1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/interrupt.h> 33 #include <linux/signal.h> 34 #include <linux/completion.h> 35 #include <linux/workqueue.h> 36 #include <linux/slab.h> 37 #include <linux/cpu.h> 38 #include <linux/notifier.h> 39 #include <linux/kthread.h> 40 #include <linux/hardirq.h> 41 #include <linux/mempolicy.h> 42 #include <linux/freezer.h> 43 #include <linux/debug_locks.h> 44 #include <linux/lockdep.h> 45 #include <linux/idr.h> 46 #include <linux/jhash.h> 47 #include <linux/hashtable.h> 48 #include <linux/rculist.h> 49 #include <linux/nodemask.h> 50 #include <linux/moduleparam.h> 51 #include <linux/uaccess.h> 52 #include <linux/sched/isolation.h> 53 #include <linux/sched/debug.h> 54 #include <linux/nmi.h> 55 #include <linux/kvm_para.h> 56 #include <linux/delay.h> 57 #include <linux/irq_work.h> 58 59 #include "workqueue_internal.h" 60 61 enum worker_pool_flags { 62 /* 63 * worker_pool flags 64 * 65 * A bound pool is either associated or disassociated with its CPU. 66 * While associated (!DISASSOCIATED), all workers are bound to the 67 * CPU and none has %WORKER_UNBOUND set and concurrency management 68 * is in effect. 69 * 70 * While DISASSOCIATED, the cpu may be offline and all workers have 71 * %WORKER_UNBOUND set and concurrency management disabled, and may 72 * be executing on any CPU. The pool behaves as an unbound one. 73 * 74 * Note that DISASSOCIATED should be flipped only while holding 75 * wq_pool_attach_mutex to avoid changing binding state while 76 * worker_attach_to_pool() is in progress. 77 * 78 * As there can only be one concurrent BH execution context per CPU, a 79 * BH pool is per-CPU and always DISASSOCIATED. 80 */ 81 POOL_BH = 1 << 0, /* is a BH pool */ 82 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */ 83 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 84 POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */ 85 }; 86 87 enum worker_flags { 88 /* worker flags */ 89 WORKER_DIE = 1 << 1, /* die die die */ 90 WORKER_IDLE = 1 << 2, /* is idle */ 91 WORKER_PREP = 1 << 3, /* preparing to run works */ 92 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 93 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 94 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 95 96 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 97 WORKER_UNBOUND | WORKER_REBOUND, 98 }; 99 100 enum work_cancel_flags { 101 WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */ 102 WORK_CANCEL_DISABLE = 1 << 1, /* canceling to disable */ 103 }; 104 105 enum wq_internal_consts { 106 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 107 108 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 109 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 110 111 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 112 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 113 114 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 115 /* call for help after 10ms 116 (min two ticks) */ 117 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 118 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 119 120 /* 121 * Rescue workers are used only on emergencies and shared by 122 * all cpus. Give MIN_NICE. 123 */ 124 RESCUER_NICE_LEVEL = MIN_NICE, 125 HIGHPRI_NICE_LEVEL = MIN_NICE, 126 127 WQ_NAME_LEN = 32, 128 WORKER_ID_LEN = 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */ 129 }; 130 131 /* 132 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and 133 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because 134 * msecs_to_jiffies() can't be an initializer. 135 */ 136 #define BH_WORKER_JIFFIES msecs_to_jiffies(2) 137 #define BH_WORKER_RESTARTS 10 138 139 /* 140 * Structure fields follow one of the following exclusion rules. 141 * 142 * I: Modifiable by initialization/destruction paths and read-only for 143 * everyone else. 144 * 145 * P: Preemption protected. Disabling preemption is enough and should 146 * only be modified and accessed from the local cpu. 147 * 148 * L: pool->lock protected. Access with pool->lock held. 149 * 150 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for 151 * reads. 152 * 153 * K: Only modified by worker while holding pool->lock. Can be safely read by 154 * self, while holding pool->lock or from IRQ context if %current is the 155 * kworker. 156 * 157 * S: Only modified by worker self. 158 * 159 * A: wq_pool_attach_mutex protected. 160 * 161 * PL: wq_pool_mutex protected. 162 * 163 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 164 * 165 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 166 * 167 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 168 * RCU for reads. 169 * 170 * WQ: wq->mutex protected. 171 * 172 * WR: wq->mutex protected for writes. RCU protected for reads. 173 * 174 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read 175 * with READ_ONCE() without locking. 176 * 177 * MD: wq_mayday_lock protected. 178 * 179 * WD: Used internally by the watchdog. 180 */ 181 182 /* struct worker is defined in workqueue_internal.h */ 183 184 struct worker_pool { 185 raw_spinlock_t lock; /* the pool lock */ 186 int cpu; /* I: the associated cpu */ 187 int node; /* I: the associated node ID */ 188 int id; /* I: pool ID */ 189 unsigned int flags; /* L: flags */ 190 191 unsigned long watchdog_ts; /* L: watchdog timestamp */ 192 bool cpu_stall; /* WD: stalled cpu bound pool */ 193 194 /* 195 * The counter is incremented in a process context on the associated CPU 196 * w/ preemption disabled, and decremented or reset in the same context 197 * but w/ pool->lock held. The readers grab pool->lock and are 198 * guaranteed to see if the counter reached zero. 199 */ 200 int nr_running; 201 202 struct list_head worklist; /* L: list of pending works */ 203 204 int nr_workers; /* L: total number of workers */ 205 int nr_idle; /* L: currently idle workers */ 206 207 struct list_head idle_list; /* L: list of idle workers */ 208 struct timer_list idle_timer; /* L: worker idle timeout */ 209 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 210 211 struct timer_list mayday_timer; /* L: SOS timer for workers */ 212 213 /* a workers is either on busy_hash or idle_list, or the manager */ 214 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 215 /* L: hash of busy workers */ 216 217 struct worker *manager; /* L: purely informational */ 218 struct list_head workers; /* A: attached workers */ 219 220 struct ida worker_ida; /* worker IDs for task name */ 221 222 struct workqueue_attrs *attrs; /* I: worker attributes */ 223 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 224 int refcnt; /* PL: refcnt for unbound pools */ 225 226 /* 227 * Destruction of pool is RCU protected to allow dereferences 228 * from get_work_pool(). 229 */ 230 struct rcu_head rcu; 231 }; 232 233 /* 234 * Per-pool_workqueue statistics. These can be monitored using 235 * tools/workqueue/wq_monitor.py. 236 */ 237 enum pool_workqueue_stats { 238 PWQ_STAT_STARTED, /* work items started execution */ 239 PWQ_STAT_COMPLETED, /* work items completed execution */ 240 PWQ_STAT_CPU_TIME, /* total CPU time consumed */ 241 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ 242 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ 243 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */ 244 PWQ_STAT_MAYDAY, /* maydays to rescuer */ 245 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ 246 247 PWQ_NR_STATS, 248 }; 249 250 /* 251 * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT 252 * of work_struct->data are used for flags and the remaining high bits 253 * point to the pwq; thus, pwqs need to be aligned at two's power of the 254 * number of flag bits. 255 */ 256 struct pool_workqueue { 257 struct worker_pool *pool; /* I: the associated pool */ 258 struct workqueue_struct *wq; /* I: the owning workqueue */ 259 int work_color; /* L: current color */ 260 int flush_color; /* L: flushing color */ 261 int refcnt; /* L: reference count */ 262 int nr_in_flight[WORK_NR_COLORS]; 263 /* L: nr of in_flight works */ 264 bool plugged; /* L: execution suspended */ 265 266 /* 267 * nr_active management and WORK_STRUCT_INACTIVE: 268 * 269 * When pwq->nr_active >= max_active, new work item is queued to 270 * pwq->inactive_works instead of pool->worklist and marked with 271 * WORK_STRUCT_INACTIVE. 272 * 273 * All work items marked with WORK_STRUCT_INACTIVE do not participate in 274 * nr_active and all work items in pwq->inactive_works are marked with 275 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are 276 * in pwq->inactive_works. Some of them are ready to run in 277 * pool->worklist or worker->scheduled. Those work itmes are only struct 278 * wq_barrier which is used for flush_work() and should not participate 279 * in nr_active. For non-barrier work item, it is marked with 280 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 281 */ 282 int nr_active; /* L: nr of active works */ 283 struct list_head inactive_works; /* L: inactive works */ 284 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */ 285 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 286 struct list_head mayday_node; /* MD: node on wq->maydays */ 287 288 u64 stats[PWQ_NR_STATS]; 289 290 /* 291 * Release of unbound pwq is punted to a kthread_worker. See put_pwq() 292 * and pwq_release_workfn() for details. pool_workqueue itself is also 293 * RCU protected so that the first pwq can be determined without 294 * grabbing wq->mutex. 295 */ 296 struct kthread_work release_work; 297 struct rcu_head rcu; 298 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT); 299 300 /* 301 * Structure used to wait for workqueue flush. 302 */ 303 struct wq_flusher { 304 struct list_head list; /* WQ: list of flushers */ 305 int flush_color; /* WQ: flush color waiting for */ 306 struct completion done; /* flush completion */ 307 }; 308 309 struct wq_device; 310 311 /* 312 * Unlike in a per-cpu workqueue where max_active limits its concurrency level 313 * on each CPU, in an unbound workqueue, max_active applies to the whole system. 314 * As sharing a single nr_active across multiple sockets can be very expensive, 315 * the counting and enforcement is per NUMA node. 316 * 317 * The following struct is used to enforce per-node max_active. When a pwq wants 318 * to start executing a work item, it should increment ->nr using 319 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over 320 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish 321 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in 322 * round-robin order. 323 */ 324 struct wq_node_nr_active { 325 int max; /* per-node max_active */ 326 atomic_t nr; /* per-node nr_active */ 327 raw_spinlock_t lock; /* nests inside pool locks */ 328 struct list_head pending_pwqs; /* LN: pwqs with inactive works */ 329 }; 330 331 /* 332 * The externally visible workqueue. It relays the issued work items to 333 * the appropriate worker_pool through its pool_workqueues. 334 */ 335 struct workqueue_struct { 336 struct list_head pwqs; /* WR: all pwqs of this wq */ 337 struct list_head list; /* PR: list of all workqueues */ 338 339 struct mutex mutex; /* protects this wq */ 340 int work_color; /* WQ: current work color */ 341 int flush_color; /* WQ: current flush color */ 342 atomic_t nr_pwqs_to_flush; /* flush in progress */ 343 struct wq_flusher *first_flusher; /* WQ: first flusher */ 344 struct list_head flusher_queue; /* WQ: flush waiters */ 345 struct list_head flusher_overflow; /* WQ: flush overflow list */ 346 347 struct list_head maydays; /* MD: pwqs requesting rescue */ 348 struct worker *rescuer; /* MD: rescue worker */ 349 350 int nr_drainers; /* WQ: drain in progress */ 351 352 /* See alloc_workqueue() function comment for info on min/max_active */ 353 int max_active; /* WO: max active works */ 354 int min_active; /* WO: min active works */ 355 int saved_max_active; /* WQ: saved max_active */ 356 int saved_min_active; /* WQ: saved min_active */ 357 358 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 359 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */ 360 361 #ifdef CONFIG_SYSFS 362 struct wq_device *wq_dev; /* I: for sysfs interface */ 363 #endif 364 #ifdef CONFIG_LOCKDEP 365 char *lock_name; 366 struct lock_class_key key; 367 struct lockdep_map lockdep_map; 368 #endif 369 char name[WQ_NAME_LEN]; /* I: workqueue name */ 370 371 /* 372 * Destruction of workqueue_struct is RCU protected to allow walking 373 * the workqueues list without grabbing wq_pool_mutex. 374 * This is used to dump all workqueues from sysrq. 375 */ 376 struct rcu_head rcu; 377 378 /* hot fields used during command issue, aligned to cacheline */ 379 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 380 struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */ 381 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */ 382 }; 383 384 /* 385 * Each pod type describes how CPUs should be grouped for unbound workqueues. 386 * See the comment above workqueue_attrs->affn_scope. 387 */ 388 struct wq_pod_type { 389 int nr_pods; /* number of pods */ 390 cpumask_var_t *pod_cpus; /* pod -> cpus */ 391 int *pod_node; /* pod -> node */ 392 int *cpu_pod; /* cpu -> pod */ 393 }; 394 395 struct work_offq_data { 396 u32 pool_id; 397 u32 disable; 398 u32 flags; 399 }; 400 401 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = { 402 [WQ_AFFN_DFL] = "default", 403 [WQ_AFFN_CPU] = "cpu", 404 [WQ_AFFN_SMT] = "smt", 405 [WQ_AFFN_CACHE] = "cache", 406 [WQ_AFFN_NUMA] = "numa", 407 [WQ_AFFN_SYSTEM] = "system", 408 }; 409 410 /* 411 * Per-cpu work items which run for longer than the following threshold are 412 * automatically considered CPU intensive and excluded from concurrency 413 * management to prevent them from noticeably delaying other per-cpu work items. 414 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. 415 * The actual value is initialized in wq_cpu_intensive_thresh_init(). 416 */ 417 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; 418 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); 419 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 420 static unsigned int wq_cpu_intensive_warning_thresh = 4; 421 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644); 422 #endif 423 424 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 425 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 426 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 427 428 static bool wq_online; /* can kworkers be created yet? */ 429 static bool wq_topo_initialized __read_mostly = false; 430 431 static struct kmem_cache *pwq_cache; 432 433 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES]; 434 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE; 435 436 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */ 437 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf; 438 439 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 440 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 441 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 442 /* wait for manager to go away */ 443 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 444 445 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 446 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 447 448 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */ 449 static cpumask_var_t wq_online_cpumask; 450 451 /* PL&A: allowable cpus for unbound wqs and work items */ 452 static cpumask_var_t wq_unbound_cpumask; 453 454 /* PL: user requested unbound cpumask via sysfs */ 455 static cpumask_var_t wq_requested_unbound_cpumask; 456 457 /* PL: isolated cpumask to be excluded from unbound cpumask */ 458 static cpumask_var_t wq_isolated_cpumask; 459 460 /* for further constrain wq_unbound_cpumask by cmdline parameter*/ 461 static struct cpumask wq_cmdline_cpumask __initdata; 462 463 /* CPU where unbound work was last round robin scheduled from this CPU */ 464 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 465 466 /* 467 * Local execution of unbound work items is no longer guaranteed. The 468 * following always forces round-robin CPU selection on unbound work items 469 * to uncover usages which depend on it. 470 */ 471 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 472 static bool wq_debug_force_rr_cpu = true; 473 #else 474 static bool wq_debug_force_rr_cpu = false; 475 #endif 476 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 477 478 /* to raise softirq for the BH worker pools on other CPUs */ 479 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], 480 bh_pool_irq_works); 481 482 /* the BH worker pools */ 483 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 484 bh_worker_pools); 485 486 /* the per-cpu worker pools */ 487 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 488 cpu_worker_pools); 489 490 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 491 492 /* PL: hash of all unbound pools keyed by pool->attrs */ 493 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 494 495 /* I: attributes used when instantiating standard unbound pools on demand */ 496 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 497 498 /* I: attributes used when instantiating ordered pools on demand */ 499 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 500 501 /* 502 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a 503 * process context while holding a pool lock. Bounce to a dedicated kthread 504 * worker to avoid A-A deadlocks. 505 */ 506 static struct kthread_worker *pwq_release_worker __ro_after_init; 507 508 struct workqueue_struct *system_wq __ro_after_init; 509 EXPORT_SYMBOL(system_wq); 510 struct workqueue_struct *system_highpri_wq __ro_after_init; 511 EXPORT_SYMBOL_GPL(system_highpri_wq); 512 struct workqueue_struct *system_long_wq __ro_after_init; 513 EXPORT_SYMBOL_GPL(system_long_wq); 514 struct workqueue_struct *system_unbound_wq __ro_after_init; 515 EXPORT_SYMBOL_GPL(system_unbound_wq); 516 struct workqueue_struct *system_freezable_wq __ro_after_init; 517 EXPORT_SYMBOL_GPL(system_freezable_wq); 518 struct workqueue_struct *system_power_efficient_wq __ro_after_init; 519 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 520 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init; 521 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 522 struct workqueue_struct *system_bh_wq; 523 EXPORT_SYMBOL_GPL(system_bh_wq); 524 struct workqueue_struct *system_bh_highpri_wq; 525 EXPORT_SYMBOL_GPL(system_bh_highpri_wq); 526 527 static int worker_thread(void *__worker); 528 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 529 static void show_pwq(struct pool_workqueue *pwq); 530 static void show_one_worker_pool(struct worker_pool *pool); 531 532 #define CREATE_TRACE_POINTS 533 #include <trace/events/workqueue.h> 534 535 #define assert_rcu_or_pool_mutex() \ 536 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 537 !lockdep_is_held(&wq_pool_mutex), \ 538 "RCU or wq_pool_mutex should be held") 539 540 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 541 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 542 !lockdep_is_held(&wq->mutex) && \ 543 !lockdep_is_held(&wq_pool_mutex), \ 544 "RCU, wq->mutex or wq_pool_mutex should be held") 545 546 #define for_each_bh_worker_pool(pool, cpu) \ 547 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \ 548 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 549 (pool)++) 550 551 #define for_each_cpu_worker_pool(pool, cpu) \ 552 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 553 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 554 (pool)++) 555 556 /** 557 * for_each_pool - iterate through all worker_pools in the system 558 * @pool: iteration cursor 559 * @pi: integer used for iteration 560 * 561 * This must be called either with wq_pool_mutex held or RCU read 562 * locked. If the pool needs to be used beyond the locking in effect, the 563 * caller is responsible for guaranteeing that the pool stays online. 564 * 565 * The if/else clause exists only for the lockdep assertion and can be 566 * ignored. 567 */ 568 #define for_each_pool(pool, pi) \ 569 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 570 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 571 else 572 573 /** 574 * for_each_pool_worker - iterate through all workers of a worker_pool 575 * @worker: iteration cursor 576 * @pool: worker_pool to iterate workers of 577 * 578 * This must be called with wq_pool_attach_mutex. 579 * 580 * The if/else clause exists only for the lockdep assertion and can be 581 * ignored. 582 */ 583 #define for_each_pool_worker(worker, pool) \ 584 list_for_each_entry((worker), &(pool)->workers, node) \ 585 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 586 else 587 588 /** 589 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 590 * @pwq: iteration cursor 591 * @wq: the target workqueue 592 * 593 * This must be called either with wq->mutex held or RCU read locked. 594 * If the pwq needs to be used beyond the locking in effect, the caller is 595 * responsible for guaranteeing that the pwq stays online. 596 * 597 * The if/else clause exists only for the lockdep assertion and can be 598 * ignored. 599 */ 600 #define for_each_pwq(pwq, wq) \ 601 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 602 lockdep_is_held(&(wq->mutex))) 603 604 #ifdef CONFIG_DEBUG_OBJECTS_WORK 605 606 static const struct debug_obj_descr work_debug_descr; 607 608 static void *work_debug_hint(void *addr) 609 { 610 return ((struct work_struct *) addr)->func; 611 } 612 613 static bool work_is_static_object(void *addr) 614 { 615 struct work_struct *work = addr; 616 617 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 618 } 619 620 /* 621 * fixup_init is called when: 622 * - an active object is initialized 623 */ 624 static bool work_fixup_init(void *addr, enum debug_obj_state state) 625 { 626 struct work_struct *work = addr; 627 628 switch (state) { 629 case ODEBUG_STATE_ACTIVE: 630 cancel_work_sync(work); 631 debug_object_init(work, &work_debug_descr); 632 return true; 633 default: 634 return false; 635 } 636 } 637 638 /* 639 * fixup_free is called when: 640 * - an active object is freed 641 */ 642 static bool work_fixup_free(void *addr, enum debug_obj_state state) 643 { 644 struct work_struct *work = addr; 645 646 switch (state) { 647 case ODEBUG_STATE_ACTIVE: 648 cancel_work_sync(work); 649 debug_object_free(work, &work_debug_descr); 650 return true; 651 default: 652 return false; 653 } 654 } 655 656 static const struct debug_obj_descr work_debug_descr = { 657 .name = "work_struct", 658 .debug_hint = work_debug_hint, 659 .is_static_object = work_is_static_object, 660 .fixup_init = work_fixup_init, 661 .fixup_free = work_fixup_free, 662 }; 663 664 static inline void debug_work_activate(struct work_struct *work) 665 { 666 debug_object_activate(work, &work_debug_descr); 667 } 668 669 static inline void debug_work_deactivate(struct work_struct *work) 670 { 671 debug_object_deactivate(work, &work_debug_descr); 672 } 673 674 void __init_work(struct work_struct *work, int onstack) 675 { 676 if (onstack) 677 debug_object_init_on_stack(work, &work_debug_descr); 678 else 679 debug_object_init(work, &work_debug_descr); 680 } 681 EXPORT_SYMBOL_GPL(__init_work); 682 683 void destroy_work_on_stack(struct work_struct *work) 684 { 685 debug_object_free(work, &work_debug_descr); 686 } 687 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 688 689 void destroy_delayed_work_on_stack(struct delayed_work *work) 690 { 691 destroy_timer_on_stack(&work->timer); 692 debug_object_free(&work->work, &work_debug_descr); 693 } 694 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 695 696 #else 697 static inline void debug_work_activate(struct work_struct *work) { } 698 static inline void debug_work_deactivate(struct work_struct *work) { } 699 #endif 700 701 /** 702 * worker_pool_assign_id - allocate ID and assign it to @pool 703 * @pool: the pool pointer of interest 704 * 705 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 706 * successfully, -errno on failure. 707 */ 708 static int worker_pool_assign_id(struct worker_pool *pool) 709 { 710 int ret; 711 712 lockdep_assert_held(&wq_pool_mutex); 713 714 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 715 GFP_KERNEL); 716 if (ret >= 0) { 717 pool->id = ret; 718 return 0; 719 } 720 return ret; 721 } 722 723 static struct pool_workqueue __rcu ** 724 unbound_pwq_slot(struct workqueue_struct *wq, int cpu) 725 { 726 if (cpu >= 0) 727 return per_cpu_ptr(wq->cpu_pwq, cpu); 728 else 729 return &wq->dfl_pwq; 730 } 731 732 /* @cpu < 0 for dfl_pwq */ 733 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu) 734 { 735 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu), 736 lockdep_is_held(&wq_pool_mutex) || 737 lockdep_is_held(&wq->mutex)); 738 } 739 740 /** 741 * unbound_effective_cpumask - effective cpumask of an unbound workqueue 742 * @wq: workqueue of interest 743 * 744 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which 745 * is masked with wq_unbound_cpumask to determine the effective cpumask. The 746 * default pwq is always mapped to the pool with the current effective cpumask. 747 */ 748 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq) 749 { 750 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask; 751 } 752 753 static unsigned int work_color_to_flags(int color) 754 { 755 return color << WORK_STRUCT_COLOR_SHIFT; 756 } 757 758 static int get_work_color(unsigned long work_data) 759 { 760 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 761 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 762 } 763 764 static int work_next_color(int color) 765 { 766 return (color + 1) % WORK_NR_COLORS; 767 } 768 769 static unsigned long pool_offq_flags(struct worker_pool *pool) 770 { 771 return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0; 772 } 773 774 /* 775 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 776 * contain the pointer to the queued pwq. Once execution starts, the flag 777 * is cleared and the high bits contain OFFQ flags and pool ID. 778 * 779 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling() 780 * can be used to set the pwq, pool or clear work->data. These functions should 781 * only be called while the work is owned - ie. while the PENDING bit is set. 782 * 783 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 784 * corresponding to a work. Pool is available once the work has been 785 * queued anywhere after initialization until it is sync canceled. pwq is 786 * available only while the work item is queued. 787 */ 788 static inline void set_work_data(struct work_struct *work, unsigned long data) 789 { 790 WARN_ON_ONCE(!work_pending(work)); 791 atomic_long_set(&work->data, data | work_static(work)); 792 } 793 794 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 795 unsigned long flags) 796 { 797 set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING | 798 WORK_STRUCT_PWQ | flags); 799 } 800 801 static void set_work_pool_and_keep_pending(struct work_struct *work, 802 int pool_id, unsigned long flags) 803 { 804 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 805 WORK_STRUCT_PENDING | flags); 806 } 807 808 static void set_work_pool_and_clear_pending(struct work_struct *work, 809 int pool_id, unsigned long flags) 810 { 811 /* 812 * The following wmb is paired with the implied mb in 813 * test_and_set_bit(PENDING) and ensures all updates to @work made 814 * here are visible to and precede any updates by the next PENDING 815 * owner. 816 */ 817 smp_wmb(); 818 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 819 flags); 820 /* 821 * The following mb guarantees that previous clear of a PENDING bit 822 * will not be reordered with any speculative LOADS or STORES from 823 * work->current_func, which is executed afterwards. This possible 824 * reordering can lead to a missed execution on attempt to queue 825 * the same @work. E.g. consider this case: 826 * 827 * CPU#0 CPU#1 828 * ---------------------------- -------------------------------- 829 * 830 * 1 STORE event_indicated 831 * 2 queue_work_on() { 832 * 3 test_and_set_bit(PENDING) 833 * 4 } set_..._and_clear_pending() { 834 * 5 set_work_data() # clear bit 835 * 6 smp_mb() 836 * 7 work->current_func() { 837 * 8 LOAD event_indicated 838 * } 839 * 840 * Without an explicit full barrier speculative LOAD on line 8 can 841 * be executed before CPU#0 does STORE on line 1. If that happens, 842 * CPU#0 observes the PENDING bit is still set and new execution of 843 * a @work is not queued in a hope, that CPU#1 will eventually 844 * finish the queued @work. Meanwhile CPU#1 does not see 845 * event_indicated is set, because speculative LOAD was executed 846 * before actual STORE. 847 */ 848 smp_mb(); 849 } 850 851 static inline struct pool_workqueue *work_struct_pwq(unsigned long data) 852 { 853 return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK); 854 } 855 856 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 857 { 858 unsigned long data = atomic_long_read(&work->data); 859 860 if (data & WORK_STRUCT_PWQ) 861 return work_struct_pwq(data); 862 else 863 return NULL; 864 } 865 866 /** 867 * get_work_pool - return the worker_pool a given work was associated with 868 * @work: the work item of interest 869 * 870 * Pools are created and destroyed under wq_pool_mutex, and allows read 871 * access under RCU read lock. As such, this function should be 872 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 873 * 874 * All fields of the returned pool are accessible as long as the above 875 * mentioned locking is in effect. If the returned pool needs to be used 876 * beyond the critical section, the caller is responsible for ensuring the 877 * returned pool is and stays online. 878 * 879 * Return: The worker_pool @work was last associated with. %NULL if none. 880 */ 881 static struct worker_pool *get_work_pool(struct work_struct *work) 882 { 883 unsigned long data = atomic_long_read(&work->data); 884 int pool_id; 885 886 assert_rcu_or_pool_mutex(); 887 888 if (data & WORK_STRUCT_PWQ) 889 return work_struct_pwq(data)->pool; 890 891 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 892 if (pool_id == WORK_OFFQ_POOL_NONE) 893 return NULL; 894 895 return idr_find(&worker_pool_idr, pool_id); 896 } 897 898 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits) 899 { 900 return (v >> shift) & ((1U << bits) - 1); 901 } 902 903 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data) 904 { 905 WARN_ON_ONCE(data & WORK_STRUCT_PWQ); 906 907 offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT, 908 WORK_OFFQ_POOL_BITS); 909 offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT, 910 WORK_OFFQ_DISABLE_BITS); 911 offqd->flags = data & WORK_OFFQ_FLAG_MASK; 912 } 913 914 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd) 915 { 916 return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) | 917 ((unsigned long)offqd->flags); 918 } 919 920 /* 921 * Policy functions. These define the policies on how the global worker 922 * pools are managed. Unless noted otherwise, these functions assume that 923 * they're being called with pool->lock held. 924 */ 925 926 /* 927 * Need to wake up a worker? Called from anything but currently 928 * running workers. 