1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There is one worker pool for each CPU and 20 * one extra for works which are better served by workers which are 21 * not bound to any specific CPU. 22 * 23 * Please read Documentation/workqueue.txt for details. 24 */ 25 26 #include <linux/export.h> 27 #include <linux/kernel.h> 28 #include <linux/sched.h> 29 #include <linux/init.h> 30 #include <linux/signal.h> 31 #include <linux/completion.h> 32 #include <linux/workqueue.h> 33 #include <linux/slab.h> 34 #include <linux/cpu.h> 35 #include <linux/notifier.h> 36 #include <linux/kthread.h> 37 #include <linux/hardirq.h> 38 #include <linux/mempolicy.h> 39 #include <linux/freezer.h> 40 #include <linux/kallsyms.h> 41 #include <linux/debug_locks.h> 42 #include <linux/lockdep.h> 43 #include <linux/idr.h> 44 45 #include "workqueue_sched.h" 46 47 enum { 48 /* global_cwq flags */ 49 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 50 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */ 51 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 52 GCWQ_FREEZING = 1 << 3, /* freeze in progress */ 53 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */ 54 55 /* worker flags */ 56 WORKER_STARTED = 1 << 0, /* started */ 57 WORKER_DIE = 1 << 1, /* die die die */ 58 WORKER_IDLE = 1 << 2, /* is idle */ 59 WORKER_PREP = 1 << 3, /* preparing to run works */ 60 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */ 61 WORKER_REBIND = 1 << 5, /* mom is home, come back */ 62 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 63 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 64 65 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND | 66 WORKER_CPU_INTENSIVE | WORKER_UNBOUND, 67 68 /* gcwq->trustee_state */ 69 TRUSTEE_START = 0, /* start */ 70 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */ 71 TRUSTEE_BUTCHER = 2, /* butcher workers */ 72 TRUSTEE_RELEASE = 3, /* release workers */ 73 TRUSTEE_DONE = 4, /* trustee is done */ 74 75 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 76 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER, 77 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1, 78 79 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 80 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 81 82 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 83 /* call for help after 10ms 84 (min two ticks) */ 85 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 86 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 87 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */ 88 89 /* 90 * Rescue workers are used only on emergencies and shared by 91 * all cpus. Give -20. 92 */ 93 RESCUER_NICE_LEVEL = -20, 94 }; 95 96 /* 97 * Structure fields follow one of the following exclusion rules. 98 * 99 * I: Modifiable by initialization/destruction paths and read-only for 100 * everyone else. 101 * 102 * P: Preemption protected. Disabling preemption is enough and should 103 * only be modified and accessed from the local cpu. 104 * 105 * L: gcwq->lock protected. Access with gcwq->lock held. 106 * 107 * X: During normal operation, modification requires gcwq->lock and 108 * should be done only from local cpu. Either disabling preemption 109 * on local cpu or grabbing gcwq->lock is enough for read access. 110 * If GCWQ_DISASSOCIATED is set, it's identical to L. 111 * 112 * F: wq->flush_mutex protected. 113 * 114 * W: workqueue_lock protected. 115 */ 116 117 struct global_cwq; 118 119 /* 120 * The poor guys doing the actual heavy lifting. All on-duty workers 121 * are either serving the manager role, on idle list or on busy hash. 122 */ 123 struct worker { 124 /* on idle list while idle, on busy hash table while busy */ 125 union { 126 struct list_head entry; /* L: while idle */ 127 struct hlist_node hentry; /* L: while busy */ 128 }; 129 130 struct work_struct *current_work; /* L: work being processed */ 131 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */ 132 struct list_head scheduled; /* L: scheduled works */ 133 struct task_struct *task; /* I: worker task */ 134 struct global_cwq *gcwq; /* I: the associated gcwq */ 135 /* 64 bytes boundary on 64bit, 32 on 32bit */ 136 unsigned long last_active; /* L: last active timestamp */ 137 unsigned int flags; /* X: flags */ 138 int id; /* I: worker id */ 139 struct work_struct rebind_work; /* L: rebind worker to cpu */ 140 }; 141 142 /* 143 * Global per-cpu workqueue. There's one and only one for each cpu 144 * and all works are queued and processed here regardless of their 145 * target workqueues. 146 */ 147 struct global_cwq { 148 spinlock_t lock; /* the gcwq lock */ 149 struct list_head worklist; /* L: list of pending works */ 150 unsigned int cpu; /* I: the associated cpu */ 151 unsigned int flags; /* L: GCWQ_* flags */ 152 153 int nr_workers; /* L: total number of workers */ 154 int nr_idle; /* L: currently idle ones */ 155 156 /* workers are chained either in the idle_list or busy_hash */ 157 struct list_head idle_list; /* X: list of idle workers */ 158 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE]; 159 /* L: hash of busy workers */ 160 161 struct timer_list idle_timer; /* L: worker idle timeout */ 162 struct timer_list mayday_timer; /* L: SOS timer for dworkers */ 163 164 struct ida worker_ida; /* L: for worker IDs */ 165 166 struct task_struct *trustee; /* L: for gcwq shutdown */ 167 unsigned int trustee_state; /* L: trustee state */ 168 wait_queue_head_t trustee_wait; /* trustee wait */ 169 struct worker *first_idle; /* L: first idle worker */ 170 } ____cacheline_aligned_in_smp; 171 172 /* 173 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of 174 * work_struct->data are used for flags and thus cwqs need to be 175 * aligned at two's power of the number of flag bits. 176 */ 177 struct cpu_workqueue_struct { 178 struct global_cwq *gcwq; /* I: the associated gcwq */ 179 struct workqueue_struct *wq; /* I: the owning workqueue */ 180 int work_color; /* L: current color */ 181 int flush_color; /* L: flushing color */ 182 int nr_in_flight[WORK_NR_COLORS]; 183 /* L: nr of in_flight works */ 184 int nr_active; /* L: nr of active works */ 185 int max_active; /* L: max active works */ 186 struct list_head delayed_works; /* L: delayed works */ 187 }; 188 189 /* 190 * Structure used to wait for workqueue flush. 191 */ 192 struct wq_flusher { 193 struct list_head list; /* F: list of flushers */ 194 int flush_color; /* F: flush color waiting for */ 195 struct completion done; /* flush completion */ 196 }; 197 198 /* 199 * All cpumasks are assumed to be always set on UP and thus can't be 200 * used to determine whether there's something to be done. 201 */ 202 #ifdef CONFIG_SMP 203 typedef cpumask_var_t mayday_mask_t; 204 #define mayday_test_and_set_cpu(cpu, mask) \ 205 cpumask_test_and_set_cpu((cpu), (mask)) 206 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask)) 207 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask)) 208 #define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp)) 209 #define free_mayday_mask(mask) free_cpumask_var((mask)) 210 #else 211 typedef unsigned long mayday_mask_t; 212 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask)) 213 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask)) 214 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask)) 215 #define alloc_mayday_mask(maskp, gfp) true 216 #define free_mayday_mask(mask) do { } while (0) 217 #endif 218 219 /* 220 * The externally visible workqueue abstraction is an array of 221 * per-CPU workqueues: 222 */ 223 struct workqueue_struct { 224 unsigned int flags; /* W: WQ_* flags */ 225 union { 226 struct cpu_workqueue_struct __percpu *pcpu; 227 struct cpu_workqueue_struct *single; 228 unsigned long v; 229 } cpu_wq; /* I: cwq's */ 230 struct list_head list; /* W: list of all workqueues */ 231 232 struct mutex flush_mutex; /* protects wq flushing */ 233 int work_color; /* F: current work color */ 234 int flush_color; /* F: current flush color */ 235 atomic_t nr_cwqs_to_flush; /* flush in progress */ 236 struct wq_flusher *first_flusher; /* F: first flusher */ 237 struct list_head flusher_queue; /* F: flush waiters */ 238 struct list_head flusher_overflow; /* F: flush overflow list */ 239 240 mayday_mask_t mayday_mask; /* cpus requesting rescue */ 241 struct worker *rescuer; /* I: rescue worker */ 242 243 int nr_drainers; /* W: drain in progress */ 244 int saved_max_active; /* W: saved cwq max_active */ 245 #ifdef CONFIG_LOCKDEP 246 struct lockdep_map lockdep_map; 247 #endif 248 char name[]; /* I: workqueue name */ 249 }; 250 251 struct workqueue_struct *system_wq __read_mostly; 252 struct workqueue_struct *system_long_wq __read_mostly; 253 struct workqueue_struct *system_nrt_wq __read_mostly; 254 struct workqueue_struct *system_unbound_wq __read_mostly; 255 struct workqueue_struct *system_freezable_wq __read_mostly; 256 struct workqueue_struct *system_nrt_freezable_wq __read_mostly; 257 EXPORT_SYMBOL_GPL(system_wq); 258 EXPORT_SYMBOL_GPL(system_long_wq); 259 EXPORT_SYMBOL_GPL(system_nrt_wq); 260 EXPORT_SYMBOL_GPL(system_unbound_wq); 261 EXPORT_SYMBOL_GPL(system_freezable_wq); 262 EXPORT_SYMBOL_GPL(system_nrt_freezable_wq); 263 264 #define CREATE_TRACE_POINTS 265 #include <trace/events/workqueue.h> 266 267 #define for_each_busy_worker(worker, i, pos, gcwq) \ 268 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \ 269 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry) 270 271 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask, 272 unsigned int sw) 273 { 274 if (cpu < nr_cpu_ids) { 275 if (sw & 1) { 276 cpu = cpumask_next(cpu, mask); 277 if (cpu < nr_cpu_ids) 278 return cpu; 279 } 280 if (sw & 2) 281 return WORK_CPU_UNBOUND; 282 } 283 return WORK_CPU_NONE; 284 } 285 286 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask, 287 struct workqueue_struct *wq) 288 { 289 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2); 290 } 291 292 /* 293 * CPU iterators 294 * 295 * An extra gcwq is defined for an invalid cpu number 296 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any 297 * specific CPU. The following iterators are similar to 298 * for_each_*_cpu() iterators but also considers the unbound gcwq. 299 * 300 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND 301 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND 302 * for_each_cwq_cpu() : possible CPUs for bound workqueues, 303 * WORK_CPU_UNBOUND for unbound workqueues 304 */ 305 #define for_each_gcwq_cpu(cpu) \ 306 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \ 307 (cpu) < WORK_CPU_NONE; \ 308 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3)) 309 310 #define for_each_online_gcwq_cpu(cpu) \ 311 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \ 312 (cpu) < WORK_CPU_NONE; \ 313 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3)) 314 315 #define for_each_cwq_cpu(cpu, wq) \ 316 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \ 317 (cpu) < WORK_CPU_NONE; \ 318 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq))) 319 320 #ifdef CONFIG_DEBUG_OBJECTS_WORK 321 322 static struct debug_obj_descr work_debug_descr; 323 324 static void *work_debug_hint(void *addr) 325 { 326 return ((struct work_struct *) addr)->func; 327 } 328 329 /* 330 * fixup_init is called when: 331 * - an active object is initialized 332 */ 333 static int work_fixup_init(void *addr, enum debug_obj_state state) 334 { 335 struct work_struct *work = addr; 336 337 switch (state) { 338 case ODEBUG_STATE_ACTIVE: 339 cancel_work_sync(work); 340 debug_object_init(work, &work_debug_descr); 341 return 1; 342 default: 343 return 0; 344 } 345 } 346 347 /* 348 * fixup_activate is called when: 349 * - an active object is activated 350 * - an unknown object is activated (might be a statically initialized object) 351 */ 352 static int work_fixup_activate(void *addr, enum debug_obj_state state) 353 { 354 struct work_struct *work = addr; 355 356 switch (state) { 357 358 case ODEBUG_STATE_NOTAVAILABLE: 359 /* 360 * This is not really a fixup. The work struct was 361 * statically initialized. We just make sure that it 362 * is tracked in the object tracker. 363 */ 364 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 365 debug_object_init(work, &work_debug_descr); 366 debug_object_activate(work, &work_debug_descr); 367 return 0; 368 } 369 WARN_ON_ONCE(1); 370 return 0; 371 372 case ODEBUG_STATE_ACTIVE: 373 WARN_ON(1); 374 375 default: 376 return 0; 377 } 378 } 379 380 /* 381 * fixup_free is called when: 382 * - an active object is freed 383 */ 384 static int work_fixup_free(void *addr, enum debug_obj_state state) 385 { 386 struct work_struct *work = addr; 387 388 switch (state) { 389 case ODEBUG_STATE_ACTIVE: 390 cancel_work_sync(work); 391 debug_object_free(work, &work_debug_descr); 392 return 1; 393 default: 394 return 0; 395 } 396 } 397 398 static struct debug_obj_descr work_debug_descr = { 399 .name = "work_struct", 400 .debug_hint = work_debug_hint, 401 .fixup_init = work_fixup_init, 402 .fixup_activate = work_fixup_activate, 403 .fixup_free = work_fixup_free, 404 }; 405 406 static inline void debug_work_activate(struct work_struct *work) 407 { 408 debug_object_activate(work, &work_debug_descr); 409 } 410 411 static inline void debug_work_deactivate(struct work_struct *work) 412 { 413 debug_object_deactivate(work, &work_debug_descr); 414 } 415 416 void __init_work(struct work_struct *work, int onstack) 417 { 418 if (onstack) 419 debug_object_init_on_stack(work, &work_debug_descr); 420 else 421 debug_object_init(work, &work_debug_descr); 422 } 423 EXPORT_SYMBOL_GPL(__init_work); 424 425 void destroy_work_on_stack(struct work_struct *work) 426 { 427 debug_object_free(work, &work_debug_descr); 428 } 429 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 430 431 #else 432 static inline void debug_work_activate(struct work_struct *work) { } 433 static inline void debug_work_deactivate(struct work_struct *work) { } 434 #endif 435 436 /* Serializes the accesses to the list of workqueues. */ 437 static DEFINE_SPINLOCK(workqueue_lock); 438 static LIST_HEAD(workqueues); 439 static bool workqueue_freezing; /* W: have wqs started freezing? */ 440 441 /* 442 * The almighty global cpu workqueues. nr_running is the only field 443 * which is expected to be used frequently by other cpus via 444 * try_to_wake_up(). Put it in a separate cacheline. 