1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/sched/debug.h> 53 #include <linux/nmi.h> 54 #include <linux/kvm_para.h> 55 56 #include "workqueue_internal.h" 57 58 enum { 59 /* 60 * worker_pool flags 61 * 62 * A bound pool is either associated or disassociated with its CPU. 63 * While associated (!DISASSOCIATED), all workers are bound to the 64 * CPU and none has %WORKER_UNBOUND set and concurrency management 65 * is in effect. 66 * 67 * While DISASSOCIATED, the cpu may be offline and all workers have 68 * %WORKER_UNBOUND set and concurrency management disabled, and may 69 * be executing on any CPU. The pool behaves as an unbound one. 70 * 71 * Note that DISASSOCIATED should be flipped only while holding 72 * wq_pool_attach_mutex to avoid changing binding state while 73 * worker_attach_to_pool() is in progress. 74 */ 75 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 76 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 77 78 /* worker flags */ 79 WORKER_DIE = 1 << 1, /* die die die */ 80 WORKER_IDLE = 1 << 2, /* is idle */ 81 WORKER_PREP = 1 << 3, /* preparing to run works */ 82 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 83 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 84 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 85 86 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 87 WORKER_UNBOUND | WORKER_REBOUND, 88 89 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 90 91 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 92 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 93 94 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 95 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 96 97 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 98 /* call for help after 10ms 99 (min two ticks) */ 100 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 101 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 102 103 /* 104 * Rescue workers are used only on emergencies and shared by 105 * all cpus. Give MIN_NICE. 106 */ 107 RESCUER_NICE_LEVEL = MIN_NICE, 108 HIGHPRI_NICE_LEVEL = MIN_NICE, 109 110 WQ_NAME_LEN = 24, 111 }; 112 113 /* 114 * Structure fields follow one of the following exclusion rules. 115 * 116 * I: Modifiable by initialization/destruction paths and read-only for 117 * everyone else. 118 * 119 * P: Preemption protected. Disabling preemption is enough and should 120 * only be modified and accessed from the local cpu. 121 * 122 * L: pool->lock protected. Access with pool->lock held. 123 * 124 * X: During normal operation, modification requires pool->lock and should 125 * be done only from local cpu. Either disabling preemption on local 126 * cpu or grabbing pool->lock is enough for read access. If 127 * POOL_DISASSOCIATED is set, it's identical to L. 128 * 129 * A: wq_pool_attach_mutex protected. 130 * 131 * PL: wq_pool_mutex protected. 132 * 133 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 134 * 135 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 136 * 137 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 138 * RCU for reads. 139 * 140 * WQ: wq->mutex protected. 141 * 142 * WR: wq->mutex protected for writes. RCU protected for reads. 143 * 144 * MD: wq_mayday_lock protected. 145 * 146 * WD: Used internally by the watchdog. 147 */ 148 149 /* struct worker is defined in workqueue_internal.h */ 150 151 struct worker_pool { 152 raw_spinlock_t lock; /* the pool lock */ 153 int cpu; /* I: the associated cpu */ 154 int node; /* I: the associated node ID */ 155 int id; /* I: pool ID */ 156 unsigned int flags; /* X: flags */ 157 158 unsigned long watchdog_ts; /* L: watchdog timestamp */ 159 bool cpu_stall; /* WD: stalled cpu bound pool */ 160 161 /* 162 * The counter is incremented in a process context on the associated CPU 163 * w/ preemption disabled, and decremented or reset in the same context 164 * but w/ pool->lock held. The readers grab pool->lock and are 165 * guaranteed to see if the counter reached zero. 166 */ 167 int nr_running; 168 169 struct list_head worklist; /* L: list of pending works */ 170 171 int nr_workers; /* L: total number of workers */ 172 int nr_idle; /* L: currently idle workers */ 173 174 struct list_head idle_list; /* L: list of idle workers */ 175 struct timer_list idle_timer; /* L: worker idle timeout */ 176 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 177 178 struct timer_list mayday_timer; /* L: SOS timer for workers */ 179 180 /* a workers is either on busy_hash or idle_list, or the manager */ 181 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 182 /* L: hash of busy workers */ 183 184 struct worker *manager; /* L: purely informational */ 185 struct list_head workers; /* A: attached workers */ 186 struct list_head dying_workers; /* A: workers about to die */ 187 struct completion *detach_completion; /* all workers detached */ 188 189 struct ida worker_ida; /* worker IDs for task name */ 190 191 struct workqueue_attrs *attrs; /* I: worker attributes */ 192 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 193 int refcnt; /* PL: refcnt for unbound pools */ 194 195 /* 196 * Destruction of pool is RCU protected to allow dereferences 197 * from get_work_pool(). 198 */ 199 struct rcu_head rcu; 200 }; 201 202 /* 203 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 204 * of work_struct->data are used for flags and the remaining high bits 205 * point to the pwq; thus, pwqs need to be aligned at two's power of the 206 * number of flag bits. 207 */ 208 struct pool_workqueue { 209 struct worker_pool *pool; /* I: the associated pool */ 210 struct workqueue_struct *wq; /* I: the owning workqueue */ 211 int work_color; /* L: current color */ 212 int flush_color; /* L: flushing color */ 213 int refcnt; /* L: reference count */ 214 int nr_in_flight[WORK_NR_COLORS]; 215 /* L: nr of in_flight works */ 216 217 /* 218 * nr_active management and WORK_STRUCT_INACTIVE: 219 * 220 * When pwq->nr_active >= max_active, new work item is queued to 221 * pwq->inactive_works instead of pool->worklist and marked with 222 * WORK_STRUCT_INACTIVE. 223 * 224 * All work items marked with WORK_STRUCT_INACTIVE do not participate 225 * in pwq->nr_active and all work items in pwq->inactive_works are 226 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE 227 * work items are in pwq->inactive_works. Some of them are ready to 228 * run in pool->worklist or worker->scheduled. Those work itmes are 229 * only struct wq_barrier which is used for flush_work() and should 230 * not participate in pwq->nr_active. For non-barrier work item, it 231 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 232 */ 233 int nr_active; /* L: nr of active works */ 234 int max_active; /* L: max active works */ 235 struct list_head inactive_works; /* L: inactive works */ 236 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 237 struct list_head mayday_node; /* MD: node on wq->maydays */ 238 239 /* 240 * Release of unbound pwq is punted to system_wq. See put_pwq() 241 * and pwq_unbound_release_workfn() for details. pool_workqueue 242 * itself is also RCU protected so that the first pwq can be 243 * determined without grabbing wq->mutex. 244 */ 245 struct work_struct unbound_release_work; 246 struct rcu_head rcu; 247 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 248 249 /* 250 * Structure used to wait for workqueue flush. 251 */ 252 struct wq_flusher { 253 struct list_head list; /* WQ: list of flushers */ 254 int flush_color; /* WQ: flush color waiting for */ 255 struct completion done; /* flush completion */ 256 }; 257 258 struct wq_device; 259 260 /* 261 * The externally visible workqueue. It relays the issued work items to 262 * the appropriate worker_pool through its pool_workqueues. 263 */ 264 struct workqueue_struct { 265 struct list_head pwqs; /* WR: all pwqs of this wq */ 266 struct list_head list; /* PR: list of all workqueues */ 267 268 struct mutex mutex; /* protects this wq */ 269 int work_color; /* WQ: current work color */ 270 int flush_color; /* WQ: current flush color */ 271 atomic_t nr_pwqs_to_flush; /* flush in progress */ 272 struct wq_flusher *first_flusher; /* WQ: first flusher */ 273 struct list_head flusher_queue; /* WQ: flush waiters */ 274 struct list_head flusher_overflow; /* WQ: flush overflow list */ 275 276 struct list_head maydays; /* MD: pwqs requesting rescue */ 277 struct worker *rescuer; /* MD: rescue worker */ 278 279 int nr_drainers; /* WQ: drain in progress */ 280 int saved_max_active; /* WQ: saved pwq max_active */ 281 282 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 283 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 284 285 #ifdef CONFIG_SYSFS 286 struct wq_device *wq_dev; /* I: for sysfs interface */ 287 #endif 288 #ifdef CONFIG_LOCKDEP 289 char *lock_name; 290 struct lock_class_key key; 291 struct lockdep_map lockdep_map; 292 #endif 293 char name[WQ_NAME_LEN]; /* I: workqueue name */ 294 295 /* 296 * Destruction of workqueue_struct is RCU protected to allow walking 297 * the workqueues list without grabbing wq_pool_mutex. 298 * This is used to dump all workqueues from sysrq. 299 */ 300 struct rcu_head rcu; 301 302 /* hot fields used during command issue, aligned to cacheline */ 303 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 304 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 305 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 306 }; 307 308 static struct kmem_cache *pwq_cache; 309 310 static cpumask_var_t *wq_numa_possible_cpumask; 311 /* possible CPUs of each node */ 312 313 static bool wq_disable_numa; 314 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 315 316 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 317 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 318 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 319 320 static bool wq_online; /* can kworkers be created yet? */ 321 322 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 323 324 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 325 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 326 327 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 328 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 329 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 330 /* wait for manager to go away */ 331 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 332 333 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 334 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 335 336 /* PL&A: allowable cpus for unbound wqs and work items */ 337 static cpumask_var_t wq_unbound_cpumask; 338 339 /* CPU where unbound work was last round robin scheduled from this CPU */ 340 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 341 342 /* 343 * Local execution of unbound work items is no longer guaranteed. The 344 * following always forces round-robin CPU selection on unbound work items 345 * to uncover usages which depend on it. 346 */ 347 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 348 static bool wq_debug_force_rr_cpu = true; 349 #else 350 static bool wq_debug_force_rr_cpu = false; 351 #endif 352 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 353 354 /* the per-cpu worker pools */ 355 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 356 357 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 358 359 /* PL: hash of all unbound pools keyed by pool->attrs */ 360 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 361 362 /* I: attributes used when instantiating standard unbound pools on demand */ 363 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 364 365 /* I: attributes used when instantiating ordered pools on demand */ 366 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 367 368 struct workqueue_struct *system_wq __read_mostly; 369 EXPORT_SYMBOL(system_wq); 370 struct workqueue_struct *system_highpri_wq __read_mostly; 371 EXPORT_SYMBOL_GPL(system_highpri_wq); 372 struct workqueue_struct *system_long_wq __read_mostly; 373 EXPORT_SYMBOL_GPL(system_long_wq); 374 struct workqueue_struct *system_unbound_wq __read_mostly; 375 EXPORT_SYMBOL_GPL(system_unbound_wq); 376 struct workqueue_struct *system_freezable_wq __read_mostly; 377 EXPORT_SYMBOL_GPL(system_freezable_wq); 378 struct workqueue_struct *system_power_efficient_wq __read_mostly; 379 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 380 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 381 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 382 383 static int worker_thread(void *__worker); 384 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 385 static void show_pwq(struct pool_workqueue *pwq); 386 static void show_one_worker_pool(struct worker_pool *pool); 387 388 #define CREATE_TRACE_POINTS 389 #include <trace/events/workqueue.h> 390 391 #define assert_rcu_or_pool_mutex() \ 392 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 393 !lockdep_is_held(&wq_pool_mutex), \ 394 "RCU or wq_pool_mutex should be held") 395 396 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 397 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 398 !lockdep_is_held(&wq->mutex) && \ 399 !lockdep_is_held(&wq_pool_mutex), \ 400 "RCU, wq->mutex or wq_pool_mutex should be held") 401 402 #define for_each_cpu_worker_pool(pool, cpu) \ 403 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 404 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 405 (pool)++) 406 407 /** 408 * for_each_pool - iterate through all worker_pools in the system 409 * @pool: iteration cursor 410 * @pi: integer used for iteration 411 * 412 * This must be called either with wq_pool_mutex held or RCU read 413 * locked. If the pool needs to be used beyond the locking in effect, the 414 * caller is responsible for guaranteeing that the pool stays online. 415 * 416 * The if/else clause exists only for the lockdep assertion and can be 417 * ignored. 418 */ 419 #define for_each_pool(pool, pi) \ 420 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 421 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 422 else 423 424 /** 425 * for_each_pool_worker - iterate through all workers of a worker_pool 426 * @worker: iteration cursor 427 * @pool: worker_pool to iterate workers of 428 * 429 * This must be called with wq_pool_attach_mutex. 430 * 431 * The if/else clause exists only for the lockdep assertion and can be 432 * ignored. 433 */ 434 #define for_each_pool_worker(worker, pool) \ 435 list_for_each_entry((worker), &(pool)->workers, node) \ 436 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 437 else 438 439 /** 440 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 441 * @pwq: iteration cursor 442 * @wq: the target workqueue 443 * 444 * This must be called either with wq->mutex held or RCU read locked. 445 * If the pwq needs to be used beyond the locking in effect, the caller is 446 * responsible for guaranteeing that the pwq stays online. 447 * 448 * The if/else clause exists only for the lockdep assertion and can be 449 * ignored. 450 */ 451 #define for_each_pwq(pwq, wq) \ 452 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 453 lockdep_is_held(&(wq->mutex))) 454 455 #ifdef CONFIG_DEBUG_OBJECTS_WORK 456 457 static const struct debug_obj_descr work_debug_descr; 458 459 static void *work_debug_hint(void *addr) 460 { 461 return ((struct work_struct *) addr)->func; 462 } 463 464 static bool work_is_static_object(void *addr) 465 { 466 struct work_struct *work = addr; 467 468 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 469 } 470 471 /* 472 * fixup_init is called when: 473 * - an active object is initialized 474 */ 475 static bool work_fixup_init(void *addr, enum debug_obj_state state) 476 { 477 struct work_struct *work = addr; 478 479 switch (state) { 480 case ODEBUG_STATE_ACTIVE: 481 cancel_work_sync(work); 482 debug_object_init(work, &work_debug_descr); 483 return true; 484 default: 485 return false; 486 } 487 } 488 489 /* 490 * fixup_free is called when: 491 * - an active object is freed 492 */ 493 static bool work_fixup_free(void *addr, enum debug_obj_state state) 494 { 495 struct work_struct *work = addr; 496 497 switch (state) { 498 case ODEBUG_STATE_ACTIVE: 499 cancel_work_sync(work); 500 debug_object_free(work, &work_debug_descr); 501 return true; 502 default: 503 return false; 504 } 505 } 506 507 static const struct debug_obj_descr work_debug_descr = { 508 .name = "work_struct", 509 .debug_hint = work_debug_hint, 510 .is_static_object = work_is_static_object, 511 .fixup_init = work_fixup_init, 512 .fixup_free = work_fixup_free, 513 }; 514 515 static inline void debug_work_activate(struct work_struct *work) 516 { 517 debug_object_activate(work, &work_debug_descr); 518 } 519 520 static inline void debug_work_deactivate(struct work_struct *work) 521 { 522 debug_object_deactivate(work, &work_debug_descr); 523 } 524 525 void __init_work(struct work_struct *work, int onstack) 526 { 527 if (onstack) 528 debug_object_init_on_stack(work, &work_debug_descr); 529 else 530 debug_object_init(work, &work_debug_descr); 531 } 532 EXPORT_SYMBOL_GPL(__init_work); 533 534 void destroy_work_on_stack(struct work_struct *work) 535 { 536 debug_object_free(work, &work_debug_descr); 537 } 538 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 539 540 void destroy_delayed_work_on_stack(struct delayed_work *work) 541 { 542 destroy_timer_on_stack(&work->timer); 543 debug_object_free(&work->work, &work_debug_descr); 544 } 545 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 546 547 #else 548 static inline void debug_work_activate(struct work_struct *work) { } 549 static inline void debug_work_deactivate(struct work_struct *work) { } 550 #endif 551 552 /** 553 * worker_pool_assign_id - allocate ID and assign it to @pool 554 * @pool: the pool pointer of interest 555 * 556 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 557 * successfully, -errno on failure. 558 */ 559 static int worker_pool_assign_id(struct worker_pool *pool) 560 { 561 int ret; 562 563 lockdep_assert_held(&wq_pool_mutex); 564 565 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 566 GFP_KERNEL); 567 if (ret >= 0) { 568 pool->id = ret; 569 return 0; 570 } 571 return ret; 572 } 573 574 /** 575 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 576 * @wq: the target workqueue 577 * @node: the node ID 578 * 579 * This must be called with any of wq_pool_mutex, wq->mutex or RCU 580 * read locked. 581 * If the pwq needs to be used beyond the locking in effect, the caller is 582 * responsible for guaranteeing that the pwq stays online. 583 * 584 * Return: The unbound pool_workqueue for @node. 585 */ 586 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 587 int node) 588 { 589 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 590 591 /* 592 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 593 * delayed item is pending. The plan is to keep CPU -> NODE 594 * mapping valid and stable across CPU on/offlines. Once that 595 * happens, this workaround can be removed. 596 */ 597 if (unlikely(node == NUMA_NO_NODE)) 598 return wq->dfl_pwq; 599 600 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 601 } 602 603 static unsigned int work_color_to_flags(int color) 604 { 605 return color << WORK_STRUCT_COLOR_SHIFT; 606 } 607 608 static int get_work_color(unsigned long work_data) 609 { 610 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 611 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 612 } 613 614 static int work_next_color(int color) 615 { 616 return (color + 1) % WORK_NR_COLORS; 617 } 618 619 /* 620 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 621 * contain the pointer to the queued pwq. Once execution starts, the flag 622 * is cleared and the high bits contain OFFQ flags and pool ID. 623 * 624 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 625 * and clear_work_data() can be used to set the pwq, pool or clear 626 * work->data. These functions should only be called while the work is 627 * owned - ie. while the PENDING bit is set. 628 * 629 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 630 * corresponding to a work. Pool is available once the work has been 631 * queued anywhere after initialization until it is sync canceled. pwq is 632 * available only while the work item is queued. 633 * 634 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 635 * canceled. While being canceled, a work item may have its PENDING set 636 * but stay off timer and worklist for arbitrarily long and nobody should 637 * try to steal the PENDING bit. 638 */ 639 static inline void set_work_data(struct work_struct *work, unsigned long data, 640 unsigned long flags) 641 { 642 WARN_ON_ONCE(!work_pending(work)); 643 atomic_long_set(&work->data, data | flags | work_static(work)); 644 } 645 646 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 647 unsigned long extra_flags) 648 { 649 set_work_data(work, (unsigned long)pwq, 650 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 651 } 652 653 static void set_work_pool_and_keep_pending(struct work_struct *work, 654 int pool_id) 655 { 656 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 657 WORK_STRUCT_PENDING); 658 } 659 660 static void set_work_pool_and_clear_pending(struct work_struct *work, 661 int pool_id) 662 { 663 /* 664 * The following wmb is paired with the implied mb in 665 * test_and_set_bit(PENDING) and ensures all updates to @work made 666 * here are visible to and precede any updates by the next PENDING 667 * owner. 668 */ 669 smp_wmb(); 670 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 671 /* 672 * The following mb guarantees that previous clear of a PENDING bit 673 * will not be reordered with any speculative LOADS or STORES from 674 * work->current_func, which is executed afterwards. This possible 675 * reordering can lead to a missed execution on attempt to queue 676 * the same @work. E.g. consider this case: 677 * 678 * CPU#0 CPU#1 679 * ---------------------------- -------------------------------- 680 * 681 * 1 STORE event_indicated 682 * 2 queue_work_on() { 683 * 3 test_and_set_bit(PENDING) 684 * 4 } set_..._and_clear_pending() { 685 * 5 set_work_data() # clear bit 686 * 6 smp_mb() 687 * 7 work->current_func() { 688 * 8 LOAD event_indicated 689 * } 690 * 691 * Without an explicit full barrier speculative LOAD on line 8 can 692 * be executed before CPU#0 does STORE on line 1. If that happens, 693 * CPU#0 observes the PENDING bit is still set and new execution of 694 * a @work is not queued in a hope, that CPU#1 will eventually 695 * finish the queued @work. Meanwhile CPU#1 does not see 696 * event_indicated is set, because speculative LOAD was executed 697 * before actual STORE. 698 */ 699 smp_mb(); 700 } 701 702 static void clear_work_data(struct work_struct *work) 703 { 704 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 705 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 706 } 707 708 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 709 { 710 unsigned long data = atomic_long_read(&work->data); 711 712 if (data & WORK_STRUCT_PWQ) 713 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 714 else 715 return NULL; 716 } 717 718 /** 719 * get_work_pool - return the worker_pool a given work was associated with 720 * @work: the work item of interest 721 * 722 * Pools are created and destroyed under wq_pool_mutex, and allows read 723 * access under RCU read lock. As such, this function should be 724 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 725 * 726 * All fields of the returned pool are accessible as long as the above 727 * mentioned locking is in effect. If the returned pool needs to be used 728 * beyond the critical section, the caller is responsible for ensuring the 729 * returned pool is and stays online. 