1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There is one worker pool for each CPU and 20 * one extra for works which are better served by workers which are 21 * not bound to any specific CPU. 22 * 23 * Please read Documentation/workqueue.txt for details. 24 */ 25 26 #include <linux/module.h> 27 #include <linux/kernel.h> 28 #include <linux/sched.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/completion.h> 32 #include <linux/workqueue.h> 33 #include <linux/slab.h> 34 #include <linux/cpu.h> 35 #include <linux/notifier.h> 36 #include <linux/kthread.h> 37 #include <linux/hardirq.h> 38 #include <linux/mempolicy.h> 39 #include <linux/freezer.h> 40 #include <linux/kallsyms.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 45 #include "workqueue_sched.h" 46 47 enum { 48 /* global_cwq flags */ 49 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 50 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */ 51 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 52 GCWQ_FREEZING = 1 << 3, /* freeze in progress */ 53 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */ 54 55 /* worker flags */ 56 WORKER_STARTED = 1 << 0, /* started */ 57 WORKER_DIE = 1 << 1, /* die die die */ 58 WORKER_IDLE = 1 << 2, /* is idle */ 59 WORKER_PREP = 1 << 3, /* preparing to run works */ 60 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */ 61 WORKER_REBIND = 1 << 5, /* mom is home, come back */ 62 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 63 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 64 65 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND | 66 WORKER_CPU_INTENSIVE | WORKER_UNBOUND, 67 68 /* gcwq->trustee_state */ 69 TRUSTEE_START = 0, /* start */ 70 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */ 71 TRUSTEE_BUTCHER = 2, /* butcher workers */ 72 TRUSTEE_RELEASE = 3, /* release workers */ 73 TRUSTEE_DONE = 4, /* trustee is done */ 74 75 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 76 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER, 77 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1, 78 79 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 80 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 81 82 MAYDAY_INITIAL_TIMEOUT = HZ / 100, /* call for help after 10ms */ 83 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 84 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 85 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */ 86 87 /* 88 * Rescue workers are used only on emergencies and shared by 89 * all cpus. Give -20. 90 */ 91 RESCUER_NICE_LEVEL = -20, 92 }; 93 94 /* 95 * Structure fields follow one of the following exclusion rules. 96 * 97 * I: Modifiable by initialization/destruction paths and read-only for 98 * everyone else. 99 * 100 * P: Preemption protected. Disabling preemption is enough and should 101 * only be modified and accessed from the local cpu. 102 * 103 * L: gcwq->lock protected. Access with gcwq->lock held. 104 * 105 * X: During normal operation, modification requires gcwq->lock and 106 * should be done only from local cpu. Either disabling preemption 107 * on local cpu or grabbing gcwq->lock is enough for read access. 108 * If GCWQ_DISASSOCIATED is set, it's identical to L. 109 * 110 * F: wq->flush_mutex protected. 111 * 112 * W: workqueue_lock protected. 113 */ 114 115 struct global_cwq; 116 117 /* 118 * The poor guys doing the actual heavy lifting. All on-duty workers 119 * are either serving the manager role, on idle list or on busy hash. 120 */ 121 struct worker { 122 /* on idle list while idle, on busy hash table while busy */ 123 union { 124 struct list_head entry; /* L: while idle */ 125 struct hlist_node hentry; /* L: while busy */ 126 }; 127 128 struct work_struct *current_work; /* L: work being processed */ 129 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */ 130 struct list_head scheduled; /* L: scheduled works */ 131 struct task_struct *task; /* I: worker task */ 132 struct global_cwq *gcwq; /* I: the associated gcwq */ 133 /* 64 bytes boundary on 64bit, 32 on 32bit */ 134 unsigned long last_active; /* L: last active timestamp */ 135 unsigned int flags; /* X: flags */ 136 int id; /* I: worker id */ 137 struct work_struct rebind_work; /* L: rebind worker to cpu */ 138 }; 139 140 /* 141 * Global per-cpu workqueue. There's one and only one for each cpu 142 * and all works are queued and processed here regardless of their 143 * target workqueues. 144 */ 145 struct global_cwq { 146 spinlock_t lock; /* the gcwq lock */ 147 struct list_head worklist; /* L: list of pending works */ 148 unsigned int cpu; /* I: the associated cpu */ 149 unsigned int flags; /* L: GCWQ_* flags */ 150 151 int nr_workers; /* L: total number of workers */ 152 int nr_idle; /* L: currently idle ones */ 153 154 /* workers are chained either in the idle_list or busy_hash */ 155 struct list_head idle_list; /* X: list of idle workers */ 156 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE]; 157 /* L: hash of busy workers */ 158 159 struct timer_list idle_timer; /* L: worker idle timeout */ 160 struct timer_list mayday_timer; /* L: SOS timer for dworkers */ 161 162 struct ida worker_ida; /* L: for worker IDs */ 163 164 struct task_struct *trustee; /* L: for gcwq shutdown */ 165 unsigned int trustee_state; /* L: trustee state */ 166 wait_queue_head_t trustee_wait; /* trustee wait */ 167 struct worker *first_idle; /* L: first idle worker */ 168 } ____cacheline_aligned_in_smp; 169 170 /* 171 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of 172 * work_struct->data are used for flags and thus cwqs need to be 173 * aligned at two's power of the number of flag bits. 174 */ 175 struct cpu_workqueue_struct { 176 struct global_cwq *gcwq; /* I: the associated gcwq */ 177 struct workqueue_struct *wq; /* I: the owning workqueue */ 178 int work_color; /* L: current color */ 179 int flush_color; /* L: flushing color */ 180 int nr_in_flight[WORK_NR_COLORS]; 181 /* L: nr of in_flight works */ 182 int nr_active; /* L: nr of active works */ 183 int max_active; /* L: max active works */ 184 struct list_head delayed_works; /* L: delayed works */ 185 }; 186 187 /* 188 * Structure used to wait for workqueue flush. 189 */ 190 struct wq_flusher { 191 struct list_head list; /* F: list of flushers */ 192 int flush_color; /* F: flush color waiting for */ 193 struct completion done; /* flush completion */ 194 }; 195 196 /* 197 * All cpumasks are assumed to be always set on UP and thus can't be 198 * used to determine whether there's something to be done. 199 */ 200 #ifdef CONFIG_SMP 201 typedef cpumask_var_t mayday_mask_t; 202 #define mayday_test_and_set_cpu(cpu, mask) \ 203 cpumask_test_and_set_cpu((cpu), (mask)) 204 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask)) 205 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask)) 206 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp)) 207 #define free_mayday_mask(mask) free_cpumask_var((mask)) 208 #else 209 typedef unsigned long mayday_mask_t; 210 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask)) 211 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask)) 212 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask)) 213 #define alloc_mayday_mask(maskp, gfp) true 214 #define free_mayday_mask(mask) do { } while (0) 215 #endif 216 217 /* 218 * The externally visible workqueue abstraction is an array of 219 * per-CPU workqueues: 220 */ 221 struct workqueue_struct { 222 unsigned int flags; /* I: WQ_* flags */ 223 union { 224 struct cpu_workqueue_struct __percpu *pcpu; 225 struct cpu_workqueue_struct *single; 226 unsigned long v; 227 } cpu_wq; /* I: cwq's */ 228 struct list_head list; /* W: list of all workqueues */ 229 230 struct mutex flush_mutex; /* protects wq flushing */ 231 int work_color; /* F: current work color */ 232 int flush_color; /* F: current flush color */ 233 atomic_t nr_cwqs_to_flush; /* flush in progress */ 234 struct wq_flusher *first_flusher; /* F: first flusher */ 235 struct list_head flusher_queue; /* F: flush waiters */ 236 struct list_head flusher_overflow; /* F: flush overflow list */ 237 238 mayday_mask_t mayday_mask; /* cpus requesting rescue */ 239 struct worker *rescuer; /* I: rescue worker */ 240 241 int saved_max_active; /* W: saved cwq max_active */ 242 const char *name; /* I: workqueue name */ 243 #ifdef CONFIG_LOCKDEP 244 struct lockdep_map lockdep_map; 245 #endif 246 }; 247 248 struct workqueue_struct *system_wq __read_mostly; 249 struct workqueue_struct *system_long_wq __read_mostly; 250 struct workqueue_struct *system_nrt_wq __read_mostly; 251 struct workqueue_struct *system_unbound_wq __read_mostly; 252 EXPORT_SYMBOL_GPL(system_wq); 253 EXPORT_SYMBOL_GPL(system_long_wq); 254 EXPORT_SYMBOL_GPL(system_nrt_wq); 255 EXPORT_SYMBOL_GPL(system_unbound_wq); 256 257 #define CREATE_TRACE_POINTS 258 #include <trace/events/workqueue.h> 259 260 #define for_each_busy_worker(worker, i, pos, gcwq) \ 261 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \ 262 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry) 263 264 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask, 265 unsigned int sw) 266 { 267 if (cpu < nr_cpu_ids) { 268 if (sw & 1) { 269 cpu = cpumask_next(cpu, mask); 270 if (cpu < nr_cpu_ids) 271 return cpu; 272 } 273 if (sw & 2) 274 return WORK_CPU_UNBOUND; 275 } 276 return WORK_CPU_NONE; 277 } 278 279 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask, 280 struct workqueue_struct *wq) 281 { 282 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2); 283 } 284 285 /* 286 * CPU iterators 287 * 288 * An extra gcwq is defined for an invalid cpu number 289 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any 290 * specific CPU. The following iterators are similar to 291 * for_each_*_cpu() iterators but also considers the unbound gcwq. 292 * 293 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND 294 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND 295 * for_each_cwq_cpu() : possible CPUs for bound workqueues, 296 * WORK_CPU_UNBOUND for unbound workqueues 297 */ 298 #define for_each_gcwq_cpu(cpu) \ 299 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \ 300 (cpu) < WORK_CPU_NONE; \ 301 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3)) 302 303 #define for_each_online_gcwq_cpu(cpu) \ 304 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \ 305 (cpu) < WORK_CPU_NONE; \ 306 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3)) 307 308 #define for_each_cwq_cpu(cpu, wq) \ 309 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \ 310 (cpu) < WORK_CPU_NONE; \ 311 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq))) 312 313 #ifdef CONFIG_DEBUG_OBJECTS_WORK 314 315 static struct debug_obj_descr work_debug_descr; 316 317 /* 318 * fixup_init is called when: 319 * - an active object is initialized 320 */ 321 static int work_fixup_init(void *addr, enum debug_obj_state state) 322 { 323 struct work_struct *work = addr; 324 325 switch (state) { 326 case ODEBUG_STATE_ACTIVE: 327 cancel_work_sync(work); 328 debug_object_init(work, &work_debug_descr); 329 return 1; 330 default: 331 return 0; 332 } 333 } 334 335 /* 336 * fixup_activate is called when: 337 * - an active object is activated 338 * - an unknown object is activated (might be a statically initialized object) 339 */ 340 static int work_fixup_activate(void *addr, enum debug_obj_state state) 341 { 342 struct work_struct *work = addr; 343 344 switch (state) { 345 346 case ODEBUG_STATE_NOTAVAILABLE: 347 /* 348 * This is not really a fixup. The work struct was 349 * statically initialized. We just make sure that it 350 * is tracked in the object tracker. 351 */ 352 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 353 debug_object_init(work, &work_debug_descr); 354 debug_object_activate(work, &work_debug_descr); 355 return 0; 356 } 357 WARN_ON_ONCE(1); 358 return 0; 359 360 case ODEBUG_STATE_ACTIVE: 361 WARN_ON(1); 362 363 default: 364 return 0; 365 } 366 } 367 368 /* 369 * fixup_free is called when: 370 * - an active object is freed 371 */ 372 static int work_fixup_free(void *addr, enum debug_obj_state state) 373 { 374 struct work_struct *work = addr; 375 376 switch (state) { 377 case ODEBUG_STATE_ACTIVE: 378 cancel_work_sync(work); 379 debug_object_free(work, &work_debug_descr); 380 return 1; 381 default: 382 return 0; 383 } 384 } 385 386 static struct debug_obj_descr work_debug_descr = { 387 .name = "work_struct", 388 .fixup_init = work_fixup_init, 389 .fixup_activate = work_fixup_activate, 390 .fixup_free = work_fixup_free, 391 }; 392 393 static inline void debug_work_activate(struct work_struct *work) 394 { 395 debug_object_activate(work, &work_debug_descr); 396 } 397 398 static inline void debug_work_deactivate(struct work_struct *work) 399 { 400 debug_object_deactivate(work, &work_debug_descr); 401 } 402 403 void __init_work(struct work_struct *work, int onstack) 404 { 405 if (onstack) 406 debug_object_init_on_stack(work, &work_debug_descr); 407 else 408 debug_object_init(work, &work_debug_descr); 409 } 410 EXPORT_SYMBOL_GPL(__init_work); 411 412 void destroy_work_on_stack(struct work_struct *work) 413 { 414 debug_object_free(work, &work_debug_descr); 415 } 416 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 417 418 #else 419 static inline void debug_work_activate(struct work_struct *work) { } 420 static inline void debug_work_deactivate(struct work_struct *work) { } 421 #endif 422 423 /* Serializes the accesses to the list of workqueues. */ 424 static DEFINE_SPINLOCK(workqueue_lock); 425 static LIST_HEAD(workqueues); 426 static bool workqueue_freezing; /* W: have wqs started freezing? */ 427 428 /* 429 * The almighty global cpu workqueues. nr_running is the only field 430 * which is expected to be used frequently by other cpus via 431 * try_to_wake_up(). Put it in a separate cacheline. 432 */ 433 static DEFINE_PER_CPU(struct global_cwq, global_cwq); 434 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running); 435 436 /* 437 * Global cpu workqueue and nr_running counter for unbound gcwq. The 438 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its 439 * workers have WORKER_UNBOUND set. 440 */ 441 static struct global_cwq unbound_global_cwq; 442 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */ 443 444 static int worker_thread(void *__worker); 445 446 static struct global_cwq *get_gcwq(unsigned int cpu) 447 { 448 if (cpu != WORK_CPU_UNBOUND) 449 return &per_cpu(global_cwq, cpu); 450 else 451 return &unbound_global_cwq; 452 } 453 454 static atomic_t *get_gcwq_nr_running(unsigned int cpu) 455 { 456 if (cpu != WORK_CPU_UNBOUND) 457 return &per_cpu(gcwq_nr_running, cpu); 458 else 459 return &unbound_gcwq_nr_running; 460 } 461 462 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu, 463 struct workqueue_struct *wq) 464 { 465 if (!