xref: /linux/kernel/workqueue.c (revision 72ef07554c5dcabb0053a147c4fd221a8e39bcfd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58 
59 #include "workqueue_internal.h"
60 
61 enum worker_pool_flags {
62 	/*
63 	 * worker_pool flags
64 	 *
65 	 * A bound pool is either associated or disassociated with its CPU.
66 	 * While associated (!DISASSOCIATED), all workers are bound to the
67 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 	 * is in effect.
69 	 *
70 	 * While DISASSOCIATED, the cpu may be offline and all workers have
71 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 	 * be executing on any CPU.  The pool behaves as an unbound one.
73 	 *
74 	 * Note that DISASSOCIATED should be flipped only while holding
75 	 * wq_pool_attach_mutex to avoid changing binding state while
76 	 * worker_attach_to_pool() is in progress.
77 	 *
78 	 * As there can only be one concurrent BH execution context per CPU, a
79 	 * BH pool is per-CPU and always DISASSOCIATED.
80 	 */
81 	POOL_BH			= 1 << 0,	/* is a BH pool */
82 	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
83 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
84 	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
85 };
86 
87 enum worker_flags {
88 	/* worker flags */
89 	WORKER_DIE		= 1 << 1,	/* die die die */
90 	WORKER_IDLE		= 1 << 2,	/* is idle */
91 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
92 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
93 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
94 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
95 
96 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
97 				  WORKER_UNBOUND | WORKER_REBOUND,
98 };
99 
100 enum work_cancel_flags {
101 	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
102 	WORK_CANCEL_DISABLE	= 1 << 1,	/* canceling to disable */
103 };
104 
105 enum wq_internal_consts {
106 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
107 
108 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
109 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
110 
111 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
112 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
113 
114 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
115 						/* call for help after 10ms
116 						   (min two ticks) */
117 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
118 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
119 
120 	/*
121 	 * Rescue workers are used only on emergencies and shared by
122 	 * all cpus.  Give MIN_NICE.
123 	 */
124 	RESCUER_NICE_LEVEL	= MIN_NICE,
125 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
126 
127 	WQ_NAME_LEN		= 32,
128 	WORKER_ID_LEN		= 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */
129 };
130 
131 /*
132  * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
133  * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
134  * msecs_to_jiffies() can't be an initializer.
135  */
136 #define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
137 #define BH_WORKER_RESTARTS	10
138 
139 /*
140  * Structure fields follow one of the following exclusion rules.
141  *
142  * I: Modifiable by initialization/destruction paths and read-only for
143  *    everyone else.
144  *
145  * P: Preemption protected.  Disabling preemption is enough and should
146  *    only be modified and accessed from the local cpu.
147  *
148  * L: pool->lock protected.  Access with pool->lock held.
149  *
150  * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
151  *     reads.
152  *
153  * K: Only modified by worker while holding pool->lock. Can be safely read by
154  *    self, while holding pool->lock or from IRQ context if %current is the
155  *    kworker.
156  *
157  * S: Only modified by worker self.
158  *
159  * A: wq_pool_attach_mutex protected.
160  *
161  * PL: wq_pool_mutex protected.
162  *
163  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
164  *
165  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
166  *
167  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
168  *      RCU for reads.
169  *
170  * WQ: wq->mutex protected.
171  *
172  * WR: wq->mutex protected for writes.  RCU protected for reads.
173  *
174  * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
175  *     with READ_ONCE() without locking.
176  *
177  * MD: wq_mayday_lock protected.
178  *
179  * WD: Used internally by the watchdog.
180  */
181 
182 /* struct worker is defined in workqueue_internal.h */
183 
184 struct worker_pool {
185 	raw_spinlock_t		lock;		/* the pool lock */
186 	int			cpu;		/* I: the associated cpu */
187 	int			node;		/* I: the associated node ID */
188 	int			id;		/* I: pool ID */
189 	unsigned int		flags;		/* L: flags */
190 
191 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
192 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
193 
194 	/*
195 	 * The counter is incremented in a process context on the associated CPU
196 	 * w/ preemption disabled, and decremented or reset in the same context
197 	 * but w/ pool->lock held. The readers grab pool->lock and are
198 	 * guaranteed to see if the counter reached zero.
199 	 */
200 	int			nr_running;
201 
202 	struct list_head	worklist;	/* L: list of pending works */
203 
204 	int			nr_workers;	/* L: total number of workers */
205 	int			nr_idle;	/* L: currently idle workers */
206 
207 	struct list_head	idle_list;	/* L: list of idle workers */
208 	struct timer_list	idle_timer;	/* L: worker idle timeout */
209 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
210 
211 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
212 
213 	/* a workers is either on busy_hash or idle_list, or the manager */
214 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
215 						/* L: hash of busy workers */
216 
217 	struct worker		*manager;	/* L: purely informational */
218 	struct list_head	workers;	/* A: attached workers */
219 
220 	struct ida		worker_ida;	/* worker IDs for task name */
221 
222 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
223 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
224 	int			refcnt;		/* PL: refcnt for unbound pools */
225 
226 	/*
227 	 * Destruction of pool is RCU protected to allow dereferences
228 	 * from get_work_pool().
229 	 */
230 	struct rcu_head		rcu;
231 };
232 
233 /*
234  * Per-pool_workqueue statistics. These can be monitored using
235  * tools/workqueue/wq_monitor.py.
236  */
237 enum pool_workqueue_stats {
238 	PWQ_STAT_STARTED,	/* work items started execution */
239 	PWQ_STAT_COMPLETED,	/* work items completed execution */
240 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
241 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
242 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
243 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
244 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
245 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
246 
247 	PWQ_NR_STATS,
248 };
249 
250 /*
251  * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
252  * of work_struct->data are used for flags and the remaining high bits
253  * point to the pwq; thus, pwqs need to be aligned at two's power of the
254  * number of flag bits.
255  */
256 struct pool_workqueue {
257 	struct worker_pool	*pool;		/* I: the associated pool */
258 	struct workqueue_struct *wq;		/* I: the owning workqueue */
259 	int			work_color;	/* L: current color */
260 	int			flush_color;	/* L: flushing color */
261 	int			refcnt;		/* L: reference count */
262 	int			nr_in_flight[WORK_NR_COLORS];
263 						/* L: nr of in_flight works */
264 	bool			plugged;	/* L: execution suspended */
265 
266 	/*
267 	 * nr_active management and WORK_STRUCT_INACTIVE:
268 	 *
269 	 * When pwq->nr_active >= max_active, new work item is queued to
270 	 * pwq->inactive_works instead of pool->worklist and marked with
271 	 * WORK_STRUCT_INACTIVE.
272 	 *
273 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
274 	 * nr_active and all work items in pwq->inactive_works are marked with
275 	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
276 	 * in pwq->inactive_works. Some of them are ready to run in
277 	 * pool->worklist or worker->scheduled. Those work itmes are only struct
278 	 * wq_barrier which is used for flush_work() and should not participate
279 	 * in nr_active. For non-barrier work item, it is marked with
280 	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
281 	 */
282 	int			nr_active;	/* L: nr of active works */
283 	struct list_head	inactive_works;	/* L: inactive works */
284 	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
285 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
286 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
287 
288 	u64			stats[PWQ_NR_STATS];
289 
290 	/*
291 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
292 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
293 	 * RCU protected so that the first pwq can be determined without
294 	 * grabbing wq->mutex.
295 	 */
296 	struct kthread_work	release_work;
297 	struct rcu_head		rcu;
298 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
299 
300 /*
301  * Structure used to wait for workqueue flush.
302  */
303 struct wq_flusher {
304 	struct list_head	list;		/* WQ: list of flushers */
305 	int			flush_color;	/* WQ: flush color waiting for */
306 	struct completion	done;		/* flush completion */
307 };
308 
309 struct wq_device;
310 
311 /*
312  * Unlike in a per-cpu workqueue where max_active limits its concurrency level
313  * on each CPU, in an unbound workqueue, max_active applies to the whole system.
314  * As sharing a single nr_active across multiple sockets can be very expensive,
315  * the counting and enforcement is per NUMA node.
316  *
317  * The following struct is used to enforce per-node max_active. When a pwq wants
318  * to start executing a work item, it should increment ->nr using
319  * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
320  * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
321  * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
322  * round-robin order.
323  */
324 struct wq_node_nr_active {
325 	int			max;		/* per-node max_active */
326 	atomic_t		nr;		/* per-node nr_active */
327 	raw_spinlock_t		lock;		/* nests inside pool locks */
328 	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
329 };
330 
331 /*
332  * The externally visible workqueue.  It relays the issued work items to
333  * the appropriate worker_pool through its pool_workqueues.
334  */
335 struct workqueue_struct {
336 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
337 	struct list_head	list;		/* PR: list of all workqueues */
338 
339 	struct mutex		mutex;		/* protects this wq */
340 	int			work_color;	/* WQ: current work color */
341 	int			flush_color;	/* WQ: current flush color */
342 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
343 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
344 	struct list_head	flusher_queue;	/* WQ: flush waiters */
345 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
346 
347 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
348 	struct worker		*rescuer;	/* MD: rescue worker */
349 
350 	int			nr_drainers;	/* WQ: drain in progress */
351 
352 	/* See alloc_workqueue() function comment for info on min/max_active */
353 	int			max_active;	/* WO: max active works */
354 	int			min_active;	/* WO: min active works */
355 	int			saved_max_active; /* WQ: saved max_active */
356 	int			saved_min_active; /* WQ: saved min_active */
357 
358 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
359 	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
360 
361 #ifdef CONFIG_SYSFS
362 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
363 #endif
364 #ifdef CONFIG_LOCKDEP
365 	char			*lock_name;
366 	struct lock_class_key	key;
367 	struct lockdep_map	lockdep_map;
368 #endif
369 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
370 
371 	/*
372 	 * Destruction of workqueue_struct is RCU protected to allow walking
373 	 * the workqueues list without grabbing wq_pool_mutex.
374 	 * This is used to dump all workqueues from sysrq.
375 	 */
376 	struct rcu_head		rcu;
377 
378 	/* hot fields used during command issue, aligned to cacheline */
379 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
380 	struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */
381 	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
382 };
383 
384 /*
385  * Each pod type describes how CPUs should be grouped for unbound workqueues.
386  * See the comment above workqueue_attrs->affn_scope.
387  */
388 struct wq_pod_type {
389 	int			nr_pods;	/* number of pods */
390 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
391 	int			*pod_node;	/* pod -> node */
392 	int			*cpu_pod;	/* cpu -> pod */
393 };
394 
395 struct work_offq_data {
396 	u32			pool_id;
397 	u32			disable;
398 	u32			flags;
399 };
400 
401 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
402 	[WQ_AFFN_DFL]		= "default",
403 	[WQ_AFFN_CPU]		= "cpu",
404 	[WQ_AFFN_SMT]		= "smt",
405 	[WQ_AFFN_CACHE]		= "cache",
406 	[WQ_AFFN_NUMA]		= "numa",
407 	[WQ_AFFN_SYSTEM]	= "system",
408 };
409 
410 /*
411  * Per-cpu work items which run for longer than the following threshold are
412  * automatically considered CPU intensive and excluded from concurrency
413  * management to prevent them from noticeably delaying other per-cpu work items.
414  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
415  * The actual value is initialized in wq_cpu_intensive_thresh_init().
416  */
417 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
418 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
419 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
420 static unsigned int wq_cpu_intensive_warning_thresh = 4;
421 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
422 #endif
423 
424 /* see the comment above the definition of WQ_POWER_EFFICIENT */
425 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
426 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
427 
428 static bool wq_online;			/* can kworkers be created yet? */
429 static bool wq_topo_initialized __read_mostly = false;
430 
431 static struct kmem_cache *pwq_cache;
432 
433 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
434 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
435 
436 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
437 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf;
438 
439 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
440 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
441 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
442 /* wait for manager to go away */
443 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
444 
445 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
446 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
447 
448 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */
449 static cpumask_var_t wq_online_cpumask;
450 
451 /* PL&A: allowable cpus for unbound wqs and work items */
452 static cpumask_var_t wq_unbound_cpumask;
453 
454 /* PL: user requested unbound cpumask via sysfs */
455 static cpumask_var_t wq_requested_unbound_cpumask;
456 
457 /* PL: isolated cpumask to be excluded from unbound cpumask */
458 static cpumask_var_t wq_isolated_cpumask;
459 
460 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
461 static struct cpumask wq_cmdline_cpumask __initdata;
462 
463 /* CPU where unbound work was last round robin scheduled from this CPU */
464 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
465 
466 /*
467  * Local execution of unbound work items is no longer guaranteed.  The
468  * following always forces round-robin CPU selection on unbound work items
469  * to uncover usages which depend on it.
470  */
471 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
472 static bool wq_debug_force_rr_cpu = true;
473 #else
474 static bool wq_debug_force_rr_cpu = false;
475 #endif
476 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
477 
478 /* to raise softirq for the BH worker pools on other CPUs */
479 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS],
480 				     bh_pool_irq_works);
481 
482 /* the BH worker pools */
483 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
484 				     bh_worker_pools);
485 
486 /* the per-cpu worker pools */
487 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
488 				     cpu_worker_pools);
489 
490 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
491 
492 /* PL: hash of all unbound pools keyed by pool->attrs */
493 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
494 
495 /* I: attributes used when instantiating standard unbound pools on demand */
496 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
497 
498 /* I: attributes used when instantiating ordered pools on demand */
499 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
500 
501 /*
502  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
503  * process context while holding a pool lock. Bounce to a dedicated kthread
504  * worker to avoid A-A deadlocks.
505  */
506 static struct kthread_worker *pwq_release_worker __ro_after_init;
507 
508 struct workqueue_struct *system_wq __ro_after_init;
509 EXPORT_SYMBOL(system_wq);
510 struct workqueue_struct *system_highpri_wq __ro_after_init;
511 EXPORT_SYMBOL_GPL(system_highpri_wq);
512 struct workqueue_struct *system_long_wq __ro_after_init;
513 EXPORT_SYMBOL_GPL(system_long_wq);
514 struct workqueue_struct *system_unbound_wq __ro_after_init;
515 EXPORT_SYMBOL_GPL(system_unbound_wq);
516 struct workqueue_struct *system_freezable_wq __ro_after_init;
517 EXPORT_SYMBOL_GPL(system_freezable_wq);
518 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
519 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
520 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
521 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
522 struct workqueue_struct *system_bh_wq;
523 EXPORT_SYMBOL_GPL(system_bh_wq);
524 struct workqueue_struct *system_bh_highpri_wq;
525 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
526 
527 static int worker_thread(void *__worker);
528 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
529 static void show_pwq(struct pool_workqueue *pwq);
530 static void show_one_worker_pool(struct worker_pool *pool);
531 
532 #define CREATE_TRACE_POINTS
533 #include <trace/events/workqueue.h>
534 
535 #define assert_rcu_or_pool_mutex()					\
536 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
537 			 !lockdep_is_held(&wq_pool_mutex),		\
538 			 "RCU or wq_pool_mutex should be held")
539 
540 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
541 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
542 			 !lockdep_is_held(&wq->mutex) &&		\
543 			 !lockdep_is_held(&wq_pool_mutex),		\
544 			 "RCU, wq->mutex or wq_pool_mutex should be held")
545 
546 #define for_each_bh_worker_pool(pool, cpu)				\
547 	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
548 	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
549 	     (pool)++)
550 
551 #define for_each_cpu_worker_pool(pool, cpu)				\
552 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
553 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
554 	     (pool)++)
555 
556 /**
557  * for_each_pool - iterate through all worker_pools in the system
558  * @pool: iteration cursor
559  * @pi: integer used for iteration
560  *
561  * This must be called either with wq_pool_mutex held or RCU read
562  * locked.  If the pool needs to be used beyond the locking in effect, the
563  * caller is responsible for guaranteeing that the pool stays online.
564  *
565  * The if/else clause exists only for the lockdep assertion and can be
566  * ignored.
567  */
568 #define for_each_pool(pool, pi)						\
569 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
570 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
571 		else
572 
573 /**
574  * for_each_pool_worker - iterate through all workers of a worker_pool
575  * @worker: iteration cursor
576  * @pool: worker_pool to iterate workers of
577  *
578  * This must be called with wq_pool_attach_mutex.
579  *
580  * The if/else clause exists only for the lockdep assertion and can be
581  * ignored.
582  */
583 #define for_each_pool_worker(worker, pool)				\
584 	list_for_each_entry((worker), &(pool)->workers, node)		\
585 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
586 		else
587 
588 /**
589  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
590  * @pwq: iteration cursor
591  * @wq: the target workqueue
592  *
593  * This must be called either with wq->mutex held or RCU read locked.
594  * If the pwq needs to be used beyond the locking in effect, the caller is
595  * responsible for guaranteeing that the pwq stays online.
596  *
597  * The if/else clause exists only for the lockdep assertion and can be
598  * ignored.
599  */
600 #define for_each_pwq(pwq, wq)						\
601 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
602 				 lockdep_is_held(&(wq->mutex)))
603 
604 #ifdef CONFIG_DEBUG_OBJECTS_WORK
605 
606 static const struct debug_obj_descr work_debug_descr;
607 
608 static void *work_debug_hint(void *addr)
609 {
610 	return ((struct work_struct *) addr)->func;
611 }
612 
613 static bool work_is_static_object(void *addr)
614 {
615 	struct work_struct *work = addr;
616 
617 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
618 }
619 
620 /*
621  * fixup_init is called when:
622  * - an active object is initialized
623  */
624 static bool work_fixup_init(void *addr, enum debug_obj_state state)
625 {
626 	struct work_struct *work = addr;
627 
628 	switch (state) {
629 	case ODEBUG_STATE_ACTIVE:
630 		cancel_work_sync(work);
631 		debug_object_init(work, &work_debug_descr);
632 		return true;
633 	default:
634 		return false;
635 	}
636 }
637 
638 /*
639  * fixup_free is called when:
640  * - an active object is freed
641  */
642 static bool work_fixup_free(void *addr, enum debug_obj_state state)
643 {
644 	struct work_struct *work = addr;
645 
646 	switch (state) {
647 	case ODEBUG_STATE_ACTIVE:
648 		cancel_work_sync(work);
649 		debug_object_free(work, &work_debug_descr);
650 		return true;
651 	default:
652 		return false;
653 	}
654 }
655 
656 static const struct debug_obj_descr work_debug_descr = {
657 	.name		= "work_struct",
658 	.debug_hint	= work_debug_hint,
659 	.is_static_object = work_is_static_object,
660 	.fixup_init	= work_fixup_init,
661 	.fixup_free	= work_fixup_free,
662 };
663 
664 static inline void debug_work_activate(struct work_struct *work)
665 {
666 	debug_object_activate(work, &work_debug_descr);
667 }
668 
669 static inline void debug_work_deactivate(struct work_struct *work)
670 {
671 	debug_object_deactivate(work, &work_debug_descr);
672 }
673 
674 void __init_work(struct work_struct *work, int onstack)
675 {
676 	if (onstack)
677 		debug_object_init_on_stack(work, &work_debug_descr);
678 	else
679 		debug_object_init(work, &work_debug_descr);
680 }
681 EXPORT_SYMBOL_GPL(__init_work);
682 
683 void destroy_work_on_stack(struct work_struct *work)
684 {
685 	debug_object_free(work, &work_debug_descr);
686 }
687 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
688 
689 void destroy_delayed_work_on_stack(struct delayed_work *work)
690 {
691 	destroy_timer_on_stack(&work->timer);
692 	debug_object_free(&work->work, &work_debug_descr);
693 }
694 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
695 
696 #else
697 static inline void debug_work_activate(struct work_struct *work) { }
698 static inline void debug_work_deactivate(struct work_struct *work) { }
699 #endif
700 
701 /**
702  * worker_pool_assign_id - allocate ID and assign it to @pool
703  * @pool: the pool pointer of interest
704  *
705  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
706  * successfully, -errno on failure.
707  */
708 static int worker_pool_assign_id(struct worker_pool *pool)
709 {
710 	int ret;
711 
712 	lockdep_assert_held(&wq_pool_mutex);
713 
714 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
715 			GFP_KERNEL);
716 	if (ret >= 0) {
717 		pool->id = ret;
718 		return 0;
719 	}
720 	return ret;
721 }
722 
723 static struct pool_workqueue __rcu **
724 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
725 {
726        if (cpu >= 0)
727                return per_cpu_ptr(wq->cpu_pwq, cpu);
728        else
729                return &wq->dfl_pwq;
730 }
731 
732 /* @cpu < 0 for dfl_pwq */
733 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
734 {
735 	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
736 				     lockdep_is_held(&wq_pool_mutex) ||
737 				     lockdep_is_held(&wq->mutex));
738 }
739 
740 /**
741  * unbound_effective_cpumask - effective cpumask of an unbound workqueue
742  * @wq: workqueue of interest
743  *
744  * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
745  * is masked with wq_unbound_cpumask to determine the effective cpumask. The
746  * default pwq is always mapped to the pool with the current effective cpumask.
747  */
748 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
749 {
750 	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
751 }
752 
753 static unsigned int work_color_to_flags(int color)
754 {
755 	return color << WORK_STRUCT_COLOR_SHIFT;
756 }
757 
758 static int get_work_color(unsigned long work_data)
759 {
760 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
761 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
762 }
763 
764 static int work_next_color(int color)
765 {
766 	return (color + 1) % WORK_NR_COLORS;
767 }
768 
769 static unsigned long pool_offq_flags(struct worker_pool *pool)
770 {
771 	return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
772 }
773 
774 /*
775  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
776  * contain the pointer to the queued pwq.  Once execution starts, the flag
777  * is cleared and the high bits contain OFFQ flags and pool ID.
778  *
779  * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
780  * can be used to set the pwq, pool or clear work->data. These functions should
781  * only be called while the work is owned - ie. while the PENDING bit is set.
782  *
783  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
784  * corresponding to a work.  Pool is available once the work has been
785  * queued anywhere after initialization until it is sync canceled.  pwq is
786  * available only while the work item is queued.
787  */
788 static inline void set_work_data(struct work_struct *work, unsigned long data)
789 {
790 	WARN_ON_ONCE(!work_pending(work));
791 	atomic_long_set(&work->data, data | work_static(work));
792 }
793 
794 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
795 			 unsigned long flags)
796 {
797 	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
798 		      WORK_STRUCT_PWQ | flags);
799 }
800 
801 static void set_work_pool_and_keep_pending(struct work_struct *work,
802 					   int pool_id, unsigned long flags)
803 {
804 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
805 		      WORK_STRUCT_PENDING | flags);
806 }
807 
808 static void set_work_pool_and_clear_pending(struct work_struct *work,
809 					    int pool_id, unsigned long flags)
810 {
811 	/*
812 	 * The following wmb is paired with the implied mb in
813 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
814 	 * here are visible to and precede any updates by the next PENDING
815 	 * owner.
816 	 */
817 	smp_wmb();
818 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
819 		      flags);
820 	/*
821 	 * The following mb guarantees that previous clear of a PENDING bit
822 	 * will not be reordered with any speculative LOADS or STORES from
823 	 * work->current_func, which is executed afterwards.  This possible
824 	 * reordering can lead to a missed execution on attempt to queue
825 	 * the same @work.  E.g. consider this case:
826 	 *
827 	 *   CPU#0                         CPU#1
828 	 *   ----------------------------  --------------------------------
829 	 *
830 	 * 1  STORE event_indicated
831 	 * 2  queue_work_on() {
832 	 * 3    test_and_set_bit(PENDING)
833 	 * 4 }                             set_..._and_clear_pending() {
834 	 * 5                                 set_work_data() # clear bit
835 	 * 6                                 smp_mb()
836 	 * 7                               work->current_func() {
837 	 * 8				      LOAD event_indicated
838 	 *				   }
839 	 *
840 	 * Without an explicit full barrier speculative LOAD on line 8 can
841 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
842 	 * CPU#0 observes the PENDING bit is still set and new execution of
843 	 * a @work is not queued in a hope, that CPU#1 will eventually
844 	 * finish the queued @work.  Meanwhile CPU#1 does not see
845 	 * event_indicated is set, because speculative LOAD was executed
846 	 * before actual STORE.
847 	 */
848 	smp_mb();
849 }
850 
851 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
852 {
853 	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
854 }
855 
856 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
857 {
858 	unsigned long data = atomic_long_read(&work->data);
859 
860 	if (data & WORK_STRUCT_PWQ)
861 		return work_struct_pwq(data);
862 	else
863 		return NULL;
864 }
865 
866 /**
867  * get_work_pool - return the worker_pool a given work was associated with
868  * @work: the work item of interest
869  *
870  * Pools are created and destroyed under wq_pool_mutex, and allows read
871  * access under RCU read lock.  As such, this function should be
872  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
873  *
874  * All fields of the returned pool are accessible as long as the above
875  * mentioned locking is in effect.  If the returned pool needs to be used
876  * beyond the critical section, the caller is responsible for ensuring the
877  * returned pool is and stays online.
878  *
879  * Return: The worker_pool @work was last associated with.  %NULL if none.
880  */
881 static struct worker_pool *get_work_pool(struct work_struct *work)
882 {
883 	unsigned long data = atomic_long_read(&work->data);
884 	int pool_id;
885 
886 	assert_rcu_or_pool_mutex();
887 
888 	if (data & WORK_STRUCT_PWQ)
889 		return work_struct_pwq(data)->pool;
890 
891 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
892 	if (pool_id == WORK_OFFQ_POOL_NONE)
893 		return NULL;
894 
895 	return idr_find(&worker_pool_idr, pool_id);
896 }
897 
898 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
899 {
900 	return (v >> shift) & ((1U << bits) - 1);
901 }
902 
903 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
904 {
905 	WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
906 
907 	offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
908 					WORK_OFFQ_POOL_BITS);
909 	offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
910 					WORK_OFFQ_DISABLE_BITS);
911 	offqd->flags = data & WORK_OFFQ_FLAG_MASK;
912 }
913 
914 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
915 {
916 	return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
917 		((unsigned long)offqd->flags);
918 }
919 
920 /*
921  * Policy functions.  These define the policies on how the global worker
922  * pools are managed.  Unless noted otherwise, these functions assume that
923  * they're being called with pool->lock held.
924  */
925 
926 /*
927  * Need to wake up a worker?  Called from anything but currently
928  * running workers.
929  *
930  * Note that, because unbound workers never contribute to nr_running, this
931  * function will always return %true for unbound pools as long as the
932  * worklist isn't empty.
933  */
934 static bool need_more_worker(struct worker_pool *pool)
935 {
936 	return !list_empty(&pool->worklist) && !pool->nr_running;
937 }
938 
939 /* Can I start working?  Called from busy but !running workers. */
940 static bool may_start_working(struct worker_pool *pool)
941 {
942 	return pool->nr_idle;
943 }
944 
945 /* Do I need to keep working?  Called from currently running workers. */
946 static bool keep_working(struct worker_pool *pool)
947 {
948 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
949 }
950 
951 /* Do we need a new worker?  Called from manager. */
952 static bool need_to_create_worker(struct worker_pool *pool)
953 {
954 	return need_more_worker(pool) && !may_start_working(pool);
955 }
956 
957 /* Do we have too many workers and should some go away? */
958 static bool too_many_workers(struct worker_pool *pool)
959 {
960 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
961 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
962 	int nr_busy = pool->nr_workers - nr_idle;
963 
964 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
965 }
966 
967 /**
968  * worker_set_flags - set worker flags and adjust nr_running accordingly
969  * @worker: self
970  * @flags: flags to set
971  *
972  * Set @flags in @worker->flags and adjust nr_running accordingly.
973  */
974 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
975 {
976 	struct worker_pool *pool = worker->pool;
977 
978 	lockdep_assert_held(&pool->lock);
979 
980 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
981 	if ((flags & WORKER_NOT_RUNNING) &&
982 	    !(worker->flags & WORKER_NOT_RUNNING)) {
983 		pool->nr_running--;
984 	}
985 
986 	worker->flags |= flags;
987 }
988 
989 /**
990  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
991  * @worker: self
992  * @flags: flags to clear
993  *
994  * Clear @flags in @worker->flags and adjust nr_running accordingly.
995  */
996 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
997 {
998 	struct worker_pool *pool = worker->pool;
999 	unsigned int oflags = worker->flags;
1000 
1001 	lockdep_assert_held(&pool->lock);
1002 
1003 	worker->flags &= ~flags;
1004 
1005 	/*
1006 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1007 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1008 	 * of multiple flags, not a single flag.
1009 	 */
1010 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1011 		if (!(worker->flags & WORKER_NOT_RUNNING))
1012 			pool->nr_running++;
1013 }
1014 
1015 /* Return the first idle worker.  Called with pool->lock held. */
1016 static struct worker *first_idle_worker(struct worker_pool *pool)
1017 {
1018 	if (unlikely(list_empty(&pool->idle_list)))
1019 		return NULL;
1020 
1021 	return list_first_entry(&pool->idle_list, struct worker, entry);
1022 }
1023 
1024 /**
1025  * worker_enter_idle - enter idle state
1026  * @worker: worker which is entering idle state
1027  *
1028  * @worker is entering idle state.  Update stats and idle timer if
1029  * necessary.
1030  *
1031  * LOCKING:
1032  * raw_spin_lock_irq(pool->lock).
1033  */
1034 static void worker_enter_idle(struct worker *worker)
1035 {
1036 	struct worker_pool *pool = worker->pool;
1037 
1038 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1039 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1040 			 (worker->hentry.next || worker->hentry.pprev)))
1041 		return;
1042 
1043 	/* can't use worker_set_flags(), also called from create_worker() */
1044 	worker->flags |= WORKER_IDLE;
1045 	pool->nr_idle++;
1046 	worker->last_active = jiffies;
1047 
1048 	/* idle_list is LIFO */
1049 	list_add(&worker->entry, &pool->idle_list);
1050 
1051 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1052 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1053 
1054 	/* Sanity check nr_running. */
1055 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1056 }
1057 
1058 /**
1059  * worker_leave_idle - leave idle state
1060  * @worker: worker which is leaving idle state
1061  *
1062  * @worker is leaving idle state.  Update stats.
1063  *
1064  * LOCKING:
1065  * raw_spin_lock_irq(pool->lock).
1066  */
1067 static void worker_leave_idle(struct worker *worker)
1068 {
1069 	struct worker_pool *pool = worker->pool;
1070 
1071 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1072 		return;
1073 	worker_clr_flags(worker, WORKER_IDLE);
1074 	pool->nr_idle--;
1075 	list_del_init(&worker->entry);
1076 }
1077 
1078 /**
1079  * find_worker_executing_work - find worker which is executing a work
1080  * @pool: pool of interest
1081  * @work: work to find worker for
1082  *
1083  * Find a worker which is executing @work on @pool by searching
1084  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1085  * to match, its current execution should match the address of @work and
1086  * its work function.  This is to avoid unwanted dependency between
1087  * unrelated work executions through a work item being recycled while still
1088  * being executed.
1089  *
1090  * This is a bit tricky.  A work item may be freed once its execution
1091  * starts and nothing prevents the freed area from being recycled for
1092  * another work item.  If the same work item address ends up being reused
1093  * before the original execution finishes, workqueue will identify the
1094  * recycled work item as currently executing and make it wait until the
1095  * current execution finishes, introducing an unwanted dependency.
1096  *
1097  * This function checks the work item address and work function to avoid
1098  * false positives.  Note that this isn't complete as one may construct a
1099  * work function which can introduce dependency onto itself through a
1100  * recycled work item.  Well, if somebody wants to shoot oneself in the
1101  * foot that badly, there's only so much we can do, and if such deadlock
1102  * actually occurs, it should be easy to locate the culprit work function.