730 * 731 * Return: The worker_pool @work was last associated with. %NULL if none. 732 */ 733 static struct worker_pool *get_work_pool(struct work_struct *work) 734 { 735 unsigned long data = atomic_long_read(&work->data); 736 int pool_id; 737 738 assert_rcu_or_pool_mutex(); 739 740 if (data & WORK_STRUCT_PWQ) 741 return ((struct pool_workqueue *) 742 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 743 744 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 745 if (pool_id == WORK_OFFQ_POOL_NONE) 746 return NULL; 747 748 return idr_find(&worker_pool_idr, pool_id); 749 } 750 751 /** 752 * get_work_pool_id - return the worker pool ID a given work is associated with 753 * @work: the work item of interest 754 * 755 * Return: The worker_pool ID @work was last associated with. 756 * %WORK_OFFQ_POOL_NONE if none. 757 */ 758 static int get_work_pool_id(struct work_struct *work) 759 { 760 unsigned long data = atomic_long_read(&work->data); 761 762 if (data & WORK_STRUCT_PWQ) 763 return ((struct pool_workqueue *) 764 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 765 766 return data >> WORK_OFFQ_POOL_SHIFT; 767 } 768 769 static void mark_work_canceling(struct work_struct *work) 770 { 771 unsigned long pool_id = get_work_pool_id(work); 772 773 pool_id <<= WORK_OFFQ_POOL_SHIFT; 774 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 775 } 776 777 static bool work_is_canceling(struct work_struct *work) 778 { 779 unsigned long data = atomic_long_read(&work->data); 780 781 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 782 } 783 784 /* 785 * Policy functions. These define the policies on how the global worker 786 * pools are managed. Unless noted otherwise, these functions assume that 787 * they're being called with pool->lock held. 788 */ 789 790 static bool __need_more_worker(struct worker_pool *pool) 791 { 792 return !pool->nr_running; 793 } 794 795 /* 796 * Need to wake up a worker? Called from anything but currently 797 * running workers. 798 * 799 * Note that, because unbound workers never contribute to nr_running, this 800 * function will always return %true for unbound pools as long as the 801 * worklist isn't empty. 802 */ 803 static bool need_more_worker(struct worker_pool *pool) 804 { 805 return !list_empty(&pool->worklist) && __need_more_worker(pool); 806 } 807 808 /* Can I start working? Called from busy but !running workers. */ 809 static bool may_start_working(struct worker_pool *pool) 810 { 811 return pool->nr_idle; 812 } 813 814 /* Do I need to keep working? Called from currently running workers. */ 815 static bool keep_working(struct worker_pool *pool) 816 { 817 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 818 } 819 820 /* Do we need a new worker? Called from manager. */ 821 static bool need_to_create_worker(struct worker_pool *pool) 822 { 823 return need_more_worker(pool) && !may_start_working(pool); 824 } 825 826 /* Do we have too many workers and should some go away? */ 827 static bool too_many_workers(struct worker_pool *pool) 828 { 829 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 830 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 831 int nr_busy = pool->nr_workers - nr_idle; 832 833 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 834 } 835 836 /* 837 * Wake up functions. 838 */ 839 840 /* Return the first idle worker. Called with pool->lock held. */ 841 static struct worker *first_idle_worker(struct worker_pool *pool) 842 { 843 if (unlikely(list_empty(&pool->idle_list))) 844 return NULL; 845 846 return list_first_entry(&pool->idle_list, struct worker, entry); 847 } 848 849 /** 850 * wake_up_worker - wake up an idle worker 851 * @pool: worker pool to wake worker from 852 * 853 * Wake up the first idle worker of @pool. 854 * 855 * CONTEXT: 856 * raw_spin_lock_irq(pool->lock). 857 */ 858 static void wake_up_worker(struct worker_pool *pool) 859 { 860 struct worker *worker = first_idle_worker(pool); 861 862 if (likely(worker)) 863 wake_up_process(worker->task); 864 } 865 866 /** 867 * wq_worker_running - a worker is running again 868 * @task: task waking up 869 * 870 * This function is called when a worker returns from schedule() 871 */ 872 void wq_worker_running(struct task_struct *task) 873 { 874 struct worker *worker = kthread_data(task); 875 876 if (!worker->sleeping) 877 return; 878 879 /* 880 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 881 * and the nr_running increment below, we may ruin the nr_running reset 882 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 883 * pool. Protect against such race. 884 */ 885 preempt_disable(); 886 if (!(worker->flags & WORKER_NOT_RUNNING)) 887 worker->pool->nr_running++; 888 preempt_enable(); 889 worker->sleeping = 0; 890 } 891 892 /** 893 * wq_worker_sleeping - a worker is going to sleep 894 * @task: task going to sleep 895 * 896 * This function is called from schedule() when a busy worker is 897 * going to sleep. 898 */ 899 void wq_worker_sleeping(struct task_struct *task) 900 { 901 struct worker *worker = kthread_data(task); 902 struct worker_pool *pool; 903 904 /* 905 * Rescuers, which may not have all the fields set up like normal 906 * workers, also reach here, let's not access anything before 907 * checking NOT_RUNNING. 908 */ 909 if (worker->flags & WORKER_NOT_RUNNING) 910 return; 911 912 pool = worker->pool; 913 914 /* Return if preempted before wq_worker_running() was reached */ 915 if (worker->sleeping) 916 return; 917 918 worker->sleeping = 1; 919 raw_spin_lock_irq(&pool->lock); 920 921 /* 922 * Recheck in case unbind_workers() preempted us. We don't 923 * want to decrement nr_running after the worker is unbound 924 * and nr_running has been reset. 925 */ 926 if (worker->flags & WORKER_NOT_RUNNING) { 927 raw_spin_unlock_irq(&pool->lock); 928 return; 929 } 930 931 pool->nr_running--; 932 if (need_more_worker(pool)) 933 wake_up_worker(pool); 934 raw_spin_unlock_irq(&pool->lock); 935 } 936 937 /** 938 * wq_worker_last_func - retrieve worker's last work function 939 * @task: Task to retrieve last work function of. 940 * 941 * Determine the last function a worker executed. This is called from 942 * the scheduler to get a worker's last known identity. 943 * 944 * CONTEXT: 945 * raw_spin_lock_irq(rq->lock) 946 * 947 * This function is called during schedule() when a kworker is going 948 * to sleep. It's used by psi to identify aggregation workers during 949 * dequeuing, to allow periodic aggregation to shut-off when that 950 * worker is the last task in the system or cgroup to go to sleep. 951 * 952 * As this function doesn't involve any workqueue-related locking, it 953 * only returns stable values when called from inside the scheduler's 954 * queuing and dequeuing paths, when @task, which must be a kworker, 955 * is guaranteed to not be processing any works. 956 * 957 * Return: 958 * The last work function %current executed as a worker, NULL if it 959 * hasn't executed any work yet. 960 */ 961 work_func_t wq_worker_last_func(struct task_struct *task) 962 { 963 struct worker *worker = kthread_data(task); 964 965 return worker->last_func; 966 } 967 968 /** 969 * worker_set_flags - set worker flags and adjust nr_running accordingly 970 * @worker: self 971 * @flags: flags to set 972 * 973 * Set @flags in @worker->flags and adjust nr_running accordingly. 974 * 975 * CONTEXT: 976 * raw_spin_lock_irq(pool->lock) 977 */ 978 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 979 { 980 struct worker_pool *pool = worker->pool; 981 982 WARN_ON_ONCE(worker->task != current); 983 984 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 985 if ((flags & WORKER_NOT_RUNNING) && 986 !(worker->flags & WORKER_NOT_RUNNING)) { 987 pool->nr_running--; 988 } 989 990 worker->flags |= flags; 991 } 992 993 /** 994 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 995 * @worker: self 996 * @flags: flags to clear 997 * 998 * Clear @flags in @worker->flags and adjust nr_running accordingly. 999 * 1000 * CONTEXT: 1001 * raw_spin_lock_irq(pool->lock) 1002 */ 1003 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 1004 { 1005 struct worker_pool *pool = worker->pool; 1006 unsigned int oflags = worker->flags; 1007 1008 WARN_ON_ONCE(worker->task != current); 1009 1010 worker->flags &= ~flags; 1011 1012 /* 1013 * If transitioning out of NOT_RUNNING, increment nr_running. Note 1014 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 1015 * of multiple flags, not a single flag. 1016 */ 1017 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 1018 if (!(worker->flags & WORKER_NOT_RUNNING)) 1019 pool->nr_running++; 1020 } 1021 1022 /** 1023 * find_worker_executing_work - find worker which is executing a work 1024 * @pool: pool of interest 1025 * @work: work to find worker for 1026 * 1027 * Find a worker which is executing @work on @pool by searching 1028 * @pool->busy_hash which is keyed by the address of @work. For a worker 1029 * to match, its current execution should match the address of @work and 1030 * its work function. This is to avoid unwanted dependency between 1031 * unrelated work executions through a work item being recycled while still 1032 * being executed. 1033 * 1034 * This is a bit tricky. A work item may be freed once its execution 1035 * starts and nothing prevents the freed area from being recycled for 1036 * another work item. If the same work item address ends up being reused 1037 * before the original execution finishes, workqueue will identify the 1038 * recycled work item as currently executing and make it wait until the 1039 * current execution finishes, introducing an unwanted dependency. 1040 * 1041 * This function checks the work item address and work function to avoid 1042 * false positives. Note that this isn't complete as one may construct a 1043 * work function which can introduce dependency onto itself through a 1044 * recycled work item. Well, if somebody wants to shoot oneself in the 1045 * foot that badly, there's only so much we can do, and if such deadlock 1046 * actually occurs, it should be easy to locate the culprit work function. 1047 * 1048 * CONTEXT: 1049 * raw_spin_lock_irq(pool->lock). 1050 * 1051 * Return: 1052 * Pointer to worker which is executing @work if found, %NULL 1053 * otherwise. 1054 */ 1055 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1056 struct work_struct *work) 1057 { 1058 struct worker *worker; 1059 1060 hash_for_each_possible(pool->busy_hash, worker, hentry, 1061 (unsigned long)work) 1062 if (worker->current_work == work && 1063 worker->current_func == work->func) 1064 return worker; 1065 1066 return NULL; 1067 } 1068 1069 /** 1070 * move_linked_works - move linked works to a list 1071 * @work: start of series of works to be scheduled 1072 * @head: target list to append @work to 1073 * @nextp: out parameter for nested worklist walking 1074 * 1075 * Schedule linked works starting from @work to @head. Work series to 1076 * be scheduled starts at @work and includes any consecutive work with 1077 * WORK_STRUCT_LINKED set in its predecessor. 1078 * 1079 * If @nextp is not NULL, it's updated to point to the next work of 1080 * the last scheduled work. This allows move_linked_works() to be 1081 * nested inside outer list_for_each_entry_safe(). 1082 * 1083 * CONTEXT: 1084 * raw_spin_lock_irq(pool->lock). 1085 */ 1086 static void move_linked_works(struct work_struct *work, struct list_head *head, 1087 struct work_struct **nextp) 1088 { 1089 struct work_struct *n; 1090 1091 /* 1092 * Linked worklist will always end before the end of the list, 1093 * use NULL for list head. 1094 */ 1095 list_for_each_entry_safe_from(work, n, NULL, entry) { 1096 list_move_tail(&work->entry, head); 1097 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1098 break; 1099 } 1100 1101 /* 1102 * If we're already inside safe list traversal and have moved 1103 * multiple works to the scheduled queue, the next position 1104 * needs to be updated. 1105 */ 1106 if (nextp) 1107 *nextp = n; 1108 } 1109 1110 /** 1111 * get_pwq - get an extra reference on the specified pool_workqueue 1112 * @pwq: pool_workqueue to get 1113 * 1114 * Obtain an extra reference on @pwq. The caller should guarantee that 1115 * @pwq has positive refcnt and be holding the matching pool->lock. 1116 */ 1117 static void get_pwq(struct pool_workqueue *pwq) 1118 { 1119 lockdep_assert_held(&pwq->pool->lock); 1120 WARN_ON_ONCE(pwq->refcnt <= 0); 1121 pwq->refcnt++; 1122 } 1123 1124 /** 1125 * put_pwq - put a pool_workqueue reference 1126 * @pwq: pool_workqueue to put 1127 * 1128 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1129 * destruction. The caller should be holding the matching pool->lock. 1130 */ 1131 static void put_pwq(struct pool_workqueue *pwq) 1132 { 1133 lockdep_assert_held(&pwq->pool->lock); 1134 if (likely(--pwq->refcnt)) 1135 return; 1136 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1137 return; 1138 /* 1139 * @pwq can't be released under pool->lock, bounce to 1140 * pwq_unbound_release_workfn(). This never recurses on the same 1141 * pool->lock as this path is taken only for unbound workqueues and 1142 * the release work item is scheduled on a per-cpu workqueue. To 1143 * avoid lockdep warning, unbound pool->locks are given lockdep 1144 * subclass of 1 in get_unbound_pool(). 1145 */ 1146 schedule_work(&pwq->unbound_release_work); 1147 } 1148 1149 /** 1150 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1151 * @pwq: pool_workqueue to put (can be %NULL) 1152 * 1153 * put_pwq() with locking. This function also allows %NULL @pwq. 1154 */ 1155 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1156 { 1157 if (pwq) { 1158 /* 1159 * As both pwqs and pools are RCU protected, the 1160 * following lock operations are safe. 1161 */ 1162 raw_spin_lock_irq(&pwq->pool->lock); 1163 put_pwq(pwq); 1164 raw_spin_unlock_irq(&pwq->pool->lock); 1165 } 1166 } 1167 1168 static void pwq_activate_inactive_work(struct work_struct *work) 1169 { 1170 struct pool_workqueue *pwq = get_work_pwq(work); 1171 1172 trace_workqueue_activate_work(work); 1173 if (list_empty(&pwq->pool->worklist)) 1174 pwq->pool->watchdog_ts = jiffies; 1175 move_linked_works(work, &pwq->pool->worklist, NULL); 1176 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work)); 1177 pwq->nr_active++; 1178 } 1179 1180 static void pwq_activate_first_inactive(struct pool_workqueue *pwq) 1181 { 1182 struct work_struct *work = list_first_entry(&pwq->inactive_works, 1183 struct work_struct, entry); 1184 1185 pwq_activate_inactive_work(work); 1186 } 1187 1188 /** 1189 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1190 * @pwq: pwq of interest 1191 * @work_data: work_data of work which left the queue 1192 * 1193 * A work either has completed or is removed from pending queue, 1194 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1195 * 1196 * CONTEXT: 1197 * raw_spin_lock_irq(pool->lock). 1198 */ 1199 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1200 { 1201 int color = get_work_color(work_data); 1202 1203 if (!(work_data & WORK_STRUCT_INACTIVE)) { 1204 pwq->nr_active--; 1205 if (!list_empty(&pwq->inactive_works)) { 1206 /* one down, submit an inactive one */ 1207 if (pwq->nr_active < pwq->max_active) 1208 pwq_activate_first_inactive(pwq); 1209 } 1210 } 1211 1212 pwq->nr_in_flight[color]--; 1213 1214 /* is flush in progress and are we at the flushing tip? */ 1215 if (likely(pwq->flush_color != color)) 1216 goto out_put; 1217 1218 /* are there still in-flight works? */ 1219 if (pwq->nr_in_flight[color]) 1220 goto out_put; 1221 1222 /* this pwq is done, clear flush_color */ 1223 pwq->flush_color = -1; 1224 1225 /* 1226 * If this was the last pwq, wake up the first flusher. It 1227 * will handle the rest. 1228 */ 1229 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1230 complete(&pwq->wq->first_flusher->done); 1231 out_put: 1232 put_pwq(pwq); 1233 } 1234 1235 /** 1236 * try_to_grab_pending - steal work item from worklist and disable irq 1237 * @work: work item to steal 1238 * @is_dwork: @work is a delayed_work 1239 * @flags: place to store irq state 1240 * 1241 * Try to grab PENDING bit of @work. This function can handle @work in any 1242 * stable state - idle, on timer or on worklist. 1243 * 1244 * Return: 1245 * 1246 * ======== ================================================================ 1247 * 1 if @work was pending and we successfully stole PENDING 1248 * 0 if @work was idle and we claimed PENDING 1249 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1250 * -ENOENT if someone else is canceling @work, this state may persist 1251 * for arbitrarily long 1252 * ======== ================================================================ 1253 * 1254 * Note: 1255 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1256 * interrupted while holding PENDING and @work off queue, irq must be 1257 * disabled on entry. This, combined with delayed_work->timer being 1258 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1259 * 1260 * On successful return, >= 0, irq is disabled and the caller is 1261 * responsible for releasing it using local_irq_restore(*@flags). 1262 * 1263 * This function is safe to call from any context including IRQ handler. 1264 */ 1265 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1266 unsigned long *flags) 1267 { 1268 struct worker_pool *pool; 1269 struct pool_workqueue *pwq; 1270 1271 local_irq_save(*flags); 1272 1273 /* try to steal the timer if it exists */ 1274 if (is_dwork) { 1275 struct delayed_work *dwork = to_delayed_work(work); 1276 1277 /* 1278 * dwork->timer is irqsafe. If del_timer() fails, it's 1279 * guaranteed that the timer is not queued anywhere and not 1280 * running on the local CPU. 1281 */ 1282 if (likely(del_timer(&dwork->timer))) 1283 return 1; 1284 } 1285 1286 /* try to claim PENDING the normal way */ 1287 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1288 return 0; 1289 1290 rcu_read_lock(); 1291 /* 1292 * The queueing is in progress, or it is already queued. Try to 1293 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1294 */ 1295 pool = get_work_pool(work); 1296 if (!pool) 1297 goto fail; 1298 1299 raw_spin_lock(&pool->lock); 1300 /* 1301 * work->data is guaranteed to point to pwq only while the work 1302 * item is queued on pwq->wq, and both updating work->data to point 1303 * to pwq on queueing and to pool on dequeueing are done under 1304 * pwq->pool->lock. This in turn guarantees that, if work->data 1305 * points to pwq which is associated with a locked pool, the work 1306 * item is currently queued on that pool. 1307 */ 1308 pwq = get_work_pwq(work); 1309 if (pwq && pwq->pool == pool) { 1310 debug_work_deactivate(work); 1311 1312 /* 1313 * A cancelable inactive work item must be in the 1314 * pwq->inactive_works since a queued barrier can't be 1315 * canceled (see the comments in insert_wq_barrier()). 1316 * 1317 * An inactive work item cannot be grabbed directly because 1318 * it might have linked barrier work items which, if left 1319 * on the inactive_works list, will confuse pwq->nr_active 1320 * management later on and cause stall. Make sure the work 1321 * item is activated before grabbing. 1322 */ 1323 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE) 1324 pwq_activate_inactive_work(work); 1325 1326 list_del_init(&work->entry); 1327 pwq_dec_nr_in_flight(pwq, *work_data_bits(work)); 1328 1329 /* work->data points to pwq iff queued, point to pool */ 1330 set_work_pool_and_keep_pending(work, pool->id); 1331 1332 raw_spin_unlock(&pool->lock); 1333 rcu_read_unlock(); 1334 return 1; 1335 } 1336 raw_spin_unlock(&pool->lock); 1337 fail: 1338 rcu_read_unlock(); 1339 local_irq_restore(*flags); 1340 if (work_is_canceling(work)) 1341 return -ENOENT; 1342 cpu_relax(); 1343 return -EAGAIN; 1344 } 1345 1346 /** 1347 * insert_work - insert a work into a pool 1348 * @pwq: pwq @work belongs to 1349 * @work: work to insert 1350 * @head: insertion point 1351 * @extra_flags: extra WORK_STRUCT_* flags to set 1352 * 1353 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1354 * work_struct flags. 1355 * 1356 * CONTEXT: 1357 * raw_spin_lock_irq(pool->lock). 1358 */ 1359 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1360 struct list_head *head, unsigned int extra_flags) 1361 { 1362 struct worker_pool *pool = pwq->pool; 1363 1364 /* record the work call stack in order to print it in KASAN reports */ 1365 kasan_record_aux_stack_noalloc(work); 1366 1367 /* we own @work, set data and link */ 1368 set_work_pwq(work, pwq, extra_flags); 1369 list_add_tail(&work->entry, head); 1370 get_pwq(pwq); 1371 1372 if (__need_more_worker(pool)) 1373 wake_up_worker(pool); 1374 } 1375 1376 /* 1377 * Test whether @work is being queued from another work executing on the 1378 * same workqueue. 1379 */ 1380 static bool is_chained_work(struct workqueue_struct *wq) 1381 { 1382 struct worker *worker; 1383 1384 worker = current_wq_worker(); 1385 /* 1386 * Return %true iff I'm a worker executing a work item on @wq. If 1387 * I'm @worker, it's safe to dereference it without locking. 1388 */ 1389 return worker && worker->current_pwq->wq == wq; 1390 } 1391 1392 /* 1393 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1394 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1395 * avoid perturbing sensitive tasks. 1396 */ 1397 static int wq_select_unbound_cpu(int cpu) 1398 { 1399 int new_cpu; 1400 1401 if (likely(!wq_debug_force_rr_cpu)) { 1402 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1403 return cpu; 1404 } else { 1405 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1406 } 1407 1408 if (cpumask_empty(wq_unbound_cpumask)) 1409 return cpu; 1410 1411 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1412 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1413 if (unlikely(new_cpu >= nr_cpu_ids)) { 1414 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1415 if (unlikely(new_cpu >= nr_cpu_ids)) 1416 return cpu; 1417 } 1418 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1419 1420 return new_cpu; 1421 } 1422 1423 static void __queue_work(int cpu, struct workqueue_struct *wq, 1424 struct work_struct *work) 1425 { 1426 struct pool_workqueue *pwq; 1427 struct worker_pool *last_pool; 1428 struct list_head *worklist; 1429 unsigned int work_flags; 1430 unsigned int req_cpu = cpu; 1431 1432 /* 1433 * While a work item is PENDING && off queue, a task trying to 1434 * steal the PENDING will busy-loop waiting for it to either get 1435 * queued or lose PENDING. Grabbing PENDING and queueing should 1436 * happen with IRQ disabled. 1437 */ 1438 lockdep_assert_irqs_disabled(); 1439 1440 1441 /* 1442 * For a draining wq, only works from the same workqueue are 1443 * allowed. The __WQ_DESTROYING helps to spot the issue that 1444 * queues a new work item to a wq after destroy_workqueue(wq). 1445 */ 1446 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 1447 WARN_ON_ONCE(!is_chained_work(wq)))) 1448 return; 1449 rcu_read_lock(); 1450 retry: 1451 /* pwq which will be used unless @work is executing elsewhere */ 1452 if (wq->flags & WQ_UNBOUND) { 1453 if (req_cpu == WORK_CPU_UNBOUND) 1454 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1455 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1456 } else { 1457 if (req_cpu == WORK_CPU_UNBOUND) 1458 cpu = raw_smp_processor_id(); 1459 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1460 } 1461 1462 /* 1463 * If @work was previously on a different pool, it might still be 1464 * running there, in which case the work needs to be queued on that 1465 * pool to guarantee non-reentrancy. 1466 */ 1467 last_pool = get_work_pool(work); 1468 if (last_pool && last_pool != pwq->pool) { 1469 struct worker *worker; 1470 1471 raw_spin_lock(&last_pool->lock); 1472 1473 worker = find_worker_executing_work(last_pool, work); 1474 1475 if (worker && worker->current_pwq->wq == wq) { 1476 pwq = worker->current_pwq; 1477 } else { 1478 /* meh... not running there, queue here */ 1479 raw_spin_unlock(&last_pool->lock); 1480 raw_spin_lock(&pwq->pool->lock); 1481 } 1482 } else { 1483 raw_spin_lock(&pwq->pool->lock); 1484 } 1485 1486 /* 1487 * pwq is determined and locked. For unbound pools, we could have 1488 * raced with pwq release and it could already be dead. If its 1489 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1490 * without another pwq replacing it in the numa_pwq_tbl or while 1491 * work items are executing on it, so the retrying is guaranteed to 1492 * make forward-progress. 