929 * 930 * Note that, because unbound workers never contribute to nr_running, this 931 * function will always return %true for unbound pools as long as the 932 * worklist isn't empty. 933 */ 934 static bool need_more_worker(struct worker_pool *pool) 935 { 936 return !list_empty(&pool->worklist) && !pool->nr_running; 937 } 938 939 /* Can I start working? Called from busy but !running workers. */ 940 static bool may_start_working(struct worker_pool *pool) 941 { 942 return pool->nr_idle; 943 } 944 945 /* Do I need to keep working? Called from currently running workers. */ 946 static bool keep_working(struct worker_pool *pool) 947 { 948 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 949 } 950 951 /* Do we need a new worker? Called from manager. */ 952 static bool need_to_create_worker(struct worker_pool *pool) 953 { 954 return need_more_worker(pool) && !may_start_working(pool); 955 } 956 957 /* Do we have too many workers and should some go away? */ 958 static bool too_many_workers(struct worker_pool *pool) 959 { 960 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 961 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 962 int nr_busy = pool->nr_workers - nr_idle; 963 964 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 965 } 966 967 /** 968 * worker_set_flags - set worker flags and adjust nr_running accordingly 969 * @worker: self 970 * @flags: flags to set 971 * 972 * Set @flags in @worker->flags and adjust nr_running accordingly. 973 */ 974 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 975 { 976 struct worker_pool *pool = worker->pool; 977 978 lockdep_assert_held(&pool->lock); 979 980 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 981 if ((flags & WORKER_NOT_RUNNING) && 982 !(worker->flags & WORKER_NOT_RUNNING)) { 983 pool->nr_running--; 984 } 985 986 worker->flags |= flags; 987 } 988 989 /** 990 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 991 * @worker: self 992 * @flags: flags to clear 993 * 994 * Clear @flags in @worker->flags and adjust nr_running accordingly. 995 */ 996 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 997 { 998 struct worker_pool *pool = worker->pool; 999 unsigned int oflags = worker->flags; 1000 1001 lockdep_assert_held(&pool->lock); 1002 1003 worker->flags &= ~flags; 1004 1005 /* 1006 * If transitioning out of NOT_RUNNING, increment nr_running. Note 1007 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 1008 * of multiple flags, not a single flag. 1009 */ 1010 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 1011 if (!(worker->flags & WORKER_NOT_RUNNING)) 1012 pool->nr_running++; 1013 } 1014 1015 /* Return the first idle worker. Called with pool->lock held. */ 1016 static struct worker *first_idle_worker(struct worker_pool *pool) 1017 { 1018 if (unlikely(list_empty(&pool->idle_list))) 1019 return NULL; 1020 1021 return list_first_entry(&pool->idle_list, struct worker, entry); 1022 } 1023 1024 /** 1025 * worker_enter_idle - enter idle state 1026 * @worker: worker which is entering idle state 1027 * 1028 * @worker is entering idle state. Update stats and idle timer if 1029 * necessary. 1030 * 1031 * LOCKING: 1032 * raw_spin_lock_irq(pool->lock). 1033 */ 1034 static void worker_enter_idle(struct worker *worker) 1035 { 1036 struct worker_pool *pool = worker->pool; 1037 1038 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1039 WARN_ON_ONCE(!list_empty(&worker->entry) && 1040 (worker->hentry.next || worker->hentry.pprev))) 1041 return; 1042 1043 /* can't use worker_set_flags(), also called from create_worker() */ 1044 worker->flags |= WORKER_IDLE; 1045 pool->nr_idle++; 1046 worker->last_active = jiffies; 1047 1048 /* idle_list is LIFO */ 1049 list_add(&worker->entry, &pool->idle_list); 1050 1051 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1052 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1053 1054 /* Sanity check nr_running. */ 1055 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 1056 } 1057 1058 /** 1059 * worker_leave_idle - leave idle state 1060 * @worker: worker which is leaving idle state 1061 * 1062 * @worker is leaving idle state. Update stats. 1063 * 1064 * LOCKING: 1065 * raw_spin_lock_irq(pool->lock). 1066 */ 1067 static void worker_leave_idle(struct worker *worker) 1068 { 1069 struct worker_pool *pool = worker->pool; 1070 1071 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1072 return; 1073 worker_clr_flags(worker, WORKER_IDLE); 1074 pool->nr_idle--; 1075 list_del_init(&worker->entry); 1076 } 1077 1078 /** 1079 * find_worker_executing_work - find worker which is executing a work 1080 * @pool: pool of interest 1081 * @work: work to find worker for 1082 * 1083 * Find a worker which is executing @work on @pool by searching 1084 * @pool->busy_hash which is keyed by the address of @work. For a worker 1085 * to match, its current execution should match the address of @work and 1086 * its work function. This is to avoid unwanted dependency between 1087 * unrelated work executions through a work item being recycled while still 1088 * being executed. 1089 * 1090 * This is a bit tricky. A work item may be freed once its execution 1091 * starts and nothing prevents the freed area from being recycled for 1092 * another work item. If the same work item address ends up being reused 1093 * before the original execution finishes, workqueue will identify the 1094 * recycled work item as currently executing and make it wait until the 1095 * current execution finishes, introducing an unwanted dependency. 1096 * 1097 * This function checks the work item address and work function to avoid 1098 * false positives. Note that this isn't complete as one may construct a 1099 * work function which can introduce dependency onto itself through a 1100 * recycled work item. Well, if somebody wants to shoot oneself in the 1101 * foot that badly, there's only so much we can do, and if such deadlock 1102 * actually occurs, it should be easy to locate the culprit work function. 1103 * 1104 * CONTEXT: 1105 * raw_spin_lock_irq(pool->lock). 1106 * 1107 * Return: 1108 * Pointer to worker which is executing @work if found, %NULL 1109 * otherwise. 1110 */ 1111 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1112 struct work_struct *work) 1113 { 1114 struct worker *worker; 1115 1116 hash_for_each_possible(pool->busy_hash, worker, hentry, 1117 (unsigned long)work) 1118 if (worker->current_work == work && 1119 worker->current_func == work->func) 1120 return worker; 1121 1122 return NULL; 1123 } 1124 1125 /** 1126 * move_linked_works - move linked works to a list 1127 * @work: start of series of works to be scheduled 1128 * @head: target list to append @work to 1129 * @nextp: out parameter for nested worklist walking 1130 * 1131 * Schedule linked works starting from @work to @head. Work series to be 1132 * scheduled starts at @work and includes any consecutive work with 1133 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on 1134 * @nextp. 1135 * 1136 * CONTEXT: 1137 * raw_spin_lock_irq(pool->lock). 1138 */ 1139 static void move_linked_works(struct work_struct *work, struct list_head *head, 1140 struct work_struct **nextp) 1141 { 1142 struct work_struct *n; 1143 1144 /* 1145 * Linked worklist will always end before the end of the list, 1146 * use NULL for list head. 1147 */ 1148 list_for_each_entry_safe_from(work, n, NULL, entry) { 1149 list_move_tail(&work->entry, head); 1150 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1151 break; 1152 } 1153 1154 /* 1155 * If we're already inside safe list traversal and have moved 1156 * multiple works to the scheduled queue, the next position 1157 * needs to be updated. 1158 */ 1159 if (nextp) 1160 *nextp = n; 1161 } 1162 1163 /** 1164 * assign_work - assign a work item and its linked work items to a worker 1165 * @work: work to assign 1166 * @worker: worker to assign to 1167 * @nextp: out parameter for nested worklist walking 1168 * 1169 * Assign @work and its linked work items to @worker. If @work is already being 1170 * executed by another worker in the same pool, it'll be punted there. 1171 * 1172 * If @nextp is not NULL, it's updated to point to the next work of the last 1173 * scheduled work. This allows assign_work() to be nested inside 1174 * list_for_each_entry_safe(). 1175 * 1176 * Returns %true if @work was successfully assigned to @worker. %false if @work 1177 * was punted to another worker already executing it. 1178 */ 1179 static bool assign_work(struct work_struct *work, struct worker *worker, 1180 struct work_struct **nextp) 1181 { 1182 struct worker_pool *pool = worker->pool; 1183 struct worker *collision; 1184 1185 lockdep_assert_held(&pool->lock); 1186 1187 /* 1188 * A single work shouldn't be executed concurrently by multiple workers. 1189 * __queue_work() ensures that @work doesn't jump to a different pool 1190 * while still running in the previous pool. Here, we should ensure that 1191 * @work is not executed concurrently by multiple workers from the same 1192 * pool. Check whether anyone is already processing the work. If so, 1193 * defer the work to the currently executing one. 1194 */ 1195 collision = find_worker_executing_work(pool, work); 1196 if (unlikely(collision)) { 1197 move_linked_works(work, &collision->scheduled, nextp); 1198 return false; 1199 } 1200 1201 move_linked_works(work, &worker->scheduled, nextp); 1202 return true; 1203 } 1204 1205 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool) 1206 { 1207 int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0; 1208 1209 return &per_cpu(bh_pool_irq_works, pool->cpu)[high]; 1210 } 1211 1212 static void kick_bh_pool(struct worker_pool *pool) 1213 { 1214 #ifdef CONFIG_SMP 1215 /* see drain_dead_softirq_workfn() for BH_DRAINING */ 1216 if (unlikely(pool->cpu != smp_processor_id() && 1217 !(pool->flags & POOL_BH_DRAINING))) { 1218 irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu); 1219 return; 1220 } 1221 #endif 1222 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 1223 raise_softirq_irqoff(HI_SOFTIRQ); 1224 else 1225 raise_softirq_irqoff(TASKLET_SOFTIRQ); 1226 } 1227 1228 /** 1229 * kick_pool - wake up an idle worker if necessary 1230 * @pool: pool to kick 1231 * 1232 * @pool may have pending work items. Wake up worker if necessary. Returns 1233 * whether a worker was woken up. 1234 */ 1235 static bool kick_pool(struct worker_pool *pool) 1236 { 1237 struct worker *worker = first_idle_worker(pool); 1238 struct task_struct *p; 1239 1240 lockdep_assert_held(&pool->lock); 1241 1242 if (!need_more_worker(pool) || !worker) 1243 return false; 1244 1245 if (pool->flags & POOL_BH) { 1246 kick_bh_pool(pool); 1247 return true; 1248 } 1249 1250 p = worker->task; 1251 1252 #ifdef CONFIG_SMP 1253 /* 1254 * Idle @worker is about to execute @work and waking up provides an 1255 * opportunity to migrate @worker at a lower cost by setting the task's 1256 * wake_cpu field. Let's see if we want to move @worker to improve 1257 * execution locality. 1258 * 1259 * We're waking the worker that went idle the latest and there's some 1260 * chance that @worker is marked idle but hasn't gone off CPU yet. If 1261 * so, setting the wake_cpu won't do anything. As this is a best-effort 1262 * optimization and the race window is narrow, let's leave as-is for 1263 * now. If this becomes pronounced, we can skip over workers which are 1264 * still on cpu when picking an idle worker. 1265 * 1266 * If @pool has non-strict affinity, @worker might have ended up outside 1267 * its affinity scope. Repatriate. 1268 */ 1269 if (!pool->attrs->affn_strict && 1270 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) { 1271 struct work_struct *work = list_first_entry(&pool->worklist, 1272 struct work_struct, entry); 1273 int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask, 1274 cpu_online_mask); 1275 if (wake_cpu < nr_cpu_ids) { 1276 p->wake_cpu = wake_cpu; 1277 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++; 1278 } 1279 } 1280 #endif 1281 wake_up_process(p); 1282 return true; 1283 } 1284 1285 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 1286 1287 /* 1288 * Concurrency-managed per-cpu work items that hog CPU for longer than 1289 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, 1290 * which prevents them from stalling other concurrency-managed work items. If a 1291 * work function keeps triggering this mechanism, it's likely that the work item 1292 * should be using an unbound workqueue instead. 1293 * 1294 * wq_cpu_intensive_report() tracks work functions which trigger such conditions 1295 * and report them so that they can be examined and converted to use unbound 1296 * workqueues as appropriate. To avoid flooding the console, each violating work 1297 * function is tracked and reported with exponential backoff. 1298 */ 1299 #define WCI_MAX_ENTS 128 1300 1301 struct wci_ent { 1302 work_func_t func; 1303 atomic64_t cnt; 1304 struct hlist_node hash_node; 1305 }; 1306 1307 static struct wci_ent wci_ents[WCI_MAX_ENTS]; 1308 static int wci_nr_ents; 1309 static DEFINE_RAW_SPINLOCK(wci_lock); 1310 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); 1311 1312 static struct wci_ent *wci_find_ent(work_func_t func) 1313 { 1314 struct wci_ent *ent; 1315 1316 hash_for_each_possible_rcu(wci_hash, ent, hash_node, 1317 (unsigned long)func) { 1318 if (ent->func == func) 1319 return ent; 1320 } 1321 return NULL; 1322 } 1323 1324 static void wq_cpu_intensive_report(work_func_t func) 1325 { 1326 struct wci_ent *ent; 1327 1328 restart: 1329 ent = wci_find_ent(func); 1330 if (ent) { 1331 u64 cnt; 1332 1333 /* 1334 * Start reporting from the warning_thresh and back off 1335 * exponentially. 1336 */ 1337 cnt = atomic64_inc_return_relaxed(&ent->cnt); 1338 if (wq_cpu_intensive_warning_thresh && 1339 cnt >= wq_cpu_intensive_warning_thresh && 1340 is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh)) 1341 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", 1342 ent->func, wq_cpu_intensive_thresh_us, 1343 atomic64_read(&ent->cnt)); 1344 return; 1345 } 1346 1347 /* 1348 * @func is a new violation. Allocate a new entry for it. If wcn_ents[] 1349 * is exhausted, something went really wrong and we probably made enough 1350 * noise already. 1351 */ 1352 if (wci_nr_ents >= WCI_MAX_ENTS) 1353 return; 1354 1355 raw_spin_lock(&wci_lock); 1356 1357 if (wci_nr_ents >= WCI_MAX_ENTS) { 1358 raw_spin_unlock(&wci_lock); 1359 return; 1360 } 1361 1362 if (wci_find_ent(func)) { 1363 raw_spin_unlock(&wci_lock); 1364 goto restart; 1365 } 1366 1367 ent = &wci_ents[wci_nr_ents++]; 1368 ent->func = func; 1369 atomic64_set(&ent->cnt, 0); 1370 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); 1371 1372 raw_spin_unlock(&wci_lock); 1373 1374 goto restart; 1375 } 1376 1377 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1378 static void wq_cpu_intensive_report(work_func_t func) {} 1379 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1380 1381 /** 1382 * wq_worker_running - a worker is running again 1383 * @task: task waking up 1384 * 1385 * This function is called when a worker returns from schedule() 1386 */ 1387 void wq_worker_running(struct task_struct *task) 1388 { 1389 struct worker *worker = kthread_data(task); 1390 1391 if (!READ_ONCE(worker->sleeping)) 1392 return; 1393 1394 /* 1395 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 1396 * and the nr_running increment below, we may ruin the nr_running reset 1397 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 1398 * pool. Protect against such race. 1399 */ 1400 preempt_disable(); 1401 if (!(worker->flags & WORKER_NOT_RUNNING)) 1402 worker->pool->nr_running++; 1403 preempt_enable(); 1404 1405 /* 1406 * CPU intensive auto-detection cares about how long a work item hogged 1407 * CPU without sleeping. Reset the starting timestamp on wakeup. 1408 */ 1409 worker->current_at = worker->task->se.sum_exec_runtime; 1410 1411 WRITE_ONCE(worker->sleeping, 0); 1412 } 1413 1414 /** 1415 * wq_worker_sleeping - a worker is going to sleep 1416 * @task: task going to sleep 1417 * 1418 * This function is called from schedule() when a busy worker is 1419 * going to sleep. 1420 */ 1421 void wq_worker_sleeping(struct task_struct *task) 1422 { 1423 struct worker *worker = kthread_data(task); 1424 struct worker_pool *pool; 1425 1426 /* 1427 * Rescuers, which may not have all the fields set up like normal 1428 * workers, also reach here, let's not access anything before 1429 * checking NOT_RUNNING. 1430 */ 1431 if (worker->flags & WORKER_NOT_RUNNING) 1432 return; 1433 1434 pool = worker->pool; 1435 1436 /* Return if preempted before wq_worker_running() was reached */ 1437 if (READ_ONCE(worker->sleeping)) 1438 return; 1439 1440 WRITE_ONCE(worker->sleeping, 1); 1441 raw_spin_lock_irq(&pool->lock); 1442 1443 /* 1444 * Recheck in case unbind_workers() preempted us. We don't 1445 * want to decrement nr_running after the worker is unbound 1446 * and nr_running has been reset. 1447 */ 1448 if (worker->flags & WORKER_NOT_RUNNING) { 1449 raw_spin_unlock_irq(&pool->lock); 1450 return; 1451 } 1452 1453 pool->nr_running--; 1454 if (kick_pool(pool)) 1455 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1456 1457 raw_spin_unlock_irq(&pool->lock); 1458 } 1459 1460 /** 1461 * wq_worker_tick - a scheduler tick occurred while a kworker is running 1462 * @task: task currently running 1463 * 1464 * Called from sched_tick(). We're in the IRQ context and the current 1465 * worker's fields which follow the 'K' locking rule can be accessed safely. 1466 */ 1467 void wq_worker_tick(struct task_struct *task) 1468 { 1469 struct worker *worker = kthread_data(task); 1470 struct pool_workqueue *pwq = worker->current_pwq; 1471 struct worker_pool *pool = worker->pool; 1472 1473 if (!pwq) 1474 return; 1475 1476 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; 1477 1478 if (!wq_cpu_intensive_thresh_us) 1479 return; 1480 1481 /* 1482 * If the current worker is concurrency managed and hogged the CPU for 1483 * longer than wq_cpu_intensive_thresh_us, it's automatically marked 1484 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. 1485 * 1486 * Set @worker->sleeping means that @worker is in the process of 1487 * switching out voluntarily and won't be contributing to 1488 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also 1489 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to 1490 * double decrements. The task is releasing the CPU anyway. Let's skip. 1491 * We probably want to make this prettier in the future. 1492 */ 1493 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || 1494 worker->task->se.sum_exec_runtime - worker->current_at < 1495 wq_cpu_intensive_thresh_us * NSEC_PER_USEC) 1496 return; 1497 1498 raw_spin_lock(&pool->lock); 1499 1500 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1501 wq_cpu_intensive_report(worker->current_func); 1502 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; 1503 1504 if (kick_pool(pool)) 1505 pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1506 1507 raw_spin_unlock(&pool->lock); 1508 } 1509 1510 /** 1511 * wq_worker_last_func - retrieve worker's last work function 1512 * @task: Task to retrieve last work function of. 1513 * 1514 * Determine the last function a worker executed. This is called from 1515 * the scheduler to get a worker's last known identity. 1516 * 1517 * CONTEXT: 1518 * raw_spin_lock_irq(rq->lock) 1519 * 1520 * This function is called during schedule() when a kworker is going 1521 * to sleep. It's used by psi to identify aggregation workers during 1522 * dequeuing, to allow periodic aggregation to shut-off when that 1523 * worker is the last task in the system or cgroup to go to sleep. 1524 * 1525 * As this function doesn't involve any workqueue-related locking, it 1526 * only returns stable values when called from inside the scheduler's 1527 * queuing and dequeuing paths, when @task, which must be a kworker, 1528 * is guaranteed to not be processing any works. 1529 * 1530 * Return: 1531 * The last work function %current executed as a worker, NULL if it 1532 * hasn't executed any work yet. 1533 */ 1534 work_func_t wq_worker_last_func(struct task_struct *task) 1535 { 1536 struct worker *worker = kthread_data(task); 1537 1538 return worker->last_func; 1539 } 1540 1541 /** 1542 * wq_node_nr_active - Determine wq_node_nr_active to use 1543 * @wq: workqueue of interest 1544 * @node: NUMA node, can be %NUMA_NO_NODE 1545 * 1546 * Determine wq_node_nr_active to use for @wq on @node. Returns: 1547 * 1548 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active. 1549 * 1550 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE. 1551 * 1552 * - Otherwise, node_nr_active[@node]. 1553 */ 1554 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq, 1555 int node) 1556 { 1557 if (!(wq->flags & WQ_UNBOUND)) 1558 return NULL; 1559 1560 if (node == NUMA_NO_NODE) 1561 node = nr_node_ids; 1562 1563 return wq->node_nr_active[node]; 1564 } 1565 1566 /** 1567 * wq_update_node_max_active - Update per-node max_actives to use 1568 * @wq: workqueue to update 1569 * @off_cpu: CPU that's going down, -1 if a CPU is not going down 1570 * 1571 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is 1572 * distributed among nodes according to the proportions of numbers of online 1573 * cpus. The result is always between @wq->min_active and max_active. 1574 */ 1575 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu) 1576 { 1577 struct cpumask *effective = unbound_effective_cpumask(wq); 1578 int min_active = READ_ONCE(wq->min_active); 1579 int max_active = READ_ONCE(wq->max_active); 1580 int total_cpus, node; 1581 1582 lockdep_assert_held(&wq->mutex); 1583 1584 if (!wq_topo_initialized) 1585 return; 1586 1587 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective)) 1588 off_cpu = -1; 1589 1590 total_cpus = cpumask_weight_and(effective, cpu_online_mask); 1591 if (off_cpu >= 0) 1592 total_cpus--; 1593 1594 /* If all CPUs of the wq get offline, use the default values */ 1595 if (unlikely(!total_cpus)) { 1596 for_each_node(node) 1597 wq_node_nr_active(wq, node)->max = min_active; 1598 1599 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; 1600 return; 1601 } 1602 1603 for_each_node(node) { 1604 int node_cpus; 1605 1606 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node)); 1607 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node) 1608 node_cpus--; 1609 1610 wq_node_nr_active(wq, node)->max = 1611 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus), 1612 min_active, max_active); 1613 } 1614 1615 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; 1616 } 1617 1618 /** 1619 * get_pwq - get an extra reference on the specified pool_workqueue 1620 * @pwq: pool_workqueue to get 1621 * 1622 * Obtain an extra reference on @pwq. The caller should guarantee that 1623 * @pwq has positive refcnt and be holding the matching pool->lock. 1624 */ 1625 static void get_pwq(struct pool_workqueue *pwq) 1626 { 1627 lockdep_assert_held(&pwq->pool->lock); 1628 WARN_ON_ONCE(pwq->refcnt <= 0); 1629 pwq->refcnt++; 1630 } 1631 1632 /** 1633 * put_pwq - put a pool_workqueue reference 1634 * @pwq: pool_workqueue to put 1635 * 1636 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1637 * destruction. The caller should be holding the matching pool->lock. 1638 */ 1639 static void put_pwq(struct pool_workqueue *pwq) 1640 { 1641 lockdep_assert_held(&pwq->pool->lock); 1642 if (likely(--pwq->refcnt)) 1643 return; 1644 /* 1645 * @pwq can't be released under pool->lock, bounce to a dedicated 1646 * kthread_worker to avoid A-A deadlocks. 1647 */ 1648 kthread_queue_work(pwq_release_worker, &pwq->release_work); 1649 } 1650 1651 /** 1652 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1653 * @pwq: pool_workqueue to put (can be %NULL) 1654 * 1655 * put_pwq() with locking. This function also allows %NULL @pwq. 1656 */ 1657 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1658 { 1659 if (pwq) { 1660 /* 1661 * As both pwqs and pools are RCU protected, the 1662 * following lock operations are safe. 1663 */ 1664 raw_spin_lock_irq(&pwq->pool->lock); 1665 put_pwq(pwq); 1666 raw_spin_unlock_irq(&pwq->pool->lock); 1667 } 1668 } 1669 1670 static bool pwq_is_empty(struct pool_workqueue *pwq) 1671 { 1672 return !pwq->nr_active && list_empty(&pwq->inactive_works); 1673 } 1674 1675 static void __pwq_activate_work(struct pool_workqueue *pwq, 1676 struct work_struct *work) 1677 { 1678 unsigned long *wdb = work_data_bits(work); 1679 1680 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE)); 1681 trace_workqueue_activate_work(work); 1682 if (list_empty(&pwq->pool->worklist)) 1683 pwq->pool->watchdog_ts = jiffies; 1684 move_linked_works(work, &pwq->pool->worklist, NULL); 1685 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb); 1686 } 1687 1688 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna) 1689 { 1690 int max = READ_ONCE(nna->max); 1691 1692 while (true) { 1693 int old, tmp; 1694 1695 old = atomic_read(&nna->nr); 1696 if (old >= max) 1697 return false; 1698 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1); 1699 if (tmp == old) 1700 return true; 1701 } 1702 } 1703 1704 /** 1705 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq 1706 * @pwq: pool_workqueue of interest 1707 * @fill: max_active may have increased, try to increase concurrency level 1708 * 1709 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is 1710 * successfully obtained. %false otherwise. 1711 */ 1712 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill) 1713 { 1714 struct workqueue_struct *wq = pwq->wq; 1715 struct worker_pool *pool = pwq->pool; 1716 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node); 1717 bool obtained = false; 1718 1719 lockdep_assert_held(&pool->lock); 1720 1721 if (!nna) { 1722 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */ 1723 obtained = pwq->nr_active < READ_ONCE(wq->max_active); 1724 goto out; 1725 } 1726 1727 if (unlikely(pwq->plugged)) 1728 return false; 1729 1730 /* 1731 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is 1732 * already waiting on $nna, pwq_dec_nr_active() will maintain the 1733 * concurrency level. Don't jump the line. 1734 * 1735 * We need to ignore the pending test after max_active has increased as 1736 * pwq_dec_nr_active() can only maintain the concurrency level but not 1737 * increase it. This is indicated by @fill. 1738 */ 1739 if (!list_empty(&pwq->pending_node) && likely(!fill)) 1740 goto out; 1741 1742 obtained = tryinc_node_nr_active(nna); 1743 if (obtained) 1744 goto out; 1745 1746 /* 1747 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs 1748 * and try again. The smp_mb() is paired with the implied memory barrier 1749 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either 1750 * we see the decremented $nna->nr or they see non-empty 1751 * $nna->pending_pwqs. 1752 */ 1753 raw_spin_lock(&nna->lock); 1754 1755 if (list_empty(&pwq->pending_node)) 1756 list_add_tail(&pwq->pending_node, &nna->pending_pwqs); 1757 else if (likely(!fill)) 1758 goto out_unlock; 1759 1760 smp_mb(); 1761 1762 obtained = tryinc_node_nr_active(nna); 1763 1764 /* 1765 * If @fill, @pwq might have already been pending. Being spuriously 1766 * pending in cold paths doesn't affect anything. Let's leave it be. 1767 */ 1768 if (obtained && likely(!fill)) 1769 list_del_init(&pwq->pending_node); 1770 1771 out_unlock: 1772 raw_spin_unlock(&nna->lock); 1773 out: 1774 if (obtained) 1775 pwq->nr_active++; 1776 return obtained; 1777 } 1778 1779 /** 1780 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq 1781 * @pwq: pool_workqueue of interest 1782 * @fill: max_active may have increased, try to increase concurrency level 1783 * 1784 * Activate the first inactive work item of @pwq if available and allowed by 1785 * max_active limit. 1786 * 1787 * Returns %true if an inactive work item has been activated. %false if no 1788 * inactive work item is found or max_active limit is reached. 1789 */ 1790 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill) 1791 { 1792 struct work_struct *work = 1793 list_first_entry_or_null(&pwq->inactive_works, 1794 struct work_struct, entry); 1795 1796 if (work && pwq_tryinc_nr_active(pwq, fill)) { 1797 __pwq_activate_work(pwq, work); 1798 return true; 1799 } else { 1800 return false; 1801 } 1802 } 1803 1804 /** 1805 * unplug_oldest_pwq - unplug the oldest pool_workqueue 1806 * @wq: workqueue_struct where its oldest pwq is to be unplugged 1807 * 1808 * This function should only be called for ordered workqueues where only the 1809 * oldest pwq is unplugged, the others are plugged to suspend execution to 1810 * ensure proper work item ordering:: 1811 * 1812 * dfl_pwq --------------+ [P] - plugged 1813 * | 1814 * v 1815 * pwqs -> A -> B [P] -> C [P] (newest) 1816 * | | | 1817 * 1 3 5 1818 * | | | 1819 * 2 4 6 1820 * 1821 * When the oldest pwq is drained and removed, this function should be called 1822 * to unplug the next oldest one to start its work item execution. Note that 1823 * pwq's are linked into wq->pwqs with the oldest first, so the first one in 1824 * the list is the oldest. 1825 */ 1826 static void unplug_oldest_pwq(struct workqueue_struct *wq) 1827 { 1828 struct pool_workqueue *pwq; 1829 1830 lockdep_assert_held(&wq->mutex); 1831 1832 /* Caller should make sure that pwqs isn't empty before calling */ 1833 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue, 1834 pwqs_node); 1835 raw_spin_lock_irq(&pwq->pool->lock); 1836 if (pwq->plugged) { 1837 pwq->plugged = false; 1838 if (pwq_activate_first_inactive(pwq, true)) 1839 kick_pool(pwq->pool); 1840 } 1841 raw_spin_unlock_irq(&pwq->pool->lock); 1842 } 1843 1844 /** 1845 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active 1846 * @nna: wq_node_nr_active to activate a pending pwq for 1847 * @caller_pool: worker_pool the caller is locking 1848 * 1849 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked. 1850 * @caller_pool may be unlocked and relocked to lock other worker_pools. 1851 */ 1852 static void node_activate_pending_pwq(struct wq_node_nr_active *nna, 1853 struct worker_pool *caller_pool) 1854 { 1855 struct worker_pool *locked_pool = caller_pool; 1856 struct pool_workqueue *pwq; 1857 struct work_struct *work; 1858 1859 lockdep_assert_held(&caller_pool->lock); 1860 1861 raw_spin_lock(&nna->lock); 1862 retry: 1863 pwq = list_first_entry_or_null(&nna->pending_pwqs, 1864 struct pool_workqueue, pending_node); 1865 if (!pwq) 1866 goto out_unlock; 1867 1868 /* 1869 * If @pwq is for a different pool than @locked_pool, we need to lock 1870 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock 1871 * / lock dance. For that, we also need to release @nna->lock as it's 1872 * nested inside pool locks. 1873 */ 1874 if (pwq->pool != locked_pool) { 1875 raw_spin_unlock(&locked_pool->lock); 1876 locked_pool = pwq->pool; 1877 if (!raw_spin_trylock(&locked_pool->lock)) { 1878 raw_spin_unlock(&nna->lock); 1879 raw_spin_lock(&locked_pool->lock); 1880 raw_spin_lock(&nna->lock); 1881 goto retry; 1882 } 1883 } 1884 1885 /* 1886 * $pwq may not have any inactive work items due to e.g. cancellations. 