xref: /linux/kernel/workqueue.c (revision 6de298ff13a807d12300bd616c6d3039987e6e87)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/sched/debug.h>
53 #include <linux/nmi.h>
54 #include <linux/kvm_para.h>
55 
56 #include "workqueue_internal.h"
57 
58 enum {
59 	/*
60 	 * worker_pool flags
61 	 *
62 	 * A bound pool is either associated or disassociated with its CPU.
63 	 * While associated (!DISASSOCIATED), all workers are bound to the
64 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
65 	 * is in effect.
66 	 *
67 	 * While DISASSOCIATED, the cpu may be offline and all workers have
68 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
69 	 * be executing on any CPU.  The pool behaves as an unbound one.
70 	 *
71 	 * Note that DISASSOCIATED should be flipped only while holding
72 	 * wq_pool_attach_mutex to avoid changing binding state while
73 	 * worker_attach_to_pool() is in progress.
74 	 */
75 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
76 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
77 
78 	/* worker flags */
79 	WORKER_DIE		= 1 << 1,	/* die die die */
80 	WORKER_IDLE		= 1 << 2,	/* is idle */
81 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
82 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
83 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
84 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
85 
86 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
87 				  WORKER_UNBOUND | WORKER_REBOUND,
88 
89 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
90 
91 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
92 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
93 
94 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
95 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
96 
97 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
98 						/* call for help after 10ms
99 						   (min two ticks) */
100 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
101 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
102 
103 	/*
104 	 * Rescue workers are used only on emergencies and shared by
105 	 * all cpus.  Give MIN_NICE.
106 	 */
107 	RESCUER_NICE_LEVEL	= MIN_NICE,
108 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
109 
110 	WQ_NAME_LEN		= 24,
111 };
112 
113 /*
114  * Structure fields follow one of the following exclusion rules.
115  *
116  * I: Modifiable by initialization/destruction paths and read-only for
117  *    everyone else.
118  *
119  * P: Preemption protected.  Disabling preemption is enough and should
120  *    only be modified and accessed from the local cpu.
121  *
122  * L: pool->lock protected.  Access with pool->lock held.
123  *
124  * X: During normal operation, modification requires pool->lock and should
125  *    be done only from local cpu.  Either disabling preemption on local
126  *    cpu or grabbing pool->lock is enough for read access.  If
127  *    POOL_DISASSOCIATED is set, it's identical to L.
128  *
129  * K: Only modified by worker while holding pool->lock. Can be safely read by
130  *    self, while holding pool->lock or from IRQ context if %current is the
131  *    kworker.
132  *
133  * S: Only modified by worker self.
134  *
135  * A: wq_pool_attach_mutex protected.
136  *
137  * PL: wq_pool_mutex protected.
138  *
139  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
140  *
141  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
142  *
143  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
144  *      RCU for reads.
145  *
146  * WQ: wq->mutex protected.
147  *
148  * WR: wq->mutex protected for writes.  RCU protected for reads.
149  *
150  * MD: wq_mayday_lock protected.
151  *
152  * WD: Used internally by the watchdog.
153  */
154 
155 /* struct worker is defined in workqueue_internal.h */
156 
157 struct worker_pool {
158 	raw_spinlock_t		lock;		/* the pool lock */
159 	int			cpu;		/* I: the associated cpu */
160 	int			node;		/* I: the associated node ID */
161 	int			id;		/* I: pool ID */
162 	unsigned int		flags;		/* X: flags */
163 
164 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
165 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
166 
167 	/*
168 	 * The counter is incremented in a process context on the associated CPU
169 	 * w/ preemption disabled, and decremented or reset in the same context
170 	 * but w/ pool->lock held. The readers grab pool->lock and are
171 	 * guaranteed to see if the counter reached zero.
172 	 */
173 	int			nr_running;
174 
175 	struct list_head	worklist;	/* L: list of pending works */
176 
177 	int			nr_workers;	/* L: total number of workers */
178 	int			nr_idle;	/* L: currently idle workers */
179 
180 	struct list_head	idle_list;	/* L: list of idle workers */
181 	struct timer_list	idle_timer;	/* L: worker idle timeout */
182 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
183 
184 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
185 
186 	/* a workers is either on busy_hash or idle_list, or the manager */
187 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
188 						/* L: hash of busy workers */
189 
190 	struct worker		*manager;	/* L: purely informational */
191 	struct list_head	workers;	/* A: attached workers */
192 	struct list_head        dying_workers;  /* A: workers about to die */
193 	struct completion	*detach_completion; /* all workers detached */
194 
195 	struct ida		worker_ida;	/* worker IDs for task name */
196 
197 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
198 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
199 	int			refcnt;		/* PL: refcnt for unbound pools */
200 
201 	/*
202 	 * Destruction of pool is RCU protected to allow dereferences
203 	 * from get_work_pool().
204 	 */
205 	struct rcu_head		rcu;
206 };
207 
208 /*
209  * Per-pool_workqueue statistics. These can be monitored using
210  * tools/workqueue/wq_monitor.py.
211  */
212 enum pool_workqueue_stats {
213 	PWQ_STAT_STARTED,	/* work items started execution */
214 	PWQ_STAT_COMPLETED,	/* work items completed execution */
215 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
216 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
217 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
218 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
219 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
220 
221 	PWQ_NR_STATS,
222 };
223 
224 /*
225  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
226  * of work_struct->data are used for flags and the remaining high bits
227  * point to the pwq; thus, pwqs need to be aligned at two's power of the
228  * number of flag bits.
229  */
230 struct pool_workqueue {
231 	struct worker_pool	*pool;		/* I: the associated pool */
232 	struct workqueue_struct *wq;		/* I: the owning workqueue */
233 	int			work_color;	/* L: current color */
234 	int			flush_color;	/* L: flushing color */
235 	int			refcnt;		/* L: reference count */
236 	int			nr_in_flight[WORK_NR_COLORS];
237 						/* L: nr of in_flight works */
238 
239 	/*
240 	 * nr_active management and WORK_STRUCT_INACTIVE:
241 	 *
242 	 * When pwq->nr_active >= max_active, new work item is queued to
243 	 * pwq->inactive_works instead of pool->worklist and marked with
244 	 * WORK_STRUCT_INACTIVE.
245 	 *
246 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate
247 	 * in pwq->nr_active and all work items in pwq->inactive_works are
248 	 * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
249 	 * work items are in pwq->inactive_works.  Some of them are ready to
250 	 * run in pool->worklist or worker->scheduled.  Those work itmes are
251 	 * only struct wq_barrier which is used for flush_work() and should
252 	 * not participate in pwq->nr_active.  For non-barrier work item, it
253 	 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
254 	 */
255 	int			nr_active;	/* L: nr of active works */
256 	int			max_active;	/* L: max active works */
257 	struct list_head	inactive_works;	/* L: inactive works */
258 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
259 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
260 
261 	u64			stats[PWQ_NR_STATS];
262 
263 	/*
264 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
265 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
266 	 * itself is also RCU protected so that the first pwq can be
267 	 * determined without grabbing wq->mutex.
268 	 */
269 	struct work_struct	unbound_release_work;
270 	struct rcu_head		rcu;
271 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
272 
273 /*
274  * Structure used to wait for workqueue flush.
275  */
276 struct wq_flusher {
277 	struct list_head	list;		/* WQ: list of flushers */
278 	int			flush_color;	/* WQ: flush color waiting for */
279 	struct completion	done;		/* flush completion */
280 };
281 
282 struct wq_device;
283 
284 /*
285  * The externally visible workqueue.  It relays the issued work items to
286  * the appropriate worker_pool through its pool_workqueues.
287  */
288 struct workqueue_struct {
289 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
290 	struct list_head	list;		/* PR: list of all workqueues */
291 
292 	struct mutex		mutex;		/* protects this wq */
293 	int			work_color;	/* WQ: current work color */
294 	int			flush_color;	/* WQ: current flush color */
295 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
296 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
297 	struct list_head	flusher_queue;	/* WQ: flush waiters */
298 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
299 
300 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
301 	struct worker		*rescuer;	/* MD: rescue worker */
302 
303 	int			nr_drainers;	/* WQ: drain in progress */
304 	int			saved_max_active; /* WQ: saved pwq max_active */
305 
306 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
307 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
308 
309 #ifdef CONFIG_SYSFS
310 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
311 #endif
312 #ifdef CONFIG_LOCKDEP
313 	char			*lock_name;
314 	struct lock_class_key	key;
315 	struct lockdep_map	lockdep_map;
316 #endif
317 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
318 
319 	/*
320 	 * Destruction of workqueue_struct is RCU protected to allow walking
321 	 * the workqueues list without grabbing wq_pool_mutex.
322 	 * This is used to dump all workqueues from sysrq.
323 	 */
324 	struct rcu_head		rcu;
325 
326 	/* hot fields used during command issue, aligned to cacheline */
327 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
328 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
329 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
330 };
331 
332 static struct kmem_cache *pwq_cache;
333 
334 static cpumask_var_t *wq_numa_possible_cpumask;
335 					/* possible CPUs of each node */
336 
337 /*
338  * Per-cpu work items which run for longer than the following threshold are
339  * automatically considered CPU intensive and excluded from concurrency
340  * management to prevent them from noticeably delaying other per-cpu work items.
341  */
342 static unsigned long wq_cpu_intensive_thresh_us = 10000;
343 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
344 
345 static bool wq_disable_numa;
346 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
347 
348 /* see the comment above the definition of WQ_POWER_EFFICIENT */
349 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
350 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
351 
352 static bool wq_online;			/* can kworkers be created yet? */
353 
354 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
355 
356 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
357 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
358 
359 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
360 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
361 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
362 /* wait for manager to go away */
363 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
364 
365 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
366 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
367 
368 /* PL&A: allowable cpus for unbound wqs and work items */
369 static cpumask_var_t wq_unbound_cpumask;
370 
371 /* CPU where unbound work was last round robin scheduled from this CPU */
372 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
373 
374 /*
375  * Local execution of unbound work items is no longer guaranteed.  The
376  * following always forces round-robin CPU selection on unbound work items
377  * to uncover usages which depend on it.
378  */
379 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
380 static bool wq_debug_force_rr_cpu = true;
381 #else
382 static bool wq_debug_force_rr_cpu = false;
383 #endif
384 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
385 
386 /* the per-cpu worker pools */
387 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
388 
389 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
390 
391 /* PL: hash of all unbound pools keyed by pool->attrs */
392 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
393 
394 /* I: attributes used when instantiating standard unbound pools on demand */
395 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
396 
397 /* I: attributes used when instantiating ordered pools on demand */
398 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
399 
400 struct workqueue_struct *system_wq __read_mostly;
401 EXPORT_SYMBOL(system_wq);
402 struct workqueue_struct *system_highpri_wq __read_mostly;
403 EXPORT_SYMBOL_GPL(system_highpri_wq);
404 struct workqueue_struct *system_long_wq __read_mostly;
405 EXPORT_SYMBOL_GPL(system_long_wq);
406 struct workqueue_struct *system_unbound_wq __read_mostly;
407 EXPORT_SYMBOL_GPL(system_unbound_wq);
408 struct workqueue_struct *system_freezable_wq __read_mostly;
409 EXPORT_SYMBOL_GPL(system_freezable_wq);
410 struct workqueue_struct *system_power_efficient_wq __read_mostly;
411 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
412 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
413 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
414 
415 static int worker_thread(void *__worker);
416 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
417 static void show_pwq(struct pool_workqueue *pwq);
418 static void show_one_worker_pool(struct worker_pool *pool);
419 
420 #define CREATE_TRACE_POINTS
421 #include <trace/events/workqueue.h>
422 
423 #define assert_rcu_or_pool_mutex()					\
424 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
425 			 !lockdep_is_held(&wq_pool_mutex),		\
426 			 "RCU or wq_pool_mutex should be held")
427 
428 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
429 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
430 			 !lockdep_is_held(&wq->mutex) &&		\
431 			 !lockdep_is_held(&wq_pool_mutex),		\
432 			 "RCU, wq->mutex or wq_pool_mutex should be held")
433 
434 #define for_each_cpu_worker_pool(pool, cpu)				\
435 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
436 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
437 	     (pool)++)
438 
439 /**
440  * for_each_pool - iterate through all worker_pools in the system
441  * @pool: iteration cursor
442  * @pi: integer used for iteration
443  *
444  * This must be called either with wq_pool_mutex held or RCU read
445  * locked.  If the pool needs to be used beyond the locking in effect, the
446  * caller is responsible for guaranteeing that the pool stays online.
447  *
448  * The if/else clause exists only for the lockdep assertion and can be
449  * ignored.
450  */
451 #define for_each_pool(pool, pi)						\
452 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
453 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
454 		else
455 
456 /**
457  * for_each_pool_worker - iterate through all workers of a worker_pool
458  * @worker: iteration cursor
459  * @pool: worker_pool to iterate workers of
460  *
461  * This must be called with wq_pool_attach_mutex.
462  *
463  * The if/else clause exists only for the lockdep assertion and can be
464  * ignored.
465  */
466 #define for_each_pool_worker(worker, pool)				\
467 	list_for_each_entry((worker), &(pool)->workers, node)		\
468 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
469 		else
470 
471 /**
472  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
473  * @pwq: iteration cursor
474  * @wq: the target workqueue
475  *
476  * This must be called either with wq->mutex held or RCU read locked.
477  * If the pwq needs to be used beyond the locking in effect, the caller is
478  * responsible for guaranteeing that the pwq stays online.
479  *
480  * The if/else clause exists only for the lockdep assertion and can be
481  * ignored.
482  */
483 #define for_each_pwq(pwq, wq)						\
484 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
485 				 lockdep_is_held(&(wq->mutex)))
486 
487 #ifdef CONFIG_DEBUG_OBJECTS_WORK
488 
489 static const struct debug_obj_descr work_debug_descr;
490 
491 static void *work_debug_hint(void *addr)
492 {
493 	return ((struct work_struct *) addr)->func;
494 }
495 
496 static bool work_is_static_object(void *addr)
497 {
498 	struct work_struct *work = addr;
499 
500 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
501 }
502 
503 /*
504  * fixup_init is called when:
505  * - an active object is initialized
506  */
507 static bool work_fixup_init(void *addr, enum debug_obj_state state)
508 {
509 	struct work_struct *work = addr;
510 
511 	switch (state) {
512 	case ODEBUG_STATE_ACTIVE:
513 		cancel_work_sync(work);
514 		debug_object_init(work, &work_debug_descr);
515 		return true;
516 	default:
517 		return false;
518 	}
519 }
520 
521 /*
522  * fixup_free is called when:
523  * - an active object is freed
524  */
525 static bool work_fixup_free(void *addr, enum debug_obj_state state)
526 {
527 	struct work_struct *work = addr;
528 
529 	switch (state) {
530 	case ODEBUG_STATE_ACTIVE:
531 		cancel_work_sync(work);
532 		debug_object_free(work, &work_debug_descr);
533 		return true;
534 	default:
535 		return false;
536 	}
537 }
538 
539 static const struct debug_obj_descr work_debug_descr = {
540 	.name		= "work_struct",
541 	.debug_hint	= work_debug_hint,
542 	.is_static_object = work_is_static_object,
543 	.fixup_init	= work_fixup_init,
544 	.fixup_free	= work_fixup_free,
545 };
546 
547 static inline void debug_work_activate(struct work_struct *work)
548 {
549 	debug_object_activate(work, &work_debug_descr);
550 }
551 
552 static inline void debug_work_deactivate(struct work_struct *work)
553 {
554 	debug_object_deactivate(work, &work_debug_descr);
555 }
556 
557 void __init_work(struct work_struct *work, int onstack)
558 {
559 	if (onstack)
560 		debug_object_init_on_stack(work, &work_debug_descr);
561 	else
562 		debug_object_init(work, &work_debug_descr);
563 }
564 EXPORT_SYMBOL_GPL(__init_work);
565 
566 void destroy_work_on_stack(struct work_struct *work)
567 {
568 	debug_object_free(work, &work_debug_descr);
569 }
570 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
571 
572 void destroy_delayed_work_on_stack(struct delayed_work *work)
573 {
574 	destroy_timer_on_stack(&work->timer);
575 	debug_object_free(&work->work, &work_debug_descr);
576 }
577 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
578 
579 #else
580 static inline void debug_work_activate(struct work_struct *work) { }
581 static inline void debug_work_deactivate(struct work_struct *work) { }
582 #endif
583 
584 /**
585  * worker_pool_assign_id - allocate ID and assign it to @pool
586  * @pool: the pool pointer of interest
587  *
588  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
589  * successfully, -errno on failure.
590  */
591 static int worker_pool_assign_id(struct worker_pool *pool)
592 {
593 	int ret;
594 
595 	lockdep_assert_held(&wq_pool_mutex);
596 
597 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
598 			GFP_KERNEL);
599 	if (ret >= 0) {
600 		pool->id = ret;
601 		return 0;
602 	}
603 	return ret;
604 }
605 
606 /**
607  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
608  * @wq: the target workqueue
609  * @node: the node ID
610  *
611  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
612  * read locked.
613  * If the pwq needs to be used beyond the locking in effect, the caller is
614  * responsible for guaranteeing that the pwq stays online.
615  *
616  * Return: The unbound pool_workqueue for @node.
617  */
618 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
619 						  int node)
620 {
621 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
622 
623 	/*
624 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
625 	 * delayed item is pending.  The plan is to keep CPU -> NODE
626 	 * mapping valid and stable across CPU on/offlines.  Once that
627 	 * happens, this workaround can be removed.
628 	 */
629 	if (unlikely(node == NUMA_NO_NODE))
630 		return wq->dfl_pwq;
631 
632 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
633 }
634 
635 static unsigned int work_color_to_flags(int color)
636 {
637 	return color << WORK_STRUCT_COLOR_SHIFT;
638 }
639 
640 static int get_work_color(unsigned long work_data)
641 {
642 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
643 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
644 }
645 
646 static int work_next_color(int color)
647 {
648 	return (color + 1) % WORK_NR_COLORS;
649 }
650 
651 /*
652  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
653  * contain the pointer to the queued pwq.  Once execution starts, the flag
654  * is cleared and the high bits contain OFFQ flags and pool ID.
655  *
656  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
657  * and clear_work_data() can be used to set the pwq, pool or clear
658  * work->data.  These functions should only be called while the work is
659  * owned - ie. while the PENDING bit is set.
660  *
661  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
662  * corresponding to a work.  Pool is available once the work has been
663  * queued anywhere after initialization until it is sync canceled.  pwq is
664  * available only while the work item is queued.
665  *
666  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
667  * canceled.  While being canceled, a work item may have its PENDING set
668  * but stay off timer and worklist for arbitrarily long and nobody should
669  * try to steal the PENDING bit.
670  */
671 static inline void set_work_data(struct work_struct *work, unsigned long data,
672 				 unsigned long flags)
673 {
674 	WARN_ON_ONCE(!work_pending(work));
675 	atomic_long_set(&work->data, data | flags | work_static(work));
676 }
677 
678 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
679 			 unsigned long extra_flags)
680 {
681 	set_work_data(work, (unsigned long)pwq,
682 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
683 }
684 
685 static void set_work_pool_and_keep_pending(struct work_struct *work,
686 					   int pool_id)
687 {
688 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
689 		      WORK_STRUCT_PENDING);
690 }
691 
692 static void set_work_pool_and_clear_pending(struct work_struct *work,
693 					    int pool_id)
694 {
695 	/*
696 	 * The following wmb is paired with the implied mb in
697 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
698 	 * here are visible to and precede any updates by the next PENDING
699 	 * owner.
700 	 */
701 	smp_wmb();
702 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
703 	/*
704 	 * The following mb guarantees that previous clear of a PENDING bit
705 	 * will not be reordered with any speculative LOADS or STORES from
706 	 * work->current_func, which is executed afterwards.  This possible
707 	 * reordering can lead to a missed execution on attempt to queue
708 	 * the same @work.  E.g. consider this case:
709 	 *
710 	 *   CPU#0                         CPU#1
711 	 *   ----------------------------  --------------------------------
712 	 *
713 	 * 1  STORE event_indicated
714 	 * 2  queue_work_on() {
715 	 * 3    test_and_set_bit(PENDING)
716 	 * 4 }                             set_..._and_clear_pending() {
717 	 * 5                                 set_work_data() # clear bit
718 	 * 6                                 smp_mb()
719 	 * 7                               work->current_func() {
720 	 * 8				      LOAD event_indicated
721 	 *				   }
722 	 *
723 	 * Without an explicit full barrier speculative LOAD on line 8 can
724 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
725 	 * CPU#0 observes the PENDING bit is still set and new execution of
726 	 * a @work is not queued in a hope, that CPU#1 will eventually
727 	 * finish the queued @work.  Meanwhile CPU#1 does not see
728 	 * event_indicated is set, because speculative LOAD was executed
729 	 * before actual STORE.
730 	 */
731 	smp_mb();
732 }
733 
734 static void clear_work_data(struct work_struct *work)
735 {
736 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
737 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
738 }
739 
740 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
741 {
742 	return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
743 }
744 
745 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
746 {
747 	unsigned long data = atomic_long_read(&work->data);
748 
749 	if (data & WORK_STRUCT_PWQ)
750 		return work_struct_pwq(data);
751 	else
752 		return NULL;
753 }
754 
755 /**
756  * get_work_pool - return the worker_pool a given work was associated with
757  * @work: the work item of interest
758  *
759  * Pools are created and destroyed under wq_pool_mutex, and allows read
760  * access under RCU read lock.  As such, this function should be
761  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
762  *
763  * All fields of the returned pool are accessible as long as the above
764  * mentioned locking is in effect.  If the returned pool needs to be used
765  * beyond the critical section, the caller is responsible for ensuring the
766  * returned pool is and stays online.
767  *
768  * Return: The worker_pool @work was last associated with.  %NULL if none.
769  */
770 static struct worker_pool *get_work_pool(struct work_struct *work)
771 {
772 	unsigned long data = atomic_long_read(&work->data);
773 	int pool_id;
774 
775 	assert_rcu_or_pool_mutex();
776 
777 	if (data & WORK_STRUCT_PWQ)
778 		return work_struct_pwq(data)->pool;
779 
780 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
781 	if (pool_id == WORK_OFFQ_POOL_NONE)
782 		return NULL;
783 
784 	return idr_find(&worker_pool_idr, pool_id);
785 }
786 
787 /**
788  * get_work_pool_id - return the worker pool ID a given work is associated with
789  * @work: the work item of interest
790  *
791  * Return: The worker_pool ID @work was last associated with.
792  * %WORK_OFFQ_POOL_NONE if none.
793  */
794 static int get_work_pool_id(struct work_struct *work)
795 {
796 	unsigned long data = atomic_long_read(&work->data);
797 
798 	if (data & WORK_STRUCT_PWQ)
799 		return work_struct_pwq(data)->pool->id;
800 
801 	return data >> WORK_OFFQ_POOL_SHIFT;
802 }
803 
804 static void mark_work_canceling(struct work_struct *work)
805 {
806 	unsigned long pool_id = get_work_pool_id(work);
807 
808 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
809 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
810 }
811 
812 static bool work_is_canceling(struct work_struct *work)
813 {
814 	unsigned long data = atomic_long_read(&work->data);
815 
816 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
817 }
818 
819 /*
820  * Policy functions.  These define the policies on how the global worker
821  * pools are managed.  Unless noted otherwise, these functions assume that
822  * they're being called with pool->lock held.
823  */
824 
825 static bool __need_more_worker(struct worker_pool *pool)
826 {
827 	return !pool->nr_running;
828 }
829 
830 /*
831  * Need to wake up a worker?  Called from anything but currently
832  * running workers.
833  *
834  * Note that, because unbound workers never contribute to nr_running, this
835  * function will always return %true for unbound pools as long as the
836  * worklist isn't empty.
837  */
838 static bool need_more_worker(struct worker_pool *pool)
839 {
840 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
841 }
842 
843 /* Can I start working?  Called from busy but !running workers. */
844 static bool may_start_working(struct worker_pool *pool)
845 {
846 	return pool->nr_idle;
847 }
848 
849 /* Do I need to keep working?  Called from currently running workers. */
850 static bool keep_working(struct worker_pool *pool)
851 {
852 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
853 }
854 
855 /* Do we need a new worker?  Called from manager. */
856 static bool need_to_create_worker(struct worker_pool *pool)
857 {
858 	return need_more_worker(pool) && !may_start_working(pool);
859 }
860 
861 /* Do we have too many workers and should some go away? */
862 static bool too_many_workers(struct worker_pool *pool)
863 {
864 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
865 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
866 	int nr_busy = pool->nr_workers - nr_idle;
867 
868 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
869 }
870 
871 /*
872  * Wake up functions.
873  */
874 
875 /* Return the first idle worker.  Called with pool->lock held. */
876 static struct worker *first_idle_worker(struct worker_pool *pool)
877 {
878 	if (unlikely(list_empty(&pool->idle_list)))
879 		return NULL;
880 
881 	return list_first_entry(&pool->idle_list, struct worker, entry);
882 }
883 
884 /**
885  * wake_up_worker - wake up an idle worker
886  * @pool: worker pool to wake worker from
887  *
888  * Wake up the first idle worker of @pool.
889  *
890  * CONTEXT:
891  * raw_spin_lock_irq(pool->lock).
892  */
893 static void wake_up_worker(struct worker_pool *pool)
894 {
895 	struct worker *worker = first_idle_worker(pool);
896 
897 	if (likely(worker))
898 		wake_up_process(worker->task);
899 }
900 
901 /**
902  * worker_set_flags - set worker flags and adjust nr_running accordingly
903  * @worker: self
904  * @flags: flags to set
905  *
906  * Set @flags in @worker->flags and adjust nr_running accordingly.
