xref: /linux/kernel/workqueue.c (revision 704bf317fd21683e5c71a542f5fb5f65271a1582)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There is one worker pool for each CPU and
20  * one extra for works which are better served by workers which are
21  * not bound to any specific CPU.
22  *
23  * Please read Documentation/workqueue.txt for details.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 
45 #include "workqueue_sched.h"
46 
47 enum {
48 	/* global_cwq flags */
49 	GCWQ_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
50 	GCWQ_MANAGING_WORKERS	= 1 << 1,	/* managing workers */
51 	GCWQ_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
52 	GCWQ_FREEZING		= 1 << 3,	/* freeze in progress */
53 	GCWQ_HIGHPRI_PENDING	= 1 << 4,	/* highpri works on queue */
54 
55 	/* worker flags */
56 	WORKER_STARTED		= 1 << 0,	/* started */
57 	WORKER_DIE		= 1 << 1,	/* die die die */
58 	WORKER_IDLE		= 1 << 2,	/* is idle */
59 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
60 	WORKER_ROGUE		= 1 << 4,	/* not bound to any cpu */
61 	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
62 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
63 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
64 
65 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
66 				  WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
67 
68 	/* gcwq->trustee_state */
69 	TRUSTEE_START		= 0,		/* start */
70 	TRUSTEE_IN_CHARGE	= 1,		/* trustee in charge of gcwq */
71 	TRUSTEE_BUTCHER		= 2,		/* butcher workers */
72 	TRUSTEE_RELEASE		= 3,		/* release workers */
73 	TRUSTEE_DONE		= 4,		/* trustee is done */
74 
75 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
76 	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
77 	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
78 
79 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
80 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
81 
82 	MAYDAY_INITIAL_TIMEOUT	= HZ / 100,	/* call for help after 10ms */
83 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
84 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
85 	TRUSTEE_COOLDOWN	= HZ / 10,	/* for trustee draining */
86 
87 	/*
88 	 * Rescue workers are used only on emergencies and shared by
89 	 * all cpus.  Give -20.
90 	 */
91 	RESCUER_NICE_LEVEL	= -20,
92 };
93 
94 /*
95  * Structure fields follow one of the following exclusion rules.
96  *
97  * I: Modifiable by initialization/destruction paths and read-only for
98  *    everyone else.
99  *
100  * P: Preemption protected.  Disabling preemption is enough and should
101  *    only be modified and accessed from the local cpu.
102  *
103  * L: gcwq->lock protected.  Access with gcwq->lock held.
104  *
105  * X: During normal operation, modification requires gcwq->lock and
106  *    should be done only from local cpu.  Either disabling preemption
107  *    on local cpu or grabbing gcwq->lock is enough for read access.
108  *    If GCWQ_DISASSOCIATED is set, it's identical to L.
109  *
110  * F: wq->flush_mutex protected.
111  *
112  * W: workqueue_lock protected.
113  */
114 
115 struct global_cwq;
116 
117 /*
118  * The poor guys doing the actual heavy lifting.  All on-duty workers
119  * are either serving the manager role, on idle list or on busy hash.
120  */
121 struct worker {
122 	/* on idle list while idle, on busy hash table while busy */
123 	union {
124 		struct list_head	entry;	/* L: while idle */
125 		struct hlist_node	hentry;	/* L: while busy */
126 	};
127 
128 	struct work_struct	*current_work;	/* L: work being processed */
129 	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
130 	struct list_head	scheduled;	/* L: scheduled works */
131 	struct task_struct	*task;		/* I: worker task */
132 	struct global_cwq	*gcwq;		/* I: the associated gcwq */
133 	/* 64 bytes boundary on 64bit, 32 on 32bit */
134 	unsigned long		last_active;	/* L: last active timestamp */
135 	unsigned int		flags;		/* X: flags */
136 	int			id;		/* I: worker id */
137 	struct work_struct	rebind_work;	/* L: rebind worker to cpu */
138 };
139 
140 /*
141  * Global per-cpu workqueue.  There's one and only one for each cpu
142  * and all works are queued and processed here regardless of their
143  * target workqueues.
144  */
145 struct global_cwq {
146 	spinlock_t		lock;		/* the gcwq lock */
147 	struct list_head	worklist;	/* L: list of pending works */
148 	unsigned int		cpu;		/* I: the associated cpu */
149 	unsigned int		flags;		/* L: GCWQ_* flags */
150 
151 	int			nr_workers;	/* L: total number of workers */
152 	int			nr_idle;	/* L: currently idle ones */
153 
154 	/* workers are chained either in the idle_list or busy_hash */
155 	struct list_head	idle_list;	/* X: list of idle workers */
156 	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
157 						/* L: hash of busy workers */
158 
159 	struct timer_list	idle_timer;	/* L: worker idle timeout */
160 	struct timer_list	mayday_timer;	/* L: SOS timer for dworkers */
161 
162 	struct ida		worker_ida;	/* L: for worker IDs */
163 
164 	struct task_struct	*trustee;	/* L: for gcwq shutdown */
165 	unsigned int		trustee_state;	/* L: trustee state */
166 	wait_queue_head_t	trustee_wait;	/* trustee wait */
167 	struct worker		*first_idle;	/* L: first idle worker */
168 } ____cacheline_aligned_in_smp;
169 
170 /*
171  * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
172  * work_struct->data are used for flags and thus cwqs need to be
173  * aligned at two's power of the number of flag bits.
174  */
175 struct cpu_workqueue_struct {
176 	struct global_cwq	*gcwq;		/* I: the associated gcwq */
177 	struct workqueue_struct *wq;		/* I: the owning workqueue */
178 	int			work_color;	/* L: current color */
179 	int			flush_color;	/* L: flushing color */
180 	int			nr_in_flight[WORK_NR_COLORS];
181 						/* L: nr of in_flight works */
182 	int			nr_active;	/* L: nr of active works */
183 	int			max_active;	/* L: max active works */
184 	struct list_head	delayed_works;	/* L: delayed works */
185 };
186 
187 /*
188  * Structure used to wait for workqueue flush.
189  */
190 struct wq_flusher {
191 	struct list_head	list;		/* F: list of flushers */
192 	int			flush_color;	/* F: flush color waiting for */
193 	struct completion	done;		/* flush completion */
194 };
195 
196 /*
197  * All cpumasks are assumed to be always set on UP and thus can't be
198  * used to determine whether there's something to be done.
199  */
200 #ifdef CONFIG_SMP
201 typedef cpumask_var_t mayday_mask_t;
202 #define mayday_test_and_set_cpu(cpu, mask)	\
203 	cpumask_test_and_set_cpu((cpu), (mask))
204 #define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
205 #define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
206 #define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
207 #define free_mayday_mask(mask)			free_cpumask_var((mask))
208 #else
209 typedef unsigned long mayday_mask_t;
210 #define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
211 #define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
212 #define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
213 #define alloc_mayday_mask(maskp, gfp)		true
214 #define free_mayday_mask(mask)			do { } while (0)
215 #endif
216 
217 /*
218  * The externally visible workqueue abstraction is an array of
219  * per-CPU workqueues:
220  */
221 struct workqueue_struct {
222 	unsigned int		flags;		/* I: WQ_* flags */
223 	union {
224 		struct cpu_workqueue_struct __percpu	*pcpu;
225 		struct cpu_workqueue_struct		*single;
226 		unsigned long				v;
227 	} cpu_wq;				/* I: cwq's */
228 	struct list_head	list;		/* W: list of all workqueues */
229 
230 	struct mutex		flush_mutex;	/* protects wq flushing */
231 	int			work_color;	/* F: current work color */
232 	int			flush_color;	/* F: current flush color */
233 	atomic_t		nr_cwqs_to_flush; /* flush in progress */
234 	struct wq_flusher	*first_flusher;	/* F: first flusher */
235 	struct list_head	flusher_queue;	/* F: flush waiters */
236 	struct list_head	flusher_overflow; /* F: flush overflow list */
237 
238 	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
239 	struct worker		*rescuer;	/* I: rescue worker */
240 
241 	int			saved_max_active; /* W: saved cwq max_active */
242 	const char		*name;		/* I: workqueue name */
243 #ifdef CONFIG_LOCKDEP
244 	struct lockdep_map	lockdep_map;
245 #endif
246 };
247 
248 struct workqueue_struct *system_wq __read_mostly;
249 struct workqueue_struct *system_long_wq __read_mostly;
250 struct workqueue_struct *system_nrt_wq __read_mostly;
251 struct workqueue_struct *system_unbound_wq __read_mostly;
252 EXPORT_SYMBOL_GPL(system_wq);
253 EXPORT_SYMBOL_GPL(system_long_wq);
254 EXPORT_SYMBOL_GPL(system_nrt_wq);
255 EXPORT_SYMBOL_GPL(system_unbound_wq);
256 
257 #define CREATE_TRACE_POINTS
258 #include <trace/events/workqueue.h>
259 
260 #define for_each_busy_worker(worker, i, pos, gcwq)			\
261 	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
262 		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
263 
264 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
265 				  unsigned int sw)
266 {
267 	if (cpu < nr_cpu_ids) {
268 		if (sw & 1) {
269 			cpu = cpumask_next(cpu, mask);
270 			if (cpu < nr_cpu_ids)
271 				return cpu;
272 		}
273 		if (sw & 2)
274 			return WORK_CPU_UNBOUND;
275 	}
276 	return WORK_CPU_NONE;
277 }
278 
279 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
280 				struct workqueue_struct *wq)
281 {
282 	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
283 }
284 
285 /*
286  * CPU iterators
287  *
288  * An extra gcwq is defined for an invalid cpu number
289  * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
290  * specific CPU.  The following iterators are similar to
291  * for_each_*_cpu() iterators but also considers the unbound gcwq.
292  *
293  * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
294  * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
295  * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
296  *				  WORK_CPU_UNBOUND for unbound workqueues
297  */
298 #define for_each_gcwq_cpu(cpu)						\
299 	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
300 	     (cpu) < WORK_CPU_NONE;					\
301 	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
302 
303 #define for_each_online_gcwq_cpu(cpu)					\
304 	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
305 	     (cpu) < WORK_CPU_NONE;					\
306 	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
307 
308 #define for_each_cwq_cpu(cpu, wq)					\
309 	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
310 	     (cpu) < WORK_CPU_NONE;					\
311 	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
312 
313 #ifdef CONFIG_DEBUG_OBJECTS_WORK
314 
315 static struct debug_obj_descr work_debug_descr;
316 
317 /*
318  * fixup_init is called when:
319  * - an active object is initialized
320  */
321 static int work_fixup_init(void *addr, enum debug_obj_state state)
322 {
323 	struct work_struct *work = addr;
324 
325 	switch (state) {
326 	case ODEBUG_STATE_ACTIVE:
327 		cancel_work_sync(work);
328 		debug_object_init(work, &work_debug_descr);
329 		return 1;
330 	default:
331 		return 0;
332 	}
333 }
334 
335 /*
336  * fixup_activate is called when:
337  * - an active object is activated
338  * - an unknown object is activated (might be a statically initialized object)
339  */
340 static int work_fixup_activate(void *addr, enum debug_obj_state state)
341 {
342 	struct work_struct *work = addr;
343 
344 	switch (state) {
345 
346 	case ODEBUG_STATE_NOTAVAILABLE:
347 		/*
348 		 * This is not really a fixup. The work struct was
349 		 * statically initialized. We just make sure that it
350 		 * is tracked in the object tracker.
351 		 */
352 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
353 			debug_object_init(work, &work_debug_descr);
354 			debug_object_activate(work, &work_debug_descr);
355 			return 0;
356 		}
357 		WARN_ON_ONCE(1);
358 		return 0;
359 
360 	case ODEBUG_STATE_ACTIVE:
361 		WARN_ON(1);
362 
363 	default:
364 		return 0;
365 	}
366 }
367 
368 /*
369  * fixup_free is called when:
370  * - an active object is freed
371  */
372 static int work_fixup_free(void *addr, enum debug_obj_state state)
373 {
374 	struct work_struct *work = addr;
375 
376 	switch (state) {
377 	case ODEBUG_STATE_ACTIVE:
378 		cancel_work_sync(work);
379 		debug_object_free(work, &work_debug_descr);
380 		return 1;
381 	default:
382 		return 0;
383 	}
384 }
385 
386 static struct debug_obj_descr work_debug_descr = {
387 	.name		= "work_struct",
388 	.fixup_init	= work_fixup_init,
389 	.fixup_activate	= work_fixup_activate,
390 	.fixup_free	= work_fixup_free,
391 };
392 
393 static inline void debug_work_activate(struct work_struct *work)
394 {
395 	debug_object_activate(work, &work_debug_descr);
396 }
397 
398 static inline void debug_work_deactivate(struct work_struct *work)
399 {
400 	debug_object_deactivate(work, &work_debug_descr);
401 }
402 
403 void __init_work(struct work_struct *work, int onstack)
404 {
405 	if (onstack)
406 		debug_object_init_on_stack(work, &work_debug_descr);
407 	else
408 		debug_object_init(work, &work_debug_descr);
409 }
410 EXPORT_SYMBOL_GPL(__init_work);
411 
412 void destroy_work_on_stack(struct work_struct *work)
413 {
414 	debug_object_free(work, &work_debug_descr);
415 }
416 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
417 
418 #else
419 static inline void debug_work_activate(struct work_struct *work) { }
420 static inline void debug_work_deactivate(struct work_struct *work) { }
421 #endif
422 
423 /* Serializes the accesses to the list of workqueues. */
424 static DEFINE_SPINLOCK(workqueue_lock);
425 static LIST_HEAD(workqueues);
426 static bool workqueue_freezing;		/* W: have wqs started freezing? */
427 
428 /*
429  * The almighty global cpu workqueues.  nr_running is the only field
430  * which is expected to be used frequently by other cpus via
431  * try_to_wake_up().  Put it in a separate cacheline.
432  */
433 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
434 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
435 
436 /*
437  * Global cpu workqueue and nr_running counter for unbound gcwq.  The
438  * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
439  * workers have WORKER_UNBOUND set.
440  */
441 static struct global_cwq unbound_global_cwq;
442 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0);	/* always 0 */
443 
444 static int worker_thread(void *__worker);
445 
446 static struct global_cwq *get_gcwq(unsigned int cpu)
447 {
448 	if (cpu != WORK_CPU_UNBOUND)
449 		return &per_cpu(global_cwq, cpu);
450 	else
451 		return &unbound_global_cwq;
452 }
453 
454 static atomic_t *get_gcwq_nr_running(unsigned int cpu)
455 {
456 	if (cpu != WORK_CPU_UNBOUND)
457 		return &per_cpu(gcwq_nr_running, cpu);
458 	else
459 		return &unbound_gcwq_nr_running;
460 }
461 
462 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
463 					    struct workqueue_struct *wq)
464 {
465 	if (!(wq->flags & WQ_UNBOUND)) {
466 		if (likely(cpu < nr_cpu_ids)) {
467 #ifdef CONFIG_SMP
468 			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
469 #else
470 			return wq->cpu_wq.single;
471 #endif
472 		}
473 	} else if (likely(cpu == WORK_CPU_UNBOUND))
474 		return wq->cpu_wq.single;
475 	return NULL;
476 }
477 
478 static unsigned int work_color_to_flags(int color)
479 {
480 	return color << WORK_STRUCT_COLOR_SHIFT;
481 }
482 
483 static int get_work_color(struct work_struct *work)
484 {
485 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
486 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
487 }
488 
489 static int work_next_color(int color)
490 {
491 	return (color + 1) % WORK_NR_COLORS;
492 }
493 
494 /*
495  * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
496  * work is on queue.  Once execution starts, WORK_STRUCT_CWQ is
497  * cleared and the work data contains the cpu number it was last on.
498  *
499  * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
500  * cwq, cpu or clear work->data.  These functions should only be
501  * called while the work is owned - ie. while the PENDING bit is set.
