1 /* 2 * linux/kernel/workqueue.c 3 * 4 * Generic mechanism for defining kernel helper threads for running 5 * arbitrary tasks in process context. 6 * 7 * Started by Ingo Molnar, Copyright (C) 2002 8 * 9 * Derived from the taskqueue/keventd code by: 10 * 11 * David Woodhouse <dwmw2@infradead.org> 12 * Andrew Morton 13 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 14 * Theodore Ts'o <tytso@mit.edu> 15 * 16 * Made to use alloc_percpu by Christoph Lameter. 17 */ 18 19 #include <linux/module.h> 20 #include <linux/kernel.h> 21 #include <linux/sched.h> 22 #include <linux/init.h> 23 #include <linux/signal.h> 24 #include <linux/completion.h> 25 #include <linux/workqueue.h> 26 #include <linux/slab.h> 27 #include <linux/cpu.h> 28 #include <linux/notifier.h> 29 #include <linux/kthread.h> 30 #include <linux/hardirq.h> 31 #include <linux/mempolicy.h> 32 #include <linux/freezer.h> 33 #include <linux/kallsyms.h> 34 #include <linux/debug_locks.h> 35 #include <linux/lockdep.h> 36 #include <linux/idr.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/workqueue.h> 40 41 #include "workqueue_sched.h" 42 43 enum { 44 /* global_cwq flags */ 45 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */ 46 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */ 47 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 48 GCWQ_FREEZING = 1 << 3, /* freeze in progress */ 49 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */ 50 51 /* worker flags */ 52 WORKER_STARTED = 1 << 0, /* started */ 53 WORKER_DIE = 1 << 1, /* die die die */ 54 WORKER_IDLE = 1 << 2, /* is idle */ 55 WORKER_PREP = 1 << 3, /* preparing to run works */ 56 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */ 57 WORKER_REBIND = 1 << 5, /* mom is home, come back */ 58 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 59 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 60 61 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND | 62 WORKER_CPU_INTENSIVE | WORKER_UNBOUND, 63 64 /* gcwq->trustee_state */ 65 TRUSTEE_START = 0, /* start */ 66 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */ 67 TRUSTEE_BUTCHER = 2, /* butcher workers */ 68 TRUSTEE_RELEASE = 3, /* release workers */ 69 TRUSTEE_DONE = 4, /* trustee is done */ 70 71 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 72 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER, 73 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1, 74 75 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 76 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 77 78 MAYDAY_INITIAL_TIMEOUT = HZ / 100, /* call for help after 10ms */ 79 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 80 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 81 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */ 82 83 /* 84 * Rescue workers are used only on emergencies and shared by 85 * all cpus. Give -20. 86 */ 87 RESCUER_NICE_LEVEL = -20, 88 }; 89 90 /* 91 * Structure fields follow one of the following exclusion rules. 92 * 93 * I: Set during initialization and read-only afterwards. 94 * 95 * P: Preemption protected. Disabling preemption is enough and should 96 * only be modified and accessed from the local cpu. 97 * 98 * L: gcwq->lock protected. Access with gcwq->lock held. 99 * 100 * X: During normal operation, modification requires gcwq->lock and 101 * should be done only from local cpu. Either disabling preemption 102 * on local cpu or grabbing gcwq->lock is enough for read access. 103 * If GCWQ_DISASSOCIATED is set, it's identical to L. 104 * 105 * F: wq->flush_mutex protected. 106 * 107 * W: workqueue_lock protected. 108 */ 109 110 struct global_cwq; 111 112 /* 113 * The poor guys doing the actual heavy lifting. All on-duty workers 114 * are either serving the manager role, on idle list or on busy hash. 115 */ 116 struct worker { 117 /* on idle list while idle, on busy hash table while busy */ 118 union { 119 struct list_head entry; /* L: while idle */ 120 struct hlist_node hentry; /* L: while busy */ 121 }; 122 123 struct work_struct *current_work; /* L: work being processed */ 124 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */ 125 struct list_head scheduled; /* L: scheduled works */ 126 struct task_struct *task; /* I: worker task */ 127 struct global_cwq *gcwq; /* I: the associated gcwq */ 128 /* 64 bytes boundary on 64bit, 32 on 32bit */ 129 unsigned long last_active; /* L: last active timestamp */ 130 unsigned int flags; /* X: flags */ 131 int id; /* I: worker id */ 132 struct work_struct rebind_work; /* L: rebind worker to cpu */ 133 }; 134 135 /* 136 * Global per-cpu workqueue. There's one and only one for each cpu 137 * and all works are queued and processed here regardless of their 138 * target workqueues. 139 */ 140 struct global_cwq { 141 spinlock_t lock; /* the gcwq lock */ 142 struct list_head worklist; /* L: list of pending works */ 143 unsigned int cpu; /* I: the associated cpu */ 144 unsigned int flags; /* L: GCWQ_* flags */ 145 146 int nr_workers; /* L: total number of workers */ 147 int nr_idle; /* L: currently idle ones */ 148 149 /* workers are chained either in the idle_list or busy_hash */ 150 struct list_head idle_list; /* X: list of idle workers */ 151 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE]; 152 /* L: hash of busy workers */ 153 154 struct timer_list idle_timer; /* L: worker idle timeout */ 155 struct timer_list mayday_timer; /* L: SOS timer for dworkers */ 156 157 struct ida worker_ida; /* L: for worker IDs */ 158 159 struct task_struct *trustee; /* L: for gcwq shutdown */ 160 unsigned int trustee_state; /* L: trustee state */ 161 wait_queue_head_t trustee_wait; /* trustee wait */ 162 struct worker *first_idle; /* L: first idle worker */ 163 } ____cacheline_aligned_in_smp; 164 165 /* 166 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of 167 * work_struct->data are used for flags and thus cwqs need to be 168 * aligned at two's power of the number of flag bits. 169 */ 170 struct cpu_workqueue_struct { 171 struct global_cwq *gcwq; /* I: the associated gcwq */ 172 struct workqueue_struct *wq; /* I: the owning workqueue */ 173 int work_color; /* L: current color */ 174 int flush_color; /* L: flushing color */ 175 int nr_in_flight[WORK_NR_COLORS]; 176 /* L: nr of in_flight works */ 177 int nr_active; /* L: nr of active works */ 178 int max_active; /* L: max active works */ 179 struct list_head delayed_works; /* L: delayed works */ 180 }; 181 182 /* 183 * Structure used to wait for workqueue flush. 184 */ 185 struct wq_flusher { 186 struct list_head list; /* F: list of flushers */ 187 int flush_color; /* F: flush color waiting for */ 188 struct completion done; /* flush completion */ 189 }; 190 191 /* 192 * All cpumasks are assumed to be always set on UP and thus can't be 193 * used to determine whether there's something to be done. 194 */ 195 #ifdef CONFIG_SMP 196 typedef cpumask_var_t mayday_mask_t; 197 #define mayday_test_and_set_cpu(cpu, mask) \ 198 cpumask_test_and_set_cpu((cpu), (mask)) 199 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask)) 200 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask)) 201 #define alloc_mayday_mask(maskp, gfp) alloc_cpumask_var((maskp), (gfp)) 202 #define free_mayday_mask(mask) free_cpumask_var((mask)) 203 #else 204 typedef unsigned long mayday_mask_t; 205 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask)) 206 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask)) 207 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask)) 208 #define alloc_mayday_mask(maskp, gfp) true 209 #define free_mayday_mask(mask) do { } while (0) 210 #endif 211 212 /* 213 * The externally visible workqueue abstraction is an array of 214 * per-CPU workqueues: 215 */ 216 struct workqueue_struct { 217 unsigned int flags; /* I: WQ_* flags */ 218 union { 219 struct cpu_workqueue_struct __percpu *pcpu; 220 struct cpu_workqueue_struct *single; 221 unsigned long v; 222 } cpu_wq; /* I: cwq's */ 223 struct list_head list; /* W: list of all workqueues */ 224 225 struct mutex flush_mutex; /* protects wq flushing */ 226 int work_color; /* F: current work color */ 227 int flush_color; /* F: current flush color */ 228 atomic_t nr_cwqs_to_flush; /* flush in progress */ 229 struct wq_flusher *first_flusher; /* F: first flusher */ 230 struct list_head flusher_queue; /* F: flush waiters */ 231 struct list_head flusher_overflow; /* F: flush overflow list */ 232 233 mayday_mask_t mayday_mask; /* cpus requesting rescue */ 234 struct worker *rescuer; /* I: rescue worker */ 235 236 int saved_max_active; /* W: saved cwq max_active */ 237 const char *name; /* I: workqueue name */ 238 #ifdef CONFIG_LOCKDEP 239 struct lockdep_map lockdep_map; 240 #endif 241 }; 242 243 struct workqueue_struct *system_wq __read_mostly; 244 struct workqueue_struct *system_long_wq __read_mostly; 245 struct workqueue_struct *system_nrt_wq __read_mostly; 246 struct workqueue_struct *system_unbound_wq __read_mostly; 247 EXPORT_SYMBOL_GPL(system_wq); 248 EXPORT_SYMBOL_GPL(system_long_wq); 249 EXPORT_SYMBOL_GPL(system_nrt_wq); 250 EXPORT_SYMBOL_GPL(system_unbound_wq); 251 252 #define for_each_busy_worker(worker, i, pos, gcwq) \ 253 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \ 254 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry) 255 256 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask, 257 unsigned int sw) 258 { 259 if (cpu < nr_cpu_ids) { 260 if (sw & 1) { 261 cpu = cpumask_next(cpu, mask); 262 if (cpu < nr_cpu_ids) 263 return cpu; 264 } 265 if (sw & 2) 266 return WORK_CPU_UNBOUND; 267 } 268 return WORK_CPU_NONE; 269 } 270 271 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask, 272 struct workqueue_struct *wq) 273 { 274 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2); 275 } 276 277 /* 278 * CPU iterators 279 * 280 * An extra gcwq is defined for an invalid cpu number 281 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any 282 * specific CPU. The following iterators are similar to 283 * for_each_*_cpu() iterators but also considers the unbound gcwq. 284 * 285 * for_each_gcwq_cpu() : possible CPUs + WORK_CPU_UNBOUND 286 * for_each_online_gcwq_cpu() : online CPUs + WORK_CPU_UNBOUND 287 * for_each_cwq_cpu() : possible CPUs for bound workqueues, 288 * WORK_CPU_UNBOUND for unbound workqueues 289 */ 290 #define for_each_gcwq_cpu(cpu) \ 291 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \ 292 (cpu) < WORK_CPU_NONE; \ 293 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3)) 294 295 #define for_each_online_gcwq_cpu(cpu) \ 296 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \ 297 (cpu) < WORK_CPU_NONE; \ 298 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3)) 299 300 #define for_each_cwq_cpu(cpu, wq) \ 301 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \ 302 (cpu) < WORK_CPU_NONE; \ 303 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq))) 304 305 #ifdef CONFIG_LOCKDEP 306 /** 307 * in_workqueue_context() - in context of specified workqueue? 308 * @wq: the workqueue of interest 309 * 310 * Checks lockdep state to see if the current task is executing from 311 * within a workqueue item. This function exists only if lockdep is 312 * enabled. 313 */ 314 int in_workqueue_context(struct workqueue_struct *wq) 315 { 316 return lock_is_held(&wq->lockdep_map); 317 } 318 #endif 319 320 #ifdef CONFIG_DEBUG_OBJECTS_WORK 321 322 static struct debug_obj_descr work_debug_descr; 323 324 /* 325 * fixup_init is called when: 326 * - an active object is initialized 327 */ 328 static int work_fixup_init(void *addr, enum debug_obj_state state) 329 { 330 struct work_struct *work = addr; 331 332 switch (state) { 333 case ODEBUG_STATE_ACTIVE: 334 cancel_work_sync(work); 335 debug_object_init(work, &work_debug_descr); 336 return 1; 337 default: 338 return 0; 339 } 340 } 341 342 /* 343 * fixup_activate is called when: 344 * - an active object is activated 345 * - an unknown object is activated (might be a statically initialized object) 346 */ 347 static int work_fixup_activate(void *addr, enum debug_obj_state state) 348 { 349 struct work_struct *work = addr; 350 351 switch (state) { 352 353 case ODEBUG_STATE_NOTAVAILABLE: 354 /* 355 * This is not really a fixup. The work struct was 356 * statically initialized. We just make sure that it 357 * is tracked in the object tracker. 358 */ 359 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 360 debug_object_init(work, &work_debug_descr); 361 debug_object_activate(work, &work_debug_descr); 362 return 0; 363 } 364 WARN_ON_ONCE(1); 365 return 0; 366 367 case ODEBUG_STATE_ACTIVE: 368 WARN_ON(1); 369 370 default: 371 return 0; 372 } 373 } 374 375 /* 376 * fixup_free is called when: 377 * - an active object is freed 378 */ 379 static int work_fixup_free(void *addr, enum debug_obj_state state) 380 { 381 struct work_struct *work = addr; 382 383 switch (state) { 384 case ODEBUG_STATE_ACTIVE: 385 cancel_work_sync(work); 386 debug_object_free(work, &work_debug_descr); 387 return 1; 388 default: 389 return 0; 390 } 391 } 392 393 static struct debug_obj_descr work_debug_descr = { 394 .name = "work_struct", 395 .fixup_init = work_fixup_init, 396 .fixup_activate = work_fixup_activate, 397 .fixup_free = work_fixup_free, 398 }; 399 400 static inline void debug_work_activate(struct work_struct *work) 401 { 402 debug_object_activate(work, &work_debug_descr); 403 } 404 405 static inline void debug_work_deactivate(struct work_struct *work) 406 { 407 debug_object_deactivate(work, &work_debug_descr); 408 } 409 410 void __init_work(struct work_struct *work, int onstack) 411 { 412 if (onstack) 413 debug_object_init_on_stack(work, &work_debug_descr); 414 else 415 debug_object_init(work, &work_debug_descr); 416 } 417 EXPORT_SYMBOL_GPL(__init_work); 418 419 void destroy_work_on_stack(struct work_struct *work) 420 { 421 debug_object_free(work, &work_debug_descr); 422 } 423 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 424 425 #else 426 static inline void debug_work_activate(struct work_struct *work) { } 427 static inline void debug_work_deactivate(struct work_struct *work) { } 428 #endif 429 430 /* Serializes the accesses to the list of workqueues. */ 431 static DEFINE_SPINLOCK(workqueue_lock); 432 static LIST_HEAD(workqueues); 433 static bool workqueue_freezing; /* W: have wqs started freezing? */ 434 435 /* 436 * The almighty global cpu workqueues. nr_running is the only field 437 * which is expected to be used frequently by other cpus via 438 * try_to_wake_up(). Put it in a separate cacheline. 