1887 * Drop it from pending_pwqs and see if there's another one. 1888 */ 1889 work = list_first_entry_or_null(&pwq->inactive_works, 1890 struct work_struct, entry); 1891 if (!work) { 1892 list_del_init(&pwq->pending_node); 1893 goto retry; 1894 } 1895 1896 /* 1897 * Acquire an nr_active count and activate the inactive work item. If 1898 * $pwq still has inactive work items, rotate it to the end of the 1899 * pending_pwqs so that we round-robin through them. This means that 1900 * inactive work items are not activated in queueing order which is fine 1901 * given that there has never been any ordering across different pwqs. 1902 */ 1903 if (likely(tryinc_node_nr_active(nna))) { 1904 pwq->nr_active++; 1905 __pwq_activate_work(pwq, work); 1906 1907 if (list_empty(&pwq->inactive_works)) 1908 list_del_init(&pwq->pending_node); 1909 else 1910 list_move_tail(&pwq->pending_node, &nna->pending_pwqs); 1911 1912 /* if activating a foreign pool, make sure it's running */ 1913 if (pwq->pool != caller_pool) 1914 kick_pool(pwq->pool); 1915 } 1916 1917 out_unlock: 1918 raw_spin_unlock(&nna->lock); 1919 if (locked_pool != caller_pool) { 1920 raw_spin_unlock(&locked_pool->lock); 1921 raw_spin_lock(&caller_pool->lock); 1922 } 1923 } 1924 1925 /** 1926 * pwq_dec_nr_active - Retire an active count 1927 * @pwq: pool_workqueue of interest 1928 * 1929 * Decrement @pwq's nr_active and try to activate the first inactive work item. 1930 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock. 1931 */ 1932 static void pwq_dec_nr_active(struct pool_workqueue *pwq) 1933 { 1934 struct worker_pool *pool = pwq->pool; 1935 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node); 1936 1937 lockdep_assert_held(&pool->lock); 1938 1939 /* 1940 * @pwq->nr_active should be decremented for both percpu and unbound 1941 * workqueues. 1942 */ 1943 pwq->nr_active--; 1944 1945 /* 1946 * For a percpu workqueue, it's simple. Just need to kick the first 1947 * inactive work item on @pwq itself. 1948 */ 1949 if (!nna) { 1950 pwq_activate_first_inactive(pwq, false); 1951 return; 1952 } 1953 1954 /* 1955 * If @pwq is for an unbound workqueue, it's more complicated because 1956 * multiple pwqs and pools may be sharing the nr_active count. When a 1957 * pwq needs to wait for an nr_active count, it puts itself on 1958 * $nna->pending_pwqs. The following atomic_dec_return()'s implied 1959 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to 1960 * guarantee that either we see non-empty pending_pwqs or they see 1961 * decremented $nna->nr. 1962 * 1963 * $nna->max may change as CPUs come online/offline and @pwq->wq's 1964 * max_active gets updated. However, it is guaranteed to be equal to or 1965 * larger than @pwq->wq->min_active which is above zero unless freezing. 1966 * This maintains the forward progress guarantee. 1967 */ 1968 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max)) 1969 return; 1970 1971 if (!list_empty(&nna->pending_pwqs)) 1972 node_activate_pending_pwq(nna, pool); 1973 } 1974 1975 /** 1976 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1977 * @pwq: pwq of interest 1978 * @work_data: work_data of work which left the queue 1979 * 1980 * A work either has completed or is removed from pending queue, 1981 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1982 * 1983 * NOTE: 1984 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock 1985 * and thus should be called after all other state updates for the in-flight 1986 * work item is complete. 1987 * 1988 * CONTEXT: 1989 * raw_spin_lock_irq(pool->lock). 1990 */ 1991 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 1992 { 1993 int color = get_work_color(work_data); 1994 1995 if (!(work_data & WORK_STRUCT_INACTIVE)) 1996 pwq_dec_nr_active(pwq); 1997 1998 pwq->nr_in_flight[color]--; 1999 2000 /* is flush in progress and are we at the flushing tip? */ 2001 if (likely(pwq->flush_color != color)) 2002 goto out_put; 2003 2004 /* are there still in-flight works? */ 2005 if (pwq->nr_in_flight[color]) 2006 goto out_put; 2007 2008 /* this pwq is done, clear flush_color */ 2009 pwq->flush_color = -1; 2010 2011 /* 2012 * If this was the last pwq, wake up the first flusher. It 2013 * will handle the rest. 2014 */ 2015 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 2016 complete(&pwq->wq->first_flusher->done); 2017 out_put: 2018 put_pwq(pwq); 2019 } 2020 2021 /** 2022 * try_to_grab_pending - steal work item from worklist and disable irq 2023 * @work: work item to steal 2024 * @cflags: %WORK_CANCEL_ flags 2025 * @irq_flags: place to store irq state 2026 * 2027 * Try to grab PENDING bit of @work. This function can handle @work in any 2028 * stable state - idle, on timer or on worklist. 2029 * 2030 * Return: 2031 * 2032 * ======== ================================================================ 2033 * 1 if @work was pending and we successfully stole PENDING 2034 * 0 if @work was idle and we claimed PENDING 2035 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 2036 * ======== ================================================================ 2037 * 2038 * Note: 2039 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 2040 * interrupted while holding PENDING and @work off queue, irq must be 2041 * disabled on entry. This, combined with delayed_work->timer being 2042 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 2043 * 2044 * On successful return, >= 0, irq is disabled and the caller is 2045 * responsible for releasing it using local_irq_restore(*@irq_flags). 2046 * 2047 * This function is safe to call from any context including IRQ handler. 2048 */ 2049 static int try_to_grab_pending(struct work_struct *work, u32 cflags, 2050 unsigned long *irq_flags) 2051 { 2052 struct worker_pool *pool; 2053 struct pool_workqueue *pwq; 2054 2055 local_irq_save(*irq_flags); 2056 2057 /* try to steal the timer if it exists */ 2058 if (cflags & WORK_CANCEL_DELAYED) { 2059 struct delayed_work *dwork = to_delayed_work(work); 2060 2061 /* 2062 * dwork->timer is irqsafe. If del_timer() fails, it's 2063 * guaranteed that the timer is not queued anywhere and not 2064 * running on the local CPU. 2065 */ 2066 if (likely(del_timer(&dwork->timer))) 2067 return 1; 2068 } 2069 2070 /* try to claim PENDING the normal way */ 2071 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2072 return 0; 2073 2074 rcu_read_lock(); 2075 /* 2076 * The queueing is in progress, or it is already queued. Try to 2077 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2078 */ 2079 pool = get_work_pool(work); 2080 if (!pool) 2081 goto fail; 2082 2083 raw_spin_lock(&pool->lock); 2084 /* 2085 * work->data is guaranteed to point to pwq only while the work 2086 * item is queued on pwq->wq, and both updating work->data to point 2087 * to pwq on queueing and to pool on dequeueing are done under 2088 * pwq->pool->lock. This in turn guarantees that, if work->data 2089 * points to pwq which is associated with a locked pool, the work 2090 * item is currently queued on that pool. 2091 */ 2092 pwq = get_work_pwq(work); 2093 if (pwq && pwq->pool == pool) { 2094 unsigned long work_data = *work_data_bits(work); 2095 2096 debug_work_deactivate(work); 2097 2098 /* 2099 * A cancelable inactive work item must be in the 2100 * pwq->inactive_works since a queued barrier can't be 2101 * canceled (see the comments in insert_wq_barrier()). 2102 * 2103 * An inactive work item cannot be deleted directly because 2104 * it might have linked barrier work items which, if left 2105 * on the inactive_works list, will confuse pwq->nr_active 2106 * management later on and cause stall. Move the linked 2107 * barrier work items to the worklist when deleting the grabbed 2108 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that 2109 * it doesn't participate in nr_active management in later 2110 * pwq_dec_nr_in_flight(). 2111 */ 2112 if (work_data & WORK_STRUCT_INACTIVE) 2113 move_linked_works(work, &pwq->pool->worklist, NULL); 2114 2115 list_del_init(&work->entry); 2116 2117 /* 2118 * work->data points to pwq iff queued. Let's point to pool. As 2119 * this destroys work->data needed by the next step, stash it. 2120 */ 2121 set_work_pool_and_keep_pending(work, pool->id, 2122 pool_offq_flags(pool)); 2123 2124 /* must be the last step, see the function comment */ 2125 pwq_dec_nr_in_flight(pwq, work_data); 2126 2127 raw_spin_unlock(&pool->lock); 2128 rcu_read_unlock(); 2129 return 1; 2130 } 2131 raw_spin_unlock(&pool->lock); 2132 fail: 2133 rcu_read_unlock(); 2134 local_irq_restore(*irq_flags); 2135 return -EAGAIN; 2136 } 2137 2138 /** 2139 * work_grab_pending - steal work item from worklist and disable irq 2140 * @work: work item to steal 2141 * @cflags: %WORK_CANCEL_ flags 2142 * @irq_flags: place to store IRQ state 2143 * 2144 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer 2145 * or on worklist. 2146 * 2147 * Can be called from any context. IRQ is disabled on return with IRQ state 2148 * stored in *@irq_flags. The caller is responsible for re-enabling it using 2149 * local_irq_restore(). 2150 * 2151 * Returns %true if @work was pending. %false if idle. 2152 */ 2153 static bool work_grab_pending(struct work_struct *work, u32 cflags, 2154 unsigned long *irq_flags) 2155 { 2156 int ret; 2157 2158 while (true) { 2159 ret = try_to_grab_pending(work, cflags, irq_flags); 2160 if (ret >= 0) 2161 return ret; 2162 cpu_relax(); 2163 } 2164 } 2165 2166 /** 2167 * insert_work - insert a work into a pool 2168 * @pwq: pwq @work belongs to 2169 * @work: work to insert 2170 * @head: insertion point 2171 * @extra_flags: extra WORK_STRUCT_* flags to set 2172 * 2173 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 2174 * work_struct flags. 2175 * 2176 * CONTEXT: 2177 * raw_spin_lock_irq(pool->lock). 2178 */ 2179 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 2180 struct list_head *head, unsigned int extra_flags) 2181 { 2182 debug_work_activate(work); 2183 2184 /* record the work call stack in order to print it in KASAN reports */ 2185 kasan_record_aux_stack_noalloc(work); 2186 2187 /* we own @work, set data and link */ 2188 set_work_pwq(work, pwq, extra_flags); 2189 list_add_tail(&work->entry, head); 2190 get_pwq(pwq); 2191 } 2192 2193 /* 2194 * Test whether @work is being queued from another work executing on the 2195 * same workqueue. 2196 */ 2197 static bool is_chained_work(struct workqueue_struct *wq) 2198 { 2199 struct worker *worker; 2200 2201 worker = current_wq_worker(); 2202 /* 2203 * Return %true iff I'm a worker executing a work item on @wq. If 2204 * I'm @worker, it's safe to dereference it without locking. 2205 */ 2206 return worker && worker->current_pwq->wq == wq; 2207 } 2208 2209 /* 2210 * When queueing an unbound work item to a wq, prefer local CPU if allowed 2211 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 2212 * avoid perturbing sensitive tasks. 2213 */ 2214 static int wq_select_unbound_cpu(int cpu) 2215 { 2216 int new_cpu; 2217 2218 if (likely(!wq_debug_force_rr_cpu)) { 2219 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 2220 return cpu; 2221 } else { 2222 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 2223 } 2224 2225 new_cpu = __this_cpu_read(wq_rr_cpu_last); 2226 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 2227 if (unlikely(new_cpu >= nr_cpu_ids)) { 2228 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 2229 if (unlikely(new_cpu >= nr_cpu_ids)) 2230 return cpu; 2231 } 2232 __this_cpu_write(wq_rr_cpu_last, new_cpu); 2233 2234 return new_cpu; 2235 } 2236 2237 static void __queue_work(int cpu, struct workqueue_struct *wq, 2238 struct work_struct *work) 2239 { 2240 struct pool_workqueue *pwq; 2241 struct worker_pool *last_pool, *pool; 2242 unsigned int work_flags; 2243 unsigned int req_cpu = cpu; 2244 2245 /* 2246 * While a work item is PENDING && off queue, a task trying to 2247 * steal the PENDING will busy-loop waiting for it to either get 2248 * queued or lose PENDING. Grabbing PENDING and queueing should 2249 * happen with IRQ disabled. 2250 */ 2251 lockdep_assert_irqs_disabled(); 2252 2253 /* 2254 * For a draining wq, only works from the same workqueue are 2255 * allowed. The __WQ_DESTROYING helps to spot the issue that 2256 * queues a new work item to a wq after destroy_workqueue(wq). 2257 */ 2258 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 2259 WARN_ON_ONCE(!is_chained_work(wq)))) 2260 return; 2261 rcu_read_lock(); 2262 retry: 2263 /* pwq which will be used unless @work is executing elsewhere */ 2264 if (req_cpu == WORK_CPU_UNBOUND) { 2265 if (wq->flags & WQ_UNBOUND) 2266 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 2267 else 2268 cpu = raw_smp_processor_id(); 2269 } 2270 2271 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu)); 2272 pool = pwq->pool; 2273 2274 /* 2275 * If @work was previously on a different pool, it might still be 2276 * running there, in which case the work needs to be queued on that 2277 * pool to guarantee non-reentrancy. 2278 * 2279 * For ordered workqueue, work items must be queued on the newest pwq 2280 * for accurate order management. Guaranteed order also guarantees 2281 * non-reentrancy. See the comments above unplug_oldest_pwq(). 2282 */ 2283 last_pool = get_work_pool(work); 2284 if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) { 2285 struct worker *worker; 2286 2287 raw_spin_lock(&last_pool->lock); 2288 2289 worker = find_worker_executing_work(last_pool, work); 2290 2291 if (worker && worker->current_pwq->wq == wq) { 2292 pwq = worker->current_pwq; 2293 pool = pwq->pool; 2294 WARN_ON_ONCE(pool != last_pool); 2295 } else { 2296 /* meh... not running there, queue here */ 2297 raw_spin_unlock(&last_pool->lock); 2298 raw_spin_lock(&pool->lock); 2299 } 2300 } else { 2301 raw_spin_lock(&pool->lock); 2302 } 2303 2304 /* 2305 * pwq is determined and locked. For unbound pools, we could have raced 2306 * with pwq release and it could already be dead. If its refcnt is zero, 2307 * repeat pwq selection. Note that unbound pwqs never die without 2308 * another pwq replacing it in cpu_pwq or while work items are executing 2309 * on it, so the retrying is guaranteed to make forward-progress. 2310 */ 2311 if (unlikely(!pwq->refcnt)) { 2312 if (wq->flags & WQ_UNBOUND) { 2313 raw_spin_unlock(&pool->lock); 2314 cpu_relax(); 2315 goto retry; 2316 } 2317 /* oops */ 2318 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 2319 wq->name, cpu); 2320 } 2321 2322 /* pwq determined, queue */ 2323 trace_workqueue_queue_work(req_cpu, pwq, work); 2324 2325 if (WARN_ON(!list_empty(&work->entry))) 2326 goto out; 2327 2328 pwq->nr_in_flight[pwq->work_color]++; 2329 work_flags = work_color_to_flags(pwq->work_color); 2330 2331 /* 2332 * Limit the number of concurrently active work items to max_active. 2333 * @work must also queue behind existing inactive work items to maintain 2334 * ordering when max_active changes. See wq_adjust_max_active(). 2335 */ 2336 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) { 2337 if (list_empty(&pool->worklist)) 2338 pool->watchdog_ts = jiffies; 2339 2340 trace_workqueue_activate_work(work); 2341 insert_work(pwq, work, &pool->worklist, work_flags); 2342 kick_pool(pool); 2343 } else { 2344 work_flags |= WORK_STRUCT_INACTIVE; 2345 insert_work(pwq, work, &pwq->inactive_works, work_flags); 2346 } 2347 2348 out: 2349 raw_spin_unlock(&pool->lock); 2350 rcu_read_unlock(); 2351 } 2352 2353 static bool clear_pending_if_disabled(struct work_struct *work) 2354 { 2355 unsigned long data = *work_data_bits(work); 2356 struct work_offq_data offqd; 2357 2358 if (likely((data & WORK_STRUCT_PWQ) || 2359 !(data & WORK_OFFQ_DISABLE_MASK))) 2360 return false; 2361 2362 work_offqd_unpack(&offqd, data); 2363 set_work_pool_and_clear_pending(work, offqd.pool_id, 2364 work_offqd_pack_flags(&offqd)); 2365 return true; 2366 } 2367 2368 /** 2369 * queue_work_on - queue work on specific cpu 2370 * @cpu: CPU number to execute work on 2371 * @wq: workqueue to use 2372 * @work: work to queue 2373 * 2374 * We queue the work to a specific CPU, the caller must ensure it 2375 * can't go away. Callers that fail to ensure that the specified 2376 * CPU cannot go away will execute on a randomly chosen CPU. 2377 * But note well that callers specifying a CPU that never has been 2378 * online will get a splat. 2379 * 2380 * Return: %false if @work was already on a queue, %true otherwise. 2381 */ 2382 bool queue_work_on(int cpu, struct workqueue_struct *wq, 2383 struct work_struct *work) 2384 { 2385 bool ret = false; 2386 unsigned long irq_flags; 2387 2388 local_irq_save(irq_flags); 2389 2390 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2391 !clear_pending_if_disabled(work)) { 2392 __queue_work(cpu, wq, work); 2393 ret = true; 2394 } 2395 2396 local_irq_restore(irq_flags); 2397 return ret; 2398 } 2399 EXPORT_SYMBOL(queue_work_on); 2400 2401 /** 2402 * select_numa_node_cpu - Select a CPU based on NUMA node 2403 * @node: NUMA node ID that we want to select a CPU from 2404 * 2405 * This function will attempt to find a "random" cpu available on a given 2406 * node. If there are no CPUs available on the given node it will return 2407 * WORK_CPU_UNBOUND indicating that we should just schedule to any 2408 * available CPU if we need to schedule this work. 2409 */ 2410 static int select_numa_node_cpu(int node) 2411 { 2412 int cpu; 2413 2414 /* Delay binding to CPU if node is not valid or online */ 2415 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 2416 return WORK_CPU_UNBOUND; 2417 2418 /* Use local node/cpu if we are already there */ 2419 cpu = raw_smp_processor_id(); 2420 if (node == cpu_to_node(cpu)) 2421 return cpu; 2422 2423 /* Use "random" otherwise know as "first" online CPU of node */ 2424 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 2425 2426 /* If CPU is valid return that, otherwise just defer */ 2427 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 2428 } 2429 2430 /** 2431 * queue_work_node - queue work on a "random" cpu for a given NUMA node 2432 * @node: NUMA node that we are targeting the work for 2433 * @wq: workqueue to use 2434 * @work: work to queue 2435 * 2436 * We queue the work to a "random" CPU within a given NUMA node. The basic 2437 * idea here is to provide a way to somehow associate work with a given 2438 * NUMA node. 2439 * 2440 * This function will only make a best effort attempt at getting this onto 2441 * the right NUMA node. If no node is requested or the requested node is 2442 * offline then we just fall back to standard queue_work behavior. 2443 * 2444 * Currently the "random" CPU ends up being the first available CPU in the 2445 * intersection of cpu_online_mask and the cpumask of the node, unless we 2446 * are running on the node. In that case we just use the current CPU. 2447 * 2448 * Return: %false if @work was already on a queue, %true otherwise. 2449 */ 2450 bool queue_work_node(int node, struct workqueue_struct *wq, 2451 struct work_struct *work) 2452 { 2453 unsigned long irq_flags; 2454 bool ret = false; 2455 2456 /* 2457 * This current implementation is specific to unbound workqueues. 2458 * Specifically we only return the first available CPU for a given 2459 * node instead of cycling through individual CPUs within the node. 2460 * 2461 * If this is used with a per-cpu workqueue then the logic in 2462 * workqueue_select_cpu_near would need to be updated to allow for 2463 * some round robin type logic. 2464 */ 2465 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 2466 2467 local_irq_save(irq_flags); 2468 2469 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2470 !clear_pending_if_disabled(work)) { 2471 int cpu = select_numa_node_cpu(node); 2472 2473 __queue_work(cpu, wq, work); 2474 ret = true; 2475 } 2476 2477 local_irq_restore(irq_flags); 2478 return ret; 2479 } 2480 EXPORT_SYMBOL_GPL(queue_work_node); 2481 2482 void delayed_work_timer_fn(struct timer_list *t) 2483 { 2484 struct delayed_work *dwork = from_timer(dwork, t, timer); 2485 2486 /* should have been called from irqsafe timer with irq already off */ 2487 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2488 } 2489 EXPORT_SYMBOL(delayed_work_timer_fn); 2490 2491 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 2492 struct delayed_work *dwork, unsigned long delay) 2493 { 2494 struct timer_list *timer = &dwork->timer; 2495 struct work_struct *work = &dwork->work; 2496 2497 WARN_ON_ONCE(!wq); 2498 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 2499 WARN_ON_ONCE(timer_pending(timer)); 2500 WARN_ON_ONCE(!list_empty(&work->entry)); 2501 2502 /* 2503 * If @delay is 0, queue @dwork->work immediately. This is for 2504 * both optimization and correctness. The earliest @timer can 2505 * expire is on the closest next tick and delayed_work users depend 2506 * on that there's no such delay when @delay is 0. 2507 */ 2508 if (!delay) { 2509 __queue_work(cpu, wq, &dwork->work); 2510 return; 2511 } 2512 2513 dwork->wq = wq; 2514 dwork->cpu = cpu; 2515 timer->expires = jiffies + delay; 2516 2517 if (housekeeping_enabled(HK_TYPE_TIMER)) { 2518 /* If the current cpu is a housekeeping cpu, use it. */ 2519 cpu = smp_processor_id(); 2520 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER)) 2521 cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 2522 add_timer_on(timer, cpu); 2523 } else { 2524 if (likely(cpu == WORK_CPU_UNBOUND)) 2525 add_timer_global(timer); 2526 else 2527 add_timer_on(timer, cpu); 2528 } 2529 } 2530 2531 /** 2532 * queue_delayed_work_on - queue work on specific CPU after delay 2533 * @cpu: CPU number to execute work on 2534 * @wq: workqueue to use 2535 * @dwork: work to queue 2536 * @delay: number of jiffies to wait before queueing 2537 * 2538 * Return: %false if @work was already on a queue, %true otherwise. If 2539 * @delay is zero and @dwork is idle, it will be scheduled for immediate 2540 * execution. 2541 */ 2542 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 2543 struct delayed_work *dwork, unsigned long delay) 2544 { 2545 struct work_struct *work = &dwork->work; 2546 bool ret = false; 2547 unsigned long irq_flags; 2548 2549 /* read the comment in __queue_work() */ 2550 local_irq_save(irq_flags); 2551 2552 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2553 !clear_pending_if_disabled(work)) { 2554 __queue_delayed_work(cpu, wq, dwork, delay); 2555 ret = true; 2556 } 2557 2558 local_irq_restore(irq_flags); 2559 return ret; 2560 } 2561 EXPORT_SYMBOL(queue_delayed_work_on); 2562 2563 /** 2564 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 2565 * @cpu: CPU number to execute work on 2566 * @wq: workqueue to use 2567 * @dwork: work to queue 2568 * @delay: number of jiffies to wait before queueing 2569 * 2570 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 2571 * modify @dwork's timer so that it expires after @delay. If @delay is 2572 * zero, @work is guaranteed to be scheduled immediately regardless of its 2573 * current state. 2574 * 2575 * Return: %false if @dwork was idle and queued, %true if @dwork was 2576 * pending and its timer was modified. 2577 * 2578 * This function is safe to call from any context including IRQ handler. 2579 * See try_to_grab_pending() for details. 2580 */ 2581 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 2582 struct delayed_work *dwork, unsigned long delay) 2583 { 2584 unsigned long irq_flags; 2585 bool ret; 2586 2587 ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags); 2588 2589 if (!clear_pending_if_disabled(&dwork->work)) 2590 __queue_delayed_work(cpu, wq, dwork, delay); 2591 2592 local_irq_restore(irq_flags); 2593 return ret; 2594 } 2595 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 2596 2597 static void rcu_work_rcufn(struct rcu_head *rcu) 2598 { 2599 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 2600 2601 /* read the comment in __queue_work() */ 2602 local_irq_disable(); 2603 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 2604 local_irq_enable(); 2605 } 2606 2607 /** 2608 * queue_rcu_work - queue work after a RCU grace period 2609 * @wq: workqueue to use 2610 * @rwork: work to queue 2611 * 2612 * Return: %false if @rwork was already pending, %true otherwise. Note 2613 * that a full RCU grace period is guaranteed only after a %true return. 2614 * While @rwork is guaranteed to be executed after a %false return, the 2615 * execution may happen before a full RCU grace period has passed. 2616 */ 2617 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 2618 { 2619 struct work_struct *work = &rwork->work; 2620 2621 /* 2622 * rcu_work can't be canceled or disabled. Warn if the user reached 2623 * inside @rwork and disabled the inner work. 2624 */ 2625 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2626 !WARN_ON_ONCE(clear_pending_if_disabled(work))) { 2627 rwork->wq = wq; 2628 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 2629 return true; 2630 } 2631 2632 return false; 2633 } 2634 EXPORT_SYMBOL(queue_rcu_work); 2635 2636 static struct worker *alloc_worker(int node) 2637 { 2638 struct worker *worker; 2639 2640 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 2641 if (worker) { 2642 INIT_LIST_HEAD(&worker->entry); 2643 INIT_LIST_HEAD(&worker->scheduled); 2644 INIT_LIST_HEAD(&worker->node); 2645 /* on creation a worker is in !idle && prep state */ 2646 worker->flags = WORKER_PREP; 2647 } 2648 return worker; 2649 } 2650 2651 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool) 2652 { 2653 if (pool->cpu < 0 && pool->attrs->affn_strict) 2654 return pool->attrs->__pod_cpumask; 2655 else 2656 return pool->attrs->cpumask; 2657 } 2658 2659 /** 2660 * worker_attach_to_pool() - attach a worker to a pool 2661 * @worker: worker to be attached 2662 * @pool: the target pool 2663 * 2664 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 2665 * cpu-binding of @worker are kept coordinated with the pool across 2666 * cpu-[un]hotplugs. 2667 */ 2668 static void worker_attach_to_pool(struct worker *worker, 2669 struct worker_pool *pool) 2670 { 2671 mutex_lock(&wq_pool_attach_mutex); 2672 2673 /* 2674 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable 2675 * across this function. See the comments above the flag definition for 2676 * details. BH workers are, while per-CPU, always DISASSOCIATED. 2677 */ 2678 if (pool->flags & POOL_DISASSOCIATED) { 2679 worker->flags |= WORKER_UNBOUND; 2680 } else { 2681 WARN_ON_ONCE(pool->flags & POOL_BH); 2682 kthread_set_per_cpu(worker->task, pool->cpu); 2683 } 2684 2685 if (worker->rescue_wq) 2686 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool)); 2687 2688 list_add_tail(&worker->node, &pool->workers); 2689 worker->pool = pool; 2690 2691 mutex_unlock(&wq_pool_attach_mutex); 2692 } 2693 2694 static void unbind_worker(struct worker *worker) 2695 { 2696 lockdep_assert_held(&wq_pool_attach_mutex); 2697 2698 kthread_set_per_cpu(worker->task, -1); 2699 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 2700 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 2701 else 2702 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2703 } 2704 2705 2706 static void detach_worker(struct worker *worker) 2707 { 2708 lockdep_assert_held(&wq_pool_attach_mutex); 2709 2710 unbind_worker(worker); 2711 list_del(&worker->node); 2712 worker->pool = NULL; 2713 } 2714 2715 /** 2716 * worker_detach_from_pool() - detach a worker from its pool 2717 * @worker: worker which is attached to its pool 2718 * 2719 * Undo the attaching which had been done in worker_attach_to_pool(). The 2720 * caller worker shouldn't access to the pool after detached except it has 2721 * other reference to the pool. 2722 */ 2723 static void worker_detach_from_pool(struct worker *worker) 2724 { 2725 struct worker_pool *pool = worker->pool; 2726 2727 /* there is one permanent BH worker per CPU which should never detach */ 2728 WARN_ON_ONCE(pool->flags & POOL_BH); 2729 2730 mutex_lock(&wq_pool_attach_mutex); 2731 detach_worker(worker); 2732 mutex_unlock(&wq_pool_attach_mutex); 2733 2734 /* clear leftover flags without pool->lock after it is detached */ 2735 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 2736 } 2737 2738 static int format_worker_id(char *buf, size_t size, struct worker *worker, 2739 struct worker_pool *pool) 2740 { 2741 if (worker->rescue_wq) 2742 return scnprintf(buf, size, "kworker/R-%s", 2743 worker->rescue_wq->name); 2744 2745 if (pool) { 2746 if (pool->cpu >= 0) 2747 return scnprintf(buf, size, "kworker/%d:%d%s", 2748 pool->cpu, worker->id, 2749 pool->attrs->nice < 0 ? "H" : ""); 2750 else 2751 return scnprintf(buf, size, "kworker/u%d:%d", 2752 pool->id, worker->id); 2753 } else { 2754 return scnprintf(buf, size, "kworker/dying"); 2755 } 2756 } 2757 2758 /** 2759 * create_worker - create a new workqueue worker 2760 * @pool: pool the new worker will belong to 2761 * 2762 * Create and start a new worker which is attached to @pool. 2763 * 2764 * CONTEXT: 2765 * Might sleep. Does GFP_KERNEL allocations. 2766 * 2767 * Return: 2768 * Pointer to the newly created worker. 2769 */ 2770 static struct worker *create_worker(struct worker_pool *pool) 2771 { 2772 struct worker *worker; 2773 int id; 2774 2775 /* ID is needed to determine kthread name */ 2776 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 2777 if (id < 0) { 2778 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 2779 ERR_PTR(id)); 2780 return NULL; 2781 } 2782 2783 worker = alloc_worker(pool->node); 2784 if (!worker) { 2785 pr_err_once("workqueue: Failed to allocate a worker\n"); 2786 goto fail; 2787 } 2788 2789 worker->id = id; 2790 2791 if (!(pool->flags & POOL_BH)) { 2792 char id_buf[WORKER_ID_LEN]; 2793 2794 format_worker_id(id_buf, sizeof(id_buf), worker, pool); 2795 worker->task = kthread_create_on_node(worker_thread, worker, 2796 pool->node, "%s", id_buf); 2797 if (IS_ERR(worker->task)) { 2798 if (PTR_ERR(worker->task) == -EINTR) { 2799 pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n", 2800 id_buf); 2801 } else { 2802 pr_err_once("workqueue: Failed to create a worker thread: %pe", 2803 worker->task); 2804 } 2805 goto fail; 2806 } 2807 2808 set_user_nice(worker->task, pool->attrs->nice); 2809 kthread_bind_mask(worker->task, pool_allowed_cpus(pool)); 2810 } 2811 2812 /* successful, attach the worker to the pool */ 2813 worker_attach_to_pool(worker, pool); 2814 2815 /* start the newly created worker */ 2816 raw_spin_lock_irq(&pool->lock); 2817 2818 worker->pool->nr_workers++; 2819 worker_enter_idle(worker); 2820 2821 /* 2822 * @worker is waiting on a completion in kthread() and will trigger hung 2823 * check if not woken up soon. As kick_pool() is noop if @pool is empty, 2824 * wake it up explicitly. 2825 */ 2826 if (worker->task) 2827 wake_up_process(worker->task); 2828 2829 raw_spin_unlock_irq(&pool->lock); 2830 2831 return worker; 2832 2833 fail: 2834 ida_free(&pool->worker_ida, id); 2835 kfree(worker); 2836 return NULL; 2837 } 2838 2839 static void detach_dying_workers(struct list_head *cull_list) 2840 { 2841 struct worker *worker; 2842 2843 list_for_each_entry(worker, cull_list, entry) 2844 detach_worker(worker); 2845 } 2846 2847 static void reap_dying_workers(struct list_head *cull_list) 2848 { 2849 struct worker *worker, *tmp; 2850 2851 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2852 list_del_init(&worker->entry); 2853 kthread_stop_put(worker->task); 2854 kfree(worker); 2855 } 2856 } 2857 2858 /** 2859 * set_worker_dying - Tag a worker for destruction 2860 * @worker: worker to be destroyed 2861 * @list: transfer worker away from its pool->idle_list and into list 2862 * 2863 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2864 * should be idle. 2865 * 2866 * CONTEXT: 2867 * raw_spin_lock_irq(pool->lock). 