xref: /linux/kernel/workqueue.c (revision 49ac6f05ace5bb0070c68a0193aa05d3c25d4c83)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/signal.h>
34 #include <linux/completion.h>
35 #include <linux/workqueue.h>
36 #include <linux/slab.h>
37 #include <linux/cpu.h>
38 #include <linux/notifier.h>
39 #include <linux/kthread.h>
40 #include <linux/hardirq.h>
41 #include <linux/mempolicy.h>
42 #include <linux/freezer.h>
43 #include <linux/debug_locks.h>
44 #include <linux/lockdep.h>
45 #include <linux/idr.h>
46 #include <linux/jhash.h>
47 #include <linux/hashtable.h>
48 #include <linux/rculist.h>
49 #include <linux/nodemask.h>
50 #include <linux/moduleparam.h>
51 #include <linux/uaccess.h>
52 #include <linux/sched/isolation.h>
53 #include <linux/sched/debug.h>
54 #include <linux/nmi.h>
55 #include <linux/kvm_para.h>
56 #include <linux/delay.h>
57 #include <linux/irq_work.h>
58 
59 #include "workqueue_internal.h"
60 
61 enum worker_pool_flags {
62 	/*
63 	 * worker_pool flags
64 	 *
65 	 * A bound pool is either associated or disassociated with its CPU.
66 	 * While associated (!DISASSOCIATED), all workers are bound to the
67 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 	 * is in effect.
69 	 *
70 	 * While DISASSOCIATED, the cpu may be offline and all workers have
71 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 	 * be executing on any CPU.  The pool behaves as an unbound one.
73 	 *
74 	 * Note that DISASSOCIATED should be flipped only while holding
75 	 * wq_pool_attach_mutex to avoid changing binding state while
76 	 * worker_attach_to_pool() is in progress.
77 	 *
78 	 * As there can only be one concurrent BH execution context per CPU, a
79 	 * BH pool is per-CPU and always DISASSOCIATED.
80 	 */
81 	POOL_BH			= 1 << 0,	/* is a BH pool */
82 	POOL_MANAGER_ACTIVE	= 1 << 1,	/* being managed */
83 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
84 	POOL_BH_DRAINING	= 1 << 3,	/* draining after CPU offline */
85 };
86 
87 enum worker_flags {
88 	/* worker flags */
89 	WORKER_DIE		= 1 << 1,	/* die die die */
90 	WORKER_IDLE		= 1 << 2,	/* is idle */
91 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
92 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
93 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
94 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
95 
96 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
97 				  WORKER_UNBOUND | WORKER_REBOUND,
98 };
99 
100 enum work_cancel_flags {
101 	WORK_CANCEL_DELAYED	= 1 << 0,	/* canceling a delayed_work */
102 	WORK_CANCEL_DISABLE	= 1 << 1,	/* canceling to disable */
103 };
104 
105 enum wq_internal_consts {
106 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
107 
108 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
109 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
110 
111 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
112 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
113 
114 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
115 						/* call for help after 10ms
116 						   (min two ticks) */
117 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
118 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
119 
120 	/*
121 	 * Rescue workers are used only on emergencies and shared by
122 	 * all cpus.  Give MIN_NICE.
123 	 */
124 	RESCUER_NICE_LEVEL	= MIN_NICE,
125 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
126 
127 	WQ_NAME_LEN		= 32,
128 	WORKER_ID_LEN		= 10 + WQ_NAME_LEN, /* "kworker/R-" + WQ_NAME_LEN */
129 };
130 
131 /*
132  * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and
133  * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because
134  * msecs_to_jiffies() can't be an initializer.
135  */
136 #define BH_WORKER_JIFFIES	msecs_to_jiffies(2)
137 #define BH_WORKER_RESTARTS	10
138 
139 /*
140  * Structure fields follow one of the following exclusion rules.
141  *
142  * I: Modifiable by initialization/destruction paths and read-only for
143  *    everyone else.
144  *
145  * P: Preemption protected.  Disabling preemption is enough and should
146  *    only be modified and accessed from the local cpu.
147  *
148  * L: pool->lock protected.  Access with pool->lock held.
149  *
150  * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for
151  *     reads.
152  *
153  * K: Only modified by worker while holding pool->lock. Can be safely read by
154  *    self, while holding pool->lock or from IRQ context if %current is the
155  *    kworker.
156  *
157  * S: Only modified by worker self.
158  *
159  * A: wq_pool_attach_mutex protected.
160  *
161  * PL: wq_pool_mutex protected.
162  *
163  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
164  *
165  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
166  *
167  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
168  *      RCU for reads.
169  *
170  * WQ: wq->mutex protected.
171  *
172  * WR: wq->mutex protected for writes.  RCU protected for reads.
173  *
174  * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read
175  *     with READ_ONCE() without locking.
176  *
177  * MD: wq_mayday_lock protected.
178  *
179  * WD: Used internally by the watchdog.
180  */
181 
182 /* struct worker is defined in workqueue_internal.h */
183 
184 struct worker_pool {
185 	raw_spinlock_t		lock;		/* the pool lock */
186 	int			cpu;		/* I: the associated cpu */
187 	int			node;		/* I: the associated node ID */
188 	int			id;		/* I: pool ID */
189 	unsigned int		flags;		/* L: flags */
190 
191 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
192 	bool			cpu_stall;	/* WD: stalled cpu bound pool */
193 
194 	/*
195 	 * The counter is incremented in a process context on the associated CPU
196 	 * w/ preemption disabled, and decremented or reset in the same context
197 	 * but w/ pool->lock held. The readers grab pool->lock and are
198 	 * guaranteed to see if the counter reached zero.
199 	 */
200 	int			nr_running;
201 
202 	struct list_head	worklist;	/* L: list of pending works */
203 
204 	int			nr_workers;	/* L: total number of workers */
205 	int			nr_idle;	/* L: currently idle workers */
206 
207 	struct list_head	idle_list;	/* L: list of idle workers */
208 	struct timer_list	idle_timer;	/* L: worker idle timeout */
209 	struct work_struct      idle_cull_work; /* L: worker idle cleanup */
210 
211 	struct timer_list	mayday_timer;	  /* L: SOS timer for workers */
212 
213 	/* a workers is either on busy_hash or idle_list, or the manager */
214 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
215 						/* L: hash of busy workers */
216 
217 	struct worker		*manager;	/* L: purely informational */
218 	struct list_head	workers;	/* A: attached workers */
219 
220 	struct ida		worker_ida;	/* worker IDs for task name */
221 
222 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
223 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
224 	int			refcnt;		/* PL: refcnt for unbound pools */
225 
226 	/*
227 	 * Destruction of pool is RCU protected to allow dereferences
228 	 * from get_work_pool().
229 	 */
230 	struct rcu_head		rcu;
231 };
232 
233 /*
234  * Per-pool_workqueue statistics. These can be monitored using
235  * tools/workqueue/wq_monitor.py.
236  */
237 enum pool_workqueue_stats {
238 	PWQ_STAT_STARTED,	/* work items started execution */
239 	PWQ_STAT_COMPLETED,	/* work items completed execution */
240 	PWQ_STAT_CPU_TIME,	/* total CPU time consumed */
241 	PWQ_STAT_CPU_INTENSIVE,	/* wq_cpu_intensive_thresh_us violations */
242 	PWQ_STAT_CM_WAKEUP,	/* concurrency-management worker wakeups */
243 	PWQ_STAT_REPATRIATED,	/* unbound workers brought back into scope */
244 	PWQ_STAT_MAYDAY,	/* maydays to rescuer */
245 	PWQ_STAT_RESCUED,	/* linked work items executed by rescuer */
246 
247 	PWQ_NR_STATS,
248 };
249 
250 /*
251  * The per-pool workqueue.  While queued, bits below WORK_PWQ_SHIFT
252  * of work_struct->data are used for flags and the remaining high bits
253  * point to the pwq; thus, pwqs need to be aligned at two's power of the
254  * number of flag bits.
255  */
256 struct pool_workqueue {
257 	struct worker_pool	*pool;		/* I: the associated pool */
258 	struct workqueue_struct *wq;		/* I: the owning workqueue */
259 	int			work_color;	/* L: current color */
260 	int			flush_color;	/* L: flushing color */
261 	int			refcnt;		/* L: reference count */
262 	int			nr_in_flight[WORK_NR_COLORS];
263 						/* L: nr of in_flight works */
264 	bool			plugged;	/* L: execution suspended */
265 
266 	/*
267 	 * nr_active management and WORK_STRUCT_INACTIVE:
268 	 *
269 	 * When pwq->nr_active >= max_active, new work item is queued to
270 	 * pwq->inactive_works instead of pool->worklist and marked with
271 	 * WORK_STRUCT_INACTIVE.
272 	 *
273 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate in
274 	 * nr_active and all work items in pwq->inactive_works are marked with
275 	 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are
276 	 * in pwq->inactive_works. Some of them are ready to run in
277 	 * pool->worklist or worker->scheduled. Those work itmes are only struct
278 	 * wq_barrier which is used for flush_work() and should not participate
279 	 * in nr_active. For non-barrier work item, it is marked with
280 	 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
281 	 */
282 	int			nr_active;	/* L: nr of active works */
283 	struct list_head	inactive_works;	/* L: inactive works */
284 	struct list_head	pending_node;	/* LN: node on wq_node_nr_active->pending_pwqs */
285 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
286 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
287 
288 	u64			stats[PWQ_NR_STATS];
289 
290 	/*
291 	 * Release of unbound pwq is punted to a kthread_worker. See put_pwq()
292 	 * and pwq_release_workfn() for details. pool_workqueue itself is also
293 	 * RCU protected so that the first pwq can be determined without
294 	 * grabbing wq->mutex.
295 	 */
296 	struct kthread_work	release_work;
297 	struct rcu_head		rcu;
298 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT);
299 
300 /*
301  * Structure used to wait for workqueue flush.
302  */
303 struct wq_flusher {
304 	struct list_head	list;		/* WQ: list of flushers */
305 	int			flush_color;	/* WQ: flush color waiting for */
306 	struct completion	done;		/* flush completion */
307 };
308 
309 struct wq_device;
310 
311 /*
312  * Unlike in a per-cpu workqueue where max_active limits its concurrency level
313  * on each CPU, in an unbound workqueue, max_active applies to the whole system.
314  * As sharing a single nr_active across multiple sockets can be very expensive,
315  * the counting and enforcement is per NUMA node.
316  *
317  * The following struct is used to enforce per-node max_active. When a pwq wants
318  * to start executing a work item, it should increment ->nr using
319  * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over
320  * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish
321  * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in
322  * round-robin order.
323  */
324 struct wq_node_nr_active {
325 	int			max;		/* per-node max_active */
326 	atomic_t		nr;		/* per-node nr_active */
327 	raw_spinlock_t		lock;		/* nests inside pool locks */
328 	struct list_head	pending_pwqs;	/* LN: pwqs with inactive works */
329 };
330 
331 /*
332  * The externally visible workqueue.  It relays the issued work items to
333  * the appropriate worker_pool through its pool_workqueues.
334  */
335 struct workqueue_struct {
336 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
337 	struct list_head	list;		/* PR: list of all workqueues */
338 
339 	struct mutex		mutex;		/* protects this wq */
340 	int			work_color;	/* WQ: current work color */
341 	int			flush_color;	/* WQ: current flush color */
342 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
343 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
344 	struct list_head	flusher_queue;	/* WQ: flush waiters */
345 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
346 
347 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
348 	struct worker		*rescuer;	/* MD: rescue worker */
349 
350 	int			nr_drainers;	/* WQ: drain in progress */
351 
352 	/* See alloc_workqueue() function comment for info on min/max_active */
353 	int			max_active;	/* WO: max active works */
354 	int			min_active;	/* WO: min active works */
355 	int			saved_max_active; /* WQ: saved max_active */
356 	int			saved_min_active; /* WQ: saved min_active */
357 
358 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
359 	struct pool_workqueue __rcu *dfl_pwq;   /* PW: only for unbound wqs */
360 
361 #ifdef CONFIG_SYSFS
362 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
363 #endif
364 #ifdef CONFIG_LOCKDEP
365 	char			*lock_name;
366 	struct lock_class_key	key;
367 	struct lockdep_map	lockdep_map;
368 #endif
369 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
370 
371 	/*
372 	 * Destruction of workqueue_struct is RCU protected to allow walking
373 	 * the workqueues list without grabbing wq_pool_mutex.
374 	 * This is used to dump all workqueues from sysrq.
375 	 */
376 	struct rcu_head		rcu;
377 
378 	/* hot fields used during command issue, aligned to cacheline */
379 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
380 	struct pool_workqueue __rcu * __percpu *cpu_pwq; /* I: per-cpu pwqs */
381 	struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */
382 };
383 
384 /*
385  * Each pod type describes how CPUs should be grouped for unbound workqueues.
386  * See the comment above workqueue_attrs->affn_scope.
387  */
388 struct wq_pod_type {
389 	int			nr_pods;	/* number of pods */
390 	cpumask_var_t		*pod_cpus;	/* pod -> cpus */
391 	int			*pod_node;	/* pod -> node */
392 	int			*cpu_pod;	/* cpu -> pod */
393 };
394 
395 struct work_offq_data {
396 	u32			pool_id;
397 	u32			disable;
398 	u32			flags;
399 };
400 
401 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = {
402 	[WQ_AFFN_DFL]		= "default",
403 	[WQ_AFFN_CPU]		= "cpu",
404 	[WQ_AFFN_SMT]		= "smt",
405 	[WQ_AFFN_CACHE]		= "cache",
406 	[WQ_AFFN_NUMA]		= "numa",
407 	[WQ_AFFN_SYSTEM]	= "system",
408 };
409 
410 /*
411  * Per-cpu work items which run for longer than the following threshold are
412  * automatically considered CPU intensive and excluded from concurrency
413  * management to prevent them from noticeably delaying other per-cpu work items.
414  * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter.
415  * The actual value is initialized in wq_cpu_intensive_thresh_init().
416  */
417 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX;
418 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644);
419 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
420 static unsigned int wq_cpu_intensive_warning_thresh = 4;
421 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644);
422 #endif
423 
424 /* see the comment above the definition of WQ_POWER_EFFICIENT */
425 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
426 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
427 
428 static bool wq_online;			/* can kworkers be created yet? */
429 static bool wq_topo_initialized __read_mostly = false;
430 
431 static struct kmem_cache *pwq_cache;
432 
433 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES];
434 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE;
435 
436 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */
437 static struct workqueue_attrs *unbound_wq_update_pwq_attrs_buf;
438 
439 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
440 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
441 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
442 /* wait for manager to go away */
443 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
444 
445 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
446 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
447 
448 /* PL: mirror the cpu_online_mask excluding the CPU in the midst of hotplugging */
449 static cpumask_var_t wq_online_cpumask;
450 
451 /* PL&A: allowable cpus for unbound wqs and work items */
452 static cpumask_var_t wq_unbound_cpumask;
453 
454 /* PL: user requested unbound cpumask via sysfs */
455 static cpumask_var_t wq_requested_unbound_cpumask;
456 
457 /* PL: isolated cpumask to be excluded from unbound cpumask */
458 static cpumask_var_t wq_isolated_cpumask;
459 
460 /* for further constrain wq_unbound_cpumask by cmdline parameter*/
461 static struct cpumask wq_cmdline_cpumask __initdata;
462 
463 /* CPU where unbound work was last round robin scheduled from this CPU */
464 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
465 
466 /*
467  * Local execution of unbound work items is no longer guaranteed.  The
468  * following always forces round-robin CPU selection on unbound work items
469  * to uncover usages which depend on it.
470  */
471 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
472 static bool wq_debug_force_rr_cpu = true;
473 #else
474 static bool wq_debug_force_rr_cpu = false;
475 #endif
476 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
477 
478 /* to raise softirq for the BH worker pools on other CPUs */
479 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS],
480 				     bh_pool_irq_works);
481 
482 /* the BH worker pools */
483 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
484 				     bh_worker_pools);
485 
486 /* the per-cpu worker pools */
487 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
488 				     cpu_worker_pools);
489 
490 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
491 
492 /* PL: hash of all unbound pools keyed by pool->attrs */
493 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
494 
495 /* I: attributes used when instantiating standard unbound pools on demand */
496 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
497 
498 /* I: attributes used when instantiating ordered pools on demand */
499 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
500 
501 /*
502  * I: kthread_worker to release pwq's. pwq release needs to be bounced to a
503  * process context while holding a pool lock. Bounce to a dedicated kthread
504  * worker to avoid A-A deadlocks.
505  */
506 static struct kthread_worker *pwq_release_worker __ro_after_init;
507 
508 struct workqueue_struct *system_wq __ro_after_init;
509 EXPORT_SYMBOL(system_wq);
510 struct workqueue_struct *system_highpri_wq __ro_after_init;
511 EXPORT_SYMBOL_GPL(system_highpri_wq);
512 struct workqueue_struct *system_long_wq __ro_after_init;
513 EXPORT_SYMBOL_GPL(system_long_wq);
514 struct workqueue_struct *system_unbound_wq __ro_after_init;
515 EXPORT_SYMBOL_GPL(system_unbound_wq);
516 struct workqueue_struct *system_freezable_wq __ro_after_init;
517 EXPORT_SYMBOL_GPL(system_freezable_wq);
518 struct workqueue_struct *system_power_efficient_wq __ro_after_init;
519 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
520 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init;
521 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
522 struct workqueue_struct *system_bh_wq;
523 EXPORT_SYMBOL_GPL(system_bh_wq);
524 struct workqueue_struct *system_bh_highpri_wq;
525 EXPORT_SYMBOL_GPL(system_bh_highpri_wq);
526 
527 static int worker_thread(void *__worker);
528 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
529 static void show_pwq(struct pool_workqueue *pwq);
530 static void show_one_worker_pool(struct worker_pool *pool);
531 
532 #define CREATE_TRACE_POINTS
533 #include <trace/events/workqueue.h>
534 
535 #define assert_rcu_or_pool_mutex()					\
536 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
537 			 !lockdep_is_held(&wq_pool_mutex),		\
538 			 "RCU or wq_pool_mutex should be held")
539 
540 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
541 	RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() &&			\
542 			 !lockdep_is_held(&wq->mutex) &&		\
543 			 !lockdep_is_held(&wq_pool_mutex),		\
544 			 "RCU, wq->mutex or wq_pool_mutex should be held")
545 
546 #define for_each_bh_worker_pool(pool, cpu)				\
547 	for ((pool) = &per_cpu(bh_worker_pools, cpu)[0];		\
548 	     (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
549 	     (pool)++)
550 
551 #define for_each_cpu_worker_pool(pool, cpu)				\
552 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
553 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
554 	     (pool)++)
555 
556 /**
557  * for_each_pool - iterate through all worker_pools in the system
558  * @pool: iteration cursor
559  * @pi: integer used for iteration
560  *
561  * This must be called either with wq_pool_mutex held or RCU read
562  * locked.  If the pool needs to be used beyond the locking in effect, the
563  * caller is responsible for guaranteeing that the pool stays online.
564  *
565  * The if/else clause exists only for the lockdep assertion and can be
566  * ignored.
567  */
568 #define for_each_pool(pool, pi)						\
569 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
570 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
571 		else
572 
573 /**
574  * for_each_pool_worker - iterate through all workers of a worker_pool
575  * @worker: iteration cursor
576  * @pool: worker_pool to iterate workers of
577  *
578  * This must be called with wq_pool_attach_mutex.
579  *
580  * The if/else clause exists only for the lockdep assertion and can be
581  * ignored.
582  */
583 #define for_each_pool_worker(worker, pool)				\
584 	list_for_each_entry((worker), &(pool)->workers, node)		\
585 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
586 		else
587 
588 /**
589  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
590  * @pwq: iteration cursor
591  * @wq: the target workqueue
592  *
593  * This must be called either with wq->mutex held or RCU read locked.
594  * If the pwq needs to be used beyond the locking in effect, the caller is
595  * responsible for guaranteeing that the pwq stays online.
596  *
597  * The if/else clause exists only for the lockdep assertion and can be
598  * ignored.