502  *
503  * get_work_[g]cwq() can be used to obtain the gcwq or cwq
504  * corresponding to a work.  gcwq is available once the work has been
505  * queued anywhere after initialization.  cwq is available only from
506  * queueing until execution starts.
507  */
508 static inline void set_work_data(struct work_struct *work, unsigned long data,
509 				 unsigned long flags)
510 {
511 	BUG_ON(!work_pending(work));
512 	atomic_long_set(&work->data, data | flags | work_static(work));
513 }
514 
515 static void set_work_cwq(struct work_struct *work,
516 			 struct cpu_workqueue_struct *cwq,
517 			 unsigned long extra_flags)
518 {
519 	set_work_data(work, (unsigned long)cwq,
520 		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
521 }
522 
523 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
524 {
525 	set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
526 }
527 
528 static void clear_work_data(struct work_struct *work)
529 {
530 	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
531 }
532 
533 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
534 {
535 	unsigned long data = atomic_long_read(&work->data);
536 
537 	if (data & WORK_STRUCT_CWQ)
538 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
539 	else
540 		return NULL;
541 }
542 
543 static struct global_cwq *get_work_gcwq(struct work_struct *work)
544 {
545 	unsigned long data = atomic_long_read(&work->data);
546 	unsigned int cpu;
547 
548 	if (data & WORK_STRUCT_CWQ)
549 		return ((struct cpu_workqueue_struct *)
550 			(data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
551 
552 	cpu = data >> WORK_STRUCT_FLAG_BITS;
553 	if (cpu == WORK_CPU_NONE)
554 		return NULL;
555 
556 	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
557 	return get_gcwq(cpu);
558 }
559 
560 /*
561  * Policy functions.  These define the policies on how the global
562  * worker pool is managed.  Unless noted otherwise, these functions
563  * assume that they're being called with gcwq->lock held.
564  */
565 
566 static bool __need_more_worker(struct global_cwq *gcwq)
567 {
568 	return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
569 		gcwq->flags & GCWQ_HIGHPRI_PENDING;
570 }
571 
572 /*
573  * Need to wake up a worker?  Called from anything but currently
574  * running workers.
575  */
576 static bool need_more_worker(struct global_cwq *gcwq)
577 {
578 	return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
579 }
580 
581 /* Can I start working?  Called from busy but !running workers. */
582 static bool may_start_working(struct global_cwq *gcwq)
583 {
584 	return gcwq->nr_idle;
585 }
586 
587 /* Do I need to keep working?  Called from currently running workers. */
588 static bool keep_working(struct global_cwq *gcwq)
589 {
590 	atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
591 
592 	return !list_empty(&gcwq->worklist) &&
593 		(atomic_read(nr_running) <= 1 ||
594 		 gcwq->flags & GCWQ_HIGHPRI_PENDING);
595 }
596 
597 /* Do we need a new worker?  Called from manager. */
598 static bool need_to_create_worker(struct global_cwq *gcwq)
599 {
600 	return need_more_worker(gcwq) && !may_start_working(gcwq);
601 }
602 
603 /* Do I need to be the manager? */
604 static bool need_to_manage_workers(struct global_cwq *gcwq)
605 {
606 	return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
607 }
608 
609 /* Do we have too many workers and should some go away? */
610 static bool too_many_workers(struct global_cwq *gcwq)
611 {
612 	bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
613 	int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
614 	int nr_busy = gcwq->nr_workers - nr_idle;
615 
616 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
617 }
618 
619 /*
620  * Wake up functions.
621  */
622 
623 /* Return the first worker.  Safe with preemption disabled */
624 static struct worker *first_worker(struct global_cwq *gcwq)
625 {
626 	if (unlikely(list_empty(&gcwq->idle_list)))
627 		return NULL;
628 
629 	return list_first_entry(&gcwq->idle_list, struct worker, entry);
630 }
631 
632 /**
633  * wake_up_worker - wake up an idle worker
634  * @gcwq: gcwq to wake worker for
635  *
636  * Wake up the first idle worker of @gcwq.
637  *
638  * CONTEXT:
639  * spin_lock_irq(gcwq->lock).
640  */
641 static void wake_up_worker(struct global_cwq *gcwq)
642 {
643 	struct worker *worker = first_worker(gcwq);
644 
645 	if (likely(worker))
646 		wake_up_process(worker->task);
647 }
648 
649 /**
650  * wq_worker_waking_up - a worker is waking up
651  * @task: task waking up
652  * @cpu: CPU @task is waking up to
653  *
654  * This function is called during try_to_wake_up() when a worker is
655  * being awoken.
656  *
657  * CONTEXT:
658  * spin_lock_irq(rq->lock)
659  */
660 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
661 {
662 	struct worker *worker = kthread_data(task);
663 
664 	if (!(worker->flags & WORKER_NOT_RUNNING))
665 		atomic_inc(get_gcwq_nr_running(cpu));
666 }
667 
668 /**
669  * wq_worker_sleeping - a worker is going to sleep
670  * @task: task going to sleep
671  * @cpu: CPU in question, must be the current CPU number
672  *
673  * This function is called during schedule() when a busy worker is
674  * going to sleep.  Worker on the same cpu can be woken up by
675  * returning pointer to its task.
676  *
677  * CONTEXT:
678  * spin_lock_irq(rq->lock)
679  *
680  * RETURNS:
681  * Worker task on @cpu to wake up, %NULL if none.
682  */
683 struct task_struct *wq_worker_sleeping(struct task_struct *task,
684 				       unsigned int cpu)
685 {
686 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
687 	struct global_cwq *gcwq = get_gcwq(cpu);
688 	atomic_t *nr_running = get_gcwq_nr_running(cpu);
689 
690 	if (worker->flags & WORKER_NOT_RUNNING)
691 		return NULL;
692 
693 	/* this can only happen on the local cpu */
694 	BUG_ON(cpu != raw_smp_processor_id());
695 
696 	/*
697 	 * The counterpart of the following dec_and_test, implied mb,
698 	 * worklist not empty test sequence is in insert_work().
699 	 * Please read comment there.
700 	 *
701 	 * NOT_RUNNING is clear.  This means that trustee is not in
702 	 * charge and we're running on the local cpu w/ rq lock held
703 	 * and preemption disabled, which in turn means that none else
704 	 * could be manipulating idle_list, so dereferencing idle_list
705 	 * without gcwq lock is safe.
706 	 */
707 	if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
708 		to_wakeup = first_worker(gcwq);
709 	return to_wakeup ? to_wakeup->task : NULL;
710 }
711 
712 /**
713  * worker_set_flags - set worker flags and adjust nr_running accordingly
714  * @worker: self
715  * @flags: flags to set
716  * @wakeup: wakeup an idle worker if necessary
717  *
718  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
719  * nr_running becomes zero and @wakeup is %true, an idle worker is
720  * woken up.
721  *
722  * CONTEXT:
723  * spin_lock_irq(gcwq->lock)
724  */
725 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
726 				    bool wakeup)
727 {
728 	struct global_cwq *gcwq = worker->gcwq;
729 
730 	WARN_ON_ONCE(worker->task != current);
731 
732 	/*
733 	 * If transitioning into NOT_RUNNING, adjust nr_running and
734 	 * wake up an idle worker as necessary if requested by
735 	 * @wakeup.
736 	 */
737 	if ((flags & WORKER_NOT_RUNNING) &&
738 	    !(worker->flags & WORKER_NOT_RUNNING)) {
739 		atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
740 
741 		if (wakeup) {
742 			if (atomic_dec_and_test(nr_running) &&
743 			    !list_empty(&gcwq->worklist))
744 				wake_up_worker(gcwq);
745 		} else
746 			atomic_dec(nr_running);
747 	}
748 
749 	worker->flags |= flags;
750 }
751 
752 /**
753  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
754  * @worker: self
755  * @flags: flags to clear
756  *
757  * Clear @flags in @worker->flags and adjust nr_running accordingly.
758  *
759  * CONTEXT:
760  * spin_lock_irq(gcwq->lock)
761  */
762 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
763 {
764 	struct global_cwq *gcwq = worker->gcwq;
765 	unsigned int oflags = worker->flags;
766 
767 	WARN_ON_ONCE(worker->task != current);
768 
769 	worker->flags &= ~flags;
770 
771 	/* if transitioning out of NOT_RUNNING, increment nr_running */
772 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
773 		if (!(worker->flags & WORKER_NOT_RUNNING))
774 			atomic_inc(get_gcwq_nr_running(gcwq->cpu));
775 }
776 
777 /**
778  * busy_worker_head - return the busy hash head for a work
779  * @gcwq: gcwq of interest
780  * @work: work to be hashed
781  *
782  * Return hash head of @gcwq for @work.
783  *
784  * CONTEXT:
785  * spin_lock_irq(gcwq->lock).
786  *
787  * RETURNS:
788  * Pointer to the hash head.
789  */
790 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
791 					   struct work_struct *work)
792 {
793 	const int base_shift = ilog2(sizeof(struct work_struct));
794 	unsigned long v = (unsigned long)work;
795 
796 	/* simple shift and fold hash, do we need something better? */
797 	v >>= base_shift;
798 	v += v >> BUSY_WORKER_HASH_ORDER;
799 	v &= BUSY_WORKER_HASH_MASK;
800 
801 	return &gcwq->busy_hash[v];
802 }
803 
804 /**
805  * __find_worker_executing_work - find worker which is executing a work
806  * @gcwq: gcwq of interest
807  * @bwh: hash head as returned by busy_worker_head()
808  * @work: work to find worker for
809  *
810  * Find a worker which is executing @work on @gcwq.  @bwh should be
811  * the hash head obtained by calling busy_worker_head() with the same
812  * work.
813  *
814  * CONTEXT:
815  * spin_lock_irq(gcwq->lock).
816  *
817  * RETURNS:
818  * Pointer to worker which is executing @work if found, NULL
819  * otherwise.
820  */
821 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
822 						   struct hlist_head *bwh,
823 						   struct work_struct *work)
824 {
825 	struct worker *worker;
826 	struct hlist_node *tmp;
827 
828 	hlist_for_each_entry(worker, tmp, bwh, hentry)
829 		if (worker->current_work == work)
830 			return worker;
831 	return NULL;
832 }
833 
834 /**
835  * find_worker_executing_work - find worker which is executing a work
836  * @gcwq: gcwq of interest
837  * @work: work to find worker for
838  *
839  * Find a worker which is executing @work on @gcwq.  This function is
840  * identical to __find_worker_executing_work() except that this
841  * function calculates @bwh itself.
842  *
843  * CONTEXT:
844  * spin_lock_irq(gcwq->lock).
845  *
846  * RETURNS:
847  * Pointer to worker which is executing @work if found, NULL
848  * otherwise.
849  */
850 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
851 						 struct work_struct *work)
852 {
853 	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
854 					    work);
855 }
856 
857 /**
858  * gcwq_determine_ins_pos - find insertion position
859  * @gcwq: gcwq of interest
860  * @cwq: cwq a work is being queued for
861  *
862  * A work for @cwq is about to be queued on @gcwq, determine insertion
863  * position for the work.  If @cwq is for HIGHPRI wq, the work is
864  * queued at the head of the queue but in FIFO order with respect to
865  * other HIGHPRI works; otherwise, at the end of the queue.  This
866  * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
867  * there are HIGHPRI works pending.
868  *
869  * CONTEXT:
870  * spin_lock_irq(gcwq->lock).
871  *
872  * RETURNS:
873  * Pointer to inserstion position.
874  */
875 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
876 					       struct cpu_workqueue_struct *cwq)
877 {
878 	struct work_struct *twork;
879 
880 	if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
881 		return &gcwq->worklist;
882 
883 	list_for_each_entry(twork, &gcwq->worklist, entry) {
884 		struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
885 
886 		if (!(tcwq->wq->flags & WQ_HIGHPRI))
887 			break;
888 	}
889 
890 	gcwq->flags |= GCWQ_HIGHPRI_PENDING;
891 	return &twork->entry;
892 }
893 
894 /**
895  * insert_work - insert a work into gcwq
896  * @cwq: cwq @work belongs to
897  * @work: work to insert
898  * @head: insertion point
899  * @extra_flags: extra WORK_STRUCT_* flags to set
900  *
901  * Insert @work which belongs to @cwq into @gcwq after @head.
902  * @extra_flags is or'd to work_struct flags.
903  *
904  * CONTEXT:
905  * spin_lock_irq(gcwq->lock).
906  */
907 static void insert_work(struct cpu_workqueue_struct *cwq,
908 			struct work_struct *work, struct list_head *head,
909 			unsigned int extra_flags)
910 {
911 	struct global_cwq *gcwq = cwq->gcwq;
912 
913 	/* we own @work, set data and link */
914 	set_work_cwq(work, cwq, extra_flags);
915 
916 	/*
917 	 * Ensure that we get the right work->data if we see the
918 	 * result of list_add() below, see try_to_grab_pending().
919 	 */
920 	smp_wmb();
921 
922 	list_add_tail(&work->entry, head);
923 
924 	/*
925 	 * Ensure either worker_sched_deactivated() sees the above
926 	 * list_add_tail() or we see zero nr_running to avoid workers
927 	 * lying around lazily while there are works to be processed.
928 	 */
929 	smp_mb();
930 
931 	if (__need_more_worker(gcwq))
932 		wake_up_worker(gcwq);
933 }
934 
935 /*
936  * Test whether @work is being queued from another work executing on the
937  * same workqueue.  This is rather expensive and should only be used from
938  * cold paths.
939  */
940 static bool is_chained_work(struct workqueue_struct *wq)
941 {
942 	unsigned long flags;
943 	unsigned int cpu;
944 
945 	for_each_gcwq_cpu(cpu) {
946 		struct global_cwq *gcwq = get_gcwq(cpu);
947 		struct worker *worker;
948 		struct hlist_node *pos;
949 		int i;
950 
951 		spin_lock_irqsave(&gcwq->lock, flags);
952 		for_each_busy_worker(worker, i, pos, gcwq) {
953 			if (worker->task != current)
954 				continue;
955 			spin_unlock_irqrestore(&gcwq->lock, flags);
956 			/*
957 			 * I'm @worker, no locking necessary.  See if @work
958 			 * is headed to the same workqueue.
959 			 */
960 			return worker->current_cwq->wq == wq;
961 		}
962 		spin_unlock_irqrestore(&gcwq->lock, flags);
963 	}
964 	return false;
965 }
966 
967 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
968 			 struct work_struct *work)
969 {
970 	struct global_cwq *gcwq;
971 	struct cpu_workqueue_struct *cwq;
972 	struct list_head *worklist;
973 	unsigned int work_flags;
974 	unsigned long flags;
975 
976 	debug_work_activate(work);
977 
978 	/* if dying, only works from the same workqueue are allowed */
979 	if (unlikely(wq->flags & WQ_DYING) &&
980 	    WARN_ON_ONCE(!is_chained_work(wq)))
981 		return;
982 
983 	/* determine gcwq to use */
984 	if (!(wq->flags & WQ_UNBOUND)) {
985 		struct global_cwq *last_gcwq;
986 
987 		if (unlikely(cpu == WORK_CPU_UNBOUND))
988 			cpu = raw_smp_processor_id();
989 
990 		/*
991 		 * It's multi cpu.  If @wq is non-reentrant and @work
992 		 * was previously on a different cpu, it might still
993 		 * be running there, in which case the work needs to
994 		 * be queued on that cpu to guarantee non-reentrance.