1103  *
1104  * CONTEXT:
1105  * raw_spin_lock_irq(pool->lock).
1106  *
1107  * Return:
1108  * Pointer to worker which is executing @work if found, %NULL
1109  * otherwise.
1110  */
1111 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1112 						 struct work_struct *work)
1113 {
1114 	struct worker *worker;
1115 
1116 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1117 			       (unsigned long)work)
1118 		if (worker->current_work == work &&
1119 		    worker->current_func == work->func)
1120 			return worker;
1121 
1122 	return NULL;
1123 }
1124 
1125 /**
1126  * move_linked_works - move linked works to a list
1127  * @work: start of series of works to be scheduled
1128  * @head: target list to append @work to
1129  * @nextp: out parameter for nested worklist walking
1130  *
1131  * Schedule linked works starting from @work to @head. Work series to be
1132  * scheduled starts at @work and includes any consecutive work with
1133  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1134  * @nextp.
1135  *
1136  * CONTEXT:
1137  * raw_spin_lock_irq(pool->lock).
1138  */
1139 static void move_linked_works(struct work_struct *work, struct list_head *head,
1140 			      struct work_struct **nextp)
1141 {
1142 	struct work_struct *n;
1143 
1144 	/*
1145 	 * Linked worklist will always end before the end of the list,
1146 	 * use NULL for list head.
1147 	 */
1148 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1149 		list_move_tail(&work->entry, head);
1150 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1151 			break;
1152 	}
1153 
1154 	/*
1155 	 * If we're already inside safe list traversal and have moved
1156 	 * multiple works to the scheduled queue, the next position
1157 	 * needs to be updated.
1158 	 */
1159 	if (nextp)
1160 		*nextp = n;
1161 }
1162 
1163 /**
1164  * assign_work - assign a work item and its linked work items to a worker
1165  * @work: work to assign
1166  * @worker: worker to assign to
1167  * @nextp: out parameter for nested worklist walking
1168  *
1169  * Assign @work and its linked work items to @worker. If @work is already being
1170  * executed by another worker in the same pool, it'll be punted there.
1171  *
1172  * If @nextp is not NULL, it's updated to point to the next work of the last
1173  * scheduled work. This allows assign_work() to be nested inside
1174  * list_for_each_entry_safe().
1175  *
1176  * Returns %true if @work was successfully assigned to @worker. %false if @work
1177  * was punted to another worker already executing it.
1178  */
1179 static bool assign_work(struct work_struct *work, struct worker *worker,
1180 			struct work_struct **nextp)
1181 {
1182 	struct worker_pool *pool = worker->pool;
1183 	struct worker *collision;
1184 
1185 	lockdep_assert_held(&pool->lock);
1186 
1187 	/*
1188 	 * A single work shouldn't be executed concurrently by multiple workers.
1189 	 * __queue_work() ensures that @work doesn't jump to a different pool
1190 	 * while still running in the previous pool. Here, we should ensure that
1191 	 * @work is not executed concurrently by multiple workers from the same
1192 	 * pool. Check whether anyone is already processing the work. If so,
1193 	 * defer the work to the currently executing one.
1194 	 */
1195 	collision = find_worker_executing_work(pool, work);
1196 	if (unlikely(collision)) {
1197 		move_linked_works(work, &collision->scheduled, nextp);
1198 		return false;
1199 	}
1200 
1201 	move_linked_works(work, &worker->scheduled, nextp);
1202 	return true;
1203 }
1204 
1205 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1206 {
1207 	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1208 
1209 	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1210 }
1211 
1212 static void kick_bh_pool(struct worker_pool *pool)
1213 {
1214 #ifdef CONFIG_SMP
1215 	/* see drain_dead_softirq_workfn() for BH_DRAINING */
1216 	if (unlikely(pool->cpu != smp_processor_id() &&
1217 		     !(pool->flags & POOL_BH_DRAINING))) {
1218 		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1219 		return;
1220 	}
1221 #endif
1222 	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1223 		raise_softirq_irqoff(HI_SOFTIRQ);
1224 	else
1225 		raise_softirq_irqoff(TASKLET_SOFTIRQ);
1226 }
1227 
1228 /**
1229  * kick_pool - wake up an idle worker if necessary
1230  * @pool: pool to kick
1231  *
1232  * @pool may have pending work items. Wake up worker if necessary. Returns
1233  * whether a worker was woken up.
1234  */
1235 static bool kick_pool(struct worker_pool *pool)
1236 {
1237 	struct worker *worker = first_idle_worker(pool);
1238 	struct task_struct *p;
1239 
1240 	lockdep_assert_held(&pool->lock);
1241 
1242 	if (!need_more_worker(pool) || !worker)
1243 		return false;
1244 
1245 	if (pool->flags & POOL_BH) {
1246 		kick_bh_pool(pool);
1247 		return true;
1248 	}
1249 
1250 	p = worker->task;
1251 
1252 #ifdef CONFIG_SMP
1253 	/*
1254 	 * Idle @worker is about to execute @work and waking up provides an
1255 	 * opportunity to migrate @worker at a lower cost by setting the task's
1256 	 * wake_cpu field. Let's see if we want to move @worker to improve
1257 	 * execution locality.
1258 	 *
1259 	 * We're waking the worker that went idle the latest and there's some
1260 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1261 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1262 	 * optimization and the race window is narrow, let's leave as-is for
1263 	 * now. If this becomes pronounced, we can skip over workers which are
1264 	 * still on cpu when picking an idle worker.
1265 	 *
1266 	 * If @pool has non-strict affinity, @worker might have ended up outside
1267 	 * its affinity scope. Repatriate.
1268 	 */
1269 	if (!pool->attrs->affn_strict &&
1270 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1271 		struct work_struct *work = list_first_entry(&pool->worklist,
1272 						struct work_struct, entry);
1273 		int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1274 							  cpu_online_mask);
1275 		if (wake_cpu < nr_cpu_ids) {
1276 			p->wake_cpu = wake_cpu;
1277 			get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1278 		}
1279 	}
1280 #endif
1281 	wake_up_process(p);
1282 	return true;
1283 }
1284 
1285 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1286 
1287 /*
1288  * Concurrency-managed per-cpu work items that hog CPU for longer than
1289  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1290  * which prevents them from stalling other concurrency-managed work items. If a
1291  * work function keeps triggering this mechanism, it's likely that the work item
1292  * should be using an unbound workqueue instead.
1293  *
1294  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1295  * and report them so that they can be examined and converted to use unbound
1296  * workqueues as appropriate. To avoid flooding the console, each violating work
1297  * function is tracked and reported with exponential backoff.
1298  */
1299 #define WCI_MAX_ENTS 128
1300 
1301 struct wci_ent {
1302 	work_func_t		func;
1303 	atomic64_t		cnt;
1304 	struct hlist_node	hash_node;
1305 };
1306 
1307 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1308 static int wci_nr_ents;
1309 static DEFINE_RAW_SPINLOCK(wci_lock);
1310 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1311 
1312 static struct wci_ent *wci_find_ent(work_func_t func)
1313 {
1314 	struct wci_ent *ent;
1315 
1316 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1317 				   (unsigned long)func) {
1318 		if (ent->func == func)
1319 			return ent;
1320 	}
1321 	return NULL;
1322 }
1323 
1324 static void wq_cpu_intensive_report(work_func_t func)
1325 {
1326 	struct wci_ent *ent;
1327 
1328 restart:
1329 	ent = wci_find_ent(func);
1330 	if (ent) {
1331 		u64 cnt;
1332 
1333 		/*
1334 		 * Start reporting from the warning_thresh and back off
1335 		 * exponentially.
1336 		 */
1337 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1338 		if (wq_cpu_intensive_warning_thresh &&
1339 		    cnt >= wq_cpu_intensive_warning_thresh &&
1340 		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1341 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1342 					ent->func, wq_cpu_intensive_thresh_us,
1343 					atomic64_read(&ent->cnt));
1344 		return;
1345 	}
1346 
1347 	/*
1348 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1349 	 * is exhausted, something went really wrong and we probably made enough
1350 	 * noise already.
1351 	 */
1352 	if (wci_nr_ents >= WCI_MAX_ENTS)
1353 		return;
1354 
1355 	raw_spin_lock(&wci_lock);
1356 
1357 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1358 		raw_spin_unlock(&wci_lock);
1359 		return;
1360 	}
1361 
1362 	if (wci_find_ent(func)) {
1363 		raw_spin_unlock(&wci_lock);
1364 		goto restart;
1365 	}
1366 
1367 	ent = &wci_ents[wci_nr_ents++];
1368 	ent->func = func;
1369 	atomic64_set(&ent->cnt, 0);
1370 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1371 
1372 	raw_spin_unlock(&wci_lock);
1373 
1374 	goto restart;
1375 }
1376 
1377 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1378 static void wq_cpu_intensive_report(work_func_t func) {}
1379 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1380 
1381 /**
1382  * wq_worker_running - a worker is running again
1383  * @task: task waking up
1384  *
1385  * This function is called when a worker returns from schedule()
1386  */
1387 void wq_worker_running(struct task_struct *task)
1388 {
1389 	struct worker *worker = kthread_data(task);
1390 
1391 	if (!READ_ONCE(worker->sleeping))
1392 		return;
1393 
1394 	/*
1395 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1396 	 * and the nr_running increment below, we may ruin the nr_running reset
1397 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1398 	 * pool. Protect against such race.
1399 	 */
1400 	preempt_disable();
1401 	if (!(worker->flags & WORKER_NOT_RUNNING))
1402 		worker->pool->nr_running++;
1403 	preempt_enable();
1404 
1405 	/*
1406 	 * CPU intensive auto-detection cares about how long a work item hogged
1407 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1408 	 */
1409 	worker->current_at = worker->task->se.sum_exec_runtime;
1410 
1411 	WRITE_ONCE(worker->sleeping, 0);
1412 }
1413 
1414 /**
1415  * wq_worker_sleeping - a worker is going to sleep
1416  * @task: task going to sleep
1417  *
1418  * This function is called from schedule() when a busy worker is
1419  * going to sleep.
1420  */
1421 void wq_worker_sleeping(struct task_struct *task)
1422 {
1423 	struct worker *worker = kthread_data(task);
1424 	struct worker_pool *pool;
1425 
1426 	/*
1427 	 * Rescuers, which may not have all the fields set up like normal
1428 	 * workers, also reach here, let's not access anything before
1429 	 * checking NOT_RUNNING.
1430 	 */
1431 	if (worker->flags & WORKER_NOT_RUNNING)
1432 		return;
1433 
1434 	pool = worker->pool;
1435 
1436 	/* Return if preempted before wq_worker_running() was reached */
1437 	if (READ_ONCE(worker->sleeping))
1438 		return;
1439 
1440 	WRITE_ONCE(worker->sleeping, 1);
1441 	raw_spin_lock_irq(&pool->lock);
1442 
1443 	/*
1444 	 * Recheck in case unbind_workers() preempted us. We don't
1445 	 * want to decrement nr_running after the worker is unbound
1446 	 * and nr_running has been reset.
1447 	 */
1448 	if (worker->flags & WORKER_NOT_RUNNING) {
1449 		raw_spin_unlock_irq(&pool->lock);
1450 		return;
1451 	}
1452 
1453 	pool->nr_running--;
1454 	if (kick_pool(pool))
1455 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1456 
1457 	raw_spin_unlock_irq(&pool->lock);
1458 }
1459 
1460 /**
1461  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1462  * @task: task currently running
1463  *
1464  * Called from sched_tick(). We're in the IRQ context and the current
1465  * worker's fields which follow the 'K' locking rule can be accessed safely.
1466  */
1467 void wq_worker_tick(struct task_struct *task)
1468 {
1469 	struct worker *worker = kthread_data(task);
1470 	struct pool_workqueue *pwq = worker->current_pwq;
1471 	struct worker_pool *pool = worker->pool;
1472 
1473 	if (!pwq)
1474 		return;
1475 
1476 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1477 
1478 	if (!wq_cpu_intensive_thresh_us)
1479 		return;
1480 
1481 	/*
1482 	 * If the current worker is concurrency managed and hogged the CPU for
1483 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1484 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1485 	 *
1486 	 * Set @worker->sleeping means that @worker is in the process of
1487 	 * switching out voluntarily and won't be contributing to
1488 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1489 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1490 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1491 	 * We probably want to make this prettier in the future.
1492 	 */
1493 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1494 	    worker->task->se.sum_exec_runtime - worker->current_at <
1495 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1496 		return;
1497 
1498 	raw_spin_lock(&pool->lock);
1499 
1500 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1501 	wq_cpu_intensive_report(worker->current_func);
1502 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1503 
1504 	if (kick_pool(pool))
1505 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1506 
1507 	raw_spin_unlock(&pool->lock);
1508 }
1509 
1510 /**
1511  * wq_worker_last_func - retrieve worker's last work function
1512  * @task: Task to retrieve last work function of.
1513  *
1514  * Determine the last function a worker executed. This is called from
1515  * the scheduler to get a worker's last known identity.
1516  *
1517  * CONTEXT:
1518  * raw_spin_lock_irq(rq->lock)
1519  *
1520  * This function is called during schedule() when a kworker is going
1521  * to sleep. It's used by psi to identify aggregation workers during
1522  * dequeuing, to allow periodic aggregation to shut-off when that
1523  * worker is the last task in the system or cgroup to go to sleep.
1524  *
1525  * As this function doesn't involve any workqueue-related locking, it
1526  * only returns stable values when called from inside the scheduler's
1527  * queuing and dequeuing paths, when @task, which must be a kworker,
1528  * is guaranteed to not be processing any works.
1529  *
1530  * Return:
1531  * The last work function %current executed as a worker, NULL if it
1532  * hasn't executed any work yet.
1533  */
1534 work_func_t wq_worker_last_func(struct task_struct *task)
1535 {
1536 	struct worker *worker = kthread_data(task);
1537 
1538 	return worker->last_func;
1539 }
1540 
1541 /**
1542  * wq_node_nr_active - Determine wq_node_nr_active to use
1543  * @wq: workqueue of interest
1544  * @node: NUMA node, can be %NUMA_NO_NODE
1545  *
1546  * Determine wq_node_nr_active to use for @wq on @node. Returns:
1547  *
1548  * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1549  *
1550  * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1551  *
1552  * - Otherwise, node_nr_active[@node].
1553  */
1554 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1555 						   int node)
1556 {
1557 	if (!(wq->flags & WQ_UNBOUND))
1558 		return NULL;
1559 
1560 	if (node == NUMA_NO_NODE)
1561 		node = nr_node_ids;
1562 
1563 	return wq->node_nr_active[node];
1564 }
1565 
1566 /**
1567  * wq_update_node_max_active - Update per-node max_actives to use
1568  * @wq: workqueue to update
1569  * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1570  *
1571  * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1572  * distributed among nodes according to the proportions of numbers of online
1573  * cpus. The result is always between @wq->min_active and max_active.
1574  */
1575 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1576 {
1577 	struct cpumask *effective = unbound_effective_cpumask(wq);
1578 	int min_active = READ_ONCE(wq->min_active);
1579 	int max_active = READ_ONCE(wq->max_active);
1580 	int total_cpus, node;
1581 
1582 	lockdep_assert_held(&wq->mutex);
1583 
1584 	if (!wq_topo_initialized)
1585 		return;
1586 
1587 	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1588 		off_cpu = -1;
1589 
1590 	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1591 	if (off_cpu >= 0)
1592 		total_cpus--;
1593 
1594 	/* If all CPUs of the wq get offline, use the default values */
1595 	if (unlikely(!total_cpus)) {
1596 		for_each_node(node)
1597 			wq_node_nr_active(wq, node)->max = min_active;
1598 
1599 		wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1600 		return;
1601 	}
1602 
1603 	for_each_node(node) {
1604 		int node_cpus;
1605 
1606 		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1607 		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1608 			node_cpus--;
1609 
1610 		wq_node_nr_active(wq, node)->max =
1611 			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1612 			      min_active, max_active);
1613 	}
1614 
1615 	wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1616 }
1617 
1618 /**
1619  * get_pwq - get an extra reference on the specified pool_workqueue
1620  * @pwq: pool_workqueue to get
1621  *
1622  * Obtain an extra reference on @pwq.  The caller should guarantee that
1623  * @pwq has positive refcnt and be holding the matching pool->lock.
1624  */
1625 static void get_pwq(struct pool_workqueue *pwq)
1626 {
1627 	lockdep_assert_held(&pwq->pool->lock);
1628 	WARN_ON_ONCE(pwq->refcnt <= 0);
1629 	pwq->refcnt++;
1630 }
1631 
1632 /**
1633  * put_pwq - put a pool_workqueue reference
1634  * @pwq: pool_workqueue to put
1635  *
1636  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1637  * destruction.  The caller should be holding the matching pool->lock.
1638  */
1639 static void put_pwq(struct pool_workqueue *pwq)
1640 {
1641 	lockdep_assert_held(&pwq->pool->lock);
1642 	if (likely(--pwq->refcnt))
1643 		return;
1644 	/*
1645 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1646 	 * kthread_worker to avoid A-A deadlocks.
1647 	 */
1648 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1649 }
1650 
1651 /**
1652  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1653  * @pwq: pool_workqueue to put (can be %NULL)
1654  *
1655  * put_pwq() with locking.  This function also allows %NULL @pwq.
1656  */
1657 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1658 {
1659 	if (pwq) {
1660 		/*
1661 		 * As both pwqs and pools are RCU protected, the
1662 		 * following lock operations are safe.
1663 		 */
1664 		raw_spin_lock_irq(&pwq->pool->lock);
1665 		put_pwq(pwq);
1666 		raw_spin_unlock_irq(&pwq->pool->lock);
1667 	}
1668 }
1669 
1670 static bool pwq_is_empty(struct pool_workqueue *pwq)
1671 {
1672 	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1673 }
1674 
1675 static void __pwq_activate_work(struct pool_workqueue *pwq,
1676 				struct work_struct *work)
1677 {
1678 	unsigned long *wdb = work_data_bits(work);
1679 
1680 	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1681 	trace_workqueue_activate_work(work);
1682 	if (list_empty(&pwq->pool->worklist))
1683 		pwq->pool->watchdog_ts = jiffies;
1684 	move_linked_works(work, &pwq->pool->worklist, NULL);
1685 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1686 }
1687 
1688 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1689 {
1690 	int max = READ_ONCE(nna->max);
1691 
1692 	while (true) {
1693 		int old, tmp;
1694 
1695 		old = atomic_read(&nna->nr);
1696 		if (old >= max)
1697 			return false;
1698 		tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1699 		if (tmp == old)
1700 			return true;
1701 	}
1702 }
1703 
1704 /**
1705  * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1706  * @pwq: pool_workqueue of interest
1707  * @fill: max_active may have increased, try to increase concurrency level
1708  *
1709  * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1710  * successfully obtained. %false otherwise.
1711  */
1712 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1713 {
1714 	struct workqueue_struct *wq = pwq->wq;
1715 	struct worker_pool *pool = pwq->pool;
1716 	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1717 	bool obtained = false;
1718 
1719 	lockdep_assert_held(&pool->lock);
1720 
1721 	if (!nna) {
1722 		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1723 		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1724 		goto out;
1725 	}
1726 
1727 	if (unlikely(pwq->plugged))
1728 		return false;
1729 
1730 	/*
1731 	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1732 	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1733 	 * concurrency level. Don't jump the line.
1734 	 *
1735 	 * We need to ignore the pending test after max_active has increased as
1736 	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1737 	 * increase it. This is indicated by @fill.
1738 	 */
1739 	if (!list_empty(&pwq->pending_node) && likely(!fill))
1740 		goto out;
1741 
1742 	obtained = tryinc_node_nr_active(nna);
1743 	if (obtained)
1744 		goto out;
1745 
1746 	/*
1747 	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1748 	 * and try again. The smp_mb() is paired with the implied memory barrier
1749 	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1750 	 * we see the decremented $nna->nr or they see non-empty
1751 	 * $nna->pending_pwqs.
1752 	 */
1753 	raw_spin_lock(&nna->lock);
1754 
1755 	if (list_empty(&pwq->pending_node))
1756 		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1757 	else if (likely(!fill))
1758 		goto out_unlock;
1759 
1760 	smp_mb();
1761 
1762 	obtained = tryinc_node_nr_active(nna);
1763 
1764 	/*
1765 	 * If @fill, @pwq might have already been pending. Being spuriously
1766 	 * pending in cold paths doesn't affect anything. Let's leave it be.
1767 	 */
1768 	if (obtained && likely(!fill))
1769 		list_del_init(&pwq->pending_node);
1770 
1771 out_unlock:
1772 	raw_spin_unlock(&nna->lock);
1773 out:
1774 	if (obtained)
1775 		pwq->nr_active++;
1776 	return obtained;
1777 }
1778 
1779 /**
1780  * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1781  * @pwq: pool_workqueue of interest
1782  * @fill: max_active may have increased, try to increase concurrency level
1783  *
1784  * Activate the first inactive work item of @pwq if available and allowed by
1785  * max_active limit.
1786  *
1787  * Returns %true if an inactive work item has been activated. %false if no
1788  * inactive work item is found or max_active limit is reached.
1789  */
1790 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1791 {
1792 	struct work_struct *work =
1793 		list_first_entry_or_null(&pwq->inactive_works,
1794 					 struct work_struct, entry);
1795 
1796 	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1797 		__pwq_activate_work(pwq, work);
1798 		return true;
1799 	} else {
1800 		return false;
1801 	}
1802 }
1803 
1804 /**
1805  * unplug_oldest_pwq - unplug the oldest pool_workqueue
1806  * @wq: workqueue_struct where its oldest pwq is to be unplugged
1807  *
1808  * This function should only be called for ordered workqueues where only the
1809  * oldest pwq is unplugged, the others are plugged to suspend execution to
1810  * ensure proper work item ordering::
1811  *
1812  *    dfl_pwq --------------+     [P] - plugged
1813  *                          |
1814  *                          v
1815  *    pwqs -> A -> B [P] -> C [P] (newest)
1816  *            |    |        |
1817  *            1    3        5
1818  *            |    |        |
1819  *            2    4        6
1820  *
1821  * When the oldest pwq is drained and removed, this function should be called
1822  * to unplug the next oldest one to start its work item execution. Note that
1823  * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1824  * the list is the oldest.
1825  */
1826 static void unplug_oldest_pwq(struct workqueue_struct *wq)
1827 {
1828 	struct pool_workqueue *pwq;
1829 
1830 	lockdep_assert_held(&wq->mutex);
1831 
1832 	/* Caller should make sure that pwqs isn't empty before calling */
1833 	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1834 				       pwqs_node);
1835 	raw_spin_lock_irq(&pwq->pool->lock);
1836 	if (pwq->plugged) {
1837 		pwq->plugged = false;
1838 		if (pwq_activate_first_inactive(pwq, true))
1839 			kick_pool(pwq->pool);
1840 	}
1841 	raw_spin_unlock_irq(&pwq->pool->lock);
1842 }
1843 
1844 /**
1845  * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1846  * @nna: wq_node_nr_active to activate a pending pwq for
1847  * @caller_pool: worker_pool the caller is locking
1848  *
1849  * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1850  * @caller_pool may be unlocked and relocked to lock other worker_pools.
1851  */
1852 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1853 				      struct worker_pool *caller_pool)
1854 {
1855 	struct worker_pool *locked_pool = caller_pool;
1856 	struct pool_workqueue *pwq;
1857 	struct work_struct *work;
1858 
1859 	lockdep_assert_held(&caller_pool->lock);
1860 
1861 	raw_spin_lock(&nna->lock);
1862 retry:
1863 	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1864 				       struct pool_workqueue, pending_node);
1865 	if (!pwq)
1866 		goto out_unlock;
1867 
1868 	/*
1869 	 * If @pwq is for a different pool than @locked_pool, we need to lock
1870 	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1871 	 * / lock dance. For that, we also need to release @nna->lock as it's
1872 	 * nested inside pool locks.
1873 	 */
1874 	if (pwq->pool != locked_pool) {
1875 		raw_spin_unlock(&locked_pool->lock);
1876 		locked_pool = pwq->pool;
1877 		if (!raw_spin_trylock(&locked_pool->lock)) {
1878 			raw_spin_unlock(&nna->lock);
1879 			raw_spin_lock(&locked_pool->lock);
1880 			raw_spin_lock(&nna->lock);
1881 			goto retry;
1882 		}
1883 	}
1884 
1885 	/*
1886 	 * $pwq may not have any inactive work items due to e.g. cancellations.
1887 	 * Drop it from pending_pwqs and see if there's another one.
1888 	 */
1889 	work = list_first_entry_or_null(&pwq->inactive_works,
1890 					struct work_struct, entry);
1891 	if (!work) {
1892 		list_del_init(&pwq->pending_node);
1893 		goto retry;
1894 	}
1895 
1896 	/*
1897 	 * Acquire an nr_active count and activate the inactive work item. If
1898 	 * $pwq still has inactive work items, rotate it to the end of the
1899 	 * pending_pwqs so that we round-robin through them. This means that
1900 	 * inactive work items are not activated in queueing order which is fine
1901 	 * given that there has never been any ordering across different pwqs.
1902 	 */
1903 	if (likely(tryinc_node_nr_active(nna))) {
1904 		pwq->nr_active++;
1905 		__pwq_activate_work(pwq, work);
1906 
1907 		if (list_empty(&pwq->inactive_works))
1908 			list_del_init(&pwq->pending_node);
1909 		else
1910 			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1911 
1912 		/* if activating a foreign pool, make sure it's running */
1913 		if (pwq->pool != caller_pool)
1914 			kick_pool(pwq->pool);
1915 	}
1916 
1917 out_unlock:
1918 	raw_spin_unlock(&nna->lock);
1919 	if (locked_pool != caller_pool) {
1920 		raw_spin_unlock(&locked_pool->lock);
1921 		raw_spin_lock(&caller_pool->lock);
1922 	}
1923 }
1924 
1925 /**
1926  * pwq_dec_nr_active - Retire an active count
1927  * @pwq: pool_workqueue of interest
1928  *
1929  * Decrement @pwq's nr_active and try to activate the first inactive work item.
1930  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1931  */
1932 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1933 {
1934 	struct worker_pool *pool = pwq->pool;
1935 	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1936 
1937 	lockdep_assert_held(&pool->lock);
1938 
1939 	/*
1940 	 * @pwq->nr_active should be decremented for both percpu and unbound
1941 	 * workqueues.
1942 	 */
1943 	pwq->nr_active--;
1944 
1945 	/*
1946 	 * For a percpu workqueue, it's simple. Just need to kick the first
1947 	 * inactive work item on @pwq itself.
1948 	 */
1949 	if (!nna) {
1950 		pwq_activate_first_inactive(pwq, false);
1951 		return;
1952 	}
1953 
1954 	/*
1955 	 * If @pwq is for an unbound workqueue, it's more complicated because
1956 	 * multiple pwqs and pools may be sharing the nr_active count. When a
1957 	 * pwq needs to wait for an nr_active count, it puts itself on
1958 	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1959 	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1960 	 * guarantee that either we see non-empty pending_pwqs or they see
1961 	 * decremented $nna->nr.
1962 	 *
1963 	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1964 	 * max_active gets updated. However, it is guaranteed to be equal to or
1965 	 * larger than @pwq->wq->min_active which is above zero unless freezing.
1966 	 * This maintains the forward progress guarantee.
1967 	 */
1968 	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1969 		return;
1970 
1971 	if (!list_empty(&nna->pending_pwqs))
1972 		node_activate_pending_pwq(nna, pool);
1973 }
1974 
1975 /**
1976  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1977  * @pwq: pwq of interest
1978  * @work_data: work_data of work which left the queue
1979  *
1980  * A work either has completed or is removed from pending queue,
1981  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1982  *
1983  * NOTE:
1984  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1985  * and thus should be called after all other state updates for the in-flight
1986  * work item is complete.
1987  *
1988  * CONTEXT:
1989  * raw_spin_lock_irq(pool->lock).
1990  */
1991 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1992 {
1993 	int color = get_work_color(work_data);
1994 
1995 	if (!(work_data & WORK_STRUCT_INACTIVE))
1996 		pwq_dec_nr_active(pwq);
1997 
1998 	pwq->nr_in_flight[color]--;
1999 
2000 	/* is flush in progress and are we at the flushing tip? */
2001 	if (likely(pwq->flush_color != color))
2002 		goto out_put;
2003 
2004 	/* are there still in-flight works? */
2005 	if (pwq->nr_in_flight[color])
2006 		goto out_put;
2007 
2008 	/* this pwq is done, clear flush_color */
2009 	pwq->flush_color = -1;
2010 
2011 	/*
2012 	 * If this was the last pwq, wake up the first flusher.  It
2013 	 * will handle the rest.
2014 	 */
2015 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2016 		complete(&pwq->wq->first_flusher->done);
2017 out_put:
2018 	put_pwq(pwq);
2019 }
2020 
2021 /**
2022  * try_to_grab_pending - steal work item from worklist and disable irq
2023  * @work: work item to steal
2024  * @cflags: %WORK_CANCEL_ flags
2025  * @irq_flags: place to store irq state
2026  *
2027  * Try to grab PENDING bit of @work.  This function can handle @work in any
2028  * stable state - idle, on timer or on worklist.
2029  *
2030  * Return:
2031  *
2032  *  ========	================================================================
2033  *  1		if @work was pending and we successfully stole PENDING
2034  *  0		if @work was idle and we claimed PENDING
2035  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
2036  *  ========	================================================================
2037  *
2038  * Note:
2039  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
2040  * interrupted while holding PENDING and @work off queue, irq must be
2041  * disabled on entry.  This, combined with delayed_work->timer being
2042  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2043  *
2044  * On successful return, >= 0, irq is disabled and the caller is
2045  * responsible for releasing it using local_irq_restore(*@irq_flags).
2046  *
2047  * This function is safe to call from any context including IRQ handler.
2048  */
2049 static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2050 			       unsigned long *irq_flags)
2051 {
2052 	struct worker_pool *pool;
2053 	struct pool_workqueue *pwq;
2054 
2055 	local_irq_save(*irq_flags);
2056 
2057 	/* try to steal the timer if it exists */
2058 	if (cflags & WORK_CANCEL_DELAYED) {
2059 		struct delayed_work *dwork = to_delayed_work(work);
2060 
2061 		/*
2062 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
2063 		 * guaranteed that the timer is not queued anywhere and not
2064 		 * running on the local CPU.
2065 		 */
2066 		if (likely(del_timer(&dwork->timer)))
2067 			return 1;
2068 	}
2069 
2070 	/* try to claim PENDING the normal way */
2071 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2072 		return 0;
2073 
2074 	rcu_read_lock();
2075 	/*
2076 	 * The queueing is in progress, or it is already queued. Try to
2077 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2078 	 */
2079 	pool = get_work_pool(work);
2080 	if (!pool)
2081 		goto fail;
2082 
2083 	raw_spin_lock(&pool->lock);
2084 	/*
2085 	 * work->data is guaranteed to point to pwq only while the work
2086 	 * item is queued on pwq->wq, and both updating work->data to point
2087 	 * to pwq on queueing and to pool on dequeueing are done under
2088 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2089 	 * points to pwq which is associated with a locked pool, the work
2090 	 * item is currently queued on that pool.
2091 	 */
2092 	pwq = get_work_pwq(work);
2093 	if (pwq && pwq->pool == pool) {
2094 		unsigned long work_data = *work_data_bits(work);
2095 
2096 		debug_work_deactivate(work);
2097 
2098 		/*
2099 		 * A cancelable inactive work item must be in the
2100 		 * pwq->inactive_works since a queued barrier can't be
2101 		 * canceled (see the comments in insert_wq_barrier()).