439 */ 440 static DEFINE_PER_CPU(struct global_cwq, global_cwq); 441 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running); 442 443 /* 444 * Global cpu workqueue and nr_running counter for unbound gcwq. The 445 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its 446 * workers have WORKER_UNBOUND set. 447 */ 448 static struct global_cwq unbound_global_cwq; 449 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */ 450 451 static int worker_thread(void *__worker); 452 453 static struct global_cwq *get_gcwq(unsigned int cpu) 454 { 455 if (cpu != WORK_CPU_UNBOUND) 456 return &per_cpu(global_cwq, cpu); 457 else 458 return &unbound_global_cwq; 459 } 460 461 static atomic_t *get_gcwq_nr_running(unsigned int cpu) 462 { 463 if (cpu != WORK_CPU_UNBOUND) 464 return &per_cpu(gcwq_nr_running, cpu); 465 else 466 return &unbound_gcwq_nr_running; 467 } 468 469 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu, 470 struct workqueue_struct *wq) 471 { 472 if (!(wq->flags & WQ_UNBOUND)) { 473 if (likely(cpu < nr_cpu_ids)) { 474 #ifdef CONFIG_SMP 475 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu); 476 #else 477 return wq->cpu_wq.single; 478 #endif 479 } 480 } else if (likely(cpu == WORK_CPU_UNBOUND)) 481 return wq->cpu_wq.single; 482 return NULL; 483 } 484 485 static unsigned int work_color_to_flags(int color) 486 { 487 return color << WORK_STRUCT_COLOR_SHIFT; 488 } 489 490 static int get_work_color(struct work_struct *work) 491 { 492 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 493 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 494 } 495 496 static int work_next_color(int color) 497 { 498 return (color + 1) % WORK_NR_COLORS; 499 } 500 501 /* 502 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the 503 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is 504 * cleared and the work data contains the cpu number it was last on. 505 * 506 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the 507 * cwq, cpu or clear work->data. These functions should only be 508 * called while the work is owned - ie. while the PENDING bit is set. 509 * 510 * get_work_[g]cwq() can be used to obtain the gcwq or cwq 511 * corresponding to a work. gcwq is available once the work has been 512 * queued anywhere after initialization. cwq is available only from 513 * queueing until execution starts. 514 */ 515 static inline void set_work_data(struct work_struct *work, unsigned long data, 516 unsigned long flags) 517 { 518 BUG_ON(!work_pending(work)); 519 atomic_long_set(&work->data, data | flags | work_static(work)); 520 } 521 522 static void set_work_cwq(struct work_struct *work, 523 struct cpu_workqueue_struct *cwq, 524 unsigned long extra_flags) 525 { 526 set_work_data(work, (unsigned long)cwq, 527 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags); 528 } 529 530 static void set_work_cpu(struct work_struct *work, unsigned int cpu) 531 { 532 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING); 533 } 534 535 static void clear_work_data(struct work_struct *work) 536 { 537 set_work_data(work, WORK_STRUCT_NO_CPU, 0); 538 } 539 540 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work) 541 { 542 unsigned long data = atomic_long_read(&work->data); 543 544 if (data & WORK_STRUCT_CWQ) 545 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 546 else 547 return NULL; 548 } 549 550 static struct global_cwq *get_work_gcwq(struct work_struct *work) 551 { 552 unsigned long data = atomic_long_read(&work->data); 553 unsigned int cpu; 554 555 if (data & WORK_STRUCT_CWQ) 556 return ((struct cpu_workqueue_struct *) 557 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq; 558 559 cpu = data >> WORK_STRUCT_FLAG_BITS; 560 if (cpu == WORK_CPU_NONE) 561 return NULL; 562 563 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND); 564 return get_gcwq(cpu); 565 } 566 567 /* 568 * Policy functions. These define the policies on how the global 569 * worker pool is managed. Unless noted otherwise, these functions 570 * assume that they're being called with gcwq->lock held. 571 */ 572 573 static bool __need_more_worker(struct global_cwq *gcwq) 574 { 575 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) || 576 gcwq->flags & GCWQ_HIGHPRI_PENDING; 577 } 578 579 /* 580 * Need to wake up a worker? Called from anything but currently 581 * running workers. 582 */ 583 static bool need_more_worker(struct global_cwq *gcwq) 584 { 585 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq); 586 } 587 588 /* Can I start working? Called from busy but !running workers. */ 589 static bool may_start_working(struct global_cwq *gcwq) 590 { 591 return gcwq->nr_idle; 592 } 593 594 /* Do I need to keep working? Called from currently running workers. */ 595 static bool keep_working(struct global_cwq *gcwq) 596 { 597 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); 598 599 return !list_empty(&gcwq->worklist) && atomic_read(nr_running) <= 1; 600 } 601 602 /* Do we need a new worker? Called from manager. */ 603 static bool need_to_create_worker(struct global_cwq *gcwq) 604 { 605 return need_more_worker(gcwq) && !may_start_working(gcwq); 606 } 607 608 /* Do I need to be the manager? */ 609 static bool need_to_manage_workers(struct global_cwq *gcwq) 610 { 611 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS; 612 } 613 614 /* Do we have too many workers and should some go away? */ 615 static bool too_many_workers(struct global_cwq *gcwq) 616 { 617 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS; 618 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */ 619 int nr_busy = gcwq->nr_workers - nr_idle; 620 621 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 622 } 623 624 /* 625 * Wake up functions. 626 */ 627 628 /* Return the first worker. Safe with preemption disabled */ 629 static struct worker *first_worker(struct global_cwq *gcwq) 630 { 631 if (unlikely(list_empty(&gcwq->idle_list))) 632 return NULL; 633 634 return list_first_entry(&gcwq->idle_list, struct worker, entry); 635 } 636 637 /** 638 * wake_up_worker - wake up an idle worker 639 * @gcwq: gcwq to wake worker for 640 * 641 * Wake up the first idle worker of @gcwq. 642 * 643 * CONTEXT: 644 * spin_lock_irq(gcwq->lock). 645 */ 646 static void wake_up_worker(struct global_cwq *gcwq) 647 { 648 struct worker *worker = first_worker(gcwq); 649 650 if (likely(worker)) 651 wake_up_process(worker->task); 652 } 653 654 /** 655 * wq_worker_waking_up - a worker is waking up 656 * @task: task waking up 657 * @cpu: CPU @task is waking up to 658 * 659 * This function is called during try_to_wake_up() when a worker is 660 * being awoken. 661 * 662 * CONTEXT: 663 * spin_lock_irq(rq->lock) 664 */ 665 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu) 666 { 667 struct worker *worker = kthread_data(task); 668 669 if (likely(!(worker->flags & WORKER_NOT_RUNNING))) 670 atomic_inc(get_gcwq_nr_running(cpu)); 671 } 672 673 /** 674 * wq_worker_sleeping - a worker is going to sleep 675 * @task: task going to sleep 676 * @cpu: CPU in question, must be the current CPU number 677 * 678 * This function is called during schedule() when a busy worker is 679 * going to sleep. Worker on the same cpu can be woken up by 680 * returning pointer to its task. 681 * 682 * CONTEXT: 683 * spin_lock_irq(rq->lock) 684 * 685 * RETURNS: 686 * Worker task on @cpu to wake up, %NULL if none. 687 */ 688 struct task_struct *wq_worker_sleeping(struct task_struct *task, 689 unsigned int cpu) 690 { 691 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 692 struct global_cwq *gcwq = get_gcwq(cpu); 693 atomic_t *nr_running = get_gcwq_nr_running(cpu); 694 695 if (unlikely(worker->flags & WORKER_NOT_RUNNING)) 696 return NULL; 697 698 /* this can only happen on the local cpu */ 699 BUG_ON(cpu != raw_smp_processor_id()); 700 701 /* 702 * The counterpart of the following dec_and_test, implied mb, 703 * worklist not empty test sequence is in insert_work(). 704 * Please read comment there. 705 * 706 * NOT_RUNNING is clear. This means that trustee is not in 707 * charge and we're running on the local cpu w/ rq lock held 708 * and preemption disabled, which in turn means that none else 709 * could be manipulating idle_list, so dereferencing idle_list 710 * without gcwq lock is safe. 711 */ 712 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist)) 713 to_wakeup = first_worker(gcwq); 714 return to_wakeup ? to_wakeup->task : NULL; 715 } 716 717 /** 718 * worker_set_flags - set worker flags and adjust nr_running accordingly 719 * @worker: self 720 * @flags: flags to set 721 * @wakeup: wakeup an idle worker if necessary 722 * 723 * Set @flags in @worker->flags and adjust nr_running accordingly. If 724 * nr_running becomes zero and @wakeup is %true, an idle worker is 725 * woken up. 726 * 727 * CONTEXT: 728 * spin_lock_irq(gcwq->lock) 729 */ 730 static inline void worker_set_flags(struct worker *worker, unsigned int flags, 731 bool wakeup) 732 { 733 struct global_cwq *gcwq = worker->gcwq; 734 735 WARN_ON_ONCE(worker->task != current); 736 737 /* 738 * If transitioning into NOT_RUNNING, adjust nr_running and 739 * wake up an idle worker as necessary if requested by 740 * @wakeup. 741 */ 742 if ((flags & WORKER_NOT_RUNNING) && 743 !(worker->flags & WORKER_NOT_RUNNING)) { 744 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu); 745 746 if (wakeup) { 747 if (atomic_dec_and_test(nr_running) && 748 !list_empty(&gcwq->worklist)) 749 wake_up_worker(gcwq); 750 } else 751 atomic_dec(nr_running); 752 } 753 754 worker->flags |= flags; 755 } 756 757 /** 758 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 759 * @worker: self 760 * @flags: flags to clear 761 * 762 * Clear @flags in @worker->flags and adjust nr_running accordingly. 763 * 764 * CONTEXT: 765 * spin_lock_irq(gcwq->lock) 766 */ 767 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 768 { 769 struct global_cwq *gcwq = worker->gcwq; 770 unsigned int oflags = worker->flags; 771 772 WARN_ON_ONCE(worker->task != current); 773 774 worker->flags &= ~flags; 775 776 /* if transitioning out of NOT_RUNNING, increment nr_running */ 777 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 778 if (!(worker->flags & WORKER_NOT_RUNNING)) 779 atomic_inc(get_gcwq_nr_running(gcwq->cpu)); 780 } 781 782 /** 783 * busy_worker_head - return the busy hash head for a work 784 * @gcwq: gcwq of interest 785 * @work: work to be hashed 786 * 787 * Return hash head of @gcwq for @work. 788 * 789 * CONTEXT: 790 * spin_lock_irq(gcwq->lock). 791 * 792 * RETURNS: 793 * Pointer to the hash head. 794 */ 795 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq, 796 struct work_struct *work) 797 { 798 const int base_shift = ilog2(sizeof(struct work_struct)); 799 unsigned long v = (unsigned long)work; 800 801 /* simple shift and fold hash, do we need something better? */ 802 v >>= base_shift; 803 v += v >> BUSY_WORKER_HASH_ORDER; 804 v &= BUSY_WORKER_HASH_MASK; 805 806 return &gcwq->busy_hash[v]; 807 } 808 809 /** 810 * __find_worker_executing_work - find worker which is executing a work 811 * @gcwq: gcwq of interest 812 * @bwh: hash head as returned by busy_worker_head() 813 * @work: work to find worker for 814 * 815 * Find a worker which is executing @work on @gcwq. @bwh should be 816 * the hash head obtained by calling busy_worker_head() with the same 817 * work. 818 * 819 * CONTEXT: 820 * spin_lock_irq(gcwq->lock). 821 * 822 * RETURNS: 823 * Pointer to worker which is executing @work if found, NULL 824 * otherwise. 825 */ 826 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq, 827 struct hlist_head *bwh, 828 struct work_struct *work) 829 { 830 struct worker *worker; 831 struct hlist_node *tmp; 832 833 hlist_for_each_entry(worker, tmp, bwh, hentry) 834 if (worker->current_work == work) 835 return worker; 836 return NULL; 837 } 838 839 /** 840 * find_worker_executing_work - find worker which is executing a work 841 * @gcwq: gcwq of interest 842 * @work: work to find worker for 843 * 844 * Find a worker which is executing @work on @gcwq. This function is 845 * identical to __find_worker_executing_work() except that this 846 * function calculates @bwh itself. 847 * 848 * CONTEXT: 849 * spin_lock_irq(gcwq->lock). 850 * 851 * RETURNS: 852 * Pointer to worker which is executing @work if found, NULL 853 * otherwise. 854 */ 855 static struct worker *find_worker_executing_work(struct global_cwq *gcwq, 856 struct work_struct *work) 857 { 858 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work), 859 work); 860 } 861 862 /** 863 * gcwq_determine_ins_pos - find insertion position 864 * @gcwq: gcwq of interest 865 * @cwq: cwq a work is being queued for 866 * 867 * A work for @cwq is about to be queued on @gcwq, determine insertion 868 * position for the work. If @cwq is for HIGHPRI wq, the work is 869 * queued at the head of the queue but in FIFO order with respect to 870 * other HIGHPRI works; otherwise, at the end of the queue. This 871 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that 872 * there are HIGHPRI works pending. 