2868 */ 2869 static void set_worker_dying(struct worker *worker, struct list_head *list) 2870 { 2871 struct worker_pool *pool = worker->pool; 2872 2873 lockdep_assert_held(&pool->lock); 2874 lockdep_assert_held(&wq_pool_attach_mutex); 2875 2876 /* sanity check frenzy */ 2877 if (WARN_ON(worker->current_work) || 2878 WARN_ON(!list_empty(&worker->scheduled)) || 2879 WARN_ON(!(worker->flags & WORKER_IDLE))) 2880 return; 2881 2882 pool->nr_workers--; 2883 pool->nr_idle--; 2884 2885 worker->flags |= WORKER_DIE; 2886 2887 list_move(&worker->entry, list); 2888 2889 /* get an extra task struct reference for later kthread_stop_put() */ 2890 get_task_struct(worker->task); 2891 } 2892 2893 /** 2894 * idle_worker_timeout - check if some idle workers can now be deleted. 2895 * @t: The pool's idle_timer that just expired 2896 * 2897 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2898 * worker_leave_idle(), as a worker flicking between idle and active while its 2899 * pool is at the too_many_workers() tipping point would cause too much timer 2900 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2901 * it expire and re-evaluate things from there. 2902 */ 2903 static void idle_worker_timeout(struct timer_list *t) 2904 { 2905 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2906 bool do_cull = false; 2907 2908 if (work_pending(&pool->idle_cull_work)) 2909 return; 2910 2911 raw_spin_lock_irq(&pool->lock); 2912 2913 if (too_many_workers(pool)) { 2914 struct worker *worker; 2915 unsigned long expires; 2916 2917 /* idle_list is kept in LIFO order, check the last one */ 2918 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2919 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2920 do_cull = !time_before(jiffies, expires); 2921 2922 if (!do_cull) 2923 mod_timer(&pool->idle_timer, expires); 2924 } 2925 raw_spin_unlock_irq(&pool->lock); 2926 2927 if (do_cull) 2928 queue_work(system_unbound_wq, &pool->idle_cull_work); 2929 } 2930 2931 /** 2932 * idle_cull_fn - cull workers that have been idle for too long. 2933 * @work: the pool's work for handling these idle workers 2934 * 2935 * This goes through a pool's idle workers and gets rid of those that have been 2936 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2937 * 2938 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2939 * culled, so this also resets worker affinity. This requires a sleepable 2940 * context, hence the split between timer callback and work item. 2941 */ 2942 static void idle_cull_fn(struct work_struct *work) 2943 { 2944 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2945 LIST_HEAD(cull_list); 2946 2947 /* 2948 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2949 * cannot proceed beyong set_pf_worker() in its self-destruct path. 2950 * This is required as a previously-preempted worker could run after 2951 * set_worker_dying() has happened but before detach_dying_workers() did. 2952 */ 2953 mutex_lock(&wq_pool_attach_mutex); 2954 raw_spin_lock_irq(&pool->lock); 2955 2956 while (too_many_workers(pool)) { 2957 struct worker *worker; 2958 unsigned long expires; 2959 2960 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2961 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2962 2963 if (time_before(jiffies, expires)) { 2964 mod_timer(&pool->idle_timer, expires); 2965 break; 2966 } 2967 2968 set_worker_dying(worker, &cull_list); 2969 } 2970 2971 raw_spin_unlock_irq(&pool->lock); 2972 detach_dying_workers(&cull_list); 2973 mutex_unlock(&wq_pool_attach_mutex); 2974 2975 reap_dying_workers(&cull_list); 2976 } 2977 2978 static void send_mayday(struct work_struct *work) 2979 { 2980 struct pool_workqueue *pwq = get_work_pwq(work); 2981 struct workqueue_struct *wq = pwq->wq; 2982 2983 lockdep_assert_held(&wq_mayday_lock); 2984 2985 if (!wq->rescuer) 2986 return; 2987 2988 /* mayday mayday mayday */ 2989 if (list_empty(&pwq->mayday_node)) { 2990 /* 2991 * If @pwq is for an unbound wq, its base ref may be put at 2992 * any time due to an attribute change. Pin @pwq until the 2993 * rescuer is done with it. 2994 */ 2995 get_pwq(pwq); 2996 list_add_tail(&pwq->mayday_node, &wq->maydays); 2997 wake_up_process(wq->rescuer->task); 2998 pwq->stats[PWQ_STAT_MAYDAY]++; 2999 } 3000 } 3001 3002 static void pool_mayday_timeout(struct timer_list *t) 3003 { 3004 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 3005 struct work_struct *work; 3006 3007 raw_spin_lock_irq(&pool->lock); 3008 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 3009 3010 if (need_to_create_worker(pool)) { 3011 /* 3012 * We've been trying to create a new worker but 3013 * haven't been successful. We might be hitting an 3014 * allocation deadlock. Send distress signals to 3015 * rescuers. 3016 */ 3017 list_for_each_entry(work, &pool->worklist, entry) 3018 send_mayday(work); 3019 } 3020 3021 raw_spin_unlock(&wq_mayday_lock); 3022 raw_spin_unlock_irq(&pool->lock); 3023 3024 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 3025 } 3026 3027 /** 3028 * maybe_create_worker - create a new worker if necessary 3029 * @pool: pool to create a new worker for 3030 * 3031 * Create a new worker for @pool if necessary. @pool is guaranteed to 3032 * have at least one idle worker on return from this function. If 3033 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 3034 * sent to all rescuers with works scheduled on @pool to resolve 3035 * possible allocation deadlock. 3036 * 3037 * On return, need_to_create_worker() is guaranteed to be %false and 3038 * may_start_working() %true. 3039 * 3040 * LOCKING: 3041 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3042 * multiple times. Does GFP_KERNEL allocations. Called only from 3043 * manager. 3044 */ 3045 static void maybe_create_worker(struct worker_pool *pool) 3046 __releases(&pool->lock) 3047 __acquires(&pool->lock) 3048 { 3049 restart: 3050 raw_spin_unlock_irq(&pool->lock); 3051 3052 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 3053 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 3054 3055 while (true) { 3056 if (create_worker(pool) || !need_to_create_worker(pool)) 3057 break; 3058 3059 schedule_timeout_interruptible(CREATE_COOLDOWN); 3060 3061 if (!need_to_create_worker(pool)) 3062 break; 3063 } 3064 3065 del_timer_sync(&pool->mayday_timer); 3066 raw_spin_lock_irq(&pool->lock); 3067 /* 3068 * This is necessary even after a new worker was just successfully 3069 * created as @pool->lock was dropped and the new worker might have 3070 * already become busy. 3071 */ 3072 if (need_to_create_worker(pool)) 3073 goto restart; 3074 } 3075 3076 /** 3077 * manage_workers - manage worker pool 3078 * @worker: self 3079 * 3080 * Assume the manager role and manage the worker pool @worker belongs 3081 * to. At any given time, there can be only zero or one manager per 3082 * pool. The exclusion is handled automatically by this function. 3083 * 3084 * The caller can safely start processing works on false return. On 3085 * true return, it's guaranteed that need_to_create_worker() is false 3086 * and may_start_working() is true. 3087 * 3088 * CONTEXT: 3089 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3090 * multiple times. Does GFP_KERNEL allocations. 3091 * 3092 * Return: 3093 * %false if the pool doesn't need management and the caller can safely 3094 * start processing works, %true if management function was performed and 3095 * the conditions that the caller verified before calling the function may 3096 * no longer be true. 3097 */ 3098 static bool manage_workers(struct worker *worker) 3099 { 3100 struct worker_pool *pool = worker->pool; 3101 3102 if (pool->flags & POOL_MANAGER_ACTIVE) 3103 return false; 3104 3105 pool->flags |= POOL_MANAGER_ACTIVE; 3106 pool->manager = worker; 3107 3108 maybe_create_worker(pool); 3109 3110 pool->manager = NULL; 3111 pool->flags &= ~POOL_MANAGER_ACTIVE; 3112 rcuwait_wake_up(&manager_wait); 3113 return true; 3114 } 3115 3116 /** 3117 * process_one_work - process single work 3118 * @worker: self 3119 * @work: work to process 3120 * 3121 * Process @work. This function contains all the logics necessary to 3122 * process a single work including synchronization against and 3123 * interaction with other workers on the same cpu, queueing and 3124 * flushing. As long as context requirement is met, any worker can 3125 * call this function to process a work. 3126 * 3127 * CONTEXT: 3128 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 3129 */ 3130 static void process_one_work(struct worker *worker, struct work_struct *work) 3131 __releases(&pool->lock) 3132 __acquires(&pool->lock) 3133 { 3134 struct pool_workqueue *pwq = get_work_pwq(work); 3135 struct worker_pool *pool = worker->pool; 3136 unsigned long work_data; 3137 int lockdep_start_depth, rcu_start_depth; 3138 bool bh_draining = pool->flags & POOL_BH_DRAINING; 3139 #ifdef CONFIG_LOCKDEP 3140 /* 3141 * It is permissible to free the struct work_struct from 3142 * inside the function that is called from it, this we need to 3143 * take into account for lockdep too. To avoid bogus "held 3144 * lock freed" warnings as well as problems when looking into 3145 * work->lockdep_map, make a copy and use that here. 3146 */ 3147 struct lockdep_map lockdep_map; 3148 3149 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 3150 #endif 3151 /* ensure we're on the correct CPU */ 3152 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 3153 raw_smp_processor_id() != pool->cpu); 3154 3155 /* claim and dequeue */ 3156 debug_work_deactivate(work); 3157 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 3158 worker->current_work = work; 3159 worker->current_func = work->func; 3160 worker->current_pwq = pwq; 3161 if (worker->task) 3162 worker->current_at = worker->task->se.sum_exec_runtime; 3163 work_data = *work_data_bits(work); 3164 worker->current_color = get_work_color(work_data); 3165 3166 /* 3167 * Record wq name for cmdline and debug reporting, may get 3168 * overridden through set_worker_desc(). 3169 */ 3170 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 3171 3172 list_del_init(&work->entry); 3173 3174 /* 3175 * CPU intensive works don't participate in concurrency management. 3176 * They're the scheduler's responsibility. This takes @worker out 3177 * of concurrency management and the next code block will chain 3178 * execution of the pending work items. 3179 */ 3180 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) 3181 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 3182 3183 /* 3184 * Kick @pool if necessary. It's always noop for per-cpu worker pools 3185 * since nr_running would always be >= 1 at this point. This is used to 3186 * chain execution of the pending work items for WORKER_NOT_RUNNING 3187 * workers such as the UNBOUND and CPU_INTENSIVE ones. 3188 */ 3189 kick_pool(pool); 3190 3191 /* 3192 * Record the last pool and clear PENDING which should be the last 3193 * update to @work. Also, do this inside @pool->lock so that 3194 * PENDING and queued state changes happen together while IRQ is 3195 * disabled. 3196 */ 3197 set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool)); 3198 3199 pwq->stats[PWQ_STAT_STARTED]++; 3200 raw_spin_unlock_irq(&pool->lock); 3201 3202 rcu_start_depth = rcu_preempt_depth(); 3203 lockdep_start_depth = lockdep_depth(current); 3204 /* see drain_dead_softirq_workfn() */ 3205 if (!bh_draining) 3206 lock_map_acquire(&pwq->wq->lockdep_map); 3207 lock_map_acquire(&lockdep_map); 3208 /* 3209 * Strictly speaking we should mark the invariant state without holding 3210 * any locks, that is, before these two lock_map_acquire()'s. 3211 * 3212 * However, that would result in: 3213 * 3214 * A(W1) 3215 * WFC(C) 3216 * A(W1) 3217 * C(C) 3218 * 3219 * Which would create W1->C->W1 dependencies, even though there is no 3220 * actual deadlock possible. There are two solutions, using a 3221 * read-recursive acquire on the work(queue) 'locks', but this will then 3222 * hit the lockdep limitation on recursive locks, or simply discard 3223 * these locks. 3224 * 3225 * AFAICT there is no possible deadlock scenario between the 3226 * flush_work() and complete() primitives (except for single-threaded 3227 * workqueues), so hiding them isn't a problem. 3228 */ 3229 lockdep_invariant_state(true); 3230 trace_workqueue_execute_start(work); 3231 worker->current_func(work); 3232 /* 3233 * While we must be careful to not use "work" after this, the trace 3234 * point will only record its address. 3235 */ 3236 trace_workqueue_execute_end(work, worker->current_func); 3237 pwq->stats[PWQ_STAT_COMPLETED]++; 3238 lock_map_release(&lockdep_map); 3239 if (!bh_draining) 3240 lock_map_release(&pwq->wq->lockdep_map); 3241 3242 if (unlikely((worker->task && in_atomic()) || 3243 lockdep_depth(current) != lockdep_start_depth || 3244 rcu_preempt_depth() != rcu_start_depth)) { 3245 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n" 3246 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n", 3247 current->comm, task_pid_nr(current), preempt_count(), 3248 lockdep_start_depth, lockdep_depth(current), 3249 rcu_start_depth, rcu_preempt_depth(), 3250 worker->current_func); 3251 debug_show_held_locks(current); 3252 dump_stack(); 3253 } 3254 3255 /* 3256 * The following prevents a kworker from hogging CPU on !PREEMPTION 3257 * kernels, where a requeueing work item waiting for something to 3258 * happen could deadlock with stop_machine as such work item could 3259 * indefinitely requeue itself while all other CPUs are trapped in 3260 * stop_machine. At the same time, report a quiescent RCU state so 3261 * the same condition doesn't freeze RCU. 3262 */ 3263 if (worker->task) 3264 cond_resched(); 3265 3266 raw_spin_lock_irq(&pool->lock); 3267 3268 /* 3269 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked 3270 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than 3271 * wq_cpu_intensive_thresh_us. Clear it. 3272 */ 3273 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 3274 3275 /* tag the worker for identification in schedule() */ 3276 worker->last_func = worker->current_func; 3277 3278 /* we're done with it, release */ 3279 hash_del(&worker->hentry); 3280 worker->current_work = NULL; 3281 worker->current_func = NULL; 3282 worker->current_pwq = NULL; 3283 worker->current_color = INT_MAX; 3284 3285 /* must be the last step, see the function comment */ 3286 pwq_dec_nr_in_flight(pwq, work_data); 3287 } 3288 3289 /** 3290 * process_scheduled_works - process scheduled works 3291 * @worker: self 3292 * 3293 * Process all scheduled works. Please note that the scheduled list 3294 * may change while processing a work, so this function repeatedly 3295 * fetches a work from the top and executes it. 3296 * 3297 * CONTEXT: 3298 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3299 * multiple times. 3300 */ 3301 static void process_scheduled_works(struct worker *worker) 3302 { 3303 struct work_struct *work; 3304 bool first = true; 3305 3306 while ((work = list_first_entry_or_null(&worker->scheduled, 3307 struct work_struct, entry))) { 3308 if (first) { 3309 worker->pool->watchdog_ts = jiffies; 3310 first = false; 3311 } 3312 process_one_work(worker, work); 3313 } 3314 } 3315 3316 static void set_pf_worker(bool val) 3317 { 3318 mutex_lock(&wq_pool_attach_mutex); 3319 if (val) 3320 current->flags |= PF_WQ_WORKER; 3321 else 3322 current->flags &= ~PF_WQ_WORKER; 3323 mutex_unlock(&wq_pool_attach_mutex); 3324 } 3325 3326 /** 3327 * worker_thread - the worker thread function 3328 * @__worker: self 3329 * 3330 * The worker thread function. All workers belong to a worker_pool - 3331 * either a per-cpu one or dynamic unbound one. These workers process all 3332 * work items regardless of their specific target workqueue. The only 3333 * exception is work items which belong to workqueues with a rescuer which 3334 * will be explained in rescuer_thread(). 3335 * 3336 * Return: 0 3337 */ 3338 static int worker_thread(void *__worker) 3339 { 3340 struct worker *worker = __worker; 3341 struct worker_pool *pool = worker->pool; 3342 3343 /* tell the scheduler that this is a workqueue worker */ 3344 set_pf_worker(true); 3345 woke_up: 3346 raw_spin_lock_irq(&pool->lock); 3347 3348 /* am I supposed to die? */ 3349 if (unlikely(worker->flags & WORKER_DIE)) { 3350 raw_spin_unlock_irq(&pool->lock); 3351 set_pf_worker(false); 3352 3353 ida_free(&pool->worker_ida, worker->id); 3354 return 0; 3355 } 3356 3357 worker_leave_idle(worker); 3358 recheck: 3359 /* no more worker necessary? */ 3360 if (!need_more_worker(pool)) 3361 goto sleep; 3362 3363 /* do we need to manage? */ 3364 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 3365 goto recheck; 3366 3367 /* 3368 * ->scheduled list can only be filled while a worker is 3369 * preparing to process a work or actually processing it. 3370 * Make sure nobody diddled with it while I was sleeping. 3371 */ 3372 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3373 3374 /* 3375 * Finish PREP stage. We're guaranteed to have at least one idle 3376 * worker or that someone else has already assumed the manager 3377 * role. This is where @worker starts participating in concurrency 3378 * management if applicable and concurrency management is restored 3379 * after being rebound. See rebind_workers() for details. 3380 */ 3381 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3382 3383 do { 3384 struct work_struct *work = 3385 list_first_entry(&pool->worklist, 3386 struct work_struct, entry); 3387 3388 if (assign_work(work, worker, NULL)) 3389 process_scheduled_works(worker); 3390 } while (keep_working(pool)); 3391 3392 worker_set_flags(worker, WORKER_PREP); 3393 sleep: 3394 /* 3395 * pool->lock is held and there's no work to process and no need to 3396 * manage, sleep. Workers are woken up only while holding 3397 * pool->lock or from local cpu, so setting the current state 3398 * before releasing pool->lock is enough to prevent losing any 3399 * event. 3400 */ 3401 worker_enter_idle(worker); 3402 __set_current_state(TASK_IDLE); 3403 raw_spin_unlock_irq(&pool->lock); 3404 schedule(); 3405 goto woke_up; 3406 } 3407 3408 /** 3409 * rescuer_thread - the rescuer thread function 3410 * @__rescuer: self 3411 * 3412 * Workqueue rescuer thread function. There's one rescuer for each 3413 * workqueue which has WQ_MEM_RECLAIM set. 3414 * 3415 * Regular work processing on a pool may block trying to create a new 3416 * worker which uses GFP_KERNEL allocation which has slight chance of 3417 * developing into deadlock if some works currently on the same queue 3418 * need to be processed to satisfy the GFP_KERNEL allocation. This is 3419 * the problem rescuer solves. 3420 * 3421 * When such condition is possible, the pool summons rescuers of all 3422 * workqueues which have works queued on the pool and let them process 3423 * those works so that forward progress can be guaranteed. 3424 * 3425 * This should happen rarely. 3426 * 3427 * Return: 0 3428 */ 3429 static int rescuer_thread(void *__rescuer) 3430 { 3431 struct worker *rescuer = __rescuer; 3432 struct workqueue_struct *wq = rescuer->rescue_wq; 3433 bool should_stop; 3434 3435 set_user_nice(current, RESCUER_NICE_LEVEL); 3436 3437 /* 3438 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 3439 * doesn't participate in concurrency management. 3440 */ 3441 set_pf_worker(true); 3442 repeat: 3443 set_current_state(TASK_IDLE); 3444 3445 /* 3446 * By the time the rescuer is requested to stop, the workqueue 3447 * shouldn't have any work pending, but @wq->maydays may still have 3448 * pwq(s) queued. This can happen by non-rescuer workers consuming 3449 * all the work items before the rescuer got to them. Go through 3450 * @wq->maydays processing before acting on should_stop so that the 3451 * list is always empty on exit. 3452 */ 3453 should_stop = kthread_should_stop(); 3454 3455 /* see whether any pwq is asking for help */ 3456 raw_spin_lock_irq(&wq_mayday_lock); 3457 3458 while (!list_empty(&wq->maydays)) { 3459 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 3460 struct pool_workqueue, mayday_node); 3461 struct worker_pool *pool = pwq->pool; 3462 struct work_struct *work, *n; 3463 3464 __set_current_state(TASK_RUNNING); 3465 list_del_init(&pwq->mayday_node); 3466 3467 raw_spin_unlock_irq(&wq_mayday_lock); 3468 3469 worker_attach_to_pool(rescuer, pool); 3470 3471 raw_spin_lock_irq(&pool->lock); 3472 3473 /* 3474 * Slurp in all works issued via this workqueue and 3475 * process'em. 3476 */ 3477 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 3478 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 3479 if (get_work_pwq(work) == pwq && 3480 assign_work(work, rescuer, &n)) 3481 pwq->stats[PWQ_STAT_RESCUED]++; 3482 } 3483 3484 if (!list_empty(&rescuer->scheduled)) { 3485 process_scheduled_works(rescuer); 3486 3487 /* 3488 * The above execution of rescued work items could 3489 * have created more to rescue through 3490 * pwq_activate_first_inactive() or chained 3491 * queueing. Let's put @pwq back on mayday list so 3492 * that such back-to-back work items, which may be 3493 * being used to relieve memory pressure, don't 3494 * incur MAYDAY_INTERVAL delay inbetween. 3495 */ 3496 if (pwq->nr_active && need_to_create_worker(pool)) { 3497 raw_spin_lock(&wq_mayday_lock); 3498 /* 3499 * Queue iff we aren't racing destruction 3500 * and somebody else hasn't queued it already. 3501 */ 3502 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 3503 get_pwq(pwq); 3504 list_add_tail(&pwq->mayday_node, &wq->maydays); 3505 } 3506 raw_spin_unlock(&wq_mayday_lock); 3507 } 3508 } 3509 3510 /* 3511 * Put the reference grabbed by send_mayday(). @pool won't 3512 * go away while we're still attached to it. 3513 */ 3514 put_pwq(pwq); 3515 3516 /* 3517 * Leave this pool. Notify regular workers; otherwise, we end up 3518 * with 0 concurrency and stalling the execution. 3519 */ 3520 kick_pool(pool); 3521 3522 raw_spin_unlock_irq(&pool->lock); 3523 3524 worker_detach_from_pool(rescuer); 3525 3526 raw_spin_lock_irq(&wq_mayday_lock); 3527 } 3528 3529 raw_spin_unlock_irq(&wq_mayday_lock); 3530 3531 if (should_stop) { 3532 __set_current_state(TASK_RUNNING); 3533 set_pf_worker(false); 3534 return 0; 3535 } 3536 3537 /* rescuers should never participate in concurrency management */ 3538 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 3539 schedule(); 3540 goto repeat; 3541 } 3542 3543 static void bh_worker(struct worker *worker) 3544 { 3545 struct worker_pool *pool = worker->pool; 3546 int nr_restarts = BH_WORKER_RESTARTS; 3547 unsigned long end = jiffies + BH_WORKER_JIFFIES; 3548 3549 raw_spin_lock_irq(&pool->lock); 3550 worker_leave_idle(worker); 3551 3552 /* 3553 * This function follows the structure of worker_thread(). See there for 3554 * explanations on each step. 3555 */ 3556 if (!need_more_worker(pool)) 3557 goto done; 3558 3559 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3560 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3561 3562 do { 3563 struct work_struct *work = 3564 list_first_entry(&pool->worklist, 3565 struct work_struct, entry); 3566 3567 if (assign_work(work, worker, NULL)) 3568 process_scheduled_works(worker); 3569 } while (keep_working(pool) && 3570 --nr_restarts && time_before(jiffies, end)); 3571 3572 worker_set_flags(worker, WORKER_PREP); 3573 done: 3574 worker_enter_idle(worker); 3575 kick_pool(pool); 3576 raw_spin_unlock_irq(&pool->lock); 3577 } 3578 3579 /* 3580 * TODO: Convert all tasklet users to workqueue and use softirq directly. 3581 * 3582 * This is currently called from tasklet[_hi]action() and thus is also called 3583 * whenever there are tasklets to run. Let's do an early exit if there's nothing 3584 * queued. Once conversion from tasklet is complete, the need_more_worker() test 3585 * can be dropped. 3586 * 3587 * After full conversion, we'll add worker->softirq_action, directly use the 3588 * softirq action and obtain the worker pointer from the softirq_action pointer. 3589 */ 3590 void workqueue_softirq_action(bool highpri) 3591 { 3592 struct worker_pool *pool = 3593 &per_cpu(bh_worker_pools, smp_processor_id())[highpri]; 3594 if (need_more_worker(pool)) 3595 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3596 } 3597 3598 struct wq_drain_dead_softirq_work { 3599 struct work_struct work; 3600 struct worker_pool *pool; 3601 struct completion done; 3602 }; 3603 3604 static void drain_dead_softirq_workfn(struct work_struct *work) 3605 { 3606 struct wq_drain_dead_softirq_work *dead_work = 3607 container_of(work, struct wq_drain_dead_softirq_work, work); 3608 struct worker_pool *pool = dead_work->pool; 3609 bool repeat; 3610 3611 /* 3612 * @pool's CPU is dead and we want to execute its still pending work 3613 * items from this BH work item which is running on a different CPU. As 3614 * its CPU is dead, @pool can't be kicked and, as work execution path 3615 * will be nested, a lockdep annotation needs to be suppressed. Mark 3616 * @pool with %POOL_BH_DRAINING for the special treatments. 3617 */ 3618 raw_spin_lock_irq(&pool->lock); 3619 pool->flags |= POOL_BH_DRAINING; 3620 raw_spin_unlock_irq(&pool->lock); 3621 3622 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3623 3624 raw_spin_lock_irq(&pool->lock); 3625 pool->flags &= ~POOL_BH_DRAINING; 3626 repeat = need_more_worker(pool); 3627 raw_spin_unlock_irq(&pool->lock); 3628 3629 /* 3630 * bh_worker() might hit consecutive execution limit and bail. If there 3631 * still are pending work items, reschedule self and return so that we 3632 * don't hog this CPU's BH. 3633 */ 3634 if (repeat) { 3635 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3636 queue_work(system_bh_highpri_wq, work); 3637 else 3638 queue_work(system_bh_wq, work); 3639 } else { 3640 complete(&dead_work->done); 3641 } 3642 } 3643 3644 /* 3645 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's 3646 * possible to allocate dead_work per CPU and avoid flushing. However, then we 3647 * have to worry about draining overlapping with CPU coming back online or 3648 * nesting (one CPU's dead_work queued on another CPU which is also dead and so 3649 * on). Let's keep it simple and drain them synchronously. These are BH work 3650 * items which shouldn't be requeued on the same pool. Shouldn't take long. 3651 */ 3652 void workqueue_softirq_dead(unsigned int cpu) 3653 { 3654 int i; 3655 3656 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 3657 struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i]; 3658 struct wq_drain_dead_softirq_work dead_work; 3659 3660 if (!need_more_worker(pool)) 3661 continue; 3662 3663 INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn); 3664 dead_work.pool = pool; 3665 init_completion(&dead_work.done); 3666 3667 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3668 queue_work(system_bh_highpri_wq, &dead_work.work); 3669 else 3670 queue_work(system_bh_wq, &dead_work.work); 3671 3672 wait_for_completion(&dead_work.done); 3673 destroy_work_on_stack(&dead_work.work); 3674 } 3675 } 3676 3677 /** 3678 * check_flush_dependency - check for flush dependency sanity 3679 * @target_wq: workqueue being flushed 3680 * @target_work: work item being flushed (NULL for workqueue flushes) 3681 * 3682 * %current is trying to flush the whole @target_wq or @target_work on it. 3683 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 3684 * reclaiming memory or running on a workqueue which doesn't have 3685 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 3686 * a deadlock. 3687 */ 3688 static void check_flush_dependency(struct workqueue_struct *target_wq, 3689 struct work_struct *target_work) 3690 { 3691 work_func_t target_func = target_work ? target_work->func : NULL; 3692 struct worker *worker; 3693 3694 if (target_wq->flags & WQ_MEM_RECLAIM) 3695 return; 3696 3697 worker = current_wq_worker(); 3698 3699 WARN_ONCE(current->flags & PF_MEMALLOC, 3700 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 3701 current->pid, current->comm, target_wq->name, target_func); 3702 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 3703 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 3704 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 3705 worker->current_pwq->wq->name, worker->current_func, 3706 target_wq->name, target_func); 3707 } 3708 3709 struct wq_barrier { 3710 struct work_struct work; 3711 struct completion done; 3712 struct task_struct *task; /* purely informational */ 3713 }; 3714 3715 static void wq_barrier_func(struct work_struct *work) 3716 { 3717 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 3718 complete(&barr->done); 3719 } 3720 3721 /** 3722 * insert_wq_barrier - insert a barrier work 3723 * @pwq: pwq to insert barrier into 3724 * @barr: wq_barrier to insert 3725 * @target: target work to attach @barr to 3726 * @worker: worker currently executing @target, NULL if @target is not executing 3727 * 3728 * @barr is linked to @target such that @barr is completed only after 3729 * @target finishes execution. Please note that the ordering 3730 * guarantee is observed only with respect to @target and on the local 3731 * cpu. 3732 * 3733 * Currently, a queued barrier can't be canceled. This is because 3734 * try_to_grab_pending() can't determine whether the work to be 3735 * grabbed is at the head of the queue and thus can't clear LINKED 3736 * flag of the previous work while there must be a valid next work 3737 * after a work with LINKED flag set. 3738 * 3739 * Note that when @worker is non-NULL, @target may be modified 3740 * underneath us, so we can't reliably determine pwq from @target. 3741 * 3742 * CONTEXT: 3743 * raw_spin_lock_irq(pool->lock). 3744 */ 3745 static void insert_wq_barrier(struct pool_workqueue *pwq, 3746 struct wq_barrier *barr, 3747 struct work_struct *target, struct worker *worker) 3748 { 3749 static __maybe_unused struct lock_class_key bh_key, thr_key; 3750 unsigned int work_flags = 0; 3751 unsigned int work_color; 3752 struct list_head *head; 3753 3754 /* 3755 * debugobject calls are safe here even with pool->lock locked 3756 * as we know for sure that this will not trigger any of the 3757 * checks and call back into the fixup functions where we 3758 * might deadlock. 3759 * 3760 * BH and threaded workqueues need separate lockdep keys to avoid 3761 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} 3762 * usage". 3763 */ 3764 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func, 3765 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key); 3766 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 3767 3768 init_completion_map(&barr->done, &target->lockdep_map); 3769 3770 barr->task = current; 3771 3772 /* The barrier work item does not participate in nr_active. */ 3773 work_flags |= WORK_STRUCT_INACTIVE; 3774 3775 /* 3776 * If @target is currently being executed, schedule the 3777 * barrier to the worker; otherwise, put it after @target. 