(wq->flags & WQ_UNBOUND)) { 466 if (likely(cpu < nr_cpu_ids)) { 467 #ifdef CONFIG_SMP 468 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu); 469 #else 470 return wq->cpu_wq.single; 471 #endif 472 } 473 } else if (likely(cpu == WORK_CPU_UNBOUND)) 474 return wq->cpu_wq.single; 475 return NULL; 476 } 477 478 static unsigned int work_color_to_flags(int color) 479 { 480 return color << WORK_STRUCT_COLOR_SHIFT; 481 } 482 483 static int get_work_color(struct work_struct *work) 484 { 485 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 486 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 487 } 488 489 static int work_next_color(int color) 490 { 491 return (color + 1) % WORK_NR_COLORS; 492 } 493 494 /* 495 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the 496 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is 497 * cleared and the work data contains the cpu number it was last on. 498 * 499 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the 500 * cwq, cpu or clear work->data. These functions should only be 501 * called while the work is owned - ie. while the PENDING bit is set. 502 * 503 * get_work_[g]cwq() can be used to obtain the gcwq or cwq 504 * corresponding to a work. gcwq is available once the work has been 505 * queued anywhere after initialization. cwq is available only from 506 * queueing until execution starts. 507 */ 508 static inline void set_work_data(struct work_struct *work, unsigned long data, 509 unsigned long flags) 510 { 511 BUG_ON(!work_pending(work)); 512 atomic_long_set(&work->data, data | flags | work_static(work)); 513 } 514 515 static void set_work_cwq(struct work_struct *work, 516 struct cpu_workqueue_struct *cwq, 517 unsigned long extra_flags) 518 { 519 set_work_data(work, (unsigned long)cwq, 520 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags); 521 } 522 523 static void set_work_cpu(struct work_struct *work, unsigned int cpu) 524 { 525 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING); 526 } 527 528 static void clear_work_data(struct work_struct *work) 529 { 530 set_work_data(work, WORK_STRUCT_NO_CPU, 0); 531 } 532 533 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work) 534 { 535 unsigned long data = atomic_long_read(&work->data); 536 537 if (data & WORK_STRUCT_CWQ) 538 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 539 else 540 return NULL; 541 } 542 543 static struct global_cwq *get_work_gcwq(struct work_struct *work) 544 { 545 unsigned long data = atomic_long_read(&work->data); 546 unsigned int cpu; 547 548 if (data & WORK_STRUCT_CWQ) 549 return ((struct cpu_workqueue_struct *) 550 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq; 551 552 cpu = data >> WORK_STRUCT_FLAG_BITS; 553 if (cpu == WORK_CPU_NONE) 554 return NULL; 555 556 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND); 557 return get_gcwq(cpu); 558 } 559 560 /* 561 * Policy functions. These define the policies on how the global 562 * worker pool is managed. Unless noted otherwise, these functions 563 * assume that they're being called with gcwq->lock held. 564 */ 565 566 static bool __need_more_worker(struct global_cwq *gcwq) 567 { 568 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) || 569 gcwq->flags & GCWQ_HIGHPRI_PENDING; 570 } 571 572 /* 573 * Need to wake up a worker? Called from anything but currently 574 * running workers. 575 */ 576 static bool need_more_worker(struct global_cwq *gcwq) 577 { 578 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq); 579 } 580 581 /* Can I start working? Called from busy but !running workers. */ 582 static bool may_start_working(struct global_cwq *gcwq) 583 { 584 return gcwq->nr_idle; 585 } 586 587 /* Do I need to keep working? Called from currently running workers. */ 588 static bool keep_working(struct global_cwq *gcwq) 589 { 590 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); 591 592 return !list_empty(&gcwq->worklist) && 593 (atomic_read(nr_running) <= 1 || 594 gcwq->flags & GCWQ_HIGHPRI_PENDING); 595 } 596 597 /* Do we need a new worker? Called from manager. */ 598 static bool need_to_create_worker(struct global_cwq *gcwq) 599 { 600 return need_more_worker(gcwq) && !may_start_working(gcwq); 601 } 602 603 /* Do I need to be the manager? */ 604 static bool need_to_manage_workers(struct global_cwq *gcwq) 605 { 606 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS; 607 } 608 609 /* Do we have too many workers and should some go away? */ 610 static bool too_many_workers(struct global_cwq *gcwq) 611 { 612 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS; 613 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */ 614 int nr_busy = gcwq->nr_workers - nr_idle; 615 616 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 617 } 618 619 /* 620 * Wake up functions. 621 */ 622 623 /* Return the first worker. Safe with preemption disabled */ 624 static struct worker *first_worker(struct global_cwq *gcwq) 625 { 626 if (unlikely(list_empty(&gcwq->idle_list))) 627 return NULL; 628 629 return list_first_entry(&gcwq->idle_list, struct worker, entry); 630 } 631 632 /** 633 * wake_up_worker - wake up an idle worker 634 * @gcwq: gcwq to wake worker for 635 * 636 * Wake up the first idle worker of @gcwq. 637 * 638 * CONTEXT: 639 * spin_lock_irq(gcwq->lock). 640 */ 641 static void wake_up_worker(struct global_cwq *gcwq) 642 { 643 struct worker *worker = first_worker(gcwq); 644 645 if (likely(worker)) 646 wake_up_process(worker->task); 647 } 648 649 /** 650 * wq_worker_waking_up - a worker is waking up 651 * @task: task waking up 652 * @cpu: CPU @task is waking up to 653 * 654 * This function is called during try_to_wake_up() when a worker is 655 * being awoken. 656 * 657 * CONTEXT: 658 * spin_lock_irq(rq->lock) 659 */ 660 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu) 661 { 662 struct worker *worker = kthread_data(task); 663 664 if (!(worker->flags & WORKER_NOT_RUNNING)) 665 atomic_inc(get_gcwq_nr_running(cpu)); 666 } 667 668 /** 669 * wq_worker_sleeping - a worker is going to sleep 670 * @task: task going to sleep 671 * @cpu: CPU in question, must be the current CPU number 672 * 673 * This function is called during schedule() when a busy worker is 674 * going to sleep. Worker on the same cpu can be woken up by 675 * returning pointer to its task. 676 * 677 * CONTEXT: 678 * spin_lock_irq(rq->lock) 679 * 680 * RETURNS: 681 * Worker task on @cpu to wake up, %NULL if none. 682 */ 683 struct task_struct *wq_worker_sleeping(struct task_struct *task, 684 unsigned int cpu) 685 { 686 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 687 struct global_cwq *gcwq = get_gcwq(cpu); 688 atomic_t *nr_running = get_gcwq_nr_running(cpu); 689 690 if (worker->flags & WORKER_NOT_RUNNING) 691 return NULL; 692 693 /* this can only happen on the local cpu */ 694 BUG_ON(cpu != raw_smp_processor_id()); 695 696 /* 697 * The counterpart of the following dec_and_test, implied mb, 698 * worklist not empty test sequence is in insert_work(). 699 * Please read comment there. 700 * 701 * NOT_RUNNING is clear. This means that trustee is not in 702 * charge and we're running on the local cpu w/ rq lock held 703 * and preemption disabled, which in turn means that none else 704 * could be manipulating idle_list, so dereferencing idle_list 705 * without gcwq lock is safe. 706 */ 707 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist)) 708 to_wakeup = first_worker(gcwq); 709 return to_wakeup ? to_wakeup->task : NULL; 710 } 711 712 /** 713 * worker_set_flags - set worker flags and adjust nr_running accordingly 714 * @worker: self 715 * @flags: flags to set 716 * @wakeup: wakeup an idle worker if necessary 717 * 718 * Set @flags in @worker->flags and adjust nr_running accordingly. If 719 * nr_running becomes zero and @wakeup is %true, an idle worker is 720 * woken up. 721 * 722 * CONTEXT: 723 * spin_lock_irq(gcwq->lock) 724 */ 725 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 726 bool wakeup) 727 { 728 struct global_cwq *gcwq = worker->gcwq; 729 730 WARN_ON_ONCE(worker->task != current); 731 732 /* 733 * If transitioning into NOT_RUNNING, adjust nr_running and 734 * wake up an idle worker as necessary if requested by 735 * @wakeup. 736 */ 737 if ((flags & WORKER_NOT_RUNNING) && 738 !(worker->flags & WORKER_NOT_RUNNING)) { 739 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); 740 741 if (wakeup) { 742 if (atomic_dec_and_test(nr_running) && 743 !list_empty(&gcwq->worklist)) 744 wake_up_worker(gcwq); 745 } else 746 atomic_dec(nr_running); 747 } 748 749 worker->flags |= flags; 750 } 751 752 /** 753 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 754 * @worker: self 755 * @flags: flags to clear 756 * 757 * Clear @flags in @worker->flags and adjust nr_running accordingly. 758 * 759 * CONTEXT: 760 * spin_lock_irq(gcwq->lock) 761 */ 762 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 763 { 764 struct global_cwq *gcwq = worker->gcwq; 765 unsigned int oflags = worker->flags; 766 767 WARN_ON_ONCE(worker->task != current); 768 769 worker->flags &= ~flags; 770 771 /* if transitioning out of NOT_RUNNING, increment nr_running */ 772 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 773 if (!(worker->flags & WORKER_NOT_RUNNING)) 774 atomic_inc(get_gcwq_nr_running(gcwq->cpu)); 775 } 776 777 /** 778 * busy_worker_head - return the busy hash head for a work 779 * @gcwq: gcwq of interest 780 * @work: work to be hashed 781 * 782 * Return hash head of @gcwq for @work. 783 * 784 * CONTEXT: 785 * spin_lock_irq(gcwq->lock). 786 * 787 * RETURNS: 788 * Pointer to the hash head. 789 */ 790 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq, 791 struct work_struct *work) 792 { 793 const int base_shift = ilog2(sizeof(struct work_struct)); 794 unsigned long v = (unsigned long)work; 795 796 /* simple shift and fold hash, do we need something better? */ 797 v >>= base_shift; 798 v += v >> BUSY_WORKER_HASH_ORDER; 799 v &= BUSY_WORKER_HASH_MASK; 800 801 return &gcwq->busy_hash[v]; 802 } 803 804 /** 805 * __find_worker_executing_work - find worker which is executing a work 806 * @gcwq: gcwq of interest 807 * @bwh: hash head as returned by busy_worker_head() 808 * @work: work to find worker for 809 * 810 * Find a worker which is executing @work on @gcwq. @bwh should be 811 * the hash head obtained by calling busy_worker_head() with the same 812 * work. 813 * 814 * CONTEXT: 815 * spin_lock_irq(gcwq->lock). 816 * 817 * RETURNS: 818 * Pointer to worker which is executing @work if found, NULL 819 * otherwise. 820 */ 821 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq, 822 struct hlist_head *bwh, 823 struct work_struct *work) 824 { 825 struct worker *worker; 826 struct hlist_node *tmp; 827 828 hlist_for_each_entry(worker, tmp, bwh, hentry) 829 if (worker->current_work == work) 830 return worker; 831 return NULL; 832 } 833 834 /** 835 * find_worker_executing_work - find worker which is executing a work 836 * @gcwq: gcwq of interest 837 * @work: work to find worker for 838 * 839 * Find a worker which is executing @work on @gcwq. This function is 840 * identical to __find_worker_executing_work() except that this 841 * function calculates @bwh itself. 842 * 843 * CONTEXT: 844 * spin_lock_irq(gcwq->lock). 845 * 846 * RETURNS: 847 * Pointer to worker which is executing @work if found, NULL 848 * otherwise. 849 */ 850 static struct worker *find_worker_executing_work(struct global_cwq *gcwq, 851 struct work_struct *work) 852 { 853 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work), 854 work); 855 } 856 857 /** 858 * gcwq_determine_ins_pos - find insertion position 859 * @gcwq: gcwq of interest 860 * @cwq: cwq a work is being queued for 861 * 862 * A work for @cwq is about to be queued on @gcwq, determine insertion 863 * position for the work. If @cwq is for HIGHPRI wq, the work is 864 * queued at the head of the queue but in FIFO order with respect to 865 * other HIGHPRI works; otherwise, at the end of the queue. This 866 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that 867 * there are HIGHPRI works pending. 868 * 869 * CONTEXT: 870 * spin_lock_irq(gcwq->lock). 871 * 872 * RETURNS: 873 * Pointer to inserstion position. 874 */ 875 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq, 876 struct cpu_workqueue_struct *cwq) 877 { 878 struct work_struct *twork; 879 880 if (likely(!(cwq->wq->flags & WQ_HIGHPRI))) 881 return &gcwq->worklist; 882 883 list_for_each_entry(twork, &gcwq->worklist, entry) { 884 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork); 885 886 if (!(tcwq->wq->flags & WQ_HIGHPRI)) 887 break; 888 } 889 890 gcwq->flags |= GCWQ_HIGHPRI_PENDING; 891 return &twork->entry; 892 } 893 894 /** 895 * insert_work - insert a work into gcwq 896 * @cwq: cwq @work belongs to 897 * @work: work to insert 898 * @head: insertion point 899 * @extra_flags: extra WORK_STRUCT_* flags to set 900 * 901 * Insert @work which belongs to @cwq into @gcwq after @head. 902 * @extra_flags is or'd to work_struct flags. 903 * 904 * CONTEXT: 905 * spin_lock_irq(gcwq->lock). 906 */ 907 static void insert_work(struct cpu_workqueue_struct *cwq, 908 struct work_struct *work, struct list_head *head, 909 unsigned int extra_flags) 910 { 911 struct global_cwq *gcwq = cwq->gcwq; 912 913 /* we own @work, set data and link */ 914 set_work_cwq(work, cwq, extra_flags); 915 916 /* 917 * Ensure that we get the right work->data if we see the 918 * result of list_add() below, see try_to_grab_pending(). 919 */ 920 smp_wmb(); 921 922 list_add_tail(&work->entry, head); 923 924 /* 925 * Ensure either worker_sched_deactivated() sees the above 926 * list_add_tail() or we see zero nr_running to avoid workers 927 * lying around lazily while there are works to be processed. 928 */ 929 smp_mb(); 930 931 if (__need_more_worker(gcwq)) 932 wake_up_worker(gcwq); 933 } 934 935 /* 936 * Test whether @work is being queued from another work executing on the 937 * same workqueue. This is rather expensive and should only be used from 938 * cold paths. 