873 * 874 * CONTEXT: 875 * spin_lock_irq(gcwq->lock). 876 * 877 * RETURNS: 878 * Pointer to inserstion position. 879 */ 880 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq, 881 struct cpu_workqueue_struct *cwq) 882 { 883 struct work_struct *twork; 884 885 if (likely(!(cwq->wq->flags & WQ_HIGHPRI))) 886 return &gcwq->worklist; 887 888 list_for_each_entry(twork, &gcwq->worklist, entry) { 889 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork); 890 891 if (!(tcwq->wq->flags & WQ_HIGHPRI)) 892 break; 893 } 894 895 gcwq->flags |= GCWQ_HIGHPRI_PENDING; 896 return &twork->entry; 897 } 898 899 /** 900 * insert_work - insert a work into gcwq 901 * @cwq: cwq @work belongs to 902 * @work: work to insert 903 * @head: insertion point 904 * @extra_flags: extra WORK_STRUCT_* flags to set 905 * 906 * Insert @work which belongs to @cwq into @gcwq after @head. 907 * @extra_flags is or'd to work_struct flags. 908 * 909 * CONTEXT: 910 * spin_lock_irq(gcwq->lock). 911 */ 912 static void insert_work(struct cpu_workqueue_struct *cwq, 913 struct work_struct *work, struct list_head *head, 914 unsigned int extra_flags) 915 { 916 struct global_cwq *gcwq = cwq->gcwq; 917 918 /* we own @work, set data and link */ 919 set_work_cwq(work, cwq, extra_flags); 920 921 /* 922 * Ensure that we get the right work->data if we see the 923 * result of list_add() below, see try_to_grab_pending(). 924 */ 925 smp_wmb(); 926 927 list_add_tail(&work->entry, head); 928 929 /* 930 * Ensure either worker_sched_deactivated() sees the above 931 * list_add_tail() or we see zero nr_running to avoid workers 932 * lying around lazily while there are works to be processed. 933 */ 934 smp_mb(); 935 936 if (__need_more_worker(gcwq)) 937 wake_up_worker(gcwq); 938 } 939 940 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq, 941 struct work_struct *work) 942 { 943 struct global_cwq *gcwq; 944 struct cpu_workqueue_struct *cwq; 945 struct list_head *worklist; 946 unsigned long flags; 947 948 debug_work_activate(work); 949 950 /* determine gcwq to use */ 951 if (!(wq->flags & WQ_UNBOUND)) { 952 struct global_cwq *last_gcwq; 953 954 if (unlikely(cpu == WORK_CPU_UNBOUND)) 955 cpu = raw_smp_processor_id(); 956 957 /* 958 * It's multi cpu. If @wq is non-reentrant and @work 959 * was previously on a different cpu, it might still 960 * be running there, in which case the work needs to 961 * be queued on that cpu to guarantee non-reentrance. 962 */ 963 gcwq = get_gcwq(cpu); 964 if (wq->flags & WQ_NON_REENTRANT && 965 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) { 966 struct worker *worker; 967 968 spin_lock_irqsave(&last_gcwq->lock, flags); 969 970 worker = find_worker_executing_work(last_gcwq, work); 971 972 if (worker && worker->current_cwq->wq == wq) 973 gcwq = last_gcwq; 974 else { 975 /* meh... not running there, queue here */ 976 spin_unlock_irqrestore(&last_gcwq->lock, flags); 977 spin_lock_irqsave(&gcwq->lock, flags); 978 } 979 } else 980 spin_lock_irqsave(&gcwq->lock, flags); 981 } else { 982 gcwq = get_gcwq(WORK_CPU_UNBOUND); 983 spin_lock_irqsave(&gcwq->lock, flags); 984 } 985 986 /* gcwq determined, get cwq and queue */ 987 cwq = get_cwq(gcwq->cpu, wq); 988 989 BUG_ON(!list_empty(&work->entry)); 990 991 cwq->nr_in_flight[cwq->work_color]++; 992 993 if (likely(cwq->nr_active < cwq->max_active)) { 994 cwq->nr_active++; 995 worklist = gcwq_determine_ins_pos(gcwq, cwq); 996 } else 997 worklist = &cwq->delayed_works; 998 999 insert_work(cwq, work, worklist, work_color_to_flags(cwq->work_color)); 1000 1001 spin_unlock_irqrestore(&gcwq->lock, flags); 1002 } 1003 1004 /** 1005 * queue_work - queue work on a workqueue 1006 * @wq: workqueue to use 1007 * @work: work to queue 1008 * 1009 * Returns 0 if @work was already on a queue, non-zero otherwise. 1010 * 1011 * We queue the work to the CPU on which it was submitted, but if the CPU dies 1012 * it can be processed by another CPU. 1013 */ 1014 int queue_work(struct workqueue_struct *wq, struct work_struct *work) 1015 { 1016 int ret; 1017 1018 ret = queue_work_on(get_cpu(), wq, work); 1019 put_cpu(); 1020 1021 return ret; 1022 } 1023 EXPORT_SYMBOL_GPL(queue_work); 1024 1025 /** 1026 * queue_work_on - queue work on specific cpu 1027 * @cpu: CPU number to execute work on 1028 * @wq: workqueue to use 1029 * @work: work to queue 1030 * 1031 * Returns 0 if @work was already on a queue, non-zero otherwise. 1032 * 1033 * We queue the work to a specific CPU, the caller must ensure it 1034 * can't go away. 1035 */ 1036 int 1037 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work) 1038 { 1039 int ret = 0; 1040 1041 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1042 __queue_work(cpu, wq, work); 1043 ret = 1; 1044 } 1045 return ret; 1046 } 1047 EXPORT_SYMBOL_GPL(queue_work_on); 1048 1049 static void delayed_work_timer_fn(unsigned long __data) 1050 { 1051 struct delayed_work *dwork = (struct delayed_work *)__data; 1052 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work); 1053 1054 __queue_work(smp_processor_id(), cwq->wq, &dwork->work); 1055 } 1056 1057 /** 1058 * queue_delayed_work - queue work on a workqueue after delay 1059 * @wq: workqueue to use 1060 * @dwork: delayable work to queue 1061 * @delay: number of jiffies to wait before queueing 1062 * 1063 * Returns 0 if @work was already on a queue, non-zero otherwise. 1064 */ 1065 int queue_delayed_work(struct workqueue_struct *wq, 1066 struct delayed_work *dwork, unsigned long delay) 1067 { 1068 if (delay == 0) 1069 return queue_work(wq, &dwork->work); 1070 1071 return queue_delayed_work_on(-1, wq, dwork, delay); 1072 } 1073 EXPORT_SYMBOL_GPL(queue_delayed_work); 1074 1075 /** 1076 * queue_delayed_work_on - queue work on specific CPU after delay 1077 * @cpu: CPU number to execute work on 1078 * @wq: workqueue to use 1079 * @dwork: work to queue 1080 * @delay: number of jiffies to wait before queueing 1081 * 1082 * Returns 0 if @work was already on a queue, non-zero otherwise. 1083 */ 1084 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1085 struct delayed_work *dwork, unsigned long delay) 1086 { 1087 int ret = 0; 1088 struct timer_list *timer = &dwork->timer; 1089 struct work_struct *work = &dwork->work; 1090 1091 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1092 unsigned int lcpu; 1093 1094 BUG_ON(timer_pending(timer)); 1095 BUG_ON(!list_empty(&work->entry)); 1096 1097 timer_stats_timer_set_start_info(&dwork->timer); 1098 1099 /* 1100 * This stores cwq for the moment, for the timer_fn. 1101 * Note that the work's gcwq is preserved to allow 1102 * reentrance detection for delayed works. 1103 */ 1104 if (!(wq->flags & WQ_UNBOUND)) { 1105 struct global_cwq *gcwq = get_work_gcwq(work); 1106 1107 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND) 1108 lcpu = gcwq->cpu; 1109 else 1110 lcpu = raw_smp_processor_id(); 1111 } else 1112 lcpu = WORK_CPU_UNBOUND; 1113 1114 set_work_cwq(work, get_cwq(lcpu, wq), 0); 1115 1116 timer->expires = jiffies + delay; 1117 timer->data = (unsigned long)dwork; 1118 timer->function = delayed_work_timer_fn; 1119 1120 if (unlikely(cpu >= 0)) 1121 add_timer_on(timer, cpu); 1122 else 1123 add_timer(timer); 1124 ret = 1; 1125 } 1126 return ret; 1127 } 1128 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 1129 1130 /** 1131 * worker_enter_idle - enter idle state 1132 * @worker: worker which is entering idle state 1133 * 1134 * @worker is entering idle state. Update stats and idle timer if 1135 * necessary. 1136 * 1137 * LOCKING: 1138 * spin_lock_irq(gcwq->lock). 1139 */ 1140 static void worker_enter_idle(struct worker *worker) 1141 { 1142 struct global_cwq *gcwq = worker->gcwq; 1143 1144 BUG_ON(worker->flags & WORKER_IDLE); 1145 BUG_ON(!list_empty(&worker->entry) && 1146 (worker->hentry.next || worker->hentry.pprev)); 1147 1148 /* can't use worker_set_flags(), also called from start_worker() */ 1149 worker->flags |= WORKER_IDLE; 1150 gcwq->nr_idle++; 1151 worker->last_active = jiffies; 1152 1153 /* idle_list is LIFO */ 1154 list_add(&worker->entry, &gcwq->idle_list); 1155 1156 if (likely(!(worker->flags & WORKER_ROGUE))) { 1157 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer)) 1158 mod_timer(&gcwq->idle_timer, 1159 jiffies + IDLE_WORKER_TIMEOUT); 1160 } else 1161 wake_up_all(&gcwq->trustee_wait); 1162 1163 /* sanity check nr_running */ 1164 WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle && 1165 atomic_read(get_gcwq_nr_running(gcwq->cpu))); 1166 } 1167 1168 /** 1169 * worker_leave_idle - leave idle state 1170 * @worker: worker which is leaving idle state 1171 * 1172 * @worker is leaving idle state. Update stats. 1173 * 1174 * LOCKING: 1175 * spin_lock_irq(gcwq->lock). 1176 */ 1177 static void worker_leave_idle(struct worker *worker) 1178 { 1179 struct global_cwq *gcwq = worker->gcwq; 1180 1181 BUG_ON(!(worker->flags & WORKER_IDLE)); 1182 worker_clr_flags(worker, WORKER_IDLE); 1183 gcwq->nr_idle--; 1184 list_del_init(&worker->entry); 1185 } 1186 1187 /** 1188 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq 1189 * @worker: self 1190 * 1191 * Works which are scheduled while the cpu is online must at least be 1192 * scheduled to a worker which is bound to the cpu so that if they are 1193 * flushed from cpu callbacks while cpu is going down, they are 1194 * guaranteed to execute on the cpu. 1195 * 1196 * This function is to be used by rogue workers and rescuers to bind 1197 * themselves to the target cpu and may race with cpu going down or 1198 * coming online. kthread_bind() can't be used because it may put the 1199 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used 1200 * verbatim as it's best effort and blocking and gcwq may be 1201 * [dis]associated in the meantime. 1202 * 1203 * This function tries set_cpus_allowed() and locks gcwq and verifies 1204 * the binding against GCWQ_DISASSOCIATED which is set during 1205 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters 1206 * idle state or fetches works without dropping lock, it can guarantee 1207 * the scheduling requirement described in the first paragraph. 1208 * 1209 * CONTEXT: 1210 * Might sleep. Called without any lock but returns with gcwq->lock 1211 * held. 1212 * 1213 * RETURNS: 1214 * %true if the associated gcwq is online (@worker is successfully 1215 * bound), %false if offline. 1216 */ 1217 static bool worker_maybe_bind_and_lock(struct worker *worker) 1218 { 1219 struct global_cwq *gcwq = worker->gcwq; 1220 struct task_struct *task = worker->task; 1221 1222 while (true) { 1223 /* 1224 * The following call may fail, succeed or succeed 1225 * without actually migrating the task to the cpu if 1226 * it races with cpu hotunplug operation. Verify 1227 * against GCWQ_DISASSOCIATED. 1228 */ 1229 if (!(gcwq->flags & GCWQ_DISASSOCIATED)) 1230 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu)); 1231 1232 spin_lock_irq(&gcwq->lock); 1233 if (gcwq->flags & GCWQ_DISASSOCIATED) 1234 return false; 1235 if (task_cpu(task) == gcwq->cpu && 1236 cpumask_equal(¤t->cpus_allowed, 1237 get_cpu_mask(gcwq->cpu))) 1238 return true; 1239 spin_unlock_irq(&gcwq->lock); 1240 1241 /* CPU has come up inbetween, retry migration */ 1242 cpu_relax(); 1243 } 1244 } 1245 1246 /* 1247 * Function for worker->rebind_work used to rebind rogue busy workers 1248 * to the associated cpu which is coming back online. This is 1249 * scheduled by cpu up but can race with other cpu hotplug operations 1250 * and may be executed twice without intervening cpu down. 1251 */ 1252 static void worker_rebind_fn(struct work_struct *work) 1253 { 1254 struct worker *worker = container_of(work, struct worker, rebind_work); 1255 struct global_cwq *gcwq = worker->gcwq; 1256 1257 if (worker_maybe_bind_and_lock(worker)) 1258 worker_clr_flags(worker, WORKER_REBIND); 1259 1260 spin_unlock_irq(&gcwq->lock); 1261 } 1262 1263 static struct worker *alloc_worker(void) 1264 { 1265 struct worker *worker; 1266 1267 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 1268 if (worker) { 1269 INIT_LIST_HEAD(&worker->entry); 1270 INIT_LIST_HEAD(&worker->scheduled); 1271 INIT_WORK(&worker->rebind_work, worker_rebind_fn); 1272 /* on creation a worker is in !idle && prep state */ 1273 worker->flags = WORKER_PREP; 1274 } 1275 return worker; 1276 } 1277 1278 /** 1279 * create_worker - create a new workqueue worker 1280 * @gcwq: gcwq the new worker will belong to 1281 * @bind: whether to set affinity to @cpu or not 1282 * 1283 * Create a new worker which is bound to @gcwq. The returned worker 1284 * can be started by calling start_worker() or destroyed using 1285 * destroy_worker(). 1286 * 1287 * CONTEXT: 1288 * Might sleep. Does GFP_KERNEL allocations. 1289 * 1290 * RETURNS: 1291 * Pointer to the newly created worker. 1292 */ 1293 static struct worker *create_worker(struct global_cwq *gcwq, bool bind) 1294 { 1295 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND; 1296 struct worker *worker = NULL; 1297 int id = -1; 1298 1299 spin_lock_irq(&gcwq->lock); 1300 while (ida_get_new(&gcwq->worker_ida, &id)) { 1301 spin_unlock_irq(&gcwq->lock); 1302 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL)) 1303 goto fail; 1304 spin_lock_irq(&gcwq->lock); 1305 } 1306 spin_unlock_irq(&gcwq->lock); 1307 1308 worker = alloc_worker(); 1309 if (!worker) 1310 goto fail; 1311 1312 worker->gcwq = gcwq; 1313 worker->id = id; 1314 1315 if (!on_unbound_cpu) 1316 worker->task = kthread_create(worker_thread, worker, 1317 "kworker/%u:%d", gcwq->cpu, id); 1318 else 1319 worker->task = kthread_create(worker_thread, worker, 1320 "kworker/u:%d", id); 1321 if (IS_ERR(worker->task)) 1322 goto fail; 1323 1324 /* 1325 * A rogue worker will become a regular one if CPU comes 1326 * online later on. Make sure every worker has 1327 * PF_THREAD_BOUND set. 1328 */ 1329 if (bind && !on_unbound_cpu) 1330 kthread_bind(worker->task, gcwq->cpu); 1331 else { 1332 worker->task->flags |= PF_THREAD_BOUND; 1333 if (on_unbound_cpu) 1334 worker->flags |= WORKER_UNBOUND; 1335 } 1336 1337 return worker; 1338 fail: 1339 if (id >= 0) { 1340 spin_lock_irq(&gcwq->lock); 1341 ida_remove(&gcwq->worker_ida, id); 1342 spin_unlock_irq(&gcwq->lock); 1343 } 1344 kfree(worker); 1345 return NULL; 1346 } 1347 1348 /** 1349 * start_worker - start a newly created worker 1350 * @worker: worker to start 1351 * 1352 * Make the gcwq aware of @worker and start it. 1353 * 1354 * CONTEXT: 1355 * spin_lock_irq(gcwq->lock). 