1493 */ 1494 if (unlikely(!pwq->refcnt)) { 1495 if (wq->flags & WQ_UNBOUND) { 1496 raw_spin_unlock(&pwq->pool->lock); 1497 cpu_relax(); 1498 goto retry; 1499 } 1500 /* oops */ 1501 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1502 wq->name, cpu); 1503 } 1504 1505 /* pwq determined, queue */ 1506 trace_workqueue_queue_work(req_cpu, pwq, work); 1507 1508 if (WARN_ON(!list_empty(&work->entry))) 1509 goto out; 1510 1511 pwq->nr_in_flight[pwq->work_color]++; 1512 work_flags = work_color_to_flags(pwq->work_color); 1513 1514 if (likely(pwq->nr_active < pwq->max_active)) { 1515 trace_workqueue_activate_work(work); 1516 pwq->nr_active++; 1517 worklist = &pwq->pool->worklist; 1518 if (list_empty(worklist)) 1519 pwq->pool->watchdog_ts = jiffies; 1520 } else { 1521 work_flags |= WORK_STRUCT_INACTIVE; 1522 worklist = &pwq->inactive_works; 1523 } 1524 1525 debug_work_activate(work); 1526 insert_work(pwq, work, worklist, work_flags); 1527 1528 out: 1529 raw_spin_unlock(&pwq->pool->lock); 1530 rcu_read_unlock(); 1531 } 1532 1533 /** 1534 * queue_work_on - queue work on specific cpu 1535 * @cpu: CPU number to execute work on 1536 * @wq: workqueue to use 1537 * @work: work to queue 1538 * 1539 * We queue the work to a specific CPU, the caller must ensure it 1540 * can't go away. Callers that fail to ensure that the specified 1541 * CPU cannot go away will execute on a randomly chosen CPU. 1542 * 1543 * Return: %false if @work was already on a queue, %true otherwise. 1544 */ 1545 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1546 struct work_struct *work) 1547 { 1548 bool ret = false; 1549 unsigned long flags; 1550 1551 local_irq_save(flags); 1552 1553 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1554 __queue_work(cpu, wq, work); 1555 ret = true; 1556 } 1557 1558 local_irq_restore(flags); 1559 return ret; 1560 } 1561 EXPORT_SYMBOL(queue_work_on); 1562 1563 /** 1564 * workqueue_select_cpu_near - Select a CPU based on NUMA node 1565 * @node: NUMA node ID that we want to select a CPU from 1566 * 1567 * This function will attempt to find a "random" cpu available on a given 1568 * node. If there are no CPUs available on the given node it will return 1569 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1570 * available CPU if we need to schedule this work. 1571 */ 1572 static int workqueue_select_cpu_near(int node) 1573 { 1574 int cpu; 1575 1576 /* No point in doing this if NUMA isn't enabled for workqueues */ 1577 if (!wq_numa_enabled) 1578 return WORK_CPU_UNBOUND; 1579 1580 /* Delay binding to CPU if node is not valid or online */ 1581 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1582 return WORK_CPU_UNBOUND; 1583 1584 /* Use local node/cpu if we are already there */ 1585 cpu = raw_smp_processor_id(); 1586 if (node == cpu_to_node(cpu)) 1587 return cpu; 1588 1589 /* Use "random" otherwise know as "first" online CPU of node */ 1590 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1591 1592 /* If CPU is valid return that, otherwise just defer */ 1593 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1594 } 1595 1596 /** 1597 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1598 * @node: NUMA node that we are targeting the work for 1599 * @wq: workqueue to use 1600 * @work: work to queue 1601 * 1602 * We queue the work to a "random" CPU within a given NUMA node. The basic 1603 * idea here is to provide a way to somehow associate work with a given 1604 * NUMA node. 1605 * 1606 * This function will only make a best effort attempt at getting this onto 1607 * the right NUMA node. If no node is requested or the requested node is 1608 * offline then we just fall back to standard queue_work behavior. 1609 * 1610 * Currently the "random" CPU ends up being the first available CPU in the 1611 * intersection of cpu_online_mask and the cpumask of the node, unless we 1612 * are running on the node. In that case we just use the current CPU. 1613 * 1614 * Return: %false if @work was already on a queue, %true otherwise. 1615 */ 1616 bool queue_work_node(int node, struct workqueue_struct *wq, 1617 struct work_struct *work) 1618 { 1619 unsigned long flags; 1620 bool ret = false; 1621 1622 /* 1623 * This current implementation is specific to unbound workqueues. 1624 * Specifically we only return the first available CPU for a given 1625 * node instead of cycling through individual CPUs within the node. 1626 * 1627 * If this is used with a per-cpu workqueue then the logic in 1628 * workqueue_select_cpu_near would need to be updated to allow for 1629 * some round robin type logic. 1630 */ 1631 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1632 1633 local_irq_save(flags); 1634 1635 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1636 int cpu = workqueue_select_cpu_near(node); 1637 1638 __queue_work(cpu, wq, work); 1639 ret = true; 1640 } 1641 1642 local_irq_restore(flags); 1643 return ret; 1644 } 1645 EXPORT_SYMBOL_GPL(queue_work_node); 1646 1647 void delayed_work_timer_fn(struct timer_list *t) 1648 { 1649 struct delayed_work *dwork = from_timer(dwork, t, timer); 1650 1651 /* should have been called from irqsafe timer with irq already off */ 1652 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1653 } 1654 EXPORT_SYMBOL(delayed_work_timer_fn); 1655 1656 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1657 struct delayed_work *dwork, unsigned long delay) 1658 { 1659 struct timer_list *timer = &dwork->timer; 1660 struct work_struct *work = &dwork->work; 1661 1662 WARN_ON_ONCE(!wq); 1663 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1664 WARN_ON_ONCE(timer_pending(timer)); 1665 WARN_ON_ONCE(!list_empty(&work->entry)); 1666 1667 /* 1668 * If @delay is 0, queue @dwork->work immediately. This is for 1669 * both optimization and correctness. The earliest @timer can 1670 * expire is on the closest next tick and delayed_work users depend 1671 * on that there's no such delay when @delay is 0. 1672 */ 1673 if (!delay) { 1674 __queue_work(cpu, wq, &dwork->work); 1675 return; 1676 } 1677 1678 dwork->wq = wq; 1679 dwork->cpu = cpu; 1680 timer->expires = jiffies + delay; 1681 1682 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1683 add_timer_on(timer, cpu); 1684 else 1685 add_timer(timer); 1686 } 1687 1688 /** 1689 * queue_delayed_work_on - queue work on specific CPU after delay 1690 * @cpu: CPU number to execute work on 1691 * @wq: workqueue to use 1692 * @dwork: work to queue 1693 * @delay: number of jiffies to wait before queueing 1694 * 1695 * Return: %false if @work was already on a queue, %true otherwise. If 1696 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1697 * execution. 1698 */ 1699 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1700 struct delayed_work *dwork, unsigned long delay) 1701 { 1702 struct work_struct *work = &dwork->work; 1703 bool ret = false; 1704 unsigned long flags; 1705 1706 /* read the comment in __queue_work() */ 1707 local_irq_save(flags); 1708 1709 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1710 __queue_delayed_work(cpu, wq, dwork, delay); 1711 ret = true; 1712 } 1713 1714 local_irq_restore(flags); 1715 return ret; 1716 } 1717 EXPORT_SYMBOL(queue_delayed_work_on); 1718 1719 /** 1720 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1721 * @cpu: CPU number to execute work on 1722 * @wq: workqueue to use 1723 * @dwork: work to queue 1724 * @delay: number of jiffies to wait before queueing 1725 * 1726 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1727 * modify @dwork's timer so that it expires after @delay. If @delay is 1728 * zero, @work is guaranteed to be scheduled immediately regardless of its 1729 * current state. 1730 * 1731 * Return: %false if @dwork was idle and queued, %true if @dwork was 1732 * pending and its timer was modified. 1733 * 1734 * This function is safe to call from any context including IRQ handler. 1735 * See try_to_grab_pending() for details. 1736 */ 1737 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1738 struct delayed_work *dwork, unsigned long delay) 1739 { 1740 unsigned long flags; 1741 int ret; 1742 1743 do { 1744 ret = try_to_grab_pending(&dwork->work, true, &flags); 1745 } while (unlikely(ret == -EAGAIN)); 1746 1747 if (likely(ret >= 0)) { 1748 __queue_delayed_work(cpu, wq, dwork, delay); 1749 local_irq_restore(flags); 1750 } 1751 1752 /* -ENOENT from try_to_grab_pending() becomes %true */ 1753 return ret; 1754 } 1755 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1756 1757 static void rcu_work_rcufn(struct rcu_head *rcu) 1758 { 1759 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1760 1761 /* read the comment in __queue_work() */ 1762 local_irq_disable(); 1763 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1764 local_irq_enable(); 1765 } 1766 1767 /** 1768 * queue_rcu_work - queue work after a RCU grace period 1769 * @wq: workqueue to use 1770 * @rwork: work to queue 1771 * 1772 * Return: %false if @rwork was already pending, %true otherwise. Note 1773 * that a full RCU grace period is guaranteed only after a %true return. 1774 * While @rwork is guaranteed to be executed after a %false return, the 1775 * execution may happen before a full RCU grace period has passed. 1776 */ 1777 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1778 { 1779 struct work_struct *work = &rwork->work; 1780 1781 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1782 rwork->wq = wq; 1783 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 1784 return true; 1785 } 1786 1787 return false; 1788 } 1789 EXPORT_SYMBOL(queue_rcu_work); 1790 1791 /** 1792 * worker_enter_idle - enter idle state 1793 * @worker: worker which is entering idle state 1794 * 1795 * @worker is entering idle state. Update stats and idle timer if 1796 * necessary. 1797 * 1798 * LOCKING: 1799 * raw_spin_lock_irq(pool->lock). 1800 */ 1801 static void worker_enter_idle(struct worker *worker) 1802 { 1803 struct worker_pool *pool = worker->pool; 1804 1805 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1806 WARN_ON_ONCE(!list_empty(&worker->entry) && 1807 (worker->hentry.next || worker->hentry.pprev))) 1808 return; 1809 1810 /* can't use worker_set_flags(), also called from create_worker() */ 1811 worker->flags |= WORKER_IDLE; 1812 pool->nr_idle++; 1813 worker->last_active = jiffies; 1814 1815 /* idle_list is LIFO */ 1816 list_add(&worker->entry, &pool->idle_list); 1817 1818 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1819 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1820 1821 /* Sanity check nr_running. */ 1822 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 1823 } 1824 1825 /** 1826 * worker_leave_idle - leave idle state 1827 * @worker: worker which is leaving idle state 1828 * 1829 * @worker is leaving idle state. Update stats. 1830 * 1831 * LOCKING: 1832 * raw_spin_lock_irq(pool->lock). 1833 */ 1834 static void worker_leave_idle(struct worker *worker) 1835 { 1836 struct worker_pool *pool = worker->pool; 1837 1838 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1839 return; 1840 worker_clr_flags(worker, WORKER_IDLE); 1841 pool->nr_idle--; 1842 list_del_init(&worker->entry); 1843 } 1844 1845 static struct worker *alloc_worker(int node) 1846 { 1847 struct worker *worker; 1848 1849 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1850 if (worker) { 1851 INIT_LIST_HEAD(&worker->entry); 1852 INIT_LIST_HEAD(&worker->scheduled); 1853 INIT_LIST_HEAD(&worker->node); 1854 /* on creation a worker is in !idle && prep state */ 1855 worker->flags = WORKER_PREP; 1856 } 1857 return worker; 1858 } 1859 1860 /** 1861 * worker_attach_to_pool() - attach a worker to a pool 1862 * @worker: worker to be attached 1863 * @pool: the target pool 1864 * 1865 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1866 * cpu-binding of @worker are kept coordinated with the pool across 1867 * cpu-[un]hotplugs. 1868 */ 1869 static void worker_attach_to_pool(struct worker *worker, 1870 struct worker_pool *pool) 1871 { 1872 mutex_lock(&wq_pool_attach_mutex); 1873 1874 /* 1875 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1876 * stable across this function. See the comments above the flag 1877 * definition for details. 1878 */ 1879 if (pool->flags & POOL_DISASSOCIATED) 1880 worker->flags |= WORKER_UNBOUND; 1881 else 1882 kthread_set_per_cpu(worker->task, pool->cpu); 1883 1884 if (worker->rescue_wq) 1885 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1886 1887 list_add_tail(&worker->node, &pool->workers); 1888 worker->pool = pool; 1889 1890 mutex_unlock(&wq_pool_attach_mutex); 1891 } 1892 1893 /** 1894 * worker_detach_from_pool() - detach a worker from its pool 1895 * @worker: worker which is attached to its pool 1896 * 1897 * Undo the attaching which had been done in worker_attach_to_pool(). The 1898 * caller worker shouldn't access to the pool after detached except it has 1899 * other reference to the pool. 1900 */ 1901 static void worker_detach_from_pool(struct worker *worker) 1902 { 1903 struct worker_pool *pool = worker->pool; 1904 struct completion *detach_completion = NULL; 1905 1906 mutex_lock(&wq_pool_attach_mutex); 1907 1908 kthread_set_per_cpu(worker->task, -1); 1909 list_del(&worker->node); 1910 worker->pool = NULL; 1911 1912 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers)) 1913 detach_completion = pool->detach_completion; 1914 mutex_unlock(&wq_pool_attach_mutex); 1915 1916 /* clear leftover flags without pool->lock after it is detached */ 1917 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1918 1919 if (detach_completion) 1920 complete(detach_completion); 1921 } 1922 1923 /** 1924 * create_worker - create a new workqueue worker 1925 * @pool: pool the new worker will belong to 1926 * 1927 * Create and start a new worker which is attached to @pool. 1928 * 1929 * CONTEXT: 1930 * Might sleep. Does GFP_KERNEL allocations. 1931 * 1932 * Return: 1933 * Pointer to the newly created worker. 1934 */ 1935 static struct worker *create_worker(struct worker_pool *pool) 1936 { 1937 struct worker *worker; 1938 int id; 1939 char id_buf[16]; 1940 1941 /* ID is needed to determine kthread name */ 1942 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 1943 if (id < 0) { 1944 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 1945 ERR_PTR(id)); 1946 return NULL; 1947 } 1948 1949 worker = alloc_worker(pool->node); 1950 if (!worker) { 1951 pr_err_once("workqueue: Failed to allocate a worker\n"); 1952 goto fail; 1953 } 1954 1955 worker->id = id; 1956 1957 if (pool->cpu >= 0) 1958 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1959 pool->attrs->nice < 0 ? "H" : ""); 1960 else 1961 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1962 1963 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1964 "kworker/%s", id_buf); 1965 if (IS_ERR(worker->task)) { 1966 if (PTR_ERR(worker->task) == -EINTR) { 1967 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n", 1968 id_buf); 1969 } else { 1970 pr_err_once("workqueue: Failed to create a worker thread: %pe", 1971 worker->task); 1972 } 1973 goto fail; 1974 } 1975 1976 set_user_nice(worker->task, pool->attrs->nice); 1977 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1978 1979 /* successful, attach the worker to the pool */ 1980 worker_attach_to_pool(worker, pool); 1981 1982 /* start the newly created worker */ 1983 raw_spin_lock_irq(&pool->lock); 1984 worker->pool->nr_workers++; 1985 worker_enter_idle(worker); 1986 wake_up_process(worker->task); 1987 raw_spin_unlock_irq(&pool->lock); 1988 1989 return worker; 1990 1991 fail: 1992 ida_free(&pool->worker_ida, id); 1993 kfree(worker); 1994 return NULL; 1995 } 1996 1997 static void unbind_worker(struct worker *worker) 1998 { 1999 lockdep_assert_held(&wq_pool_attach_mutex); 2000 2001 kthread_set_per_cpu(worker->task, -1); 2002 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 2003 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 2004 else 2005 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2006 } 2007 2008 static void wake_dying_workers(struct list_head *cull_list) 2009 { 2010 struct worker *worker, *tmp; 2011 2012 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2013 list_del_init(&worker->entry); 2014 unbind_worker(worker); 2015 /* 2016 * If the worker was somehow already running, then it had to be 2017 * in pool->idle_list when set_worker_dying() happened or we 2018 * wouldn't have gotten here. 2019 * 2020 * Thus, the worker must either have observed the WORKER_DIE 2021 * flag, or have set its state to TASK_IDLE. Either way, the 2022 * below will be observed by the worker and is safe to do 2023 * outside of pool->lock. 2024 */ 2025 wake_up_process(worker->task); 2026 } 2027 } 2028 2029 /** 2030 * set_worker_dying - Tag a worker for destruction 2031 * @worker: worker to be destroyed 2032 * @list: transfer worker away from its pool->idle_list and into list 2033 * 2034 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2035 * should be idle. 2036 * 2037 * CONTEXT: 2038 * raw_spin_lock_irq(pool->lock). 2039 */ 2040 static void set_worker_dying(struct worker *worker, struct list_head *list) 2041 { 2042 struct worker_pool *pool = worker->pool; 2043 2044 lockdep_assert_held(&pool->lock); 2045 lockdep_assert_held(&wq_pool_attach_mutex); 2046 2047 /* sanity check frenzy */ 2048 if (WARN_ON(worker->current_work) || 2049 WARN_ON(!list_empty(&worker->scheduled)) || 2050 WARN_ON(!(worker->flags & WORKER_IDLE))) 2051 return; 2052 2053 pool->nr_workers--; 2054 pool->nr_idle--; 2055 2056 worker->flags |= WORKER_DIE; 2057 2058 list_move(&worker->entry, list); 2059 list_move(&worker->node, &pool->dying_workers); 2060 } 2061 2062 /** 2063 * idle_worker_timeout - check if some idle workers can now be deleted. 2064 * @t: The pool's idle_timer that just expired 2065 * 2066 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2067 * worker_leave_idle(), as a worker flicking between idle and active while its 2068 * pool is at the too_many_workers() tipping point would cause too much timer 2069 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2070 * it expire and re-evaluate things from there. 2071 */ 2072 static void idle_worker_timeout(struct timer_list *t) 2073 { 2074 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2075 bool do_cull = false; 2076 2077 if (work_pending(&pool->idle_cull_work)) 2078 return; 2079 2080 raw_spin_lock_irq(&pool->lock); 2081 2082 if (too_many_workers(pool)) { 2083 struct worker *worker; 2084 unsigned long expires; 2085 2086 /* idle_list is kept in LIFO order, check the last one */ 2087 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2088 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2089 do_cull = !time_before(jiffies, expires); 2090 2091 if (!do_cull) 2092 mod_timer(&pool->idle_timer, expires); 2093 } 2094 raw_spin_unlock_irq(&pool->lock); 2095 2096 if (do_cull) 2097 queue_work(system_unbound_wq, &pool->idle_cull_work); 2098 } 2099 2100 /** 2101 * idle_cull_fn - cull workers that have been idle for too long. 2102 * @work: the pool's work for handling these idle workers 2103 * 2104 * This goes through a pool's idle workers and gets rid of those that have been 2105 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2106 * 2107 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2108 * culled, so this also resets worker affinity. This requires a sleepable 2109 * context, hence the split between timer callback and work item. 2110 */ 2111 static void idle_cull_fn(struct work_struct *work) 2112 { 2113 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2114 struct list_head cull_list; 2115 2116 INIT_LIST_HEAD(&cull_list); 2117 /* 2118 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2119 * cannot proceed beyong worker_detach_from_pool() in its self-destruct 2120 * path. This is required as a previously-preempted worker could run after 2121 * set_worker_dying() has happened but before wake_dying_workers() did. 2122 */ 2123 mutex_lock(&wq_pool_attach_mutex); 2124 raw_spin_lock_irq(&pool->lock); 2125 2126 while (too_many_workers(pool)) { 2127 struct worker *worker; 2128 unsigned long expires; 2129 2130 worker = list_entry(pool->idle_list.prev, struct worker, entry); 2131 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2132 2133 if (time_before(jiffies, expires)) { 2134 mod_timer(&pool->idle_timer, expires); 2135 break; 2136 } 2137 2138 set_worker_dying(worker, &cull_list); 2139 } 2140 2141 raw_spin_unlock_irq(&pool->lock); 2142 wake_dying_workers(&cull_list); 2143 mutex_unlock(&wq_pool_attach_mutex); 2144 } 2145 2146 static void send_mayday(struct work_struct *work) 2147 { 2148 struct pool_workqueue *pwq = get_work_pwq(work); 2149 struct workqueue_struct *wq = pwq->wq; 2150 2151 lockdep_assert_held(&wq_mayday_lock); 2152 2153 if (!wq->rescuer) 2154 return; 2155 2156 /* mayday mayday mayday */ 2157 if (list_empty(&pwq->mayday_node)) { 2158 /* 2159 * If @pwq is for an unbound wq, its base ref may be put at 2160 * any time due to an attribute change. Pin @pwq until the 2161 * rescuer is done with it. 2162 */ 2163 get_pwq(pwq); 2164 list_add_tail(&pwq->mayday_node, &wq->maydays); 2165 wake_up_process(wq->rescuer->task); 2166 } 2167 } 2168 2169 static void pool_mayday_timeout(struct timer_list *t) 2170 { 2171 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2172 struct work_struct *work; 2173 2174 raw_spin_lock_irq(&pool->lock); 2175 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2176 2177 if (need_to_create_worker(pool)) { 2178 /* 2179 * We've been trying to create a new worker but 2180 * haven't been successful. We might be hitting an 2181 * allocation deadlock. Send distress signals to 2182 * rescuers. 2183 */ 2184 list_for_each_entry(work, &pool->worklist, entry) 2185 send_mayday(work); 2186 } 2187 2188 raw_spin_unlock(&wq_mayday_lock); 2189 raw_spin_unlock_irq(&pool->lock); 2190 2191 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2192 } 2193 2194 /** 2195 * maybe_create_worker - create a new worker if necessary 2196 * @pool: pool to create a new worker for 2197 * 2198 * Create a new worker for @pool if necessary. @pool is guaranteed to 2199 * have at least one idle worker on return from this function. If 2200 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2201 * sent to all rescuers with works scheduled on @pool to resolve 2202 * possible allocation deadlock. 2203 * 2204 * On return, need_to_create_worker() is guaranteed to be %false and 2205 * may_start_working() %true. 2206 * 2207 * LOCKING: 2208 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2209 * multiple times. Does GFP_KERNEL allocations. Called only from 2210 * manager. 2211 */ 2212 static void maybe_create_worker(struct worker_pool *pool) 2213 __releases(&pool->lock) 2214 __acquires(&pool->lock) 2215 { 2216 restart: 2217 raw_spin_unlock_irq(&pool->lock); 2218 2219 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2220 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2221 2222 while (true) { 2223 if (create_worker(pool) || !need_to_create_worker(pool)) 2224 break; 2225 2226 schedule_timeout_interruptible(CREATE_COOLDOWN); 2227 2228 if (!need_to_create_worker(pool)) 2229 break; 2230 } 2231 2232 del_timer_sync(&pool->mayday_timer); 2233 raw_spin_lock_irq(&pool->lock); 2234 /* 2235 * This is necessary even after a new worker was just successfully 2236 * created as @pool->lock was dropped and the new worker might have 2237 * already become busy. 2238 */ 2239 if (need_to_create_worker(pool)) 2240 goto restart; 2241 } 2242 2243 /** 2244 * manage_workers - manage worker pool 2245 * @worker: self 2246 * 2247 * Assume the manager role and manage the worker pool @worker belongs 2248 * to. At any given time, there can be only zero or one manager per 2249 * pool. The exclusion is handled automatically by this function. 2250 * 2251 * The caller can safely start processing works on false return. On 2252 * true return, it's guaranteed that need_to_create_worker() is false 2253 * and may_start_working() is true. 2254 * 2255 * CONTEXT: 2256 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2257 * multiple times. Does GFP_KERNEL allocations. 