3778 */ 3779 if (worker) { 3780 head = worker->scheduled.next; 3781 work_color = worker->current_color; 3782 } else { 3783 unsigned long *bits = work_data_bits(target); 3784 3785 head = target->entry.next; 3786 /* there can already be other linked works, inherit and set */ 3787 work_flags |= *bits & WORK_STRUCT_LINKED; 3788 work_color = get_work_color(*bits); 3789 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 3790 } 3791 3792 pwq->nr_in_flight[work_color]++; 3793 work_flags |= work_color_to_flags(work_color); 3794 3795 insert_work(pwq, &barr->work, head, work_flags); 3796 } 3797 3798 /** 3799 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 3800 * @wq: workqueue being flushed 3801 * @flush_color: new flush color, < 0 for no-op 3802 * @work_color: new work color, < 0 for no-op 3803 * 3804 * Prepare pwqs for workqueue flushing. 3805 * 3806 * If @flush_color is non-negative, flush_color on all pwqs should be 3807 * -1. If no pwq has in-flight commands at the specified color, all 3808 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 3809 * has in flight commands, its pwq->flush_color is set to 3810 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 3811 * wakeup logic is armed and %true is returned. 3812 * 3813 * The caller should have initialized @wq->first_flusher prior to 3814 * calling this function with non-negative @flush_color. If 3815 * @flush_color is negative, no flush color update is done and %false 3816 * is returned. 3817 * 3818 * If @work_color is non-negative, all pwqs should have the same 3819 * work_color which is previous to @work_color and all will be 3820 * advanced to @work_color. 3821 * 3822 * CONTEXT: 3823 * mutex_lock(wq->mutex). 3824 * 3825 * Return: 3826 * %true if @flush_color >= 0 and there's something to flush. %false 3827 * otherwise. 3828 */ 3829 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 3830 int flush_color, int work_color) 3831 { 3832 bool wait = false; 3833 struct pool_workqueue *pwq; 3834 3835 if (flush_color >= 0) { 3836 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 3837 atomic_set(&wq->nr_pwqs_to_flush, 1); 3838 } 3839 3840 for_each_pwq(pwq, wq) { 3841 struct worker_pool *pool = pwq->pool; 3842 3843 raw_spin_lock_irq(&pool->lock); 3844 3845 if (flush_color >= 0) { 3846 WARN_ON_ONCE(pwq->flush_color != -1); 3847 3848 if (pwq->nr_in_flight[flush_color]) { 3849 pwq->flush_color = flush_color; 3850 atomic_inc(&wq->nr_pwqs_to_flush); 3851 wait = true; 3852 } 3853 } 3854 3855 if (work_color >= 0) { 3856 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 3857 pwq->work_color = work_color; 3858 } 3859 3860 raw_spin_unlock_irq(&pool->lock); 3861 } 3862 3863 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 3864 complete(&wq->first_flusher->done); 3865 3866 return wait; 3867 } 3868 3869 static void touch_wq_lockdep_map(struct workqueue_struct *wq) 3870 { 3871 #ifdef CONFIG_LOCKDEP 3872 if (wq->flags & WQ_BH) 3873 local_bh_disable(); 3874 3875 lock_map_acquire(&wq->lockdep_map); 3876 lock_map_release(&wq->lockdep_map); 3877 3878 if (wq->flags & WQ_BH) 3879 local_bh_enable(); 3880 #endif 3881 } 3882 3883 static void touch_work_lockdep_map(struct work_struct *work, 3884 struct workqueue_struct *wq) 3885 { 3886 #ifdef CONFIG_LOCKDEP 3887 if (wq->flags & WQ_BH) 3888 local_bh_disable(); 3889 3890 lock_map_acquire(&work->lockdep_map); 3891 lock_map_release(&work->lockdep_map); 3892 3893 if (wq->flags & WQ_BH) 3894 local_bh_enable(); 3895 #endif 3896 } 3897 3898 /** 3899 * __flush_workqueue - ensure that any scheduled work has run to completion. 3900 * @wq: workqueue to flush 3901 * 3902 * This function sleeps until all work items which were queued on entry 3903 * have finished execution, but it is not livelocked by new incoming ones. 3904 */ 3905 void __flush_workqueue(struct workqueue_struct *wq) 3906 { 3907 struct wq_flusher this_flusher = { 3908 .list = LIST_HEAD_INIT(this_flusher.list), 3909 .flush_color = -1, 3910 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 3911 }; 3912 int next_color; 3913 3914 if (WARN_ON(!wq_online)) 3915 return; 3916 3917 touch_wq_lockdep_map(wq); 3918 3919 mutex_lock(&wq->mutex); 3920 3921 /* 3922 * Start-to-wait phase 3923 */ 3924 next_color = work_next_color(wq->work_color); 3925 3926 if (next_color != wq->flush_color) { 3927 /* 3928 * Color space is not full. The current work_color 3929 * becomes our flush_color and work_color is advanced 3930 * by one. 3931 */ 3932 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 3933 this_flusher.flush_color = wq->work_color; 3934 wq->work_color = next_color; 3935 3936 if (!wq->first_flusher) { 3937 /* no flush in progress, become the first flusher */ 3938 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3939 3940 wq->first_flusher = &this_flusher; 3941 3942 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 3943 wq->work_color)) { 3944 /* nothing to flush, done */ 3945 wq->flush_color = next_color; 3946 wq->first_flusher = NULL; 3947 goto out_unlock; 3948 } 3949 } else { 3950 /* wait in queue */ 3951 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 3952 list_add_tail(&this_flusher.list, &wq->flusher_queue); 3953 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3954 } 3955 } else { 3956 /* 3957 * Oops, color space is full, wait on overflow queue. 3958 * The next flush completion will assign us 3959 * flush_color and transfer to flusher_queue. 3960 */ 3961 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 3962 } 3963 3964 check_flush_dependency(wq, NULL); 3965 3966 mutex_unlock(&wq->mutex); 3967 3968 wait_for_completion(&this_flusher.done); 3969 3970 /* 3971 * Wake-up-and-cascade phase 3972 * 3973 * First flushers are responsible for cascading flushes and 3974 * handling overflow. Non-first flushers can simply return. 3975 */ 3976 if (READ_ONCE(wq->first_flusher) != &this_flusher) 3977 return; 3978 3979 mutex_lock(&wq->mutex); 3980 3981 /* we might have raced, check again with mutex held */ 3982 if (wq->first_flusher != &this_flusher) 3983 goto out_unlock; 3984 3985 WRITE_ONCE(wq->first_flusher, NULL); 3986 3987 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 3988 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3989 3990 while (true) { 3991 struct wq_flusher *next, *tmp; 3992 3993 /* complete all the flushers sharing the current flush color */ 3994 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 3995 if (next->flush_color != wq->flush_color) 3996 break; 3997 list_del_init(&next->list); 3998 complete(&next->done); 3999 } 4000 4001 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 4002 wq->flush_color != work_next_color(wq->work_color)); 4003 4004 /* this flush_color is finished, advance by one */ 4005 wq->flush_color = work_next_color(wq->flush_color); 4006 4007 /* one color has been freed, handle overflow queue */ 4008 if (!list_empty(&wq->flusher_overflow)) { 4009 /* 4010 * Assign the same color to all overflowed 4011 * flushers, advance work_color and append to 4012 * flusher_queue. This is the start-to-wait 4013 * phase for these overflowed flushers. 4014 */ 4015 list_for_each_entry(tmp, &wq->flusher_overflow, list) 4016 tmp->flush_color = wq->work_color; 4017 4018 wq->work_color = work_next_color(wq->work_color); 4019 4020 list_splice_tail_init(&wq->flusher_overflow, 4021 &wq->flusher_queue); 4022 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 4023 } 4024 4025 if (list_empty(&wq->flusher_queue)) { 4026 WARN_ON_ONCE(wq->flush_color != wq->work_color); 4027 break; 4028 } 4029 4030 /* 4031 * Need to flush more colors. Make the next flusher 4032 * the new first flusher and arm pwqs. 4033 */ 4034 WARN_ON_ONCE(wq->flush_color == wq->work_color); 4035 WARN_ON_ONCE(wq->flush_color != next->flush_color); 4036 4037 list_del_init(&next->list); 4038 wq->first_flusher = next; 4039 4040 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 4041 break; 4042 4043 /* 4044 * Meh... this color is already done, clear first 4045 * flusher and repeat cascading. 4046 */ 4047 wq->first_flusher = NULL; 4048 } 4049 4050 out_unlock: 4051 mutex_unlock(&wq->mutex); 4052 } 4053 EXPORT_SYMBOL(__flush_workqueue); 4054 4055 /** 4056 * drain_workqueue - drain a workqueue 4057 * @wq: workqueue to drain 4058 * 4059 * Wait until the workqueue becomes empty. While draining is in progress, 4060 * only chain queueing is allowed. IOW, only currently pending or running 4061 * work items on @wq can queue further work items on it. @wq is flushed 4062 * repeatedly until it becomes empty. The number of flushing is determined 4063 * by the depth of chaining and should be relatively short. Whine if it 4064 * takes too long. 4065 */ 4066 void drain_workqueue(struct workqueue_struct *wq) 4067 { 4068 unsigned int flush_cnt = 0; 4069 struct pool_workqueue *pwq; 4070 4071 /* 4072 * __queue_work() needs to test whether there are drainers, is much 4073 * hotter than drain_workqueue() and already looks at @wq->flags. 4074 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 4075 */ 4076 mutex_lock(&wq->mutex); 4077 if (!wq->nr_drainers++) 4078 wq->flags |= __WQ_DRAINING; 4079 mutex_unlock(&wq->mutex); 4080 reflush: 4081 __flush_workqueue(wq); 4082 4083 mutex_lock(&wq->mutex); 4084 4085 for_each_pwq(pwq, wq) { 4086 bool drained; 4087 4088 raw_spin_lock_irq(&pwq->pool->lock); 4089 drained = pwq_is_empty(pwq); 4090 raw_spin_unlock_irq(&pwq->pool->lock); 4091 4092 if (drained) 4093 continue; 4094 4095 if (++flush_cnt == 10 || 4096 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 4097 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 4098 wq->name, __func__, flush_cnt); 4099 4100 mutex_unlock(&wq->mutex); 4101 goto reflush; 4102 } 4103 4104 if (!--wq->nr_drainers) 4105 wq->flags &= ~__WQ_DRAINING; 4106 mutex_unlock(&wq->mutex); 4107 } 4108 EXPORT_SYMBOL_GPL(drain_workqueue); 4109 4110 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 4111 bool from_cancel) 4112 { 4113 struct worker *worker = NULL; 4114 struct worker_pool *pool; 4115 struct pool_workqueue *pwq; 4116 struct workqueue_struct *wq; 4117 4118 rcu_read_lock(); 4119 pool = get_work_pool(work); 4120 if (!pool) { 4121 rcu_read_unlock(); 4122 return false; 4123 } 4124 4125 raw_spin_lock_irq(&pool->lock); 4126 /* see the comment in try_to_grab_pending() with the same code */ 4127 pwq = get_work_pwq(work); 4128 if (pwq) { 4129 if (unlikely(pwq->pool != pool)) 4130 goto already_gone; 4131 } else { 4132 worker = find_worker_executing_work(pool, work); 4133 if (!worker) 4134 goto already_gone; 4135 pwq = worker->current_pwq; 4136 } 4137 4138 wq = pwq->wq; 4139 check_flush_dependency(wq, work); 4140 4141 insert_wq_barrier(pwq, barr, work, worker); 4142 raw_spin_unlock_irq(&pool->lock); 4143 4144 touch_work_lockdep_map(work, wq); 4145 4146 /* 4147 * Force a lock recursion deadlock when using flush_work() inside a 4148 * single-threaded or rescuer equipped workqueue. 4149 * 4150 * For single threaded workqueues the deadlock happens when the work 4151 * is after the work issuing the flush_work(). For rescuer equipped 4152 * workqueues the deadlock happens when the rescuer stalls, blocking 4153 * forward progress. 4154 */ 4155 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer)) 4156 touch_wq_lockdep_map(wq); 4157 4158 rcu_read_unlock(); 4159 return true; 4160 already_gone: 4161 raw_spin_unlock_irq(&pool->lock); 4162 rcu_read_unlock(); 4163 return false; 4164 } 4165 4166 static bool __flush_work(struct work_struct *work, bool from_cancel) 4167 { 4168 struct wq_barrier barr; 4169 4170 if (WARN_ON(!wq_online)) 4171 return false; 4172 4173 if (WARN_ON(!work->func)) 4174 return false; 4175 4176 if (!start_flush_work(work, &barr, from_cancel)) 4177 return false; 4178 4179 /* 4180 * start_flush_work() returned %true. If @from_cancel is set, we know 4181 * that @work must have been executing during start_flush_work() and 4182 * can't currently be queued. Its data must contain OFFQ bits. If @work 4183 * was queued on a BH workqueue, we also know that it was running in the 4184 * BH context and thus can be busy-waited. 4185 */ 4186 if (from_cancel) { 4187 unsigned long data = *work_data_bits(work); 4188 4189 if (!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) && 4190 (data & WORK_OFFQ_BH)) { 4191 /* 4192 * On RT, prevent a live lock when %current preempted 4193 * soft interrupt processing or prevents ksoftirqd from 4194 * running by keeping flipping BH. If the BH work item 4195 * runs on a different CPU then this has no effect other 4196 * than doing the BH disable/enable dance for nothing. 4197 * This is copied from 4198 * kernel/softirq.c::tasklet_unlock_spin_wait(). 4199 */ 4200 while (!try_wait_for_completion(&barr.done)) { 4201 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 4202 local_bh_disable(); 4203 local_bh_enable(); 4204 } else { 4205 cpu_relax(); 4206 } 4207 } 4208 goto out_destroy; 4209 } 4210 } 4211 4212 wait_for_completion(&barr.done); 4213 4214 out_destroy: 4215 destroy_work_on_stack(&barr.work); 4216 return true; 4217 } 4218 4219 /** 4220 * flush_work - wait for a work to finish executing the last queueing instance 4221 * @work: the work to flush 4222 * 4223 * Wait until @work has finished execution. @work is guaranteed to be idle 4224 * on return if it hasn't been requeued since flush started. 4225 * 4226 * Return: 4227 * %true if flush_work() waited for the work to finish execution, 4228 * %false if it was already idle. 4229 */ 4230 bool flush_work(struct work_struct *work) 4231 { 4232 might_sleep(); 4233 return __flush_work(work, false); 4234 } 4235 EXPORT_SYMBOL_GPL(flush_work); 4236 4237 /** 4238 * flush_delayed_work - wait for a dwork to finish executing the last queueing 4239 * @dwork: the delayed work to flush 4240 * 4241 * Delayed timer is cancelled and the pending work is queued for 4242 * immediate execution. Like flush_work(), this function only 4243 * considers the last queueing instance of @dwork. 4244 * 4245 * Return: 4246 * %true if flush_work() waited for the work to finish execution, 4247 * %false if it was already idle. 4248 */ 4249 bool flush_delayed_work(struct delayed_work *dwork) 4250 { 4251 local_irq_disable(); 4252 if (del_timer_sync(&dwork->timer)) 4253 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 4254 local_irq_enable(); 4255 return flush_work(&dwork->work); 4256 } 4257 EXPORT_SYMBOL(flush_delayed_work); 4258 4259 /** 4260 * flush_rcu_work - wait for a rwork to finish executing the last queueing 4261 * @rwork: the rcu work to flush 4262 * 4263 * Return: 4264 * %true if flush_rcu_work() waited for the work to finish execution, 4265 * %false if it was already idle. 4266 */ 4267 bool flush_rcu_work(struct rcu_work *rwork) 4268 { 4269 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 4270 rcu_barrier(); 4271 flush_work(&rwork->work); 4272 return true; 4273 } else { 4274 return flush_work(&rwork->work); 4275 } 4276 } 4277 EXPORT_SYMBOL(flush_rcu_work); 4278 4279 static void work_offqd_disable(struct work_offq_data *offqd) 4280 { 4281 const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1; 4282 4283 if (likely(offqd->disable < max)) 4284 offqd->disable++; 4285 else 4286 WARN_ONCE(true, "workqueue: work disable count overflowed\n"); 4287 } 4288 4289 static void work_offqd_enable(struct work_offq_data *offqd) 4290 { 4291 if (likely(offqd->disable > 0)) 4292 offqd->disable--; 4293 else 4294 WARN_ONCE(true, "workqueue: work disable count underflowed\n"); 4295 } 4296 4297 static bool __cancel_work(struct work_struct *work, u32 cflags) 4298 { 4299 struct work_offq_data offqd; 4300 unsigned long irq_flags; 4301 int ret; 4302 4303 ret = work_grab_pending(work, cflags, &irq_flags); 4304 4305 work_offqd_unpack(&offqd, *work_data_bits(work)); 4306 4307 if (cflags & WORK_CANCEL_DISABLE) 4308 work_offqd_disable(&offqd); 4309 4310 set_work_pool_and_clear_pending(work, offqd.pool_id, 4311 work_offqd_pack_flags(&offqd)); 4312 local_irq_restore(irq_flags); 4313 return ret; 4314 } 4315 4316 static bool __cancel_work_sync(struct work_struct *work, u32 cflags) 4317 { 4318 bool ret; 4319 4320 ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE); 4321 4322 if (*work_data_bits(work) & WORK_OFFQ_BH) 4323 WARN_ON_ONCE(in_hardirq()); 4324 else 4325 might_sleep(); 4326 4327 /* 4328 * Skip __flush_work() during early boot when we know that @work isn't 4329 * executing. This allows canceling during early boot. 4330 */ 4331 if (wq_online) 4332 __flush_work(work, true); 4333 4334 if (!(cflags & WORK_CANCEL_DISABLE)) 4335 enable_work(work); 4336 4337 return ret; 4338 } 4339 4340 /* 4341 * See cancel_delayed_work() 4342 */ 4343 bool cancel_work(struct work_struct *work) 4344 { 4345 return __cancel_work(work, 0); 4346 } 4347 EXPORT_SYMBOL(cancel_work); 4348 4349 /** 4350 * cancel_work_sync - cancel a work and wait for it to finish 4351 * @work: the work to cancel 4352 * 4353 * Cancel @work and wait for its execution to finish. This function can be used 4354 * even if the work re-queues itself or migrates to another workqueue. On return 4355 * from this function, @work is guaranteed to be not pending or executing on any 4356 * CPU as long as there aren't racing enqueues. 4357 * 4358 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's. 4359 * Use cancel_delayed_work_sync() instead. 4360 * 4361 * Must be called from a sleepable context if @work was last queued on a non-BH 4362 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4363 * if @work was last queued on a BH workqueue. 4364 * 4365 * Returns %true if @work was pending, %false otherwise. 4366 */ 4367 bool cancel_work_sync(struct work_struct *work) 4368 { 4369 return __cancel_work_sync(work, 0); 4370 } 4371 EXPORT_SYMBOL_GPL(cancel_work_sync); 4372 4373 /** 4374 * cancel_delayed_work - cancel a delayed work 4375 * @dwork: delayed_work to cancel 4376 * 4377 * Kill off a pending delayed_work. 4378 * 4379 * Return: %true if @dwork was pending and canceled; %false if it wasn't 4380 * pending. 4381 * 4382 * Note: 4383 * The work callback function may still be running on return, unless 4384 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 4385 * use cancel_delayed_work_sync() to wait on it. 4386 * 4387 * This function is safe to call from any context including IRQ handler. 4388 */ 4389 bool cancel_delayed_work(struct delayed_work *dwork) 4390 { 4391 return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED); 4392 } 4393 EXPORT_SYMBOL(cancel_delayed_work); 4394 4395 /** 4396 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 4397 * @dwork: the delayed work cancel 4398 * 4399 * This is cancel_work_sync() for delayed works. 4400 * 4401 * Return: 4402 * %true if @dwork was pending, %false otherwise. 4403 */ 4404 bool cancel_delayed_work_sync(struct delayed_work *dwork) 4405 { 4406 return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED); 4407 } 4408 EXPORT_SYMBOL(cancel_delayed_work_sync); 4409 4410 /** 4411 * disable_work - Disable and cancel a work item 4412 * @work: work item to disable 4413 * 4414 * Disable @work by incrementing its disable count and cancel it if currently 4415 * pending. As long as the disable count is non-zero, any attempt to queue @work 4416 * will fail and return %false. The maximum supported disable depth is 2 to the 4417 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536. 4418 * 4419 * Can be called from any context. Returns %true if @work was pending, %false 4420 * otherwise. 4421 */ 4422 bool disable_work(struct work_struct *work) 4423 { 4424 return __cancel_work(work, WORK_CANCEL_DISABLE); 4425 } 4426 EXPORT_SYMBOL_GPL(disable_work); 4427 4428 /** 4429 * disable_work_sync - Disable, cancel and drain a work item 4430 * @work: work item to disable 4431 * 4432 * Similar to disable_work() but also wait for @work to finish if currently 4433 * executing. 4434 * 4435 * Must be called from a sleepable context if @work was last queued on a non-BH 4436 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4437 * if @work was last queued on a BH workqueue. 4438 * 4439 * Returns %true if @work was pending, %false otherwise. 4440 */ 4441 bool disable_work_sync(struct work_struct *work) 4442 { 4443 return __cancel_work_sync(work, WORK_CANCEL_DISABLE); 4444 } 4445 EXPORT_SYMBOL_GPL(disable_work_sync); 4446 4447 /** 4448 * enable_work - Enable a work item 4449 * @work: work item to enable 4450 * 4451 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can 4452 * only be queued if its disable count is 0. 4453 * 4454 * Can be called from any context. Returns %true if the disable count reached 0. 4455 * Otherwise, %false. 4456 */ 4457 bool enable_work(struct work_struct *work) 4458 { 4459 struct work_offq_data offqd; 4460 unsigned long irq_flags; 4461 4462 work_grab_pending(work, 0, &irq_flags); 4463 4464 work_offqd_unpack(&offqd, *work_data_bits(work)); 4465 work_offqd_enable(&offqd); 4466 set_work_pool_and_clear_pending(work, offqd.pool_id, 4467 work_offqd_pack_flags(&offqd)); 4468 local_irq_restore(irq_flags); 4469 4470 return !offqd.disable; 4471 } 4472 EXPORT_SYMBOL_GPL(enable_work); 4473 4474 /** 4475 * disable_delayed_work - Disable and cancel a delayed work item 4476 * @dwork: delayed work item to disable 4477 * 4478 * disable_work() for delayed work items. 4479 */ 4480 bool disable_delayed_work(struct delayed_work *dwork) 4481 { 4482 return __cancel_work(&dwork->work, 4483 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4484 } 4485 EXPORT_SYMBOL_GPL(disable_delayed_work); 4486 4487 /** 4488 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item 4489 * @dwork: delayed work item to disable 4490 * 4491 * disable_work_sync() for delayed work items. 4492 */ 4493 bool disable_delayed_work_sync(struct delayed_work *dwork) 4494 { 4495 return __cancel_work_sync(&dwork->work, 4496 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4497 } 4498 EXPORT_SYMBOL_GPL(disable_delayed_work_sync); 4499 4500 /** 4501 * enable_delayed_work - Enable a delayed work item 4502 * @dwork: delayed work item to enable 4503 * 4504 * enable_work() for delayed work items. 4505 */ 4506 bool enable_delayed_work(struct delayed_work *dwork) 4507 { 4508 return enable_work(&dwork->work); 4509 } 4510 EXPORT_SYMBOL_GPL(enable_delayed_work); 4511 4512 /** 4513 * schedule_on_each_cpu - execute a function synchronously on each online CPU 4514 * @func: the function to call 4515 * 4516 * schedule_on_each_cpu() executes @func on each online CPU using the 4517 * system workqueue and blocks until all CPUs have completed. 4518 * schedule_on_each_cpu() is very slow. 4519 * 4520 * Return: 4521 * 0 on success, -errno on failure. 4522 */ 4523 int schedule_on_each_cpu(work_func_t func) 4524 { 4525 int cpu; 4526 struct work_struct __percpu *works; 4527 4528 works = alloc_percpu(struct work_struct); 4529 if (!works) 4530 return -ENOMEM; 4531 4532 cpus_read_lock(); 4533 4534 for_each_online_cpu(cpu) { 4535 struct work_struct *work = per_cpu_ptr(works, cpu); 4536 4537 INIT_WORK(work, func); 4538 schedule_work_on(cpu, work); 4539 } 4540 4541 for_each_online_cpu(cpu) 4542 flush_work(per_cpu_ptr(works, cpu)); 4543 4544 cpus_read_unlock(); 4545 free_percpu(works); 4546 return 0; 4547 } 4548 4549 /** 4550 * execute_in_process_context - reliably execute the routine with user context 4551 * @fn: the function to execute 4552 * @ew: guaranteed storage for the execute work structure (must 4553 * be available when the work executes) 4554 * 4555 * Executes the function immediately if process context is available, 4556 * otherwise schedules the function for delayed execution. 4557 * 4558 * Return: 0 - function was executed 4559 * 1 - function was scheduled for execution 4560 */ 4561 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 4562 { 4563 if (!in_interrupt()) { 4564 fn(&ew->work); 4565 return 0; 4566 } 4567 4568 INIT_WORK(&ew->work, fn); 4569 schedule_work(&ew->work); 4570 4571 return 1; 4572 } 4573 EXPORT_SYMBOL_GPL(execute_in_process_context); 4574 4575 /** 4576 * free_workqueue_attrs - free a workqueue_attrs 4577 * @attrs: workqueue_attrs to free 4578 * 4579 * Undo alloc_workqueue_attrs(). 4580 */ 4581 void free_workqueue_attrs(struct workqueue_attrs *attrs) 4582 { 4583 if (attrs) { 4584 free_cpumask_var(attrs->cpumask); 4585 free_cpumask_var(attrs->__pod_cpumask); 4586 kfree(attrs); 4587 } 4588 } 4589 4590 /** 4591 * alloc_workqueue_attrs - allocate a workqueue_attrs 4592 * 4593 * Allocate a new workqueue_attrs, initialize with default settings and 4594 * return it. 4595 * 4596 * Return: The allocated new workqueue_attr on success. %NULL on failure. 4597 */ 4598 struct workqueue_attrs *alloc_workqueue_attrs(void) 4599 { 4600 struct workqueue_attrs *attrs; 4601 4602 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 4603 if (!attrs) 4604 goto fail; 4605 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 4606 goto fail; 4607 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL)) 4608 goto fail; 4609 4610 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4611 attrs->affn_scope = WQ_AFFN_DFL; 4612 return attrs; 4613 fail: 4614 free_workqueue_attrs(attrs); 4615 return NULL; 4616 } 4617 4618 static void copy_workqueue_attrs(struct workqueue_attrs *to, 4619 const struct workqueue_attrs *from) 4620 { 4621 to->nice = from->nice; 4622 cpumask_copy(to->cpumask, from->cpumask); 4623 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask); 4624 to->affn_strict = from->affn_strict; 4625 4626 /* 4627 * Unlike hash and equality test, copying shouldn't ignore wq-only 4628 * fields as copying is used for both pool and wq attrs. Instead, 4629 * get_unbound_pool() explicitly clears the fields. 4630 */ 4631 to->affn_scope = from->affn_scope; 4632 to->ordered = from->ordered; 4633 } 4634 4635 /* 4636 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the 4637 * comments in 'struct workqueue_attrs' definition. 4638 */ 4639 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs) 4640 { 4641 attrs->affn_scope = WQ_AFFN_NR_TYPES; 4642 attrs->ordered = false; 4643 if (attrs->affn_strict) 4644 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4645 } 4646 4647 /* hash value of the content of @attr */ 4648 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 4649 { 4650 u32 hash = 0; 4651 4652 hash = jhash_1word(attrs->nice, hash); 4653 hash = jhash_1word(attrs->affn_strict, hash); 4654 hash = jhash(cpumask_bits(attrs->__pod_cpumask), 4655 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4656 if (!attrs->affn_strict) 4657 hash = jhash(cpumask_bits(attrs->cpumask), 4658 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4659 return hash; 4660 } 4661 4662 /* content equality test */ 4663 static bool wqattrs_equal(const struct workqueue_attrs *a, 4664 const struct workqueue_attrs *b) 4665 { 4666 if (a->nice != b->nice) 4667 return false; 4668 if (a->affn_strict != b->affn_strict) 4669 return false; 4670 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask)) 4671 return false; 4672 if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask)) 4673 return false; 4674 return true; 4675 } 4676 4677 /* Update @attrs with actually available CPUs */ 4678 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs, 4679 const cpumask_t *unbound_cpumask) 4680 { 4681 /* 4682 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If 4683 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to 4684 * @unbound_cpumask. 4685 */ 4686 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask); 4687 if (unlikely(cpumask_empty(attrs->cpumask))) 4688 cpumask_copy(attrs->cpumask, unbound_cpumask); 4689 } 4690 4691 /* find wq_pod_type to use for @attrs */ 4692 static const struct wq_pod_type * 4693 wqattrs_pod_type(const struct workqueue_attrs *attrs) 4694 { 4695 enum wq_affn_scope scope; 4696 struct wq_pod_type *pt; 4697 4698 /* to synchronize access to wq_affn_dfl */ 4699 lockdep_assert_held(&wq_pool_mutex); 4700 4701 if (attrs->affn_scope == WQ_AFFN_DFL) 4702 scope = wq_affn_dfl; 4703 else 4704 scope = attrs->affn_scope; 4705 4706 pt = &wq_pod_types[scope]; 4707 4708 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) && 4709 likely(pt->nr_pods)) 4710 return pt; 4711 4712 /* 4713 * Before workqueue_init_topology(), only SYSTEM is available which is 4714 * initialized in workqueue_init_early(). 4715 */ 4716 pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 4717 BUG_ON(!pt->nr_pods); 4718 return pt; 4719 } 4720 4721 /** 4722 * init_worker_pool - initialize a newly zalloc'd worker_pool 4723 * @pool: worker_pool to initialize 4724 * 4725 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 4726 * 4727 * Return: 0 on success, -errno on failure. Even on failure, all fields 4728 * inside @pool proper are initialized and put_unbound_pool() can be called 4729 * on @pool safely to release it. 4730 */ 4731 static int init_worker_pool(struct worker_pool *pool) 4732 { 4733 raw_spin_lock_init(&pool->lock); 4734 pool->id = -1; 4735 pool->cpu = -1; 4736 pool->node = NUMA_NO_NODE; 4737 pool->flags |= POOL_DISASSOCIATED; 4738 pool->watchdog_ts = jiffies; 4739 INIT_LIST_HEAD(&pool->worklist); 4740 INIT_LIST_HEAD(&pool->idle_list); 4741 hash_init(pool->busy_hash); 4742 4743 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 4744 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 4745 4746 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 4747 4748 INIT_LIST_HEAD(&pool->workers); 4749 4750 ida_init(&pool->worker_ida); 4751 INIT_HLIST_NODE(&pool->hash_node); 4752 pool->refcnt = 1; 4753 4754 /* shouldn't fail above this point */ 4755 pool->attrs = alloc_workqueue_attrs(); 4756 if (!pool->attrs) 4757 return -ENOMEM; 4758 4759 wqattrs_clear_for_pool(pool->attrs); 4760 4761 return 0; 4762 } 4763 4764 #ifdef CONFIG_LOCKDEP 4765 static void wq_init_lockdep(struct workqueue_struct *wq) 4766 { 4767 char *lock_name; 4768 4769 lockdep_register_key(&wq->key); 4770 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 4771 if (!lock_name) 4772 lock_name = wq->name; 4773 4774 wq->lock_name = lock_name; 4775 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 4776 } 4777 4778 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4779 { 4780 lockdep_unregister_key(&wq->key); 4781 } 4782 4783 static void wq_free_lockdep(struct workqueue_struct *wq) 4784 { 4785 if (wq->lock_name != wq->name) 4786 kfree(wq->lock_name); 4787 } 4788 #else 4789 static void wq_init_lockdep(struct workqueue_struct *wq) 4790 { 4791 } 4792 4793 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4794 { 4795 } 4796 4797 static void wq_free_lockdep(struct workqueue_struct *wq) 4798 { 4799 } 4800 #endif 4801 4802 static void free_node_nr_active(struct wq_node_nr_active **nna_ar) 4803 { 4804 int node; 4805 4806 for_each_node(node) { 4807 kfree(nna_ar[node]); 4808 nna_ar[node] = NULL; 4809 } 4810 4811 kfree(nna_ar[nr_node_ids]); 4812 nna_ar[nr_node_ids] = NULL; 4813 } 4814 4815 static void init_node_nr_active(struct wq_node_nr_active *nna) 4816 { 4817 nna->max = WQ_DFL_MIN_ACTIVE; 4818 atomic_set(&nna->nr, 0); 4819 raw_spin_lock_init(&nna->lock); 4820 INIT_LIST_HEAD(&nna->pending_pwqs); 4821 } 4822 4823 /* 4824 * Each node's nr_active counter will be accessed mostly from its own node and 4825 * should be allocated in the node. 4826 */ 4827 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar) 4828 { 4829 struct wq_node_nr_active *nna; 4830 int node; 4831 4832 for_each_node(node) { 4833 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node); 4834 if (!nna) 4835 goto err_free; 4836 init_node_nr_active(nna); 4837 nna_ar[node] = nna; 4838 } 4839 4840 /* [nr_node_ids] is used as the fallback */ 4841 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE); 4842 if (!nna) 4843 goto err_free; 4844 init_node_nr_active(nna); 4845 nna_ar[nr_node_ids] = nna; 4846 4847 return 0; 4848 4849 err_free: 4850 free_node_nr_active(nna_ar); 4851 return -ENOMEM; 4852 } 4853 4854 static void rcu_free_wq(struct rcu_head *rcu) 4855 { 4856 struct workqueue_struct *wq = 4857 container_of(rcu, struct workqueue_struct, rcu); 4858 4859 if (wq->flags & WQ_UNBOUND) 4860 free_node_nr_active(wq->node_nr_active); 4861 4862 wq_free_lockdep(wq); 4863 free_percpu(wq->cpu_pwq); 4864 free_workqueue_attrs(wq->unbound_attrs); 4865 kfree(wq); 4866 } 4867 4868 static void rcu_free_pool(struct rcu_head *rcu) 4869 { 4870 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 4871 4872 ida_destroy(&pool->worker_ida); 4873 free_workqueue_attrs(pool->attrs); 4874 kfree(pool); 4875 } 4876 4877 /** 4878 * put_unbound_pool - put a worker_pool 4879 * @pool: worker_pool to put 4880 * 4881 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 4882 * safe manner. get_unbound_pool() calls this function on its failure path 4883 * and this function should be able to release pools which went through, 4884 * successfully or not, init_worker_pool(). 