1356 */ 1357 static void start_worker(struct worker *worker) 1358 { 1359 worker->flags |= WORKER_STARTED; 1360 worker->gcwq->nr_workers++; 1361 worker_enter_idle(worker); 1362 wake_up_process(worker->task); 1363 } 1364 1365 /** 1366 * destroy_worker - destroy a workqueue worker 1367 * @worker: worker to be destroyed 1368 * 1369 * Destroy @worker and adjust @gcwq stats accordingly. 1370 * 1371 * CONTEXT: 1372 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1373 */ 1374 static void destroy_worker(struct worker *worker) 1375 { 1376 struct global_cwq *gcwq = worker->gcwq; 1377 int id = worker->id; 1378 1379 /* sanity check frenzy */ 1380 BUG_ON(worker->current_work); 1381 BUG_ON(!list_empty(&worker->scheduled)); 1382 1383 if (worker->flags & WORKER_STARTED) 1384 gcwq->nr_workers--; 1385 if (worker->flags & WORKER_IDLE) 1386 gcwq->nr_idle--; 1387 1388 list_del_init(&worker->entry); 1389 worker->flags |= WORKER_DIE; 1390 1391 spin_unlock_irq(&gcwq->lock); 1392 1393 kthread_stop(worker->task); 1394 kfree(worker); 1395 1396 spin_lock_irq(&gcwq->lock); 1397 ida_remove(&gcwq->worker_ida, id); 1398 } 1399 1400 static void idle_worker_timeout(unsigned long __gcwq) 1401 { 1402 struct global_cwq *gcwq = (void *)__gcwq; 1403 1404 spin_lock_irq(&gcwq->lock); 1405 1406 if (too_many_workers(gcwq)) { 1407 struct worker *worker; 1408 unsigned long expires; 1409 1410 /* idle_list is kept in LIFO order, check the last one */ 1411 worker = list_entry(gcwq->idle_list.prev, struct worker, entry); 1412 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1413 1414 if (time_before(jiffies, expires)) 1415 mod_timer(&gcwq->idle_timer, expires); 1416 else { 1417 /* it's been idle for too long, wake up manager */ 1418 gcwq->flags |= GCWQ_MANAGE_WORKERS; 1419 wake_up_worker(gcwq); 1420 } 1421 } 1422 1423 spin_unlock_irq(&gcwq->lock); 1424 } 1425 1426 static bool send_mayday(struct work_struct *work) 1427 { 1428 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1429 struct workqueue_struct *wq = cwq->wq; 1430 unsigned int cpu; 1431 1432 if (!(wq->flags & WQ_RESCUER)) 1433 return false; 1434 1435 /* mayday mayday mayday */ 1436 cpu = cwq->gcwq->cpu; 1437 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */ 1438 if (cpu == WORK_CPU_UNBOUND) 1439 cpu = 0; 1440 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask)) 1441 wake_up_process(wq->rescuer->task); 1442 return true; 1443 } 1444 1445 static void gcwq_mayday_timeout(unsigned long __gcwq) 1446 { 1447 struct global_cwq *gcwq = (void *)__gcwq; 1448 struct work_struct *work; 1449 1450 spin_lock_irq(&gcwq->lock); 1451 1452 if (need_to_create_worker(gcwq)) { 1453 /* 1454 * We've been trying to create a new worker but 1455 * haven't been successful. We might be hitting an 1456 * allocation deadlock. Send distress signals to 1457 * rescuers. 1458 */ 1459 list_for_each_entry(work, &gcwq->worklist, entry) 1460 send_mayday(work); 1461 } 1462 1463 spin_unlock_irq(&gcwq->lock); 1464 1465 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL); 1466 } 1467 1468 /** 1469 * maybe_create_worker - create a new worker if necessary 1470 * @gcwq: gcwq to create a new worker for 1471 * 1472 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to 1473 * have at least one idle worker on return from this function. If 1474 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1475 * sent to all rescuers with works scheduled on @gcwq to resolve 1476 * possible allocation deadlock. 1477 * 1478 * On return, need_to_create_worker() is guaranteed to be false and 1479 * may_start_working() true. 1480 * 1481 * LOCKING: 1482 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1483 * multiple times. Does GFP_KERNEL allocations. Called only from 1484 * manager. 1485 * 1486 * RETURNS: 1487 * false if no action was taken and gcwq->lock stayed locked, true 1488 * otherwise. 1489 */ 1490 static bool maybe_create_worker(struct global_cwq *gcwq) 1491 { 1492 if (!need_to_create_worker(gcwq)) 1493 return false; 1494 restart: 1495 spin_unlock_irq(&gcwq->lock); 1496 1497 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1498 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1499 1500 while (true) { 1501 struct worker *worker; 1502 1503 worker = create_worker(gcwq, true); 1504 if (worker) { 1505 del_timer_sync(&gcwq->mayday_timer); 1506 spin_lock_irq(&gcwq->lock); 1507 start_worker(worker); 1508 BUG_ON(need_to_create_worker(gcwq)); 1509 return true; 1510 } 1511 1512 if (!need_to_create_worker(gcwq)) 1513 break; 1514 1515 __set_current_state(TASK_INTERRUPTIBLE); 1516 schedule_timeout(CREATE_COOLDOWN); 1517 1518 if (!need_to_create_worker(gcwq)) 1519 break; 1520 } 1521 1522 del_timer_sync(&gcwq->mayday_timer); 1523 spin_lock_irq(&gcwq->lock); 1524 if (need_to_create_worker(gcwq)) 1525 goto restart; 1526 return true; 1527 } 1528 1529 /** 1530 * maybe_destroy_worker - destroy workers which have been idle for a while 1531 * @gcwq: gcwq to destroy workers for 1532 * 1533 * Destroy @gcwq workers which have been idle for longer than 1534 * IDLE_WORKER_TIMEOUT. 1535 * 1536 * LOCKING: 1537 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1538 * multiple times. Called only from manager. 1539 * 1540 * RETURNS: 1541 * false if no action was taken and gcwq->lock stayed locked, true 1542 * otherwise. 1543 */ 1544 static bool maybe_destroy_workers(struct global_cwq *gcwq) 1545 { 1546 bool ret = false; 1547 1548 while (too_many_workers(gcwq)) { 1549 struct worker *worker; 1550 unsigned long expires; 1551 1552 worker = list_entry(gcwq->idle_list.prev, struct worker, entry); 1553 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1554 1555 if (time_before(jiffies, expires)) { 1556 mod_timer(&gcwq->idle_timer, expires); 1557 break; 1558 } 1559 1560 destroy_worker(worker); 1561 ret = true; 1562 } 1563 1564 return ret; 1565 } 1566 1567 /** 1568 * manage_workers - manage worker pool 1569 * @worker: self 1570 * 1571 * Assume the manager role and manage gcwq worker pool @worker belongs 1572 * to. At any given time, there can be only zero or one manager per 1573 * gcwq. The exclusion is handled automatically by this function. 1574 * 1575 * The caller can safely start processing works on false return. On 1576 * true return, it's guaranteed that need_to_create_worker() is false 1577 * and may_start_working() is true. 1578 * 1579 * CONTEXT: 1580 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1581 * multiple times. Does GFP_KERNEL allocations. 1582 * 1583 * RETURNS: 1584 * false if no action was taken and gcwq->lock stayed locked, true if 1585 * some action was taken. 1586 */ 1587 static bool manage_workers(struct worker *worker) 1588 { 1589 struct global_cwq *gcwq = worker->gcwq; 1590 bool ret = false; 1591 1592 if (gcwq->flags & GCWQ_MANAGING_WORKERS) 1593 return ret; 1594 1595 gcwq->flags &= ~GCWQ_MANAGE_WORKERS; 1596 gcwq->flags |= GCWQ_MANAGING_WORKERS; 1597 1598 /* 1599 * Destroy and then create so that may_start_working() is true 1600 * on return. 1601 */ 1602 ret |= maybe_destroy_workers(gcwq); 1603 ret |= maybe_create_worker(gcwq); 1604 1605 gcwq->flags &= ~GCWQ_MANAGING_WORKERS; 1606 1607 /* 1608 * The trustee might be waiting to take over the manager 1609 * position, tell it we're done. 1610 */ 1611 if (unlikely(gcwq->trustee)) 1612 wake_up_all(&gcwq->trustee_wait); 1613 1614 return ret; 1615 } 1616 1617 /** 1618 * move_linked_works - move linked works to a list 1619 * @work: start of series of works to be scheduled 1620 * @head: target list to append @work to 1621 * @nextp: out paramter for nested worklist walking 1622 * 1623 * Schedule linked works starting from @work to @head. Work series to 1624 * be scheduled starts at @work and includes any consecutive work with 1625 * WORK_STRUCT_LINKED set in its predecessor. 1626 * 1627 * If @nextp is not NULL, it's updated to point to the next work of 1628 * the last scheduled work. This allows move_linked_works() to be 1629 * nested inside outer list_for_each_entry_safe(). 1630 * 1631 * CONTEXT: 1632 * spin_lock_irq(gcwq->lock). 1633 */ 1634 static void move_linked_works(struct work_struct *work, struct list_head *head, 1635 struct work_struct **nextp) 1636 { 1637 struct work_struct *n; 1638 1639 /* 1640 * Linked worklist will always end before the end of the list, 1641 * use NULL for list head. 1642 */ 1643 list_for_each_entry_safe_from(work, n, NULL, entry) { 1644 list_move_tail(&work->entry, head); 1645 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1646 break; 1647 } 1648 1649 /* 1650 * If we're already inside safe list traversal and have moved 1651 * multiple works to the scheduled queue, the next position 1652 * needs to be updated. 1653 */ 1654 if (nextp) 1655 *nextp = n; 1656 } 1657 1658 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq) 1659 { 1660 struct work_struct *work = list_first_entry(&cwq->delayed_works, 1661 struct work_struct, entry); 1662 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq); 1663 1664 move_linked_works(work, pos, NULL); 1665 cwq->nr_active++; 1666 } 1667 1668 /** 1669 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight 1670 * @cwq: cwq of interest 1671 * @color: color of work which left the queue 1672 * 1673 * A work either has completed or is removed from pending queue, 1674 * decrement nr_in_flight of its cwq and handle workqueue flushing. 1675 * 1676 * CONTEXT: 1677 * spin_lock_irq(gcwq->lock). 1678 */ 1679 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color) 1680 { 1681 /* ignore uncolored works */ 1682 if (color == WORK_NO_COLOR) 1683 return; 1684 1685 cwq->nr_in_flight[color]--; 1686 cwq->nr_active--; 1687 1688 if (!list_empty(&cwq->delayed_works)) { 1689 /* one down, submit a delayed one */ 1690 if (cwq->nr_active < cwq->max_active) 1691 cwq_activate_first_delayed(cwq); 1692 } 1693 1694 /* is flush in progress and are we at the flushing tip? */ 1695 if (likely(cwq->flush_color != color)) 1696 return; 1697 1698 /* are there still in-flight works? */ 1699 if (cwq->nr_in_flight[color]) 1700 return; 1701 1702 /* this cwq is done, clear flush_color */ 1703 cwq->flush_color = -1; 1704 1705 /* 1706 * If this was the last cwq, wake up the first flusher. It 1707 * will handle the rest. 1708 */ 1709 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush)) 1710 complete(&cwq->wq->first_flusher->done); 1711 } 1712 1713 /** 1714 * process_one_work - process single work 1715 * @worker: self 1716 * @work: work to process 1717 * 1718 * Process @work. This function contains all the logics necessary to 1719 * process a single work including synchronization against and 1720 * interaction with other workers on the same cpu, queueing and 1721 * flushing. As long as context requirement is met, any worker can 1722 * call this function to process a work. 1723 * 1724 * CONTEXT: 1725 * spin_lock_irq(gcwq->lock) which is released and regrabbed. 1726 */ 1727 static void process_one_work(struct worker *worker, struct work_struct *work) 1728 { 1729 struct cpu_workqueue_struct *cwq = get_work_cwq(work); 1730 struct global_cwq *gcwq = cwq->gcwq; 1731 struct hlist_head *bwh = busy_worker_head(gcwq, work); 1732 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE; 1733 work_func_t f = work->func; 1734 int work_color; 1735 struct worker *collision; 1736 #ifdef CONFIG_LOCKDEP 1737 /* 1738 * It is permissible to free the struct work_struct from 1739 * inside the function that is called from it, this we need to 1740 * take into account for lockdep too. To avoid bogus "held 1741 * lock freed" warnings as well as problems when looking into 1742 * work->lockdep_map, make a copy and use that here. 1743 */ 1744 struct lockdep_map lockdep_map = work->lockdep_map; 1745 #endif 1746 /* 1747 * A single work shouldn't be executed concurrently by 1748 * multiple workers on a single cpu. Check whether anyone is 1749 * already processing the work. If so, defer the work to the 1750 * currently executing one. 1751 */ 1752 collision = __find_worker_executing_work(gcwq, bwh, work); 1753 if (unlikely(collision)) { 1754 move_linked_works(work, &collision->scheduled, NULL); 1755 return; 1756 } 1757 1758 /* claim and process */ 1759 debug_work_deactivate(work); 1760 hlist_add_head(&worker->hentry, bwh); 1761 worker->current_work = work; 1762 worker->current_cwq = cwq; 1763 work_color = get_work_color(work); 1764 1765 /* record the current cpu number in the work data and dequeue */ 1766 set_work_cpu(work, gcwq->cpu); 1767 list_del_init(&work->entry); 1768 1769 /* 1770 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI, 1771 * wake up another worker; otherwise, clear HIGHPRI_PENDING. 1772 */ 1773 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) { 1774 struct work_struct *nwork = list_first_entry(&gcwq->worklist, 1775 struct work_struct, entry); 1776 1777 if (!list_empty(&gcwq->worklist) && 1778 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI) 1779 wake_up_worker(gcwq); 1780 else 1781 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING; 1782 } 1783 1784 /* 1785 * CPU intensive works don't participate in concurrency 1786 * management. They're the scheduler's responsibility. 