939 */ 940 static bool is_chained_work(struct workqueue_struct *wq) 941 { 942 unsigned long flags; 943 unsigned int cpu; 944 945 for_each_gcwq_cpu(cpu) { 946 struct global_cwq *gcwq = get_gcwq(cpu); 947 struct worker *worker; 948 struct hlist_node *pos; 949 int i; 950 951 spin_lock_irqsave(&gcwq->lock, flags); 952 for_each_busy_worker(worker, i, pos, gcwq) { 953 if (worker->task != current) 954 continue; 955 spin_unlock_irqrestore(&gcwq->lock, flags); 956 /* 957 * I'm @worker, no locking necessary. See if @work 958 * is headed to the same workqueue. 959 */ 960 return worker->current_cwq->wq == wq; 961 } 962 spin_unlock_irqrestore(&gcwq->lock, flags); 963 } 964 return false; 965 } 966 967 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq, 968 struct work_struct *work) 969 { 970 struct global_cwq *gcwq; 971 struct cpu_workqueue_struct *cwq; 972 struct list_head *worklist; 973 unsigned int work_flags; 974 unsigned long flags; 975 976 debug_work_activate(work); 977 978 /* if dying, only works from the same workqueue are allowed */ 979 if (unlikely(wq->flags & WQ_DYING) && 980 WARN_ON_ONCE(!is_chained_work(wq))) 981 return; 982 983 /* determine gcwq to use */ 984 if (!(wq->flags & WQ_UNBOUND)) { 985 struct global_cwq *last_gcwq; 986 987 if (unlikely(cpu == WORK_CPU_UNBOUND)) 988 cpu = raw_smp_processor_id(); 989 990 /* 991 * It's multi cpu. If @wq is non-reentrant and @work 992 * was previously on a different cpu, it might still 993 * be running there, in which case the work needs to 994 * be queued on that cpu to guarantee non-reentrance. 995 */ 996 gcwq = get_gcwq(cpu); 997 if (wq->flags & WQ_NON_REENTRANT && 998 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { 999 struct worker *worker; 1000 1001 spin_lock_irqsave(&last_gcwq->lock, flags); 1002 1003 worker = find_worker_executing_work(last_gcwq, work); 1004 1005 if (worker && worker->current_cwq->wq == wq) 1006 gcwq = last_gcwq; 1007 else { 1008 /* meh... not running there, queue here */ 1009 spin_unlock_irqrestore(&last_gcwq->lock, flags); 1010 spin_lock_irqsave(&gcwq->lock, flags); 1011 } 1012 } else 1013 spin_lock_irqsave(&gcwq->lock, flags); 1014 } else { 1015 gcwq = get_gcwq(WORK_CPU_UNBOUND); 1016 spin_lock_irqsave(&gcwq->lock, flags); 1017 } 1018 1019 /* gcwq determined, get cwq and queue */ 1020 cwq = get_cwq(gcwq->cpu, wq); 1021 trace_workqueue_queue_work(cpu, cwq, work); 1022 1023 BUG_ON(!list_empty(&work->entry)); 1024 1025 cwq->nr_in_flight[cwq->work_color]++; 1026 work_flags = work_color_to_flags(cwq->work_color); 1027 1028 if (likely(cwq->nr_active < cwq->max_active)) { 1029 trace_workqueue_activate_work(work); 1030 cwq->nr_active++; 1031 worklist = gcwq_determine_ins_pos(gcwq, cwq); 1032 } else { 1033 work_flags |= WORK_STRUCT_DELAYED; 1034 worklist = &cwq->delayed_works; 1035 } 1036 1037 insert_work(cwq, work, worklist, work_flags); 1038 1039 spin_unlock_irqrestore(&gcwq->lock, flags); 1040 } 1041 1042 /** 1043 * queue_work - queue work on a workqueue 1044 * @wq: workqueue to use 1045 * @work: work to queue 1046 * 1047 * Returns 0 if @work was already on a queue, non-zero otherwise. 1048 * 1049 * We queue the work to the CPU on which it was submitted, but if the CPU dies 1050 * it can be processed by another CPU. 1051 */ 1052 int queue_work(struct workqueue_struct *wq, struct work_struct *work) 1053 { 1054 int ret; 1055 1056 ret = queue_work_on(get_cpu(), wq, work); 1057 put_cpu(); 1058 1059 return ret; 1060 } 1061 EXPORT_SYMBOL_GPL(queue_work); 1062 1063 /** 1064 * queue_work_on - queue work on specific cpu 1065 * @cpu: CPU number to execute work on 1066 * @wq: workqueue to use 1067 * @work: work to queue 1068 * 1069 * Returns 0 if @work was already on a queue, non-zero otherwise. 1070 * 1071 * We queue the work to a specific CPU, the caller must ensure it 1072 * can't go away. 1073 */ 1074 int 1075 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work) 1076 { 1077 int ret = 0; 1078 1079 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1080 __queue_work(cpu, wq, work); 1081 ret = 1; 1082 } 1083 return ret; 1084 } 1085 EXPORT_SYMBOL_GPL(queue_work_on); 1086 1087 static void delayed_work_timer_fn(unsigned long __data) 1088 { 1089 struct delayed_work *dwork = (struct delayed_work *)__data; 1090 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work); 1091 1092 __queue_work(smp_processor_id(), cwq->wq, &dwork->work); 1093 } 1094 1095 /** 1096 * queue_delayed_work - queue work on a workqueue after delay 1097 * @wq: workqueue to use 1098 * @dwork: delayable work to queue 1099 * @delay: number of jiffies to wait before queueing 1100 * 1101 * Returns 0 if @work was already on a queue, non-zero otherwise. 1102 */ 1103 int queue_delayed_work(struct workqueue_struct *wq, 1104 struct delayed_work *dwork, unsigned long delay) 1105 { 1106 if (delay == 0) 1107 return queue_work(wq, &dwork->work); 1108 1109 return queue_delayed_work_on(-1, wq, dwork, delay); 1110 } 1111 EXPORT_SYMBOL_GPL(queue_delayed_work); 1112 1113 /** 1114 * queue_delayed_work_on - queue work on specific CPU after delay 1115 * @cpu: CPU number to execute work on 1116 * @wq: workqueue to use 1117 * @dwork: work to queue 1118 * @delay: number of jiffies to wait before queueing 1119 * 1120 * Returns 0 if @work was already on a queue, non-zero otherwise. 1121 */ 1122 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1123 struct delayed_work *dwork, unsigned long delay) 1124 { 1125 int ret = 0; 1126 struct timer_list *timer = &dwork->timer; 1127 struct work_struct *work = &dwork->work; 1128 1129 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1130 unsigned int lcpu; 1131 1132 BUG_ON(timer_pending(timer)); 1133 BUG_ON(!list_empty(&work->entry)); 1134 1135 timer_stats_timer_set_start_info(&dwork->timer); 1136 1137 /* 1138 * This stores cwq for the moment, for the timer_fn. 1139 * Note that the work's gcwq is preserved to allow 1140 * reentrance detection for delayed works. 1141 */ 1142 if (!(wq->flags & WQ_UNBOUND)) { 1143 struct global_cwq *gcwq = get_work_gcwq(work); 1144 1145 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND) 1146 lcpu = gcwq->cpu; 1147 else 1148 lcpu = raw_smp_processor_id(); 1149 } else 1150 lcpu = WORK_CPU_UNBOUND; 1151 1152 set_work_cwq(work, get_cwq(lcpu, wq), 0); 1153 1154 timer->expires = jiffies + delay; 1155 timer->data = (unsigned long)dwork; 1156 timer->function = delayed_work_timer_fn; 1157 1158 if (unlikely(cpu >= 0)) 1159 add_timer_on(timer, cpu); 1160 else 1161 add_timer(timer); 1162 ret = 1; 1163 } 1164 return ret; 1165 } 1166 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 1167 1168 /** 1169 * worker_enter_idle - enter idle state 1170 * @worker: worker which is entering idle state 1171 * 1172 * @worker is entering idle state. Update stats and idle timer if 1173 * necessary. 1174 * 1175 * LOCKING: 1176 * spin_lock_irq(gcwq->lock). 1177 */ 1178 static void worker_enter_idle(struct worker *worker) 1179 { 1180 struct global_cwq *gcwq = worker->gcwq; 1181 1182 BUG_ON(worker->flags & WORKER_IDLE); 1183 BUG_ON(!list_empty(&worker->entry) && 1184 (worker->hentry.next || worker->hentry.pprev)); 1185 1186 /* can't use worker_set_flags(), also called from start_worker() */ 1187 worker->flags |= WORKER_IDLE; 1188 gcwq->nr_idle++; 1189 worker->last_active = jiffies; 1190 1191 /* idle_list is LIFO */ 1192 list_add(&worker->entry, &gcwq->idle_list); 1193 1194 if (likely(!(worker->flags & WORKER_ROGUE))) { 1195 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer)) 1196 mod_timer(&gcwq->idle_timer, 1197 jiffies + IDLE_WORKER_TIMEOUT); 1198 } else 1199 wake_up_all(&gcwq->trustee_wait); 1200 1201 /* sanity check nr_running */ 1202 WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle && 1203 atomic_read(get_gcwq_nr_running(gcwq->cpu))); 1204 } 1205 1206 /** 1207 * worker_leave_idle - leave idle state 1208 * @worker: worker which is leaving idle state 1209 * 1210 * @worker is leaving idle state. Update stats. 1211 * 1212 * LOCKING: 1213 * spin_lock_irq(gcwq->lock). 1214 */ 1215 static void worker_leave_idle(struct worker *worker) 1216 { 1217 struct global_cwq *gcwq = worker->gcwq; 1218 1219 BUG_ON(!(worker->flags & WORKER_IDLE)); 1220 worker_clr_flags(worker, WORKER_IDLE); 1221 gcwq->nr_idle--; 1222 list_del_init(&worker->entry); 1223 } 1224 1225 /** 1226 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq 1227 * @worker: self 1228 * 1229 * Works which are scheduled while the cpu is online must at least be 1230 * scheduled to a worker which is bound to the cpu so that if they are 1231 * flushed from cpu callbacks while cpu is going down, they are 1232 * guaranteed to execute on the cpu. 1233 * 1234 * This function is to be used by rogue workers and rescuers to bind 1235 * themselves to the target cpu and may race with cpu going down or 1236 * coming online. kthread_bind() can't be used because it may put the 1237 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1238 * verbatim as it's best effort and blocking and gcwq may be 1239 * [dis]associated in the meantime. 1240 * 1241 * This function tries set_cpus_allowed() and locks gcwq and verifies 1242 * the binding against GCWQ_DISASSOCIATED which is set during 1243 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters 1244 * idle state or fetches works without dropping lock, it can guarantee 1245 * the scheduling requirement described in the first paragraph. 1246 * 1247 * CONTEXT: 1248 * Might sleep. Called without any lock but returns with gcwq->lock 1249 * held. 1250 * 1251 * RETURNS: 1252 * %true if the associated gcwq is online (@worker is successfully 1253 * bound), %false if offline. 1254 */ 1255 static bool worker_maybe_bind_and_lock(struct worker *worker) 1256 __acquires(&gcwq->lock) 1257 { 1258 struct global_cwq *gcwq = worker->gcwq; 1259 struct task_struct *task = worker->task; 1260 1261 while (true) { 1262 /* 1263 * The following call may fail, succeed or succeed 1264 * without actually migrating the task to the cpu if 1265 * it races with cpu hotunplug operation. Verify 1266 * against GCWQ_DISASSOCIATED. 1267 */ 1268 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) 1269 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu)); 1270 1271 spin_lock_irq(&gcwq->lock); 1272 if (gcwq->flags & GCWQ_DISASSOCIATED) 1273 return false; 1274 if (task_cpu(task) == gcwq->cpu && 1275 cpumask_equal(¤t->cpus_allowed, 1276 get_cpu_mask(gcwq->cpu))) 1277 return true; 1278 spin_unlock_irq(&gcwq->lock); 1279 1280 /* CPU has come up inbetween, retry migration */ 1281 cpu_relax(); 1282 } 1283 } 1284 1285 /* 1286 * Function for worker->rebind_work used to rebind rogue busy workers 1287 * to the associated cpu which is coming back online. This is 1288 * scheduled by cpu up but can race with other cpu hotplug operations 1289 * and may be executed twice without intervening cpu down. 1290 */ 1291 static void worker_rebind_fn(struct work_struct *work) 1292 { 1293 struct worker *worker = container_of(work, struct worker, rebind_work); 1294 struct global_cwq *gcwq = worker->gcwq; 1295 1296 if (worker_maybe_bind_and_lock(worker)) 1297 worker_clr_flags(worker, WORKER_REBIND); 1298 1299 spin_unlock_irq(&gcwq->lock); 1300 } 1301 1302 static struct worker *alloc_worker(void) 1303 { 1304 struct worker *worker; 1305 1306 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1307 if (worker) { 1308 INIT_LIST_HEAD(&worker->entry); 1309 INIT_LIST_HEAD(&worker->scheduled); 1310 INIT_WORK(&worker->rebind_work, worker_rebind_fn); 1311 /* on creation a worker is in !idle && prep state */ 1312 worker->flags = WORKER_PREP; 1313 } 1314 return worker; 1315 } 1316 1317 /** 1318 * create_worker - create a new workqueue worker 1319 * @gcwq: gcwq the new worker will belong to 1320 * @bind: whether to set affinity to @cpu or not 1321 * 1322 * Create a new worker which is bound to @gcwq. The returned worker 1323 * can be started by calling start_worker() or destroyed using 1324 * destroy_worker(). 1325 * 1326 * CONTEXT: 1327 * Might sleep. Does GFP_KERNEL allocations. 1328 * 1329 * RETURNS: 1330 * Pointer to the newly created worker. 1331 */ 1332 static struct worker *create_worker(struct global_cwq *gcwq, bool bind) 1333 { 1334 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND; 1335 struct worker *worker = NULL; 1336 int id = -1; 1337 1338 spin_lock_irq(&gcwq->lock); 1339 while (ida_get_new(&gcwq->worker_ida, &id)) { 1340 spin_unlock_irq(&gcwq->lock); 1341 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL)) 1342 goto fail; 1343 spin_lock_irq(&gcwq->lock); 1344 } 1345 spin_unlock_irq(&gcwq->lock); 1346 1347 worker = alloc_worker(); 1348 if (!worker) 1349 goto fail; 1350 1351 worker->gcwq = gcwq; 1352 worker->id = id; 1353 1354 if (!on_unbound_cpu) 1355 worker->task = kthread_create(worker_thread, worker, 1356 "kworker/%u:%d", gcwq->cpu, id); 1357 else 1358 worker->task = kthread_create(worker_thread, worker, 1359 "kworker/u:%d", id); 1360 if (IS_ERR(worker->task)) 1361 goto fail; 1362 1363 /* 1364 * A rogue worker will become a regular one if CPU comes 1365 * online later on. Make sure every worker has 1366 * PF_THREAD_BOUND set. 1367 */ 1368 if (bind && !on_unbound_cpu) 1369 kthread_bind(worker->task, gcwq->cpu); 1370 else { 1371 worker->task->flags |= PF_THREAD_BOUND; 1372 if (on_unbound_cpu) 1373 worker->flags |= WORKER_UNBOUND; 1374 } 1375 1376 return worker; 1377 fail: 1378 if (id >= 0) { 1379 spin_lock_irq(&gcwq->lock); 1380 ida_remove(&gcwq->worker_ida, id); 1381 spin_unlock_irq(&gcwq->lock); 1382 } 1383 kfree(worker); 1384 return NULL; 1385 } 1386 1387 /** 1388 * start_worker - start a newly created worker 1389 * @worker: worker to start 1390 * 1391 * Make the gcwq aware of @worker and start it. 1392 * 1393 * CONTEXT: 1394 * spin_lock_irq(gcwq->lock). 1395 */ 1396 static void start_worker(struct worker *worker) 1397 { 1398 worker->flags |= WORKER_STARTED; 1399 worker->gcwq->nr_workers++; 1400 worker_enter_idle(worker); 1401 wake_up_process(worker->task); 1402 } 1403 1404 /** 1405 * destroy_worker - destroy a workqueue worker 1406 * @worker: worker to be destroyed 1407 * 1408 * Destroy @worker and adjust @gcwq stats accordingly. 