2102 		 *
2103 		 * An inactive work item cannot be deleted directly because
2104 		 * it might have linked barrier work items which, if left
2105 		 * on the inactive_works list, will confuse pwq->nr_active
2106 		 * management later on and cause stall.  Move the linked
2107 		 * barrier work items to the worklist when deleting the grabbed
2108 		 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that
2109 		 * it doesn't participate in nr_active management in later
2110 		 * pwq_dec_nr_in_flight().
2111 		 */
2112 		if (work_data & WORK_STRUCT_INACTIVE)
2113 			move_linked_works(work, &pwq->pool->worklist, NULL);
2114 
2115 		list_del_init(&work->entry);
2116 
2117 		/*
2118 		 * work->data points to pwq iff queued. Let's point to pool. As
2119 		 * this destroys work->data needed by the next step, stash it.
2120 		 */
2121 		set_work_pool_and_keep_pending(work, pool->id,
2122 					       pool_offq_flags(pool));
2123 
2124 		/* must be the last step, see the function comment */
2125 		pwq_dec_nr_in_flight(pwq, work_data);
2126 
2127 		raw_spin_unlock(&pool->lock);
2128 		rcu_read_unlock();
2129 		return 1;
2130 	}
2131 	raw_spin_unlock(&pool->lock);
2132 fail:
2133 	rcu_read_unlock();
2134 	local_irq_restore(*irq_flags);
2135 	return -EAGAIN;
2136 }
2137 
2138 /**
2139  * work_grab_pending - steal work item from worklist and disable irq
2140  * @work: work item to steal
2141  * @cflags: %WORK_CANCEL_ flags
2142  * @irq_flags: place to store IRQ state
2143  *
2144  * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2145  * or on worklist.
2146  *
2147  * Can be called from any context. IRQ is disabled on return with IRQ state
2148  * stored in *@irq_flags. The caller is responsible for re-enabling it using
2149  * local_irq_restore().
2150  *
2151  * Returns %true if @work was pending. %false if idle.
2152  */
2153 static bool work_grab_pending(struct work_struct *work, u32 cflags,
2154 			      unsigned long *irq_flags)
2155 {
2156 	int ret;
2157 
2158 	while (true) {
2159 		ret = try_to_grab_pending(work, cflags, irq_flags);
2160 		if (ret >= 0)
2161 			return ret;
2162 		cpu_relax();
2163 	}
2164 }
2165 
2166 /**
2167  * insert_work - insert a work into a pool
2168  * @pwq: pwq @work belongs to
2169  * @work: work to insert
2170  * @head: insertion point
2171  * @extra_flags: extra WORK_STRUCT_* flags to set
2172  *
2173  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2174  * work_struct flags.
2175  *
2176  * CONTEXT:
2177  * raw_spin_lock_irq(pool->lock).
2178  */
2179 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2180 			struct list_head *head, unsigned int extra_flags)
2181 {
2182 	debug_work_activate(work);
2183 
2184 	/* record the work call stack in order to print it in KASAN reports */
2185 	kasan_record_aux_stack_noalloc(work);
2186 
2187 	/* we own @work, set data and link */
2188 	set_work_pwq(work, pwq, extra_flags);
2189 	list_add_tail(&work->entry, head);
2190 	get_pwq(pwq);
2191 }
2192 
2193 /*
2194  * Test whether @work is being queued from another work executing on the
2195  * same workqueue.
2196  */
2197 static bool is_chained_work(struct workqueue_struct *wq)
2198 {
2199 	struct worker *worker;
2200 
2201 	worker = current_wq_worker();
2202 	/*
2203 	 * Return %true iff I'm a worker executing a work item on @wq.  If
2204 	 * I'm @worker, it's safe to dereference it without locking.
2205 	 */
2206 	return worker && worker->current_pwq->wq == wq;
2207 }
2208 
2209 /*
2210  * When queueing an unbound work item to a wq, prefer local CPU if allowed
2211  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2212  * avoid perturbing sensitive tasks.
2213  */
2214 static int wq_select_unbound_cpu(int cpu)
2215 {
2216 	int new_cpu;
2217 
2218 	if (likely(!wq_debug_force_rr_cpu)) {
2219 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2220 			return cpu;
2221 	} else {
2222 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2223 	}
2224 
2225 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2226 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2227 	if (unlikely(new_cpu >= nr_cpu_ids)) {
2228 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2229 		if (unlikely(new_cpu >= nr_cpu_ids))
2230 			return cpu;
2231 	}
2232 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2233 
2234 	return new_cpu;
2235 }
2236 
2237 static void __queue_work(int cpu, struct workqueue_struct *wq,
2238 			 struct work_struct *work)
2239 {
2240 	struct pool_workqueue *pwq;
2241 	struct worker_pool *last_pool, *pool;
2242 	unsigned int work_flags;
2243 	unsigned int req_cpu = cpu;
2244 
2245 	/*
2246 	 * While a work item is PENDING && off queue, a task trying to
2247 	 * steal the PENDING will busy-loop waiting for it to either get
2248 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2249 	 * happen with IRQ disabled.
2250 	 */
2251 	lockdep_assert_irqs_disabled();
2252 
2253 	/*
2254 	 * For a draining wq, only works from the same workqueue are
2255 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2256 	 * queues a new work item to a wq after destroy_workqueue(wq).
2257 	 */
2258 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2259 		     WARN_ON_ONCE(!is_chained_work(wq))))
2260 		return;
2261 	rcu_read_lock();
2262 retry:
2263 	/* pwq which will be used unless @work is executing elsewhere */
2264 	if (req_cpu == WORK_CPU_UNBOUND) {
2265 		if (wq->flags & WQ_UNBOUND)
2266 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2267 		else
2268 			cpu = raw_smp_processor_id();
2269 	}
2270 
2271 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2272 	pool = pwq->pool;
2273 
2274 	/*
2275 	 * If @work was previously on a different pool, it might still be
2276 	 * running there, in which case the work needs to be queued on that
2277 	 * pool to guarantee non-reentrancy.
2278 	 *
2279 	 * For ordered workqueue, work items must be queued on the newest pwq
2280 	 * for accurate order management.  Guaranteed order also guarantees
2281 	 * non-reentrancy.  See the comments above unplug_oldest_pwq().
2282 	 */
2283 	last_pool = get_work_pool(work);
2284 	if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) {
2285 		struct worker *worker;
2286 
2287 		raw_spin_lock(&last_pool->lock);
2288 
2289 		worker = find_worker_executing_work(last_pool, work);
2290 
2291 		if (worker && worker->current_pwq->wq == wq) {
2292 			pwq = worker->current_pwq;
2293 			pool = pwq->pool;
2294 			WARN_ON_ONCE(pool != last_pool);
2295 		} else {
2296 			/* meh... not running there, queue here */
2297 			raw_spin_unlock(&last_pool->lock);
2298 			raw_spin_lock(&pool->lock);
2299 		}
2300 	} else {
2301 		raw_spin_lock(&pool->lock);
2302 	}
2303 
2304 	/*
2305 	 * pwq is determined and locked. For unbound pools, we could have raced
2306 	 * with pwq release and it could already be dead. If its refcnt is zero,
2307 	 * repeat pwq selection. Note that unbound pwqs never die without
2308 	 * another pwq replacing it in cpu_pwq or while work items are executing
2309 	 * on it, so the retrying is guaranteed to make forward-progress.
2310 	 */
2311 	if (unlikely(!pwq->refcnt)) {
2312 		if (wq->flags & WQ_UNBOUND) {
2313 			raw_spin_unlock(&pool->lock);
2314 			cpu_relax();
2315 			goto retry;
2316 		}
2317 		/* oops */
2318 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2319 			  wq->name, cpu);
2320 	}
2321 
2322 	/* pwq determined, queue */
2323 	trace_workqueue_queue_work(req_cpu, pwq, work);
2324 
2325 	if (WARN_ON(!list_empty(&work->entry)))
2326 		goto out;
2327 
2328 	pwq->nr_in_flight[pwq->work_color]++;
2329 	work_flags = work_color_to_flags(pwq->work_color);
2330 
2331 	/*
2332 	 * Limit the number of concurrently active work items to max_active.
2333 	 * @work must also queue behind existing inactive work items to maintain
2334 	 * ordering when max_active changes. See wq_adjust_max_active().
2335 	 */
2336 	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2337 		if (list_empty(&pool->worklist))
2338 			pool->watchdog_ts = jiffies;
2339 
2340 		trace_workqueue_activate_work(work);
2341 		insert_work(pwq, work, &pool->worklist, work_flags);
2342 		kick_pool(pool);
2343 	} else {
2344 		work_flags |= WORK_STRUCT_INACTIVE;
2345 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2346 	}
2347 
2348 out:
2349 	raw_spin_unlock(&pool->lock);
2350 	rcu_read_unlock();
2351 }
2352 
2353 static bool clear_pending_if_disabled(struct work_struct *work)
2354 {
2355 	unsigned long data = *work_data_bits(work);
2356 	struct work_offq_data offqd;
2357 
2358 	if (likely((data & WORK_STRUCT_PWQ) ||
2359 		   !(data & WORK_OFFQ_DISABLE_MASK)))
2360 		return false;
2361 
2362 	work_offqd_unpack(&offqd, data);
2363 	set_work_pool_and_clear_pending(work, offqd.pool_id,
2364 					work_offqd_pack_flags(&offqd));
2365 	return true;
2366 }
2367 
2368 /**
2369  * queue_work_on - queue work on specific cpu
2370  * @cpu: CPU number to execute work on
2371  * @wq: workqueue to use
2372  * @work: work to queue
2373  *
2374  * We queue the work to a specific CPU, the caller must ensure it
2375  * can't go away.  Callers that fail to ensure that the specified
2376  * CPU cannot go away will execute on a randomly chosen CPU.
2377  * But note well that callers specifying a CPU that never has been
2378  * online will get a splat.
2379  *
2380  * Return: %false if @work was already on a queue, %true otherwise.
2381  */
2382 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2383 		   struct work_struct *work)
2384 {
2385 	bool ret = false;
2386 	unsigned long irq_flags;
2387 
2388 	local_irq_save(irq_flags);
2389 
2390 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2391 	    !clear_pending_if_disabled(work)) {
2392 		__queue_work(cpu, wq, work);
2393 		ret = true;
2394 	}
2395 
2396 	local_irq_restore(irq_flags);
2397 	return ret;
2398 }
2399 EXPORT_SYMBOL(queue_work_on);
2400 
2401 /**
2402  * select_numa_node_cpu - Select a CPU based on NUMA node
2403  * @node: NUMA node ID that we want to select a CPU from
2404  *
2405  * This function will attempt to find a "random" cpu available on a given
2406  * node. If there are no CPUs available on the given node it will return
2407  * WORK_CPU_UNBOUND indicating that we should just schedule to any
2408  * available CPU if we need to schedule this work.
2409  */
2410 static int select_numa_node_cpu(int node)
2411 {
2412 	int cpu;
2413 
2414 	/* Delay binding to CPU if node is not valid or online */
2415 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2416 		return WORK_CPU_UNBOUND;
2417 
2418 	/* Use local node/cpu if we are already there */
2419 	cpu = raw_smp_processor_id();
2420 	if (node == cpu_to_node(cpu))
2421 		return cpu;
2422 
2423 	/* Use "random" otherwise know as "first" online CPU of node */
2424 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2425 
2426 	/* If CPU is valid return that, otherwise just defer */
2427 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2428 }
2429 
2430 /**
2431  * queue_work_node - queue work on a "random" cpu for a given NUMA node
2432  * @node: NUMA node that we are targeting the work for
2433  * @wq: workqueue to use
2434  * @work: work to queue
2435  *
2436  * We queue the work to a "random" CPU within a given NUMA node. The basic
2437  * idea here is to provide a way to somehow associate work with a given
2438  * NUMA node.
2439  *
2440  * This function will only make a best effort attempt at getting this onto
2441  * the right NUMA node. If no node is requested or the requested node is
2442  * offline then we just fall back to standard queue_work behavior.
2443  *
2444  * Currently the "random" CPU ends up being the first available CPU in the
2445  * intersection of cpu_online_mask and the cpumask of the node, unless we
2446  * are running on the node. In that case we just use the current CPU.
2447  *
2448  * Return: %false if @work was already on a queue, %true otherwise.
2449  */
2450 bool queue_work_node(int node, struct workqueue_struct *wq,
2451 		     struct work_struct *work)
2452 {
2453 	unsigned long irq_flags;
2454 	bool ret = false;
2455 
2456 	/*
2457 	 * This current implementation is specific to unbound workqueues.
2458 	 * Specifically we only return the first available CPU for a given
2459 	 * node instead of cycling through individual CPUs within the node.
2460 	 *
2461 	 * If this is used with a per-cpu workqueue then the logic in
2462 	 * workqueue_select_cpu_near would need to be updated to allow for
2463 	 * some round robin type logic.
2464 	 */
2465 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2466 
2467 	local_irq_save(irq_flags);
2468 
2469 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2470 	    !clear_pending_if_disabled(work)) {
2471 		int cpu = select_numa_node_cpu(node);
2472 
2473 		__queue_work(cpu, wq, work);
2474 		ret = true;
2475 	}
2476 
2477 	local_irq_restore(irq_flags);
2478 	return ret;
2479 }
2480 EXPORT_SYMBOL_GPL(queue_work_node);
2481 
2482 void delayed_work_timer_fn(struct timer_list *t)
2483 {
2484 	struct delayed_work *dwork = from_timer(dwork, t, timer);
2485 
2486 	/* should have been called from irqsafe timer with irq already off */
2487 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2488 }
2489 EXPORT_SYMBOL(delayed_work_timer_fn);
2490 
2491 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2492 				struct delayed_work *dwork, unsigned long delay)
2493 {
2494 	struct timer_list *timer = &dwork->timer;
2495 	struct work_struct *work = &dwork->work;
2496 
2497 	WARN_ON_ONCE(!wq);
2498 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2499 	WARN_ON_ONCE(timer_pending(timer));
2500 	WARN_ON_ONCE(!list_empty(&work->entry));
2501 
2502 	/*
2503 	 * If @delay is 0, queue @dwork->work immediately.  This is for
2504 	 * both optimization and correctness.  The earliest @timer can
2505 	 * expire is on the closest next tick and delayed_work users depend
2506 	 * on that there's no such delay when @delay is 0.
2507 	 */
2508 	if (!delay) {
2509 		__queue_work(cpu, wq, &dwork->work);
2510 		return;
2511 	}
2512 
2513 	dwork->wq = wq;
2514 	dwork->cpu = cpu;
2515 	timer->expires = jiffies + delay;
2516 
2517 	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2518 		/* If the current cpu is a housekeeping cpu, use it. */
2519 		cpu = smp_processor_id();
2520 		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2521 			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2522 		add_timer_on(timer, cpu);
2523 	} else {
2524 		if (likely(cpu == WORK_CPU_UNBOUND))
2525 			add_timer_global(timer);
2526 		else
2527 			add_timer_on(timer, cpu);
2528 	}
2529 }
2530 
2531 /**
2532  * queue_delayed_work_on - queue work on specific CPU after delay
2533  * @cpu: CPU number to execute work on
2534  * @wq: workqueue to use
2535  * @dwork: work to queue
2536  * @delay: number of jiffies to wait before queueing
2537  *
2538  * Return: %false if @work was already on a queue, %true otherwise.  If
2539  * @delay is zero and @dwork is idle, it will be scheduled for immediate
2540  * execution.
2541  */
2542 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2543 			   struct delayed_work *dwork, unsigned long delay)
2544 {
2545 	struct work_struct *work = &dwork->work;
2546 	bool ret = false;
2547 	unsigned long irq_flags;
2548 
2549 	/* read the comment in __queue_work() */
2550 	local_irq_save(irq_flags);
2551 
2552 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2553 	    !clear_pending_if_disabled(work)) {
2554 		__queue_delayed_work(cpu, wq, dwork, delay);
2555 		ret = true;
2556 	}
2557 
2558 	local_irq_restore(irq_flags);
2559 	return ret;
2560 }
2561 EXPORT_SYMBOL(queue_delayed_work_on);
2562 
2563 /**
2564  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2565  * @cpu: CPU number to execute work on
2566  * @wq: workqueue to use
2567  * @dwork: work to queue
2568  * @delay: number of jiffies to wait before queueing
2569  *
2570  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2571  * modify @dwork's timer so that it expires after @delay.  If @delay is
2572  * zero, @work is guaranteed to be scheduled immediately regardless of its
2573  * current state.
2574  *
2575  * Return: %false if @dwork was idle and queued, %true if @dwork was
2576  * pending and its timer was modified.
2577  *
2578  * This function is safe to call from any context including IRQ handler.
2579  * See try_to_grab_pending() for details.
2580  */
2581 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2582 			 struct delayed_work *dwork, unsigned long delay)
2583 {
2584 	unsigned long irq_flags;
2585 	bool ret;
2586 
2587 	ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
2588 
2589 	if (!clear_pending_if_disabled(&dwork->work))
2590 		__queue_delayed_work(cpu, wq, dwork, delay);
2591 
2592 	local_irq_restore(irq_flags);
2593 	return ret;
2594 }
2595 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2596 
2597 static void rcu_work_rcufn(struct rcu_head *rcu)
2598 {
2599 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2600 
2601 	/* read the comment in __queue_work() */
2602 	local_irq_disable();
2603 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2604 	local_irq_enable();
2605 }
2606 
2607 /**
2608  * queue_rcu_work - queue work after a RCU grace period
2609  * @wq: workqueue to use
2610  * @rwork: work to queue
2611  *
2612  * Return: %false if @rwork was already pending, %true otherwise.  Note
2613  * that a full RCU grace period is guaranteed only after a %true return.
2614  * While @rwork is guaranteed to be executed after a %false return, the
2615  * execution may happen before a full RCU grace period has passed.
2616  */
2617 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2618 {
2619 	struct work_struct *work = &rwork->work;
2620 
2621 	/*
2622 	 * rcu_work can't be canceled or disabled. Warn if the user reached
2623 	 * inside @rwork and disabled the inner work.
2624 	 */
2625 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2626 	    !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
2627 		rwork->wq = wq;
2628 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2629 		return true;
2630 	}
2631 
2632 	return false;
2633 }
2634 EXPORT_SYMBOL(queue_rcu_work);
2635 
2636 static struct worker *alloc_worker(int node)
2637 {
2638 	struct worker *worker;
2639 
2640 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2641 	if (worker) {
2642 		INIT_LIST_HEAD(&worker->entry);
2643 		INIT_LIST_HEAD(&worker->scheduled);
2644 		INIT_LIST_HEAD(&worker->node);
2645 		/* on creation a worker is in !idle && prep state */
2646 		worker->flags = WORKER_PREP;
2647 	}
2648 	return worker;
2649 }
2650 
2651 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2652 {
2653 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2654 		return pool->attrs->__pod_cpumask;
2655 	else
2656 		return pool->attrs->cpumask;
2657 }
2658 
2659 /**
2660  * worker_attach_to_pool() - attach a worker to a pool
2661  * @worker: worker to be attached
2662  * @pool: the target pool
2663  *
2664  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2665  * cpu-binding of @worker are kept coordinated with the pool across
2666  * cpu-[un]hotplugs.
2667  */
2668 static void worker_attach_to_pool(struct worker *worker,
2669 				  struct worker_pool *pool)
2670 {
2671 	mutex_lock(&wq_pool_attach_mutex);
2672 
2673 	/*
2674 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2675 	 * across this function. See the comments above the flag definition for
2676 	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2677 	 */
2678 	if (pool->flags & POOL_DISASSOCIATED) {
2679 		worker->flags |= WORKER_UNBOUND;
2680 	} else {
2681 		WARN_ON_ONCE(pool->flags & POOL_BH);
2682 		kthread_set_per_cpu(worker->task, pool->cpu);
2683 	}
2684 
2685 	if (worker->rescue_wq)
2686 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2687 
2688 	list_add_tail(&worker->node, &pool->workers);
2689 	worker->pool = pool;
2690 
2691 	mutex_unlock(&wq_pool_attach_mutex);
2692 }
2693 
2694 static void unbind_worker(struct worker *worker)
2695 {
2696 	lockdep_assert_held(&wq_pool_attach_mutex);
2697 
2698 	kthread_set_per_cpu(worker->task, -1);
2699 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2700 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2701 	else
2702 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2703 }
2704 
2705 
2706 static void detach_worker(struct worker *worker)
2707 {
2708 	lockdep_assert_held(&wq_pool_attach_mutex);
2709 
2710 	unbind_worker(worker);
2711 	list_del(&worker->node);
2712 }
2713 
2714 /**
2715  * worker_detach_from_pool() - detach a worker from its pool
2716  * @worker: worker which is attached to its pool
2717  *
2718  * Undo the attaching which had been done in worker_attach_to_pool().  The
2719  * caller worker shouldn't access to the pool after detached except it has
2720  * other reference to the pool.
2721  */
2722 static void worker_detach_from_pool(struct worker *worker)
2723 {
2724 	struct worker_pool *pool = worker->pool;
2725 
2726 	/* there is one permanent BH worker per CPU which should never detach */
2727 	WARN_ON_ONCE(pool->flags & POOL_BH);
2728 
2729 	mutex_lock(&wq_pool_attach_mutex);
2730 	detach_worker(worker);
2731 	worker->pool = NULL;
2732 	mutex_unlock(&wq_pool_attach_mutex);
2733 
2734 	/* clear leftover flags without pool->lock after it is detached */
2735 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2736 }
2737 
2738 static int format_worker_id(char *buf, size_t size, struct worker *worker,
2739 			    struct worker_pool *pool)
2740 {
2741 	if (worker->rescue_wq)
2742 		return scnprintf(buf, size, "kworker/R-%s",
2743 				 worker->rescue_wq->name);
2744 
2745 	if (pool) {
2746 		if (pool->cpu >= 0)
2747 			return scnprintf(buf, size, "kworker/%d:%d%s",
2748 					 pool->cpu, worker->id,
2749 					 pool->attrs->nice < 0  ? "H" : "");
2750 		else
2751 			return scnprintf(buf, size, "kworker/u%d:%d",
2752 					 pool->id, worker->id);
2753 	} else {
2754 		return scnprintf(buf, size, "kworker/dying");
2755 	}
2756 }
2757 
2758 /**
2759  * create_worker - create a new workqueue worker
2760  * @pool: pool the new worker will belong to
2761  *
2762  * Create and start a new worker which is attached to @pool.
2763  *
2764  * CONTEXT:
2765  * Might sleep.  Does GFP_KERNEL allocations.
2766  *
2767  * Return:
2768  * Pointer to the newly created worker.
2769  */
2770 static struct worker *create_worker(struct worker_pool *pool)
2771 {
2772 	struct worker *worker;
2773 	int id;
2774 
2775 	/* ID is needed to determine kthread name */
2776 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2777 	if (id < 0) {
2778 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2779 			    ERR_PTR(id));
2780 		return NULL;
2781 	}
2782 
2783 	worker = alloc_worker(pool->node);
2784 	if (!worker) {
2785 		pr_err_once("workqueue: Failed to allocate a worker\n");
2786 		goto fail;
2787 	}
2788 
2789 	worker->id = id;
2790 
2791 	if (!(pool->flags & POOL_BH)) {
2792 		char id_buf[WORKER_ID_LEN];
2793 
2794 		format_worker_id(id_buf, sizeof(id_buf), worker, pool);
2795 		worker->task = kthread_create_on_node(worker_thread, worker,
2796 						      pool->node, "%s", id_buf);
2797 		if (IS_ERR(worker->task)) {
2798 			if (PTR_ERR(worker->task) == -EINTR) {
2799 				pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n",
2800 				       id_buf);
2801 			} else {
2802 				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2803 					    worker->task);
2804 			}
2805 			goto fail;
2806 		}
2807 
2808 		set_user_nice(worker->task, pool->attrs->nice);
2809 		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2810 	}
2811 
2812 	/* successful, attach the worker to the pool */
2813 	worker_attach_to_pool(worker, pool);
2814 
2815 	/* start the newly created worker */
2816 	raw_spin_lock_irq(&pool->lock);
2817 
2818 	worker->pool->nr_workers++;
2819 	worker_enter_idle(worker);
2820 
2821 	/*
2822 	 * @worker is waiting on a completion in kthread() and will trigger hung
2823 	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2824 	 * wake it up explicitly.
2825 	 */
2826 	if (worker->task)
2827 		wake_up_process(worker->task);
2828 
2829 	raw_spin_unlock_irq(&pool->lock);
2830 
2831 	return worker;
2832 
2833 fail:
2834 	ida_free(&pool->worker_ida, id);
2835 	kfree(worker);
2836 	return NULL;
2837 }
2838 
2839 static void detach_dying_workers(struct list_head *cull_list)
2840 {
2841 	struct worker *worker;
2842 
2843 	list_for_each_entry(worker, cull_list, entry)
2844 		detach_worker(worker);
2845 }
2846 
2847 static void reap_dying_workers(struct list_head *cull_list)
2848 {
2849 	struct worker *worker, *tmp;
2850 
2851 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2852 		list_del_init(&worker->entry);
2853 		kthread_stop_put(worker->task);
2854 		kfree(worker);
2855 	}
2856 }
2857 
2858 /**
2859  * set_worker_dying - Tag a worker for destruction
2860  * @worker: worker to be destroyed
2861  * @list: transfer worker away from its pool->idle_list and into list
2862  *
2863  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2864  * should be idle.
2865  *
2866  * CONTEXT:
2867  * raw_spin_lock_irq(pool->lock).
2868  */
2869 static void set_worker_dying(struct worker *worker, struct list_head *list)
2870 {
2871 	struct worker_pool *pool = worker->pool;
2872 
2873 	lockdep_assert_held(&pool->lock);
2874 	lockdep_assert_held(&wq_pool_attach_mutex);
2875 
2876 	/* sanity check frenzy */
2877 	if (WARN_ON(worker->current_work) ||
2878 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2879 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2880 		return;
2881 
2882 	pool->nr_workers--;
2883 	pool->nr_idle--;
2884 
2885 	worker->flags |= WORKER_DIE;
2886 
2887 	list_move(&worker->entry, list);
2888 
2889 	/* get an extra task struct reference for later kthread_stop_put() */
2890 	get_task_struct(worker->task);
2891 }
2892 
2893 /**
2894  * idle_worker_timeout - check if some idle workers can now be deleted.
2895  * @t: The pool's idle_timer that just expired
2896  *
2897  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2898  * worker_leave_idle(), as a worker flicking between idle and active while its
2899  * pool is at the too_many_workers() tipping point would cause too much timer
2900  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2901  * it expire and re-evaluate things from there.
2902  */
2903 static void idle_worker_timeout(struct timer_list *t)
2904 {
2905 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2906 	bool do_cull = false;
2907 
2908 	if (work_pending(&pool->idle_cull_work))
2909 		return;
2910 
2911 	raw_spin_lock_irq(&pool->lock);
2912 
2913 	if (too_many_workers(pool)) {
2914 		struct worker *worker;
2915 		unsigned long expires;
2916 
2917 		/* idle_list is kept in LIFO order, check the last one */
2918 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2919 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2920 		do_cull = !time_before(jiffies, expires);
2921 
2922 		if (!do_cull)
2923 			mod_timer(&pool->idle_timer, expires);
2924 	}
2925 	raw_spin_unlock_irq(&pool->lock);
2926 
2927 	if (do_cull)
2928 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2929 }
2930 
2931 /**
2932  * idle_cull_fn - cull workers that have been idle for too long.
2933  * @work: the pool's work for handling these idle workers
2934  *
2935  * This goes through a pool's idle workers and gets rid of those that have been
2936  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2937  *
2938  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2939  * culled, so this also resets worker affinity. This requires a sleepable
2940  * context, hence the split between timer callback and work item.
2941  */
2942 static void idle_cull_fn(struct work_struct *work)
2943 {
2944 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2945 	LIST_HEAD(cull_list);
2946 
2947 	/*
2948 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2949 	 * cannot proceed beyong set_pf_worker() in its self-destruct path.
2950 	 * This is required as a previously-preempted worker could run after
2951 	 * set_worker_dying() has happened but before detach_dying_workers() did.
2952 	 */
2953 	mutex_lock(&wq_pool_attach_mutex);
2954 	raw_spin_lock_irq(&pool->lock);
2955 
2956 	while (too_many_workers(pool)) {
2957 		struct worker *worker;
2958 		unsigned long expires;
2959 
2960 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2961 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2962 
2963 		if (time_before(jiffies, expires)) {
2964 			mod_timer(&pool->idle_timer, expires);
2965 			break;
2966 		}
2967 
2968 		set_worker_dying(worker, &cull_list);
2969 	}
2970 
2971 	raw_spin_unlock_irq(&pool->lock);
2972 	detach_dying_workers(&cull_list);
2973 	mutex_unlock(&wq_pool_attach_mutex);
2974 
2975 	reap_dying_workers(&cull_list);
2976 }
2977 
2978 static void send_mayday(struct work_struct *work)
2979 {
2980 	struct pool_workqueue *pwq = get_work_pwq(work);
2981 	struct workqueue_struct *wq = pwq->wq;
2982 
2983 	lockdep_assert_held(&wq_mayday_lock);
2984 
2985 	if (!wq->rescuer)
2986 		return;
2987 
2988 	/* mayday mayday mayday */
2989 	if (list_empty(&pwq->mayday_node)) {
2990 		/*
2991 		 * If @pwq is for an unbound wq, its base ref may be put at
2992 		 * any time due to an attribute change.  Pin @pwq until the
2993 		 * rescuer is done with it.
2994 		 */
2995 		get_pwq(pwq);
2996 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2997 		wake_up_process(wq->rescuer->task);
2998 		pwq->stats[PWQ_STAT_MAYDAY]++;
2999 	}
3000 }
3001 
3002 static void pool_mayday_timeout(struct timer_list *t)
3003 {
3004 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
3005 	struct work_struct *work;
3006 
3007 	raw_spin_lock_irq(&pool->lock);
3008 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
3009 
3010 	if (need_to_create_worker(pool)) {
3011 		/*
3012 		 * We've been trying to create a new worker but
3013 		 * haven't been successful.  We might be hitting an
3014 		 * allocation deadlock.  Send distress signals to
3015 		 * rescuers.
3016 		 */
3017 		list_for_each_entry(work, &pool->worklist, entry)
3018 			send_mayday(work);
3019 	}
3020 
3021 	raw_spin_unlock(&wq_mayday_lock);
3022 	raw_spin_unlock_irq(&pool->lock);
3023 
3024 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3025 }
3026 
3027 /**
3028  * maybe_create_worker - create a new worker if necessary
3029  * @pool: pool to create a new worker for
3030  *
3031  * Create a new worker for @pool if necessary.  @pool is guaranteed to
3032  * have at least one idle worker on return from this function.  If
3033  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3034  * sent to all rescuers with works scheduled on @pool to resolve
3035  * possible allocation deadlock.
3036  *
3037  * On return, need_to_create_worker() is guaranteed to be %false and
3038  * may_start_working() %true.
3039  *
3040  * LOCKING:
3041  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3042  * multiple times.  Does GFP_KERNEL allocations.  Called only from
3043  * manager.
