs *attrs; 5534 int v, ret = -ENOMEM; 5535 5536 apply_wqattrs_lock(); 5537 5538 attrs = wq_sysfs_prep_attrs(wq); 5539 if (!attrs) 5540 goto out_unlock; 5541 5542 ret = -EINVAL; 5543 if (sscanf(buf, "%d", &v) == 1) { 5544 attrs->no_numa = !v; 5545 ret = apply_workqueue_attrs_locked(wq, attrs); 5546 } 5547 5548 out_unlock: 5549 apply_wqattrs_unlock(); 5550 free_workqueue_attrs(attrs); 5551 return ret ?: count; 5552 } 5553 5554 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5555 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5556 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5557 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5558 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5559 __ATTR_NULL, 5560 }; 5561 5562 static struct bus_type wq_subsys = { 5563 .name = "workqueue", 5564 .dev_groups = wq_sysfs_groups, 5565 }; 5566 5567 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5568 struct device_attribute *attr, char *buf) 5569 { 5570 int written; 5571 5572 mutex_lock(&wq_pool_mutex); 5573 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5574 cpumask_pr_args(wq_unbound_cpumask)); 5575 mutex_unlock(&wq_pool_mutex); 5576 5577 return written; 5578 } 5579 5580 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5581 struct device_attribute *attr, const char *buf, size_t count) 5582 { 5583 cpumask_var_t cpumask; 5584 int ret; 5585 5586 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5587 return -ENOMEM; 5588 5589 ret = cpumask_parse(buf, cpumask); 5590 if (!ret) 5591 ret = workqueue_set_unbound_cpumask(cpumask); 5592 5593 free_cpumask_var(cpumask); 5594 return ret ? ret : count; 5595 } 5596 5597 static struct device_attribute wq_sysfs_cpumask_attr = 5598 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5599 wq_unbound_cpumask_store); 5600 5601 static int __init wq_sysfs_init(void) 5602 { 5603 int err; 5604 5605 err = subsys_virtual_register(&wq_subsys, NULL); 5606 if (err) 5607 return err; 5608 5609 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5610 } 5611 core_initcall(wq_sysfs_init); 5612 5613 static void wq_device_release(struct device *dev) 5614 { 5615 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5616 5617 kfree(wq_dev); 5618 } 5619 5620 /** 5621 * workqueue_sysfs_register - make a workqueue visible in sysfs 5622 * @wq: the workqueue to register 5623 * 5624 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5625 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5626 * which is the preferred method. 5627 * 5628 * Workqueue user should use this function directly iff it wants to apply 5629 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5630 * apply_workqueue_attrs() may race against userland updating the 5631 * attributes. 5632 * 5633 * Return: 0 on success, -errno on failure. 5634 */ 5635 int workqueue_sysfs_register(struct workqueue_struct *wq) 5636 { 5637 struct wq_device *wq_dev; 5638 int ret; 5639 5640 /* 5641 * Adjusting max_active or creating new pwqs by applying 5642 * attributes breaks ordering guarantee. Disallow exposing ordered 5643 * workqueues. 5644 */ 5645 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5646 return -EINVAL; 5647 5648 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5649 if (!wq_dev) 5650 return -ENOMEM; 5651 5652 wq_dev->wq = wq; 5653 wq_dev->dev.bus = &wq_subsys; 5654 wq_dev->dev.release = wq_device_release; 5655 dev_set_name(&wq_dev->dev, "%s", wq->name); 5656 5657 /* 5658 * unbound_attrs are created separately. Suppress uevent until 5659 * everything is ready. 5660 */ 5661 dev_set_uevent_suppress(&wq_dev->dev, true); 5662 5663 ret = device_register(&wq_dev->dev); 5664 if (ret) { 5665 put_device(&wq_dev->dev); 5666 wq->wq_dev = NULL; 5667 return ret; 5668 } 5669 5670 if (wq->flags & WQ_UNBOUND) { 5671 struct device_attribute *attr; 5672 5673 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5674 ret = device_create_file(&wq_dev->dev, attr); 5675 if (ret) { 5676 device_unregister(&wq_dev->dev); 5677 wq->wq_dev = NULL; 5678 return ret; 5679 } 5680 } 5681 } 5682 5683 dev_set_uevent_suppress(&wq_dev->dev, false); 5684 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5685 return 0; 5686 } 5687 5688 /** 5689 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5690 * @wq: the workqueue to unregister 5691 * 5692 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5693 */ 5694 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5695 { 5696 struct wq_device *wq_dev = wq->wq_dev; 5697 5698 if (!wq->wq_dev) 5699 return; 5700 5701 wq->wq_dev = NULL; 5702 device_unregister(&wq_dev->dev); 5703 } 5704 #else /* CONFIG_SYSFS */ 5705 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5706 #endif /* CONFIG_SYSFS */ 5707 5708 /* 5709 * Workqueue watchdog. 