907  *
908  * CONTEXT:
909  * raw_spin_lock_irq(pool->lock)
910  */
911 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
912 {
913 	struct worker_pool *pool = worker->pool;
914 
915 	WARN_ON_ONCE(worker->task != current);
916 
917 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
918 	if ((flags & WORKER_NOT_RUNNING) &&
919 	    !(worker->flags & WORKER_NOT_RUNNING)) {
920 		pool->nr_running--;
921 	}
922 
923 	worker->flags |= flags;
924 }
925 
926 /**
927  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
928  * @worker: self
929  * @flags: flags to clear
930  *
931  * Clear @flags in @worker->flags and adjust nr_running accordingly.
932  *
933  * CONTEXT:
934  * raw_spin_lock_irq(pool->lock)
935  */
936 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
937 {
938 	struct worker_pool *pool = worker->pool;
939 	unsigned int oflags = worker->flags;
940 
941 	WARN_ON_ONCE(worker->task != current);
942 
943 	worker->flags &= ~flags;
944 
945 	/*
946 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
947 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
948 	 * of multiple flags, not a single flag.
949 	 */
950 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
951 		if (!(worker->flags & WORKER_NOT_RUNNING))
952 			pool->nr_running++;
953 }
954 
955 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
956 
957 /*
958  * Concurrency-managed per-cpu work items that hog CPU for longer than
959  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
960  * which prevents them from stalling other concurrency-managed work items. If a
961  * work function keeps triggering this mechanism, it's likely that the work item
962  * should be using an unbound workqueue instead.
963  *
964  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
965  * and report them so that they can be examined and converted to use unbound
966  * workqueues as appropriate. To avoid flooding the console, each violating work
967  * function is tracked and reported with exponential backoff.
968  */
969 #define WCI_MAX_ENTS 128
970 
971 struct wci_ent {
972 	work_func_t		func;
973 	atomic64_t		cnt;
974 	struct hlist_node	hash_node;
975 };
976 
977 static struct wci_ent wci_ents[WCI_MAX_ENTS];
978 static int wci_nr_ents;
979 static DEFINE_RAW_SPINLOCK(wci_lock);
980 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
981 
982 static struct wci_ent *wci_find_ent(work_func_t func)
983 {
984 	struct wci_ent *ent;
985 
986 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
987 				   (unsigned long)func) {
988 		if (ent->func == func)
989 			return ent;
990 	}
991 	return NULL;
992 }
993 
994 static void wq_cpu_intensive_report(work_func_t func)
995 {
996 	struct wci_ent *ent;
997 
998 restart:
999 	ent = wci_find_ent(func);
1000 	if (ent) {
1001 		u64 cnt;
1002 
1003 		/*
1004 		 * Start reporting from the fourth time and back off
1005 		 * exponentially.
1006 		 */
1007 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1008 		if (cnt >= 4 && is_power_of_2(cnt))
1009 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1010 					ent->func, wq_cpu_intensive_thresh_us,
1011 					atomic64_read(&ent->cnt));
1012 		return;
1013 	}
1014 
1015 	/*
1016 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1017 	 * is exhausted, something went really wrong and we probably made enough
1018 	 * noise already.
1019 	 */
1020 	if (wci_nr_ents >= WCI_MAX_ENTS)
1021 		return;
1022 
1023 	raw_spin_lock(&wci_lock);
1024 
1025 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1026 		raw_spin_unlock(&wci_lock);
1027 		return;
1028 	}
1029 
1030 	if (wci_find_ent(func)) {
1031 		raw_spin_unlock(&wci_lock);
1032 		goto restart;
1033 	}
1034 
1035 	ent = &wci_ents[wci_nr_ents++];
1036 	ent->func = func;
1037 	atomic64_set(&ent->cnt, 1);
1038 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1039 
1040 	raw_spin_unlock(&wci_lock);
1041 }
1042 
1043 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1044 static void wq_cpu_intensive_report(work_func_t func) {}
1045 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1046 
1047 /**
1048  * wq_worker_running - a worker is running again
1049  * @task: task waking up
1050  *
1051  * This function is called when a worker returns from schedule()
1052  */
1053 void wq_worker_running(struct task_struct *task)
1054 {
1055 	struct worker *worker = kthread_data(task);
1056 
1057 	if (!READ_ONCE(worker->sleeping))
1058 		return;
1059 
1060 	/*
1061 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1062 	 * and the nr_running increment below, we may ruin the nr_running reset
1063 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1064 	 * pool. Protect against such race.
1065 	 */
1066 	preempt_disable();
1067 	if (!(worker->flags & WORKER_NOT_RUNNING))
1068 		worker->pool->nr_running++;
1069 	preempt_enable();
1070 
1071 	/*
1072 	 * CPU intensive auto-detection cares about how long a work item hogged
1073 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1074 	 */
1075 	worker->current_at = worker->task->se.sum_exec_runtime;
1076 
1077 	WRITE_ONCE(worker->sleeping, 0);
1078 }
1079 
1080 /**
1081  * wq_worker_sleeping - a worker is going to sleep
1082  * @task: task going to sleep
1083  *
1084  * This function is called from schedule() when a busy worker is
1085  * going to sleep.
1086  */
1087 void wq_worker_sleeping(struct task_struct *task)
1088 {
1089 	struct worker *worker = kthread_data(task);
1090 	struct worker_pool *pool;
1091 
1092 	/*
1093 	 * Rescuers, which may not have all the fields set up like normal
1094 	 * workers, also reach here, let's not access anything before
1095 	 * checking NOT_RUNNING.
1096 	 */
1097 	if (worker->flags & WORKER_NOT_RUNNING)
1098 		return;
1099 
1100 	pool = worker->pool;
1101 
1102 	/* Return if preempted before wq_worker_running() was reached */
1103 	if (READ_ONCE(worker->sleeping))
1104 		return;
1105 
1106 	WRITE_ONCE(worker->sleeping, 1);
1107 	raw_spin_lock_irq(&pool->lock);
1108 
1109 	/*
1110 	 * Recheck in case unbind_workers() preempted us. We don't
1111 	 * want to decrement nr_running after the worker is unbound
1112 	 * and nr_running has been reset.
1113 	 */
1114 	if (worker->flags & WORKER_NOT_RUNNING) {
1115 		raw_spin_unlock_irq(&pool->lock);
1116 		return;
1117 	}
1118 
1119 	pool->nr_running--;
1120 	if (need_more_worker(pool)) {
1121 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1122 		wake_up_worker(pool);
1123 	}
1124 	raw_spin_unlock_irq(&pool->lock);
1125 }
1126 
1127 /**
1128  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1129  * @task: task currently running
1130  *
1131  * Called from scheduler_tick(). We're in the IRQ context and the current
1132  * worker's fields which follow the 'K' locking rule can be accessed safely.
1133  */
1134 void wq_worker_tick(struct task_struct *task)
1135 {
1136 	struct worker *worker = kthread_data(task);
1137 	struct pool_workqueue *pwq = worker->current_pwq;
1138 	struct worker_pool *pool = worker->pool;
1139 
1140 	if (!pwq)
1141 		return;
1142 
1143 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1144 
1145 	if (!wq_cpu_intensive_thresh_us)
1146 		return;
1147 
1148 	/*
1149 	 * If the current worker is concurrency managed and hogged the CPU for
1150 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1151 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1152 	 *
1153 	 * Set @worker->sleeping means that @worker is in the process of
1154 	 * switching out voluntarily and won't be contributing to
1155 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1156 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1157 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1158 	 * We probably want to make this prettier in the future.
1159 	 */
1160 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1161 	    worker->task->se.sum_exec_runtime - worker->current_at <
1162 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1163 		return;
1164 
1165 	raw_spin_lock(&pool->lock);
1166 
1167 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1168 	wq_cpu_intensive_report(worker->current_func);
1169 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1170 
1171 	if (need_more_worker(pool)) {
1172 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1173 		wake_up_worker(pool);
1174 	}
1175 
1176 	raw_spin_unlock(&pool->lock);
1177 }
1178 
1179 /**
1180  * wq_worker_last_func - retrieve worker's last work function
1181  * @task: Task to retrieve last work function of.
1182  *
1183  * Determine the last function a worker executed. This is called from
1184  * the scheduler to get a worker's last known identity.
1185  *
1186  * CONTEXT:
1187  * raw_spin_lock_irq(rq->lock)
1188  *
1189  * This function is called during schedule() when a kworker is going
1190  * to sleep. It's used by psi to identify aggregation workers during
1191  * dequeuing, to allow periodic aggregation to shut-off when that
1192  * worker is the last task in the system or cgroup to go to sleep.
1193  *
1194  * As this function doesn't involve any workqueue-related locking, it
1195  * only returns stable values when called from inside the scheduler's
1196  * queuing and dequeuing paths, when @task, which must be a kworker,
1197  * is guaranteed to not be processing any works.
1198  *
1199  * Return:
1200  * The last work function %current executed as a worker, NULL if it
1201  * hasn't executed any work yet.
1202  */
1203 work_func_t wq_worker_last_func(struct task_struct *task)
1204 {
1205 	struct worker *worker = kthread_data(task);
1206 
1207 	return worker->last_func;
1208 }
1209 
1210 /**
1211  * find_worker_executing_work - find worker which is executing a work
1212  * @pool: pool of interest
1213  * @work: work to find worker for
1214  *
1215  * Find a worker which is executing @work on @pool by searching
1216  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1217  * to match, its current execution should match the address of @work and
1218  * its work function.  This is to avoid unwanted dependency between
1219  * unrelated work executions through a work item being recycled while still
1220  * being executed.
1221  *
1222  * This is a bit tricky.  A work item may be freed once its execution
1223  * starts and nothing prevents the freed area from being recycled for
1224  * another work item.  If the same work item address ends up being reused
1225  * before the original execution finishes, workqueue will identify the
1226  * recycled work item as currently executing and make it wait until the
1227  * current execution finishes, introducing an unwanted dependency.
1228  *
1229  * This function checks the work item address and work function to avoid
1230  * false positives.  Note that this isn't complete as one may construct a
1231  * work function which can introduce dependency onto itself through a
1232  * recycled work item.  Well, if somebody wants to shoot oneself in the
1233  * foot that badly, there's only so much we can do, and if such deadlock
1234  * actually occurs, it should be easy to locate the culprit work function.
1235  *
1236  * CONTEXT:
1237  * raw_spin_lock_irq(pool->lock).
1238  *
1239  * Return:
1240  * Pointer to worker which is executing @work if found, %NULL
1241  * otherwise.
1242  */
1243 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1244 						 struct work_struct *work)
1245 {
1246 	struct worker *worker;
1247 
1248 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1249 			       (unsigned long)work)
1250 		if (worker->current_work == work &&
1251 		    worker->current_func == work->func)
1252 			return worker;
1253 
1254 	return NULL;
1255 }
1256 
1257 /**
1258  * move_linked_works - move linked works to a list
1259  * @work: start of series of works to be scheduled
1260  * @head: target list to append @work to
1261  * @nextp: out parameter for nested worklist walking
1262  *
1263  * Schedule linked works starting from @work to @head.  Work series to
1264  * be scheduled starts at @work and includes any consecutive work with
1265  * WORK_STRUCT_LINKED set in its predecessor.
1266  *
1267  * If @nextp is not NULL, it's updated to point to the next work of
1268  * the last scheduled work.  This allows move_linked_works() to be
1269  * nested inside outer list_for_each_entry_safe().
1270  *
1271  * CONTEXT:
1272  * raw_spin_lock_irq(pool->lock).
1273  */
1274 static void move_linked_works(struct work_struct *work, struct list_head *head,
1275 			      struct work_struct **nextp)
1276 {
1277 	struct work_struct *n;
1278 
1279 	/*
1280 	 * Linked worklist will always end before the end of the list,
1281 	 * use NULL for list head.
1282 	 */
1283 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1284 		list_move_tail(&work->entry, head);
1285 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1286 			break;
1287 	}
1288 
1289 	/*
1290 	 * If we're already inside safe list traversal and have moved
1291 	 * multiple works to the scheduled queue, the next position
1292 	 * needs to be updated.
1293 	 */
1294 	if (nextp)
1295 		*nextp = n;
1296 }
1297 
1298 /**
1299  * get_pwq - get an extra reference on the specified pool_workqueue
1300  * @pwq: pool_workqueue to get
1301  *
1302  * Obtain an extra reference on @pwq.  The caller should guarantee that
1303  * @pwq has positive refcnt and be holding the matching pool->lock.
1304  */
1305 static void get_pwq(struct pool_workqueue *pwq)
1306 {
1307 	lockdep_assert_held(&pwq->pool->lock);
1308 	WARN_ON_ONCE(pwq->refcnt <= 0);
1309 	pwq->refcnt++;
1310 }
1311 
1312 /**
1313  * put_pwq - put a pool_workqueue reference
1314  * @pwq: pool_workqueue to put
1315  *
1316  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1317  * destruction.  The caller should be holding the matching pool->lock.
1318  */
1319 static void put_pwq(struct pool_workqueue *pwq)
1320 {
1321 	lockdep_assert_held(&pwq->pool->lock);
1322 	if (likely(--pwq->refcnt))
1323 		return;
1324 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1325 		return;
1326 	/*
1327 	 * @pwq can't be released under pool->lock, bounce to
1328 	 * pwq_unbound_release_workfn().  This never recurses on the same
1329 	 * pool->lock as this path is taken only for unbound workqueues and
1330 	 * the release work item is scheduled on a per-cpu workqueue.  To
1331 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1332 	 * subclass of 1 in get_unbound_pool().
1333 	 */
1334 	schedule_work(&pwq->unbound_release_work);
1335 }
1336 
1337 /**
1338  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1339  * @pwq: pool_workqueue to put (can be %NULL)
1340  *
1341  * put_pwq() with locking.  This function also allows %NULL @pwq.
1342  */
1343 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1344 {
1345 	if (pwq) {
1346 		/*
1347 		 * As both pwqs and pools are RCU protected, the
1348 		 * following lock operations are safe.
1349 		 */
1350 		raw_spin_lock_irq(&pwq->pool->lock);
1351 		put_pwq(pwq);
1352 		raw_spin_unlock_irq(&pwq->pool->lock);
1353 	}
1354 }
1355 
1356 static void pwq_activate_inactive_work(struct work_struct *work)
1357 {
1358 	struct pool_workqueue *pwq = get_work_pwq(work);
1359 
1360 	trace_workqueue_activate_work(work);
1361 	if (list_empty(&pwq->pool->worklist))
1362 		pwq->pool->watchdog_ts = jiffies;
1363 	move_linked_works(work, &pwq->pool->worklist, NULL);
1364 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1365 	pwq->nr_active++;
1366 }
1367 
1368 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1369 {
1370 	struct work_struct *work = list_first_entry(&pwq->inactive_works,
1371 						    struct work_struct, entry);
1372 
1373 	pwq_activate_inactive_work(work);
1374 }
1375 
1376 /**
1377  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1378  * @pwq: pwq of interest
1379  * @work_data: work_data of work which left the queue
1380  *
1381  * A work either has completed or is removed from pending queue,
1382  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1383  *
1384  * CONTEXT:
1385  * raw_spin_lock_irq(pool->lock).
1386  */
1387 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1388 {
1389 	int color = get_work_color(work_data);
1390 
1391 	if (!(work_data & WORK_STRUCT_INACTIVE)) {
1392 		pwq->nr_active--;
1393 		if (!list_empty(&pwq->inactive_works)) {
1394 			/* one down, submit an inactive one */
1395 			if (pwq->nr_active < pwq->max_active)
1396 				pwq_activate_first_inactive(pwq);
1397 		}
1398 	}
1399 
1400 	pwq->nr_in_flight[color]--;
1401 
1402 	/* is flush in progress and are we at the flushing tip? */
1403 	if (likely(pwq->flush_color != color))
1404 		goto out_put;
1405 
1406 	/* are there still in-flight works? */
1407 	if (pwq->nr_in_flight[color])
1408 		goto out_put;
1409 
1410 	/* this pwq is done, clear flush_color */
1411 	pwq->flush_color = -1;
1412 
1413 	/*
1414 	 * If this was the last pwq, wake up the first flusher.  It
1415 	 * will handle the rest.
1416 	 */
1417 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1418 		complete(&pwq->wq->first_flusher->done);
1419 out_put:
1420 	put_pwq(pwq);
1421 }
1422 
1423 /**
1424  * try_to_grab_pending - steal work item from worklist and disable irq
1425  * @work: work item to steal
1426  * @is_dwork: @work is a delayed_work
1427  * @flags: place to store irq state
1428  *
1429  * Try to grab PENDING bit of @work.  This function can handle @work in any
1430  * stable state - idle, on timer or on worklist.
1431  *
1432  * Return:
1433  *
1434  *  ========	================================================================
1435  *  1		if @work was pending and we successfully stole PENDING
1436  *  0		if @work was idle and we claimed PENDING
1437  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1438  *  -ENOENT	if someone else is canceling @work, this state may persist
1439  *		for arbitrarily long
1440  *  ========	================================================================
1441  *
1442  * Note:
1443  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1444  * interrupted while holding PENDING and @work off queue, irq must be
1445  * disabled on entry.  This, combined with delayed_work->timer being
1446  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1447  *
1448  * On successful return, >= 0, irq is disabled and the caller is
1449  * responsible for releasing it using local_irq_restore(*@flags).
1450  *
1451  * This function is safe to call from any context including IRQ handler.
1452  */
1453 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1454 			       unsigned long *flags)
1455 {
1456 	struct worker_pool *pool;
1457 	struct pool_workqueue *pwq;
1458 
1459 	local_irq_save(*flags);
1460 
1461 	/* try to steal the timer if it exists */
1462 	if (is_dwork) {
1463 		struct delayed_work *dwork = to_delayed_work(work);
1464 
1465 		/*
1466 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1467 		 * guaranteed that the timer is not queued anywhere and not
1468 		 * running on the local CPU.
1469 		 */
1470 		if (likely(del_timer(&dwork->timer)))
1471 			return 1;
1472 	}
1473 
1474 	/* try to claim PENDING the normal way */
1475 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1476 		return 0;
1477 
1478 	rcu_read_lock();
1479 	/*
1480 	 * The queueing is in progress, or it is already queued. Try to
1481 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1482 	 */
1483 	pool = get_work_pool(work);
1484 	if (!pool)
1485 		goto fail;
1486 
1487 	raw_spin_lock(&pool->lock);
1488 	/*
1489 	 * work->data is guaranteed to point to pwq only while the work
1490 	 * item is queued on pwq->wq, and both updating work->data to point
1491 	 * to pwq on queueing and to pool on dequeueing are done under
1492 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1493 	 * points to pwq which is associated with a locked pool, the work
1494 	 * item is currently queued on that pool.
1495 	 */
1496 	pwq = get_work_pwq(work);
1497 	if (pwq && pwq->pool == pool) {
1498 		debug_work_deactivate(work);
1499 
1500 		/*
1501 		 * A cancelable inactive work item must be in the
1502 		 * pwq->inactive_works since a queued barrier can't be
1503 		 * canceled (see the comments in insert_wq_barrier()).
1504 		 *
1505 		 * An inactive work item cannot be grabbed directly because
1506 		 * it might have linked barrier work items which, if left
1507 		 * on the inactive_works list, will confuse pwq->nr_active
1508 		 * management later on and cause stall.  Make sure the work
1509 		 * item is activated before grabbing.
1510 		 */
1511 		if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1512 			pwq_activate_inactive_work(work);
1513 
1514 		list_del_init(&work->entry);
1515 		pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1516 
1517 		/* work->data points to pwq iff queued, point to pool */
1518 		set_work_pool_and_keep_pending(work, pool->id);
1519 
1520 		raw_spin_unlock(&pool->lock);
1521 		rcu_read_unlock();
1522 		return 1;
1523 	}
1524 	raw_spin_unlock(&pool->lock);
1525 fail:
1526 	rcu_read_unlock();
1527 	local_irq_restore(*flags);
1528 	if (work_is_canceling(work))
1529 		return -ENOENT;
1530 	cpu_relax();
1531 	return -EAGAIN;
1532 }
1533 
1534 /**
1535  * insert_work - insert a work into a pool
1536  * @pwq: pwq @work belongs to
1537  * @work: work to insert
1538  * @head: insertion point
1539  * @extra_flags: extra WORK_STRUCT_* flags to set
1540  *
1541  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1542  * work_struct flags.
1543  *
1544  * CONTEXT:
1545  * raw_spin_lock_irq(pool->lock).
1546  */
1547 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1548 			struct list_head *head, unsigned int extra_flags)
1549 {
1550 	struct worker_pool *pool = pwq->pool;
1551 
1552 	/* record the work call stack in order to print it in KASAN reports */
1553 	kasan_record_aux_stack_noalloc(work);
1554 
1555 	/* we own @work, set data and link */
1556 	set_work_pwq(work, pwq, extra_flags);
1557 	list_add_tail(&work->entry, head);
1558 	get_pwq(pwq);
1559 
1560 	if (__need_more_worker(pool))
1561 		wake_up_worker(pool);
1562 }
1563 
1564 /*
1565  * Test whether @work is being queued from another work executing on the
1566  * same workqueue.
1567  */
1568 static bool is_chained_work(struct workqueue_struct *wq)
1569 {
1570 	struct worker *worker;
1571 
1572 	worker = current_wq_worker();
1573 	/*
1574 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1575 	 * I'm @worker, it's safe to dereference it without locking.
1576 	 */
1577 	return worker && worker->current_pwq->wq == wq;
1578 }
1579 
1580 /*
1581  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1582  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1583  * avoid perturbing sensitive tasks.
1584  */
1585 static int wq_select_unbound_cpu(int cpu)
1586 {
1587 	int new_cpu;
1588 
1589 	if (likely(!wq_debug_force_rr_cpu)) {
1590 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1591 			return cpu;
1592 	} else {
1593 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
1594 	}
1595 
1596 	if (cpumask_empty(wq_unbound_cpumask))
1597 		return cpu;
1598 
1599 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1600 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1601 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1602 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1603 		if (unlikely(new_cpu >= nr_cpu_ids))
1604 			return cpu;
1605 	}
1606 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1607 
1608 	return new_cpu;
1609 }
1610 
1611 static void __queue_work(int cpu, struct workqueue_struct *wq,
1612 			 struct work_struct *work)
1613 {
1614 	struct pool_workqueue *pwq;
1615 	struct worker_pool *last_pool;
1616 	struct list_head *worklist;
1617 	unsigned int work_flags;
1618 	unsigned int req_cpu = cpu;
1619 
1620 	/*
1621 	 * While a work item is PENDING && off queue, a task trying to
1622 	 * steal the PENDING will busy-loop waiting for it to either get
1623 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1624 	 * happen with IRQ disabled.
1625 	 */
1626 	lockdep_assert_irqs_disabled();
1627 
1628 
1629 	/*
1630 	 * For a draining wq, only works from the same workqueue are
1631 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
1632 	 * queues a new work item to a wq after destroy_workqueue(wq).
1633 	 */
1634 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
1635 		     WARN_ON_ONCE(!is_chained_work(wq))))
1636 		return;
1637 	rcu_read_lock();
1638 retry:
1639 	/* pwq which will be used unless @work is executing elsewhere */
1640 	if (wq->flags & WQ_UNBOUND) {
1641 		if (req_cpu == WORK_CPU_UNBOUND)
1642 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1643 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1644 	} else {
1645 		if (req_cpu == WORK_CPU_UNBOUND)
1646 			cpu = raw_smp_processor_id();
1647 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1648 	}
1649 
1650 	/*
1651 	 * If @work was previously on a different pool, it might still be
1652 	 * running there, in which case the work needs to be queued on that
1653 	 * pool to guarantee non-reentrancy.
1654 	 */
1655 	last_pool = get_work_pool(work);
1656 	if (last_pool && last_pool != pwq->pool) {
1657 		struct worker *worker;
1658 
1659 		raw_spin_lock(&last_pool->lock);
1660 
1661 		worker = find_worker_executing_work(last_pool, work);
1662 
1663 		if (worker && worker->current_pwq->wq == wq) {
1664 			pwq = worker->current_pwq;
1665 		} else {
1666 			/* meh... not running there, queue here */
1667 			raw_spin_unlock(&last_pool->lock);
1668 			raw_spin_lock(&pwq->pool->lock);
1669 		}
1670 	} else {
1671 		raw_spin_lock(&pwq->pool->lock);
1672 	}
1673 
1674 	/*
1675 	 * pwq is determined and locked.  For unbound pools, we could have
1676 	 * raced with pwq release and it could already be dead.  If its
1677 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1678 	 * without another pwq replacing it in the numa_pwq_tbl or while
1679 	 * work items are executing on it, so the retrying is guaranteed to
1680 	 * make forward-progress.
1681 	 */
1682 	if (unlikely(!pwq->refcnt)) {
1683 		if (wq->flags & WQ_UNBOUND) {
1684 			raw_spin_unlock(&pwq->pool->lock);
1685 			cpu_relax();
1686 			goto retry;
1687 		}
1688 		/* oops */
1689 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1690 			  wq->name, cpu);
1691 	}
1692 
1693 	/* pwq determined, queue */
1694 	trace_workqueue_queue_work(req_cpu, pwq, work);
1695 
1696 	if (WARN_ON(!list_empty(&work->entry)))
1697 		goto out;
1698 
1699 	pwq->nr_in_flight[pwq->work_color]++;
1700 	work_flags = work_color_to_flags(pwq->work_color);
1701 
1702 	if (likely(pwq->nr_active < pwq->max_active)) {
1703 		trace_workqueue_activate_work(work);
1704 		pwq->nr_active++;
1705 		worklist = &pwq->pool->worklist;
1706 		if (list_empty(worklist))
1707 			pwq->pool->watchdog_ts = jiffies;
1708 	} else {
1709 		work_flags |= WORK_STRUCT_INACTIVE;
1710 		worklist = &pwq->inactive_works;
1711 	}
1712 
1713 	debug_work_activate(work);
1714 	insert_work(pwq, work, worklist, work_flags);
1715 
1716 out:
1717 	raw_spin_unlock(&pwq->pool->lock);
1718 	rcu_read_unlock();
1719 }
1720 
1721 /**
1722  * queue_work_on - queue work on specific cpu
1723  * @cpu: CPU number to execute work on
1724  * @wq: workqueue to use
1725  * @work: work to queue
1726  *
1727  * We queue the work to a specific CPU, the caller must ensure it
1728  * can't go away.  Callers that fail to ensure that the specified
1729  * CPU cannot go away will execute on a randomly chosen CPU.