4885 * 4886 * Should be called with wq_pool_mutex held. 4887 */ 4888 static void put_unbound_pool(struct worker_pool *pool) 4889 { 4890 struct worker *worker; 4891 LIST_HEAD(cull_list); 4892 4893 lockdep_assert_held(&wq_pool_mutex); 4894 4895 if (--pool->refcnt) 4896 return; 4897 4898 /* sanity checks */ 4899 if (WARN_ON(!(pool->cpu < 0)) || 4900 WARN_ON(!list_empty(&pool->worklist))) 4901 return; 4902 4903 /* release id and unhash */ 4904 if (pool->id >= 0) 4905 idr_remove(&worker_pool_idr, pool->id); 4906 hash_del(&pool->hash_node); 4907 4908 /* 4909 * Become the manager and destroy all workers. This prevents 4910 * @pool's workers from blocking on attach_mutex. We're the last 4911 * manager and @pool gets freed with the flag set. 4912 * 4913 * Having a concurrent manager is quite unlikely to happen as we can 4914 * only get here with 4915 * pwq->refcnt == pool->refcnt == 0 4916 * which implies no work queued to the pool, which implies no worker can 4917 * become the manager. However a worker could have taken the role of 4918 * manager before the refcnts dropped to 0, since maybe_create_worker() 4919 * drops pool->lock 4920 */ 4921 while (true) { 4922 rcuwait_wait_event(&manager_wait, 4923 !(pool->flags & POOL_MANAGER_ACTIVE), 4924 TASK_UNINTERRUPTIBLE); 4925 4926 mutex_lock(&wq_pool_attach_mutex); 4927 raw_spin_lock_irq(&pool->lock); 4928 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 4929 pool->flags |= POOL_MANAGER_ACTIVE; 4930 break; 4931 } 4932 raw_spin_unlock_irq(&pool->lock); 4933 mutex_unlock(&wq_pool_attach_mutex); 4934 } 4935 4936 while ((worker = first_idle_worker(pool))) 4937 set_worker_dying(worker, &cull_list); 4938 WARN_ON(pool->nr_workers || pool->nr_idle); 4939 raw_spin_unlock_irq(&pool->lock); 4940 4941 detach_dying_workers(&cull_list); 4942 4943 mutex_unlock(&wq_pool_attach_mutex); 4944 4945 reap_dying_workers(&cull_list); 4946 4947 /* shut down the timers */ 4948 del_timer_sync(&pool->idle_timer); 4949 cancel_work_sync(&pool->idle_cull_work); 4950 del_timer_sync(&pool->mayday_timer); 4951 4952 /* RCU protected to allow dereferences from get_work_pool() */ 4953 call_rcu(&pool->rcu, rcu_free_pool); 4954 } 4955 4956 /** 4957 * get_unbound_pool - get a worker_pool with the specified attributes 4958 * @attrs: the attributes of the worker_pool to get 4959 * 4960 * Obtain a worker_pool which has the same attributes as @attrs, bump the 4961 * reference count and return it. If there already is a matching 4962 * worker_pool, it will be used; otherwise, this function attempts to 4963 * create a new one. 4964 * 4965 * Should be called with wq_pool_mutex held. 4966 * 4967 * Return: On success, a worker_pool with the same attributes as @attrs. 4968 * On failure, %NULL. 4969 */ 4970 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 4971 { 4972 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA]; 4973 u32 hash = wqattrs_hash(attrs); 4974 struct worker_pool *pool; 4975 int pod, node = NUMA_NO_NODE; 4976 4977 lockdep_assert_held(&wq_pool_mutex); 4978 4979 /* do we already have a matching pool? */ 4980 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 4981 if (wqattrs_equal(pool->attrs, attrs)) { 4982 pool->refcnt++; 4983 return pool; 4984 } 4985 } 4986 4987 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */ 4988 for (pod = 0; pod < pt->nr_pods; pod++) { 4989 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) { 4990 node = pt->pod_node[pod]; 4991 break; 4992 } 4993 } 4994 4995 /* nope, create a new one */ 4996 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node); 4997 if (!pool || init_worker_pool(pool) < 0) 4998 goto fail; 4999 5000 pool->node = node; 5001 copy_workqueue_attrs(pool->attrs, attrs); 5002 wqattrs_clear_for_pool(pool->attrs); 5003 5004 if (worker_pool_assign_id(pool) < 0) 5005 goto fail; 5006 5007 /* create and start the initial worker */ 5008 if (wq_online && !create_worker(pool)) 5009 goto fail; 5010 5011 /* install */ 5012 hash_add(unbound_pool_hash, &pool->hash_node, hash); 5013 5014 return pool; 5015 fail: 5016 if (pool) 5017 put_unbound_pool(pool); 5018 return NULL; 5019 } 5020 5021 /* 5022 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero 5023 * refcnt and needs to be destroyed. 5024 */ 5025 static void pwq_release_workfn(struct kthread_work *work) 5026 { 5027 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 5028 release_work); 5029 struct workqueue_struct *wq = pwq->wq; 5030 struct worker_pool *pool = pwq->pool; 5031 bool is_last = false; 5032 5033 /* 5034 * When @pwq is not linked, it doesn't hold any reference to the 5035 * @wq, and @wq is invalid to access. 5036 */ 5037 if (!list_empty(&pwq->pwqs_node)) { 5038 mutex_lock(&wq->mutex); 5039 list_del_rcu(&pwq->pwqs_node); 5040 is_last = list_empty(&wq->pwqs); 5041 5042 /* 5043 * For ordered workqueue with a plugged dfl_pwq, restart it now. 5044 */ 5045 if (!is_last && (wq->flags & __WQ_ORDERED)) 5046 unplug_oldest_pwq(wq); 5047 5048 mutex_unlock(&wq->mutex); 5049 } 5050 5051 if (wq->flags & WQ_UNBOUND) { 5052 mutex_lock(&wq_pool_mutex); 5053 put_unbound_pool(pool); 5054 mutex_unlock(&wq_pool_mutex); 5055 } 5056 5057 if (!list_empty(&pwq->pending_node)) { 5058 struct wq_node_nr_active *nna = 5059 wq_node_nr_active(pwq->wq, pwq->pool->node); 5060 5061 raw_spin_lock_irq(&nna->lock); 5062 list_del_init(&pwq->pending_node); 5063 raw_spin_unlock_irq(&nna->lock); 5064 } 5065 5066 kfree_rcu(pwq, rcu); 5067 5068 /* 5069 * If we're the last pwq going away, @wq is already dead and no one 5070 * is gonna access it anymore. Schedule RCU free. 5071 */ 5072 if (is_last) { 5073 wq_unregister_lockdep(wq); 5074 call_rcu(&wq->rcu, rcu_free_wq); 5075 } 5076 } 5077 5078 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 5079 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 5080 struct worker_pool *pool) 5081 { 5082 BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK); 5083 5084 memset(pwq, 0, sizeof(*pwq)); 5085 5086 pwq->pool = pool; 5087 pwq->wq = wq; 5088 pwq->flush_color = -1; 5089 pwq->refcnt = 1; 5090 INIT_LIST_HEAD(&pwq->inactive_works); 5091 INIT_LIST_HEAD(&pwq->pending_node); 5092 INIT_LIST_HEAD(&pwq->pwqs_node); 5093 INIT_LIST_HEAD(&pwq->mayday_node); 5094 kthread_init_work(&pwq->release_work, pwq_release_workfn); 5095 } 5096 5097 /* sync @pwq with the current state of its associated wq and link it */ 5098 static void link_pwq(struct pool_workqueue *pwq) 5099 { 5100 struct workqueue_struct *wq = pwq->wq; 5101 5102 lockdep_assert_held(&wq->mutex); 5103 5104 /* may be called multiple times, ignore if already linked */ 5105 if (!list_empty(&pwq->pwqs_node)) 5106 return; 5107 5108 /* set the matching work_color */ 5109 pwq->work_color = wq->work_color; 5110 5111 /* link in @pwq */ 5112 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs); 5113 } 5114 5115 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 5116 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 5117 const struct workqueue_attrs *attrs) 5118 { 5119 struct worker_pool *pool; 5120 struct pool_workqueue *pwq; 5121 5122 lockdep_assert_held(&wq_pool_mutex); 5123 5124 pool = get_unbound_pool(attrs); 5125 if (!pool) 5126 return NULL; 5127 5128 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 5129 if (!pwq) { 5130 put_unbound_pool(pool); 5131 return NULL; 5132 } 5133 5134 init_pwq(pwq, wq, pool); 5135 return pwq; 5136 } 5137 5138 static void apply_wqattrs_lock(void) 5139 { 5140 mutex_lock(&wq_pool_mutex); 5141 } 5142 5143 static void apply_wqattrs_unlock(void) 5144 { 5145 mutex_unlock(&wq_pool_mutex); 5146 } 5147 5148 /** 5149 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod 5150 * @attrs: the wq_attrs of the default pwq of the target workqueue 5151 * @cpu: the target CPU 5152 * 5153 * Calculate the cpumask a workqueue with @attrs should use on @pod. 5154 * The result is stored in @attrs->__pod_cpumask. 5155 * 5156 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled 5157 * and @pod has online CPUs requested by @attrs, the returned cpumask is the 5158 * intersection of the possible CPUs of @pod and @attrs->cpumask. 5159 * 5160 * The caller is responsible for ensuring that the cpumask of @pod stays stable. 5161 */ 5162 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu) 5163 { 5164 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 5165 int pod = pt->cpu_pod[cpu]; 5166 5167 /* calculate possible CPUs in @pod that @attrs wants */ 5168 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask); 5169 /* does @pod have any online CPUs @attrs wants? */ 5170 if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) { 5171 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask); 5172 return; 5173 } 5174 } 5175 5176 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */ 5177 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq, 5178 int cpu, struct pool_workqueue *pwq) 5179 { 5180 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu); 5181 struct pool_workqueue *old_pwq; 5182 5183 lockdep_assert_held(&wq_pool_mutex); 5184 lockdep_assert_held(&wq->mutex); 5185 5186 /* link_pwq() can handle duplicate calls */ 5187 link_pwq(pwq); 5188 5189 old_pwq = rcu_access_pointer(*slot); 5190 rcu_assign_pointer(*slot, pwq); 5191 return old_pwq; 5192 } 5193 5194 /* context to store the prepared attrs & pwqs before applying */ 5195 struct apply_wqattrs_ctx { 5196 struct workqueue_struct *wq; /* target workqueue */ 5197 struct workqueue_attrs *attrs; /* attrs to apply */ 5198 struct list_head list; /* queued for batching commit */ 5199 struct pool_workqueue *dfl_pwq; 5200 struct pool_workqueue *pwq_tbl[]; 5201 }; 5202 5203 /* free the resources after success or abort */ 5204 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 5205 { 5206 if (ctx) { 5207 int cpu; 5208 5209 for_each_possible_cpu(cpu) 5210 put_pwq_unlocked(ctx->pwq_tbl[cpu]); 5211 put_pwq_unlocked(ctx->dfl_pwq); 5212 5213 free_workqueue_attrs(ctx->attrs); 5214 5215 kfree(ctx); 5216 } 5217 } 5218 5219 /* allocate the attrs and pwqs for later installation */ 5220 static struct apply_wqattrs_ctx * 5221 apply_wqattrs_prepare(struct workqueue_struct *wq, 5222 const struct workqueue_attrs *attrs, 5223 const cpumask_var_t unbound_cpumask) 5224 { 5225 struct apply_wqattrs_ctx *ctx; 5226 struct workqueue_attrs *new_attrs; 5227 int cpu; 5228 5229 lockdep_assert_held(&wq_pool_mutex); 5230 5231 if (WARN_ON(attrs->affn_scope < 0 || 5232 attrs->affn_scope >= WQ_AFFN_NR_TYPES)) 5233 return ERR_PTR(-EINVAL); 5234 5235 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL); 5236 5237 new_attrs = alloc_workqueue_attrs(); 5238 if (!ctx || !new_attrs) 5239 goto out_free; 5240 5241 /* 5242 * If something goes wrong during CPU up/down, we'll fall back to 5243 * the default pwq covering whole @attrs->cpumask. Always create 5244 * it even if we don't use it immediately. 5245 */ 5246 copy_workqueue_attrs(new_attrs, attrs); 5247 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask); 5248 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5249 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 5250 if (!ctx->dfl_pwq) 5251 goto out_free; 5252 5253 for_each_possible_cpu(cpu) { 5254 if (new_attrs->ordered) { 5255 ctx->dfl_pwq->refcnt++; 5256 ctx->pwq_tbl[cpu] = ctx->dfl_pwq; 5257 } else { 5258 wq_calc_pod_cpumask(new_attrs, cpu); 5259 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs); 5260 if (!ctx->pwq_tbl[cpu]) 5261 goto out_free; 5262 } 5263 } 5264 5265 /* save the user configured attrs and sanitize it. */ 5266 copy_workqueue_attrs(new_attrs, attrs); 5267 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 5268 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5269 ctx->attrs = new_attrs; 5270 5271 /* 5272 * For initialized ordered workqueues, there should only be one pwq 5273 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution 5274 * of newly queued work items until execution of older work items in 5275 * the old pwq's have completed. 5276 */ 5277 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)) 5278 ctx->dfl_pwq->plugged = true; 5279 5280 ctx->wq = wq; 5281 return ctx; 5282 5283 out_free: 5284 free_workqueue_attrs(new_attrs); 5285 apply_wqattrs_cleanup(ctx); 5286 return ERR_PTR(-ENOMEM); 5287 } 5288 5289 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 5290 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 5291 { 5292 int cpu; 5293 5294 /* all pwqs have been created successfully, let's install'em */ 5295 mutex_lock(&ctx->wq->mutex); 5296 5297 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 5298 5299 /* save the previous pwqs and install the new ones */ 5300 for_each_possible_cpu(cpu) 5301 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu, 5302 ctx->pwq_tbl[cpu]); 5303 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq); 5304 5305 /* update node_nr_active->max */ 5306 wq_update_node_max_active(ctx->wq, -1); 5307 5308 /* rescuer needs to respect wq cpumask changes */ 5309 if (ctx->wq->rescuer) 5310 set_cpus_allowed_ptr(ctx->wq->rescuer->task, 5311 unbound_effective_cpumask(ctx->wq)); 5312 5313 mutex_unlock(&ctx->wq->mutex); 5314 } 5315 5316 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 5317 const struct workqueue_attrs *attrs) 5318 { 5319 struct apply_wqattrs_ctx *ctx; 5320 5321 /* only unbound workqueues can change attributes */ 5322 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 5323 return -EINVAL; 5324 5325 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 5326 if (IS_ERR(ctx)) 5327 return PTR_ERR(ctx); 5328 5329 /* the ctx has been prepared successfully, let's commit it */ 5330 apply_wqattrs_commit(ctx); 5331 apply_wqattrs_cleanup(ctx); 5332 5333 return 0; 5334 } 5335 5336 /** 5337 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 5338 * @wq: the target workqueue 5339 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 5340 * 5341 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps 5342 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that 5343 * work items are affine to the pod it was issued on. Older pwqs are released as 5344 * in-flight work items finish. Note that a work item which repeatedly requeues 5345 * itself back-to-back will stay on its current pwq. 5346 * 5347 * Performs GFP_KERNEL allocations. 5348 * 5349 * Return: 0 on success and -errno on failure. 5350 */ 5351 int apply_workqueue_attrs(struct workqueue_struct *wq, 5352 const struct workqueue_attrs *attrs) 5353 { 5354 int ret; 5355 5356 mutex_lock(&wq_pool_mutex); 5357 ret = apply_workqueue_attrs_locked(wq, attrs); 5358 mutex_unlock(&wq_pool_mutex); 5359 5360 return ret; 5361 } 5362 5363 /** 5364 * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug 5365 * @wq: the target workqueue 5366 * @cpu: the CPU to update the pwq slot for 5367 * 5368 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 5369 * %CPU_DOWN_FAILED. @cpu is in the same pod of the CPU being hot[un]plugged. 5370 * 5371 * 5372 * If pod affinity can't be adjusted due to memory allocation failure, it falls 5373 * back to @wq->dfl_pwq which may not be optimal but is always correct. 5374 * 5375 * Note that when the last allowed CPU of a pod goes offline for a workqueue 5376 * with a cpumask spanning multiple pods, the workers which were already 5377 * executing the work items for the workqueue will lose their CPU affinity and 5378 * may execute on any CPU. This is similar to how per-cpu workqueues behave on 5379 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's 5380 * responsibility to flush the work item from CPU_DOWN_PREPARE. 5381 */ 5382 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu) 5383 { 5384 struct pool_workqueue *old_pwq = NULL, *pwq; 5385 struct workqueue_attrs *target_attrs; 5386 5387 lockdep_assert_held(&wq_pool_mutex); 5388 5389 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered) 5390 return; 5391 5392 /* 5393 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 5394 * Let's use a preallocated one. The following buf is protected by 5395 * CPU hotplug exclusion. 5396 */ 5397 target_attrs = unbound_wq_update_pwq_attrs_buf; 5398 5399 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 5400 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask); 5401 5402 /* nothing to do if the target cpumask matches the current pwq */ 5403 wq_calc_pod_cpumask(target_attrs, cpu); 5404 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs)) 5405 return; 5406 5407 /* create a new pwq */ 5408 pwq = alloc_unbound_pwq(wq, target_attrs); 5409 if (!pwq) { 5410 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n", 5411 wq->name); 5412 goto use_dfl_pwq; 5413 } 5414 5415 /* Install the new pwq. */ 5416 mutex_lock(&wq->mutex); 5417 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5418 goto out_unlock; 5419 5420 use_dfl_pwq: 5421 mutex_lock(&wq->mutex); 5422 pwq = unbound_pwq(wq, -1); 5423 raw_spin_lock_irq(&pwq->pool->lock); 5424 get_pwq(pwq); 5425 raw_spin_unlock_irq(&pwq->pool->lock); 5426 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5427 out_unlock: 5428 mutex_unlock(&wq->mutex); 5429 put_pwq_unlocked(old_pwq); 5430 } 5431 5432 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 5433 { 5434 bool highpri = wq->flags & WQ_HIGHPRI; 5435 int cpu, ret; 5436 5437 lockdep_assert_held(&wq_pool_mutex); 5438 5439 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *); 5440 if (!wq->cpu_pwq) 5441 goto enomem; 5442 5443 if (!(wq->flags & WQ_UNBOUND)) { 5444 struct worker_pool __percpu *pools; 5445 5446 if (wq->flags & WQ_BH) 5447 pools = bh_worker_pools; 5448 else 5449 pools = cpu_worker_pools; 5450 5451 for_each_possible_cpu(cpu) { 5452 struct pool_workqueue **pwq_p; 5453 struct worker_pool *pool; 5454 5455 pool = &(per_cpu_ptr(pools, cpu)[highpri]); 5456 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu); 5457 5458 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, 5459 pool->node); 5460 if (!*pwq_p) 5461 goto enomem; 5462 5463 init_pwq(*pwq_p, wq, pool); 5464 5465 mutex_lock(&wq->mutex); 5466 link_pwq(*pwq_p); 5467 mutex_unlock(&wq->mutex); 5468 } 5469 return 0; 5470 } 5471 5472 if (wq->flags & __WQ_ORDERED) { 5473 struct pool_workqueue *dfl_pwq; 5474 5475 ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]); 5476 /* there should only be single pwq for ordering guarantee */ 5477 dfl_pwq = rcu_access_pointer(wq->dfl_pwq); 5478 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node || 5479 wq->pwqs.prev != &dfl_pwq->pwqs_node), 5480 "ordering guarantee broken for workqueue %s\n", wq->name); 5481 } else { 5482 ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]); 5483 } 5484 5485 return ret; 5486 5487 enomem: 5488 if (wq->cpu_pwq) { 5489 for_each_possible_cpu(cpu) { 5490 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5491 5492 if (pwq) 5493 kmem_cache_free(pwq_cache, pwq); 5494 } 5495 free_percpu(wq->cpu_pwq); 5496 wq->cpu_pwq = NULL; 5497 } 5498 return -ENOMEM; 5499 } 5500 5501 static int wq_clamp_max_active(int max_active, unsigned int flags, 5502 const char *name) 5503 { 5504 if (max_active < 1 || max_active > WQ_MAX_ACTIVE) 5505 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 5506 max_active, name, 1, WQ_MAX_ACTIVE); 5507 5508 return clamp_val(max_active, 1, WQ_MAX_ACTIVE); 5509 } 5510 5511 /* 5512 * Workqueues which may be used during memory reclaim should have a rescuer 5513 * to guarantee forward progress. 5514 */ 5515 static int init_rescuer(struct workqueue_struct *wq) 5516 { 5517 struct worker *rescuer; 5518 char id_buf[WORKER_ID_LEN]; 5519 int ret; 5520 5521 lockdep_assert_held(&wq_pool_mutex); 5522 5523 if (!(wq->flags & WQ_MEM_RECLAIM)) 5524 return 0; 5525 5526 rescuer = alloc_worker(NUMA_NO_NODE); 5527 if (!rescuer) { 5528 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 5529 wq->name); 5530 return -ENOMEM; 5531 } 5532 5533 rescuer->rescue_wq = wq; 5534 format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL); 5535 5536 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf); 5537 if (IS_ERR(rescuer->task)) { 5538 ret = PTR_ERR(rescuer->task); 5539 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 5540 wq->name, ERR_PTR(ret)); 5541 kfree(rescuer); 5542 return ret; 5543 } 5544 5545 wq->rescuer = rescuer; 5546 if (wq->flags & WQ_UNBOUND) 5547 kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq)); 5548 else 5549 kthread_bind_mask(rescuer->task, cpu_possible_mask); 5550 wake_up_process(rescuer->task); 5551 5552 return 0; 5553 } 5554 5555 /** 5556 * wq_adjust_max_active - update a wq's max_active to the current setting 5557 * @wq: target workqueue 5558 * 5559 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and 5560 * activate inactive work items accordingly. If @wq is freezing, clear 5561 * @wq->max_active to zero. 5562 */ 5563 static void wq_adjust_max_active(struct workqueue_struct *wq) 5564 { 5565 bool activated; 5566 int new_max, new_min; 5567 5568 lockdep_assert_held(&wq->mutex); 5569 5570 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) { 5571 new_max = 0; 5572 new_min = 0; 5573 } else { 5574 new_max = wq->saved_max_active; 5575 new_min = wq->saved_min_active; 5576 } 5577 5578 if (wq->max_active == new_max && wq->min_active == new_min) 5579 return; 5580 5581 /* 5582 * Update @wq->max/min_active and then kick inactive work items if more 5583 * active work items are allowed. This doesn't break work item ordering 5584 * because new work items are always queued behind existing inactive 5585 * work items if there are any. 5586 */ 5587 WRITE_ONCE(wq->max_active, new_max); 5588 WRITE_ONCE(wq->min_active, new_min); 5589 5590 if (wq->flags & WQ_UNBOUND) 5591 wq_update_node_max_active(wq, -1); 5592 5593 if (new_max == 0) 5594 return; 5595 5596 /* 5597 * Round-robin through pwq's activating the first inactive work item 5598 * until max_active is filled. 5599 */ 5600 do { 5601 struct pool_workqueue *pwq; 5602 5603 activated = false; 5604 for_each_pwq(pwq, wq) { 5605 unsigned long irq_flags; 5606 5607 /* can be called during early boot w/ irq disabled */ 5608 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 5609 if (pwq_activate_first_inactive(pwq, true)) { 5610 activated = true; 5611 kick_pool(pwq->pool); 5612 } 5613 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 5614 } 5615 } while (activated); 5616 } 5617 5618 __printf(1, 4) 5619 struct workqueue_struct *alloc_workqueue(const char *fmt, 5620 unsigned int flags, 5621 int max_active, ...) 5622 { 5623 va_list args; 5624 struct workqueue_struct *wq; 5625 size_t wq_size; 5626 int name_len; 5627 5628 if (flags & WQ_BH) { 5629 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS)) 5630 return NULL; 5631 if (WARN_ON_ONCE(max_active)) 5632 return NULL; 5633 } 5634 5635 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 5636 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 5637 flags |= WQ_UNBOUND; 5638 5639 /* allocate wq and format name */ 5640 if (flags & WQ_UNBOUND) 5641 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1); 5642 else 5643 wq_size = sizeof(*wq); 5644 5645 wq = kzalloc(wq_size, GFP_KERNEL); 5646 if (!wq) 5647 return NULL; 5648 5649 if (flags & WQ_UNBOUND) { 5650 wq->unbound_attrs = alloc_workqueue_attrs(); 5651 if (!wq->unbound_attrs) 5652 goto err_free_wq; 5653 } 5654 5655 va_start(args, max_active); 5656 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args); 5657 va_end(args); 5658 5659 if (name_len >= WQ_NAME_LEN) 5660 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n", 5661 wq->name); 5662 5663 if (flags & WQ_BH) { 5664 /* 5665 * BH workqueues always share a single execution context per CPU 5666 * and don't impose any max_active limit. 5667 */ 5668 max_active = INT_MAX; 5669 } else { 5670 max_active = max_active ?: WQ_DFL_ACTIVE; 5671 max_active = wq_clamp_max_active(max_active, flags, wq->name); 5672 } 5673 5674 /* init wq */ 5675 wq->flags = flags; 5676 wq->max_active = max_active; 5677 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE); 5678 wq->saved_max_active = wq->max_active; 5679 wq->saved_min_active = wq->min_active; 5680 mutex_init(&wq->mutex); 5681 atomic_set(&wq->nr_pwqs_to_flush, 0); 5682 INIT_LIST_HEAD(&wq->pwqs); 5683 INIT_LIST_HEAD(&wq->flusher_queue); 5684 INIT_LIST_HEAD(&wq->flusher_overflow); 5685 INIT_LIST_HEAD(&wq->maydays); 5686 5687 wq_init_lockdep(wq); 5688 INIT_LIST_HEAD(&wq->list); 5689 5690 if (flags & WQ_UNBOUND) { 5691 if (alloc_node_nr_active(wq->node_nr_active) < 0) 5692 goto err_unreg_lockdep; 5693 } 5694 5695 /* 5696 * wq_pool_mutex protects the workqueues list, allocations of PWQs, 5697 * and the global freeze state. 5698 */ 5699 apply_wqattrs_lock(); 5700 5701 if (alloc_and_link_pwqs(wq) < 0) 5702 goto err_unlock_free_node_nr_active; 5703 5704 mutex_lock(&wq->mutex); 5705 wq_adjust_max_active(wq); 5706 mutex_unlock(&wq->mutex); 5707 5708 list_add_tail_rcu(&wq->list, &workqueues); 5709 5710 if (wq_online && init_rescuer(wq) < 0) 5711 goto err_unlock_destroy; 5712 5713 apply_wqattrs_unlock(); 5714 5715 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 5716 goto err_destroy; 5717 5718 return wq; 5719 5720 err_unlock_free_node_nr_active: 5721 apply_wqattrs_unlock(); 5722 /* 5723 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work, 5724 * flushing the pwq_release_worker ensures that the pwq_release_workfn() 5725 * completes before calling kfree(wq). 5726 */ 5727 if (wq->flags & WQ_UNBOUND) { 5728 kthread_flush_worker(pwq_release_worker); 5729 free_node_nr_active(wq->node_nr_active); 5730 } 5731 err_unreg_lockdep: 5732 wq_unregister_lockdep(wq); 5733 wq_free_lockdep(wq); 5734 err_free_wq: 5735 free_workqueue_attrs(wq->unbound_attrs); 5736 kfree(wq); 5737 return NULL; 5738 err_unlock_destroy: 5739 apply_wqattrs_unlock(); 5740 err_destroy: 5741 destroy_workqueue(wq); 5742 return NULL; 5743 } 5744 EXPORT_SYMBOL_GPL(alloc_workqueue); 5745 5746 static bool pwq_busy(struct pool_workqueue *pwq) 5747 { 5748 int i; 5749 5750 for (i = 0; i < WORK_NR_COLORS; i++) 5751 if (pwq->nr_in_flight[i]) 5752 return true; 5753 5754 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1)) 5755 return true; 5756 if (!pwq_is_empty(pwq)) 5757 return true; 5758 5759 return false; 5760 } 5761 5762 /** 5763 * destroy_workqueue - safely terminate a workqueue 5764 * @wq: target workqueue 5765 * 5766 * Safely destroy a workqueue. All work currently pending will be done first. 5767 */ 5768 void destroy_workqueue(struct workqueue_struct *wq) 5769 { 5770 struct pool_workqueue *pwq; 5771 int cpu; 5772 5773 /* 5774 * Remove it from sysfs first so that sanity check failure doesn't 5775 * lead to sysfs name conflicts. 5776 */ 5777 workqueue_sysfs_unregister(wq); 5778 5779 /* mark the workqueue destruction is in progress */ 5780 mutex_lock(&wq->mutex); 5781 wq->flags |= __WQ_DESTROYING; 5782 mutex_unlock(&wq->mutex); 5783 5784 /* drain it before proceeding with destruction */ 5785 drain_workqueue(wq); 5786 5787 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 5788 if (wq->rescuer) { 5789 struct worker *rescuer = wq->rescuer; 5790 5791 /* this prevents new queueing */ 5792 raw_spin_lock_irq(&wq_mayday_lock); 5793 wq->rescuer = NULL; 5794 raw_spin_unlock_irq(&wq_mayday_lock); 5795 5796 /* rescuer will empty maydays list before exiting */ 5797 kthread_stop(rescuer->task); 5798 kfree(rescuer); 5799 } 5800 5801 /* 5802 * Sanity checks - grab all the locks so that we wait for all 5803 * in-flight operations which may do put_pwq(). 5804 */ 5805 mutex_lock(&wq_pool_mutex); 5806 mutex_lock(&wq->mutex); 5807 for_each_pwq(pwq, wq) { 5808 raw_spin_lock_irq(&pwq->pool->lock); 5809 if (WARN_ON(pwq_busy(pwq))) { 5810 pr_warn("%s: %s has the following busy pwq\n", 5811 __func__, wq->name); 5812 show_pwq(pwq); 5813 raw_spin_unlock_irq(&pwq->pool->lock); 5814 mutex_unlock(&wq->mutex); 5815 mutex_unlock(&wq_pool_mutex); 5816 show_one_workqueue(wq); 5817 return; 5818 } 5819 raw_spin_unlock_irq(&pwq->pool->lock); 5820 } 5821 mutex_unlock(&wq->mutex); 5822 5823 /* 5824 * wq list is used to freeze wq, remove from list after 5825 * flushing is complete in case freeze races us. 5826 */ 5827 list_del_rcu(&wq->list); 5828 mutex_unlock(&wq_pool_mutex); 5829 5830 /* 5831 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq 5832 * to put the base refs. @wq will be auto-destroyed from the last 5833 * pwq_put. RCU read lock prevents @wq from going away from under us. 5834 */ 5835 rcu_read_lock(); 5836 5837 for_each_possible_cpu(cpu) { 5838 put_pwq_unlocked(unbound_pwq(wq, cpu)); 5839 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL); 5840 } 5841 5842 put_pwq_unlocked(unbound_pwq(wq, -1)); 5843 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL); 5844 5845 rcu_read_unlock(); 5846 } 5847 EXPORT_SYMBOL_GPL(destroy_workqueue); 5848 5849 /** 5850 * workqueue_set_max_active - adjust max_active of a workqueue 5851 * @wq: target workqueue 5852 * @max_active: new max_active value. 5853 * 5854 * Set max_active of @wq to @max_active. See the alloc_workqueue() function 5855 * comment. 5856 * 5857 * CONTEXT: 5858 * Don't call from IRQ context. 