1787 */ 1788 if (unlikely(cpu_intensive)) 1789 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true); 1790 1791 spin_unlock_irq(&gcwq->lock); 1792 1793 work_clear_pending(work); 1794 lock_map_acquire(&cwq->wq->lockdep_map); 1795 lock_map_acquire(&lockdep_map); 1796 trace_workqueue_execute_start(work); 1797 f(work); 1798 /* 1799 * While we must be careful to not use "work" after this, the trace 1800 * point will only record its address. 1801 */ 1802 trace_workqueue_execute_end(work); 1803 lock_map_release(&lockdep_map); 1804 lock_map_release(&cwq->wq->lockdep_map); 1805 1806 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 1807 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " 1808 "%s/0x%08x/%d\n", 1809 current->comm, preempt_count(), task_pid_nr(current)); 1810 printk(KERN_ERR " last function: "); 1811 print_symbol("%s\n", (unsigned long)f); 1812 debug_show_held_locks(current); 1813 dump_stack(); 1814 } 1815 1816 spin_lock_irq(&gcwq->lock); 1817 1818 /* clear cpu intensive status */ 1819 if (unlikely(cpu_intensive)) 1820 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 1821 1822 /* we're done with it, release */ 1823 hlist_del_init(&worker->hentry); 1824 worker->current_work = NULL; 1825 worker->current_cwq = NULL; 1826 cwq_dec_nr_in_flight(cwq, work_color); 1827 } 1828 1829 /** 1830 * process_scheduled_works - process scheduled works 1831 * @worker: self 1832 * 1833 * Process all scheduled works. Please note that the scheduled list 1834 * may change while processing a work, so this function repeatedly 1835 * fetches a work from the top and executes it. 1836 * 1837 * CONTEXT: 1838 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 1839 * multiple times. 1840 */ 1841 static void process_scheduled_works(struct worker *worker) 1842 { 1843 while (!list_empty(&worker->scheduled)) { 1844 struct work_struct *work = list_first_entry(&worker->scheduled, 1845 struct work_struct, entry); 1846 process_one_work(worker, work); 1847 } 1848 } 1849 1850 /** 1851 * worker_thread - the worker thread function 1852 * @__worker: self 1853 * 1854 * The gcwq worker thread function. There's a single dynamic pool of 1855 * these per each cpu. These workers process all works regardless of 1856 * their specific target workqueue. The only exception is works which 1857 * belong to workqueues with a rescuer which will be explained in 1858 * rescuer_thread(). 1859 */ 1860 static int worker_thread(void *__worker) 1861 { 1862 struct worker *worker = __worker; 1863 struct global_cwq *gcwq = worker->gcwq; 1864 1865 /* tell the scheduler that this is a workqueue worker */ 1866 worker->task->flags |= PF_WQ_WORKER; 1867 woke_up: 1868 spin_lock_irq(&gcwq->lock); 1869 1870 /* DIE can be set only while we're idle, checking here is enough */ 1871 if (worker->flags & WORKER_DIE) { 1872 spin_unlock_irq(&gcwq->lock); 1873 worker->task->flags &= ~PF_WQ_WORKER; 1874 return 0; 1875 } 1876 1877 worker_leave_idle(worker); 1878 recheck: 1879 /* no more worker necessary? */ 1880 if (!need_more_worker(gcwq)) 1881 goto sleep; 1882 1883 /* do we need to manage? */ 1884 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker)) 1885 goto recheck; 1886 1887 /* 1888 * ->scheduled list can only be filled while a worker is 1889 * preparing to process a work or actually processing it. 1890 * Make sure nobody diddled with it while I was sleeping. 1891 */ 1892 BUG_ON(!list_empty(&worker->scheduled)); 1893 1894 /* 1895 * When control reaches this point, we're guaranteed to have 1896 * at least one idle worker or that someone else has already 1897 * assumed the manager role. 1898 */ 1899 worker_clr_flags(worker, WORKER_PREP); 1900 1901 do { 1902 struct work_struct *work = 1903 list_first_entry(&gcwq->worklist, 1904 struct work_struct, entry); 1905 1906 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 1907 /* optimization path, not strictly necessary */ 1908 process_one_work(worker, work); 1909 if (unlikely(!list_empty(&worker->scheduled))) 1910 process_scheduled_works(worker); 1911 } else { 1912 move_linked_works(work, &worker->scheduled, NULL); 1913 process_scheduled_works(worker); 1914 } 1915 } while (keep_working(gcwq)); 1916 1917 worker_set_flags(worker, WORKER_PREP, false); 1918 sleep: 1919 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker)) 1920 goto recheck; 1921 1922 /* 1923 * gcwq->lock is held and there's no work to process and no 1924 * need to manage, sleep. Workers are woken up only while 1925 * holding gcwq->lock or from local cpu, so setting the 1926 * current state before releasing gcwq->lock is enough to 1927 * prevent losing any event. 1928 */ 1929 worker_enter_idle(worker); 1930 __set_current_state(TASK_INTERRUPTIBLE); 1931 spin_unlock_irq(&gcwq->lock); 1932 schedule(); 1933 goto woke_up; 1934 } 1935 1936 /** 1937 * rescuer_thread - the rescuer thread function 1938 * @__wq: the associated workqueue 1939 * 1940 * Workqueue rescuer thread function. There's one rescuer for each 1941 * workqueue which has WQ_RESCUER set. 1942 * 1943 * Regular work processing on a gcwq may block trying to create a new 1944 * worker which uses GFP_KERNEL allocation which has slight chance of 1945 * developing into deadlock if some works currently on the same queue 1946 * need to be processed to satisfy the GFP_KERNEL allocation. This is 1947 * the problem rescuer solves. 1948 * 1949 * When such condition is possible, the gcwq summons rescuers of all 1950 * workqueues which have works queued on the gcwq and let them process 1951 * those works so that forward progress can be guaranteed. 1952 * 1953 * This should happen rarely. 1954 */ 1955 static int rescuer_thread(void *__wq) 1956 { 1957 struct workqueue_struct *wq = __wq; 1958 struct worker *rescuer = wq->rescuer; 1959 struct list_head *scheduled = &rescuer->scheduled; 1960 bool is_unbound = wq->flags & WQ_UNBOUND; 1961 unsigned int cpu; 1962 1963 set_user_nice(current, RESCUER_NICE_LEVEL); 1964 repeat: 1965 set_current_state(TASK_INTERRUPTIBLE); 1966 1967 if (kthread_should_stop()) 1968 return 0; 1969 1970 /* 1971 * See whether any cpu is asking for help. Unbounded 1972 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND. 1973 */ 1974 for_each_mayday_cpu(cpu, wq->mayday_mask) { 1975 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu; 1976 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq); 1977 struct global_cwq *gcwq = cwq->gcwq; 1978 struct work_struct *work, *n; 1979 1980 __set_current_state(TASK_RUNNING); 1981 mayday_clear_cpu(cpu, wq->mayday_mask); 1982 1983 /* migrate to the target cpu if possible */ 1984 rescuer->gcwq = gcwq; 1985 worker_maybe_bind_and_lock(rescuer); 1986 1987 /* 1988 * Slurp in all works issued via this workqueue and 1989 * process'em. 1990 */ 1991 BUG_ON(!list_empty(&rescuer->scheduled)); 1992 list_for_each_entry_safe(work, n, &gcwq->worklist, entry) 1993 if (get_work_cwq(work) == cwq) 1994 move_linked_works(work, scheduled, &n); 1995 1996 process_scheduled_works(rescuer); 1997 spin_unlock_irq(&gcwq->lock); 1998 } 1999 2000 schedule(); 2001 goto repeat; 2002 } 2003 2004 struct wq_barrier { 2005 struct work_struct work; 2006 struct completion done; 2007 }; 2008 2009 static void wq_barrier_func(struct work_struct *work) 2010 { 2011 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2012 complete(&barr->done); 2013 } 2014 2015 /** 2016 * insert_wq_barrier - insert a barrier work 2017 * @cwq: cwq to insert barrier into 2018 * @barr: wq_barrier to insert 2019 * @target: target work to attach @barr to 2020 * @worker: worker currently executing @target, NULL if @target is not executing 2021 * 2022 * @barr is linked to @target such that @barr is completed only after 2023 * @target finishes execution. Please note that the ordering 2024 * guarantee is observed only with respect to @target and on the local 2025 * cpu. 2026 * 2027 * Currently, a queued barrier can't be canceled. This is because 2028 * try_to_grab_pending() can't determine whether the work to be 2029 * grabbed is at the head of the queue and thus can't clear LINKED 2030 * flag of the previous work while there must be a valid next work 2031 * after a work with LINKED flag set. 2032 * 2033 * Note that when @worker is non-NULL, @target may be modified 2034 * underneath us, so we can't reliably determine cwq from @target. 2035 * 2036 * CONTEXT: 2037 * spin_lock_irq(gcwq->lock). 2038 */ 2039 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, 2040 struct wq_barrier *barr, 2041 struct work_struct *target, struct worker *worker) 2042 { 2043 struct list_head *head; 2044 unsigned int linked = 0; 2045 2046 /* 2047 * debugobject calls are safe here even with gcwq->lock locked 2048 * as we know for sure that this will not trigger any of the 2049 * checks and call back into the fixup functions where we 2050 * might deadlock. 2051 */ 2052 INIT_WORK_ON_STACK(&barr->work, wq_barrier_func); 2053 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2054 init_completion(&barr->done); 2055 2056 /* 2057 * If @target is currently being executed, schedule the 2058 * barrier to the worker; otherwise, put it after @target. 2059 */ 2060 if (worker) 2061 head = worker->scheduled.next; 2062 else { 2063 unsigned long *bits = work_data_bits(target); 2064 2065 head = target->entry.next; 2066 /* there can already be other linked works, inherit and set */ 2067 linked = *bits & WORK_STRUCT_LINKED; 2068 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2069 } 2070 2071 debug_work_activate(&barr->work); 2072 insert_work(cwq, &barr->work, head, 2073 work_color_to_flags(WORK_NO_COLOR) | linked); 2074 } 2075 2076 /** 2077 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing 2078 * @wq: workqueue being flushed 2079 * @flush_color: new flush color, < 0 for no-op 2080 * @work_color: new work color, < 0 for no-op 2081 * 2082 * Prepare cwqs for workqueue flushing. 2083 * 2084 * If @flush_color is non-negative, flush_color on all cwqs should be 2085 * -1. If no cwq has in-flight commands at the specified color, all 2086 * cwq->flush_color's stay at -1 and %false is returned. If any cwq 2087 * has in flight commands, its cwq->flush_color is set to 2088 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq 2089 * wakeup logic is armed and %true is returned. 2090 * 2091 * The caller should have initialized @wq->first_flusher prior to 2092 * calling this function with non-negative @flush_color. If 2093 * @flush_color is negative, no flush color update is done and %false 2094 * is returned. 2095 * 2096 * If @work_color is non-negative, all cwqs should have the same 2097 * work_color which is previous to @work_color and all will be 2098 * advanced to @work_color. 2099 * 2100 * CONTEXT: 2101 * mutex_lock(wq->flush_mutex). 2102 * 2103 * RETURNS: 2104 * %true if @flush_color >= 0 and there's something to flush. %false 2105 * otherwise. 2106 */ 2107 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq, 2108 int flush_color, int work_color) 2109 { 2110 bool wait = false; 2111 unsigned int cpu; 2112 2113 if (flush_color >= 0) { 2114 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush)); 2115 atomic_set(&wq->nr_cwqs_to_flush, 1); 2116 } 2117 2118 for_each_cwq_cpu(cpu, wq) { 2119 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2120 struct global_cwq *gcwq = cwq->gcwq; 2121 2122 spin_lock_irq(&gcwq->lock); 2123 2124 if (flush_color >= 0) { 2125 BUG_ON(cwq->flush_color != -1); 2126 2127 if (cwq->nr_in_flight[flush_color]) { 2128 cwq->flush_color = flush_color; 2129 atomic_inc(&wq->nr_cwqs_to_flush); 2130 wait = true; 2131 } 2132 } 2133 2134 if (work_color >= 0) { 2135 BUG_ON(work_color != work_next_color(cwq->work_color)); 2136 cwq->work_color = work_color; 2137 } 2138 2139 spin_unlock_irq(&gcwq->lock); 2140 } 2141 2142 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush)) 2143 complete(&wq->first_flusher->done); 2144 2145 return wait; 2146 } 2147 2148 /** 2149 * flush_workqueue - ensure that any scheduled work has run to completion. 2150 * @wq: workqueue to flush 2151 * 2152 * Forces execution of the workqueue and blocks until its completion. 2153 * This is typically used in driver shutdown handlers. 2154 * 2155 * We sleep until all works which were queued on entry have been handled, 2156 * but we are not livelocked by new incoming ones. 2157 */ 2158 void flush_workqueue(struct workqueue_struct *wq) 2159 { 2160 struct wq_flusher this_flusher = { 2161 .list = LIST_HEAD_INIT(this_flusher.list), 2162 .flush_color = -1, 2163 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2164 }; 2165 int next_color; 2166 2167 lock_map_acquire(&wq->lockdep_map); 2168 lock_map_release(&wq->lockdep_map); 2169 2170 mutex_lock(&wq->flush_mutex); 2171 2172 /* 2173 * Start-to-wait phase 2174 */ 2175 next_color = work_next_color(wq->work_color); 2176 2177 if (next_color != wq->flush_color) { 2178 /* 2179 * Color space is not full. The current work_color 2180 * becomes our flush_color and work_color is advanced 2181 * by one. 2182 */ 2183 BUG_ON(!list_empty(&wq->flusher_overflow)); 2184 this_flusher.flush_color = wq->work_color; 2185 wq->work_color = next_color; 2186 2187 if (!wq->first_flusher) { 2188 /* no flush in progress, become the first flusher */ 2189 BUG_ON(wq->flush_color != this_flusher.flush_color); 2190 2191 wq->first_flusher = &this_flusher; 2192 2193 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color, 2194 wq->work_color)) { 2195 /* nothing to flush, done */ 2196 wq->flush_color = next_color; 2197 wq->first_flusher = NULL; 2198 goto out_unlock; 2199 } 2200 } else { 2201 /* wait in queue */ 2202 BUG_ON(wq->flush_color == this_flusher.flush_color); 2203 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2204 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2205 } 2206 } else { 2207 /* 2208 * Oops, color space is full, wait on overflow queue. 