1730  * But note well that callers specifying a CPU that never has been
1731  * online will get a splat.
1732  *
1733  * Return: %false if @work was already on a queue, %true otherwise.
1734  */
1735 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1736 		   struct work_struct *work)
1737 {
1738 	bool ret = false;
1739 	unsigned long flags;
1740 
1741 	local_irq_save(flags);
1742 
1743 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1744 		__queue_work(cpu, wq, work);
1745 		ret = true;
1746 	}
1747 
1748 	local_irq_restore(flags);
1749 	return ret;
1750 }
1751 EXPORT_SYMBOL(queue_work_on);
1752 
1753 /**
1754  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1755  * @node: NUMA node ID that we want to select a CPU from
1756  *
1757  * This function will attempt to find a "random" cpu available on a given
1758  * node. If there are no CPUs available on the given node it will return
1759  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1760  * available CPU if we need to schedule this work.
1761  */
1762 static int workqueue_select_cpu_near(int node)
1763 {
1764 	int cpu;
1765 
1766 	/* No point in doing this if NUMA isn't enabled for workqueues */
1767 	if (!wq_numa_enabled)
1768 		return WORK_CPU_UNBOUND;
1769 
1770 	/* Delay binding to CPU if node is not valid or online */
1771 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1772 		return WORK_CPU_UNBOUND;
1773 
1774 	/* Use local node/cpu if we are already there */
1775 	cpu = raw_smp_processor_id();
1776 	if (node == cpu_to_node(cpu))
1777 		return cpu;
1778 
1779 	/* Use "random" otherwise know as "first" online CPU of node */
1780 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1781 
1782 	/* If CPU is valid return that, otherwise just defer */
1783 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1784 }
1785 
1786 /**
1787  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1788  * @node: NUMA node that we are targeting the work for
1789  * @wq: workqueue to use
1790  * @work: work to queue
1791  *
1792  * We queue the work to a "random" CPU within a given NUMA node. The basic
1793  * idea here is to provide a way to somehow associate work with a given
1794  * NUMA node.
1795  *
1796  * This function will only make a best effort attempt at getting this onto
1797  * the right NUMA node. If no node is requested or the requested node is
1798  * offline then we just fall back to standard queue_work behavior.
1799  *
1800  * Currently the "random" CPU ends up being the first available CPU in the
1801  * intersection of cpu_online_mask and the cpumask of the node, unless we
1802  * are running on the node. In that case we just use the current CPU.
1803  *
1804  * Return: %false if @work was already on a queue, %true otherwise.
1805  */
1806 bool queue_work_node(int node, struct workqueue_struct *wq,
1807 		     struct work_struct *work)
1808 {
1809 	unsigned long flags;
1810 	bool ret = false;
1811 
1812 	/*
1813 	 * This current implementation is specific to unbound workqueues.
1814 	 * Specifically we only return the first available CPU for a given
1815 	 * node instead of cycling through individual CPUs within the node.
1816 	 *
1817 	 * If this is used with a per-cpu workqueue then the logic in
1818 	 * workqueue_select_cpu_near would need to be updated to allow for
1819 	 * some round robin type logic.
1820 	 */
1821 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1822 
1823 	local_irq_save(flags);
1824 
1825 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1826 		int cpu = workqueue_select_cpu_near(node);
1827 
1828 		__queue_work(cpu, wq, work);
1829 		ret = true;
1830 	}
1831 
1832 	local_irq_restore(flags);
1833 	return ret;
1834 }
1835 EXPORT_SYMBOL_GPL(queue_work_node);
1836 
1837 void delayed_work_timer_fn(struct timer_list *t)
1838 {
1839 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1840 
1841 	/* should have been called from irqsafe timer with irq already off */
1842 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1843 }
1844 EXPORT_SYMBOL(delayed_work_timer_fn);
1845 
1846 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1847 				struct delayed_work *dwork, unsigned long delay)
1848 {
1849 	struct timer_list *timer = &dwork->timer;
1850 	struct work_struct *work = &dwork->work;
1851 
1852 	WARN_ON_ONCE(!wq);
1853 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1854 	WARN_ON_ONCE(timer_pending(timer));
1855 	WARN_ON_ONCE(!list_empty(&work->entry));
1856 
1857 	/*
1858 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1859 	 * both optimization and correctness.  The earliest @timer can
1860 	 * expire is on the closest next tick and delayed_work users depend
1861 	 * on that there's no such delay when @delay is 0.
1862 	 */
1863 	if (!delay) {
1864 		__queue_work(cpu, wq, &dwork->work);
1865 		return;
1866 	}
1867 
1868 	dwork->wq = wq;
1869 	dwork->cpu = cpu;
1870 	timer->expires = jiffies + delay;
1871 
1872 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1873 		add_timer_on(timer, cpu);
1874 	else
1875 		add_timer(timer);
1876 }
1877 
1878 /**
1879  * queue_delayed_work_on - queue work on specific CPU after delay
1880  * @cpu: CPU number to execute work on
1881  * @wq: workqueue to use
1882  * @dwork: work to queue
1883  * @delay: number of jiffies to wait before queueing
1884  *
1885  * Return: %false if @work was already on a queue, %true otherwise.  If
1886  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1887  * execution.
1888  */
1889 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1890 			   struct delayed_work *dwork, unsigned long delay)
1891 {
1892 	struct work_struct *work = &dwork->work;
1893 	bool ret = false;
1894 	unsigned long flags;
1895 
1896 	/* read the comment in __queue_work() */
1897 	local_irq_save(flags);
1898 
1899 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1900 		__queue_delayed_work(cpu, wq, dwork, delay);
1901 		ret = true;
1902 	}
1903 
1904 	local_irq_restore(flags);
1905 	return ret;
1906 }
1907 EXPORT_SYMBOL(queue_delayed_work_on);
1908 
1909 /**
1910  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1911  * @cpu: CPU number to execute work on
1912  * @wq: workqueue to use
1913  * @dwork: work to queue
1914  * @delay: number of jiffies to wait before queueing
1915  *
1916  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1917  * modify @dwork's timer so that it expires after @delay.  If @delay is
1918  * zero, @work is guaranteed to be scheduled immediately regardless of its
1919  * current state.
1920  *
1921  * Return: %false if @dwork was idle and queued, %true if @dwork was
1922  * pending and its timer was modified.
1923  *
1924  * This function is safe to call from any context including IRQ handler.
1925  * See try_to_grab_pending() for details.
1926  */
1927 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1928 			 struct delayed_work *dwork, unsigned long delay)
1929 {
1930 	unsigned long flags;
1931 	int ret;
1932 
1933 	do {
1934 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1935 	} while (unlikely(ret == -EAGAIN));
1936 
1937 	if (likely(ret >= 0)) {
1938 		__queue_delayed_work(cpu, wq, dwork, delay);
1939 		local_irq_restore(flags);
1940 	}
1941 
1942 	/* -ENOENT from try_to_grab_pending() becomes %true */
1943 	return ret;
1944 }
1945 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1946 
1947 static void rcu_work_rcufn(struct rcu_head *rcu)
1948 {
1949 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1950 
1951 	/* read the comment in __queue_work() */
1952 	local_irq_disable();
1953 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1954 	local_irq_enable();
1955 }
1956 
1957 /**
1958  * queue_rcu_work - queue work after a RCU grace period
1959  * @wq: workqueue to use
1960  * @rwork: work to queue
1961  *
1962  * Return: %false if @rwork was already pending, %true otherwise.  Note
1963  * that a full RCU grace period is guaranteed only after a %true return.
1964  * While @rwork is guaranteed to be executed after a %false return, the
1965  * execution may happen before a full RCU grace period has passed.
1966  */
1967 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1968 {
1969 	struct work_struct *work = &rwork->work;
1970 
1971 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1972 		rwork->wq = wq;
1973 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
1974 		return true;
1975 	}
1976 
1977 	return false;
1978 }
1979 EXPORT_SYMBOL(queue_rcu_work);
1980 
1981 /**
1982  * worker_enter_idle - enter idle state
1983  * @worker: worker which is entering idle state
1984  *
1985  * @worker is entering idle state.  Update stats and idle timer if
1986  * necessary.
1987  *
1988  * LOCKING:
1989  * raw_spin_lock_irq(pool->lock).
1990  */
1991 static void worker_enter_idle(struct worker *worker)
1992 {
1993 	struct worker_pool *pool = worker->pool;
1994 
1995 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1996 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1997 			 (worker->hentry.next || worker->hentry.pprev)))
1998 		return;
1999 
2000 	/* can't use worker_set_flags(), also called from create_worker() */
2001 	worker->flags |= WORKER_IDLE;
2002 	pool->nr_idle++;
2003 	worker->last_active = jiffies;
2004 
2005 	/* idle_list is LIFO */
2006 	list_add(&worker->entry, &pool->idle_list);
2007 
2008 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
2009 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
2010 
2011 	/* Sanity check nr_running. */
2012 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
2013 }
2014 
2015 /**
2016  * worker_leave_idle - leave idle state
2017  * @worker: worker which is leaving idle state
2018  *
2019  * @worker is leaving idle state.  Update stats.
2020  *
2021  * LOCKING:
2022  * raw_spin_lock_irq(pool->lock).
2023  */
2024 static void worker_leave_idle(struct worker *worker)
2025 {
2026 	struct worker_pool *pool = worker->pool;
2027 
2028 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
2029 		return;
2030 	worker_clr_flags(worker, WORKER_IDLE);
2031 	pool->nr_idle--;
2032 	list_del_init(&worker->entry);
2033 }
2034 
2035 static struct worker *alloc_worker(int node)
2036 {
2037 	struct worker *worker;
2038 
2039 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2040 	if (worker) {
2041 		INIT_LIST_HEAD(&worker->entry);
2042 		INIT_LIST_HEAD(&worker->scheduled);
2043 		INIT_LIST_HEAD(&worker->node);
2044 		/* on creation a worker is in !idle && prep state */
2045 		worker->flags = WORKER_PREP;
2046 	}
2047 	return worker;
2048 }
2049 
2050 /**
2051  * worker_attach_to_pool() - attach a worker to a pool
2052  * @worker: worker to be attached
2053  * @pool: the target pool
2054  *
2055  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2056  * cpu-binding of @worker are kept coordinated with the pool across
2057  * cpu-[un]hotplugs.
2058  */
2059 static void worker_attach_to_pool(struct worker *worker,
2060 				   struct worker_pool *pool)
2061 {
2062 	mutex_lock(&wq_pool_attach_mutex);
2063 
2064 	/*
2065 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
2066 	 * stable across this function.  See the comments above the flag
2067 	 * definition for details.
2068 	 */
2069 	if (pool->flags & POOL_DISASSOCIATED)
2070 		worker->flags |= WORKER_UNBOUND;
2071 	else
2072 		kthread_set_per_cpu(worker->task, pool->cpu);
2073 
2074 	if (worker->rescue_wq)
2075 		set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
2076 
2077 	list_add_tail(&worker->node, &pool->workers);
2078 	worker->pool = pool;
2079 
2080 	mutex_unlock(&wq_pool_attach_mutex);
2081 }
2082 
2083 /**
2084  * worker_detach_from_pool() - detach a worker from its pool
2085  * @worker: worker which is attached to its pool
2086  *
2087  * Undo the attaching which had been done in worker_attach_to_pool().  The
2088  * caller worker shouldn't access to the pool after detached except it has
2089  * other reference to the pool.
2090  */
2091 static void worker_detach_from_pool(struct worker *worker)
2092 {
2093 	struct worker_pool *pool = worker->pool;
2094 	struct completion *detach_completion = NULL;
2095 
2096 	mutex_lock(&wq_pool_attach_mutex);
2097 
2098 	kthread_set_per_cpu(worker->task, -1);
2099 	list_del(&worker->node);
2100 	worker->pool = NULL;
2101 
2102 	if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
2103 		detach_completion = pool->detach_completion;
2104 	mutex_unlock(&wq_pool_attach_mutex);
2105 
2106 	/* clear leftover flags without pool->lock after it is detached */
2107 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2108 
2109 	if (detach_completion)
2110 		complete(detach_completion);
2111 }
2112 
2113 /**
2114  * create_worker - create a new workqueue worker
2115  * @pool: pool the new worker will belong to
2116  *
2117  * Create and start a new worker which is attached to @pool.
2118  *
2119  * CONTEXT:
2120  * Might sleep.  Does GFP_KERNEL allocations.
2121  *
2122  * Return:
2123  * Pointer to the newly created worker.
2124  */
2125 static struct worker *create_worker(struct worker_pool *pool)
2126 {
2127 	struct worker *worker;
2128 	int id;
2129 	char id_buf[16];
2130 
2131 	/* ID is needed to determine kthread name */
2132 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2133 	if (id < 0) {
2134 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2135 			    ERR_PTR(id));
2136 		return NULL;
2137 	}
2138 
2139 	worker = alloc_worker(pool->node);
2140 	if (!worker) {
2141 		pr_err_once("workqueue: Failed to allocate a worker\n");
2142 		goto fail;
2143 	}
2144 
2145 	worker->id = id;
2146 
2147 	if (pool->cpu >= 0)
2148 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
2149 			 pool->attrs->nice < 0  ? "H" : "");
2150 	else
2151 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
2152 
2153 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
2154 					      "kworker/%s", id_buf);
2155 	if (IS_ERR(worker->task)) {
2156 		if (PTR_ERR(worker->task) == -EINTR) {
2157 			pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n",
2158 			       id_buf);
2159 		} else {
2160 			pr_err_once("workqueue: Failed to create a worker thread: %pe",
2161 				    worker->task);
2162 		}
2163 		goto fail;
2164 	}
2165 
2166 	set_user_nice(worker->task, pool->attrs->nice);
2167 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
2168 
2169 	/* successful, attach the worker to the pool */
2170 	worker_attach_to_pool(worker, pool);
2171 
2172 	/* start the newly created worker */
2173 	raw_spin_lock_irq(&pool->lock);
2174 	worker->pool->nr_workers++;
2175 	worker_enter_idle(worker);
2176 	wake_up_process(worker->task);
2177 	raw_spin_unlock_irq(&pool->lock);
2178 
2179 	return worker;
2180 
2181 fail:
2182 	ida_free(&pool->worker_ida, id);
2183 	kfree(worker);
2184 	return NULL;
2185 }
2186 
2187 static void unbind_worker(struct worker *worker)
2188 {
2189 	lockdep_assert_held(&wq_pool_attach_mutex);
2190 
2191 	kthread_set_per_cpu(worker->task, -1);
2192 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2193 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2194 	else
2195 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2196 }
2197 
2198 static void wake_dying_workers(struct list_head *cull_list)
2199 {
2200 	struct worker *worker, *tmp;
2201 
2202 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2203 		list_del_init(&worker->entry);
2204 		unbind_worker(worker);
2205 		/*
2206 		 * If the worker was somehow already running, then it had to be
2207 		 * in pool->idle_list when set_worker_dying() happened or we
2208 		 * wouldn't have gotten here.
2209 		 *
2210 		 * Thus, the worker must either have observed the WORKER_DIE
2211 		 * flag, or have set its state to TASK_IDLE. Either way, the
2212 		 * below will be observed by the worker and is safe to do
2213 		 * outside of pool->lock.
2214 		 */
2215 		wake_up_process(worker->task);
2216 	}
2217 }
2218 
2219 /**
2220  * set_worker_dying - Tag a worker for destruction
2221  * @worker: worker to be destroyed
2222  * @list: transfer worker away from its pool->idle_list and into list
2223  *
2224  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2225  * should be idle.
2226  *
2227  * CONTEXT:
2228  * raw_spin_lock_irq(pool->lock).
2229  */
2230 static void set_worker_dying(struct worker *worker, struct list_head *list)
2231 {
2232 	struct worker_pool *pool = worker->pool;
2233 
2234 	lockdep_assert_held(&pool->lock);
2235 	lockdep_assert_held(&wq_pool_attach_mutex);
2236 
2237 	/* sanity check frenzy */
2238 	if (WARN_ON(worker->current_work) ||
2239 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2240 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2241 		return;
2242 
2243 	pool->nr_workers--;
2244 	pool->nr_idle--;
2245 
2246 	worker->flags |= WORKER_DIE;
2247 
2248 	list_move(&worker->entry, list);
2249 	list_move(&worker->node, &pool->dying_workers);
2250 }
2251 
2252 /**
2253  * idle_worker_timeout - check if some idle workers can now be deleted.
2254  * @t: The pool's idle_timer that just expired
2255  *
2256  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2257  * worker_leave_idle(), as a worker flicking between idle and active while its
2258  * pool is at the too_many_workers() tipping point would cause too much timer
2259  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2260  * it expire and re-evaluate things from there.
2261  */
2262 static void idle_worker_timeout(struct timer_list *t)
2263 {
2264 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2265 	bool do_cull = false;
2266 
2267 	if (work_pending(&pool->idle_cull_work))
2268 		return;
2269 
2270 	raw_spin_lock_irq(&pool->lock);
2271 
2272 	if (too_many_workers(pool)) {
2273 		struct worker *worker;
2274 		unsigned long expires;
2275 
2276 		/* idle_list is kept in LIFO order, check the last one */
2277 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2278 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2279 		do_cull = !time_before(jiffies, expires);
2280 
2281 		if (!do_cull)
2282 			mod_timer(&pool->idle_timer, expires);
2283 	}
2284 	raw_spin_unlock_irq(&pool->lock);
2285 
2286 	if (do_cull)
2287 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2288 }
2289 
2290 /**
2291  * idle_cull_fn - cull workers that have been idle for too long.
2292  * @work: the pool's work for handling these idle workers
2293  *
2294  * This goes through a pool's idle workers and gets rid of those that have been
2295  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2296  *
2297  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2298  * culled, so this also resets worker affinity. This requires a sleepable
2299  * context, hence the split between timer callback and work item.
2300  */
2301 static void idle_cull_fn(struct work_struct *work)
2302 {
2303 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2304 	struct list_head cull_list;
2305 
2306 	INIT_LIST_HEAD(&cull_list);
2307 	/*
2308 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2309 	 * cannot proceed beyong worker_detach_from_pool() in its self-destruct
2310 	 * path. This is required as a previously-preempted worker could run after
2311 	 * set_worker_dying() has happened but before wake_dying_workers() did.
2312 	 */
2313 	mutex_lock(&wq_pool_attach_mutex);
2314 	raw_spin_lock_irq(&pool->lock);
2315 
2316 	while (too_many_workers(pool)) {
2317 		struct worker *worker;
2318 		unsigned long expires;
2319 
2320 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2321 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2322 
2323 		if (time_before(jiffies, expires)) {
2324 			mod_timer(&pool->idle_timer, expires);
2325 			break;
2326 		}
2327 
2328 		set_worker_dying(worker, &cull_list);
2329 	}
2330 
2331 	raw_spin_unlock_irq(&pool->lock);
2332 	wake_dying_workers(&cull_list);
2333 	mutex_unlock(&wq_pool_attach_mutex);
2334 }
2335 
2336 static void send_mayday(struct work_struct *work)
2337 {
2338 	struct pool_workqueue *pwq = get_work_pwq(work);
2339 	struct workqueue_struct *wq = pwq->wq;
2340 
2341 	lockdep_assert_held(&wq_mayday_lock);
2342 
2343 	if (!wq->rescuer)
2344 		return;
2345 
2346 	/* mayday mayday mayday */
2347 	if (list_empty(&pwq->mayday_node)) {
2348 		/*
2349 		 * If @pwq is for an unbound wq, its base ref may be put at
2350 		 * any time due to an attribute change.  Pin @pwq until the
2351 		 * rescuer is done with it.
2352 		 */
2353 		get_pwq(pwq);
2354 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2355 		wake_up_process(wq->rescuer->task);
2356 		pwq->stats[PWQ_STAT_MAYDAY]++;
2357 	}
2358 }
2359 
2360 static void pool_mayday_timeout(struct timer_list *t)
2361 {
2362 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2363 	struct work_struct *work;
2364 
2365 	raw_spin_lock_irq(&pool->lock);
2366 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2367 
2368 	if (need_to_create_worker(pool)) {
2369 		/*
2370 		 * We've been trying to create a new worker but
2371 		 * haven't been successful.  We might be hitting an
2372 		 * allocation deadlock.  Send distress signals to
2373 		 * rescuers.
2374 		 */
2375 		list_for_each_entry(work, &pool->worklist, entry)
2376 			send_mayday(work);
2377 	}
2378 
2379 	raw_spin_unlock(&wq_mayday_lock);
2380 	raw_spin_unlock_irq(&pool->lock);
2381 
2382 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2383 }
2384 
2385 /**
2386  * maybe_create_worker - create a new worker if necessary
2387  * @pool: pool to create a new worker for
2388  *
2389  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2390  * have at least one idle worker on return from this function.  If
2391  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2392  * sent to all rescuers with works scheduled on @pool to resolve
2393  * possible allocation deadlock.
2394  *
2395  * On return, need_to_create_worker() is guaranteed to be %false and
2396  * may_start_working() %true.
2397  *
2398  * LOCKING:
2399  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2400  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2401  * manager.
2402  */
2403 static void maybe_create_worker(struct worker_pool *pool)
2404 __releases(&pool->lock)
2405 __acquires(&pool->lock)
2406 {
2407 restart:
2408 	raw_spin_unlock_irq(&pool->lock);
2409 
2410 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2411 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2412 
2413 	while (true) {
2414 		if (create_worker(pool) || !need_to_create_worker(pool))
2415 			break;
2416 
2417 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2418 
2419 		if (!need_to_create_worker(pool))
2420 			break;
2421 	}
2422 
2423 	del_timer_sync(&pool->mayday_timer);
2424 	raw_spin_lock_irq(&pool->lock);
2425 	/*
2426 	 * This is necessary even after a new worker was just successfully
2427 	 * created as @pool->lock was dropped and the new worker might have
2428 	 * already become busy.
2429 	 */
2430 	if (need_to_create_worker(pool))
2431 		goto restart;
2432 }
2433 
2434 /**
2435  * manage_workers - manage worker pool
2436  * @worker: self
2437  *
2438  * Assume the manager role and manage the worker pool @worker belongs
2439  * to.  At any given time, there can be only zero or one manager per
2440  * pool.  The exclusion is handled automatically by this function.
2441  *
2442  * The caller can safely start processing works on false return.  On
2443  * true return, it's guaranteed that need_to_create_worker() is false
2444  * and may_start_working() is true.
2445  *
2446  * CONTEXT:
2447  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2448  * multiple times.  Does GFP_KERNEL allocations.
2449  *
2450  * Return:
2451  * %false if the pool doesn't need management and the caller can safely
2452  * start processing works, %true if management function was performed and
2453  * the conditions that the caller verified before calling the function may
2454  * no longer be true.
2455  */
2456 static bool manage_workers(struct worker *worker)
2457 {
2458 	struct worker_pool *pool = worker->pool;
2459 
2460 	if (pool->flags & POOL_MANAGER_ACTIVE)
2461 		return false;
2462 
2463 	pool->flags |= POOL_MANAGER_ACTIVE;
2464 	pool->manager = worker;
2465 
2466 	maybe_create_worker(pool);
2467 
2468 	pool->manager = NULL;
2469 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2470 	rcuwait_wake_up(&manager_wait);
2471 	return true;
2472 }
2473 
2474 /**
2475  * process_one_work - process single work
2476  * @worker: self
2477  * @work: work to process
2478  *
2479  * Process @work.  This function contains all the logics necessary to
2480  * process a single work including synchronization against and
2481  * interaction with other workers on the same cpu, queueing and
2482  * flushing.  As long as context requirement is met, any worker can
2483  * call this function to process a work.
2484  *
2485  * CONTEXT:
2486  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2487  */
2488 static void process_one_work(struct worker *worker, struct work_struct *work)
2489 __releases(&pool->lock)
2490 __acquires(&pool->lock)
2491 {
2492 	struct pool_workqueue *pwq = get_work_pwq(work);
2493 	struct worker_pool *pool = worker->pool;
2494 	unsigned long work_data;
2495 	struct worker *collision;
2496 #ifdef CONFIG_LOCKDEP
2497 	/*
2498 	 * It is permissible to free the struct work_struct from
2499 	 * inside the function that is called from it, this we need to
2500 	 * take into account for lockdep too.  To avoid bogus "held
2501 	 * lock freed" warnings as well as problems when looking into
2502 	 * work->lockdep_map, make a copy and use that here.
2503 	 */
2504 	struct lockdep_map lockdep_map;
2505 
2506 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2507 #endif
2508 	/* ensure we're on the correct CPU */
2509 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2510 		     raw_smp_processor_id() != pool->cpu);
2511 
2512 	/*
2513 	 * A single work shouldn't be executed concurrently by
2514 	 * multiple workers on a single cpu.  Check whether anyone is
2515 	 * already processing the work.  If so, defer the work to the
2516 	 * currently executing one.
2517 	 */
2518 	collision = find_worker_executing_work(pool, work);
2519 	if (unlikely(collision)) {
2520 		move_linked_works(work, &collision->scheduled, NULL);
2521 		return;
2522 	}
2523 
2524 	/* claim and dequeue */
2525 	debug_work_deactivate(work);
2526 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2527 	worker->current_work = work;
2528 	worker->current_func = work->func;
2529 	worker->current_pwq = pwq;
2530 	worker->current_at = worker->task->se.sum_exec_runtime;
2531 	work_data = *work_data_bits(work);
2532 	worker->current_color = get_work_color(work_data);
2533 
2534 	/*
2535 	 * Record wq name for cmdline and debug reporting, may get
2536 	 * overridden through set_worker_desc().