995 		 */
996 		gcwq = get_gcwq(cpu);
997 		if (wq->flags & WQ_NON_REENTRANT &&
998 		    (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
999 			struct worker *worker;
1000 
1001 			spin_lock_irqsave(&last_gcwq->lock, flags);
1002 
1003 			worker = find_worker_executing_work(last_gcwq, work);
1004 
1005 			if (worker && worker->current_cwq->wq == wq)
1006 				gcwq = last_gcwq;
1007 			else {
1008 				/* meh... not running there, queue here */
1009 				spin_unlock_irqrestore(&last_gcwq->lock, flags);
1010 				spin_lock_irqsave(&gcwq->lock, flags);
1011 			}
1012 		} else
1013 			spin_lock_irqsave(&gcwq->lock, flags);
1014 	} else {
1015 		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1016 		spin_lock_irqsave(&gcwq->lock, flags);
1017 	}
1018 
1019 	/* gcwq determined, get cwq and queue */
1020 	cwq = get_cwq(gcwq->cpu, wq);
1021 	trace_workqueue_queue_work(cpu, cwq, work);
1022 
1023 	BUG_ON(!list_empty(&work->entry));
1024 
1025 	cwq->nr_in_flight[cwq->work_color]++;
1026 	work_flags = work_color_to_flags(cwq->work_color);
1027 
1028 	if (likely(cwq->nr_active < cwq->max_active)) {
1029 		trace_workqueue_activate_work(work);
1030 		cwq->nr_active++;
1031 		worklist = gcwq_determine_ins_pos(gcwq, cwq);
1032 	} else {
1033 		work_flags |= WORK_STRUCT_DELAYED;
1034 		worklist = &cwq->delayed_works;
1035 	}
1036 
1037 	insert_work(cwq, work, worklist, work_flags);
1038 
1039 	spin_unlock_irqrestore(&gcwq->lock, flags);
1040 }
1041 
1042 /**
1043  * queue_work - queue work on a workqueue
1044  * @wq: workqueue to use
1045  * @work: work to queue
1046  *
1047  * Returns 0 if @work was already on a queue, non-zero otherwise.
1048  *
1049  * We queue the work to the CPU on which it was submitted, but if the CPU dies
1050  * it can be processed by another CPU.
1051  */
1052 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1053 {
1054 	int ret;
1055 
1056 	ret = queue_work_on(get_cpu(), wq, work);
1057 	put_cpu();
1058 
1059 	return ret;
1060 }
1061 EXPORT_SYMBOL_GPL(queue_work);
1062 
1063 /**
1064  * queue_work_on - queue work on specific cpu
1065  * @cpu: CPU number to execute work on
1066  * @wq: workqueue to use
1067  * @work: work to queue
1068  *
1069  * Returns 0 if @work was already on a queue, non-zero otherwise.
1070  *
1071  * We queue the work to a specific CPU, the caller must ensure it
1072  * can't go away.
1073  */
1074 int
1075 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1076 {
1077 	int ret = 0;
1078 
1079 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1080 		__queue_work(cpu, wq, work);
1081 		ret = 1;
1082 	}
1083 	return ret;
1084 }
1085 EXPORT_SYMBOL_GPL(queue_work_on);
1086 
1087 static void delayed_work_timer_fn(unsigned long __data)
1088 {
1089 	struct delayed_work *dwork = (struct delayed_work *)__data;
1090 	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1091 
1092 	__queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1093 }
1094 
1095 /**
1096  * queue_delayed_work - queue work on a workqueue after delay
1097  * @wq: workqueue to use
1098  * @dwork: delayable work to queue
1099  * @delay: number of jiffies to wait before queueing
1100  *
1101  * Returns 0 if @work was already on a queue, non-zero otherwise.
1102  */
1103 int queue_delayed_work(struct workqueue_struct *wq,
1104 			struct delayed_work *dwork, unsigned long delay)
1105 {
1106 	if (delay == 0)
1107 		return queue_work(wq, &dwork->work);
1108 
1109 	return queue_delayed_work_on(-1, wq, dwork, delay);
1110 }
1111 EXPORT_SYMBOL_GPL(queue_delayed_work);
1112 
1113 /**
1114  * queue_delayed_work_on - queue work on specific CPU after delay
1115  * @cpu: CPU number to execute work on
1116  * @wq: workqueue to use
1117  * @dwork: work to queue
1118  * @delay: number of jiffies to wait before queueing
1119  *
1120  * Returns 0 if @work was already on a queue, non-zero otherwise.
1121  */
1122 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1123 			struct delayed_work *dwork, unsigned long delay)
1124 {
1125 	int ret = 0;
1126 	struct timer_list *timer = &dwork->timer;
1127 	struct work_struct *work = &dwork->work;
1128 
1129 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1130 		unsigned int lcpu;
1131 
1132 		BUG_ON(timer_pending(timer));
1133 		BUG_ON(!list_empty(&work->entry));
1134 
1135 		timer_stats_timer_set_start_info(&dwork->timer);
1136 
1137 		/*
1138 		 * This stores cwq for the moment, for the timer_fn.
1139 		 * Note that the work's gcwq is preserved to allow
1140 		 * reentrance detection for delayed works.
1141 		 */
1142 		if (!(wq->flags & WQ_UNBOUND)) {
1143 			struct global_cwq *gcwq = get_work_gcwq(work);
1144 
1145 			if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1146 				lcpu = gcwq->cpu;
1147 			else
1148 				lcpu = raw_smp_processor_id();
1149 		} else
1150 			lcpu = WORK_CPU_UNBOUND;
1151 
1152 		set_work_cwq(work, get_cwq(lcpu, wq), 0);
1153 
1154 		timer->expires = jiffies + delay;
1155 		timer->data = (unsigned long)dwork;
1156 		timer->function = delayed_work_timer_fn;
1157 
1158 		if (unlikely(cpu >= 0))
1159 			add_timer_on(timer, cpu);
1160 		else
1161 			add_timer(timer);
1162 		ret = 1;
1163 	}
1164 	return ret;
1165 }
1166 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1167 
1168 /**
1169  * worker_enter_idle - enter idle state
1170  * @worker: worker which is entering idle state
1171  *
1172  * @worker is entering idle state.  Update stats and idle timer if
1173  * necessary.
1174  *
1175  * LOCKING:
1176  * spin_lock_irq(gcwq->lock).
1177  */
1178 static void worker_enter_idle(struct worker *worker)
1179 {
1180 	struct global_cwq *gcwq = worker->gcwq;
1181 
1182 	BUG_ON(worker->flags & WORKER_IDLE);
1183 	BUG_ON(!list_empty(&worker->entry) &&
1184 	       (worker->hentry.next || worker->hentry.pprev));
1185 
1186 	/* can't use worker_set_flags(), also called from start_worker() */
1187 	worker->flags |= WORKER_IDLE;
1188 	gcwq->nr_idle++;
1189 	worker->last_active = jiffies;
1190 
1191 	/* idle_list is LIFO */
1192 	list_add(&worker->entry, &gcwq->idle_list);
1193 
1194 	if (likely(!(worker->flags & WORKER_ROGUE))) {
1195 		if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1196 			mod_timer(&gcwq->idle_timer,
1197 				  jiffies + IDLE_WORKER_TIMEOUT);
1198 	} else
1199 		wake_up_all(&gcwq->trustee_wait);
1200 
1201 	/* sanity check nr_running */
1202 	WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
1203 		     atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1204 }
1205 
1206 /**
1207  * worker_leave_idle - leave idle state
1208  * @worker: worker which is leaving idle state
1209  *
1210  * @worker is leaving idle state.  Update stats.
1211  *
1212  * LOCKING:
1213  * spin_lock_irq(gcwq->lock).
1214  */
1215 static void worker_leave_idle(struct worker *worker)
1216 {
1217 	struct global_cwq *gcwq = worker->gcwq;
1218 
1219 	BUG_ON(!(worker->flags & WORKER_IDLE));
1220 	worker_clr_flags(worker, WORKER_IDLE);
1221 	gcwq->nr_idle--;
1222 	list_del_init(&worker->entry);
1223 }
1224 
1225 /**
1226  * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1227  * @worker: self
1228  *
1229  * Works which are scheduled while the cpu is online must at least be
1230  * scheduled to a worker which is bound to the cpu so that if they are
1231  * flushed from cpu callbacks while cpu is going down, they are
1232  * guaranteed to execute on the cpu.
1233  *
1234  * This function is to be used by rogue workers and rescuers to bind
1235  * themselves to the target cpu and may race with cpu going down or
1236  * coming online.  kthread_bind() can't be used because it may put the
1237  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1238  * verbatim as it's best effort and blocking and gcwq may be
1239  * [dis]associated in the meantime.
1240  *
1241  * This function tries set_cpus_allowed() and locks gcwq and verifies
1242  * the binding against GCWQ_DISASSOCIATED which is set during
1243  * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1244  * idle state or fetches works without dropping lock, it can guarantee
1245  * the scheduling requirement described in the first paragraph.
1246  *
1247  * CONTEXT:
1248  * Might sleep.  Called without any lock but returns with gcwq->lock
1249  * held.
1250  *
1251  * RETURNS:
1252  * %true if the associated gcwq is online (@worker is successfully
1253  * bound), %false if offline.
1254  */
1255 static bool worker_maybe_bind_and_lock(struct worker *worker)
1256 __acquires(&gcwq->lock)
1257 {
1258 	struct global_cwq *gcwq = worker->gcwq;
1259 	struct task_struct *task = worker->task;
1260 
1261 	while (true) {
1262 		/*
1263 		 * The following call may fail, succeed or succeed
1264 		 * without actually migrating the task to the cpu if
1265 		 * it races with cpu hotunplug operation.  Verify
1266 		 * against GCWQ_DISASSOCIATED.
1267 		 */
1268 		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1269 			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1270 
1271 		spin_lock_irq(&gcwq->lock);
1272 		if (gcwq->flags & GCWQ_DISASSOCIATED)
1273 			return false;
1274 		if (task_cpu(task) == gcwq->cpu &&
1275 		    cpumask_equal(&current->cpus_allowed,
1276 				  get_cpu_mask(gcwq->cpu)))
1277 			return true;
1278 		spin_unlock_irq(&gcwq->lock);
1279 
1280 		/* CPU has come up inbetween, retry migration */
1281 		cpu_relax();
1282 	}
1283 }
1284 
1285 /*
1286  * Function for worker->rebind_work used to rebind rogue busy workers
1287  * to the associated cpu which is coming back online.  This is
1288  * scheduled by cpu up but can race with other cpu hotplug operations
1289  * and may be executed twice without intervening cpu down.
1290  */
1291 static void worker_rebind_fn(struct work_struct *work)
1292 {
1293 	struct worker *worker = container_of(work, struct worker, rebind_work);
1294 	struct global_cwq *gcwq = worker->gcwq;
1295 
1296 	if (worker_maybe_bind_and_lock(worker))
1297 		worker_clr_flags(worker, WORKER_REBIND);
1298 
1299 	spin_unlock_irq(&gcwq->lock);
1300 }
1301 
1302 static struct worker *alloc_worker(void)
1303 {
1304 	struct worker *worker;
1305 
1306 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1307 	if (worker) {
1308 		INIT_LIST_HEAD(&worker->entry);
1309 		INIT_LIST_HEAD(&worker->scheduled);
1310 		INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1311 		/* on creation a worker is in !idle && prep state */
1312 		worker->flags = WORKER_PREP;
1313 	}
1314 	return worker;
1315 }
1316 
1317 /**
1318  * create_worker - create a new workqueue worker
1319  * @gcwq: gcwq the new worker will belong to
1320  * @bind: whether to set affinity to @cpu or not
1321  *
1322  * Create a new worker which is bound to @gcwq.  The returned worker
1323  * can be started by calling start_worker() or destroyed using
1324  * destroy_worker().
1325  *
1326  * CONTEXT:
1327  * Might sleep.  Does GFP_KERNEL allocations.
1328  *
1329  * RETURNS:
1330  * Pointer to the newly created worker.
1331  */
1332 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1333 {
1334 	bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1335 	struct worker *worker = NULL;
1336 	int id = -1;
1337 
1338 	spin_lock_irq(&gcwq->lock);
1339 	while (ida_get_new(&gcwq->worker_ida, &id)) {
1340 		spin_unlock_irq(&gcwq->lock);
1341 		if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1342 			goto fail;
1343 		spin_lock_irq(&gcwq->lock);
1344 	}
1345 	spin_unlock_irq(&gcwq->lock);
1346 
1347 	worker = alloc_worker();
1348 	if (!worker)
1349 		goto fail;
1350 
1351 	worker->gcwq = gcwq;
1352 	worker->id = id;
1353 
1354 	if (!on_unbound_cpu)
1355 		worker->task = kthread_create(worker_thread, worker,
1356 					      "kworker/%u:%d", gcwq->cpu, id);
1357 	else
1358 		worker->task = kthread_create(worker_thread, worker,
1359 					      "kworker/u:%d", id);
1360 	if (IS_ERR(worker->task))
1361 		goto fail;
1362 
1363 	/*
1364 	 * A rogue worker will become a regular one if CPU comes
1365 	 * online later on.  Make sure every worker has
1366 	 * PF_THREAD_BOUND set.
1367 	 */
1368 	if (bind && !on_unbound_cpu)
1369 		kthread_bind(worker->task, gcwq->cpu);
1370 	else {
1371 		worker->task->flags |= PF_THREAD_BOUND;
1372 		if (on_unbound_cpu)
1373 			worker->flags |= WORKER_UNBOUND;
1374 	}
1375 
1376 	return worker;
1377 fail:
1378 	if (id >= 0) {
1379 		spin_lock_irq(&gcwq->lock);
1380 		ida_remove(&gcwq->worker_ida, id);
1381 		spin_unlock_irq(&gcwq->lock);
1382 	}
1383 	kfree(worker);
1384 	return NULL;
1385 }
1386 
1387 /**
1388  * start_worker - start a newly created worker
1389  * @worker: worker to start
1390  *
1391  * Make the gcwq aware of @worker and start it.
1392  *
1393  * CONTEXT:
1394  * spin_lock_irq(gcwq->lock).
1395  */
1396 static void start_worker(struct worker *worker)
1397 {
1398 	worker->flags |= WORKER_STARTED;
1399 	worker->gcwq->nr_workers++;
1400 	worker_enter_idle(worker);
1401 	wake_up_process(worker->task);
1402 }
1403 
1404 /**
1405  * destroy_worker - destroy a workqueue worker
1406  * @worker: worker to be destroyed
1407  *
1408  * Destroy @worker and adjust @gcwq stats accordingly.
1409  *
1410  * CONTEXT:
1411  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1412  */
1413 static void destroy_worker(struct worker *worker)
1414 {
1415 	struct global_cwq *gcwq = worker->gcwq;
1416 	int id = worker->id;
1417 
1418 	/* sanity check frenzy */
1419 	BUG_ON(worker->current_work);
1420 	BUG_ON(!list_empty(&worker->scheduled));
1421 
1422 	if (worker->flags & WORKER_STARTED)
1423 		gcwq->nr_workers--;
1424 	if (worker->flags & WORKER_IDLE)
1425 		gcwq->nr_idle--;
1426 
1427 	list_del_init(&worker->entry);
1428 	worker->flags |= WORKER_DIE;
1429 
1430 	spin_unlock_irq(&gcwq->lock);
1431 
1432 	kthread_stop(worker->task);
1433 	kfree(worker);
1434 
1435 	spin_lock_irq(&gcwq->lock);
1436 	ida_remove(&gcwq->worker_ida, id);
1437 }
1438 
1439 static void idle_worker_timeout(unsigned long __gcwq)
1440 {
1441 	struct global_cwq *gcwq = (void *)__gcwq;
1442 
1443 	spin_lock_irq(&gcwq->lock);
1444 
1445 	if (too_many_workers(gcwq)) {
1446 		struct worker *worker;
1447 		unsigned long expires;
1448 
1449 		/* idle_list is kept in LIFO order, check the last one */
1450 		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1451 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1452 
1453 		if (time_before(jiffies, expires))
1454 			mod_timer(&gcwq->idle_timer, expires);
1455 		else {
1456 			/* it's been idle for too long, wake up manager */
1457 			gcwq->flags |= GCWQ_MANAGE_WORKERS;
1458 			wake_up_worker(gcwq);
1459 		}
1460 	}
1461 
1462 	spin_unlock_irq(&gcwq->lock);
1463 }
1464 
1465 static bool send_mayday(struct work_struct *work)
1466 {
1467 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1468 	struct workqueue_struct *wq = cwq->wq;
1469 	unsigned int cpu;
1470 
1471 	if (!(wq->flags & WQ_RESCUER))
1472 		return false;
1473 
1474 	/* mayday mayday mayday */
1475 	cpu = cwq->gcwq->cpu;
1476 	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1477 	if (cpu == WORK_CPU_UNBOUND)
1478 		cpu = 0;
1479 	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1480 		wake_up_process(wq->rescuer->task);
1481 	return true;
1482 }
1483 
1484 static void gcwq_mayday_timeout(unsigned long __gcwq)
1485 {
1486 	struct global_cwq *gcwq = (void *)__gcwq;
1487 	struct work_struct *work;
1488 
1489 	spin_lock_irq(&gcwq->lock);
1490 
1491 	if (need_to_create_worker(gcwq)) {
1492 		/*
1493 		 * We've been trying to create a new worker but
1494 		 * haven't been successful.  We might be hitting an
1495 		 * allocation deadlock.  Send distress signals to
1496 		 * rescuers.