445 */ 446 static DEFINE_PER_CPU(struct global_cwq, global_cwq); 447 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running); 448 449 /* 450 * Global cpu workqueue and nr_running counter for unbound gcwq. The 451 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its 452 * workers have WORKER_UNBOUND set. 453 */ 454 static struct global_cwq unbound_global_cwq; 455 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */ 456 457 static int worker_thread(void *__worker); 458 459 static struct global_cwq *get_gcwq(unsigned int cpu) 460 { 461 if (cpu != WORK_CPU_UNBOUND) 462 return &per_cpu(global_cwq, cpu); 463 else 464 return &unbound_global_cwq; 465 } 466 467 static atomic_t *get_gcwq_nr_running(unsigned int cpu) 468 { 469 if (cpu != WORK_CPU_UNBOUND) 470 return &per_cpu(gcwq_nr_running, cpu); 471 else 472 return &unbound_gcwq_nr_running; 473 } 474 475 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu, 476 struct workqueue_struct *wq) 477 { 478 if (!(wq->flags & WQ_UNBOUND)) { 479 if (likely(cpu < nr_cpu_ids)) { 480 #ifdef CONFIG_SMP 481 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu); 482 #else 483 return wq->cpu_wq.single; 484 #endif 485 } 486 } else if (likely(cpu == WORK_CPU_UNBOUND)) 487 return wq->cpu_wq.single; 488 return NULL; 489 } 490 491 static unsigned int work_color_to_flags(int color) 492 { 493 return color << WORK_STRUCT_COLOR_SHIFT; 494 } 495 496 static int get_work_color(struct work_struct *work) 497 { 498 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 499 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 500 } 501 502 static int work_next_color(int color) 503 { 504 return (color + 1) % WORK_NR_COLORS; 505 } 506 507 /* 508 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the 509 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is 510 * cleared and the work data contains the cpu number it was last on. 511 * 512 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the 513 * cwq, cpu or clear work->data. These functions should only be 514 * called while the work is owned - ie. while the PENDING bit is set. 515 * 516 * get_work_[g]cwq() can be used to obtain the gcwq or cwq 517 * corresponding to a work. gcwq is available once the work has been 518 * queued anywhere after initialization. cwq is available only from 519 * queueing until execution starts. 520 */ 521 static inline void set_work_data(struct work_struct *work, unsigned long data, 522 unsigned long flags) 523 { 524 BUG_ON(!work_pending(work)); 525 atomic_long_set(&work->data, data | flags | work_static(work)); 526 } 527 528 static void set_work_cwq(struct work_struct *work, 529 struct cpu_workqueue_struct *cwq, 530 unsigned long extra_flags) 531 { 532 set_work_data(work, (unsigned long)cwq, 533 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags); 534 } 535 536 static void set_work_cpu(struct work_struct *work, unsigned int cpu) 537 { 538 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING); 539 } 540 541 static void clear_work_data(struct work_struct *work) 542 { 543 set_work_data(work, WORK_STRUCT_NO_CPU, 0); 544 } 545 546 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work) 547 { 548 unsigned long data = atomic_long_read(&work->data); 549 550 if (data & WORK_STRUCT_CWQ) 551 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 552 else 553 return NULL; 554 } 555 556 static struct global_cwq *get_work_gcwq(struct work_struct *work) 557 { 558 unsigned long data = atomic_long_read(&work->data); 559 unsigned int cpu; 560 561 if (data & WORK_STRUCT_CWQ) 562 return ((struct cpu_workqueue_struct *) 563 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq; 564 565 cpu = data >> WORK_STRUCT_FLAG_BITS; 566 if (cpu == WORK_CPU_NONE) 567 return NULL; 568 569 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND); 570 return get_gcwq(cpu); 571 } 572 573 /* 574 * Policy functions. These define the policies on how the global 575 * worker pool is managed. Unless noted otherwise, these functions 576 * assume that they're being called with gcwq->lock held. 577 */ 578 579 static bool __need_more_worker(struct global_cwq *gcwq) 580 { 581 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) || 582 gcwq->flags & GCWQ_HIGHPRI_PENDING; 583 } 584 585 /* 586 * Need to wake up a worker? Called from anything but currently 587 * running workers. 588 */ 589 static bool need_more_worker(struct global_cwq *gcwq) 590 { 591 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq); 592 } 593 594 /* Can I start working? Called from busy but !running workers. */ 595 static bool may_start_working(struct global_cwq *gcwq) 596 { 597 return gcwq->nr_idle; 598 } 599 600 /* Do I need to keep working? Called from currently running workers. */ 601 static bool keep_working(struct global_cwq *gcwq) 602 { 603 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); 604 605 return !list_empty(&gcwq->worklist) && 606 (atomic_read(nr_running) <= 1 || 607 gcwq->flags & GCWQ_HIGHPRI_PENDING); 608 } 609 610 /* Do we need a new worker? Called from manager. */ 611 static bool need_to_create_worker(struct global_cwq *gcwq) 612 { 613 return need_more_worker(gcwq) && !may_start_working(gcwq); 614 } 615 616 /* Do I need to be the manager? */ 617 static bool need_to_manage_workers(struct global_cwq *gcwq) 618 { 619 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS; 620 } 621 622 /* Do we have too many workers and should some go away? */ 623 static bool too_many_workers(struct global_cwq *gcwq) 624 { 625 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS; 626 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */ 627 int nr_busy = gcwq->nr_workers - nr_idle; 628 629 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 630 } 631 632 /* 633 * Wake up functions. 634 */ 635 636 /* Return the first worker. Safe with preemption disabled */ 637 static struct worker *first_worker(struct global_cwq *gcwq) 638 { 639 if (unlikely(list_empty(&gcwq->idle_list))) 640 return NULL; 641 642 return list_first_entry(&gcwq->idle_list, struct worker, entry); 643 } 644 645 /** 646 * wake_up_worker - wake up an idle worker 647 * @gcwq: gcwq to wake worker for 648 * 649 * Wake up the first idle worker of @gcwq. 650 * 651 * CONTEXT: 652 * spin_lock_irq(gcwq->lock). 653 */ 654 static void wake_up_worker(struct global_cwq *gcwq) 655 { 656 struct worker *worker = first_worker(gcwq); 657 658 if (likely(worker)) 659 wake_up_process(worker->task); 660 } 661 662 /** 663 * wq_worker_waking_up - a worker is waking up 664 * @task: task waking up 665 * @cpu: CPU @task is waking up to 666 * 667 * This function is called during try_to_wake_up() when a worker is 668 * being awoken. 669 * 670 * CONTEXT: 671 * spin_lock_irq(rq->lock) 672 */ 673 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu) 674 { 675 struct worker *worker = kthread_data(task); 676 677 if (!(worker->flags & WORKER_NOT_RUNNING)) 678 atomic_inc(get_gcwq_nr_running(cpu)); 679 } 680 681 /** 682 * wq_worker_sleeping - a worker is going to sleep 683 * @task: task going to sleep 684 * @cpu: CPU in question, must be the current CPU number 685 * 686 * This function is called during schedule() when a busy worker is 687 * going to sleep. Worker on the same cpu can be woken up by 688 * returning pointer to its task. 689 * 690 * CONTEXT: 691 * spin_lock_irq(rq->lock) 692 * 693 * RETURNS: 694 * Worker task on @cpu to wake up, %NULL if none. 695 */ 696 struct task_struct *wq_worker_sleeping(struct task_struct *task, 697 unsigned int cpu) 698 { 699 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 700 struct global_cwq *gcwq = get_gcwq(cpu); 701 atomic_t *nr_running = get_gcwq_nr_running(cpu); 702 703 if (worker->flags & WORKER_NOT_RUNNING) 704 return NULL; 705 706 /* this can only happen on the local cpu */ 707 BUG_ON(cpu != raw_smp_processor_id()); 708 709 /* 710 * The counterpart of the following dec_and_test, implied mb, 711 * worklist not empty test sequence is in insert_work(). 712 * Please read comment there. 713 * 714 * NOT_RUNNING is clear. This means that trustee is not in 715 * charge and we're running on the local cpu w/ rq lock held 716 * and preemption disabled, which in turn means that none else 717 * could be manipulating idle_list, so dereferencing idle_list 718 * without gcwq lock is safe. 719 */ 720 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist)) 721 to_wakeup = first_worker(gcwq); 722 return to_wakeup ? to_wakeup->task : NULL; 723 } 724 725 /** 726 * worker_set_flags - set worker flags and adjust nr_running accordingly 727 * @worker: self 728 * @flags: flags to set 729 * @wakeup: wakeup an idle worker if necessary 730 * 731 * Set @flags in @worker->flags and adjust nr_running accordingly. If 732 * nr_running becomes zero and @wakeup is %true, an idle worker is 733 * woken up. 734 * 735 * CONTEXT: 736 * spin_lock_irq(gcwq->lock) 737 */ 738 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 739 bool wakeup) 740 { 741 struct global_cwq *gcwq = worker->gcwq; 742 743 WARN_ON_ONCE(worker->task != current); 744 745 /* 746 * If transitioning into NOT_RUNNING, adjust nr_running and 747 * wake up an idle worker as necessary if requested by 748 * @wakeup. 749 */ 750 if ((flags & WORKER_NOT_RUNNING) && 751 !(worker->flags & WORKER_NOT_RUNNING)) { 752 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); 753 754 if (wakeup) { 755 if (atomic_dec_and_test(nr_running) && 756 !list_empty(&gcwq->worklist)) 757 wake_up_worker(gcwq); 758 } else 759 atomic_dec(nr_running); 760 } 761 762 worker->flags |= flags; 763 } 764 765 /** 766 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 767 * @worker: self 768 * @flags: flags to clear 769 * 770 * Clear @flags in @worker->flags and adjust nr_running accordingly. 771 * 772 * CONTEXT: 773 * spin_lock_irq(gcwq->lock) 774 */ 775 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 776 { 777 struct global_cwq *gcwq = worker->gcwq; 778 unsigned int oflags = worker->flags; 779 780 WARN_ON_ONCE(worker->task != current); 781 782 worker->flags &= ~flags; 783 784 /* 785 * If transitioning out of NOT_RUNNING, increment nr_running. Note 786 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 787 * of multiple flags, not a single flag. 788 */ 789 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 790 if (!(worker->flags & WORKER_NOT_RUNNING)) 791 atomic_inc(get_gcwq_nr_running(gcwq->cpu)); 792 } 793 794 /** 795 * busy_worker_head - return the busy hash head for a work 796 * @gcwq: gcwq of interest 797 * @work: work to be hashed 798 * 799 * Return hash head of @gcwq for @work. 800 * 801 * CONTEXT: 802 * spin_lock_irq(gcwq->lock). 803 * 804 * RETURNS: 805 * Pointer to the hash head. 806 */ 807 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq, 808 struct work_struct *work) 809 { 810 const int base_shift = ilog2(sizeof(struct work_struct)); 811 unsigned long v = (unsigned long)work; 812 813 /* simple shift and fold hash, do we need something better? */ 814 v >>= base_shift; 815 v += v >> BUSY_WORKER_HASH_ORDER; 816 v &= BUSY_WORKER_HASH_MASK; 817 818 return &gcwq->busy_hash[v]; 819 } 820 821 /** 822 * __find_worker_executing_work - find worker which is executing a work 823 * @gcwq: gcwq of interest 824 * @bwh: hash head as returned by busy_worker_head() 825 * @work: work to find worker for 826 * 827 * Find a worker which is executing @work on @gcwq. @bwh should be 828 * the hash head obtained by calling busy_worker_head() with the same 829 * work. 830 * 831 * CONTEXT: 832 * spin_lock_irq(gcwq->lock). 833 * 834 * RETURNS: 835 * Pointer to worker which is executing @work if found, NULL 836 * otherwise. 837 */ 838 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq, 839 struct hlist_head *bwh, 840 struct work_struct *work) 841 { 842 struct worker *worker; 843 struct hlist_node *tmp; 844 845 hlist_for_each_entry(worker, tmp, bwh, hentry) 846 if (worker->current_work == work) 847 return worker; 848 return NULL; 849 } 850 851 /** 852 * find_worker_executing_work - find worker which is executing a work 853 * @gcwq: gcwq of interest 854 * @work: work to find worker for 855 * 856 * Find a worker which is executing @work on @gcwq. This function is 857 * identical to __find_worker_executing_work() except that this 858 * function calculates @bwh itself. 859 * 860 * CONTEXT: 861 * spin_lock_irq(gcwq->lock). 862 * 863 * RETURNS: 864 * Pointer to worker which is executing @work if found, NULL 865 * otherwise. 866 */ 867 static struct worker *find_worker_executing_work(struct global_cwq *gcwq, 868 struct work_struct *work) 869 { 870 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work), 871 work); 872 } 873 874 /** 875 * gcwq_determine_ins_pos - find insertion position 876 * @gcwq: gcwq of interest 877 * @cwq: cwq a work is being queued for 878 * 879 * A work for @cwq is about to be queued on @gcwq, determine insertion 880 * position for the work. If @cwq is for HIGHPRI wq, the work is 881 * queued at the head of the queue but in FIFO order with respect to 882 * other HIGHPRI works; otherwise, at the end of the queue. This 883 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that 884 * there are HIGHPRI works pending. 885 * 886 * CONTEXT: 887 * spin_lock_irq(gcwq->lock). 888 * 889 * RETURNS: 890 * Pointer to inserstion position. 891 */ 892 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq, 893 struct cpu_workqueue_struct *cwq) 894 { 895 struct work_struct *twork; 896 897 if (likely(!(cwq->wq->flags & WQ_HIGHPRI))) 898 return &gcwq->worklist; 899 900 list_for_each_entry(twork, &gcwq->worklist, entry) { 901 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork); 902 903 if (!(tcwq->wq->flags & WQ_HIGHPRI)) 904 break; 905 } 906 907 gcwq->flags |= GCWQ_HIGHPRI_PENDING; 908 return &twork->entry; 909 } 910 911 /** 912 * insert_work - insert a work into gcwq 913 * @cwq: cwq @work belongs to 914 * @work: work to insert 915 * @head: insertion point 916 * @extra_flags: extra WORK_STRUCT_* flags to set 917 * 918 * Insert @work which belongs to @cwq into @gcwq after @head. 919 * @extra_flags is or'd to work_struct flags. 920 * 921 * CONTEXT: 922 * spin_lock_irq(gcwq->lock). 923 */ 924 static void insert_work(struct cpu_workqueue_struct *cwq, 925 struct work_struct *work, struct list_head *head, 926 unsigned int extra_flags) 927 { 928 struct global_cwq *gcwq = cwq->gcwq; 929 930 /* we own @work, set data and link */ 931 set_work_cwq(work, cwq, extra_flags); 932 933 /* 934 * Ensure that we get the right work->data if we see the 935 * result of list_add() below, see try_to_grab_pending(). 936 */ 937 smp_wmb(); 938 939 list_add_tail(&work->entry, head); 940 941 /* 942 * Ensure either worker_sched_deactivated() sees the above 943 * list_add_tail() or we see zero nr_running to avoid workers 944 * lying around lazily while there are works to be processed. 945 */ 946 smp_mb(); 947 948 if (__need_more_worker(gcwq)) 949 wake_up_worker(gcwq); 950 } 951 952 /* 953 * Test whether @work is being queued from another work executing on the 954 * same workqueue. This is rather expensive and should only be used from 955 * cold paths. 