5859 */ 5860 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 5861 { 5862 /* max_active doesn't mean anything for BH workqueues */ 5863 if (WARN_ON(wq->flags & WQ_BH)) 5864 return; 5865 /* disallow meddling with max_active for ordered workqueues */ 5866 if (WARN_ON(wq->flags & __WQ_ORDERED)) 5867 return; 5868 5869 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 5870 5871 mutex_lock(&wq->mutex); 5872 5873 wq->saved_max_active = max_active; 5874 if (wq->flags & WQ_UNBOUND) 5875 wq->saved_min_active = min(wq->saved_min_active, max_active); 5876 5877 wq_adjust_max_active(wq); 5878 5879 mutex_unlock(&wq->mutex); 5880 } 5881 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 5882 5883 /** 5884 * workqueue_set_min_active - adjust min_active of an unbound workqueue 5885 * @wq: target unbound workqueue 5886 * @min_active: new min_active value 5887 * 5888 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an 5889 * unbound workqueue is not guaranteed to be able to process max_active 5890 * interdependent work items. Instead, an unbound workqueue is guaranteed to be 5891 * able to process min_active number of interdependent work items which is 5892 * %WQ_DFL_MIN_ACTIVE by default. 5893 * 5894 * Use this function to adjust the min_active value between 0 and the current 5895 * max_active. 5896 */ 5897 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active) 5898 { 5899 /* min_active is only meaningful for non-ordered unbound workqueues */ 5900 if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) != 5901 WQ_UNBOUND)) 5902 return; 5903 5904 mutex_lock(&wq->mutex); 5905 wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active); 5906 wq_adjust_max_active(wq); 5907 mutex_unlock(&wq->mutex); 5908 } 5909 5910 /** 5911 * current_work - retrieve %current task's work struct 5912 * 5913 * Determine if %current task is a workqueue worker and what it's working on. 5914 * Useful to find out the context that the %current task is running in. 5915 * 5916 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 5917 */ 5918 struct work_struct *current_work(void) 5919 { 5920 struct worker *worker = current_wq_worker(); 5921 5922 return worker ? worker->current_work : NULL; 5923 } 5924 EXPORT_SYMBOL(current_work); 5925 5926 /** 5927 * current_is_workqueue_rescuer - is %current workqueue rescuer? 5928 * 5929 * Determine whether %current is a workqueue rescuer. Can be used from 5930 * work functions to determine whether it's being run off the rescuer task. 5931 * 5932 * Return: %true if %current is a workqueue rescuer. %false otherwise. 5933 */ 5934 bool current_is_workqueue_rescuer(void) 5935 { 5936 struct worker *worker = current_wq_worker(); 5937 5938 return worker && worker->rescue_wq; 5939 } 5940 5941 /** 5942 * workqueue_congested - test whether a workqueue is congested 5943 * @cpu: CPU in question 5944 * @wq: target workqueue 5945 * 5946 * Test whether @wq's cpu workqueue for @cpu is congested. There is 5947 * no synchronization around this function and the test result is 5948 * unreliable and only useful as advisory hints or for debugging. 5949 * 5950 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 5951 * 5952 * With the exception of ordered workqueues, all workqueues have per-cpu 5953 * pool_workqueues, each with its own congested state. A workqueue being 5954 * congested on one CPU doesn't mean that the workqueue is contested on any 5955 * other CPUs. 5956 * 5957 * Return: 5958 * %true if congested, %false otherwise. 5959 */ 5960 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 5961 { 5962 struct pool_workqueue *pwq; 5963 bool ret; 5964 5965 rcu_read_lock(); 5966 preempt_disable(); 5967 5968 if (cpu == WORK_CPU_UNBOUND) 5969 cpu = smp_processor_id(); 5970 5971 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5972 ret = !list_empty(&pwq->inactive_works); 5973 5974 preempt_enable(); 5975 rcu_read_unlock(); 5976 5977 return ret; 5978 } 5979 EXPORT_SYMBOL_GPL(workqueue_congested); 5980 5981 /** 5982 * work_busy - test whether a work is currently pending or running 5983 * @work: the work to be tested 5984 * 5985 * Test whether @work is currently pending or running. There is no 5986 * synchronization around this function and the test result is 5987 * unreliable and only useful as advisory hints or for debugging. 5988 * 5989 * Return: 5990 * OR'd bitmask of WORK_BUSY_* bits. 5991 */ 5992 unsigned int work_busy(struct work_struct *work) 5993 { 5994 struct worker_pool *pool; 5995 unsigned long irq_flags; 5996 unsigned int ret = 0; 5997 5998 if (work_pending(work)) 5999 ret |= WORK_BUSY_PENDING; 6000 6001 rcu_read_lock(); 6002 pool = get_work_pool(work); 6003 if (pool) { 6004 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6005 if (find_worker_executing_work(pool, work)) 6006 ret |= WORK_BUSY_RUNNING; 6007 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6008 } 6009 rcu_read_unlock(); 6010 6011 return ret; 6012 } 6013 EXPORT_SYMBOL_GPL(work_busy); 6014 6015 /** 6016 * set_worker_desc - set description for the current work item 6017 * @fmt: printf-style format string 6018 * @...: arguments for the format string 6019 * 6020 * This function can be called by a running work function to describe what 6021 * the work item is about. If the worker task gets dumped, this 6022 * information will be printed out together to help debugging. The 6023 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 6024 */ 6025 void set_worker_desc(const char *fmt, ...) 6026 { 6027 struct worker *worker = current_wq_worker(); 6028 va_list args; 6029 6030 if (worker) { 6031 va_start(args, fmt); 6032 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 6033 va_end(args); 6034 } 6035 } 6036 EXPORT_SYMBOL_GPL(set_worker_desc); 6037 6038 /** 6039 * print_worker_info - print out worker information and description 6040 * @log_lvl: the log level to use when printing 6041 * @task: target task 6042 * 6043 * If @task is a worker and currently executing a work item, print out the 6044 * name of the workqueue being serviced and worker description set with 6045 * set_worker_desc() by the currently executing work item. 6046 * 6047 * This function can be safely called on any task as long as the 6048 * task_struct itself is accessible. While safe, this function isn't 6049 * synchronized and may print out mixups or garbages of limited length. 6050 */ 6051 void print_worker_info(const char *log_lvl, struct task_struct *task) 6052 { 6053 work_func_t *fn = NULL; 6054 char name[WQ_NAME_LEN] = { }; 6055 char desc[WORKER_DESC_LEN] = { }; 6056 struct pool_workqueue *pwq = NULL; 6057 struct workqueue_struct *wq = NULL; 6058 struct worker *worker; 6059 6060 if (!(task->flags & PF_WQ_WORKER)) 6061 return; 6062 6063 /* 6064 * This function is called without any synchronization and @task 6065 * could be in any state. Be careful with dereferences. 6066 */ 6067 worker = kthread_probe_data(task); 6068 6069 /* 6070 * Carefully copy the associated workqueue's workfn, name and desc. 6071 * Keep the original last '\0' in case the original is garbage. 6072 */ 6073 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 6074 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 6075 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 6076 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 6077 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 6078 6079 if (fn || name[0] || desc[0]) { 6080 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 6081 if (strcmp(name, desc)) 6082 pr_cont(" (%s)", desc); 6083 pr_cont("\n"); 6084 } 6085 } 6086 6087 static void pr_cont_pool_info(struct worker_pool *pool) 6088 { 6089 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 6090 if (pool->node != NUMA_NO_NODE) 6091 pr_cont(" node=%d", pool->node); 6092 pr_cont(" flags=0x%x", pool->flags); 6093 if (pool->flags & POOL_BH) 6094 pr_cont(" bh%s", 6095 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6096 else 6097 pr_cont(" nice=%d", pool->attrs->nice); 6098 } 6099 6100 static void pr_cont_worker_id(struct worker *worker) 6101 { 6102 struct worker_pool *pool = worker->pool; 6103 6104 if (pool->flags & WQ_BH) 6105 pr_cont("bh%s", 6106 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6107 else 6108 pr_cont("%d%s", task_pid_nr(worker->task), 6109 worker->rescue_wq ? "(RESCUER)" : ""); 6110 } 6111 6112 struct pr_cont_work_struct { 6113 bool comma; 6114 work_func_t func; 6115 long ctr; 6116 }; 6117 6118 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 6119 { 6120 if (!pcwsp->ctr) 6121 goto out_record; 6122 if (func == pcwsp->func) { 6123 pcwsp->ctr++; 6124 return; 6125 } 6126 if (pcwsp->ctr == 1) 6127 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 6128 else 6129 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 6130 pcwsp->ctr = 0; 6131 out_record: 6132 if ((long)func == -1L) 6133 return; 6134 pcwsp->comma = comma; 6135 pcwsp->func = func; 6136 pcwsp->ctr = 1; 6137 } 6138 6139 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 6140 { 6141 if (work->func == wq_barrier_func) { 6142 struct wq_barrier *barr; 6143 6144 barr = container_of(work, struct wq_barrier, work); 6145 6146 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6147 pr_cont("%s BAR(%d)", comma ? "," : "", 6148 task_pid_nr(barr->task)); 6149 } else { 6150 if (!comma) 6151 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6152 pr_cont_work_flush(comma, work->func, pcwsp); 6153 } 6154 } 6155 6156 static void show_pwq(struct pool_workqueue *pwq) 6157 { 6158 struct pr_cont_work_struct pcws = { .ctr = 0, }; 6159 struct worker_pool *pool = pwq->pool; 6160 struct work_struct *work; 6161 struct worker *worker; 6162 bool has_in_flight = false, has_pending = false; 6163 int bkt; 6164 6165 pr_info(" pwq %d:", pool->id); 6166 pr_cont_pool_info(pool); 6167 6168 pr_cont(" active=%d refcnt=%d%s\n", 6169 pwq->nr_active, pwq->refcnt, 6170 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 6171 6172 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6173 if (worker->current_pwq == pwq) { 6174 has_in_flight = true; 6175 break; 6176 } 6177 } 6178 if (has_in_flight) { 6179 bool comma = false; 6180 6181 pr_info(" in-flight:"); 6182 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6183 if (worker->current_pwq != pwq) 6184 continue; 6185 6186 pr_cont(" %s", comma ? "," : ""); 6187 pr_cont_worker_id(worker); 6188 pr_cont(":%ps", worker->current_func); 6189 list_for_each_entry(work, &worker->scheduled, entry) 6190 pr_cont_work(false, work, &pcws); 6191 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6192 comma = true; 6193 } 6194 pr_cont("\n"); 6195 } 6196 6197 list_for_each_entry(work, &pool->worklist, entry) { 6198 if (get_work_pwq(work) == pwq) { 6199 has_pending = true; 6200 break; 6201 } 6202 } 6203 if (has_pending) { 6204 bool comma = false; 6205 6206 pr_info(" pending:"); 6207 list_for_each_entry(work, &pool->worklist, entry) { 6208 if (get_work_pwq(work) != pwq) 6209 continue; 6210 6211 pr_cont_work(comma, work, &pcws); 6212 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6213 } 6214 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6215 pr_cont("\n"); 6216 } 6217 6218 if (!list_empty(&pwq->inactive_works)) { 6219 bool comma = false; 6220 6221 pr_info(" inactive:"); 6222 list_for_each_entry(work, &pwq->inactive_works, entry) { 6223 pr_cont_work(comma, work, &pcws); 6224 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6225 } 6226 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6227 pr_cont("\n"); 6228 } 6229 } 6230 6231 /** 6232 * show_one_workqueue - dump state of specified workqueue 6233 * @wq: workqueue whose state will be printed 6234 */ 6235 void show_one_workqueue(struct workqueue_struct *wq) 6236 { 6237 struct pool_workqueue *pwq; 6238 bool idle = true; 6239 unsigned long irq_flags; 6240 6241 for_each_pwq(pwq, wq) { 6242 if (!pwq_is_empty(pwq)) { 6243 idle = false; 6244 break; 6245 } 6246 } 6247 if (idle) /* Nothing to print for idle workqueue */ 6248 return; 6249 6250 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 6251 6252 for_each_pwq(pwq, wq) { 6253 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 6254 if (!pwq_is_empty(pwq)) { 6255 /* 6256 * Defer printing to avoid deadlocks in console 6257 * drivers that queue work while holding locks 6258 * also taken in their write paths. 6259 */ 6260 printk_deferred_enter(); 6261 show_pwq(pwq); 6262 printk_deferred_exit(); 6263 } 6264 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 6265 /* 6266 * We could be printing a lot from atomic context, e.g. 6267 * sysrq-t -> show_all_workqueues(). Avoid triggering 6268 * hard lockup. 6269 */ 6270 touch_nmi_watchdog(); 6271 } 6272 6273 } 6274 6275 /** 6276 * show_one_worker_pool - dump state of specified worker pool 6277 * @pool: worker pool whose state will be printed 6278 */ 6279 static void show_one_worker_pool(struct worker_pool *pool) 6280 { 6281 struct worker *worker; 6282 bool first = true; 6283 unsigned long irq_flags; 6284 unsigned long hung = 0; 6285 6286 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6287 if (pool->nr_workers == pool->nr_idle) 6288 goto next_pool; 6289 6290 /* How long the first pending work is waiting for a worker. */ 6291 if (!list_empty(&pool->worklist)) 6292 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 6293 6294 /* 6295 * Defer printing to avoid deadlocks in console drivers that 6296 * queue work while holding locks also taken in their write 6297 * paths. 6298 */ 6299 printk_deferred_enter(); 6300 pr_info("pool %d:", pool->id); 6301 pr_cont_pool_info(pool); 6302 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 6303 if (pool->manager) 6304 pr_cont(" manager: %d", 6305 task_pid_nr(pool->manager->task)); 6306 list_for_each_entry(worker, &pool->idle_list, entry) { 6307 pr_cont(" %s", first ? "idle: " : ""); 6308 pr_cont_worker_id(worker); 6309 first = false; 6310 } 6311 pr_cont("\n"); 6312 printk_deferred_exit(); 6313 next_pool: 6314 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6315 /* 6316 * We could be printing a lot from atomic context, e.g. 6317 * sysrq-t -> show_all_workqueues(). Avoid triggering 6318 * hard lockup. 6319 */ 6320 touch_nmi_watchdog(); 6321 6322 } 6323 6324 /** 6325 * show_all_workqueues - dump workqueue state 6326 * 6327 * Called from a sysrq handler and prints out all busy workqueues and pools. 6328 */ 6329 void show_all_workqueues(void) 6330 { 6331 struct workqueue_struct *wq; 6332 struct worker_pool *pool; 6333 int pi; 6334 6335 rcu_read_lock(); 6336 6337 pr_info("Showing busy workqueues and worker pools:\n"); 6338 6339 list_for_each_entry_rcu(wq, &workqueues, list) 6340 show_one_workqueue(wq); 6341 6342 for_each_pool(pool, pi) 6343 show_one_worker_pool(pool); 6344 6345 rcu_read_unlock(); 6346 } 6347 6348 /** 6349 * show_freezable_workqueues - dump freezable workqueue state 6350 * 6351 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 6352 * still busy. 6353 */ 6354 void show_freezable_workqueues(void) 6355 { 6356 struct workqueue_struct *wq; 6357 6358 rcu_read_lock(); 6359 6360 pr_info("Showing freezable workqueues that are still busy:\n"); 6361 6362 list_for_each_entry_rcu(wq, &workqueues, list) { 6363 if (!(wq->flags & WQ_FREEZABLE)) 6364 continue; 6365 show_one_workqueue(wq); 6366 } 6367 6368 rcu_read_unlock(); 6369 } 6370 6371 /* used to show worker information through /proc/PID/{comm,stat,status} */ 6372 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 6373 { 6374 /* stabilize PF_WQ_WORKER and worker pool association */ 6375 mutex_lock(&wq_pool_attach_mutex); 6376 6377 if (task->flags & PF_WQ_WORKER) { 6378 struct worker *worker = kthread_data(task); 6379 struct worker_pool *pool = worker->pool; 6380 int off; 6381 6382 off = format_worker_id(buf, size, worker, pool); 6383 6384 if (pool) { 6385 raw_spin_lock_irq(&pool->lock); 6386 /* 6387 * ->desc tracks information (wq name or 6388 * set_worker_desc()) for the latest execution. If 6389 * current, prepend '+', otherwise '-'. 6390 */ 6391 if (worker->desc[0] != '\0') { 6392 if (worker->current_work) 6393 scnprintf(buf + off, size - off, "+%s", 6394 worker->desc); 6395 else 6396 scnprintf(buf + off, size - off, "-%s", 6397 worker->desc); 6398 } 6399 raw_spin_unlock_irq(&pool->lock); 6400 } 6401 } else { 6402 strscpy(buf, task->comm, size); 6403 } 6404 6405 mutex_unlock(&wq_pool_attach_mutex); 6406 } 6407 6408 #ifdef CONFIG_SMP 6409 6410 /* 6411 * CPU hotplug. 6412 * 6413 * There are two challenges in supporting CPU hotplug. Firstly, there 6414 * are a lot of assumptions on strong associations among work, pwq and 6415 * pool which make migrating pending and scheduled works very 6416 * difficult to implement without impacting hot paths. Secondly, 6417 * worker pools serve mix of short, long and very long running works making 6418 * blocked draining impractical. 6419 * 6420 * This is solved by allowing the pools to be disassociated from the CPU 6421 * running as an unbound one and allowing it to be reattached later if the 6422 * cpu comes back online. 6423 */ 6424 6425 static void unbind_workers(int cpu) 6426 { 6427 struct worker_pool *pool; 6428 struct worker *worker; 6429 6430 for_each_cpu_worker_pool(pool, cpu) { 6431 mutex_lock(&wq_pool_attach_mutex); 6432 raw_spin_lock_irq(&pool->lock); 6433 6434 /* 6435 * We've blocked all attach/detach operations. Make all workers 6436 * unbound and set DISASSOCIATED. Before this, all workers 6437 * must be on the cpu. After this, they may become diasporas. 6438 * And the preemption disabled section in their sched callbacks 6439 * are guaranteed to see WORKER_UNBOUND since the code here 6440 * is on the same cpu. 6441 */ 6442 for_each_pool_worker(worker, pool) 6443 worker->flags |= WORKER_UNBOUND; 6444 6445 pool->flags |= POOL_DISASSOCIATED; 6446 6447 /* 6448 * The handling of nr_running in sched callbacks are disabled 6449 * now. Zap nr_running. After this, nr_running stays zero and 6450 * need_more_worker() and keep_working() are always true as 6451 * long as the worklist is not empty. This pool now behaves as 6452 * an unbound (in terms of concurrency management) pool which 6453 * are served by workers tied to the pool. 6454 */ 6455 pool->nr_running = 0; 6456 6457 /* 6458 * With concurrency management just turned off, a busy 6459 * worker blocking could lead to lengthy stalls. Kick off 6460 * unbound chain execution of currently pending work items. 6461 */ 6462 kick_pool(pool); 6463 6464 raw_spin_unlock_irq(&pool->lock); 6465 6466 for_each_pool_worker(worker, pool) 6467 unbind_worker(worker); 6468 6469 mutex_unlock(&wq_pool_attach_mutex); 6470 } 6471 } 6472 6473 /** 6474 * rebind_workers - rebind all workers of a pool to the associated CPU 6475 * @pool: pool of interest 6476 * 6477 * @pool->cpu is coming online. Rebind all workers to the CPU. 6478 */ 6479 static void rebind_workers(struct worker_pool *pool) 6480 { 6481 struct worker *worker; 6482 6483 lockdep_assert_held(&wq_pool_attach_mutex); 6484 6485 /* 6486 * Restore CPU affinity of all workers. As all idle workers should 6487 * be on the run-queue of the associated CPU before any local 6488 * wake-ups for concurrency management happen, restore CPU affinity 6489 * of all workers first and then clear UNBOUND. As we're called 6490 * from CPU_ONLINE, the following shouldn't fail. 6491 */ 6492 for_each_pool_worker(worker, pool) { 6493 kthread_set_per_cpu(worker->task, pool->cpu); 6494 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 6495 pool_allowed_cpus(pool)) < 0); 6496 } 6497 6498 raw_spin_lock_irq(&pool->lock); 6499 6500 pool->flags &= ~POOL_DISASSOCIATED; 6501 6502 for_each_pool_worker(worker, pool) { 6503 unsigned int worker_flags = worker->flags; 6504 6505 /* 6506 * We want to clear UNBOUND but can't directly call 6507 * worker_clr_flags() or adjust nr_running. Atomically 6508 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 6509 * @worker will clear REBOUND using worker_clr_flags() when 6510 * it initiates the next execution cycle thus restoring 6511 * concurrency management. Note that when or whether 6512 * @worker clears REBOUND doesn't affect correctness. 6513 * 6514 * WRITE_ONCE() is necessary because @worker->flags may be 6515 * tested without holding any lock in 6516 * wq_worker_running(). Without it, NOT_RUNNING test may 6517 * fail incorrectly leading to premature concurrency 6518 * management operations. 6519 */ 6520 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 6521 worker_flags |= WORKER_REBOUND; 6522 worker_flags &= ~WORKER_UNBOUND; 6523 WRITE_ONCE(worker->flags, worker_flags); 6524 } 6525 6526 raw_spin_unlock_irq(&pool->lock); 6527 } 6528 6529 /** 6530 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 6531 * @pool: unbound pool of interest 6532 * @cpu: the CPU which is coming up 6533 * 6534 * An unbound pool may end up with a cpumask which doesn't have any online 6535 * CPUs. When a worker of such pool get scheduled, the scheduler resets 6536 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 6537 * online CPU before, cpus_allowed of all its workers should be restored. 6538 */ 6539 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 6540 { 6541 static cpumask_t cpumask; 6542 struct worker *worker; 6543 6544 lockdep_assert_held(&wq_pool_attach_mutex); 6545 6546 /* is @cpu allowed for @pool? */ 6547 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 6548 return; 6549 6550 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 6551 6552 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 6553 for_each_pool_worker(worker, pool) 6554 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 6555 } 6556 6557 int workqueue_prepare_cpu(unsigned int cpu) 6558 { 6559 struct worker_pool *pool; 6560 6561 for_each_cpu_worker_pool(pool, cpu) { 6562 if (pool->nr_workers) 6563 continue; 6564 if (!create_worker(pool)) 6565 return -ENOMEM; 6566 } 6567 return 0; 6568 } 6569 6570 int workqueue_online_cpu(unsigned int cpu) 6571 { 6572 struct worker_pool *pool; 6573 struct workqueue_struct *wq; 6574 int pi; 6575 6576 mutex_lock(&wq_pool_mutex); 6577 6578 cpumask_set_cpu(cpu, wq_online_cpumask); 6579 6580 for_each_pool(pool, pi) { 6581 /* BH pools aren't affected by hotplug */ 6582 if (pool->flags & POOL_BH) 6583 continue; 6584 6585 mutex_lock(&wq_pool_attach_mutex); 6586 if (pool->cpu == cpu) 6587 rebind_workers(pool); 6588 else if (pool->cpu < 0) 6589 restore_unbound_workers_cpumask(pool, cpu); 6590 mutex_unlock(&wq_pool_attach_mutex); 6591 } 6592 6593 /* update pod affinity of unbound workqueues */ 6594 list_for_each_entry(wq, &workqueues, list) { 6595 struct workqueue_attrs *attrs = wq->unbound_attrs; 6596 6597 if (attrs) { 6598 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6599 int tcpu; 6600 6601 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6602 unbound_wq_update_pwq(wq, tcpu); 6603 6604 mutex_lock(&wq->mutex); 6605 wq_update_node_max_active(wq, -1); 6606 mutex_unlock(&wq->mutex); 6607 } 6608 } 6609 6610 mutex_unlock(&wq_pool_mutex); 6611 return 0; 6612 } 6613 6614 int workqueue_offline_cpu(unsigned int cpu) 6615 { 6616 struct workqueue_struct *wq; 6617 6618 /* unbinding per-cpu workers should happen on the local CPU */ 6619 if (WARN_ON(cpu != smp_processor_id())) 6620 return -1; 6621 6622 unbind_workers(cpu); 6623 6624 /* update pod affinity of unbound workqueues */ 6625 mutex_lock(&wq_pool_mutex); 6626 6627 cpumask_clear_cpu(cpu, wq_online_cpumask); 6628 6629 list_for_each_entry(wq, &workqueues, list) { 6630 struct workqueue_attrs *attrs = wq->unbound_attrs; 6631 6632 if (attrs) { 6633 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6634 int tcpu; 6635 6636 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6637 unbound_wq_update_pwq(wq, tcpu); 6638 6639 mutex_lock(&wq->mutex); 6640 wq_update_node_max_active(wq, cpu); 6641 mutex_unlock(&wq->mutex); 6642 } 6643 } 6644 mutex_unlock(&wq_pool_mutex); 6645 6646 return 0; 6647 } 6648 6649 struct work_for_cpu { 6650 struct work_struct work; 6651 long (*fn)(void *); 6652 void *arg; 6653 long ret; 6654 }; 6655 6656 static void work_for_cpu_fn(struct work_struct *work) 6657 { 6658 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 6659 6660 wfc->ret = wfc->fn(wfc->arg); 6661 } 6662 6663 /** 6664 * work_on_cpu_key - run a function in thread context on a particular cpu 6665 * @cpu: the cpu to run on 6666 * @fn: the function to run 6667 * @arg: the function arg 6668 * @key: The lock class key for lock debugging purposes 6669 * 6670 * It is up to the caller to ensure that the cpu doesn't go offline. 6671 * The caller must not hold any locks which would prevent @fn from completing. 6672 * 6673 * Return: The value @fn returns. 6674 */ 6675 long work_on_cpu_key(int cpu, long (*fn)(void *), 6676 void *arg, struct lock_class_key *key) 6677 { 6678 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 6679 6680 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key); 6681 schedule_work_on(cpu, &wfc.work); 6682 flush_work(&wfc.work); 6683 destroy_work_on_stack(&wfc.work); 6684 return wfc.ret; 6685 } 6686 EXPORT_SYMBOL_GPL(work_on_cpu_key); 6687 6688 /** 6689 * work_on_cpu_safe_key - run a function in thread context on a particular cpu 6690 * @cpu: the cpu to run on 6691 * @fn: the function to run 6692 * @arg: the function argument 6693 * @key: The lock class key for lock debugging purposes 6694 * 6695 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 6696 * any locks which would prevent @fn from completing. 6697 * 6698 * Return: The value @fn returns. 6699 */ 6700 long work_on_cpu_safe_key(int cpu, long (*fn)(void *), 6701 void *arg, struct lock_class_key *key) 6702 { 6703 long ret = -ENODEV; 6704 6705 cpus_read_lock(); 6706 if (cpu_online(cpu)) 6707 ret = work_on_cpu_key(cpu, fn, arg, key); 6708 cpus_read_unlock(); 6709 return ret; 6710 } 6711 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key); 6712 #endif /* CONFIG_SMP */ 6713 6714 #ifdef CONFIG_FREEZER 6715 6716 /** 6717 * freeze_workqueues_begin - begin freezing workqueues 6718 * 6719 * Start freezing workqueues. After this function returns, all freezable 6720 * workqueues will queue new works to their inactive_works list instead of 6721 * pool->worklist. 6722 * 6723 * CONTEXT: 6724 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6725 */ 6726 void freeze_workqueues_begin(void) 6727 { 6728 struct workqueue_struct *wq; 6729 6730 mutex_lock(&wq_pool_mutex); 6731 6732 WARN_ON_ONCE(workqueue_freezing); 6733 workqueue_freezing = true; 6734 6735 list_for_each_entry(wq, &workqueues, list) { 6736 mutex_lock(&wq->mutex); 6737 wq_adjust_max_active(wq); 6738 mutex_unlock(&wq->mutex); 6739 } 6740 6741 mutex_unlock(&wq_pool_mutex); 6742 } 6743 6744 /** 6745 * freeze_workqueues_busy - are freezable workqueues still busy? 6746 * 6747 * Check whether freezing is complete. This function must be called 6748 * between freeze_workqueues_begin() and thaw_workqueues(). 6749 * 6750 * CONTEXT: 6751 * Grabs and releases wq_pool_mutex. 6752 * 6753 * Return: 6754 * %true if some freezable workqueues are still busy. %false if freezing 6755 * is complete. 6756 */ 6757 bool freeze_workqueues_busy(void) 6758 { 6759 bool busy = false; 6760 struct workqueue_struct *wq; 6761 struct pool_workqueue *pwq; 6762 6763 mutex_lock(&wq_pool_mutex); 6764 6765 WARN_ON_ONCE(!workqueue_freezing); 6766 6767 list_for_each_entry(wq, &workqueues, list) { 6768 if (!(wq->flags & WQ_FREEZABLE)) 6769 continue; 6770 /* 6771 * nr_active is monotonically decreasing. It's safe 6772 * to peek without lock. 6773 */ 6774 rcu_read_lock(); 6775 for_each_pwq(pwq, wq) { 6776 WARN_ON_ONCE(pwq->nr_active < 0); 6777 if (pwq->nr_active) { 6778 busy = true; 6779 rcu_read_unlock(); 6780 goto out_unlock; 6781 } 6782 } 6783 rcu_read_unlock(); 6784 } 6785 out_unlock: 6786 mutex_unlock(&wq_pool_mutex); 6787 return busy; 6788 } 6789 6790 /** 6791 * thaw_workqueues - thaw workqueues 6792 * 6793 * Thaw workqueues. Normal queueing is restored and all collected 6794 * frozen works are transferred to their respective pool worklists. 6795 * 6796 * CONTEXT: 6797 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6798 */ 6799 void thaw_workqueues(void) 6800 { 6801 struct workqueue_struct *wq; 6802 6803 mutex_lock(&wq_pool_mutex); 6804 6805 if (!workqueue_freezing) 6806 goto out_unlock; 6807 6808 workqueue_freezing = false; 6809 6810 /* restore max_active and repopulate worklist */ 6811 list_for_each_entry(wq, &workqueues, list) { 6812 mutex_lock(&wq->mutex); 6813 wq_adjust_max_active(wq); 6814 mutex_unlock(&wq->mutex); 6815 } 6816 6817 out_unlock: 6818 mutex_unlock(&wq_pool_mutex); 6819 } 6820 #endif /* CONFIG_FREEZER */ 6821 6822 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 6823 { 6824 LIST_HEAD(ctxs); 6825 int ret = 0; 6826 struct workqueue_struct *wq; 6827 struct apply_wqattrs_ctx *ctx, *n; 6828 6829 lockdep_assert_held(&wq_pool_mutex); 6830 6831 list_for_each_entry(wq, &workqueues, list) { 6832 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING)) 6833 continue; 6834 6835 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 6836 if (IS_ERR(ctx)) { 6837 ret = PTR_ERR(ctx); 6838 break; 6839 } 6840 6841 list_add_tail(&ctx->list, &ctxs); 6842 } 6843 6844 list_for_each_entry_safe(ctx, n, &ctxs, list) { 6845 if (!ret) 6846 apply_wqattrs_commit(ctx); 6847 apply_wqattrs_cleanup(ctx); 6848 } 6849 6850 if (!ret) { 6851 mutex_lock(&wq_pool_attach_mutex); 6852 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 6853 mutex_unlock(&wq_pool_attach_mutex); 6854 } 6855 return ret; 6856 } 6857 6858 /** 6859 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask 6860 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask 6861 * 6862 * This function can be called from cpuset code to provide a set of isolated 6863 * CPUs that should be excluded from wq_unbound_cpumask. 6864 */ 6865 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask) 6866 { 6867 cpumask_var_t cpumask; 6868 int ret = 0; 6869 6870 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 6871 return -ENOMEM; 6872 6873 mutex_lock(&wq_pool_mutex); 6874 6875 /* 6876 * If the operation fails, it will fall back to 6877 * wq_requested_unbound_cpumask which is initially set to 6878 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten 6879 * by any subsequent write to workqueue/cpumask sysfs file. 6880 */ 6881 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask)) 6882 cpumask_copy(cpumask, wq_requested_unbound_cpumask); 6883 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 6884 ret = workqueue_apply_unbound_cpumask(cpumask); 6885 6886 /* Save the current isolated cpumask & export it via sysfs */ 6887 if (!ret) 6888 cpumask_copy(wq_isolated_cpumask, exclude_cpumask); 6889 6890 mutex_unlock(&wq_pool_mutex); 6891 free_cpumask_var(cpumask); 6892 return ret; 6893 } 6894 6895 static int parse_affn_scope(const char *val) 6896 { 6897 int i; 6898 6899 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) { 6900 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i]))) 6901 return i; 6902 } 6903 return -EINVAL; 6904 } 6905 6906 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp) 6907 { 6908 struct workqueue_struct *wq; 6909 int affn, cpu; 6910 6911 affn = parse_affn_scope(val); 6912 if (affn < 0) 6913 return affn; 6914 if (affn == WQ_AFFN_DFL) 6915 return -EINVAL; 6916 6917 cpus_read_lock(); 6918 mutex_lock(&wq_pool_mutex); 6919 6920 wq_affn_dfl = affn; 6921 6922 list_for_each_entry(wq, &workqueues, list) { 6923 for_each_online_cpu(cpu) 6924 unbound_wq_update_pwq(wq, cpu); 6925 } 6926 6927 mutex_unlock(&wq_pool_mutex); 6928 cpus_read_unlock(); 6929 6930 return 0; 6931 } 6932 6933 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp) 6934 { 6935 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]); 6936 } 6937 6938 static const struct kernel_param_ops wq_affn_dfl_ops = { 6939 .set = wq_affn_dfl_set, 6940 .get = wq_affn_dfl_get, 6941 }; 6942 6943 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644); 6944 6945 #ifdef CONFIG_SYSFS 6946 /* 6947 * Workqueues with WQ_SYSFS flag set is visible to userland via 6948 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 6949 * following attributes. 