1409 * 1410 * CONTEXT: 1411 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1412 */ 1413 static void destroy_worker(struct worker *worker) 1414 { 1415 struct global_cwq *gcwq = worker->gcwq; 1416 int id = worker->id; 1417 1418 /* sanity check frenzy */ 1419 BUG_ON(worker->current_work); 1420 BUG_ON(!list_empty(&worker->scheduled)); 1421 1422 if (worker->flags & WORKER_STARTED) 1423 gcwq->nr_workers--; 1424 if (worker->flags & WORKER_IDLE) 1425 gcwq->nr_idle--; 1426 1427 list_del_init(&worker->entry); 1428 worker->flags |= WORKER_DIE; 1429 1430 spin_unlock_irq(&gcwq->lock); 1431 1432 kthread_stop(worker->task); 1433 kfree(worker); 1434 1435 spin_lock_irq(&gcwq->lock); 1436 ida_remove(&gcwq->worker_ida, id); 1437 } 1438 1439 static void idle_worker_timeout(unsigned long __gcwq) 1440 { 1441 struct global_cwq *gcwq = (void *)__gcwq; 1442 1443 spin_lock_irq(&gcwq->lock); 1444 1445 if (too_many_workers(gcwq)) { 1446 struct worker *worker; 1447 unsigned long expires; 1448 1449 /* idle_list is kept in LIFO order, check the last one */ 1450 worker = list_entry(gcwq->idle_list.prev, struct worker, entry); 1451 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1452 1453 if (time_before(jiffies, expires)) 1454 mod_timer(&gcwq->idle_timer, expires); 1455 else { 1456 /* it's been idle for too long, wake up manager */ 1457 gcwq->flags |= GCWQ_MANAGE_WORKERS; 1458 wake_up_worker(gcwq); 1459 } 1460 } 1461 1462 spin_unlock_irq(&gcwq->lock); 1463 } 1464 1465 static bool send_mayday(struct work_struct *work) 1466 { 1467 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1468 struct workqueue_struct *wq = cwq->wq; 1469 unsigned int cpu; 1470 1471 if (!(wq->flags & WQ_RESCUER)) 1472 return false; 1473 1474 /* mayday mayday mayday */ 1475 cpu = cwq->gcwq->cpu; 1476 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */ 1477 if (cpu == WORK_CPU_UNBOUND) 1478 cpu = 0; 1479 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask)) 1480 wake_up_process(wq->rescuer->task); 1481 return true; 1482 } 1483 1484 static void gcwq_mayday_timeout(unsigned long __gcwq) 1485 { 1486 struct global_cwq *gcwq = (void *)__gcwq; 1487 struct work_struct *work; 1488 1489 spin_lock_irq(&gcwq->lock); 1490 1491 if (need_to_create_worker(gcwq)) { 1492 /* 1493 * We've been trying to create a new worker but 1494 * haven't been successful. We might be hitting an 1495 * allocation deadlock. Send distress signals to 1496 * rescuers. 1497 */ 1498 list_for_each_entry(work, &gcwq->worklist, entry) 1499 send_mayday(work); 1500 } 1501 1502 spin_unlock_irq(&gcwq->lock); 1503 1504 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL); 1505 } 1506 1507 /** 1508 * maybe_create_worker - create a new worker if necessary 1509 * @gcwq: gcwq to create a new worker for 1510 * 1511 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to 1512 * have at least one idle worker on return from this function. If 1513 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1514 * sent to all rescuers with works scheduled on @gcwq to resolve 1515 * possible allocation deadlock. 1516 * 1517 * On return, need_to_create_worker() is guaranteed to be false and 1518 * may_start_working() true. 1519 * 1520 * LOCKING: 1521 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1522 * multiple times. Does GFP_KERNEL allocations. Called only from 1523 * manager. 1524 * 1525 * RETURNS: 1526 * false if no action was taken and gcwq->lock stayed locked, true 1527 * otherwise. 1528 */ 1529 static bool maybe_create_worker(struct global_cwq *gcwq) 1530 __releases(&gcwq->lock) 1531 __acquires(&gcwq->lock) 1532 { 1533 if (!need_to_create_worker(gcwq)) 1534 return false; 1535 restart: 1536 spin_unlock_irq(&gcwq->lock); 1537 1538 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1539 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1540 1541 while (true) { 1542 struct worker *worker; 1543 1544 worker = create_worker(gcwq, true); 1545 if (worker) { 1546 del_timer_sync(&gcwq->mayday_timer); 1547 spin_lock_irq(&gcwq->lock); 1548 start_worker(worker); 1549 BUG_ON(need_to_create_worker(gcwq)); 1550 return true; 1551 } 1552 1553 if (!need_to_create_worker(gcwq)) 1554 break; 1555 1556 __set_current_state(TASK_INTERRUPTIBLE); 1557 schedule_timeout(CREATE_COOLDOWN); 1558 1559 if (!need_to_create_worker(gcwq)) 1560 break; 1561 } 1562 1563 del_timer_sync(&gcwq->mayday_timer); 1564 spin_lock_irq(&gcwq->lock); 1565 if (need_to_create_worker(gcwq)) 1566 goto restart; 1567 return true; 1568 } 1569 1570 /** 1571 * maybe_destroy_worker - destroy workers which have been idle for a while 1572 * @gcwq: gcwq to destroy workers for 1573 * 1574 * Destroy @gcwq workers which have been idle for longer than 1575 * IDLE_WORKER_TIMEOUT. 1576 * 1577 * LOCKING: 1578 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1579 * multiple times. Called only from manager. 1580 * 1581 * RETURNS: 1582 * false if no action was taken and gcwq->lock stayed locked, true 1583 * otherwise. 1584 */ 1585 static bool maybe_destroy_workers(struct global_cwq *gcwq) 1586 { 1587 bool ret = false; 1588 1589 while (too_many_workers(gcwq)) { 1590 struct worker *worker; 1591 unsigned long expires; 1592 1593 worker = list_entry(gcwq->idle_list.prev, struct worker, entry); 1594 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1595 1596 if (time_before(jiffies, expires)) { 1597 mod_timer(&gcwq->idle_timer, expires); 1598 break; 1599 } 1600 1601 destroy_worker(worker); 1602 ret = true; 1603 } 1604 1605 return ret; 1606 } 1607 1608 /** 1609 * manage_workers - manage worker pool 1610 * @worker: self 1611 * 1612 * Assume the manager role and manage gcwq worker pool @worker belongs 1613 * to. At any given time, there can be only zero or one manager per 1614 * gcwq. The exclusion is handled automatically by this function. 1615 * 1616 * The caller can safely start processing works on false return. On 1617 * true return, it's guaranteed that need_to_create_worker() is false 1618 * and may_start_working() is true. 1619 * 1620 * CONTEXT: 1621 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1622 * multiple times. Does GFP_KERNEL allocations. 1623 * 1624 * RETURNS: 1625 * false if no action was taken and gcwq->lock stayed locked, true if 1626 * some action was taken. 1627 */ 1628 static bool manage_workers(struct worker *worker) 1629 { 1630 struct global_cwq *gcwq = worker->gcwq; 1631 bool ret = false; 1632 1633 if (gcwq->flags & GCWQ_MANAGING_WORKERS) 1634 return ret; 1635 1636 gcwq->flags &= ~GCWQ_MANAGE_WORKERS; 1637 gcwq->flags |= GCWQ_MANAGING_WORKERS; 1638 1639 /* 1640 * Destroy and then create so that may_start_working() is true 1641 * on return. 1642 */ 1643 ret |= maybe_destroy_workers(gcwq); 1644 ret |= maybe_create_worker(gcwq); 1645 1646 gcwq->flags &= ~GCWQ_MANAGING_WORKERS; 1647 1648 /* 1649 * The trustee might be waiting to take over the manager 1650 * position, tell it we're done. 1651 */ 1652 if (unlikely(gcwq->trustee)) 1653 wake_up_all(&gcwq->trustee_wait); 1654 1655 return ret; 1656 } 1657 1658 /** 1659 * move_linked_works - move linked works to a list 1660 * @work: start of series of works to be scheduled 1661 * @head: target list to append @work to 1662 * @nextp: out paramter for nested worklist walking 1663 * 1664 * Schedule linked works starting from @work to @head. Work series to 1665 * be scheduled starts at @work and includes any consecutive work with 1666 * WORK_STRUCT_LINKED set in its predecessor. 1667 * 1668 * If @nextp is not NULL, it's updated to point to the next work of 1669 * the last scheduled work. This allows move_linked_works() to be 1670 * nested inside outer list_for_each_entry_safe(). 1671 * 1672 * CONTEXT: 1673 * spin_lock_irq(gcwq->lock). 1674 */ 1675 static void move_linked_works(struct work_struct *work, struct list_head *head, 1676 struct work_struct **nextp) 1677 { 1678 struct work_struct *n; 1679 1680 /* 1681 * Linked worklist will always end before the end of the list, 1682 * use NULL for list head. 1683 */ 1684 list_for_each_entry_safe_from(work, n, NULL, entry) { 1685 list_move_tail(&work->entry, head); 1686 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1687 break; 1688 } 1689 1690 /* 1691 * If we're already inside safe list traversal and have moved 1692 * multiple works to the scheduled queue, the next position 1693 * needs to be updated. 1694 */ 1695 if (nextp) 1696 *nextp = n; 1697 } 1698 1699 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq) 1700 { 1701 struct work_struct *work = list_first_entry(&cwq->delayed_works, 1702 struct work_struct, entry); 1703 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq); 1704 1705 trace_workqueue_activate_work(work); 1706 move_linked_works(work, pos, NULL); 1707 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1708 cwq->nr_active++; 1709 } 1710 1711 /** 1712 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight 1713 * @cwq: cwq of interest 1714 * @color: color of work which left the queue 1715 * @delayed: for a delayed work 1716 * 1717 * A work either has completed or is removed from pending queue, 1718 * decrement nr_in_flight of its cwq and handle workqueue flushing. 1719 * 1720 * CONTEXT: 1721 * spin_lock_irq(gcwq->lock). 1722 */ 1723 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color, 1724 bool delayed) 1725 { 1726 /* ignore uncolored works */ 1727 if (color == WORK_NO_COLOR) 1728 return; 1729 1730 cwq->nr_in_flight[color]--; 1731 1732 if (!delayed) { 1733 cwq->nr_active--; 1734 if (!list_empty(&cwq->delayed_works)) { 1735 /* one down, submit a delayed one */ 1736 if (cwq->nr_active < cwq->max_active) 1737 cwq_activate_first_delayed(cwq); 1738 } 1739 } 1740 1741 /* is flush in progress and are we at the flushing tip? */ 1742 if (likely(cwq->flush_color != color)) 1743 return; 1744 1745 /* are there still in-flight works? */ 1746 if (cwq->nr_in_flight[color]) 1747 return; 1748 1749 /* this cwq is done, clear flush_color */ 1750 cwq->flush_color = -1; 1751 1752 /* 1753 * If this was the last cwq, wake up the first flusher. It 1754 * will handle the rest. 1755 */ 1756 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush)) 1757 complete(&cwq->wq->first_flusher->done); 1758 } 1759 1760 /** 1761 * process_one_work - process single work 1762 * @worker: self 1763 * @work: work to process 1764 * 1765 * Process @work. This function contains all the logics necessary to 1766 * process a single work including synchronization against and 1767 * interaction with other workers on the same cpu, queueing and 1768 * flushing. As long as context requirement is met, any worker can 1769 * call this function to process a work. 1770 * 1771 * CONTEXT: 1772 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1773 */ 1774 static void process_one_work(struct worker *worker, struct work_struct *work) 1775 __releases(&gcwq->lock) 1776 __acquires(&gcwq->lock) 1777 { 1778 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1779 struct global_cwq *gcwq = cwq->gcwq; 1780 struct hlist_head *bwh = busy_worker_head(gcwq, work); 1781 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE; 1782 work_func_t f = work->func; 1783 int work_color; 1784 struct worker *collision; 1785 #ifdef CONFIG_LOCKDEP 1786 /* 1787 * It is permissible to free the struct work_struct from 1788 * inside the function that is called from it, this we need to 1789 * take into account for lockdep too. To avoid bogus "held 1790 * lock freed" warnings as well as problems when looking into 1791 * work->lockdep_map, make a copy and use that here. 1792 */ 1793 struct lockdep_map lockdep_map = work->lockdep_map; 1794 #endif 1795 /* 1796 * A single work shouldn't be executed concurrently by 1797 * multiple workers on a single cpu. Check whether anyone is 1798 * already processing the work. If so, defer the work to the 1799 * currently executing one. 1800 */ 1801 collision = __find_worker_executing_work(gcwq, bwh, work); 1802 if (unlikely(collision)) { 1803 move_linked_works(work, &collision->scheduled, NULL); 1804 return; 1805 } 1806 1807 /* claim and process */ 1808 debug_work_deactivate(work); 1809 hlist_add_head(&worker->hentry, bwh); 1810 worker->current_work = work; 1811 worker->current_cwq = cwq; 1812 work_color = get_work_color(work); 1813 1814 /* record the current cpu number in the work data and dequeue */ 1815 set_work_cpu(work, gcwq->cpu); 1816 list_del_init(&work->entry); 1817 1818 /* 1819 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI, 1820 * wake up another worker; otherwise, clear HIGHPRI_PENDING. 1821 */ 1822 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) { 1823 struct work_struct *nwork = list_first_entry(&gcwq->worklist, 1824 struct work_struct, entry); 1825 1826 if (!list_empty(&gcwq->worklist) && 1827 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI) 1828 wake_up_worker(gcwq); 1829 else 1830 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING; 1831 } 1832 1833 /* 1834 * CPU intensive works don't participate in concurrency 1835 * management. They're the scheduler's responsibility. 1836 */ 1837 if (unlikely(cpu_intensive)) 1838 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 1839 1840 spin_unlock_irq(&gcwq->lock); 1841 1842 work_clear_pending(work); 1843 lock_map_acquire(&cwq->wq->lockdep_map); 1844 lock_map_acquire(&lockdep_map); 1845 trace_workqueue_execute_start(work); 1846 f(work); 1847 /* 1848 * While we must be careful to not use "work" after this, the trace 1849 * point will only record its address. 1850 */ 1851 trace_workqueue_execute_end(work); 1852 lock_map_release(&lockdep_map); 1853 lock_map_release(&cwq->wq->lockdep_map); 1854 1855 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 1856 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " 1857 "%s/0x%08x/%d\n", 1858 current->comm, preempt_count(), task_pid_nr(current)); 1859 printk(KERN_ERR " last function: "); 1860 print_symbol("%s\n", (unsigned long)f); 1861 debug_show_held_locks(current); 1862 dump_stack(); 1863 } 1864 1865 spin_lock_irq(&gcwq->lock); 1866 1867 /* clear cpu intensive status */ 1868 if (unlikely(cpu_intensive)) 1869 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 1870 1871 /* we're done with it, release */ 1872 hlist_del_init(&worker->hentry); 1873 worker->current_work = NULL; 1874 worker->current_cwq = NULL; 1875 cwq_dec_nr_in_flight(cwq, work_color, false); 1876 } 1877 1878 /** 1879 * process_scheduled_works - process scheduled works 1880 * @worker: self 1881 * 1882 * Process all scheduled works. Please note that the scheduled list 1883 * may change while processing a work, so this function repeatedly 1884 * fetches a work from the top and executes it. 1885 * 1886 * CONTEXT: 1887 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1888 * multiple times. 