956 */ 957 static bool is_chained_work(struct workqueue_struct *wq) 958 { 959 unsigned long flags; 960 unsigned int cpu; 961 962 for_each_gcwq_cpu(cpu) { 963 struct global_cwq *gcwq = get_gcwq(cpu); 964 struct worker *worker; 965 struct hlist_node *pos; 966 int i; 967 968 spin_lock_irqsave(&gcwq->lock, flags); 969 for_each_busy_worker(worker, i, pos, gcwq) { 970 if (worker->task != current) 971 continue; 972 spin_unlock_irqrestore(&gcwq->lock, flags); 973 /* 974 * I'm @worker, no locking necessary. See if @work 975 * is headed to the same workqueue. 976 */ 977 return worker->current_cwq->wq == wq; 978 } 979 spin_unlock_irqrestore(&gcwq->lock, flags); 980 } 981 return false; 982 } 983 984 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq, 985 struct work_struct *work) 986 { 987 struct global_cwq *gcwq; 988 struct cpu_workqueue_struct *cwq; 989 struct list_head *worklist; 990 unsigned int work_flags; 991 unsigned long flags; 992 993 debug_work_activate(work); 994 995 /* if dying, only works from the same workqueue are allowed */ 996 if (unlikely(wq->flags & WQ_DRAINING) && 997 WARN_ON_ONCE(!is_chained_work(wq))) 998 return; 999 1000 /* determine gcwq to use */ 1001 if (!(wq->flags & WQ_UNBOUND)) { 1002 struct global_cwq *last_gcwq; 1003 1004 if (unlikely(cpu == WORK_CPU_UNBOUND)) 1005 cpu = raw_smp_processor_id(); 1006 1007 /* 1008 * It's multi cpu. If @wq is non-reentrant and @work 1009 * was previously on a different cpu, it might still 1010 * be running there, in which case the work needs to 1011 * be queued on that cpu to guarantee non-reentrance. 1012 */ 1013 gcwq = get_gcwq(cpu); 1014 if (wq->flags & WQ_NON_REENTRANT && 1015 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { 1016 struct worker *worker; 1017 1018 spin_lock_irqsave(&last_gcwq->lock, flags); 1019 1020 worker = find_worker_executing_work(last_gcwq, work); 1021 1022 if (worker && worker->current_cwq->wq == wq) 1023 gcwq = last_gcwq; 1024 else { 1025 /* meh... not running there, queue here */ 1026 spin_unlock_irqrestore(&last_gcwq->lock, flags); 1027 spin_lock_irqsave(&gcwq->lock, flags); 1028 } 1029 } else 1030 spin_lock_irqsave(&gcwq->lock, flags); 1031 } else { 1032 gcwq = get_gcwq(WORK_CPU_UNBOUND); 1033 spin_lock_irqsave(&gcwq->lock, flags); 1034 } 1035 1036 /* gcwq determined, get cwq and queue */ 1037 cwq = get_cwq(gcwq->cpu, wq); 1038 trace_workqueue_queue_work(cpu, cwq, work); 1039 1040 BUG_ON(!list_empty(&work->entry)); 1041 1042 cwq->nr_in_flight[cwq->work_color]++; 1043 work_flags = work_color_to_flags(cwq->work_color); 1044 1045 if (likely(cwq->nr_active < cwq->max_active)) { 1046 trace_workqueue_activate_work(work); 1047 cwq->nr_active++; 1048 worklist = gcwq_determine_ins_pos(gcwq, cwq); 1049 } else { 1050 work_flags |= WORK_STRUCT_DELAYED; 1051 worklist = &cwq->delayed_works; 1052 } 1053 1054 insert_work(cwq, work, worklist, work_flags); 1055 1056 spin_unlock_irqrestore(&gcwq->lock, flags); 1057 } 1058 1059 /** 1060 * queue_work - queue work on a workqueue 1061 * @wq: workqueue to use 1062 * @work: work to queue 1063 * 1064 * Returns 0 if @work was already on a queue, non-zero otherwise. 1065 * 1066 * We queue the work to the CPU on which it was submitted, but if the CPU dies 1067 * it can be processed by another CPU. 1068 */ 1069 int queue_work(struct workqueue_struct *wq, struct work_struct *work) 1070 { 1071 int ret; 1072 1073 ret = queue_work_on(get_cpu(), wq, work); 1074 put_cpu(); 1075 1076 return ret; 1077 } 1078 EXPORT_SYMBOL_GPL(queue_work); 1079 1080 /** 1081 * queue_work_on - queue work on specific cpu 1082 * @cpu: CPU number to execute work on 1083 * @wq: workqueue to use 1084 * @work: work to queue 1085 * 1086 * Returns 0 if @work was already on a queue, non-zero otherwise. 1087 * 1088 * We queue the work to a specific CPU, the caller must ensure it 1089 * can't go away. 1090 */ 1091 int 1092 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work) 1093 { 1094 int ret = 0; 1095 1096 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1097 __queue_work(cpu, wq, work); 1098 ret = 1; 1099 } 1100 return ret; 1101 } 1102 EXPORT_SYMBOL_GPL(queue_work_on); 1103 1104 static void delayed_work_timer_fn(unsigned long __data) 1105 { 1106 struct delayed_work *dwork = (struct delayed_work *)__data; 1107 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work); 1108 1109 __queue_work(smp_processor_id(), cwq->wq, &dwork->work); 1110 } 1111 1112 /** 1113 * queue_delayed_work - queue work on a workqueue after delay 1114 * @wq: workqueue to use 1115 * @dwork: delayable work to queue 1116 * @delay: number of jiffies to wait before queueing 1117 * 1118 * Returns 0 if @work was already on a queue, non-zero otherwise. 1119 */ 1120 int queue_delayed_work(struct workqueue_struct *wq, 1121 struct delayed_work *dwork, unsigned long delay) 1122 { 1123 if (delay == 0) 1124 return queue_work(wq, &dwork->work); 1125 1126 return queue_delayed_work_on(-1, wq, dwork, delay); 1127 } 1128 EXPORT_SYMBOL_GPL(queue_delayed_work); 1129 1130 /** 1131 * queue_delayed_work_on - queue work on specific CPU after delay 1132 * @cpu: CPU number to execute work on 1133 * @wq: workqueue to use 1134 * @dwork: work to queue 1135 * @delay: number of jiffies to wait before queueing 1136 * 1137 * Returns 0 if @work was already on a queue, non-zero otherwise. 1138 */ 1139 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1140 struct delayed_work *dwork, unsigned long delay) 1141 { 1142 int ret = 0; 1143 struct timer_list *timer = &dwork->timer; 1144 struct work_struct *work = &dwork->work; 1145 1146 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1147 unsigned int lcpu; 1148 1149 BUG_ON(timer_pending(timer)); 1150 BUG_ON(!list_empty(&work->entry)); 1151 1152 timer_stats_timer_set_start_info(&dwork->timer); 1153 1154 /* 1155 * This stores cwq for the moment, for the timer_fn. 1156 * Note that the work's gcwq is preserved to allow 1157 * reentrance detection for delayed works. 1158 */ 1159 if (!(wq->flags & WQ_UNBOUND)) { 1160 struct global_cwq *gcwq = get_work_gcwq(work); 1161 1162 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND) 1163 lcpu = gcwq->cpu; 1164 else 1165 lcpu = raw_smp_processor_id(); 1166 } else 1167 lcpu = WORK_CPU_UNBOUND; 1168 1169 set_work_cwq(work, get_cwq(lcpu, wq), 0); 1170 1171 timer->expires = jiffies + delay; 1172 timer->data = (unsigned long)dwork; 1173 timer->function = delayed_work_timer_fn; 1174 1175 if (unlikely(cpu >= 0)) 1176 add_timer_on(timer, cpu); 1177 else 1178 add_timer(timer); 1179 ret = 1; 1180 } 1181 return ret; 1182 } 1183 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 1184 1185 /** 1186 * worker_enter_idle - enter idle state 1187 * @worker: worker which is entering idle state 1188 * 1189 * @worker is entering idle state. Update stats and idle timer if 1190 * necessary. 1191 * 1192 * LOCKING: 1193 * spin_lock_irq(gcwq->lock). 1194 */ 1195 static void worker_enter_idle(struct worker *worker) 1196 { 1197 struct global_cwq *gcwq = worker->gcwq; 1198 1199 BUG_ON(worker->flags & WORKER_IDLE); 1200 BUG_ON(!list_empty(&worker->entry) && 1201 (worker->hentry.next || worker->hentry.pprev)); 1202 1203 /* can't use worker_set_flags(), also called from start_worker() */ 1204 worker->flags |= WORKER_IDLE; 1205 gcwq->nr_idle++; 1206 worker->last_active = jiffies; 1207 1208 /* idle_list is LIFO */ 1209 list_add(&worker->entry, &gcwq->idle_list); 1210 1211 if (likely(!(worker->flags & WORKER_ROGUE))) { 1212 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer)) 1213 mod_timer(&gcwq->idle_timer, 1214 jiffies + IDLE_WORKER_TIMEOUT); 1215 } else 1216 wake_up_all(&gcwq->trustee_wait); 1217 1218 /* sanity check nr_running */ 1219 WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle && 1220 atomic_read(get_gcwq_nr_running(gcwq->cpu))); 1221 } 1222 1223 /** 1224 * worker_leave_idle - leave idle state 1225 * @worker: worker which is leaving idle state 1226 * 1227 * @worker is leaving idle state. Update stats. 1228 * 1229 * LOCKING: 1230 * spin_lock_irq(gcwq->lock). 1231 */ 1232 static void worker_leave_idle(struct worker *worker) 1233 { 1234 struct global_cwq *gcwq = worker->gcwq; 1235 1236 BUG_ON(!(worker->flags & WORKER_IDLE)); 1237 worker_clr_flags(worker, WORKER_IDLE); 1238 gcwq->nr_idle--; 1239 list_del_init(&worker->entry); 1240 } 1241 1242 /** 1243 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq 1244 * @worker: self 1245 * 1246 * Works which are scheduled while the cpu is online must at least be 1247 * scheduled to a worker which is bound to the cpu so that if they are 1248 * flushed from cpu callbacks while cpu is going down, they are 1249 * guaranteed to execute on the cpu. 1250 * 1251 * This function is to be used by rogue workers and rescuers to bind 1252 * themselves to the target cpu and may race with cpu going down or 1253 * coming online. kthread_bind() can't be used because it may put the 1254 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1255 * verbatim as it's best effort and blocking and gcwq may be 1256 * [dis]associated in the meantime. 1257 * 1258 * This function tries set_cpus_allowed() and locks gcwq and verifies 1259 * the binding against GCWQ_DISASSOCIATED which is set during 1260 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters 1261 * idle state or fetches works without dropping lock, it can guarantee 1262 * the scheduling requirement described in the first paragraph. 1263 * 1264 * CONTEXT: 1265 * Might sleep. Called without any lock but returns with gcwq->lock 1266 * held. 1267 * 1268 * RETURNS: 1269 * %true if the associated gcwq is online (@worker is successfully 1270 * bound), %false if offline. 1271 */ 1272 static bool worker_maybe_bind_and_lock(struct worker *worker) 1273 __acquires(&gcwq->lock) 1274 { 1275 struct global_cwq *gcwq = worker->gcwq; 1276 struct task_struct *task = worker->task; 1277 1278 while (true) { 1279 /* 1280 * The following call may fail, succeed or succeed 1281 * without actually migrating the task to the cpu if 1282 * it races with cpu hotunplug operation. Verify 1283 * against GCWQ_DISASSOCIATED. 1284 */ 1285 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) 1286 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu)); 1287 1288 spin_lock_irq(&gcwq->lock); 1289 if (gcwq->flags & GCWQ_DISASSOCIATED) 1290 return false; 1291 if (task_cpu(task) == gcwq->cpu && 1292 cpumask_equal(¤t->cpus_allowed, 1293 get_cpu_mask(gcwq->cpu))) 1294 return true; 1295 spin_unlock_irq(&gcwq->lock); 1296 1297 /* 1298 * We've raced with CPU hot[un]plug. Give it a breather 1299 * and retry migration. cond_resched() is required here; 1300 * otherwise, we might deadlock against cpu_stop trying to 1301 * bring down the CPU on non-preemptive kernel. 1302 */ 1303 cpu_relax(); 1304 cond_resched(); 1305 } 1306 } 1307 1308 /* 1309 * Function for worker->rebind_work used to rebind rogue busy workers 1310 * to the associated cpu which is coming back online. This is 1311 * scheduled by cpu up but can race with other cpu hotplug operations 1312 * and may be executed twice without intervening cpu down. 1313 */ 1314 static void worker_rebind_fn(struct work_struct *work) 1315 { 1316 struct worker *worker = container_of(work, struct worker, rebind_work); 1317 struct global_cwq *gcwq = worker->gcwq; 1318 1319 if (worker_maybe_bind_and_lock(worker)) 1320 worker_clr_flags(worker, WORKER_REBIND); 1321 1322 spin_unlock_irq(&gcwq->lock); 1323 } 1324 1325 static struct worker *alloc_worker(void) 1326 { 1327 struct worker *worker; 1328 1329 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1330 if (worker) { 1331 INIT_LIST_HEAD(&worker->entry); 1332 INIT_LIST_HEAD(&worker->scheduled); 1333 INIT_WORK(&worker->rebind_work, worker_rebind_fn); 1334 /* on creation a worker is in !idle && prep state */ 1335 worker->flags = WORKER_PREP; 1336 } 1337 return worker; 1338 } 1339 1340 /** 1341 * create_worker - create a new workqueue worker 1342 * @gcwq: gcwq the new worker will belong to 1343 * @bind: whether to set affinity to @cpu or not 1344 * 1345 * Create a new worker which is bound to @gcwq. The returned worker 1346 * can be started by calling start_worker() or destroyed using 1347 * destroy_worker(). 1348 * 1349 * CONTEXT: 1350 * Might sleep. Does GFP_KERNEL allocations. 1351 * 1352 * RETURNS: 1353 * Pointer to the newly created worker. 1354 */ 1355 static struct worker *create_worker(struct global_cwq *gcwq, bool bind) 1356 { 1357 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND; 1358 struct worker *worker = NULL; 1359 int id = -1; 1360 1361 spin_lock_irq(&gcwq->lock); 1362 while (ida_get_new(&gcwq->worker_ida, &id)) { 1363 spin_unlock_irq(&gcwq->lock); 1364 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL)) 1365 goto fail; 1366 spin_lock_irq(&gcwq->lock); 1367 } 1368 spin_unlock_irq(&gcwq->lock); 1369 1370 worker = alloc_worker(); 1371 if (!worker) 1372 goto fail; 1373 1374 worker->gcwq = gcwq; 1375 worker->id = id; 1376 1377 if (!on_unbound_cpu) 1378 worker->task = kthread_create_on_node(worker_thread, 1379 worker, 1380 cpu_to_node(gcwq->cpu), 1381 "kworker/%u:%d", gcwq->cpu, id); 1382 else 1383 worker->task = kthread_create(worker_thread, worker, 1384 "kworker/u:%d", id); 1385 if (IS_ERR(worker->task)) 1386 goto fail; 1387 1388 /* 1389 * A rogue worker will become a regular one if CPU comes 1390 * online later on. Make sure every worker has 1391 * PF_THREAD_BOUND set. 1392 */ 1393 if (bind && !on_unbound_cpu) 1394 kthread_bind(worker->task, gcwq->cpu); 1395 else { 1396 worker->task->flags |= PF_THREAD_BOUND; 1397 if (on_unbound_cpu) 1398 worker->flags |= WORKER_UNBOUND; 1399 } 1400 1401 return worker; 1402 fail: 1403 if (id >= 0) { 1404 spin_lock_irq(&gcwq->lock); 1405 ida_remove(&gcwq->worker_ida, id); 1406 spin_unlock_irq(&gcwq->lock); 1407 } 1408 kfree(worker); 1409 return NULL; 1410 } 1411 1412 /** 1413 * start_worker - start a newly created worker 1414 * @worker: worker to start 1415 * 1416 * Make the gcwq aware of @worker and start it. 1417 * 1418 * CONTEXT: 1419 * spin_lock_irq(gcwq->lock). 1420 */ 1421 static void start_worker(struct worker *worker) 1422 { 1423 worker->flags |= WORKER_STARTED; 1424 worker->gcwq->nr_workers++; 1425 worker_enter_idle(worker); 1426 wake_up_process(worker->task); 1427 } 1428 1429 /** 1430 * destroy_worker - destroy a workqueue worker 1431 * @worker: worker to be destroyed 1432 * 1433 * Destroy @worker and adjust @gcwq stats accordingly. 