1497 		 */
1498 		list_for_each_entry(work, &gcwq->worklist, entry)
1499 			send_mayday(work);
1500 	}
1501 
1502 	spin_unlock_irq(&gcwq->lock);
1503 
1504 	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1505 }
1506 
1507 /**
1508  * maybe_create_worker - create a new worker if necessary
1509  * @gcwq: gcwq to create a new worker for
1510  *
1511  * Create a new worker for @gcwq if necessary.  @gcwq is guaranteed to
1512  * have at least one idle worker on return from this function.  If
1513  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1514  * sent to all rescuers with works scheduled on @gcwq to resolve
1515  * possible allocation deadlock.
1516  *
1517  * On return, need_to_create_worker() is guaranteed to be false and
1518  * may_start_working() true.
1519  *
1520  * LOCKING:
1521  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1522  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1523  * manager.
1524  *
1525  * RETURNS:
1526  * false if no action was taken and gcwq->lock stayed locked, true
1527  * otherwise.
1528  */
1529 static bool maybe_create_worker(struct global_cwq *gcwq)
1530 __releases(&gcwq->lock)
1531 __acquires(&gcwq->lock)
1532 {
1533 	if (!need_to_create_worker(gcwq))
1534 		return false;
1535 restart:
1536 	spin_unlock_irq(&gcwq->lock);
1537 
1538 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1539 	mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1540 
1541 	while (true) {
1542 		struct worker *worker;
1543 
1544 		worker = create_worker(gcwq, true);
1545 		if (worker) {
1546 			del_timer_sync(&gcwq->mayday_timer);
1547 			spin_lock_irq(&gcwq->lock);
1548 			start_worker(worker);
1549 			BUG_ON(need_to_create_worker(gcwq));
1550 			return true;
1551 		}
1552 
1553 		if (!need_to_create_worker(gcwq))
1554 			break;
1555 
1556 		__set_current_state(TASK_INTERRUPTIBLE);
1557 		schedule_timeout(CREATE_COOLDOWN);
1558 
1559 		if (!need_to_create_worker(gcwq))
1560 			break;
1561 	}
1562 
1563 	del_timer_sync(&gcwq->mayday_timer);
1564 	spin_lock_irq(&gcwq->lock);
1565 	if (need_to_create_worker(gcwq))
1566 		goto restart;
1567 	return true;
1568 }
1569 
1570 /**
1571  * maybe_destroy_worker - destroy workers which have been idle for a while
1572  * @gcwq: gcwq to destroy workers for
1573  *
1574  * Destroy @gcwq workers which have been idle for longer than
1575  * IDLE_WORKER_TIMEOUT.
1576  *
1577  * LOCKING:
1578  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1579  * multiple times.  Called only from manager.
1580  *
1581  * RETURNS:
1582  * false if no action was taken and gcwq->lock stayed locked, true
1583  * otherwise.
1584  */
1585 static bool maybe_destroy_workers(struct global_cwq *gcwq)
1586 {
1587 	bool ret = false;
1588 
1589 	while (too_many_workers(gcwq)) {
1590 		struct worker *worker;
1591 		unsigned long expires;
1592 
1593 		worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1594 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1595 
1596 		if (time_before(jiffies, expires)) {
1597 			mod_timer(&gcwq->idle_timer, expires);
1598 			break;
1599 		}
1600 
1601 		destroy_worker(worker);
1602 		ret = true;
1603 	}
1604 
1605 	return ret;
1606 }
1607 
1608 /**
1609  * manage_workers - manage worker pool
1610  * @worker: self
1611  *
1612  * Assume the manager role and manage gcwq worker pool @worker belongs
1613  * to.  At any given time, there can be only zero or one manager per
1614  * gcwq.  The exclusion is handled automatically by this function.
1615  *
1616  * The caller can safely start processing works on false return.  On
1617  * true return, it's guaranteed that need_to_create_worker() is false
1618  * and may_start_working() is true.
1619  *
1620  * CONTEXT:
1621  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1622  * multiple times.  Does GFP_KERNEL allocations.
1623  *
1624  * RETURNS:
1625  * false if no action was taken and gcwq->lock stayed locked, true if
1626  * some action was taken.
1627  */
1628 static bool manage_workers(struct worker *worker)
1629 {
1630 	struct global_cwq *gcwq = worker->gcwq;
1631 	bool ret = false;
1632 
1633 	if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1634 		return ret;
1635 
1636 	gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1637 	gcwq->flags |= GCWQ_MANAGING_WORKERS;
1638 
1639 	/*
1640 	 * Destroy and then create so that may_start_working() is true
1641 	 * on return.
1642 	 */
1643 	ret |= maybe_destroy_workers(gcwq);
1644 	ret |= maybe_create_worker(gcwq);
1645 
1646 	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1647 
1648 	/*
1649 	 * The trustee might be waiting to take over the manager
1650 	 * position, tell it we're done.
1651 	 */
1652 	if (unlikely(gcwq->trustee))
1653 		wake_up_all(&gcwq->trustee_wait);
1654 
1655 	return ret;
1656 }
1657 
1658 /**
1659  * move_linked_works - move linked works to a list
1660  * @work: start of series of works to be scheduled
1661  * @head: target list to append @work to
1662  * @nextp: out paramter for nested worklist walking
1663  *
1664  * Schedule linked works starting from @work to @head.  Work series to
1665  * be scheduled starts at @work and includes any consecutive work with
1666  * WORK_STRUCT_LINKED set in its predecessor.
1667  *
1668  * If @nextp is not NULL, it's updated to point to the next work of
1669  * the last scheduled work.  This allows move_linked_works() to be
1670  * nested inside outer list_for_each_entry_safe().
1671  *
1672  * CONTEXT:
1673  * spin_lock_irq(gcwq->lock).
1674  */
1675 static void move_linked_works(struct work_struct *work, struct list_head *head,
1676 			      struct work_struct **nextp)
1677 {
1678 	struct work_struct *n;
1679 
1680 	/*
1681 	 * Linked worklist will always end before the end of the list,
1682 	 * use NULL for list head.
1683 	 */
1684 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1685 		list_move_tail(&work->entry, head);
1686 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1687 			break;
1688 	}
1689 
1690 	/*
1691 	 * If we're already inside safe list traversal and have moved
1692 	 * multiple works to the scheduled queue, the next position
1693 	 * needs to be updated.
1694 	 */
1695 	if (nextp)
1696 		*nextp = n;
1697 }
1698 
1699 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1700 {
1701 	struct work_struct *work = list_first_entry(&cwq->delayed_works,
1702 						    struct work_struct, entry);
1703 	struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1704 
1705 	trace_workqueue_activate_work(work);
1706 	move_linked_works(work, pos, NULL);
1707 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1708 	cwq->nr_active++;
1709 }
1710 
1711 /**
1712  * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1713  * @cwq: cwq of interest
1714  * @color: color of work which left the queue
1715  * @delayed: for a delayed work
1716  *
1717  * A work either has completed or is removed from pending queue,
1718  * decrement nr_in_flight of its cwq and handle workqueue flushing.
1719  *
1720  * CONTEXT:
1721  * spin_lock_irq(gcwq->lock).
1722  */
1723 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1724 				 bool delayed)
1725 {
1726 	/* ignore uncolored works */
1727 	if (color == WORK_NO_COLOR)
1728 		return;
1729 
1730 	cwq->nr_in_flight[color]--;
1731 
1732 	if (!delayed) {
1733 		cwq->nr_active--;
1734 		if (!list_empty(&cwq->delayed_works)) {
1735 			/* one down, submit a delayed one */
1736 			if (cwq->nr_active < cwq->max_active)
1737 				cwq_activate_first_delayed(cwq);
1738 		}
1739 	}
1740 
1741 	/* is flush in progress and are we at the flushing tip? */
1742 	if (likely(cwq->flush_color != color))
1743 		return;
1744 
1745 	/* are there still in-flight works? */
1746 	if (cwq->nr_in_flight[color])
1747 		return;
1748 
1749 	/* this cwq is done, clear flush_color */
1750 	cwq->flush_color = -1;
1751 
1752 	/*
1753 	 * If this was the last cwq, wake up the first flusher.  It
1754 	 * will handle the rest.
1755 	 */
1756 	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1757 		complete(&cwq->wq->first_flusher->done);
1758 }
1759 
1760 /**
1761  * process_one_work - process single work
1762  * @worker: self
1763  * @work: work to process
1764  *
1765  * Process @work.  This function contains all the logics necessary to
1766  * process a single work including synchronization against and
1767  * interaction with other workers on the same cpu, queueing and
1768  * flushing.  As long as context requirement is met, any worker can
1769  * call this function to process a work.
1770  *
1771  * CONTEXT:
1772  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1773  */
1774 static void process_one_work(struct worker *worker, struct work_struct *work)
1775 __releases(&gcwq->lock)
1776 __acquires(&gcwq->lock)
1777 {
1778 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1779 	struct global_cwq *gcwq = cwq->gcwq;
1780 	struct hlist_head *bwh = busy_worker_head(gcwq, work);
1781 	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1782 	work_func_t f = work->func;
1783 	int work_color;
1784 	struct worker *collision;
1785 #ifdef CONFIG_LOCKDEP
1786 	/*
1787 	 * It is permissible to free the struct work_struct from
1788 	 * inside the function that is called from it, this we need to
1789 	 * take into account for lockdep too.  To avoid bogus "held
1790 	 * lock freed" warnings as well as problems when looking into
1791 	 * work->lockdep_map, make a copy and use that here.
1792 	 */
1793 	struct lockdep_map lockdep_map = work->lockdep_map;
1794 #endif
1795 	/*
1796 	 * A single work shouldn't be executed concurrently by
1797 	 * multiple workers on a single cpu.  Check whether anyone is
1798 	 * already processing the work.  If so, defer the work to the
1799 	 * currently executing one.
1800 	 */
1801 	collision = __find_worker_executing_work(gcwq, bwh, work);
1802 	if (unlikely(collision)) {
1803 		move_linked_works(work, &collision->scheduled, NULL);
1804 		return;
1805 	}
1806 
1807 	/* claim and process */
1808 	debug_work_deactivate(work);
1809 	hlist_add_head(&worker->hentry, bwh);
1810 	worker->current_work = work;
1811 	worker->current_cwq = cwq;
1812 	work_color = get_work_color(work);
1813 
1814 	/* record the current cpu number in the work data and dequeue */
1815 	set_work_cpu(work, gcwq->cpu);
1816 	list_del_init(&work->entry);
1817 
1818 	/*
1819 	 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1820 	 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1821 	 */
1822 	if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1823 		struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1824 						struct work_struct, entry);
1825 
1826 		if (!list_empty(&gcwq->worklist) &&
1827 		    get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1828 			wake_up_worker(gcwq);
1829 		else
1830 			gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1831 	}
1832 
1833 	/*
1834 	 * CPU intensive works don't participate in concurrency
1835 	 * management.  They're the scheduler's responsibility.
1836 	 */
1837 	if (unlikely(cpu_intensive))
1838 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1839 
1840 	spin_unlock_irq(&gcwq->lock);
1841 
1842 	work_clear_pending(work);
1843 	lock_map_acquire(&cwq->wq->lockdep_map);
1844 	lock_map_acquire(&lockdep_map);
1845 	trace_workqueue_execute_start(work);
1846 	f(work);
1847 	/*
1848 	 * While we must be careful to not use "work" after this, the trace
1849 	 * point will only record its address.
1850 	 */
1851 	trace_workqueue_execute_end(work);
1852 	lock_map_release(&lockdep_map);
1853 	lock_map_release(&cwq->wq->lockdep_map);
1854 
1855 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1856 		printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1857 		       "%s/0x%08x/%d\n",
1858 		       current->comm, preempt_count(), task_pid_nr(current));
1859 		printk(KERN_ERR "    last function: ");
1860 		print_symbol("%s\n", (unsigned long)f);
1861 		debug_show_held_locks(current);
1862 		dump_stack();
1863 	}
1864 
1865 	spin_lock_irq(&gcwq->lock);
1866 
1867 	/* clear cpu intensive status */
1868 	if (unlikely(cpu_intensive))
1869 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1870 
1871 	/* we're done with it, release */
1872 	hlist_del_init(&worker->hentry);
1873 	worker->current_work = NULL;
1874 	worker->current_cwq = NULL;
1875 	cwq_dec_nr_in_flight(cwq, work_color, false);
1876 }
1877 
1878 /**
1879  * process_scheduled_works - process scheduled works
1880  * @worker: self
1881  *
1882  * Process all scheduled works.  Please note that the scheduled list
1883  * may change while processing a work, so this function repeatedly
1884  * fetches a work from the top and executes it.
1885  *
1886  * CONTEXT:
1887  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1888  * multiple times.
1889  */
1890 static void process_scheduled_works(struct worker *worker)
1891 {
1892 	while (!list_empty(&worker->scheduled)) {
1893 		struct work_struct *work = list_first_entry(&worker->scheduled,
1894 						struct work_struct, entry);
1895 		process_one_work(worker, work);
1896 	}
1897 }
1898 
1899 /**
1900  * worker_thread - the worker thread function
1901  * @__worker: self
1902  *
1903  * The gcwq worker thread function.  There's a single dynamic pool of
1904  * these per each cpu.  These workers process all works regardless of
1905  * their specific target workqueue.  The only exception is works which
1906  * belong to workqueues with a rescuer which will be explained in
1907  * rescuer_thread().
1908  */
1909 static int worker_thread(void *__worker)
1910 {
1911 	struct worker *worker = __worker;
1912 	struct global_cwq *gcwq = worker->gcwq;
1913 
1914 	/* tell the scheduler that this is a workqueue worker */
1915 	worker->task->flags |= PF_WQ_WORKER;
1916 woke_up:
1917 	spin_lock_irq(&gcwq->lock);
1918 
1919 	/* DIE can be set only while we're idle, checking here is enough */
1920 	if (worker->flags & WORKER_DIE) {
1921 		spin_unlock_irq(&gcwq->lock);
1922 		worker->task->flags &= ~PF_WQ_WORKER;
1923 		return 0;
1924 	}
1925 
1926 	worker_leave_idle(worker);
1927 recheck:
1928 	/* no more worker necessary? */
1929 	if (!need_more_worker(gcwq))
1930 		goto sleep;
1931 
1932 	/* do we need to manage? */
1933 	if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1934 		goto recheck;
1935 
1936 	/*
1937 	 * ->scheduled list can only be filled while a worker is
1938 	 * preparing to process a work or actually processing it.