1889 */ 1890 static void process_scheduled_works(struct worker *worker) 1891 { 1892 while (!list_empty(&worker->scheduled)) { 1893 struct work_struct *work = list_first_entry(&worker->scheduled, 1894 struct work_struct, entry); 1895 process_one_work(worker, work); 1896 } 1897 } 1898 1899 /** 1900 * worker_thread - the worker thread function 1901 * @__worker: self 1902 * 1903 * The gcwq worker thread function. There's a single dynamic pool of 1904 * these per each cpu. These workers process all works regardless of 1905 * their specific target workqueue. The only exception is works which 1906 * belong to workqueues with a rescuer which will be explained in 1907 * rescuer_thread(). 1908 */ 1909 static int worker_thread(void *__worker) 1910 { 1911 struct worker *worker = __worker; 1912 struct global_cwq *gcwq = worker->gcwq; 1913 1914 /* tell the scheduler that this is a workqueue worker */ 1915 worker->task->flags |= PF_WQ_WORKER; 1916 woke_up: 1917 spin_lock_irq(&gcwq->lock); 1918 1919 /* DIE can be set only while we're idle, checking here is enough */ 1920 if (worker->flags & WORKER_DIE) { 1921 spin_unlock_irq(&gcwq->lock); 1922 worker->task->flags &= ~PF_WQ_WORKER; 1923 return 0; 1924 } 1925 1926 worker_leave_idle(worker); 1927 recheck: 1928 /* no more worker necessary? */ 1929 if (!need_more_worker(gcwq)) 1930 goto sleep; 1931 1932 /* do we need to manage? */ 1933 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker)) 1934 goto recheck; 1935 1936 /* 1937 * ->scheduled list can only be filled while a worker is 1938 * preparing to process a work or actually processing it. 1939 * Make sure nobody diddled with it while I was sleeping. 1940 */ 1941 BUG_ON(!list_empty(&worker->scheduled)); 1942 1943 /* 1944 * When control reaches this point, we're guaranteed to have 1945 * at least one idle worker or that someone else has already 1946 * assumed the manager role. 1947 */ 1948 worker_clr_flags(worker, WORKER_PREP); 1949 1950 do { 1951 struct work_struct *work = 1952 list_first_entry(&gcwq->worklist, 1953 struct work_struct, entry); 1954 1955 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 1956 /* optimization path, not strictly necessary */ 1957 process_one_work(worker, work); 1958 if (unlikely(!list_empty(&worker->scheduled))) 1959 process_scheduled_works(worker); 1960 } else { 1961 move_linked_works(work, &worker->scheduled, NULL); 1962 process_scheduled_works(worker); 1963 } 1964 } while (keep_working(gcwq)); 1965 1966 worker_set_flags(worker, WORKER_PREP, false); 1967 sleep: 1968 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker)) 1969 goto recheck; 1970 1971 /* 1972 * gcwq->lock is held and there's no work to process and no 1973 * need to manage, sleep. Workers are woken up only while 1974 * holding gcwq->lock or from local cpu, so setting the 1975 * current state before releasing gcwq->lock is enough to 1976 * prevent losing any event. 1977 */ 1978 worker_enter_idle(worker); 1979 __set_current_state(TASK_INTERRUPTIBLE); 1980 spin_unlock_irq(&gcwq->lock); 1981 schedule(); 1982 goto woke_up; 1983 } 1984 1985 /** 1986 * rescuer_thread - the rescuer thread function 1987 * @__wq: the associated workqueue 1988 * 1989 * Workqueue rescuer thread function. There's one rescuer for each 1990 * workqueue which has WQ_RESCUER set. 1991 * 1992 * Regular work processing on a gcwq may block trying to create a new 1993 * worker which uses GFP_KERNEL allocation which has slight chance of 1994 * developing into deadlock if some works currently on the same queue 1995 * need to be processed to satisfy the GFP_KERNEL allocation. This is 1996 * the problem rescuer solves. 1997 * 1998 * When such condition is possible, the gcwq summons rescuers of all 1999 * workqueues which have works queued on the gcwq and let them process 2000 * those works so that forward progress can be guaranteed. 2001 * 2002 * This should happen rarely. 2003 */ 2004 static int rescuer_thread(void *__wq) 2005 { 2006 struct workqueue_struct *wq = __wq; 2007 struct worker *rescuer = wq->rescuer; 2008 struct list_head *scheduled = &rescuer->scheduled; 2009 bool is_unbound = wq->flags & WQ_UNBOUND; 2010 unsigned int cpu; 2011 2012 set_user_nice(current, RESCUER_NICE_LEVEL); 2013 repeat: 2014 set_current_state(TASK_INTERRUPTIBLE); 2015 2016 if (kthread_should_stop()) 2017 return 0; 2018 2019 /* 2020 * See whether any cpu is asking for help. Unbounded 2021 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND. 2022 */ 2023 for_each_mayday_cpu(cpu, wq->mayday_mask) { 2024 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu; 2025 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq); 2026 struct global_cwq *gcwq = cwq->gcwq; 2027 struct work_struct *work, *n; 2028 2029 __set_current_state(TASK_RUNNING); 2030 mayday_clear_cpu(cpu, wq->mayday_mask); 2031 2032 /* migrate to the target cpu if possible */ 2033 rescuer->gcwq = gcwq; 2034 worker_maybe_bind_and_lock(rescuer); 2035 2036 /* 2037 * Slurp in all works issued via this workqueue and 2038 * process'em. 2039 */ 2040 BUG_ON(!list_empty(&rescuer->scheduled)); 2041 list_for_each_entry_safe(work, n, &gcwq->worklist, entry) 2042 if (get_work_cwq(work) == cwq) 2043 move_linked_works(work, scheduled, &n); 2044 2045 process_scheduled_works(rescuer); 2046 spin_unlock_irq(&gcwq->lock); 2047 } 2048 2049 schedule(); 2050 goto repeat; 2051 } 2052 2053 struct wq_barrier { 2054 struct work_struct work; 2055 struct completion done; 2056 }; 2057 2058 static void wq_barrier_func(struct work_struct *work) 2059 { 2060 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2061 complete(&barr->done); 2062 } 2063 2064 /** 2065 * insert_wq_barrier - insert a barrier work 2066 * @cwq: cwq to insert barrier into 2067 * @barr: wq_barrier to insert 2068 * @target: target work to attach @barr to 2069 * @worker: worker currently executing @target, NULL if @target is not executing 2070 * 2071 * @barr is linked to @target such that @barr is completed only after 2072 * @target finishes execution. Please note that the ordering 2073 * guarantee is observed only with respect to @target and on the local 2074 * cpu. 2075 * 2076 * Currently, a queued barrier can't be canceled. This is because 2077 * try_to_grab_pending() can't determine whether the work to be 2078 * grabbed is at the head of the queue and thus can't clear LINKED 2079 * flag of the previous work while there must be a valid next work 2080 * after a work with LINKED flag set. 2081 * 2082 * Note that when @worker is non-NULL, @target may be modified 2083 * underneath us, so we can't reliably determine cwq from @target. 2084 * 2085 * CONTEXT: 2086 * spin_lock_irq(gcwq->lock). 2087 */ 2088 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, 2089 struct wq_barrier *barr, 2090 struct work_struct *target, struct worker *worker) 2091 { 2092 struct list_head *head; 2093 unsigned int linked = 0; 2094 2095 /* 2096 * debugobject calls are safe here even with gcwq->lock locked 2097 * as we know for sure that this will not trigger any of the 2098 * checks and call back into the fixup functions where we 2099 * might deadlock. 2100 */ 2101 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2102 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2103 init_completion(&barr->done); 2104 2105 /* 2106 * If @target is currently being executed, schedule the 2107 * barrier to the worker; otherwise, put it after @target. 2108 */ 2109 if (worker) 2110 head = worker->scheduled.next; 2111 else { 2112 unsigned long *bits = work_data_bits(target); 2113 2114 head = target->entry.next; 2115 /* there can already be other linked works, inherit and set */ 2116 linked = *bits & WORK_STRUCT_LINKED; 2117 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2118 } 2119 2120 debug_work_activate(&barr->work); 2121 insert_work(cwq, &barr->work, head, 2122 work_color_to_flags(WORK_NO_COLOR) | linked); 2123 } 2124 2125 /** 2126 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing 2127 * @wq: workqueue being flushed 2128 * @flush_color: new flush color, < 0 for no-op 2129 * @work_color: new work color, < 0 for no-op 2130 * 2131 * Prepare cwqs for workqueue flushing. 2132 * 2133 * If @flush_color is non-negative, flush_color on all cwqs should be 2134 * -1. If no cwq has in-flight commands at the specified color, all 2135 * cwq->flush_color's stay at -1 and %false is returned. If any cwq 2136 * has in flight commands, its cwq->flush_color is set to 2137 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq 2138 * wakeup logic is armed and %true is returned. 2139 * 2140 * The caller should have initialized @wq->first_flusher prior to 2141 * calling this function with non-negative @flush_color. If 2142 * @flush_color is negative, no flush color update is done and %false 2143 * is returned. 2144 * 2145 * If @work_color is non-negative, all cwqs should have the same 2146 * work_color which is previous to @work_color and all will be 2147 * advanced to @work_color. 2148 * 2149 * CONTEXT: 2150 * mutex_lock(wq->flush_mutex). 2151 * 2152 * RETURNS: 2153 * %true if @flush_color >= 0 and there's something to flush. %false 2154 * otherwise. 2155 */ 2156 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq, 2157 int flush_color, int work_color) 2158 { 2159 bool wait = false; 2160 unsigned int cpu; 2161 2162 if (flush_color >= 0) { 2163 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush)); 2164 atomic_set(&wq->nr_cwqs_to_flush, 1); 2165 } 2166 2167 for_each_cwq_cpu(cpu, wq) { 2168 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2169 struct global_cwq *gcwq = cwq->gcwq; 2170 2171 spin_lock_irq(&gcwq->lock); 2172 2173 if (flush_color >= 0) { 2174 BUG_ON(cwq->flush_color != -1); 2175 2176 if (cwq->nr_in_flight[flush_color]) { 2177 cwq->flush_color = flush_color; 2178 atomic_inc(&wq->nr_cwqs_to_flush); 2179 wait = true; 2180 } 2181 } 2182 2183 if (work_color >= 0) { 2184 BUG_ON(work_color != work_next_color(cwq->work_color)); 2185 cwq->work_color = work_color; 2186 } 2187 2188 spin_unlock_irq(&gcwq->lock); 2189 } 2190 2191 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush)) 2192 complete(&wq->first_flusher->done); 2193 2194 return wait; 2195 } 2196 2197 /** 2198 * flush_workqueue - ensure that any scheduled work has run to completion. 2199 * @wq: workqueue to flush 2200 * 2201 * Forces execution of the workqueue and blocks until its completion. 2202 * This is typically used in driver shutdown handlers. 2203 * 2204 * We sleep until all works which were queued on entry have been handled, 2205 * but we are not livelocked by new incoming ones. 2206 */ 2207 void flush_workqueue(struct workqueue_struct *wq) 2208 { 2209 struct wq_flusher this_flusher = { 2210 .list = LIST_HEAD_INIT(this_flusher.list), 2211 .flush_color = -1, 2212 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2213 }; 2214 int next_color; 2215 2216 lock_map_acquire(&wq->lockdep_map); 2217 lock_map_release(&wq->lockdep_map); 2218 2219 mutex_lock(&wq->flush_mutex); 2220 2221 /* 2222 * Start-to-wait phase 2223 */ 2224 next_color = work_next_color(wq->work_color); 2225 2226 if (next_color != wq->flush_color) { 2227 /* 2228 * Color space is not full. The current work_color 2229 * becomes our flush_color and work_color is advanced 2230 * by one. 2231 */ 2232 BUG_ON(!list_empty(&wq->flusher_overflow)); 2233 this_flusher.flush_color = wq->work_color; 2234 wq->work_color = next_color; 2235 2236 if (!wq->first_flusher) { 2237 /* no flush in progress, become the first flusher */ 2238 BUG_ON(wq->flush_color != this_flusher.flush_color); 2239 2240 wq->first_flusher = &this_flusher; 2241 2242 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color, 2243 wq->work_color)) { 2244 /* nothing to flush, done */ 2245 wq->flush_color = next_color; 2246 wq->first_flusher = NULL; 2247 goto out_unlock; 2248 } 2249 } else { 2250 /* wait in queue */ 2251 BUG_ON(wq->flush_color == this_flusher.flush_color); 2252 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2253 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2254 } 2255 } else { 2256 /* 2257 * Oops, color space is full, wait on overflow queue. 2258 * The next flush completion will assign us 2259 * flush_color and transfer to flusher_queue. 2260 */ 2261 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2262 } 2263 2264 mutex_unlock(&wq->flush_mutex); 2265 2266 wait_for_completion(&this_flusher.done); 2267 2268 /* 2269 * Wake-up-and-cascade phase 2270 * 2271 * First flushers are responsible for cascading flushes and 2272 * handling overflow. Non-first flushers can simply return. 2273 */ 2274 if (wq->first_flusher != &this_flusher) 2275 return; 2276 2277 mutex_lock(&wq->flush_mutex); 2278 2279 /* we might have raced, check again with mutex held */ 2280 if (wq->first_flusher != &this_flusher) 2281 goto out_unlock; 2282 2283 wq->first_flusher = NULL; 2284 2285 BUG_ON(!list_empty(&this_flusher.list)); 2286 BUG_ON(wq->flush_color != this_flusher.flush_color); 2287 2288 while (true) { 2289 struct wq_flusher *next, *tmp; 2290 2291 /* complete all the flushers sharing the current flush color */ 2292 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2293 if (next->flush_color != wq->flush_color) 2294 break; 2295 list_del_init(&next->list); 2296 complete(&next->done); 2297 } 2298 2299 BUG_ON(!list_empty(&wq->flusher_overflow) && 2300 wq->flush_color != work_next_color(wq->work_color)); 2301 2302 /* this flush_color is finished, advance by one */ 2303 wq->flush_color = work_next_color(wq->flush_color); 2304 2305 /* one color has been freed, handle overflow queue */ 2306 if (!list_empty(&wq->flusher_overflow)) { 2307 /* 2308 * Assign the same color to all overflowed 2309 * flushers, advance work_color and append to 2310 * flusher_queue. This is the start-to-wait 2311 * phase for these overflowed flushers. 