2537 	 */
2538 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2539 
2540 	list_del_init(&work->entry);
2541 
2542 	/*
2543 	 * CPU intensive works don't participate in concurrency management.
2544 	 * They're the scheduler's responsibility.  This takes @worker out
2545 	 * of concurrency management and the next code block will chain
2546 	 * execution of the pending work items.
2547 	 */
2548 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
2549 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2550 
2551 	/*
2552 	 * Wake up another worker if necessary.  The condition is always
2553 	 * false for normal per-cpu workers since nr_running would always
2554 	 * be >= 1 at this point.  This is used to chain execution of the
2555 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2556 	 * UNBOUND and CPU_INTENSIVE ones.
2557 	 */
2558 	if (need_more_worker(pool))
2559 		wake_up_worker(pool);
2560 
2561 	/*
2562 	 * Record the last pool and clear PENDING which should be the last
2563 	 * update to @work.  Also, do this inside @pool->lock so that
2564 	 * PENDING and queued state changes happen together while IRQ is
2565 	 * disabled.
2566 	 */
2567 	set_work_pool_and_clear_pending(work, pool->id);
2568 
2569 	raw_spin_unlock_irq(&pool->lock);
2570 
2571 	lock_map_acquire(&pwq->wq->lockdep_map);
2572 	lock_map_acquire(&lockdep_map);
2573 	/*
2574 	 * Strictly speaking we should mark the invariant state without holding
2575 	 * any locks, that is, before these two lock_map_acquire()'s.
2576 	 *
2577 	 * However, that would result in:
2578 	 *
2579 	 *   A(W1)
2580 	 *   WFC(C)
2581 	 *		A(W1)
2582 	 *		C(C)
2583 	 *
2584 	 * Which would create W1->C->W1 dependencies, even though there is no
2585 	 * actual deadlock possible. There are two solutions, using a
2586 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2587 	 * hit the lockdep limitation on recursive locks, or simply discard
2588 	 * these locks.
2589 	 *
2590 	 * AFAICT there is no possible deadlock scenario between the
2591 	 * flush_work() and complete() primitives (except for single-threaded
2592 	 * workqueues), so hiding them isn't a problem.
2593 	 */
2594 	lockdep_invariant_state(true);
2595 	pwq->stats[PWQ_STAT_STARTED]++;
2596 	trace_workqueue_execute_start(work);
2597 	worker->current_func(work);
2598 	/*
2599 	 * While we must be careful to not use "work" after this, the trace
2600 	 * point will only record its address.
2601 	 */
2602 	trace_workqueue_execute_end(work, worker->current_func);
2603 	pwq->stats[PWQ_STAT_COMPLETED]++;
2604 	lock_map_release(&lockdep_map);
2605 	lock_map_release(&pwq->wq->lockdep_map);
2606 
2607 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2608 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2609 		       "     last function: %ps\n",
2610 		       current->comm, preempt_count(), task_pid_nr(current),
2611 		       worker->current_func);
2612 		debug_show_held_locks(current);
2613 		dump_stack();
2614 	}
2615 
2616 	/*
2617 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2618 	 * kernels, where a requeueing work item waiting for something to
2619 	 * happen could deadlock with stop_machine as such work item could
2620 	 * indefinitely requeue itself while all other CPUs are trapped in
2621 	 * stop_machine. At the same time, report a quiescent RCU state so
2622 	 * the same condition doesn't freeze RCU.
2623 	 */
2624 	cond_resched();
2625 
2626 	raw_spin_lock_irq(&pool->lock);
2627 
2628 	/*
2629 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
2630 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
2631 	 * wq_cpu_intensive_thresh_us. Clear it.
2632 	 */
2633 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2634 
2635 	/* tag the worker for identification in schedule() */
2636 	worker->last_func = worker->current_func;
2637 
2638 	/* we're done with it, release */
2639 	hash_del(&worker->hentry);
2640 	worker->current_work = NULL;
2641 	worker->current_func = NULL;
2642 	worker->current_pwq = NULL;
2643 	worker->current_color = INT_MAX;
2644 	pwq_dec_nr_in_flight(pwq, work_data);
2645 }
2646 
2647 /**
2648  * process_scheduled_works - process scheduled works
2649  * @worker: self
2650  *
2651  * Process all scheduled works.  Please note that the scheduled list
2652  * may change while processing a work, so this function repeatedly
2653  * fetches a work from the top and executes it.
2654  *
2655  * CONTEXT:
2656  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2657  * multiple times.
2658  */
2659 static void process_scheduled_works(struct worker *worker)
2660 {
2661 	while (!list_empty(&worker->scheduled)) {
2662 		struct work_struct *work = list_first_entry(&worker->scheduled,
2663 						struct work_struct, entry);
2664 		process_one_work(worker, work);
2665 	}
2666 }
2667 
2668 static void set_pf_worker(bool val)
2669 {
2670 	mutex_lock(&wq_pool_attach_mutex);
2671 	if (val)
2672 		current->flags |= PF_WQ_WORKER;
2673 	else
2674 		current->flags &= ~PF_WQ_WORKER;
2675 	mutex_unlock(&wq_pool_attach_mutex);
2676 }
2677 
2678 /**
2679  * worker_thread - the worker thread function
2680  * @__worker: self
2681  *
2682  * The worker thread function.  All workers belong to a worker_pool -
2683  * either a per-cpu one or dynamic unbound one.  These workers process all
2684  * work items regardless of their specific target workqueue.  The only
2685  * exception is work items which belong to workqueues with a rescuer which
2686  * will be explained in rescuer_thread().
2687  *
2688  * Return: 0
2689  */
2690 static int worker_thread(void *__worker)
2691 {
2692 	struct worker *worker = __worker;
2693 	struct worker_pool *pool = worker->pool;
2694 
2695 	/* tell the scheduler that this is a workqueue worker */
2696 	set_pf_worker(true);
2697 woke_up:
2698 	raw_spin_lock_irq(&pool->lock);
2699 
2700 	/* am I supposed to die? */
2701 	if (unlikely(worker->flags & WORKER_DIE)) {
2702 		raw_spin_unlock_irq(&pool->lock);
2703 		set_pf_worker(false);
2704 
2705 		set_task_comm(worker->task, "kworker/dying");
2706 		ida_free(&pool->worker_ida, worker->id);
2707 		worker_detach_from_pool(worker);
2708 		WARN_ON_ONCE(!list_empty(&worker->entry));
2709 		kfree(worker);
2710 		return 0;
2711 	}
2712 
2713 	worker_leave_idle(worker);
2714 recheck:
2715 	/* no more worker necessary? */
2716 	if (!need_more_worker(pool))
2717 		goto sleep;
2718 
2719 	/* do we need to manage? */
2720 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2721 		goto recheck;
2722 
2723 	/*
2724 	 * ->scheduled list can only be filled while a worker is
2725 	 * preparing to process a work or actually processing it.
2726 	 * Make sure nobody diddled with it while I was sleeping.
2727 	 */
2728 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2729 
2730 	/*
2731 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2732 	 * worker or that someone else has already assumed the manager
2733 	 * role.  This is where @worker starts participating in concurrency
2734 	 * management if applicable and concurrency management is restored
2735 	 * after being rebound.  See rebind_workers() for details.
2736 	 */
2737 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2738 
2739 	do {
2740 		struct work_struct *work =
2741 			list_first_entry(&pool->worklist,
2742 					 struct work_struct, entry);
2743 
2744 		pool->watchdog_ts = jiffies;
2745 
2746 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2747 			/* optimization path, not strictly necessary */
2748 			process_one_work(worker, work);
2749 			if (unlikely(!list_empty(&worker->scheduled)))
2750 				process_scheduled_works(worker);
2751 		} else {
2752 			move_linked_works(work, &worker->scheduled, NULL);
2753 			process_scheduled_works(worker);
2754 		}
2755 	} while (keep_working(pool));
2756 
2757 	worker_set_flags(worker, WORKER_PREP);
2758 sleep:
2759 	/*
2760 	 * pool->lock is held and there's no work to process and no need to
2761 	 * manage, sleep.  Workers are woken up only while holding
2762 	 * pool->lock or from local cpu, so setting the current state
2763 	 * before releasing pool->lock is enough to prevent losing any
2764 	 * event.
2765 	 */
2766 	worker_enter_idle(worker);
2767 	__set_current_state(TASK_IDLE);
2768 	raw_spin_unlock_irq(&pool->lock);
2769 	schedule();
2770 	goto woke_up;
2771 }
2772 
2773 /**
2774  * rescuer_thread - the rescuer thread function
2775  * @__rescuer: self
2776  *
2777  * Workqueue rescuer thread function.  There's one rescuer for each
2778  * workqueue which has WQ_MEM_RECLAIM set.
2779  *
2780  * Regular work processing on a pool may block trying to create a new
2781  * worker which uses GFP_KERNEL allocation which has slight chance of
2782  * developing into deadlock if some works currently on the same queue
2783  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2784  * the problem rescuer solves.
2785  *
2786  * When such condition is possible, the pool summons rescuers of all
2787  * workqueues which have works queued on the pool and let them process
2788  * those works so that forward progress can be guaranteed.
2789  *
2790  * This should happen rarely.
2791  *
2792  * Return: 0
2793  */
2794 static int rescuer_thread(void *__rescuer)
2795 {
2796 	struct worker *rescuer = __rescuer;
2797 	struct workqueue_struct *wq = rescuer->rescue_wq;
2798 	struct list_head *scheduled = &rescuer->scheduled;
2799 	bool should_stop;
2800 
2801 	set_user_nice(current, RESCUER_NICE_LEVEL);
2802 
2803 	/*
2804 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2805 	 * doesn't participate in concurrency management.
2806 	 */
2807 	set_pf_worker(true);
2808 repeat:
2809 	set_current_state(TASK_IDLE);
2810 
2811 	/*
2812 	 * By the time the rescuer is requested to stop, the workqueue
2813 	 * shouldn't have any work pending, but @wq->maydays may still have
2814 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2815 	 * all the work items before the rescuer got to them.  Go through
2816 	 * @wq->maydays processing before acting on should_stop so that the
2817 	 * list is always empty on exit.
2818 	 */
2819 	should_stop = kthread_should_stop();
2820 
2821 	/* see whether any pwq is asking for help */
2822 	raw_spin_lock_irq(&wq_mayday_lock);
2823 
2824 	while (!list_empty(&wq->maydays)) {
2825 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2826 					struct pool_workqueue, mayday_node);
2827 		struct worker_pool *pool = pwq->pool;
2828 		struct work_struct *work, *n;
2829 		bool first = true;
2830 
2831 		__set_current_state(TASK_RUNNING);
2832 		list_del_init(&pwq->mayday_node);
2833 
2834 		raw_spin_unlock_irq(&wq_mayday_lock);
2835 
2836 		worker_attach_to_pool(rescuer, pool);
2837 
2838 		raw_spin_lock_irq(&pool->lock);
2839 
2840 		/*
2841 		 * Slurp in all works issued via this workqueue and
2842 		 * process'em.
2843 		 */
2844 		WARN_ON_ONCE(!list_empty(scheduled));
2845 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2846 			if (get_work_pwq(work) == pwq) {
2847 				if (first)
2848 					pool->watchdog_ts = jiffies;
2849 				move_linked_works(work, scheduled, &n);
2850 				pwq->stats[PWQ_STAT_RESCUED]++;
2851 			}
2852 			first = false;
2853 		}
2854 
2855 		if (!list_empty(scheduled)) {
2856 			process_scheduled_works(rescuer);
2857 
2858 			/*
2859 			 * The above execution of rescued work items could
2860 			 * have created more to rescue through
2861 			 * pwq_activate_first_inactive() or chained
2862 			 * queueing.  Let's put @pwq back on mayday list so
2863 			 * that such back-to-back work items, which may be
2864 			 * being used to relieve memory pressure, don't
2865 			 * incur MAYDAY_INTERVAL delay inbetween.
2866 			 */
2867 			if (pwq->nr_active && need_to_create_worker(pool)) {
2868 				raw_spin_lock(&wq_mayday_lock);
2869 				/*
2870 				 * Queue iff we aren't racing destruction
2871 				 * and somebody else hasn't queued it already.
2872 				 */
2873 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2874 					get_pwq(pwq);
2875 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2876 				}
2877 				raw_spin_unlock(&wq_mayday_lock);
2878 			}
2879 		}
2880 
2881 		/*
2882 		 * Put the reference grabbed by send_mayday().  @pool won't
2883 		 * go away while we're still attached to it.
2884 		 */
2885 		put_pwq(pwq);
2886 
2887 		/*
2888 		 * Leave this pool.  If need_more_worker() is %true, notify a
2889 		 * regular worker; otherwise, we end up with 0 concurrency
2890 		 * and stalling the execution.
2891 		 */
2892 		if (need_more_worker(pool))
2893 			wake_up_worker(pool);
2894 
2895 		raw_spin_unlock_irq(&pool->lock);
2896 
2897 		worker_detach_from_pool(rescuer);
2898 
2899 		raw_spin_lock_irq(&wq_mayday_lock);
2900 	}
2901 
2902 	raw_spin_unlock_irq(&wq_mayday_lock);
2903 
2904 	if (should_stop) {
2905 		__set_current_state(TASK_RUNNING);
2906 		set_pf_worker(false);
2907 		return 0;
2908 	}
2909 
2910 	/* rescuers should never participate in concurrency management */
2911 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2912 	schedule();
2913 	goto repeat;
2914 }
2915 
2916 /**
2917  * check_flush_dependency - check for flush dependency sanity
2918  * @target_wq: workqueue being flushed
2919  * @target_work: work item being flushed (NULL for workqueue flushes)
2920  *
2921  * %current is trying to flush the whole @target_wq or @target_work on it.
2922  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2923  * reclaiming memory or running on a workqueue which doesn't have
2924  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2925  * a deadlock.
2926  */
2927 static void check_flush_dependency(struct workqueue_struct *target_wq,
2928 				   struct work_struct *target_work)
2929 {
2930 	work_func_t target_func = target_work ? target_work->func : NULL;
2931 	struct worker *worker;
2932 
2933 	if (target_wq->flags & WQ_MEM_RECLAIM)
2934 		return;
2935 
2936 	worker = current_wq_worker();
2937 
2938 	WARN_ONCE(current->flags & PF_MEMALLOC,
2939 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2940 		  current->pid, current->comm, target_wq->name, target_func);
2941 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2942 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2943 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2944 		  worker->current_pwq->wq->name, worker->current_func,
2945 		  target_wq->name, target_func);
2946 }
2947 
2948 struct wq_barrier {
2949 	struct work_struct	work;
2950 	struct completion	done;
2951 	struct task_struct	*task;	/* purely informational */
2952 };
2953 
2954 static void wq_barrier_func(struct work_struct *work)
2955 {
2956 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2957 	complete(&barr->done);
2958 }
2959 
2960 /**
2961  * insert_wq_barrier - insert a barrier work
2962  * @pwq: pwq to insert barrier into
2963  * @barr: wq_barrier to insert
2964  * @target: target work to attach @barr to
2965  * @worker: worker currently executing @target, NULL if @target is not executing
2966  *
2967  * @barr is linked to @target such that @barr is completed only after
2968  * @target finishes execution.  Please note that the ordering
2969  * guarantee is observed only with respect to @target and on the local
2970  * cpu.
2971  *
2972  * Currently, a queued barrier can't be canceled.  This is because
2973  * try_to_grab_pending() can't determine whether the work to be
2974  * grabbed is at the head of the queue and thus can't clear LINKED
2975  * flag of the previous work while there must be a valid next work
2976  * after a work with LINKED flag set.
2977  *
2978  * Note that when @worker is non-NULL, @target may be modified
2979  * underneath us, so we can't reliably determine pwq from @target.
2980  *
2981  * CONTEXT:
2982  * raw_spin_lock_irq(pool->lock).
2983  */
2984 static void insert_wq_barrier(struct pool_workqueue *pwq,
2985 			      struct wq_barrier *barr,
2986 			      struct work_struct *target, struct worker *worker)
2987 {
2988 	unsigned int work_flags = 0;
2989 	unsigned int work_color;
2990 	struct list_head *head;
2991 
2992 	/*
2993 	 * debugobject calls are safe here even with pool->lock locked
2994 	 * as we know for sure that this will not trigger any of the
2995 	 * checks and call back into the fixup functions where we
2996 	 * might deadlock.
2997 	 */
2998 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2999 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3000 
3001 	init_completion_map(&barr->done, &target->lockdep_map);
3002 
3003 	barr->task = current;
3004 
3005 	/* The barrier work item does not participate in pwq->nr_active. */
3006 	work_flags |= WORK_STRUCT_INACTIVE;
3007 
3008 	/*
3009 	 * If @target is currently being executed, schedule the
3010 	 * barrier to the worker; otherwise, put it after @target.
3011 	 */
3012 	if (worker) {
3013 		head = worker->scheduled.next;
3014 		work_color = worker->current_color;
3015 	} else {
3016 		unsigned long *bits = work_data_bits(target);
3017 
3018 		head = target->entry.next;
3019 		/* there can already be other linked works, inherit and set */
3020 		work_flags |= *bits & WORK_STRUCT_LINKED;
3021 		work_color = get_work_color(*bits);
3022 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3023 	}
3024 
3025 	pwq->nr_in_flight[work_color]++;
3026 	work_flags |= work_color_to_flags(work_color);
3027 
3028 	debug_work_activate(&barr->work);
3029 	insert_work(pwq, &barr->work, head, work_flags);
3030 }
3031 
3032 /**
3033  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3034  * @wq: workqueue being flushed
3035  * @flush_color: new flush color, < 0 for no-op
3036  * @work_color: new work color, < 0 for no-op
3037  *
3038  * Prepare pwqs for workqueue flushing.
3039  *
3040  * If @flush_color is non-negative, flush_color on all pwqs should be
3041  * -1.  If no pwq has in-flight commands at the specified color, all
3042  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3043  * has in flight commands, its pwq->flush_color is set to
3044  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3045  * wakeup logic is armed and %true is returned.
3046  *
3047  * The caller should have initialized @wq->first_flusher prior to
3048  * calling this function with non-negative @flush_color.  If
3049  * @flush_color is negative, no flush color update is done and %false
3050  * is returned.
3051  *
3052  * If @work_color is non-negative, all pwqs should have the same
3053  * work_color which is previous to @work_color and all will be
3054  * advanced to @work_color.
3055  *
3056  * CONTEXT:
3057  * mutex_lock(wq->mutex).
3058  *
3059  * Return:
3060  * %true if @flush_color >= 0 and there's something to flush.  %false
3061  * otherwise.
3062  */
3063 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3064 				      int flush_color, int work_color)
3065 {
3066 	bool wait = false;
3067 	struct pool_workqueue *pwq;
3068 
3069 	if (flush_color >= 0) {
3070 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3071 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3072 	}
3073 
3074 	for_each_pwq(pwq, wq) {
3075 		struct worker_pool *pool = pwq->pool;
3076 
3077 		raw_spin_lock_irq(&pool->lock);
3078 
3079 		if (flush_color >= 0) {
3080 			WARN_ON_ONCE(pwq->flush_color != -1);
3081 
3082 			if (pwq->nr_in_flight[flush_color]) {
3083 				pwq->flush_color = flush_color;
3084 				atomic_inc(&wq->nr_pwqs_to_flush);
3085 				wait = true;
3086 			}
3087 		}
3088 
3089 		if (work_color >= 0) {
3090 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3091 			pwq->work_color = work_color;
3092 		}
3093 
3094 		raw_spin_unlock_irq(&pool->lock);
3095 	}
3096 
3097 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3098 		complete(&wq->first_flusher->done);
3099 
3100 	return wait;
3101 }
3102 
3103 /**
3104  * __flush_workqueue - ensure that any scheduled work has run to completion.
3105  * @wq: workqueue to flush
3106  *
3107  * This function sleeps until all work items which were queued on entry
3108  * have finished execution, but it is not livelocked by new incoming ones.
3109  */
3110 void __flush_workqueue(struct workqueue_struct *wq)
3111 {
3112 	struct wq_flusher this_flusher = {
3113 		.list = LIST_HEAD_INIT(this_flusher.list),
3114 		.flush_color = -1,
3115 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3116 	};
3117 	int next_color;
3118 
3119 	if (WARN_ON(!wq_online))
3120 		return;
3121 
3122 	lock_map_acquire(&wq->lockdep_map);
3123 	lock_map_release(&wq->lockdep_map);
3124 
3125 	mutex_lock(&wq->mutex);
3126 
3127 	/*
3128 	 * Start-to-wait phase
3129 	 */
3130 	next_color = work_next_color(wq->work_color);
3131 
3132 	if (next_color != wq->flush_color) {
3133 		/*
3134 		 * Color space is not full.  The current work_color
3135 		 * becomes our flush_color and work_color is advanced
3136 		 * by one.
3137 		 */
3138 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3139 		this_flusher.flush_color = wq->work_color;
3140 		wq->work_color = next_color;
3141 
3142 		if (!wq->first_flusher) {
3143 			/* no flush in progress, become the first flusher */
3144 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3145 
3146 			wq->first_flusher = &this_flusher;
3147 
3148 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3149 						       wq->work_color)) {
3150 				/* nothing to flush, done */
3151 				wq->flush_color = next_color;
3152 				wq->first_flusher = NULL;
3153 				goto out_unlock;
3154 			}
3155 		} else {
3156 			/* wait in queue */
3157 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3158 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3159 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3160 		}
3161 	} else {
3162 		/*
3163 		 * Oops, color space is full, wait on overflow queue.
3164 		 * The next flush completion will assign us
3165 		 * flush_color and transfer to flusher_queue.
3166 		 */
3167 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3168 	}
3169 
3170 	check_flush_dependency(wq, NULL);
3171 
3172 	mutex_unlock(&wq->mutex);
3173 
3174 	wait_for_completion(&this_flusher.done);
3175 
3176 	/*
3177 	 * Wake-up-and-cascade phase
3178 	 *
3179 	 * First flushers are responsible for cascading flushes and
3180 	 * handling overflow.  Non-first flushers can simply return.
3181 	 */
3182 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
3183 		return;
3184 
3185 	mutex_lock(&wq->mutex);
3186 
3187 	/* we might have raced, check again with mutex held */
3188 	if (wq->first_flusher != &this_flusher)
3189 		goto out_unlock;
3190 
3191 	WRITE_ONCE(wq->first_flusher, NULL);
3192 
3193 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
3194 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3195 
3196 	while (true) {
3197 		struct wq_flusher *next, *tmp;
3198 
3199 		/* complete all the flushers sharing the current flush color */
3200 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3201 			if (next->flush_color != wq->flush_color)
3202 				break;
3203 			list_del_init(&next->list);
3204 			complete(&next->done);
3205 		}
3206 
3207 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
3208 			     wq->flush_color != work_next_color(wq->work_color));
3209 
3210 		/* this flush_color is finished, advance by one */
3211 		wq->flush_color = work_next_color(wq->flush_color);
3212 
3213 		/* one color has been freed, handle overflow queue */
3214 		if (!list_empty(&wq->flusher_overflow)) {
3215 			/*
3216 			 * Assign the same color to all overflowed
3217 			 * flushers, advance work_color and append to
3218 			 * flusher_queue.  This is the start-to-wait
3219 			 * phase for these overflowed flushers.
3220 			 */
3221 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
3222 				tmp->flush_color = wq->work_color;
3223 
3224 			wq->work_color = work_next_color(wq->work_color);
3225 
3226 			list_splice_tail_init(&wq->flusher_overflow,
3227 					      &wq->flusher_queue);
3228 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3229 		}
3230 
3231 		if (list_empty(&wq->flusher_queue)) {
3232 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
3233 			break;
3234 		}
3235 
3236 		/*
3237 		 * Need to flush more colors.  Make the next flusher
3238 		 * the new first flusher and arm pwqs.
3239 		 */
3240 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
3241 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
3242 
3243 		list_del_init(&next->list);
3244 		wq->first_flusher = next;
3245 
3246 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
3247 			break;
3248 
3249 		/*
3250 		 * Meh... this color is already done, clear first
3251 		 * flusher and repeat cascading.
3252 		 */
3253 		wq->first_flusher = NULL;
3254 	}
3255 
3256 out_unlock:
3257 	mutex_unlock(&wq->mutex);
3258 }
3259 EXPORT_SYMBOL(__flush_workqueue);
3260 
3261 /**
3262  * drain_workqueue - drain a workqueue
3263  * @wq: workqueue to drain
3264  *
3265  * Wait until the workqueue becomes empty.  While draining is in progress,
3266  * only chain queueing is allowed.  IOW, only currently pending or running
3267  * work items on @wq can queue further work items on it.  @wq is flushed
3268  * repeatedly until it becomes empty.  The number of flushing is determined
3269  * by the depth of chaining and should be relatively short.  Whine if it
3270  * takes too long.
3271  */
3272 void drain_workqueue(struct workqueue_struct *wq)
3273 {
3274 	unsigned int flush_cnt = 0;
3275 	struct pool_workqueue *pwq;
3276 
3277 	/*
3278 	 * __queue_work() needs to test whether there are drainers, is much
3279 	 * hotter than drain_workqueue() and already looks at @wq->flags.