2258 * 2259 * Return: 2260 * %false if the pool doesn't need management and the caller can safely 2261 * start processing works, %true if management function was performed and 2262 * the conditions that the caller verified before calling the function may 2263 * no longer be true. 2264 */ 2265 static bool manage_workers(struct worker *worker) 2266 { 2267 struct worker_pool *pool = worker->pool; 2268 2269 if (pool->flags & POOL_MANAGER_ACTIVE) 2270 return false; 2271 2272 pool->flags |= POOL_MANAGER_ACTIVE; 2273 pool->manager = worker; 2274 2275 maybe_create_worker(pool); 2276 2277 pool->manager = NULL; 2278 pool->flags &= ~POOL_MANAGER_ACTIVE; 2279 rcuwait_wake_up(&manager_wait); 2280 return true; 2281 } 2282 2283 /** 2284 * process_one_work - process single work 2285 * @worker: self 2286 * @work: work to process 2287 * 2288 * Process @work. This function contains all the logics necessary to 2289 * process a single work including synchronization against and 2290 * interaction with other workers on the same cpu, queueing and 2291 * flushing. As long as context requirement is met, any worker can 2292 * call this function to process a work. 2293 * 2294 * CONTEXT: 2295 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 2296 */ 2297 static void process_one_work(struct worker *worker, struct work_struct *work) 2298 __releases(&pool->lock) 2299 __acquires(&pool->lock) 2300 { 2301 struct pool_workqueue *pwq = get_work_pwq(work); 2302 struct worker_pool *pool = worker->pool; 2303 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2304 unsigned long work_data; 2305 struct worker *collision; 2306 #ifdef CONFIG_LOCKDEP 2307 /* 2308 * It is permissible to free the struct work_struct from 2309 * inside the function that is called from it, this we need to 2310 * take into account for lockdep too. To avoid bogus "held 2311 * lock freed" warnings as well as problems when looking into 2312 * work->lockdep_map, make a copy and use that here. 2313 */ 2314 struct lockdep_map lockdep_map; 2315 2316 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2317 #endif 2318 /* ensure we're on the correct CPU */ 2319 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2320 raw_smp_processor_id() != pool->cpu); 2321 2322 /* 2323 * A single work shouldn't be executed concurrently by 2324 * multiple workers on a single cpu. Check whether anyone is 2325 * already processing the work. If so, defer the work to the 2326 * currently executing one. 2327 */ 2328 collision = find_worker_executing_work(pool, work); 2329 if (unlikely(collision)) { 2330 move_linked_works(work, &collision->scheduled, NULL); 2331 return; 2332 } 2333 2334 /* claim and dequeue */ 2335 debug_work_deactivate(work); 2336 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2337 worker->current_work = work; 2338 worker->current_func = work->func; 2339 worker->current_pwq = pwq; 2340 work_data = *work_data_bits(work); 2341 worker->current_color = get_work_color(work_data); 2342 2343 /* 2344 * Record wq name for cmdline and debug reporting, may get 2345 * overridden through set_worker_desc(). 2346 */ 2347 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2348 2349 list_del_init(&work->entry); 2350 2351 /* 2352 * CPU intensive works don't participate in concurrency management. 2353 * They're the scheduler's responsibility. This takes @worker out 2354 * of concurrency management and the next code block will chain 2355 * execution of the pending work items. 2356 */ 2357 if (unlikely(cpu_intensive)) 2358 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2359 2360 /* 2361 * Wake up another worker if necessary. The condition is always 2362 * false for normal per-cpu workers since nr_running would always 2363 * be >= 1 at this point. This is used to chain execution of the 2364 * pending work items for WORKER_NOT_RUNNING workers such as the 2365 * UNBOUND and CPU_INTENSIVE ones. 2366 */ 2367 if (need_more_worker(pool)) 2368 wake_up_worker(pool); 2369 2370 /* 2371 * Record the last pool and clear PENDING which should be the last 2372 * update to @work. Also, do this inside @pool->lock so that 2373 * PENDING and queued state changes happen together while IRQ is 2374 * disabled. 2375 */ 2376 set_work_pool_and_clear_pending(work, pool->id); 2377 2378 raw_spin_unlock_irq(&pool->lock); 2379 2380 lock_map_acquire(&pwq->wq->lockdep_map); 2381 lock_map_acquire(&lockdep_map); 2382 /* 2383 * Strictly speaking we should mark the invariant state without holding 2384 * any locks, that is, before these two lock_map_acquire()'s. 2385 * 2386 * However, that would result in: 2387 * 2388 * A(W1) 2389 * WFC(C) 2390 * A(W1) 2391 * C(C) 2392 * 2393 * Which would create W1->C->W1 dependencies, even though there is no 2394 * actual deadlock possible. There are two solutions, using a 2395 * read-recursive acquire on the work(queue) 'locks', but this will then 2396 * hit the lockdep limitation on recursive locks, or simply discard 2397 * these locks. 2398 * 2399 * AFAICT there is no possible deadlock scenario between the 2400 * flush_work() and complete() primitives (except for single-threaded 2401 * workqueues), so hiding them isn't a problem. 2402 */ 2403 lockdep_invariant_state(true); 2404 trace_workqueue_execute_start(work); 2405 worker->current_func(work); 2406 /* 2407 * While we must be careful to not use "work" after this, the trace 2408 * point will only record its address. 2409 */ 2410 trace_workqueue_execute_end(work, worker->current_func); 2411 lock_map_release(&lockdep_map); 2412 lock_map_release(&pwq->wq->lockdep_map); 2413 2414 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2415 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2416 " last function: %ps\n", 2417 current->comm, preempt_count(), task_pid_nr(current), 2418 worker->current_func); 2419 debug_show_held_locks(current); 2420 dump_stack(); 2421 } 2422 2423 /* 2424 * The following prevents a kworker from hogging CPU on !PREEMPTION 2425 * kernels, where a requeueing work item waiting for something to 2426 * happen could deadlock with stop_machine as such work item could 2427 * indefinitely requeue itself while all other CPUs are trapped in 2428 * stop_machine. At the same time, report a quiescent RCU state so 2429 * the same condition doesn't freeze RCU. 2430 */ 2431 cond_resched(); 2432 2433 raw_spin_lock_irq(&pool->lock); 2434 2435 /* clear cpu intensive status */ 2436 if (unlikely(cpu_intensive)) 2437 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2438 2439 /* tag the worker for identification in schedule() */ 2440 worker->last_func = worker->current_func; 2441 2442 /* we're done with it, release */ 2443 hash_del(&worker->hentry); 2444 worker->current_work = NULL; 2445 worker->current_func = NULL; 2446 worker->current_pwq = NULL; 2447 worker->current_color = INT_MAX; 2448 pwq_dec_nr_in_flight(pwq, work_data); 2449 } 2450 2451 /** 2452 * process_scheduled_works - process scheduled works 2453 * @worker: self 2454 * 2455 * Process all scheduled works. Please note that the scheduled list 2456 * may change while processing a work, so this function repeatedly 2457 * fetches a work from the top and executes it. 2458 * 2459 * CONTEXT: 2460 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 2461 * multiple times. 2462 */ 2463 static void process_scheduled_works(struct worker *worker) 2464 { 2465 while (!list_empty(&worker->scheduled)) { 2466 struct work_struct *work = list_first_entry(&worker->scheduled, 2467 struct work_struct, entry); 2468 process_one_work(worker, work); 2469 } 2470 } 2471 2472 static void set_pf_worker(bool val) 2473 { 2474 mutex_lock(&wq_pool_attach_mutex); 2475 if (val) 2476 current->flags |= PF_WQ_WORKER; 2477 else 2478 current->flags &= ~PF_WQ_WORKER; 2479 mutex_unlock(&wq_pool_attach_mutex); 2480 } 2481 2482 /** 2483 * worker_thread - the worker thread function 2484 * @__worker: self 2485 * 2486 * The worker thread function. All workers belong to a worker_pool - 2487 * either a per-cpu one or dynamic unbound one. These workers process all 2488 * work items regardless of their specific target workqueue. The only 2489 * exception is work items which belong to workqueues with a rescuer which 2490 * will be explained in rescuer_thread(). 2491 * 2492 * Return: 0 2493 */ 2494 static int worker_thread(void *__worker) 2495 { 2496 struct worker *worker = __worker; 2497 struct worker_pool *pool = worker->pool; 2498 2499 /* tell the scheduler that this is a workqueue worker */ 2500 set_pf_worker(true); 2501 woke_up: 2502 raw_spin_lock_irq(&pool->lock); 2503 2504 /* am I supposed to die? */ 2505 if (unlikely(worker->flags & WORKER_DIE)) { 2506 raw_spin_unlock_irq(&pool->lock); 2507 set_pf_worker(false); 2508 2509 set_task_comm(worker->task, "kworker/dying"); 2510 ida_free(&pool->worker_ida, worker->id); 2511 worker_detach_from_pool(worker); 2512 WARN_ON_ONCE(!list_empty(&worker->entry)); 2513 kfree(worker); 2514 return 0; 2515 } 2516 2517 worker_leave_idle(worker); 2518 recheck: 2519 /* no more worker necessary? */ 2520 if (!need_more_worker(pool)) 2521 goto sleep; 2522 2523 /* do we need to manage? */ 2524 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2525 goto recheck; 2526 2527 /* 2528 * ->scheduled list can only be filled while a worker is 2529 * preparing to process a work or actually processing it. 2530 * Make sure nobody diddled with it while I was sleeping. 2531 */ 2532 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2533 2534 /* 2535 * Finish PREP stage. We're guaranteed to have at least one idle 2536 * worker or that someone else has already assumed the manager 2537 * role. This is where @worker starts participating in concurrency 2538 * management if applicable and concurrency management is restored 2539 * after being rebound. See rebind_workers() for details. 2540 */ 2541 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2542 2543 do { 2544 struct work_struct *work = 2545 list_first_entry(&pool->worklist, 2546 struct work_struct, entry); 2547 2548 pool->watchdog_ts = jiffies; 2549 2550 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2551 /* optimization path, not strictly necessary */ 2552 process_one_work(worker, work); 2553 if (unlikely(!list_empty(&worker->scheduled))) 2554 process_scheduled_works(worker); 2555 } else { 2556 move_linked_works(work, &worker->scheduled, NULL); 2557 process_scheduled_works(worker); 2558 } 2559 } while (keep_working(pool)); 2560 2561 worker_set_flags(worker, WORKER_PREP); 2562 sleep: 2563 /* 2564 * pool->lock is held and there's no work to process and no need to 2565 * manage, sleep. Workers are woken up only while holding 2566 * pool->lock or from local cpu, so setting the current state 2567 * before releasing pool->lock is enough to prevent losing any 2568 * event. 2569 */ 2570 worker_enter_idle(worker); 2571 __set_current_state(TASK_IDLE); 2572 raw_spin_unlock_irq(&pool->lock); 2573 schedule(); 2574 goto woke_up; 2575 } 2576 2577 /** 2578 * rescuer_thread - the rescuer thread function 2579 * @__rescuer: self 2580 * 2581 * Workqueue rescuer thread function. There's one rescuer for each 2582 * workqueue which has WQ_MEM_RECLAIM set. 2583 * 2584 * Regular work processing on a pool may block trying to create a new 2585 * worker which uses GFP_KERNEL allocation which has slight chance of 2586 * developing into deadlock if some works currently on the same queue 2587 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2588 * the problem rescuer solves. 2589 * 2590 * When such condition is possible, the pool summons rescuers of all 2591 * workqueues which have works queued on the pool and let them process 2592 * those works so that forward progress can be guaranteed. 2593 * 2594 * This should happen rarely. 2595 * 2596 * Return: 0 2597 */ 2598 static int rescuer_thread(void *__rescuer) 2599 { 2600 struct worker *rescuer = __rescuer; 2601 struct workqueue_struct *wq = rescuer->rescue_wq; 2602 struct list_head *scheduled = &rescuer->scheduled; 2603 bool should_stop; 2604 2605 set_user_nice(current, RESCUER_NICE_LEVEL); 2606 2607 /* 2608 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2609 * doesn't participate in concurrency management. 2610 */ 2611 set_pf_worker(true); 2612 repeat: 2613 set_current_state(TASK_IDLE); 2614 2615 /* 2616 * By the time the rescuer is requested to stop, the workqueue 2617 * shouldn't have any work pending, but @wq->maydays may still have 2618 * pwq(s) queued. This can happen by non-rescuer workers consuming 2619 * all the work items before the rescuer got to them. Go through 2620 * @wq->maydays processing before acting on should_stop so that the 2621 * list is always empty on exit. 2622 */ 2623 should_stop = kthread_should_stop(); 2624 2625 /* see whether any pwq is asking for help */ 2626 raw_spin_lock_irq(&wq_mayday_lock); 2627 2628 while (!list_empty(&wq->maydays)) { 2629 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2630 struct pool_workqueue, mayday_node); 2631 struct worker_pool *pool = pwq->pool; 2632 struct work_struct *work, *n; 2633 bool first = true; 2634 2635 __set_current_state(TASK_RUNNING); 2636 list_del_init(&pwq->mayday_node); 2637 2638 raw_spin_unlock_irq(&wq_mayday_lock); 2639 2640 worker_attach_to_pool(rescuer, pool); 2641 2642 raw_spin_lock_irq(&pool->lock); 2643 2644 /* 2645 * Slurp in all works issued via this workqueue and 2646 * process'em. 2647 */ 2648 WARN_ON_ONCE(!list_empty(scheduled)); 2649 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2650 if (get_work_pwq(work) == pwq) { 2651 if (first) 2652 pool->watchdog_ts = jiffies; 2653 move_linked_works(work, scheduled, &n); 2654 } 2655 first = false; 2656 } 2657 2658 if (!list_empty(scheduled)) { 2659 process_scheduled_works(rescuer); 2660 2661 /* 2662 * The above execution of rescued work items could 2663 * have created more to rescue through 2664 * pwq_activate_first_inactive() or chained 2665 * queueing. Let's put @pwq back on mayday list so 2666 * that such back-to-back work items, which may be 2667 * being used to relieve memory pressure, don't 2668 * incur MAYDAY_INTERVAL delay inbetween. 2669 */ 2670 if (pwq->nr_active && need_to_create_worker(pool)) { 2671 raw_spin_lock(&wq_mayday_lock); 2672 /* 2673 * Queue iff we aren't racing destruction 2674 * and somebody else hasn't queued it already. 2675 */ 2676 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 2677 get_pwq(pwq); 2678 list_add_tail(&pwq->mayday_node, &wq->maydays); 2679 } 2680 raw_spin_unlock(&wq_mayday_lock); 2681 } 2682 } 2683 2684 /* 2685 * Put the reference grabbed by send_mayday(). @pool won't 2686 * go away while we're still attached to it. 2687 */ 2688 put_pwq(pwq); 2689 2690 /* 2691 * Leave this pool. If need_more_worker() is %true, notify a 2692 * regular worker; otherwise, we end up with 0 concurrency 2693 * and stalling the execution. 2694 */ 2695 if (need_more_worker(pool)) 2696 wake_up_worker(pool); 2697 2698 raw_spin_unlock_irq(&pool->lock); 2699 2700 worker_detach_from_pool(rescuer); 2701 2702 raw_spin_lock_irq(&wq_mayday_lock); 2703 } 2704 2705 raw_spin_unlock_irq(&wq_mayday_lock); 2706 2707 if (should_stop) { 2708 __set_current_state(TASK_RUNNING); 2709 set_pf_worker(false); 2710 return 0; 2711 } 2712 2713 /* rescuers should never participate in concurrency management */ 2714 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2715 schedule(); 2716 goto repeat; 2717 } 2718 2719 /** 2720 * check_flush_dependency - check for flush dependency sanity 2721 * @target_wq: workqueue being flushed 2722 * @target_work: work item being flushed (NULL for workqueue flushes) 2723 * 2724 * %current is trying to flush the whole @target_wq or @target_work on it. 2725 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2726 * reclaiming memory or running on a workqueue which doesn't have 2727 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2728 * a deadlock. 2729 */ 2730 static void check_flush_dependency(struct workqueue_struct *target_wq, 2731 struct work_struct *target_work) 2732 { 2733 work_func_t target_func = target_work ? target_work->func : NULL; 2734 struct worker *worker; 2735 2736 if (target_wq->flags & WQ_MEM_RECLAIM) 2737 return; 2738 2739 worker = current_wq_worker(); 2740 2741 WARN_ONCE(current->flags & PF_MEMALLOC, 2742 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 2743 current->pid, current->comm, target_wq->name, target_func); 2744 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2745 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2746 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 2747 worker->current_pwq->wq->name, worker->current_func, 2748 target_wq->name, target_func); 2749 } 2750 2751 struct wq_barrier { 2752 struct work_struct work; 2753 struct completion done; 2754 struct task_struct *task; /* purely informational */ 2755 }; 2756 2757 static void wq_barrier_func(struct work_struct *work) 2758 { 2759 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2760 complete(&barr->done); 2761 } 2762 2763 /** 2764 * insert_wq_barrier - insert a barrier work 2765 * @pwq: pwq to insert barrier into 2766 * @barr: wq_barrier to insert 2767 * @target: target work to attach @barr to 2768 * @worker: worker currently executing @target, NULL if @target is not executing 2769 * 2770 * @barr is linked to @target such that @barr is completed only after 2771 * @target finishes execution. Please note that the ordering 2772 * guarantee is observed only with respect to @target and on the local 2773 * cpu. 2774 * 2775 * Currently, a queued barrier can't be canceled. This is because 2776 * try_to_grab_pending() can't determine whether the work to be 2777 * grabbed is at the head of the queue and thus can't clear LINKED 2778 * flag of the previous work while there must be a valid next work 2779 * after a work with LINKED flag set. 2780 * 2781 * Note that when @worker is non-NULL, @target may be modified 2782 * underneath us, so we can't reliably determine pwq from @target. 2783 * 2784 * CONTEXT: 2785 * raw_spin_lock_irq(pool->lock). 2786 */ 2787 static void insert_wq_barrier(struct pool_workqueue *pwq, 2788 struct wq_barrier *barr, 2789 struct work_struct *target, struct worker *worker) 2790 { 2791 unsigned int work_flags = 0; 2792 unsigned int work_color; 2793 struct list_head *head; 2794 2795 /* 2796 * debugobject calls are safe here even with pool->lock locked 2797 * as we know for sure that this will not trigger any of the 2798 * checks and call back into the fixup functions where we 2799 * might deadlock. 2800 */ 2801 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2802 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2803 2804 init_completion_map(&barr->done, &target->lockdep_map); 2805 2806 barr->task = current; 2807 2808 /* The barrier work item does not participate in pwq->nr_active. */ 2809 work_flags |= WORK_STRUCT_INACTIVE; 2810 2811 /* 2812 * If @target is currently being executed, schedule the 2813 * barrier to the worker; otherwise, put it after @target. 2814 */ 2815 if (worker) { 2816 head = worker->scheduled.next; 2817 work_color = worker->current_color; 2818 } else { 2819 unsigned long *bits = work_data_bits(target); 2820 2821 head = target->entry.next; 2822 /* there can already be other linked works, inherit and set */ 2823 work_flags |= *bits & WORK_STRUCT_LINKED; 2824 work_color = get_work_color(*bits); 2825 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2826 } 2827 2828 pwq->nr_in_flight[work_color]++; 2829 work_flags |= work_color_to_flags(work_color); 2830 2831 debug_work_activate(&barr->work); 2832 insert_work(pwq, &barr->work, head, work_flags); 2833 } 2834 2835 /** 2836 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2837 * @wq: workqueue being flushed 2838 * @flush_color: new flush color, < 0 for no-op 2839 * @work_color: new work color, < 0 for no-op 2840 * 2841 * Prepare pwqs for workqueue flushing. 2842 * 2843 * If @flush_color is non-negative, flush_color on all pwqs should be 2844 * -1. If no pwq has in-flight commands at the specified color, all 2845 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2846 * has in flight commands, its pwq->flush_color is set to 2847 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2848 * wakeup logic is armed and %true is returned. 2849 * 2850 * The caller should have initialized @wq->first_flusher prior to 2851 * calling this function with non-negative @flush_color. If 2852 * @flush_color is negative, no flush color update is done and %false 2853 * is returned. 2854 * 2855 * If @work_color is non-negative, all pwqs should have the same 2856 * work_color which is previous to @work_color and all will be 2857 * advanced to @work_color. 2858 * 2859 * CONTEXT: 2860 * mutex_lock(wq->mutex). 2861 * 2862 * Return: 2863 * %true if @flush_color >= 0 and there's something to flush. %false 2864 * otherwise. 2865 */ 2866 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2867 int flush_color, int work_color) 2868 { 2869 bool wait = false; 2870 struct pool_workqueue *pwq; 2871 2872 if (flush_color >= 0) { 2873 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2874 atomic_set(&wq->nr_pwqs_to_flush, 1); 2875 } 2876 2877 for_each_pwq(pwq, wq) { 2878 struct worker_pool *pool = pwq->pool; 2879 2880 raw_spin_lock_irq(&pool->lock); 2881 2882 if (flush_color >= 0) { 2883 WARN_ON_ONCE(pwq->flush_color != -1); 2884 2885 if (pwq->nr_in_flight[flush_color]) { 2886 pwq->flush_color = flush_color; 2887 atomic_inc(&wq->nr_pwqs_to_flush); 2888 wait = true; 2889 } 2890 } 2891 2892 if (work_color >= 0) { 2893 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2894 pwq->work_color = work_color; 2895 } 2896 2897 raw_spin_unlock_irq(&pool->lock); 2898 } 2899 2900 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2901 complete(&wq->first_flusher->done); 2902 2903 return wait; 2904 } 2905 2906 /** 2907 * __flush_workqueue - ensure that any scheduled work has run to completion. 2908 * @wq: workqueue to flush 2909 * 2910 * This function sleeps until all work items which were queued on entry 2911 * have finished execution, but it is not livelocked by new incoming ones. 2912 */ 2913 void __flush_workqueue(struct workqueue_struct *wq) 2914 { 2915 struct wq_flusher this_flusher = { 2916 .list = LIST_HEAD_INIT(this_flusher.list), 2917 .flush_color = -1, 2918 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2919 }; 2920 int next_color; 2921 2922 if (WARN_ON(!wq_online)) 2923 return; 2924 2925 lock_map_acquire(&wq->lockdep_map); 2926 lock_map_release(&wq->lockdep_map); 2927 2928 mutex_lock(&wq->mutex); 2929 2930 /* 2931 * Start-to-wait phase 2932 */ 2933 next_color = work_next_color(wq->work_color); 2934 2935 if (next_color != wq->flush_color) { 2936 /* 2937 * Color space is not full. The current work_color 2938 * becomes our flush_color and work_color is advanced 2939 * by one. 2940 */ 2941 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2942 this_flusher.flush_color = wq->work_color; 2943 wq->work_color = next_color; 2944 2945 if (!wq->first_flusher) { 2946 /* no flush in progress, become the first flusher */ 2947 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2948 2949 wq->first_flusher = &this_flusher; 2950 2951 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2952 wq->work_color)) { 2953 /* nothing to flush, done */ 2954 wq->flush_color = next_color; 2955 wq->first_flusher = NULL; 2956 goto out_unlock; 2957 } 2958 } else { 2959 /* wait in queue */ 2960 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2961 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2962 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2963 } 2964 } else { 2965 /* 2966 * Oops, color space is full, wait on overflow queue. 2967 * The next flush completion will assign us 2968 * flush_color and transfer to flusher_queue. 2969 */ 2970 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2971 } 2972 2973 check_flush_dependency(wq, NULL); 2974 2975 mutex_unlock(&wq->mutex); 2976 2977 wait_for_completion(&this_flusher.done); 2978 2979 /* 2980 * Wake-up-and-cascade phase 2981 * 2982 * First flushers are responsible for cascading flushes and 2983 * handling overflow. Non-first flushers can simply return. 2984 */ 2985 if (READ_ONCE(wq->first_flusher) != &this_flusher) 2986 return; 2987 2988 mutex_lock(&wq->mutex); 2989 2990 /* we might have raced, check again with mutex held */ 2991 if (wq->first_flusher != &this_flusher) 2992 goto out_unlock; 2993 2994 WRITE_ONCE(wq->first_flusher, NULL); 2995 2996 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2997 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2998 2999 while (true) { 3000 struct wq_flusher *next, *tmp; 3001 3002 /* complete all the flushers sharing the current flush color */ 3003 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 3004 if (next->flush_color != wq->flush_color) 3005 break; 3006 list_del_init(&next->list); 3007 complete(&next->done); 3008 } 3009 3010 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 3011 wq->flush_color != work_next_color(wq->work_color)); 3012 3013 /* this flush_color is finished, advance by one */ 3014 wq->flush_color = work_next_color(wq->flush_color); 3015 3016 /* one color has been freed, handle overflow queue */ 3017 if (!list_empty(&wq->flusher_overflow)) { 3018 /* 3019 * Assign the same color to all overflowed 3020 * flushers, advance work_color and append to 3021 * flusher_queue. This is the start-to-wait 3022 * phase for these overflowed flushers. 