6950 * 6951 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 6952 * max_active RW int : maximum number of in-flight work items 6953 * 6954 * Unbound workqueues have the following extra attributes. 6955 * 6956 * nice RW int : nice value of the workers 6957 * cpumask RW mask : bitmask of allowed CPUs for the workers 6958 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none) 6959 * affinity_strict RW bool : worker CPU affinity is strict 6960 */ 6961 struct wq_device { 6962 struct workqueue_struct *wq; 6963 struct device dev; 6964 }; 6965 6966 static struct workqueue_struct *dev_to_wq(struct device *dev) 6967 { 6968 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 6969 6970 return wq_dev->wq; 6971 } 6972 6973 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 6974 char *buf) 6975 { 6976 struct workqueue_struct *wq = dev_to_wq(dev); 6977 6978 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 6979 } 6980 static DEVICE_ATTR_RO(per_cpu); 6981 6982 static ssize_t max_active_show(struct device *dev, 6983 struct device_attribute *attr, char *buf) 6984 { 6985 struct workqueue_struct *wq = dev_to_wq(dev); 6986 6987 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 6988 } 6989 6990 static ssize_t max_active_store(struct device *dev, 6991 struct device_attribute *attr, const char *buf, 6992 size_t count) 6993 { 6994 struct workqueue_struct *wq = dev_to_wq(dev); 6995 int val; 6996 6997 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 6998 return -EINVAL; 6999 7000 workqueue_set_max_active(wq, val); 7001 return count; 7002 } 7003 static DEVICE_ATTR_RW(max_active); 7004 7005 static struct attribute *wq_sysfs_attrs[] = { 7006 &dev_attr_per_cpu.attr, 7007 &dev_attr_max_active.attr, 7008 NULL, 7009 }; 7010 ATTRIBUTE_GROUPS(wq_sysfs); 7011 7012 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 7013 char *buf) 7014 { 7015 struct workqueue_struct *wq = dev_to_wq(dev); 7016 int written; 7017 7018 mutex_lock(&wq->mutex); 7019 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 7020 mutex_unlock(&wq->mutex); 7021 7022 return written; 7023 } 7024 7025 /* prepare workqueue_attrs for sysfs store operations */ 7026 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 7027 { 7028 struct workqueue_attrs *attrs; 7029 7030 lockdep_assert_held(&wq_pool_mutex); 7031 7032 attrs = alloc_workqueue_attrs(); 7033 if (!attrs) 7034 return NULL; 7035 7036 copy_workqueue_attrs(attrs, wq->unbound_attrs); 7037 return attrs; 7038 } 7039 7040 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 7041 const char *buf, size_t count) 7042 { 7043 struct workqueue_struct *wq = dev_to_wq(dev); 7044 struct workqueue_attrs *attrs; 7045 int ret = -ENOMEM; 7046 7047 apply_wqattrs_lock(); 7048 7049 attrs = wq_sysfs_prep_attrs(wq); 7050 if (!attrs) 7051 goto out_unlock; 7052 7053 if (sscanf(buf, "%d", &attrs->nice) == 1 && 7054 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 7055 ret = apply_workqueue_attrs_locked(wq, attrs); 7056 else 7057 ret = -EINVAL; 7058 7059 out_unlock: 7060 apply_wqattrs_unlock(); 7061 free_workqueue_attrs(attrs); 7062 return ret ?: count; 7063 } 7064 7065 static ssize_t wq_cpumask_show(struct device *dev, 7066 struct device_attribute *attr, char *buf) 7067 { 7068 struct workqueue_struct *wq = dev_to_wq(dev); 7069 int written; 7070 7071 mutex_lock(&wq->mutex); 7072 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 7073 cpumask_pr_args(wq->unbound_attrs->cpumask)); 7074 mutex_unlock(&wq->mutex); 7075 return written; 7076 } 7077 7078 static ssize_t wq_cpumask_store(struct device *dev, 7079 struct device_attribute *attr, 7080 const char *buf, size_t count) 7081 { 7082 struct workqueue_struct *wq = dev_to_wq(dev); 7083 struct workqueue_attrs *attrs; 7084 int ret = -ENOMEM; 7085 7086 apply_wqattrs_lock(); 7087 7088 attrs = wq_sysfs_prep_attrs(wq); 7089 if (!attrs) 7090 goto out_unlock; 7091 7092 ret = cpumask_parse(buf, attrs->cpumask); 7093 if (!ret) 7094 ret = apply_workqueue_attrs_locked(wq, attrs); 7095 7096 out_unlock: 7097 apply_wqattrs_unlock(); 7098 free_workqueue_attrs(attrs); 7099 return ret ?: count; 7100 } 7101 7102 static ssize_t wq_affn_scope_show(struct device *dev, 7103 struct device_attribute *attr, char *buf) 7104 { 7105 struct workqueue_struct *wq = dev_to_wq(dev); 7106 int written; 7107 7108 mutex_lock(&wq->mutex); 7109 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL) 7110 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n", 7111 wq_affn_names[WQ_AFFN_DFL], 7112 wq_affn_names[wq_affn_dfl]); 7113 else 7114 written = scnprintf(buf, PAGE_SIZE, "%s\n", 7115 wq_affn_names[wq->unbound_attrs->affn_scope]); 7116 mutex_unlock(&wq->mutex); 7117 7118 return written; 7119 } 7120 7121 static ssize_t wq_affn_scope_store(struct device *dev, 7122 struct device_attribute *attr, 7123 const char *buf, size_t count) 7124 { 7125 struct workqueue_struct *wq = dev_to_wq(dev); 7126 struct workqueue_attrs *attrs; 7127 int affn, ret = -ENOMEM; 7128 7129 affn = parse_affn_scope(buf); 7130 if (affn < 0) 7131 return affn; 7132 7133 apply_wqattrs_lock(); 7134 attrs = wq_sysfs_prep_attrs(wq); 7135 if (attrs) { 7136 attrs->affn_scope = affn; 7137 ret = apply_workqueue_attrs_locked(wq, attrs); 7138 } 7139 apply_wqattrs_unlock(); 7140 free_workqueue_attrs(attrs); 7141 return ret ?: count; 7142 } 7143 7144 static ssize_t wq_affinity_strict_show(struct device *dev, 7145 struct device_attribute *attr, char *buf) 7146 { 7147 struct workqueue_struct *wq = dev_to_wq(dev); 7148 7149 return scnprintf(buf, PAGE_SIZE, "%d\n", 7150 wq->unbound_attrs->affn_strict); 7151 } 7152 7153 static ssize_t wq_affinity_strict_store(struct device *dev, 7154 struct device_attribute *attr, 7155 const char *buf, size_t count) 7156 { 7157 struct workqueue_struct *wq = dev_to_wq(dev); 7158 struct workqueue_attrs *attrs; 7159 int v, ret = -ENOMEM; 7160 7161 if (sscanf(buf, "%d", &v) != 1) 7162 return -EINVAL; 7163 7164 apply_wqattrs_lock(); 7165 attrs = wq_sysfs_prep_attrs(wq); 7166 if (attrs) { 7167 attrs->affn_strict = (bool)v; 7168 ret = apply_workqueue_attrs_locked(wq, attrs); 7169 } 7170 apply_wqattrs_unlock(); 7171 free_workqueue_attrs(attrs); 7172 return ret ?: count; 7173 } 7174 7175 static struct device_attribute wq_sysfs_unbound_attrs[] = { 7176 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 7177 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 7178 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store), 7179 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store), 7180 __ATTR_NULL, 7181 }; 7182 7183 static const struct bus_type wq_subsys = { 7184 .name = "workqueue", 7185 .dev_groups = wq_sysfs_groups, 7186 }; 7187 7188 /** 7189 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 7190 * @cpumask: the cpumask to set 7191 * 7192 * The low-level workqueues cpumask is a global cpumask that limits 7193 * the affinity of all unbound workqueues. This function check the @cpumask 7194 * and apply it to all unbound workqueues and updates all pwqs of them. 7195 * 7196 * Return: 0 - Success 7197 * -EINVAL - Invalid @cpumask 7198 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 7199 */ 7200 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 7201 { 7202 int ret = -EINVAL; 7203 7204 /* 7205 * Not excluding isolated cpus on purpose. 7206 * If the user wishes to include them, we allow that. 7207 */ 7208 cpumask_and(cpumask, cpumask, cpu_possible_mask); 7209 if (!cpumask_empty(cpumask)) { 7210 ret = 0; 7211 apply_wqattrs_lock(); 7212 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 7213 ret = workqueue_apply_unbound_cpumask(cpumask); 7214 if (!ret) 7215 cpumask_copy(wq_requested_unbound_cpumask, cpumask); 7216 apply_wqattrs_unlock(); 7217 } 7218 7219 return ret; 7220 } 7221 7222 static ssize_t __wq_cpumask_show(struct device *dev, 7223 struct device_attribute *attr, char *buf, cpumask_var_t mask) 7224 { 7225 int written; 7226 7227 mutex_lock(&wq_pool_mutex); 7228 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 7229 mutex_unlock(&wq_pool_mutex); 7230 7231 return written; 7232 } 7233 7234 static ssize_t cpumask_requested_show(struct device *dev, 7235 struct device_attribute *attr, char *buf) 7236 { 7237 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask); 7238 } 7239 static DEVICE_ATTR_RO(cpumask_requested); 7240 7241 static ssize_t cpumask_isolated_show(struct device *dev, 7242 struct device_attribute *attr, char *buf) 7243 { 7244 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask); 7245 } 7246 static DEVICE_ATTR_RO(cpumask_isolated); 7247 7248 static ssize_t cpumask_show(struct device *dev, 7249 struct device_attribute *attr, char *buf) 7250 { 7251 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask); 7252 } 7253 7254 static ssize_t cpumask_store(struct device *dev, 7255 struct device_attribute *attr, const char *buf, size_t count) 7256 { 7257 cpumask_var_t cpumask; 7258 int ret; 7259 7260 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 7261 return -ENOMEM; 7262 7263 ret = cpumask_parse(buf, cpumask); 7264 if (!ret) 7265 ret = workqueue_set_unbound_cpumask(cpumask); 7266 7267 free_cpumask_var(cpumask); 7268 return ret ? ret : count; 7269 } 7270 static DEVICE_ATTR_RW(cpumask); 7271 7272 static struct attribute *wq_sysfs_cpumask_attrs[] = { 7273 &dev_attr_cpumask.attr, 7274 &dev_attr_cpumask_requested.attr, 7275 &dev_attr_cpumask_isolated.attr, 7276 NULL, 7277 }; 7278 ATTRIBUTE_GROUPS(wq_sysfs_cpumask); 7279 7280 static int __init wq_sysfs_init(void) 7281 { 7282 return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups); 7283 } 7284 core_initcall(wq_sysfs_init); 7285 7286 static void wq_device_release(struct device *dev) 7287 { 7288 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 7289 7290 kfree(wq_dev); 7291 } 7292 7293 /** 7294 * workqueue_sysfs_register - make a workqueue visible in sysfs 7295 * @wq: the workqueue to register 7296 * 7297 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 7298 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 7299 * which is the preferred method. 7300 * 7301 * Workqueue user should use this function directly iff it wants to apply 7302 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 7303 * apply_workqueue_attrs() may race against userland updating the 7304 * attributes. 7305 * 7306 * Return: 0 on success, -errno on failure. 7307 */ 7308 int workqueue_sysfs_register(struct workqueue_struct *wq) 7309 { 7310 struct wq_device *wq_dev; 7311 int ret; 7312 7313 /* 7314 * Adjusting max_active breaks ordering guarantee. Disallow exposing 7315 * ordered workqueues. 7316 */ 7317 if (WARN_ON(wq->flags & __WQ_ORDERED)) 7318 return -EINVAL; 7319 7320 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 7321 if (!wq_dev) 7322 return -ENOMEM; 7323 7324 wq_dev->wq = wq; 7325 wq_dev->dev.bus = &wq_subsys; 7326 wq_dev->dev.release = wq_device_release; 7327 dev_set_name(&wq_dev->dev, "%s", wq->name); 7328 7329 /* 7330 * unbound_attrs are created separately. Suppress uevent until 7331 * everything is ready. 7332 */ 7333 dev_set_uevent_suppress(&wq_dev->dev, true); 7334 7335 ret = device_register(&wq_dev->dev); 7336 if (ret) { 7337 put_device(&wq_dev->dev); 7338 wq->wq_dev = NULL; 7339 return ret; 7340 } 7341 7342 if (wq->flags & WQ_UNBOUND) { 7343 struct device_attribute *attr; 7344 7345 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 7346 ret = device_create_file(&wq_dev->dev, attr); 7347 if (ret) { 7348 device_unregister(&wq_dev->dev); 7349 wq->wq_dev = NULL; 7350 return ret; 7351 } 7352 } 7353 } 7354 7355 dev_set_uevent_suppress(&wq_dev->dev, false); 7356 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 7357 return 0; 7358 } 7359 7360 /** 7361 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 7362 * @wq: the workqueue to unregister 7363 * 7364 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 7365 */ 7366 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 7367 { 7368 struct wq_device *wq_dev = wq->wq_dev; 7369 7370 if (!wq->wq_dev) 7371 return; 7372 7373 wq->wq_dev = NULL; 7374 device_unregister(&wq_dev->dev); 7375 } 7376 #else /* CONFIG_SYSFS */ 7377 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 7378 #endif /* CONFIG_SYSFS */ 7379 7380 /* 7381 * Workqueue watchdog. 7382 * 7383 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 7384 * flush dependency, a concurrency managed work item which stays RUNNING 7385 * indefinitely. Workqueue stalls can be very difficult to debug as the 7386 * usual warning mechanisms don't trigger and internal workqueue state is 7387 * largely opaque. 7388 * 7389 * Workqueue watchdog monitors all worker pools periodically and dumps 7390 * state if some pools failed to make forward progress for a while where 7391 * forward progress is defined as the first item on ->worklist changing. 7392 * 7393 * This mechanism is controlled through the kernel parameter 7394 * "workqueue.watchdog_thresh" which can be updated at runtime through the 7395 * corresponding sysfs parameter file. 7396 */ 7397 #ifdef CONFIG_WQ_WATCHDOG 7398 7399 static unsigned long wq_watchdog_thresh = 30; 7400 static struct timer_list wq_watchdog_timer; 7401 7402 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 7403 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 7404 7405 /* 7406 * Show workers that might prevent the processing of pending work items. 7407 * The only candidates are CPU-bound workers in the running state. 7408 * Pending work items should be handled by another idle worker 7409 * in all other situations. 7410 */ 7411 static void show_cpu_pool_hog(struct worker_pool *pool) 7412 { 7413 struct worker *worker; 7414 unsigned long irq_flags; 7415 int bkt; 7416 7417 raw_spin_lock_irqsave(&pool->lock, irq_flags); 7418 7419 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 7420 if (task_is_running(worker->task)) { 7421 /* 7422 * Defer printing to avoid deadlocks in console 7423 * drivers that queue work while holding locks 7424 * also taken in their write paths. 7425 */ 7426 printk_deferred_enter(); 7427 7428 pr_info("pool %d:\n", pool->id); 7429 sched_show_task(worker->task); 7430 7431 printk_deferred_exit(); 7432 } 7433 } 7434 7435 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 7436 } 7437 7438 static void show_cpu_pools_hogs(void) 7439 { 7440 struct worker_pool *pool; 7441 int pi; 7442 7443 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 7444 7445 rcu_read_lock(); 7446 7447 for_each_pool(pool, pi) { 7448 if (pool->cpu_stall) 7449 show_cpu_pool_hog(pool); 7450 7451 } 7452 7453 rcu_read_unlock(); 7454 } 7455 7456 static void wq_watchdog_reset_touched(void) 7457 { 7458 int cpu; 7459 7460 wq_watchdog_touched = jiffies; 7461 for_each_possible_cpu(cpu) 7462 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 7463 } 7464 7465 static void wq_watchdog_timer_fn(struct timer_list *unused) 7466 { 7467 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7468 bool lockup_detected = false; 7469 bool cpu_pool_stall = false; 7470 unsigned long now = jiffies; 7471 struct worker_pool *pool; 7472 int pi; 7473 7474 if (!thresh) 7475 return; 7476 7477 rcu_read_lock(); 7478 7479 for_each_pool(pool, pi) { 7480 unsigned long pool_ts, touched, ts; 7481 7482 pool->cpu_stall = false; 7483 if (list_empty(&pool->worklist)) 7484 continue; 7485 7486 /* 7487 * If a virtual machine is stopped by the host it can look to 7488 * the watchdog like a stall. 7489 */ 7490 kvm_check_and_clear_guest_paused(); 7491 7492 /* get the latest of pool and touched timestamps */ 7493 if (pool->cpu >= 0) 7494 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 7495 else 7496 touched = READ_ONCE(wq_watchdog_touched); 7497 pool_ts = READ_ONCE(pool->watchdog_ts); 7498 7499 if (time_after(pool_ts, touched)) 7500 ts = pool_ts; 7501 else 7502 ts = touched; 7503 7504 /* did we stall? */ 7505 if (time_after(now, ts + thresh)) { 7506 lockup_detected = true; 7507 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) { 7508 pool->cpu_stall = true; 7509 cpu_pool_stall = true; 7510 } 7511 pr_emerg("BUG: workqueue lockup - pool"); 7512 pr_cont_pool_info(pool); 7513 pr_cont(" stuck for %us!\n", 7514 jiffies_to_msecs(now - pool_ts) / 1000); 7515 } 7516 7517 7518 } 7519 7520 rcu_read_unlock(); 7521 7522 if (lockup_detected) 7523 show_all_workqueues(); 7524 7525 if (cpu_pool_stall) 7526 show_cpu_pools_hogs(); 7527 7528 wq_watchdog_reset_touched(); 7529 mod_timer(&wq_watchdog_timer, jiffies + thresh); 7530 } 7531 7532 notrace void wq_watchdog_touch(int cpu) 7533 { 7534 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7535 unsigned long touch_ts = READ_ONCE(wq_watchdog_touched); 7536 unsigned long now = jiffies; 7537 7538 if (cpu >= 0) 7539 per_cpu(wq_watchdog_touched_cpu, cpu) = now; 7540 else 7541 WARN_ONCE(1, "%s should be called with valid CPU", __func__); 7542 7543 /* Don't unnecessarily store to global cacheline */ 7544 if (time_after(now, touch_ts + thresh / 4)) 7545 WRITE_ONCE(wq_watchdog_touched, jiffies); 7546 } 7547 7548 static void wq_watchdog_set_thresh(unsigned long thresh) 7549 { 7550 wq_watchdog_thresh = 0; 7551 del_timer_sync(&wq_watchdog_timer); 7552 7553 if (thresh) { 7554 wq_watchdog_thresh = thresh; 7555 wq_watchdog_reset_touched(); 7556 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 7557 } 7558 } 7559 7560 static int wq_watchdog_param_set_thresh(const char *val, 7561 const struct kernel_param *kp) 7562 { 7563 unsigned long thresh; 7564 int ret; 7565 7566 ret = kstrtoul(val, 0, &thresh); 7567 if (ret) 7568 return ret; 7569 7570 if (system_wq) 7571 wq_watchdog_set_thresh(thresh); 7572 else 7573 wq_watchdog_thresh = thresh; 7574 7575 return 0; 7576 } 7577 7578 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 7579 .set = wq_watchdog_param_set_thresh, 7580 .get = param_get_ulong, 7581 }; 7582 7583 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 7584 0644); 7585 7586 static void wq_watchdog_init(void) 7587 { 7588 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 7589 wq_watchdog_set_thresh(wq_watchdog_thresh); 7590 } 7591 7592 #else /* CONFIG_WQ_WATCHDOG */ 7593 7594 static inline void wq_watchdog_init(void) { } 7595 7596 #endif /* CONFIG_WQ_WATCHDOG */ 7597 7598 static void bh_pool_kick_normal(struct irq_work *irq_work) 7599 { 7600 raise_softirq_irqoff(TASKLET_SOFTIRQ); 7601 } 7602 7603 static void bh_pool_kick_highpri(struct irq_work *irq_work) 7604 { 7605 raise_softirq_irqoff(HI_SOFTIRQ); 7606 } 7607 7608 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask) 7609 { 7610 if (!cpumask_intersects(wq_unbound_cpumask, mask)) { 7611 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n", 7612 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask)); 7613 return; 7614 } 7615 7616 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask); 7617 } 7618 7619 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice) 7620 { 7621 BUG_ON(init_worker_pool(pool)); 7622 pool->cpu = cpu; 7623 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 7624 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu)); 7625 pool->attrs->nice = nice; 7626 pool->attrs->affn_strict = true; 7627 pool->node = cpu_to_node(cpu); 7628 7629 /* alloc pool ID */ 7630 mutex_lock(&wq_pool_mutex); 7631 BUG_ON(worker_pool_assign_id(pool)); 7632 mutex_unlock(&wq_pool_mutex); 7633 } 7634 7635 /** 7636 * workqueue_init_early - early init for workqueue subsystem 7637 * 7638 * This is the first step of three-staged workqueue subsystem initialization and 7639 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are 7640 * up. It sets up all the data structures and system workqueues and allows early 7641 * boot code to create workqueues and queue/cancel work items. Actual work item 7642 * execution starts only after kthreads can be created and scheduled right 7643 * before early initcalls. 7644 */ 7645 void __init workqueue_init_early(void) 7646 { 7647 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 7648 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 7649 void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal, 7650 bh_pool_kick_highpri }; 7651 int i, cpu; 7652 7653 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 7654 7655 BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL)); 7656 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 7657 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL)); 7658 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL)); 7659 7660 cpumask_copy(wq_online_cpumask, cpu_online_mask); 7661 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 7662 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ)); 7663 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN)); 7664 if (!cpumask_empty(&wq_cmdline_cpumask)) 7665 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask); 7666 7667 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask); 7668 7669 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 7670 7671 unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs(); 7672 BUG_ON(!unbound_wq_update_pwq_attrs_buf); 7673 7674 /* 7675 * If nohz_full is enabled, set power efficient workqueue as unbound. 7676 * This allows workqueue items to be moved to HK CPUs. 7677 */ 7678 if (housekeeping_enabled(HK_TYPE_TICK)) 7679 wq_power_efficient = true; 7680 7681 /* initialize WQ_AFFN_SYSTEM pods */ 7682 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7683 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL); 7684 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7685 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod); 7686 7687 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE)); 7688 7689 pt->nr_pods = 1; 7690 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask); 7691 pt->pod_node[0] = NUMA_NO_NODE; 7692 pt->cpu_pod[0] = 0; 7693 7694 /* initialize BH and CPU pools */ 7695 for_each_possible_cpu(cpu) { 7696 struct worker_pool *pool; 7697 7698 i = 0; 7699 for_each_bh_worker_pool(pool, cpu) { 7700 init_cpu_worker_pool(pool, cpu, std_nice[i]); 7701 pool->flags |= POOL_BH; 7702 init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]); 7703 i++; 7704 } 7705 7706 i = 0; 7707 for_each_cpu_worker_pool(pool, cpu) 7708 init_cpu_worker_pool(pool, cpu, std_nice[i++]); 7709 } 7710 7711 /* create default unbound and ordered wq attrs */ 7712 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 7713 struct workqueue_attrs *attrs; 7714 7715 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7716 attrs->nice = std_nice[i]; 7717 unbound_std_wq_attrs[i] = attrs; 7718 7719 /* 7720 * An ordered wq should have only one pwq as ordering is 7721 * guaranteed by max_active which is enforced by pwqs. 7722 */ 7723 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7724 attrs->nice = std_nice[i]; 7725 attrs->ordered = true; 7726 ordered_wq_attrs[i] = attrs; 7727 } 7728 7729 system_wq = alloc_workqueue("events", 0, 0); 7730 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 7731 system_long_wq = alloc_workqueue("events_long", 0, 0); 7732 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 7733 WQ_MAX_ACTIVE); 7734 system_freezable_wq = alloc_workqueue("events_freezable", 7735 WQ_FREEZABLE, 0); 7736 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 7737 WQ_POWER_EFFICIENT, 0); 7738 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient", 7739 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 7740 0); 7741 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0); 7742 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri", 7743 WQ_BH | WQ_HIGHPRI, 0); 7744 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 7745 !system_unbound_wq || !system_freezable_wq || 7746 !system_power_efficient_wq || 7747 !system_freezable_power_efficient_wq || 7748 !system_bh_wq || !system_bh_highpri_wq); 7749 } 7750 7751 static void __init wq_cpu_intensive_thresh_init(void) 7752 { 7753 unsigned long thresh; 7754 unsigned long bogo; 7755 7756 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release"); 7757 BUG_ON(IS_ERR(pwq_release_worker)); 7758 7759 /* if the user set it to a specific value, keep it */ 7760 if (wq_cpu_intensive_thresh_us != ULONG_MAX) 7761 return; 7762 7763 /* 7764 * The default of 10ms is derived from the fact that most modern (as of 7765 * 2023) processors can do a lot in 10ms and that it's just below what 7766 * most consider human-perceivable. However, the kernel also runs on a 7767 * lot slower CPUs including microcontrollers where the threshold is way 7768 * too low. 7769 * 7770 * Let's scale up the threshold upto 1 second if BogoMips is below 4000. 7771 * This is by no means accurate but it doesn't have to be. The mechanism 7772 * is still useful even when the threshold is fully scaled up. Also, as 7773 * the reports would usually be applicable to everyone, some machines 7774 * operating on longer thresholds won't significantly diminish their 7775 * usefulness. 7776 */ 7777 thresh = 10 * USEC_PER_MSEC; 7778 7779 /* see init/calibrate.c for lpj -> BogoMIPS calculation */ 7780 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); 7781 if (bogo < 4000) 7782 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); 7783 7784 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n", 7785 loops_per_jiffy, bogo, thresh); 7786 7787 wq_cpu_intensive_thresh_us = thresh; 7788 } 7789 7790 /** 7791 * workqueue_init - bring workqueue subsystem fully online 7792 * 7793 * This is the second step of three-staged workqueue subsystem initialization 7794 * and invoked as soon as kthreads can be created and scheduled. Workqueues have 7795 * been created and work items queued on them, but there are no kworkers 7796 * executing the work items yet. Populate the worker pools with the initial 7797 * workers and enable future kworker creations. 7798 */ 7799 void __init workqueue_init(void) 7800 { 7801 struct workqueue_struct *wq; 7802 struct worker_pool *pool; 7803 int cpu, bkt; 7804 7805 wq_cpu_intensive_thresh_init(); 7806 7807 mutex_lock(&wq_pool_mutex); 7808 7809 /* 7810 * Per-cpu pools created earlier could be missing node hint. Fix them 7811 * up. Also, create a rescuer for workqueues that requested it. 7812 */ 7813 for_each_possible_cpu(cpu) { 7814 for_each_bh_worker_pool(pool, cpu) 7815 pool->node = cpu_to_node(cpu); 7816 for_each_cpu_worker_pool(pool, cpu) 7817 pool->node = cpu_to_node(cpu); 7818 } 7819 7820 list_for_each_entry(wq, &workqueues, list) { 7821 WARN(init_rescuer(wq), 7822 "workqueue: failed to create early rescuer for %s", 7823 wq->name); 7824 } 7825 7826 mutex_unlock(&wq_pool_mutex); 7827 7828 /* 7829 * Create the initial workers. A BH pool has one pseudo worker that 7830 * represents the shared BH execution context and thus doesn't get 7831 * affected by hotplug events. Create the BH pseudo workers for all 7832 * possible CPUs here. 7833 */ 7834 for_each_possible_cpu(cpu) 7835 for_each_bh_worker_pool(pool, cpu) 7836 BUG_ON(!create_worker(pool)); 7837 7838 for_each_online_cpu(cpu) { 7839 for_each_cpu_worker_pool(pool, cpu) { 7840 pool->flags &= ~POOL_DISASSOCIATED; 7841 BUG_ON(!create_worker(pool)); 7842 } 7843 } 7844 7845 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 7846 BUG_ON(!create_worker(pool)); 7847 7848 wq_online = true; 7849 wq_watchdog_init(); 7850 } 7851 7852 /* 7853 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to 7854 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique 7855 * and consecutive pod ID. The rest of @pt is initialized accordingly. 7856 */ 7857 static void __init init_pod_type(struct wq_pod_type *pt, 7858 bool (*cpus_share_pod)(int, int)) 7859 { 7860 int cur, pre, cpu, pod; 7861 7862 pt->nr_pods = 0; 7863 7864 /* init @pt->cpu_pod[] according to @cpus_share_pod() */ 7865 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7866 BUG_ON(!pt->cpu_pod); 7867 7868 for_each_possible_cpu(cur) { 7869 for_each_possible_cpu(pre) { 7870 if (pre >= cur) { 7871 pt->cpu_pod[cur] = pt->nr_pods++; 7872 break; 7873 } 7874 if (cpus_share_pod(cur, pre)) { 7875 pt->cpu_pod[cur] = pt->cpu_pod[pre]; 7876 break; 7877 } 7878 } 7879 } 7880 7881 /* init the rest to match @pt->cpu_pod[] */ 7882 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7883 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL); 7884 BUG_ON(!pt->pod_cpus || !pt->pod_node); 7885 7886 for (pod = 0; pod < pt->nr_pods; pod++) 7887 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL)); 7888 7889 for_each_possible_cpu(cpu) { 7890 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]); 7891 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu); 7892 } 7893 } 7894 7895 static bool __init cpus_dont_share(int cpu0, int cpu1) 7896 { 7897 return false; 7898 } 7899 7900 static bool __init cpus_share_smt(int cpu0, int cpu1) 7901 { 7902 #ifdef CONFIG_SCHED_SMT 7903 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1)); 7904 #else 7905 return false; 7906 #endif 7907 } 7908 7909 static bool __init cpus_share_numa(int cpu0, int cpu1) 7910 { 7911 return cpu_to_node(cpu0) == cpu_to_node(cpu1); 7912 } 7913 7914 /** 7915 * workqueue_init_topology - initialize CPU pods for unbound workqueues 7916 * 7917 * This is the third step of three-staged workqueue subsystem initialization and 7918 * invoked after SMP and topology information are fully initialized. It 7919 * initializes the unbound CPU pods accordingly. 7920 */ 7921 void __init workqueue_init_topology(void) 7922 { 7923 struct workqueue_struct *wq; 7924 int cpu; 7925 7926 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share); 7927 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt); 7928 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache); 7929 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa); 7930 7931 wq_topo_initialized = true; 7932 7933 mutex_lock(&wq_pool_mutex); 7934 7935 /* 7936 * Workqueues allocated earlier would have all CPUs sharing the default 7937 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue 7938 * and CPU combinations to apply per-pod sharing. 7939 */ 7940 list_for_each_entry(wq, &workqueues, list) { 7941 for_each_online_cpu(cpu) 7942 unbound_wq_update_pwq(wq, cpu); 7943 if (wq->flags & WQ_UNBOUND) { 7944 mutex_lock(&wq->mutex); 7945 wq_update_node_max_active(wq, -1); 7946 mutex_unlock(&wq->mutex); 7947 } 7948 } 7949 7950 mutex_unlock(&wq_pool_mutex); 7951 } 7952 7953 void __warn_flushing_systemwide_wq(void) 7954 { 7955 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n"); 7956 dump_stack(); 7957 } 7958 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 7959 7960 static int __init workqueue_unbound_cpus_setup(char *str) 7961 { 7962 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) { 7963 cpumask_clear(&wq_cmdline_cpumask); 7964 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n"); 7965 } 7966 7967 return 1; 7968 } 7969 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup); 7970