3280 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
3281 	 */
3282 	mutex_lock(&wq->mutex);
3283 	if (!wq->nr_drainers++)
3284 		wq->flags |= __WQ_DRAINING;
3285 	mutex_unlock(&wq->mutex);
3286 reflush:
3287 	__flush_workqueue(wq);
3288 
3289 	mutex_lock(&wq->mutex);
3290 
3291 	for_each_pwq(pwq, wq) {
3292 		bool drained;
3293 
3294 		raw_spin_lock_irq(&pwq->pool->lock);
3295 		drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
3296 		raw_spin_unlock_irq(&pwq->pool->lock);
3297 
3298 		if (drained)
3299 			continue;
3300 
3301 		if (++flush_cnt == 10 ||
3302 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3303 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3304 				wq->name, __func__, flush_cnt);
3305 
3306 		mutex_unlock(&wq->mutex);
3307 		goto reflush;
3308 	}
3309 
3310 	if (!--wq->nr_drainers)
3311 		wq->flags &= ~__WQ_DRAINING;
3312 	mutex_unlock(&wq->mutex);
3313 }
3314 EXPORT_SYMBOL_GPL(drain_workqueue);
3315 
3316 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3317 			     bool from_cancel)
3318 {
3319 	struct worker *worker = NULL;
3320 	struct worker_pool *pool;
3321 	struct pool_workqueue *pwq;
3322 
3323 	might_sleep();
3324 
3325 	rcu_read_lock();
3326 	pool = get_work_pool(work);
3327 	if (!pool) {
3328 		rcu_read_unlock();
3329 		return false;
3330 	}
3331 
3332 	raw_spin_lock_irq(&pool->lock);
3333 	/* see the comment in try_to_grab_pending() with the same code */
3334 	pwq = get_work_pwq(work);
3335 	if (pwq) {
3336 		if (unlikely(pwq->pool != pool))
3337 			goto already_gone;
3338 	} else {
3339 		worker = find_worker_executing_work(pool, work);
3340 		if (!worker)
3341 			goto already_gone;
3342 		pwq = worker->current_pwq;
3343 	}
3344 
3345 	check_flush_dependency(pwq->wq, work);
3346 
3347 	insert_wq_barrier(pwq, barr, work, worker);
3348 	raw_spin_unlock_irq(&pool->lock);
3349 
3350 	/*
3351 	 * Force a lock recursion deadlock when using flush_work() inside a
3352 	 * single-threaded or rescuer equipped workqueue.
3353 	 *
3354 	 * For single threaded workqueues the deadlock happens when the work
3355 	 * is after the work issuing the flush_work(). For rescuer equipped
3356 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3357 	 * forward progress.
3358 	 */
3359 	if (!from_cancel &&
3360 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3361 		lock_map_acquire(&pwq->wq->lockdep_map);
3362 		lock_map_release(&pwq->wq->lockdep_map);
3363 	}
3364 	rcu_read_unlock();
3365 	return true;
3366 already_gone:
3367 	raw_spin_unlock_irq(&pool->lock);
3368 	rcu_read_unlock();
3369 	return false;
3370 }
3371 
3372 static bool __flush_work(struct work_struct *work, bool from_cancel)
3373 {
3374 	struct wq_barrier barr;
3375 
3376 	if (WARN_ON(!wq_online))
3377 		return false;
3378 
3379 	if (WARN_ON(!work->func))
3380 		return false;
3381 
3382 	lock_map_acquire(&work->lockdep_map);
3383 	lock_map_release(&work->lockdep_map);
3384 
3385 	if (start_flush_work(work, &barr, from_cancel)) {
3386 		wait_for_completion(&barr.done);
3387 		destroy_work_on_stack(&barr.work);
3388 		return true;
3389 	} else {
3390 		return false;
3391 	}
3392 }
3393 
3394 /**
3395  * flush_work - wait for a work to finish executing the last queueing instance
3396  * @work: the work to flush
3397  *
3398  * Wait until @work has finished execution.  @work is guaranteed to be idle
3399  * on return if it hasn't been requeued since flush started.
3400  *
3401  * Return:
3402  * %true if flush_work() waited for the work to finish execution,
3403  * %false if it was already idle.
3404  */
3405 bool flush_work(struct work_struct *work)
3406 {
3407 	return __flush_work(work, false);
3408 }
3409 EXPORT_SYMBOL_GPL(flush_work);
3410 
3411 struct cwt_wait {
3412 	wait_queue_entry_t		wait;
3413 	struct work_struct	*work;
3414 };
3415 
3416 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3417 {
3418 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3419 
3420 	if (cwait->work != key)
3421 		return 0;
3422 	return autoremove_wake_function(wait, mode, sync, key);
3423 }
3424 
3425 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3426 {
3427 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3428 	unsigned long flags;
3429 	int ret;
3430 
3431 	do {
3432 		ret = try_to_grab_pending(work, is_dwork, &flags);
3433 		/*
3434 		 * If someone else is already canceling, wait for it to
3435 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3436 		 * because we may get scheduled between @work's completion
3437 		 * and the other canceling task resuming and clearing
3438 		 * CANCELING - flush_work() will return false immediately
3439 		 * as @work is no longer busy, try_to_grab_pending() will
3440 		 * return -ENOENT as @work is still being canceled and the
3441 		 * other canceling task won't be able to clear CANCELING as
3442 		 * we're hogging the CPU.
3443 		 *
3444 		 * Let's wait for completion using a waitqueue.  As this
3445 		 * may lead to the thundering herd problem, use a custom
3446 		 * wake function which matches @work along with exclusive
3447 		 * wait and wakeup.
3448 		 */
3449 		if (unlikely(ret == -ENOENT)) {
3450 			struct cwt_wait cwait;
3451 
3452 			init_wait(&cwait.wait);
3453 			cwait.wait.func = cwt_wakefn;
3454 			cwait.work = work;
3455 
3456 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3457 						  TASK_UNINTERRUPTIBLE);
3458 			if (work_is_canceling(work))
3459 				schedule();
3460 			finish_wait(&cancel_waitq, &cwait.wait);
3461 		}
3462 	} while (unlikely(ret < 0));
3463 
3464 	/* tell other tasks trying to grab @work to back off */
3465 	mark_work_canceling(work);
3466 	local_irq_restore(flags);
3467 
3468 	/*
3469 	 * This allows canceling during early boot.  We know that @work
3470 	 * isn't executing.
3471 	 */
3472 	if (wq_online)
3473 		__flush_work(work, true);
3474 
3475 	clear_work_data(work);
3476 
3477 	/*
3478 	 * Paired with prepare_to_wait() above so that either
3479 	 * waitqueue_active() is visible here or !work_is_canceling() is
3480 	 * visible there.
3481 	 */
3482 	smp_mb();
3483 	if (waitqueue_active(&cancel_waitq))
3484 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3485 
3486 	return ret;
3487 }
3488 
3489 /**
3490  * cancel_work_sync - cancel a work and wait for it to finish
3491  * @work: the work to cancel
3492  *
3493  * Cancel @work and wait for its execution to finish.  This function
3494  * can be used even if the work re-queues itself or migrates to
3495  * another workqueue.  On return from this function, @work is
3496  * guaranteed to be not pending or executing on any CPU.
3497  *
3498  * cancel_work_sync(&delayed_work->work) must not be used for
3499  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3500  *
3501  * The caller must ensure that the workqueue on which @work was last
3502  * queued can't be destroyed before this function returns.
3503  *
3504  * Return:
3505  * %true if @work was pending, %false otherwise.
3506  */
3507 bool cancel_work_sync(struct work_struct *work)
3508 {
3509 	return __cancel_work_timer(work, false);
3510 }
3511 EXPORT_SYMBOL_GPL(cancel_work_sync);
3512 
3513 /**
3514  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3515  * @dwork: the delayed work to flush
3516  *
3517  * Delayed timer is cancelled and the pending work is queued for
3518  * immediate execution.  Like flush_work(), this function only
3519  * considers the last queueing instance of @dwork.
3520  *
3521  * Return:
3522  * %true if flush_work() waited for the work to finish execution,
3523  * %false if it was already idle.
3524  */
3525 bool flush_delayed_work(struct delayed_work *dwork)
3526 {
3527 	local_irq_disable();
3528 	if (del_timer_sync(&dwork->timer))
3529 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3530 	local_irq_enable();
3531 	return flush_work(&dwork->work);
3532 }
3533 EXPORT_SYMBOL(flush_delayed_work);
3534 
3535 /**
3536  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3537  * @rwork: the rcu work to flush
3538  *
3539  * Return:
3540  * %true if flush_rcu_work() waited for the work to finish execution,
3541  * %false if it was already idle.
3542  */
3543 bool flush_rcu_work(struct rcu_work *rwork)
3544 {
3545 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3546 		rcu_barrier();
3547 		flush_work(&rwork->work);
3548 		return true;
3549 	} else {
3550 		return flush_work(&rwork->work);
3551 	}
3552 }
3553 EXPORT_SYMBOL(flush_rcu_work);
3554 
3555 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3556 {
3557 	unsigned long flags;
3558 	int ret;
3559 
3560 	do {
3561 		ret = try_to_grab_pending(work, is_dwork, &flags);
3562 	} while (unlikely(ret == -EAGAIN));
3563 
3564 	if (unlikely(ret < 0))
3565 		return false;
3566 
3567 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3568 	local_irq_restore(flags);
3569 	return ret;
3570 }
3571 
3572 /*
3573  * See cancel_delayed_work()
3574  */
3575 bool cancel_work(struct work_struct *work)
3576 {
3577 	return __cancel_work(work, false);
3578 }
3579 EXPORT_SYMBOL(cancel_work);
3580 
3581 /**
3582  * cancel_delayed_work - cancel a delayed work
3583  * @dwork: delayed_work to cancel
3584  *
3585  * Kill off a pending delayed_work.
3586  *
3587  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3588  * pending.
3589  *
3590  * Note:
3591  * The work callback function may still be running on return, unless
3592  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3593  * use cancel_delayed_work_sync() to wait on it.
3594  *
3595  * This function is safe to call from any context including IRQ handler.
3596  */
3597 bool cancel_delayed_work(struct delayed_work *dwork)
3598 {
3599 	return __cancel_work(&dwork->work, true);
3600 }
3601 EXPORT_SYMBOL(cancel_delayed_work);
3602 
3603 /**
3604  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3605  * @dwork: the delayed work cancel
3606  *
3607  * This is cancel_work_sync() for delayed works.
3608  *
3609  * Return:
3610  * %true if @dwork was pending, %false otherwise.
3611  */
3612 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3613 {
3614 	return __cancel_work_timer(&dwork->work, true);
3615 }
3616 EXPORT_SYMBOL(cancel_delayed_work_sync);
3617 
3618 /**
3619  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3620  * @func: the function to call
3621  *
3622  * schedule_on_each_cpu() executes @func on each online CPU using the
3623  * system workqueue and blocks until all CPUs have completed.
3624  * schedule_on_each_cpu() is very slow.
3625  *
3626  * Return:
3627  * 0 on success, -errno on failure.
3628  */
3629 int schedule_on_each_cpu(work_func_t func)
3630 {
3631 	int cpu;
3632 	struct work_struct __percpu *works;
3633 
3634 	works = alloc_percpu(struct work_struct);
3635 	if (!works)
3636 		return -ENOMEM;
3637 
3638 	cpus_read_lock();
3639 
3640 	for_each_online_cpu(cpu) {
3641 		struct work_struct *work = per_cpu_ptr(works, cpu);
3642 
3643 		INIT_WORK(work, func);
3644 		schedule_work_on(cpu, work);
3645 	}
3646 
3647 	for_each_online_cpu(cpu)
3648 		flush_work(per_cpu_ptr(works, cpu));
3649 
3650 	cpus_read_unlock();
3651 	free_percpu(works);
3652 	return 0;
3653 }
3654 
3655 /**
3656  * execute_in_process_context - reliably execute the routine with user context
3657  * @fn:		the function to execute
3658  * @ew:		guaranteed storage for the execute work structure (must
3659  *		be available when the work executes)
3660  *
3661  * Executes the function immediately if process context is available,
3662  * otherwise schedules the function for delayed execution.
3663  *
3664  * Return:	0 - function was executed
3665  *		1 - function was scheduled for execution
3666  */
3667 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3668 {
3669 	if (!in_interrupt()) {
3670 		fn(&ew->work);
3671 		return 0;
3672 	}
3673 
3674 	INIT_WORK(&ew->work, fn);
3675 	schedule_work(&ew->work);
3676 
3677 	return 1;
3678 }
3679 EXPORT_SYMBOL_GPL(execute_in_process_context);
3680 
3681 /**
3682  * free_workqueue_attrs - free a workqueue_attrs
3683  * @attrs: workqueue_attrs to free
3684  *
3685  * Undo alloc_workqueue_attrs().
3686  */
3687 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3688 {
3689 	if (attrs) {
3690 		free_cpumask_var(attrs->cpumask);
3691 		kfree(attrs);
3692 	}
3693 }
3694 
3695 /**
3696  * alloc_workqueue_attrs - allocate a workqueue_attrs
3697  *
3698  * Allocate a new workqueue_attrs, initialize with default settings and
3699  * return it.
3700  *
3701  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3702  */
3703 struct workqueue_attrs *alloc_workqueue_attrs(void)
3704 {
3705 	struct workqueue_attrs *attrs;
3706 
3707 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3708 	if (!attrs)
3709 		goto fail;
3710 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3711 		goto fail;
3712 
3713 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3714 	return attrs;
3715 fail:
3716 	free_workqueue_attrs(attrs);
3717 	return NULL;
3718 }
3719 
3720 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3721 				 const struct workqueue_attrs *from)
3722 {
3723 	to->nice = from->nice;
3724 	cpumask_copy(to->cpumask, from->cpumask);
3725 	/*
3726 	 * Unlike hash and equality test, this function doesn't ignore
3727 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3728 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3729 	 */
3730 	to->no_numa = from->no_numa;
3731 }
3732 
3733 /* hash value of the content of @attr */
3734 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3735 {
3736 	u32 hash = 0;
3737 
3738 	hash = jhash_1word(attrs->nice, hash);
3739 	hash = jhash(cpumask_bits(attrs->cpumask),
3740 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3741 	return hash;
3742 }
3743 
3744 /* content equality test */
3745 static bool wqattrs_equal(const struct workqueue_attrs *a,
3746 			  const struct workqueue_attrs *b)
3747 {
3748 	if (a->nice != b->nice)
3749 		return false;
3750 	if (!cpumask_equal(a->cpumask, b->cpumask))
3751 		return false;
3752 	return true;
3753 }
3754 
3755 /**
3756  * init_worker_pool - initialize a newly zalloc'd worker_pool
3757  * @pool: worker_pool to initialize
3758  *
3759  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3760  *
3761  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3762  * inside @pool proper are initialized and put_unbound_pool() can be called
3763  * on @pool safely to release it.
3764  */
3765 static int init_worker_pool(struct worker_pool *pool)
3766 {
3767 	raw_spin_lock_init(&pool->lock);
3768 	pool->id = -1;
3769 	pool->cpu = -1;
3770 	pool->node = NUMA_NO_NODE;
3771 	pool->flags |= POOL_DISASSOCIATED;
3772 	pool->watchdog_ts = jiffies;
3773 	INIT_LIST_HEAD(&pool->worklist);
3774 	INIT_LIST_HEAD(&pool->idle_list);
3775 	hash_init(pool->busy_hash);
3776 
3777 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3778 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
3779 
3780 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3781 
3782 	INIT_LIST_HEAD(&pool->workers);
3783 	INIT_LIST_HEAD(&pool->dying_workers);
3784 
3785 	ida_init(&pool->worker_ida);
3786 	INIT_HLIST_NODE(&pool->hash_node);
3787 	pool->refcnt = 1;
3788 
3789 	/* shouldn't fail above this point */
3790 	pool->attrs = alloc_workqueue_attrs();
3791 	if (!pool->attrs)
3792 		return -ENOMEM;
3793 	return 0;
3794 }
3795 
3796 #ifdef CONFIG_LOCKDEP
3797 static void wq_init_lockdep(struct workqueue_struct *wq)
3798 {
3799 	char *lock_name;
3800 
3801 	lockdep_register_key(&wq->key);
3802 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3803 	if (!lock_name)
3804 		lock_name = wq->name;
3805 
3806 	wq->lock_name = lock_name;
3807 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3808 }
3809 
3810 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3811 {
3812 	lockdep_unregister_key(&wq->key);
3813 }
3814 
3815 static void wq_free_lockdep(struct workqueue_struct *wq)
3816 {
3817 	if (wq->lock_name != wq->name)
3818 		kfree(wq->lock_name);
3819 }
3820 #else
3821 static void wq_init_lockdep(struct workqueue_struct *wq)
3822 {
3823 }
3824 
3825 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3826 {
3827 }
3828 
3829 static void wq_free_lockdep(struct workqueue_struct *wq)
3830 {
3831 }
3832 #endif
3833 
3834 static void rcu_free_wq(struct rcu_head *rcu)
3835 {
3836 	struct workqueue_struct *wq =
3837 		container_of(rcu, struct workqueue_struct, rcu);
3838 
3839 	wq_free_lockdep(wq);
3840 
3841 	if (!(wq->flags & WQ_UNBOUND))
3842 		free_percpu(wq->cpu_pwqs);
3843 	else
3844 		free_workqueue_attrs(wq->unbound_attrs);
3845 
3846 	kfree(wq);
3847 }
3848 
3849 static void rcu_free_pool(struct rcu_head *rcu)
3850 {
3851 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3852 
3853 	ida_destroy(&pool->worker_ida);
3854 	free_workqueue_attrs(pool->attrs);
3855 	kfree(pool);
3856 }
3857 
3858 /**
3859  * put_unbound_pool - put a worker_pool
3860  * @pool: worker_pool to put
3861  *
3862  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3863  * safe manner.  get_unbound_pool() calls this function on its failure path
3864  * and this function should be able to release pools which went through,
3865  * successfully or not, init_worker_pool().
3866  *
3867  * Should be called with wq_pool_mutex held.
3868  */
3869 static void put_unbound_pool(struct worker_pool *pool)
3870 {
3871 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3872 	struct list_head cull_list;
3873 	struct worker *worker;
3874 
3875 	INIT_LIST_HEAD(&cull_list);
3876 
3877 	lockdep_assert_held(&wq_pool_mutex);
3878 
3879 	if (--pool->refcnt)
3880 		return;
3881 
3882 	/* sanity checks */
3883 	if (WARN_ON(!(pool->cpu < 0)) ||
3884 	    WARN_ON(!list_empty(&pool->worklist)))
3885 		return;
3886 
3887 	/* release id and unhash */
3888 	if (pool->id >= 0)
3889 		idr_remove(&worker_pool_idr, pool->id);
3890 	hash_del(&pool->hash_node);
3891 
3892 	/*
3893 	 * Become the manager and destroy all workers.  This prevents
3894 	 * @pool's workers from blocking on attach_mutex.  We're the last
3895 	 * manager and @pool gets freed with the flag set.
3896 	 *
3897 	 * Having a concurrent manager is quite unlikely to happen as we can
3898 	 * only get here with
3899 	 *   pwq->refcnt == pool->refcnt == 0
3900 	 * which implies no work queued to the pool, which implies no worker can
3901 	 * become the manager. However a worker could have taken the role of
3902 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
3903 	 * drops pool->lock
3904 	 */
3905 	while (true) {
3906 		rcuwait_wait_event(&manager_wait,
3907 				   !(pool->flags & POOL_MANAGER_ACTIVE),
3908 				   TASK_UNINTERRUPTIBLE);
3909 
3910 		mutex_lock(&wq_pool_attach_mutex);
3911 		raw_spin_lock_irq(&pool->lock);
3912 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
3913 			pool->flags |= POOL_MANAGER_ACTIVE;
3914 			break;
3915 		}
3916 		raw_spin_unlock_irq(&pool->lock);
3917 		mutex_unlock(&wq_pool_attach_mutex);
3918 	}
3919 
3920 	while ((worker = first_idle_worker(pool)))
3921 		set_worker_dying(worker, &cull_list);
3922 	WARN_ON(pool->nr_workers || pool->nr_idle);
3923 	raw_spin_unlock_irq(&pool->lock);
3924 
3925 	wake_dying_workers(&cull_list);
3926 
3927 	if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
3928 		pool->detach_completion = &detach_completion;
3929 	mutex_unlock(&wq_pool_attach_mutex);
3930 
3931 	if (pool->detach_completion)
3932 		wait_for_completion(pool->detach_completion);
3933 
3934 	/* shut down the timers */
3935 	del_timer_sync(&pool->idle_timer);
3936 	cancel_work_sync(&pool->idle_cull_work);
3937 	del_timer_sync(&pool->mayday_timer);
3938 
3939 	/* RCU protected to allow dereferences from get_work_pool() */
3940 	call_rcu(&pool->rcu, rcu_free_pool);
3941 }
3942 
3943 /**
3944  * get_unbound_pool - get a worker_pool with the specified attributes
3945  * @attrs: the attributes of the worker_pool to get
3946  *
3947  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3948  * reference count and return it.  If there already is a matching
3949  * worker_pool, it will be used; otherwise, this function attempts to
3950  * create a new one.
3951  *
3952  * Should be called with wq_pool_mutex held.
3953  *
3954  * Return: On success, a worker_pool with the same attributes as @attrs.
3955  * On failure, %NULL.
3956  */
3957 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3958 {
3959 	u32 hash = wqattrs_hash(attrs);
3960 	struct worker_pool *pool;
3961 	int node;
3962 	int target_node = NUMA_NO_NODE;
3963 
3964 	lockdep_assert_held(&wq_pool_mutex);
3965 
3966 	/* do we already have a matching pool? */
3967 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3968 		if (wqattrs_equal(pool->attrs, attrs)) {
3969 			pool->refcnt++;
3970 			return pool;
3971 		}
3972 	}
3973 
3974 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3975 	if (wq_numa_enabled) {
3976 		for_each_node(node) {
3977 			if (cpumask_subset(attrs->cpumask,
3978 					   wq_numa_possible_cpumask[node])) {
3979 				target_node = node;
3980 				break;
3981 			}
3982 		}
3983 	}
3984 
3985 	/* nope, create a new one */
3986 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3987 	if (!pool || init_worker_pool(pool) < 0)
3988 		goto fail;
3989 
3990 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3991 	copy_workqueue_attrs(pool->attrs, attrs);
3992 	pool->node = target_node;
3993 
3994 	/*
3995 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3996 	 * 'struct workqueue_attrs' comments for detail.
3997 	 */
3998 	pool->attrs->no_numa = false;
3999 
4000 	if (worker_pool_assign_id(pool) < 0)
4001 		goto fail;
4002 
4003 	/* create and start the initial worker */
4004 	if (wq_online && !create_worker(pool))
4005 		goto fail;
4006 
4007 	/* install */
4008 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
4009 
4010 	return pool;
4011 fail:
4012 	if (pool)
4013 		put_unbound_pool(pool);
4014 	return NULL;
4015 }
4016 
4017 static void rcu_free_pwq(struct rcu_head *rcu)
4018 {
4019 	kmem_cache_free(pwq_cache,
4020 			container_of(rcu, struct pool_workqueue, rcu));
4021 }
4022 
4023 /*
4024  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
4025  * and needs to be destroyed.
4026  */
4027 static void pwq_unbound_release_workfn(struct work_struct *work)
4028 {
4029 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
4030 						  unbound_release_work);
4031 	struct workqueue_struct *wq = pwq->wq;
4032 	struct worker_pool *pool = pwq->pool;
4033 	bool is_last = false;
4034 
4035 	/*
4036 	 * when @pwq is not linked, it doesn't hold any reference to the
4037 	 * @wq, and @wq is invalid to access.
4038 	 */
4039 	if (!list_empty(&pwq->pwqs_node)) {
4040 		if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
4041 			return;
4042 
4043 		mutex_lock(&wq->mutex);
4044 		list_del_rcu(&pwq->pwqs_node);
4045 		is_last = list_empty(&wq->pwqs);
4046 		mutex_unlock(&wq->mutex);
4047 	}
4048 
4049 	mutex_lock(&wq_pool_mutex);
4050 	put_unbound_pool(pool);
4051 	mutex_unlock(&wq_pool_mutex);
4052 
4053 	call_rcu(&pwq->rcu, rcu_free_pwq);
4054 
4055 	/*
4056 	 * If we're the last pwq going away, @wq is already dead and no one
4057 	 * is gonna access it anymore.  Schedule RCU free.
4058 	 */
4059 	if (is_last) {
4060 		wq_unregister_lockdep(wq);
4061 		call_rcu(&wq->rcu, rcu_free_wq);
4062 	}
4063 }
4064 
4065 /**
4066  * pwq_adjust_max_active - update a pwq's max_active to the current setting
4067  * @pwq: target pool_workqueue
4068  *
4069  * If @pwq isn't freezing, set @pwq->max_active to the associated
4070  * workqueue's saved_max_active and activate inactive work items
4071  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
4072  */
4073 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4074 {
4075 	struct workqueue_struct *wq = pwq->wq;
4076 	bool freezable = wq->flags & WQ_FREEZABLE;
4077 	unsigned long flags;
4078 
4079 	/* for @wq->saved_max_active */
4080 	lockdep_assert_held(&wq->mutex);
4081 
4082 	/* fast exit for non-freezable wqs */
4083 	if (!freezable && pwq->max_active == wq->saved_max_active)
4084 		return;
4085 
4086 	/* this function can be called during early boot w/ irq disabled */
4087 	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4088 
4089 	/*
4090 	 * During [un]freezing, the caller is responsible for ensuring that
4091 	 * this function is called at least once after @workqueue_freezing
4092 	 * is updated and visible.
4093 	 */
4094 	if (!freezable || !workqueue_freezing) {
4095 		bool kick = false;
4096 
4097 		pwq->max_active = wq->saved_max_active;
4098 
4099 		while (!list_empty(&pwq->inactive_works) &&
4100 		       pwq->nr_active < pwq->max_active) {
4101 			pwq_activate_first_inactive(pwq);
4102 			kick = true;
4103 		}
4104 
4105 		/*
4106 		 * Need to kick a worker after thawed or an unbound wq's
4107 		 * max_active is bumped. In realtime scenarios, always kicking a
4108 		 * worker will cause interference on the isolated cpu cores, so
4109 		 * let's kick iff work items were activated.