3023 */ 3024 list_for_each_entry(tmp, &wq->flusher_overflow, list) 3025 tmp->flush_color = wq->work_color; 3026 3027 wq->work_color = work_next_color(wq->work_color); 3028 3029 list_splice_tail_init(&wq->flusher_overflow, 3030 &wq->flusher_queue); 3031 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3032 } 3033 3034 if (list_empty(&wq->flusher_queue)) { 3035 WARN_ON_ONCE(wq->flush_color != wq->work_color); 3036 break; 3037 } 3038 3039 /* 3040 * Need to flush more colors. Make the next flusher 3041 * the new first flusher and arm pwqs. 3042 */ 3043 WARN_ON_ONCE(wq->flush_color == wq->work_color); 3044 WARN_ON_ONCE(wq->flush_color != next->flush_color); 3045 3046 list_del_init(&next->list); 3047 wq->first_flusher = next; 3048 3049 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 3050 break; 3051 3052 /* 3053 * Meh... this color is already done, clear first 3054 * flusher and repeat cascading. 3055 */ 3056 wq->first_flusher = NULL; 3057 } 3058 3059 out_unlock: 3060 mutex_unlock(&wq->mutex); 3061 } 3062 EXPORT_SYMBOL(__flush_workqueue); 3063 3064 /** 3065 * drain_workqueue - drain a workqueue 3066 * @wq: workqueue to drain 3067 * 3068 * Wait until the workqueue becomes empty. While draining is in progress, 3069 * only chain queueing is allowed. IOW, only currently pending or running 3070 * work items on @wq can queue further work items on it. @wq is flushed 3071 * repeatedly until it becomes empty. The number of flushing is determined 3072 * by the depth of chaining and should be relatively short. Whine if it 3073 * takes too long. 3074 */ 3075 void drain_workqueue(struct workqueue_struct *wq) 3076 { 3077 unsigned int flush_cnt = 0; 3078 struct pool_workqueue *pwq; 3079 3080 /* 3081 * __queue_work() needs to test whether there are drainers, is much 3082 * hotter than drain_workqueue() and already looks at @wq->flags. 3083 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 3084 */ 3085 mutex_lock(&wq->mutex); 3086 if (!wq->nr_drainers++) 3087 wq->flags |= __WQ_DRAINING; 3088 mutex_unlock(&wq->mutex); 3089 reflush: 3090 __flush_workqueue(wq); 3091 3092 mutex_lock(&wq->mutex); 3093 3094 for_each_pwq(pwq, wq) { 3095 bool drained; 3096 3097 raw_spin_lock_irq(&pwq->pool->lock); 3098 drained = !pwq->nr_active && list_empty(&pwq->inactive_works); 3099 raw_spin_unlock_irq(&pwq->pool->lock); 3100 3101 if (drained) 3102 continue; 3103 3104 if (++flush_cnt == 10 || 3105 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 3106 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 3107 wq->name, __func__, flush_cnt); 3108 3109 mutex_unlock(&wq->mutex); 3110 goto reflush; 3111 } 3112 3113 if (!--wq->nr_drainers) 3114 wq->flags &= ~__WQ_DRAINING; 3115 mutex_unlock(&wq->mutex); 3116 } 3117 EXPORT_SYMBOL_GPL(drain_workqueue); 3118 3119 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 3120 bool from_cancel) 3121 { 3122 struct worker *worker = NULL; 3123 struct worker_pool *pool; 3124 struct pool_workqueue *pwq; 3125 3126 might_sleep(); 3127 3128 rcu_read_lock(); 3129 pool = get_work_pool(work); 3130 if (!pool) { 3131 rcu_read_unlock(); 3132 return false; 3133 } 3134 3135 raw_spin_lock_irq(&pool->lock); 3136 /* see the comment in try_to_grab_pending() with the same code */ 3137 pwq = get_work_pwq(work); 3138 if (pwq) { 3139 if (unlikely(pwq->pool != pool)) 3140 goto already_gone; 3141 } else { 3142 worker = find_worker_executing_work(pool, work); 3143 if (!worker) 3144 goto already_gone; 3145 pwq = worker->current_pwq; 3146 } 3147 3148 check_flush_dependency(pwq->wq, work); 3149 3150 insert_wq_barrier(pwq, barr, work, worker); 3151 raw_spin_unlock_irq(&pool->lock); 3152 3153 /* 3154 * Force a lock recursion deadlock when using flush_work() inside a 3155 * single-threaded or rescuer equipped workqueue. 3156 * 3157 * For single threaded workqueues the deadlock happens when the work 3158 * is after the work issuing the flush_work(). For rescuer equipped 3159 * workqueues the deadlock happens when the rescuer stalls, blocking 3160 * forward progress. 3161 */ 3162 if (!from_cancel && 3163 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3164 lock_map_acquire(&pwq->wq->lockdep_map); 3165 lock_map_release(&pwq->wq->lockdep_map); 3166 } 3167 rcu_read_unlock(); 3168 return true; 3169 already_gone: 3170 raw_spin_unlock_irq(&pool->lock); 3171 rcu_read_unlock(); 3172 return false; 3173 } 3174 3175 static bool __flush_work(struct work_struct *work, bool from_cancel) 3176 { 3177 struct wq_barrier barr; 3178 3179 if (WARN_ON(!wq_online)) 3180 return false; 3181 3182 if (WARN_ON(!work->func)) 3183 return false; 3184 3185 lock_map_acquire(&work->lockdep_map); 3186 lock_map_release(&work->lockdep_map); 3187 3188 if (start_flush_work(work, &barr, from_cancel)) { 3189 wait_for_completion(&barr.done); 3190 destroy_work_on_stack(&barr.work); 3191 return true; 3192 } else { 3193 return false; 3194 } 3195 } 3196 3197 /** 3198 * flush_work - wait for a work to finish executing the last queueing instance 3199 * @work: the work to flush 3200 * 3201 * Wait until @work has finished execution. @work is guaranteed to be idle 3202 * on return if it hasn't been requeued since flush started. 3203 * 3204 * Return: 3205 * %true if flush_work() waited for the work to finish execution, 3206 * %false if it was already idle. 3207 */ 3208 bool flush_work(struct work_struct *work) 3209 { 3210 return __flush_work(work, false); 3211 } 3212 EXPORT_SYMBOL_GPL(flush_work); 3213 3214 struct cwt_wait { 3215 wait_queue_entry_t wait; 3216 struct work_struct *work; 3217 }; 3218 3219 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3220 { 3221 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3222 3223 if (cwait->work != key) 3224 return 0; 3225 return autoremove_wake_function(wait, mode, sync, key); 3226 } 3227 3228 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3229 { 3230 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3231 unsigned long flags; 3232 int ret; 3233 3234 do { 3235 ret = try_to_grab_pending(work, is_dwork, &flags); 3236 /* 3237 * If someone else is already canceling, wait for it to 3238 * finish. flush_work() doesn't work for PREEMPT_NONE 3239 * because we may get scheduled between @work's completion 3240 * and the other canceling task resuming and clearing 3241 * CANCELING - flush_work() will return false immediately 3242 * as @work is no longer busy, try_to_grab_pending() will 3243 * return -ENOENT as @work is still being canceled and the 3244 * other canceling task won't be able to clear CANCELING as 3245 * we're hogging the CPU. 3246 * 3247 * Let's wait for completion using a waitqueue. As this 3248 * may lead to the thundering herd problem, use a custom 3249 * wake function which matches @work along with exclusive 3250 * wait and wakeup. 3251 */ 3252 if (unlikely(ret == -ENOENT)) { 3253 struct cwt_wait cwait; 3254 3255 init_wait(&cwait.wait); 3256 cwait.wait.func = cwt_wakefn; 3257 cwait.work = work; 3258 3259 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3260 TASK_UNINTERRUPTIBLE); 3261 if (work_is_canceling(work)) 3262 schedule(); 3263 finish_wait(&cancel_waitq, &cwait.wait); 3264 } 3265 } while (unlikely(ret < 0)); 3266 3267 /* tell other tasks trying to grab @work to back off */ 3268 mark_work_canceling(work); 3269 local_irq_restore(flags); 3270 3271 /* 3272 * This allows canceling during early boot. We know that @work 3273 * isn't executing. 3274 */ 3275 if (wq_online) 3276 __flush_work(work, true); 3277 3278 clear_work_data(work); 3279 3280 /* 3281 * Paired with prepare_to_wait() above so that either 3282 * waitqueue_active() is visible here or !work_is_canceling() is 3283 * visible there. 3284 */ 3285 smp_mb(); 3286 if (waitqueue_active(&cancel_waitq)) 3287 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3288 3289 return ret; 3290 } 3291 3292 /** 3293 * cancel_work_sync - cancel a work and wait for it to finish 3294 * @work: the work to cancel 3295 * 3296 * Cancel @work and wait for its execution to finish. This function 3297 * can be used even if the work re-queues itself or migrates to 3298 * another workqueue. On return from this function, @work is 3299 * guaranteed to be not pending or executing on any CPU. 3300 * 3301 * cancel_work_sync(&delayed_work->work) must not be used for 3302 * delayed_work's. Use cancel_delayed_work_sync() instead. 3303 * 3304 * The caller must ensure that the workqueue on which @work was last 3305 * queued can't be destroyed before this function returns. 3306 * 3307 * Return: 3308 * %true if @work was pending, %false otherwise. 3309 */ 3310 bool cancel_work_sync(struct work_struct *work) 3311 { 3312 return __cancel_work_timer(work, false); 3313 } 3314 EXPORT_SYMBOL_GPL(cancel_work_sync); 3315 3316 /** 3317 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3318 * @dwork: the delayed work to flush 3319 * 3320 * Delayed timer is cancelled and the pending work is queued for 3321 * immediate execution. Like flush_work(), this function only 3322 * considers the last queueing instance of @dwork. 3323 * 3324 * Return: 3325 * %true if flush_work() waited for the work to finish execution, 3326 * %false if it was already idle. 3327 */ 3328 bool flush_delayed_work(struct delayed_work *dwork) 3329 { 3330 local_irq_disable(); 3331 if (del_timer_sync(&dwork->timer)) 3332 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3333 local_irq_enable(); 3334 return flush_work(&dwork->work); 3335 } 3336 EXPORT_SYMBOL(flush_delayed_work); 3337 3338 /** 3339 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3340 * @rwork: the rcu work to flush 3341 * 3342 * Return: 3343 * %true if flush_rcu_work() waited for the work to finish execution, 3344 * %false if it was already idle. 3345 */ 3346 bool flush_rcu_work(struct rcu_work *rwork) 3347 { 3348 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3349 rcu_barrier(); 3350 flush_work(&rwork->work); 3351 return true; 3352 } else { 3353 return flush_work(&rwork->work); 3354 } 3355 } 3356 EXPORT_SYMBOL(flush_rcu_work); 3357 3358 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3359 { 3360 unsigned long flags; 3361 int ret; 3362 3363 do { 3364 ret = try_to_grab_pending(work, is_dwork, &flags); 3365 } while (unlikely(ret == -EAGAIN)); 3366 3367 if (unlikely(ret < 0)) 3368 return false; 3369 3370 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3371 local_irq_restore(flags); 3372 return ret; 3373 } 3374 3375 /* 3376 * See cancel_delayed_work() 3377 */ 3378 bool cancel_work(struct work_struct *work) 3379 { 3380 return __cancel_work(work, false); 3381 } 3382 EXPORT_SYMBOL(cancel_work); 3383 3384 /** 3385 * cancel_delayed_work - cancel a delayed work 3386 * @dwork: delayed_work to cancel 3387 * 3388 * Kill off a pending delayed_work. 3389 * 3390 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3391 * pending. 3392 * 3393 * Note: 3394 * The work callback function may still be running on return, unless 3395 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3396 * use cancel_delayed_work_sync() to wait on it. 3397 * 3398 * This function is safe to call from any context including IRQ handler. 3399 */ 3400 bool cancel_delayed_work(struct delayed_work *dwork) 3401 { 3402 return __cancel_work(&dwork->work, true); 3403 } 3404 EXPORT_SYMBOL(cancel_delayed_work); 3405 3406 /** 3407 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3408 * @dwork: the delayed work cancel 3409 * 3410 * This is cancel_work_sync() for delayed works. 3411 * 3412 * Return: 3413 * %true if @dwork was pending, %false otherwise. 3414 */ 3415 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3416 { 3417 return __cancel_work_timer(&dwork->work, true); 3418 } 3419 EXPORT_SYMBOL(cancel_delayed_work_sync); 3420 3421 /** 3422 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3423 * @func: the function to call 3424 * 3425 * schedule_on_each_cpu() executes @func on each online CPU using the 3426 * system workqueue and blocks until all CPUs have completed. 3427 * schedule_on_each_cpu() is very slow. 3428 * 3429 * Return: 3430 * 0 on success, -errno on failure. 3431 */ 3432 int schedule_on_each_cpu(work_func_t func) 3433 { 3434 int cpu; 3435 struct work_struct __percpu *works; 3436 3437 works = alloc_percpu(struct work_struct); 3438 if (!works) 3439 return -ENOMEM; 3440 3441 cpus_read_lock(); 3442 3443 for_each_online_cpu(cpu) { 3444 struct work_struct *work = per_cpu_ptr(works, cpu); 3445 3446 INIT_WORK(work, func); 3447 schedule_work_on(cpu, work); 3448 } 3449 3450 for_each_online_cpu(cpu) 3451 flush_work(per_cpu_ptr(works, cpu)); 3452 3453 cpus_read_unlock(); 3454 free_percpu(works); 3455 return 0; 3456 } 3457 3458 /** 3459 * execute_in_process_context - reliably execute the routine with user context 3460 * @fn: the function to execute 3461 * @ew: guaranteed storage for the execute work structure (must 3462 * be available when the work executes) 3463 * 3464 * Executes the function immediately if process context is available, 3465 * otherwise schedules the function for delayed execution. 3466 * 3467 * Return: 0 - function was executed 3468 * 1 - function was scheduled for execution 3469 */ 3470 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3471 { 3472 if (!in_interrupt()) { 3473 fn(&ew->work); 3474 return 0; 3475 } 3476 3477 INIT_WORK(&ew->work, fn); 3478 schedule_work(&ew->work); 3479 3480 return 1; 3481 } 3482 EXPORT_SYMBOL_GPL(execute_in_process_context); 3483 3484 /** 3485 * free_workqueue_attrs - free a workqueue_attrs 3486 * @attrs: workqueue_attrs to free 3487 * 3488 * Undo alloc_workqueue_attrs(). 3489 */ 3490 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3491 { 3492 if (attrs) { 3493 free_cpumask_var(attrs->cpumask); 3494 kfree(attrs); 3495 } 3496 } 3497 3498 /** 3499 * alloc_workqueue_attrs - allocate a workqueue_attrs 3500 * 3501 * Allocate a new workqueue_attrs, initialize with default settings and 3502 * return it. 3503 * 3504 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3505 */ 3506 struct workqueue_attrs *alloc_workqueue_attrs(void) 3507 { 3508 struct workqueue_attrs *attrs; 3509 3510 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 3511 if (!attrs) 3512 goto fail; 3513 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 3514 goto fail; 3515 3516 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3517 return attrs; 3518 fail: 3519 free_workqueue_attrs(attrs); 3520 return NULL; 3521 } 3522 3523 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3524 const struct workqueue_attrs *from) 3525 { 3526 to->nice = from->nice; 3527 cpumask_copy(to->cpumask, from->cpumask); 3528 /* 3529 * Unlike hash and equality test, this function doesn't ignore 3530 * ->no_numa as it is used for both pool and wq attrs. Instead, 3531 * get_unbound_pool() explicitly clears ->no_numa after copying. 3532 */ 3533 to->no_numa = from->no_numa; 3534 } 3535 3536 /* hash value of the content of @attr */ 3537 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3538 { 3539 u32 hash = 0; 3540 3541 hash = jhash_1word(attrs->nice, hash); 3542 hash = jhash(cpumask_bits(attrs->cpumask), 3543 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3544 return hash; 3545 } 3546 3547 /* content equality test */ 3548 static bool wqattrs_equal(const struct workqueue_attrs *a, 3549 const struct workqueue_attrs *b) 3550 { 3551 if (a->nice != b->nice) 3552 return false; 3553 if (!cpumask_equal(a->cpumask, b->cpumask)) 3554 return false; 3555 return true; 3556 } 3557 3558 /** 3559 * init_worker_pool - initialize a newly zalloc'd worker_pool 3560 * @pool: worker_pool to initialize 3561 * 3562 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3563 * 3564 * Return: 0 on success, -errno on failure. Even on failure, all fields 3565 * inside @pool proper are initialized and put_unbound_pool() can be called 3566 * on @pool safely to release it. 3567 */ 3568 static int init_worker_pool(struct worker_pool *pool) 3569 { 3570 raw_spin_lock_init(&pool->lock); 3571 pool->id = -1; 3572 pool->cpu = -1; 3573 pool->node = NUMA_NO_NODE; 3574 pool->flags |= POOL_DISASSOCIATED; 3575 pool->watchdog_ts = jiffies; 3576 INIT_LIST_HEAD(&pool->worklist); 3577 INIT_LIST_HEAD(&pool->idle_list); 3578 hash_init(pool->busy_hash); 3579 3580 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3581 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 3582 3583 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3584 3585 INIT_LIST_HEAD(&pool->workers); 3586 INIT_LIST_HEAD(&pool->dying_workers); 3587 3588 ida_init(&pool->worker_ida); 3589 INIT_HLIST_NODE(&pool->hash_node); 3590 pool->refcnt = 1; 3591 3592 /* shouldn't fail above this point */ 3593 pool->attrs = alloc_workqueue_attrs(); 3594 if (!pool->attrs) 3595 return -ENOMEM; 3596 return 0; 3597 } 3598 3599 #ifdef CONFIG_LOCKDEP 3600 static void wq_init_lockdep(struct workqueue_struct *wq) 3601 { 3602 char *lock_name; 3603 3604 lockdep_register_key(&wq->key); 3605 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3606 if (!lock_name) 3607 lock_name = wq->name; 3608 3609 wq->lock_name = lock_name; 3610 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3611 } 3612 3613 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3614 { 3615 lockdep_unregister_key(&wq->key); 3616 } 3617 3618 static void wq_free_lockdep(struct workqueue_struct *wq) 3619 { 3620 if (wq->lock_name != wq->name) 3621 kfree(wq->lock_name); 3622 } 3623 #else 3624 static void wq_init_lockdep(struct workqueue_struct *wq) 3625 { 3626 } 3627 3628 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3629 { 3630 } 3631 3632 static void wq_free_lockdep(struct workqueue_struct *wq) 3633 { 3634 } 3635 #endif 3636 3637 static void rcu_free_wq(struct rcu_head *rcu) 3638 { 3639 struct workqueue_struct *wq = 3640 container_of(rcu, struct workqueue_struct, rcu); 3641 3642 wq_free_lockdep(wq); 3643 3644 if (!(wq->flags & WQ_UNBOUND)) 3645 free_percpu(wq->cpu_pwqs); 3646 else 3647 free_workqueue_attrs(wq->unbound_attrs); 3648 3649 kfree(wq); 3650 } 3651 3652 static void rcu_free_pool(struct rcu_head *rcu) 3653 { 3654 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3655 3656 ida_destroy(&pool->worker_ida); 3657 free_workqueue_attrs(pool->attrs); 3658 kfree(pool); 3659 } 3660 3661 /** 3662 * put_unbound_pool - put a worker_pool 3663 * @pool: worker_pool to put 3664 * 3665 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 3666 * safe manner. get_unbound_pool() calls this function on its failure path 3667 * and this function should be able to release pools which went through, 3668 * successfully or not, init_worker_pool(). 3669 * 3670 * Should be called with wq_pool_mutex held. 3671 */ 3672 static void put_unbound_pool(struct worker_pool *pool) 3673 { 3674 DECLARE_COMPLETION_ONSTACK(detach_completion); 3675 struct list_head cull_list; 3676 struct worker *worker; 3677 3678 INIT_LIST_HEAD(&cull_list); 3679 3680 lockdep_assert_held(&wq_pool_mutex); 3681 3682 if (--pool->refcnt) 3683 return; 3684 3685 /* sanity checks */ 3686 if (WARN_ON(!(pool->cpu < 0)) || 3687 WARN_ON(!list_empty(&pool->worklist))) 3688 return; 3689 3690 /* release id and unhash */ 3691 if (pool->id >= 0) 3692 idr_remove(&worker_pool_idr, pool->id); 3693 hash_del(&pool->hash_node); 3694 3695 /* 3696 * Become the manager and destroy all workers. This prevents 3697 * @pool's workers from blocking on attach_mutex. We're the last 3698 * manager and @pool gets freed with the flag set. 3699 * 3700 * Having a concurrent manager is quite unlikely to happen as we can 3701 * only get here with 3702 * pwq->refcnt == pool->refcnt == 0 3703 * which implies no work queued to the pool, which implies no worker can 3704 * become the manager. However a worker could have taken the role of 3705 * manager before the refcnts dropped to 0, since maybe_create_worker() 3706 * drops pool->lock 3707 */ 3708 while (true) { 3709 rcuwait_wait_event(&manager_wait, 3710 !(pool->flags & POOL_MANAGER_ACTIVE), 3711 TASK_UNINTERRUPTIBLE); 3712 3713 mutex_lock(&wq_pool_attach_mutex); 3714 raw_spin_lock_irq(&pool->lock); 3715 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 3716 pool->flags |= POOL_MANAGER_ACTIVE; 3717 break; 3718 } 3719 raw_spin_unlock_irq(&pool->lock); 3720 mutex_unlock(&wq_pool_attach_mutex); 3721 } 3722 3723 while ((worker = first_idle_worker(pool))) 3724 set_worker_dying(worker, &cull_list); 3725 WARN_ON(pool->nr_workers || pool->nr_idle); 3726 raw_spin_unlock_irq(&pool->lock); 3727 3728 wake_dying_workers(&cull_list); 3729 3730 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers)) 3731 pool->detach_completion = &detach_completion; 3732 mutex_unlock(&wq_pool_attach_mutex); 3733 3734 if (pool->detach_completion) 3735 wait_for_completion(pool->detach_completion); 3736 3737 /* shut down the timers */ 3738 del_timer_sync(&pool->idle_timer); 3739 cancel_work_sync(&pool->idle_cull_work); 3740 del_timer_sync(&pool->mayday_timer); 3741 3742 /* RCU protected to allow dereferences from get_work_pool() */ 3743 call_rcu(&pool->rcu, rcu_free_pool); 3744 } 3745 3746 /** 3747 * get_unbound_pool - get a worker_pool with the specified attributes 3748 * @attrs: the attributes of the worker_pool to get 3749 * 3750 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3751 * reference count and return it. If there already is a matching 3752 * worker_pool, it will be used; otherwise, this function attempts to 3753 * create a new one. 3754 * 3755 * Should be called with wq_pool_mutex held. 3756 * 3757 * Return: On success, a worker_pool with the same attributes as @attrs. 3758 * On failure, %NULL. 3759 */ 3760 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3761 { 3762 u32 hash = wqattrs_hash(attrs); 3763 struct worker_pool *pool; 3764 int node; 3765 int target_node = NUMA_NO_NODE; 3766 3767 lockdep_assert_held(&wq_pool_mutex); 3768 3769 /* do we already have a matching pool? */ 3770 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3771 if (wqattrs_equal(pool->attrs, attrs)) { 3772 pool->refcnt++; 3773 return pool; 3774 } 3775 } 3776 3777 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3778 if (wq_numa_enabled) { 3779 for_each_node(node) { 3780 if (cpumask_subset(attrs->cpumask, 3781 wq_numa_possible_cpumask[node])) { 3782 target_node = node; 3783 break; 3784 } 3785 } 3786 } 3787 3788 /* nope, create a new one */ 3789 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3790 if (!pool || init_worker_pool(pool) < 0) 3791 goto fail; 3792 3793 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3794 copy_workqueue_attrs(pool->attrs, attrs); 3795 pool->node = target_node; 3796 3797 /* 3798 * no_numa isn't a worker_pool attribute, always clear it. See 3799 * 'struct workqueue_attrs' comments for detail. 3800 */ 3801 pool->attrs->no_numa = false; 3802 3803 if (worker_pool_assign_id(pool) < 0) 3804 goto fail; 3805 3806 /* create and start the initial worker */ 3807 if (wq_online && !create_worker(pool)) 3808 goto fail; 3809 3810 /* install */ 3811 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3812 3813 return pool; 3814 fail: 3815 if (pool) 3816 put_unbound_pool(pool); 3817 return NULL; 3818 } 3819 3820 static void rcu_free_pwq(struct rcu_head *rcu) 3821 { 3822 kmem_cache_free(pwq_cache, 3823 container_of(rcu, struct pool_workqueue, rcu)); 3824 } 3825 3826 /* 3827 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3828 * and needs to be destroyed. 3829 */ 3830 static void pwq_unbound_release_workfn(struct work_struct *work) 3831 { 3832 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3833 unbound_release_work); 3834 struct workqueue_struct *wq = pwq->wq; 3835 struct worker_pool *pool = pwq->pool; 3836 bool is_last = false; 3837 3838 /* 3839 * when @pwq is not linked, it doesn't hold any reference to the 3840 * @wq, and @wq is invalid to access. 3841 */ 3842 if (!list_empty(&pwq->pwqs_node)) { 3843 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3844 return; 3845 3846 mutex_lock(&wq->mutex); 3847 list_del_rcu(&pwq->pwqs_node); 3848 is_last = list_empty(&wq->pwqs); 3849 mutex_unlock(&wq->mutex); 3850 } 3851 3852 mutex_lock(&wq_pool_mutex); 3853 put_unbound_pool(pool); 3854 mutex_unlock(&wq_pool_mutex); 3855 3856 call_rcu(&pwq->rcu, rcu_free_pwq); 3857 3858 /* 3859 * If we're the last pwq going away, @wq is already dead and no one 3860 * is gonna access it anymore. Schedule RCU free. 3861 */ 3862 if (is_last) { 3863 wq_unregister_lockdep(wq); 3864 call_rcu(&wq->rcu, rcu_free_wq); 3865 } 3866 } 3867 3868 /** 3869 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3870 * @pwq: target pool_workqueue 3871 * 3872 * If @pwq isn't freezing, set @pwq->max_active to the associated 3873 * workqueue's saved_max_active and activate inactive work items 3874 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3875 */ 3876 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3877 { 3878 struct workqueue_struct *wq = pwq->wq; 3879 bool freezable = wq->flags & WQ_FREEZABLE; 3880 unsigned long flags; 3881 3882 /* for @wq->saved_max_active */ 3883 lockdep_assert_held(&wq->mutex); 3884 3885 /* fast exit for non-freezable wqs */ 3886 if (!freezable && pwq->max_active == wq->saved_max_active) 3887 return; 3888 3889 /* this function can be called during early boot w/ irq disabled */ 3890 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 3891 3892 /* 3893 * During [un]freezing, the caller is responsible for ensuring that 3894 * this function is called at least once after @workqueue_freezing 3895 * is updated and visible. 