3044  */
3045 static void maybe_create_worker(struct worker_pool *pool)
3046 __releases(&pool->lock)
3047 __acquires(&pool->lock)
3048 {
3049 restart:
3050 	raw_spin_unlock_irq(&pool->lock);
3051 
3052 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3053 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3054 
3055 	while (true) {
3056 		if (create_worker(pool) || !need_to_create_worker(pool))
3057 			break;
3058 
3059 		schedule_timeout_interruptible(CREATE_COOLDOWN);
3060 
3061 		if (!need_to_create_worker(pool))
3062 			break;
3063 	}
3064 
3065 	del_timer_sync(&pool->mayday_timer);
3066 	raw_spin_lock_irq(&pool->lock);
3067 	/*
3068 	 * This is necessary even after a new worker was just successfully
3069 	 * created as @pool->lock was dropped and the new worker might have
3070 	 * already become busy.
3071 	 */
3072 	if (need_to_create_worker(pool))
3073 		goto restart;
3074 }
3075 
3076 /**
3077  * manage_workers - manage worker pool
3078  * @worker: self
3079  *
3080  * Assume the manager role and manage the worker pool @worker belongs
3081  * to.  At any given time, there can be only zero or one manager per
3082  * pool.  The exclusion is handled automatically by this function.
3083  *
3084  * The caller can safely start processing works on false return.  On
3085  * true return, it's guaranteed that need_to_create_worker() is false
3086  * and may_start_working() is true.
3087  *
3088  * CONTEXT:
3089  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3090  * multiple times.  Does GFP_KERNEL allocations.
3091  *
3092  * Return:
3093  * %false if the pool doesn't need management and the caller can safely
3094  * start processing works, %true if management function was performed and
3095  * the conditions that the caller verified before calling the function may
3096  * no longer be true.
3097  */
3098 static bool manage_workers(struct worker *worker)
3099 {
3100 	struct worker_pool *pool = worker->pool;
3101 
3102 	if (pool->flags & POOL_MANAGER_ACTIVE)
3103 		return false;
3104 
3105 	pool->flags |= POOL_MANAGER_ACTIVE;
3106 	pool->manager = worker;
3107 
3108 	maybe_create_worker(pool);
3109 
3110 	pool->manager = NULL;
3111 	pool->flags &= ~POOL_MANAGER_ACTIVE;
3112 	rcuwait_wake_up(&manager_wait);
3113 	return true;
3114 }
3115 
3116 /**
3117  * process_one_work - process single work
3118  * @worker: self
3119  * @work: work to process
3120  *
3121  * Process @work.  This function contains all the logics necessary to
3122  * process a single work including synchronization against and
3123  * interaction with other workers on the same cpu, queueing and
3124  * flushing.  As long as context requirement is met, any worker can
3125  * call this function to process a work.
3126  *
3127  * CONTEXT:
3128  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3129  */
3130 static void process_one_work(struct worker *worker, struct work_struct *work)
3131 __releases(&pool->lock)
3132 __acquires(&pool->lock)
3133 {
3134 	struct pool_workqueue *pwq = get_work_pwq(work);
3135 	struct worker_pool *pool = worker->pool;
3136 	unsigned long work_data;
3137 	int lockdep_start_depth, rcu_start_depth;
3138 	bool bh_draining = pool->flags & POOL_BH_DRAINING;
3139 #ifdef CONFIG_LOCKDEP
3140 	/*
3141 	 * It is permissible to free the struct work_struct from
3142 	 * inside the function that is called from it, this we need to
3143 	 * take into account for lockdep too.  To avoid bogus "held
3144 	 * lock freed" warnings as well as problems when looking into
3145 	 * work->lockdep_map, make a copy and use that here.
3146 	 */
3147 	struct lockdep_map lockdep_map;
3148 
3149 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3150 #endif
3151 	/* ensure we're on the correct CPU */
3152 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3153 		     raw_smp_processor_id() != pool->cpu);
3154 
3155 	/* claim and dequeue */
3156 	debug_work_deactivate(work);
3157 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3158 	worker->current_work = work;
3159 	worker->current_func = work->func;
3160 	worker->current_pwq = pwq;
3161 	if (worker->task)
3162 		worker->current_at = worker->task->se.sum_exec_runtime;
3163 	work_data = *work_data_bits(work);
3164 	worker->current_color = get_work_color(work_data);
3165 
3166 	/*
3167 	 * Record wq name for cmdline and debug reporting, may get
3168 	 * overridden through set_worker_desc().
3169 	 */
3170 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3171 
3172 	list_del_init(&work->entry);
3173 
3174 	/*
3175 	 * CPU intensive works don't participate in concurrency management.
3176 	 * They're the scheduler's responsibility.  This takes @worker out
3177 	 * of concurrency management and the next code block will chain
3178 	 * execution of the pending work items.
3179 	 */
3180 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3181 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3182 
3183 	/*
3184 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3185 	 * since nr_running would always be >= 1 at this point. This is used to
3186 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3187 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3188 	 */
3189 	kick_pool(pool);
3190 
3191 	/*
3192 	 * Record the last pool and clear PENDING which should be the last
3193 	 * update to @work.  Also, do this inside @pool->lock so that
3194 	 * PENDING and queued state changes happen together while IRQ is
3195 	 * disabled.
3196 	 */
3197 	set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
3198 
3199 	pwq->stats[PWQ_STAT_STARTED]++;
3200 	raw_spin_unlock_irq(&pool->lock);
3201 
3202 	rcu_start_depth = rcu_preempt_depth();
3203 	lockdep_start_depth = lockdep_depth(current);
3204 	/* see drain_dead_softirq_workfn() */
3205 	if (!bh_draining)
3206 		lock_map_acquire(&pwq->wq->lockdep_map);
3207 	lock_map_acquire(&lockdep_map);
3208 	/*
3209 	 * Strictly speaking we should mark the invariant state without holding
3210 	 * any locks, that is, before these two lock_map_acquire()'s.
3211 	 *
3212 	 * However, that would result in:
3213 	 *
3214 	 *   A(W1)
3215 	 *   WFC(C)
3216 	 *		A(W1)
3217 	 *		C(C)
3218 	 *
3219 	 * Which would create W1->C->W1 dependencies, even though there is no
3220 	 * actual deadlock possible. There are two solutions, using a
3221 	 * read-recursive acquire on the work(queue) 'locks', but this will then
3222 	 * hit the lockdep limitation on recursive locks, or simply discard
3223 	 * these locks.
3224 	 *
3225 	 * AFAICT there is no possible deadlock scenario between the
3226 	 * flush_work() and complete() primitives (except for single-threaded
3227 	 * workqueues), so hiding them isn't a problem.
3228 	 */
3229 	lockdep_invariant_state(true);
3230 	trace_workqueue_execute_start(work);
3231 	worker->current_func(work);
3232 	/*
3233 	 * While we must be careful to not use "work" after this, the trace
3234 	 * point will only record its address.
3235 	 */
3236 	trace_workqueue_execute_end(work, worker->current_func);
3237 	pwq->stats[PWQ_STAT_COMPLETED]++;
3238 	lock_map_release(&lockdep_map);
3239 	if (!bh_draining)
3240 		lock_map_release(&pwq->wq->lockdep_map);
3241 
3242 	if (unlikely((worker->task && in_atomic()) ||
3243 		     lockdep_depth(current) != lockdep_start_depth ||
3244 		     rcu_preempt_depth() != rcu_start_depth)) {
3245 		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3246 		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3247 		       current->comm, task_pid_nr(current), preempt_count(),
3248 		       lockdep_start_depth, lockdep_depth(current),
3249 		       rcu_start_depth, rcu_preempt_depth(),
3250 		       worker->current_func);
3251 		debug_show_held_locks(current);
3252 		dump_stack();
3253 	}
3254 
3255 	/*
3256 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3257 	 * kernels, where a requeueing work item waiting for something to
3258 	 * happen could deadlock with stop_machine as such work item could
3259 	 * indefinitely requeue itself while all other CPUs are trapped in
3260 	 * stop_machine. At the same time, report a quiescent RCU state so
3261 	 * the same condition doesn't freeze RCU.
3262 	 */
3263 	if (worker->task)
3264 		cond_resched();
3265 
3266 	raw_spin_lock_irq(&pool->lock);
3267 
3268 	/*
3269 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3270 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3271 	 * wq_cpu_intensive_thresh_us. Clear it.
3272 	 */
3273 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3274 
3275 	/* tag the worker for identification in schedule() */
3276 	worker->last_func = worker->current_func;
3277 
3278 	/* we're done with it, release */
3279 	hash_del(&worker->hentry);
3280 	worker->current_work = NULL;
3281 	worker->current_func = NULL;
3282 	worker->current_pwq = NULL;
3283 	worker->current_color = INT_MAX;
3284 
3285 	/* must be the last step, see the function comment */
3286 	pwq_dec_nr_in_flight(pwq, work_data);
3287 }
3288 
3289 /**
3290  * process_scheduled_works - process scheduled works
3291  * @worker: self
3292  *
3293  * Process all scheduled works.  Please note that the scheduled list
3294  * may change while processing a work, so this function repeatedly
3295  * fetches a work from the top and executes it.
3296  *
3297  * CONTEXT:
3298  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3299  * multiple times.
3300  */
3301 static void process_scheduled_works(struct worker *worker)
3302 {
3303 	struct work_struct *work;
3304 	bool first = true;
3305 
3306 	while ((work = list_first_entry_or_null(&worker->scheduled,
3307 						struct work_struct, entry))) {
3308 		if (first) {
3309 			worker->pool->watchdog_ts = jiffies;
3310 			first = false;
3311 		}
3312 		process_one_work(worker, work);
3313 	}
3314 }
3315 
3316 static void set_pf_worker(bool val)
3317 {
3318 	mutex_lock(&wq_pool_attach_mutex);
3319 	if (val)
3320 		current->flags |= PF_WQ_WORKER;
3321 	else
3322 		current->flags &= ~PF_WQ_WORKER;
3323 	mutex_unlock(&wq_pool_attach_mutex);
3324 }
3325 
3326 /**
3327  * worker_thread - the worker thread function
3328  * @__worker: self
3329  *
3330  * The worker thread function.  All workers belong to a worker_pool -
3331  * either a per-cpu one or dynamic unbound one.  These workers process all
3332  * work items regardless of their specific target workqueue.  The only
3333  * exception is work items which belong to workqueues with a rescuer which
3334  * will be explained in rescuer_thread().
3335  *
3336  * Return: 0
3337  */
3338 static int worker_thread(void *__worker)
3339 {
3340 	struct worker *worker = __worker;
3341 	struct worker_pool *pool = worker->pool;
3342 
3343 	/* tell the scheduler that this is a workqueue worker */
3344 	set_pf_worker(true);
3345 woke_up:
3346 	raw_spin_lock_irq(&pool->lock);
3347 
3348 	/* am I supposed to die? */
3349 	if (unlikely(worker->flags & WORKER_DIE)) {
3350 		raw_spin_unlock_irq(&pool->lock);
3351 		set_pf_worker(false);
3352 		/*
3353 		 * The worker is dead and PF_WQ_WORKER is cleared, worker->pool
3354 		 * shouldn't be accessed, reset it to NULL in case otherwise.
3355 		 */
3356 		worker->pool = NULL;
3357 		ida_free(&pool->worker_ida, worker->id);
3358 		return 0;
3359 	}
3360 
3361 	worker_leave_idle(worker);
3362 recheck:
3363 	/* no more worker necessary? */
3364 	if (!need_more_worker(pool))
3365 		goto sleep;
3366 
3367 	/* do we need to manage? */
3368 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3369 		goto recheck;
3370 
3371 	/*
3372 	 * ->scheduled list can only be filled while a worker is
3373 	 * preparing to process a work or actually processing it.
3374 	 * Make sure nobody diddled with it while I was sleeping.
3375 	 */
3376 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3377 
3378 	/*
3379 	 * Finish PREP stage.  We're guaranteed to have at least one idle
3380 	 * worker or that someone else has already assumed the manager
3381 	 * role.  This is where @worker starts participating in concurrency
3382 	 * management if applicable and concurrency management is restored
3383 	 * after being rebound.  See rebind_workers() for details.
3384 	 */
3385 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3386 
3387 	do {
3388 		struct work_struct *work =
3389 			list_first_entry(&pool->worklist,
3390 					 struct work_struct, entry);
3391 
3392 		if (assign_work(work, worker, NULL))
3393 			process_scheduled_works(worker);
3394 	} while (keep_working(pool));
3395 
3396 	worker_set_flags(worker, WORKER_PREP);
3397 sleep:
3398 	/*
3399 	 * pool->lock is held and there's no work to process and no need to
3400 	 * manage, sleep.  Workers are woken up only while holding
3401 	 * pool->lock or from local cpu, so setting the current state
3402 	 * before releasing pool->lock is enough to prevent losing any
3403 	 * event.
3404 	 */
3405 	worker_enter_idle(worker);
3406 	__set_current_state(TASK_IDLE);
3407 	raw_spin_unlock_irq(&pool->lock);
3408 	schedule();
3409 	goto woke_up;
3410 }
3411 
3412 /**
3413  * rescuer_thread - the rescuer thread function
3414  * @__rescuer: self
3415  *
3416  * Workqueue rescuer thread function.  There's one rescuer for each
3417  * workqueue which has WQ_MEM_RECLAIM set.
3418  *
3419  * Regular work processing on a pool may block trying to create a new
3420  * worker which uses GFP_KERNEL allocation which has slight chance of
3421  * developing into deadlock if some works currently on the same queue
3422  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3423  * the problem rescuer solves.
3424  *
3425  * When such condition is possible, the pool summons rescuers of all
3426  * workqueues which have works queued on the pool and let them process
3427  * those works so that forward progress can be guaranteed.
3428  *
3429  * This should happen rarely.
3430  *
3431  * Return: 0
3432  */
3433 static int rescuer_thread(void *__rescuer)
3434 {
3435 	struct worker *rescuer = __rescuer;
3436 	struct workqueue_struct *wq = rescuer->rescue_wq;
3437 	bool should_stop;
3438 
3439 	set_user_nice(current, RESCUER_NICE_LEVEL);
3440 
3441 	/*
3442 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3443 	 * doesn't participate in concurrency management.
3444 	 */
3445 	set_pf_worker(true);
3446 repeat:
3447 	set_current_state(TASK_IDLE);
3448 
3449 	/*
3450 	 * By the time the rescuer is requested to stop, the workqueue
3451 	 * shouldn't have any work pending, but @wq->maydays may still have
3452 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3453 	 * all the work items before the rescuer got to them.  Go through
3454 	 * @wq->maydays processing before acting on should_stop so that the
3455 	 * list is always empty on exit.
3456 	 */
3457 	should_stop = kthread_should_stop();
3458 
3459 	/* see whether any pwq is asking for help */
3460 	raw_spin_lock_irq(&wq_mayday_lock);
3461 
3462 	while (!list_empty(&wq->maydays)) {
3463 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3464 					struct pool_workqueue, mayday_node);
3465 		struct worker_pool *pool = pwq->pool;
3466 		struct work_struct *work, *n;
3467 
3468 		__set_current_state(TASK_RUNNING);
3469 		list_del_init(&pwq->mayday_node);
3470 
3471 		raw_spin_unlock_irq(&wq_mayday_lock);
3472 
3473 		worker_attach_to_pool(rescuer, pool);
3474 
3475 		raw_spin_lock_irq(&pool->lock);
3476 
3477 		/*
3478 		 * Slurp in all works issued via this workqueue and
3479 		 * process'em.
3480 		 */
3481 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3482 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3483 			if (get_work_pwq(work) == pwq &&
3484 			    assign_work(work, rescuer, &n))
3485 				pwq->stats[PWQ_STAT_RESCUED]++;
3486 		}
3487 
3488 		if (!list_empty(&rescuer->scheduled)) {
3489 			process_scheduled_works(rescuer);
3490 
3491 			/*
3492 			 * The above execution of rescued work items could
3493 			 * have created more to rescue through
3494 			 * pwq_activate_first_inactive() or chained
3495 			 * queueing.  Let's put @pwq back on mayday list so
3496 			 * that such back-to-back work items, which may be
3497 			 * being used to relieve memory pressure, don't
3498 			 * incur MAYDAY_INTERVAL delay inbetween.
3499 			 */
3500 			if (pwq->nr_active && need_to_create_worker(pool)) {
3501 				raw_spin_lock(&wq_mayday_lock);
3502 				/*
3503 				 * Queue iff we aren't racing destruction
3504 				 * and somebody else hasn't queued it already.
3505 				 */
3506 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3507 					get_pwq(pwq);
3508 					list_add_tail(&pwq->mayday_node, &wq->maydays);
3509 				}
3510 				raw_spin_unlock(&wq_mayday_lock);
3511 			}
3512 		}
3513 
3514 		/*
3515 		 * Put the reference grabbed by send_mayday().  @pool won't
3516 		 * go away while we're still attached to it.
3517 		 */
3518 		put_pwq(pwq);
3519 
3520 		/*
3521 		 * Leave this pool. Notify regular workers; otherwise, we end up
3522 		 * with 0 concurrency and stalling the execution.
3523 		 */
3524 		kick_pool(pool);
3525 
3526 		raw_spin_unlock_irq(&pool->lock);
3527 
3528 		worker_detach_from_pool(rescuer);
3529 
3530 		raw_spin_lock_irq(&wq_mayday_lock);
3531 	}
3532 
3533 	raw_spin_unlock_irq(&wq_mayday_lock);
3534 
3535 	if (should_stop) {
3536 		__set_current_state(TASK_RUNNING);
3537 		set_pf_worker(false);
3538 		return 0;
3539 	}
3540 
3541 	/* rescuers should never participate in concurrency management */
3542 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3543 	schedule();
3544 	goto repeat;
3545 }
3546 
3547 static void bh_worker(struct worker *worker)
3548 {
3549 	struct worker_pool *pool = worker->pool;
3550 	int nr_restarts = BH_WORKER_RESTARTS;
3551 	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3552 
3553 	raw_spin_lock_irq(&pool->lock);
3554 	worker_leave_idle(worker);
3555 
3556 	/*
3557 	 * This function follows the structure of worker_thread(). See there for
3558 	 * explanations on each step.
3559 	 */
3560 	if (!need_more_worker(pool))
3561 		goto done;
3562 
3563 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3564 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3565 
3566 	do {
3567 		struct work_struct *work =
3568 			list_first_entry(&pool->worklist,
3569 					 struct work_struct, entry);
3570 
3571 		if (assign_work(work, worker, NULL))
3572 			process_scheduled_works(worker);
3573 	} while (keep_working(pool) &&
3574 		 --nr_restarts && time_before(jiffies, end));
3575 
3576 	worker_set_flags(worker, WORKER_PREP);
3577 done:
3578 	worker_enter_idle(worker);
3579 	kick_pool(pool);
3580 	raw_spin_unlock_irq(&pool->lock);
3581 }
3582 
3583 /*
3584  * TODO: Convert all tasklet users to workqueue and use softirq directly.
3585  *
3586  * This is currently called from tasklet[_hi]action() and thus is also called
3587  * whenever there are tasklets to run. Let's do an early exit if there's nothing
3588  * queued. Once conversion from tasklet is complete, the need_more_worker() test
3589  * can be dropped.
3590  *
3591  * After full conversion, we'll add worker->softirq_action, directly use the
3592  * softirq action and obtain the worker pointer from the softirq_action pointer.
3593  */
3594 void workqueue_softirq_action(bool highpri)
3595 {
3596 	struct worker_pool *pool =
3597 		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3598 	if (need_more_worker(pool))
3599 		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3600 }
3601 
3602 struct wq_drain_dead_softirq_work {
3603 	struct work_struct	work;
3604 	struct worker_pool	*pool;
3605 	struct completion	done;
3606 };
3607 
3608 static void drain_dead_softirq_workfn(struct work_struct *work)
3609 {
3610 	struct wq_drain_dead_softirq_work *dead_work =
3611 		container_of(work, struct wq_drain_dead_softirq_work, work);
3612 	struct worker_pool *pool = dead_work->pool;
3613 	bool repeat;
3614 
3615 	/*
3616 	 * @pool's CPU is dead and we want to execute its still pending work
3617 	 * items from this BH work item which is running on a different CPU. As
3618 	 * its CPU is dead, @pool can't be kicked and, as work execution path
3619 	 * will be nested, a lockdep annotation needs to be suppressed. Mark
3620 	 * @pool with %POOL_BH_DRAINING for the special treatments.
3621 	 */
3622 	raw_spin_lock_irq(&pool->lock);
3623 	pool->flags |= POOL_BH_DRAINING;
3624 	raw_spin_unlock_irq(&pool->lock);
3625 
3626 	bh_worker(list_first_entry(&pool->workers, struct worker, node));
3627 
3628 	raw_spin_lock_irq(&pool->lock);
3629 	pool->flags &= ~POOL_BH_DRAINING;
3630 	repeat = need_more_worker(pool);
3631 	raw_spin_unlock_irq(&pool->lock);
3632 
3633 	/*
3634 	 * bh_worker() might hit consecutive execution limit and bail. If there
3635 	 * still are pending work items, reschedule self and return so that we
3636 	 * don't hog this CPU's BH.
3637 	 */
3638 	if (repeat) {
3639 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3640 			queue_work(system_bh_highpri_wq, work);
3641 		else
3642 			queue_work(system_bh_wq, work);
3643 	} else {
3644 		complete(&dead_work->done);
3645 	}
3646 }
3647 
3648 /*
3649  * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3650  * possible to allocate dead_work per CPU and avoid flushing. However, then we
3651  * have to worry about draining overlapping with CPU coming back online or
3652  * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3653  * on). Let's keep it simple and drain them synchronously. These are BH work
3654  * items which shouldn't be requeued on the same pool. Shouldn't take long.
3655  */
3656 void workqueue_softirq_dead(unsigned int cpu)
3657 {
3658 	int i;
3659 
3660 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3661 		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3662 		struct wq_drain_dead_softirq_work dead_work;
3663 
3664 		if (!need_more_worker(pool))
3665 			continue;
3666 
3667 		INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
3668 		dead_work.pool = pool;
3669 		init_completion(&dead_work.done);
3670 
3671 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3672 			queue_work(system_bh_highpri_wq, &dead_work.work);
3673 		else
3674 			queue_work(system_bh_wq, &dead_work.work);
3675 
3676 		wait_for_completion(&dead_work.done);
3677 		destroy_work_on_stack(&dead_work.work);
3678 	}
3679 }
3680 
3681 /**
3682  * check_flush_dependency - check for flush dependency sanity
3683  * @target_wq: workqueue being flushed
3684  * @target_work: work item being flushed (NULL for workqueue flushes)
3685  *
3686  * %current is trying to flush the whole @target_wq or @target_work on it.
3687  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3688  * reclaiming memory or running on a workqueue which doesn't have
3689  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3690  * a deadlock.
3691  */
3692 static void check_flush_dependency(struct workqueue_struct *target_wq,
3693 				   struct work_struct *target_work)
3694 {
3695 	work_func_t target_func = target_work ? target_work->func : NULL;
3696 	struct worker *worker;
3697 
3698 	if (target_wq->flags & WQ_MEM_RECLAIM)
3699 		return;
3700 
3701 	worker = current_wq_worker();
3702 
3703 	WARN_ONCE(current->flags & PF_MEMALLOC,
3704 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3705 		  current->pid, current->comm, target_wq->name, target_func);
3706 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3707 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3708 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3709 		  worker->current_pwq->wq->name, worker->current_func,
3710 		  target_wq->name, target_func);
3711 }
3712 
3713 struct wq_barrier {
3714 	struct work_struct	work;
3715 	struct completion	done;
3716 	struct task_struct	*task;	/* purely informational */
3717 };
3718 
3719 static void wq_barrier_func(struct work_struct *work)
3720 {
3721 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3722 	complete(&barr->done);
3723 }
3724 
3725 /**
3726  * insert_wq_barrier - insert a barrier work
3727  * @pwq: pwq to insert barrier into
3728  * @barr: wq_barrier to insert
3729  * @target: target work to attach @barr to
3730  * @worker: worker currently executing @target, NULL if @target is not executing
3731  *
3732  * @barr is linked to @target such that @barr is completed only after
3733  * @target finishes execution.  Please note that the ordering
3734  * guarantee is observed only with respect to @target and on the local
3735  * cpu.
3736  *
3737  * Currently, a queued barrier can't be canceled.  This is because
3738  * try_to_grab_pending() can't determine whether the work to be
3739  * grabbed is at the head of the queue and thus can't clear LINKED
3740  * flag of the previous work while there must be a valid next work
3741  * after a work with LINKED flag set.
3742  *
3743  * Note that when @worker is non-NULL, @target may be modified
3744  * underneath us, so we can't reliably determine pwq from @target.
3745  *
3746  * CONTEXT:
3747  * raw_spin_lock_irq(pool->lock).
3748  */
3749 static void insert_wq_barrier(struct pool_workqueue *pwq,
3750 			      struct wq_barrier *barr,
3751 			      struct work_struct *target, struct worker *worker)
3752 {
3753 	static __maybe_unused struct lock_class_key bh_key, thr_key;
3754 	unsigned int work_flags = 0;
3755 	unsigned int work_color;
3756 	struct list_head *head;
3757 
3758 	/*
3759 	 * debugobject calls are safe here even with pool->lock locked
3760 	 * as we know for sure that this will not trigger any of the
3761 	 * checks and call back into the fixup functions where we
3762 	 * might deadlock.
3763 	 *
3764 	 * BH and threaded workqueues need separate lockdep keys to avoid
3765 	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3766 	 * usage".
3767 	 */
3768 	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3769 			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3770 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3771 
3772 	init_completion_map(&barr->done, &target->lockdep_map);
3773 
3774 	barr->task = current;
3775 
3776 	/* The barrier work item does not participate in nr_active. */
3777 	work_flags |= WORK_STRUCT_INACTIVE;
3778 
3779 	/*
3780 	 * If @target is currently being executed, schedule the
3781 	 * barrier to the worker; otherwise, put it after @target.
3782 	 */
3783 	if (worker) {
3784 		head = worker->scheduled.next;
3785 		work_color = worker->current_color;
3786 	} else {
3787 		unsigned long *bits = work_data_bits(target);
3788 
3789 		head = target->entry.next;
3790 		/* there can already be other linked works, inherit and set */
3791 		work_flags |= *bits & WORK_STRUCT_LINKED;
3792 		work_color = get_work_color(*bits);
3793 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3794 	}
3795 
3796 	pwq->nr_in_flight[work_color]++;
3797 	work_flags |= work_color_to_flags(work_color);
3798 
3799 	insert_work(pwq, &barr->work, head, work_flags);
3800 }
3801 
3802 /**
3803  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3804  * @wq: workqueue being flushed
3805  * @flush_color: new flush color, < 0 for no-op
3806  * @work_color: new work color, < 0 for no-op
3807  *
3808  * Prepare pwqs for workqueue flushing.
3809  *
3810  * If @flush_color is non-negative, flush_color on all pwqs should be
3811  * -1.  If no pwq has in-flight commands at the specified color, all
3812  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3813  * has in flight commands, its pwq->flush_color is set to
3814  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3815  * wakeup logic is armed and %true is returned.
3816  *
3817  * The caller should have initialized @wq->first_flusher prior to
3818  * calling this function with non-negative @flush_color.  If
3819  * @flush_color is negative, no flush color update is done and %false
3820  * is returned.
3821  *
3822  * If @work_color is non-negative, all pwqs should have the same
3823  * work_color which is previous to @work_color and all will be
3824  * advanced to @work_color.
3825  *
3826  * CONTEXT:
3827  * mutex_lock(wq->mutex).
3828  *
3829  * Return:
3830  * %true if @flush_color >= 0 and there's something to flush.  %false
3831  * otherwise.
3832  */
3833 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3834 				      int flush_color, int work_color)
3835 {
3836 	bool wait = false;
3837 	struct pool_workqueue *pwq;
3838 
3839 	if (flush_color >= 0) {
3840 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3841 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3842 	}
3843 
3844 	for_each_pwq(pwq, wq) {
3845 		struct worker_pool *pool = pwq->pool;
3846 
3847 		raw_spin_lock_irq(&pool->lock);
3848 
3849 		if (flush_color >= 0) {
3850 			WARN_ON_ONCE(pwq->flush_color != -1);
3851 
3852 			if (pwq->nr_in_flight[flush_color]) {
3853 				pwq->flush_color = flush_color;
3854 				atomic_inc(&wq->nr_pwqs_to_flush);
3855 				wait = true;
3856 			}
3857 		}
3858 
3859 		if (work_color >= 0) {
3860 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3861 			pwq->work_color = work_color;
3862 		}
3863 
3864 		raw_spin_unlock_irq(&pool->lock);
3865 	}
3866 
3867 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3868 		complete(&wq->first_flusher->done);
3869 
3870 	return wait;
3871 }
3872 
3873 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3874 {
3875 #ifdef CONFIG_LOCKDEP
3876 	if (wq->flags & WQ_BH)
3877 		local_bh_disable();
3878 
3879 	lock_map_acquire(&wq->lockdep_map);
3880 	lock_map_release(&wq->lockdep_map);
3881 
3882 	if (wq->flags & WQ_BH)
3883 		local_bh_enable();
3884 #endif
3885 }
3886 
3887 static void touch_work_lockdep_map(struct work_struct *work,
3888 				   struct workqueue_struct *wq)
3889 {
3890 #ifdef CONFIG_LOCKDEP
3891 	if (wq->flags & WQ_BH)
3892 		local_bh_disable();
3893 
3894 	lock_map_acquire(&work->lockdep_map);
3895 	lock_map_release(&work->lockdep_map);
3896 
3897 	if (wq->flags & WQ_BH)
3898 		local_bh_enable();
3899 #endif
3900 }
3901 
3902 /**
3903  * __flush_workqueue - ensure that any scheduled work has run to completion.
3904  * @wq: workqueue to flush
3905  *
3906  * This function sleeps until all work items which were queued on entry
3907  * have finished execution, but it is not livelocked by new incoming ones.
3908  */
3909 void __flush_workqueue(struct workqueue_struct *wq)
3910 {
3911 	struct wq_flusher this_flusher = {
3912 		.list = LIST_HEAD_INIT(this_flusher.list),
3913 		.flush_color = -1,
3914 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3915 	};
3916 	int next_color;
3917 
3918 	if (WARN_ON(!wq_online))
3919 		return;
3920 
3921 	touch_wq_lockdep_map(wq);
3922 
3923 	mutex_lock(&wq->mutex);
3924 
3925 	/*
3926 	 * Start-to-wait phase
3927 	 */
3928 	next_color = work_next_color(wq->work_color);
3929 
3930 	if (next_color != wq->flush_color) {
3931 		/*
3932 		 * Color space is not full.  The current work_color
3933 		 * becomes our flush_color and work_color is advanced
3934 		 * by one.
3935 		 */
3936 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3937 		this_flusher.flush_color = wq->work_color;
3938 		wq->work_color = next_color;
3939 
3940 		if (!wq->first_flusher) {
3941 			/* no flush in progress, become the first flusher */
3942 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3943 
3944 			wq->first_flusher = &this_flusher;
3945 
3946 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3947 						       wq->work_color)) {
3948 				/* nothing to flush, done */
3949 				wq->flush_color = next_color;
3950 				wq->first_flusher = NULL;
3951 				goto out_unlock;
3952 			}
3953 		} else {
3954 			/* wait in queue */
3955 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3956 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3957 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3958 		}
3959 	} else {
3960 		/*
3961 		 * Oops, color space is full, wait on overflow queue.
3962 		 * The next flush completion will assign us
3963 		 * flush_color and transfer to flusher_queue.