2209 * The next flush completion will assign us 2210 * flush_color and transfer to flusher_queue. 2211 */ 2212 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2213 } 2214 2215 mutex_unlock(&wq->flush_mutex); 2216 2217 wait_for_completion(&this_flusher.done); 2218 2219 /* 2220 * Wake-up-and-cascade phase 2221 * 2222 * First flushers are responsible for cascading flushes and 2223 * handling overflow. Non-first flushers can simply return. 2224 */ 2225 if (wq->first_flusher != &this_flusher) 2226 return; 2227 2228 mutex_lock(&wq->flush_mutex); 2229 2230 /* we might have raced, check again with mutex held */ 2231 if (wq->first_flusher != &this_flusher) 2232 goto out_unlock; 2233 2234 wq->first_flusher = NULL; 2235 2236 BUG_ON(!list_empty(&this_flusher.list)); 2237 BUG_ON(wq->flush_color != this_flusher.flush_color); 2238 2239 while (true) { 2240 struct wq_flusher *next, *tmp; 2241 2242 /* complete all the flushers sharing the current flush color */ 2243 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2244 if (next->flush_color != wq->flush_color) 2245 break; 2246 list_del_init(&next->list); 2247 complete(&next->done); 2248 } 2249 2250 BUG_ON(!list_empty(&wq->flusher_overflow) && 2251 wq->flush_color != work_next_color(wq->work_color)); 2252 2253 /* this flush_color is finished, advance by one */ 2254 wq->flush_color = work_next_color(wq->flush_color); 2255 2256 /* one color has been freed, handle overflow queue */ 2257 if (!list_empty(&wq->flusher_overflow)) { 2258 /* 2259 * Assign the same color to all overflowed 2260 * flushers, advance work_color and append to 2261 * flusher_queue. This is the start-to-wait 2262 * phase for these overflowed flushers. 2263 */ 2264 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2265 tmp->flush_color = wq->work_color; 2266 2267 wq->work_color = work_next_color(wq->work_color); 2268 2269 list_splice_tail_init(&wq->flusher_overflow, 2270 &wq->flusher_queue); 2271 flush_workqueue_prep_cwqs(wq, -1, wq->work_color); 2272 } 2273 2274 if (list_empty(&wq->flusher_queue)) { 2275 BUG_ON(wq->flush_color != wq->work_color); 2276 break; 2277 } 2278 2279 /* 2280 * Need to flush more colors. Make the next flusher 2281 * the new first flusher and arm cwqs. 2282 */ 2283 BUG_ON(wq->flush_color == wq->work_color); 2284 BUG_ON(wq->flush_color != next->flush_color); 2285 2286 list_del_init(&next->list); 2287 wq->first_flusher = next; 2288 2289 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1)) 2290 break; 2291 2292 /* 2293 * Meh... this color is already done, clear first 2294 * flusher and repeat cascading. 2295 */ 2296 wq->first_flusher = NULL; 2297 } 2298 2299 out_unlock: 2300 mutex_unlock(&wq->flush_mutex); 2301 } 2302 EXPORT_SYMBOL_GPL(flush_workqueue); 2303 2304 /** 2305 * flush_work - block until a work_struct's callback has terminated 2306 * @work: the work which is to be flushed 2307 * 2308 * Returns false if @work has already terminated. 2309 * 2310 * It is expected that, prior to calling flush_work(), the caller has 2311 * arranged for the work to not be requeued, otherwise it doesn't make 2312 * sense to use this function. 2313 */ 2314 int flush_work(struct work_struct *work) 2315 { 2316 struct worker *worker = NULL; 2317 struct global_cwq *gcwq; 2318 struct cpu_workqueue_struct *cwq; 2319 struct wq_barrier barr; 2320 2321 might_sleep(); 2322 gcwq = get_work_gcwq(work); 2323 if (!gcwq) 2324 return 0; 2325 2326 spin_lock_irq(&gcwq->lock); 2327 if (!list_empty(&work->entry)) { 2328 /* 2329 * See the comment near try_to_grab_pending()->smp_rmb(). 2330 * If it was re-queued to a different gcwq under us, we 2331 * are not going to wait. 2332 */ 2333 smp_rmb(); 2334 cwq = get_work_cwq(work); 2335 if (unlikely(!cwq || gcwq != cwq->gcwq)) 2336 goto already_gone; 2337 } else { 2338 worker = find_worker_executing_work(gcwq, work); 2339 if (!worker) 2340 goto already_gone; 2341 cwq = worker->current_cwq; 2342 } 2343 2344 insert_wq_barrier(cwq, &barr, work, worker); 2345 spin_unlock_irq(&gcwq->lock); 2346 2347 lock_map_acquire(&cwq->wq->lockdep_map); 2348 lock_map_release(&cwq->wq->lockdep_map); 2349 2350 wait_for_completion(&barr.done); 2351 destroy_work_on_stack(&barr.work); 2352 return 1; 2353 already_gone: 2354 spin_unlock_irq(&gcwq->lock); 2355 return 0; 2356 } 2357 EXPORT_SYMBOL_GPL(flush_work); 2358 2359 /* 2360 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit, 2361 * so this work can't be re-armed in any way. 2362 */ 2363 static int try_to_grab_pending(struct work_struct *work) 2364 { 2365 struct global_cwq *gcwq; 2366 int ret = -1; 2367 2368 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2369 return 0; 2370 2371 /* 2372 * The queueing is in progress, or it is already queued. Try to 2373 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2374 */ 2375 gcwq = get_work_gcwq(work); 2376 if (!gcwq) 2377 return ret; 2378 2379 spin_lock_irq(&gcwq->lock); 2380 if (!list_empty(&work->entry)) { 2381 /* 2382 * This work is queued, but perhaps we locked the wrong gcwq. 2383 * In that case we must see the new value after rmb(), see 2384 * insert_work()->wmb(). 2385 */ 2386 smp_rmb(); 2387 if (gcwq == get_work_gcwq(work)) { 2388 debug_work_deactivate(work); 2389 list_del_init(&work->entry); 2390 cwq_dec_nr_in_flight(get_work_cwq(work), 2391 get_work_color(work)); 2392 ret = 1; 2393 } 2394 } 2395 spin_unlock_irq(&gcwq->lock); 2396 2397 return ret; 2398 } 2399 2400 static void wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work) 2401 { 2402 struct wq_barrier barr; 2403 struct worker *worker; 2404 2405 spin_lock_irq(&gcwq->lock); 2406 2407 worker = find_worker_executing_work(gcwq, work); 2408 if (unlikely(worker)) 2409 insert_wq_barrier(worker->current_cwq, &barr, work, worker); 2410 2411 spin_unlock_irq(&gcwq->lock); 2412 2413 if (unlikely(worker)) { 2414 wait_for_completion(&barr.done); 2415 destroy_work_on_stack(&barr.work); 2416 } 2417 } 2418 2419 static void wait_on_work(struct work_struct *work) 2420 { 2421 int cpu; 2422 2423 might_sleep(); 2424 2425 lock_map_acquire(&work->lockdep_map); 2426 lock_map_release(&work->lockdep_map); 2427 2428 for_each_gcwq_cpu(cpu) 2429 wait_on_cpu_work(get_gcwq(cpu), work); 2430 } 2431 2432 static int __cancel_work_timer(struct work_struct *work, 2433 struct timer_list* timer) 2434 { 2435 int ret; 2436 2437 do { 2438 ret = (timer && likely(del_timer(timer))); 2439 if (!ret) 2440 ret = try_to_grab_pending(work); 2441 wait_on_work(work); 2442 } while (unlikely(ret < 0)); 2443 2444 clear_work_data(work); 2445 return ret; 2446 } 2447 2448 /** 2449 * cancel_work_sync - block until a work_struct's callback has terminated 2450 * @work: the work which is to be flushed 2451 * 2452 * Returns true if @work was pending. 2453 * 2454 * cancel_work_sync() will cancel the work if it is queued. If the work's 2455 * callback appears to be running, cancel_work_sync() will block until it 2456 * has completed. 2457 * 2458 * It is possible to use this function if the work re-queues itself. It can 2459 * cancel the work even if it migrates to another workqueue, however in that 2460 * case it only guarantees that work->func() has completed on the last queued 2461 * workqueue. 2462 * 2463 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not 2464 * pending, otherwise it goes into a busy-wait loop until the timer expires. 2465 * 2466 * The caller must ensure that workqueue_struct on which this work was last 2467 * queued can't be destroyed before this function returns. 2468 */ 2469 int cancel_work_sync(struct work_struct *work) 2470 { 2471 return __cancel_work_timer(work, NULL); 2472 } 2473 EXPORT_SYMBOL_GPL(cancel_work_sync); 2474 2475 /** 2476 * cancel_delayed_work_sync - reliably kill off a delayed work. 2477 * @dwork: the delayed work struct 2478 * 2479 * Returns true if @dwork was pending. 2480 * 2481 * It is possible to use this function if @dwork rearms itself via queue_work() 2482 * or queue_delayed_work(). See also the comment for cancel_work_sync(). 2483 */ 2484 int cancel_delayed_work_sync(struct delayed_work *dwork) 2485 { 2486 return __cancel_work_timer(&dwork->work, &dwork->timer); 2487 } 2488 EXPORT_SYMBOL(cancel_delayed_work_sync); 2489 2490 /** 2491 * schedule_work - put work task in global workqueue 2492 * @work: job to be done 2493 * 2494 * Returns zero if @work was already on the kernel-global workqueue and 2495 * non-zero otherwise. 2496 * 2497 * This puts a job in the kernel-global workqueue if it was not already 2498 * queued and leaves it in the same position on the kernel-global 2499 * workqueue otherwise. 2500 */ 2501 int schedule_work(struct work_struct *work) 2502 { 2503 return queue_work(system_wq, work); 2504 } 2505 EXPORT_SYMBOL(schedule_work); 2506 2507 /* 2508 * schedule_work_on - put work task on a specific cpu 2509 * @cpu: cpu to put the work task on 2510 * @work: job to be done 2511 * 2512 * This puts a job on a specific cpu 2513 */ 2514 int schedule_work_on(int cpu, struct work_struct *work) 2515 { 2516 return queue_work_on(cpu, system_wq, work); 2517 } 2518 EXPORT_SYMBOL(schedule_work_on); 2519 2520 /** 2521 * schedule_delayed_work - put work task in global workqueue after delay 2522 * @dwork: job to be done 2523 * @delay: number of jiffies to wait or 0 for immediate execution 2524 * 2525 * After waiting for a given time this puts a job in the kernel-global 2526 * workqueue. 2527 */ 2528 int schedule_delayed_work(struct delayed_work *dwork, 2529 unsigned long delay) 2530 { 2531 return queue_delayed_work(system_wq, dwork, delay); 2532 } 2533 EXPORT_SYMBOL(schedule_delayed_work); 2534 2535 /** 2536 * flush_delayed_work - block until a dwork_struct's callback has terminated 2537 * @dwork: the delayed work which is to be flushed 2538 * 2539 * Any timeout is cancelled, and any pending work is run immediately. 2540 */ 2541 void flush_delayed_work(struct delayed_work *dwork) 2542 { 2543 if (del_timer_sync(&dwork->timer)) { 2544 __queue_work(get_cpu(), get_work_cwq(&dwork->work)->wq, 2545 &dwork->work); 2546 put_cpu(); 2547 } 2548 flush_work(&dwork->work); 2549 } 2550 EXPORT_SYMBOL(flush_delayed_work); 2551 2552 /** 2553 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 2554 * @cpu: cpu to use 2555 * @dwork: job to be done 2556 * @delay: number of jiffies to wait 2557 * 2558 * After waiting for a given time this puts a job in the kernel-global 2559 * workqueue on the specified CPU. 2560 */ 2561 int schedule_delayed_work_on(int cpu, 2562 struct delayed_work *dwork, unsigned long delay) 2563 { 2564 return queue_delayed_work_on(cpu, system_wq, dwork, delay); 2565 } 2566 EXPORT_SYMBOL(schedule_delayed_work_on); 2567 2568 /** 2569 * schedule_on_each_cpu - call a function on each online CPU from keventd 2570 * @func: the function to call 2571 * 2572 * Returns zero on success. 2573 * Returns -ve errno on failure. 2574 * 2575 * schedule_on_each_cpu() is very slow. 2576 */ 2577 int schedule_on_each_cpu(work_func_t func) 2578 { 2579 int cpu; 2580 struct work_struct __percpu *works; 2581 2582 works = alloc_percpu(struct work_struct); 2583 if (!works) 2584 return -ENOMEM; 2585 2586 get_online_cpus(); 2587 2588 for_each_online_cpu(cpu) { 2589 struct work_struct *work = per_cpu_ptr(works, cpu); 2590 2591 INIT_WORK(work, func); 2592 schedule_work_on(cpu, work); 2593 } 2594 2595 for_each_online_cpu(cpu) 2596 flush_work(per_cpu_ptr(works, cpu)); 2597 2598 put_online_cpus(); 2599 free_percpu(works); 2600 return 0; 2601 } 2602 2603 /** 2604 * flush_scheduled_work - ensure that any scheduled work has run to completion. 2605 * 2606 * Forces execution of the kernel-global workqueue and blocks until its 2607 * completion. 2608 * 2609 * Think twice before calling this function! It's very easy to get into 2610 * trouble if you don't take great care. Either of the following situations 2611 * will lead to deadlock: 2612 * 2613 * One of the work items currently on the workqueue needs to acquire 2614 * a lock held by your code or its caller. 2615 * 2616 * Your code is running in the context of a work routine. 2617 * 2618 * They will be detected by lockdep when they occur, but the first might not 2619 * occur very often. It depends on what work items are on the workqueue and 2620 * what locks they need, which you have no control over. 2621 * 2622 * In most situations flushing the entire workqueue is overkill; you merely 2623 * need to know that a particular work item isn't queued and isn't running. 2624 * In such cases you should use cancel_delayed_work_sync() or 2625 * cancel_work_sync() instead. 2626 */ 2627 void flush_scheduled_work(void) 2628 { 2629 flush_workqueue(system_wq); 2630 } 2631 EXPORT_SYMBOL(flush_scheduled_work); 2632 2633 /** 2634 * execute_in_process_context - reliably execute the routine with user context 2635 * @fn: the function to execute 2636 * @ew: guaranteed storage for the execute work structure (must 2637 * be available when the work executes) 2638 * 2639 * Executes the function immediately if process context is available, 2640 * otherwise schedules the function for delayed execution. 2641 * 2642 * Returns: 0 - function was executed 2643 * 1 - function was scheduled for execution 2644 */ 2645 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 2646 { 2647 if (!in_interrupt()) { 2648 fn(&ew->work); 2649 return 0; 2650 } 2651 2652 INIT_WORK(&ew->work, fn); 2653 schedule_work(&ew->work); 2654 2655 return 1; 2656 } 2657 EXPORT_SYMBOL_GPL(execute_in_process_context); 2658 2659 int keventd_up(void) 2660 { 2661 return system_wq != NULL; 2662 } 2663 2664 static int alloc_cwqs(struct workqueue_struct *wq) 2665 { 2666 /* 2667 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS. 2668 * Make sure that the alignment isn't lower than that of 2669 * unsigned long long. 2670 */ 2671 const size_t size = sizeof(struct cpu_workqueue_struct); 2672 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS, 2673 __alignof__(unsigned long long)); 2674 #ifdef CONFIG_SMP 2675 bool percpu = !