1434 * 1435 * CONTEXT: 1436 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1437 */ 1438 static void destroy_worker(struct worker *worker) 1439 { 1440 struct global_cwq *gcwq = worker->gcwq; 1441 int id = worker->id; 1442 1443 /* sanity check frenzy */ 1444 BUG_ON(worker->current_work); 1445 BUG_ON(!list_empty(&worker->scheduled)); 1446 1447 if (worker->flags & WORKER_STARTED) 1448 gcwq->nr_workers--; 1449 if (worker->flags & WORKER_IDLE) 1450 gcwq->nr_idle--; 1451 1452 list_del_init(&worker->entry); 1453 worker->flags |= WORKER_DIE; 1454 1455 spin_unlock_irq(&gcwq->lock); 1456 1457 kthread_stop(worker->task); 1458 kfree(worker); 1459 1460 spin_lock_irq(&gcwq->lock); 1461 ida_remove(&gcwq->worker_ida, id); 1462 } 1463 1464 static void idle_worker_timeout(unsigned long __gcwq) 1465 { 1466 struct global_cwq *gcwq = (void *)__gcwq; 1467 1468 spin_lock_irq(&gcwq->lock); 1469 1470 if (too_many_workers(gcwq)) { 1471 struct worker *worker; 1472 unsigned long expires; 1473 1474 /* idle_list is kept in LIFO order, check the last one */ 1475 worker = list_entry(gcwq->idle_list.prev, struct worker, entry); 1476 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1477 1478 if (time_before(jiffies, expires)) 1479 mod_timer(&gcwq->idle_timer, expires); 1480 else { 1481 /* it's been idle for too long, wake up manager */ 1482 gcwq->flags |= GCWQ_MANAGE_WORKERS; 1483 wake_up_worker(gcwq); 1484 } 1485 } 1486 1487 spin_unlock_irq(&gcwq->lock); 1488 } 1489 1490 static bool send_mayday(struct work_struct *work) 1491 { 1492 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1493 struct workqueue_struct *wq = cwq->wq; 1494 unsigned int cpu; 1495 1496 if (!(wq->flags & WQ_RESCUER)) 1497 return false; 1498 1499 /* mayday mayday mayday */ 1500 cpu = cwq->gcwq->cpu; 1501 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */ 1502 if (cpu == WORK_CPU_UNBOUND) 1503 cpu = 0; 1504 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask)) 1505 wake_up_process(wq->rescuer->task); 1506 return true; 1507 } 1508 1509 static void gcwq_mayday_timeout(unsigned long __gcwq) 1510 { 1511 struct global_cwq *gcwq = (void *)__gcwq; 1512 struct work_struct *work; 1513 1514 spin_lock_irq(&gcwq->lock); 1515 1516 if (need_to_create_worker(gcwq)) { 1517 /* 1518 * We've been trying to create a new worker but 1519 * haven't been successful. We might be hitting an 1520 * allocation deadlock. Send distress signals to 1521 * rescuers. 1522 */ 1523 list_for_each_entry(work, &gcwq->worklist, entry) 1524 send_mayday(work); 1525 } 1526 1527 spin_unlock_irq(&gcwq->lock); 1528 1529 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL); 1530 } 1531 1532 /** 1533 * maybe_create_worker - create a new worker if necessary 1534 * @gcwq: gcwq to create a new worker for 1535 * 1536 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to 1537 * have at least one idle worker on return from this function. If 1538 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1539 * sent to all rescuers with works scheduled on @gcwq to resolve 1540 * possible allocation deadlock. 1541 * 1542 * On return, need_to_create_worker() is guaranteed to be false and 1543 * may_start_working() true. 1544 * 1545 * LOCKING: 1546 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1547 * multiple times. Does GFP_KERNEL allocations. Called only from 1548 * manager. 1549 * 1550 * RETURNS: 1551 * false if no action was taken and gcwq->lock stayed locked, true 1552 * otherwise. 1553 */ 1554 static bool maybe_create_worker(struct global_cwq *gcwq) 1555 __releases(&gcwq->lock) 1556 __acquires(&gcwq->lock) 1557 { 1558 if (!need_to_create_worker(gcwq)) 1559 return false; 1560 restart: 1561 spin_unlock_irq(&gcwq->lock); 1562 1563 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1564 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1565 1566 while (true) { 1567 struct worker *worker; 1568 1569 worker = create_worker(gcwq, true); 1570 if (worker) { 1571 del_timer_sync(&gcwq->mayday_timer); 1572 spin_lock_irq(&gcwq->lock); 1573 start_worker(worker); 1574 BUG_ON(need_to_create_worker(gcwq)); 1575 return true; 1576 } 1577 1578 if (!need_to_create_worker(gcwq)) 1579 break; 1580 1581 __set_current_state(TASK_INTERRUPTIBLE); 1582 schedule_timeout(CREATE_COOLDOWN); 1583 1584 if (!need_to_create_worker(gcwq)) 1585 break; 1586 } 1587 1588 del_timer_sync(&gcwq->mayday_timer); 1589 spin_lock_irq(&gcwq->lock); 1590 if (need_to_create_worker(gcwq)) 1591 goto restart; 1592 return true; 1593 } 1594 1595 /** 1596 * maybe_destroy_worker - destroy workers which have been idle for a while 1597 * @gcwq: gcwq to destroy workers for 1598 * 1599 * Destroy @gcwq workers which have been idle for longer than 1600 * IDLE_WORKER_TIMEOUT. 1601 * 1602 * LOCKING: 1603 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1604 * multiple times. Called only from manager. 1605 * 1606 * RETURNS: 1607 * false if no action was taken and gcwq->lock stayed locked, true 1608 * otherwise. 1609 */ 1610 static bool maybe_destroy_workers(struct global_cwq *gcwq) 1611 { 1612 bool ret = false; 1613 1614 while (too_many_workers(gcwq)) { 1615 struct worker *worker; 1616 unsigned long expires; 1617 1618 worker = list_entry(gcwq->idle_list.prev, struct worker, entry); 1619 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1620 1621 if (time_before(jiffies, expires)) { 1622 mod_timer(&gcwq->idle_timer, expires); 1623 break; 1624 } 1625 1626 destroy_worker(worker); 1627 ret = true; 1628 } 1629 1630 return ret; 1631 } 1632 1633 /** 1634 * manage_workers - manage worker pool 1635 * @worker: self 1636 * 1637 * Assume the manager role and manage gcwq worker pool @worker belongs 1638 * to. At any given time, there can be only zero or one manager per 1639 * gcwq. The exclusion is handled automatically by this function. 1640 * 1641 * The caller can safely start processing works on false return. On 1642 * true return, it's guaranteed that need_to_create_worker() is false 1643 * and may_start_working() is true. 1644 * 1645 * CONTEXT: 1646 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1647 * multiple times. Does GFP_KERNEL allocations. 1648 * 1649 * RETURNS: 1650 * false if no action was taken and gcwq->lock stayed locked, true if 1651 * some action was taken. 1652 */ 1653 static bool manage_workers(struct worker *worker) 1654 { 1655 struct global_cwq *gcwq = worker->gcwq; 1656 bool ret = false; 1657 1658 if (gcwq->flags & GCWQ_MANAGING_WORKERS) 1659 return ret; 1660 1661 gcwq->flags &= ~GCWQ_MANAGE_WORKERS; 1662 gcwq->flags |= GCWQ_MANAGING_WORKERS; 1663 1664 /* 1665 * Destroy and then create so that may_start_working() is true 1666 * on return. 1667 */ 1668 ret |= maybe_destroy_workers(gcwq); 1669 ret |= maybe_create_worker(gcwq); 1670 1671 gcwq->flags &= ~GCWQ_MANAGING_WORKERS; 1672 1673 /* 1674 * The trustee might be waiting to take over the manager 1675 * position, tell it we're done. 1676 */ 1677 if (unlikely(gcwq->trustee)) 1678 wake_up_all(&gcwq->trustee_wait); 1679 1680 return ret; 1681 } 1682 1683 /** 1684 * move_linked_works - move linked works to a list 1685 * @work: start of series of works to be scheduled 1686 * @head: target list to append @work to 1687 * @nextp: out paramter for nested worklist walking 1688 * 1689 * Schedule linked works starting from @work to @head. Work series to 1690 * be scheduled starts at @work and includes any consecutive work with 1691 * WORK_STRUCT_LINKED set in its predecessor. 1692 * 1693 * If @nextp is not NULL, it's updated to point to the next work of 1694 * the last scheduled work. This allows move_linked_works() to be 1695 * nested inside outer list_for_each_entry_safe(). 1696 * 1697 * CONTEXT: 1698 * spin_lock_irq(gcwq->lock). 1699 */ 1700 static void move_linked_works(struct work_struct *work, struct list_head *head, 1701 struct work_struct **nextp) 1702 { 1703 struct work_struct *n; 1704 1705 /* 1706 * Linked worklist will always end before the end of the list, 1707 * use NULL for list head. 1708 */ 1709 list_for_each_entry_safe_from(work, n, NULL, entry) { 1710 list_move_tail(&work->entry, head); 1711 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1712 break; 1713 } 1714 1715 /* 1716 * If we're already inside safe list traversal and have moved 1717 * multiple works to the scheduled queue, the next position 1718 * needs to be updated. 1719 */ 1720 if (nextp) 1721 *nextp = n; 1722 } 1723 1724 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq) 1725 { 1726 struct work_struct *work = list_first_entry(&cwq->delayed_works, 1727 struct work_struct, entry); 1728 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq); 1729 1730 trace_workqueue_activate_work(work); 1731 move_linked_works(work, pos, NULL); 1732 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1733 cwq->nr_active++; 1734 } 1735 1736 /** 1737 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight 1738 * @cwq: cwq of interest 1739 * @color: color of work which left the queue 1740 * @delayed: for a delayed work 1741 * 1742 * A work either has completed or is removed from pending queue, 1743 * decrement nr_in_flight of its cwq and handle workqueue flushing. 1744 * 1745 * CONTEXT: 1746 * spin_lock_irq(gcwq->lock). 1747 */ 1748 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color, 1749 bool delayed) 1750 { 1751 /* ignore uncolored works */ 1752 if (color == WORK_NO_COLOR) 1753 return; 1754 1755 cwq->nr_in_flight[color]--; 1756 1757 if (!delayed) { 1758 cwq->nr_active--; 1759 if (!list_empty(&cwq->delayed_works)) { 1760 /* one down, submit a delayed one */ 1761 if (cwq->nr_active < cwq->max_active) 1762 cwq_activate_first_delayed(cwq); 1763 } 1764 } 1765 1766 /* is flush in progress and are we at the flushing tip? */ 1767 if (likely(cwq->flush_color != color)) 1768 return; 1769 1770 /* are there still in-flight works? */ 1771 if (cwq->nr_in_flight[color]) 1772 return; 1773 1774 /* this cwq is done, clear flush_color */ 1775 cwq->flush_color = -1; 1776 1777 /* 1778 * If this was the last cwq, wake up the first flusher. It 1779 * will handle the rest. 1780 */ 1781 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush)) 1782 complete(&cwq->wq->first_flusher->done); 1783 } 1784 1785 /** 1786 * process_one_work - process single work 1787 * @worker: self 1788 * @work: work to process 1789 * 1790 * Process @work. This function contains all the logics necessary to 1791 * process a single work including synchronization against and 1792 * interaction with other workers on the same cpu, queueing and 1793 * flushing. As long as context requirement is met, any worker can 1794 * call this function to process a work. 1795 * 1796 * CONTEXT: 1797 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1798 */ 1799 static void process_one_work(struct worker *worker, struct work_struct *work) 1800 __releases(&gcwq->lock) 1801 __acquires(&gcwq->lock) 1802 { 1803 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1804 struct global_cwq *gcwq = cwq->gcwq; 1805 struct hlist_head *bwh = busy_worker_head(gcwq, work); 1806 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE; 1807 work_func_t f = work->func; 1808 int work_color; 1809 struct worker *collision; 1810 #ifdef CONFIG_LOCKDEP 1811 /* 1812 * It is permissible to free the struct work_struct from 1813 * inside the function that is called from it, this we need to 1814 * take into account for lockdep too. To avoid bogus "held 1815 * lock freed" warnings as well as problems when looking into 1816 * work->lockdep_map, make a copy and use that here. 1817 */ 1818 struct lockdep_map lockdep_map = work->lockdep_map; 1819 #endif 1820 /* 1821 * A single work shouldn't be executed concurrently by 1822 * multiple workers on a single cpu. Check whether anyone is 1823 * already processing the work. If so, defer the work to the 1824 * currently executing one. 1825 */ 1826 collision = __find_worker_executing_work(gcwq, bwh, work); 1827 if (unlikely(collision)) { 1828 move_linked_works(work, &collision->scheduled, NULL); 1829 return; 1830 } 1831 1832 /* claim and process */ 1833 debug_work_deactivate(work); 1834 hlist_add_head(&worker->hentry, bwh); 1835 worker->current_work = work; 1836 worker->current_cwq = cwq; 1837 work_color = get_work_color(work); 1838 1839 /* record the current cpu number in the work data and dequeue */ 1840 set_work_cpu(work, gcwq->cpu); 1841 list_del_init(&work->entry); 1842 1843 /* 1844 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI, 1845 * wake up another worker; otherwise, clear HIGHPRI_PENDING. 1846 */ 1847 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) { 1848 struct work_struct *nwork = list_first_entry(&gcwq->worklist, 1849 struct work_struct, entry); 1850 1851 if (!list_empty(&gcwq->worklist) && 1852 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI) 1853 wake_up_worker(gcwq); 1854 else 1855 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING; 1856 } 1857 1858 /* 1859 * CPU intensive works don't participate in concurrency 1860 * management. They're the scheduler's responsibility. 1861 */ 1862 if (unlikely(cpu_intensive)) 1863 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 1864 1865 spin_unlock_irq(&gcwq->lock); 1866 1867 work_clear_pending(work); 1868 lock_map_acquire_read(&cwq->wq->lockdep_map); 1869 lock_map_acquire(&lockdep_map); 1870 trace_workqueue_execute_start(work); 1871 f(work); 1872 /* 1873 * While we must be careful to not use "work" after this, the trace 1874 * point will only record its address. 1875 */ 1876 trace_workqueue_execute_end(work); 1877 lock_map_release(&lockdep_map); 1878 lock_map_release(&cwq->wq->lockdep_map); 1879 1880 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 1881 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " 1882 "%s/0x%08x/%d\n", 1883 current->comm, preempt_count(), task_pid_nr(current)); 1884 printk(KERN_ERR " last function: "); 1885 print_symbol("%s\n", (unsigned long)f); 1886 debug_show_held_locks(current); 1887 dump_stack(); 1888 } 1889 1890 spin_lock_irq(&gcwq->lock); 1891 1892 /* clear cpu intensive status */ 1893 if (unlikely(cpu_intensive)) 1894 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 1895 1896 /* we're done with it, release */ 1897 hlist_del_init(&worker->hentry); 1898 worker->current_work = NULL; 1899 worker->current_cwq = NULL; 1900 cwq_dec_nr_in_flight(cwq, work_color, false); 1901 } 1902 1903 /** 1904 * process_scheduled_works - process scheduled works 1905 * @worker: self 1906 * 1907 * Process all scheduled works. Please note that the scheduled list 1908 * may change while processing a work, so this function repeatedly 1909 * fetches a work from the top and executes it. 1910 * 1911 * CONTEXT: 1912 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1913 * multiple times. 