3964 		 */
3965 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3966 	}
3967 
3968 	check_flush_dependency(wq, NULL);
3969 
3970 	mutex_unlock(&wq->mutex);
3971 
3972 	wait_for_completion(&this_flusher.done);
3973 
3974 	/*
3975 	 * Wake-up-and-cascade phase
3976 	 *
3977 	 * First flushers are responsible for cascading flushes and
3978 	 * handling overflow.  Non-first flushers can simply return.
3979 	 */
3980 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
3981 		return;
3982 
3983 	mutex_lock(&wq->mutex);
3984 
3985 	/* we might have raced, check again with mutex held */
3986 	if (wq->first_flusher != &this_flusher)
3987 		goto out_unlock;
3988 
3989 	WRITE_ONCE(wq->first_flusher, NULL);
3990 
3991 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
3992 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3993 
3994 	while (true) {
3995 		struct wq_flusher *next, *tmp;
3996 
3997 		/* complete all the flushers sharing the current flush color */
3998 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3999 			if (next->flush_color != wq->flush_color)
4000 				break;
4001 			list_del_init(&next->list);
4002 			complete(&next->done);
4003 		}
4004 
4005 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4006 			     wq->flush_color != work_next_color(wq->work_color));
4007 
4008 		/* this flush_color is finished, advance by one */
4009 		wq->flush_color = work_next_color(wq->flush_color);
4010 
4011 		/* one color has been freed, handle overflow queue */
4012 		if (!list_empty(&wq->flusher_overflow)) {
4013 			/*
4014 			 * Assign the same color to all overflowed
4015 			 * flushers, advance work_color and append to
4016 			 * flusher_queue.  This is the start-to-wait
4017 			 * phase for these overflowed flushers.
4018 			 */
4019 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
4020 				tmp->flush_color = wq->work_color;
4021 
4022 			wq->work_color = work_next_color(wq->work_color);
4023 
4024 			list_splice_tail_init(&wq->flusher_overflow,
4025 					      &wq->flusher_queue);
4026 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4027 		}
4028 
4029 		if (list_empty(&wq->flusher_queue)) {
4030 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
4031 			break;
4032 		}
4033 
4034 		/*
4035 		 * Need to flush more colors.  Make the next flusher
4036 		 * the new first flusher and arm pwqs.
4037 		 */
4038 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
4039 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
4040 
4041 		list_del_init(&next->list);
4042 		wq->first_flusher = next;
4043 
4044 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4045 			break;
4046 
4047 		/*
4048 		 * Meh... this color is already done, clear first
4049 		 * flusher and repeat cascading.
4050 		 */
4051 		wq->first_flusher = NULL;
4052 	}
4053 
4054 out_unlock:
4055 	mutex_unlock(&wq->mutex);
4056 }
4057 EXPORT_SYMBOL(__flush_workqueue);
4058 
4059 /**
4060  * drain_workqueue - drain a workqueue
4061  * @wq: workqueue to drain
4062  *
4063  * Wait until the workqueue becomes empty.  While draining is in progress,
4064  * only chain queueing is allowed.  IOW, only currently pending or running
4065  * work items on @wq can queue further work items on it.  @wq is flushed
4066  * repeatedly until it becomes empty.  The number of flushing is determined
4067  * by the depth of chaining and should be relatively short.  Whine if it
4068  * takes too long.
4069  */
4070 void drain_workqueue(struct workqueue_struct *wq)
4071 {
4072 	unsigned int flush_cnt = 0;
4073 	struct pool_workqueue *pwq;
4074 
4075 	/*
4076 	 * __queue_work() needs to test whether there are drainers, is much
4077 	 * hotter than drain_workqueue() and already looks at @wq->flags.
4078 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4079 	 */
4080 	mutex_lock(&wq->mutex);
4081 	if (!wq->nr_drainers++)
4082 		wq->flags |= __WQ_DRAINING;
4083 	mutex_unlock(&wq->mutex);
4084 reflush:
4085 	__flush_workqueue(wq);
4086 
4087 	mutex_lock(&wq->mutex);
4088 
4089 	for_each_pwq(pwq, wq) {
4090 		bool drained;
4091 
4092 		raw_spin_lock_irq(&pwq->pool->lock);
4093 		drained = pwq_is_empty(pwq);
4094 		raw_spin_unlock_irq(&pwq->pool->lock);
4095 
4096 		if (drained)
4097 			continue;
4098 
4099 		if (++flush_cnt == 10 ||
4100 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4101 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4102 				wq->name, __func__, flush_cnt);
4103 
4104 		mutex_unlock(&wq->mutex);
4105 		goto reflush;
4106 	}
4107 
4108 	if (!--wq->nr_drainers)
4109 		wq->flags &= ~__WQ_DRAINING;
4110 	mutex_unlock(&wq->mutex);
4111 }
4112 EXPORT_SYMBOL_GPL(drain_workqueue);
4113 
4114 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4115 			     bool from_cancel)
4116 {
4117 	struct worker *worker = NULL;
4118 	struct worker_pool *pool;
4119 	struct pool_workqueue *pwq;
4120 	struct workqueue_struct *wq;
4121 
4122 	rcu_read_lock();
4123 	pool = get_work_pool(work);
4124 	if (!pool) {
4125 		rcu_read_unlock();
4126 		return false;
4127 	}
4128 
4129 	raw_spin_lock_irq(&pool->lock);
4130 	/* see the comment in try_to_grab_pending() with the same code */
4131 	pwq = get_work_pwq(work);
4132 	if (pwq) {
4133 		if (unlikely(pwq->pool != pool))
4134 			goto already_gone;
4135 	} else {
4136 		worker = find_worker_executing_work(pool, work);
4137 		if (!worker)
4138 			goto already_gone;
4139 		pwq = worker->current_pwq;
4140 	}
4141 
4142 	wq = pwq->wq;
4143 	check_flush_dependency(wq, work);
4144 
4145 	insert_wq_barrier(pwq, barr, work, worker);
4146 	raw_spin_unlock_irq(&pool->lock);
4147 
4148 	touch_work_lockdep_map(work, wq);
4149 
4150 	/*
4151 	 * Force a lock recursion deadlock when using flush_work() inside a
4152 	 * single-threaded or rescuer equipped workqueue.
4153 	 *
4154 	 * For single threaded workqueues the deadlock happens when the work
4155 	 * is after the work issuing the flush_work(). For rescuer equipped
4156 	 * workqueues the deadlock happens when the rescuer stalls, blocking
4157 	 * forward progress.
4158 	 */
4159 	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4160 		touch_wq_lockdep_map(wq);
4161 
4162 	rcu_read_unlock();
4163 	return true;
4164 already_gone:
4165 	raw_spin_unlock_irq(&pool->lock);
4166 	rcu_read_unlock();
4167 	return false;
4168 }
4169 
4170 static bool __flush_work(struct work_struct *work, bool from_cancel)
4171 {
4172 	struct wq_barrier barr;
4173 
4174 	if (WARN_ON(!wq_online))
4175 		return false;
4176 
4177 	if (WARN_ON(!work->func))
4178 		return false;
4179 
4180 	if (!start_flush_work(work, &barr, from_cancel))
4181 		return false;
4182 
4183 	/*
4184 	 * start_flush_work() returned %true. If @from_cancel is set, we know
4185 	 * that @work must have been executing during start_flush_work() and
4186 	 * can't currently be queued. Its data must contain OFFQ bits. If @work
4187 	 * was queued on a BH workqueue, we also know that it was running in the
4188 	 * BH context and thus can be busy-waited.
4189 	 */
4190 	if (from_cancel) {
4191 		unsigned long data = *work_data_bits(work);
4192 
4193 		if (!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) &&
4194 		    (data & WORK_OFFQ_BH)) {
4195 			/*
4196 			 * On RT, prevent a live lock when %current preempted
4197 			 * soft interrupt processing or prevents ksoftirqd from
4198 			 * running by keeping flipping BH. If the BH work item
4199 			 * runs on a different CPU then this has no effect other
4200 			 * than doing the BH disable/enable dance for nothing.
4201 			 * This is copied from
4202 			 * kernel/softirq.c::tasklet_unlock_spin_wait().
4203 			 */
4204 			while (!try_wait_for_completion(&barr.done)) {
4205 				if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4206 					local_bh_disable();
4207 					local_bh_enable();
4208 				} else {
4209 					cpu_relax();
4210 				}
4211 			}
4212 			goto out_destroy;
4213 		}
4214 	}
4215 
4216 	wait_for_completion(&barr.done);
4217 
4218 out_destroy:
4219 	destroy_work_on_stack(&barr.work);
4220 	return true;
4221 }
4222 
4223 /**
4224  * flush_work - wait for a work to finish executing the last queueing instance
4225  * @work: the work to flush
4226  *
4227  * Wait until @work has finished execution.  @work is guaranteed to be idle
4228  * on return if it hasn't been requeued since flush started.
4229  *
4230  * Return:
4231  * %true if flush_work() waited for the work to finish execution,
4232  * %false if it was already idle.
4233  */
4234 bool flush_work(struct work_struct *work)
4235 {
4236 	might_sleep();
4237 	return __flush_work(work, false);
4238 }
4239 EXPORT_SYMBOL_GPL(flush_work);
4240 
4241 /**
4242  * flush_delayed_work - wait for a dwork to finish executing the last queueing
4243  * @dwork: the delayed work to flush
4244  *
4245  * Delayed timer is cancelled and the pending work is queued for
4246  * immediate execution.  Like flush_work(), this function only
4247  * considers the last queueing instance of @dwork.
4248  *
4249  * Return:
4250  * %true if flush_work() waited for the work to finish execution,
4251  * %false if it was already idle.
4252  */
4253 bool flush_delayed_work(struct delayed_work *dwork)
4254 {
4255 	local_irq_disable();
4256 	if (del_timer_sync(&dwork->timer))
4257 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4258 	local_irq_enable();
4259 	return flush_work(&dwork->work);
4260 }
4261 EXPORT_SYMBOL(flush_delayed_work);
4262 
4263 /**
4264  * flush_rcu_work - wait for a rwork to finish executing the last queueing
4265  * @rwork: the rcu work to flush
4266  *
4267  * Return:
4268  * %true if flush_rcu_work() waited for the work to finish execution,
4269  * %false if it was already idle.
4270  */
4271 bool flush_rcu_work(struct rcu_work *rwork)
4272 {
4273 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4274 		rcu_barrier();
4275 		flush_work(&rwork->work);
4276 		return true;
4277 	} else {
4278 		return flush_work(&rwork->work);
4279 	}
4280 }
4281 EXPORT_SYMBOL(flush_rcu_work);
4282 
4283 static void work_offqd_disable(struct work_offq_data *offqd)
4284 {
4285 	const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4286 
4287 	if (likely(offqd->disable < max))
4288 		offqd->disable++;
4289 	else
4290 		WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4291 }
4292 
4293 static void work_offqd_enable(struct work_offq_data *offqd)
4294 {
4295 	if (likely(offqd->disable > 0))
4296 		offqd->disable--;
4297 	else
4298 		WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4299 }
4300 
4301 static bool __cancel_work(struct work_struct *work, u32 cflags)
4302 {
4303 	struct work_offq_data offqd;
4304 	unsigned long irq_flags;
4305 	int ret;
4306 
4307 	ret = work_grab_pending(work, cflags, &irq_flags);
4308 
4309 	work_offqd_unpack(&offqd, *work_data_bits(work));
4310 
4311 	if (cflags & WORK_CANCEL_DISABLE)
4312 		work_offqd_disable(&offqd);
4313 
4314 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4315 					work_offqd_pack_flags(&offqd));
4316 	local_irq_restore(irq_flags);
4317 	return ret;
4318 }
4319 
4320 static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4321 {
4322 	bool ret;
4323 
4324 	ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
4325 
4326 	if (*work_data_bits(work) & WORK_OFFQ_BH)
4327 		WARN_ON_ONCE(in_hardirq());
4328 	else
4329 		might_sleep();
4330 
4331 	/*
4332 	 * Skip __flush_work() during early boot when we know that @work isn't
4333 	 * executing. This allows canceling during early boot.
4334 	 */
4335 	if (wq_online)
4336 		__flush_work(work, true);
4337 
4338 	if (!(cflags & WORK_CANCEL_DISABLE))
4339 		enable_work(work);
4340 
4341 	return ret;
4342 }
4343 
4344 /*
4345  * See cancel_delayed_work()
4346  */
4347 bool cancel_work(struct work_struct *work)
4348 {
4349 	return __cancel_work(work, 0);
4350 }
4351 EXPORT_SYMBOL(cancel_work);
4352 
4353 /**
4354  * cancel_work_sync - cancel a work and wait for it to finish
4355  * @work: the work to cancel
4356  *
4357  * Cancel @work and wait for its execution to finish. This function can be used
4358  * even if the work re-queues itself or migrates to another workqueue. On return
4359  * from this function, @work is guaranteed to be not pending or executing on any
4360  * CPU as long as there aren't racing enqueues.
4361  *
4362  * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4363  * Use cancel_delayed_work_sync() instead.
4364  *
4365  * Must be called from a sleepable context if @work was last queued on a non-BH
4366  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4367  * if @work was last queued on a BH workqueue.
4368  *
4369  * Returns %true if @work was pending, %false otherwise.
4370  */
4371 bool cancel_work_sync(struct work_struct *work)
4372 {
4373 	return __cancel_work_sync(work, 0);
4374 }
4375 EXPORT_SYMBOL_GPL(cancel_work_sync);
4376 
4377 /**
4378  * cancel_delayed_work - cancel a delayed work
4379  * @dwork: delayed_work to cancel
4380  *
4381  * Kill off a pending delayed_work.
4382  *
4383  * Return: %true if @dwork was pending and canceled; %false if it wasn't
4384  * pending.
4385  *
4386  * Note:
4387  * The work callback function may still be running on return, unless
4388  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4389  * use cancel_delayed_work_sync() to wait on it.
4390  *
4391  * This function is safe to call from any context including IRQ handler.
4392  */
4393 bool cancel_delayed_work(struct delayed_work *dwork)
4394 {
4395 	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4396 }
4397 EXPORT_SYMBOL(cancel_delayed_work);
4398 
4399 /**
4400  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4401  * @dwork: the delayed work cancel
4402  *
4403  * This is cancel_work_sync() for delayed works.
4404  *
4405  * Return:
4406  * %true if @dwork was pending, %false otherwise.
4407  */
4408 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4409 {
4410 	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4411 }
4412 EXPORT_SYMBOL(cancel_delayed_work_sync);
4413 
4414 /**
4415  * disable_work - Disable and cancel a work item
4416  * @work: work item to disable
4417  *
4418  * Disable @work by incrementing its disable count and cancel it if currently
4419  * pending. As long as the disable count is non-zero, any attempt to queue @work
4420  * will fail and return %false. The maximum supported disable depth is 2 to the
4421  * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4422  *
4423  * Can be called from any context. Returns %true if @work was pending, %false
4424  * otherwise.
4425  */
4426 bool disable_work(struct work_struct *work)
4427 {
4428 	return __cancel_work(work, WORK_CANCEL_DISABLE);
4429 }
4430 EXPORT_SYMBOL_GPL(disable_work);
4431 
4432 /**
4433  * disable_work_sync - Disable, cancel and drain a work item
4434  * @work: work item to disable
4435  *
4436  * Similar to disable_work() but also wait for @work to finish if currently
4437  * executing.
4438  *
4439  * Must be called from a sleepable context if @work was last queued on a non-BH
4440  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4441  * if @work was last queued on a BH workqueue.
4442  *
4443  * Returns %true if @work was pending, %false otherwise.
4444  */
4445 bool disable_work_sync(struct work_struct *work)
4446 {
4447 	return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4448 }
4449 EXPORT_SYMBOL_GPL(disable_work_sync);
4450 
4451 /**
4452  * enable_work - Enable a work item
4453  * @work: work item to enable
4454  *
4455  * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4456  * only be queued if its disable count is 0.
4457  *
4458  * Can be called from any context. Returns %true if the disable count reached 0.
4459  * Otherwise, %false.
4460  */
4461 bool enable_work(struct work_struct *work)
4462 {
4463 	struct work_offq_data offqd;
4464 	unsigned long irq_flags;
4465 
4466 	work_grab_pending(work, 0, &irq_flags);
4467 
4468 	work_offqd_unpack(&offqd, *work_data_bits(work));
4469 	work_offqd_enable(&offqd);
4470 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4471 					work_offqd_pack_flags(&offqd));
4472 	local_irq_restore(irq_flags);
4473 
4474 	return !offqd.disable;
4475 }
4476 EXPORT_SYMBOL_GPL(enable_work);
4477 
4478 /**
4479  * disable_delayed_work - Disable and cancel a delayed work item
4480  * @dwork: delayed work item to disable
4481  *
4482  * disable_work() for delayed work items.
4483  */
4484 bool disable_delayed_work(struct delayed_work *dwork)
4485 {
4486 	return __cancel_work(&dwork->work,
4487 			     WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4488 }
4489 EXPORT_SYMBOL_GPL(disable_delayed_work);
4490 
4491 /**
4492  * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4493  * @dwork: delayed work item to disable
4494  *
4495  * disable_work_sync() for delayed work items.
4496  */
4497 bool disable_delayed_work_sync(struct delayed_work *dwork)
4498 {
4499 	return __cancel_work_sync(&dwork->work,
4500 				  WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4501 }
4502 EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4503 
4504 /**
4505  * enable_delayed_work - Enable a delayed work item
4506  * @dwork: delayed work item to enable
4507  *
4508  * enable_work() for delayed work items.
4509  */
4510 bool enable_delayed_work(struct delayed_work *dwork)
4511 {
4512 	return enable_work(&dwork->work);
4513 }
4514 EXPORT_SYMBOL_GPL(enable_delayed_work);
4515 
4516 /**
4517  * schedule_on_each_cpu - execute a function synchronously on each online CPU
4518  * @func: the function to call
4519  *
4520  * schedule_on_each_cpu() executes @func on each online CPU using the
4521  * system workqueue and blocks until all CPUs have completed.
4522  * schedule_on_each_cpu() is very slow.
4523  *
4524  * Return:
4525  * 0 on success, -errno on failure.
4526  */
4527 int schedule_on_each_cpu(work_func_t func)
4528 {
4529 	int cpu;
4530 	struct work_struct __percpu *works;
4531 
4532 	works = alloc_percpu(struct work_struct);
4533 	if (!works)
4534 		return -ENOMEM;
4535 
4536 	cpus_read_lock();
4537 
4538 	for_each_online_cpu(cpu) {
4539 		struct work_struct *work = per_cpu_ptr(works, cpu);
4540 
4541 		INIT_WORK(work, func);
4542 		schedule_work_on(cpu, work);
4543 	}
4544 
4545 	for_each_online_cpu(cpu)
4546 		flush_work(per_cpu_ptr(works, cpu));
4547 
4548 	cpus_read_unlock();
4549 	free_percpu(works);
4550 	return 0;
4551 }
4552 
4553 /**
4554  * execute_in_process_context - reliably execute the routine with user context
4555  * @fn:		the function to execute
4556  * @ew:		guaranteed storage for the execute work structure (must
4557  *		be available when the work executes)
4558  *
4559  * Executes the function immediately if process context is available,
4560  * otherwise schedules the function for delayed execution.
4561  *
4562  * Return:	0 - function was executed
4563  *		1 - function was scheduled for execution
4564  */
4565 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4566 {
4567 	if (!in_interrupt()) {
4568 		fn(&ew->work);
4569 		return 0;
4570 	}
4571 
4572 	INIT_WORK(&ew->work, fn);
4573 	schedule_work(&ew->work);
4574 
4575 	return 1;
4576 }
4577 EXPORT_SYMBOL_GPL(execute_in_process_context);
4578 
4579 /**
4580  * free_workqueue_attrs - free a workqueue_attrs
4581  * @attrs: workqueue_attrs to free
4582  *
4583  * Undo alloc_workqueue_attrs().
4584  */
4585 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4586 {
4587 	if (attrs) {
4588 		free_cpumask_var(attrs->cpumask);
4589 		free_cpumask_var(attrs->__pod_cpumask);
4590 		kfree(attrs);
4591 	}
4592 }
4593 
4594 /**
4595  * alloc_workqueue_attrs - allocate a workqueue_attrs
4596  *
4597  * Allocate a new workqueue_attrs, initialize with default settings and
4598  * return it.
4599  *
4600  * Return: The allocated new workqueue_attr on success. %NULL on failure.
4601  */
4602 struct workqueue_attrs *alloc_workqueue_attrs(void)
4603 {
4604 	struct workqueue_attrs *attrs;
4605 
4606 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4607 	if (!attrs)
4608 		goto fail;
4609 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4610 		goto fail;
4611 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4612 		goto fail;
4613 
4614 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4615 	attrs->affn_scope = WQ_AFFN_DFL;
4616 	return attrs;
4617 fail:
4618 	free_workqueue_attrs(attrs);
4619 	return NULL;
4620 }
4621 
4622 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4623 				 const struct workqueue_attrs *from)
4624 {
4625 	to->nice = from->nice;
4626 	cpumask_copy(to->cpumask, from->cpumask);
4627 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4628 	to->affn_strict = from->affn_strict;
4629 
4630 	/*
4631 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4632 	 * fields as copying is used for both pool and wq attrs. Instead,
4633 	 * get_unbound_pool() explicitly clears the fields.
4634 	 */
4635 	to->affn_scope = from->affn_scope;
4636 	to->ordered = from->ordered;
4637 }
4638 
4639 /*
4640  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4641  * comments in 'struct workqueue_attrs' definition.
4642  */
4643 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4644 {
4645 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4646 	attrs->ordered = false;
4647 	if (attrs->affn_strict)
4648 		cpumask_copy(attrs->cpumask, cpu_possible_mask);
4649 }
4650 
4651 /* hash value of the content of @attr */
4652 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4653 {
4654 	u32 hash = 0;
4655 
4656 	hash = jhash_1word(attrs->nice, hash);
4657 	hash = jhash_1word(attrs->affn_strict, hash);
4658 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4659 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4660 	if (!attrs->affn_strict)
4661 		hash = jhash(cpumask_bits(attrs->cpumask),
4662 			     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4663 	return hash;
4664 }
4665 
4666 /* content equality test */
4667 static bool wqattrs_equal(const struct workqueue_attrs *a,
4668 			  const struct workqueue_attrs *b)
4669 {
4670 	if (a->nice != b->nice)
4671 		return false;
4672 	if (a->affn_strict != b->affn_strict)
4673 		return false;
4674 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4675 		return false;
4676 	if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
4677 		return false;
4678 	return true;
4679 }
4680 
4681 /* Update @attrs with actually available CPUs */
4682 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4683 				      const cpumask_t *unbound_cpumask)
4684 {
4685 	/*
4686 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4687 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4688 	 * @unbound_cpumask.
4689 	 */
4690 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4691 	if (unlikely(cpumask_empty(attrs->cpumask)))
4692 		cpumask_copy(attrs->cpumask, unbound_cpumask);
4693 }
4694 
4695 /* find wq_pod_type to use for @attrs */
4696 static const struct wq_pod_type *
4697 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4698 {
4699 	enum wq_affn_scope scope;
4700 	struct wq_pod_type *pt;
4701 
4702 	/* to synchronize access to wq_affn_dfl */
4703 	lockdep_assert_held(&wq_pool_mutex);
4704 
4705 	if (attrs->affn_scope == WQ_AFFN_DFL)
4706 		scope = wq_affn_dfl;
4707 	else
4708 		scope = attrs->affn_scope;
4709 
4710 	pt = &wq_pod_types[scope];
4711 
4712 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4713 	    likely(pt->nr_pods))
4714 		return pt;
4715 
4716 	/*
4717 	 * Before workqueue_init_topology(), only SYSTEM is available which is
4718 	 * initialized in workqueue_init_early().
4719 	 */
4720 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4721 	BUG_ON(!pt->nr_pods);
4722 	return pt;
4723 }
4724 
4725 /**
4726  * init_worker_pool - initialize a newly zalloc'd worker_pool
4727  * @pool: worker_pool to initialize
4728  *
4729  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4730  *
4731  * Return: 0 on success, -errno on failure.  Even on failure, all fields
4732  * inside @pool proper are initialized and put_unbound_pool() can be called
4733  * on @pool safely to release it.
4734  */
4735 static int init_worker_pool(struct worker_pool *pool)
4736 {
4737 	raw_spin_lock_init(&pool->lock);
4738 	pool->id = -1;
4739 	pool->cpu = -1;
4740 	pool->node = NUMA_NO_NODE;
4741 	pool->flags |= POOL_DISASSOCIATED;
4742 	pool->watchdog_ts = jiffies;
4743 	INIT_LIST_HEAD(&pool->worklist);
4744 	INIT_LIST_HEAD(&pool->idle_list);
4745 	hash_init(pool->busy_hash);
4746 
4747 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4748 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4749 
4750 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4751 
4752 	INIT_LIST_HEAD(&pool->workers);
4753 
4754 	ida_init(&pool->worker_ida);
4755 	INIT_HLIST_NODE(&pool->hash_node);
4756 	pool->refcnt = 1;
4757 
4758 	/* shouldn't fail above this point */
4759 	pool->attrs = alloc_workqueue_attrs();
4760 	if (!pool->attrs)
4761 		return -ENOMEM;
4762 
4763 	wqattrs_clear_for_pool(pool->attrs);
4764 
4765 	return 0;
4766 }
4767 
4768 #ifdef CONFIG_LOCKDEP
4769 static void wq_init_lockdep(struct workqueue_struct *wq)
4770 {
4771 	char *lock_name;
4772 
4773 	lockdep_register_key(&wq->key);
4774 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4775 	if (!lock_name)
4776 		lock_name = wq->name;
4777 
4778 	wq->lock_name = lock_name;
4779 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
4780 }
4781 
4782 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4783 {
4784 	lockdep_unregister_key(&wq->key);
4785 }
4786 
4787 static void wq_free_lockdep(struct workqueue_struct *wq)
4788 {
4789 	if (wq->lock_name != wq->name)
4790 		kfree(wq->lock_name);
4791 }
4792 #else
4793 static void wq_init_lockdep(struct workqueue_struct *wq)
4794 {
4795 }
4796 
4797 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4798 {
4799 }
4800 
4801 static void wq_free_lockdep(struct workqueue_struct *wq)
4802 {
4803 }
4804 #endif
4805 
4806 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4807 {
4808 	int node;
4809 
4810 	for_each_node(node) {
4811 		kfree(nna_ar[node]);
4812 		nna_ar[node] = NULL;
4813 	}
4814 
4815 	kfree(nna_ar[nr_node_ids]);
4816 	nna_ar[nr_node_ids] = NULL;
4817 }
4818 
4819 static void init_node_nr_active(struct wq_node_nr_active *nna)
4820 {
4821 	nna->max = WQ_DFL_MIN_ACTIVE;
4822 	atomic_set(&nna->nr, 0);
4823 	raw_spin_lock_init(&nna->lock);
4824 	INIT_LIST_HEAD(&nna->pending_pwqs);
4825 }
4826 
4827 /*
4828  * Each node's nr_active counter will be accessed mostly from its own node and
4829  * should be allocated in the node.
4830  */
4831 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4832 {
4833 	struct wq_node_nr_active *nna;
4834 	int node;
4835 
4836 	for_each_node(node) {
4837 		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4838 		if (!nna)
4839 			goto err_free;
4840 		init_node_nr_active(nna);
4841 		nna_ar[node] = nna;
4842 	}
4843 
4844 	/* [nr_node_ids] is used as the fallback */
4845 	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4846 	if (!nna)
4847 		goto err_free;
4848 	init_node_nr_active(nna);
4849 	nna_ar[nr_node_ids] = nna;
4850 
4851 	return 0;
4852 
4853 err_free:
4854 	free_node_nr_active(nna_ar);
4855 	return -ENOMEM;
4856 }
4857 
4858 static void rcu_free_wq(struct rcu_head *rcu)
4859 {
4860 	struct workqueue_struct *wq =
4861 		container_of(rcu, struct workqueue_struct, rcu);
4862 
4863 	if (wq->flags & WQ_UNBOUND)
4864 		free_node_nr_active(wq->node_nr_active);
4865 
4866 	wq_free_lockdep(wq);
4867 	free_percpu(wq->cpu_pwq);
4868 	free_workqueue_attrs(wq->unbound_attrs);
4869 	kfree(wq);
4870 }
4871 
4872 static void rcu_free_pool(struct rcu_head *rcu)
4873 {
4874 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4875 
4876 	ida_destroy(&pool->worker_ida);
4877 	free_workqueue_attrs(pool->attrs);
4878 	kfree(pool);
4879 }
4880 
4881 /**
4882  * put_unbound_pool - put a worker_pool
4883  * @pool: worker_pool to put
4884  *
4885  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4886  * safe manner.  get_unbound_pool() calls this function on its failure path
4887  * and this function should be able to release pools which went through,
4888  * successfully or not, init_worker_pool().
4889  *
4890  * Should be called with wq_pool_mutex held.
4891  */
4892 static void put_unbound_pool(struct worker_pool *pool)
4893 {
4894 	struct worker *worker;
4895 	LIST_HEAD(cull_list);
4896 
4897 	lockdep_assert_held(&wq_pool_mutex);
4898 
4899 	if (--pool->refcnt)
4900 		return;
4901 
4902 	/* sanity checks */
4903 	if (WARN_ON(!(pool->cpu < 0)) ||
4904 	    WARN_ON(!list_empty(&pool->worklist)))
4905 		return;
4906 
4907 	/* release id and unhash */
4908 	if (pool->id >= 0)
4909 		idr_remove(&worker_pool_idr, pool->id);
4910 	hash_del(&pool->hash_node);
4911 
4912 	/*
4913 	 * Become the manager and destroy all workers.  This prevents
4914 	 * @pool's workers from blocking on attach_mutex.  We're the last
4915 	 * manager and @pool gets freed with the flag set.
4916 	 *
4917 	 * Having a concurrent manager is quite unlikely to happen as we can
4918 	 * only get here with
4919 	 *   pwq->refcnt == pool->refcnt == 0
4920 	 * which implies no work queued to the pool, which implies no worker can
4921 	 * become the manager. However a worker could have taken the role of
4922 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4923 	 * drops pool->lock
4924 	 */
4925 	while (true) {
4926 		rcuwait_wait_event(&manager_wait,
4927 				   !(pool->flags & POOL_MANAGER_ACTIVE),
4928 				   TASK_UNINTERRUPTIBLE);
4929 
4930 		mutex_lock(&wq_pool_attach_mutex);
4931 		raw_spin_lock_irq(&pool->lock);
4932 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4933 			pool->flags |= POOL_MANAGER_ACTIVE;
4934 			break;
4935 		}
4936 		raw_spin_unlock_irq(&pool->lock);
4937 		mutex_unlock(&wq_pool_attach_mutex);
4938 	}
4939 
4940 	while ((worker = first_idle_worker(pool)))
4941 		set_worker_dying(worker, &cull_list);
4942 	WARN_ON(pool->nr_workers || pool->nr_idle);
4943 	raw_spin_unlock_irq(&pool->lock);
4944 
4945 	detach_dying_workers(&cull_list);
4946 
4947 	mutex_unlock(&wq_pool_attach_mutex);
4948 
4949 	reap_dying_workers(&cull_list);
4950 
4951 	/* shut down the timers */
4952 	del_timer_sync(&pool->idle_timer);
4953 	cancel_work_sync(&pool->idle_cull_work);
4954 	del_timer_sync(&pool->mayday_timer);
4955 
4956 	/* RCU protected to allow dereferences from get_work_pool() */
4957 	call_rcu(&pool->rcu, rcu_free_pool);
4958 }
4959 
4960 /**
4961  * get_unbound_pool - get a worker_pool with the specified attributes
4962  * @attrs: the attributes of the worker_pool to get
4963  *
4964  * Obtain a worker_pool which has the same attributes as @attrs, bump the
4965  * reference count and return it.  If there already is a matching
4966  * worker_pool, it will be used; otherwise, this function attempts to
4967  * create a new one.