3896 */ 3897 if (!freezable || !workqueue_freezing) { 3898 bool kick = false; 3899 3900 pwq->max_active = wq->saved_max_active; 3901 3902 while (!list_empty(&pwq->inactive_works) && 3903 pwq->nr_active < pwq->max_active) { 3904 pwq_activate_first_inactive(pwq); 3905 kick = true; 3906 } 3907 3908 /* 3909 * Need to kick a worker after thawed or an unbound wq's 3910 * max_active is bumped. In realtime scenarios, always kicking a 3911 * worker will cause interference on the isolated cpu cores, so 3912 * let's kick iff work items were activated. 3913 */ 3914 if (kick) 3915 wake_up_worker(pwq->pool); 3916 } else { 3917 pwq->max_active = 0; 3918 } 3919 3920 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 3921 } 3922 3923 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 3924 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3925 struct worker_pool *pool) 3926 { 3927 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3928 3929 memset(pwq, 0, sizeof(*pwq)); 3930 3931 pwq->pool = pool; 3932 pwq->wq = wq; 3933 pwq->flush_color = -1; 3934 pwq->refcnt = 1; 3935 INIT_LIST_HEAD(&pwq->inactive_works); 3936 INIT_LIST_HEAD(&pwq->pwqs_node); 3937 INIT_LIST_HEAD(&pwq->mayday_node); 3938 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3939 } 3940 3941 /* sync @pwq with the current state of its associated wq and link it */ 3942 static void link_pwq(struct pool_workqueue *pwq) 3943 { 3944 struct workqueue_struct *wq = pwq->wq; 3945 3946 lockdep_assert_held(&wq->mutex); 3947 3948 /* may be called multiple times, ignore if already linked */ 3949 if (!list_empty(&pwq->pwqs_node)) 3950 return; 3951 3952 /* set the matching work_color */ 3953 pwq->work_color = wq->work_color; 3954 3955 /* sync max_active to the current setting */ 3956 pwq_adjust_max_active(pwq); 3957 3958 /* link in @pwq */ 3959 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3960 } 3961 3962 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3963 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3964 const struct workqueue_attrs *attrs) 3965 { 3966 struct worker_pool *pool; 3967 struct pool_workqueue *pwq; 3968 3969 lockdep_assert_held(&wq_pool_mutex); 3970 3971 pool = get_unbound_pool(attrs); 3972 if (!pool) 3973 return NULL; 3974 3975 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3976 if (!pwq) { 3977 put_unbound_pool(pool); 3978 return NULL; 3979 } 3980 3981 init_pwq(pwq, wq, pool); 3982 return pwq; 3983 } 3984 3985 /** 3986 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3987 * @attrs: the wq_attrs of the default pwq of the target workqueue 3988 * @node: the target NUMA node 3989 * @cpu_going_down: if >= 0, the CPU to consider as offline 3990 * @cpumask: outarg, the resulting cpumask 3991 * 3992 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3993 * @cpu_going_down is >= 0, that cpu is considered offline during 3994 * calculation. The result is stored in @cpumask. 3995 * 3996 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3997 * enabled and @node has online CPUs requested by @attrs, the returned 3998 * cpumask is the intersection of the possible CPUs of @node and 3999 * @attrs->cpumask. 4000 * 4001 * The caller is responsible for ensuring that the cpumask of @node stays 4002 * stable. 4003 * 4004 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 4005 * %false if equal. 4006 */ 4007 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 4008 int cpu_going_down, cpumask_t *cpumask) 4009 { 4010 if (!wq_numa_enabled || attrs->no_numa) 4011 goto use_dfl; 4012 4013 /* does @node have any online CPUs @attrs wants? */ 4014 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 4015 if (cpu_going_down >= 0) 4016 cpumask_clear_cpu(cpu_going_down, cpumask); 4017 4018 if (cpumask_empty(cpumask)) 4019 goto use_dfl; 4020 4021 /* yeap, return possible CPUs in @node that @attrs wants */ 4022 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 4023 4024 if (cpumask_empty(cpumask)) { 4025 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 4026 "possible intersect\n"); 4027 return false; 4028 } 4029 4030 return !cpumask_equal(cpumask, attrs->cpumask); 4031 4032 use_dfl: 4033 cpumask_copy(cpumask, attrs->cpumask); 4034 return false; 4035 } 4036 4037 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 4038 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 4039 int node, 4040 struct pool_workqueue *pwq) 4041 { 4042 struct pool_workqueue *old_pwq; 4043 4044 lockdep_assert_held(&wq_pool_mutex); 4045 lockdep_assert_held(&wq->mutex); 4046 4047 /* link_pwq() can handle duplicate calls */ 4048 link_pwq(pwq); 4049 4050 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4051 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 4052 return old_pwq; 4053 } 4054 4055 /* context to store the prepared attrs & pwqs before applying */ 4056 struct apply_wqattrs_ctx { 4057 struct workqueue_struct *wq; /* target workqueue */ 4058 struct workqueue_attrs *attrs; /* attrs to apply */ 4059 struct list_head list; /* queued for batching commit */ 4060 struct pool_workqueue *dfl_pwq; 4061 struct pool_workqueue *pwq_tbl[]; 4062 }; 4063 4064 /* free the resources after success or abort */ 4065 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 4066 { 4067 if (ctx) { 4068 int node; 4069 4070 for_each_node(node) 4071 put_pwq_unlocked(ctx->pwq_tbl[node]); 4072 put_pwq_unlocked(ctx->dfl_pwq); 4073 4074 free_workqueue_attrs(ctx->attrs); 4075 4076 kfree(ctx); 4077 } 4078 } 4079 4080 /* allocate the attrs and pwqs for later installation */ 4081 static struct apply_wqattrs_ctx * 4082 apply_wqattrs_prepare(struct workqueue_struct *wq, 4083 const struct workqueue_attrs *attrs, 4084 const cpumask_var_t unbound_cpumask) 4085 { 4086 struct apply_wqattrs_ctx *ctx; 4087 struct workqueue_attrs *new_attrs, *tmp_attrs; 4088 int node; 4089 4090 lockdep_assert_held(&wq_pool_mutex); 4091 4092 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 4093 4094 new_attrs = alloc_workqueue_attrs(); 4095 tmp_attrs = alloc_workqueue_attrs(); 4096 if (!ctx || !new_attrs || !tmp_attrs) 4097 goto out_free; 4098 4099 /* 4100 * Calculate the attrs of the default pwq with unbound_cpumask 4101 * which is wq_unbound_cpumask or to set to wq_unbound_cpumask. 4102 * If the user configured cpumask doesn't overlap with the 4103 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 4104 */ 4105 copy_workqueue_attrs(new_attrs, attrs); 4106 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, unbound_cpumask); 4107 if (unlikely(cpumask_empty(new_attrs->cpumask))) 4108 cpumask_copy(new_attrs->cpumask, unbound_cpumask); 4109 4110 /* 4111 * We may create multiple pwqs with differing cpumasks. Make a 4112 * copy of @new_attrs which will be modified and used to obtain 4113 * pools. 4114 */ 4115 copy_workqueue_attrs(tmp_attrs, new_attrs); 4116 4117 /* 4118 * If something goes wrong during CPU up/down, we'll fall back to 4119 * the default pwq covering whole @attrs->cpumask. Always create 4120 * it even if we don't use it immediately. 4121 */ 4122 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 4123 if (!ctx->dfl_pwq) 4124 goto out_free; 4125 4126 for_each_node(node) { 4127 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 4128 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 4129 if (!ctx->pwq_tbl[node]) 4130 goto out_free; 4131 } else { 4132 ctx->dfl_pwq->refcnt++; 4133 ctx->pwq_tbl[node] = ctx->dfl_pwq; 4134 } 4135 } 4136 4137 /* save the user configured attrs and sanitize it. */ 4138 copy_workqueue_attrs(new_attrs, attrs); 4139 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 4140 ctx->attrs = new_attrs; 4141 4142 ctx->wq = wq; 4143 free_workqueue_attrs(tmp_attrs); 4144 return ctx; 4145 4146 out_free: 4147 free_workqueue_attrs(tmp_attrs); 4148 free_workqueue_attrs(new_attrs); 4149 apply_wqattrs_cleanup(ctx); 4150 return NULL; 4151 } 4152 4153 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 4154 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 4155 { 4156 int node; 4157 4158 /* all pwqs have been created successfully, let's install'em */ 4159 mutex_lock(&ctx->wq->mutex); 4160 4161 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 4162 4163 /* save the previous pwq and install the new one */ 4164 for_each_node(node) 4165 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 4166 ctx->pwq_tbl[node]); 4167 4168 /* @dfl_pwq might not have been used, ensure it's linked */ 4169 link_pwq(ctx->dfl_pwq); 4170 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 4171 4172 mutex_unlock(&ctx->wq->mutex); 4173 } 4174 4175 static void apply_wqattrs_lock(void) 4176 { 4177 /* CPUs should stay stable across pwq creations and installations */ 4178 cpus_read_lock(); 4179 mutex_lock(&wq_pool_mutex); 4180 } 4181 4182 static void apply_wqattrs_unlock(void) 4183 { 4184 mutex_unlock(&wq_pool_mutex); 4185 cpus_read_unlock(); 4186 } 4187 4188 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 4189 const struct workqueue_attrs *attrs) 4190 { 4191 struct apply_wqattrs_ctx *ctx; 4192 4193 /* only unbound workqueues can change attributes */ 4194 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 4195 return -EINVAL; 4196 4197 /* creating multiple pwqs breaks ordering guarantee */ 4198 if (!list_empty(&wq->pwqs)) { 4199 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4200 return -EINVAL; 4201 4202 wq->flags &= ~__WQ_ORDERED; 4203 } 4204 4205 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 4206 if (!ctx) 4207 return -ENOMEM; 4208 4209 /* the ctx has been prepared successfully, let's commit it */ 4210 apply_wqattrs_commit(ctx); 4211 apply_wqattrs_cleanup(ctx); 4212 4213 return 0; 4214 } 4215 4216 /** 4217 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4218 * @wq: the target workqueue 4219 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4220 * 4221 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 4222 * machines, this function maps a separate pwq to each NUMA node with 4223 * possibles CPUs in @attrs->cpumask so that work items are affine to the 4224 * NUMA node it was issued on. Older pwqs are released as in-flight work 4225 * items finish. Note that a work item which repeatedly requeues itself 4226 * back-to-back will stay on its current pwq. 4227 * 4228 * Performs GFP_KERNEL allocations. 4229 * 4230 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). 4231 * 4232 * Return: 0 on success and -errno on failure. 4233 */ 4234 int apply_workqueue_attrs(struct workqueue_struct *wq, 4235 const struct workqueue_attrs *attrs) 4236 { 4237 int ret; 4238 4239 lockdep_assert_cpus_held(); 4240 4241 mutex_lock(&wq_pool_mutex); 4242 ret = apply_workqueue_attrs_locked(wq, attrs); 4243 mutex_unlock(&wq_pool_mutex); 4244 4245 return ret; 4246 } 4247 4248 /** 4249 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4250 * @wq: the target workqueue 4251 * @cpu: the CPU coming up or going down 4252 * @online: whether @cpu is coming up or going down 4253 * 4254 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4255 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4256 * @wq accordingly. 4257 * 4258 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4259 * falls back to @wq->dfl_pwq which may not be optimal but is always 4260 * correct. 4261 * 4262 * Note that when the last allowed CPU of a NUMA node goes offline for a 4263 * workqueue with a cpumask spanning multiple nodes, the workers which were 4264 * already executing the work items for the workqueue will lose their CPU 4265 * affinity and may execute on any CPU. This is similar to how per-cpu 4266 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4267 * affinity, it's the user's responsibility to flush the work item from 4268 * CPU_DOWN_PREPARE. 4269 */ 4270 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4271 bool online) 4272 { 4273 int node = cpu_to_node(cpu); 4274 int cpu_off = online ? -1 : cpu; 4275 struct pool_workqueue *old_pwq = NULL, *pwq; 4276 struct workqueue_attrs *target_attrs; 4277 cpumask_t *cpumask; 4278 4279 lockdep_assert_held(&wq_pool_mutex); 4280 4281 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 4282 wq->unbound_attrs->no_numa) 4283 return; 4284 4285 /* 4286 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4287 * Let's use a preallocated one. The following buf is protected by 4288 * CPU hotplug exclusion. 4289 */ 4290 target_attrs = wq_update_unbound_numa_attrs_buf; 4291 cpumask = target_attrs->cpumask; 4292 4293 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4294 pwq = unbound_pwq_by_node(wq, node); 4295 4296 /* 4297 * Let's determine what needs to be done. If the target cpumask is 4298 * different from the default pwq's, we need to compare it to @pwq's 4299 * and create a new one if they don't match. If the target cpumask 4300 * equals the default pwq's, the default pwq should be used. 4301 */ 4302 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4303 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4304 return; 4305 } else { 4306 goto use_dfl_pwq; 4307 } 4308 4309 /* create a new pwq */ 4310 pwq = alloc_unbound_pwq(wq, target_attrs); 4311 if (!pwq) { 4312 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4313 wq->name); 4314 goto use_dfl_pwq; 4315 } 4316 4317 /* Install the new pwq. */ 4318 mutex_lock(&wq->mutex); 4319 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4320 goto out_unlock; 4321 4322 use_dfl_pwq: 4323 mutex_lock(&wq->mutex); 4324 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock); 4325 get_pwq(wq->dfl_pwq); 4326 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4327 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4328 out_unlock: 4329 mutex_unlock(&wq->mutex); 4330 put_pwq_unlocked(old_pwq); 4331 } 4332 4333 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4334 { 4335 bool highpri = wq->flags & WQ_HIGHPRI; 4336 int cpu, ret; 4337 4338 if (!(wq->flags & WQ_UNBOUND)) { 4339 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4340 if (!wq->cpu_pwqs) 4341 return -ENOMEM; 4342 4343 for_each_possible_cpu(cpu) { 4344 struct pool_workqueue *pwq = 4345 per_cpu_ptr(wq->cpu_pwqs, cpu); 4346 struct worker_pool *cpu_pools = 4347 per_cpu(cpu_worker_pools, cpu); 4348 4349 init_pwq(pwq, wq, &cpu_pools[highpri]); 4350 4351 mutex_lock(&wq->mutex); 4352 link_pwq(pwq); 4353 mutex_unlock(&wq->mutex); 4354 } 4355 return 0; 4356 } 4357 4358 cpus_read_lock(); 4359 if (wq->flags & __WQ_ORDERED) { 4360 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4361 /* there should only be single pwq for ordering guarantee */ 4362 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4363 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4364 "ordering guarantee broken for workqueue %s\n", wq->name); 4365 } else { 4366 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4367 } 4368 cpus_read_unlock(); 4369 4370 return ret; 4371 } 4372 4373 static int wq_clamp_max_active(int max_active, unsigned int flags, 4374 const char *name) 4375 { 4376 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4377 4378 if (max_active < 1 || max_active > lim) 4379 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4380 max_active, name, 1, lim); 4381 4382 return clamp_val(max_active, 1, lim); 4383 } 4384 4385 /* 4386 * Workqueues which may be used during memory reclaim should have a rescuer 4387 * to guarantee forward progress. 4388 */ 4389 static int init_rescuer(struct workqueue_struct *wq) 4390 { 4391 struct worker *rescuer; 4392 int ret; 4393 4394 if (!(wq->flags & WQ_MEM_RECLAIM)) 4395 return 0; 4396 4397 rescuer = alloc_worker(NUMA_NO_NODE); 4398 if (!rescuer) { 4399 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 4400 wq->name); 4401 return -ENOMEM; 4402 } 4403 4404 rescuer->rescue_wq = wq; 4405 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4406 if (IS_ERR(rescuer->task)) { 4407 ret = PTR_ERR(rescuer->task); 4408 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 4409 wq->name, ERR_PTR(ret)); 4410 kfree(rescuer); 4411 return ret; 4412 } 4413 4414 wq->rescuer = rescuer; 4415 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4416 wake_up_process(rescuer->task); 4417 4418 return 0; 4419 } 4420 4421 __printf(1, 4) 4422 struct workqueue_struct *alloc_workqueue(const char *fmt, 4423 unsigned int flags, 4424 int max_active, ...) 4425 { 4426 size_t tbl_size = 0; 4427 va_list args; 4428 struct workqueue_struct *wq; 4429 struct pool_workqueue *pwq; 4430 4431 /* 4432 * Unbound && max_active == 1 used to imply ordered, which is no 4433 * longer the case on NUMA machines due to per-node pools. While 4434 * alloc_ordered_workqueue() is the right way to create an ordered 4435 * workqueue, keep the previous behavior to avoid subtle breakages 4436 * on NUMA. 4437 */ 4438 if ((flags & WQ_UNBOUND) && max_active == 1) 4439 flags |= __WQ_ORDERED; 4440 4441 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4442 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4443 flags |= WQ_UNBOUND; 4444 4445 /* allocate wq and format name */ 4446 if (flags & WQ_UNBOUND) 4447 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4448 4449 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4450 if (!wq) 4451 return NULL; 4452 4453 if (flags & WQ_UNBOUND) { 4454 wq->unbound_attrs = alloc_workqueue_attrs(); 4455 if (!wq->unbound_attrs) 4456 goto err_free_wq; 4457 } 4458 4459 va_start(args, max_active); 4460 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4461 va_end(args); 4462 4463 max_active = max_active ?: WQ_DFL_ACTIVE; 4464 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4465 4466 /* init wq */ 4467 wq->flags = flags; 4468 wq->saved_max_active = max_active; 4469 mutex_init(&wq->mutex); 4470 atomic_set(&wq->nr_pwqs_to_flush, 0); 4471 INIT_LIST_HEAD(&wq->pwqs); 4472 INIT_LIST_HEAD(&wq->flusher_queue); 4473 INIT_LIST_HEAD(&wq->flusher_overflow); 4474 INIT_LIST_HEAD(&wq->maydays); 4475 4476 wq_init_lockdep(wq); 4477 INIT_LIST_HEAD(&wq->list); 4478 4479 if (alloc_and_link_pwqs(wq) < 0) 4480 goto err_unreg_lockdep; 4481 4482 if (wq_online && init_rescuer(wq) < 0) 4483 goto err_destroy; 4484 4485 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4486 goto err_destroy; 4487 4488 /* 4489 * wq_pool_mutex protects global freeze state and workqueues list. 4490 * Grab it, adjust max_active and add the new @wq to workqueues 4491 * list. 4492 */ 4493 mutex_lock(&wq_pool_mutex); 4494 4495 mutex_lock(&wq->mutex); 4496 for_each_pwq(pwq, wq) 4497 pwq_adjust_max_active(pwq); 4498 mutex_unlock(&wq->mutex); 4499 4500 list_add_tail_rcu(&wq->list, &workqueues); 4501 4502 mutex_unlock(&wq_pool_mutex); 4503 4504 return wq; 4505 4506 err_unreg_lockdep: 4507 wq_unregister_lockdep(wq); 4508 wq_free_lockdep(wq); 4509 err_free_wq: 4510 free_workqueue_attrs(wq->unbound_attrs); 4511 kfree(wq); 4512 return NULL; 4513 err_destroy: 4514 destroy_workqueue(wq); 4515 return NULL; 4516 } 4517 EXPORT_SYMBOL_GPL(alloc_workqueue); 4518 4519 static bool pwq_busy(struct pool_workqueue *pwq) 4520 { 4521 int i; 4522 4523 for (i = 0; i < WORK_NR_COLORS; i++) 4524 if (pwq->nr_in_flight[i]) 4525 return true; 4526 4527 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1)) 4528 return true; 4529 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) 4530 return true; 4531 4532 return false; 4533 } 4534 4535 /** 4536 * destroy_workqueue - safely terminate a workqueue 4537 * @wq: target workqueue 4538 * 4539 * Safely destroy a workqueue. All work currently pending will be done first. 4540 */ 4541 void destroy_workqueue(struct workqueue_struct *wq) 4542 { 4543 struct pool_workqueue *pwq; 4544 int node; 4545 4546 /* 4547 * Remove it from sysfs first so that sanity check failure doesn't 4548 * lead to sysfs name conflicts. 4549 */ 4550 workqueue_sysfs_unregister(wq); 4551 4552 /* mark the workqueue destruction is in progress */ 4553 mutex_lock(&wq->mutex); 4554 wq->flags |= __WQ_DESTROYING; 4555 mutex_unlock(&wq->mutex); 4556 4557 /* drain it before proceeding with destruction */ 4558 drain_workqueue(wq); 4559 4560 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 4561 if (wq->rescuer) { 4562 struct worker *rescuer = wq->rescuer; 4563 4564 /* this prevents new queueing */ 4565 raw_spin_lock_irq(&wq_mayday_lock); 4566 wq->rescuer = NULL; 4567 raw_spin_unlock_irq(&wq_mayday_lock); 4568 4569 /* rescuer will empty maydays list before exiting */ 4570 kthread_stop(rescuer->task); 4571 kfree(rescuer); 4572 } 4573 4574 /* 4575 * Sanity checks - grab all the locks so that we wait for all 4576 * in-flight operations which may do put_pwq(). 4577 */ 4578 mutex_lock(&wq_pool_mutex); 4579 mutex_lock(&wq->mutex); 4580 for_each_pwq(pwq, wq) { 4581 raw_spin_lock_irq(&pwq->pool->lock); 4582 if (WARN_ON(pwq_busy(pwq))) { 4583 pr_warn("%s: %s has the following busy pwq\n", 4584 __func__, wq->name); 4585 show_pwq(pwq); 4586 raw_spin_unlock_irq(&pwq->pool->lock); 4587 mutex_unlock(&wq->mutex); 4588 mutex_unlock(&wq_pool_mutex); 4589 show_one_workqueue(wq); 4590 return; 4591 } 4592 raw_spin_unlock_irq(&pwq->pool->lock); 4593 } 4594 mutex_unlock(&wq->mutex); 4595 4596 /* 4597 * wq list is used to freeze wq, remove from list after 4598 * flushing is complete in case freeze races us. 4599 */ 4600 list_del_rcu(&wq->list); 4601 mutex_unlock(&wq_pool_mutex); 4602 4603 if (!(wq->flags & WQ_UNBOUND)) { 4604 wq_unregister_lockdep(wq); 4605 /* 4606 * The base ref is never dropped on per-cpu pwqs. Directly 4607 * schedule RCU free. 4608 */ 4609 call_rcu(&wq->rcu, rcu_free_wq); 4610 } else { 4611 /* 4612 * We're the sole accessor of @wq at this point. Directly 4613 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4614 * @wq will be freed when the last pwq is released. 4615 */ 4616 for_each_node(node) { 4617 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4618 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4619 put_pwq_unlocked(pwq); 4620 } 4621 4622 /* 4623 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4624 * put. Don't access it afterwards. 4625 */ 4626 pwq = wq->dfl_pwq; 4627 wq->dfl_pwq = NULL; 4628 put_pwq_unlocked(pwq); 4629 } 4630 } 4631 EXPORT_SYMBOL_GPL(destroy_workqueue); 4632 4633 /** 4634 * workqueue_set_max_active - adjust max_active of a workqueue 4635 * @wq: target workqueue 4636 * @max_active: new max_active value. 4637 * 4638 * Set max_active of @wq to @max_active. 4639 * 4640 * CONTEXT: 4641 * Don't call from IRQ context. 4642 */ 4643 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4644 { 4645 struct pool_workqueue *pwq; 4646 4647 /* disallow meddling with max_active for ordered workqueues */ 4648 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4649 return; 4650 4651 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4652 4653 mutex_lock(&wq->mutex); 4654 4655 wq->flags &= ~__WQ_ORDERED; 4656 wq->saved_max_active = max_active; 4657 4658 for_each_pwq(pwq, wq) 4659 pwq_adjust_max_active(pwq); 4660 4661 mutex_unlock(&wq->mutex); 4662 } 4663 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4664 4665 /** 4666 * current_work - retrieve %current task's work struct 4667 * 4668 * Determine if %current task is a workqueue worker and what it's working on. 4669 * Useful to find out the context that the %current task is running in. 4670 * 4671 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4672 */ 4673 struct work_struct *current_work(void) 4674 { 4675 struct worker *worker = current_wq_worker(); 4676 4677 return worker ? worker->current_work : NULL; 4678 } 4679 EXPORT_SYMBOL(current_work); 4680 4681 /** 4682 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4683 * 4684 * Determine whether %current is a workqueue rescuer. Can be used from 4685 * work functions to determine whether it's being run off the rescuer task. 4686 * 4687 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4688 */ 4689 bool current_is_workqueue_rescuer(void) 4690 { 4691 struct worker *worker = current_wq_worker(); 4692 4693 return worker && worker->rescue_wq; 4694 } 4695 4696 /** 4697 * workqueue_congested - test whether a workqueue is congested 4698 * @cpu: CPU in question 4699 * @wq: target workqueue 4700 * 4701 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4702 * no synchronization around this function and the test result is 4703 * unreliable and only useful as advisory hints or for debugging. 