599  */
600 #define for_each_pwq(pwq, wq)						\
601 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
602 				 lockdep_is_held(&(wq->mutex)))
603 
604 #ifdef CONFIG_DEBUG_OBJECTS_WORK
605 
606 static const struct debug_obj_descr work_debug_descr;
607 
608 static void *work_debug_hint(void *addr)
609 {
610 	return ((struct work_struct *) addr)->func;
611 }
612 
613 static bool work_is_static_object(void *addr)
614 {
615 	struct work_struct *work = addr;
616 
617 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
618 }
619 
620 /*
621  * fixup_init is called when:
622  * - an active object is initialized
623  */
624 static bool work_fixup_init(void *addr, enum debug_obj_state state)
625 {
626 	struct work_struct *work = addr;
627 
628 	switch (state) {
629 	case ODEBUG_STATE_ACTIVE:
630 		cancel_work_sync(work);
631 		debug_object_init(work, &work_debug_descr);
632 		return true;
633 	default:
634 		return false;
635 	}
636 }
637 
638 /*
639  * fixup_free is called when:
640  * - an active object is freed
641  */
642 static bool work_fixup_free(void *addr, enum debug_obj_state state)
643 {
644 	struct work_struct *work = addr;
645 
646 	switch (state) {
647 	case ODEBUG_STATE_ACTIVE:
648 		cancel_work_sync(work);
649 		debug_object_free(work, &work_debug_descr);
650 		return true;
651 	default:
652 		return false;
653 	}
654 }
655 
656 static const struct debug_obj_descr work_debug_descr = {
657 	.name		= "work_struct",
658 	.debug_hint	= work_debug_hint,
659 	.is_static_object = work_is_static_object,
660 	.fixup_init	= work_fixup_init,
661 	.fixup_free	= work_fixup_free,
662 };
663 
664 static inline void debug_work_activate(struct work_struct *work)
665 {
666 	debug_object_activate(work, &work_debug_descr);
667 }
668 
669 static inline void debug_work_deactivate(struct work_struct *work)
670 {
671 	debug_object_deactivate(work, &work_debug_descr);
672 }
673 
674 void __init_work(struct work_struct *work, int onstack)
675 {
676 	if (onstack)
677 		debug_object_init_on_stack(work, &work_debug_descr);
678 	else
679 		debug_object_init(work, &work_debug_descr);
680 }
681 EXPORT_SYMBOL_GPL(__init_work);
682 
683 void destroy_work_on_stack(struct work_struct *work)
684 {
685 	debug_object_free(work, &work_debug_descr);
686 }
687 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
688 
689 void destroy_delayed_work_on_stack(struct delayed_work *work)
690 {
691 	destroy_timer_on_stack(&work->timer);
692 	debug_object_free(&work->work, &work_debug_descr);
693 }
694 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
695 
696 #else
697 static inline void debug_work_activate(struct work_struct *work) { }
698 static inline void debug_work_deactivate(struct work_struct *work) { }
699 #endif
700 
701 /**
702  * worker_pool_assign_id - allocate ID and assign it to @pool
703  * @pool: the pool pointer of interest
704  *
705  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
706  * successfully, -errno on failure.
707  */
708 static int worker_pool_assign_id(struct worker_pool *pool)
709 {
710 	int ret;
711 
712 	lockdep_assert_held(&wq_pool_mutex);
713 
714 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
715 			GFP_KERNEL);
716 	if (ret >= 0) {
717 		pool->id = ret;
718 		return 0;
719 	}
720 	return ret;
721 }
722 
723 static struct pool_workqueue __rcu **
724 unbound_pwq_slot(struct workqueue_struct *wq, int cpu)
725 {
726        if (cpu >= 0)
727                return per_cpu_ptr(wq->cpu_pwq, cpu);
728        else
729                return &wq->dfl_pwq;
730 }
731 
732 /* @cpu < 0 for dfl_pwq */
733 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu)
734 {
735 	return rcu_dereference_check(*unbound_pwq_slot(wq, cpu),
736 				     lockdep_is_held(&wq_pool_mutex) ||
737 				     lockdep_is_held(&wq->mutex));
738 }
739 
740 /**
741  * unbound_effective_cpumask - effective cpumask of an unbound workqueue
742  * @wq: workqueue of interest
743  *
744  * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which
745  * is masked with wq_unbound_cpumask to determine the effective cpumask. The
746  * default pwq is always mapped to the pool with the current effective cpumask.
747  */
748 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq)
749 {
750 	return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask;
751 }
752 
753 static unsigned int work_color_to_flags(int color)
754 {
755 	return color << WORK_STRUCT_COLOR_SHIFT;
756 }
757 
758 static int get_work_color(unsigned long work_data)
759 {
760 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
761 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
762 }
763 
764 static int work_next_color(int color)
765 {
766 	return (color + 1) % WORK_NR_COLORS;
767 }
768 
769 static unsigned long pool_offq_flags(struct worker_pool *pool)
770 {
771 	return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0;
772 }
773 
774 /*
775  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
776  * contain the pointer to the queued pwq.  Once execution starts, the flag
777  * is cleared and the high bits contain OFFQ flags and pool ID.
778  *
779  * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling()
780  * can be used to set the pwq, pool or clear work->data. These functions should
781  * only be called while the work is owned - ie. while the PENDING bit is set.
782  *
783  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
784  * corresponding to a work.  Pool is available once the work has been
785  * queued anywhere after initialization until it is sync canceled.  pwq is
786  * available only while the work item is queued.
787  */
788 static inline void set_work_data(struct work_struct *work, unsigned long data)
789 {
790 	WARN_ON_ONCE(!work_pending(work));
791 	atomic_long_set(&work->data, data | work_static(work));
792 }
793 
794 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
795 			 unsigned long flags)
796 {
797 	set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING |
798 		      WORK_STRUCT_PWQ | flags);
799 }
800 
801 static void set_work_pool_and_keep_pending(struct work_struct *work,
802 					   int pool_id, unsigned long flags)
803 {
804 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
805 		      WORK_STRUCT_PENDING | flags);
806 }
807 
808 static void set_work_pool_and_clear_pending(struct work_struct *work,
809 					    int pool_id, unsigned long flags)
810 {
811 	/*
812 	 * The following wmb is paired with the implied mb in
813 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
814 	 * here are visible to and precede any updates by the next PENDING
815 	 * owner.
816 	 */
817 	smp_wmb();
818 	set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) |
819 		      flags);
820 	/*
821 	 * The following mb guarantees that previous clear of a PENDING bit
822 	 * will not be reordered with any speculative LOADS or STORES from
823 	 * work->current_func, which is executed afterwards.  This possible
824 	 * reordering can lead to a missed execution on attempt to queue
825 	 * the same @work.  E.g. consider this case:
826 	 *
827 	 *   CPU#0                         CPU#1
828 	 *   ----------------------------  --------------------------------
829 	 *
830 	 * 1  STORE event_indicated
831 	 * 2  queue_work_on() {
832 	 * 3    test_and_set_bit(PENDING)
833 	 * 4 }                             set_..._and_clear_pending() {
834 	 * 5                                 set_work_data() # clear bit
835 	 * 6                                 smp_mb()
836 	 * 7                               work->current_func() {
837 	 * 8				      LOAD event_indicated
838 	 *				   }
839 	 *
840 	 * Without an explicit full barrier speculative LOAD on line 8 can
841 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
842 	 * CPU#0 observes the PENDING bit is still set and new execution of
843 	 * a @work is not queued in a hope, that CPU#1 will eventually
844 	 * finish the queued @work.  Meanwhile CPU#1 does not see
845 	 * event_indicated is set, because speculative LOAD was executed
846 	 * before actual STORE.
847 	 */
848 	smp_mb();
849 }
850 
851 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
852 {
853 	return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK);
854 }
855 
856 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
857 {
858 	unsigned long data = atomic_long_read(&work->data);
859 
860 	if (data & WORK_STRUCT_PWQ)
861 		return work_struct_pwq(data);
862 	else
863 		return NULL;
864 }
865 
866 /**
867  * get_work_pool - return the worker_pool a given work was associated with
868  * @work: the work item of interest
869  *
870  * Pools are created and destroyed under wq_pool_mutex, and allows read
871  * access under RCU read lock.  As such, this function should be
872  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
873  *
874  * All fields of the returned pool are accessible as long as the above
875  * mentioned locking is in effect.  If the returned pool needs to be used
876  * beyond the critical section, the caller is responsible for ensuring the
877  * returned pool is and stays online.
878  *
879  * Return: The worker_pool @work was last associated with.  %NULL if none.
880  */
881 static struct worker_pool *get_work_pool(struct work_struct *work)
882 {
883 	unsigned long data = atomic_long_read(&work->data);
884 	int pool_id;
885 
886 	assert_rcu_or_pool_mutex();
887 
888 	if (data & WORK_STRUCT_PWQ)
889 		return work_struct_pwq(data)->pool;
890 
891 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
892 	if (pool_id == WORK_OFFQ_POOL_NONE)
893 		return NULL;
894 
895 	return idr_find(&worker_pool_idr, pool_id);
896 }
897 
898 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits)
899 {
900 	return (v >> shift) & ((1U << bits) - 1);
901 }
902 
903 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data)
904 {
905 	WARN_ON_ONCE(data & WORK_STRUCT_PWQ);
906 
907 	offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT,
908 					WORK_OFFQ_POOL_BITS);
909 	offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT,
910 					WORK_OFFQ_DISABLE_BITS);
911 	offqd->flags = data & WORK_OFFQ_FLAG_MASK;
912 }
913 
914 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd)
915 {
916 	return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) |
917 		((unsigned long)offqd->flags);
918 }
919 
920 /*
921  * Policy functions.  These define the policies on how the global worker
922  * pools are managed.  Unless noted otherwise, these functions assume that
923  * they're being called with pool->lock held.
924  */
925 
926 /*
927  * Need to wake up a worker?  Called from anything but currently
928  * running workers.
929  *
930  * Note that, because unbound workers never contribute to nr_running, this
931  * function will always return %true for unbound pools as long as the
932  * worklist isn't empty.
933  */
934 static bool need_more_worker(struct worker_pool *pool)
935 {
936 	return !list_empty(&pool->worklist) && !pool->nr_running;
937 }
938 
939 /* Can I start working?  Called from busy but !running workers. */
940 static bool may_start_working(struct worker_pool *pool)
941 {
942 	return pool->nr_idle;
943 }
944 
945 /* Do I need to keep working?  Called from currently running workers. */
946 static bool keep_working(struct worker_pool *pool)
947 {
948 	return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
949 }
950 
951 /* Do we need a new worker?  Called from manager. */
952 static bool need_to_create_worker(struct worker_pool *pool)
953 {
954 	return need_more_worker(pool) && !may_start_working(pool);
955 }
956 
957 /* Do we have too many workers and should some go away? */
958 static bool too_many_workers(struct worker_pool *pool)
959 {
960 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
961 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
962 	int nr_busy = pool->nr_workers - nr_idle;
963 
964 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
965 }
966 
967 /**
968  * worker_set_flags - set worker flags and adjust nr_running accordingly
969  * @worker: self
970  * @flags: flags to set
971  *
972  * Set @flags in @worker->flags and adjust nr_running accordingly.
973  */
974 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
975 {
976 	struct worker_pool *pool = worker->pool;
977 
978 	lockdep_assert_held(&pool->lock);
979 
980 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
981 	if ((flags & WORKER_NOT_RUNNING) &&
982 	    !(worker->flags & WORKER_NOT_RUNNING)) {
983 		pool->nr_running--;
984 	}
985 
986 	worker->flags |= flags;
987 }
988 
989 /**
990  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
991  * @worker: self
992  * @flags: flags to clear
993  *
994  * Clear @flags in @worker->flags and adjust nr_running accordingly.
995  */
996 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
997 {
998 	struct worker_pool *pool = worker->pool;
999 	unsigned int oflags = worker->flags;
1000 
1001 	lockdep_assert_held(&pool->lock);
1002 
1003 	worker->flags &= ~flags;
1004 
1005 	/*
1006 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1007 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1008 	 * of multiple flags, not a single flag.
1009 	 */
1010 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1011 		if (!(worker->flags & WORKER_NOT_RUNNING))
1012 			pool->nr_running++;
1013 }
1014 
1015 /* Return the first idle worker.  Called with pool->lock held. */
1016 static struct worker *first_idle_worker(struct worker_pool *pool)
1017 {
1018 	if (unlikely(list_empty(&pool->idle_list)))
1019 		return NULL;
1020 
1021 	return list_first_entry(&pool->idle_list, struct worker, entry);
1022 }
1023 
1024 /**
1025  * worker_enter_idle - enter idle state
1026  * @worker: worker which is entering idle state
1027  *
1028  * @worker is entering idle state.  Update stats and idle timer if
1029  * necessary.
1030  *
1031  * LOCKING:
1032  * raw_spin_lock_irq(pool->lock).
1033  */
1034 static void worker_enter_idle(struct worker *worker)
1035 {
1036 	struct worker_pool *pool = worker->pool;
1037 
1038 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1039 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1040 			 (worker->hentry.next || worker->hentry.pprev)))
1041 		return;
1042 
1043 	/* can't use worker_set_flags(), also called from create_worker() */
1044 	worker->flags |= WORKER_IDLE;
1045 	pool->nr_idle++;
1046 	worker->last_active = jiffies;
1047 
1048 	/* idle_list is LIFO */
1049 	list_add(&worker->entry, &pool->idle_list);
1050 
1051 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1052 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1053 
1054 	/* Sanity check nr_running. */
1055 	WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
1056 }
1057 
1058 /**
1059  * worker_leave_idle - leave idle state
1060  * @worker: worker which is leaving idle state
1061  *
1062  * @worker is leaving idle state.  Update stats.
1063  *
1064  * LOCKING:
1065  * raw_spin_lock_irq(pool->lock).
1066  */
1067 static void worker_leave_idle(struct worker *worker)
1068 {
1069 	struct worker_pool *pool = worker->pool;
1070 
1071 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1072 		return;
1073 	worker_clr_flags(worker, WORKER_IDLE);
1074 	pool->nr_idle--;
1075 	list_del_init(&worker->entry);
1076 }
1077 
1078 /**
1079  * find_worker_executing_work - find worker which is executing a work
1080  * @pool: pool of interest
1081  * @work: work to find worker for
1082  *
1083  * Find a worker which is executing @work on @pool by searching
1084  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1085  * to match, its current execution should match the address of @work and
1086  * its work function.  This is to avoid unwanted dependency between
1087  * unrelated work executions through a work item being recycled while still
1088  * being executed.
1089  *
1090  * This is a bit tricky.  A work item may be freed once its execution
1091  * starts and nothing prevents the freed area from being recycled for
1092  * another work item.  If the same work item address ends up being reused
1093  * before the original execution finishes, workqueue will identify the
1094  * recycled work item as currently executing and make it wait until the
1095  * current execution finishes, introducing an unwanted dependency.
1096  *
1097  * This function checks the work item address and work function to avoid
1098  * false positives.  Note that this isn't complete as one may construct a
1099  * work function which can introduce dependency onto itself through a
1100  * recycled work item.  Well, if somebody wants to shoot oneself in the
1101  * foot that badly, there's only so much we can do, and if such deadlock
1102  * actually occurs, it should be easy to locate the culprit work function.
1103  *
1104  * CONTEXT:
1105  * raw_spin_lock_irq(pool->lock).
1106  *
1107  * Return:
1108  * Pointer to worker which is executing @work if found, %NULL
1109  * otherwise.
1110  */
1111 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1112 						 struct work_struct *work)
1113 {
1114 	struct worker *worker;
1115 
1116 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1117 			       (unsigned long)work)
1118 		if (worker->current_work == work &&
1119 		    worker->current_func == work->func)
1120 			return worker;
1121 
1122 	return NULL;
1123 }
1124 
1125 /**
1126  * move_linked_works - move linked works to a list
1127  * @work: start of series of works to be scheduled
1128  * @head: target list to append @work to
1129  * @nextp: out parameter for nested worklist walking
1130  *
1131  * Schedule linked works starting from @work to @head. Work series to be
1132  * scheduled starts at @work and includes any consecutive work with
1133  * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on
1134  * @nextp.
1135  *
1136  * CONTEXT:
1137  * raw_spin_lock_irq(pool->lock).
1138  */
1139 static void move_linked_works(struct work_struct *work, struct list_head *head,
1140 			      struct work_struct **nextp)
1141 {
1142 	struct work_struct *n;
1143 
1144 	/*
1145 	 * Linked worklist will always end before the end of the list,
1146 	 * use NULL for list head.
1147 	 */
1148 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1149 		list_move_tail(&work->entry, head);
1150 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1151 			break;
1152 	}
1153 
1154 	/*
1155 	 * If we're already inside safe list traversal and have moved
1156 	 * multiple works to the scheduled queue, the next position
1157 	 * needs to be updated.
1158 	 */
1159 	if (nextp)
1160 		*nextp = n;
1161 }
1162 
1163 /**
1164  * assign_work - assign a work item and its linked work items to a worker
1165  * @work: work to assign
1166  * @worker: worker to assign to
1167  * @nextp: out parameter for nested worklist walking
1168  *
1169  * Assign @work and its linked work items to @worker. If @work is already being
1170  * executed by another worker in the same pool, it'll be punted there.
1171  *
1172  * If @nextp is not NULL, it's updated to point to the next work of the last
1173  * scheduled work. This allows assign_work() to be nested inside
1174  * list_for_each_entry_safe().
1175  *
1176  * Returns %true if @work was successfully assigned to @worker. %false if @work
1177  * was punted to another worker already executing it.
1178  */
1179 static bool assign_work(struct work_struct *work, struct worker *worker,
1180 			struct work_struct **nextp)
1181 {
1182 	struct worker_pool *pool = worker->pool;
1183 	struct worker *collision;
1184 
1185 	lockdep_assert_held(&pool->lock);
1186 
1187 	/*
1188 	 * A single work shouldn't be executed concurrently by multiple workers.
1189 	 * __queue_work() ensures that @work doesn't jump to a different pool
1190 	 * while still running in the previous pool. Here, we should ensure that
1191 	 * @work is not executed concurrently by multiple workers from the same
1192 	 * pool. Check whether anyone is already processing the work. If so,
1193 	 * defer the work to the currently executing one.
1194 	 */
1195 	collision = find_worker_executing_work(pool, work);
1196 	if (unlikely(collision)) {
1197 		move_linked_works(work, &collision->scheduled, nextp);
1198 		return false;
1199 	}
1200 
1201 	move_linked_works(work, &worker->scheduled, nextp);
1202 	return true;
1203 }
1204 
1205 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool)
1206 {
1207 	int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0;
1208 
1209 	return &per_cpu(bh_pool_irq_works, pool->cpu)[high];
1210 }
1211 
1212 static void kick_bh_pool(struct worker_pool *pool)
1213 {
1214 #ifdef CONFIG_SMP
1215 	/* see drain_dead_softirq_workfn() for BH_DRAINING */
1216 	if (unlikely(pool->cpu != smp_processor_id() &&
1217 		     !(pool->flags & POOL_BH_DRAINING))) {
1218 		irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu);
1219 		return;
1220 	}
1221 #endif
1222 	if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
1223 		raise_softirq_irqoff(HI_SOFTIRQ);
1224 	else
1225 		raise_softirq_irqoff(TASKLET_SOFTIRQ);
1226 }
1227 
1228 /**
1229  * kick_pool - wake up an idle worker if necessary
1230  * @pool: pool to kick
1231  *
1232  * @pool may have pending work items. Wake up worker if necessary. Returns
1233  * whether a worker was woken up.
1234  */
1235 static bool kick_pool(struct worker_pool *pool)
1236 {
1237 	struct worker *worker = first_idle_worker(pool);
1238 	struct task_struct *p;
1239 
1240 	lockdep_assert_held(&pool->lock);
1241 
1242 	if (!need_more_worker(pool) || !worker)
1243 		return false;
1244 
1245 	if (pool->flags & POOL_BH) {
1246 		kick_bh_pool(pool);
1247 		return true;
1248 	}
1249 
1250 	p = worker->task;
1251 
1252 #ifdef CONFIG_SMP
1253 	/*
1254 	 * Idle @worker is about to execute @work and waking up provides an
1255 	 * opportunity to migrate @worker at a lower cost by setting the task's
1256 	 * wake_cpu field. Let's see if we want to move @worker to improve
1257 	 * execution locality.