4110 		 */
4111 		if (kick)
4112 			wake_up_worker(pwq->pool);
4113 	} else {
4114 		pwq->max_active = 0;
4115 	}
4116 
4117 	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4118 }
4119 
4120 /* initialize newly allocated @pwq which is associated with @wq and @pool */
4121 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
4122 		     struct worker_pool *pool)
4123 {
4124 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
4125 
4126 	memset(pwq, 0, sizeof(*pwq));
4127 
4128 	pwq->pool = pool;
4129 	pwq->wq = wq;
4130 	pwq->flush_color = -1;
4131 	pwq->refcnt = 1;
4132 	INIT_LIST_HEAD(&pwq->inactive_works);
4133 	INIT_LIST_HEAD(&pwq->pwqs_node);
4134 	INIT_LIST_HEAD(&pwq->mayday_node);
4135 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
4136 }
4137 
4138 /* sync @pwq with the current state of its associated wq and link it */
4139 static void link_pwq(struct pool_workqueue *pwq)
4140 {
4141 	struct workqueue_struct *wq = pwq->wq;
4142 
4143 	lockdep_assert_held(&wq->mutex);
4144 
4145 	/* may be called multiple times, ignore if already linked */
4146 	if (!list_empty(&pwq->pwqs_node))
4147 		return;
4148 
4149 	/* set the matching work_color */
4150 	pwq->work_color = wq->work_color;
4151 
4152 	/* sync max_active to the current setting */
4153 	pwq_adjust_max_active(pwq);
4154 
4155 	/* link in @pwq */
4156 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
4157 }
4158 
4159 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
4160 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
4161 					const struct workqueue_attrs *attrs)
4162 {
4163 	struct worker_pool *pool;
4164 	struct pool_workqueue *pwq;
4165 
4166 	lockdep_assert_held(&wq_pool_mutex);
4167 
4168 	pool = get_unbound_pool(attrs);
4169 	if (!pool)
4170 		return NULL;
4171 
4172 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
4173 	if (!pwq) {
4174 		put_unbound_pool(pool);
4175 		return NULL;
4176 	}
4177 
4178 	init_pwq(pwq, wq, pool);
4179 	return pwq;
4180 }
4181 
4182 /**
4183  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
4184  * @attrs: the wq_attrs of the default pwq of the target workqueue
4185  * @node: the target NUMA node
4186  * @cpu_going_down: if >= 0, the CPU to consider as offline
4187  * @cpumask: outarg, the resulting cpumask
4188  *
4189  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
4190  * @cpu_going_down is >= 0, that cpu is considered offline during
4191  * calculation.  The result is stored in @cpumask.
4192  *
4193  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
4194  * enabled and @node has online CPUs requested by @attrs, the returned
4195  * cpumask is the intersection of the possible CPUs of @node and
4196  * @attrs->cpumask.
4197  *
4198  * The caller is responsible for ensuring that the cpumask of @node stays
4199  * stable.
4200  *
4201  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
4202  * %false if equal.
4203  */
4204 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
4205 				 int cpu_going_down, cpumask_t *cpumask)
4206 {
4207 	if (!wq_numa_enabled || attrs->no_numa)
4208 		goto use_dfl;
4209 
4210 	/* does @node have any online CPUs @attrs wants? */
4211 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
4212 	if (cpu_going_down >= 0)
4213 		cpumask_clear_cpu(cpu_going_down, cpumask);
4214 
4215 	if (cpumask_empty(cpumask))
4216 		goto use_dfl;
4217 
4218 	/* yeap, return possible CPUs in @node that @attrs wants */
4219 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
4220 
4221 	if (cpumask_empty(cpumask)) {
4222 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
4223 				"possible intersect\n");
4224 		return false;
4225 	}
4226 
4227 	return !cpumask_equal(cpumask, attrs->cpumask);
4228 
4229 use_dfl:
4230 	cpumask_copy(cpumask, attrs->cpumask);
4231 	return false;
4232 }
4233 
4234 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
4235 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
4236 						   int node,
4237 						   struct pool_workqueue *pwq)
4238 {
4239 	struct pool_workqueue *old_pwq;
4240 
4241 	lockdep_assert_held(&wq_pool_mutex);
4242 	lockdep_assert_held(&wq->mutex);
4243 
4244 	/* link_pwq() can handle duplicate calls */
4245 	link_pwq(pwq);
4246 
4247 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4248 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
4249 	return old_pwq;
4250 }
4251 
4252 /* context to store the prepared attrs & pwqs before applying */
4253 struct apply_wqattrs_ctx {
4254 	struct workqueue_struct	*wq;		/* target workqueue */
4255 	struct workqueue_attrs	*attrs;		/* attrs to apply */
4256 	struct list_head	list;		/* queued for batching commit */
4257 	struct pool_workqueue	*dfl_pwq;
4258 	struct pool_workqueue	*pwq_tbl[];
4259 };
4260 
4261 /* free the resources after success or abort */
4262 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
4263 {
4264 	if (ctx) {
4265 		int node;
4266 
4267 		for_each_node(node)
4268 			put_pwq_unlocked(ctx->pwq_tbl[node]);
4269 		put_pwq_unlocked(ctx->dfl_pwq);
4270 
4271 		free_workqueue_attrs(ctx->attrs);
4272 
4273 		kfree(ctx);
4274 	}
4275 }
4276 
4277 /* allocate the attrs and pwqs for later installation */
4278 static struct apply_wqattrs_ctx *
4279 apply_wqattrs_prepare(struct workqueue_struct *wq,
4280 		      const struct workqueue_attrs *attrs,
4281 		      const cpumask_var_t unbound_cpumask)
4282 {
4283 	struct apply_wqattrs_ctx *ctx;
4284 	struct workqueue_attrs *new_attrs, *tmp_attrs;
4285 	int node;
4286 
4287 	lockdep_assert_held(&wq_pool_mutex);
4288 
4289 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
4290 
4291 	new_attrs = alloc_workqueue_attrs();
4292 	tmp_attrs = alloc_workqueue_attrs();
4293 	if (!ctx || !new_attrs || !tmp_attrs)
4294 		goto out_free;
4295 
4296 	/*
4297 	 * Calculate the attrs of the default pwq with unbound_cpumask
4298 	 * which is wq_unbound_cpumask or to set to wq_unbound_cpumask.
4299 	 * If the user configured cpumask doesn't overlap with the
4300 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
4301 	 */
4302 	copy_workqueue_attrs(new_attrs, attrs);
4303 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, unbound_cpumask);
4304 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
4305 		cpumask_copy(new_attrs->cpumask, unbound_cpumask);
4306 
4307 	/*
4308 	 * We may create multiple pwqs with differing cpumasks.  Make a
4309 	 * copy of @new_attrs which will be modified and used to obtain
4310 	 * pools.
4311 	 */
4312 	copy_workqueue_attrs(tmp_attrs, new_attrs);
4313 
4314 	/*
4315 	 * If something goes wrong during CPU up/down, we'll fall back to
4316 	 * the default pwq covering whole @attrs->cpumask.  Always create
4317 	 * it even if we don't use it immediately.
4318 	 */
4319 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4320 	if (!ctx->dfl_pwq)
4321 		goto out_free;
4322 
4323 	for_each_node(node) {
4324 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
4325 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4326 			if (!ctx->pwq_tbl[node])
4327 				goto out_free;
4328 		} else {
4329 			ctx->dfl_pwq->refcnt++;
4330 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
4331 		}
4332 	}
4333 
4334 	/* save the user configured attrs and sanitize it. */
4335 	copy_workqueue_attrs(new_attrs, attrs);
4336 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4337 	ctx->attrs = new_attrs;
4338 
4339 	ctx->wq = wq;
4340 	free_workqueue_attrs(tmp_attrs);
4341 	return ctx;
4342 
4343 out_free:
4344 	free_workqueue_attrs(tmp_attrs);
4345 	free_workqueue_attrs(new_attrs);
4346 	apply_wqattrs_cleanup(ctx);
4347 	return NULL;
4348 }
4349 
4350 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
4351 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4352 {
4353 	int node;
4354 
4355 	/* all pwqs have been created successfully, let's install'em */
4356 	mutex_lock(&ctx->wq->mutex);
4357 
4358 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4359 
4360 	/* save the previous pwq and install the new one */
4361 	for_each_node(node)
4362 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4363 							  ctx->pwq_tbl[node]);
4364 
4365 	/* @dfl_pwq might not have been used, ensure it's linked */
4366 	link_pwq(ctx->dfl_pwq);
4367 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4368 
4369 	mutex_unlock(&ctx->wq->mutex);
4370 }
4371 
4372 static void apply_wqattrs_lock(void)
4373 {
4374 	/* CPUs should stay stable across pwq creations and installations */
4375 	cpus_read_lock();
4376 	mutex_lock(&wq_pool_mutex);
4377 }
4378 
4379 static void apply_wqattrs_unlock(void)
4380 {
4381 	mutex_unlock(&wq_pool_mutex);
4382 	cpus_read_unlock();
4383 }
4384 
4385 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4386 					const struct workqueue_attrs *attrs)
4387 {
4388 	struct apply_wqattrs_ctx *ctx;
4389 
4390 	/* only unbound workqueues can change attributes */
4391 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4392 		return -EINVAL;
4393 
4394 	/* creating multiple pwqs breaks ordering guarantee */
4395 	if (!list_empty(&wq->pwqs)) {
4396 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4397 			return -EINVAL;
4398 
4399 		wq->flags &= ~__WQ_ORDERED;
4400 	}
4401 
4402 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
4403 	if (!ctx)
4404 		return -ENOMEM;
4405 
4406 	/* the ctx has been prepared successfully, let's commit it */
4407 	apply_wqattrs_commit(ctx);
4408 	apply_wqattrs_cleanup(ctx);
4409 
4410 	return 0;
4411 }
4412 
4413 /**
4414  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4415  * @wq: the target workqueue
4416  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4417  *
4418  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4419  * machines, this function maps a separate pwq to each NUMA node with
4420  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4421  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4422  * items finish.  Note that a work item which repeatedly requeues itself
4423  * back-to-back will stay on its current pwq.
4424  *
4425  * Performs GFP_KERNEL allocations.
4426  *
4427  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4428  *
4429  * Return: 0 on success and -errno on failure.
4430  */
4431 int apply_workqueue_attrs(struct workqueue_struct *wq,
4432 			  const struct workqueue_attrs *attrs)
4433 {
4434 	int ret;
4435 
4436 	lockdep_assert_cpus_held();
4437 
4438 	mutex_lock(&wq_pool_mutex);
4439 	ret = apply_workqueue_attrs_locked(wq, attrs);
4440 	mutex_unlock(&wq_pool_mutex);
4441 
4442 	return ret;
4443 }
4444 
4445 /**
4446  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4447  * @wq: the target workqueue
4448  * @cpu: the CPU coming up or going down
4449  * @online: whether @cpu is coming up or going down
4450  *
4451  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4452  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4453  * @wq accordingly.
4454  *
4455  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4456  * falls back to @wq->dfl_pwq which may not be optimal but is always
4457  * correct.
4458  *
4459  * Note that when the last allowed CPU of a NUMA node goes offline for a
4460  * workqueue with a cpumask spanning multiple nodes, the workers which were
4461  * already executing the work items for the workqueue will lose their CPU
4462  * affinity and may execute on any CPU.  This is similar to how per-cpu
4463  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4464  * affinity, it's the user's responsibility to flush the work item from
4465  * CPU_DOWN_PREPARE.
4466  */
4467 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4468 				   bool online)
4469 {
4470 	int node = cpu_to_node(cpu);
4471 	int cpu_off = online ? -1 : cpu;
4472 	struct pool_workqueue *old_pwq = NULL, *pwq;
4473 	struct workqueue_attrs *target_attrs;
4474 	cpumask_t *cpumask;
4475 
4476 	lockdep_assert_held(&wq_pool_mutex);
4477 
4478 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4479 	    wq->unbound_attrs->no_numa)
4480 		return;
4481 
4482 	/*
4483 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4484 	 * Let's use a preallocated one.  The following buf is protected by
4485 	 * CPU hotplug exclusion.
4486 	 */
4487 	target_attrs = wq_update_unbound_numa_attrs_buf;
4488 	cpumask = target_attrs->cpumask;
4489 
4490 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4491 	pwq = unbound_pwq_by_node(wq, node);
4492 
4493 	/*
4494 	 * Let's determine what needs to be done.  If the target cpumask is
4495 	 * different from the default pwq's, we need to compare it to @pwq's
4496 	 * and create a new one if they don't match.  If the target cpumask
4497 	 * equals the default pwq's, the default pwq should be used.
4498 	 */
4499 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4500 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4501 			return;
4502 	} else {
4503 		goto use_dfl_pwq;
4504 	}
4505 
4506 	/* create a new pwq */
4507 	pwq = alloc_unbound_pwq(wq, target_attrs);
4508 	if (!pwq) {
4509 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4510 			wq->name);
4511 		goto use_dfl_pwq;
4512 	}
4513 
4514 	/* Install the new pwq. */
4515 	mutex_lock(&wq->mutex);
4516 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4517 	goto out_unlock;
4518 
4519 use_dfl_pwq:
4520 	mutex_lock(&wq->mutex);
4521 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4522 	get_pwq(wq->dfl_pwq);
4523 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4524 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4525 out_unlock:
4526 	mutex_unlock(&wq->mutex);
4527 	put_pwq_unlocked(old_pwq);
4528 }
4529 
4530 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4531 {
4532 	bool highpri = wq->flags & WQ_HIGHPRI;
4533 	int cpu, ret;
4534 
4535 	if (!(wq->flags & WQ_UNBOUND)) {
4536 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4537 		if (!wq->cpu_pwqs)
4538 			return -ENOMEM;
4539 
4540 		for_each_possible_cpu(cpu) {
4541 			struct pool_workqueue *pwq =
4542 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4543 			struct worker_pool *cpu_pools =
4544 				per_cpu(cpu_worker_pools, cpu);
4545 
4546 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4547 
4548 			mutex_lock(&wq->mutex);
4549 			link_pwq(pwq);
4550 			mutex_unlock(&wq->mutex);
4551 		}
4552 		return 0;
4553 	}
4554 
4555 	cpus_read_lock();
4556 	if (wq->flags & __WQ_ORDERED) {
4557 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4558 		/* there should only be single pwq for ordering guarantee */
4559 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4560 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4561 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4562 	} else {
4563 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4564 	}
4565 	cpus_read_unlock();
4566 
4567 	return ret;
4568 }
4569 
4570 static int wq_clamp_max_active(int max_active, unsigned int flags,
4571 			       const char *name)
4572 {
4573 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4574 
4575 	if (max_active < 1 || max_active > lim)
4576 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4577 			max_active, name, 1, lim);
4578 
4579 	return clamp_val(max_active, 1, lim);
4580 }
4581 
4582 /*
4583  * Workqueues which may be used during memory reclaim should have a rescuer
4584  * to guarantee forward progress.
4585  */
4586 static int init_rescuer(struct workqueue_struct *wq)
4587 {
4588 	struct worker *rescuer;
4589 	int ret;
4590 
4591 	if (!(wq->flags & WQ_MEM_RECLAIM))
4592 		return 0;
4593 
4594 	rescuer = alloc_worker(NUMA_NO_NODE);
4595 	if (!rescuer) {
4596 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
4597 		       wq->name);
4598 		return -ENOMEM;
4599 	}
4600 
4601 	rescuer->rescue_wq = wq;
4602 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4603 	if (IS_ERR(rescuer->task)) {
4604 		ret = PTR_ERR(rescuer->task);
4605 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
4606 		       wq->name, ERR_PTR(ret));
4607 		kfree(rescuer);
4608 		return ret;
4609 	}
4610 
4611 	wq->rescuer = rescuer;
4612 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4613 	wake_up_process(rescuer->task);
4614 
4615 	return 0;
4616 }
4617 
4618 __printf(1, 4)
4619 struct workqueue_struct *alloc_workqueue(const char *fmt,
4620 					 unsigned int flags,
4621 					 int max_active, ...)
4622 {
4623 	size_t tbl_size = 0;
4624 	va_list args;
4625 	struct workqueue_struct *wq;
4626 	struct pool_workqueue *pwq;
4627 
4628 	/*
4629 	 * Unbound && max_active == 1 used to imply ordered, which is no
4630 	 * longer the case on NUMA machines due to per-node pools.  While
4631 	 * alloc_ordered_workqueue() is the right way to create an ordered
4632 	 * workqueue, keep the previous behavior to avoid subtle breakages
4633 	 * on NUMA.
4634 	 */
4635 	if ((flags & WQ_UNBOUND) && max_active == 1)
4636 		flags |= __WQ_ORDERED;
4637 
4638 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4639 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4640 		flags |= WQ_UNBOUND;
4641 
4642 	/* allocate wq and format name */
4643 	if (flags & WQ_UNBOUND)
4644 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4645 
4646 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4647 	if (!wq)
4648 		return NULL;
4649 
4650 	if (flags & WQ_UNBOUND) {
4651 		wq->unbound_attrs = alloc_workqueue_attrs();
4652 		if (!wq->unbound_attrs)
4653 			goto err_free_wq;
4654 	}
4655 
4656 	va_start(args, max_active);
4657 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4658 	va_end(args);
4659 
4660 	max_active = max_active ?: WQ_DFL_ACTIVE;
4661 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4662 
4663 	/* init wq */
4664 	wq->flags = flags;
4665 	wq->saved_max_active = max_active;
4666 	mutex_init(&wq->mutex);
4667 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4668 	INIT_LIST_HEAD(&wq->pwqs);
4669 	INIT_LIST_HEAD(&wq->flusher_queue);
4670 	INIT_LIST_HEAD(&wq->flusher_overflow);
4671 	INIT_LIST_HEAD(&wq->maydays);
4672 
4673 	wq_init_lockdep(wq);
4674 	INIT_LIST_HEAD(&wq->list);
4675 
4676 	if (alloc_and_link_pwqs(wq) < 0)
4677 		goto err_unreg_lockdep;
4678 
4679 	if (wq_online && init_rescuer(wq) < 0)
4680 		goto err_destroy;
4681 
4682 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4683 		goto err_destroy;
4684 
4685 	/*
4686 	 * wq_pool_mutex protects global freeze state and workqueues list.
4687 	 * Grab it, adjust max_active and add the new @wq to workqueues
4688 	 * list.
4689 	 */
4690 	mutex_lock(&wq_pool_mutex);
4691 
4692 	mutex_lock(&wq->mutex);
4693 	for_each_pwq(pwq, wq)
4694 		pwq_adjust_max_active(pwq);
4695 	mutex_unlock(&wq->mutex);
4696 
4697 	list_add_tail_rcu(&wq->list, &workqueues);
4698 
4699 	mutex_unlock(&wq_pool_mutex);
4700 
4701 	return wq;
4702 
4703 err_unreg_lockdep:
4704 	wq_unregister_lockdep(wq);
4705 	wq_free_lockdep(wq);
4706 err_free_wq:
4707 	free_workqueue_attrs(wq->unbound_attrs);
4708 	kfree(wq);
4709 	return NULL;
4710 err_destroy:
4711 	destroy_workqueue(wq);
4712 	return NULL;
4713 }
4714 EXPORT_SYMBOL_GPL(alloc_workqueue);
4715 
4716 static bool pwq_busy(struct pool_workqueue *pwq)
4717 {
4718 	int i;
4719 
4720 	for (i = 0; i < WORK_NR_COLORS; i++)
4721 		if (pwq->nr_in_flight[i])
4722 			return true;
4723 
4724 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4725 		return true;
4726 	if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4727 		return true;
4728 
4729 	return false;
4730 }
4731 
4732 /**
4733  * destroy_workqueue - safely terminate a workqueue
4734  * @wq: target workqueue
4735  *
4736  * Safely destroy a workqueue. All work currently pending will be done first.
4737  */
4738 void destroy_workqueue(struct workqueue_struct *wq)
4739 {
4740 	struct pool_workqueue *pwq;
4741 	int node;
4742 
4743 	/*
4744 	 * Remove it from sysfs first so that sanity check failure doesn't
4745 	 * lead to sysfs name conflicts.
4746 	 */
4747 	workqueue_sysfs_unregister(wq);
4748 
4749 	/* mark the workqueue destruction is in progress */
4750 	mutex_lock(&wq->mutex);
4751 	wq->flags |= __WQ_DESTROYING;
4752 	mutex_unlock(&wq->mutex);
4753 
4754 	/* drain it before proceeding with destruction */
4755 	drain_workqueue(wq);
4756 
4757 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4758 	if (wq->rescuer) {
4759 		struct worker *rescuer = wq->rescuer;
4760 
4761 		/* this prevents new queueing */
4762 		raw_spin_lock_irq(&wq_mayday_lock);
4763 		wq->rescuer = NULL;
4764 		raw_spin_unlock_irq(&wq_mayday_lock);
4765 
4766 		/* rescuer will empty maydays list before exiting */
4767 		kthread_stop(rescuer->task);
4768 		kfree(rescuer);
4769 	}
4770 
4771 	/*
4772 	 * Sanity checks - grab all the locks so that we wait for all
4773 	 * in-flight operations which may do put_pwq().
4774 	 */
4775 	mutex_lock(&wq_pool_mutex);
4776 	mutex_lock(&wq->mutex);
4777 	for_each_pwq(pwq, wq) {
4778 		raw_spin_lock_irq(&pwq->pool->lock);
4779 		if (WARN_ON(pwq_busy(pwq))) {
4780 			pr_warn("%s: %s has the following busy pwq\n",
4781 				__func__, wq->name);
4782 			show_pwq(pwq);
4783 			raw_spin_unlock_irq(&pwq->pool->lock);
4784 			mutex_unlock(&wq->mutex);
4785 			mutex_unlock(&wq_pool_mutex);
4786 			show_one_workqueue(wq);
4787 			return;
4788 		}
4789 		raw_spin_unlock_irq(&pwq->pool->lock);
4790 	}
4791 	mutex_unlock(&wq->mutex);
4792 
4793 	/*
4794 	 * wq list is used to freeze wq, remove from list after
4795 	 * flushing is complete in case freeze races us.
4796 	 */
4797 	list_del_rcu(&wq->list);
4798 	mutex_unlock(&wq_pool_mutex);
4799 
4800 	if (!(wq->flags & WQ_UNBOUND)) {
4801 		wq_unregister_lockdep(wq);
4802 		/*
4803 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4804 		 * schedule RCU free.
4805 		 */
4806 		call_rcu(&wq->rcu, rcu_free_wq);
4807 	} else {
4808 		/*
4809 		 * We're the sole accessor of @wq at this point.  Directly
4810 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4811 		 * @wq will be freed when the last pwq is released.
4812 		 */
4813 		for_each_node(node) {
4814 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4815 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4816 			put_pwq_unlocked(pwq);
4817 		}
4818 
4819 		/*
4820 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4821 		 * put.  Don't access it afterwards.
4822 		 */
4823 		pwq = wq->dfl_pwq;
4824 		wq->dfl_pwq = NULL;
4825 		put_pwq_unlocked(pwq);
4826 	}
4827 }
4828 EXPORT_SYMBOL_GPL(destroy_workqueue);
4829 
4830 /**
4831  * workqueue_set_max_active - adjust max_active of a workqueue
4832  * @wq: target workqueue
4833  * @max_active: new max_active value.
4834  *
4835  * Set max_active of @wq to @max_active.
4836  *
4837  * CONTEXT:
4838  * Don't call from IRQ context.
4839  */
4840 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4841 {
4842 	struct pool_workqueue *pwq;
4843 
4844 	/* disallow meddling with max_active for ordered workqueues */
4845 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4846 		return;
4847 
4848 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4849 
4850 	mutex_lock(&wq->mutex);
4851 
4852 	wq->flags &= ~__WQ_ORDERED;
4853 	wq->saved_max_active = max_active;
4854 
4855 	for_each_pwq(pwq, wq)
4856 		pwq_adjust_max_active(pwq);
4857 
4858 	mutex_unlock(&wq->mutex);
4859 }
4860 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4861 
4862 /**
4863  * current_work - retrieve %current task's work struct
4864  *
4865  * Determine if %current task is a workqueue worker and what it's working on.
4866  * Useful to find out the context that the %current task is running in.
4867  *
4868  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4869  */
4870 struct work_struct *current_work(void)
4871 {
4872 	struct worker *worker = current_wq_worker();
4873 
4874 	return worker ? worker->current_work : NULL;
4875 }
4876 EXPORT_SYMBOL(current_work);
4877 
4878 /**
4879  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4880  *
4881  * Determine whether %current is a workqueue rescuer.  Can be used from
4882  * work functions to determine whether it's being run off the rescuer task.
4883  *
4884  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4885  */
4886 bool current_is_workqueue_rescuer(void)
4887 {
4888 	struct worker *worker = current_wq_worker();
4889 
4890 	return worker && worker->rescue_wq;
4891 }
4892 
4893 /**
4894  * workqueue_congested - test whether a workqueue is congested
4895  * @cpu: CPU in question
4896  * @wq: target workqueue
4897  *
4898  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4899  * no synchronization around this function and the test result is
4900  * unreliable and only useful as advisory hints or for debugging.
4901  *
4902  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4903  * Note that both per-cpu and unbound workqueues may be associated with
4904  * multiple pool_workqueues which have separate congested states.  A
4905  * workqueue being congested on one CPU doesn't mean the workqueue is also
4906  * contested on other CPUs / NUMA nodes.
4907  *
4908  * Return:
4909  * %true if congested, %false otherwise.
4910  */
4911 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4912 {
4913 	struct pool_workqueue *pwq;
4914 	bool ret;
4915 
4916 	rcu_read_lock();
4917 	preempt_disable();
4918 
4919 	if (cpu == WORK_CPU_UNBOUND)
4920 		cpu = smp_processor_id();
4921 
4922 	if (!(wq->flags & WQ_UNBOUND))
4923 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4924 	else
4925 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4926 
4927 	ret = !list_empty(&pwq->inactive_works);
4928 	preempt_enable();
4929 	rcu_read_unlock();
4930 
4931 	return ret;
4932 }
4933 EXPORT_SYMBOL_GPL(workqueue_congested);
4934 
4935 /**
4936  * work_busy - test whether a work is currently pending or running
4937  * @work: the work to be tested
4938  *
4939  * Test whether @work is currently pending or running.  There is no
4940  * synchronization around this function and the test result is
4941  * unreliable and only useful as advisory hints or for debugging.