(wq->flags & WQ_UNBOUND); 2676 #else 2677 bool percpu = false; 2678 #endif 2679 2680 if (percpu) 2681 wq->cpu_wq.pcpu = __alloc_percpu(size, align); 2682 else { 2683 void *ptr; 2684 2685 /* 2686 * Allocate enough room to align cwq and put an extra 2687 * pointer at the end pointing back to the originally 2688 * allocated pointer which will be used for free. 2689 */ 2690 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL); 2691 if (ptr) { 2692 wq->cpu_wq.single = PTR_ALIGN(ptr, align); 2693 *(void **)(wq->cpu_wq.single + 1) = ptr; 2694 } 2695 } 2696 2697 /* just in case, make sure it's actually aligned */ 2698 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align)); 2699 return wq->cpu_wq.v ? 0 : -ENOMEM; 2700 } 2701 2702 static void free_cwqs(struct workqueue_struct *wq) 2703 { 2704 #ifdef CONFIG_SMP 2705 bool percpu = !(wq->flags & WQ_UNBOUND); 2706 #else 2707 bool percpu = false; 2708 #endif 2709 2710 if (percpu) 2711 free_percpu(wq->cpu_wq.pcpu); 2712 else if (wq->cpu_wq.single) { 2713 /* the pointer to free is stored right after the cwq */ 2714 kfree(*(void **)(wq->cpu_wq.single + 1)); 2715 } 2716 } 2717 2718 static int wq_clamp_max_active(int max_active, unsigned int flags, 2719 const char *name) 2720 { 2721 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 2722 2723 if (max_active < 1 || max_active > lim) 2724 printk(KERN_WARNING "workqueue: max_active %d requested for %s " 2725 "is out of range, clamping between %d and %d\n", 2726 max_active, name, 1, lim); 2727 2728 return clamp_val(max_active, 1, lim); 2729 } 2730 2731 struct workqueue_struct *__alloc_workqueue_key(const char *name, 2732 unsigned int flags, 2733 int max_active, 2734 struct lock_class_key *key, 2735 const char *lock_name) 2736 { 2737 struct workqueue_struct *wq; 2738 unsigned int cpu; 2739 2740 /* 2741 * Unbound workqueues aren't concurrency managed and should be 2742 * dispatched to workers immediately. 2743 */ 2744 if (flags & WQ_UNBOUND) 2745 flags |= WQ_HIGHPRI; 2746 2747 max_active = max_active ?: WQ_DFL_ACTIVE; 2748 max_active = wq_clamp_max_active(max_active, flags, name); 2749 2750 wq = kzalloc(sizeof(*wq), GFP_KERNEL); 2751 if (!wq) 2752 goto err; 2753 2754 wq->flags = flags; 2755 wq->saved_max_active = max_active; 2756 mutex_init(&wq->flush_mutex); 2757 atomic_set(&wq->nr_cwqs_to_flush, 0); 2758 INIT_LIST_HEAD(&wq->flusher_queue); 2759 INIT_LIST_HEAD(&wq->flusher_overflow); 2760 2761 wq->name = name; 2762 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 2763 INIT_LIST_HEAD(&wq->list); 2764 2765 if (alloc_cwqs(wq) < 0) 2766 goto err; 2767 2768 for_each_cwq_cpu(cpu, wq) { 2769 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2770 struct global_cwq *gcwq = get_gcwq(cpu); 2771 2772 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK); 2773 cwq->gcwq = gcwq; 2774 cwq->wq = wq; 2775 cwq->flush_color = -1; 2776 cwq->max_active = max_active; 2777 INIT_LIST_HEAD(&cwq->delayed_works); 2778 } 2779 2780 if (flags & WQ_RESCUER) { 2781 struct worker *rescuer; 2782 2783 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL)) 2784 goto err; 2785 2786 wq->rescuer = rescuer = alloc_worker(); 2787 if (!rescuer) 2788 goto err; 2789 2790 rescuer->task = kthread_create(rescuer_thread, wq, "%s", name); 2791 if (IS_ERR(rescuer->task)) 2792 goto err; 2793 2794 wq->rescuer = rescuer; 2795 rescuer->task->flags |= PF_THREAD_BOUND; 2796 wake_up_process(rescuer->task); 2797 } 2798 2799 /* 2800 * workqueue_lock protects global freeze state and workqueues 2801 * list. Grab it, set max_active accordingly and add the new 2802 * workqueue to workqueues list. 2803 */ 2804 spin_lock(&workqueue_lock); 2805 2806 if (workqueue_freezing && wq->flags & WQ_FREEZEABLE) 2807 for_each_cwq_cpu(cpu, wq) 2808 get_cwq(cpu, wq)->max_active = 0; 2809 2810 list_add(&wq->list, &workqueues); 2811 2812 spin_unlock(&workqueue_lock); 2813 2814 return wq; 2815 err: 2816 if (wq) { 2817 free_cwqs(wq); 2818 free_mayday_mask(wq->mayday_mask); 2819 kfree(wq->rescuer); 2820 kfree(wq); 2821 } 2822 return NULL; 2823 } 2824 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 2825 2826 /** 2827 * destroy_workqueue - safely terminate a workqueue 2828 * @wq: target workqueue 2829 * 2830 * Safely destroy a workqueue. All work currently pending will be done first. 2831 */ 2832 void destroy_workqueue(struct workqueue_struct *wq) 2833 { 2834 unsigned int cpu; 2835 2836 flush_workqueue(wq); 2837 2838 /* 2839 * wq list is used to freeze wq, remove from list after 2840 * flushing is complete in case freeze races us. 2841 */ 2842 spin_lock(&workqueue_lock); 2843 list_del(&wq->list); 2844 spin_unlock(&workqueue_lock); 2845 2846 /* sanity check */ 2847 for_each_cwq_cpu(cpu, wq) { 2848 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2849 int i; 2850 2851 for (i = 0; i < WORK_NR_COLORS; i++) 2852 BUG_ON(cwq->nr_in_flight[i]); 2853 BUG_ON(cwq->nr_active); 2854 BUG_ON(!list_empty(&cwq->delayed_works)); 2855 } 2856 2857 if (wq->flags & WQ_RESCUER) { 2858 kthread_stop(wq->rescuer->task); 2859 free_mayday_mask(wq->mayday_mask); 2860 } 2861 2862 free_cwqs(wq); 2863 kfree(wq); 2864 } 2865 EXPORT_SYMBOL_GPL(destroy_workqueue); 2866 2867 /** 2868 * workqueue_set_max_active - adjust max_active of a workqueue 2869 * @wq: target workqueue 2870 * @max_active: new max_active value. 2871 * 2872 * Set max_active of @wq to @max_active. 2873 * 2874 * CONTEXT: 2875 * Don't call from IRQ context. 2876 */ 2877 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 2878 { 2879 unsigned int cpu; 2880 2881 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 2882 2883 spin_lock(&workqueue_lock); 2884 2885 wq->saved_max_active = max_active; 2886 2887 for_each_cwq_cpu(cpu, wq) { 2888 struct global_cwq *gcwq = get_gcwq(cpu); 2889 2890 spin_lock_irq(&gcwq->lock); 2891 2892 if (!(wq->flags & WQ_FREEZEABLE) || 2893 !(gcwq->flags & GCWQ_FREEZING)) 2894 get_cwq(gcwq->cpu, wq)->max_active = max_active; 2895 2896 spin_unlock_irq(&gcwq->lock); 2897 } 2898 2899 spin_unlock(&workqueue_lock); 2900 } 2901 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 2902 2903 /** 2904 * workqueue_congested - test whether a workqueue is congested 2905 * @cpu: CPU in question 2906 * @wq: target workqueue 2907 * 2908 * Test whether @wq's cpu workqueue for @cpu is congested. There is 2909 * no synchronization around this function and the test result is 2910 * unreliable and only useful as advisory hints or for debugging. 2911 * 2912 * RETURNS: 2913 * %true if congested, %false otherwise. 2914 */ 2915 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq) 2916 { 2917 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 2918 2919 return !list_empty(&cwq->delayed_works); 2920 } 2921 EXPORT_SYMBOL_GPL(workqueue_congested); 2922 2923 /** 2924 * work_cpu - return the last known associated cpu for @work 2925 * @work: the work of interest 2926 * 2927 * RETURNS: 2928 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise. 2929 */ 2930 unsigned int work_cpu(struct work_struct *work) 2931 { 2932 struct global_cwq *gcwq = get_work_gcwq(work); 2933 2934 return gcwq ? gcwq->cpu : WORK_CPU_NONE; 2935 } 2936 EXPORT_SYMBOL_GPL(work_cpu); 2937 2938 /** 2939 * work_busy - test whether a work is currently pending or running 2940 * @work: the work to be tested 2941 * 2942 * Test whether @work is currently pending or running. There is no 2943 * synchronization around this function and the test result is 2944 * unreliable and only useful as advisory hints or for debugging. 2945 * Especially for reentrant wqs, the pending state might hide the 2946 * running state. 2947 * 2948 * RETURNS: 2949 * OR'd bitmask of WORK_BUSY_* bits. 2950 */ 2951 unsigned int work_busy(struct work_struct *work) 2952 { 2953 struct global_cwq *gcwq = get_work_gcwq(work); 2954 unsigned long flags; 2955 unsigned int ret = 0; 2956 2957 if (!gcwq) 2958 return false; 2959 2960 spin_lock_irqsave(&gcwq->lock, flags); 2961 2962 if (work_pending(work)) 2963 ret |= WORK_BUSY_PENDING; 2964 if (find_worker_executing_work(gcwq, work)) 2965 ret |= WORK_BUSY_RUNNING; 2966 2967 spin_unlock_irqrestore(&gcwq->lock, flags); 2968 2969 return ret; 2970 } 2971 EXPORT_SYMBOL_GPL(work_busy); 2972 2973 /* 2974 * CPU hotplug. 2975 * 2976 * There are two challenges in supporting CPU hotplug. Firstly, there 2977 * are a lot of assumptions on strong associations among work, cwq and 2978 * gcwq which make migrating pending and scheduled works very 2979 * difficult to implement without impacting hot paths. Secondly, 2980 * gcwqs serve mix of short, long and very long running works making 2981 * blocked draining impractical. 2982 * 2983 * This is solved by allowing a gcwq to be detached from CPU, running 2984 * it with unbound (rogue) workers and allowing it to be reattached 2985 * later if the cpu comes back online. A separate thread is created 2986 * to govern a gcwq in such state and is called the trustee of the 2987 * gcwq. 2988 * 2989 * Trustee states and their descriptions. 2990 * 2991 * START Command state used on startup. On CPU_DOWN_PREPARE, a 2992 * new trustee is started with this state. 2993 * 2994 * IN_CHARGE Once started, trustee will enter this state after 2995 * assuming the manager role and making all existing 2996 * workers rogue. DOWN_PREPARE waits for trustee to 2997 * enter this state. After reaching IN_CHARGE, trustee 2998 * tries to execute the pending worklist until it's empty 2999 * and the state is set to BUTCHER, or the state is set 3000 * to RELEASE. 3001 * 3002 * BUTCHER Command state which is set by the cpu callback after 3003 * the cpu has went down. Once this state is set trustee 3004 * knows that there will be no new works on the worklist 3005 * and once the worklist is empty it can proceed to 3006 * killing idle workers. 3007 * 3008 * RELEASE Command state which is set by the cpu callback if the 3009 * cpu down has been canceled or it has come online 3010 * again. After recognizing this state, trustee stops 3011 * trying to drain or butcher and clears ROGUE, rebinds 3012 * all remaining workers back to the cpu and releases 3013 * manager role. 3014 * 3015 * DONE Trustee will enter this state after BUTCHER or RELEASE 3016 * is complete. 3017 * 3018 * trustee CPU draining 3019 * took over down complete 3020 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE 3021 * | | ^ 3022 * | CPU is back online v return workers | 3023 * ----------------> RELEASE -------------- 3024 */ 3025 3026 /** 3027 * trustee_wait_event_timeout - timed event wait for trustee 3028 * @cond: condition to wait for 3029 * @timeout: timeout in jiffies 3030 * 3031 * wait_event_timeout() for trustee to use. Handles locking and 3032 * checks for RELEASE request. 3033 * 3034 * CONTEXT: 3035 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3036 * multiple times. To be used by trustee. 3037 * 3038 * RETURNS: 3039 * Positive indicating left time if @cond is satisfied, 0 if timed 3040 * out, -1 if canceled. 3041 */ 3042 #define trustee_wait_event_timeout(cond, timeout) ({ \ 3043 long __ret = (timeout); \ 3044 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \ 3045 __ret) { \ 3046 spin_unlock_irq(&gcwq->lock); \ 3047 __wait_event_timeout(gcwq->trustee_wait, (cond) || \ 3048 (gcwq->trustee_state == TRUSTEE_RELEASE), \ 3049 __ret); \ 3050 spin_lock_irq(&gcwq->lock); \ 3051 } \ 3052 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \ 3053 }) 3054 3055 /** 3056 * trustee_wait_event - event wait for trustee 3057 * @cond: condition to wait for 3058 * 3059 * wait_event() for trustee to use. Automatically handles locking and 3060 * checks for CANCEL request. 3061 * 3062 * CONTEXT: 3063 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3064 * multiple times. To be used by trustee. 3065 * 3066 * RETURNS: 3067 * 0 if @cond is satisfied, -1 if canceled. 3068 */ 3069 #define trustee_wait_event(cond) ({ \ 3070 long __ret1; \ 3071 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\ 3072 __ret1 < 0 ? -1 : 0; \ 3073 }) 3074 3075 static int __cpuinit trustee_thread(void *__gcwq) 3076 { 3077 struct global_cwq *gcwq = __gcwq; 3078 struct worker *worker; 3079 struct work_struct *work; 3080 struct hlist_node *pos; 3081 long rc; 3082 int i; 3083 3084 BUG_ON(gcwq->cpu != smp_processor_id()); 3085 3086 spin_lock_irq(&gcwq->lock); 3087 /* 3088 * Claim the manager position and make all workers rogue. 3089 * Trustee must be bound to the target cpu and can't be 3090 * cancelled. 3091 */ 3092 BUG_ON(gcwq->cpu != smp_processor_id()); 3093 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS)); 3094 BUG_ON(rc < 0); 3095 3096 gcwq->flags |= GCWQ_MANAGING_WORKERS; 3097 3098 list_for_each_entry(worker, &gcwq->idle_list, entry) 3099 worker->flags |= WORKER_ROGUE; 3100 3101 for_each_busy_worker(worker, i, pos, gcwq) 3102 worker->flags |= WORKER_ROGUE; 3103 3104 /* 3105 * Call schedule() so that we cross rq->lock and thus can 3106 * guarantee sched callbacks see the rogue flag. This is 3107 * necessary as scheduler callbacks may be invoked from other 3108 * cpus. 3109 */ 3110 spin_unlock_irq(&gcwq->lock); 3111 schedule(); 3112 spin_lock_irq(&gcwq->lock); 3113 3114 /* 3115 * Sched callbacks are disabled now. Zap nr_running. After 3116 * this, nr_running stays zero and need_more_worker() and 3117 * keep_working() are always true as long as the worklist is 3118 * not empty. 