4968  *
4969  * Should be called with wq_pool_mutex held.
4970  *
4971  * Return: On success, a worker_pool with the same attributes as @attrs.
4972  * On failure, %NULL.
4973  */
4974 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4975 {
4976 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4977 	u32 hash = wqattrs_hash(attrs);
4978 	struct worker_pool *pool;
4979 	int pod, node = NUMA_NO_NODE;
4980 
4981 	lockdep_assert_held(&wq_pool_mutex);
4982 
4983 	/* do we already have a matching pool? */
4984 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4985 		if (wqattrs_equal(pool->attrs, attrs)) {
4986 			pool->refcnt++;
4987 			return pool;
4988 		}
4989 	}
4990 
4991 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4992 	for (pod = 0; pod < pt->nr_pods; pod++) {
4993 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4994 			node = pt->pod_node[pod];
4995 			break;
4996 		}
4997 	}
4998 
4999 	/* nope, create a new one */
5000 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
5001 	if (!pool || init_worker_pool(pool) < 0)
5002 		goto fail;
5003 
5004 	pool->node = node;
5005 	copy_workqueue_attrs(pool->attrs, attrs);
5006 	wqattrs_clear_for_pool(pool->attrs);
5007 
5008 	if (worker_pool_assign_id(pool) < 0)
5009 		goto fail;
5010 
5011 	/* create and start the initial worker */
5012 	if (wq_online && !create_worker(pool))
5013 		goto fail;
5014 
5015 	/* install */
5016 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
5017 
5018 	return pool;
5019 fail:
5020 	if (pool)
5021 		put_unbound_pool(pool);
5022 	return NULL;
5023 }
5024 
5025 /*
5026  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5027  * refcnt and needs to be destroyed.
5028  */
5029 static void pwq_release_workfn(struct kthread_work *work)
5030 {
5031 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
5032 						  release_work);
5033 	struct workqueue_struct *wq = pwq->wq;
5034 	struct worker_pool *pool = pwq->pool;
5035 	bool is_last = false;
5036 
5037 	/*
5038 	 * When @pwq is not linked, it doesn't hold any reference to the
5039 	 * @wq, and @wq is invalid to access.
5040 	 */
5041 	if (!list_empty(&pwq->pwqs_node)) {
5042 		mutex_lock(&wq->mutex);
5043 		list_del_rcu(&pwq->pwqs_node);
5044 		is_last = list_empty(&wq->pwqs);
5045 
5046 		/*
5047 		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5048 		 */
5049 		if (!is_last && (wq->flags & __WQ_ORDERED))
5050 			unplug_oldest_pwq(wq);
5051 
5052 		mutex_unlock(&wq->mutex);
5053 	}
5054 
5055 	if (wq->flags & WQ_UNBOUND) {
5056 		mutex_lock(&wq_pool_mutex);
5057 		put_unbound_pool(pool);
5058 		mutex_unlock(&wq_pool_mutex);
5059 	}
5060 
5061 	if (!list_empty(&pwq->pending_node)) {
5062 		struct wq_node_nr_active *nna =
5063 			wq_node_nr_active(pwq->wq, pwq->pool->node);
5064 
5065 		raw_spin_lock_irq(&nna->lock);
5066 		list_del_init(&pwq->pending_node);
5067 		raw_spin_unlock_irq(&nna->lock);
5068 	}
5069 
5070 	kfree_rcu(pwq, rcu);
5071 
5072 	/*
5073 	 * If we're the last pwq going away, @wq is already dead and no one
5074 	 * is gonna access it anymore.  Schedule RCU free.
5075 	 */
5076 	if (is_last) {
5077 		wq_unregister_lockdep(wq);
5078 		call_rcu(&wq->rcu, rcu_free_wq);
5079 	}
5080 }
5081 
5082 /* initialize newly allocated @pwq which is associated with @wq and @pool */
5083 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5084 		     struct worker_pool *pool)
5085 {
5086 	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
5087 
5088 	memset(pwq, 0, sizeof(*pwq));
5089 
5090 	pwq->pool = pool;
5091 	pwq->wq = wq;
5092 	pwq->flush_color = -1;
5093 	pwq->refcnt = 1;
5094 	INIT_LIST_HEAD(&pwq->inactive_works);
5095 	INIT_LIST_HEAD(&pwq->pending_node);
5096 	INIT_LIST_HEAD(&pwq->pwqs_node);
5097 	INIT_LIST_HEAD(&pwq->mayday_node);
5098 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
5099 }
5100 
5101 /* sync @pwq with the current state of its associated wq and link it */
5102 static void link_pwq(struct pool_workqueue *pwq)
5103 {
5104 	struct workqueue_struct *wq = pwq->wq;
5105 
5106 	lockdep_assert_held(&wq->mutex);
5107 
5108 	/* may be called multiple times, ignore if already linked */
5109 	if (!list_empty(&pwq->pwqs_node))
5110 		return;
5111 
5112 	/* set the matching work_color */
5113 	pwq->work_color = wq->work_color;
5114 
5115 	/* link in @pwq */
5116 	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5117 }
5118 
5119 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
5120 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5121 					const struct workqueue_attrs *attrs)
5122 {
5123 	struct worker_pool *pool;
5124 	struct pool_workqueue *pwq;
5125 
5126 	lockdep_assert_held(&wq_pool_mutex);
5127 
5128 	pool = get_unbound_pool(attrs);
5129 	if (!pool)
5130 		return NULL;
5131 
5132 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5133 	if (!pwq) {
5134 		put_unbound_pool(pool);
5135 		return NULL;
5136 	}
5137 
5138 	init_pwq(pwq, wq, pool);
5139 	return pwq;
5140 }
5141 
5142 static void apply_wqattrs_lock(void)
5143 {
5144 	mutex_lock(&wq_pool_mutex);
5145 }
5146 
5147 static void apply_wqattrs_unlock(void)
5148 {
5149 	mutex_unlock(&wq_pool_mutex);
5150 }
5151 
5152 /**
5153  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5154  * @attrs: the wq_attrs of the default pwq of the target workqueue
5155  * @cpu: the target CPU
5156  *
5157  * Calculate the cpumask a workqueue with @attrs should use on @pod.
5158  * The result is stored in @attrs->__pod_cpumask.
5159  *
5160  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5161  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5162  * intersection of the possible CPUs of @pod and @attrs->cpumask.
5163  *
5164  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5165  */
5166 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu)
5167 {
5168 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5169 	int pod = pt->cpu_pod[cpu];
5170 
5171 	/* calculate possible CPUs in @pod that @attrs wants */
5172 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5173 	/* does @pod have any online CPUs @attrs wants? */
5174 	if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) {
5175 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5176 		return;
5177 	}
5178 }
5179 
5180 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
5181 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5182 					int cpu, struct pool_workqueue *pwq)
5183 {
5184 	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5185 	struct pool_workqueue *old_pwq;
5186 
5187 	lockdep_assert_held(&wq_pool_mutex);
5188 	lockdep_assert_held(&wq->mutex);
5189 
5190 	/* link_pwq() can handle duplicate calls */
5191 	link_pwq(pwq);
5192 
5193 	old_pwq = rcu_access_pointer(*slot);
5194 	rcu_assign_pointer(*slot, pwq);
5195 	return old_pwq;
5196 }
5197 
5198 /* context to store the prepared attrs & pwqs before applying */
5199 struct apply_wqattrs_ctx {
5200 	struct workqueue_struct	*wq;		/* target workqueue */
5201 	struct workqueue_attrs	*attrs;		/* attrs to apply */
5202 	struct list_head	list;		/* queued for batching commit */
5203 	struct pool_workqueue	*dfl_pwq;
5204 	struct pool_workqueue	*pwq_tbl[];
5205 };
5206 
5207 /* free the resources after success or abort */
5208 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5209 {
5210 	if (ctx) {
5211 		int cpu;
5212 
5213 		for_each_possible_cpu(cpu)
5214 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5215 		put_pwq_unlocked(ctx->dfl_pwq);
5216 
5217 		free_workqueue_attrs(ctx->attrs);
5218 
5219 		kfree(ctx);
5220 	}
5221 }
5222 
5223 /* allocate the attrs and pwqs for later installation */
5224 static struct apply_wqattrs_ctx *
5225 apply_wqattrs_prepare(struct workqueue_struct *wq,
5226 		      const struct workqueue_attrs *attrs,
5227 		      const cpumask_var_t unbound_cpumask)
5228 {
5229 	struct apply_wqattrs_ctx *ctx;
5230 	struct workqueue_attrs *new_attrs;
5231 	int cpu;
5232 
5233 	lockdep_assert_held(&wq_pool_mutex);
5234 
5235 	if (WARN_ON(attrs->affn_scope < 0 ||
5236 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5237 		return ERR_PTR(-EINVAL);
5238 
5239 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5240 
5241 	new_attrs = alloc_workqueue_attrs();
5242 	if (!ctx || !new_attrs)
5243 		goto out_free;
5244 
5245 	/*
5246 	 * If something goes wrong during CPU up/down, we'll fall back to
5247 	 * the default pwq covering whole @attrs->cpumask.  Always create
5248 	 * it even if we don't use it immediately.
5249 	 */
5250 	copy_workqueue_attrs(new_attrs, attrs);
5251 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5252 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5253 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5254 	if (!ctx->dfl_pwq)
5255 		goto out_free;
5256 
5257 	for_each_possible_cpu(cpu) {
5258 		if (new_attrs->ordered) {
5259 			ctx->dfl_pwq->refcnt++;
5260 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5261 		} else {
5262 			wq_calc_pod_cpumask(new_attrs, cpu);
5263 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5264 			if (!ctx->pwq_tbl[cpu])
5265 				goto out_free;
5266 		}
5267 	}
5268 
5269 	/* save the user configured attrs and sanitize it. */
5270 	copy_workqueue_attrs(new_attrs, attrs);
5271 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5272 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5273 	ctx->attrs = new_attrs;
5274 
5275 	/*
5276 	 * For initialized ordered workqueues, there should only be one pwq
5277 	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5278 	 * of newly queued work items until execution of older work items in
5279 	 * the old pwq's have completed.
5280 	 */
5281 	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5282 		ctx->dfl_pwq->plugged = true;
5283 
5284 	ctx->wq = wq;
5285 	return ctx;
5286 
5287 out_free:
5288 	free_workqueue_attrs(new_attrs);
5289 	apply_wqattrs_cleanup(ctx);
5290 	return ERR_PTR(-ENOMEM);
5291 }
5292 
5293 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
5294 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5295 {
5296 	int cpu;
5297 
5298 	/* all pwqs have been created successfully, let's install'em */
5299 	mutex_lock(&ctx->wq->mutex);
5300 
5301 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5302 
5303 	/* save the previous pwqs and install the new ones */
5304 	for_each_possible_cpu(cpu)
5305 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5306 							ctx->pwq_tbl[cpu]);
5307 	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5308 
5309 	/* update node_nr_active->max */
5310 	wq_update_node_max_active(ctx->wq, -1);
5311 
5312 	/* rescuer needs to respect wq cpumask changes */
5313 	if (ctx->wq->rescuer)
5314 		set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5315 				     unbound_effective_cpumask(ctx->wq));
5316 
5317 	mutex_unlock(&ctx->wq->mutex);
5318 }
5319 
5320 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5321 					const struct workqueue_attrs *attrs)
5322 {
5323 	struct apply_wqattrs_ctx *ctx;
5324 
5325 	/* only unbound workqueues can change attributes */
5326 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5327 		return -EINVAL;
5328 
5329 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5330 	if (IS_ERR(ctx))
5331 		return PTR_ERR(ctx);
5332 
5333 	/* the ctx has been prepared successfully, let's commit it */
5334 	apply_wqattrs_commit(ctx);
5335 	apply_wqattrs_cleanup(ctx);
5336 
5337 	return 0;
5338 }
5339 
5340 /**
5341  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5342  * @wq: the target workqueue
5343  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5344  *
5345  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5346  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5347  * work items are affine to the pod it was issued on. Older pwqs are released as
5348  * in-flight work items finish. Note that a work item which repeatedly requeues
5349  * itself back-to-back will stay on its current pwq.
5350  *
5351  * Performs GFP_KERNEL allocations.
5352  *
5353  * Return: 0 on success and -errno on failure.
5354  */
5355 int apply_workqueue_attrs(struct workqueue_struct *wq,
5356 			  const struct workqueue_attrs *attrs)
5357 {
5358 	int ret;
5359 
5360 	mutex_lock(&wq_pool_mutex);
5361 	ret = apply_workqueue_attrs_locked(wq, attrs);
5362 	mutex_unlock(&wq_pool_mutex);
5363 
5364 	return ret;
5365 }
5366 
5367 /**
5368  * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug
5369  * @wq: the target workqueue
5370  * @cpu: the CPU to update the pwq slot for
5371  *
5372  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5373  * %CPU_DOWN_FAILED.  @cpu is in the same pod of the CPU being hot[un]plugged.
5374  *
5375  *
5376  * If pod affinity can't be adjusted due to memory allocation failure, it falls
5377  * back to @wq->dfl_pwq which may not be optimal but is always correct.
5378  *
5379  * Note that when the last allowed CPU of a pod goes offline for a workqueue
5380  * with a cpumask spanning multiple pods, the workers which were already
5381  * executing the work items for the workqueue will lose their CPU affinity and
5382  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5383  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5384  * responsibility to flush the work item from CPU_DOWN_PREPARE.
5385  */
5386 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu)
5387 {
5388 	struct pool_workqueue *old_pwq = NULL, *pwq;
5389 	struct workqueue_attrs *target_attrs;
5390 
5391 	lockdep_assert_held(&wq_pool_mutex);
5392 
5393 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5394 		return;
5395 
5396 	/*
5397 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5398 	 * Let's use a preallocated one.  The following buf is protected by
5399 	 * CPU hotplug exclusion.
5400 	 */
5401 	target_attrs = unbound_wq_update_pwq_attrs_buf;
5402 
5403 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5404 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5405 
5406 	/* nothing to do if the target cpumask matches the current pwq */
5407 	wq_calc_pod_cpumask(target_attrs, cpu);
5408 	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5409 		return;
5410 
5411 	/* create a new pwq */
5412 	pwq = alloc_unbound_pwq(wq, target_attrs);
5413 	if (!pwq) {
5414 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5415 			wq->name);
5416 		goto use_dfl_pwq;
5417 	}
5418 
5419 	/* Install the new pwq. */
5420 	mutex_lock(&wq->mutex);
5421 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5422 	goto out_unlock;
5423 
5424 use_dfl_pwq:
5425 	mutex_lock(&wq->mutex);
5426 	pwq = unbound_pwq(wq, -1);
5427 	raw_spin_lock_irq(&pwq->pool->lock);
5428 	get_pwq(pwq);
5429 	raw_spin_unlock_irq(&pwq->pool->lock);
5430 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5431 out_unlock:
5432 	mutex_unlock(&wq->mutex);
5433 	put_pwq_unlocked(old_pwq);
5434 }
5435 
5436 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5437 {
5438 	bool highpri = wq->flags & WQ_HIGHPRI;
5439 	int cpu, ret;
5440 
5441 	lockdep_assert_held(&wq_pool_mutex);
5442 
5443 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5444 	if (!wq->cpu_pwq)
5445 		goto enomem;
5446 
5447 	if (!(wq->flags & WQ_UNBOUND)) {
5448 		struct worker_pool __percpu *pools;
5449 
5450 		if (wq->flags & WQ_BH)
5451 			pools = bh_worker_pools;
5452 		else
5453 			pools = cpu_worker_pools;
5454 
5455 		for_each_possible_cpu(cpu) {
5456 			struct pool_workqueue **pwq_p;
5457 			struct worker_pool *pool;
5458 
5459 			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5460 			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5461 
5462 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5463 						       pool->node);
5464 			if (!*pwq_p)
5465 				goto enomem;
5466 
5467 			init_pwq(*pwq_p, wq, pool);
5468 
5469 			mutex_lock(&wq->mutex);
5470 			link_pwq(*pwq_p);
5471 			mutex_unlock(&wq->mutex);
5472 		}
5473 		return 0;
5474 	}
5475 
5476 	if (wq->flags & __WQ_ORDERED) {
5477 		struct pool_workqueue *dfl_pwq;
5478 
5479 		ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]);
5480 		/* there should only be single pwq for ordering guarantee */
5481 		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5482 		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5483 			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5484 		     "ordering guarantee broken for workqueue %s\n", wq->name);
5485 	} else {
5486 		ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]);
5487 	}
5488 
5489 	return ret;
5490 
5491 enomem:
5492 	if (wq->cpu_pwq) {
5493 		for_each_possible_cpu(cpu) {
5494 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5495 
5496 			if (pwq)
5497 				kmem_cache_free(pwq_cache, pwq);
5498 		}
5499 		free_percpu(wq->cpu_pwq);
5500 		wq->cpu_pwq = NULL;
5501 	}
5502 	return -ENOMEM;
5503 }
5504 
5505 static int wq_clamp_max_active(int max_active, unsigned int flags,
5506 			       const char *name)
5507 {
5508 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5509 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5510 			max_active, name, 1, WQ_MAX_ACTIVE);
5511 
5512 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5513 }
5514 
5515 /*
5516  * Workqueues which may be used during memory reclaim should have a rescuer
5517  * to guarantee forward progress.
5518  */
5519 static int init_rescuer(struct workqueue_struct *wq)
5520 {
5521 	struct worker *rescuer;
5522 	char id_buf[WORKER_ID_LEN];
5523 	int ret;
5524 
5525 	lockdep_assert_held(&wq_pool_mutex);
5526 
5527 	if (!(wq->flags & WQ_MEM_RECLAIM))
5528 		return 0;
5529 
5530 	rescuer = alloc_worker(NUMA_NO_NODE);
5531 	if (!rescuer) {
5532 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5533 		       wq->name);
5534 		return -ENOMEM;
5535 	}
5536 
5537 	rescuer->rescue_wq = wq;
5538 	format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL);
5539 
5540 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf);
5541 	if (IS_ERR(rescuer->task)) {
5542 		ret = PTR_ERR(rescuer->task);
5543 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5544 		       wq->name, ERR_PTR(ret));
5545 		kfree(rescuer);
5546 		return ret;
5547 	}
5548 
5549 	wq->rescuer = rescuer;
5550 	if (wq->flags & WQ_UNBOUND)
5551 		kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq));
5552 	else
5553 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5554 	wake_up_process(rescuer->task);
5555 
5556 	return 0;
5557 }
5558 
5559 /**
5560  * wq_adjust_max_active - update a wq's max_active to the current setting
5561  * @wq: target workqueue
5562  *
5563  * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5564  * activate inactive work items accordingly. If @wq is freezing, clear
5565  * @wq->max_active to zero.
5566  */
5567 static void wq_adjust_max_active(struct workqueue_struct *wq)
5568 {
5569 	bool activated;
5570 	int new_max, new_min;
5571 
5572 	lockdep_assert_held(&wq->mutex);
5573 
5574 	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5575 		new_max = 0;
5576 		new_min = 0;
5577 	} else {
5578 		new_max = wq->saved_max_active;
5579 		new_min = wq->saved_min_active;
5580 	}
5581 
5582 	if (wq->max_active == new_max && wq->min_active == new_min)
5583 		return;
5584 
5585 	/*
5586 	 * Update @wq->max/min_active and then kick inactive work items if more
5587 	 * active work items are allowed. This doesn't break work item ordering
5588 	 * because new work items are always queued behind existing inactive
5589 	 * work items if there are any.
5590 	 */
5591 	WRITE_ONCE(wq->max_active, new_max);
5592 	WRITE_ONCE(wq->min_active, new_min);
5593 
5594 	if (wq->flags & WQ_UNBOUND)
5595 		wq_update_node_max_active(wq, -1);
5596 
5597 	if (new_max == 0)
5598 		return;
5599 
5600 	/*
5601 	 * Round-robin through pwq's activating the first inactive work item
5602 	 * until max_active is filled.
5603 	 */
5604 	do {
5605 		struct pool_workqueue *pwq;
5606 
5607 		activated = false;
5608 		for_each_pwq(pwq, wq) {
5609 			unsigned long irq_flags;
5610 
5611 			/* can be called during early boot w/ irq disabled */
5612 			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5613 			if (pwq_activate_first_inactive(pwq, true)) {
5614 				activated = true;
5615 				kick_pool(pwq->pool);
5616 			}
5617 			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5618 		}
5619 	} while (activated);
5620 }
5621 
5622 __printf(1, 4)
5623 struct workqueue_struct *alloc_workqueue(const char *fmt,
5624 					 unsigned int flags,
5625 					 int max_active, ...)
5626 {
5627 	va_list args;
5628 	struct workqueue_struct *wq;
5629 	size_t wq_size;
5630 	int name_len;
5631 
5632 	if (flags & WQ_BH) {
5633 		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5634 			return NULL;
5635 		if (WARN_ON_ONCE(max_active))
5636 			return NULL;
5637 	}
5638 
5639 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5640 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5641 		flags |= WQ_UNBOUND;
5642 
5643 	/* allocate wq and format name */
5644 	if (flags & WQ_UNBOUND)
5645 		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5646 	else
5647 		wq_size = sizeof(*wq);
5648 
5649 	wq = kzalloc(wq_size, GFP_KERNEL);
5650 	if (!wq)
5651 		return NULL;
5652 
5653 	if (flags & WQ_UNBOUND) {
5654 		wq->unbound_attrs = alloc_workqueue_attrs();
5655 		if (!wq->unbound_attrs)
5656 			goto err_free_wq;
5657 	}
5658 
5659 	va_start(args, max_active);
5660 	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5661 	va_end(args);
5662 
5663 	if (name_len >= WQ_NAME_LEN)
5664 		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5665 			     wq->name);
5666 
5667 	if (flags & WQ_BH) {
5668 		/*
5669 		 * BH workqueues always share a single execution context per CPU
5670 		 * and don't impose any max_active limit.
5671 		 */
5672 		max_active = INT_MAX;
5673 	} else {
5674 		max_active = max_active ?: WQ_DFL_ACTIVE;
5675 		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5676 	}
5677 
5678 	/* init wq */
5679 	wq->flags = flags;
5680 	wq->max_active = max_active;
5681 	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5682 	wq->saved_max_active = wq->max_active;
5683 	wq->saved_min_active = wq->min_active;
5684 	mutex_init(&wq->mutex);
5685 	atomic_set(&wq->nr_pwqs_to_flush, 0);
5686 	INIT_LIST_HEAD(&wq->pwqs);
5687 	INIT_LIST_HEAD(&wq->flusher_queue);
5688 	INIT_LIST_HEAD(&wq->flusher_overflow);
5689 	INIT_LIST_HEAD(&wq->maydays);
5690 
5691 	wq_init_lockdep(wq);
5692 	INIT_LIST_HEAD(&wq->list);
5693 
5694 	if (flags & WQ_UNBOUND) {
5695 		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5696 			goto err_unreg_lockdep;
5697 	}
5698 
5699 	/*
5700 	 * wq_pool_mutex protects the workqueues list, allocations of PWQs,
5701 	 * and the global freeze state.
5702 	 */
5703 	apply_wqattrs_lock();
5704 
5705 	if (alloc_and_link_pwqs(wq) < 0)
5706 		goto err_unlock_free_node_nr_active;
5707 
5708 	mutex_lock(&wq->mutex);
5709 	wq_adjust_max_active(wq);
5710 	mutex_unlock(&wq->mutex);
5711 
5712 	list_add_tail_rcu(&wq->list, &workqueues);
5713 
5714 	if (wq_online && init_rescuer(wq) < 0)
5715 		goto err_unlock_destroy;
5716 
5717 	apply_wqattrs_unlock();
5718 
5719 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5720 		goto err_destroy;
5721 
5722 	return wq;
5723 
5724 err_unlock_free_node_nr_active:
5725 	apply_wqattrs_unlock();
5726 	/*
5727 	 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work,
5728 	 * flushing the pwq_release_worker ensures that the pwq_release_workfn()
5729 	 * completes before calling kfree(wq).
5730 	 */
5731 	if (wq->flags & WQ_UNBOUND) {
5732 		kthread_flush_worker(pwq_release_worker);
5733 		free_node_nr_active(wq->node_nr_active);
5734 	}
5735 err_unreg_lockdep:
5736 	wq_unregister_lockdep(wq);
5737 	wq_free_lockdep(wq);
5738 err_free_wq:
5739 	free_workqueue_attrs(wq->unbound_attrs);
5740 	kfree(wq);
5741 	return NULL;
5742 err_unlock_destroy:
5743 	apply_wqattrs_unlock();
5744 err_destroy:
5745 	destroy_workqueue(wq);
5746 	return NULL;
5747 }
5748 EXPORT_SYMBOL_GPL(alloc_workqueue);
5749 
5750 static bool pwq_busy(struct pool_workqueue *pwq)
5751 {
5752 	int i;
5753 
5754 	for (i = 0; i < WORK_NR_COLORS; i++)
5755 		if (pwq->nr_in_flight[i])
5756 			return true;
5757 
5758 	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5759 		return true;
5760 	if (!pwq_is_empty(pwq))
5761 		return true;
5762 
5763 	return false;
5764 }
5765 
5766 /**
5767  * destroy_workqueue - safely terminate a workqueue
5768  * @wq: target workqueue
5769  *
5770  * Safely destroy a workqueue. All work currently pending will be done first.
5771  */
5772 void destroy_workqueue(struct workqueue_struct *wq)
5773 {
5774 	struct pool_workqueue *pwq;
5775 	int cpu;
5776 
5777 	/*
5778 	 * Remove it from sysfs first so that sanity check failure doesn't
5779 	 * lead to sysfs name conflicts.
5780 	 */
5781 	workqueue_sysfs_unregister(wq);
5782 
5783 	/* mark the workqueue destruction is in progress */
5784 	mutex_lock(&wq->mutex);
5785 	wq->flags |= __WQ_DESTROYING;
5786 	mutex_unlock(&wq->mutex);
5787 
5788 	/* drain it before proceeding with destruction */
5789 	drain_workqueue(wq);
5790 
5791 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5792 	if (wq->rescuer) {
5793 		struct worker *rescuer = wq->rescuer;
5794 
5795 		/* this prevents new queueing */
5796 		raw_spin_lock_irq(&wq_mayday_lock);
5797 		wq->rescuer = NULL;
5798 		raw_spin_unlock_irq(&wq_mayday_lock);
5799 
5800 		/* rescuer will empty maydays list before exiting */
5801 		kthread_stop(rescuer->task);
5802 		kfree(rescuer);
5803 	}
5804 
5805 	/*
5806 	 * Sanity checks - grab all the locks so that we wait for all
5807 	 * in-flight operations which may do put_pwq().
5808 	 */
5809 	mutex_lock(&wq_pool_mutex);
5810 	mutex_lock(&wq->mutex);
5811 	for_each_pwq(pwq, wq) {
5812 		raw_spin_lock_irq(&pwq->pool->lock);
5813 		if (WARN_ON(pwq_busy(pwq))) {
5814 			pr_warn("%s: %s has the following busy pwq\n",
5815 				__func__, wq->name);
5816 			show_pwq(pwq);
5817 			raw_spin_unlock_irq(&pwq->pool->lock);
5818 			mutex_unlock(&wq->mutex);
5819 			mutex_unlock(&wq_pool_mutex);
5820 			show_one_workqueue(wq);
5821 			return;
5822 		}
5823 		raw_spin_unlock_irq(&pwq->pool->lock);
5824 	}
5825 	mutex_unlock(&wq->mutex);
5826 
5827 	/*
5828 	 * wq list is used to freeze wq, remove from list after
5829 	 * flushing is complete in case freeze races us.
5830 	 */
5831 	list_del_rcu(&wq->list);
5832 	mutex_unlock(&wq_pool_mutex);
5833 
5834 	/*
5835 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5836 	 * to put the base refs. @wq will be auto-destroyed from the last
5837 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5838 	 */
5839 	rcu_read_lock();
5840 
5841 	for_each_possible_cpu(cpu) {
5842 		put_pwq_unlocked(unbound_pwq(wq, cpu));
5843 		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5844 	}
5845 
5846 	put_pwq_unlocked(unbound_pwq(wq, -1));
5847 	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5848 
5849 	rcu_read_unlock();
5850 }
5851 EXPORT_SYMBOL_GPL(destroy_workqueue);
5852 
5853 /**
5854  * workqueue_set_max_active - adjust max_active of a workqueue
5855  * @wq: target workqueue
5856  * @max_active: new max_active value.
5857  *
5858  * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5859  * comment.
5860  *
5861  * CONTEXT:
5862  * Don't call from IRQ context.
5863  */
5864 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5865 {
5866 	/* max_active doesn't mean anything for BH workqueues */
5867 	if (WARN_ON(wq->flags & WQ_BH))
5868 		return;
5869 	/* disallow meddling with max_active for ordered workqueues */
5870 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5871 		return;
5872 
5873 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5874 
5875 	mutex_lock(&wq->mutex);
5876 
5877 	wq->saved_max_active = max_active;
5878 	if (wq->flags & WQ_UNBOUND)
5879 		wq->saved_min_active = min(wq->saved_min_active, max_active);
5880 
5881 	wq_adjust_max_active(wq);
5882 
5883 	mutex_unlock(&wq->mutex);
5884 }
5885 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5886 
5887 /**
5888  * workqueue_set_min_active - adjust min_active of an unbound workqueue
5889  * @wq: target unbound workqueue
5890  * @min_active: new min_active value
5891  *
5892  * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5893  * unbound workqueue is not guaranteed to be able to process max_active
5894  * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5895  * able to process min_active number of interdependent work items which is
5896  * %WQ_DFL_MIN_ACTIVE by default.
5897  *
5898  * Use this function to adjust the min_active value between 0 and the current
5899  * max_active.
5900  */
5901 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5902 {
5903 	/* min_active is only meaningful for non-ordered unbound workqueues */
5904 	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5905 		    WQ_UNBOUND))
5906 		return;
5907 
5908 	mutex_lock(&wq->mutex);
5909 	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5910 	wq_adjust_max_active(wq);
5911 	mutex_unlock(&wq->mutex);
5912 }
5913 
5914 /**
5915  * current_work - retrieve %current task's work struct
5916  *
5917  * Determine if %current task is a workqueue worker and what it's working on.
5918  * Useful to find out the context that the %current task is running in.
5919  *
5920  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5921  */
5922 struct work_struct *current_work(void)
5923 {
5924 	struct worker *worker = current_wq_worker();
5925 
5926 	return worker ? worker->current_work : NULL;
5927 }
5928 EXPORT_SYMBOL(current_work);
5929 
5930 /**
5931  * current_is_workqueue_rescuer - is %current workqueue rescuer?
5932  *
5933  * Determine whether %current is a workqueue rescuer.  Can be used from
5934  * work functions to determine whether it's being run off the rescuer task.
5935  *
5936  * Return: %true if %current is a workqueue rescuer. %false otherwise.
5937  */
5938 bool current_is_workqueue_rescuer(void)
5939 {
5940 	struct worker *worker = current_wq_worker();
5941 
5942 	return worker && worker->rescue_wq;
5943 }
5944 
5945 /**
5946  * workqueue_congested - test whether a workqueue is congested
5947  * @cpu: CPU in question
5948  * @wq: target workqueue
5949  *
5950  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
5951  * no synchronization around this function and the test result is
5952  * unreliable and only useful as advisory hints or for debugging.