1914 */ 1915 static void process_scheduled_works(struct worker *worker) 1916 { 1917 while (!list_empty(&worker->scheduled)) { 1918 struct work_struct *work = list_first_entry(&worker->scheduled, 1919 struct work_struct, entry); 1920 process_one_work(worker, work); 1921 } 1922 } 1923 1924 /** 1925 * worker_thread - the worker thread function 1926 * @__worker: self 1927 * 1928 * The gcwq worker thread function. There's a single dynamic pool of 1929 * these per each cpu. These workers process all works regardless of 1930 * their specific target workqueue. The only exception is works which 1931 * belong to workqueues with a rescuer which will be explained in 1932 * rescuer_thread(). 1933 */ 1934 static int worker_thread(void *__worker) 1935 { 1936 struct worker *worker = __worker; 1937 struct global_cwq *gcwq = worker->gcwq; 1938 1939 /* tell the scheduler that this is a workqueue worker */ 1940 worker->task->flags |= PF_WQ_WORKER; 1941 woke_up: 1942 spin_lock_irq(&gcwq->lock); 1943 1944 /* DIE can be set only while we're idle, checking here is enough */ 1945 if (worker->flags & WORKER_DIE) { 1946 spin_unlock_irq(&gcwq->lock); 1947 worker->task->flags &= ~PF_WQ_WORKER; 1948 return 0; 1949 } 1950 1951 worker_leave_idle(worker); 1952 recheck: 1953 /* no more worker necessary? */ 1954 if (!need_more_worker(gcwq)) 1955 goto sleep; 1956 1957 /* do we need to manage? */ 1958 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker)) 1959 goto recheck; 1960 1961 /* 1962 * ->scheduled list can only be filled while a worker is 1963 * preparing to process a work or actually processing it. 1964 * Make sure nobody diddled with it while I was sleeping. 1965 */ 1966 BUG_ON(!list_empty(&worker->scheduled)); 1967 1968 /* 1969 * When control reaches this point, we're guaranteed to have 1970 * at least one idle worker or that someone else has already 1971 * assumed the manager role. 1972 */ 1973 worker_clr_flags(worker, WORKER_PREP); 1974 1975 do { 1976 struct work_struct *work = 1977 list_first_entry(&gcwq->worklist, 1978 struct work_struct, entry); 1979 1980 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 1981 /* optimization path, not strictly necessary */ 1982 process_one_work(worker, work); 1983 if (unlikely(!list_empty(&worker->scheduled))) 1984 process_scheduled_works(worker); 1985 } else { 1986 move_linked_works(work, &worker->scheduled, NULL); 1987 process_scheduled_works(worker); 1988 } 1989 } while (keep_working(gcwq)); 1990 1991 worker_set_flags(worker, WORKER_PREP, false); 1992 sleep: 1993 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker)) 1994 goto recheck; 1995 1996 /* 1997 * gcwq->lock is held and there's no work to process and no 1998 * need to manage, sleep. Workers are woken up only while 1999 * holding gcwq->lock or from local cpu, so setting the 2000 * current state before releasing gcwq->lock is enough to 2001 * prevent losing any event. 2002 */ 2003 worker_enter_idle(worker); 2004 __set_current_state(TASK_INTERRUPTIBLE); 2005 spin_unlock_irq(&gcwq->lock); 2006 schedule(); 2007 goto woke_up; 2008 } 2009 2010 /** 2011 * rescuer_thread - the rescuer thread function 2012 * @__wq: the associated workqueue 2013 * 2014 * Workqueue rescuer thread function. There's one rescuer for each 2015 * workqueue which has WQ_RESCUER set. 2016 * 2017 * Regular work processing on a gcwq may block trying to create a new 2018 * worker which uses GFP_KERNEL allocation which has slight chance of 2019 * developing into deadlock if some works currently on the same queue 2020 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2021 * the problem rescuer solves. 2022 * 2023 * When such condition is possible, the gcwq summons rescuers of all 2024 * workqueues which have works queued on the gcwq and let them process 2025 * those works so that forward progress can be guaranteed. 2026 * 2027 * This should happen rarely. 2028 */ 2029 static int rescuer_thread(void *__wq) 2030 { 2031 struct workqueue_struct *wq = __wq; 2032 struct worker *rescuer = wq->rescuer; 2033 struct list_head *scheduled = &rescuer->scheduled; 2034 bool is_unbound = wq->flags & WQ_UNBOUND; 2035 unsigned int cpu; 2036 2037 set_user_nice(current, RESCUER_NICE_LEVEL); 2038 repeat: 2039 set_current_state(TASK_INTERRUPTIBLE); 2040 2041 if (kthread_should_stop()) 2042 return 0; 2043 2044 /* 2045 * See whether any cpu is asking for help. Unbounded 2046 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND. 2047 */ 2048 for_each_mayday_cpu(cpu, wq->mayday_mask) { 2049 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu; 2050 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq); 2051 struct global_cwq *gcwq = cwq->gcwq; 2052 struct work_struct *work, *n; 2053 2054 __set_current_state(TASK_RUNNING); 2055 mayday_clear_cpu(cpu, wq->mayday_mask); 2056 2057 /* migrate to the target cpu if possible */ 2058 rescuer->gcwq = gcwq; 2059 worker_maybe_bind_and_lock(rescuer); 2060 2061 /* 2062 * Slurp in all works issued via this workqueue and 2063 * process'em. 2064 */ 2065 BUG_ON(!list_empty(&rescuer->scheduled)); 2066 list_for_each_entry_safe(work, n, &gcwq->worklist, entry) 2067 if (get_work_cwq(work) == cwq) 2068 move_linked_works(work, scheduled, &n); 2069 2070 process_scheduled_works(rescuer); 2071 2072 /* 2073 * Leave this gcwq. If keep_working() is %true, notify a 2074 * regular worker; otherwise, we end up with 0 concurrency 2075 * and stalling the execution. 2076 */ 2077 if (keep_working(gcwq)) 2078 wake_up_worker(gcwq); 2079 2080 spin_unlock_irq(&gcwq->lock); 2081 } 2082 2083 schedule(); 2084 goto repeat; 2085 } 2086 2087 struct wq_barrier { 2088 struct work_struct work; 2089 struct completion done; 2090 }; 2091 2092 static void wq_barrier_func(struct work_struct *work) 2093 { 2094 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2095 complete(&barr->done); 2096 } 2097 2098 /** 2099 * insert_wq_barrier - insert a barrier work 2100 * @cwq: cwq to insert barrier into 2101 * @barr: wq_barrier to insert 2102 * @target: target work to attach @barr to 2103 * @worker: worker currently executing @target, NULL if @target is not executing 2104 * 2105 * @barr is linked to @target such that @barr is completed only after 2106 * @target finishes execution. Please note that the ordering 2107 * guarantee is observed only with respect to @target and on the local 2108 * cpu. 2109 * 2110 * Currently, a queued barrier can't be canceled. This is because 2111 * try_to_grab_pending() can't determine whether the work to be 2112 * grabbed is at the head of the queue and thus can't clear LINKED 2113 * flag of the previous work while there must be a valid next work 2114 * after a work with LINKED flag set. 2115 * 2116 * Note that when @worker is non-NULL, @target may be modified 2117 * underneath us, so we can't reliably determine cwq from @target. 2118 * 2119 * CONTEXT: 2120 * spin_lock_irq(gcwq->lock). 2121 */ 2122 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, 2123 struct wq_barrier *barr, 2124 struct work_struct *target, struct worker *worker) 2125 { 2126 struct list_head *head; 2127 unsigned int linked = 0; 2128 2129 /* 2130 * debugobject calls are safe here even with gcwq->lock locked 2131 * as we know for sure that this will not trigger any of the 2132 * checks and call back into the fixup functions where we 2133 * might deadlock. 2134 */ 2135 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2136 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2137 init_completion(&barr->done); 2138 2139 /* 2140 * If @target is currently being executed, schedule the 2141 * barrier to the worker; otherwise, put it after @target. 2142 */ 2143 if (worker) 2144 head = worker->scheduled.next; 2145 else { 2146 unsigned long *bits = work_data_bits(target); 2147 2148 head = target->entry.next; 2149 /* there can already be other linked works, inherit and set */ 2150 linked = *bits & WORK_STRUCT_LINKED; 2151 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2152 } 2153 2154 debug_work_activate(&barr->work); 2155 insert_work(cwq, &barr->work, head, 2156 work_color_to_flags(WORK_NO_COLOR) | linked); 2157 } 2158 2159 /** 2160 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing 2161 * @wq: workqueue being flushed 2162 * @flush_color: new flush color, < 0 for no-op 2163 * @work_color: new work color, < 0 for no-op 2164 * 2165 * Prepare cwqs for workqueue flushing. 2166 * 2167 * If @flush_color is non-negative, flush_color on all cwqs should be 2168 * -1. If no cwq has in-flight commands at the specified color, all 2169 * cwq->flush_color's stay at -1 and %false is returned. If any cwq 2170 * has in flight commands, its cwq->flush_color is set to 2171 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq 2172 * wakeup logic is armed and %true is returned. 2173 * 2174 * The caller should have initialized @wq->first_flusher prior to 2175 * calling this function with non-negative @flush_color. If 2176 * @flush_color is negative, no flush color update is done and %false 2177 * is returned. 2178 * 2179 * If @work_color is non-negative, all cwqs should have the same 2180 * work_color which is previous to @work_color and all will be 2181 * advanced to @work_color. 2182 * 2183 * CONTEXT: 2184 * mutex_lock(wq->flush_mutex). 2185 * 2186 * RETURNS: 2187 * %true if @flush_color >= 0 and there's something to flush. %false 2188 * otherwise. 2189 */ 2190 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq, 2191 int flush_color, int work_color) 2192 { 2193 bool wait = false; 2194 unsigned int cpu; 2195 2196 if (flush_color >= 0) { 2197 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush)); 2198 atomic_set(&wq->nr_cwqs_to_flush, 1); 2199 } 2200 2201 for_each_cwq_cpu(cpu, wq) { 2202 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2203 struct global_cwq *gcwq = cwq->gcwq; 2204 2205 spin_lock_irq(&gcwq->lock); 2206 2207 if (flush_color >= 0) { 2208 BUG_ON(cwq->flush_color != -1); 2209 2210 if (cwq->nr_in_flight[flush_color]) { 2211 cwq->flush_color = flush_color; 2212 atomic_inc(&wq->nr_cwqs_to_flush); 2213 wait = true; 2214 } 2215 } 2216 2217 if (work_color >= 0) { 2218 BUG_ON(work_color != work_next_color(cwq->work_color)); 2219 cwq->work_color = work_color; 2220 } 2221 2222 spin_unlock_irq(&gcwq->lock); 2223 } 2224 2225 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush)) 2226 complete(&wq->first_flusher->done); 2227 2228 return wait; 2229 } 2230 2231 /** 2232 * flush_workqueue - ensure that any scheduled work has run to completion. 2233 * @wq: workqueue to flush 2234 * 2235 * Forces execution of the workqueue and blocks until its completion. 2236 * This is typically used in driver shutdown handlers. 2237 * 2238 * We sleep until all works which were queued on entry have been handled, 2239 * but we are not livelocked by new incoming ones. 2240 */ 2241 void flush_workqueue(struct workqueue_struct *wq) 2242 { 2243 struct wq_flusher this_flusher = { 2244 .list = LIST_HEAD_INIT(this_flusher.list), 2245 .flush_color = -1, 2246 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2247 }; 2248 int next_color; 2249 2250 lock_map_acquire(&wq->lockdep_map); 2251 lock_map_release(&wq->lockdep_map); 2252 2253 mutex_lock(&wq->flush_mutex); 2254 2255 /* 2256 * Start-to-wait phase 2257 */ 2258 next_color = work_next_color(wq->work_color); 2259 2260 if (next_color != wq->flush_color) { 2261 /* 2262 * Color space is not full. The current work_color 2263 * becomes our flush_color and work_color is advanced 2264 * by one. 2265 */ 2266 BUG_ON(!list_empty(&wq->flusher_overflow)); 2267 this_flusher.flush_color = wq->work_color; 2268 wq->work_color = next_color; 2269 2270 if (!wq->first_flusher) { 2271 /* no flush in progress, become the first flusher */ 2272 BUG_ON(wq->flush_color != this_flusher.flush_color); 2273 2274 wq->first_flusher = &this_flusher; 2275 2276 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color, 2277 wq->work_color)) { 2278 /* nothing to flush, done */ 2279 wq->flush_color = next_color; 2280 wq->first_flusher = NULL; 2281 goto out_unlock; 2282 } 2283 } else { 2284 /* wait in queue */ 2285 BUG_ON(wq->flush_color == this_flusher.flush_color); 2286 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2287 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2288 } 2289 } else { 2290 /* 2291 * Oops, color space is full, wait on overflow queue. 2292 * The next flush completion will assign us 2293 * flush_color and transfer to flusher_queue. 2294 */ 2295 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2296 } 2297 2298 mutex_unlock(&wq->flush_mutex); 2299 2300 wait_for_completion(&this_flusher.done); 2301 2302 /* 2303 * Wake-up-and-cascade phase 2304 * 2305 * First flushers are responsible for cascading flushes and 2306 * handling overflow. Non-first flushers can simply return. 2307 */ 2308 if (wq->first_flusher != &this_flusher) 2309 return; 2310 2311 mutex_lock(&wq->flush_mutex); 2312 2313 /* we might have raced, check again with mutex held */ 2314 if (wq->first_flusher != &this_flusher) 2315 goto out_unlock; 2316 2317 wq->first_flusher = NULL; 2318 2319 BUG_ON(!list_empty(&this_flusher.list)); 2320 BUG_ON(wq->flush_color != this_flusher.flush_color); 2321 2322 while (true) { 2323 struct wq_flusher *next, *tmp; 2324 2325 /* complete all the flushers sharing the current flush color */ 2326 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2327 if (next->flush_color != wq->flush_color) 2328 break; 2329 list_del_init(&next->list); 2330 complete(&next->done); 2331 } 2332 2333 BUG_ON(!list_empty(&wq->flusher_overflow) && 2334 wq->flush_color != work_next_color(wq->work_color)); 2335 2336 /* this flush_color is finished, advance by one */ 2337 wq->flush_color = work_next_color(wq->flush_color); 2338 2339 /* one color has been freed, handle overflow queue */ 2340 if (!list_empty(&wq->flusher_overflow)) { 2341 /* 2342 * Assign the same color to all overflowed 2343 * flushers, advance work_color and append to 2344 * flusher_queue. This is the start-to-wait 2345 * phase for these overflowed flushers. 2346 */ 2347 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2348 tmp->flush_color = wq->work_color; 2349 2350 wq->work_color = work_next_color(wq->work_color); 2351 2352 list_splice_tail_init(&wq->flusher_overflow, 2353 &wq->flusher_queue); 2354 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2355 } 2356 2357 if (list_empty(&wq->flusher_queue)) { 2358 BUG_ON(wq->flush_color != wq->work_color); 2359 break; 2360 } 2361 2362 /* 2363 * Need to flush more colors. Make the next flusher 2364 * the new first flusher and arm cwqs. 2365 */ 2366 BUG_ON(wq->flush_color == wq->work_color); 2367 BUG_ON(wq->flush_color != next->flush_color); 2368 2369 list_del_init(&next->list); 2370 wq->first_flusher = next; 2371 2372 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1)) 2373 break; 2374 2375 /* 2376 * Meh... this color is already done, clear first 2377 * flusher and repeat cascading. 