5710 * 5711 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5712 * flush dependency, a concurrency managed work item which stays RUNNING 5713 * indefinitely. Workqueue stalls can be very difficult to debug as the 5714 * usual warning mechanisms don't trigger and internal workqueue state is 5715 * largely opaque. 5716 * 5717 * Workqueue watchdog monitors all worker pools periodically and dumps 5718 * state if some pools failed to make forward progress for a while where 5719 * forward progress is defined as the first item on ->worklist changing. 5720 * 5721 * This mechanism is controlled through the kernel parameter 5722 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5723 * corresponding sysfs parameter file. 5724 */ 5725 #ifdef CONFIG_WQ_WATCHDOG 5726 5727 static unsigned long wq_watchdog_thresh = 30; 5728 static struct timer_list wq_watchdog_timer; 5729 5730 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5731 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5732 5733 static void wq_watchdog_reset_touched(void) 5734 { 5735 int cpu; 5736 5737 wq_watchdog_touched = jiffies; 5738 for_each_possible_cpu(cpu) 5739 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5740 } 5741 5742 static void wq_watchdog_timer_fn(struct timer_list *unused) 5743 { 5744 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5745 bool lockup_detected = false; 5746 struct worker_pool *pool; 5747 int pi; 5748 5749 if (!thresh) 5750 return; 5751 5752 rcu_read_lock(); 5753 5754 for_each_pool(pool, pi) { 5755 unsigned long pool_ts, touched, ts; 5756 5757 if (list_empty(&pool->worklist)) 5758 continue; 5759 5760 /* get the latest of pool and touched timestamps */ 5761 pool_ts = READ_ONCE(pool->watchdog_ts); 5762 touched = READ_ONCE(wq_watchdog_touched); 5763 5764 if (time_after(pool_ts, touched)) 5765 ts = pool_ts; 5766 else 5767 ts = touched; 5768 5769 if (pool->cpu >= 0) { 5770 unsigned long cpu_touched = 5771 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5772 pool->cpu)); 5773 if (time_after(cpu_touched, ts)) 5774 ts = cpu_touched; 5775 } 5776 5777 /* did we stall? */ 5778 if (time_after(jiffies, ts + thresh)) { 5779 lockup_detected = true; 5780 pr_emerg("BUG: workqueue lockup - pool"); 5781 pr_cont_pool_info(pool); 5782 pr_cont(" stuck for %us!\n", 5783 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5784 } 5785 } 5786 5787 rcu_read_unlock(); 5788 5789 if (lockup_detected) 5790 show_workqueue_state(); 5791 5792 wq_watchdog_reset_touched(); 5793 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5794 } 5795 5796 notrace void wq_watchdog_touch(int cpu) 5797 { 5798 if (cpu >= 0) 5799 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5800 else 5801 wq_watchdog_touched = jiffies; 5802 } 5803 5804 static void wq_watchdog_set_thresh(unsigned long thresh) 5805 { 5806 wq_watchdog_thresh = 0; 5807 del_timer_sync(&wq_watchdog_timer); 5808 5809 if (thresh) { 5810 wq_watchdog_thresh = thresh; 5811 wq_watchdog_reset_touched(); 5812 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5813 } 5814 } 5815 5816 static int wq_watchdog_param_set_thresh(const char *val, 5817 const struct kernel_param *kp) 5818 { 5819 unsigned long thresh; 5820 int ret; 5821 5822 ret = kstrtoul(val, 0, &thresh); 5823 if (ret) 5824 return ret; 5825 5826 if (system_wq) 5827 wq_watchdog_set_thresh(thresh); 5828 else 5829 wq_watchdog_thresh = thresh; 5830 5831 return 0; 5832 } 5833 5834 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5835 .set = wq_watchdog_param_set_thresh, 5836 .get = param_get_ulong, 5837 }; 5838 5839 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5840 0644); 5841 5842 static void wq_watchdog_init(void) 5843 { 5844 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5845 wq_watchdog_set_thresh(wq_watchdog_thresh); 5846 } 5847 5848 #else /* CONFIG_WQ_WATCHDOG */ 5849 5850 static inline void wq_watchdog_init(void) { } 5851 5852 #endif /* CONFIG_WQ_WATCHDOG */ 5853 5854 static void __init wq_numa_init(void) 5855 { 5856 cpumask_var_t *tbl; 5857 int node, cpu; 5858 5859 if (num_possible_nodes() <= 1) 5860 return; 5861 5862 if (wq_disable_numa) { 5863 pr_info("workqueue: NUMA affinity support disabled\n"); 5864 return; 5865 } 5866 5867 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(); 5868 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5869 5870 /* 5871 * We want masks of possible CPUs of each node which isn't readily 5872 * available. Build one from cpu_to_node() which should have been 5873 * fully initialized by now. 5874 */ 5875 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 5876 BUG_ON(!tbl); 5877 5878 for_each_node(node) 5879 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5880 node_online(node) ? node : NUMA_NO_NODE)); 5881 5882 for_each_possible_cpu(cpu) { 5883 node = cpu_to_node(cpu); 5884 if (WARN_ON(node == NUMA_NO_NODE)) { 5885 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5886 /* happens iff arch is bonkers, let's just proceed */ 5887 return; 5888 } 5889 cpumask_set_cpu(cpu, tbl[node]); 5890 } 5891 5892 wq_numa_possible_cpumask = tbl; 5893 wq_numa_enabled = true; 5894 } 5895 5896 /** 5897 * workqueue_init_early - early init for workqueue subsystem 5898 * 5899 * This is the first half of two-staged workqueue subsystem initialization 5900 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5901 * idr are up. It sets up all the data structures and system workqueues 5902 * and allows early boot code to create workqueues and queue/cancel work 5903 * items. Actual work item execution starts only after kthreads can be 5904 * created and scheduled right before early initcalls. 