1939 	 * Make sure nobody diddled with it while I was sleeping.
1940 	 */
1941 	BUG_ON(!list_empty(&worker->scheduled));
1942 
1943 	/*
1944 	 * When control reaches this point, we're guaranteed to have
1945 	 * at least one idle worker or that someone else has already
1946 	 * assumed the manager role.
1947 	 */
1948 	worker_clr_flags(worker, WORKER_PREP);
1949 
1950 	do {
1951 		struct work_struct *work =
1952 			list_first_entry(&gcwq->worklist,
1953 					 struct work_struct, entry);
1954 
1955 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1956 			/* optimization path, not strictly necessary */
1957 			process_one_work(worker, work);
1958 			if (unlikely(!list_empty(&worker->scheduled)))
1959 				process_scheduled_works(worker);
1960 		} else {
1961 			move_linked_works(work, &worker->scheduled, NULL);
1962 			process_scheduled_works(worker);
1963 		}
1964 	} while (keep_working(gcwq));
1965 
1966 	worker_set_flags(worker, WORKER_PREP, false);
1967 sleep:
1968 	if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1969 		goto recheck;
1970 
1971 	/*
1972 	 * gcwq->lock is held and there's no work to process and no
1973 	 * need to manage, sleep.  Workers are woken up only while
1974 	 * holding gcwq->lock or from local cpu, so setting the
1975 	 * current state before releasing gcwq->lock is enough to
1976 	 * prevent losing any event.
1977 	 */
1978 	worker_enter_idle(worker);
1979 	__set_current_state(TASK_INTERRUPTIBLE);
1980 	spin_unlock_irq(&gcwq->lock);
1981 	schedule();
1982 	goto woke_up;
1983 }
1984 
1985 /**
1986  * rescuer_thread - the rescuer thread function
1987  * @__wq: the associated workqueue
1988  *
1989  * Workqueue rescuer thread function.  There's one rescuer for each
1990  * workqueue which has WQ_RESCUER set.
1991  *
1992  * Regular work processing on a gcwq may block trying to create a new
1993  * worker which uses GFP_KERNEL allocation which has slight chance of
1994  * developing into deadlock if some works currently on the same queue
1995  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
1996  * the problem rescuer solves.
1997  *
1998  * When such condition is possible, the gcwq summons rescuers of all
1999  * workqueues which have works queued on the gcwq and let them process
2000  * those works so that forward progress can be guaranteed.
2001  *
2002  * This should happen rarely.
2003  */
2004 static int rescuer_thread(void *__wq)
2005 {
2006 	struct workqueue_struct *wq = __wq;
2007 	struct worker *rescuer = wq->rescuer;
2008 	struct list_head *scheduled = &rescuer->scheduled;
2009 	bool is_unbound = wq->flags & WQ_UNBOUND;
2010 	unsigned int cpu;
2011 
2012 	set_user_nice(current, RESCUER_NICE_LEVEL);
2013 repeat:
2014 	set_current_state(TASK_INTERRUPTIBLE);
2015 
2016 	if (kthread_should_stop())
2017 		return 0;
2018 
2019 	/*
2020 	 * See whether any cpu is asking for help.  Unbounded
2021 	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2022 	 */
2023 	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2024 		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2025 		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2026 		struct global_cwq *gcwq = cwq->gcwq;
2027 		struct work_struct *work, *n;
2028 
2029 		__set_current_state(TASK_RUNNING);
2030 		mayday_clear_cpu(cpu, wq->mayday_mask);
2031 
2032 		/* migrate to the target cpu if possible */
2033 		rescuer->gcwq = gcwq;
2034 		worker_maybe_bind_and_lock(rescuer);
2035 
2036 		/*
2037 		 * Slurp in all works issued via this workqueue and
2038 		 * process'em.
2039 		 */
2040 		BUG_ON(!list_empty(&rescuer->scheduled));
2041 		list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
2042 			if (get_work_cwq(work) == cwq)
2043 				move_linked_works(work, scheduled, &n);
2044 
2045 		process_scheduled_works(rescuer);
2046 		spin_unlock_irq(&gcwq->lock);
2047 	}
2048 
2049 	schedule();
2050 	goto repeat;
2051 }
2052 
2053 struct wq_barrier {
2054 	struct work_struct	work;
2055 	struct completion	done;
2056 };
2057 
2058 static void wq_barrier_func(struct work_struct *work)
2059 {
2060 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2061 	complete(&barr->done);
2062 }
2063 
2064 /**
2065  * insert_wq_barrier - insert a barrier work
2066  * @cwq: cwq to insert barrier into
2067  * @barr: wq_barrier to insert
2068  * @target: target work to attach @barr to
2069  * @worker: worker currently executing @target, NULL if @target is not executing
2070  *
2071  * @barr is linked to @target such that @barr is completed only after
2072  * @target finishes execution.  Please note that the ordering
2073  * guarantee is observed only with respect to @target and on the local
2074  * cpu.
2075  *
2076  * Currently, a queued barrier can't be canceled.  This is because
2077  * try_to_grab_pending() can't determine whether the work to be
2078  * grabbed is at the head of the queue and thus can't clear LINKED
2079  * flag of the previous work while there must be a valid next work
2080  * after a work with LINKED flag set.
2081  *
2082  * Note that when @worker is non-NULL, @target may be modified
2083  * underneath us, so we can't reliably determine cwq from @target.
2084  *
2085  * CONTEXT:
2086  * spin_lock_irq(gcwq->lock).
2087  */
2088 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2089 			      struct wq_barrier *barr,
2090 			      struct work_struct *target, struct worker *worker)
2091 {
2092 	struct list_head *head;
2093 	unsigned int linked = 0;
2094 
2095 	/*
2096 	 * debugobject calls are safe here even with gcwq->lock locked
2097 	 * as we know for sure that this will not trigger any of the
2098 	 * checks and call back into the fixup functions where we
2099 	 * might deadlock.
2100 	 */
2101 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2102 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2103 	init_completion(&barr->done);
2104 
2105 	/*
2106 	 * If @target is currently being executed, schedule the
2107 	 * barrier to the worker; otherwise, put it after @target.
2108 	 */
2109 	if (worker)
2110 		head = worker->scheduled.next;
2111 	else {
2112 		unsigned long *bits = work_data_bits(target);
2113 
2114 		head = target->entry.next;
2115 		/* there can already be other linked works, inherit and set */
2116 		linked = *bits & WORK_STRUCT_LINKED;
2117 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2118 	}
2119 
2120 	debug_work_activate(&barr->work);
2121 	insert_work(cwq, &barr->work, head,
2122 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2123 }
2124 
2125 /**
2126  * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2127  * @wq: workqueue being flushed
2128  * @flush_color: new flush color, < 0 for no-op
2129  * @work_color: new work color, < 0 for no-op
2130  *
2131  * Prepare cwqs for workqueue flushing.
2132  *
2133  * If @flush_color is non-negative, flush_color on all cwqs should be
2134  * -1.  If no cwq has in-flight commands at the specified color, all
2135  * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
2136  * has in flight commands, its cwq->flush_color is set to
2137  * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2138  * wakeup logic is armed and %true is returned.
2139  *
2140  * The caller should have initialized @wq->first_flusher prior to
2141  * calling this function with non-negative @flush_color.  If
2142  * @flush_color is negative, no flush color update is done and %false
2143  * is returned.
2144  *
2145  * If @work_color is non-negative, all cwqs should have the same
2146  * work_color which is previous to @work_color and all will be
2147  * advanced to @work_color.
2148  *
2149  * CONTEXT:
2150  * mutex_lock(wq->flush_mutex).
2151  *
2152  * RETURNS:
2153  * %true if @flush_color >= 0 and there's something to flush.  %false
2154  * otherwise.
2155  */
2156 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2157 				      int flush_color, int work_color)
2158 {
2159 	bool wait = false;
2160 	unsigned int cpu;
2161 
2162 	if (flush_color >= 0) {
2163 		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2164 		atomic_set(&wq->nr_cwqs_to_flush, 1);
2165 	}
2166 
2167 	for_each_cwq_cpu(cpu, wq) {
2168 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2169 		struct global_cwq *gcwq = cwq->gcwq;
2170 
2171 		spin_lock_irq(&gcwq->lock);
2172 
2173 		if (flush_color >= 0) {
2174 			BUG_ON(cwq->flush_color != -1);
2175 
2176 			if (cwq->nr_in_flight[flush_color]) {
2177 				cwq->flush_color = flush_color;
2178 				atomic_inc(&wq->nr_cwqs_to_flush);
2179 				wait = true;
2180 			}
2181 		}
2182 
2183 		if (work_color >= 0) {
2184 			BUG_ON(work_color != work_next_color(cwq->work_color));
2185 			cwq->work_color = work_color;
2186 		}
2187 
2188 		spin_unlock_irq(&gcwq->lock);
2189 	}
2190 
2191 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2192 		complete(&wq->first_flusher->done);
2193 
2194 	return wait;
2195 }
2196 
2197 /**
2198  * flush_workqueue - ensure that any scheduled work has run to completion.
2199  * @wq: workqueue to flush
2200  *
2201  * Forces execution of the workqueue and blocks until its completion.
2202  * This is typically used in driver shutdown handlers.
2203  *
2204  * We sleep until all works which were queued on entry have been handled,
2205  * but we are not livelocked by new incoming ones.
2206  */
2207 void flush_workqueue(struct workqueue_struct *wq)
2208 {
2209 	struct wq_flusher this_flusher = {
2210 		.list = LIST_HEAD_INIT(this_flusher.list),
2211 		.flush_color = -1,
2212 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2213 	};
2214 	int next_color;
2215 
2216 	lock_map_acquire(&wq->lockdep_map);
2217 	lock_map_release(&wq->lockdep_map);
2218 
2219 	mutex_lock(&wq->flush_mutex);
2220 
2221 	/*
2222 	 * Start-to-wait phase
2223 	 */
2224 	next_color = work_next_color(wq->work_color);
2225 
2226 	if (next_color != wq->flush_color) {
2227 		/*
2228 		 * Color space is not full.  The current work_color
2229 		 * becomes our flush_color and work_color is advanced
2230 		 * by one.
2231 		 */
2232 		BUG_ON(!list_empty(&wq->flusher_overflow));
2233 		this_flusher.flush_color = wq->work_color;
2234 		wq->work_color = next_color;
2235 
2236 		if (!wq->first_flusher) {
2237 			/* no flush in progress, become the first flusher */
2238 			BUG_ON(wq->flush_color != this_flusher.flush_color);
2239 
2240 			wq->first_flusher = &this_flusher;
2241 
2242 			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2243 						       wq->work_color)) {
2244 				/* nothing to flush, done */
2245 				wq->flush_color = next_color;
2246 				wq->first_flusher = NULL;
2247 				goto out_unlock;
2248 			}
2249 		} else {
2250 			/* wait in queue */
2251 			BUG_ON(wq->flush_color == this_flusher.flush_color);
2252 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2253 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2254 		}
2255 	} else {
2256 		/*
2257 		 * Oops, color space is full, wait on overflow queue.
2258 		 * The next flush completion will assign us
2259 		 * flush_color and transfer to flusher_queue.
2260 		 */
2261 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2262 	}
2263 
2264 	mutex_unlock(&wq->flush_mutex);
2265 
2266 	wait_for_completion(&this_flusher.done);
2267 
2268 	/*
2269 	 * Wake-up-and-cascade phase
2270 	 *
2271 	 * First flushers are responsible for cascading flushes and
2272 	 * handling overflow.  Non-first flushers can simply return.
2273 	 */
2274 	if (wq->first_flusher != &this_flusher)
2275 		return;
2276 
2277 	mutex_lock(&wq->flush_mutex);
2278 
2279 	/* we might have raced, check again with mutex held */
2280 	if (wq->first_flusher != &this_flusher)
2281 		goto out_unlock;
2282 
2283 	wq->first_flusher = NULL;
2284 
2285 	BUG_ON(!list_empty(&this_flusher.list));
2286 	BUG_ON(wq->flush_color != this_flusher.flush_color);
2287 
2288 	while (true) {
2289 		struct wq_flusher *next, *tmp;
2290 
2291 		/* complete all the flushers sharing the current flush color */
2292 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2293 			if (next->flush_color != wq->flush_color)
2294 				break;
2295 			list_del_init(&next->list);
2296 			complete(&next->done);
2297 		}
2298 
2299 		BUG_ON(!list_empty(&wq->flusher_overflow) &&
2300 		       wq->flush_color != work_next_color(wq->work_color));
2301 
2302 		/* this flush_color is finished, advance by one */
2303 		wq->flush_color = work_next_color(wq->flush_color);
2304 
2305 		/* one color has been freed, handle overflow queue */
2306 		if (!list_empty(&wq->flusher_overflow)) {
2307 			/*
2308 			 * Assign the same color to all overflowed
2309 			 * flushers, advance work_color and append to
2310 			 * flusher_queue.  This is the start-to-wait
2311 			 * phase for these overflowed flushers.
2312 			 */
2313 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2314 				tmp->flush_color = wq->work_color;
2315 
2316 			wq->work_color = work_next_color(wq->work_color);
2317 
2318 			list_splice_tail_init(&wq->flusher_overflow,
2319 					      &wq->flusher_queue);
2320 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2321 		}
2322 
2323 		if (list_empty(&wq->flusher_queue)) {
2324 			BUG_ON(wq->flush_color != wq->work_color);
2325 			break;
2326 		}
2327 
2328 		/*
2329 		 * Need to flush more colors.  Make the next flusher
2330 		 * the new first flusher and arm cwqs.
2331 		 */
2332 		BUG_ON(wq->flush_color == wq->work_color);
2333 		BUG_ON(wq->flush_color != next->flush_color);
2334 
2335 		list_del_init(&next->list);
2336 		wq->first_flusher = next;
2337 
2338 		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2339 			break;
2340 
2341 		/*
2342 		 * Meh... this color is already done, clear first
2343 		 * flusher and repeat cascading.
2344 		 */
2345 		wq->first_flusher = NULL;
2346 	}
2347 
2348 out_unlock:
2349 	mutex_unlock(&wq->flush_mutex);
2350 }
2351 EXPORT_SYMBOL_GPL(flush_workqueue);
2352 
2353 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2354 			     bool wait_executing)
2355 {
2356 	struct worker *worker = NULL;
2357 	struct global_cwq *gcwq;
2358 	struct cpu_workqueue_struct *cwq;
2359 
2360 	might_sleep();
2361 	gcwq = get_work_gcwq(work);
2362 	if (!gcwq)
2363 		return false;
2364 
2365 	spin_lock_irq(&gcwq->lock);
2366 	if (!list_empty(&work->entry)) {
2367 		/*
2368 		 * See the comment near try_to_grab_pending()->smp_rmb().
2369 		 * If it was re-queued to a different gcwq under us, we
2370 		 * are not going to wait.
2371 		 */
2372 		smp_rmb();
2373 		cwq = get_work_cwq(work);
2374 		if (unlikely(!cwq || gcwq != cwq->gcwq))
2375 			goto already_gone;
2376 	} else if (wait_executing) {
2377 		worker = find_worker_executing_work(gcwq, work);
2378 		if (!worker)
2379 			goto already_gone;
2380 		cwq = worker->current_cwq;
2381 	} else
2382 		goto already_gone;
2383 
2384 	insert_wq_barrier(cwq, barr, work, worker);
2385 	spin_unlock_irq(&gcwq->lock);
2386 
2387 	lock_map_acquire(&cwq->wq->lockdep_map);
2388 	lock_map_release(&cwq->wq->lockdep_map);
2389 	return true;
2390 already_gone:
2391 	spin_unlock_irq(&gcwq->lock);
2392 	return false;
2393 }
2394 
2395 /**
2396  * flush_work - wait for a work to finish executing the last queueing instance
2397  * @work: the work to flush
2398  *
2399  * Wait until @work has finished execution.  This function considers
2400  * only the last queueing instance of @work.  If @work has been
2401  * enqueued across different CPUs on a non-reentrant workqueue or on
2402  * multiple workqueues, @work might still be executing on return on
2403  * some of the CPUs from earlier queueing.