5953  *
5954  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
5955  *
5956  * With the exception of ordered workqueues, all workqueues have per-cpu
5957  * pool_workqueues, each with its own congested state. A workqueue being
5958  * congested on one CPU doesn't mean that the workqueue is contested on any
5959  * other CPUs.
5960  *
5961  * Return:
5962  * %true if congested, %false otherwise.
5963  */
5964 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
5965 {
5966 	struct pool_workqueue *pwq;
5967 	bool ret;
5968 
5969 	rcu_read_lock();
5970 	preempt_disable();
5971 
5972 	if (cpu == WORK_CPU_UNBOUND)
5973 		cpu = smp_processor_id();
5974 
5975 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5976 	ret = !list_empty(&pwq->inactive_works);
5977 
5978 	preempt_enable();
5979 	rcu_read_unlock();
5980 
5981 	return ret;
5982 }
5983 EXPORT_SYMBOL_GPL(workqueue_congested);
5984 
5985 /**
5986  * work_busy - test whether a work is currently pending or running
5987  * @work: the work to be tested
5988  *
5989  * Test whether @work is currently pending or running.  There is no
5990  * synchronization around this function and the test result is
5991  * unreliable and only useful as advisory hints or for debugging.
5992  *
5993  * Return:
5994  * OR'd bitmask of WORK_BUSY_* bits.
5995  */
5996 unsigned int work_busy(struct work_struct *work)
5997 {
5998 	struct worker_pool *pool;
5999 	unsigned long irq_flags;
6000 	unsigned int ret = 0;
6001 
6002 	if (work_pending(work))
6003 		ret |= WORK_BUSY_PENDING;
6004 
6005 	rcu_read_lock();
6006 	pool = get_work_pool(work);
6007 	if (pool) {
6008 		raw_spin_lock_irqsave(&pool->lock, irq_flags);
6009 		if (find_worker_executing_work(pool, work))
6010 			ret |= WORK_BUSY_RUNNING;
6011 		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6012 	}
6013 	rcu_read_unlock();
6014 
6015 	return ret;
6016 }
6017 EXPORT_SYMBOL_GPL(work_busy);
6018 
6019 /**
6020  * set_worker_desc - set description for the current work item
6021  * @fmt: printf-style format string
6022  * @...: arguments for the format string
6023  *
6024  * This function can be called by a running work function to describe what
6025  * the work item is about.  If the worker task gets dumped, this
6026  * information will be printed out together to help debugging.  The
6027  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6028  */
6029 void set_worker_desc(const char *fmt, ...)
6030 {
6031 	struct worker *worker = current_wq_worker();
6032 	va_list args;
6033 
6034 	if (worker) {
6035 		va_start(args, fmt);
6036 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6037 		va_end(args);
6038 	}
6039 }
6040 EXPORT_SYMBOL_GPL(set_worker_desc);
6041 
6042 /**
6043  * print_worker_info - print out worker information and description
6044  * @log_lvl: the log level to use when printing
6045  * @task: target task
6046  *
6047  * If @task is a worker and currently executing a work item, print out the
6048  * name of the workqueue being serviced and worker description set with
6049  * set_worker_desc() by the currently executing work item.
6050  *
6051  * This function can be safely called on any task as long as the
6052  * task_struct itself is accessible.  While safe, this function isn't
6053  * synchronized and may print out mixups or garbages of limited length.
6054  */
6055 void print_worker_info(const char *log_lvl, struct task_struct *task)
6056 {
6057 	work_func_t *fn = NULL;
6058 	char name[WQ_NAME_LEN] = { };
6059 	char desc[WORKER_DESC_LEN] = { };
6060 	struct pool_workqueue *pwq = NULL;
6061 	struct workqueue_struct *wq = NULL;
6062 	struct worker *worker;
6063 
6064 	if (!(task->flags & PF_WQ_WORKER))
6065 		return;
6066 
6067 	/*
6068 	 * This function is called without any synchronization and @task
6069 	 * could be in any state.  Be careful with dereferences.
6070 	 */
6071 	worker = kthread_probe_data(task);
6072 
6073 	/*
6074 	 * Carefully copy the associated workqueue's workfn, name and desc.
6075 	 * Keep the original last '\0' in case the original is garbage.
6076 	 */
6077 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6078 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6079 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6080 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6081 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
6082 
6083 	if (fn || name[0] || desc[0]) {
6084 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
6085 		if (strcmp(name, desc))
6086 			pr_cont(" (%s)", desc);
6087 		pr_cont("\n");
6088 	}
6089 }
6090 
6091 static void pr_cont_pool_info(struct worker_pool *pool)
6092 {
6093 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6094 	if (pool->node != NUMA_NO_NODE)
6095 		pr_cont(" node=%d", pool->node);
6096 	pr_cont(" flags=0x%x", pool->flags);
6097 	if (pool->flags & POOL_BH)
6098 		pr_cont(" bh%s",
6099 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6100 	else
6101 		pr_cont(" nice=%d", pool->attrs->nice);
6102 }
6103 
6104 static void pr_cont_worker_id(struct worker *worker)
6105 {
6106 	struct worker_pool *pool = worker->pool;
6107 
6108 	if (pool->flags & WQ_BH)
6109 		pr_cont("bh%s",
6110 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6111 	else
6112 		pr_cont("%d%s", task_pid_nr(worker->task),
6113 			worker->rescue_wq ? "(RESCUER)" : "");
6114 }
6115 
6116 struct pr_cont_work_struct {
6117 	bool comma;
6118 	work_func_t func;
6119 	long ctr;
6120 };
6121 
6122 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6123 {
6124 	if (!pcwsp->ctr)
6125 		goto out_record;
6126 	if (func == pcwsp->func) {
6127 		pcwsp->ctr++;
6128 		return;
6129 	}
6130 	if (pcwsp->ctr == 1)
6131 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6132 	else
6133 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6134 	pcwsp->ctr = 0;
6135 out_record:
6136 	if ((long)func == -1L)
6137 		return;
6138 	pcwsp->comma = comma;
6139 	pcwsp->func = func;
6140 	pcwsp->ctr = 1;
6141 }
6142 
6143 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6144 {
6145 	if (work->func == wq_barrier_func) {
6146 		struct wq_barrier *barr;
6147 
6148 		barr = container_of(work, struct wq_barrier, work);
6149 
6150 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6151 		pr_cont("%s BAR(%d)", comma ? "," : "",
6152 			task_pid_nr(barr->task));
6153 	} else {
6154 		if (!comma)
6155 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6156 		pr_cont_work_flush(comma, work->func, pcwsp);
6157 	}
6158 }
6159 
6160 static void show_pwq(struct pool_workqueue *pwq)
6161 {
6162 	struct pr_cont_work_struct pcws = { .ctr = 0, };
6163 	struct worker_pool *pool = pwq->pool;
6164 	struct work_struct *work;
6165 	struct worker *worker;
6166 	bool has_in_flight = false, has_pending = false;
6167 	int bkt;
6168 
6169 	pr_info("  pwq %d:", pool->id);
6170 	pr_cont_pool_info(pool);
6171 
6172 	pr_cont(" active=%d refcnt=%d%s\n",
6173 		pwq->nr_active, pwq->refcnt,
6174 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6175 
6176 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6177 		if (worker->current_pwq == pwq) {
6178 			has_in_flight = true;
6179 			break;
6180 		}
6181 	}
6182 	if (has_in_flight) {
6183 		bool comma = false;
6184 
6185 		pr_info("    in-flight:");
6186 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6187 			if (worker->current_pwq != pwq)
6188 				continue;
6189 
6190 			pr_cont(" %s", comma ? "," : "");
6191 			pr_cont_worker_id(worker);
6192 			pr_cont(":%ps", worker->current_func);
6193 			list_for_each_entry(work, &worker->scheduled, entry)
6194 				pr_cont_work(false, work, &pcws);
6195 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6196 			comma = true;
6197 		}
6198 		pr_cont("\n");
6199 	}
6200 
6201 	list_for_each_entry(work, &pool->worklist, entry) {
6202 		if (get_work_pwq(work) == pwq) {
6203 			has_pending = true;
6204 			break;
6205 		}
6206 	}
6207 	if (has_pending) {
6208 		bool comma = false;
6209 
6210 		pr_info("    pending:");
6211 		list_for_each_entry(work, &pool->worklist, entry) {
6212 			if (get_work_pwq(work) != pwq)
6213 				continue;
6214 
6215 			pr_cont_work(comma, work, &pcws);
6216 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6217 		}
6218 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6219 		pr_cont("\n");
6220 	}
6221 
6222 	if (!list_empty(&pwq->inactive_works)) {
6223 		bool comma = false;
6224 
6225 		pr_info("    inactive:");
6226 		list_for_each_entry(work, &pwq->inactive_works, entry) {
6227 			pr_cont_work(comma, work, &pcws);
6228 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6229 		}
6230 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6231 		pr_cont("\n");
6232 	}
6233 }
6234 
6235 /**
6236  * show_one_workqueue - dump state of specified workqueue
6237  * @wq: workqueue whose state will be printed
6238  */
6239 void show_one_workqueue(struct workqueue_struct *wq)
6240 {
6241 	struct pool_workqueue *pwq;
6242 	bool idle = true;
6243 	unsigned long irq_flags;
6244 
6245 	for_each_pwq(pwq, wq) {
6246 		if (!pwq_is_empty(pwq)) {
6247 			idle = false;
6248 			break;
6249 		}
6250 	}
6251 	if (idle) /* Nothing to print for idle workqueue */
6252 		return;
6253 
6254 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6255 
6256 	for_each_pwq(pwq, wq) {
6257 		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6258 		if (!pwq_is_empty(pwq)) {
6259 			/*
6260 			 * Defer printing to avoid deadlocks in console
6261 			 * drivers that queue work while holding locks
6262 			 * also taken in their write paths.
6263 			 */
6264 			printk_deferred_enter();
6265 			show_pwq(pwq);
6266 			printk_deferred_exit();
6267 		}
6268 		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6269 		/*
6270 		 * We could be printing a lot from atomic context, e.g.
6271 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
6272 		 * hard lockup.
6273 		 */
6274 		touch_nmi_watchdog();
6275 	}
6276 
6277 }
6278 
6279 /**
6280  * show_one_worker_pool - dump state of specified worker pool
6281  * @pool: worker pool whose state will be printed
6282  */
6283 static void show_one_worker_pool(struct worker_pool *pool)
6284 {
6285 	struct worker *worker;
6286 	bool first = true;
6287 	unsigned long irq_flags;
6288 	unsigned long hung = 0;
6289 
6290 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
6291 	if (pool->nr_workers == pool->nr_idle)
6292 		goto next_pool;
6293 
6294 	/* How long the first pending work is waiting for a worker. */
6295 	if (!list_empty(&pool->worklist))
6296 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6297 
6298 	/*
6299 	 * Defer printing to avoid deadlocks in console drivers that
6300 	 * queue work while holding locks also taken in their write
6301 	 * paths.
6302 	 */
6303 	printk_deferred_enter();
6304 	pr_info("pool %d:", pool->id);
6305 	pr_cont_pool_info(pool);
6306 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6307 	if (pool->manager)
6308 		pr_cont(" manager: %d",
6309 			task_pid_nr(pool->manager->task));
6310 	list_for_each_entry(worker, &pool->idle_list, entry) {
6311 		pr_cont(" %s", first ? "idle: " : "");
6312 		pr_cont_worker_id(worker);
6313 		first = false;
6314 	}
6315 	pr_cont("\n");
6316 	printk_deferred_exit();
6317 next_pool:
6318 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6319 	/*
6320 	 * We could be printing a lot from atomic context, e.g.
6321 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
6322 	 * hard lockup.
6323 	 */
6324 	touch_nmi_watchdog();
6325 
6326 }
6327 
6328 /**
6329  * show_all_workqueues - dump workqueue state
6330  *
6331  * Called from a sysrq handler and prints out all busy workqueues and pools.
6332  */
6333 void show_all_workqueues(void)
6334 {
6335 	struct workqueue_struct *wq;
6336 	struct worker_pool *pool;
6337 	int pi;
6338 
6339 	rcu_read_lock();
6340 
6341 	pr_info("Showing busy workqueues and worker pools:\n");
6342 
6343 	list_for_each_entry_rcu(wq, &workqueues, list)
6344 		show_one_workqueue(wq);
6345 
6346 	for_each_pool(pool, pi)
6347 		show_one_worker_pool(pool);
6348 
6349 	rcu_read_unlock();
6350 }
6351 
6352 /**
6353  * show_freezable_workqueues - dump freezable workqueue state
6354  *
6355  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6356  * still busy.
6357  */
6358 void show_freezable_workqueues(void)
6359 {
6360 	struct workqueue_struct *wq;
6361 
6362 	rcu_read_lock();
6363 
6364 	pr_info("Showing freezable workqueues that are still busy:\n");
6365 
6366 	list_for_each_entry_rcu(wq, &workqueues, list) {
6367 		if (!(wq->flags & WQ_FREEZABLE))
6368 			continue;
6369 		show_one_workqueue(wq);
6370 	}
6371 
6372 	rcu_read_unlock();
6373 }
6374 
6375 /* used to show worker information through /proc/PID/{comm,stat,status} */
6376 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6377 {
6378 	/* stabilize PF_WQ_WORKER and worker pool association */
6379 	mutex_lock(&wq_pool_attach_mutex);
6380 
6381 	if (task->flags & PF_WQ_WORKER) {
6382 		struct worker *worker = kthread_data(task);
6383 		struct worker_pool *pool = worker->pool;
6384 		int off;
6385 
6386 		off = format_worker_id(buf, size, worker, pool);
6387 
6388 		if (pool) {
6389 			raw_spin_lock_irq(&pool->lock);
6390 			/*
6391 			 * ->desc tracks information (wq name or
6392 			 * set_worker_desc()) for the latest execution.  If
6393 			 * current, prepend '+', otherwise '-'.
6394 			 */
6395 			if (worker->desc[0] != '\0') {
6396 				if (worker->current_work)
6397 					scnprintf(buf + off, size - off, "+%s",
6398 						  worker->desc);
6399 				else
6400 					scnprintf(buf + off, size - off, "-%s",
6401 						  worker->desc);
6402 			}
6403 			raw_spin_unlock_irq(&pool->lock);
6404 		}
6405 	} else {
6406 		strscpy(buf, task->comm, size);
6407 	}
6408 
6409 	mutex_unlock(&wq_pool_attach_mutex);
6410 }
6411 
6412 #ifdef CONFIG_SMP
6413 
6414 /*
6415  * CPU hotplug.
6416  *
6417  * There are two challenges in supporting CPU hotplug.  Firstly, there
6418  * are a lot of assumptions on strong associations among work, pwq and
6419  * pool which make migrating pending and scheduled works very
6420  * difficult to implement without impacting hot paths.  Secondly,
6421  * worker pools serve mix of short, long and very long running works making
6422  * blocked draining impractical.
6423  *
6424  * This is solved by allowing the pools to be disassociated from the CPU
6425  * running as an unbound one and allowing it to be reattached later if the
6426  * cpu comes back online.
6427  */
6428 
6429 static void unbind_workers(int cpu)
6430 {
6431 	struct worker_pool *pool;
6432 	struct worker *worker;
6433 
6434 	for_each_cpu_worker_pool(pool, cpu) {
6435 		mutex_lock(&wq_pool_attach_mutex);
6436 		raw_spin_lock_irq(&pool->lock);
6437 
6438 		/*
6439 		 * We've blocked all attach/detach operations. Make all workers
6440 		 * unbound and set DISASSOCIATED.  Before this, all workers
6441 		 * must be on the cpu.  After this, they may become diasporas.
6442 		 * And the preemption disabled section in their sched callbacks
6443 		 * are guaranteed to see WORKER_UNBOUND since the code here
6444 		 * is on the same cpu.
6445 		 */
6446 		for_each_pool_worker(worker, pool)
6447 			worker->flags |= WORKER_UNBOUND;
6448 
6449 		pool->flags |= POOL_DISASSOCIATED;
6450 
6451 		/*
6452 		 * The handling of nr_running in sched callbacks are disabled
6453 		 * now.  Zap nr_running.  After this, nr_running stays zero and
6454 		 * need_more_worker() and keep_working() are always true as
6455 		 * long as the worklist is not empty.  This pool now behaves as
6456 		 * an unbound (in terms of concurrency management) pool which
6457 		 * are served by workers tied to the pool.
6458 		 */
6459 		pool->nr_running = 0;
6460 
6461 		/*
6462 		 * With concurrency management just turned off, a busy
6463 		 * worker blocking could lead to lengthy stalls.  Kick off
6464 		 * unbound chain execution of currently pending work items.
6465 		 */
6466 		kick_pool(pool);
6467 
6468 		raw_spin_unlock_irq(&pool->lock);
6469 
6470 		for_each_pool_worker(worker, pool)
6471 			unbind_worker(worker);
6472 
6473 		mutex_unlock(&wq_pool_attach_mutex);
6474 	}
6475 }
6476 
6477 /**
6478  * rebind_workers - rebind all workers of a pool to the associated CPU
6479  * @pool: pool of interest
6480  *
6481  * @pool->cpu is coming online.  Rebind all workers to the CPU.
6482  */
6483 static void rebind_workers(struct worker_pool *pool)
6484 {
6485 	struct worker *worker;
6486 
6487 	lockdep_assert_held(&wq_pool_attach_mutex);
6488 
6489 	/*
6490 	 * Restore CPU affinity of all workers.  As all idle workers should
6491 	 * be on the run-queue of the associated CPU before any local
6492 	 * wake-ups for concurrency management happen, restore CPU affinity
6493 	 * of all workers first and then clear UNBOUND.  As we're called
6494 	 * from CPU_ONLINE, the following shouldn't fail.
6495 	 */
6496 	for_each_pool_worker(worker, pool) {
6497 		kthread_set_per_cpu(worker->task, pool->cpu);
6498 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6499 						  pool_allowed_cpus(pool)) < 0);
6500 	}
6501 
6502 	raw_spin_lock_irq(&pool->lock);
6503 
6504 	pool->flags &= ~POOL_DISASSOCIATED;
6505 
6506 	for_each_pool_worker(worker, pool) {
6507 		unsigned int worker_flags = worker->flags;
6508 
6509 		/*
6510 		 * We want to clear UNBOUND but can't directly call
6511 		 * worker_clr_flags() or adjust nr_running.  Atomically
6512 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6513 		 * @worker will clear REBOUND using worker_clr_flags() when
6514 		 * it initiates the next execution cycle thus restoring
6515 		 * concurrency management.  Note that when or whether
6516 		 * @worker clears REBOUND doesn't affect correctness.
6517 		 *
6518 		 * WRITE_ONCE() is necessary because @worker->flags may be
6519 		 * tested without holding any lock in
6520 		 * wq_worker_running().  Without it, NOT_RUNNING test may
6521 		 * fail incorrectly leading to premature concurrency
6522 		 * management operations.
6523 		 */
6524 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6525 		worker_flags |= WORKER_REBOUND;
6526 		worker_flags &= ~WORKER_UNBOUND;
6527 		WRITE_ONCE(worker->flags, worker_flags);
6528 	}
6529 
6530 	raw_spin_unlock_irq(&pool->lock);
6531 }
6532 
6533 /**
6534  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6535  * @pool: unbound pool of interest
6536  * @cpu: the CPU which is coming up
6537  *
6538  * An unbound pool may end up with a cpumask which doesn't have any online
6539  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6540  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6541  * online CPU before, cpus_allowed of all its workers should be restored.
6542  */
6543 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6544 {
6545 	static cpumask_t cpumask;
6546 	struct worker *worker;
6547 
6548 	lockdep_assert_held(&wq_pool_attach_mutex);
6549 
6550 	/* is @cpu allowed for @pool? */
6551 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6552 		return;
6553 
6554 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6555 
6556 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6557 	for_each_pool_worker(worker, pool)
6558 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6559 }
6560 
6561 int workqueue_prepare_cpu(unsigned int cpu)
6562 {
6563 	struct worker_pool *pool;
6564 
6565 	for_each_cpu_worker_pool(pool, cpu) {
6566 		if (pool->nr_workers)
6567 			continue;
6568 		if (!create_worker(pool))
6569 			return -ENOMEM;
6570 	}
6571 	return 0;
6572 }
6573 
6574 int workqueue_online_cpu(unsigned int cpu)
6575 {
6576 	struct worker_pool *pool;
6577 	struct workqueue_struct *wq;
6578 	int pi;
6579 
6580 	mutex_lock(&wq_pool_mutex);
6581 
6582 	cpumask_set_cpu(cpu, wq_online_cpumask);
6583 
6584 	for_each_pool(pool, pi) {
6585 		/* BH pools aren't affected by hotplug */
6586 		if (pool->flags & POOL_BH)
6587 			continue;
6588 
6589 		mutex_lock(&wq_pool_attach_mutex);
6590 		if (pool->cpu == cpu)
6591 			rebind_workers(pool);
6592 		else if (pool->cpu < 0)
6593 			restore_unbound_workers_cpumask(pool, cpu);
6594 		mutex_unlock(&wq_pool_attach_mutex);
6595 	}
6596 
6597 	/* update pod affinity of unbound workqueues */
6598 	list_for_each_entry(wq, &workqueues, list) {
6599 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6600 
6601 		if (attrs) {
6602 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6603 			int tcpu;
6604 
6605 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6606 				unbound_wq_update_pwq(wq, tcpu);
6607 
6608 			mutex_lock(&wq->mutex);
6609 			wq_update_node_max_active(wq, -1);
6610 			mutex_unlock(&wq->mutex);
6611 		}
6612 	}
6613 
6614 	mutex_unlock(&wq_pool_mutex);
6615 	return 0;
6616 }
6617 
6618 int workqueue_offline_cpu(unsigned int cpu)
6619 {
6620 	struct workqueue_struct *wq;
6621 
6622 	/* unbinding per-cpu workers should happen on the local CPU */
6623 	if (WARN_ON(cpu != smp_processor_id()))
6624 		return -1;
6625 
6626 	unbind_workers(cpu);
6627 
6628 	/* update pod affinity of unbound workqueues */
6629 	mutex_lock(&wq_pool_mutex);
6630 
6631 	cpumask_clear_cpu(cpu, wq_online_cpumask);
6632 
6633 	list_for_each_entry(wq, &workqueues, list) {
6634 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6635 
6636 		if (attrs) {
6637 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6638 			int tcpu;
6639 
6640 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6641 				unbound_wq_update_pwq(wq, tcpu);
6642 
6643 			mutex_lock(&wq->mutex);
6644 			wq_update_node_max_active(wq, cpu);
6645 			mutex_unlock(&wq->mutex);
6646 		}
6647 	}
6648 	mutex_unlock(&wq_pool_mutex);
6649 
6650 	return 0;
6651 }
6652 
6653 struct work_for_cpu {
6654 	struct work_struct work;
6655 	long (*fn)(void *);
6656 	void *arg;
6657 	long ret;
6658 };
6659 
6660 static void work_for_cpu_fn(struct work_struct *work)
6661 {
6662 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6663 
6664 	wfc->ret = wfc->fn(wfc->arg);
6665 }
6666 
6667 /**
6668  * work_on_cpu_key - run a function in thread context on a particular cpu
6669  * @cpu: the cpu to run on
6670  * @fn: the function to run
6671  * @arg: the function arg
6672  * @key: The lock class key for lock debugging purposes
6673  *
6674  * It is up to the caller to ensure that the cpu doesn't go offline.
6675  * The caller must not hold any locks which would prevent @fn from completing.
6676  *
6677  * Return: The value @fn returns.
6678  */
6679 long work_on_cpu_key(int cpu, long (*fn)(void *),
6680 		     void *arg, struct lock_class_key *key)
6681 {
6682 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6683 
6684 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6685 	schedule_work_on(cpu, &wfc.work);
6686 	flush_work(&wfc.work);
6687 	destroy_work_on_stack(&wfc.work);
6688 	return wfc.ret;
6689 }
6690 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6691 
6692 /**
6693  * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6694  * @cpu: the cpu to run on
6695  * @fn:  the function to run
6696  * @arg: the function argument
6697  * @key: The lock class key for lock debugging purposes
6698  *
6699  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6700  * any locks which would prevent @fn from completing.
6701  *
6702  * Return: The value @fn returns.
6703  */
6704 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6705 			  void *arg, struct lock_class_key *key)
6706 {
6707 	long ret = -ENODEV;
6708 
6709 	cpus_read_lock();
6710 	if (cpu_online(cpu))
6711 		ret = work_on_cpu_key(cpu, fn, arg, key);
6712 	cpus_read_unlock();
6713 	return ret;
6714 }
6715 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6716 #endif /* CONFIG_SMP */
6717 
6718 #ifdef CONFIG_FREEZER
6719 
6720 /**
6721  * freeze_workqueues_begin - begin freezing workqueues
6722  *
6723  * Start freezing workqueues.  After this function returns, all freezable
6724  * workqueues will queue new works to their inactive_works list instead of
6725  * pool->worklist.
6726  *
6727  * CONTEXT:
6728  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6729  */
6730 void freeze_workqueues_begin(void)
6731 {
6732 	struct workqueue_struct *wq;
6733 
6734 	mutex_lock(&wq_pool_mutex);
6735 
6736 	WARN_ON_ONCE(workqueue_freezing);
6737 	workqueue_freezing = true;
6738 
6739 	list_for_each_entry(wq, &workqueues, list) {
6740 		mutex_lock(&wq->mutex);
6741 		wq_adjust_max_active(wq);
6742 		mutex_unlock(&wq->mutex);
6743 	}
6744 
6745 	mutex_unlock(&wq_pool_mutex);
6746 }
6747 
6748 /**
6749  * freeze_workqueues_busy - are freezable workqueues still busy?
6750  *
6751  * Check whether freezing is complete.  This function must be called
6752  * between freeze_workqueues_begin() and thaw_workqueues().
6753  *
6754  * CONTEXT:
6755  * Grabs and releases wq_pool_mutex.
6756  *
6757  * Return:
6758  * %true if some freezable workqueues are still busy.  %false if freezing
6759  * is complete.
6760  */
6761 bool freeze_workqueues_busy(void)
6762 {
6763 	bool busy = false;
6764 	struct workqueue_struct *wq;
6765 	struct pool_workqueue *pwq;
6766 
6767 	mutex_lock(&wq_pool_mutex);
6768 
6769 	WARN_ON_ONCE(!workqueue_freezing);
6770 
6771 	list_for_each_entry(wq, &workqueues, list) {
6772 		if (!(wq->flags & WQ_FREEZABLE))
6773 			continue;
6774 		/*
6775 		 * nr_active is monotonically decreasing.  It's safe
6776 		 * to peek without lock.
6777 		 */
6778 		rcu_read_lock();
6779 		for_each_pwq(pwq, wq) {
6780 			WARN_ON_ONCE(pwq->nr_active < 0);
6781 			if (pwq->nr_active) {
6782 				busy = true;
6783 				rcu_read_unlock();
6784 				goto out_unlock;
6785 			}
6786 		}
6787 		rcu_read_unlock();
6788 	}
6789 out_unlock:
6790 	mutex_unlock(&wq_pool_mutex);
6791 	return busy;
6792 }
6793 
6794 /**
6795  * thaw_workqueues - thaw workqueues
6796  *
6797  * Thaw workqueues.  Normal queueing is restored and all collected
6798  * frozen works are transferred to their respective pool worklists.
6799  *
6800  * CONTEXT:
6801  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6802  */
6803 void thaw_workqueues(void)
6804 {
6805 	struct workqueue_struct *wq;
6806 
6807 	mutex_lock(&wq_pool_mutex);
6808 
6809 	if (!workqueue_freezing)
6810 		goto out_unlock;
6811 
6812 	workqueue_freezing = false;
6813 
6814 	/* restore max_active and repopulate worklist */
6815 	list_for_each_entry(wq, &workqueues, list) {
6816 		mutex_lock(&wq->mutex);
6817 		wq_adjust_max_active(wq);
6818 		mutex_unlock(&wq->mutex);
6819 	}
6820 
6821 out_unlock:
6822 	mutex_unlock(&wq_pool_mutex);
6823 }
6824 #endif /* CONFIG_FREEZER */
6825 
6826 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6827 {
6828 	LIST_HEAD(ctxs);
6829 	int ret = 0;
6830 	struct workqueue_struct *wq;
6831 	struct apply_wqattrs_ctx *ctx, *n;
6832 
6833 	lockdep_assert_held(&wq_pool_mutex);
6834 
6835 	list_for_each_entry(wq, &workqueues, list) {
6836 		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6837 			continue;
6838 
6839 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6840 		if (IS_ERR(ctx)) {
6841 			ret = PTR_ERR(ctx);
6842 			break;
6843 		}
6844 
6845 		list_add_tail(&ctx->list, &ctxs);
6846 	}
6847 
6848 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6849 		if (!ret)
6850 			apply_wqattrs_commit(ctx);
6851 		apply_wqattrs_cleanup(ctx);
6852 	}
6853 
6854 	if (!ret) {
6855 		mutex_lock(&wq_pool_attach_mutex);
6856 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6857 		mutex_unlock(&wq_pool_attach_mutex);
6858 	}
6859 	return ret;
6860 }
6861 
6862 /**
6863  * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6864  * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6865  *
6866  * This function can be called from cpuset code to provide a set of isolated
6867  * CPUs that should be excluded from wq_unbound_cpumask.
6868  */
6869 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6870 {
6871 	cpumask_var_t cpumask;
6872 	int ret = 0;
6873 
6874 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6875 		return -ENOMEM;
6876 
6877 	mutex_lock(&wq_pool_mutex);
6878 
6879 	/*
6880 	 * If the operation fails, it will fall back to
6881 	 * wq_requested_unbound_cpumask which is initially set to
6882 	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6883 	 * by any subsequent write to workqueue/cpumask sysfs file.
6884 	 */
6885 	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6886 		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6887 	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6888 		ret = workqueue_apply_unbound_cpumask(cpumask);
6889 
6890 	/* Save the current isolated cpumask & export it via sysfs */
6891 	if (!ret)
6892 		cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6893 
6894 	mutex_unlock(&wq_pool_mutex);
6895 	free_cpumask_var(cpumask);
6896 	return ret;
6897 }
6898 
6899 static int parse_affn_scope(const char *val)
6900 {
6901 	int i;
6902 
6903 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6904 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6905 			return i;
6906 	}
6907 	return -EINVAL;
6908 }
6909 
6910 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6911 {
6912 	struct workqueue_struct *wq;
6913 	int affn, cpu;
6914 
6915 	affn = parse_affn_scope(val);
6916 	if (affn < 0)
6917 		return affn;
6918 	if (affn == WQ_AFFN_DFL)
6919 		return -EINVAL;
6920 
6921 	cpus_read_lock();
6922 	mutex_lock(&wq_pool_mutex);
6923 
6924 	wq_affn_dfl = affn;
6925 
6926 	list_for_each_entry(wq, &workqueues, list) {
6927 		for_each_online_cpu(cpu)
6928 			unbound_wq_update_pwq(wq, cpu);
6929 	}
6930 
6931 	mutex_unlock(&wq_pool_mutex);
6932 	cpus_read_unlock();
6933 
6934 	return 0;
6935 }
6936 
6937 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6938 {
6939 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6940 }
6941 
6942 static const struct kernel_param_ops wq_affn_dfl_ops = {
6943 	.set	= wq_affn_dfl_set,
6944 	.get	= wq_affn_dfl_get,
6945 };
6946 
6947 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6948 
6949 #ifdef CONFIG_SYSFS
6950 /*
6951  * Workqueues with WQ_SYSFS flag set is visible to userland via
6952  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
6953  * following attributes.