2378 */ 2379 wq->first_flusher = NULL; 2380 } 2381 2382 out_unlock: 2383 mutex_unlock(&wq->flush_mutex); 2384 } 2385 EXPORT_SYMBOL_GPL(flush_workqueue); 2386 2387 /** 2388 * drain_workqueue - drain a workqueue 2389 * @wq: workqueue to drain 2390 * 2391 * Wait until the workqueue becomes empty. While draining is in progress, 2392 * only chain queueing is allowed. IOW, only currently pending or running 2393 * work items on @wq can queue further work items on it. @wq is flushed 2394 * repeatedly until it becomes empty. The number of flushing is detemined 2395 * by the depth of chaining and should be relatively short. Whine if it 2396 * takes too long. 2397 */ 2398 void drain_workqueue(struct workqueue_struct *wq) 2399 { 2400 unsigned int flush_cnt = 0; 2401 unsigned int cpu; 2402 2403 /* 2404 * __queue_work() needs to test whether there are drainers, is much 2405 * hotter than drain_workqueue() and already looks at @wq->flags. 2406 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers. 2407 */ 2408 spin_lock(&workqueue_lock); 2409 if (!wq->nr_drainers++) 2410 wq->flags |= WQ_DRAINING; 2411 spin_unlock(&workqueue_lock); 2412 reflush: 2413 flush_workqueue(wq); 2414 2415 for_each_cwq_cpu(cpu, wq) { 2416 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2417 bool drained; 2418 2419 spin_lock_irq(&cwq->gcwq->lock); 2420 drained = !cwq->nr_active && list_empty(&cwq->delayed_works); 2421 spin_unlock_irq(&cwq->gcwq->lock); 2422 2423 if (drained) 2424 continue; 2425 2426 if (++flush_cnt == 10 || 2427 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2428 pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n", 2429 wq->name, flush_cnt); 2430 goto reflush; 2431 } 2432 2433 spin_lock(&workqueue_lock); 2434 if (!--wq->nr_drainers) 2435 wq->flags &= ~WQ_DRAINING; 2436 spin_unlock(&workqueue_lock); 2437 } 2438 EXPORT_SYMBOL_GPL(drain_workqueue); 2439 2440 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2441 bool wait_executing) 2442 { 2443 struct worker *worker = NULL; 2444 struct global_cwq *gcwq; 2445 struct cpu_workqueue_struct *cwq; 2446 2447 might_sleep(); 2448 gcwq = get_work_gcwq(work); 2449 if (!gcwq) 2450 return false; 2451 2452 spin_lock_irq(&gcwq->lock); 2453 if (!list_empty(&work->entry)) { 2454 /* 2455 * See the comment near try_to_grab_pending()->smp_rmb(). 2456 * If it was re-queued to a different gcwq under us, we 2457 * are not going to wait. 2458 */ 2459 smp_rmb(); 2460 cwq = get_work_cwq(work); 2461 if (unlikely(!cwq || gcwq != cwq->gcwq)) 2462 goto already_gone; 2463 } else if (wait_executing) { 2464 worker = find_worker_executing_work(gcwq, work); 2465 if (!worker) 2466 goto already_gone; 2467 cwq = worker->current_cwq; 2468 } else 2469 goto already_gone; 2470 2471 insert_wq_barrier(cwq, barr, work, worker); 2472 spin_unlock_irq(&gcwq->lock); 2473 2474 /* 2475 * If @max_active is 1 or rescuer is in use, flushing another work 2476 * item on the same workqueue may lead to deadlock. Make sure the 2477 * flusher is not running on the same workqueue by verifying write 2478 * access. 2479 */ 2480 if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER) 2481 lock_map_acquire(&cwq->wq->lockdep_map); 2482 else 2483 lock_map_acquire_read(&cwq->wq->lockdep_map); 2484 lock_map_release(&cwq->wq->lockdep_map); 2485 2486 return true; 2487 already_gone: 2488 spin_unlock_irq(&gcwq->lock); 2489 return false; 2490 } 2491 2492 /** 2493 * flush_work - wait for a work to finish executing the last queueing instance 2494 * @work: the work to flush 2495 * 2496 * Wait until @work has finished execution. This function considers 2497 * only the last queueing instance of @work. If @work has been 2498 * enqueued across different CPUs on a non-reentrant workqueue or on 2499 * multiple workqueues, @work might still be executing on return on 2500 * some of the CPUs from earlier queueing. 2501 * 2502 * If @work was queued only on a non-reentrant, ordered or unbound 2503 * workqueue, @work is guaranteed to be idle on return if it hasn't 2504 * been requeued since flush started. 2505 * 2506 * RETURNS: 2507 * %true if flush_work() waited for the work to finish execution, 2508 * %false if it was already idle. 2509 */ 2510 bool flush_work(struct work_struct *work) 2511 { 2512 struct wq_barrier barr; 2513 2514 if (start_flush_work(work, &barr, true)) { 2515 wait_for_completion(&barr.done); 2516 destroy_work_on_stack(&barr.work); 2517 return true; 2518 } else 2519 return false; 2520 } 2521 EXPORT_SYMBOL_GPL(flush_work); 2522 2523 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work) 2524 { 2525 struct wq_barrier barr; 2526 struct worker *worker; 2527 2528 spin_lock_irq(&gcwq->lock); 2529 2530 worker = find_worker_executing_work(gcwq, work); 2531 if (unlikely(worker)) 2532 insert_wq_barrier(worker->current_cwq, &barr, work, worker); 2533 2534 spin_unlock_irq(&gcwq->lock); 2535 2536 if (unlikely(worker)) { 2537 wait_for_completion(&barr.done); 2538 destroy_work_on_stack(&barr.work); 2539 return true; 2540 } else 2541 return false; 2542 } 2543 2544 static bool wait_on_work(struct work_struct *work) 2545 { 2546 bool ret = false; 2547 int cpu; 2548 2549 might_sleep(); 2550 2551 lock_map_acquire(&work->lockdep_map); 2552 lock_map_release(&work->lockdep_map); 2553 2554 for_each_gcwq_cpu(cpu) 2555 ret |= wait_on_cpu_work(get_gcwq(cpu), work); 2556 return ret; 2557 } 2558 2559 /** 2560 * flush_work_sync - wait until a work has finished execution 2561 * @work: the work to flush 2562 * 2563 * Wait until @work has finished execution. On return, it's 2564 * guaranteed that all queueing instances of @work which happened 2565 * before this function is called are finished. In other words, if 2566 * @work hasn't been requeued since this function was called, @work is 2567 * guaranteed to be idle on return. 2568 * 2569 * RETURNS: 2570 * %true if flush_work_sync() waited for the work to finish execution, 2571 * %false if it was already idle. 2572 */ 2573 bool flush_work_sync(struct work_struct *work) 2574 { 2575 struct wq_barrier barr; 2576 bool pending, waited; 2577 2578 /* we'll wait for executions separately, queue barr only if pending */ 2579 pending = start_flush_work(work, &barr, false); 2580 2581 /* wait for executions to finish */ 2582 waited = wait_on_work(work); 2583 2584 /* wait for the pending one */ 2585 if (pending) { 2586 wait_for_completion(&barr.done); 2587 destroy_work_on_stack(&barr.work); 2588 } 2589 2590 return pending || waited; 2591 } 2592 EXPORT_SYMBOL_GPL(flush_work_sync); 2593 2594 /* 2595 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit, 2596 * so this work can't be re-armed in any way. 2597 */ 2598 static int try_to_grab_pending(struct work_struct *work) 2599 { 2600 struct global_cwq *gcwq; 2601 int ret = -1; 2602 2603 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2604 return 0; 2605 2606 /* 2607 * The queueing is in progress, or it is already queued. Try to 2608 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2609 */ 2610 gcwq = get_work_gcwq(work); 2611 if (!gcwq) 2612 return ret; 2613 2614 spin_lock_irq(&gcwq->lock); 2615 if (!list_empty(&work->entry)) { 2616 /* 2617 * This work is queued, but perhaps we locked the wrong gcwq. 2618 * In that case we must see the new value after rmb(), see 2619 * insert_work()->wmb(). 2620 */ 2621 smp_rmb(); 2622 if (gcwq == get_work_gcwq(work)) { 2623 debug_work_deactivate(work); 2624 list_del_init(&work->entry); 2625 cwq_dec_nr_in_flight(get_work_cwq(work), 2626 get_work_color(work), 2627 *work_data_bits(work) & WORK_STRUCT_DELAYED); 2628 ret = 1; 2629 } 2630 } 2631 spin_unlock_irq(&gcwq->lock); 2632 2633 return ret; 2634 } 2635 2636 static bool __cancel_work_timer(struct work_struct *work, 2637 struct timer_list* timer) 2638 { 2639 int ret; 2640 2641 do { 2642 ret = (timer && likely(del_timer(timer))); 2643 if (!ret) 2644 ret = try_to_grab_pending(work); 2645 wait_on_work(work); 2646 } while (unlikely(ret < 0)); 2647 2648 clear_work_data(work); 2649 return ret; 2650 } 2651 2652 /** 2653 * cancel_work_sync - cancel a work and wait for it to finish 2654 * @work: the work to cancel 2655 * 2656 * Cancel @work and wait for its execution to finish. This function 2657 * can be used even if the work re-queues itself or migrates to 2658 * another workqueue. On return from this function, @work is 2659 * guaranteed to be not pending or executing on any CPU. 2660 * 2661 * cancel_work_sync(&delayed_work->work) must not be used for 2662 * delayed_work's. Use cancel_delayed_work_sync() instead. 2663 * 2664 * The caller must ensure that the workqueue on which @work was last 2665 * queued can't be destroyed before this function returns. 2666 * 2667 * RETURNS: 2668 * %true if @work was pending, %false otherwise. 2669 */ 2670 bool cancel_work_sync(struct work_struct *work) 2671 { 2672 return __cancel_work_timer(work, NULL); 2673 } 2674 EXPORT_SYMBOL_GPL(cancel_work_sync); 2675 2676 /** 2677 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2678 * @dwork: the delayed work to flush 2679 * 2680 * Delayed timer is cancelled and the pending work is queued for 2681 * immediate execution. Like flush_work(), this function only 2682 * considers the last queueing instance of @dwork. 2683 * 2684 * RETURNS: 2685 * %true if flush_work() waited for the work to finish execution, 2686 * %false if it was already idle. 2687 */ 2688 bool flush_delayed_work(struct delayed_work *dwork) 2689 { 2690 if (del_timer_sync(&dwork->timer)) 2691 __queue_work(raw_smp_processor_id(), 2692 get_work_cwq(&dwork->work)->wq, &dwork->work); 2693 return flush_work(&dwork->work); 2694 } 2695 EXPORT_SYMBOL(flush_delayed_work); 2696 2697 /** 2698 * flush_delayed_work_sync - wait for a dwork to finish 2699 * @dwork: the delayed work to flush 2700 * 2701 * Delayed timer is cancelled and the pending work is queued for 2702 * execution immediately. Other than timer handling, its behavior 2703 * is identical to flush_work_sync(). 2704 * 2705 * RETURNS: 2706 * %true if flush_work_sync() waited for the work to finish execution, 2707 * %false if it was already idle. 2708 */ 2709 bool flush_delayed_work_sync(struct delayed_work *dwork) 2710 { 2711 if (del_timer_sync(&dwork->timer)) 2712 __queue_work(raw_smp_processor_id(), 2713 get_work_cwq(&dwork->work)->wq, &dwork->work); 2714 return flush_work_sync(&dwork->work); 2715 } 2716 EXPORT_SYMBOL(flush_delayed_work_sync); 2717 2718 /** 2719 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 2720 * @dwork: the delayed work cancel 2721 * 2722 * This is cancel_work_sync() for delayed works. 2723 * 2724 * RETURNS: 2725 * %true if @dwork was pending, %false otherwise. 2726 */ 2727 bool cancel_delayed_work_sync(struct delayed_work *dwork) 2728 { 2729 return __cancel_work_timer(&dwork->work, &dwork->timer); 2730 } 2731 EXPORT_SYMBOL(cancel_delayed_work_sync); 2732 2733 /** 2734 * schedule_work - put work task in global workqueue 2735 * @work: job to be done 2736 * 2737 * Returns zero if @work was already on the kernel-global workqueue and 2738 * non-zero otherwise. 2739 * 2740 * This puts a job in the kernel-global workqueue if it was not already 2741 * queued and leaves it in the same position on the kernel-global 2742 * workqueue otherwise. 2743 */ 2744 int schedule_work(struct work_struct *work) 2745 { 2746 return queue_work(system_wq, work); 2747 } 2748 EXPORT_SYMBOL(schedule_work); 2749 2750 /* 2751 * schedule_work_on - put work task on a specific cpu 2752 * @cpu: cpu to put the work task on 2753 * @work: job to be done 2754 * 2755 * This puts a job on a specific cpu 2756 */ 2757 int schedule_work_on(int cpu, struct work_struct *work) 2758 { 2759 return queue_work_on(cpu, system_wq, work); 2760 } 2761 EXPORT_SYMBOL(schedule_work_on); 2762 2763 /** 2764 * schedule_delayed_work - put work task in global workqueue after delay 2765 * @dwork: job to be done 2766 * @delay: number of jiffies to wait or 0 for immediate execution 2767 * 2768 * After waiting for a given time this puts a job in the kernel-global 2769 * workqueue. 2770 */ 2771 int schedule_delayed_work(struct delayed_work *dwork, 2772 unsigned long delay) 2773 { 2774 return queue_delayed_work(system_wq, dwork, delay); 2775 } 2776 EXPORT_SYMBOL(schedule_delayed_work); 2777 2778 /** 2779 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 2780 * @cpu: cpu to use 2781 * @dwork: job to be done 2782 * @delay: number of jiffies to wait 2783 * 2784 * After waiting for a given time this puts a job in the kernel-global 2785 * workqueue on the specified CPU. 2786 */ 2787 int schedule_delayed_work_on(int cpu, 2788 struct delayed_work *dwork, unsigned long delay) 2789 { 2790 return queue_delayed_work_on(cpu, system_wq, dwork, delay); 2791 } 2792 EXPORT_SYMBOL(schedule_delayed_work_on); 2793 2794 /** 2795 * schedule_on_each_cpu - execute a function synchronously on each online CPU 2796 * @func: the function to call 2797 * 2798 * schedule_on_each_cpu() executes @func on each online CPU using the 2799 * system workqueue and blocks until all CPUs have completed. 2800 * schedule_on_each_cpu() is very slow. 2801 * 2802 * RETURNS: 2803 * 0 on success, -errno on failure. 2804 */ 2805 int schedule_on_each_cpu(work_func_t func) 2806 { 2807 int cpu; 2808 struct work_struct __percpu *works; 2809 2810 works = alloc_percpu(struct work_struct); 2811 if (!works) 2812 return -ENOMEM; 2813 2814 get_online_cpus(); 2815 2816 for_each_online_cpu(cpu) { 2817 struct work_struct *work = per_cpu_ptr(works, cpu); 2818 2819 INIT_WORK(work, func); 2820 schedule_work_on(cpu, work); 2821 } 2822 2823 for_each_online_cpu(cpu) 2824 flush_work(per_cpu_ptr(works, cpu)); 2825 2826 put_online_cpus(); 2827 free_percpu(works); 2828 return 0; 2829 } 2830 2831 /** 2832 * flush_scheduled_work - ensure that any scheduled work has run to completion. 2833 * 2834 * Forces execution of the kernel-global workqueue and blocks until its 2835 * completion. 2836 * 2837 * Think twice before calling this function! It's very easy to get into 2838 * trouble if you don't take great care. Either of the following situations 2839 * will lead to deadlock: 2840 * 2841 * One of the work items currently on the workqueue needs to acquire 2842 * a lock held by your code or its caller. 2843 * 2844 * Your code is running in the context of a work routine. 2845 * 2846 * They will be detected by lockdep when they occur, but the first might not 2847 * occur very often. It depends on what work items are on the workqueue and 2848 * what locks they need, which you have no control over. 2849 * 2850 * In most situations flushing the entire workqueue is overkill; you merely 2851 * need to know that a particular work item isn't queued and isn't running. 2852 * In such cases you should use cancel_delayed_work_sync() or 2853 * cancel_work_sync() instead. 