2404  *
2405  * If @work was queued only on a non-reentrant, ordered or unbound
2406  * workqueue, @work is guaranteed to be idle on return if it hasn't
2407  * been requeued since flush started.
2408  *
2409  * RETURNS:
2410  * %true if flush_work() waited for the work to finish execution,
2411  * %false if it was already idle.
2412  */
2413 bool flush_work(struct work_struct *work)
2414 {
2415 	struct wq_barrier barr;
2416 
2417 	if (start_flush_work(work, &barr, true)) {
2418 		wait_for_completion(&barr.done);
2419 		destroy_work_on_stack(&barr.work);
2420 		return true;
2421 	} else
2422 		return false;
2423 }
2424 EXPORT_SYMBOL_GPL(flush_work);
2425 
2426 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2427 {
2428 	struct wq_barrier barr;
2429 	struct worker *worker;
2430 
2431 	spin_lock_irq(&gcwq->lock);
2432 
2433 	worker = find_worker_executing_work(gcwq, work);
2434 	if (unlikely(worker))
2435 		insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2436 
2437 	spin_unlock_irq(&gcwq->lock);
2438 
2439 	if (unlikely(worker)) {
2440 		wait_for_completion(&barr.done);
2441 		destroy_work_on_stack(&barr.work);
2442 		return true;
2443 	} else
2444 		return false;
2445 }
2446 
2447 static bool wait_on_work(struct work_struct *work)
2448 {
2449 	bool ret = false;
2450 	int cpu;
2451 
2452 	might_sleep();
2453 
2454 	lock_map_acquire(&work->lockdep_map);
2455 	lock_map_release(&work->lockdep_map);
2456 
2457 	for_each_gcwq_cpu(cpu)
2458 		ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2459 	return ret;
2460 }
2461 
2462 /**
2463  * flush_work_sync - wait until a work has finished execution
2464  * @work: the work to flush
2465  *
2466  * Wait until @work has finished execution.  On return, it's
2467  * guaranteed that all queueing instances of @work which happened
2468  * before this function is called are finished.  In other words, if
2469  * @work hasn't been requeued since this function was called, @work is
2470  * guaranteed to be idle on return.
2471  *
2472  * RETURNS:
2473  * %true if flush_work_sync() waited for the work to finish execution,
2474  * %false if it was already idle.
2475  */
2476 bool flush_work_sync(struct work_struct *work)
2477 {
2478 	struct wq_barrier barr;
2479 	bool pending, waited;
2480 
2481 	/* we'll wait for executions separately, queue barr only if pending */
2482 	pending = start_flush_work(work, &barr, false);
2483 
2484 	/* wait for executions to finish */
2485 	waited = wait_on_work(work);
2486 
2487 	/* wait for the pending one */
2488 	if (pending) {
2489 		wait_for_completion(&barr.done);
2490 		destroy_work_on_stack(&barr.work);
2491 	}
2492 
2493 	return pending || waited;
2494 }
2495 EXPORT_SYMBOL_GPL(flush_work_sync);
2496 
2497 /*
2498  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2499  * so this work can't be re-armed in any way.
2500  */
2501 static int try_to_grab_pending(struct work_struct *work)
2502 {
2503 	struct global_cwq *gcwq;
2504 	int ret = -1;
2505 
2506 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2507 		return 0;
2508 
2509 	/*
2510 	 * The queueing is in progress, or it is already queued. Try to
2511 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2512 	 */
2513 	gcwq = get_work_gcwq(work);
2514 	if (!gcwq)
2515 		return ret;
2516 
2517 	spin_lock_irq(&gcwq->lock);
2518 	if (!list_empty(&work->entry)) {
2519 		/*
2520 		 * This work is queued, but perhaps we locked the wrong gcwq.
2521 		 * In that case we must see the new value after rmb(), see
2522 		 * insert_work()->wmb().
2523 		 */
2524 		smp_rmb();
2525 		if (gcwq == get_work_gcwq(work)) {
2526 			debug_work_deactivate(work);
2527 			list_del_init(&work->entry);
2528 			cwq_dec_nr_in_flight(get_work_cwq(work),
2529 				get_work_color(work),
2530 				*work_data_bits(work) & WORK_STRUCT_DELAYED);
2531 			ret = 1;
2532 		}
2533 	}
2534 	spin_unlock_irq(&gcwq->lock);
2535 
2536 	return ret;
2537 }
2538 
2539 static bool __cancel_work_timer(struct work_struct *work,
2540 				struct timer_list* timer)
2541 {
2542 	int ret;
2543 
2544 	do {
2545 		ret = (timer && likely(del_timer(timer)));
2546 		if (!ret)
2547 			ret = try_to_grab_pending(work);
2548 		wait_on_work(work);
2549 	} while (unlikely(ret < 0));
2550 
2551 	clear_work_data(work);
2552 	return ret;
2553 }
2554 
2555 /**
2556  * cancel_work_sync - cancel a work and wait for it to finish
2557  * @work: the work to cancel
2558  *
2559  * Cancel @work and wait for its execution to finish.  This function
2560  * can be used even if the work re-queues itself or migrates to
2561  * another workqueue.  On return from this function, @work is
2562  * guaranteed to be not pending or executing on any CPU.
2563  *
2564  * cancel_work_sync(&delayed_work->work) must not be used for
2565  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2566  *
2567  * The caller must ensure that the workqueue on which @work was last
2568  * queued can't be destroyed before this function returns.
2569  *
2570  * RETURNS:
2571  * %true if @work was pending, %false otherwise.
2572  */
2573 bool cancel_work_sync(struct work_struct *work)
2574 {
2575 	return __cancel_work_timer(work, NULL);
2576 }
2577 EXPORT_SYMBOL_GPL(cancel_work_sync);
2578 
2579 /**
2580  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2581  * @dwork: the delayed work to flush
2582  *
2583  * Delayed timer is cancelled and the pending work is queued for
2584  * immediate execution.  Like flush_work(), this function only
2585  * considers the last queueing instance of @dwork.
2586  *
2587  * RETURNS:
2588  * %true if flush_work() waited for the work to finish execution,
2589  * %false if it was already idle.
2590  */
2591 bool flush_delayed_work(struct delayed_work *dwork)
2592 {
2593 	if (del_timer_sync(&dwork->timer))
2594 		__queue_work(raw_smp_processor_id(),
2595 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2596 	return flush_work(&dwork->work);
2597 }
2598 EXPORT_SYMBOL(flush_delayed_work);
2599 
2600 /**
2601  * flush_delayed_work_sync - wait for a dwork to finish
2602  * @dwork: the delayed work to flush
2603  *
2604  * Delayed timer is cancelled and the pending work is queued for
2605  * execution immediately.  Other than timer handling, its behavior
2606  * is identical to flush_work_sync().
2607  *
2608  * RETURNS:
2609  * %true if flush_work_sync() waited for the work to finish execution,
2610  * %false if it was already idle.
2611  */
2612 bool flush_delayed_work_sync(struct delayed_work *dwork)
2613 {
2614 	if (del_timer_sync(&dwork->timer))
2615 		__queue_work(raw_smp_processor_id(),
2616 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2617 	return flush_work_sync(&dwork->work);
2618 }
2619 EXPORT_SYMBOL(flush_delayed_work_sync);
2620 
2621 /**
2622  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2623  * @dwork: the delayed work cancel
2624  *
2625  * This is cancel_work_sync() for delayed works.
2626  *
2627  * RETURNS:
2628  * %true if @dwork was pending, %false otherwise.
2629  */
2630 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2631 {
2632 	return __cancel_work_timer(&dwork->work, &dwork->timer);
2633 }
2634 EXPORT_SYMBOL(cancel_delayed_work_sync);
2635 
2636 /**
2637  * schedule_work - put work task in global workqueue
2638  * @work: job to be done
2639  *
2640  * Returns zero if @work was already on the kernel-global workqueue and
2641  * non-zero otherwise.
2642  *
2643  * This puts a job in the kernel-global workqueue if it was not already
2644  * queued and leaves it in the same position on the kernel-global
2645  * workqueue otherwise.
2646  */
2647 int schedule_work(struct work_struct *work)
2648 {
2649 	return queue_work(system_wq, work);
2650 }
2651 EXPORT_SYMBOL(schedule_work);
2652 
2653 /*
2654  * schedule_work_on - put work task on a specific cpu
2655  * @cpu: cpu to put the work task on
2656  * @work: job to be done
2657  *
2658  * This puts a job on a specific cpu
2659  */
2660 int schedule_work_on(int cpu, struct work_struct *work)
2661 {
2662 	return queue_work_on(cpu, system_wq, work);
2663 }
2664 EXPORT_SYMBOL(schedule_work_on);
2665 
2666 /**
2667  * schedule_delayed_work - put work task in global workqueue after delay
2668  * @dwork: job to be done
2669  * @delay: number of jiffies to wait or 0 for immediate execution
2670  *
2671  * After waiting for a given time this puts a job in the kernel-global
2672  * workqueue.
2673  */
2674 int schedule_delayed_work(struct delayed_work *dwork,
2675 					unsigned long delay)
2676 {
2677 	return queue_delayed_work(system_wq, dwork, delay);
2678 }
2679 EXPORT_SYMBOL(schedule_delayed_work);
2680 
2681 /**
2682  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2683  * @cpu: cpu to use
2684  * @dwork: job to be done
2685  * @delay: number of jiffies to wait
2686  *
2687  * After waiting for a given time this puts a job in the kernel-global
2688  * workqueue on the specified CPU.
2689  */
2690 int schedule_delayed_work_on(int cpu,
2691 			struct delayed_work *dwork, unsigned long delay)
2692 {
2693 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2694 }
2695 EXPORT_SYMBOL(schedule_delayed_work_on);
2696 
2697 /**
2698  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2699  * @func: the function to call
2700  *
2701  * schedule_on_each_cpu() executes @func on each online CPU using the
2702  * system workqueue and blocks until all CPUs have completed.
2703  * schedule_on_each_cpu() is very slow.
2704  *
2705  * RETURNS:
2706  * 0 on success, -errno on failure.
2707  */
2708 int schedule_on_each_cpu(work_func_t func)
2709 {
2710 	int cpu;
2711 	struct work_struct __percpu *works;
2712 
2713 	works = alloc_percpu(struct work_struct);
2714 	if (!works)
2715 		return -ENOMEM;
2716 
2717 	get_online_cpus();
2718 
2719 	for_each_online_cpu(cpu) {
2720 		struct work_struct *work = per_cpu_ptr(works, cpu);
2721 
2722 		INIT_WORK(work, func);
2723 		schedule_work_on(cpu, work);
2724 	}
2725 
2726 	for_each_online_cpu(cpu)
2727 		flush_work(per_cpu_ptr(works, cpu));
2728 
2729 	put_online_cpus();
2730 	free_percpu(works);
2731 	return 0;
2732 }
2733 
2734 /**
2735  * flush_scheduled_work - ensure that any scheduled work has run to completion.
2736  *
2737  * Forces execution of the kernel-global workqueue and blocks until its
2738  * completion.
2739  *
2740  * Think twice before calling this function!  It's very easy to get into
2741  * trouble if you don't take great care.  Either of the following situations
2742  * will lead to deadlock:
2743  *
2744  *	One of the work items currently on the workqueue needs to acquire
2745  *	a lock held by your code or its caller.
2746  *
2747  *	Your code is running in the context of a work routine.
2748  *
2749  * They will be detected by lockdep when they occur, but the first might not
2750  * occur very often.  It depends on what work items are on the workqueue and
2751  * what locks they need, which you have no control over.
2752  *
2753  * In most situations flushing the entire workqueue is overkill; you merely
2754  * need to know that a particular work item isn't queued and isn't running.
2755  * In such cases you should use cancel_delayed_work_sync() or
2756  * cancel_work_sync() instead.
2757  */
2758 void flush_scheduled_work(void)
2759 {
2760 	flush_workqueue(system_wq);
2761 }
2762 EXPORT_SYMBOL(flush_scheduled_work);
2763 
2764 /**
2765  * execute_in_process_context - reliably execute the routine with user context
2766  * @fn:		the function to execute
2767  * @ew:		guaranteed storage for the execute work structure (must
2768  *		be available when the work executes)
2769  *
2770  * Executes the function immediately if process context is available,
2771  * otherwise schedules the function for delayed execution.
2772  *
2773  * Returns:	0 - function was executed
2774  *		1 - function was scheduled for execution
2775  */
2776 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2777 {
2778 	if (!in_interrupt()) {
2779 		fn(&ew->work);
2780 		return 0;
2781 	}
2782 
2783 	INIT_WORK(&ew->work, fn);
2784 	schedule_work(&ew->work);
2785 
2786 	return 1;
2787 }
2788 EXPORT_SYMBOL_GPL(execute_in_process_context);
2789 
2790 int keventd_up(void)
2791 {
2792 	return system_wq != NULL;
2793 }
2794 
2795 static int alloc_cwqs(struct workqueue_struct *wq)
2796 {
2797 	/*
2798 	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2799 	 * Make sure that the alignment isn't lower than that of
2800 	 * unsigned long long.
2801 	 */
2802 	const size_t size = sizeof(struct cpu_workqueue_struct);
2803 	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2804 				   __alignof__(unsigned long long));
2805 #ifdef CONFIG_SMP
2806 	bool percpu = !(wq->flags & WQ_UNBOUND);
2807 #else
2808 	bool percpu = false;
2809 #endif
2810 
2811 	if (percpu)
2812 		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2813 	else {
2814 		void *ptr;
2815 
2816 		/*
2817 		 * Allocate enough room to align cwq and put an extra
2818 		 * pointer at the end pointing back to the originally
2819 		 * allocated pointer which will be used for free.
2820 		 */
2821 		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2822 		if (ptr) {
2823 			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2824 			*(void **)(wq->cpu_wq.single + 1) = ptr;
2825 		}
2826 	}
2827 
2828 	/* just in case, make sure it's actually aligned
2829 	 * - this is affected by PERCPU() alignment in vmlinux.lds.S
2830 	 */
2831 	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2832 	return wq->cpu_wq.v ? 0 : -ENOMEM;
2833 }
2834 
2835 static void free_cwqs(struct workqueue_struct *wq)
2836 {
2837 #ifdef CONFIG_SMP
2838 	bool percpu = !(wq->flags & WQ_UNBOUND);
2839 #else
2840 	bool percpu = false;
2841 #endif
2842 
2843 	if (percpu)
2844 		free_percpu(wq->cpu_wq.pcpu);
2845 	else if (wq->cpu_wq.single) {
2846 		/* the pointer to free is stored right after the cwq */
2847 		kfree(*(void **)(wq->cpu_wq.single + 1));
2848 	}
2849 }
2850 
2851 static int wq_clamp_max_active(int max_active, unsigned int flags,
2852 			       const char *name)
2853 {
2854 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2855 
2856 	if (max_active < 1 || max_active > lim)
2857 		printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2858 		       "is out of range, clamping between %d and %d\n",
2859 		       max_active, name, 1, lim);
2860 
2861 	return clamp_val(max_active, 1, lim);
2862 }
2863 
2864 struct workqueue_struct *__alloc_workqueue_key(const char *name,
2865 					       unsigned int flags,
2866 					       int max_active,
2867 					       struct lock_class_key *key,
2868 					       const char *lock_name)
2869 {
2870 	struct workqueue_struct *wq;
2871 	unsigned int cpu;
2872 
2873 	/*
2874 	 * Workqueues which may be used during memory reclaim should
2875 	 * have a rescuer to guarantee forward progress.