4704 * 4705 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4706 * Note that both per-cpu and unbound workqueues may be associated with 4707 * multiple pool_workqueues which have separate congested states. A 4708 * workqueue being congested on one CPU doesn't mean the workqueue is also 4709 * contested on other CPUs / NUMA nodes. 4710 * 4711 * Return: 4712 * %true if congested, %false otherwise. 4713 */ 4714 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4715 { 4716 struct pool_workqueue *pwq; 4717 bool ret; 4718 4719 rcu_read_lock(); 4720 preempt_disable(); 4721 4722 if (cpu == WORK_CPU_UNBOUND) 4723 cpu = smp_processor_id(); 4724 4725 if (!(wq->flags & WQ_UNBOUND)) 4726 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4727 else 4728 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4729 4730 ret = !list_empty(&pwq->inactive_works); 4731 preempt_enable(); 4732 rcu_read_unlock(); 4733 4734 return ret; 4735 } 4736 EXPORT_SYMBOL_GPL(workqueue_congested); 4737 4738 /** 4739 * work_busy - test whether a work is currently pending or running 4740 * @work: the work to be tested 4741 * 4742 * Test whether @work is currently pending or running. There is no 4743 * synchronization around this function and the test result is 4744 * unreliable and only useful as advisory hints or for debugging. 4745 * 4746 * Return: 4747 * OR'd bitmask of WORK_BUSY_* bits. 4748 */ 4749 unsigned int work_busy(struct work_struct *work) 4750 { 4751 struct worker_pool *pool; 4752 unsigned long flags; 4753 unsigned int ret = 0; 4754 4755 if (work_pending(work)) 4756 ret |= WORK_BUSY_PENDING; 4757 4758 rcu_read_lock(); 4759 pool = get_work_pool(work); 4760 if (pool) { 4761 raw_spin_lock_irqsave(&pool->lock, flags); 4762 if (find_worker_executing_work(pool, work)) 4763 ret |= WORK_BUSY_RUNNING; 4764 raw_spin_unlock_irqrestore(&pool->lock, flags); 4765 } 4766 rcu_read_unlock(); 4767 4768 return ret; 4769 } 4770 EXPORT_SYMBOL_GPL(work_busy); 4771 4772 /** 4773 * set_worker_desc - set description for the current work item 4774 * @fmt: printf-style format string 4775 * @...: arguments for the format string 4776 * 4777 * This function can be called by a running work function to describe what 4778 * the work item is about. If the worker task gets dumped, this 4779 * information will be printed out together to help debugging. The 4780 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4781 */ 4782 void set_worker_desc(const char *fmt, ...) 4783 { 4784 struct worker *worker = current_wq_worker(); 4785 va_list args; 4786 4787 if (worker) { 4788 va_start(args, fmt); 4789 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4790 va_end(args); 4791 } 4792 } 4793 EXPORT_SYMBOL_GPL(set_worker_desc); 4794 4795 /** 4796 * print_worker_info - print out worker information and description 4797 * @log_lvl: the log level to use when printing 4798 * @task: target task 4799 * 4800 * If @task is a worker and currently executing a work item, print out the 4801 * name of the workqueue being serviced and worker description set with 4802 * set_worker_desc() by the currently executing work item. 4803 * 4804 * This function can be safely called on any task as long as the 4805 * task_struct itself is accessible. While safe, this function isn't 4806 * synchronized and may print out mixups or garbages of limited length. 4807 */ 4808 void print_worker_info(const char *log_lvl, struct task_struct *task) 4809 { 4810 work_func_t *fn = NULL; 4811 char name[WQ_NAME_LEN] = { }; 4812 char desc[WORKER_DESC_LEN] = { }; 4813 struct pool_workqueue *pwq = NULL; 4814 struct workqueue_struct *wq = NULL; 4815 struct worker *worker; 4816 4817 if (!(task->flags & PF_WQ_WORKER)) 4818 return; 4819 4820 /* 4821 * This function is called without any synchronization and @task 4822 * could be in any state. Be careful with dereferences. 4823 */ 4824 worker = kthread_probe_data(task); 4825 4826 /* 4827 * Carefully copy the associated workqueue's workfn, name and desc. 4828 * Keep the original last '\0' in case the original is garbage. 4829 */ 4830 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 4831 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 4832 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 4833 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 4834 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 4835 4836 if (fn || name[0] || desc[0]) { 4837 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 4838 if (strcmp(name, desc)) 4839 pr_cont(" (%s)", desc); 4840 pr_cont("\n"); 4841 } 4842 } 4843 4844 static void pr_cont_pool_info(struct worker_pool *pool) 4845 { 4846 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4847 if (pool->node != NUMA_NO_NODE) 4848 pr_cont(" node=%d", pool->node); 4849 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4850 } 4851 4852 struct pr_cont_work_struct { 4853 bool comma; 4854 work_func_t func; 4855 long ctr; 4856 }; 4857 4858 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 4859 { 4860 if (!pcwsp->ctr) 4861 goto out_record; 4862 if (func == pcwsp->func) { 4863 pcwsp->ctr++; 4864 return; 4865 } 4866 if (pcwsp->ctr == 1) 4867 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 4868 else 4869 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 4870 pcwsp->ctr = 0; 4871 out_record: 4872 if ((long)func == -1L) 4873 return; 4874 pcwsp->comma = comma; 4875 pcwsp->func = func; 4876 pcwsp->ctr = 1; 4877 } 4878 4879 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 4880 { 4881 if (work->func == wq_barrier_func) { 4882 struct wq_barrier *barr; 4883 4884 barr = container_of(work, struct wq_barrier, work); 4885 4886 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 4887 pr_cont("%s BAR(%d)", comma ? "," : "", 4888 task_pid_nr(barr->task)); 4889 } else { 4890 if (!comma) 4891 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 4892 pr_cont_work_flush(comma, work->func, pcwsp); 4893 } 4894 } 4895 4896 static void show_pwq(struct pool_workqueue *pwq) 4897 { 4898 struct pr_cont_work_struct pcws = { .ctr = 0, }; 4899 struct worker_pool *pool = pwq->pool; 4900 struct work_struct *work; 4901 struct worker *worker; 4902 bool has_in_flight = false, has_pending = false; 4903 int bkt; 4904 4905 pr_info(" pwq %d:", pool->id); 4906 pr_cont_pool_info(pool); 4907 4908 pr_cont(" active=%d/%d refcnt=%d%s\n", 4909 pwq->nr_active, pwq->max_active, pwq->refcnt, 4910 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4911 4912 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4913 if (worker->current_pwq == pwq) { 4914 has_in_flight = true; 4915 break; 4916 } 4917 } 4918 if (has_in_flight) { 4919 bool comma = false; 4920 4921 pr_info(" in-flight:"); 4922 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4923 if (worker->current_pwq != pwq) 4924 continue; 4925 4926 pr_cont("%s %d%s:%ps", comma ? "," : "", 4927 task_pid_nr(worker->task), 4928 worker->rescue_wq ? "(RESCUER)" : "", 4929 worker->current_func); 4930 list_for_each_entry(work, &worker->scheduled, entry) 4931 pr_cont_work(false, work, &pcws); 4932 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 4933 comma = true; 4934 } 4935 pr_cont("\n"); 4936 } 4937 4938 list_for_each_entry(work, &pool->worklist, entry) { 4939 if (get_work_pwq(work) == pwq) { 4940 has_pending = true; 4941 break; 4942 } 4943 } 4944 if (has_pending) { 4945 bool comma = false; 4946 4947 pr_info(" pending:"); 4948 list_for_each_entry(work, &pool->worklist, entry) { 4949 if (get_work_pwq(work) != pwq) 4950 continue; 4951 4952 pr_cont_work(comma, work, &pcws); 4953 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4954 } 4955 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 4956 pr_cont("\n"); 4957 } 4958 4959 if (!list_empty(&pwq->inactive_works)) { 4960 bool comma = false; 4961 4962 pr_info(" inactive:"); 4963 list_for_each_entry(work, &pwq->inactive_works, entry) { 4964 pr_cont_work(comma, work, &pcws); 4965 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4966 } 4967 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 4968 pr_cont("\n"); 4969 } 4970 } 4971 4972 /** 4973 * show_one_workqueue - dump state of specified workqueue 4974 * @wq: workqueue whose state will be printed 4975 */ 4976 void show_one_workqueue(struct workqueue_struct *wq) 4977 { 4978 struct pool_workqueue *pwq; 4979 bool idle = true; 4980 unsigned long flags; 4981 4982 for_each_pwq(pwq, wq) { 4983 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 4984 idle = false; 4985 break; 4986 } 4987 } 4988 if (idle) /* Nothing to print for idle workqueue */ 4989 return; 4990 4991 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4992 4993 for_each_pwq(pwq, wq) { 4994 raw_spin_lock_irqsave(&pwq->pool->lock, flags); 4995 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) { 4996 /* 4997 * Defer printing to avoid deadlocks in console 4998 * drivers that queue work while holding locks 4999 * also taken in their write paths. 5000 */ 5001 printk_deferred_enter(); 5002 show_pwq(pwq); 5003 printk_deferred_exit(); 5004 } 5005 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags); 5006 /* 5007 * We could be printing a lot from atomic context, e.g. 5008 * sysrq-t -> show_all_workqueues(). Avoid triggering 5009 * hard lockup. 5010 */ 5011 touch_nmi_watchdog(); 5012 } 5013 5014 } 5015 5016 /** 5017 * show_one_worker_pool - dump state of specified worker pool 5018 * @pool: worker pool whose state will be printed 5019 */ 5020 static void show_one_worker_pool(struct worker_pool *pool) 5021 { 5022 struct worker *worker; 5023 bool first = true; 5024 unsigned long flags; 5025 unsigned long hung = 0; 5026 5027 raw_spin_lock_irqsave(&pool->lock, flags); 5028 if (pool->nr_workers == pool->nr_idle) 5029 goto next_pool; 5030 5031 /* How long the first pending work is waiting for a worker. */ 5032 if (!list_empty(&pool->worklist)) 5033 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 5034 5035 /* 5036 * Defer printing to avoid deadlocks in console drivers that 5037 * queue work while holding locks also taken in their write 5038 * paths. 5039 */ 5040 printk_deferred_enter(); 5041 pr_info("pool %d:", pool->id); 5042 pr_cont_pool_info(pool); 5043 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 5044 if (pool->manager) 5045 pr_cont(" manager: %d", 5046 task_pid_nr(pool->manager->task)); 5047 list_for_each_entry(worker, &pool->idle_list, entry) { 5048 pr_cont(" %s%d", first ? "idle: " : "", 5049 task_pid_nr(worker->task)); 5050 first = false; 5051 } 5052 pr_cont("\n"); 5053 printk_deferred_exit(); 5054 next_pool: 5055 raw_spin_unlock_irqrestore(&pool->lock, flags); 5056 /* 5057 * We could be printing a lot from atomic context, e.g. 5058 * sysrq-t -> show_all_workqueues(). Avoid triggering 5059 * hard lockup. 5060 */ 5061 touch_nmi_watchdog(); 5062 5063 } 5064 5065 /** 5066 * show_all_workqueues - dump workqueue state 5067 * 5068 * Called from a sysrq handler and prints out all busy workqueues and pools. 5069 */ 5070 void show_all_workqueues(void) 5071 { 5072 struct workqueue_struct *wq; 5073 struct worker_pool *pool; 5074 int pi; 5075 5076 rcu_read_lock(); 5077 5078 pr_info("Showing busy workqueues and worker pools:\n"); 5079 5080 list_for_each_entry_rcu(wq, &workqueues, list) 5081 show_one_workqueue(wq); 5082 5083 for_each_pool(pool, pi) 5084 show_one_worker_pool(pool); 5085 5086 rcu_read_unlock(); 5087 } 5088 5089 /** 5090 * show_freezable_workqueues - dump freezable workqueue state 5091 * 5092 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 5093 * still busy. 5094 */ 5095 void show_freezable_workqueues(void) 5096 { 5097 struct workqueue_struct *wq; 5098 5099 rcu_read_lock(); 5100 5101 pr_info("Showing freezable workqueues that are still busy:\n"); 5102 5103 list_for_each_entry_rcu(wq, &workqueues, list) { 5104 if (!(wq->flags & WQ_FREEZABLE)) 5105 continue; 5106 show_one_workqueue(wq); 5107 } 5108 5109 rcu_read_unlock(); 5110 } 5111 5112 /* used to show worker information through /proc/PID/{comm,stat,status} */ 5113 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 5114 { 5115 int off; 5116 5117 /* always show the actual comm */ 5118 off = strscpy(buf, task->comm, size); 5119 if (off < 0) 5120 return; 5121 5122 /* stabilize PF_WQ_WORKER and worker pool association */ 5123 mutex_lock(&wq_pool_attach_mutex); 5124 5125 if (task->flags & PF_WQ_WORKER) { 5126 struct worker *worker = kthread_data(task); 5127 struct worker_pool *pool = worker->pool; 5128 5129 if (pool) { 5130 raw_spin_lock_irq(&pool->lock); 5131 /* 5132 * ->desc tracks information (wq name or 5133 * set_worker_desc()) for the latest execution. If 5134 * current, prepend '+', otherwise '-'. 5135 */ 5136 if (worker->desc[0] != '\0') { 5137 if (worker->current_work) 5138 scnprintf(buf + off, size - off, "+%s", 5139 worker->desc); 5140 else 5141 scnprintf(buf + off, size - off, "-%s", 5142 worker->desc); 5143 } 5144 raw_spin_unlock_irq(&pool->lock); 5145 } 5146 } 5147 5148 mutex_unlock(&wq_pool_attach_mutex); 5149 } 5150 5151 #ifdef CONFIG_SMP 5152 5153 /* 5154 * CPU hotplug. 5155 * 5156 * There are two challenges in supporting CPU hotplug. Firstly, there 5157 * are a lot of assumptions on strong associations among work, pwq and 5158 * pool which make migrating pending and scheduled works very 5159 * difficult to implement without impacting hot paths. Secondly, 5160 * worker pools serve mix of short, long and very long running works making 5161 * blocked draining impractical. 5162 * 5163 * This is solved by allowing the pools to be disassociated from the CPU 5164 * running as an unbound one and allowing it to be reattached later if the 5165 * cpu comes back online. 5166 */ 5167 5168 static void unbind_workers(int cpu) 5169 { 5170 struct worker_pool *pool; 5171 struct worker *worker; 5172 5173 for_each_cpu_worker_pool(pool, cpu) { 5174 mutex_lock(&wq_pool_attach_mutex); 5175 raw_spin_lock_irq(&pool->lock); 5176 5177 /* 5178 * We've blocked all attach/detach operations. Make all workers 5179 * unbound and set DISASSOCIATED. Before this, all workers 5180 * must be on the cpu. After this, they may become diasporas. 5181 * And the preemption disabled section in their sched callbacks 5182 * are guaranteed to see WORKER_UNBOUND since the code here 5183 * is on the same cpu. 5184 */ 5185 for_each_pool_worker(worker, pool) 5186 worker->flags |= WORKER_UNBOUND; 5187 5188 pool->flags |= POOL_DISASSOCIATED; 5189 5190 /* 5191 * The handling of nr_running in sched callbacks are disabled 5192 * now. Zap nr_running. After this, nr_running stays zero and 5193 * need_more_worker() and keep_working() are always true as 5194 * long as the worklist is not empty. This pool now behaves as 5195 * an unbound (in terms of concurrency management) pool which 5196 * are served by workers tied to the pool. 5197 */ 5198 pool->nr_running = 0; 5199 5200 /* 5201 * With concurrency management just turned off, a busy 5202 * worker blocking could lead to lengthy stalls. Kick off 5203 * unbound chain execution of currently pending work items. 5204 */ 5205 wake_up_worker(pool); 5206 5207 raw_spin_unlock_irq(&pool->lock); 5208 5209 for_each_pool_worker(worker, pool) 5210 unbind_worker(worker); 5211 5212 mutex_unlock(&wq_pool_attach_mutex); 5213 } 5214 } 5215 5216 /** 5217 * rebind_workers - rebind all workers of a pool to the associated CPU 5218 * @pool: pool of interest 5219 * 5220 * @pool->cpu is coming online. Rebind all workers to the CPU. 5221 */ 5222 static void rebind_workers(struct worker_pool *pool) 5223 { 5224 struct worker *worker; 5225 5226 lockdep_assert_held(&wq_pool_attach_mutex); 5227 5228 /* 5229 * Restore CPU affinity of all workers. As all idle workers should 5230 * be on the run-queue of the associated CPU before any local 5231 * wake-ups for concurrency management happen, restore CPU affinity 5232 * of all workers first and then clear UNBOUND. As we're called 5233 * from CPU_ONLINE, the following shouldn't fail. 5234 */ 5235 for_each_pool_worker(worker, pool) { 5236 kthread_set_per_cpu(worker->task, pool->cpu); 5237 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 5238 pool->attrs->cpumask) < 0); 5239 } 5240 5241 raw_spin_lock_irq(&pool->lock); 5242 5243 pool->flags &= ~POOL_DISASSOCIATED; 5244 5245 for_each_pool_worker(worker, pool) { 5246 unsigned int worker_flags = worker->flags; 5247 5248 /* 5249 * We want to clear UNBOUND but can't directly call 5250 * worker_clr_flags() or adjust nr_running. Atomically 5251 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 5252 * @worker will clear REBOUND using worker_clr_flags() when 5253 * it initiates the next execution cycle thus restoring 5254 * concurrency management. Note that when or whether 5255 * @worker clears REBOUND doesn't affect correctness. 5256 * 5257 * WRITE_ONCE() is necessary because @worker->flags may be 5258 * tested without holding any lock in 5259 * wq_worker_running(). Without it, NOT_RUNNING test may 5260 * fail incorrectly leading to premature concurrency 5261 * management operations. 5262 */ 5263 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 5264 worker_flags |= WORKER_REBOUND; 5265 worker_flags &= ~WORKER_UNBOUND; 5266 WRITE_ONCE(worker->flags, worker_flags); 5267 } 5268 5269 raw_spin_unlock_irq(&pool->lock); 5270 } 5271 5272 /** 5273 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 5274 * @pool: unbound pool of interest 5275 * @cpu: the CPU which is coming up 5276 * 5277 * An unbound pool may end up with a cpumask which doesn't have any online 5278 * CPUs. When a worker of such pool get scheduled, the scheduler resets 5279 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 5280 * online CPU before, cpus_allowed of all its workers should be restored. 5281 */ 5282 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 5283 { 5284 static cpumask_t cpumask; 5285 struct worker *worker; 5286 5287 lockdep_assert_held(&wq_pool_attach_mutex); 5288 5289 /* is @cpu allowed for @pool? */ 5290 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 5291 return; 5292 5293 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 5294 5295 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 5296 for_each_pool_worker(worker, pool) 5297 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 5298 } 5299 5300 int workqueue_prepare_cpu(unsigned int cpu) 5301 { 5302 struct worker_pool *pool; 5303 5304 for_each_cpu_worker_pool(pool, cpu) { 5305 if (pool->nr_workers) 5306 continue; 5307 if (!create_worker(pool)) 5308 return -ENOMEM; 5309 } 5310 return 0; 5311 } 5312 5313 int workqueue_online_cpu(unsigned int cpu) 5314 { 5315 struct worker_pool *pool; 5316 struct workqueue_struct *wq; 5317 int pi; 5318 5319 mutex_lock(&wq_pool_mutex); 5320 5321 for_each_pool(pool, pi) { 5322 mutex_lock(&wq_pool_attach_mutex); 5323 5324 if (pool->cpu == cpu) 5325 rebind_workers(pool); 5326 else if (pool->cpu < 0) 5327 restore_unbound_workers_cpumask(pool, cpu); 5328 5329 mutex_unlock(&wq_pool_attach_mutex); 5330 } 5331 5332 /* update NUMA affinity of unbound workqueues */ 5333 list_for_each_entry(wq, &workqueues, list) 5334 wq_update_unbound_numa(wq, cpu, true); 5335 5336 mutex_unlock(&wq_pool_mutex); 5337 return 0; 5338 } 5339 5340 int workqueue_offline_cpu(unsigned int cpu) 5341 { 5342 struct workqueue_struct *wq; 5343 5344 /* unbinding per-cpu workers should happen on the local CPU */ 5345 if (WARN_ON(cpu != smp_processor_id())) 5346 return -1; 5347 5348 unbind_workers(cpu); 5349 5350 /* update NUMA affinity of unbound workqueues */ 5351 mutex_lock(&wq_pool_mutex); 5352 list_for_each_entry(wq, &workqueues, list) 5353 wq_update_unbound_numa(wq, cpu, false); 5354 mutex_unlock(&wq_pool_mutex); 5355 5356 return 0; 5357 } 5358 5359 struct work_for_cpu { 5360 struct work_struct work; 5361 long (*fn)(void *); 5362 void *arg; 5363 long ret; 5364 }; 5365 5366 static void work_for_cpu_fn(struct work_struct *work) 5367 { 5368 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5369 5370 wfc->ret = wfc->fn(wfc->arg); 5371 } 5372 5373 /** 5374 * work_on_cpu - run a function in thread context on a particular cpu 5375 * @cpu: the cpu to run on 5376 * @fn: the function to run 5377 * @arg: the function arg 5378 * 5379 * It is up to the caller to ensure that the cpu doesn't go offline. 5380 * The caller must not hold any locks which would prevent @fn from completing. 5381 * 5382 * Return: The value @fn returns. 5383 */ 5384 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 5385 { 5386 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5387 5388 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 5389 schedule_work_on(cpu, &wfc.work); 5390 flush_work(&wfc.work); 5391 destroy_work_on_stack(&wfc.work); 5392 return wfc.ret; 5393 } 5394 EXPORT_SYMBOL_GPL(work_on_cpu); 5395 5396 /** 5397 * work_on_cpu_safe - run a function in thread context on a particular cpu 5398 * @cpu: the cpu to run on 5399 * @fn: the function to run 5400 * @arg: the function argument 5401 * 5402 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5403 * any locks which would prevent @fn from completing. 5404 * 5405 * Return: The value @fn returns. 5406 */ 5407 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 5408 { 5409 long ret = -ENODEV; 5410 5411 cpus_read_lock(); 5412 if (cpu_online(cpu)) 5413 ret = work_on_cpu(cpu, fn, arg); 5414 cpus_read_unlock(); 5415 return ret; 5416 } 5417 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 5418 #endif /* CONFIG_SMP */ 5419 5420 #ifdef CONFIG_FREEZER 5421 5422 /** 5423 * freeze_workqueues_begin - begin freezing workqueues 5424 * 5425 * Start freezing workqueues. After this function returns, all freezable 5426 * workqueues will queue new works to their inactive_works list instead of 5427 * pool->worklist. 5428 * 5429 * CONTEXT: 5430 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5431 */ 5432 void freeze_workqueues_begin(void) 5433 { 5434 struct workqueue_struct *wq; 5435 struct pool_workqueue *pwq; 5436 5437 mutex_lock(&wq_pool_mutex); 5438 5439 WARN_ON_ONCE(workqueue_freezing); 5440 workqueue_freezing = true; 5441 5442 list_for_each_entry(wq, &workqueues, list) { 5443 mutex_lock(&wq->mutex); 5444 for_each_pwq(pwq, wq) 5445 pwq_adjust_max_active(pwq); 5446 mutex_unlock(&wq->mutex); 5447 } 5448 5449 mutex_unlock(&wq_pool_mutex); 5450 } 5451 5452 /** 5453 * freeze_workqueues_busy - are freezable workqueues still busy? 5454 * 5455 * Check whether freezing is complete. This function must be called 5456 * between freeze_workqueues_begin() and thaw_workqueues(). 5457 * 5458 * CONTEXT: 5459 * Grabs and releases wq_pool_mutex. 5460 * 5461 * Return: 5462 * %true if some freezable workqueues are still busy. %false if freezing 5463 * is complete. 5464 */ 5465 bool freeze_workqueues_busy(void) 5466 { 5467 bool busy = false; 5468 struct workqueue_struct *wq; 5469 struct pool_workqueue *pwq; 5470 5471 mutex_lock(&wq_pool_mutex); 5472 5473 WARN_ON_ONCE(!workqueue_freezing); 5474 5475 list_for_each_entry(wq, &workqueues, list) { 5476 if (!(wq->flags & WQ_FREEZABLE)) 5477 continue; 5478 /* 5479 * nr_active is monotonically decreasing. It's safe 5480 * to peek without lock. 5481 */ 5482 rcu_read_lock(); 5483 for_each_pwq(pwq, wq) { 5484 WARN_ON_ONCE(pwq->nr_active < 0); 5485 if (pwq->nr_active) { 5486 busy = true; 5487 rcu_read_unlock(); 5488 goto out_unlock; 5489 } 5490 } 5491 rcu_read_unlock(); 5492 } 5493 out_unlock: 5494 mutex_unlock(&wq_pool_mutex); 5495 return busy; 5496 } 5497 5498 /** 5499 * thaw_workqueues - thaw workqueues 5500 * 5501 * Thaw workqueues. Normal queueing is restored and all collected 5502 * frozen works are transferred to their respective pool worklists. 