5905 */ 5906 int __init workqueue_init_early(void) 5907 { 5908 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5909 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 5910 int i, cpu; 5911 5912 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5913 5914 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5915 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags)); 5916 5917 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5918 5919 /* initialize CPU pools */ 5920 for_each_possible_cpu(cpu) { 5921 struct worker_pool *pool; 5922 5923 i = 0; 5924 for_each_cpu_worker_pool(pool, cpu) { 5925 BUG_ON(init_worker_pool(pool)); 5926 pool->cpu = cpu; 5927 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5928 pool->attrs->nice = std_nice[i++]; 5929 pool->node = cpu_to_node(cpu); 5930 5931 /* alloc pool ID */ 5932 mutex_lock(&wq_pool_mutex); 5933 BUG_ON(worker_pool_assign_id(pool)); 5934 mutex_unlock(&wq_pool_mutex); 5935 } 5936 } 5937 5938 /* create default unbound and ordered wq attrs */ 5939 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5940 struct workqueue_attrs *attrs; 5941 5942 BUG_ON(!(attrs = alloc_workqueue_attrs())); 5943 attrs->nice = std_nice[i]; 5944 unbound_std_wq_attrs[i] = attrs; 5945 5946 /* 5947 * An ordered wq should have only one pwq as ordering is 5948 * guaranteed by max_active which is enforced by pwqs. 5949 * Turn off NUMA so that dfl_pwq is used for all nodes. 5950 */ 5951 BUG_ON(!(attrs = alloc_workqueue_attrs())); 5952 attrs->nice = std_nice[i]; 5953 attrs->no_numa = true; 5954 ordered_wq_attrs[i] = attrs; 5955 } 5956 5957 system_wq = alloc_workqueue("events", 0, 0); 5958 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5959 system_long_wq = alloc_workqueue("events_long", 0, 0); 5960 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5961 WQ_UNBOUND_MAX_ACTIVE); 5962 system_freezable_wq = alloc_workqueue("events_freezable", 5963 WQ_FREEZABLE, 0); 5964 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5965 WQ_POWER_EFFICIENT, 0); 5966 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5967 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5968 0); 5969 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5970 !system_unbound_wq || !system_freezable_wq || 5971 !system_power_efficient_wq || 5972 !system_freezable_power_efficient_wq); 5973 5974 return 0; 5975 } 5976 5977 /** 5978 * workqueue_init - bring workqueue subsystem fully online 5979 * 5980 * This is the latter half of two-staged workqueue subsystem initialization 5981 * and invoked as soon as kthreads can be created and scheduled. 5982 * Workqueues have been created and work items queued on them, but there 5983 * are no kworkers executing the work items yet. Populate the worker pools 5984 * with the initial workers and enable future kworker creations. 5985 */ 5986 int __init workqueue_init(void) 5987 { 5988 struct workqueue_struct *wq; 5989 struct worker_pool *pool; 5990 int cpu, bkt; 5991 5992 /* 5993 * It'd be simpler to initialize NUMA in workqueue_init_early() but 5994 * CPU to node mapping may not be available that early on some 5995 * archs such as power and arm64. As per-cpu pools created 5996 * previously could be missing node hint and unbound pools NUMA 5997 * affinity, fix them up. 5998 * 5999 * Also, while iterating workqueues, create rescuers if requested. 6000 */ 6001 wq_numa_init(); 6002 6003 mutex_lock(&wq_pool_mutex); 6004 6005 for_each_possible_cpu(cpu) { 6006 for_each_cpu_worker_pool(pool, cpu) { 6007 pool->node = cpu_to_node(cpu); 6008 } 6009 } 6010 6011 list_for_each_entry(wq, &workqueues, list) { 6012 wq_update_unbound_numa(wq, smp_processor_id(), true); 6013 WARN(init_rescuer(wq), 6014 "workqueue: failed to create early rescuer for %s", 6015 wq->name); 6016 } 6017 6018 mutex_unlock(&wq_pool_mutex); 6019 6020 /* create the initial workers */ 6021 for_each_online_cpu(cpu) { 6022 for_each_cpu_worker_pool(pool, cpu) { 6023 pool->flags &= ~POOL_DISASSOCIATED; 6024 BUG_ON(!create_worker(pool)); 6025 } 6026 } 6027 6028 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 6029 BUG_ON(!create_worker(pool)); 6030 6031 wq_online = true; 6032 wq_watchdog_init(); 6033 6034 return 0; 6035 } 6036