2876 	 */
2877 	if (flags & WQ_MEM_RECLAIM)
2878 		flags |= WQ_RESCUER;
2879 
2880 	/*
2881 	 * Unbound workqueues aren't concurrency managed and should be
2882 	 * dispatched to workers immediately.
2883 	 */
2884 	if (flags & WQ_UNBOUND)
2885 		flags |= WQ_HIGHPRI;
2886 
2887 	max_active = max_active ?: WQ_DFL_ACTIVE;
2888 	max_active = wq_clamp_max_active(max_active, flags, name);
2889 
2890 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
2891 	if (!wq)
2892 		goto err;
2893 
2894 	wq->flags = flags;
2895 	wq->saved_max_active = max_active;
2896 	mutex_init(&wq->flush_mutex);
2897 	atomic_set(&wq->nr_cwqs_to_flush, 0);
2898 	INIT_LIST_HEAD(&wq->flusher_queue);
2899 	INIT_LIST_HEAD(&wq->flusher_overflow);
2900 
2901 	wq->name = name;
2902 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
2903 	INIT_LIST_HEAD(&wq->list);
2904 
2905 	if (alloc_cwqs(wq) < 0)
2906 		goto err;
2907 
2908 	for_each_cwq_cpu(cpu, wq) {
2909 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2910 		struct global_cwq *gcwq = get_gcwq(cpu);
2911 
2912 		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
2913 		cwq->gcwq = gcwq;
2914 		cwq->wq = wq;
2915 		cwq->flush_color = -1;
2916 		cwq->max_active = max_active;
2917 		INIT_LIST_HEAD(&cwq->delayed_works);
2918 	}
2919 
2920 	if (flags & WQ_RESCUER) {
2921 		struct worker *rescuer;
2922 
2923 		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
2924 			goto err;
2925 
2926 		wq->rescuer = rescuer = alloc_worker();
2927 		if (!rescuer)
2928 			goto err;
2929 
2930 		rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
2931 		if (IS_ERR(rescuer->task))
2932 			goto err;
2933 
2934 		rescuer->task->flags |= PF_THREAD_BOUND;
2935 		wake_up_process(rescuer->task);
2936 	}
2937 
2938 	/*
2939 	 * workqueue_lock protects global freeze state and workqueues
2940 	 * list.  Grab it, set max_active accordingly and add the new
2941 	 * workqueue to workqueues list.
2942 	 */
2943 	spin_lock(&workqueue_lock);
2944 
2945 	if (workqueue_freezing && wq->flags & WQ_FREEZEABLE)
2946 		for_each_cwq_cpu(cpu, wq)
2947 			get_cwq(cpu, wq)->max_active = 0;
2948 
2949 	list_add(&wq->list, &workqueues);
2950 
2951 	spin_unlock(&workqueue_lock);
2952 
2953 	return wq;
2954 err:
2955 	if (wq) {
2956 		free_cwqs(wq);
2957 		free_mayday_mask(wq->mayday_mask);
2958 		kfree(wq->rescuer);
2959 		kfree(wq);
2960 	}
2961 	return NULL;
2962 }
2963 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
2964 
2965 /**
2966  * destroy_workqueue - safely terminate a workqueue
2967  * @wq: target workqueue
2968  *
2969  * Safely destroy a workqueue. All work currently pending will be done first.
2970  */
2971 void destroy_workqueue(struct workqueue_struct *wq)
2972 {
2973 	unsigned int flush_cnt = 0;
2974 	unsigned int cpu;
2975 
2976 	/*
2977 	 * Mark @wq dying and drain all pending works.  Once WQ_DYING is
2978 	 * set, only chain queueing is allowed.  IOW, only currently
2979 	 * pending or running work items on @wq can queue further work
2980 	 * items on it.  @wq is flushed repeatedly until it becomes empty.
2981 	 * The number of flushing is detemined by the depth of chaining and
2982 	 * should be relatively short.  Whine if it takes too long.
2983 	 */
2984 	wq->flags |= WQ_DYING;
2985 reflush:
2986 	flush_workqueue(wq);
2987 
2988 	for_each_cwq_cpu(cpu, wq) {
2989 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2990 
2991 		if (!cwq->nr_active && list_empty(&cwq->delayed_works))
2992 			continue;
2993 
2994 		if (++flush_cnt == 10 ||
2995 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2996 			printk(KERN_WARNING "workqueue %s: flush on "
2997 			       "destruction isn't complete after %u tries\n",
2998 			       wq->name, flush_cnt);
2999 		goto reflush;
3000 	}
3001 
3002 	/*
3003 	 * wq list is used to freeze wq, remove from list after
3004 	 * flushing is complete in case freeze races us.
3005 	 */
3006 	spin_lock(&workqueue_lock);
3007 	list_del(&wq->list);
3008 	spin_unlock(&workqueue_lock);
3009 
3010 	/* sanity check */
3011 	for_each_cwq_cpu(cpu, wq) {
3012 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3013 		int i;
3014 
3015 		for (i = 0; i < WORK_NR_COLORS; i++)
3016 			BUG_ON(cwq->nr_in_flight[i]);
3017 		BUG_ON(cwq->nr_active);
3018 		BUG_ON(!list_empty(&cwq->delayed_works));
3019 	}
3020 
3021 	if (wq->flags & WQ_RESCUER) {
3022 		kthread_stop(wq->rescuer->task);
3023 		free_mayday_mask(wq->mayday_mask);
3024 		kfree(wq->rescuer);
3025 	}
3026 
3027 	free_cwqs(wq);
3028 	kfree(wq);
3029 }
3030 EXPORT_SYMBOL_GPL(destroy_workqueue);
3031 
3032 /**
3033  * workqueue_set_max_active - adjust max_active of a workqueue
3034  * @wq: target workqueue
3035  * @max_active: new max_active value.
3036  *
3037  * Set max_active of @wq to @max_active.
3038  *
3039  * CONTEXT:
3040  * Don't call from IRQ context.
3041  */
3042 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3043 {
3044 	unsigned int cpu;
3045 
3046 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3047 
3048 	spin_lock(&workqueue_lock);
3049 
3050 	wq->saved_max_active = max_active;
3051 
3052 	for_each_cwq_cpu(cpu, wq) {
3053 		struct global_cwq *gcwq = get_gcwq(cpu);
3054 
3055 		spin_lock_irq(&gcwq->lock);
3056 
3057 		if (!(wq->flags & WQ_FREEZEABLE) ||
3058 		    !(gcwq->flags & GCWQ_FREEZING))
3059 			get_cwq(gcwq->cpu, wq)->max_active = max_active;
3060 
3061 		spin_unlock_irq(&gcwq->lock);
3062 	}
3063 
3064 	spin_unlock(&workqueue_lock);
3065 }
3066 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3067 
3068 /**
3069  * workqueue_congested - test whether a workqueue is congested
3070  * @cpu: CPU in question
3071  * @wq: target workqueue
3072  *
3073  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
3074  * no synchronization around this function and the test result is
3075  * unreliable and only useful as advisory hints or for debugging.
3076  *
3077  * RETURNS:
3078  * %true if congested, %false otherwise.
3079  */
3080 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3081 {
3082 	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3083 
3084 	return !list_empty(&cwq->delayed_works);
3085 }
3086 EXPORT_SYMBOL_GPL(workqueue_congested);
3087 
3088 /**
3089  * work_cpu - return the last known associated cpu for @work
3090  * @work: the work of interest
3091  *
3092  * RETURNS:
3093  * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3094  */
3095 unsigned int work_cpu(struct work_struct *work)
3096 {
3097 	struct global_cwq *gcwq = get_work_gcwq(work);
3098 
3099 	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3100 }
3101 EXPORT_SYMBOL_GPL(work_cpu);
3102 
3103 /**
3104  * work_busy - test whether a work is currently pending or running
3105  * @work: the work to be tested
3106  *
3107  * Test whether @work is currently pending or running.  There is no
3108  * synchronization around this function and the test result is
3109  * unreliable and only useful as advisory hints or for debugging.
3110  * Especially for reentrant wqs, the pending state might hide the
3111  * running state.
3112  *
3113  * RETURNS:
3114  * OR'd bitmask of WORK_BUSY_* bits.
3115  */
3116 unsigned int work_busy(struct work_struct *work)
3117 {
3118 	struct global_cwq *gcwq = get_work_gcwq(work);
3119 	unsigned long flags;
3120 	unsigned int ret = 0;
3121 
3122 	if (!gcwq)
3123 		return false;
3124 
3125 	spin_lock_irqsave(&gcwq->lock, flags);
3126 
3127 	if (work_pending(work))
3128 		ret |= WORK_BUSY_PENDING;
3129 	if (find_worker_executing_work(gcwq, work))
3130 		ret |= WORK_BUSY_RUNNING;
3131 
3132 	spin_unlock_irqrestore(&gcwq->lock, flags);
3133 
3134 	return ret;
3135 }
3136 EXPORT_SYMBOL_GPL(work_busy);
3137 
3138 /*
3139  * CPU hotplug.
3140  *
3141  * There are two challenges in supporting CPU hotplug.  Firstly, there
3142  * are a lot of assumptions on strong associations among work, cwq and
3143  * gcwq which make migrating pending and scheduled works very
3144  * difficult to implement without impacting hot paths.  Secondly,
3145  * gcwqs serve mix of short, long and very long running works making
3146  * blocked draining impractical.
3147  *
3148  * This is solved by allowing a gcwq to be detached from CPU, running
3149  * it with unbound (rogue) workers and allowing it to be reattached
3150  * later if the cpu comes back online.  A separate thread is created
3151  * to govern a gcwq in such state and is called the trustee of the
3152  * gcwq.
3153  *
3154  * Trustee states and their descriptions.
3155  *
3156  * START	Command state used on startup.  On CPU_DOWN_PREPARE, a
3157  *		new trustee is started with this state.
3158  *
3159  * IN_CHARGE	Once started, trustee will enter this state after
3160  *		assuming the manager role and making all existing
3161  *		workers rogue.  DOWN_PREPARE waits for trustee to
3162  *		enter this state.  After reaching IN_CHARGE, trustee
3163  *		tries to execute the pending worklist until it's empty
3164  *		and the state is set to BUTCHER, or the state is set
3165  *		to RELEASE.
3166  *
3167  * BUTCHER	Command state which is set by the cpu callback after
3168  *		the cpu has went down.  Once this state is set trustee
3169  *		knows that there will be no new works on the worklist
3170  *		and once the worklist is empty it can proceed to
3171  *		killing idle workers.
3172  *
3173  * RELEASE	Command state which is set by the cpu callback if the
3174  *		cpu down has been canceled or it has come online
3175  *		again.  After recognizing this state, trustee stops
3176  *		trying to drain or butcher and clears ROGUE, rebinds
3177  *		all remaining workers back to the cpu and releases
3178  *		manager role.
3179  *
3180  * DONE		Trustee will enter this state after BUTCHER or RELEASE
3181  *		is complete.
3182  *
3183  *          trustee                 CPU                draining
3184  *         took over                down               complete
3185  * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
3186  *                        |                     |                  ^
3187  *                        | CPU is back online  v   return workers |
3188  *                         ----------------> RELEASE --------------
3189  */
3190 
3191 /**
3192  * trustee_wait_event_timeout - timed event wait for trustee
3193  * @cond: condition to wait for
3194  * @timeout: timeout in jiffies
3195  *
3196  * wait_event_timeout() for trustee to use.  Handles locking and
3197  * checks for RELEASE request.
3198  *
3199  * CONTEXT:
3200  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3201  * multiple times.  To be used by trustee.
3202  *
3203  * RETURNS:
3204  * Positive indicating left time if @cond is satisfied, 0 if timed
3205  * out, -1 if canceled.
3206  */
3207 #define trustee_wait_event_timeout(cond, timeout) ({			\
3208 	long __ret = (timeout);						\
3209 	while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) &&	\
3210 	       __ret) {							\
3211 		spin_unlock_irq(&gcwq->lock);				\
3212 		__wait_event_timeout(gcwq->trustee_wait, (cond) ||	\
3213 			(gcwq->trustee_state == TRUSTEE_RELEASE),	\
3214 			__ret);						\
3215 		spin_lock_irq(&gcwq->lock);				\
3216 	}								\
3217 	gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret);		\
3218 })
3219 
3220 /**
3221  * trustee_wait_event - event wait for trustee
3222  * @cond: condition to wait for
3223  *
3224  * wait_event() for trustee to use.  Automatically handles locking and
3225  * checks for CANCEL request.
3226  *
3227  * CONTEXT:
3228  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3229  * multiple times.  To be used by trustee.
3230  *
3231  * RETURNS:
3232  * 0 if @cond is satisfied, -1 if canceled.
3233  */
3234 #define trustee_wait_event(cond) ({					\
3235 	long __ret1;							\
3236 	__ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3237 	__ret1 < 0 ? -1 : 0;						\
3238 })
3239 
3240 static int __cpuinit trustee_thread(void *__gcwq)
3241 {
3242 	struct global_cwq *gcwq = __gcwq;
3243 	struct worker *worker;
3244 	struct work_struct *work;
3245 	struct hlist_node *pos;
3246 	long rc;
3247 	int i;
3248 
3249 	BUG_ON(gcwq->cpu != smp_processor_id());
3250 
3251 	spin_lock_irq(&gcwq->lock);
3252 	/*
3253 	 * Claim the manager position and make all workers rogue.
3254 	 * Trustee must be bound to the target cpu and can't be
3255 	 * cancelled.
3256 	 */
3257 	BUG_ON(gcwq->cpu != smp_processor_id());
3258 	rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3259 	BUG_ON(rc < 0);
3260 
3261 	gcwq->flags |= GCWQ_MANAGING_WORKERS;
3262 
3263 	list_for_each_entry(worker, &gcwq->idle_list, entry)
3264 		worker->flags |= WORKER_ROGUE;
3265 
3266 	for_each_busy_worker(worker, i, pos, gcwq)
3267 		worker->flags |= WORKER_ROGUE;
3268 
3269 	/*
3270 	 * Call schedule() so that we cross rq->lock and thus can
3271 	 * guarantee sched callbacks see the rogue flag.  This is
3272 	 * necessary as scheduler callbacks may be invoked from other
3273 	 * cpus.
3274 	 */
3275 	spin_unlock_irq(&gcwq->lock);
3276 	schedule();
3277 	spin_lock_irq(&gcwq->lock);
3278 
3279 	/*
3280 	 * Sched callbacks are disabled now.  Zap nr_running.  After
3281 	 * this, nr_running stays zero and need_more_worker() and
3282 	 * keep_working() are always true as long as the worklist is
3283 	 * not empty.
3284 	 */
3285 	atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3286 
3287 	spin_unlock_irq(&gcwq->lock);
3288 	del_timer_sync(&gcwq->idle_timer);
3289 	spin_lock_irq(&gcwq->lock);
3290 
3291 	/*
3292 	 * We're now in charge.  Notify and proceed to drain.  We need
3293 	 * to keep the gcwq running during the whole CPU down
3294 	 * procedure as other cpu hotunplug callbacks may need to
3295 	 * flush currently running tasks.
3296 	 */
3297 	gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3298 	wake_up_all(&gcwq->trustee_wait);
3299 
3300 	/*
3301 	 * The original cpu is in the process of dying and may go away
3302 	 * anytime now.  When that happens, we and all workers would
3303 	 * be migrated to other cpus.  Try draining any left work.  We
3304 	 * want to get it over with ASAP - spam rescuers, wake up as
3305 	 * many idlers as necessary and create new ones till the
3306 	 * worklist is empty.  Note that if the gcwq is frozen, there
3307 	 * may be frozen works in freezeable cwqs.  Don't declare
3308 	 * completion while frozen.