1258 	 *
1259 	 * We're waking the worker that went idle the latest and there's some
1260 	 * chance that @worker is marked idle but hasn't gone off CPU yet. If
1261 	 * so, setting the wake_cpu won't do anything. As this is a best-effort
1262 	 * optimization and the race window is narrow, let's leave as-is for
1263 	 * now. If this becomes pronounced, we can skip over workers which are
1264 	 * still on cpu when picking an idle worker.
1265 	 *
1266 	 * If @pool has non-strict affinity, @worker might have ended up outside
1267 	 * its affinity scope. Repatriate.
1268 	 */
1269 	if (!pool->attrs->affn_strict &&
1270 	    !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) {
1271 		struct work_struct *work = list_first_entry(&pool->worklist,
1272 						struct work_struct, entry);
1273 		int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask,
1274 							  cpu_online_mask);
1275 		if (wake_cpu < nr_cpu_ids) {
1276 			p->wake_cpu = wake_cpu;
1277 			get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++;
1278 		}
1279 	}
1280 #endif
1281 	wake_up_process(p);
1282 	return true;
1283 }
1284 
1285 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT
1286 
1287 /*
1288  * Concurrency-managed per-cpu work items that hog CPU for longer than
1289  * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism,
1290  * which prevents them from stalling other concurrency-managed work items. If a
1291  * work function keeps triggering this mechanism, it's likely that the work item
1292  * should be using an unbound workqueue instead.
1293  *
1294  * wq_cpu_intensive_report() tracks work functions which trigger such conditions
1295  * and report them so that they can be examined and converted to use unbound
1296  * workqueues as appropriate. To avoid flooding the console, each violating work
1297  * function is tracked and reported with exponential backoff.
1298  */
1299 #define WCI_MAX_ENTS 128
1300 
1301 struct wci_ent {
1302 	work_func_t		func;
1303 	atomic64_t		cnt;
1304 	struct hlist_node	hash_node;
1305 };
1306 
1307 static struct wci_ent wci_ents[WCI_MAX_ENTS];
1308 static int wci_nr_ents;
1309 static DEFINE_RAW_SPINLOCK(wci_lock);
1310 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS));
1311 
1312 static struct wci_ent *wci_find_ent(work_func_t func)
1313 {
1314 	struct wci_ent *ent;
1315 
1316 	hash_for_each_possible_rcu(wci_hash, ent, hash_node,
1317 				   (unsigned long)func) {
1318 		if (ent->func == func)
1319 			return ent;
1320 	}
1321 	return NULL;
1322 }
1323 
1324 static void wq_cpu_intensive_report(work_func_t func)
1325 {
1326 	struct wci_ent *ent;
1327 
1328 restart:
1329 	ent = wci_find_ent(func);
1330 	if (ent) {
1331 		u64 cnt;
1332 
1333 		/*
1334 		 * Start reporting from the warning_thresh and back off
1335 		 * exponentially.
1336 		 */
1337 		cnt = atomic64_inc_return_relaxed(&ent->cnt);
1338 		if (wq_cpu_intensive_warning_thresh &&
1339 		    cnt >= wq_cpu_intensive_warning_thresh &&
1340 		    is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh))
1341 			printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n",
1342 					ent->func, wq_cpu_intensive_thresh_us,
1343 					atomic64_read(&ent->cnt));
1344 		return;
1345 	}
1346 
1347 	/*
1348 	 * @func is a new violation. Allocate a new entry for it. If wcn_ents[]
1349 	 * is exhausted, something went really wrong and we probably made enough
1350 	 * noise already.
1351 	 */
1352 	if (wci_nr_ents >= WCI_MAX_ENTS)
1353 		return;
1354 
1355 	raw_spin_lock(&wci_lock);
1356 
1357 	if (wci_nr_ents >= WCI_MAX_ENTS) {
1358 		raw_spin_unlock(&wci_lock);
1359 		return;
1360 	}
1361 
1362 	if (wci_find_ent(func)) {
1363 		raw_spin_unlock(&wci_lock);
1364 		goto restart;
1365 	}
1366 
1367 	ent = &wci_ents[wci_nr_ents++];
1368 	ent->func = func;
1369 	atomic64_set(&ent->cnt, 0);
1370 	hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func);
1371 
1372 	raw_spin_unlock(&wci_lock);
1373 
1374 	goto restart;
1375 }
1376 
1377 #else	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1378 static void wq_cpu_intensive_report(work_func_t func) {}
1379 #endif	/* CONFIG_WQ_CPU_INTENSIVE_REPORT */
1380 
1381 /**
1382  * wq_worker_running - a worker is running again
1383  * @task: task waking up
1384  *
1385  * This function is called when a worker returns from schedule()
1386  */
1387 void wq_worker_running(struct task_struct *task)
1388 {
1389 	struct worker *worker = kthread_data(task);
1390 
1391 	if (!READ_ONCE(worker->sleeping))
1392 		return;
1393 
1394 	/*
1395 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
1396 	 * and the nr_running increment below, we may ruin the nr_running reset
1397 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
1398 	 * pool. Protect against such race.
1399 	 */
1400 	preempt_disable();
1401 	if (!(worker->flags & WORKER_NOT_RUNNING))
1402 		worker->pool->nr_running++;
1403 	preempt_enable();
1404 
1405 	/*
1406 	 * CPU intensive auto-detection cares about how long a work item hogged
1407 	 * CPU without sleeping. Reset the starting timestamp on wakeup.
1408 	 */
1409 	worker->current_at = worker->task->se.sum_exec_runtime;
1410 
1411 	WRITE_ONCE(worker->sleeping, 0);
1412 }
1413 
1414 /**
1415  * wq_worker_sleeping - a worker is going to sleep
1416  * @task: task going to sleep
1417  *
1418  * This function is called from schedule() when a busy worker is
1419  * going to sleep.
1420  */
1421 void wq_worker_sleeping(struct task_struct *task)
1422 {
1423 	struct worker *worker = kthread_data(task);
1424 	struct worker_pool *pool;
1425 
1426 	/*
1427 	 * Rescuers, which may not have all the fields set up like normal
1428 	 * workers, also reach here, let's not access anything before
1429 	 * checking NOT_RUNNING.
1430 	 */
1431 	if (worker->flags & WORKER_NOT_RUNNING)
1432 		return;
1433 
1434 	pool = worker->pool;
1435 
1436 	/* Return if preempted before wq_worker_running() was reached */
1437 	if (READ_ONCE(worker->sleeping))
1438 		return;
1439 
1440 	WRITE_ONCE(worker->sleeping, 1);
1441 	raw_spin_lock_irq(&pool->lock);
1442 
1443 	/*
1444 	 * Recheck in case unbind_workers() preempted us. We don't
1445 	 * want to decrement nr_running after the worker is unbound
1446 	 * and nr_running has been reset.
1447 	 */
1448 	if (worker->flags & WORKER_NOT_RUNNING) {
1449 		raw_spin_unlock_irq(&pool->lock);
1450 		return;
1451 	}
1452 
1453 	pool->nr_running--;
1454 	if (kick_pool(pool))
1455 		worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1456 
1457 	raw_spin_unlock_irq(&pool->lock);
1458 }
1459 
1460 /**
1461  * wq_worker_tick - a scheduler tick occurred while a kworker is running
1462  * @task: task currently running
1463  *
1464  * Called from sched_tick(). We're in the IRQ context and the current
1465  * worker's fields which follow the 'K' locking rule can be accessed safely.
1466  */
1467 void wq_worker_tick(struct task_struct *task)
1468 {
1469 	struct worker *worker = kthread_data(task);
1470 	struct pool_workqueue *pwq = worker->current_pwq;
1471 	struct worker_pool *pool = worker->pool;
1472 
1473 	if (!pwq)
1474 		return;
1475 
1476 	pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC;
1477 
1478 	if (!wq_cpu_intensive_thresh_us)
1479 		return;
1480 
1481 	/*
1482 	 * If the current worker is concurrency managed and hogged the CPU for
1483 	 * longer than wq_cpu_intensive_thresh_us, it's automatically marked
1484 	 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items.
1485 	 *
1486 	 * Set @worker->sleeping means that @worker is in the process of
1487 	 * switching out voluntarily and won't be contributing to
1488 	 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also
1489 	 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to
1490 	 * double decrements. The task is releasing the CPU anyway. Let's skip.
1491 	 * We probably want to make this prettier in the future.
1492 	 */
1493 	if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) ||
1494 	    worker->task->se.sum_exec_runtime - worker->current_at <
1495 	    wq_cpu_intensive_thresh_us * NSEC_PER_USEC)
1496 		return;
1497 
1498 	raw_spin_lock(&pool->lock);
1499 
1500 	worker_set_flags(worker, WORKER_CPU_INTENSIVE);
1501 	wq_cpu_intensive_report(worker->current_func);
1502 	pwq->stats[PWQ_STAT_CPU_INTENSIVE]++;
1503 
1504 	if (kick_pool(pool))
1505 		pwq->stats[PWQ_STAT_CM_WAKEUP]++;
1506 
1507 	raw_spin_unlock(&pool->lock);
1508 }
1509 
1510 /**
1511  * wq_worker_last_func - retrieve worker's last work function
1512  * @task: Task to retrieve last work function of.
1513  *
1514  * Determine the last function a worker executed. This is called from
1515  * the scheduler to get a worker's last known identity.
1516  *
1517  * CONTEXT:
1518  * raw_spin_lock_irq(rq->lock)
1519  *
1520  * This function is called during schedule() when a kworker is going
1521  * to sleep. It's used by psi to identify aggregation workers during
1522  * dequeuing, to allow periodic aggregation to shut-off when that
1523  * worker is the last task in the system or cgroup to go to sleep.
1524  *
1525  * As this function doesn't involve any workqueue-related locking, it
1526  * only returns stable values when called from inside the scheduler's
1527  * queuing and dequeuing paths, when @task, which must be a kworker,
1528  * is guaranteed to not be processing any works.
1529  *
1530  * Return:
1531  * The last work function %current executed as a worker, NULL if it
1532  * hasn't executed any work yet.
1533  */
1534 work_func_t wq_worker_last_func(struct task_struct *task)
1535 {
1536 	struct worker *worker = kthread_data(task);
1537 
1538 	return worker->last_func;
1539 }
1540 
1541 /**
1542  * wq_node_nr_active - Determine wq_node_nr_active to use
1543  * @wq: workqueue of interest
1544  * @node: NUMA node, can be %NUMA_NO_NODE
1545  *
1546  * Determine wq_node_nr_active to use for @wq on @node. Returns:
1547  *
1548  * - %NULL for per-cpu workqueues as they don't need to use shared nr_active.
1549  *
1550  * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE.
1551  *
1552  * - Otherwise, node_nr_active[@node].
1553  */
1554 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq,
1555 						   int node)
1556 {
1557 	if (!(wq->flags & WQ_UNBOUND))
1558 		return NULL;
1559 
1560 	if (node == NUMA_NO_NODE)
1561 		node = nr_node_ids;
1562 
1563 	return wq->node_nr_active[node];
1564 }
1565 
1566 /**
1567  * wq_update_node_max_active - Update per-node max_actives to use
1568  * @wq: workqueue to update
1569  * @off_cpu: CPU that's going down, -1 if a CPU is not going down
1570  *
1571  * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is
1572  * distributed among nodes according to the proportions of numbers of online
1573  * cpus. The result is always between @wq->min_active and max_active.
1574  */
1575 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu)
1576 {
1577 	struct cpumask *effective = unbound_effective_cpumask(wq);
1578 	int min_active = READ_ONCE(wq->min_active);
1579 	int max_active = READ_ONCE(wq->max_active);
1580 	int total_cpus, node;
1581 
1582 	lockdep_assert_held(&wq->mutex);
1583 
1584 	if (!wq_topo_initialized)
1585 		return;
1586 
1587 	if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective))
1588 		off_cpu = -1;
1589 
1590 	total_cpus = cpumask_weight_and(effective, cpu_online_mask);
1591 	if (off_cpu >= 0)
1592 		total_cpus--;
1593 
1594 	/* If all CPUs of the wq get offline, use the default values */
1595 	if (unlikely(!total_cpus)) {
1596 		for_each_node(node)
1597 			wq_node_nr_active(wq, node)->max = min_active;
1598 
1599 		wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1600 		return;
1601 	}
1602 
1603 	for_each_node(node) {
1604 		int node_cpus;
1605 
1606 		node_cpus = cpumask_weight_and(effective, cpumask_of_node(node));
1607 		if (off_cpu >= 0 && cpu_to_node(off_cpu) == node)
1608 			node_cpus--;
1609 
1610 		wq_node_nr_active(wq, node)->max =
1611 			clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus),
1612 			      min_active, max_active);
1613 	}
1614 
1615 	wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active;
1616 }
1617 
1618 /**
1619  * get_pwq - get an extra reference on the specified pool_workqueue
1620  * @pwq: pool_workqueue to get
1621  *
1622  * Obtain an extra reference on @pwq.  The caller should guarantee that
1623  * @pwq has positive refcnt and be holding the matching pool->lock.
1624  */
1625 static void get_pwq(struct pool_workqueue *pwq)
1626 {
1627 	lockdep_assert_held(&pwq->pool->lock);
1628 	WARN_ON_ONCE(pwq->refcnt <= 0);
1629 	pwq->refcnt++;
1630 }
1631 
1632 /**
1633  * put_pwq - put a pool_workqueue reference
1634  * @pwq: pool_workqueue to put
1635  *
1636  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1637  * destruction.  The caller should be holding the matching pool->lock.
1638  */
1639 static void put_pwq(struct pool_workqueue *pwq)
1640 {
1641 	lockdep_assert_held(&pwq->pool->lock);
1642 	if (likely(--pwq->refcnt))
1643 		return;
1644 	/*
1645 	 * @pwq can't be released under pool->lock, bounce to a dedicated
1646 	 * kthread_worker to avoid A-A deadlocks.
1647 	 */
1648 	kthread_queue_work(pwq_release_worker, &pwq->release_work);
1649 }
1650 
1651 /**
1652  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1653  * @pwq: pool_workqueue to put (can be %NULL)
1654  *
1655  * put_pwq() with locking.  This function also allows %NULL @pwq.
1656  */
1657 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1658 {
1659 	if (pwq) {
1660 		/*
1661 		 * As both pwqs and pools are RCU protected, the
1662 		 * following lock operations are safe.
1663 		 */
1664 		raw_spin_lock_irq(&pwq->pool->lock);
1665 		put_pwq(pwq);
1666 		raw_spin_unlock_irq(&pwq->pool->lock);
1667 	}
1668 }
1669 
1670 static bool pwq_is_empty(struct pool_workqueue *pwq)
1671 {
1672 	return !pwq->nr_active && list_empty(&pwq->inactive_works);
1673 }
1674 
1675 static void __pwq_activate_work(struct pool_workqueue *pwq,
1676 				struct work_struct *work)
1677 {
1678 	unsigned long *wdb = work_data_bits(work);
1679 
1680 	WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE));
1681 	trace_workqueue_activate_work(work);
1682 	if (list_empty(&pwq->pool->worklist))
1683 		pwq->pool->watchdog_ts = jiffies;
1684 	move_linked_works(work, &pwq->pool->worklist, NULL);
1685 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb);
1686 }
1687 
1688 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna)
1689 {
1690 	int max = READ_ONCE(nna->max);
1691 
1692 	while (true) {
1693 		int old, tmp;
1694 
1695 		old = atomic_read(&nna->nr);
1696 		if (old >= max)
1697 			return false;
1698 		tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1);
1699 		if (tmp == old)
1700 			return true;
1701 	}
1702 }
1703 
1704 /**
1705  * pwq_tryinc_nr_active - Try to increment nr_active for a pwq
1706  * @pwq: pool_workqueue of interest
1707  * @fill: max_active may have increased, try to increase concurrency level
1708  *
1709  * Try to increment nr_active for @pwq. Returns %true if an nr_active count is
1710  * successfully obtained. %false otherwise.
1711  */
1712 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill)
1713 {
1714 	struct workqueue_struct *wq = pwq->wq;
1715 	struct worker_pool *pool = pwq->pool;
1716 	struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node);
1717 	bool obtained = false;
1718 
1719 	lockdep_assert_held(&pool->lock);
1720 
1721 	if (!nna) {
1722 		/* BH or per-cpu workqueue, pwq->nr_active is sufficient */
1723 		obtained = pwq->nr_active < READ_ONCE(wq->max_active);
1724 		goto out;
1725 	}
1726 
1727 	if (unlikely(pwq->plugged))
1728 		return false;
1729 
1730 	/*
1731 	 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is
1732 	 * already waiting on $nna, pwq_dec_nr_active() will maintain the
1733 	 * concurrency level. Don't jump the line.
1734 	 *
1735 	 * We need to ignore the pending test after max_active has increased as
1736 	 * pwq_dec_nr_active() can only maintain the concurrency level but not
1737 	 * increase it. This is indicated by @fill.
1738 	 */
1739 	if (!list_empty(&pwq->pending_node) && likely(!fill))
1740 		goto out;
1741 
1742 	obtained = tryinc_node_nr_active(nna);
1743 	if (obtained)
1744 		goto out;
1745 
1746 	/*
1747 	 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs
1748 	 * and try again. The smp_mb() is paired with the implied memory barrier
1749 	 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either
1750 	 * we see the decremented $nna->nr or they see non-empty
1751 	 * $nna->pending_pwqs.
1752 	 */
1753 	raw_spin_lock(&nna->lock);
1754 
1755 	if (list_empty(&pwq->pending_node))
1756 		list_add_tail(&pwq->pending_node, &nna->pending_pwqs);
1757 	else if (likely(!fill))
1758 		goto out_unlock;
1759 
1760 	smp_mb();
1761 
1762 	obtained = tryinc_node_nr_active(nna);
1763 
1764 	/*
1765 	 * If @fill, @pwq might have already been pending. Being spuriously
1766 	 * pending in cold paths doesn't affect anything. Let's leave it be.
1767 	 */
1768 	if (obtained && likely(!fill))
1769 		list_del_init(&pwq->pending_node);
1770 
1771 out_unlock:
1772 	raw_spin_unlock(&nna->lock);
1773 out:
1774 	if (obtained)
1775 		pwq->nr_active++;
1776 	return obtained;
1777 }
1778 
1779 /**
1780  * pwq_activate_first_inactive - Activate the first inactive work item on a pwq
1781  * @pwq: pool_workqueue of interest
1782  * @fill: max_active may have increased, try to increase concurrency level
1783  *
1784  * Activate the first inactive work item of @pwq if available and allowed by
1785  * max_active limit.
1786  *
1787  * Returns %true if an inactive work item has been activated. %false if no
1788  * inactive work item is found or max_active limit is reached.
1789  */
1790 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill)
1791 {
1792 	struct work_struct *work =
1793 		list_first_entry_or_null(&pwq->inactive_works,
1794 					 struct work_struct, entry);
1795 
1796 	if (work && pwq_tryinc_nr_active(pwq, fill)) {
1797 		__pwq_activate_work(pwq, work);
1798 		return true;
1799 	} else {
1800 		return false;
1801 	}
1802 }
1803 
1804 /**
1805  * unplug_oldest_pwq - unplug the oldest pool_workqueue
1806  * @wq: workqueue_struct where its oldest pwq is to be unplugged
1807  *
1808  * This function should only be called for ordered workqueues where only the
1809  * oldest pwq is unplugged, the others are plugged to suspend execution to
1810  * ensure proper work item ordering::
1811  *
1812  *    dfl_pwq --------------+     [P] - plugged
1813  *                          |
1814  *                          v
1815  *    pwqs -> A -> B [P] -> C [P] (newest)
1816  *            |    |        |
1817  *            1    3        5
1818  *            |    |        |
1819  *            2    4        6
1820  *
1821  * When the oldest pwq is drained and removed, this function should be called
1822  * to unplug the next oldest one to start its work item execution. Note that
1823  * pwq's are linked into wq->pwqs with the oldest first, so the first one in
1824  * the list is the oldest.