4942  *
4943  * Return:
4944  * OR'd bitmask of WORK_BUSY_* bits.
4945  */
4946 unsigned int work_busy(struct work_struct *work)
4947 {
4948 	struct worker_pool *pool;
4949 	unsigned long flags;
4950 	unsigned int ret = 0;
4951 
4952 	if (work_pending(work))
4953 		ret |= WORK_BUSY_PENDING;
4954 
4955 	rcu_read_lock();
4956 	pool = get_work_pool(work);
4957 	if (pool) {
4958 		raw_spin_lock_irqsave(&pool->lock, flags);
4959 		if (find_worker_executing_work(pool, work))
4960 			ret |= WORK_BUSY_RUNNING;
4961 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4962 	}
4963 	rcu_read_unlock();
4964 
4965 	return ret;
4966 }
4967 EXPORT_SYMBOL_GPL(work_busy);
4968 
4969 /**
4970  * set_worker_desc - set description for the current work item
4971  * @fmt: printf-style format string
4972  * @...: arguments for the format string
4973  *
4974  * This function can be called by a running work function to describe what
4975  * the work item is about.  If the worker task gets dumped, this
4976  * information will be printed out together to help debugging.  The
4977  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4978  */
4979 void set_worker_desc(const char *fmt, ...)
4980 {
4981 	struct worker *worker = current_wq_worker();
4982 	va_list args;
4983 
4984 	if (worker) {
4985 		va_start(args, fmt);
4986 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4987 		va_end(args);
4988 	}
4989 }
4990 EXPORT_SYMBOL_GPL(set_worker_desc);
4991 
4992 /**
4993  * print_worker_info - print out worker information and description
4994  * @log_lvl: the log level to use when printing
4995  * @task: target task
4996  *
4997  * If @task is a worker and currently executing a work item, print out the
4998  * name of the workqueue being serviced and worker description set with
4999  * set_worker_desc() by the currently executing work item.
5000  *
5001  * This function can be safely called on any task as long as the
5002  * task_struct itself is accessible.  While safe, this function isn't
5003  * synchronized and may print out mixups or garbages of limited length.
5004  */
5005 void print_worker_info(const char *log_lvl, struct task_struct *task)
5006 {
5007 	work_func_t *fn = NULL;
5008 	char name[WQ_NAME_LEN] = { };
5009 	char desc[WORKER_DESC_LEN] = { };
5010 	struct pool_workqueue *pwq = NULL;
5011 	struct workqueue_struct *wq = NULL;
5012 	struct worker *worker;
5013 
5014 	if (!(task->flags & PF_WQ_WORKER))
5015 		return;
5016 
5017 	/*
5018 	 * This function is called without any synchronization and @task
5019 	 * could be in any state.  Be careful with dereferences.
5020 	 */
5021 	worker = kthread_probe_data(task);
5022 
5023 	/*
5024 	 * Carefully copy the associated workqueue's workfn, name and desc.
5025 	 * Keep the original last '\0' in case the original is garbage.
5026 	 */
5027 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
5028 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
5029 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
5030 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
5031 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
5032 
5033 	if (fn || name[0] || desc[0]) {
5034 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
5035 		if (strcmp(name, desc))
5036 			pr_cont(" (%s)", desc);
5037 		pr_cont("\n");
5038 	}
5039 }
5040 
5041 static void pr_cont_pool_info(struct worker_pool *pool)
5042 {
5043 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
5044 	if (pool->node != NUMA_NO_NODE)
5045 		pr_cont(" node=%d", pool->node);
5046 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
5047 }
5048 
5049 struct pr_cont_work_struct {
5050 	bool comma;
5051 	work_func_t func;
5052 	long ctr;
5053 };
5054 
5055 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
5056 {
5057 	if (!pcwsp->ctr)
5058 		goto out_record;
5059 	if (func == pcwsp->func) {
5060 		pcwsp->ctr++;
5061 		return;
5062 	}
5063 	if (pcwsp->ctr == 1)
5064 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
5065 	else
5066 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
5067 	pcwsp->ctr = 0;
5068 out_record:
5069 	if ((long)func == -1L)
5070 		return;
5071 	pcwsp->comma = comma;
5072 	pcwsp->func = func;
5073 	pcwsp->ctr = 1;
5074 }
5075 
5076 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
5077 {
5078 	if (work->func == wq_barrier_func) {
5079 		struct wq_barrier *barr;
5080 
5081 		barr = container_of(work, struct wq_barrier, work);
5082 
5083 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5084 		pr_cont("%s BAR(%d)", comma ? "," : "",
5085 			task_pid_nr(barr->task));
5086 	} else {
5087 		if (!comma)
5088 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
5089 		pr_cont_work_flush(comma, work->func, pcwsp);
5090 	}
5091 }
5092 
5093 static void show_pwq(struct pool_workqueue *pwq)
5094 {
5095 	struct pr_cont_work_struct pcws = { .ctr = 0, };
5096 	struct worker_pool *pool = pwq->pool;
5097 	struct work_struct *work;
5098 	struct worker *worker;
5099 	bool has_in_flight = false, has_pending = false;
5100 	int bkt;
5101 
5102 	pr_info("  pwq %d:", pool->id);
5103 	pr_cont_pool_info(pool);
5104 
5105 	pr_cont(" active=%d/%d refcnt=%d%s\n",
5106 		pwq->nr_active, pwq->max_active, pwq->refcnt,
5107 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
5108 
5109 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5110 		if (worker->current_pwq == pwq) {
5111 			has_in_flight = true;
5112 			break;
5113 		}
5114 	}
5115 	if (has_in_flight) {
5116 		bool comma = false;
5117 
5118 		pr_info("    in-flight:");
5119 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
5120 			if (worker->current_pwq != pwq)
5121 				continue;
5122 
5123 			pr_cont("%s %d%s:%ps", comma ? "," : "",
5124 				task_pid_nr(worker->task),
5125 				worker->rescue_wq ? "(RESCUER)" : "",
5126 				worker->current_func);
5127 			list_for_each_entry(work, &worker->scheduled, entry)
5128 				pr_cont_work(false, work, &pcws);
5129 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5130 			comma = true;
5131 		}
5132 		pr_cont("\n");
5133 	}
5134 
5135 	list_for_each_entry(work, &pool->worklist, entry) {
5136 		if (get_work_pwq(work) == pwq) {
5137 			has_pending = true;
5138 			break;
5139 		}
5140 	}
5141 	if (has_pending) {
5142 		bool comma = false;
5143 
5144 		pr_info("    pending:");
5145 		list_for_each_entry(work, &pool->worklist, entry) {
5146 			if (get_work_pwq(work) != pwq)
5147 				continue;
5148 
5149 			pr_cont_work(comma, work, &pcws);
5150 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5151 		}
5152 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5153 		pr_cont("\n");
5154 	}
5155 
5156 	if (!list_empty(&pwq->inactive_works)) {
5157 		bool comma = false;
5158 
5159 		pr_info("    inactive:");
5160 		list_for_each_entry(work, &pwq->inactive_works, entry) {
5161 			pr_cont_work(comma, work, &pcws);
5162 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
5163 		}
5164 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
5165 		pr_cont("\n");
5166 	}
5167 }
5168 
5169 /**
5170  * show_one_workqueue - dump state of specified workqueue
5171  * @wq: workqueue whose state will be printed
5172  */
5173 void show_one_workqueue(struct workqueue_struct *wq)
5174 {
5175 	struct pool_workqueue *pwq;
5176 	bool idle = true;
5177 	unsigned long flags;
5178 
5179 	for_each_pwq(pwq, wq) {
5180 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
5181 			idle = false;
5182 			break;
5183 		}
5184 	}
5185 	if (idle) /* Nothing to print for idle workqueue */
5186 		return;
5187 
5188 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
5189 
5190 	for_each_pwq(pwq, wq) {
5191 		raw_spin_lock_irqsave(&pwq->pool->lock, flags);
5192 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
5193 			/*
5194 			 * Defer printing to avoid deadlocks in console
5195 			 * drivers that queue work while holding locks
5196 			 * also taken in their write paths.
5197 			 */
5198 			printk_deferred_enter();
5199 			show_pwq(pwq);
5200 			printk_deferred_exit();
5201 		}
5202 		raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
5203 		/*
5204 		 * We could be printing a lot from atomic context, e.g.
5205 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
5206 		 * hard lockup.
5207 		 */
5208 		touch_nmi_watchdog();
5209 	}
5210 
5211 }
5212 
5213 /**
5214  * show_one_worker_pool - dump state of specified worker pool
5215  * @pool: worker pool whose state will be printed
5216  */
5217 static void show_one_worker_pool(struct worker_pool *pool)
5218 {
5219 	struct worker *worker;
5220 	bool first = true;
5221 	unsigned long flags;
5222 	unsigned long hung = 0;
5223 
5224 	raw_spin_lock_irqsave(&pool->lock, flags);
5225 	if (pool->nr_workers == pool->nr_idle)
5226 		goto next_pool;
5227 
5228 	/* How long the first pending work is waiting for a worker. */
5229 	if (!list_empty(&pool->worklist))
5230 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
5231 
5232 	/*
5233 	 * Defer printing to avoid deadlocks in console drivers that
5234 	 * queue work while holding locks also taken in their write
5235 	 * paths.
5236 	 */
5237 	printk_deferred_enter();
5238 	pr_info("pool %d:", pool->id);
5239 	pr_cont_pool_info(pool);
5240 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
5241 	if (pool->manager)
5242 		pr_cont(" manager: %d",
5243 			task_pid_nr(pool->manager->task));
5244 	list_for_each_entry(worker, &pool->idle_list, entry) {
5245 		pr_cont(" %s%d", first ? "idle: " : "",
5246 			task_pid_nr(worker->task));
5247 		first = false;
5248 	}
5249 	pr_cont("\n");
5250 	printk_deferred_exit();
5251 next_pool:
5252 	raw_spin_unlock_irqrestore(&pool->lock, flags);
5253 	/*
5254 	 * We could be printing a lot from atomic context, e.g.
5255 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
5256 	 * hard lockup.
5257 	 */
5258 	touch_nmi_watchdog();
5259 
5260 }
5261 
5262 /**
5263  * show_all_workqueues - dump workqueue state
5264  *
5265  * Called from a sysrq handler and prints out all busy workqueues and pools.
5266  */
5267 void show_all_workqueues(void)
5268 {
5269 	struct workqueue_struct *wq;
5270 	struct worker_pool *pool;
5271 	int pi;
5272 
5273 	rcu_read_lock();
5274 
5275 	pr_info("Showing busy workqueues and worker pools:\n");
5276 
5277 	list_for_each_entry_rcu(wq, &workqueues, list)
5278 		show_one_workqueue(wq);
5279 
5280 	for_each_pool(pool, pi)
5281 		show_one_worker_pool(pool);
5282 
5283 	rcu_read_unlock();
5284 }
5285 
5286 /**
5287  * show_freezable_workqueues - dump freezable workqueue state
5288  *
5289  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
5290  * still busy.
5291  */
5292 void show_freezable_workqueues(void)
5293 {
5294 	struct workqueue_struct *wq;
5295 
5296 	rcu_read_lock();
5297 
5298 	pr_info("Showing freezable workqueues that are still busy:\n");
5299 
5300 	list_for_each_entry_rcu(wq, &workqueues, list) {
5301 		if (!(wq->flags & WQ_FREEZABLE))
5302 			continue;
5303 		show_one_workqueue(wq);
5304 	}
5305 
5306 	rcu_read_unlock();
5307 }
5308 
5309 /* used to show worker information through /proc/PID/{comm,stat,status} */
5310 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
5311 {
5312 	int off;
5313 
5314 	/* always show the actual comm */
5315 	off = strscpy(buf, task->comm, size);
5316 	if (off < 0)
5317 		return;
5318 
5319 	/* stabilize PF_WQ_WORKER and worker pool association */
5320 	mutex_lock(&wq_pool_attach_mutex);
5321 
5322 	if (task->flags & PF_WQ_WORKER) {
5323 		struct worker *worker = kthread_data(task);
5324 		struct worker_pool *pool = worker->pool;
5325 
5326 		if (pool) {
5327 			raw_spin_lock_irq(&pool->lock);
5328 			/*
5329 			 * ->desc tracks information (wq name or
5330 			 * set_worker_desc()) for the latest execution.  If
5331 			 * current, prepend '+', otherwise '-'.
5332 			 */
5333 			if (worker->desc[0] != '\0') {
5334 				if (worker->current_work)
5335 					scnprintf(buf + off, size - off, "+%s",
5336 						  worker->desc);
5337 				else
5338 					scnprintf(buf + off, size - off, "-%s",
5339 						  worker->desc);
5340 			}
5341 			raw_spin_unlock_irq(&pool->lock);
5342 		}
5343 	}
5344 
5345 	mutex_unlock(&wq_pool_attach_mutex);
5346 }
5347 
5348 #ifdef CONFIG_SMP
5349 
5350 /*
5351  * CPU hotplug.
5352  *
5353  * There are two challenges in supporting CPU hotplug.  Firstly, there
5354  * are a lot of assumptions on strong associations among work, pwq and
5355  * pool which make migrating pending and scheduled works very
5356  * difficult to implement without impacting hot paths.  Secondly,
5357  * worker pools serve mix of short, long and very long running works making
5358  * blocked draining impractical.
5359  *
5360  * This is solved by allowing the pools to be disassociated from the CPU
5361  * running as an unbound one and allowing it to be reattached later if the
5362  * cpu comes back online.
5363  */
5364 
5365 static void unbind_workers(int cpu)
5366 {
5367 	struct worker_pool *pool;
5368 	struct worker *worker;
5369 
5370 	for_each_cpu_worker_pool(pool, cpu) {
5371 		mutex_lock(&wq_pool_attach_mutex);
5372 		raw_spin_lock_irq(&pool->lock);
5373 
5374 		/*
5375 		 * We've blocked all attach/detach operations. Make all workers
5376 		 * unbound and set DISASSOCIATED.  Before this, all workers
5377 		 * must be on the cpu.  After this, they may become diasporas.
5378 		 * And the preemption disabled section in their sched callbacks
5379 		 * are guaranteed to see WORKER_UNBOUND since the code here
5380 		 * is on the same cpu.
5381 		 */
5382 		for_each_pool_worker(worker, pool)
5383 			worker->flags |= WORKER_UNBOUND;
5384 
5385 		pool->flags |= POOL_DISASSOCIATED;
5386 
5387 		/*
5388 		 * The handling of nr_running in sched callbacks are disabled
5389 		 * now.  Zap nr_running.  After this, nr_running stays zero and
5390 		 * need_more_worker() and keep_working() are always true as
5391 		 * long as the worklist is not empty.  This pool now behaves as
5392 		 * an unbound (in terms of concurrency management) pool which
5393 		 * are served by workers tied to the pool.
5394 		 */
5395 		pool->nr_running = 0;
5396 
5397 		/*
5398 		 * With concurrency management just turned off, a busy
5399 		 * worker blocking could lead to lengthy stalls.  Kick off
5400 		 * unbound chain execution of currently pending work items.
5401 		 */
5402 		wake_up_worker(pool);
5403 
5404 		raw_spin_unlock_irq(&pool->lock);
5405 
5406 		for_each_pool_worker(worker, pool)
5407 			unbind_worker(worker);
5408 
5409 		mutex_unlock(&wq_pool_attach_mutex);
5410 	}
5411 }
5412 
5413 /**
5414  * rebind_workers - rebind all workers of a pool to the associated CPU
5415  * @pool: pool of interest
5416  *
5417  * @pool->cpu is coming online.  Rebind all workers to the CPU.
5418  */
5419 static void rebind_workers(struct worker_pool *pool)
5420 {
5421 	struct worker *worker;
5422 
5423 	lockdep_assert_held(&wq_pool_attach_mutex);
5424 
5425 	/*
5426 	 * Restore CPU affinity of all workers.  As all idle workers should
5427 	 * be on the run-queue of the associated CPU before any local
5428 	 * wake-ups for concurrency management happen, restore CPU affinity
5429 	 * of all workers first and then clear UNBOUND.  As we're called
5430 	 * from CPU_ONLINE, the following shouldn't fail.
5431 	 */
5432 	for_each_pool_worker(worker, pool) {
5433 		kthread_set_per_cpu(worker->task, pool->cpu);
5434 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5435 						  pool->attrs->cpumask) < 0);
5436 	}
5437 
5438 	raw_spin_lock_irq(&pool->lock);
5439 
5440 	pool->flags &= ~POOL_DISASSOCIATED;
5441 
5442 	for_each_pool_worker(worker, pool) {
5443 		unsigned int worker_flags = worker->flags;
5444 
5445 		/*
5446 		 * We want to clear UNBOUND but can't directly call
5447 		 * worker_clr_flags() or adjust nr_running.  Atomically
5448 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5449 		 * @worker will clear REBOUND using worker_clr_flags() when
5450 		 * it initiates the next execution cycle thus restoring
5451 		 * concurrency management.  Note that when or whether
5452 		 * @worker clears REBOUND doesn't affect correctness.
5453 		 *
5454 		 * WRITE_ONCE() is necessary because @worker->flags may be
5455 		 * tested without holding any lock in
5456 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5457 		 * fail incorrectly leading to premature concurrency
5458 		 * management operations.
5459 		 */
5460 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5461 		worker_flags |= WORKER_REBOUND;
5462 		worker_flags &= ~WORKER_UNBOUND;
5463 		WRITE_ONCE(worker->flags, worker_flags);
5464 	}
5465 
5466 	raw_spin_unlock_irq(&pool->lock);
5467 }
5468 
5469 /**
5470  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5471  * @pool: unbound pool of interest
5472  * @cpu: the CPU which is coming up
5473  *
5474  * An unbound pool may end up with a cpumask which doesn't have any online
5475  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5476  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5477  * online CPU before, cpus_allowed of all its workers should be restored.
5478  */
5479 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5480 {
5481 	static cpumask_t cpumask;
5482 	struct worker *worker;
5483 
5484 	lockdep_assert_held(&wq_pool_attach_mutex);
5485 
5486 	/* is @cpu allowed for @pool? */
5487 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5488 		return;
5489 
5490 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5491 
5492 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5493 	for_each_pool_worker(worker, pool)
5494 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5495 }
5496 
5497 int workqueue_prepare_cpu(unsigned int cpu)
5498 {
5499 	struct worker_pool *pool;
5500 
5501 	for_each_cpu_worker_pool(pool, cpu) {
5502 		if (pool->nr_workers)
5503 			continue;
5504 		if (!create_worker(pool))
5505 			return -ENOMEM;
5506 	}
5507 	return 0;
5508 }
5509 
5510 int workqueue_online_cpu(unsigned int cpu)
5511 {
5512 	struct worker_pool *pool;
5513 	struct workqueue_struct *wq;
5514 	int pi;
5515 
5516 	mutex_lock(&wq_pool_mutex);
5517 
5518 	for_each_pool(pool, pi) {
5519 		mutex_lock(&wq_pool_attach_mutex);
5520 
5521 		if (pool->cpu == cpu)
5522 			rebind_workers(pool);
5523 		else if (pool->cpu < 0)
5524 			restore_unbound_workers_cpumask(pool, cpu);
5525 
5526 		mutex_unlock(&wq_pool_attach_mutex);
5527 	}
5528 
5529 	/* update NUMA affinity of unbound workqueues */
5530 	list_for_each_entry(wq, &workqueues, list)
5531 		wq_update_unbound_numa(wq, cpu, true);
5532 
5533 	mutex_unlock(&wq_pool_mutex);
5534 	return 0;
5535 }
5536 
5537 int workqueue_offline_cpu(unsigned int cpu)
5538 {
5539 	struct workqueue_struct *wq;
5540 
5541 	/* unbinding per-cpu workers should happen on the local CPU */
5542 	if (WARN_ON(cpu != smp_processor_id()))
5543 		return -1;
5544 
5545 	unbind_workers(cpu);
5546 
5547 	/* update NUMA affinity of unbound workqueues */
5548 	mutex_lock(&wq_pool_mutex);
5549 	list_for_each_entry(wq, &workqueues, list)
5550 		wq_update_unbound_numa(wq, cpu, false);
5551 	mutex_unlock(&wq_pool_mutex);
5552 
5553 	return 0;
5554 }
5555 
5556 struct work_for_cpu {
5557 	struct work_struct work;
5558 	long (*fn)(void *);
5559 	void *arg;
5560 	long ret;
5561 };
5562 
5563 static void work_for_cpu_fn(struct work_struct *work)
5564 {
5565 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5566 
5567 	wfc->ret = wfc->fn(wfc->arg);
5568 }
5569 
5570 /**
5571  * work_on_cpu - run a function in thread context on a particular cpu
5572  * @cpu: the cpu to run on
5573  * @fn: the function to run
5574  * @arg: the function arg
5575  *
5576  * It is up to the caller to ensure that the cpu doesn't go offline.
5577  * The caller must not hold any locks which would prevent @fn from completing.
5578  *
5579  * Return: The value @fn returns.
5580  */
5581 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5582 {
5583 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5584 
5585 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5586 	schedule_work_on(cpu, &wfc.work);
5587 	flush_work(&wfc.work);
5588 	destroy_work_on_stack(&wfc.work);
5589 	return wfc.ret;
5590 }
5591 EXPORT_SYMBOL_GPL(work_on_cpu);
5592 
5593 /**
5594  * work_on_cpu_safe - run a function in thread context on a particular cpu
5595  * @cpu: the cpu to run on
5596  * @fn:  the function to run
5597  * @arg: the function argument
5598  *
5599  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5600  * any locks which would prevent @fn from completing.
5601  *
5602  * Return: The value @fn returns.
5603  */
5604 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5605 {
5606 	long ret = -ENODEV;
5607 
5608 	cpus_read_lock();
5609 	if (cpu_online(cpu))
5610 		ret = work_on_cpu(cpu, fn, arg);
5611 	cpus_read_unlock();
5612 	return ret;
5613 }
5614 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5615 #endif /* CONFIG_SMP */
5616 
5617 #ifdef CONFIG_FREEZER
5618 
5619 /**
5620  * freeze_workqueues_begin - begin freezing workqueues
5621  *
5622  * Start freezing workqueues.  After this function returns, all freezable
5623  * workqueues will queue new works to their inactive_works list instead of
5624  * pool->worklist.
5625  *
5626  * CONTEXT:
5627  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5628  */
5629 void freeze_workqueues_begin(void)
5630 {
5631 	struct workqueue_struct *wq;
5632 	struct pool_workqueue *pwq;
5633 
5634 	mutex_lock(&wq_pool_mutex);
5635 
5636 	WARN_ON_ONCE(workqueue_freezing);
5637 	workqueue_freezing = true;
5638 
5639 	list_for_each_entry(wq, &workqueues, list) {
5640 		mutex_lock(&wq->mutex);
5641 		for_each_pwq(pwq, wq)
5642 			pwq_adjust_max_active(pwq);
5643 		mutex_unlock(&wq->mutex);
5644 	}
5645 
5646 	mutex_unlock(&wq_pool_mutex);
5647 }
5648 
5649 /**
5650  * freeze_workqueues_busy - are freezable workqueues still busy?
5651  *
5652  * Check whether freezing is complete.  This function must be called
5653  * between freeze_workqueues_begin() and thaw_workqueues().
5654  *
5655  * CONTEXT:
5656  * Grabs and releases wq_pool_mutex.
5657  *
5658  * Return:
5659  * %true if some freezable workqueues are still busy.  %false if freezing
5660  * is complete.
5661  */
5662 bool freeze_workqueues_busy(void)
5663 {
5664 	bool busy = false;
5665 	struct workqueue_struct *wq;
5666 	struct pool_workqueue *pwq;
5667 
5668 	mutex_lock(&wq_pool_mutex);
5669 
5670 	WARN_ON_ONCE(!workqueue_freezing);
5671 
5672 	list_for_each_entry(wq, &workqueues, list) {
5673 		if (!(wq->flags & WQ_FREEZABLE))
5674 			continue;
5675 		/*
5676 		 * nr_active is monotonically decreasing.  It's safe
5677 		 * to peek without lock.
5678 		 */
5679 		rcu_read_lock();
5680 		for_each_pwq(pwq, wq) {
5681 			WARN_ON_ONCE(pwq->nr_active < 0);
5682 			if (pwq->nr_active) {
5683 				busy = true;
5684 				rcu_read_unlock();
5685 				goto out_unlock;
5686 			}
5687 		}
5688 		rcu_read_unlock();
5689 	}
5690 out_unlock:
5691 	mutex_unlock(&wq_pool_mutex);
5692 	return busy;
5693 }
5694 
5695 /**
5696  * thaw_workqueues - thaw workqueues
5697  *
5698  * Thaw workqueues.  Normal queueing is restored and all collected
5699  * frozen works are transferred to their respective pool worklists.