6954  *
6955  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
6956  *  max_active		RW int	: maximum number of in-flight work items
6957  *
6958  * Unbound workqueues have the following extra attributes.
6959  *
6960  *  nice		RW int	: nice value of the workers
6961  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
6962  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
6963  *  affinity_strict	RW bool : worker CPU affinity is strict
6964  */
6965 struct wq_device {
6966 	struct workqueue_struct		*wq;
6967 	struct device			dev;
6968 };
6969 
6970 static struct workqueue_struct *dev_to_wq(struct device *dev)
6971 {
6972 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6973 
6974 	return wq_dev->wq;
6975 }
6976 
6977 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6978 			    char *buf)
6979 {
6980 	struct workqueue_struct *wq = dev_to_wq(dev);
6981 
6982 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6983 }
6984 static DEVICE_ATTR_RO(per_cpu);
6985 
6986 static ssize_t max_active_show(struct device *dev,
6987 			       struct device_attribute *attr, char *buf)
6988 {
6989 	struct workqueue_struct *wq = dev_to_wq(dev);
6990 
6991 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
6992 }
6993 
6994 static ssize_t max_active_store(struct device *dev,
6995 				struct device_attribute *attr, const char *buf,
6996 				size_t count)
6997 {
6998 	struct workqueue_struct *wq = dev_to_wq(dev);
6999 	int val;
7000 
7001 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
7002 		return -EINVAL;
7003 
7004 	workqueue_set_max_active(wq, val);
7005 	return count;
7006 }
7007 static DEVICE_ATTR_RW(max_active);
7008 
7009 static struct attribute *wq_sysfs_attrs[] = {
7010 	&dev_attr_per_cpu.attr,
7011 	&dev_attr_max_active.attr,
7012 	NULL,
7013 };
7014 ATTRIBUTE_GROUPS(wq_sysfs);
7015 
7016 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7017 			    char *buf)
7018 {
7019 	struct workqueue_struct *wq = dev_to_wq(dev);
7020 	int written;
7021 
7022 	mutex_lock(&wq->mutex);
7023 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7024 	mutex_unlock(&wq->mutex);
7025 
7026 	return written;
7027 }
7028 
7029 /* prepare workqueue_attrs for sysfs store operations */
7030 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7031 {
7032 	struct workqueue_attrs *attrs;
7033 
7034 	lockdep_assert_held(&wq_pool_mutex);
7035 
7036 	attrs = alloc_workqueue_attrs();
7037 	if (!attrs)
7038 		return NULL;
7039 
7040 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
7041 	return attrs;
7042 }
7043 
7044 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7045 			     const char *buf, size_t count)
7046 {
7047 	struct workqueue_struct *wq = dev_to_wq(dev);
7048 	struct workqueue_attrs *attrs;
7049 	int ret = -ENOMEM;
7050 
7051 	apply_wqattrs_lock();
7052 
7053 	attrs = wq_sysfs_prep_attrs(wq);
7054 	if (!attrs)
7055 		goto out_unlock;
7056 
7057 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7058 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
7059 		ret = apply_workqueue_attrs_locked(wq, attrs);
7060 	else
7061 		ret = -EINVAL;
7062 
7063 out_unlock:
7064 	apply_wqattrs_unlock();
7065 	free_workqueue_attrs(attrs);
7066 	return ret ?: count;
7067 }
7068 
7069 static ssize_t wq_cpumask_show(struct device *dev,
7070 			       struct device_attribute *attr, char *buf)
7071 {
7072 	struct workqueue_struct *wq = dev_to_wq(dev);
7073 	int written;
7074 
7075 	mutex_lock(&wq->mutex);
7076 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7077 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
7078 	mutex_unlock(&wq->mutex);
7079 	return written;
7080 }
7081 
7082 static ssize_t wq_cpumask_store(struct device *dev,
7083 				struct device_attribute *attr,
7084 				const char *buf, size_t count)
7085 {
7086 	struct workqueue_struct *wq = dev_to_wq(dev);
7087 	struct workqueue_attrs *attrs;
7088 	int ret = -ENOMEM;
7089 
7090 	apply_wqattrs_lock();
7091 
7092 	attrs = wq_sysfs_prep_attrs(wq);
7093 	if (!attrs)
7094 		goto out_unlock;
7095 
7096 	ret = cpumask_parse(buf, attrs->cpumask);
7097 	if (!ret)
7098 		ret = apply_workqueue_attrs_locked(wq, attrs);
7099 
7100 out_unlock:
7101 	apply_wqattrs_unlock();
7102 	free_workqueue_attrs(attrs);
7103 	return ret ?: count;
7104 }
7105 
7106 static ssize_t wq_affn_scope_show(struct device *dev,
7107 				  struct device_attribute *attr, char *buf)
7108 {
7109 	struct workqueue_struct *wq = dev_to_wq(dev);
7110 	int written;
7111 
7112 	mutex_lock(&wq->mutex);
7113 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7114 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7115 				    wq_affn_names[WQ_AFFN_DFL],
7116 				    wq_affn_names[wq_affn_dfl]);
7117 	else
7118 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
7119 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
7120 	mutex_unlock(&wq->mutex);
7121 
7122 	return written;
7123 }
7124 
7125 static ssize_t wq_affn_scope_store(struct device *dev,
7126 				   struct device_attribute *attr,
7127 				   const char *buf, size_t count)
7128 {
7129 	struct workqueue_struct *wq = dev_to_wq(dev);
7130 	struct workqueue_attrs *attrs;
7131 	int affn, ret = -ENOMEM;
7132 
7133 	affn = parse_affn_scope(buf);
7134 	if (affn < 0)
7135 		return affn;
7136 
7137 	apply_wqattrs_lock();
7138 	attrs = wq_sysfs_prep_attrs(wq);
7139 	if (attrs) {
7140 		attrs->affn_scope = affn;
7141 		ret = apply_workqueue_attrs_locked(wq, attrs);
7142 	}
7143 	apply_wqattrs_unlock();
7144 	free_workqueue_attrs(attrs);
7145 	return ret ?: count;
7146 }
7147 
7148 static ssize_t wq_affinity_strict_show(struct device *dev,
7149 				       struct device_attribute *attr, char *buf)
7150 {
7151 	struct workqueue_struct *wq = dev_to_wq(dev);
7152 
7153 	return scnprintf(buf, PAGE_SIZE, "%d\n",
7154 			 wq->unbound_attrs->affn_strict);
7155 }
7156 
7157 static ssize_t wq_affinity_strict_store(struct device *dev,
7158 					struct device_attribute *attr,
7159 					const char *buf, size_t count)
7160 {
7161 	struct workqueue_struct *wq = dev_to_wq(dev);
7162 	struct workqueue_attrs *attrs;
7163 	int v, ret = -ENOMEM;
7164 
7165 	if (sscanf(buf, "%d", &v) != 1)
7166 		return -EINVAL;
7167 
7168 	apply_wqattrs_lock();
7169 	attrs = wq_sysfs_prep_attrs(wq);
7170 	if (attrs) {
7171 		attrs->affn_strict = (bool)v;
7172 		ret = apply_workqueue_attrs_locked(wq, attrs);
7173 	}
7174 	apply_wqattrs_unlock();
7175 	free_workqueue_attrs(attrs);
7176 	return ret ?: count;
7177 }
7178 
7179 static struct device_attribute wq_sysfs_unbound_attrs[] = {
7180 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7181 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7182 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7183 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7184 	__ATTR_NULL,
7185 };
7186 
7187 static const struct bus_type wq_subsys = {
7188 	.name				= "workqueue",
7189 	.dev_groups			= wq_sysfs_groups,
7190 };
7191 
7192 /**
7193  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7194  *  @cpumask: the cpumask to set
7195  *
7196  *  The low-level workqueues cpumask is a global cpumask that limits
7197  *  the affinity of all unbound workqueues.  This function check the @cpumask
7198  *  and apply it to all unbound workqueues and updates all pwqs of them.
7199  *
7200  *  Return:	0	- Success
7201  *		-EINVAL	- Invalid @cpumask
7202  *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
7203  */
7204 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7205 {
7206 	int ret = -EINVAL;
7207 
7208 	/*
7209 	 * Not excluding isolated cpus on purpose.
7210 	 * If the user wishes to include them, we allow that.
7211 	 */
7212 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
7213 	if (!cpumask_empty(cpumask)) {
7214 		ret = 0;
7215 		apply_wqattrs_lock();
7216 		if (!cpumask_equal(cpumask, wq_unbound_cpumask))
7217 			ret = workqueue_apply_unbound_cpumask(cpumask);
7218 		if (!ret)
7219 			cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7220 		apply_wqattrs_unlock();
7221 	}
7222 
7223 	return ret;
7224 }
7225 
7226 static ssize_t __wq_cpumask_show(struct device *dev,
7227 		struct device_attribute *attr, char *buf, cpumask_var_t mask)
7228 {
7229 	int written;
7230 
7231 	mutex_lock(&wq_pool_mutex);
7232 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7233 	mutex_unlock(&wq_pool_mutex);
7234 
7235 	return written;
7236 }
7237 
7238 static ssize_t cpumask_requested_show(struct device *dev,
7239 		struct device_attribute *attr, char *buf)
7240 {
7241 	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7242 }
7243 static DEVICE_ATTR_RO(cpumask_requested);
7244 
7245 static ssize_t cpumask_isolated_show(struct device *dev,
7246 		struct device_attribute *attr, char *buf)
7247 {
7248 	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7249 }
7250 static DEVICE_ATTR_RO(cpumask_isolated);
7251 
7252 static ssize_t cpumask_show(struct device *dev,
7253 		struct device_attribute *attr, char *buf)
7254 {
7255 	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7256 }
7257 
7258 static ssize_t cpumask_store(struct device *dev,
7259 		struct device_attribute *attr, const char *buf, size_t count)
7260 {
7261 	cpumask_var_t cpumask;
7262 	int ret;
7263 
7264 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7265 		return -ENOMEM;
7266 
7267 	ret = cpumask_parse(buf, cpumask);
7268 	if (!ret)
7269 		ret = workqueue_set_unbound_cpumask(cpumask);
7270 
7271 	free_cpumask_var(cpumask);
7272 	return ret ? ret : count;
7273 }
7274 static DEVICE_ATTR_RW(cpumask);
7275 
7276 static struct attribute *wq_sysfs_cpumask_attrs[] = {
7277 	&dev_attr_cpumask.attr,
7278 	&dev_attr_cpumask_requested.attr,
7279 	&dev_attr_cpumask_isolated.attr,
7280 	NULL,
7281 };
7282 ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
7283 
7284 static int __init wq_sysfs_init(void)
7285 {
7286 	return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
7287 }
7288 core_initcall(wq_sysfs_init);
7289 
7290 static void wq_device_release(struct device *dev)
7291 {
7292 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7293 
7294 	kfree(wq_dev);
7295 }
7296 
7297 /**
7298  * workqueue_sysfs_register - make a workqueue visible in sysfs
7299  * @wq: the workqueue to register
7300  *
7301  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7302  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7303  * which is the preferred method.
7304  *
7305  * Workqueue user should use this function directly iff it wants to apply
7306  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7307  * apply_workqueue_attrs() may race against userland updating the
7308  * attributes.
7309  *
7310  * Return: 0 on success, -errno on failure.
7311  */
7312 int workqueue_sysfs_register(struct workqueue_struct *wq)
7313 {
7314 	struct wq_device *wq_dev;
7315 	int ret;
7316 
7317 	/*
7318 	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
7319 	 * ordered workqueues.
7320 	 */
7321 	if (WARN_ON(wq->flags & __WQ_ORDERED))
7322 		return -EINVAL;
7323 
7324 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7325 	if (!wq_dev)
7326 		return -ENOMEM;
7327 
7328 	wq_dev->wq = wq;
7329 	wq_dev->dev.bus = &wq_subsys;
7330 	wq_dev->dev.release = wq_device_release;
7331 	dev_set_name(&wq_dev->dev, "%s", wq->name);
7332 
7333 	/*
7334 	 * unbound_attrs are created separately.  Suppress uevent until
7335 	 * everything is ready.
7336 	 */
7337 	dev_set_uevent_suppress(&wq_dev->dev, true);
7338 
7339 	ret = device_register(&wq_dev->dev);
7340 	if (ret) {
7341 		put_device(&wq_dev->dev);
7342 		wq->wq_dev = NULL;
7343 		return ret;
7344 	}
7345 
7346 	if (wq->flags & WQ_UNBOUND) {
7347 		struct device_attribute *attr;
7348 
7349 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7350 			ret = device_create_file(&wq_dev->dev, attr);
7351 			if (ret) {
7352 				device_unregister(&wq_dev->dev);
7353 				wq->wq_dev = NULL;
7354 				return ret;
7355 			}
7356 		}
7357 	}
7358 
7359 	dev_set_uevent_suppress(&wq_dev->dev, false);
7360 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7361 	return 0;
7362 }
7363 
7364 /**
7365  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7366  * @wq: the workqueue to unregister
7367  *
7368  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7369  */
7370 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7371 {
7372 	struct wq_device *wq_dev = wq->wq_dev;
7373 
7374 	if (!wq->wq_dev)
7375 		return;
7376 
7377 	wq->wq_dev = NULL;
7378 	device_unregister(&wq_dev->dev);
7379 }
7380 #else	/* CONFIG_SYSFS */
7381 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7382 #endif	/* CONFIG_SYSFS */
7383 
7384 /*
7385  * Workqueue watchdog.
7386  *
7387  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7388  * flush dependency, a concurrency managed work item which stays RUNNING
7389  * indefinitely.  Workqueue stalls can be very difficult to debug as the
7390  * usual warning mechanisms don't trigger and internal workqueue state is
7391  * largely opaque.
7392  *
7393  * Workqueue watchdog monitors all worker pools periodically and dumps
7394  * state if some pools failed to make forward progress for a while where
7395  * forward progress is defined as the first item on ->worklist changing.
7396  *
7397  * This mechanism is controlled through the kernel parameter
7398  * "workqueue.watchdog_thresh" which can be updated at runtime through the
7399  * corresponding sysfs parameter file.
7400  */
7401 #ifdef CONFIG_WQ_WATCHDOG
7402 
7403 static unsigned long wq_watchdog_thresh = 30;
7404 static struct timer_list wq_watchdog_timer;
7405 
7406 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7407 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7408 
7409 /*
7410  * Show workers that might prevent the processing of pending work items.
7411  * The only candidates are CPU-bound workers in the running state.
7412  * Pending work items should be handled by another idle worker
7413  * in all other situations.
7414  */
7415 static void show_cpu_pool_hog(struct worker_pool *pool)
7416 {
7417 	struct worker *worker;
7418 	unsigned long irq_flags;
7419 	int bkt;
7420 
7421 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
7422 
7423 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7424 		if (task_is_running(worker->task)) {
7425 			/*
7426 			 * Defer printing to avoid deadlocks in console
7427 			 * drivers that queue work while holding locks
7428 			 * also taken in their write paths.
7429 			 */
7430 			printk_deferred_enter();
7431 
7432 			pr_info("pool %d:\n", pool->id);
7433 			sched_show_task(worker->task);
7434 
7435 			printk_deferred_exit();
7436 		}
7437 	}
7438 
7439 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7440 }
7441 
7442 static void show_cpu_pools_hogs(void)
7443 {
7444 	struct worker_pool *pool;
7445 	int pi;
7446 
7447 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7448 
7449 	rcu_read_lock();
7450 
7451 	for_each_pool(pool, pi) {
7452 		if (pool->cpu_stall)
7453 			show_cpu_pool_hog(pool);
7454 
7455 	}
7456 
7457 	rcu_read_unlock();
7458 }
7459 
7460 static void wq_watchdog_reset_touched(void)
7461 {
7462 	int cpu;
7463 
7464 	wq_watchdog_touched = jiffies;
7465 	for_each_possible_cpu(cpu)
7466 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7467 }
7468 
7469 static void wq_watchdog_timer_fn(struct timer_list *unused)
7470 {
7471 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7472 	bool lockup_detected = false;
7473 	bool cpu_pool_stall = false;
7474 	unsigned long now = jiffies;
7475 	struct worker_pool *pool;
7476 	int pi;
7477 
7478 	if (!thresh)
7479 		return;
7480 
7481 	rcu_read_lock();
7482 
7483 	for_each_pool(pool, pi) {
7484 		unsigned long pool_ts, touched, ts;
7485 
7486 		pool->cpu_stall = false;
7487 		if (list_empty(&pool->worklist))
7488 			continue;
7489 
7490 		/*
7491 		 * If a virtual machine is stopped by the host it can look to
7492 		 * the watchdog like a stall.
7493 		 */
7494 		kvm_check_and_clear_guest_paused();
7495 
7496 		/* get the latest of pool and touched timestamps */
7497 		if (pool->cpu >= 0)
7498 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7499 		else
7500 			touched = READ_ONCE(wq_watchdog_touched);
7501 		pool_ts = READ_ONCE(pool->watchdog_ts);
7502 
7503 		if (time_after(pool_ts, touched))
7504 			ts = pool_ts;
7505 		else
7506 			ts = touched;
7507 
7508 		/* did we stall? */
7509 		if (time_after(now, ts + thresh)) {
7510 			lockup_detected = true;
7511 			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7512 				pool->cpu_stall = true;
7513 				cpu_pool_stall = true;
7514 			}
7515 			pr_emerg("BUG: workqueue lockup - pool");
7516 			pr_cont_pool_info(pool);
7517 			pr_cont(" stuck for %us!\n",
7518 				jiffies_to_msecs(now - pool_ts) / 1000);
7519 		}
7520 
7521 
7522 	}
7523 
7524 	rcu_read_unlock();
7525 
7526 	if (lockup_detected)
7527 		show_all_workqueues();
7528 
7529 	if (cpu_pool_stall)
7530 		show_cpu_pools_hogs();
7531 
7532 	wq_watchdog_reset_touched();
7533 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7534 }
7535 
7536 notrace void wq_watchdog_touch(int cpu)
7537 {
7538 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7539 	unsigned long touch_ts = READ_ONCE(wq_watchdog_touched);
7540 	unsigned long now = jiffies;
7541 
7542 	if (cpu >= 0)
7543 		per_cpu(wq_watchdog_touched_cpu, cpu) = now;
7544 	else
7545 		WARN_ONCE(1, "%s should be called with valid CPU", __func__);
7546 
7547 	/* Don't unnecessarily store to global cacheline */
7548 	if (time_after(now, touch_ts + thresh / 4))
7549 		WRITE_ONCE(wq_watchdog_touched, jiffies);
7550 }
7551 
7552 static void wq_watchdog_set_thresh(unsigned long thresh)
7553 {
7554 	wq_watchdog_thresh = 0;
7555 	del_timer_sync(&wq_watchdog_timer);
7556 
7557 	if (thresh) {
7558 		wq_watchdog_thresh = thresh;
7559 		wq_watchdog_reset_touched();
7560 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7561 	}
7562 }
7563 
7564 static int wq_watchdog_param_set_thresh(const char *val,
7565 					const struct kernel_param *kp)
7566 {
7567 	unsigned long thresh;
7568 	int ret;
7569 
7570 	ret = kstrtoul(val, 0, &thresh);
7571 	if (ret)
7572 		return ret;
7573 
7574 	if (system_wq)
7575 		wq_watchdog_set_thresh(thresh);
7576 	else
7577 		wq_watchdog_thresh = thresh;
7578 
7579 	return 0;
7580 }
7581 
7582 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7583 	.set	= wq_watchdog_param_set_thresh,
7584 	.get	= param_get_ulong,
7585 };
7586 
7587 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7588 		0644);
7589 
7590 static void wq_watchdog_init(void)
7591 {
7592 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7593 	wq_watchdog_set_thresh(wq_watchdog_thresh);
7594 }
7595 
7596 #else	/* CONFIG_WQ_WATCHDOG */
7597 
7598 static inline void wq_watchdog_init(void) { }
7599 
7600 #endif	/* CONFIG_WQ_WATCHDOG */
7601 
7602 static void bh_pool_kick_normal(struct irq_work *irq_work)
7603 {
7604 	raise_softirq_irqoff(TASKLET_SOFTIRQ);
7605 }
7606 
7607 static void bh_pool_kick_highpri(struct irq_work *irq_work)
7608 {
7609 	raise_softirq_irqoff(HI_SOFTIRQ);
7610 }
7611 
7612 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7613 {
7614 	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7615 		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7616 			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7617 		return;
7618 	}
7619 
7620 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7621 }
7622 
7623 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7624 {
7625 	BUG_ON(init_worker_pool(pool));
7626 	pool->cpu = cpu;
7627 	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7628 	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7629 	pool->attrs->nice = nice;
7630 	pool->attrs->affn_strict = true;
7631 	pool->node = cpu_to_node(cpu);
7632 
7633 	/* alloc pool ID */
7634 	mutex_lock(&wq_pool_mutex);
7635 	BUG_ON(worker_pool_assign_id(pool));
7636 	mutex_unlock(&wq_pool_mutex);
7637 }
7638 
7639 /**
7640  * workqueue_init_early - early init for workqueue subsystem
7641  *
7642  * This is the first step of three-staged workqueue subsystem initialization and
7643  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7644  * up. It sets up all the data structures and system workqueues and allows early
7645  * boot code to create workqueues and queue/cancel work items. Actual work item
7646  * execution starts only after kthreads can be created and scheduled right
7647  * before early initcalls.
7648  */
7649 void __init workqueue_init_early(void)
7650 {
7651 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7652 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7653 	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7654 						       bh_pool_kick_highpri };
7655 	int i, cpu;
7656 
7657 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7658 
7659 	BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL));
7660 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7661 	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7662 	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7663 
7664 	cpumask_copy(wq_online_cpumask, cpu_online_mask);
7665 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7666 	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7667 	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7668 	if (!cpumask_empty(&wq_cmdline_cpumask))
7669 		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7670 
7671 	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7672 
7673 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7674 
7675 	unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs();
7676 	BUG_ON(!unbound_wq_update_pwq_attrs_buf);
7677 
7678 	/*
7679 	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7680 	 * This allows workqueue items to be moved to HK CPUs.
7681 	 */
7682 	if (housekeeping_enabled(HK_TYPE_TICK))
7683 		wq_power_efficient = true;
7684 
7685 	/* initialize WQ_AFFN_SYSTEM pods */
7686 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7687 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7688 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7689 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7690 
7691 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7692 
7693 	pt->nr_pods = 1;
7694 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7695 	pt->pod_node[0] = NUMA_NO_NODE;
7696 	pt->cpu_pod[0] = 0;
7697 
7698 	/* initialize BH and CPU pools */
7699 	for_each_possible_cpu(cpu) {
7700 		struct worker_pool *pool;
7701 
7702 		i = 0;
7703 		for_each_bh_worker_pool(pool, cpu) {
7704 			init_cpu_worker_pool(pool, cpu, std_nice[i]);
7705 			pool->flags |= POOL_BH;
7706 			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7707 			i++;
7708 		}
7709 
7710 		i = 0;
7711 		for_each_cpu_worker_pool(pool, cpu)
7712 			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7713 	}
7714 
7715 	/* create default unbound and ordered wq attrs */
7716 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7717 		struct workqueue_attrs *attrs;
7718 
7719 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7720 		attrs->nice = std_nice[i];
7721 		unbound_std_wq_attrs[i] = attrs;
7722 
7723 		/*
7724 		 * An ordered wq should have only one pwq as ordering is
7725 		 * guaranteed by max_active which is enforced by pwqs.
7726 		 */
7727 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7728 		attrs->nice = std_nice[i];
7729 		attrs->ordered = true;
7730 		ordered_wq_attrs[i] = attrs;
7731 	}
7732 
7733 	system_wq = alloc_workqueue("events", 0, 0);
7734 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7735 	system_long_wq = alloc_workqueue("events_long", 0, 0);
7736 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7737 					    WQ_MAX_ACTIVE);
7738 	system_freezable_wq = alloc_workqueue("events_freezable",
7739 					      WQ_FREEZABLE, 0);
7740 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7741 					      WQ_POWER_EFFICIENT, 0);
7742 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7743 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7744 					      0);
7745 	system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7746 	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7747 					       WQ_BH | WQ_HIGHPRI, 0);
7748 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7749 	       !system_unbound_wq || !system_freezable_wq ||
7750 	       !system_power_efficient_wq ||
7751 	       !system_freezable_power_efficient_wq ||
7752 	       !system_bh_wq || !system_bh_highpri_wq);
7753 }
7754 
7755 static void __init wq_cpu_intensive_thresh_init(void)
7756 {
7757 	unsigned long thresh;
7758 	unsigned long bogo;
7759 
7760 	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7761 	BUG_ON(IS_ERR(pwq_release_worker));
7762 
7763 	/* if the user set it to a specific value, keep it */
7764 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7765 		return;
7766 
7767 	/*
7768 	 * The default of 10ms is derived from the fact that most modern (as of
7769 	 * 2023) processors can do a lot in 10ms and that it's just below what
7770 	 * most consider human-perceivable. However, the kernel also runs on a
7771 	 * lot slower CPUs including microcontrollers where the threshold is way
7772 	 * too low.
7773 	 *
7774 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7775 	 * This is by no means accurate but it doesn't have to be. The mechanism
7776 	 * is still useful even when the threshold is fully scaled up. Also, as
7777 	 * the reports would usually be applicable to everyone, some machines
7778 	 * operating on longer thresholds won't significantly diminish their
7779 	 * usefulness.
7780 	 */
7781 	thresh = 10 * USEC_PER_MSEC;
7782 
7783 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7784 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7785 	if (bogo < 4000)
7786 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7787 
7788 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7789 		 loops_per_jiffy, bogo, thresh);
7790 
7791 	wq_cpu_intensive_thresh_us = thresh;
7792 }
7793 
7794 /**
7795  * workqueue_init - bring workqueue subsystem fully online
7796  *
7797  * This is the second step of three-staged workqueue subsystem initialization
7798  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7799  * been created and work items queued on them, but there are no kworkers
7800  * executing the work items yet. Populate the worker pools with the initial
7801  * workers and enable future kworker creations.
7802  */
7803 void __init workqueue_init(void)
7804 {
7805 	struct workqueue_struct *wq;
7806 	struct worker_pool *pool;
7807 	int cpu, bkt;
7808 
7809 	wq_cpu_intensive_thresh_init();
7810 
7811 	mutex_lock(&wq_pool_mutex);
7812 
7813 	/*
7814 	 * Per-cpu pools created earlier could be missing node hint. Fix them
7815 	 * up. Also, create a rescuer for workqueues that requested it.
7816 	 */
7817 	for_each_possible_cpu(cpu) {
7818 		for_each_bh_worker_pool(pool, cpu)
7819 			pool->node = cpu_to_node(cpu);
7820 		for_each_cpu_worker_pool(pool, cpu)
7821 			pool->node = cpu_to_node(cpu);
7822 	}
7823 
7824 	list_for_each_entry(wq, &workqueues, list) {
7825 		WARN(init_rescuer(wq),
7826 		     "workqueue: failed to create early rescuer for %s",
7827 		     wq->name);
7828 	}
7829 
7830 	mutex_unlock(&wq_pool_mutex);
7831 
7832 	/*
7833 	 * Create the initial workers. A BH pool has one pseudo worker that
7834 	 * represents the shared BH execution context and thus doesn't get
7835 	 * affected by hotplug events. Create the BH pseudo workers for all
7836 	 * possible CPUs here.
7837 	 */
7838 	for_each_possible_cpu(cpu)
7839 		for_each_bh_worker_pool(pool, cpu)
7840 			BUG_ON(!create_worker(pool));
7841 
7842 	for_each_online_cpu(cpu) {
7843 		for_each_cpu_worker_pool(pool, cpu) {
7844 			pool->flags &= ~POOL_DISASSOCIATED;
7845 			BUG_ON(!create_worker(pool));
7846 		}
7847 	}
7848 
7849 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7850 		BUG_ON(!create_worker(pool));
7851 
7852 	wq_online = true;
7853 	wq_watchdog_init();
7854 }
7855 
7856 /*
7857  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7858  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7859  * and consecutive pod ID. The rest of @pt is initialized accordingly.
7860  */
7861 static void __init init_pod_type(struct wq_pod_type *pt,
7862 				 bool (*cpus_share_pod)(int, int))
7863 {
7864 	int cur, pre, cpu, pod;
7865 
7866 	pt->nr_pods = 0;
7867 
7868 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7869 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7870 	BUG_ON(!pt->cpu_pod);
7871 
7872 	for_each_possible_cpu(cur) {
7873 		for_each_possible_cpu(pre) {
7874 			if (pre >= cur) {
7875 				pt->cpu_pod[cur] = pt->nr_pods++;
7876 				break;
7877 			}
7878 			if (cpus_share_pod(cur, pre)) {
7879 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7880 				break;
7881 			}
7882 		}
7883 	}
7884 
7885 	/* init the rest to match @pt->cpu_pod[] */
7886 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7887 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7888 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
7889 
7890 	for (pod = 0; pod < pt->nr_pods; pod++)
7891 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7892 
7893 	for_each_possible_cpu(cpu) {
7894 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7895 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7896 	}
7897 }
7898 
7899 static bool __init cpus_dont_share(int cpu0, int cpu1)
7900 {
7901 	return false;
7902 }
7903 
7904 static bool __init cpus_share_smt(int cpu0, int cpu1)
7905 {
7906 #ifdef CONFIG_SCHED_SMT
7907 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7908 #else
7909 	return false;
7910 #endif
7911 }
7912 
7913 static bool __init cpus_share_numa(int cpu0, int cpu1)
7914 {
7915 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7916 }
7917 
7918 /**
7919  * workqueue_init_topology - initialize CPU pods for unbound workqueues
7920  *
7921  * This is the third step of three-staged workqueue subsystem initialization and
7922  * invoked after SMP and topology information are fully initialized. It
7923  * initializes the unbound CPU pods accordingly.
7924  */
7925 void __init workqueue_init_topology(void)
7926 {
7927 	struct workqueue_struct *wq;
7928 	int cpu;
7929 
7930 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7931 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7932 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
7933 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
7934 
7935 	wq_topo_initialized = true;
7936 
7937 	mutex_lock(&wq_pool_mutex);
7938 
7939 	/*
7940 	 * Workqueues allocated earlier would have all CPUs sharing the default
7941 	 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue
7942 	 * and CPU combinations to apply per-pod sharing.
7943 	 */
7944 	list_for_each_entry(wq, &workqueues, list) {
7945 		for_each_online_cpu(cpu)
7946 			unbound_wq_update_pwq(wq, cpu);
7947 		if (wq->flags & WQ_UNBOUND) {
7948 			mutex_lock(&wq->mutex);
7949 			wq_update_node_max_active(wq, -1);
7950 			mutex_unlock(&wq->mutex);
7951 		}
7952 	}
7953 
7954 	mutex_unlock(&wq_pool_mutex);
7955 }
7956 
7957 void __warn_flushing_systemwide_wq(void)
7958 {
7959 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
7960 	dump_stack();
7961 }
7962 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
7963 
7964 static int __init workqueue_unbound_cpus_setup(char *str)
7965 {
7966 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
7967 		cpumask_clear(&wq_cmdline_cpumask);
7968 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
7969 	}
7970 
7971 	return 1;
7972 }
7973 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
7974