1825  */
1826 static void unplug_oldest_pwq(struct workqueue_struct *wq)
1827 {
1828 	struct pool_workqueue *pwq;
1829 
1830 	lockdep_assert_held(&wq->mutex);
1831 
1832 	/* Caller should make sure that pwqs isn't empty before calling */
1833 	pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue,
1834 				       pwqs_node);
1835 	raw_spin_lock_irq(&pwq->pool->lock);
1836 	if (pwq->plugged) {
1837 		pwq->plugged = false;
1838 		if (pwq_activate_first_inactive(pwq, true))
1839 			kick_pool(pwq->pool);
1840 	}
1841 	raw_spin_unlock_irq(&pwq->pool->lock);
1842 }
1843 
1844 /**
1845  * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active
1846  * @nna: wq_node_nr_active to activate a pending pwq for
1847  * @caller_pool: worker_pool the caller is locking
1848  *
1849  * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked.
1850  * @caller_pool may be unlocked and relocked to lock other worker_pools.
1851  */
1852 static void node_activate_pending_pwq(struct wq_node_nr_active *nna,
1853 				      struct worker_pool *caller_pool)
1854 {
1855 	struct worker_pool *locked_pool = caller_pool;
1856 	struct pool_workqueue *pwq;
1857 	struct work_struct *work;
1858 
1859 	lockdep_assert_held(&caller_pool->lock);
1860 
1861 	raw_spin_lock(&nna->lock);
1862 retry:
1863 	pwq = list_first_entry_or_null(&nna->pending_pwqs,
1864 				       struct pool_workqueue, pending_node);
1865 	if (!pwq)
1866 		goto out_unlock;
1867 
1868 	/*
1869 	 * If @pwq is for a different pool than @locked_pool, we need to lock
1870 	 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock
1871 	 * / lock dance. For that, we also need to release @nna->lock as it's
1872 	 * nested inside pool locks.
1873 	 */
1874 	if (pwq->pool != locked_pool) {
1875 		raw_spin_unlock(&locked_pool->lock);
1876 		locked_pool = pwq->pool;
1877 		if (!raw_spin_trylock(&locked_pool->lock)) {
1878 			raw_spin_unlock(&nna->lock);
1879 			raw_spin_lock(&locked_pool->lock);
1880 			raw_spin_lock(&nna->lock);
1881 			goto retry;
1882 		}
1883 	}
1884 
1885 	/*
1886 	 * $pwq may not have any inactive work items due to e.g. cancellations.
1887 	 * Drop it from pending_pwqs and see if there's another one.
1888 	 */
1889 	work = list_first_entry_or_null(&pwq->inactive_works,
1890 					struct work_struct, entry);
1891 	if (!work) {
1892 		list_del_init(&pwq->pending_node);
1893 		goto retry;
1894 	}
1895 
1896 	/*
1897 	 * Acquire an nr_active count and activate the inactive work item. If
1898 	 * $pwq still has inactive work items, rotate it to the end of the
1899 	 * pending_pwqs so that we round-robin through them. This means that
1900 	 * inactive work items are not activated in queueing order which is fine
1901 	 * given that there has never been any ordering across different pwqs.
1902 	 */
1903 	if (likely(tryinc_node_nr_active(nna))) {
1904 		pwq->nr_active++;
1905 		__pwq_activate_work(pwq, work);
1906 
1907 		if (list_empty(&pwq->inactive_works))
1908 			list_del_init(&pwq->pending_node);
1909 		else
1910 			list_move_tail(&pwq->pending_node, &nna->pending_pwqs);
1911 
1912 		/* if activating a foreign pool, make sure it's running */
1913 		if (pwq->pool != caller_pool)
1914 			kick_pool(pwq->pool);
1915 	}
1916 
1917 out_unlock:
1918 	raw_spin_unlock(&nna->lock);
1919 	if (locked_pool != caller_pool) {
1920 		raw_spin_unlock(&locked_pool->lock);
1921 		raw_spin_lock(&caller_pool->lock);
1922 	}
1923 }
1924 
1925 /**
1926  * pwq_dec_nr_active - Retire an active count
1927  * @pwq: pool_workqueue of interest
1928  *
1929  * Decrement @pwq's nr_active and try to activate the first inactive work item.
1930  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock.
1931  */
1932 static void pwq_dec_nr_active(struct pool_workqueue *pwq)
1933 {
1934 	struct worker_pool *pool = pwq->pool;
1935 	struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node);
1936 
1937 	lockdep_assert_held(&pool->lock);
1938 
1939 	/*
1940 	 * @pwq->nr_active should be decremented for both percpu and unbound
1941 	 * workqueues.
1942 	 */
1943 	pwq->nr_active--;
1944 
1945 	/*
1946 	 * For a percpu workqueue, it's simple. Just need to kick the first
1947 	 * inactive work item on @pwq itself.
1948 	 */
1949 	if (!nna) {
1950 		pwq_activate_first_inactive(pwq, false);
1951 		return;
1952 	}
1953 
1954 	/*
1955 	 * If @pwq is for an unbound workqueue, it's more complicated because
1956 	 * multiple pwqs and pools may be sharing the nr_active count. When a
1957 	 * pwq needs to wait for an nr_active count, it puts itself on
1958 	 * $nna->pending_pwqs. The following atomic_dec_return()'s implied
1959 	 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to
1960 	 * guarantee that either we see non-empty pending_pwqs or they see
1961 	 * decremented $nna->nr.
1962 	 *
1963 	 * $nna->max may change as CPUs come online/offline and @pwq->wq's
1964 	 * max_active gets updated. However, it is guaranteed to be equal to or
1965 	 * larger than @pwq->wq->min_active which is above zero unless freezing.
1966 	 * This maintains the forward progress guarantee.
1967 	 */
1968 	if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max))
1969 		return;
1970 
1971 	if (!list_empty(&nna->pending_pwqs))
1972 		node_activate_pending_pwq(nna, pool);
1973 }
1974 
1975 /**
1976  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1977  * @pwq: pwq of interest
1978  * @work_data: work_data of work which left the queue
1979  *
1980  * A work either has completed or is removed from pending queue,
1981  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1982  *
1983  * NOTE:
1984  * For unbound workqueues, this function may temporarily drop @pwq->pool->lock
1985  * and thus should be called after all other state updates for the in-flight
1986  * work item is complete.
1987  *
1988  * CONTEXT:
1989  * raw_spin_lock_irq(pool->lock).
1990  */
1991 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1992 {
1993 	int color = get_work_color(work_data);
1994 
1995 	if (!(work_data & WORK_STRUCT_INACTIVE))
1996 		pwq_dec_nr_active(pwq);
1997 
1998 	pwq->nr_in_flight[color]--;
1999 
2000 	/* is flush in progress and are we at the flushing tip? */
2001 	if (likely(pwq->flush_color != color))
2002 		goto out_put;
2003 
2004 	/* are there still in-flight works? */
2005 	if (pwq->nr_in_flight[color])
2006 		goto out_put;
2007 
2008 	/* this pwq is done, clear flush_color */
2009 	pwq->flush_color = -1;
2010 
2011 	/*
2012 	 * If this was the last pwq, wake up the first flusher.  It
2013 	 * will handle the rest.
2014 	 */
2015 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
2016 		complete(&pwq->wq->first_flusher->done);
2017 out_put:
2018 	put_pwq(pwq);
2019 }
2020 
2021 /**
2022  * try_to_grab_pending - steal work item from worklist and disable irq
2023  * @work: work item to steal
2024  * @cflags: %WORK_CANCEL_ flags
2025  * @irq_flags: place to store irq state
2026  *
2027  * Try to grab PENDING bit of @work.  This function can handle @work in any
2028  * stable state - idle, on timer or on worklist.
2029  *
2030  * Return:
2031  *
2032  *  ========	================================================================
2033  *  1		if @work was pending and we successfully stole PENDING
2034  *  0		if @work was idle and we claimed PENDING
2035  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
2036  *  ========	================================================================
2037  *
2038  * Note:
2039  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
2040  * interrupted while holding PENDING and @work off queue, irq must be
2041  * disabled on entry.  This, combined with delayed_work->timer being
2042  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
2043  *
2044  * On successful return, >= 0, irq is disabled and the caller is
2045  * responsible for releasing it using local_irq_restore(*@irq_flags).
2046  *
2047  * This function is safe to call from any context including IRQ handler.
2048  */
2049 static int try_to_grab_pending(struct work_struct *work, u32 cflags,
2050 			       unsigned long *irq_flags)
2051 {
2052 	struct worker_pool *pool;
2053 	struct pool_workqueue *pwq;
2054 
2055 	local_irq_save(*irq_flags);
2056 
2057 	/* try to steal the timer if it exists */
2058 	if (cflags & WORK_CANCEL_DELAYED) {
2059 		struct delayed_work *dwork = to_delayed_work(work);
2060 
2061 		/*
2062 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
2063 		 * guaranteed that the timer is not queued anywhere and not
2064 		 * running on the local CPU.
2065 		 */
2066 		if (likely(del_timer(&dwork->timer)))
2067 			return 1;
2068 	}
2069 
2070 	/* try to claim PENDING the normal way */
2071 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2072 		return 0;
2073 
2074 	rcu_read_lock();
2075 	/*
2076 	 * The queueing is in progress, or it is already queued. Try to
2077 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2078 	 */
2079 	pool = get_work_pool(work);
2080 	if (!pool)
2081 		goto fail;
2082 
2083 	raw_spin_lock(&pool->lock);
2084 	/*
2085 	 * work->data is guaranteed to point to pwq only while the work
2086 	 * item is queued on pwq->wq, and both updating work->data to point
2087 	 * to pwq on queueing and to pool on dequeueing are done under
2088 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
2089 	 * points to pwq which is associated with a locked pool, the work
2090 	 * item is currently queued on that pool.
2091 	 */
2092 	pwq = get_work_pwq(work);
2093 	if (pwq && pwq->pool == pool) {
2094 		unsigned long work_data = *work_data_bits(work);
2095 
2096 		debug_work_deactivate(work);
2097 
2098 		/*
2099 		 * A cancelable inactive work item must be in the
2100 		 * pwq->inactive_works since a queued barrier can't be
2101 		 * canceled (see the comments in insert_wq_barrier()).
2102 		 *
2103 		 * An inactive work item cannot be deleted directly because
2104 		 * it might have linked barrier work items which, if left
2105 		 * on the inactive_works list, will confuse pwq->nr_active
2106 		 * management later on and cause stall.  Move the linked
2107 		 * barrier work items to the worklist when deleting the grabbed
2108 		 * item. Also keep WORK_STRUCT_INACTIVE in work_data, so that
2109 		 * it doesn't participate in nr_active management in later
2110 		 * pwq_dec_nr_in_flight().
2111 		 */
2112 		if (work_data & WORK_STRUCT_INACTIVE)
2113 			move_linked_works(work, &pwq->pool->worklist, NULL);
2114 
2115 		list_del_init(&work->entry);
2116 
2117 		/*
2118 		 * work->data points to pwq iff queued. Let's point to pool. As
2119 		 * this destroys work->data needed by the next step, stash it.
2120 		 */
2121 		set_work_pool_and_keep_pending(work, pool->id,
2122 					       pool_offq_flags(pool));
2123 
2124 		/* must be the last step, see the function comment */
2125 		pwq_dec_nr_in_flight(pwq, work_data);
2126 
2127 		raw_spin_unlock(&pool->lock);
2128 		rcu_read_unlock();
2129 		return 1;
2130 	}
2131 	raw_spin_unlock(&pool->lock);
2132 fail:
2133 	rcu_read_unlock();
2134 	local_irq_restore(*irq_flags);
2135 	return -EAGAIN;
2136 }
2137 
2138 /**
2139  * work_grab_pending - steal work item from worklist and disable irq
2140  * @work: work item to steal
2141  * @cflags: %WORK_CANCEL_ flags
2142  * @irq_flags: place to store IRQ state
2143  *
2144  * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer
2145  * or on worklist.
2146  *
2147  * Can be called from any context. IRQ is disabled on return with IRQ state
2148  * stored in *@irq_flags. The caller is responsible for re-enabling it using
2149  * local_irq_restore().
2150  *
2151  * Returns %true if @work was pending. %false if idle.
2152  */
2153 static bool work_grab_pending(struct work_struct *work, u32 cflags,
2154 			      unsigned long *irq_flags)
2155 {
2156 	int ret;
2157 
2158 	while (true) {
2159 		ret = try_to_grab_pending(work, cflags, irq_flags);
2160 		if (ret >= 0)
2161 			return ret;
2162 		cpu_relax();
2163 	}
2164 }
2165 
2166 /**
2167  * insert_work - insert a work into a pool
2168  * @pwq: pwq @work belongs to
2169  * @work: work to insert
2170  * @head: insertion point
2171  * @extra_flags: extra WORK_STRUCT_* flags to set
2172  *
2173  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
2174  * work_struct flags.
2175  *
2176  * CONTEXT:
2177  * raw_spin_lock_irq(pool->lock).
2178  */
2179 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
2180 			struct list_head *head, unsigned int extra_flags)
2181 {
2182 	debug_work_activate(work);
2183 
2184 	/* record the work call stack in order to print it in KASAN reports */
2185 	kasan_record_aux_stack_noalloc(work);
2186 
2187 	/* we own @work, set data and link */
2188 	set_work_pwq(work, pwq, extra_flags);
2189 	list_add_tail(&work->entry, head);
2190 	get_pwq(pwq);
2191 }
2192 
2193 /*
2194  * Test whether @work is being queued from another work executing on the
2195  * same workqueue.
2196  */
2197 static bool is_chained_work(struct workqueue_struct *wq)
2198 {
2199 	struct worker *worker;
2200 
2201 	worker = current_wq_worker();
2202 	/*
2203 	 * Return %true iff I'm a worker executing a work item on @wq.  If
2204 	 * I'm @worker, it's safe to dereference it without locking.
2205 	 */
2206 	return worker && worker->current_pwq->wq == wq;
2207 }
2208 
2209 /*
2210  * When queueing an unbound work item to a wq, prefer local CPU if allowed
2211  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
2212  * avoid perturbing sensitive tasks.
2213  */
2214 static int wq_select_unbound_cpu(int cpu)
2215 {
2216 	int new_cpu;
2217 
2218 	if (likely(!wq_debug_force_rr_cpu)) {
2219 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
2220 			return cpu;
2221 	} else {
2222 		pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n");
2223 	}
2224 
2225 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
2226 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
2227 	if (unlikely(new_cpu >= nr_cpu_ids)) {
2228 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
2229 		if (unlikely(new_cpu >= nr_cpu_ids))
2230 			return cpu;
2231 	}
2232 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
2233 
2234 	return new_cpu;
2235 }
2236 
2237 static void __queue_work(int cpu, struct workqueue_struct *wq,
2238 			 struct work_struct *work)
2239 {
2240 	struct pool_workqueue *pwq;
2241 	struct worker_pool *last_pool, *pool;
2242 	unsigned int work_flags;
2243 	unsigned int req_cpu = cpu;
2244 
2245 	/*
2246 	 * While a work item is PENDING && off queue, a task trying to
2247 	 * steal the PENDING will busy-loop waiting for it to either get
2248 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
2249 	 * happen with IRQ disabled.
2250 	 */
2251 	lockdep_assert_irqs_disabled();
2252 
2253 	/*
2254 	 * For a draining wq, only works from the same workqueue are
2255 	 * allowed. The __WQ_DESTROYING helps to spot the issue that
2256 	 * queues a new work item to a wq after destroy_workqueue(wq).
2257 	 */
2258 	if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
2259 		     WARN_ON_ONCE(!is_chained_work(wq))))
2260 		return;
2261 	rcu_read_lock();
2262 retry:
2263 	/* pwq which will be used unless @work is executing elsewhere */
2264 	if (req_cpu == WORK_CPU_UNBOUND) {
2265 		if (wq->flags & WQ_UNBOUND)
2266 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
2267 		else
2268 			cpu = raw_smp_processor_id();
2269 	}
2270 
2271 	pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu));
2272 	pool = pwq->pool;
2273 
2274 	/*
2275 	 * If @work was previously on a different pool, it might still be
2276 	 * running there, in which case the work needs to be queued on that
2277 	 * pool to guarantee non-reentrancy.
2278 	 *
2279 	 * For ordered workqueue, work items must be queued on the newest pwq
2280 	 * for accurate order management.  Guaranteed order also guarantees
2281 	 * non-reentrancy.  See the comments above unplug_oldest_pwq().
2282 	 */
2283 	last_pool = get_work_pool(work);
2284 	if (last_pool && last_pool != pool && !(wq->flags & __WQ_ORDERED)) {
2285 		struct worker *worker;
2286 
2287 		raw_spin_lock(&last_pool->lock);
2288 
2289 		worker = find_worker_executing_work(last_pool, work);
2290 
2291 		if (worker && worker->current_pwq->wq == wq) {
2292 			pwq = worker->current_pwq;
2293 			pool = pwq->pool;
2294 			WARN_ON_ONCE(pool != last_pool);
2295 		} else {
2296 			/* meh... not running there, queue here */
2297 			raw_spin_unlock(&last_pool->lock);
2298 			raw_spin_lock(&pool->lock);
2299 		}
2300 	} else {
2301 		raw_spin_lock(&pool->lock);
2302 	}
2303 
2304 	/*
2305 	 * pwq is determined and locked. For unbound pools, we could have raced
2306 	 * with pwq release and it could already be dead. If its refcnt is zero,
2307 	 * repeat pwq selection. Note that unbound pwqs never die without
2308 	 * another pwq replacing it in cpu_pwq or while work items are executing
2309 	 * on it, so the retrying is guaranteed to make forward-progress.
2310 	 */
2311 	if (unlikely(!pwq->refcnt)) {
2312 		if (wq->flags & WQ_UNBOUND) {
2313 			raw_spin_unlock(&pool->lock);
2314 			cpu_relax();
2315 			goto retry;
2316 		}
2317 		/* oops */
2318 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
2319 			  wq->name, cpu);
2320 	}
2321 
2322 	/* pwq determined, queue */
2323 	trace_workqueue_queue_work(req_cpu, pwq, work);
2324 
2325 	if (WARN_ON(!list_empty(&work->entry)))
2326 		goto out;
2327 
2328 	pwq->nr_in_flight[pwq->work_color]++;
2329 	work_flags = work_color_to_flags(pwq->work_color);
2330 
2331 	/*
2332 	 * Limit the number of concurrently active work items to max_active.
2333 	 * @work must also queue behind existing inactive work items to maintain
2334 	 * ordering when max_active changes. See wq_adjust_max_active().
2335 	 */
2336 	if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) {
2337 		if (list_empty(&pool->worklist))
2338 			pool->watchdog_ts = jiffies;
2339 
2340 		trace_workqueue_activate_work(work);
2341 		insert_work(pwq, work, &pool->worklist, work_flags);
2342 		kick_pool(pool);
2343 	} else {
2344 		work_flags |= WORK_STRUCT_INACTIVE;
2345 		insert_work(pwq, work, &pwq->inactive_works, work_flags);
2346 	}
2347 
2348 out:
2349 	raw_spin_unlock(&pool->lock);
2350 	rcu_read_unlock();
2351 }
2352 
2353 static bool clear_pending_if_disabled(struct work_struct *work)
2354 {
2355 	unsigned long data = *work_data_bits(work);
2356 	struct work_offq_data offqd;
2357 
2358 	if (likely((data & WORK_STRUCT_PWQ) ||
2359 		   !(data & WORK_OFFQ_DISABLE_MASK)))
2360 		return false;
2361 
2362 	work_offqd_unpack(&offqd, data);
2363 	set_work_pool_and_clear_pending(work, offqd.pool_id,
2364 					work_offqd_pack_flags(&offqd));
2365 	return true;
2366 }
2367 
2368 /**
2369  * queue_work_on - queue work on specific cpu
2370  * @cpu: CPU number to execute work on
2371  * @wq: workqueue to use
2372  * @work: work to queue
2373  *
2374  * We queue the work to a specific CPU, the caller must ensure it
2375  * can't go away.  Callers that fail to ensure that the specified
2376  * CPU cannot go away will execute on a randomly chosen CPU.