2312 */ 2313 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2314 tmp->flush_color = wq->work_color; 2315 2316 wq->work_color = work_next_color(wq->work_color); 2317 2318 list_splice_tail_init(&wq->flusher_overflow, 2319 &wq->flusher_queue); 2320 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2321 } 2322 2323 if (list_empty(&wq->flusher_queue)) { 2324 BUG_ON(wq->flush_color != wq->work_color); 2325 break; 2326 } 2327 2328 /* 2329 * Need to flush more colors. Make the next flusher 2330 * the new first flusher and arm cwqs. 2331 */ 2332 BUG_ON(wq->flush_color == wq->work_color); 2333 BUG_ON(wq->flush_color != next->flush_color); 2334 2335 list_del_init(&next->list); 2336 wq->first_flusher = next; 2337 2338 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1)) 2339 break; 2340 2341 /* 2342 * Meh... this color is already done, clear first 2343 * flusher and repeat cascading. 2344 */ 2345 wq->first_flusher = NULL; 2346 } 2347 2348 out_unlock: 2349 mutex_unlock(&wq->flush_mutex); 2350 } 2351 EXPORT_SYMBOL_GPL(flush_workqueue); 2352 2353 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2354 bool wait_executing) 2355 { 2356 struct worker *worker = NULL; 2357 struct global_cwq *gcwq; 2358 struct cpu_workqueue_struct *cwq; 2359 2360 might_sleep(); 2361 gcwq = get_work_gcwq(work); 2362 if (!gcwq) 2363 return false; 2364 2365 spin_lock_irq(&gcwq->lock); 2366 if (!list_empty(&work->entry)) { 2367 /* 2368 * See the comment near try_to_grab_pending()->smp_rmb(). 2369 * If it was re-queued to a different gcwq under us, we 2370 * are not going to wait. 2371 */ 2372 smp_rmb(); 2373 cwq = get_work_cwq(work); 2374 if (unlikely(!cwq || gcwq != cwq->gcwq)) 2375 goto already_gone; 2376 } else if (wait_executing) { 2377 worker = find_worker_executing_work(gcwq, work); 2378 if (!worker) 2379 goto already_gone; 2380 cwq = worker->current_cwq; 2381 } else 2382 goto already_gone; 2383 2384 insert_wq_barrier(cwq, barr, work, worker); 2385 spin_unlock_irq(&gcwq->lock); 2386 2387 lock_map_acquire(&cwq->wq->lockdep_map); 2388 lock_map_release(&cwq->wq->lockdep_map); 2389 return true; 2390 already_gone: 2391 spin_unlock_irq(&gcwq->lock); 2392 return false; 2393 } 2394 2395 /** 2396 * flush_work - wait for a work to finish executing the last queueing instance 2397 * @work: the work to flush 2398 * 2399 * Wait until @work has finished execution. This function considers 2400 * only the last queueing instance of @work. If @work has been 2401 * enqueued across different CPUs on a non-reentrant workqueue or on 2402 * multiple workqueues, @work might still be executing on return on 2403 * some of the CPUs from earlier queueing. 2404 * 2405 * If @work was queued only on a non-reentrant, ordered or unbound 2406 * workqueue, @work is guaranteed to be idle on return if it hasn't 2407 * been requeued since flush started. 2408 * 2409 * RETURNS: 2410 * %true if flush_work() waited for the work to finish execution, 2411 * %false if it was already idle. 2412 */ 2413 bool flush_work(struct work_struct *work) 2414 { 2415 struct wq_barrier barr; 2416 2417 if (start_flush_work(work, &barr, true)) { 2418 wait_for_completion(&barr.done); 2419 destroy_work_on_stack(&barr.work); 2420 return true; 2421 } else 2422 return false; 2423 } 2424 EXPORT_SYMBOL_GPL(flush_work); 2425 2426 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work) 2427 { 2428 struct wq_barrier barr; 2429 struct worker *worker; 2430 2431 spin_lock_irq(&gcwq->lock); 2432 2433 worker = find_worker_executing_work(gcwq, work); 2434 if (unlikely(worker)) 2435 insert_wq_barrier(worker->current_cwq, &barr, work, worker); 2436 2437 spin_unlock_irq(&gcwq->lock); 2438 2439 if (unlikely(worker)) { 2440 wait_for_completion(&barr.done); 2441 destroy_work_on_stack(&barr.work); 2442 return true; 2443 } else 2444 return false; 2445 } 2446 2447 static bool wait_on_work(struct work_struct *work) 2448 { 2449 bool ret = false; 2450 int cpu; 2451 2452 might_sleep(); 2453 2454 lock_map_acquire(&work->lockdep_map); 2455 lock_map_release(&work->lockdep_map); 2456 2457 for_each_gcwq_cpu(cpu) 2458 ret |= wait_on_cpu_work(get_gcwq(cpu), work); 2459 return ret; 2460 } 2461 2462 /** 2463 * flush_work_sync - wait until a work has finished execution 2464 * @work: the work to flush 2465 * 2466 * Wait until @work has finished execution. On return, it's 2467 * guaranteed that all queueing instances of @work which happened 2468 * before this function is called are finished. In other words, if 2469 * @work hasn't been requeued since this function was called, @work is 2470 * guaranteed to be idle on return. 2471 * 2472 * RETURNS: 2473 * %true if flush_work_sync() waited for the work to finish execution, 2474 * %false if it was already idle. 2475 */ 2476 bool flush_work_sync(struct work_struct *work) 2477 { 2478 struct wq_barrier barr; 2479 bool pending, waited; 2480 2481 /* we'll wait for executions separately, queue barr only if pending */ 2482 pending = start_flush_work(work, &barr, false); 2483 2484 /* wait for executions to finish */ 2485 waited = wait_on_work(work); 2486 2487 /* wait for the pending one */ 2488 if (pending) { 2489 wait_for_completion(&barr.done); 2490 destroy_work_on_stack(&barr.work); 2491 } 2492 2493 return pending || waited; 2494 } 2495 EXPORT_SYMBOL_GPL(flush_work_sync); 2496 2497 /* 2498 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit, 2499 * so this work can't be re-armed in any way. 2500 */ 2501 static int try_to_grab_pending(struct work_struct *work) 2502 { 2503 struct global_cwq *gcwq; 2504 int ret = -1; 2505 2506 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2507 return 0; 2508 2509 /* 2510 * The queueing is in progress, or it is already queued. Try to 2511 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2512 */ 2513 gcwq = get_work_gcwq(work); 2514 if (!gcwq) 2515 return ret; 2516 2517 spin_lock_irq(&gcwq->lock); 2518 if (!list_empty(&work->entry)) { 2519 /* 2520 * This work is queued, but perhaps we locked the wrong gcwq. 2521 * In that case we must see the new value after rmb(), see 2522 * insert_work()->wmb(). 2523 */ 2524 smp_rmb(); 2525 if (gcwq == get_work_gcwq(work)) { 2526 debug_work_deactivate(work); 2527 list_del_init(&work->entry); 2528 cwq_dec_nr_in_flight(get_work_cwq(work), 2529 get_work_color(work), 2530 *work_data_bits(work) & WORK_STRUCT_DELAYED); 2531 ret = 1; 2532 } 2533 } 2534 spin_unlock_irq(&gcwq->lock); 2535 2536 return ret; 2537 } 2538 2539 static bool __cancel_work_timer(struct work_struct *work, 2540 struct timer_list* timer) 2541 { 2542 int ret; 2543 2544 do { 2545 ret = (timer && likely(del_timer(timer))); 2546 if (!ret) 2547 ret = try_to_grab_pending(work); 2548 wait_on_work(work); 2549 } while (unlikely(ret < 0)); 2550 2551 clear_work_data(work); 2552 return ret; 2553 } 2554 2555 /** 2556 * cancel_work_sync - cancel a work and wait for it to finish 2557 * @work: the work to cancel 2558 * 2559 * Cancel @work and wait for its execution to finish. This function 2560 * can be used even if the work re-queues itself or migrates to 2561 * another workqueue. On return from this function, @work is 2562 * guaranteed to be not pending or executing on any CPU. 2563 * 2564 * cancel_work_sync(&delayed_work->work) must not be used for 2565 * delayed_work's. Use cancel_delayed_work_sync() instead. 2566 * 2567 * The caller must ensure that the workqueue on which @work was last 2568 * queued can't be destroyed before this function returns. 2569 * 2570 * RETURNS: 2571 * %true if @work was pending, %false otherwise. 2572 */ 2573 bool cancel_work_sync(struct work_struct *work) 2574 { 2575 return __cancel_work_timer(work, NULL); 2576 } 2577 EXPORT_SYMBOL_GPL(cancel_work_sync); 2578 2579 /** 2580 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2581 * @dwork: the delayed work to flush 2582 * 2583 * Delayed timer is cancelled and the pending work is queued for 2584 * immediate execution. Like flush_work(), this function only 2585 * considers the last queueing instance of @dwork. 2586 * 2587 * RETURNS: 2588 * %true if flush_work() waited for the work to finish execution, 2589 * %false if it was already idle. 2590 */ 2591 bool flush_delayed_work(struct delayed_work *dwork) 2592 { 2593 if (del_timer_sync(&dwork->timer)) 2594 __queue_work(raw_smp_processor_id(), 2595 get_work_cwq(&dwork->work)->wq, &dwork->work); 2596 return flush_work(&dwork->work); 2597 } 2598 EXPORT_SYMBOL(flush_delayed_work); 2599 2600 /** 2601 * flush_delayed_work_sync - wait for a dwork to finish 2602 * @dwork: the delayed work to flush 2603 * 2604 * Delayed timer is cancelled and the pending work is queued for 2605 * execution immediately. Other than timer handling, its behavior 2606 * is identical to flush_work_sync(). 2607 * 2608 * RETURNS: 2609 * %true if flush_work_sync() waited for the work to finish execution, 2610 * %false if it was already idle. 2611 */ 2612 bool flush_delayed_work_sync(struct delayed_work *dwork) 2613 { 2614 if (del_timer_sync(&dwork->timer)) 2615 __queue_work(raw_smp_processor_id(), 2616 get_work_cwq(&dwork->work)->wq, &dwork->work); 2617 return flush_work_sync(&dwork->work); 2618 } 2619 EXPORT_SYMBOL(flush_delayed_work_sync); 2620 2621 /** 2622 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2623 * @dwork: the delayed work cancel 2624 * 2625 * This is cancel_work_sync() for delayed works. 2626 * 2627 * RETURNS: 2628 * %true if @dwork was pending, %false otherwise. 2629 */ 2630 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2631 { 2632 return __cancel_work_timer(&dwork->work, &dwork->timer); 2633 } 2634 EXPORT_SYMBOL(cancel_delayed_work_sync); 2635 2636 /** 2637 * schedule_work - put work task in global workqueue 2638 * @work: job to be done 2639 * 2640 * Returns zero if @work was already on the kernel-global workqueue and 2641 * non-zero otherwise. 2642 * 2643 * This puts a job in the kernel-global workqueue if it was not already 2644 * queued and leaves it in the same position on the kernel-global 2645 * workqueue otherwise. 2646 */ 2647 int schedule_work(struct work_struct *work) 2648 { 2649 return queue_work(system_wq, work); 2650 } 2651 EXPORT_SYMBOL(schedule_work); 2652 2653 /* 2654 * schedule_work_on - put work task on a specific cpu 2655 * @cpu: cpu to put the work task on 2656 * @work: job to be done 2657 * 2658 * This puts a job on a specific cpu 2659 */ 2660 int schedule_work_on(int cpu, struct work_struct *work) 2661 { 2662 return queue_work_on(cpu, system_wq, work); 2663 } 2664 EXPORT_SYMBOL(schedule_work_on); 2665 2666 /** 2667 * schedule_delayed_work - put work task in global workqueue after delay 2668 * @dwork: job to be done 2669 * @delay: number of jiffies to wait or 0 for immediate execution 2670 * 2671 * After waiting for a given time this puts a job in the kernel-global 2672 * workqueue. 2673 */ 2674 int schedule_delayed_work(struct delayed_work *dwork, 2675 unsigned long delay) 2676 { 2677 return queue_delayed_work(system_wq, dwork, delay); 2678 } 2679 EXPORT_SYMBOL(schedule_delayed_work); 2680 2681 /** 2682 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 2683 * @cpu: cpu to use 2684 * @dwork: job to be done 2685 * @delay: number of jiffies to wait 2686 * 2687 * After waiting for a given time this puts a job in the kernel-global 2688 * workqueue on the specified CPU. 2689 */ 2690 int schedule_delayed_work_on(int cpu, 2691 struct delayed_work *dwork, unsigned long delay) 2692 { 2693 return queue_delayed_work_on(cpu, system_wq, dwork, delay); 2694 } 2695 EXPORT_SYMBOL(schedule_delayed_work_on); 2696 2697 /** 2698 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2699 * @func: the function to call 2700 * 2701 * schedule_on_each_cpu() executes @func on each online CPU using the 2702 * system workqueue and blocks until all CPUs have completed. 2703 * schedule_on_each_cpu() is very slow. 2704 * 2705 * RETURNS: 2706 * 0 on success, -errno on failure. 2707 */ 2708 int schedule_on_each_cpu(work_func_t func) 2709 { 2710 int cpu; 2711 struct work_struct __percpu *works; 2712 2713 works = alloc_percpu(struct work_struct); 2714 if (!works) 2715 return -ENOMEM; 2716 2717 get_online_cpus(); 2718 2719 for_each_online_cpu(cpu) { 2720 struct work_struct *work = per_cpu_ptr(works, cpu); 2721 2722 INIT_WORK(work, func); 2723 schedule_work_on(cpu, work); 2724 } 2725 2726 for_each_online_cpu(cpu) 2727 flush_work(per_cpu_ptr(works, cpu)); 2728 2729 put_online_cpus(); 2730 free_percpu(works); 2731 return 0; 2732 } 2733 2734 /** 2735 * flush_scheduled_work - ensure that any scheduled work has run to completion. 2736 * 2737 * Forces execution of the kernel-global workqueue and blocks until its 2738 * completion. 2739 * 2740 * Think twice before calling this function! It's very easy to get into 2741 * trouble if you don't take great care. Either of the following situations 2742 * will lead to deadlock: 2743 * 2744 * One of the work items currently on the workqueue needs to acquire 2745 * a lock held by your code or its caller. 2746 * 2747 * Your code is running in the context of a work routine. 2748 * 2749 * They will be detected by lockdep when they occur, but the first might not 2750 * occur very often. It depends on what work items are on the workqueue and 2751 * what locks they need, which you have no control over. 2752 * 2753 * In most situations flushing the entire workqueue is overkill; you merely 2754 * need to know that a particular work item isn't queued and isn't running. 2755 * In such cases you should use cancel_delayed_work_sync() or 2756 * cancel_work_sync() instead. 2757 */ 2758 void flush_scheduled_work(void) 2759 { 2760 flush_workqueue(system_wq); 2761 } 2762 EXPORT_SYMBOL(flush_scheduled_work); 2763 2764 /** 2765 * execute_in_process_context - reliably execute the routine with user context 2766 * @fn: the function to execute 2767 * @ew: guaranteed storage for the execute work structure (must 2768 * be available when the work executes) 2769 * 2770 * Executes the function immediately if process context is available, 2771 * otherwise schedules the function for delayed execution. 2772 * 2773 * Returns: 0 - function was executed 2774 * 1 - function was scheduled for execution 2775 */ 2776 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 2777 { 2778 if (!in_interrupt()) { 2779 fn(&ew->work); 2780 return 0; 2781 } 2782 2783 INIT_WORK(&ew->work, fn); 2784 schedule_work(&ew->work); 2785 2786 return 1; 2787 } 2788 EXPORT_SYMBOL_GPL(execute_in_process_context); 2789 2790 int keventd_up(void) 2791 { 2792 return system_wq != NULL; 2793 } 2794 2795 static int alloc_cwqs(struct workqueue_struct *wq) 2796 { 2797 /* 2798 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS. 2799 * Make sure that the alignment isn't lower than that of 2800 * unsigned long long. 2801 */ 2802 const size_t size = sizeof(struct cpu_workqueue_struct); 2803 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS, 2804 __alignof__(unsigned long long)); 2805 #ifdef CONFIG_SMP 2806 bool percpu = !