3309 	 */
3310 	while (gcwq->nr_workers != gcwq->nr_idle ||
3311 	       gcwq->flags & GCWQ_FREEZING ||
3312 	       gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3313 		int nr_works = 0;
3314 
3315 		list_for_each_entry(work, &gcwq->worklist, entry) {
3316 			send_mayday(work);
3317 			nr_works++;
3318 		}
3319 
3320 		list_for_each_entry(worker, &gcwq->idle_list, entry) {
3321 			if (!nr_works--)
3322 				break;
3323 			wake_up_process(worker->task);
3324 		}
3325 
3326 		if (need_to_create_worker(gcwq)) {
3327 			spin_unlock_irq(&gcwq->lock);
3328 			worker = create_worker(gcwq, false);
3329 			spin_lock_irq(&gcwq->lock);
3330 			if (worker) {
3331 				worker->flags |= WORKER_ROGUE;
3332 				start_worker(worker);
3333 			}
3334 		}
3335 
3336 		/* give a breather */
3337 		if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3338 			break;
3339 	}
3340 
3341 	/*
3342 	 * Either all works have been scheduled and cpu is down, or
3343 	 * cpu down has already been canceled.  Wait for and butcher
3344 	 * all workers till we're canceled.
3345 	 */
3346 	do {
3347 		rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3348 		while (!list_empty(&gcwq->idle_list))
3349 			destroy_worker(list_first_entry(&gcwq->idle_list,
3350 							struct worker, entry));
3351 	} while (gcwq->nr_workers && rc >= 0);
3352 
3353 	/*
3354 	 * At this point, either draining has completed and no worker
3355 	 * is left, or cpu down has been canceled or the cpu is being
3356 	 * brought back up.  There shouldn't be any idle one left.
3357 	 * Tell the remaining busy ones to rebind once it finishes the
3358 	 * currently scheduled works by scheduling the rebind_work.
3359 	 */
3360 	WARN_ON(!list_empty(&gcwq->idle_list));
3361 
3362 	for_each_busy_worker(worker, i, pos, gcwq) {
3363 		struct work_struct *rebind_work = &worker->rebind_work;
3364 
3365 		/*
3366 		 * Rebind_work may race with future cpu hotplug
3367 		 * operations.  Use a separate flag to mark that
3368 		 * rebinding is scheduled.
3369 		 */
3370 		worker->flags |= WORKER_REBIND;
3371 		worker->flags &= ~WORKER_ROGUE;
3372 
3373 		/* queue rebind_work, wq doesn't matter, use the default one */
3374 		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3375 				     work_data_bits(rebind_work)))
3376 			continue;
3377 
3378 		debug_work_activate(rebind_work);
3379 		insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3380 			    worker->scheduled.next,
3381 			    work_color_to_flags(WORK_NO_COLOR));
3382 	}
3383 
3384 	/* relinquish manager role */
3385 	gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3386 
3387 	/* notify completion */
3388 	gcwq->trustee = NULL;
3389 	gcwq->trustee_state = TRUSTEE_DONE;
3390 	wake_up_all(&gcwq->trustee_wait);
3391 	spin_unlock_irq(&gcwq->lock);
3392 	return 0;
3393 }
3394 
3395 /**
3396  * wait_trustee_state - wait for trustee to enter the specified state
3397  * @gcwq: gcwq the trustee of interest belongs to
3398  * @state: target state to wait for
3399  *
3400  * Wait for the trustee to reach @state.  DONE is already matched.
3401  *
3402  * CONTEXT:
3403  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3404  * multiple times.  To be used by cpu_callback.
3405  */
3406 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3407 __releases(&gcwq->lock)
3408 __acquires(&gcwq->lock)
3409 {
3410 	if (!(gcwq->trustee_state == state ||
3411 	      gcwq->trustee_state == TRUSTEE_DONE)) {
3412 		spin_unlock_irq(&gcwq->lock);
3413 		__wait_event(gcwq->trustee_wait,
3414 			     gcwq->trustee_state == state ||
3415 			     gcwq->trustee_state == TRUSTEE_DONE);
3416 		spin_lock_irq(&gcwq->lock);
3417 	}
3418 }
3419 
3420 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3421 						unsigned long action,
3422 						void *hcpu)
3423 {
3424 	unsigned int cpu = (unsigned long)hcpu;
3425 	struct global_cwq *gcwq = get_gcwq(cpu);
3426 	struct task_struct *new_trustee = NULL;
3427 	struct worker *uninitialized_var(new_worker);
3428 	unsigned long flags;
3429 
3430 	action &= ~CPU_TASKS_FROZEN;
3431 
3432 	switch (action) {
3433 	case CPU_DOWN_PREPARE:
3434 		new_trustee = kthread_create(trustee_thread, gcwq,
3435 					     "workqueue_trustee/%d\n", cpu);
3436 		if (IS_ERR(new_trustee))
3437 			return notifier_from_errno(PTR_ERR(new_trustee));
3438 		kthread_bind(new_trustee, cpu);
3439 		/* fall through */
3440 	case CPU_UP_PREPARE:
3441 		BUG_ON(gcwq->first_idle);
3442 		new_worker = create_worker(gcwq, false);
3443 		if (!new_worker) {
3444 			if (new_trustee)
3445 				kthread_stop(new_trustee);
3446 			return NOTIFY_BAD;
3447 		}
3448 	}
3449 
3450 	/* some are called w/ irq disabled, don't disturb irq status */
3451 	spin_lock_irqsave(&gcwq->lock, flags);
3452 
3453 	switch (action) {
3454 	case CPU_DOWN_PREPARE:
3455 		/* initialize trustee and tell it to acquire the gcwq */
3456 		BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3457 		gcwq->trustee = new_trustee;
3458 		gcwq->trustee_state = TRUSTEE_START;
3459 		wake_up_process(gcwq->trustee);
3460 		wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3461 		/* fall through */
3462 	case CPU_UP_PREPARE:
3463 		BUG_ON(gcwq->first_idle);
3464 		gcwq->first_idle = new_worker;
3465 		break;
3466 
3467 	case CPU_DYING:
3468 		/*
3469 		 * Before this, the trustee and all workers except for
3470 		 * the ones which are still executing works from
3471 		 * before the last CPU down must be on the cpu.  After
3472 		 * this, they'll all be diasporas.
3473 		 */
3474 		gcwq->flags |= GCWQ_DISASSOCIATED;
3475 		break;
3476 
3477 	case CPU_POST_DEAD:
3478 		gcwq->trustee_state = TRUSTEE_BUTCHER;
3479 		/* fall through */
3480 	case CPU_UP_CANCELED:
3481 		destroy_worker(gcwq->first_idle);
3482 		gcwq->first_idle = NULL;
3483 		break;
3484 
3485 	case CPU_DOWN_FAILED:
3486 	case CPU_ONLINE:
3487 		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3488 		if (gcwq->trustee_state != TRUSTEE_DONE) {
3489 			gcwq->trustee_state = TRUSTEE_RELEASE;
3490 			wake_up_process(gcwq->trustee);
3491 			wait_trustee_state(gcwq, TRUSTEE_DONE);
3492 		}
3493 
3494 		/*
3495 		 * Trustee is done and there might be no worker left.
3496 		 * Put the first_idle in and request a real manager to
3497 		 * take a look.
3498 		 */
3499 		spin_unlock_irq(&gcwq->lock);
3500 		kthread_bind(gcwq->first_idle->task, cpu);
3501 		spin_lock_irq(&gcwq->lock);
3502 		gcwq->flags |= GCWQ_MANAGE_WORKERS;
3503 		start_worker(gcwq->first_idle);
3504 		gcwq->first_idle = NULL;
3505 		break;
3506 	}
3507 
3508 	spin_unlock_irqrestore(&gcwq->lock, flags);
3509 
3510 	return notifier_from_errno(0);
3511 }
3512 
3513 #ifdef CONFIG_SMP
3514 
3515 struct work_for_cpu {
3516 	struct completion completion;
3517 	long (*fn)(void *);
3518 	void *arg;
3519 	long ret;
3520 };
3521 
3522 static int do_work_for_cpu(void *_wfc)
3523 {
3524 	struct work_for_cpu *wfc = _wfc;
3525 	wfc->ret = wfc->fn(wfc->arg);
3526 	complete(&wfc->completion);
3527 	return 0;
3528 }
3529 
3530 /**
3531  * work_on_cpu - run a function in user context on a particular cpu
3532  * @cpu: the cpu to run on
3533  * @fn: the function to run
3534  * @arg: the function arg
3535  *
3536  * This will return the value @fn returns.
3537  * It is up to the caller to ensure that the cpu doesn't go offline.
3538  * The caller must not hold any locks which would prevent @fn from completing.
3539  */
3540 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3541 {
3542 	struct task_struct *sub_thread;
3543 	struct work_for_cpu wfc = {
3544 		.completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3545 		.fn = fn,
3546 		.arg = arg,
3547 	};
3548 
3549 	sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3550 	if (IS_ERR(sub_thread))
3551 		return PTR_ERR(sub_thread);
3552 	kthread_bind(sub_thread, cpu);
3553 	wake_up_process(sub_thread);
3554 	wait_for_completion(&wfc.completion);
3555 	return wfc.ret;
3556 }
3557 EXPORT_SYMBOL_GPL(work_on_cpu);
3558 #endif /* CONFIG_SMP */
3559 
3560 #ifdef CONFIG_FREEZER
3561 
3562 /**
3563  * freeze_workqueues_begin - begin freezing workqueues
3564  *
3565  * Start freezing workqueues.  After this function returns, all
3566  * freezeable workqueues will queue new works to their frozen_works
3567  * list instead of gcwq->worklist.
3568  *
3569  * CONTEXT:
3570  * Grabs and releases workqueue_lock and gcwq->lock's.
3571  */
3572 void freeze_workqueues_begin(void)
3573 {
3574 	unsigned int cpu;
3575 
3576 	spin_lock(&workqueue_lock);
3577 
3578 	BUG_ON(workqueue_freezing);
3579 	workqueue_freezing = true;
3580 
3581 	for_each_gcwq_cpu(cpu) {
3582 		struct global_cwq *gcwq = get_gcwq(cpu);
3583 		struct workqueue_struct *wq;
3584 
3585 		spin_lock_irq(&gcwq->lock);
3586 
3587 		BUG_ON(gcwq->flags & GCWQ_FREEZING);
3588 		gcwq->flags |= GCWQ_FREEZING;
3589 
3590 		list_for_each_entry(wq, &workqueues, list) {
3591 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3592 
3593 			if (cwq && wq->flags & WQ_FREEZEABLE)
3594 				cwq->max_active = 0;
3595 		}
3596 
3597 		spin_unlock_irq(&gcwq->lock);
3598 	}
3599 
3600 	spin_unlock(&workqueue_lock);
3601 }
3602 
3603 /**
3604  * freeze_workqueues_busy - are freezeable workqueues still busy?
3605  *
3606  * Check whether freezing is complete.  This function must be called
3607  * between freeze_workqueues_begin() and thaw_workqueues().
3608  *
3609  * CONTEXT:
3610  * Grabs and releases workqueue_lock.
3611  *
3612  * RETURNS:
3613  * %true if some freezeable workqueues are still busy.  %false if
3614  * freezing is complete.
3615  */
3616 bool freeze_workqueues_busy(void)
3617 {
3618 	unsigned int cpu;
3619 	bool busy = false;
3620 
3621 	spin_lock(&workqueue_lock);
3622 
3623 	BUG_ON(!workqueue_freezing);
3624 
3625 	for_each_gcwq_cpu(cpu) {
3626 		struct workqueue_struct *wq;
3627 		/*
3628 		 * nr_active is monotonically decreasing.  It's safe
3629 		 * to peek without lock.
3630 		 */
3631 		list_for_each_entry(wq, &workqueues, list) {
3632 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3633 
3634 			if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3635 				continue;
3636 
3637 			BUG_ON(cwq->nr_active < 0);
3638 			if (cwq->nr_active) {
3639 				busy = true;
3640 				goto out_unlock;
3641 			}
3642 		}
3643 	}
3644 out_unlock:
3645 	spin_unlock(&workqueue_lock);
3646 	return busy;
3647 }
3648 
3649 /**
3650  * thaw_workqueues - thaw workqueues
3651  *
3652  * Thaw workqueues.  Normal queueing is restored and all collected
3653  * frozen works are transferred to their respective gcwq worklists.
3654  *
3655  * CONTEXT:
3656  * Grabs and releases workqueue_lock and gcwq->lock's.
3657  */
3658 void thaw_workqueues(void)
3659 {
3660 	unsigned int cpu;
3661 
3662 	spin_lock(&workqueue_lock);
3663 
3664 	if (!workqueue_freezing)
3665 		goto out_unlock;
3666 
3667 	for_each_gcwq_cpu(cpu) {
3668 		struct global_cwq *gcwq = get_gcwq(cpu);
3669 		struct workqueue_struct *wq;
3670 
3671 		spin_lock_irq(&gcwq->lock);
3672 
3673 		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3674 		gcwq->flags &= ~GCWQ_FREEZING;
3675 
3676 		list_for_each_entry(wq, &workqueues, list) {
3677 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3678 
3679 			if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3680 				continue;
3681 
3682 			/* restore max_active and repopulate worklist */
3683 			cwq->max_active = wq->saved_max_active;
3684 
3685 			while (!list_empty(&cwq->delayed_works) &&
3686 			       cwq->nr_active < cwq->max_active)
3687 				cwq_activate_first_delayed(cwq);
3688 		}
3689 
3690 		wake_up_worker(gcwq);
3691 
3692 		spin_unlock_irq(&gcwq->lock);
3693 	}
3694 
3695 	workqueue_freezing = false;
3696 out_unlock:
3697 	spin_unlock(&workqueue_lock);
3698 }
3699 #endif /* CONFIG_FREEZER */
3700 
3701 static int __init init_workqueues(void)
3702 {
3703 	unsigned int cpu;
3704 	int i;
3705 
3706 	cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
3707 
3708 	/* initialize gcwqs */
3709 	for_each_gcwq_cpu(cpu) {
3710 		struct global_cwq *gcwq = get_gcwq(cpu);
3711 
3712 		spin_lock_init(&gcwq->lock);
3713 		INIT_LIST_HEAD(&gcwq->worklist);
3714 		gcwq->cpu = cpu;
3715 		gcwq->flags |= GCWQ_DISASSOCIATED;
3716 
3717 		INIT_LIST_HEAD(&gcwq->idle_list);
3718 		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3719 			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3720 
3721 		init_timer_deferrable(&gcwq->idle_timer);
3722 		gcwq->idle_timer.function = idle_worker_timeout;
3723 		gcwq->idle_timer.data = (unsigned long)gcwq;
3724 
3725 		setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3726 			    (unsigned long)gcwq);
3727 
3728 		ida_init(&gcwq->worker_ida);
3729 
3730 		gcwq->trustee_state = TRUSTEE_DONE;
3731 		init_waitqueue_head(&gcwq->trustee_wait);
3732 	}
3733 
3734 	/* create the initial worker */
3735 	for_each_online_gcwq_cpu(cpu) {
3736 		struct global_cwq *gcwq = get_gcwq(cpu);
3737 		struct worker *worker;
3738 
3739 		if (cpu != WORK_CPU_UNBOUND)
3740 			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3741 		worker = create_worker(gcwq, true);
3742 		BUG_ON(!worker);
3743 		spin_lock_irq(&gcwq->lock);
3744 		start_worker(worker);
3745 		spin_unlock_irq(&gcwq->lock);
3746 	}
3747 
3748 	system_wq = alloc_workqueue("events", 0, 0);
3749 	system_long_wq = alloc_workqueue("events_long", 0, 0);
3750 	system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3751 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3752 					    WQ_UNBOUND_MAX_ACTIVE);
3753 	BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3754 	       !system_unbound_wq);
3755 	return 0;
3756 }
3757 early_initcall(init_workqueues);
3758