2377  * But note well that callers specifying a CPU that never has been
2378  * online will get a splat.
2379  *
2380  * Return: %false if @work was already on a queue, %true otherwise.
2381  */
2382 bool queue_work_on(int cpu, struct workqueue_struct *wq,
2383 		   struct work_struct *work)
2384 {
2385 	bool ret = false;
2386 	unsigned long irq_flags;
2387 
2388 	local_irq_save(irq_flags);
2389 
2390 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2391 	    !clear_pending_if_disabled(work)) {
2392 		__queue_work(cpu, wq, work);
2393 		ret = true;
2394 	}
2395 
2396 	local_irq_restore(irq_flags);
2397 	return ret;
2398 }
2399 EXPORT_SYMBOL(queue_work_on);
2400 
2401 /**
2402  * select_numa_node_cpu - Select a CPU based on NUMA node
2403  * @node: NUMA node ID that we want to select a CPU from
2404  *
2405  * This function will attempt to find a "random" cpu available on a given
2406  * node. If there are no CPUs available on the given node it will return
2407  * WORK_CPU_UNBOUND indicating that we should just schedule to any
2408  * available CPU if we need to schedule this work.
2409  */
2410 static int select_numa_node_cpu(int node)
2411 {
2412 	int cpu;
2413 
2414 	/* Delay binding to CPU if node is not valid or online */
2415 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
2416 		return WORK_CPU_UNBOUND;
2417 
2418 	/* Use local node/cpu if we are already there */
2419 	cpu = raw_smp_processor_id();
2420 	if (node == cpu_to_node(cpu))
2421 		return cpu;
2422 
2423 	/* Use "random" otherwise know as "first" online CPU of node */
2424 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
2425 
2426 	/* If CPU is valid return that, otherwise just defer */
2427 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
2428 }
2429 
2430 /**
2431  * queue_work_node - queue work on a "random" cpu for a given NUMA node
2432  * @node: NUMA node that we are targeting the work for
2433  * @wq: workqueue to use
2434  * @work: work to queue
2435  *
2436  * We queue the work to a "random" CPU within a given NUMA node. The basic
2437  * idea here is to provide a way to somehow associate work with a given
2438  * NUMA node.
2439  *
2440  * This function will only make a best effort attempt at getting this onto
2441  * the right NUMA node. If no node is requested or the requested node is
2442  * offline then we just fall back to standard queue_work behavior.
2443  *
2444  * Currently the "random" CPU ends up being the first available CPU in the
2445  * intersection of cpu_online_mask and the cpumask of the node, unless we
2446  * are running on the node. In that case we just use the current CPU.
2447  *
2448  * Return: %false if @work was already on a queue, %true otherwise.
2449  */
2450 bool queue_work_node(int node, struct workqueue_struct *wq,
2451 		     struct work_struct *work)
2452 {
2453 	unsigned long irq_flags;
2454 	bool ret = false;
2455 
2456 	/*
2457 	 * This current implementation is specific to unbound workqueues.
2458 	 * Specifically we only return the first available CPU for a given
2459 	 * node instead of cycling through individual CPUs within the node.
2460 	 *
2461 	 * If this is used with a per-cpu workqueue then the logic in
2462 	 * workqueue_select_cpu_near would need to be updated to allow for
2463 	 * some round robin type logic.
2464 	 */
2465 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
2466 
2467 	local_irq_save(irq_flags);
2468 
2469 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2470 	    !clear_pending_if_disabled(work)) {
2471 		int cpu = select_numa_node_cpu(node);
2472 
2473 		__queue_work(cpu, wq, work);
2474 		ret = true;
2475 	}
2476 
2477 	local_irq_restore(irq_flags);
2478 	return ret;
2479 }
2480 EXPORT_SYMBOL_GPL(queue_work_node);
2481 
2482 void delayed_work_timer_fn(struct timer_list *t)
2483 {
2484 	struct delayed_work *dwork = from_timer(dwork, t, timer);
2485 
2486 	/* should have been called from irqsafe timer with irq already off */
2487 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2488 }
2489 EXPORT_SYMBOL(delayed_work_timer_fn);
2490 
2491 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
2492 				struct delayed_work *dwork, unsigned long delay)
2493 {
2494 	struct timer_list *timer = &dwork->timer;
2495 	struct work_struct *work = &dwork->work;
2496 
2497 	WARN_ON_ONCE(!wq);
2498 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
2499 	WARN_ON_ONCE(timer_pending(timer));
2500 	WARN_ON_ONCE(!list_empty(&work->entry));
2501 
2502 	/*
2503 	 * If @delay is 0, queue @dwork->work immediately.  This is for
2504 	 * both optimization and correctness.  The earliest @timer can
2505 	 * expire is on the closest next tick and delayed_work users depend
2506 	 * on that there's no such delay when @delay is 0.
2507 	 */
2508 	if (!delay) {
2509 		__queue_work(cpu, wq, &dwork->work);
2510 		return;
2511 	}
2512 
2513 	dwork->wq = wq;
2514 	dwork->cpu = cpu;
2515 	timer->expires = jiffies + delay;
2516 
2517 	if (housekeeping_enabled(HK_TYPE_TIMER)) {
2518 		/* If the current cpu is a housekeeping cpu, use it. */
2519 		cpu = smp_processor_id();
2520 		if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER))
2521 			cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
2522 		add_timer_on(timer, cpu);
2523 	} else {
2524 		if (likely(cpu == WORK_CPU_UNBOUND))
2525 			add_timer_global(timer);
2526 		else
2527 			add_timer_on(timer, cpu);
2528 	}
2529 }
2530 
2531 /**
2532  * queue_delayed_work_on - queue work on specific CPU after delay
2533  * @cpu: CPU number to execute work on
2534  * @wq: workqueue to use
2535  * @dwork: work to queue
2536  * @delay: number of jiffies to wait before queueing
2537  *
2538  * Return: %false if @work was already on a queue, %true otherwise.  If
2539  * @delay is zero and @dwork is idle, it will be scheduled for immediate
2540  * execution.
2541  */
2542 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
2543 			   struct delayed_work *dwork, unsigned long delay)
2544 {
2545 	struct work_struct *work = &dwork->work;
2546 	bool ret = false;
2547 	unsigned long irq_flags;
2548 
2549 	/* read the comment in __queue_work() */
2550 	local_irq_save(irq_flags);
2551 
2552 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2553 	    !clear_pending_if_disabled(work)) {
2554 		__queue_delayed_work(cpu, wq, dwork, delay);
2555 		ret = true;
2556 	}
2557 
2558 	local_irq_restore(irq_flags);
2559 	return ret;
2560 }
2561 EXPORT_SYMBOL(queue_delayed_work_on);
2562 
2563 /**
2564  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
2565  * @cpu: CPU number to execute work on
2566  * @wq: workqueue to use
2567  * @dwork: work to queue
2568  * @delay: number of jiffies to wait before queueing
2569  *
2570  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
2571  * modify @dwork's timer so that it expires after @delay.  If @delay is
2572  * zero, @work is guaranteed to be scheduled immediately regardless of its
2573  * current state.
2574  *
2575  * Return: %false if @dwork was idle and queued, %true if @dwork was
2576  * pending and its timer was modified.
2577  *
2578  * This function is safe to call from any context including IRQ handler.
2579  * See try_to_grab_pending() for details.
2580  */
2581 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
2582 			 struct delayed_work *dwork, unsigned long delay)
2583 {
2584 	unsigned long irq_flags;
2585 	bool ret;
2586 
2587 	ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags);
2588 
2589 	if (!clear_pending_if_disabled(&dwork->work))
2590 		__queue_delayed_work(cpu, wq, dwork, delay);
2591 
2592 	local_irq_restore(irq_flags);
2593 	return ret;
2594 }
2595 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
2596 
2597 static void rcu_work_rcufn(struct rcu_head *rcu)
2598 {
2599 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
2600 
2601 	/* read the comment in __queue_work() */
2602 	local_irq_disable();
2603 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
2604 	local_irq_enable();
2605 }
2606 
2607 /**
2608  * queue_rcu_work - queue work after a RCU grace period
2609  * @wq: workqueue to use
2610  * @rwork: work to queue
2611  *
2612  * Return: %false if @rwork was already pending, %true otherwise.  Note
2613  * that a full RCU grace period is guaranteed only after a %true return.
2614  * While @rwork is guaranteed to be executed after a %false return, the
2615  * execution may happen before a full RCU grace period has passed.
2616  */
2617 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
2618 {
2619 	struct work_struct *work = &rwork->work;
2620 
2621 	/*
2622 	 * rcu_work can't be canceled or disabled. Warn if the user reached
2623 	 * inside @rwork and disabled the inner work.
2624 	 */
2625 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) &&
2626 	    !WARN_ON_ONCE(clear_pending_if_disabled(work))) {
2627 		rwork->wq = wq;
2628 		call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
2629 		return true;
2630 	}
2631 
2632 	return false;
2633 }
2634 EXPORT_SYMBOL(queue_rcu_work);
2635 
2636 static struct worker *alloc_worker(int node)
2637 {
2638 	struct worker *worker;
2639 
2640 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
2641 	if (worker) {
2642 		INIT_LIST_HEAD(&worker->entry);
2643 		INIT_LIST_HEAD(&worker->scheduled);
2644 		INIT_LIST_HEAD(&worker->node);
2645 		/* on creation a worker is in !idle && prep state */
2646 		worker->flags = WORKER_PREP;
2647 	}
2648 	return worker;
2649 }
2650 
2651 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool)
2652 {
2653 	if (pool->cpu < 0 && pool->attrs->affn_strict)
2654 		return pool->attrs->__pod_cpumask;
2655 	else
2656 		return pool->attrs->cpumask;
2657 }
2658 
2659 /**
2660  * worker_attach_to_pool() - attach a worker to a pool
2661  * @worker: worker to be attached
2662  * @pool: the target pool
2663  *
2664  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
2665  * cpu-binding of @worker are kept coordinated with the pool across
2666  * cpu-[un]hotplugs.
2667  */
2668 static void worker_attach_to_pool(struct worker *worker,
2669 				  struct worker_pool *pool)
2670 {
2671 	mutex_lock(&wq_pool_attach_mutex);
2672 
2673 	/*
2674 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable
2675 	 * across this function. See the comments above the flag definition for
2676 	 * details. BH workers are, while per-CPU, always DISASSOCIATED.
2677 	 */
2678 	if (pool->flags & POOL_DISASSOCIATED) {
2679 		worker->flags |= WORKER_UNBOUND;
2680 	} else {
2681 		WARN_ON_ONCE(pool->flags & POOL_BH);
2682 		kthread_set_per_cpu(worker->task, pool->cpu);
2683 	}
2684 
2685 	if (worker->rescue_wq)
2686 		set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool));
2687 
2688 	list_add_tail(&worker->node, &pool->workers);
2689 	worker->pool = pool;
2690 
2691 	mutex_unlock(&wq_pool_attach_mutex);
2692 }
2693 
2694 static void unbind_worker(struct worker *worker)
2695 {
2696 	lockdep_assert_held(&wq_pool_attach_mutex);
2697 
2698 	kthread_set_per_cpu(worker->task, -1);
2699 	if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
2700 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
2701 	else
2702 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
2703 }
2704 
2705 
2706 static void detach_worker(struct worker *worker)
2707 {
2708 	lockdep_assert_held(&wq_pool_attach_mutex);
2709 
2710 	unbind_worker(worker);
2711 	list_del(&worker->node);
2712 	worker->pool = NULL;
2713 }
2714 
2715 /**
2716  * worker_detach_from_pool() - detach a worker from its pool
2717  * @worker: worker which is attached to its pool
2718  *
2719  * Undo the attaching which had been done in worker_attach_to_pool().  The
2720  * caller worker shouldn't access to the pool after detached except it has
2721  * other reference to the pool.
2722  */
2723 static void worker_detach_from_pool(struct worker *worker)
2724 {
2725 	struct worker_pool *pool = worker->pool;
2726 
2727 	/* there is one permanent BH worker per CPU which should never detach */
2728 	WARN_ON_ONCE(pool->flags & POOL_BH);
2729 
2730 	mutex_lock(&wq_pool_attach_mutex);
2731 	detach_worker(worker);
2732 	mutex_unlock(&wq_pool_attach_mutex);
2733 
2734 	/* clear leftover flags without pool->lock after it is detached */
2735 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
2736 }
2737 
2738 static int format_worker_id(char *buf, size_t size, struct worker *worker,
2739 			    struct worker_pool *pool)
2740 {
2741 	if (worker->rescue_wq)
2742 		return scnprintf(buf, size, "kworker/R-%s",
2743 				 worker->rescue_wq->name);
2744 
2745 	if (pool) {
2746 		if (pool->cpu >= 0)
2747 			return scnprintf(buf, size, "kworker/%d:%d%s",
2748 					 pool->cpu, worker->id,
2749 					 pool->attrs->nice < 0  ? "H" : "");
2750 		else
2751 			return scnprintf(buf, size, "kworker/u%d:%d",
2752 					 pool->id, worker->id);
2753 	} else {
2754 		return scnprintf(buf, size, "kworker/dying");
2755 	}
2756 }
2757 
2758 /**
2759  * create_worker - create a new workqueue worker
2760  * @pool: pool the new worker will belong to
2761  *
2762  * Create and start a new worker which is attached to @pool.
2763  *
2764  * CONTEXT:
2765  * Might sleep.  Does GFP_KERNEL allocations.
2766  *
2767  * Return:
2768  * Pointer to the newly created worker.
2769  */
2770 static struct worker *create_worker(struct worker_pool *pool)
2771 {
2772 	struct worker *worker;
2773 	int id;
2774 
2775 	/* ID is needed to determine kthread name */
2776 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
2777 	if (id < 0) {
2778 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
2779 			    ERR_PTR(id));
2780 		return NULL;
2781 	}
2782 
2783 	worker = alloc_worker(pool->node);
2784 	if (!worker) {
2785 		pr_err_once("workqueue: Failed to allocate a worker\n");
2786 		goto fail;
2787 	}
2788 
2789 	worker->id = id;
2790 
2791 	if (!(pool->flags & POOL_BH)) {
2792 		char id_buf[WORKER_ID_LEN];
2793 
2794 		format_worker_id(id_buf, sizeof(id_buf), worker, pool);
2795 		worker->task = kthread_create_on_node(worker_thread, worker,
2796 						      pool->node, "%s", id_buf);
2797 		if (IS_ERR(worker->task)) {
2798 			if (PTR_ERR(worker->task) == -EINTR) {
2799 				pr_err("workqueue: Interrupted when creating a worker thread \"%s\"\n",
2800 				       id_buf);
2801 			} else {
2802 				pr_err_once("workqueue: Failed to create a worker thread: %pe",
2803 					    worker->task);
2804 			}
2805 			goto fail;
2806 		}
2807 
2808 		set_user_nice(worker->task, pool->attrs->nice);
2809 		kthread_bind_mask(worker->task, pool_allowed_cpus(pool));
2810 	}
2811 
2812 	/* successful, attach the worker to the pool */
2813 	worker_attach_to_pool(worker, pool);
2814 
2815 	/* start the newly created worker */
2816 	raw_spin_lock_irq(&pool->lock);
2817 
2818 	worker->pool->nr_workers++;
2819 	worker_enter_idle(worker);
2820 
2821 	/*
2822 	 * @worker is waiting on a completion in kthread() and will trigger hung
2823 	 * check if not woken up soon. As kick_pool() is noop if @pool is empty,
2824 	 * wake it up explicitly.
2825 	 */
2826 	if (worker->task)
2827 		wake_up_process(worker->task);
2828 
2829 	raw_spin_unlock_irq(&pool->lock);
2830 
2831 	return worker;
2832 
2833 fail:
2834 	ida_free(&pool->worker_ida, id);
2835 	kfree(worker);
2836 	return NULL;
2837 }
2838 
2839 static void detach_dying_workers(struct list_head *cull_list)
2840 {
2841 	struct worker *worker;
2842 
2843 	list_for_each_entry(worker, cull_list, entry)
2844 		detach_worker(worker);
2845 }
2846 
2847 static void reap_dying_workers(struct list_head *cull_list)
2848 {
2849 	struct worker *worker, *tmp;
2850 
2851 	list_for_each_entry_safe(worker, tmp, cull_list, entry) {
2852 		list_del_init(&worker->entry);
2853 		kthread_stop_put(worker->task);
2854 		kfree(worker);
2855 	}
2856 }
2857 
2858 /**
2859  * set_worker_dying - Tag a worker for destruction
2860  * @worker: worker to be destroyed
2861  * @list: transfer worker away from its pool->idle_list and into list
2862  *
2863  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
2864  * should be idle.
2865  *
2866  * CONTEXT:
2867  * raw_spin_lock_irq(pool->lock).
2868  */
2869 static void set_worker_dying(struct worker *worker, struct list_head *list)
2870 {
2871 	struct worker_pool *pool = worker->pool;
2872 
2873 	lockdep_assert_held(&pool->lock);
2874 	lockdep_assert_held(&wq_pool_attach_mutex);
2875 
2876 	/* sanity check frenzy */
2877 	if (WARN_ON(worker->current_work) ||
2878 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2879 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2880 		return;
2881 
2882 	pool->nr_workers--;
2883 	pool->nr_idle--;
2884 
2885 	worker->flags |= WORKER_DIE;
2886 
2887 	list_move(&worker->entry, list);
2888 
2889 	/* get an extra task struct reference for later kthread_stop_put() */
2890 	get_task_struct(worker->task);
2891 }
2892 
2893 /**
2894  * idle_worker_timeout - check if some idle workers can now be deleted.
2895  * @t: The pool's idle_timer that just expired
2896  *
2897  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
2898  * worker_leave_idle(), as a worker flicking between idle and active while its
2899  * pool is at the too_many_workers() tipping point would cause too much timer
2900  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
2901  * it expire and re-evaluate things from there.
2902  */
2903 static void idle_worker_timeout(struct timer_list *t)
2904 {
2905 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2906 	bool do_cull = false;
2907 
2908 	if (work_pending(&pool->idle_cull_work))
2909 		return;
2910 
2911 	raw_spin_lock_irq(&pool->lock);
2912 
2913 	if (too_many_workers(pool)) {
2914 		struct worker *worker;
2915 		unsigned long expires;
2916 
2917 		/* idle_list is kept in LIFO order, check the last one */
2918 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2919 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2920 		do_cull = !time_before(jiffies, expires);
2921 
2922 		if (!do_cull)
2923 			mod_timer(&pool->idle_timer, expires);
2924 	}
2925 	raw_spin_unlock_irq(&pool->lock);
2926 
2927 	if (do_cull)
2928 		queue_work(system_unbound_wq, &pool->idle_cull_work);
2929 }
2930 
2931 /**
2932  * idle_cull_fn - cull workers that have been idle for too long.
2933  * @work: the pool's work for handling these idle workers
2934  *
2935  * This goes through a pool's idle workers and gets rid of those that have been
2936  * idle for at least IDLE_WORKER_TIMEOUT seconds.
2937  *
2938  * We don't want to disturb isolated CPUs because of a pcpu kworker being
2939  * culled, so this also resets worker affinity. This requires a sleepable
2940  * context, hence the split between timer callback and work item.
2941  */
2942 static void idle_cull_fn(struct work_struct *work)
2943 {
2944 	struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
2945 	LIST_HEAD(cull_list);
2946 
2947 	/*
2948 	 * Grabbing wq_pool_attach_mutex here ensures an already-running worker
2949 	 * cannot proceed beyong set_pf_worker() in its self-destruct path.
2950 	 * This is required as a previously-preempted worker could run after
2951 	 * set_worker_dying() has happened but before detach_dying_workers() did.