3119 */ 3120 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0); 3121 3122 spin_unlock_irq(&gcwq->lock); 3123 del_timer_sync(&gcwq->idle_timer); 3124 spin_lock_irq(&gcwq->lock); 3125 3126 /* 3127 * We're now in charge. Notify and proceed to drain. We need 3128 * to keep the gcwq running during the whole CPU down 3129 * procedure as other cpu hotunplug callbacks may need to 3130 * flush currently running tasks. 3131 */ 3132 gcwq->trustee_state = TRUSTEE_IN_CHARGE; 3133 wake_up_all(&gcwq->trustee_wait); 3134 3135 /* 3136 * The original cpu is in the process of dying and may go away 3137 * anytime now. When that happens, we and all workers would 3138 * be migrated to other cpus. Try draining any left work. We 3139 * want to get it over with ASAP - spam rescuers, wake up as 3140 * many idlers as necessary and create new ones till the 3141 * worklist is empty. Note that if the gcwq is frozen, there 3142 * may be frozen works in freezeable cwqs. Don't declare 3143 * completion while frozen. 3144 */ 3145 while (gcwq->nr_workers != gcwq->nr_idle || 3146 gcwq->flags & GCWQ_FREEZING || 3147 gcwq->trustee_state == TRUSTEE_IN_CHARGE) { 3148 int nr_works = 0; 3149 3150 list_for_each_entry(work, &gcwq->worklist, entry) { 3151 send_mayday(work); 3152 nr_works++; 3153 } 3154 3155 list_for_each_entry(worker, &gcwq->idle_list, entry) { 3156 if (!nr_works--) 3157 break; 3158 wake_up_process(worker->task); 3159 } 3160 3161 if (need_to_create_worker(gcwq)) { 3162 spin_unlock_irq(&gcwq->lock); 3163 worker = create_worker(gcwq, false); 3164 spin_lock_irq(&gcwq->lock); 3165 if (worker) { 3166 worker->flags |= WORKER_ROGUE; 3167 start_worker(worker); 3168 } 3169 } 3170 3171 /* give a breather */ 3172 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0) 3173 break; 3174 } 3175 3176 /* 3177 * Either all works have been scheduled and cpu is down, or 3178 * cpu down has already been canceled. Wait for and butcher 3179 * all workers till we're canceled. 3180 */ 3181 do { 3182 rc = trustee_wait_event(!list_empty(&gcwq->idle_list)); 3183 while (!list_empty(&gcwq->idle_list)) 3184 destroy_worker(list_first_entry(&gcwq->idle_list, 3185 struct worker, entry)); 3186 } while (gcwq->nr_workers && rc >= 0); 3187 3188 /* 3189 * At this point, either draining has completed and no worker 3190 * is left, or cpu down has been canceled or the cpu is being 3191 * brought back up. There shouldn't be any idle one left. 3192 * Tell the remaining busy ones to rebind once it finishes the 3193 * currently scheduled works by scheduling the rebind_work. 3194 */ 3195 WARN_ON(!list_empty(&gcwq->idle_list)); 3196 3197 for_each_busy_worker(worker, i, pos, gcwq) { 3198 struct work_struct *rebind_work = &worker->rebind_work; 3199 3200 /* 3201 * Rebind_work may race with future cpu hotplug 3202 * operations. Use a separate flag to mark that 3203 * rebinding is scheduled. 3204 */ 3205 worker->flags |= WORKER_REBIND; 3206 worker->flags &= ~WORKER_ROGUE; 3207 3208 /* queue rebind_work, wq doesn't matter, use the default one */ 3209 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT, 3210 work_data_bits(rebind_work))) 3211 continue; 3212 3213 debug_work_activate(rebind_work); 3214 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work, 3215 worker->scheduled.next, 3216 work_color_to_flags(WORK_NO_COLOR)); 3217 } 3218 3219 /* relinquish manager role */ 3220 gcwq->flags &= ~GCWQ_MANAGING_WORKERS; 3221 3222 /* notify completion */ 3223 gcwq->trustee = NULL; 3224 gcwq->trustee_state = TRUSTEE_DONE; 3225 wake_up_all(&gcwq->trustee_wait); 3226 spin_unlock_irq(&gcwq->lock); 3227 return 0; 3228 } 3229 3230 /** 3231 * wait_trustee_state - wait for trustee to enter the specified state 3232 * @gcwq: gcwq the trustee of interest belongs to 3233 * @state: target state to wait for 3234 * 3235 * Wait for the trustee to reach @state. DONE is already matched. 3236 * 3237 * CONTEXT: 3238 * spin_lock_irq(gcwq->lock) which may be released and regrabbed 3239 * multiple times. To be used by cpu_callback. 3240 */ 3241 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state) 3242 { 3243 if (!(gcwq->trustee_state == state || 3244 gcwq->trustee_state == TRUSTEE_DONE)) { 3245 spin_unlock_irq(&gcwq->lock); 3246 __wait_event(gcwq->trustee_wait, 3247 gcwq->trustee_state == state || 3248 gcwq->trustee_state == TRUSTEE_DONE); 3249 spin_lock_irq(&gcwq->lock); 3250 } 3251 } 3252 3253 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, 3254 unsigned long action, 3255 void *hcpu) 3256 { 3257 unsigned int cpu = (unsigned long)hcpu; 3258 struct global_cwq *gcwq = get_gcwq(cpu); 3259 struct task_struct *new_trustee = NULL; 3260 struct worker *uninitialized_var(new_worker); 3261 unsigned long flags; 3262 3263 action &= ~CPU_TASKS_FROZEN; 3264 3265 switch (action) { 3266 case CPU_DOWN_PREPARE: 3267 new_trustee = kthread_create(trustee_thread, gcwq, 3268 "workqueue_trustee/%d\n", cpu); 3269 if (IS_ERR(new_trustee)) 3270 return notifier_from_errno(PTR_ERR(new_trustee)); 3271 kthread_bind(new_trustee, cpu); 3272 /* fall through */ 3273 case CPU_UP_PREPARE: 3274 BUG_ON(gcwq->first_idle); 3275 new_worker = create_worker(gcwq, false); 3276 if (!new_worker) { 3277 if (new_trustee) 3278 kthread_stop(new_trustee); 3279 return NOTIFY_BAD; 3280 } 3281 } 3282 3283 /* some are called w/ irq disabled, don't disturb irq status */ 3284 spin_lock_irqsave(&gcwq->lock, flags); 3285 3286 switch (action) { 3287 case CPU_DOWN_PREPARE: 3288 /* initialize trustee and tell it to acquire the gcwq */ 3289 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE); 3290 gcwq->trustee = new_trustee; 3291 gcwq->trustee_state = TRUSTEE_START; 3292 wake_up_process(gcwq->trustee); 3293 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE); 3294 /* fall through */ 3295 case CPU_UP_PREPARE: 3296 BUG_ON(gcwq->first_idle); 3297 gcwq->first_idle = new_worker; 3298 break; 3299 3300 case CPU_DYING: 3301 /* 3302 * Before this, the trustee and all workers except for 3303 * the ones which are still executing works from 3304 * before the last CPU down must be on the cpu. After 3305 * this, they'll all be diasporas. 3306 */ 3307 gcwq->flags |= GCWQ_DISASSOCIATED; 3308 break; 3309 3310 case CPU_POST_DEAD: 3311 gcwq->trustee_state = TRUSTEE_BUTCHER; 3312 /* fall through */ 3313 case CPU_UP_CANCELED: 3314 destroy_worker(gcwq->first_idle); 3315 gcwq->first_idle = NULL; 3316 break; 3317 3318 case CPU_DOWN_FAILED: 3319 case CPU_ONLINE: 3320 gcwq->flags &= ~GCWQ_DISASSOCIATED; 3321 if (gcwq->trustee_state != TRUSTEE_DONE) { 3322 gcwq->trustee_state = TRUSTEE_RELEASE; 3323 wake_up_process(gcwq->trustee); 3324 wait_trustee_state(gcwq, TRUSTEE_DONE); 3325 } 3326 3327 /* 3328 * Trustee is done and there might be no worker left. 3329 * Put the first_idle in and request a real manager to 3330 * take a look. 3331 */ 3332 spin_unlock_irq(&gcwq->lock); 3333 kthread_bind(gcwq->first_idle->task, cpu); 3334 spin_lock_irq(&gcwq->lock); 3335 gcwq->flags |= GCWQ_MANAGE_WORKERS; 3336 start_worker(gcwq->first_idle); 3337 gcwq->first_idle = NULL; 3338 break; 3339 } 3340 3341 spin_unlock_irqrestore(&gcwq->lock, flags); 3342 3343 return notifier_from_errno(0); 3344 } 3345 3346 #ifdef CONFIG_SMP 3347 3348 struct work_for_cpu { 3349 struct completion completion; 3350 long (*fn)(void *); 3351 void *arg; 3352 long ret; 3353 }; 3354 3355 static int do_work_for_cpu(void *_wfc) 3356 { 3357 struct work_for_cpu *wfc = _wfc; 3358 wfc->ret = wfc->fn(wfc->arg); 3359 complete(&wfc->completion); 3360 return 0; 3361 } 3362 3363 /** 3364 * work_on_cpu - run a function in user context on a particular cpu 3365 * @cpu: the cpu to run on 3366 * @fn: the function to run 3367 * @arg: the function arg 3368 * 3369 * This will return the value @fn returns. 3370 * It is up to the caller to ensure that the cpu doesn't go offline. 3371 * The caller must not hold any locks which would prevent @fn from completing. 3372 */ 3373 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg) 3374 { 3375 struct task_struct *sub_thread; 3376 struct work_for_cpu wfc = { 3377 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion), 3378 .fn = fn, 3379 .arg = arg, 3380 }; 3381 3382 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu"); 3383 if (IS_ERR(sub_thread)) 3384 return PTR_ERR(sub_thread); 3385 kthread_bind(sub_thread, cpu); 3386 wake_up_process(sub_thread); 3387 wait_for_completion(&wfc.completion); 3388 return wfc.ret; 3389 } 3390 EXPORT_SYMBOL_GPL(work_on_cpu); 3391 #endif /* CONFIG_SMP */ 3392 3393 #ifdef CONFIG_FREEZER 3394 3395 /** 3396 * freeze_workqueues_begin - begin freezing workqueues 3397 * 3398 * Start freezing workqueues. After this function returns, all 3399 * freezeable workqueues will queue new works to their frozen_works 3400 * list instead of gcwq->worklist. 3401 * 3402 * CONTEXT: 3403 * Grabs and releases workqueue_lock and gcwq->lock's. 3404 */ 3405 void freeze_workqueues_begin(void) 3406 { 3407 unsigned int cpu; 3408 3409 spin_lock(&workqueue_lock); 3410 3411 BUG_ON(workqueue_freezing); 3412 workqueue_freezing = true; 3413 3414 for_each_gcwq_cpu(cpu) { 3415 struct global_cwq *gcwq = get_gcwq(cpu); 3416 struct workqueue_struct *wq; 3417 3418 spin_lock_irq(&gcwq->lock); 3419 3420 BUG_ON(gcwq->flags & GCWQ_FREEZING); 3421 gcwq->flags |= GCWQ_FREEZING; 3422 3423 list_for_each_entry(wq, &workqueues, list) { 3424 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3425 3426 if (cwq && wq->flags & WQ_FREEZEABLE) 3427 cwq->max_active = 0; 3428 } 3429 3430 spin_unlock_irq(&gcwq->lock); 3431 } 3432 3433 spin_unlock(&workqueue_lock); 3434 } 3435 3436 /** 3437 * freeze_workqueues_busy - are freezeable workqueues still busy? 3438 * 3439 * Check whether freezing is complete. This function must be called 3440 * between freeze_workqueues_begin() and thaw_workqueues(). 3441 * 3442 * CONTEXT: 3443 * Grabs and releases workqueue_lock. 3444 * 3445 * RETURNS: 3446 * %true if some freezeable workqueues are still busy. %false if 3447 * freezing is complete. 3448 */ 3449 bool freeze_workqueues_busy(void) 3450 { 3451 unsigned int cpu; 3452 bool busy = false; 3453 3454 spin_lock(&workqueue_lock); 3455 3456 BUG_ON(!workqueue_freezing); 3457 3458 for_each_gcwq_cpu(cpu) { 3459 struct workqueue_struct *wq; 3460 /* 3461 * nr_active is monotonically decreasing. It's safe 3462 * to peek without lock. 3463 */ 3464 list_for_each_entry(wq, &workqueues, list) { 3465 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3466 3467 if (!cwq || !(wq->flags & WQ_FREEZEABLE)) 3468 continue; 3469 3470 BUG_ON(cwq->nr_active < 0); 3471 if (cwq->nr_active) { 3472 busy = true; 3473 goto out_unlock; 3474 } 3475 } 3476 } 3477 out_unlock: 3478 spin_unlock(&workqueue_lock); 3479 return busy; 3480 } 3481 3482 /** 3483 * thaw_workqueues - thaw workqueues 3484 * 3485 * Thaw workqueues. Normal queueing is restored and all collected 3486 * frozen works are transferred to their respective gcwq worklists. 3487 * 3488 * CONTEXT: 3489 * Grabs and releases workqueue_lock and gcwq->lock's. 3490 */ 3491 void thaw_workqueues(void) 3492 { 3493 unsigned int cpu; 3494 3495 spin_lock(&workqueue_lock); 3496 3497 if (!workqueue_freezing) 3498 goto out_unlock; 3499 3500 for_each_gcwq_cpu(cpu) { 3501 struct global_cwq *gcwq = get_gcwq(cpu); 3502 struct workqueue_struct *wq; 3503 3504 spin_lock_irq(&gcwq->lock); 3505 3506 BUG_ON(!(gcwq->flags & GCWQ_FREEZING)); 3507 gcwq->flags &= ~GCWQ_FREEZING; 3508 3509 list_for_each_entry(wq, &workqueues, list) { 3510 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq); 3511 3512 if (!cwq || !(wq->flags & WQ_FREEZEABLE)) 3513 continue; 3514 3515 /* restore max_active and repopulate worklist */ 3516 cwq->max_active = wq->saved_max_active; 3517 3518 while (!list_empty(&cwq->delayed_works) && 3519 cwq->nr_active < cwq->max_active) 3520 cwq_activate_first_delayed(cwq); 3521 } 3522 3523 wake_up_worker(gcwq); 3524 3525 spin_unlock_irq(&gcwq->lock); 3526 } 3527 3528 workqueue_freezing = false; 3529 out_unlock: 3530 spin_unlock(&workqueue_lock); 3531 } 3532 #endif /* CONFIG_FREEZER */ 3533 3534 static int __init init_workqueues(void) 3535 { 3536 unsigned int cpu; 3537 int i; 3538 3539 cpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE); 3540 3541 /* initialize gcwqs */ 3542 for_each_gcwq_cpu(cpu) { 3543 struct global_cwq *gcwq = get_gcwq(cpu); 3544 3545 spin_lock_init(&gcwq->lock); 3546 INIT_LIST_HEAD(&gcwq->worklist); 3547 gcwq->cpu = cpu; 3548 if (cpu == WORK_CPU_UNBOUND) 3549 gcwq->flags |= GCWQ_DISASSOCIATED; 3550 3551 INIT_LIST_HEAD(&gcwq->idle_list); 3552 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) 3553 INIT_HLIST_HEAD(&gcwq->busy_hash[i]); 3554 3555 init_timer_deferrable(&gcwq->idle_timer); 3556 gcwq->idle_timer.function = idle_worker_timeout; 3557 gcwq->idle_timer.data = (unsigned long)gcwq; 3558 3559 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout, 3560 (unsigned long)gcwq); 3561 3562 ida_init(&gcwq->worker_ida); 3563 3564 gcwq->trustee_state = TRUSTEE_DONE; 3565 init_waitqueue_head(&gcwq->trustee_wait); 3566 } 3567 3568 /* create the initial worker */ 3569 for_each_online_gcwq_cpu(cpu) { 3570 struct global_cwq *gcwq = get_gcwq(cpu); 3571 struct worker *worker; 3572 3573 worker = create_worker(gcwq, true); 3574 BUG_ON(!worker); 3575 spin_lock_irq(&gcwq->lock); 3576 start_worker(worker); 3577 spin_unlock_irq(&gcwq->lock); 3578 } 3579 3580 system_wq = alloc_workqueue("events", 0, 0); 3581 system_long_wq = alloc_workqueue("events_long", 0, 0); 3582 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0); 3583 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 3584 WQ_UNBOUND_MAX_ACTIVE); 3585 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq); 3586 return 0; 3587 } 3588 early_initcall(init_workqueues); 3589