(wq->flags & WQ_UNBOUND); 2807 #else 2808 bool percpu = false; 2809 #endif 2810 2811 if (percpu) 2812 wq->cpu_wq.pcpu = __alloc_percpu(size, align); 2813 else { 2814 void *ptr; 2815 2816 /* 2817 * Allocate enough room to align cwq and put an extra 2818 * pointer at the end pointing back to the originally 2819 * allocated pointer which will be used for free. 2820 */ 2821 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL); 2822 if (ptr) { 2823 wq->cpu_wq.single = PTR_ALIGN(ptr, align); 2824 *(void **)(wq->cpu_wq.single + 1) = ptr; 2825 } 2826 } 2827 2828 /* just in case, make sure it's actually aligned 2829 * - this is affected by PERCPU() alignment in vmlinux.lds.S 2830 */ 2831 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align)); 2832 return wq->cpu_wq.v ? 0 : -ENOMEM; 2833 } 2834 2835 static void free_cwqs(struct workqueue_struct *wq) 2836 { 2837 #ifdef CONFIG_SMP 2838 bool percpu = !(wq->flags & WQ_UNBOUND); 2839 #else 2840 bool percpu = false; 2841 #endif 2842 2843 if (percpu) 2844 free_percpu(wq->cpu_wq.pcpu); 2845 else if (wq->cpu_wq.single) { 2846 /* the pointer to free is stored right after the cwq */ 2847 kfree(*(void **)(wq->cpu_wq.single + 1)); 2848 } 2849 } 2850 2851 static int wq_clamp_max_active(int max_active, unsigned int flags, 2852 const char *name) 2853 { 2854 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 2855 2856 if (max_active < 1 || max_active > lim) 2857 printk(KERN_WARNING "workqueue: max_active %d requested for %s " 2858 "is out of range, clamping between %d and %d\n", 2859 max_active, name, 1, lim); 2860 2861 return clamp_val(max_active, 1, lim); 2862 } 2863 2864 struct workqueue_struct *__alloc_workqueue_key(const char *name, 2865 unsigned int flags, 2866 int max_active, 2867 struct lock_class_key *key, 2868 const char *lock_name) 2869 { 2870 struct workqueue_struct *wq; 2871 unsigned int cpu; 2872 2873 /* 2874 * Workqueues which may be used during memory reclaim should 2875 * have a rescuer to guarantee forward progress. 2876 */ 2877 if (flags & WQ_MEM_RECLAIM) 2878 flags |= WQ_RESCUER; 2879 2880 /* 2881 * Unbound workqueues aren't concurrency managed and should be 2882 * dispatched to workers immediately. 2883 */ 2884 if (flags & WQ_UNBOUND) 2885 flags |= WQ_HIGHPRI; 2886 2887 max_active = max_active ?: WQ_DFL_ACTIVE; 2888 max_active = wq_clamp_max_active(max_active, flags, name); 2889 2890 wq = kzalloc(sizeof(*wq), GFP_KERNEL); 2891 if (!wq) 2892 goto err; 2893 2894 wq->flags = flags; 2895 wq->saved_max_active = max_active; 2896 mutex_init(&wq->flush_mutex); 2897 atomic_set(&wq->nr_cwqs_to_flush, 0); 2898 INIT_LIST_HEAD(&wq->flusher_queue); 2899 INIT_LIST_HEAD(&wq->flusher_overflow); 2900 2901 wq->name = name; 2902 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 2903 INIT_LIST_HEAD(&wq->list); 2904 2905 if (alloc_cwqs(wq) < 0) 2906 goto err; 2907 2908 for_each_cwq_cpu(cpu, wq) { 2909 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2910 struct global_cwq *gcwq = get_gcwq(cpu); 2911 2912 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK); 2913 cwq->gcwq = gcwq; 2914 cwq->wq = wq; 2915 cwq->flush_color = -1; 2916 cwq->max_active = max_active; 2917 INIT_LIST_HEAD(&cwq->delayed_works); 2918 } 2919 2920 if (flags & WQ_RESCUER) { 2921 struct worker *rescuer; 2922 2923 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL)) 2924 goto err; 2925 2926 wq->rescuer = rescuer = alloc_worker(); 2927 if (!rescuer) 2928 goto err; 2929 2930 rescuer->task = kthread_create(rescuer_thread, wq, "%s", name); 2931 if (IS_ERR(rescuer->task)) 2932 goto err; 2933 2934 rescuer->task->flags |= PF_THREAD_BOUND; 2935 wake_up_process(rescuer->task); 2936 } 2937 2938 /* 2939 * workqueue_lock protects global freeze state and workqueues 2940 * list. Grab it, set max_active accordingly and add the new 2941 * workqueue to workqueues list. 2942 */ 2943 spin_lock(&workqueue_lock); 2944 2945 if (workqueue_freezing && wq->flags & WQ_FREEZEABLE) 2946 for_each_cwq_cpu(cpu, wq) 2947 get_cwq(cpu, wq)->max_active = 0; 2948 2949 list_add(&wq->list, &workqueues); 2950 2951 spin_unlock(&workqueue_lock); 2952 2953 return wq; 2954 err: 2955 if (wq) { 2956 free_cwqs(wq); 2957 free_mayday_mask(wq->mayday_mask); 2958 kfree(wq->rescuer); 2959 kfree(wq); 2960 } 2961 return NULL; 2962 } 2963 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 2964 2965 /** 2966 * destroy_workqueue - safely terminate a workqueue 2967 * @wq: target workqueue 2968 * 2969 * Safely destroy a workqueue. All work currently pending will be done first. 2970 */ 2971 void destroy_workqueue(struct workqueue_struct *wq) 2972 { 2973 unsigned int flush_cnt = 0; 2974 unsigned int cpu; 2975 2976 /* 2977 * Mark @wq dying and drain all pending works. Once WQ_DYING is 2978 * set, only chain queueing is allowed. IOW, only currently 2979 * pending or running work items on @wq can queue further work 2980 * items on it. @wq is flushed repeatedly until it becomes empty. 2981 * The number of flushing is detemined by the depth of chaining and 2982 * should be relatively short. Whine if it takes too long. 2983 */ 2984 wq->flags |= WQ_DYING; 2985 reflush: 2986 flush_workqueue(wq); 2987 2988 for_each_cwq_cpu(cpu, wq) { 2989 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2990 2991 if (!cwq->nr_active && list_empty(&cwq->delayed_works)) 2992 continue; 2993 2994 if (++flush_cnt == 10 || 2995 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2996 printk(KERN_WARNING "workqueue %s: flush on " 2997 "destruction isn't complete after %u tries\n", 2998 wq->name, flush_cnt); 2999 goto reflush; 3000 } 3001 3002 /* 3003 * wq list is used to freeze wq, remove from list after 3004 * flushing is complete in case freeze races us. 3005 */ 3006 spin_lock(&workqueue_lock); 3007 list_del(&wq->list); 3008 spin_unlock(&workqueue_lock); 3009 3010 /* sanity check */ 3011 for_each_cwq_cpu(cpu, wq) { 3012 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3013 int i; 3014 3015 for (i = 0; i < WORK_NR_COLORS; i++) 3016 BUG_ON(cwq->nr_in_flight[i]); 3017 BUG_ON(cwq->nr_active); 3018 BUG_ON(!list_empty(&cwq->delayed_works)); 3019 } 3020 3021 if (wq->flags & WQ_RESCUER) { 3022 kthread_stop(wq->rescuer->task); 3023 free_mayday_mask(wq->mayday_mask); 3024 kfree(wq->rescuer); 3025 } 3026 3027 free_cwqs(wq); 3028 kfree(wq); 3029 } 3030 EXPORT_SYMBOL_GPL(destroy_workqueue); 3031 3032 /** 3033 * workqueue_set_max_active - adjust max_active of a workqueue 3034 * @wq: target workqueue 3035 * @max_active: new max_active value. 3036 * 3037 * Set max_active of @wq to @max_active. 3038 * 3039 * CONTEXT: 3040 * Don't call from IRQ context. 3041 */ 3042 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 3043 { 3044 unsigned int cpu; 3045 3046 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 3047 3048 spin_lock(&workqueue_lock); 3049 3050 wq->saved_max_active = max_active; 3051 3052 for_each_cwq_cpu(cpu, wq) { 3053 struct global_cwq *gcwq = get_gcwq(cpu); 3054 3055 spin_lock_irq(&gcwq->lock); 3056 3057 if (!(wq->flags & WQ_FREEZEABLE) || 3058 !(gcwq->flags & GCWQ_FREEZING)) 3059 get_cwq(gcwq->cpu, wq)->max_active = max_active; 3060 3061 spin_unlock_irq(&gcwq->lock); 3062 } 3063 3064 spin_unlock(&workqueue_lock); 3065 } 3066 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 3067 3068 /** 3069 * workqueue_congested - test whether a workqueue is congested 3070 * @cpu: CPU in question 3071 * @wq: target workqueue 3072 * 3073 * Test whether @wq's cpu workqueue for @cpu is congested. There is 3074 * no synchronization around this function and the test result is 3075 * unreliable and only useful as advisory hints or for debugging. 3076 * 3077 * RETURNS: 3078 * %true if congested, %false otherwise. 3079 */ 3080 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq) 3081 { 3082 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3083 3084 return !list_empty(&cwq->delayed_works); 3085 } 3086 EXPORT_SYMBOL_GPL(workqueue_congested); 3087 3088 /** 3089 * work_cpu - return the last known associated cpu for @work 3090 * @work: the work of interest 3091 * 3092 * RETURNS: 3093 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise. 3094 */ 3095 unsigned int work_cpu(struct work_struct *work) 3096 { 3097 struct global_cwq *gcwq = get_work_gcwq(work); 3098 3099 return gcwq ? gcwq->cpu : WORK_CPU_NONE; 3100 } 3101 EXPORT_SYMBOL_GPL(work_cpu); 3102 3103 /** 3104 * work_busy - test whether a work is currently pending or running 3105 * @work: the work to be tested 3106 * 3107 * Test whether @work is currently pending or running. There is no 3108 * synchronization around this function and the test result is 3109 * unreliable and only useful as advisory hints or for debugging. 3110 * Especially for reentrant wqs, the pending state might hide the 3111 * running state. 3112 * 3113 * RETURNS: 3114 * OR'd bitmask of WORK_BUSY_* bits. 3115 */ 3116 unsigned int work_busy(struct work_struct *work) 3117 { 3118 struct global_cwq *gcwq = get_work_gcwq(work); 3119 unsigned long flags; 3120 unsigned int ret = 0; 3121 3122 if (!gcwq) 3123 return false; 3124 3125 spin_lock_irqsave(&gcwq->lock, flags); 3126 3127 if (work_pending(work)) 3128 ret |= WORK_BUSY_PENDING; 3129 if (find_worker_executing_work(gcwq, work)) 3130 ret |= WORK_BUSY_RUNNING; 3131 3132 spin_unlock_irqrestore(&gcwq->lock, flags); 3133 3134 return ret; 3135 } 3136 EXPORT_SYMBOL_GPL(work_busy); 3137 3138 /* 3139 * CPU hotplug. 3140 * 3141 * There are two challenges in supporting CPU hotplug. Firstly, there 3142 * are a lot of assumptions on strong associations among work, cwq and 3143 * gcwq which make migrating pending and scheduled works very 3144 * difficult to implement without impacting hot paths. Secondly, 3145 * gcwqs serve mix of short, long and very long running works making 3146 * blocked draining impractical. 3147 * 3148 * This is solved by allowing a gcwq to be detached from CPU, running 3149 * it with unbound (rogue) workers and allowing it to be reattached 3150 * later if the cpu comes back online. A separate thread is created 3151 * to govern a gcwq in such state and is called the trustee of the 3152 * gcwq. 3153 * 3154 * Trustee states and their descriptions. 3155 * 3156 * START Command state used on startup. On CPU_DOWN_PREPARE, a 3157 * new trustee is started with this state. 3158 * 3159 * IN_CHARGE Once started, trustee will enter this state after 3160 * assuming the manager role and making all existing 3161 * workers rogue. DOWN_PREPARE waits for trustee to 3162 * enter this state. After reaching IN_CHARGE, trustee 3163 * tries to execute the pending worklist until it's empty 3164 * and the state is set to BUTCHER, or the state is set 3165 * to RELEASE. 3166 * 3167 * BUTCHER Command state which is set by the cpu callback after 3168 * the cpu has went down. Once this state is set trustee 3169 * knows that there will be no new works on the worklist 3170 * and once the worklist is empty it can proceed to 3171 * killing idle workers. 3172 * 3173 * RELEASE Command state which is set by the cpu callback if the 3174 * cpu down has been canceled or it has come online 3175 * again. After recognizing this state, trustee stops 3176 * trying to drain or butcher and clears ROGUE, rebinds 3177 * all remaining workers back to the cpu and releases 3178 * manager role. 3179 * 3180 * DONE Trustee will enter this state after BUTCHER or RELEASE 3181 * is complete. 3182 * 3183 * trustee CPU draining 3184 * took over down complete 3185 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE 3186 * | | ^ 3187 * | CPU is back online v return workers | 3188 * ----------------> RELEASE -------------- 3189 */ 3190 3191 /** 3192 * trustee_wait_event_timeout - timed event wait for trustee 3193 * @cond: condition to wait for 3194 * @timeout: timeout in jiffies 3195 * 3196 * wait_event_timeout() for trustee to use. Handles locking and 3197 * checks for RELEASE request. 3198 * 3199 * CONTEXT: 3200 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3201 * multiple times. To be used by trustee. 3202 * 3203 * RETURNS: 3204 * Positive indicating left time if @cond is satisfied, 0 if timed 3205 * out, -1 if canceled. 3206 */ 3207 #define trustee_wait_event_timeout(cond, timeout) ({ \ 3208 long __ret = (timeout); \ 3209 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \ 3210 __ret) { \ 3211 spin_unlock_irq(&gcwq->lock); \ 3212 __wait_event_timeout(gcwq->trustee_wait, (cond) || \ 3213 (gcwq->trustee_state == TRUSTEE_RELEASE), \ 3214 __ret); \ 3215 spin_lock_irq(&gcwq->lock); \ 3216 } \ 3217 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \ 3218 }) 3219 3220 /** 3221 * trustee_wait_event - event wait for trustee 3222 * @cond: condition to wait for 3223 * 3224 * wait_event() for trustee to use. Automatically handles locking and 3225 * checks for CANCEL request. 3226 * 3227 * CONTEXT: 3228 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3229 * multiple times. To be used by trustee. 3230 * 3231 * RETURNS: 3232 * 0 if @cond is satisfied, -1 if canceled. 3233 */ 3234 #define trustee_wait_event(cond) ({ \ 3235 long __ret1; \ 3236 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\ 3237 __ret1 < 0 ? -1 : 0; \ 3238 }) 3239 3240 static int __cpuinit trustee_thread(void *__gcwq) 3241 { 3242 struct global_cwq *gcwq = __gcwq; 3243 struct worker *worker; 3244 struct work_struct *work; 3245 struct hlist_node *pos; 3246 long rc; 3247 int i; 3248 3249 BUG_ON(gcwq->cpu != smp_processor_id()); 3250 3251 spin_lock_irq(&gcwq->lock); 3252 /* 3253 * Claim the manager position and make all workers rogue. 3254 * Trustee must be bound to the target cpu and can't be 3255 * cancelled. 