2952 	 */
2953 	mutex_lock(&wq_pool_attach_mutex);
2954 	raw_spin_lock_irq(&pool->lock);
2955 
2956 	while (too_many_workers(pool)) {
2957 		struct worker *worker;
2958 		unsigned long expires;
2959 
2960 		worker = list_last_entry(&pool->idle_list, struct worker, entry);
2961 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2962 
2963 		if (time_before(jiffies, expires)) {
2964 			mod_timer(&pool->idle_timer, expires);
2965 			break;
2966 		}
2967 
2968 		set_worker_dying(worker, &cull_list);
2969 	}
2970 
2971 	raw_spin_unlock_irq(&pool->lock);
2972 	detach_dying_workers(&cull_list);
2973 	mutex_unlock(&wq_pool_attach_mutex);
2974 
2975 	reap_dying_workers(&cull_list);
2976 }
2977 
2978 static void send_mayday(struct work_struct *work)
2979 {
2980 	struct pool_workqueue *pwq = get_work_pwq(work);
2981 	struct workqueue_struct *wq = pwq->wq;
2982 
2983 	lockdep_assert_held(&wq_mayday_lock);
2984 
2985 	if (!wq->rescuer)
2986 		return;
2987 
2988 	/* mayday mayday mayday */
2989 	if (list_empty(&pwq->mayday_node)) {
2990 		/*
2991 		 * If @pwq is for an unbound wq, its base ref may be put at
2992 		 * any time due to an attribute change.  Pin @pwq until the
2993 		 * rescuer is done with it.
2994 		 */
2995 		get_pwq(pwq);
2996 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2997 		wake_up_process(wq->rescuer->task);
2998 		pwq->stats[PWQ_STAT_MAYDAY]++;
2999 	}
3000 }
3001 
3002 static void pool_mayday_timeout(struct timer_list *t)
3003 {
3004 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
3005 	struct work_struct *work;
3006 
3007 	raw_spin_lock_irq(&pool->lock);
3008 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
3009 
3010 	if (need_to_create_worker(pool)) {
3011 		/*
3012 		 * We've been trying to create a new worker but
3013 		 * haven't been successful.  We might be hitting an
3014 		 * allocation deadlock.  Send distress signals to
3015 		 * rescuers.
3016 		 */
3017 		list_for_each_entry(work, &pool->worklist, entry)
3018 			send_mayday(work);
3019 	}
3020 
3021 	raw_spin_unlock(&wq_mayday_lock);
3022 	raw_spin_unlock_irq(&pool->lock);
3023 
3024 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
3025 }
3026 
3027 /**
3028  * maybe_create_worker - create a new worker if necessary
3029  * @pool: pool to create a new worker for
3030  *
3031  * Create a new worker for @pool if necessary.  @pool is guaranteed to
3032  * have at least one idle worker on return from this function.  If
3033  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
3034  * sent to all rescuers with works scheduled on @pool to resolve
3035  * possible allocation deadlock.
3036  *
3037  * On return, need_to_create_worker() is guaranteed to be %false and
3038  * may_start_working() %true.
3039  *
3040  * LOCKING:
3041  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3042  * multiple times.  Does GFP_KERNEL allocations.  Called only from
3043  * manager.
3044  */
3045 static void maybe_create_worker(struct worker_pool *pool)
3046 __releases(&pool->lock)
3047 __acquires(&pool->lock)
3048 {
3049 restart:
3050 	raw_spin_unlock_irq(&pool->lock);
3051 
3052 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
3053 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
3054 
3055 	while (true) {
3056 		if (create_worker(pool) || !need_to_create_worker(pool))
3057 			break;
3058 
3059 		schedule_timeout_interruptible(CREATE_COOLDOWN);
3060 
3061 		if (!need_to_create_worker(pool))
3062 			break;
3063 	}
3064 
3065 	del_timer_sync(&pool->mayday_timer);
3066 	raw_spin_lock_irq(&pool->lock);
3067 	/*
3068 	 * This is necessary even after a new worker was just successfully
3069 	 * created as @pool->lock was dropped and the new worker might have
3070 	 * already become busy.
3071 	 */
3072 	if (need_to_create_worker(pool))
3073 		goto restart;
3074 }
3075 
3076 /**
3077  * manage_workers - manage worker pool
3078  * @worker: self
3079  *
3080  * Assume the manager role and manage the worker pool @worker belongs
3081  * to.  At any given time, there can be only zero or one manager per
3082  * pool.  The exclusion is handled automatically by this function.
3083  *
3084  * The caller can safely start processing works on false return.  On
3085  * true return, it's guaranteed that need_to_create_worker() is false
3086  * and may_start_working() is true.
3087  *
3088  * CONTEXT:
3089  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3090  * multiple times.  Does GFP_KERNEL allocations.
3091  *
3092  * Return:
3093  * %false if the pool doesn't need management and the caller can safely
3094  * start processing works, %true if management function was performed and
3095  * the conditions that the caller verified before calling the function may
3096  * no longer be true.
3097  */
3098 static bool manage_workers(struct worker *worker)
3099 {
3100 	struct worker_pool *pool = worker->pool;
3101 
3102 	if (pool->flags & POOL_MANAGER_ACTIVE)
3103 		return false;
3104 
3105 	pool->flags |= POOL_MANAGER_ACTIVE;
3106 	pool->manager = worker;
3107 
3108 	maybe_create_worker(pool);
3109 
3110 	pool->manager = NULL;
3111 	pool->flags &= ~POOL_MANAGER_ACTIVE;
3112 	rcuwait_wake_up(&manager_wait);
3113 	return true;
3114 }
3115 
3116 /**
3117  * process_one_work - process single work
3118  * @worker: self
3119  * @work: work to process
3120  *
3121  * Process @work.  This function contains all the logics necessary to
3122  * process a single work including synchronization against and
3123  * interaction with other workers on the same cpu, queueing and
3124  * flushing.  As long as context requirement is met, any worker can
3125  * call this function to process a work.
3126  *
3127  * CONTEXT:
3128  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
3129  */
3130 static void process_one_work(struct worker *worker, struct work_struct *work)
3131 __releases(&pool->lock)
3132 __acquires(&pool->lock)
3133 {
3134 	struct pool_workqueue *pwq = get_work_pwq(work);
3135 	struct worker_pool *pool = worker->pool;
3136 	unsigned long work_data;
3137 	int lockdep_start_depth, rcu_start_depth;
3138 	bool bh_draining = pool->flags & POOL_BH_DRAINING;
3139 #ifdef CONFIG_LOCKDEP
3140 	/*
3141 	 * It is permissible to free the struct work_struct from
3142 	 * inside the function that is called from it, this we need to
3143 	 * take into account for lockdep too.  To avoid bogus "held
3144 	 * lock freed" warnings as well as problems when looking into
3145 	 * work->lockdep_map, make a copy and use that here.
3146 	 */
3147 	struct lockdep_map lockdep_map;
3148 
3149 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
3150 #endif
3151 	/* ensure we're on the correct CPU */
3152 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
3153 		     raw_smp_processor_id() != pool->cpu);
3154 
3155 	/* claim and dequeue */
3156 	debug_work_deactivate(work);
3157 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
3158 	worker->current_work = work;
3159 	worker->current_func = work->func;
3160 	worker->current_pwq = pwq;
3161 	if (worker->task)
3162 		worker->current_at = worker->task->se.sum_exec_runtime;
3163 	work_data = *work_data_bits(work);
3164 	worker->current_color = get_work_color(work_data);
3165 
3166 	/*
3167 	 * Record wq name for cmdline and debug reporting, may get
3168 	 * overridden through set_worker_desc().
3169 	 */
3170 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
3171 
3172 	list_del_init(&work->entry);
3173 
3174 	/*
3175 	 * CPU intensive works don't participate in concurrency management.
3176 	 * They're the scheduler's responsibility.  This takes @worker out
3177 	 * of concurrency management and the next code block will chain
3178 	 * execution of the pending work items.
3179 	 */
3180 	if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE))
3181 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
3182 
3183 	/*
3184 	 * Kick @pool if necessary. It's always noop for per-cpu worker pools
3185 	 * since nr_running would always be >= 1 at this point. This is used to
3186 	 * chain execution of the pending work items for WORKER_NOT_RUNNING
3187 	 * workers such as the UNBOUND and CPU_INTENSIVE ones.
3188 	 */
3189 	kick_pool(pool);
3190 
3191 	/*
3192 	 * Record the last pool and clear PENDING which should be the last
3193 	 * update to @work.  Also, do this inside @pool->lock so that
3194 	 * PENDING and queued state changes happen together while IRQ is
3195 	 * disabled.
3196 	 */
3197 	set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool));
3198 
3199 	pwq->stats[PWQ_STAT_STARTED]++;
3200 	raw_spin_unlock_irq(&pool->lock);
3201 
3202 	rcu_start_depth = rcu_preempt_depth();
3203 	lockdep_start_depth = lockdep_depth(current);
3204 	/* see drain_dead_softirq_workfn() */
3205 	if (!bh_draining)
3206 		lock_map_acquire(&pwq->wq->lockdep_map);
3207 	lock_map_acquire(&lockdep_map);
3208 	/*
3209 	 * Strictly speaking we should mark the invariant state without holding
3210 	 * any locks, that is, before these two lock_map_acquire()'s.
3211 	 *
3212 	 * However, that would result in:
3213 	 *
3214 	 *   A(W1)
3215 	 *   WFC(C)
3216 	 *		A(W1)
3217 	 *		C(C)
3218 	 *
3219 	 * Which would create W1->C->W1 dependencies, even though there is no
3220 	 * actual deadlock possible. There are two solutions, using a
3221 	 * read-recursive acquire on the work(queue) 'locks', but this will then
3222 	 * hit the lockdep limitation on recursive locks, or simply discard
3223 	 * these locks.
3224 	 *
3225 	 * AFAICT there is no possible deadlock scenario between the
3226 	 * flush_work() and complete() primitives (except for single-threaded
3227 	 * workqueues), so hiding them isn't a problem.
3228 	 */
3229 	lockdep_invariant_state(true);
3230 	trace_workqueue_execute_start(work);
3231 	worker->current_func(work);
3232 	/*
3233 	 * While we must be careful to not use "work" after this, the trace
3234 	 * point will only record its address.
3235 	 */
3236 	trace_workqueue_execute_end(work, worker->current_func);
3237 	pwq->stats[PWQ_STAT_COMPLETED]++;
3238 	lock_map_release(&lockdep_map);
3239 	if (!bh_draining)
3240 		lock_map_release(&pwq->wq->lockdep_map);
3241 
3242 	if (unlikely((worker->task && in_atomic()) ||
3243 		     lockdep_depth(current) != lockdep_start_depth ||
3244 		     rcu_preempt_depth() != rcu_start_depth)) {
3245 		pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n"
3246 		       "     preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n",
3247 		       current->comm, task_pid_nr(current), preempt_count(),
3248 		       lockdep_start_depth, lockdep_depth(current),
3249 		       rcu_start_depth, rcu_preempt_depth(),
3250 		       worker->current_func);
3251 		debug_show_held_locks(current);
3252 		dump_stack();
3253 	}
3254 
3255 	/*
3256 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
3257 	 * kernels, where a requeueing work item waiting for something to
3258 	 * happen could deadlock with stop_machine as such work item could
3259 	 * indefinitely requeue itself while all other CPUs are trapped in
3260 	 * stop_machine. At the same time, report a quiescent RCU state so
3261 	 * the same condition doesn't freeze RCU.
3262 	 */
3263 	if (worker->task)
3264 		cond_resched();
3265 
3266 	raw_spin_lock_irq(&pool->lock);
3267 
3268 	/*
3269 	 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked
3270 	 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than
3271 	 * wq_cpu_intensive_thresh_us. Clear it.
3272 	 */
3273 	worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
3274 
3275 	/* tag the worker for identification in schedule() */
3276 	worker->last_func = worker->current_func;
3277 
3278 	/* we're done with it, release */
3279 	hash_del(&worker->hentry);
3280 	worker->current_work = NULL;
3281 	worker->current_func = NULL;
3282 	worker->current_pwq = NULL;
3283 	worker->current_color = INT_MAX;
3284 
3285 	/* must be the last step, see the function comment */
3286 	pwq_dec_nr_in_flight(pwq, work_data);
3287 }
3288 
3289 /**
3290  * process_scheduled_works - process scheduled works
3291  * @worker: self
3292  *
3293  * Process all scheduled works.  Please note that the scheduled list
3294  * may change while processing a work, so this function repeatedly
3295  * fetches a work from the top and executes it.
3296  *
3297  * CONTEXT:
3298  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
3299  * multiple times.
3300  */
3301 static void process_scheduled_works(struct worker *worker)
3302 {
3303 	struct work_struct *work;
3304 	bool first = true;
3305 
3306 	while ((work = list_first_entry_or_null(&worker->scheduled,
3307 						struct work_struct, entry))) {
3308 		if (first) {
3309 			worker->pool->watchdog_ts = jiffies;
3310 			first = false;
3311 		}
3312 		process_one_work(worker, work);
3313 	}
3314 }
3315 
3316 static void set_pf_worker(bool val)
3317 {
3318 	mutex_lock(&wq_pool_attach_mutex);
3319 	if (val)
3320 		current->flags |= PF_WQ_WORKER;
3321 	else
3322 		current->flags &= ~PF_WQ_WORKER;
3323 	mutex_unlock(&wq_pool_attach_mutex);
3324 }
3325 
3326 /**
3327  * worker_thread - the worker thread function
3328  * @__worker: self
3329  *
3330  * The worker thread function.  All workers belong to a worker_pool -
3331  * either a per-cpu one or dynamic unbound one.  These workers process all
3332  * work items regardless of their specific target workqueue.  The only
3333  * exception is work items which belong to workqueues with a rescuer which
3334  * will be explained in rescuer_thread().
3335  *
3336  * Return: 0
3337  */
3338 static int worker_thread(void *__worker)
3339 {
3340 	struct worker *worker = __worker;
3341 	struct worker_pool *pool = worker->pool;
3342 
3343 	/* tell the scheduler that this is a workqueue worker */
3344 	set_pf_worker(true);
3345 woke_up:
3346 	raw_spin_lock_irq(&pool->lock);
3347 
3348 	/* am I supposed to die? */
3349 	if (unlikely(worker->flags & WORKER_DIE)) {
3350 		raw_spin_unlock_irq(&pool->lock);
3351 		set_pf_worker(false);
3352 
3353 		ida_free(&pool->worker_ida, worker->id);
3354 		return 0;
3355 	}
3356 
3357 	worker_leave_idle(worker);
3358 recheck:
3359 	/* no more worker necessary? */
3360 	if (!need_more_worker(pool))
3361 		goto sleep;
3362 
3363 	/* do we need to manage? */
3364 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
3365 		goto recheck;
3366 
3367 	/*
3368 	 * ->scheduled list can only be filled while a worker is
3369 	 * preparing to process a work or actually processing it.
3370 	 * Make sure nobody diddled with it while I was sleeping.
3371 	 */
3372 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3373 
3374 	/*
3375 	 * Finish PREP stage.  We're guaranteed to have at least one idle
3376 	 * worker or that someone else has already assumed the manager
3377 	 * role.  This is where @worker starts participating in concurrency
3378 	 * management if applicable and concurrency management is restored
3379 	 * after being rebound.  See rebind_workers() for details.
3380 	 */
3381 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3382 
3383 	do {
3384 		struct work_struct *work =
3385 			list_first_entry(&pool->worklist,
3386 					 struct work_struct, entry);
3387 
3388 		if (assign_work(work, worker, NULL))
3389 			process_scheduled_works(worker);
3390 	} while (keep_working(pool));
3391 
3392 	worker_set_flags(worker, WORKER_PREP);
3393 sleep:
3394 	/*
3395 	 * pool->lock is held and there's no work to process and no need to
3396 	 * manage, sleep.  Workers are woken up only while holding
3397 	 * pool->lock or from local cpu, so setting the current state
3398 	 * before releasing pool->lock is enough to prevent losing any
3399 	 * event.
3400 	 */
3401 	worker_enter_idle(worker);
3402 	__set_current_state(TASK_IDLE);
3403 	raw_spin_unlock_irq(&pool->lock);
3404 	schedule();
3405 	goto woke_up;
3406 }
3407 
3408 /**
3409  * rescuer_thread - the rescuer thread function
3410  * @__rescuer: self
3411  *
3412  * Workqueue rescuer thread function.  There's one rescuer for each
3413  * workqueue which has WQ_MEM_RECLAIM set.
3414  *
3415  * Regular work processing on a pool may block trying to create a new
3416  * worker which uses GFP_KERNEL allocation which has slight chance of
3417  * developing into deadlock if some works currently on the same queue
3418  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
3419  * the problem rescuer solves.
3420  *
3421  * When such condition is possible, the pool summons rescuers of all
3422  * workqueues which have works queued on the pool and let them process
3423  * those works so that forward progress can be guaranteed.
3424  *
3425  * This should happen rarely.
3426  *
3427  * Return: 0
3428  */
3429 static int rescuer_thread(void *__rescuer)
3430 {
3431 	struct worker *rescuer = __rescuer;
3432 	struct workqueue_struct *wq = rescuer->rescue_wq;
3433 	bool should_stop;
3434 
3435 	set_user_nice(current, RESCUER_NICE_LEVEL);
3436 
3437 	/*
3438 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
3439 	 * doesn't participate in concurrency management.
3440 	 */
3441 	set_pf_worker(true);
3442 repeat:
3443 	set_current_state(TASK_IDLE);
3444 
3445 	/*
3446 	 * By the time the rescuer is requested to stop, the workqueue
3447 	 * shouldn't have any work pending, but @wq->maydays may still have
3448 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
3449 	 * all the work items before the rescuer got to them.  Go through
3450 	 * @wq->maydays processing before acting on should_stop so that the
3451 	 * list is always empty on exit.
3452 	 */
3453 	should_stop = kthread_should_stop();
3454 
3455 	/* see whether any pwq is asking for help */
3456 	raw_spin_lock_irq(&wq_mayday_lock);
3457 
3458 	while (!list_empty(&wq->maydays)) {
3459 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
3460 					struct pool_workqueue, mayday_node);
3461 		struct worker_pool *pool = pwq->pool;
3462 		struct work_struct *work, *n;
3463 
3464 		__set_current_state(TASK_RUNNING);
3465 		list_del_init(&pwq->mayday_node);
3466 
3467 		raw_spin_unlock_irq(&wq_mayday_lock);
3468 
3469 		worker_attach_to_pool(rescuer, pool);
3470 
3471 		raw_spin_lock_irq(&pool->lock);
3472 
3473 		/*
3474 		 * Slurp in all works issued via this workqueue and
3475 		 * process'em.
3476 		 */
3477 		WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
3478 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
3479 			if (get_work_pwq(work) == pwq &&
3480 			    assign_work(work, rescuer, &n))
3481 				pwq->stats[PWQ_STAT_RESCUED]++;
3482 		}
3483 
3484 		if (!list_empty(&rescuer->scheduled)) {
3485 			process_scheduled_works(rescuer);
3486 
3487 			/*
3488 			 * The above execution of rescued work items could
3489 			 * have created more to rescue through
3490 			 * pwq_activate_first_inactive() or chained
3491 			 * queueing.  Let's put @pwq back on mayday list so
3492 			 * that such back-to-back work items, which may be
3493 			 * being used to relieve memory pressure, don't
3494 			 * incur MAYDAY_INTERVAL delay inbetween.
3495 			 */
3496 			if (pwq->nr_active && need_to_create_worker(pool)) {
3497 				raw_spin_lock(&wq_mayday_lock);
3498 				/*
3499 				 * Queue iff we aren't racing destruction
3500 				 * and somebody else hasn't queued it already.
3501 				 */
3502 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
3503 					get_pwq(pwq);
3504 					list_add_tail(&pwq->mayday_node, &wq->maydays);
3505 				}
3506 				raw_spin_unlock(&wq_mayday_lock);
3507 			}
3508 		}
3509 
3510 		/*
3511 		 * Put the reference grabbed by send_mayday().  @pool won't
3512 		 * go away while we're still attached to it.
3513 		 */
3514 		put_pwq(pwq);
3515 
3516 		/*
3517 		 * Leave this pool. Notify regular workers; otherwise, we end up
3518 		 * with 0 concurrency and stalling the execution.