5503 * 5504 * CONTEXT: 5505 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5506 */ 5507 void thaw_workqueues(void) 5508 { 5509 struct workqueue_struct *wq; 5510 struct pool_workqueue *pwq; 5511 5512 mutex_lock(&wq_pool_mutex); 5513 5514 if (!workqueue_freezing) 5515 goto out_unlock; 5516 5517 workqueue_freezing = false; 5518 5519 /* restore max_active and repopulate worklist */ 5520 list_for_each_entry(wq, &workqueues, list) { 5521 mutex_lock(&wq->mutex); 5522 for_each_pwq(pwq, wq) 5523 pwq_adjust_max_active(pwq); 5524 mutex_unlock(&wq->mutex); 5525 } 5526 5527 out_unlock: 5528 mutex_unlock(&wq_pool_mutex); 5529 } 5530 #endif /* CONFIG_FREEZER */ 5531 5532 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 5533 { 5534 LIST_HEAD(ctxs); 5535 int ret = 0; 5536 struct workqueue_struct *wq; 5537 struct apply_wqattrs_ctx *ctx, *n; 5538 5539 lockdep_assert_held(&wq_pool_mutex); 5540 5541 list_for_each_entry(wq, &workqueues, list) { 5542 if (!(wq->flags & WQ_UNBOUND)) 5543 continue; 5544 /* creating multiple pwqs breaks ordering guarantee */ 5545 if (wq->flags & __WQ_ORDERED) 5546 continue; 5547 5548 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 5549 if (!ctx) { 5550 ret = -ENOMEM; 5551 break; 5552 } 5553 5554 list_add_tail(&ctx->list, &ctxs); 5555 } 5556 5557 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5558 if (!ret) 5559 apply_wqattrs_commit(ctx); 5560 apply_wqattrs_cleanup(ctx); 5561 } 5562 5563 if (!ret) { 5564 mutex_lock(&wq_pool_attach_mutex); 5565 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 5566 mutex_unlock(&wq_pool_attach_mutex); 5567 } 5568 return ret; 5569 } 5570 5571 /** 5572 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5573 * @cpumask: the cpumask to set 5574 * 5575 * The low-level workqueues cpumask is a global cpumask that limits 5576 * the affinity of all unbound workqueues. This function check the @cpumask 5577 * and apply it to all unbound workqueues and updates all pwqs of them. 5578 * 5579 * Return: 0 - Success 5580 * -EINVAL - Invalid @cpumask 5581 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5582 */ 5583 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5584 { 5585 int ret = -EINVAL; 5586 5587 /* 5588 * Not excluding isolated cpus on purpose. 5589 * If the user wishes to include them, we allow that. 5590 */ 5591 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5592 if (!cpumask_empty(cpumask)) { 5593 apply_wqattrs_lock(); 5594 if (cpumask_equal(cpumask, wq_unbound_cpumask)) { 5595 ret = 0; 5596 goto out_unlock; 5597 } 5598 5599 ret = workqueue_apply_unbound_cpumask(cpumask); 5600 5601 out_unlock: 5602 apply_wqattrs_unlock(); 5603 } 5604 5605 return ret; 5606 } 5607 5608 #ifdef CONFIG_SYSFS 5609 /* 5610 * Workqueues with WQ_SYSFS flag set is visible to userland via 5611 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5612 * following attributes. 5613 * 5614 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5615 * max_active RW int : maximum number of in-flight work items 5616 * 5617 * Unbound workqueues have the following extra attributes. 5618 * 5619 * pool_ids RO int : the associated pool IDs for each node 5620 * nice RW int : nice value of the workers 5621 * cpumask RW mask : bitmask of allowed CPUs for the workers 5622 * numa RW bool : whether enable NUMA affinity 5623 */ 5624 struct wq_device { 5625 struct workqueue_struct *wq; 5626 struct device dev; 5627 }; 5628 5629 static struct workqueue_struct *dev_to_wq(struct device *dev) 5630 { 5631 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5632 5633 return wq_dev->wq; 5634 } 5635 5636 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5637 char *buf) 5638 { 5639 struct workqueue_struct *wq = dev_to_wq(dev); 5640 5641 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5642 } 5643 static DEVICE_ATTR_RO(per_cpu); 5644 5645 static ssize_t max_active_show(struct device *dev, 5646 struct device_attribute *attr, char *buf) 5647 { 5648 struct workqueue_struct *wq = dev_to_wq(dev); 5649 5650 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5651 } 5652 5653 static ssize_t max_active_store(struct device *dev, 5654 struct device_attribute *attr, const char *buf, 5655 size_t count) 5656 { 5657 struct workqueue_struct *wq = dev_to_wq(dev); 5658 int val; 5659 5660 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5661 return -EINVAL; 5662 5663 workqueue_set_max_active(wq, val); 5664 return count; 5665 } 5666 static DEVICE_ATTR_RW(max_active); 5667 5668 static struct attribute *wq_sysfs_attrs[] = { 5669 &dev_attr_per_cpu.attr, 5670 &dev_attr_max_active.attr, 5671 NULL, 5672 }; 5673 ATTRIBUTE_GROUPS(wq_sysfs); 5674 5675 static ssize_t wq_pool_ids_show(struct device *dev, 5676 struct device_attribute *attr, char *buf) 5677 { 5678 struct workqueue_struct *wq = dev_to_wq(dev); 5679 const char *delim = ""; 5680 int node, written = 0; 5681 5682 cpus_read_lock(); 5683 rcu_read_lock(); 5684 for_each_node(node) { 5685 written += scnprintf(buf + written, PAGE_SIZE - written, 5686 "%s%d:%d", delim, node, 5687 unbound_pwq_by_node(wq, node)->pool->id); 5688 delim = " "; 5689 } 5690 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5691 rcu_read_unlock(); 5692 cpus_read_unlock(); 5693 5694 return written; 5695 } 5696 5697 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5698 char *buf) 5699 { 5700 struct workqueue_struct *wq = dev_to_wq(dev); 5701 int written; 5702 5703 mutex_lock(&wq->mutex); 5704 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5705 mutex_unlock(&wq->mutex); 5706 5707 return written; 5708 } 5709 5710 /* prepare workqueue_attrs for sysfs store operations */ 5711 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5712 { 5713 struct workqueue_attrs *attrs; 5714 5715 lockdep_assert_held(&wq_pool_mutex); 5716 5717 attrs = alloc_workqueue_attrs(); 5718 if (!attrs) 5719 return NULL; 5720 5721 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5722 return attrs; 5723 } 5724 5725 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5726 const char *buf, size_t count) 5727 { 5728 struct workqueue_struct *wq = dev_to_wq(dev); 5729 struct workqueue_attrs *attrs; 5730 int ret = -ENOMEM; 5731 5732 apply_wqattrs_lock(); 5733 5734 attrs = wq_sysfs_prep_attrs(wq); 5735 if (!attrs) 5736 goto out_unlock; 5737 5738 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5739 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5740 ret = apply_workqueue_attrs_locked(wq, attrs); 5741 else 5742 ret = -EINVAL; 5743 5744 out_unlock: 5745 apply_wqattrs_unlock(); 5746 free_workqueue_attrs(attrs); 5747 return ret ?: count; 5748 } 5749 5750 static ssize_t wq_cpumask_show(struct device *dev, 5751 struct device_attribute *attr, char *buf) 5752 { 5753 struct workqueue_struct *wq = dev_to_wq(dev); 5754 int written; 5755 5756 mutex_lock(&wq->mutex); 5757 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5758 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5759 mutex_unlock(&wq->mutex); 5760 return written; 5761 } 5762 5763 static ssize_t wq_cpumask_store(struct device *dev, 5764 struct device_attribute *attr, 5765 const char *buf, size_t count) 5766 { 5767 struct workqueue_struct *wq = dev_to_wq(dev); 5768 struct workqueue_attrs *attrs; 5769 int ret = -ENOMEM; 5770 5771 apply_wqattrs_lock(); 5772 5773 attrs = wq_sysfs_prep_attrs(wq); 5774 if (!attrs) 5775 goto out_unlock; 5776 5777 ret = cpumask_parse(buf, attrs->cpumask); 5778 if (!ret) 5779 ret = apply_workqueue_attrs_locked(wq, attrs); 5780 5781 out_unlock: 5782 apply_wqattrs_unlock(); 5783 free_workqueue_attrs(attrs); 5784 return ret ?: count; 5785 } 5786 5787 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5788 char *buf) 5789 { 5790 struct workqueue_struct *wq = dev_to_wq(dev); 5791 int written; 5792 5793 mutex_lock(&wq->mutex); 5794 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5795 !wq->unbound_attrs->no_numa); 5796 mutex_unlock(&wq->mutex); 5797 5798 return written; 5799 } 5800 5801 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5802 const char *buf, size_t count) 5803 { 5804 struct workqueue_struct *wq = dev_to_wq(dev); 5805 struct workqueue_attrs *attrs; 5806 int v, ret = -ENOMEM; 5807 5808 apply_wqattrs_lock(); 5809 5810 attrs = wq_sysfs_prep_attrs(wq); 5811 if (!attrs) 5812 goto out_unlock; 5813 5814 ret = -EINVAL; 5815 if (sscanf(buf, "%d", &v) == 1) { 5816 attrs->no_numa = !v; 5817 ret = apply_workqueue_attrs_locked(wq, attrs); 5818 } 5819 5820 out_unlock: 5821 apply_wqattrs_unlock(); 5822 free_workqueue_attrs(attrs); 5823 return ret ?: count; 5824 } 5825 5826 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5827 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5828 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5829 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5830 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5831 __ATTR_NULL, 5832 }; 5833 5834 static struct bus_type wq_subsys = { 5835 .name = "workqueue", 5836 .dev_groups = wq_sysfs_groups, 5837 }; 5838 5839 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5840 struct device_attribute *attr, char *buf) 5841 { 5842 int written; 5843 5844 mutex_lock(&wq_pool_mutex); 5845 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5846 cpumask_pr_args(wq_unbound_cpumask)); 5847 mutex_unlock(&wq_pool_mutex); 5848 5849 return written; 5850 } 5851 5852 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5853 struct device_attribute *attr, const char *buf, size_t count) 5854 { 5855 cpumask_var_t cpumask; 5856 int ret; 5857 5858 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5859 return -ENOMEM; 5860 5861 ret = cpumask_parse(buf, cpumask); 5862 if (!ret) 5863 ret = workqueue_set_unbound_cpumask(cpumask); 5864 5865 free_cpumask_var(cpumask); 5866 return ret ? ret : count; 5867 } 5868 5869 static struct device_attribute wq_sysfs_cpumask_attr = 5870 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5871 wq_unbound_cpumask_store); 5872 5873 static int __init wq_sysfs_init(void) 5874 { 5875 struct device *dev_root; 5876 int err; 5877 5878 err = subsys_virtual_register(&wq_subsys, NULL); 5879 if (err) 5880 return err; 5881 5882 dev_root = bus_get_dev_root(&wq_subsys); 5883 if (dev_root) { 5884 err = device_create_file(dev_root, &wq_sysfs_cpumask_attr); 5885 put_device(dev_root); 5886 } 5887 return err; 5888 } 5889 core_initcall(wq_sysfs_init); 5890 5891 static void wq_device_release(struct device *dev) 5892 { 5893 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5894 5895 kfree(wq_dev); 5896 } 5897 5898 /** 5899 * workqueue_sysfs_register - make a workqueue visible in sysfs 5900 * @wq: the workqueue to register 5901 * 5902 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5903 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5904 * which is the preferred method. 5905 * 5906 * Workqueue user should use this function directly iff it wants to apply 5907 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5908 * apply_workqueue_attrs() may race against userland updating the 5909 * attributes. 5910 * 5911 * Return: 0 on success, -errno on failure. 5912 */ 5913 int workqueue_sysfs_register(struct workqueue_struct *wq) 5914 { 5915 struct wq_device *wq_dev; 5916 int ret; 5917 5918 /* 5919 * Adjusting max_active or creating new pwqs by applying 5920 * attributes breaks ordering guarantee. Disallow exposing ordered 5921 * workqueues. 5922 */ 5923 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5924 return -EINVAL; 5925 5926 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5927 if (!wq_dev) 5928 return -ENOMEM; 5929 5930 wq_dev->wq = wq; 5931 wq_dev->dev.bus = &wq_subsys; 5932 wq_dev->dev.release = wq_device_release; 5933 dev_set_name(&wq_dev->dev, "%s", wq->name); 5934 5935 /* 5936 * unbound_attrs are created separately. Suppress uevent until 5937 * everything is ready. 5938 */ 5939 dev_set_uevent_suppress(&wq_dev->dev, true); 5940 5941 ret = device_register(&wq_dev->dev); 5942 if (ret) { 5943 put_device(&wq_dev->dev); 5944 wq->wq_dev = NULL; 5945 return ret; 5946 } 5947 5948 if (wq->flags & WQ_UNBOUND) { 5949 struct device_attribute *attr; 5950 5951 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5952 ret = device_create_file(&wq_dev->dev, attr); 5953 if (ret) { 5954 device_unregister(&wq_dev->dev); 5955 wq->wq_dev = NULL; 5956 return ret; 5957 } 5958 } 5959 } 5960 5961 dev_set_uevent_suppress(&wq_dev->dev, false); 5962 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5963 return 0; 5964 } 5965 5966 /** 5967 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5968 * @wq: the workqueue to unregister 5969 * 5970 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5971 */ 5972 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5973 { 5974 struct wq_device *wq_dev = wq->wq_dev; 5975 5976 if (!wq->wq_dev) 5977 return; 5978 5979 wq->wq_dev = NULL; 5980 device_unregister(&wq_dev->dev); 5981 } 5982 #else /* CONFIG_SYSFS */ 5983 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5984 #endif /* CONFIG_SYSFS */ 5985 5986 /* 5987 * Workqueue watchdog. 5988 * 5989 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5990 * flush dependency, a concurrency managed work item which stays RUNNING 5991 * indefinitely. Workqueue stalls can be very difficult to debug as the 5992 * usual warning mechanisms don't trigger and internal workqueue state is 5993 * largely opaque. 5994 * 5995 * Workqueue watchdog monitors all worker pools periodically and dumps 5996 * state if some pools failed to make forward progress for a while where 5997 * forward progress is defined as the first item on ->worklist changing. 5998 * 5999 * This mechanism is controlled through the kernel parameter 6000 * "workqueue.watchdog_thresh" which can be updated at runtime through the 6001 * corresponding sysfs parameter file. 6002 */ 6003 #ifdef CONFIG_WQ_WATCHDOG 6004 6005 static unsigned long wq_watchdog_thresh = 30; 6006 static struct timer_list wq_watchdog_timer; 6007 6008 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 6009 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 6010 6011 /* 6012 * Show workers that might prevent the processing of pending work items. 6013 * The only candidates are CPU-bound workers in the running state. 6014 * Pending work items should be handled by another idle worker 6015 * in all other situations. 6016 */ 6017 static void show_cpu_pool_hog(struct worker_pool *pool) 6018 { 6019 struct worker *worker; 6020 unsigned long flags; 6021 int bkt; 6022 6023 raw_spin_lock_irqsave(&pool->lock, flags); 6024 6025 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6026 if (task_is_running(worker->task)) { 6027 /* 6028 * Defer printing to avoid deadlocks in console 6029 * drivers that queue work while holding locks 6030 * also taken in their write paths. 6031 */ 6032 printk_deferred_enter(); 6033 6034 pr_info("pool %d:\n", pool->id); 6035 sched_show_task(worker->task); 6036 6037 printk_deferred_exit(); 6038 } 6039 } 6040 6041 raw_spin_unlock_irqrestore(&pool->lock, flags); 6042 } 6043 6044 static void show_cpu_pools_hogs(void) 6045 { 6046 struct worker_pool *pool; 6047 int pi; 6048 6049 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 6050 6051 rcu_read_lock(); 6052 6053 for_each_pool(pool, pi) { 6054 if (pool->cpu_stall) 6055 show_cpu_pool_hog(pool); 6056 6057 } 6058 6059 rcu_read_unlock(); 6060 } 6061 6062 static void wq_watchdog_reset_touched(void) 6063 { 6064 int cpu; 6065 6066 wq_watchdog_touched = jiffies; 6067 for_each_possible_cpu(cpu) 6068 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 6069 } 6070 6071 static void wq_watchdog_timer_fn(struct timer_list *unused) 6072 { 6073 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 6074 bool lockup_detected = false; 6075 bool cpu_pool_stall = false; 6076 unsigned long now = jiffies; 6077 struct worker_pool *pool; 6078 int pi; 6079 6080 if (!thresh) 6081 return; 6082 6083 rcu_read_lock(); 6084 6085 for_each_pool(pool, pi) { 6086 unsigned long pool_ts, touched, ts; 6087 6088 pool->cpu_stall = false; 6089 if (list_empty(&pool->worklist)) 6090 continue; 6091 6092 /* 6093 * If a virtual machine is stopped by the host it can look to 6094 * the watchdog like a stall. 6095 */ 6096 kvm_check_and_clear_guest_paused(); 6097 6098 /* get the latest of pool and touched timestamps */ 6099 if (pool->cpu >= 0) 6100 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 6101 else 6102 touched = READ_ONCE(wq_watchdog_touched); 6103 pool_ts = READ_ONCE(pool->watchdog_ts); 6104 6105 if (time_after(pool_ts, touched)) 6106 ts = pool_ts; 6107 else 6108 ts = touched; 6109 6110 /* did we stall? */ 6111 if (time_after(now, ts + thresh)) { 6112 lockup_detected = true; 6113 if (pool->cpu >= 0) { 6114 pool->cpu_stall = true; 6115 cpu_pool_stall = true; 6116 } 6117 pr_emerg("BUG: workqueue lockup - pool"); 6118 pr_cont_pool_info(pool); 6119 pr_cont(" stuck for %us!\n", 6120 jiffies_to_msecs(now - pool_ts) / 1000); 6121 } 6122 6123 6124 } 6125 6126 rcu_read_unlock(); 6127 6128 if (lockup_detected) 6129 show_all_workqueues(); 6130 6131 if (cpu_pool_stall) 6132 show_cpu_pools_hogs(); 6133 6134 wq_watchdog_reset_touched(); 6135 mod_timer(&wq_watchdog_timer, jiffies + thresh); 6136 } 6137 6138 notrace void wq_watchdog_touch(int cpu) 6139 { 6140 if (cpu >= 0) 6141 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 6142 6143 wq_watchdog_touched = jiffies; 6144 } 6145 6146 static void wq_watchdog_set_thresh(unsigned long thresh) 6147 { 6148 wq_watchdog_thresh = 0; 6149 del_timer_sync(&wq_watchdog_timer); 6150 6151 if (thresh) { 6152 wq_watchdog_thresh = thresh; 6153 wq_watchdog_reset_touched(); 6154 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 6155 } 6156 } 6157 6158 static int wq_watchdog_param_set_thresh(const char *val, 6159 const struct kernel_param *kp) 6160 { 6161 unsigned long thresh; 6162 int ret; 6163 6164 ret = kstrtoul(val, 0, &thresh); 6165 if (ret) 6166 return ret; 6167 6168 if (system_wq) 6169 wq_watchdog_set_thresh(thresh); 6170 else 6171 wq_watchdog_thresh = thresh; 6172 6173 return 0; 6174 } 6175 6176 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 6177 .set = wq_watchdog_param_set_thresh, 6178 .get = param_get_ulong, 6179 }; 6180 6181 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 6182 0644); 6183 6184 static void wq_watchdog_init(void) 6185 { 6186 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 6187 wq_watchdog_set_thresh(wq_watchdog_thresh); 6188 } 6189 6190 #else /* CONFIG_WQ_WATCHDOG */ 6191 6192 static inline void wq_watchdog_init(void) { } 6193 6194 #endif /* CONFIG_WQ_WATCHDOG */ 6195 6196 static void __init wq_numa_init(void) 6197 { 6198 cpumask_var_t *tbl; 6199 int node, cpu; 6200 6201 if (num_possible_nodes() <= 1) 6202 return; 6203 6204 if (wq_disable_numa) { 6205 pr_info("workqueue: NUMA affinity support disabled\n"); 6206 return; 6207 } 6208 6209 for_each_possible_cpu(cpu) { 6210 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) { 6211 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 6212 return; 6213 } 6214 } 6215 6216 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(); 6217 BUG_ON(!wq_update_unbound_numa_attrs_buf); 6218 6219 /* 6220 * We want masks of possible CPUs of each node which isn't readily 6221 * available. Build one from cpu_to_node() which should have been 6222 * fully initialized by now. 6223 */ 6224 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 6225 BUG_ON(!tbl); 6226 6227 for_each_node(node) 6228 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 6229 node_online(node) ? node : NUMA_NO_NODE)); 6230 6231 for_each_possible_cpu(cpu) { 6232 node = cpu_to_node(cpu); 6233 cpumask_set_cpu(cpu, tbl[node]); 6234 } 6235 6236 wq_numa_possible_cpumask = tbl; 6237 wq_numa_enabled = true; 6238 } 6239 6240 /** 6241 * workqueue_init_early - early init for workqueue subsystem 6242 * 6243 * This is the first half of two-staged workqueue subsystem initialization 6244 * and invoked as soon as the bare basics - memory allocation, cpumasks and 6245 * idr are up. It sets up all the data structures and system workqueues 6246 * and allows early boot code to create workqueues and queue/cancel work 6247 * items. Actual work item execution starts only after kthreads can be 6248 * created and scheduled right before early initcalls. 6249 */ 6250 void __init workqueue_init_early(void) 6251 { 6252 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 6253 int i, cpu; 6254 6255 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 6256 6257 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 6258 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ)); 6259 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN)); 6260 6261 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 6262 6263 /* initialize CPU pools */ 6264 for_each_possible_cpu(cpu) { 6265 struct worker_pool *pool; 6266 6267 i = 0; 6268 for_each_cpu_worker_pool(pool, cpu) { 6269 BUG_ON(init_worker_pool(pool)); 6270 pool->cpu = cpu; 6271 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 6272 pool->attrs->nice = std_nice[i++]; 6273 pool->node = cpu_to_node(cpu); 6274 6275 /* alloc pool ID */ 6276 mutex_lock(&wq_pool_mutex); 6277 BUG_ON(worker_pool_assign_id(pool)); 6278 mutex_unlock(&wq_pool_mutex); 6279 } 6280 } 6281 6282 /* create default unbound and ordered wq attrs */ 6283 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 6284 struct workqueue_attrs *attrs; 6285 6286 BUG_ON(!(attrs = alloc_workqueue_attrs())); 6287 attrs->nice = std_nice[i]; 6288 unbound_std_wq_attrs[i] = attrs; 6289 6290 /* 6291 * An ordered wq should have only one pwq as ordering is 6292 * guaranteed by max_active which is enforced by pwqs. 6293 * Turn off NUMA so that dfl_pwq is used for all nodes. 6294 */ 6295 BUG_ON(!(attrs = alloc_workqueue_attrs())); 6296 attrs->nice = std_nice[i]; 6297 attrs->no_numa = true; 6298 ordered_wq_attrs[i] = attrs; 6299 } 6300 6301 system_wq = alloc_workqueue("events", 0, 0); 6302 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 6303 system_long_wq = alloc_workqueue("events_long", 0, 0); 6304 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 6305 WQ_UNBOUND_MAX_ACTIVE); 6306 system_freezable_wq = alloc_workqueue("events_freezable", 6307 WQ_FREEZABLE, 0); 6308 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 6309 WQ_POWER_EFFICIENT, 0); 6310 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 6311 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 6312 0); 6313 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 6314 !system_unbound_wq || !system_freezable_wq || 6315 !system_power_efficient_wq || 6316 !system_freezable_power_efficient_wq); 6317 } 6318 6319 /** 6320 * workqueue_init - bring workqueue subsystem fully online 6321 * 6322 * This is the latter half of two-staged workqueue subsystem initialization 6323 * and invoked as soon as kthreads can be created and scheduled. 6324 * Workqueues have been created and work items queued on them, but there 6325 * are no kworkers executing the work items yet. Populate the worker pools 6326 * with the initial workers and enable future kworker creations. 6327 */ 6328 void __init workqueue_init(void) 6329 { 6330 struct workqueue_struct *wq; 6331 struct worker_pool *pool; 6332 int cpu, bkt; 6333 6334 /* 6335 * It'd be simpler to initialize NUMA in workqueue_init_early() but 6336 * CPU to node mapping may not be available that early on some 6337 * archs such as power and arm64. As per-cpu pools created 6338 * previously could be missing node hint and unbound pools NUMA 6339 * affinity, fix them up. 6340 * 6341 * Also, while iterating workqueues, create rescuers if requested. 6342 */ 6343 wq_numa_init(); 6344 6345 mutex_lock(&wq_pool_mutex); 6346 6347 for_each_possible_cpu(cpu) { 6348 for_each_cpu_worker_pool(pool, cpu) { 6349 pool->node = cpu_to_node(cpu); 6350 } 6351 } 6352 6353 list_for_each_entry(wq, &workqueues, list) { 6354 wq_update_unbound_numa(wq, smp_processor_id(), true); 6355 WARN(init_rescuer(wq), 6356 "workqueue: failed to create early rescuer for %s", 6357 wq->name); 6358 } 6359 6360 mutex_unlock(&wq_pool_mutex); 6361 6362 /* create the initial workers */ 6363 for_each_online_cpu(cpu) { 6364 for_each_cpu_worker_pool(pool, cpu) { 6365 pool->flags &= ~POOL_DISASSOCIATED; 6366 BUG_ON(!create_worker(pool)); 6367 } 6368 } 6369 6370 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 6371 BUG_ON(!create_worker(pool)); 6372 6373 wq_online = true; 6374 wq_watchdog_init(); 6375 } 6376 6377 /* 6378 * Despite the naming, this is a no-op function which is here only for avoiding 6379 * link error. Since compile-time warning may fail to catch, we will need to 6380 * emit run-time warning from __flush_workqueue(). 6381 */ 6382 void __warn_flushing_systemwide_wq(void) { } 6383 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 6384