3256 */ 3257 BUG_ON(gcwq->cpu != smp_processor_id()); 3258 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS)); 3259 BUG_ON(rc < 0); 3260 3261 gcwq->flags |= GCWQ_MANAGING_WORKERS; 3262 3263 list_for_each_entry(worker, &gcwq->idle_list, entry) 3264 worker->flags |= WORKER_ROGUE; 3265 3266 for_each_busy_worker(worker, i, pos, gcwq) 3267 worker->flags |= WORKER_ROGUE; 3268 3269 /* 3270 * Call schedule() so that we cross rq->lock and thus can 3271 * guarantee sched callbacks see the rogue flag. This is 3272 * necessary as scheduler callbacks may be invoked from other 3273 * cpus. 3274 */ 3275 spin_unlock_irq(&gcwq->lock); 3276 schedule(); 3277 spin_lock_irq(&gcwq->lock); 3278 3279 /* 3280 * Sched callbacks are disabled now. Zap nr_running. After 3281 * this, nr_running stays zero and need_more_worker() and 3282 * keep_working() are always true as long as the worklist is 3283 * not empty. 3284 */ 3285 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0); 3286 3287 spin_unlock_irq(&gcwq->lock); 3288 del_timer_sync(&gcwq->idle_timer); 3289 spin_lock_irq(&gcwq->lock); 3290 3291 /* 3292 * We're now in charge. Notify and proceed to drain. We need 3293 * to keep the gcwq running during the whole CPU down 3294 * procedure as other cpu hotunplug callbacks may need to 3295 * flush currently running tasks. 3296 */ 3297 gcwq->trustee_state = TRUSTEE_IN_CHARGE; 3298 wake_up_all(&gcwq->trustee_wait); 3299 3300 /* 3301 * The original cpu is in the process of dying and may go away 3302 * anytime now. When that happens, we and all workers would 3303 * be migrated to other cpus. Try draining any left work. We 3304 * want to get it over with ASAP - spam rescuers, wake up as 3305 * many idlers as necessary and create new ones till the 3306 * worklist is empty. Note that if the gcwq is frozen, there 3307 * may be frozen works in freezeable cwqs. Don't declare 3308 * completion while frozen. 3309 */ 3310 while (gcwq->nr_workers != gcwq->nr_idle || 3311 gcwq->flags & GCWQ_FREEZING || 3312 gcwq->trustee_state == TRUSTEE_IN_CHARGE) { 3313 int nr_works = 0; 3314 3315 list_for_each_entry(work, &gcwq->worklist, entry) { 3316 send_mayday(work); 3317 nr_works++; 3318 } 3319 3320 list_for_each_entry(worker, &gcwq->idle_list, entry) { 3321 if (!nr_works--) 3322 break; 3323 wake_up_process(worker->task); 3324 } 3325 3326 if (need_to_create_worker(gcwq)) { 3327 spin_unlock_irq(&gcwq->lock); 3328 worker = create_worker(gcwq, false); 3329 spin_lock_irq(&gcwq->lock); 3330 if (worker) { 3331 worker->flags |= WORKER_ROGUE; 3332 start_worker(worker); 3333 } 3334 } 3335 3336 /* give a breather */ 3337 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0) 3338 break; 3339 } 3340 3341 /* 3342 * Either all works have been scheduled and cpu is down, or 3343 * cpu down has already been canceled. Wait for and butcher 3344 * all workers till we're canceled. 3345 */ 3346 do { 3347 rc = trustee_wait_event(!list_empty(&gcwq->idle_list)); 3348 while (!list_empty(&gcwq->idle_list)) 3349 destroy_worker(list_first_entry(&gcwq->idle_list, 3350 struct worker, entry)); 3351 } while (gcwq->nr_workers && rc >= 0); 3352 3353 /* 3354 * At this point, either draining has completed and no worker 3355 * is left, or cpu down has been canceled or the cpu is being 3356 * brought back up. There shouldn't be any idle one left. 3357 * Tell the remaining busy ones to rebind once it finishes the 3358 * currently scheduled works by scheduling the rebind_work. 3359 */ 3360 WARN_ON(!list_empty(&gcwq->idle_list)); 3361 3362 for_each_busy_worker(worker, i, pos, gcwq) { 3363 struct work_struct *rebind_work = &worker->rebind_work; 3364 3365 /* 3366 * Rebind_work may race with future cpu hotplug 3367 * operations. Use a separate flag to mark that 3368 * rebinding is scheduled. 3369 */ 3370 worker->flags |= WORKER_REBIND; 3371 worker->flags &= ~WORKER_ROGUE; 3372 3373 /* queue rebind_work, wq doesn't matter, use the default one */ 3374 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT, 3375 work_data_bits(rebind_work))) 3376 continue; 3377 3378 debug_work_activate(rebind_work); 3379 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work, 3380 worker->scheduled.next, 3381 work_color_to_flags(WORK_NO_COLOR)); 3382 } 3383 3384 /* relinquish manager role */ 3385 gcwq->flags &= ~GCWQ_MANAGING_WORKERS; 3386 3387 /* notify completion */ 3388 gcwq->trustee = NULL; 3389 gcwq->trustee_state = TRUSTEE_DONE; 3390 wake_up_all(&gcwq->trustee_wait); 3391 spin_unlock_irq(&gcwq->lock); 3392 return 0; 3393 } 3394 3395 /** 3396 * wait_trustee_state - wait for trustee to enter the specified state 3397 * @gcwq: gcwq the trustee of interest belongs to 3398 * @state: target state to wait for 3399 * 3400 * Wait for the trustee to reach @state. DONE is already matched. 3401 * 3402 * CONTEXT: 3403 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3404 * multiple times. To be used by cpu_callback. 3405 */ 3406 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state) 3407 __releases(&gcwq->lock) 3408 __acquires(&gcwq->lock) 3409 { 3410 if (!(gcwq->trustee_state == state || 3411 gcwq->trustee_state == TRUSTEE_DONE)) { 3412 spin_unlock_irq(&gcwq->lock); 3413 __wait_event(gcwq->trustee_wait, 3414 gcwq->trustee_state == state || 3415 gcwq->trustee_state == TRUSTEE_DONE); 3416 spin_lock_irq(&gcwq->lock); 3417 } 3418 } 3419 3420 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, 3421 unsigned long action, 3422 void *hcpu) 3423 { 3424 unsigned int cpu = (unsigned long)hcpu; 3425 struct global_cwq *gcwq = get_gcwq(cpu); 3426 struct task_struct *new_trustee = NULL; 3427 struct worker *uninitialized_var(new_worker); 3428 unsigned long flags; 3429 3430 action &= ~CPU_TASKS_FROZEN; 3431 3432 switch (action) { 3433 case CPU_DOWN_PREPARE: 3434 new_trustee = kthread_create(trustee_thread, gcwq, 3435 "workqueue_trustee/%d\n", cpu); 3436 if (IS_ERR(new_trustee)) 3437 return notifier_from_errno(PTR_ERR(new_trustee)); 3438 kthread_bind(new_trustee, cpu); 3439 /* fall through */ 3440 case CPU_UP_PREPARE: 3441 BUG_ON(gcwq->first_idle); 3442 new_worker = create_worker(gcwq, false); 3443 if (!new_worker) { 3444 if (new_trustee) 3445 kthread_stop(new_trustee); 3446 return NOTIFY_BAD; 3447 } 3448 } 3449 3450 /* some are called w/ irq disabled, don't disturb irq status */ 3451 spin_lock_irqsave(&gcwq->lock, flags); 3452 3453 switch (action) { 3454 case CPU_DOWN_PREPARE: 3455 /* initialize trustee and tell it to acquire the gcwq */ 3456 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE); 3457 gcwq->trustee = new_trustee; 3458 gcwq->trustee_state = TRUSTEE_START; 3459 wake_up_process(gcwq->trustee); 3460 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE); 3461 /* fall through */ 3462 case CPU_UP_PREPARE: 3463 BUG_ON(gcwq->first_idle); 3464 gcwq->first_idle = new_worker; 3465 break; 3466 3467 case CPU_DYING: 3468 /* 3469 * Before this, the trustee and all workers except for 3470 * the ones which are still executing works from 3471 * before the last CPU down must be on the cpu. After 3472 * this, they'll all be diasporas. 3473 */ 3474 gcwq->flags |= GCWQ_DISASSOCIATED; 3475 break; 3476 3477 case CPU_POST_DEAD: 3478 gcwq->trustee_state = TRUSTEE_BUTCHER; 3479 /* fall through */ 3480 case CPU_UP_CANCELED: 3481 destroy_worker(gcwq->first_idle); 3482 gcwq->first_idle = NULL; 3483 break; 3484 3485 case CPU_DOWN_FAILED: 3486 case CPU_ONLINE: 3487 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3488 if (gcwq->trustee_state != TRUSTEE_DONE) { 3489 gcwq->trustee_state = TRUSTEE_RELEASE; 3490 wake_up_process(gcwq->trustee); 3491 wait_trustee_state(gcwq, TRUSTEE_DONE); 3492 } 3493 3494 /* 3495 * Trustee is done and there might be no worker left. 3496 * Put the first_idle in and request a real manager to 3497 * take a look. 3498 */ 3499 spin_unlock_irq(&gcwq->lock); 3500 kthread_bind(gcwq->first_idle->task, cpu); 3501 spin_lock_irq(&gcwq->lock); 3502 gcwq->flags |= GCWQ_MANAGE_WORKERS; 3503 start_worker(gcwq->first_idle); 3504 gcwq->first_idle = NULL; 3505 break; 3506 } 3507 3508 spin_unlock_irqrestore(&gcwq->lock, flags); 3509 3510 return notifier_from_errno(0); 3511 } 3512 3513 #ifdef CONFIG_SMP 3514 3515 struct work_for_cpu { 3516 struct completion completion; 3517 long (*fn)(void *); 3518 void *arg; 3519 long ret; 3520 }; 3521 3522 static int do_work_for_cpu(void *_wfc) 3523 { 3524 struct work_for_cpu *wfc = _wfc; 3525 wfc->ret = wfc->fn(wfc->arg); 3526 complete(&wfc->completion); 3527 return 0; 3528 } 3529 3530 /** 3531 * work_on_cpu - run a function in user context on a particular cpu 3532 * @cpu: the cpu to run on 3533 * @fn: the function to run 3534 * @arg: the function arg 3535 * 3536 * This will return the value @fn returns. 3537 * It is up to the caller to ensure that the cpu doesn't go offline. 3538 * The caller must not hold any locks which would prevent @fn from completing. 3539 */ 3540 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) 3541 { 3542 struct task_struct *sub_thread; 3543 struct work_for_cpu wfc = { 3544 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion), 3545 .fn = fn, 3546 .arg = arg, 3547 }; 3548 3549 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu"); 3550 if (IS_ERR(sub_thread)) 3551 return PTR_ERR(sub_thread); 3552 kthread_bind(sub_thread, cpu); 3553 wake_up_process(sub_thread); 3554 wait_for_completion(&wfc.completion); 3555 return wfc.ret; 3556 } 3557 EXPORT_SYMBOL_GPL(work_on_cpu); 3558 #endif /* CONFIG_SMP */ 3559 3560 #ifdef CONFIG_FREEZER 3561 3562 /** 3563 * freeze_workqueues_begin - begin freezing workqueues 3564 * 3565 * Start freezing workqueues. After this function returns, all 3566 * freezeable workqueues will queue new works to their frozen_works 3567 * list instead of gcwq->worklist. 3568 * 3569 * CONTEXT: 3570 * Grabs and releases workqueue_lock and gcwq->lock's. 3571 */ 3572 void freeze_workqueues_begin(void) 3573 { 3574 unsigned int cpu; 3575 3576 spin_lock(&workqueue_lock); 3577 3578 BUG_ON(workqueue_freezing); 3579 workqueue_freezing = true; 3580 3581 for_each_gcwq_cpu(cpu) { 3582 struct global_cwq *gcwq = get_gcwq(cpu); 3583 struct workqueue_struct *wq; 3584 3585 spin_lock_irq(&gcwq->lock); 3586 3587 BUG_ON(gcwq->flags & GCWQ_FREEZING); 3588 gcwq->flags |= GCWQ_FREEZING; 3589 3590 list_for_each_entry(wq, &workqueues, list) { 3591 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3592 3593 if (cwq && wq->flags & WQ_FREEZEABLE) 3594 cwq->max_active = 0; 3595 } 3596 3597 spin_unlock_irq(&gcwq->lock); 3598 } 3599 3600 spin_unlock(&workqueue_lock); 3601 } 3602 3603 /** 3604 * freeze_workqueues_busy - are freezeable workqueues still busy? 3605 * 3606 * Check whether freezing is complete. This function must be called 3607 * between freeze_workqueues_begin() and thaw_workqueues(). 3608 * 3609 * CONTEXT: 3610 * Grabs and releases workqueue_lock. 3611 * 3612 * RETURNS: 3613 * %true if some freezeable workqueues are still busy. %false if 3614 * freezing is complete. 3615 */ 3616 bool freeze_workqueues_busy(void) 3617 { 3618 unsigned int cpu; 3619 bool busy = false; 3620 3621 spin_lock(&workqueue_lock); 3622 3623 BUG_ON(!workqueue_freezing); 3624 3625 for_each_gcwq_cpu(cpu) { 3626 struct workqueue_struct *wq; 3627 /* 3628 * nr_active is monotonically decreasing. It's safe 3629 * to peek without lock. 3630 */ 3631 list_for_each_entry(wq, &workqueues, list) { 3632 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3633 3634 if (!cwq || !(wq->flags & WQ_FREEZEABLE)) 3635 continue; 3636 3637 BUG_ON(cwq->nr_active < 0); 3638 if (cwq->nr_active) { 3639 busy = true; 3640 goto out_unlock; 3641 } 3642 } 3643 } 3644 out_unlock: 3645 spin_unlock(&workqueue_lock); 3646 return busy; 3647 } 3648 3649 /** 3650 * thaw_workqueues - thaw workqueues 3651 * 3652 * Thaw workqueues. Normal queueing is restored and all collected 3653 * frozen works are transferred to their respective gcwq worklists. 3654 * 3655 * CONTEXT: 3656 * Grabs and releases workqueue_lock and gcwq->lock's. 3657 */ 3658 void thaw_workqueues(void) 3659 { 3660 unsigned int cpu; 3661 3662 spin_lock(&workqueue_lock); 3663 3664 if (!workqueue_freezing) 3665 goto out_unlock; 3666 3667 for_each_gcwq_cpu(cpu) { 3668 struct global_cwq *gcwq = get_gcwq(cpu); 3669 struct workqueue_struct *wq; 3670 3671 spin_lock_irq(&gcwq->lock); 3672 3673 BUG_ON(!(gcwq->flags & GCWQ_FREEZING)); 3674 gcwq->flags &= ~GCWQ_FREEZING; 3675 3676 list_for_each_entry(wq, &workqueues, list) { 3677 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3678 3679 if (!cwq || !(wq->flags & WQ_FREEZEABLE)) 3680 continue; 3681 3682 /* restore max_active and repopulate worklist */ 3683 cwq->max_active = wq->saved_max_active; 3684 3685 while (!list_empty(&cwq->delayed_works) && 3686 cwq->nr_active < cwq->max_active) 3687 cwq_activate_first_delayed(cwq); 3688 } 3689 3690 wake_up_worker(gcwq); 3691 3692 spin_unlock_irq(&gcwq->lock); 3693 } 3694 3695 workqueue_freezing = false; 3696 out_unlock: 3697 spin_unlock(&workqueue_lock); 3698 } 3699 #endif /* CONFIG_FREEZER */ 3700 3701 static int __init init_workqueues(void) 3702 { 3703 unsigned int cpu; 3704 int i; 3705 3706 cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE); 3707 3708 /* initialize gcwqs */ 3709 for_each_gcwq_cpu(cpu) { 3710 struct global_cwq *gcwq = get_gcwq(cpu); 3711 3712 spin_lock_init(&gcwq->lock); 3713 INIT_LIST_HEAD(&gcwq->worklist); 3714 gcwq->cpu = cpu; 3715 gcwq->flags |= GCWQ_DISASSOCIATED; 3716 3717 INIT_LIST_HEAD(&gcwq->idle_list); 3718 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) 3719 INIT_HLIST_HEAD(&gcwq->busy_hash[i]); 3720 3721 init_timer_deferrable(&gcwq->idle_timer); 3722 gcwq->idle_timer.function = idle_worker_timeout; 3723 gcwq->idle_timer.data = (unsigned long)gcwq; 3724 3725 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout, 3726 (unsigned long)gcwq); 3727 3728 ida_init(&gcwq->worker_ida); 3729 3730 gcwq->trustee_state = TRUSTEE_DONE; 3731 init_waitqueue_head(&gcwq->trustee_wait); 3732 } 3733 3734 /* create the initial worker */ 3735 for_each_online_gcwq_cpu(cpu) { 3736 struct global_cwq *gcwq = get_gcwq(cpu); 3737 struct worker *worker; 3738 3739 if (cpu != WORK_CPU_UNBOUND) 3740 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3741 worker = create_worker(gcwq, true); 3742 BUG_ON(!worker); 3743 spin_lock_irq(&gcwq->lock); 3744 start_worker(worker); 3745 spin_unlock_irq(&gcwq->lock); 3746 } 3747 3748 system_wq = alloc_workqueue("events", 0, 0); 3749 system_long_wq = alloc_workqueue("events_long", 0, 0); 3750 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0); 3751 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 3752 WQ_UNBOUND_MAX_ACTIVE); 3753 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq || 3754 !system_unbound_wq); 3755 return 0; 3756 } 3757 early_initcall(init_workqueues); 3758