3519 		 */
3520 		kick_pool(pool);
3521 
3522 		raw_spin_unlock_irq(&pool->lock);
3523 
3524 		worker_detach_from_pool(rescuer);
3525 
3526 		raw_spin_lock_irq(&wq_mayday_lock);
3527 	}
3528 
3529 	raw_spin_unlock_irq(&wq_mayday_lock);
3530 
3531 	if (should_stop) {
3532 		__set_current_state(TASK_RUNNING);
3533 		set_pf_worker(false);
3534 		return 0;
3535 	}
3536 
3537 	/* rescuers should never participate in concurrency management */
3538 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
3539 	schedule();
3540 	goto repeat;
3541 }
3542 
3543 static void bh_worker(struct worker *worker)
3544 {
3545 	struct worker_pool *pool = worker->pool;
3546 	int nr_restarts = BH_WORKER_RESTARTS;
3547 	unsigned long end = jiffies + BH_WORKER_JIFFIES;
3548 
3549 	raw_spin_lock_irq(&pool->lock);
3550 	worker_leave_idle(worker);
3551 
3552 	/*
3553 	 * This function follows the structure of worker_thread(). See there for
3554 	 * explanations on each step.
3555 	 */
3556 	if (!need_more_worker(pool))
3557 		goto done;
3558 
3559 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
3560 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
3561 
3562 	do {
3563 		struct work_struct *work =
3564 			list_first_entry(&pool->worklist,
3565 					 struct work_struct, entry);
3566 
3567 		if (assign_work(work, worker, NULL))
3568 			process_scheduled_works(worker);
3569 	} while (keep_working(pool) &&
3570 		 --nr_restarts && time_before(jiffies, end));
3571 
3572 	worker_set_flags(worker, WORKER_PREP);
3573 done:
3574 	worker_enter_idle(worker);
3575 	kick_pool(pool);
3576 	raw_spin_unlock_irq(&pool->lock);
3577 }
3578 
3579 /*
3580  * TODO: Convert all tasklet users to workqueue and use softirq directly.
3581  *
3582  * This is currently called from tasklet[_hi]action() and thus is also called
3583  * whenever there are tasklets to run. Let's do an early exit if there's nothing
3584  * queued. Once conversion from tasklet is complete, the need_more_worker() test
3585  * can be dropped.
3586  *
3587  * After full conversion, we'll add worker->softirq_action, directly use the
3588  * softirq action and obtain the worker pointer from the softirq_action pointer.
3589  */
3590 void workqueue_softirq_action(bool highpri)
3591 {
3592 	struct worker_pool *pool =
3593 		&per_cpu(bh_worker_pools, smp_processor_id())[highpri];
3594 	if (need_more_worker(pool))
3595 		bh_worker(list_first_entry(&pool->workers, struct worker, node));
3596 }
3597 
3598 struct wq_drain_dead_softirq_work {
3599 	struct work_struct	work;
3600 	struct worker_pool	*pool;
3601 	struct completion	done;
3602 };
3603 
3604 static void drain_dead_softirq_workfn(struct work_struct *work)
3605 {
3606 	struct wq_drain_dead_softirq_work *dead_work =
3607 		container_of(work, struct wq_drain_dead_softirq_work, work);
3608 	struct worker_pool *pool = dead_work->pool;
3609 	bool repeat;
3610 
3611 	/*
3612 	 * @pool's CPU is dead and we want to execute its still pending work
3613 	 * items from this BH work item which is running on a different CPU. As
3614 	 * its CPU is dead, @pool can't be kicked and, as work execution path
3615 	 * will be nested, a lockdep annotation needs to be suppressed. Mark
3616 	 * @pool with %POOL_BH_DRAINING for the special treatments.
3617 	 */
3618 	raw_spin_lock_irq(&pool->lock);
3619 	pool->flags |= POOL_BH_DRAINING;
3620 	raw_spin_unlock_irq(&pool->lock);
3621 
3622 	bh_worker(list_first_entry(&pool->workers, struct worker, node));
3623 
3624 	raw_spin_lock_irq(&pool->lock);
3625 	pool->flags &= ~POOL_BH_DRAINING;
3626 	repeat = need_more_worker(pool);
3627 	raw_spin_unlock_irq(&pool->lock);
3628 
3629 	/*
3630 	 * bh_worker() might hit consecutive execution limit and bail. If there
3631 	 * still are pending work items, reschedule self and return so that we
3632 	 * don't hog this CPU's BH.
3633 	 */
3634 	if (repeat) {
3635 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3636 			queue_work(system_bh_highpri_wq, work);
3637 		else
3638 			queue_work(system_bh_wq, work);
3639 	} else {
3640 		complete(&dead_work->done);
3641 	}
3642 }
3643 
3644 /*
3645  * @cpu is dead. Drain the remaining BH work items on the current CPU. It's
3646  * possible to allocate dead_work per CPU and avoid flushing. However, then we
3647  * have to worry about draining overlapping with CPU coming back online or
3648  * nesting (one CPU's dead_work queued on another CPU which is also dead and so
3649  * on). Let's keep it simple and drain them synchronously. These are BH work
3650  * items which shouldn't be requeued on the same pool. Shouldn't take long.
3651  */
3652 void workqueue_softirq_dead(unsigned int cpu)
3653 {
3654 	int i;
3655 
3656 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
3657 		struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i];
3658 		struct wq_drain_dead_softirq_work dead_work;
3659 
3660 		if (!need_more_worker(pool))
3661 			continue;
3662 
3663 		INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn);
3664 		dead_work.pool = pool;
3665 		init_completion(&dead_work.done);
3666 
3667 		if (pool->attrs->nice == HIGHPRI_NICE_LEVEL)
3668 			queue_work(system_bh_highpri_wq, &dead_work.work);
3669 		else
3670 			queue_work(system_bh_wq, &dead_work.work);
3671 
3672 		wait_for_completion(&dead_work.done);
3673 		destroy_work_on_stack(&dead_work.work);
3674 	}
3675 }
3676 
3677 /**
3678  * check_flush_dependency - check for flush dependency sanity
3679  * @target_wq: workqueue being flushed
3680  * @target_work: work item being flushed (NULL for workqueue flushes)
3681  *
3682  * %current is trying to flush the whole @target_wq or @target_work on it.
3683  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
3684  * reclaiming memory or running on a workqueue which doesn't have
3685  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
3686  * a deadlock.
3687  */
3688 static void check_flush_dependency(struct workqueue_struct *target_wq,
3689 				   struct work_struct *target_work)
3690 {
3691 	work_func_t target_func = target_work ? target_work->func : NULL;
3692 	struct worker *worker;
3693 
3694 	if (target_wq->flags & WQ_MEM_RECLAIM)
3695 		return;
3696 
3697 	worker = current_wq_worker();
3698 
3699 	WARN_ONCE(current->flags & PF_MEMALLOC,
3700 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
3701 		  current->pid, current->comm, target_wq->name, target_func);
3702 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
3703 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
3704 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
3705 		  worker->current_pwq->wq->name, worker->current_func,
3706 		  target_wq->name, target_func);
3707 }
3708 
3709 struct wq_barrier {
3710 	struct work_struct	work;
3711 	struct completion	done;
3712 	struct task_struct	*task;	/* purely informational */
3713 };
3714 
3715 static void wq_barrier_func(struct work_struct *work)
3716 {
3717 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
3718 	complete(&barr->done);
3719 }
3720 
3721 /**
3722  * insert_wq_barrier - insert a barrier work
3723  * @pwq: pwq to insert barrier into
3724  * @barr: wq_barrier to insert
3725  * @target: target work to attach @barr to
3726  * @worker: worker currently executing @target, NULL if @target is not executing
3727  *
3728  * @barr is linked to @target such that @barr is completed only after
3729  * @target finishes execution.  Please note that the ordering
3730  * guarantee is observed only with respect to @target and on the local
3731  * cpu.
3732  *
3733  * Currently, a queued barrier can't be canceled.  This is because
3734  * try_to_grab_pending() can't determine whether the work to be
3735  * grabbed is at the head of the queue and thus can't clear LINKED
3736  * flag of the previous work while there must be a valid next work
3737  * after a work with LINKED flag set.
3738  *
3739  * Note that when @worker is non-NULL, @target may be modified
3740  * underneath us, so we can't reliably determine pwq from @target.
3741  *
3742  * CONTEXT:
3743  * raw_spin_lock_irq(pool->lock).
3744  */
3745 static void insert_wq_barrier(struct pool_workqueue *pwq,
3746 			      struct wq_barrier *barr,
3747 			      struct work_struct *target, struct worker *worker)
3748 {
3749 	static __maybe_unused struct lock_class_key bh_key, thr_key;
3750 	unsigned int work_flags = 0;
3751 	unsigned int work_color;
3752 	struct list_head *head;
3753 
3754 	/*
3755 	 * debugobject calls are safe here even with pool->lock locked
3756 	 * as we know for sure that this will not trigger any of the
3757 	 * checks and call back into the fixup functions where we
3758 	 * might deadlock.
3759 	 *
3760 	 * BH and threaded workqueues need separate lockdep keys to avoid
3761 	 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W}
3762 	 * usage".
3763 	 */
3764 	INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func,
3765 			      (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key);
3766 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
3767 
3768 	init_completion_map(&barr->done, &target->lockdep_map);
3769 
3770 	barr->task = current;
3771 
3772 	/* The barrier work item does not participate in nr_active. */
3773 	work_flags |= WORK_STRUCT_INACTIVE;
3774 
3775 	/*
3776 	 * If @target is currently being executed, schedule the
3777 	 * barrier to the worker; otherwise, put it after @target.
3778 	 */
3779 	if (worker) {
3780 		head = worker->scheduled.next;
3781 		work_color = worker->current_color;
3782 	} else {
3783 		unsigned long *bits = work_data_bits(target);
3784 
3785 		head = target->entry.next;
3786 		/* there can already be other linked works, inherit and set */
3787 		work_flags |= *bits & WORK_STRUCT_LINKED;
3788 		work_color = get_work_color(*bits);
3789 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
3790 	}
3791 
3792 	pwq->nr_in_flight[work_color]++;
3793 	work_flags |= work_color_to_flags(work_color);
3794 
3795 	insert_work(pwq, &barr->work, head, work_flags);
3796 }
3797 
3798 /**
3799  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
3800  * @wq: workqueue being flushed
3801  * @flush_color: new flush color, < 0 for no-op
3802  * @work_color: new work color, < 0 for no-op
3803  *
3804  * Prepare pwqs for workqueue flushing.
3805  *
3806  * If @flush_color is non-negative, flush_color on all pwqs should be
3807  * -1.  If no pwq has in-flight commands at the specified color, all
3808  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
3809  * has in flight commands, its pwq->flush_color is set to
3810  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
3811  * wakeup logic is armed and %true is returned.
3812  *
3813  * The caller should have initialized @wq->first_flusher prior to
3814  * calling this function with non-negative @flush_color.  If
3815  * @flush_color is negative, no flush color update is done and %false
3816  * is returned.
3817  *
3818  * If @work_color is non-negative, all pwqs should have the same
3819  * work_color which is previous to @work_color and all will be
3820  * advanced to @work_color.
3821  *
3822  * CONTEXT:
3823  * mutex_lock(wq->mutex).
3824  *
3825  * Return:
3826  * %true if @flush_color >= 0 and there's something to flush.  %false
3827  * otherwise.
3828  */
3829 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
3830 				      int flush_color, int work_color)
3831 {
3832 	bool wait = false;
3833 	struct pool_workqueue *pwq;
3834 
3835 	if (flush_color >= 0) {
3836 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
3837 		atomic_set(&wq->nr_pwqs_to_flush, 1);
3838 	}
3839 
3840 	for_each_pwq(pwq, wq) {
3841 		struct worker_pool *pool = pwq->pool;
3842 
3843 		raw_spin_lock_irq(&pool->lock);
3844 
3845 		if (flush_color >= 0) {
3846 			WARN_ON_ONCE(pwq->flush_color != -1);
3847 
3848 			if (pwq->nr_in_flight[flush_color]) {
3849 				pwq->flush_color = flush_color;
3850 				atomic_inc(&wq->nr_pwqs_to_flush);
3851 				wait = true;
3852 			}
3853 		}
3854 
3855 		if (work_color >= 0) {
3856 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
3857 			pwq->work_color = work_color;
3858 		}
3859 
3860 		raw_spin_unlock_irq(&pool->lock);
3861 	}
3862 
3863 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
3864 		complete(&wq->first_flusher->done);
3865 
3866 	return wait;
3867 }
3868 
3869 static void touch_wq_lockdep_map(struct workqueue_struct *wq)
3870 {
3871 #ifdef CONFIG_LOCKDEP
3872 	if (wq->flags & WQ_BH)
3873 		local_bh_disable();
3874 
3875 	lock_map_acquire(&wq->lockdep_map);
3876 	lock_map_release(&wq->lockdep_map);
3877 
3878 	if (wq->flags & WQ_BH)
3879 		local_bh_enable();
3880 #endif
3881 }
3882 
3883 static void touch_work_lockdep_map(struct work_struct *work,
3884 				   struct workqueue_struct *wq)
3885 {
3886 #ifdef CONFIG_LOCKDEP
3887 	if (wq->flags & WQ_BH)
3888 		local_bh_disable();
3889 
3890 	lock_map_acquire(&work->lockdep_map);
3891 	lock_map_release(&work->lockdep_map);
3892 
3893 	if (wq->flags & WQ_BH)
3894 		local_bh_enable();
3895 #endif
3896 }
3897 
3898 /**
3899  * __flush_workqueue - ensure that any scheduled work has run to completion.
3900  * @wq: workqueue to flush
3901  *
3902  * This function sleeps until all work items which were queued on entry
3903  * have finished execution, but it is not livelocked by new incoming ones.
3904  */
3905 void __flush_workqueue(struct workqueue_struct *wq)
3906 {
3907 	struct wq_flusher this_flusher = {
3908 		.list = LIST_HEAD_INIT(this_flusher.list),
3909 		.flush_color = -1,
3910 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
3911 	};
3912 	int next_color;
3913 
3914 	if (WARN_ON(!wq_online))
3915 		return;
3916 
3917 	touch_wq_lockdep_map(wq);
3918 
3919 	mutex_lock(&wq->mutex);
3920 
3921 	/*
3922 	 * Start-to-wait phase
3923 	 */
3924 	next_color = work_next_color(wq->work_color);
3925 
3926 	if (next_color != wq->flush_color) {
3927 		/*
3928 		 * Color space is not full.  The current work_color
3929 		 * becomes our flush_color and work_color is advanced
3930 		 * by one.
3931 		 */
3932 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
3933 		this_flusher.flush_color = wq->work_color;
3934 		wq->work_color = next_color;
3935 
3936 		if (!wq->first_flusher) {
3937 			/* no flush in progress, become the first flusher */
3938 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3939 
3940 			wq->first_flusher = &this_flusher;
3941 
3942 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
3943 						       wq->work_color)) {
3944 				/* nothing to flush, done */
3945 				wq->flush_color = next_color;
3946 				wq->first_flusher = NULL;
3947 				goto out_unlock;
3948 			}
3949 		} else {
3950 			/* wait in queue */
3951 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
3952 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
3953 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
3954 		}
3955 	} else {
3956 		/*
3957 		 * Oops, color space is full, wait on overflow queue.
3958 		 * The next flush completion will assign us
3959 		 * flush_color and transfer to flusher_queue.
3960 		 */
3961 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
3962 	}
3963 
3964 	check_flush_dependency(wq, NULL);
3965 
3966 	mutex_unlock(&wq->mutex);
3967 
3968 	wait_for_completion(&this_flusher.done);
3969 
3970 	/*
3971 	 * Wake-up-and-cascade phase
3972 	 *
3973 	 * First flushers are responsible for cascading flushes and
3974 	 * handling overflow.  Non-first flushers can simply return.
3975 	 */
3976 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
3977 		return;
3978 
3979 	mutex_lock(&wq->mutex);
3980 
3981 	/* we might have raced, check again with mutex held */
3982 	if (wq->first_flusher != &this_flusher)
3983 		goto out_unlock;
3984 
3985 	WRITE_ONCE(wq->first_flusher, NULL);
3986 
3987 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
3988 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
3989 
3990 	while (true) {
3991 		struct wq_flusher *next, *tmp;
3992 
3993 		/* complete all the flushers sharing the current flush color */
3994 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
3995 			if (next->flush_color != wq->flush_color)
3996 				break;
3997 			list_del_init(&next->list);
3998 			complete(&next->done);
3999 		}
4000 
4001 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
4002 			     wq->flush_color != work_next_color(wq->work_color));
4003 
4004 		/* this flush_color is finished, advance by one */
4005 		wq->flush_color = work_next_color(wq->flush_color);
4006 
4007 		/* one color has been freed, handle overflow queue */
4008 		if (!list_empty(&wq->flusher_overflow)) {
4009 			/*
4010 			 * Assign the same color to all overflowed
4011 			 * flushers, advance work_color and append to
4012 			 * flusher_queue.  This is the start-to-wait
4013 			 * phase for these overflowed flushers.
4014 			 */
4015 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
4016 				tmp->flush_color = wq->work_color;
4017 
4018 			wq->work_color = work_next_color(wq->work_color);
4019 
4020 			list_splice_tail_init(&wq->flusher_overflow,
4021 					      &wq->flusher_queue);
4022 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
4023 		}
4024 
4025 		if (list_empty(&wq->flusher_queue)) {
4026 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
4027 			break;
4028 		}
4029 
4030 		/*
4031 		 * Need to flush more colors.  Make the next flusher
4032 		 * the new first flusher and arm pwqs.
4033 		 */
4034 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
4035 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
4036 
4037 		list_del_init(&next->list);
4038 		wq->first_flusher = next;
4039 
4040 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
4041 			break;
4042 
4043 		/*
4044 		 * Meh... this color is already done, clear first
4045 		 * flusher and repeat cascading.
4046 		 */
4047 		wq->first_flusher = NULL;
4048 	}
4049 
4050 out_unlock:
4051 	mutex_unlock(&wq->mutex);
4052 }
4053 EXPORT_SYMBOL(__flush_workqueue);
4054 
4055 /**
4056  * drain_workqueue - drain a workqueue
4057  * @wq: workqueue to drain
4058  *
4059  * Wait until the workqueue becomes empty.  While draining is in progress,
4060  * only chain queueing is allowed.  IOW, only currently pending or running
4061  * work items on @wq can queue further work items on it.  @wq is flushed
4062  * repeatedly until it becomes empty.  The number of flushing is determined
4063  * by the depth of chaining and should be relatively short.  Whine if it
4064  * takes too long.
4065  */
4066 void drain_workqueue(struct workqueue_struct *wq)
4067 {
4068 	unsigned int flush_cnt = 0;
4069 	struct pool_workqueue *pwq;
4070 
4071 	/*
4072 	 * __queue_work() needs to test whether there are drainers, is much
4073 	 * hotter than drain_workqueue() and already looks at @wq->flags.