2854 */ 2855 void flush_scheduled_work(void) 2856 { 2857 flush_workqueue(system_wq); 2858 } 2859 EXPORT_SYMBOL(flush_scheduled_work); 2860 2861 /** 2862 * execute_in_process_context - reliably execute the routine with user context 2863 * @fn: the function to execute 2864 * @ew: guaranteed storage for the execute work structure (must 2865 * be available when the work executes) 2866 * 2867 * Executes the function immediately if process context is available, 2868 * otherwise schedules the function for delayed execution. 2869 * 2870 * Returns: 0 - function was executed 2871 * 1 - function was scheduled for execution 2872 */ 2873 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 2874 { 2875 if (!in_interrupt()) { 2876 fn(&ew->work); 2877 return 0; 2878 } 2879 2880 INIT_WORK(&ew->work, fn); 2881 schedule_work(&ew->work); 2882 2883 return 1; 2884 } 2885 EXPORT_SYMBOL_GPL(execute_in_process_context); 2886 2887 int keventd_up(void) 2888 { 2889 return system_wq != NULL; 2890 } 2891 2892 static int alloc_cwqs(struct workqueue_struct *wq) 2893 { 2894 /* 2895 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS. 2896 * Make sure that the alignment isn't lower than that of 2897 * unsigned long long. 2898 */ 2899 const size_t size = sizeof(struct cpu_workqueue_struct); 2900 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS, 2901 __alignof__(unsigned long long)); 2902 #ifdef CONFIG_SMP 2903 bool percpu = !(wq->flags & WQ_UNBOUND); 2904 #else 2905 bool percpu = false; 2906 #endif 2907 2908 if (percpu) 2909 wq->cpu_wq.pcpu = __alloc_percpu(size, align); 2910 else { 2911 void *ptr; 2912 2913 /* 2914 * Allocate enough room to align cwq and put an extra 2915 * pointer at the end pointing back to the originally 2916 * allocated pointer which will be used for free. 2917 */ 2918 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL); 2919 if (ptr) { 2920 wq->cpu_wq.single = PTR_ALIGN(ptr, align); 2921 *(void **)(wq->cpu_wq.single + 1) = ptr; 2922 } 2923 } 2924 2925 /* just in case, make sure it's actually aligned */ 2926 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align)); 2927 return wq->cpu_wq.v ? 0 : -ENOMEM; 2928 } 2929 2930 static void free_cwqs(struct workqueue_struct *wq) 2931 { 2932 #ifdef CONFIG_SMP 2933 bool percpu = !(wq->flags & WQ_UNBOUND); 2934 #else 2935 bool percpu = false; 2936 #endif 2937 2938 if (percpu) 2939 free_percpu(wq->cpu_wq.pcpu); 2940 else if (wq->cpu_wq.single) { 2941 /* the pointer to free is stored right after the cwq */ 2942 kfree(*(void **)(wq->cpu_wq.single + 1)); 2943 } 2944 } 2945 2946 static int wq_clamp_max_active(int max_active, unsigned int flags, 2947 const char *name) 2948 { 2949 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 2950 2951 if (max_active < 1 || max_active > lim) 2952 printk(KERN_WARNING "workqueue: max_active %d requested for %s " 2953 "is out of range, clamping between %d and %d\n", 2954 max_active, name, 1, lim); 2955 2956 return clamp_val(max_active, 1, lim); 2957 } 2958 2959 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 2960 unsigned int flags, 2961 int max_active, 2962 struct lock_class_key *key, 2963 const char *lock_name, ...) 2964 { 2965 va_list args, args1; 2966 struct workqueue_struct *wq; 2967 unsigned int cpu; 2968 size_t namelen; 2969 2970 /* determine namelen, allocate wq and format name */ 2971 va_start(args, lock_name); 2972 va_copy(args1, args); 2973 namelen = vsnprintf(NULL, 0, fmt, args) + 1; 2974 2975 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL); 2976 if (!wq) 2977 goto err; 2978 2979 vsnprintf(wq->name, namelen, fmt, args1); 2980 va_end(args); 2981 va_end(args1); 2982 2983 /* 2984 * Workqueues which may be used during memory reclaim should 2985 * have a rescuer to guarantee forward progress. 2986 */ 2987 if (flags & WQ_MEM_RECLAIM) 2988 flags |= WQ_RESCUER; 2989 2990 /* 2991 * Unbound workqueues aren't concurrency managed and should be 2992 * dispatched to workers immediately. 2993 */ 2994 if (flags & WQ_UNBOUND) 2995 flags |= WQ_HIGHPRI; 2996 2997 max_active = max_active ?: WQ_DFL_ACTIVE; 2998 max_active = wq_clamp_max_active(max_active, flags, wq->name); 2999 3000 /* init wq */ 3001 wq->flags = flags; 3002 wq->saved_max_active = max_active; 3003 mutex_init(&wq->flush_mutex); 3004 atomic_set(&wq->nr_cwqs_to_flush, 0); 3005 INIT_LIST_HEAD(&wq->flusher_queue); 3006 INIT_LIST_HEAD(&wq->flusher_overflow); 3007 3008 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 3009 INIT_LIST_HEAD(&wq->list); 3010 3011 if (alloc_cwqs(wq) < 0) 3012 goto err; 3013 3014 for_each_cwq_cpu(cpu, wq) { 3015 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3016 struct global_cwq *gcwq = get_gcwq(cpu); 3017 3018 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK); 3019 cwq->gcwq = gcwq; 3020 cwq->wq = wq; 3021 cwq->flush_color = -1; 3022 cwq->max_active = max_active; 3023 INIT_LIST_HEAD(&cwq->delayed_works); 3024 } 3025 3026 if (flags & WQ_RESCUER) { 3027 struct worker *rescuer; 3028 3029 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL)) 3030 goto err; 3031 3032 wq->rescuer = rescuer = alloc_worker(); 3033 if (!rescuer) 3034 goto err; 3035 3036 rescuer->task = kthread_create(rescuer_thread, wq, "%s", 3037 wq->name); 3038 if (IS_ERR(rescuer->task)) 3039 goto err; 3040 3041 rescuer->task->flags |= PF_THREAD_BOUND; 3042 wake_up_process(rescuer->task); 3043 } 3044 3045 /* 3046 * workqueue_lock protects global freeze state and workqueues 3047 * list. Grab it, set max_active accordingly and add the new 3048 * workqueue to workqueues list. 3049 */ 3050 spin_lock(&workqueue_lock); 3051 3052 if (workqueue_freezing && wq->flags & WQ_FREEZABLE) 3053 for_each_cwq_cpu(cpu, wq) 3054 get_cwq(cpu, wq)->max_active = 0; 3055 3056 list_add(&wq->list, &workqueues); 3057 3058 spin_unlock(&workqueue_lock); 3059 3060 return wq; 3061 err: 3062 if (wq) { 3063 free_cwqs(wq); 3064 free_mayday_mask(wq->mayday_mask); 3065 kfree(wq->rescuer); 3066 kfree(wq); 3067 } 3068 return NULL; 3069 } 3070 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 3071 3072 /** 3073 * destroy_workqueue - safely terminate a workqueue 3074 * @wq: target workqueue 3075 * 3076 * Safely destroy a workqueue. All work currently pending will be done first. 3077 */ 3078 void destroy_workqueue(struct workqueue_struct *wq) 3079 { 3080 unsigned int cpu; 3081 3082 /* drain it before proceeding with destruction */ 3083 drain_workqueue(wq); 3084 3085 /* 3086 * wq list is used to freeze wq, remove from list after 3087 * flushing is complete in case freeze races us. 3088 */ 3089 spin_lock(&workqueue_lock); 3090 list_del(&wq->list); 3091 spin_unlock(&workqueue_lock); 3092 3093 /* sanity check */ 3094 for_each_cwq_cpu(cpu, wq) { 3095 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3096 int i; 3097 3098 for (i = 0; i < WORK_NR_COLORS; i++) 3099 BUG_ON(cwq->nr_in_flight[i]); 3100 BUG_ON(cwq->nr_active); 3101 BUG_ON(!list_empty(&cwq->delayed_works)); 3102 } 3103 3104 if (wq->flags & WQ_RESCUER) { 3105 kthread_stop(wq->rescuer->task); 3106 free_mayday_mask(wq->mayday_mask); 3107 kfree(wq->rescuer); 3108 } 3109 3110 free_cwqs(wq); 3111 kfree(wq); 3112 } 3113 EXPORT_SYMBOL_GPL(destroy_workqueue); 3114 3115 /** 3116 * workqueue_set_max_active - adjust max_active of a workqueue 3117 * @wq: target workqueue 3118 * @max_active: new max_active value. 3119 * 3120 * Set max_active of @wq to @max_active. 3121 * 3122 * CONTEXT: 3123 * Don't call from IRQ context. 3124 */ 3125 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 3126 { 3127 unsigned int cpu; 3128 3129 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 3130 3131 spin_lock(&workqueue_lock); 3132 3133 wq->saved_max_active = max_active; 3134 3135 for_each_cwq_cpu(cpu, wq) { 3136 struct global_cwq *gcwq = get_gcwq(cpu); 3137 3138 spin_lock_irq(&gcwq->lock); 3139 3140 if (!(wq->flags & WQ_FREEZABLE) || 3141 !(gcwq->flags & GCWQ_FREEZING)) 3142 get_cwq(gcwq->cpu, wq)->max_active = max_active; 3143 3144 spin_unlock_irq(&gcwq->lock); 3145 } 3146 3147 spin_unlock(&workqueue_lock); 3148 } 3149 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 3150 3151 /** 3152 * workqueue_congested - test whether a workqueue is congested 3153 * @cpu: CPU in question 3154 * @wq: target workqueue 3155 * 3156 * Test whether @wq's cpu workqueue for @cpu is congested. There is 3157 * no synchronization around this function and the test result is 3158 * unreliable and only useful as advisory hints or for debugging. 3159 * 3160 * RETURNS: 3161 * %true if congested, %false otherwise. 3162 */ 3163 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq) 3164 { 3165 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3166 3167 return !list_empty(&cwq->delayed_works); 3168 } 3169 EXPORT_SYMBOL_GPL(workqueue_congested); 3170 3171 /** 3172 * work_cpu - return the last known associated cpu for @work 3173 * @work: the work of interest 3174 * 3175 * RETURNS: 3176 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise. 3177 */ 3178 unsigned int work_cpu(struct work_struct *work) 3179 { 3180 struct global_cwq *gcwq = get_work_gcwq(work); 3181 3182 return gcwq ? gcwq->cpu : WORK_CPU_NONE; 3183 } 3184 EXPORT_SYMBOL_GPL(work_cpu); 3185 3186 /** 3187 * work_busy - test whether a work is currently pending or running 3188 * @work: the work to be tested 3189 * 3190 * Test whether @work is currently pending or running. There is no 3191 * synchronization around this function and the test result is 3192 * unreliable and only useful as advisory hints or for debugging. 3193 * Especially for reentrant wqs, the pending state might hide the 3194 * running state. 3195 * 3196 * RETURNS: 3197 * OR'd bitmask of WORK_BUSY_* bits. 3198 */ 3199 unsigned int work_busy(struct work_struct *work) 3200 { 3201 struct global_cwq *gcwq = get_work_gcwq(work); 3202 unsigned long flags; 3203 unsigned int ret = 0; 3204 3205 if (!gcwq) 3206 return false; 3207 3208 spin_lock_irqsave(&gcwq->lock, flags); 3209 3210 if (work_pending(work)) 3211 ret |= WORK_BUSY_PENDING; 3212 if (find_worker_executing_work(gcwq, work)) 3213 ret |= WORK_BUSY_RUNNING; 3214 3215 spin_unlock_irqrestore(&gcwq->lock, flags); 3216 3217 return ret; 3218 } 3219 EXPORT_SYMBOL_GPL(work_busy); 3220 3221 /* 3222 * CPU hotplug. 3223 * 3224 * There are two challenges in supporting CPU hotplug. Firstly, there 3225 * are a lot of assumptions on strong associations among work, cwq and 3226 * gcwq which make migrating pending and scheduled works very 3227 * difficult to implement without impacting hot paths. Secondly, 3228 * gcwqs serve mix of short, long and very long running works making 3229 * blocked draining impractical. 3230 * 3231 * This is solved by allowing a gcwq to be detached from CPU, running 3232 * it with unbound (rogue) workers and allowing it to be reattached 3233 * later if the cpu comes back online. A separate thread is created 3234 * to govern a gcwq in such state and is called the trustee of the 3235 * gcwq. 3236 * 3237 * Trustee states and their descriptions. 3238 * 3239 * START Command state used on startup. On CPU_DOWN_PREPARE, a 3240 * new trustee is started with this state. 3241 * 3242 * IN_CHARGE Once started, trustee will enter this state after 3243 * assuming the manager role and making all existing 3244 * workers rogue. DOWN_PREPARE waits for trustee to 3245 * enter this state. After reaching IN_CHARGE, trustee 3246 * tries to execute the pending worklist until it's empty 3247 * and the state is set to BUTCHER, or the state is set 3248 * to RELEASE. 3249 * 3250 * BUTCHER Command state which is set by the cpu callback after 3251 * the cpu has went down. Once this state is set trustee 3252 * knows that there will be no new works on the worklist 3253 * and once the worklist is empty it can proceed to 3254 * killing idle workers. 3255 * 3256 * RELEASE Command state which is set by the cpu callback if the 3257 * cpu down has been canceled or it has come online 3258 * again. After recognizing this state, trustee stops 3259 * trying to drain or butcher and clears ROGUE, rebinds 3260 * all remaining workers back to the cpu and releases 3261 * manager role. 3262 * 3263 * DONE Trustee will enter this state after BUTCHER or RELEASE 3264 * is complete. 3265 * 3266 * trustee CPU draining 3267 * took over down complete 3268 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE 3269 * | | ^ 3270 * | CPU is back online v return workers | 3271 * ----------------> RELEASE -------------- 3272 */ 3273 3274 /** 3275 * trustee_wait_event_timeout - timed event wait for trustee 3276 * @cond: condition to wait for 3277 * @timeout: timeout in jiffies 3278 * 3279 * wait_event_timeout() for trustee to use. Handles locking and 3280 * checks for RELEASE request. 3281 * 3282 * CONTEXT: 3283 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3284 * multiple times. To be used by trustee. 3285 * 3286 * RETURNS: 3287 * Positive indicating left time if @cond is satisfied, 0 if timed 3288 * out, -1 if canceled. 3289 */ 3290 #define trustee_wait_event_timeout(cond, timeout) ({ \ 3291 long __ret = (timeout); \ 3292 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \ 3293 __ret) { \ 3294 spin_unlock_irq(&gcwq->lock); \ 3295 __wait_event_timeout(gcwq->trustee_wait, (cond) || \ 3296 (gcwq->trustee_state == TRUSTEE_RELEASE), \ 3297 __ret); \ 3298 spin_lock_irq(&gcwq->lock); \ 3299 } \ 3300 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \ 3301 }) 3302 3303 /** 3304 * trustee_wait_event - event wait for trustee 3305 * @cond: condition to wait for 3306 * 3307 * wait_event() for trustee to use. Automatically handles locking and 3308 * checks for CANCEL request. 3309 * 3310 * CONTEXT: 3311 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3312 * multiple times. To be used by trustee. 3313 * 3314 * RETURNS: 3315 * 0 if @cond is satisfied, -1 if canceled. 3316 */ 3317 #define trustee_wait_event(cond) ({ \ 3318 long __ret1; \ 3319 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\ 3320 __ret1 < 0 ? -1 : 0; \ 3321 }) 3322 3323 static int __cpuinit trustee_thread(void *__gcwq) 3324 { 3325 struct global_cwq *gcwq = __gcwq; 3326 struct worker *worker; 3327 struct work_struct *work; 3328 struct hlist_node *pos; 3329 long rc; 3330 int i; 3331 3332 BUG_ON(gcwq->cpu != smp_processor_id()); 3333 3334 spin_lock_irq(&gcwq->lock); 3335 /* 3336 * Claim the manager position and make all workers rogue. 3337 * Trustee must be bound to the target cpu and can't be 3338 * cancelled. 