5700  *
5701  * CONTEXT:
5702  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5703  */
5704 void thaw_workqueues(void)
5705 {
5706 	struct workqueue_struct *wq;
5707 	struct pool_workqueue *pwq;
5708 
5709 	mutex_lock(&wq_pool_mutex);
5710 
5711 	if (!workqueue_freezing)
5712 		goto out_unlock;
5713 
5714 	workqueue_freezing = false;
5715 
5716 	/* restore max_active and repopulate worklist */
5717 	list_for_each_entry(wq, &workqueues, list) {
5718 		mutex_lock(&wq->mutex);
5719 		for_each_pwq(pwq, wq)
5720 			pwq_adjust_max_active(pwq);
5721 		mutex_unlock(&wq->mutex);
5722 	}
5723 
5724 out_unlock:
5725 	mutex_unlock(&wq_pool_mutex);
5726 }
5727 #endif /* CONFIG_FREEZER */
5728 
5729 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
5730 {
5731 	LIST_HEAD(ctxs);
5732 	int ret = 0;
5733 	struct workqueue_struct *wq;
5734 	struct apply_wqattrs_ctx *ctx, *n;
5735 
5736 	lockdep_assert_held(&wq_pool_mutex);
5737 
5738 	list_for_each_entry(wq, &workqueues, list) {
5739 		if (!(wq->flags & WQ_UNBOUND))
5740 			continue;
5741 		/* creating multiple pwqs breaks ordering guarantee */
5742 		if (wq->flags & __WQ_ORDERED)
5743 			continue;
5744 
5745 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
5746 		if (!ctx) {
5747 			ret = -ENOMEM;
5748 			break;
5749 		}
5750 
5751 		list_add_tail(&ctx->list, &ctxs);
5752 	}
5753 
5754 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5755 		if (!ret)
5756 			apply_wqattrs_commit(ctx);
5757 		apply_wqattrs_cleanup(ctx);
5758 	}
5759 
5760 	if (!ret) {
5761 		mutex_lock(&wq_pool_attach_mutex);
5762 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
5763 		mutex_unlock(&wq_pool_attach_mutex);
5764 	}
5765 	return ret;
5766 }
5767 
5768 /**
5769  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5770  *  @cpumask: the cpumask to set
5771  *
5772  *  The low-level workqueues cpumask is a global cpumask that limits
5773  *  the affinity of all unbound workqueues.  This function check the @cpumask
5774  *  and apply it to all unbound workqueues and updates all pwqs of them.
5775  *
5776  *  Return:	0	- Success
5777  *  		-EINVAL	- Invalid @cpumask
5778  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5779  */
5780 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5781 {
5782 	int ret = -EINVAL;
5783 
5784 	/*
5785 	 * Not excluding isolated cpus on purpose.
5786 	 * If the user wishes to include them, we allow that.
5787 	 */
5788 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5789 	if (!cpumask_empty(cpumask)) {
5790 		apply_wqattrs_lock();
5791 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5792 			ret = 0;
5793 			goto out_unlock;
5794 		}
5795 
5796 		ret = workqueue_apply_unbound_cpumask(cpumask);
5797 
5798 out_unlock:
5799 		apply_wqattrs_unlock();
5800 	}
5801 
5802 	return ret;
5803 }
5804 
5805 #ifdef CONFIG_SYSFS
5806 /*
5807  * Workqueues with WQ_SYSFS flag set is visible to userland via
5808  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5809  * following attributes.
5810  *
5811  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5812  *  max_active	RW int	: maximum number of in-flight work items
5813  *
5814  * Unbound workqueues have the following extra attributes.
5815  *
5816  *  pool_ids	RO int	: the associated pool IDs for each node
5817  *  nice	RW int	: nice value of the workers
5818  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5819  *  numa	RW bool	: whether enable NUMA affinity
5820  */
5821 struct wq_device {
5822 	struct workqueue_struct		*wq;
5823 	struct device			dev;
5824 };
5825 
5826 static struct workqueue_struct *dev_to_wq(struct device *dev)
5827 {
5828 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5829 
5830 	return wq_dev->wq;
5831 }
5832 
5833 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5834 			    char *buf)
5835 {
5836 	struct workqueue_struct *wq = dev_to_wq(dev);
5837 
5838 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5839 }
5840 static DEVICE_ATTR_RO(per_cpu);
5841 
5842 static ssize_t max_active_show(struct device *dev,
5843 			       struct device_attribute *attr, char *buf)
5844 {
5845 	struct workqueue_struct *wq = dev_to_wq(dev);
5846 
5847 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5848 }
5849 
5850 static ssize_t max_active_store(struct device *dev,
5851 				struct device_attribute *attr, const char *buf,
5852 				size_t count)
5853 {
5854 	struct workqueue_struct *wq = dev_to_wq(dev);
5855 	int val;
5856 
5857 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5858 		return -EINVAL;
5859 
5860 	workqueue_set_max_active(wq, val);
5861 	return count;
5862 }
5863 static DEVICE_ATTR_RW(max_active);
5864 
5865 static struct attribute *wq_sysfs_attrs[] = {
5866 	&dev_attr_per_cpu.attr,
5867 	&dev_attr_max_active.attr,
5868 	NULL,
5869 };
5870 ATTRIBUTE_GROUPS(wq_sysfs);
5871 
5872 static ssize_t wq_pool_ids_show(struct device *dev,
5873 				struct device_attribute *attr, char *buf)
5874 {
5875 	struct workqueue_struct *wq = dev_to_wq(dev);
5876 	const char *delim = "";
5877 	int node, written = 0;
5878 
5879 	cpus_read_lock();
5880 	rcu_read_lock();
5881 	for_each_node(node) {
5882 		written += scnprintf(buf + written, PAGE_SIZE - written,
5883 				     "%s%d:%d", delim, node,
5884 				     unbound_pwq_by_node(wq, node)->pool->id);
5885 		delim = " ";
5886 	}
5887 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5888 	rcu_read_unlock();
5889 	cpus_read_unlock();
5890 
5891 	return written;
5892 }
5893 
5894 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5895 			    char *buf)
5896 {
5897 	struct workqueue_struct *wq = dev_to_wq(dev);
5898 	int written;
5899 
5900 	mutex_lock(&wq->mutex);
5901 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5902 	mutex_unlock(&wq->mutex);
5903 
5904 	return written;
5905 }
5906 
5907 /* prepare workqueue_attrs for sysfs store operations */
5908 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5909 {
5910 	struct workqueue_attrs *attrs;
5911 
5912 	lockdep_assert_held(&wq_pool_mutex);
5913 
5914 	attrs = alloc_workqueue_attrs();
5915 	if (!attrs)
5916 		return NULL;
5917 
5918 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5919 	return attrs;
5920 }
5921 
5922 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5923 			     const char *buf, size_t count)
5924 {
5925 	struct workqueue_struct *wq = dev_to_wq(dev);
5926 	struct workqueue_attrs *attrs;
5927 	int ret = -ENOMEM;
5928 
5929 	apply_wqattrs_lock();
5930 
5931 	attrs = wq_sysfs_prep_attrs(wq);
5932 	if (!attrs)
5933 		goto out_unlock;
5934 
5935 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5936 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5937 		ret = apply_workqueue_attrs_locked(wq, attrs);
5938 	else
5939 		ret = -EINVAL;
5940 
5941 out_unlock:
5942 	apply_wqattrs_unlock();
5943 	free_workqueue_attrs(attrs);
5944 	return ret ?: count;
5945 }
5946 
5947 static ssize_t wq_cpumask_show(struct device *dev,
5948 			       struct device_attribute *attr, char *buf)
5949 {
5950 	struct workqueue_struct *wq = dev_to_wq(dev);
5951 	int written;
5952 
5953 	mutex_lock(&wq->mutex);
5954 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5955 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5956 	mutex_unlock(&wq->mutex);
5957 	return written;
5958 }
5959 
5960 static ssize_t wq_cpumask_store(struct device *dev,
5961 				struct device_attribute *attr,
5962 				const char *buf, size_t count)
5963 {
5964 	struct workqueue_struct *wq = dev_to_wq(dev);
5965 	struct workqueue_attrs *attrs;
5966 	int ret = -ENOMEM;
5967 
5968 	apply_wqattrs_lock();
5969 
5970 	attrs = wq_sysfs_prep_attrs(wq);
5971 	if (!attrs)
5972 		goto out_unlock;
5973 
5974 	ret = cpumask_parse(buf, attrs->cpumask);
5975 	if (!ret)
5976 		ret = apply_workqueue_attrs_locked(wq, attrs);
5977 
5978 out_unlock:
5979 	apply_wqattrs_unlock();
5980 	free_workqueue_attrs(attrs);
5981 	return ret ?: count;
5982 }
5983 
5984 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5985 			    char *buf)
5986 {
5987 	struct workqueue_struct *wq = dev_to_wq(dev);
5988 	int written;
5989 
5990 	mutex_lock(&wq->mutex);
5991 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5992 			    !wq->unbound_attrs->no_numa);
5993 	mutex_unlock(&wq->mutex);
5994 
5995 	return written;
5996 }
5997 
5998 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5999 			     const char *buf, size_t count)
6000 {
6001 	struct workqueue_struct *wq = dev_to_wq(dev);
6002 	struct workqueue_attrs *attrs;
6003 	int v, ret = -ENOMEM;
6004 
6005 	apply_wqattrs_lock();
6006 
6007 	attrs = wq_sysfs_prep_attrs(wq);
6008 	if (!attrs)
6009 		goto out_unlock;
6010 
6011 	ret = -EINVAL;
6012 	if (sscanf(buf, "%d", &v) == 1) {
6013 		attrs->no_numa = !v;
6014 		ret = apply_workqueue_attrs_locked(wq, attrs);
6015 	}
6016 
6017 out_unlock:
6018 	apply_wqattrs_unlock();
6019 	free_workqueue_attrs(attrs);
6020 	return ret ?: count;
6021 }
6022 
6023 static struct device_attribute wq_sysfs_unbound_attrs[] = {
6024 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
6025 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
6026 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
6027 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
6028 	__ATTR_NULL,
6029 };
6030 
6031 static struct bus_type wq_subsys = {
6032 	.name				= "workqueue",
6033 	.dev_groups			= wq_sysfs_groups,
6034 };
6035 
6036 static ssize_t wq_unbound_cpumask_show(struct device *dev,
6037 		struct device_attribute *attr, char *buf)
6038 {
6039 	int written;
6040 
6041 	mutex_lock(&wq_pool_mutex);
6042 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
6043 			    cpumask_pr_args(wq_unbound_cpumask));
6044 	mutex_unlock(&wq_pool_mutex);
6045 
6046 	return written;
6047 }
6048 
6049 static ssize_t wq_unbound_cpumask_store(struct device *dev,
6050 		struct device_attribute *attr, const char *buf, size_t count)
6051 {
6052 	cpumask_var_t cpumask;
6053 	int ret;
6054 
6055 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6056 		return -ENOMEM;
6057 
6058 	ret = cpumask_parse(buf, cpumask);
6059 	if (!ret)
6060 		ret = workqueue_set_unbound_cpumask(cpumask);
6061 
6062 	free_cpumask_var(cpumask);
6063 	return ret ? ret : count;
6064 }
6065 
6066 static struct device_attribute wq_sysfs_cpumask_attr =
6067 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
6068 	       wq_unbound_cpumask_store);
6069 
6070 static int __init wq_sysfs_init(void)
6071 {
6072 	struct device *dev_root;
6073 	int err;
6074 
6075 	err = subsys_virtual_register(&wq_subsys, NULL);
6076 	if (err)
6077 		return err;
6078 
6079 	dev_root = bus_get_dev_root(&wq_subsys);
6080 	if (dev_root) {
6081 		err = device_create_file(dev_root, &wq_sysfs_cpumask_attr);
6082 		put_device(dev_root);
6083 	}
6084 	return err;
6085 }
6086 core_initcall(wq_sysfs_init);
6087 
6088 static void wq_device_release(struct device *dev)
6089 {
6090 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6091 
6092 	kfree(wq_dev);
6093 }
6094 
6095 /**
6096  * workqueue_sysfs_register - make a workqueue visible in sysfs
6097  * @wq: the workqueue to register
6098  *
6099  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
6100  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
6101  * which is the preferred method.
6102  *
6103  * Workqueue user should use this function directly iff it wants to apply
6104  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
6105  * apply_workqueue_attrs() may race against userland updating the
6106  * attributes.
6107  *
6108  * Return: 0 on success, -errno on failure.
6109  */
6110 int workqueue_sysfs_register(struct workqueue_struct *wq)
6111 {
6112 	struct wq_device *wq_dev;
6113 	int ret;
6114 
6115 	/*
6116 	 * Adjusting max_active or creating new pwqs by applying
6117 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
6118 	 * workqueues.
6119 	 */
6120 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6121 		return -EINVAL;
6122 
6123 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
6124 	if (!wq_dev)
6125 		return -ENOMEM;
6126 
6127 	wq_dev->wq = wq;
6128 	wq_dev->dev.bus = &wq_subsys;
6129 	wq_dev->dev.release = wq_device_release;
6130 	dev_set_name(&wq_dev->dev, "%s", wq->name);
6131 
6132 	/*
6133 	 * unbound_attrs are created separately.  Suppress uevent until
6134 	 * everything is ready.
6135 	 */
6136 	dev_set_uevent_suppress(&wq_dev->dev, true);
6137 
6138 	ret = device_register(&wq_dev->dev);
6139 	if (ret) {
6140 		put_device(&wq_dev->dev);
6141 		wq->wq_dev = NULL;
6142 		return ret;
6143 	}
6144 
6145 	if (wq->flags & WQ_UNBOUND) {
6146 		struct device_attribute *attr;
6147 
6148 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
6149 			ret = device_create_file(&wq_dev->dev, attr);
6150 			if (ret) {
6151 				device_unregister(&wq_dev->dev);
6152 				wq->wq_dev = NULL;
6153 				return ret;
6154 			}
6155 		}
6156 	}
6157 
6158 	dev_set_uevent_suppress(&wq_dev->dev, false);
6159 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
6160 	return 0;
6161 }
6162 
6163 /**
6164  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
6165  * @wq: the workqueue to unregister
6166  *
6167  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
6168  */
6169 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
6170 {
6171 	struct wq_device *wq_dev = wq->wq_dev;
6172 
6173 	if (!wq->wq_dev)
6174 		return;
6175 
6176 	wq->wq_dev = NULL;
6177 	device_unregister(&wq_dev->dev);
6178 }
6179 #else	/* CONFIG_SYSFS */
6180 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
6181 #endif	/* CONFIG_SYSFS */
6182 
6183 /*
6184  * Workqueue watchdog.
6185  *
6186  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
6187  * flush dependency, a concurrency managed work item which stays RUNNING
6188  * indefinitely.  Workqueue stalls can be very difficult to debug as the
6189  * usual warning mechanisms don't trigger and internal workqueue state is
6190  * largely opaque.
6191  *
6192  * Workqueue watchdog monitors all worker pools periodically and dumps
6193  * state if some pools failed to make forward progress for a while where
6194  * forward progress is defined as the first item on ->worklist changing.
6195  *
6196  * This mechanism is controlled through the kernel parameter
6197  * "workqueue.watchdog_thresh" which can be updated at runtime through the
6198  * corresponding sysfs parameter file.
6199  */
6200 #ifdef CONFIG_WQ_WATCHDOG
6201 
6202 static unsigned long wq_watchdog_thresh = 30;
6203 static struct timer_list wq_watchdog_timer;
6204 
6205 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
6206 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
6207 
6208 /*
6209  * Show workers that might prevent the processing of pending work items.
6210  * The only candidates are CPU-bound workers in the running state.
6211  * Pending work items should be handled by another idle worker
6212  * in all other situations.
6213  */
6214 static void show_cpu_pool_hog(struct worker_pool *pool)
6215 {
6216 	struct worker *worker;
6217 	unsigned long flags;
6218 	int bkt;
6219 
6220 	raw_spin_lock_irqsave(&pool->lock, flags);
6221 
6222 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6223 		if (task_is_running(worker->task)) {
6224 			/*
6225 			 * Defer printing to avoid deadlocks in console
6226 			 * drivers that queue work while holding locks
6227 			 * also taken in their write paths.
6228 			 */
6229 			printk_deferred_enter();
6230 
6231 			pr_info("pool %d:\n", pool->id);
6232 			sched_show_task(worker->task);
6233 
6234 			printk_deferred_exit();
6235 		}
6236 	}
6237 
6238 	raw_spin_unlock_irqrestore(&pool->lock, flags);
6239 }
6240 
6241 static void show_cpu_pools_hogs(void)
6242 {
6243 	struct worker_pool *pool;
6244 	int pi;
6245 
6246 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
6247 
6248 	rcu_read_lock();
6249 
6250 	for_each_pool(pool, pi) {
6251 		if (pool->cpu_stall)
6252 			show_cpu_pool_hog(pool);
6253 
6254 	}
6255 
6256 	rcu_read_unlock();
6257 }
6258 
6259 static void wq_watchdog_reset_touched(void)
6260 {
6261 	int cpu;
6262 
6263 	wq_watchdog_touched = jiffies;
6264 	for_each_possible_cpu(cpu)
6265 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6266 }
6267 
6268 static void wq_watchdog_timer_fn(struct timer_list *unused)
6269 {
6270 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
6271 	bool lockup_detected = false;
6272 	bool cpu_pool_stall = false;
6273 	unsigned long now = jiffies;
6274 	struct worker_pool *pool;
6275 	int pi;
6276 
6277 	if (!thresh)
6278 		return;
6279 
6280 	rcu_read_lock();
6281 
6282 	for_each_pool(pool, pi) {
6283 		unsigned long pool_ts, touched, ts;
6284 
6285 		pool->cpu_stall = false;
6286 		if (list_empty(&pool->worklist))
6287 			continue;
6288 
6289 		/*
6290 		 * If a virtual machine is stopped by the host it can look to
6291 		 * the watchdog like a stall.
6292 		 */
6293 		kvm_check_and_clear_guest_paused();
6294 
6295 		/* get the latest of pool and touched timestamps */
6296 		if (pool->cpu >= 0)
6297 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
6298 		else
6299 			touched = READ_ONCE(wq_watchdog_touched);
6300 		pool_ts = READ_ONCE(pool->watchdog_ts);
6301 
6302 		if (time_after(pool_ts, touched))
6303 			ts = pool_ts;
6304 		else
6305 			ts = touched;
6306 
6307 		/* did we stall? */
6308 		if (time_after(now, ts + thresh)) {
6309 			lockup_detected = true;
6310 			if (pool->cpu >= 0) {
6311 				pool->cpu_stall = true;
6312 				cpu_pool_stall = true;
6313 			}
6314 			pr_emerg("BUG: workqueue lockup - pool");
6315 			pr_cont_pool_info(pool);
6316 			pr_cont(" stuck for %us!\n",
6317 				jiffies_to_msecs(now - pool_ts) / 1000);
6318 		}
6319 
6320 
6321 	}
6322 
6323 	rcu_read_unlock();
6324 
6325 	if (lockup_detected)
6326 		show_all_workqueues();
6327 
6328 	if (cpu_pool_stall)
6329 		show_cpu_pools_hogs();
6330 
6331 	wq_watchdog_reset_touched();
6332 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
6333 }
6334 
6335 notrace void wq_watchdog_touch(int cpu)
6336 {
6337 	if (cpu >= 0)
6338 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
6339 
6340 	wq_watchdog_touched = jiffies;
6341 }
6342 
6343 static void wq_watchdog_set_thresh(unsigned long thresh)
6344 {
6345 	wq_watchdog_thresh = 0;
6346 	del_timer_sync(&wq_watchdog_timer);
6347 
6348 	if (thresh) {
6349 		wq_watchdog_thresh = thresh;
6350 		wq_watchdog_reset_touched();
6351 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
6352 	}
6353 }
6354 
6355 static int wq_watchdog_param_set_thresh(const char *val,
6356 					const struct kernel_param *kp)
6357 {
6358 	unsigned long thresh;
6359 	int ret;
6360 
6361 	ret = kstrtoul(val, 0, &thresh);
6362 	if (ret)
6363 		return ret;
6364 
6365 	if (system_wq)
6366 		wq_watchdog_set_thresh(thresh);
6367 	else
6368 		wq_watchdog_thresh = thresh;
6369 
6370 	return 0;
6371 }
6372 
6373 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
6374 	.set	= wq_watchdog_param_set_thresh,
6375 	.get	= param_get_ulong,
6376 };
6377 
6378 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
6379 		0644);
6380 
6381 static void wq_watchdog_init(void)
6382 {
6383 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
6384 	wq_watchdog_set_thresh(wq_watchdog_thresh);
6385 }
6386 
6387 #else	/* CONFIG_WQ_WATCHDOG */
6388 
6389 static inline void wq_watchdog_init(void) { }
6390 
6391 #endif	/* CONFIG_WQ_WATCHDOG */
6392 
6393 static void __init wq_numa_init(void)
6394 {
6395 	cpumask_var_t *tbl;
6396 	int node, cpu;
6397 
6398 	if (num_possible_nodes() <= 1)
6399 		return;
6400 
6401 	if (wq_disable_numa) {
6402 		pr_info("workqueue: NUMA affinity support disabled\n");
6403 		return;
6404 	}
6405 
6406 	for_each_possible_cpu(cpu) {
6407 		if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
6408 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
6409 			return;
6410 		}
6411 	}
6412 
6413 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
6414 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
6415 
6416 	/*
6417 	 * We want masks of possible CPUs of each node which isn't readily
6418 	 * available.  Build one from cpu_to_node() which should have been
6419 	 * fully initialized by now.
6420 	 */
6421 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
6422 	BUG_ON(!tbl);
6423 
6424 	for_each_node(node)
6425 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
6426 				node_online(node) ? node : NUMA_NO_NODE));
6427 
6428 	for_each_possible_cpu(cpu) {
6429 		node = cpu_to_node(cpu);
6430 		cpumask_set_cpu(cpu, tbl[node]);
6431 	}
6432 
6433 	wq_numa_possible_cpumask = tbl;
6434 	wq_numa_enabled = true;
6435 }
6436 
6437 /**
6438  * workqueue_init_early - early init for workqueue subsystem
6439  *
6440  * This is the first half of two-staged workqueue subsystem initialization
6441  * and invoked as soon as the bare basics - memory allocation, cpumasks and
6442  * idr are up.  It sets up all the data structures and system workqueues
6443  * and allows early boot code to create workqueues and queue/cancel work
6444  * items.  Actual work item execution starts only after kthreads can be
6445  * created and scheduled right before early initcalls.
6446  */
6447 void __init workqueue_init_early(void)
6448 {
6449 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6450 	int i, cpu;
6451 
6452 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6453 
6454 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6455 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ));
6456 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN));
6457 
6458 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6459 
6460 	/* initialize CPU pools */
6461 	for_each_possible_cpu(cpu) {
6462 		struct worker_pool *pool;
6463 
6464 		i = 0;
6465 		for_each_cpu_worker_pool(pool, cpu) {
6466 			BUG_ON(init_worker_pool(pool));
6467 			pool->cpu = cpu;
6468 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6469 			pool->attrs->nice = std_nice[i++];
6470 			pool->node = cpu_to_node(cpu);
6471 
6472 			/* alloc pool ID */
6473 			mutex_lock(&wq_pool_mutex);
6474 			BUG_ON(worker_pool_assign_id(pool));
6475 			mutex_unlock(&wq_pool_mutex);
6476 		}
6477 	}
6478 
6479 	/* create default unbound and ordered wq attrs */
6480 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6481 		struct workqueue_attrs *attrs;
6482 
6483 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6484 		attrs->nice = std_nice[i];
6485 		unbound_std_wq_attrs[i] = attrs;
6486 
6487 		/*
6488 		 * An ordered wq should have only one pwq as ordering is
6489 		 * guaranteed by max_active which is enforced by pwqs.
6490 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
6491 		 */
6492 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6493 		attrs->nice = std_nice[i];
6494 		attrs->no_numa = true;
6495 		ordered_wq_attrs[i] = attrs;
6496 	}
6497 
6498 	system_wq = alloc_workqueue("events", 0, 0);
6499 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6500 	system_long_wq = alloc_workqueue("events_long", 0, 0);
6501 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6502 					    WQ_UNBOUND_MAX_ACTIVE);
6503 	system_freezable_wq = alloc_workqueue("events_freezable",
6504 					      WQ_FREEZABLE, 0);
6505 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6506 					      WQ_POWER_EFFICIENT, 0);
6507 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6508 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6509 					      0);
6510 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6511 	       !system_unbound_wq || !system_freezable_wq ||
6512 	       !system_power_efficient_wq ||
6513 	       !system_freezable_power_efficient_wq);
6514 }
6515 
6516 /**
6517  * workqueue_init - bring workqueue subsystem fully online
6518  *
6519  * This is the latter half of two-staged workqueue subsystem initialization
6520  * and invoked as soon as kthreads can be created and scheduled.
6521  * Workqueues have been created and work items queued on them, but there
6522  * are no kworkers executing the work items yet.  Populate the worker pools
6523  * with the initial workers and enable future kworker creations.
6524  */
6525 void __init workqueue_init(void)
6526 {
6527 	struct workqueue_struct *wq;
6528 	struct worker_pool *pool;
6529 	int cpu, bkt;
6530 
6531 	/*
6532 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6533 	 * CPU to node mapping may not be available that early on some
6534 	 * archs such as power and arm64.  As per-cpu pools created
6535 	 * previously could be missing node hint and unbound pools NUMA
6536 	 * affinity, fix them up.
6537 	 *
6538 	 * Also, while iterating workqueues, create rescuers if requested.
6539 	 */
6540 	wq_numa_init();
6541 
6542 	mutex_lock(&wq_pool_mutex);
6543 
6544 	for_each_possible_cpu(cpu) {
6545 		for_each_cpu_worker_pool(pool, cpu) {
6546 			pool->node = cpu_to_node(cpu);
6547 		}
6548 	}
6549 
6550 	list_for_each_entry(wq, &workqueues, list) {
6551 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6552 		WARN(init_rescuer(wq),
6553 		     "workqueue: failed to create early rescuer for %s",
6554 		     wq->name);
6555 	}
6556 
6557 	mutex_unlock(&wq_pool_mutex);
6558 
6559 	/* create the initial workers */
6560 	for_each_online_cpu(cpu) {
6561 		for_each_cpu_worker_pool(pool, cpu) {
6562 			pool->flags &= ~POOL_DISASSOCIATED;
6563 			BUG_ON(!create_worker(pool));
6564 		}
6565 	}
6566 
6567 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6568 		BUG_ON(!create_worker(pool));
6569 
6570 	wq_online = true;
6571 	wq_watchdog_init();
6572 }
6573 
6574 /*
6575  * Despite the naming, this is a no-op function which is here only for avoiding
6576  * link error. Since compile-time warning may fail to catch, we will need to
6577  * emit run-time warning from __flush_workqueue().
6578  */
6579 void __warn_flushing_systemwide_wq(void) { }
6580 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
6581