3339 */ 3340 BUG_ON(gcwq->cpu != smp_processor_id()); 3341 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS)); 3342 BUG_ON(rc < 0); 3343 3344 gcwq->flags |= GCWQ_MANAGING_WORKERS; 3345 3346 list_for_each_entry(worker, &gcwq->idle_list, entry) 3347 worker->flags |= WORKER_ROGUE; 3348 3349 for_each_busy_worker(worker, i, pos, gcwq) 3350 worker->flags |= WORKER_ROGUE; 3351 3352 /* 3353 * Call schedule() so that we cross rq->lock and thus can 3354 * guarantee sched callbacks see the rogue flag. This is 3355 * necessary as scheduler callbacks may be invoked from other 3356 * cpus. 3357 */ 3358 spin_unlock_irq(&gcwq->lock); 3359 schedule(); 3360 spin_lock_irq(&gcwq->lock); 3361 3362 /* 3363 * Sched callbacks are disabled now. Zap nr_running. After 3364 * this, nr_running stays zero and need_more_worker() and 3365 * keep_working() are always true as long as the worklist is 3366 * not empty. 3367 */ 3368 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0); 3369 3370 spin_unlock_irq(&gcwq->lock); 3371 del_timer_sync(&gcwq->idle_timer); 3372 spin_lock_irq(&gcwq->lock); 3373 3374 /* 3375 * We're now in charge. Notify and proceed to drain. We need 3376 * to keep the gcwq running during the whole CPU down 3377 * procedure as other cpu hotunplug callbacks may need to 3378 * flush currently running tasks. 3379 */ 3380 gcwq->trustee_state = TRUSTEE_IN_CHARGE; 3381 wake_up_all(&gcwq->trustee_wait); 3382 3383 /* 3384 * The original cpu is in the process of dying and may go away 3385 * anytime now. When that happens, we and all workers would 3386 * be migrated to other cpus. Try draining any left work. We 3387 * want to get it over with ASAP - spam rescuers, wake up as 3388 * many idlers as necessary and create new ones till the 3389 * worklist is empty. Note that if the gcwq is frozen, there 3390 * may be frozen works in freezable cwqs. Don't declare 3391 * completion while frozen. 3392 */ 3393 while (gcwq->nr_workers != gcwq->nr_idle || 3394 gcwq->flags & GCWQ_FREEZING || 3395 gcwq->trustee_state == TRUSTEE_IN_CHARGE) { 3396 int nr_works = 0; 3397 3398 list_for_each_entry(work, &gcwq->worklist, entry) { 3399 send_mayday(work); 3400 nr_works++; 3401 } 3402 3403 list_for_each_entry(worker, &gcwq->idle_list, entry) { 3404 if (!nr_works--) 3405 break; 3406 wake_up_process(worker->task); 3407 } 3408 3409 if (need_to_create_worker(gcwq)) { 3410 spin_unlock_irq(&gcwq->lock); 3411 worker = create_worker(gcwq, false); 3412 spin_lock_irq(&gcwq->lock); 3413 if (worker) { 3414 worker->flags |= WORKER_ROGUE; 3415 start_worker(worker); 3416 } 3417 } 3418 3419 /* give a breather */ 3420 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0) 3421 break; 3422 } 3423 3424 /* 3425 * Either all works have been scheduled and cpu is down, or 3426 * cpu down has already been canceled. Wait for and butcher 3427 * all workers till we're canceled. 3428 */ 3429 do { 3430 rc = trustee_wait_event(!list_empty(&gcwq->idle_list)); 3431 while (!list_empty(&gcwq->idle_list)) 3432 destroy_worker(list_first_entry(&gcwq->idle_list, 3433 struct worker, entry)); 3434 } while (gcwq->nr_workers && rc >= 0); 3435 3436 /* 3437 * At this point, either draining has completed and no worker 3438 * is left, or cpu down has been canceled or the cpu is being 3439 * brought back up. There shouldn't be any idle one left. 3440 * Tell the remaining busy ones to rebind once it finishes the 3441 * currently scheduled works by scheduling the rebind_work. 3442 */ 3443 WARN_ON(!list_empty(&gcwq->idle_list)); 3444 3445 for_each_busy_worker(worker, i, pos, gcwq) { 3446 struct work_struct *rebind_work = &worker->rebind_work; 3447 3448 /* 3449 * Rebind_work may race with future cpu hotplug 3450 * operations. Use a separate flag to mark that 3451 * rebinding is scheduled. 3452 */ 3453 worker->flags |= WORKER_REBIND; 3454 worker->flags &= ~WORKER_ROGUE; 3455 3456 /* queue rebind_work, wq doesn't matter, use the default one */ 3457 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT, 3458 work_data_bits(rebind_work))) 3459 continue; 3460 3461 debug_work_activate(rebind_work); 3462 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work, 3463 worker->scheduled.next, 3464 work_color_to_flags(WORK_NO_COLOR)); 3465 } 3466 3467 /* relinquish manager role */ 3468 gcwq->flags &= ~GCWQ_MANAGING_WORKERS; 3469 3470 /* notify completion */ 3471 gcwq->trustee = NULL; 3472 gcwq->trustee_state = TRUSTEE_DONE; 3473 wake_up_all(&gcwq->trustee_wait); 3474 spin_unlock_irq(&gcwq->lock); 3475 return 0; 3476 } 3477 3478 /** 3479 * wait_trustee_state - wait for trustee to enter the specified state 3480 * @gcwq: gcwq the trustee of interest belongs to 3481 * @state: target state to wait for 3482 * 3483 * Wait for the trustee to reach @state. DONE is already matched. 3484 * 3485 * CONTEXT: 3486 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3487 * multiple times. To be used by cpu_callback. 3488 */ 3489 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state) 3490 __releases(&gcwq->lock) 3491 __acquires(&gcwq->lock) 3492 { 3493 if (!(gcwq->trustee_state == state || 3494 gcwq->trustee_state == TRUSTEE_DONE)) { 3495 spin_unlock_irq(&gcwq->lock); 3496 __wait_event(gcwq->trustee_wait, 3497 gcwq->trustee_state == state || 3498 gcwq->trustee_state == TRUSTEE_DONE); 3499 spin_lock_irq(&gcwq->lock); 3500 } 3501 } 3502 3503 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, 3504 unsigned long action, 3505 void *hcpu) 3506 { 3507 unsigned int cpu = (unsigned long)hcpu; 3508 struct global_cwq *gcwq = get_gcwq(cpu); 3509 struct task_struct *new_trustee = NULL; 3510 struct worker *uninitialized_var(new_worker); 3511 unsigned long flags; 3512 3513 action &= ~CPU_TASKS_FROZEN; 3514 3515 switch (action) { 3516 case CPU_DOWN_PREPARE: 3517 new_trustee = kthread_create(trustee_thread, gcwq, 3518 "workqueue_trustee/%d\n", cpu); 3519 if (IS_ERR(new_trustee)) 3520 return notifier_from_errno(PTR_ERR(new_trustee)); 3521 kthread_bind(new_trustee, cpu); 3522 /* fall through */ 3523 case CPU_UP_PREPARE: 3524 BUG_ON(gcwq->first_idle); 3525 new_worker = create_worker(gcwq, false); 3526 if (!new_worker) { 3527 if (new_trustee) 3528 kthread_stop(new_trustee); 3529 return NOTIFY_BAD; 3530 } 3531 } 3532 3533 /* some are called w/ irq disabled, don't disturb irq status */ 3534 spin_lock_irqsave(&gcwq->lock, flags); 3535 3536 switch (action) { 3537 case CPU_DOWN_PREPARE: 3538 /* initialize trustee and tell it to acquire the gcwq */ 3539 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE); 3540 gcwq->trustee = new_trustee; 3541 gcwq->trustee_state = TRUSTEE_START; 3542 wake_up_process(gcwq->trustee); 3543 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE); 3544 /* fall through */ 3545 case CPU_UP_PREPARE: 3546 BUG_ON(gcwq->first_idle); 3547 gcwq->first_idle = new_worker; 3548 break; 3549 3550 case CPU_DYING: 3551 /* 3552 * Before this, the trustee and all workers except for 3553 * the ones which are still executing works from 3554 * before the last CPU down must be on the cpu. After 3555 * this, they'll all be diasporas. 3556 */ 3557 gcwq->flags |= GCWQ_DISASSOCIATED; 3558 break; 3559 3560 case CPU_POST_DEAD: 3561 gcwq->trustee_state = TRUSTEE_BUTCHER; 3562 /* fall through */ 3563 case CPU_UP_CANCELED: 3564 destroy_worker(gcwq->first_idle); 3565 gcwq->first_idle = NULL; 3566 break; 3567 3568 case CPU_DOWN_FAILED: 3569 case CPU_ONLINE: 3570 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3571 if (gcwq->trustee_state != TRUSTEE_DONE) { 3572 gcwq->trustee_state = TRUSTEE_RELEASE; 3573 wake_up_process(gcwq->trustee); 3574 wait_trustee_state(gcwq, TRUSTEE_DONE); 3575 } 3576 3577 /* 3578 * Trustee is done and there might be no worker left. 3579 * Put the first_idle in and request a real manager to 3580 * take a look. 3581 */ 3582 spin_unlock_irq(&gcwq->lock); 3583 kthread_bind(gcwq->first_idle->task, cpu); 3584 spin_lock_irq(&gcwq->lock); 3585 gcwq->flags |= GCWQ_MANAGE_WORKERS; 3586 start_worker(gcwq->first_idle); 3587 gcwq->first_idle = NULL; 3588 break; 3589 } 3590 3591 spin_unlock_irqrestore(&gcwq->lock, flags); 3592 3593 return notifier_from_errno(0); 3594 } 3595 3596 #ifdef CONFIG_SMP 3597 3598 struct work_for_cpu { 3599 struct completion completion; 3600 long (*fn)(void *); 3601 void *arg; 3602 long ret; 3603 }; 3604 3605 static int do_work_for_cpu(void *_wfc) 3606 { 3607 struct work_for_cpu *wfc = _wfc; 3608 wfc->ret = wfc->fn(wfc->arg); 3609 complete(&wfc->completion); 3610 return 0; 3611 } 3612 3613 /** 3614 * work_on_cpu - run a function in user context on a particular cpu 3615 * @cpu: the cpu to run on 3616 * @fn: the function to run 3617 * @arg: the function arg 3618 * 3619 * This will return the value @fn returns. 3620 * It is up to the caller to ensure that the cpu doesn't go offline. 3621 * The caller must not hold any locks which would prevent @fn from completing. 3622 */ 3623 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) 3624 { 3625 struct task_struct *sub_thread; 3626 struct work_for_cpu wfc = { 3627 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion), 3628 .fn = fn, 3629 .arg = arg, 3630 }; 3631 3632 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu"); 3633 if (IS_ERR(sub_thread)) 3634 return PTR_ERR(sub_thread); 3635 kthread_bind(sub_thread, cpu); 3636 wake_up_process(sub_thread); 3637 wait_for_completion(&wfc.completion); 3638 return wfc.ret; 3639 } 3640 EXPORT_SYMBOL_GPL(work_on_cpu); 3641 #endif /* CONFIG_SMP */ 3642 3643 #ifdef CONFIG_FREEZER 3644 3645 /** 3646 * freeze_workqueues_begin - begin freezing workqueues 3647 * 3648 * Start freezing workqueues. After this function returns, all freezable 3649 * workqueues will queue new works to their frozen_works list instead of 3650 * gcwq->worklist. 3651 * 3652 * CONTEXT: 3653 * Grabs and releases workqueue_lock and gcwq->lock's. 3654 */ 3655 void freeze_workqueues_begin(void) 3656 { 3657 unsigned int cpu; 3658 3659 spin_lock(&workqueue_lock); 3660 3661 BUG_ON(workqueue_freezing); 3662 workqueue_freezing = true; 3663 3664 for_each_gcwq_cpu(cpu) { 3665 struct global_cwq *gcwq = get_gcwq(cpu); 3666 struct workqueue_struct *wq; 3667 3668 spin_lock_irq(&gcwq->lock); 3669 3670 BUG_ON(gcwq->flags & GCWQ_FREEZING); 3671 gcwq->flags |= GCWQ_FREEZING; 3672 3673 list_for_each_entry(wq, &workqueues, list) { 3674 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3675 3676 if (cwq && wq->flags & WQ_FREEZABLE) 3677 cwq->max_active = 0; 3678 } 3679 3680 spin_unlock_irq(&gcwq->lock); 3681 } 3682 3683 spin_unlock(&workqueue_lock); 3684 } 3685 3686 /** 3687 * freeze_workqueues_busy - are freezable workqueues still busy? 3688 * 3689 * Check whether freezing is complete. This function must be called 3690 * between freeze_workqueues_begin() and thaw_workqueues(). 3691 * 3692 * CONTEXT: 3693 * Grabs and releases workqueue_lock. 3694 * 3695 * RETURNS: 3696 * %true if some freezable workqueues are still busy. %false if freezing 3697 * is complete. 3698 */ 3699 bool freeze_workqueues_busy(void) 3700 { 3701 unsigned int cpu; 3702 bool busy = false; 3703 3704 spin_lock(&workqueue_lock); 3705 3706 BUG_ON(!workqueue_freezing); 3707 3708 for_each_gcwq_cpu(cpu) { 3709 struct workqueue_struct *wq; 3710 /* 3711 * nr_active is monotonically decreasing. It's safe 3712 * to peek without lock. 3713 */ 3714 list_for_each_entry(wq, &workqueues, list) { 3715 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3716 3717 if (!cwq || !(wq->flags & WQ_FREEZABLE)) 3718 continue; 3719 3720 BUG_ON(cwq->nr_active < 0); 3721 if (cwq->nr_active) { 3722 busy = true; 3723 goto out_unlock; 3724 } 3725 } 3726 } 3727 out_unlock: 3728 spin_unlock(&workqueue_lock); 3729 return busy; 3730 } 3731 3732 /** 3733 * thaw_workqueues - thaw workqueues 3734 * 3735 * Thaw workqueues. Normal queueing is restored and all collected 3736 * frozen works are transferred to their respective gcwq worklists. 3737 * 3738 * CONTEXT: 3739 * Grabs and releases workqueue_lock and gcwq->lock's. 3740 */ 3741 void thaw_workqueues(void) 3742 { 3743 unsigned int cpu; 3744 3745 spin_lock(&workqueue_lock); 3746 3747 if (!workqueue_freezing) 3748 goto out_unlock; 3749 3750 for_each_gcwq_cpu(cpu) { 3751 struct global_cwq *gcwq = get_gcwq(cpu); 3752 struct workqueue_struct *wq; 3753 3754 spin_lock_irq(&gcwq->lock); 3755 3756 BUG_ON(!(gcwq->flags & GCWQ_FREEZING)); 3757 gcwq->flags &= ~GCWQ_FREEZING; 3758 3759 list_for_each_entry(wq, &workqueues, list) { 3760 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3761 3762 if (!cwq || !(wq->flags & WQ_FREEZABLE)) 3763 continue; 3764 3765 /* restore max_active and repopulate worklist */ 3766 cwq->max_active = wq->saved_max_active; 3767 3768 while (!list_empty(&cwq->delayed_works) && 3769 cwq->nr_active < cwq->max_active) 3770 cwq_activate_first_delayed(cwq); 3771 } 3772 3773 wake_up_worker(gcwq); 3774 3775 spin_unlock_irq(&gcwq->lock); 3776 } 3777 3778 workqueue_freezing = false; 3779 out_unlock: 3780 spin_unlock(&workqueue_lock); 3781 } 3782 #endif /* CONFIG_FREEZER */ 3783 3784 static int __init init_workqueues(void) 3785 { 3786 unsigned int cpu; 3787 int i; 3788 3789 cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE); 3790 3791 /* initialize gcwqs */ 3792 for_each_gcwq_cpu(cpu) { 3793 struct global_cwq *gcwq = get_gcwq(cpu); 3794 3795 spin_lock_init(&gcwq->lock); 3796 INIT_LIST_HEAD(&gcwq->worklist); 3797 gcwq->cpu = cpu; 3798 gcwq->flags |= GCWQ_DISASSOCIATED; 3799 3800 INIT_LIST_HEAD(&gcwq->idle_list); 3801 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) 3802 INIT_HLIST_HEAD(&gcwq->busy_hash[i]); 3803 3804 init_timer_deferrable(&gcwq->idle_timer); 3805 gcwq->idle_timer.function = idle_worker_timeout; 3806 gcwq->idle_timer.data = (unsigned long)gcwq; 3807 3808 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout, 3809 (unsigned long)gcwq); 3810 3811 ida_init(&gcwq->worker_ida); 3812 3813 gcwq->trustee_state = TRUSTEE_DONE; 3814 init_waitqueue_head(&gcwq->trustee_wait); 3815 } 3816 3817 /* create the initial worker */ 3818 for_each_online_gcwq_cpu(cpu) { 3819 struct global_cwq *gcwq = get_gcwq(cpu); 3820 struct worker *worker; 3821 3822 if (cpu != WORK_CPU_UNBOUND) 3823 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3824 worker = create_worker(gcwq, true); 3825 BUG_ON(!worker); 3826 spin_lock_irq(&gcwq->lock); 3827 start_worker(worker); 3828 spin_unlock_irq(&gcwq->lock); 3829 } 3830 3831 system_wq = alloc_workqueue("events", 0, 0); 3832 system_long_wq = alloc_workqueue("events_long", 0, 0); 3833 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0); 3834 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 3835 WQ_UNBOUND_MAX_ACTIVE); 3836 system_freezable_wq = alloc_workqueue("events_freezable", 3837 WQ_FREEZABLE, 0); 3838 system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable", 3839 WQ_NON_REENTRANT | WQ_FREEZABLE, 0); 3840 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq || 3841 !system_unbound_wq || !system_freezable_wq || 3842 !system_nrt_freezable_wq); 3843 return 0; 3844 } 3845 early_initcall(init_workqueues); 3846