4074 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
4075 	 */
4076 	mutex_lock(&wq->mutex);
4077 	if (!wq->nr_drainers++)
4078 		wq->flags |= __WQ_DRAINING;
4079 	mutex_unlock(&wq->mutex);
4080 reflush:
4081 	__flush_workqueue(wq);
4082 
4083 	mutex_lock(&wq->mutex);
4084 
4085 	for_each_pwq(pwq, wq) {
4086 		bool drained;
4087 
4088 		raw_spin_lock_irq(&pwq->pool->lock);
4089 		drained = pwq_is_empty(pwq);
4090 		raw_spin_unlock_irq(&pwq->pool->lock);
4091 
4092 		if (drained)
4093 			continue;
4094 
4095 		if (++flush_cnt == 10 ||
4096 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
4097 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
4098 				wq->name, __func__, flush_cnt);
4099 
4100 		mutex_unlock(&wq->mutex);
4101 		goto reflush;
4102 	}
4103 
4104 	if (!--wq->nr_drainers)
4105 		wq->flags &= ~__WQ_DRAINING;
4106 	mutex_unlock(&wq->mutex);
4107 }
4108 EXPORT_SYMBOL_GPL(drain_workqueue);
4109 
4110 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
4111 			     bool from_cancel)
4112 {
4113 	struct worker *worker = NULL;
4114 	struct worker_pool *pool;
4115 	struct pool_workqueue *pwq;
4116 	struct workqueue_struct *wq;
4117 
4118 	rcu_read_lock();
4119 	pool = get_work_pool(work);
4120 	if (!pool) {
4121 		rcu_read_unlock();
4122 		return false;
4123 	}
4124 
4125 	raw_spin_lock_irq(&pool->lock);
4126 	/* see the comment in try_to_grab_pending() with the same code */
4127 	pwq = get_work_pwq(work);
4128 	if (pwq) {
4129 		if (unlikely(pwq->pool != pool))
4130 			goto already_gone;
4131 	} else {
4132 		worker = find_worker_executing_work(pool, work);
4133 		if (!worker)
4134 			goto already_gone;
4135 		pwq = worker->current_pwq;
4136 	}
4137 
4138 	wq = pwq->wq;
4139 	check_flush_dependency(wq, work);
4140 
4141 	insert_wq_barrier(pwq, barr, work, worker);
4142 	raw_spin_unlock_irq(&pool->lock);
4143 
4144 	touch_work_lockdep_map(work, wq);
4145 
4146 	/*
4147 	 * Force a lock recursion deadlock when using flush_work() inside a
4148 	 * single-threaded or rescuer equipped workqueue.
4149 	 *
4150 	 * For single threaded workqueues the deadlock happens when the work
4151 	 * is after the work issuing the flush_work(). For rescuer equipped
4152 	 * workqueues the deadlock happens when the rescuer stalls, blocking
4153 	 * forward progress.
4154 	 */
4155 	if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer))
4156 		touch_wq_lockdep_map(wq);
4157 
4158 	rcu_read_unlock();
4159 	return true;
4160 already_gone:
4161 	raw_spin_unlock_irq(&pool->lock);
4162 	rcu_read_unlock();
4163 	return false;
4164 }
4165 
4166 static bool __flush_work(struct work_struct *work, bool from_cancel)
4167 {
4168 	struct wq_barrier barr;
4169 
4170 	if (WARN_ON(!wq_online))
4171 		return false;
4172 
4173 	if (WARN_ON(!work->func))
4174 		return false;
4175 
4176 	if (!start_flush_work(work, &barr, from_cancel))
4177 		return false;
4178 
4179 	/*
4180 	 * start_flush_work() returned %true. If @from_cancel is set, we know
4181 	 * that @work must have been executing during start_flush_work() and
4182 	 * can't currently be queued. Its data must contain OFFQ bits. If @work
4183 	 * was queued on a BH workqueue, we also know that it was running in the
4184 	 * BH context and thus can be busy-waited.
4185 	 */
4186 	if (from_cancel) {
4187 		unsigned long data = *work_data_bits(work);
4188 
4189 		if (!WARN_ON_ONCE(data & WORK_STRUCT_PWQ) &&
4190 		    (data & WORK_OFFQ_BH)) {
4191 			/*
4192 			 * On RT, prevent a live lock when %current preempted
4193 			 * soft interrupt processing or prevents ksoftirqd from
4194 			 * running by keeping flipping BH. If the BH work item
4195 			 * runs on a different CPU then this has no effect other
4196 			 * than doing the BH disable/enable dance for nothing.
4197 			 * This is copied from
4198 			 * kernel/softirq.c::tasklet_unlock_spin_wait().
4199 			 */
4200 			while (!try_wait_for_completion(&barr.done)) {
4201 				if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
4202 					local_bh_disable();
4203 					local_bh_enable();
4204 				} else {
4205 					cpu_relax();
4206 				}
4207 			}
4208 			goto out_destroy;
4209 		}
4210 	}
4211 
4212 	wait_for_completion(&barr.done);
4213 
4214 out_destroy:
4215 	destroy_work_on_stack(&barr.work);
4216 	return true;
4217 }
4218 
4219 /**
4220  * flush_work - wait for a work to finish executing the last queueing instance
4221  * @work: the work to flush
4222  *
4223  * Wait until @work has finished execution.  @work is guaranteed to be idle
4224  * on return if it hasn't been requeued since flush started.
4225  *
4226  * Return:
4227  * %true if flush_work() waited for the work to finish execution,
4228  * %false if it was already idle.
4229  */
4230 bool flush_work(struct work_struct *work)
4231 {
4232 	might_sleep();
4233 	return __flush_work(work, false);
4234 }
4235 EXPORT_SYMBOL_GPL(flush_work);
4236 
4237 /**
4238  * flush_delayed_work - wait for a dwork to finish executing the last queueing
4239  * @dwork: the delayed work to flush
4240  *
4241  * Delayed timer is cancelled and the pending work is queued for
4242  * immediate execution.  Like flush_work(), this function only
4243  * considers the last queueing instance of @dwork.
4244  *
4245  * Return:
4246  * %true if flush_work() waited for the work to finish execution,
4247  * %false if it was already idle.
4248  */
4249 bool flush_delayed_work(struct delayed_work *dwork)
4250 {
4251 	local_irq_disable();
4252 	if (del_timer_sync(&dwork->timer))
4253 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
4254 	local_irq_enable();
4255 	return flush_work(&dwork->work);
4256 }
4257 EXPORT_SYMBOL(flush_delayed_work);
4258 
4259 /**
4260  * flush_rcu_work - wait for a rwork to finish executing the last queueing
4261  * @rwork: the rcu work to flush
4262  *
4263  * Return:
4264  * %true if flush_rcu_work() waited for the work to finish execution,
4265  * %false if it was already idle.
4266  */
4267 bool flush_rcu_work(struct rcu_work *rwork)
4268 {
4269 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
4270 		rcu_barrier();
4271 		flush_work(&rwork->work);
4272 		return true;
4273 	} else {
4274 		return flush_work(&rwork->work);
4275 	}
4276 }
4277 EXPORT_SYMBOL(flush_rcu_work);
4278 
4279 static void work_offqd_disable(struct work_offq_data *offqd)
4280 {
4281 	const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1;
4282 
4283 	if (likely(offqd->disable < max))
4284 		offqd->disable++;
4285 	else
4286 		WARN_ONCE(true, "workqueue: work disable count overflowed\n");
4287 }
4288 
4289 static void work_offqd_enable(struct work_offq_data *offqd)
4290 {
4291 	if (likely(offqd->disable > 0))
4292 		offqd->disable--;
4293 	else
4294 		WARN_ONCE(true, "workqueue: work disable count underflowed\n");
4295 }
4296 
4297 static bool __cancel_work(struct work_struct *work, u32 cflags)
4298 {
4299 	struct work_offq_data offqd;
4300 	unsigned long irq_flags;
4301 	int ret;
4302 
4303 	ret = work_grab_pending(work, cflags, &irq_flags);
4304 
4305 	work_offqd_unpack(&offqd, *work_data_bits(work));
4306 
4307 	if (cflags & WORK_CANCEL_DISABLE)
4308 		work_offqd_disable(&offqd);
4309 
4310 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4311 					work_offqd_pack_flags(&offqd));
4312 	local_irq_restore(irq_flags);
4313 	return ret;
4314 }
4315 
4316 static bool __cancel_work_sync(struct work_struct *work, u32 cflags)
4317 {
4318 	bool ret;
4319 
4320 	ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE);
4321 
4322 	if (*work_data_bits(work) & WORK_OFFQ_BH)
4323 		WARN_ON_ONCE(in_hardirq());
4324 	else
4325 		might_sleep();
4326 
4327 	/*
4328 	 * Skip __flush_work() during early boot when we know that @work isn't
4329 	 * executing. This allows canceling during early boot.
4330 	 */
4331 	if (wq_online)
4332 		__flush_work(work, true);
4333 
4334 	if (!(cflags & WORK_CANCEL_DISABLE))
4335 		enable_work(work);
4336 
4337 	return ret;
4338 }
4339 
4340 /*
4341  * See cancel_delayed_work()
4342  */
4343 bool cancel_work(struct work_struct *work)
4344 {
4345 	return __cancel_work(work, 0);
4346 }
4347 EXPORT_SYMBOL(cancel_work);
4348 
4349 /**
4350  * cancel_work_sync - cancel a work and wait for it to finish
4351  * @work: the work to cancel
4352  *
4353  * Cancel @work and wait for its execution to finish. This function can be used
4354  * even if the work re-queues itself or migrates to another workqueue. On return
4355  * from this function, @work is guaranteed to be not pending or executing on any
4356  * CPU as long as there aren't racing enqueues.
4357  *
4358  * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's.
4359  * Use cancel_delayed_work_sync() instead.
4360  *
4361  * Must be called from a sleepable context if @work was last queued on a non-BH
4362  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4363  * if @work was last queued on a BH workqueue.
4364  *
4365  * Returns %true if @work was pending, %false otherwise.
4366  */
4367 bool cancel_work_sync(struct work_struct *work)
4368 {
4369 	return __cancel_work_sync(work, 0);
4370 }
4371 EXPORT_SYMBOL_GPL(cancel_work_sync);
4372 
4373 /**
4374  * cancel_delayed_work - cancel a delayed work
4375  * @dwork: delayed_work to cancel
4376  *
4377  * Kill off a pending delayed_work.
4378  *
4379  * Return: %true if @dwork was pending and canceled; %false if it wasn't
4380  * pending.
4381  *
4382  * Note:
4383  * The work callback function may still be running on return, unless
4384  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
4385  * use cancel_delayed_work_sync() to wait on it.
4386  *
4387  * This function is safe to call from any context including IRQ handler.
4388  */
4389 bool cancel_delayed_work(struct delayed_work *dwork)
4390 {
4391 	return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED);
4392 }
4393 EXPORT_SYMBOL(cancel_delayed_work);
4394 
4395 /**
4396  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
4397  * @dwork: the delayed work cancel
4398  *
4399  * This is cancel_work_sync() for delayed works.
4400  *
4401  * Return:
4402  * %true if @dwork was pending, %false otherwise.
4403  */
4404 bool cancel_delayed_work_sync(struct delayed_work *dwork)
4405 {
4406 	return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED);
4407 }
4408 EXPORT_SYMBOL(cancel_delayed_work_sync);
4409 
4410 /**
4411  * disable_work - Disable and cancel a work item
4412  * @work: work item to disable
4413  *
4414  * Disable @work by incrementing its disable count and cancel it if currently
4415  * pending. As long as the disable count is non-zero, any attempt to queue @work
4416  * will fail and return %false. The maximum supported disable depth is 2 to the
4417  * power of %WORK_OFFQ_DISABLE_BITS, currently 65536.
4418  *
4419  * Can be called from any context. Returns %true if @work was pending, %false
4420  * otherwise.
4421  */
4422 bool disable_work(struct work_struct *work)
4423 {
4424 	return __cancel_work(work, WORK_CANCEL_DISABLE);
4425 }
4426 EXPORT_SYMBOL_GPL(disable_work);
4427 
4428 /**
4429  * disable_work_sync - Disable, cancel and drain a work item
4430  * @work: work item to disable
4431  *
4432  * Similar to disable_work() but also wait for @work to finish if currently
4433  * executing.
4434  *
4435  * Must be called from a sleepable context if @work was last queued on a non-BH
4436  * workqueue. Can also be called from non-hardirq atomic contexts including BH
4437  * if @work was last queued on a BH workqueue.
4438  *
4439  * Returns %true if @work was pending, %false otherwise.
4440  */
4441 bool disable_work_sync(struct work_struct *work)
4442 {
4443 	return __cancel_work_sync(work, WORK_CANCEL_DISABLE);
4444 }
4445 EXPORT_SYMBOL_GPL(disable_work_sync);
4446 
4447 /**
4448  * enable_work - Enable a work item
4449  * @work: work item to enable
4450  *
4451  * Undo disable_work[_sync]() by decrementing @work's disable count. @work can
4452  * only be queued if its disable count is 0.
4453  *
4454  * Can be called from any context. Returns %true if the disable count reached 0.
4455  * Otherwise, %false.
4456  */
4457 bool enable_work(struct work_struct *work)
4458 {
4459 	struct work_offq_data offqd;
4460 	unsigned long irq_flags;
4461 
4462 	work_grab_pending(work, 0, &irq_flags);
4463 
4464 	work_offqd_unpack(&offqd, *work_data_bits(work));
4465 	work_offqd_enable(&offqd);
4466 	set_work_pool_and_clear_pending(work, offqd.pool_id,
4467 					work_offqd_pack_flags(&offqd));
4468 	local_irq_restore(irq_flags);
4469 
4470 	return !offqd.disable;
4471 }
4472 EXPORT_SYMBOL_GPL(enable_work);
4473 
4474 /**
4475  * disable_delayed_work - Disable and cancel a delayed work item
4476  * @dwork: delayed work item to disable
4477  *
4478  * disable_work() for delayed work items.
4479  */
4480 bool disable_delayed_work(struct delayed_work *dwork)
4481 {
4482 	return __cancel_work(&dwork->work,
4483 			     WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4484 }
4485 EXPORT_SYMBOL_GPL(disable_delayed_work);
4486 
4487 /**
4488  * disable_delayed_work_sync - Disable, cancel and drain a delayed work item
4489  * @dwork: delayed work item to disable
4490  *
4491  * disable_work_sync() for delayed work items.
4492  */
4493 bool disable_delayed_work_sync(struct delayed_work *dwork)
4494 {
4495 	return __cancel_work_sync(&dwork->work,
4496 				  WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE);
4497 }
4498 EXPORT_SYMBOL_GPL(disable_delayed_work_sync);
4499 
4500 /**
4501  * enable_delayed_work - Enable a delayed work item
4502  * @dwork: delayed work item to enable
4503  *
4504  * enable_work() for delayed work items.
4505  */
4506 bool enable_delayed_work(struct delayed_work *dwork)
4507 {
4508 	return enable_work(&dwork->work);
4509 }
4510 EXPORT_SYMBOL_GPL(enable_delayed_work);
4511 
4512 /**
4513  * schedule_on_each_cpu - execute a function synchronously on each online CPU
4514  * @func: the function to call
4515  *
4516  * schedule_on_each_cpu() executes @func on each online CPU using the
4517  * system workqueue and blocks until all CPUs have completed.
4518  * schedule_on_each_cpu() is very slow.
4519  *
4520  * Return:
4521  * 0 on success, -errno on failure.
4522  */
4523 int schedule_on_each_cpu(work_func_t func)
4524 {
4525 	int cpu;
4526 	struct work_struct __percpu *works;
4527 
4528 	works = alloc_percpu(struct work_struct);
4529 	if (!works)
4530 		return -ENOMEM;
4531 
4532 	cpus_read_lock();
4533 
4534 	for_each_online_cpu(cpu) {
4535 		struct work_struct *work = per_cpu_ptr(works, cpu);
4536 
4537 		INIT_WORK(work, func);
4538 		schedule_work_on(cpu, work);
4539 	}
4540 
4541 	for_each_online_cpu(cpu)
4542 		flush_work(per_cpu_ptr(works, cpu));
4543 
4544 	cpus_read_unlock();
4545 	free_percpu(works);
4546 	return 0;
4547 }
4548 
4549 /**
4550  * execute_in_process_context - reliably execute the routine with user context
4551  * @fn:		the function to execute
4552  * @ew:		guaranteed storage for the execute work structure (must
4553  *		be available when the work executes)
4554  *
4555  * Executes the function immediately if process context is available,
4556  * otherwise schedules the function for delayed execution.
4557  *
4558  * Return:	0 - function was executed
4559  *		1 - function was scheduled for execution
4560  */
4561 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
4562 {
4563 	if (!in_interrupt()) {
4564 		fn(&ew->work);
4565 		return 0;
4566 	}
4567 
4568 	INIT_WORK(&ew->work, fn);
4569 	schedule_work(&ew->work);
4570 
4571 	return 1;
4572 }
4573 EXPORT_SYMBOL_GPL(execute_in_process_context);
4574 
4575 /**
4576  * free_workqueue_attrs - free a workqueue_attrs
4577  * @attrs: workqueue_attrs to free
4578  *
4579  * Undo alloc_workqueue_attrs().
4580  */
4581 void free_workqueue_attrs(struct workqueue_attrs *attrs)
4582 {
4583 	if (attrs) {
4584 		free_cpumask_var(attrs->cpumask);
4585 		free_cpumask_var(attrs->__pod_cpumask);
4586 		kfree(attrs);
4587 	}
4588 }
4589 
4590 /**
4591  * alloc_workqueue_attrs - allocate a workqueue_attrs
4592  *
4593  * Allocate a new workqueue_attrs, initialize with default settings and
4594  * return it.
4595  *
4596  * Return: The allocated new workqueue_attr on success. %NULL on failure.
4597  */
4598 struct workqueue_attrs *alloc_workqueue_attrs(void)
4599 {
4600 	struct workqueue_attrs *attrs;
4601 
4602 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
4603 	if (!attrs)
4604 		goto fail;
4605 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
4606 		goto fail;
4607 	if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL))
4608 		goto fail;
4609 
4610 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
4611 	attrs->affn_scope = WQ_AFFN_DFL;
4612 	return attrs;
4613 fail:
4614 	free_workqueue_attrs(attrs);
4615 	return NULL;
4616 }
4617 
4618 static void copy_workqueue_attrs(struct workqueue_attrs *to,
4619 				 const struct workqueue_attrs *from)
4620 {
4621 	to->nice = from->nice;
4622 	cpumask_copy(to->cpumask, from->cpumask);
4623 	cpumask_copy(to->__pod_cpumask, from->__pod_cpumask);
4624 	to->affn_strict = from->affn_strict;
4625 
4626 	/*
4627 	 * Unlike hash and equality test, copying shouldn't ignore wq-only
4628 	 * fields as copying is used for both pool and wq attrs. Instead,
4629 	 * get_unbound_pool() explicitly clears the fields.
4630 	 */
4631 	to->affn_scope = from->affn_scope;
4632 	to->ordered = from->ordered;
4633 }
4634 
4635 /*
4636  * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the
4637  * comments in 'struct workqueue_attrs' definition.
4638  */
4639 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs)
4640 {
4641 	attrs->affn_scope = WQ_AFFN_NR_TYPES;
4642 	attrs->ordered = false;
4643 	if (attrs->affn_strict)
4644 		cpumask_copy(attrs->cpumask, cpu_possible_mask);
4645 }
4646 
4647 /* hash value of the content of @attr */
4648 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
4649 {
4650 	u32 hash = 0;
4651 
4652 	hash = jhash_1word(attrs->nice, hash);
4653 	hash = jhash_1word(attrs->affn_strict, hash);
4654 	hash = jhash(cpumask_bits(attrs->__pod_cpumask),
4655 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4656 	if (!attrs->affn_strict)
4657 		hash = jhash(cpumask_bits(attrs->cpumask),
4658 			     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
4659 	return hash;
4660 }
4661 
4662 /* content equality test */
4663 static bool wqattrs_equal(const struct workqueue_attrs *a,
4664 			  const struct workqueue_attrs *b)
4665 {
4666 	if (a->nice != b->nice)
4667 		return false;
4668 	if (a->affn_strict != b->affn_strict)
4669 		return false;
4670 	if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask))
4671 		return false;
4672 	if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask))
4673 		return false;
4674 	return true;
4675 }
4676 
4677 /* Update @attrs with actually available CPUs */
4678 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs,
4679 				      const cpumask_t *unbound_cpumask)
4680 {
4681 	/*
4682 	 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If
4683 	 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to
4684 	 * @unbound_cpumask.
4685 	 */
4686 	cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask);
4687 	if (unlikely(cpumask_empty(attrs->cpumask)))
4688 		cpumask_copy(attrs->cpumask, unbound_cpumask);
4689 }
4690 
4691 /* find wq_pod_type to use for @attrs */
4692 static const struct wq_pod_type *
4693 wqattrs_pod_type(const struct workqueue_attrs *attrs)
4694 {
4695 	enum wq_affn_scope scope;
4696 	struct wq_pod_type *pt;
4697 
4698 	/* to synchronize access to wq_affn_dfl */
4699 	lockdep_assert_held(&wq_pool_mutex);
4700 
4701 	if (attrs->affn_scope == WQ_AFFN_DFL)
4702 		scope = wq_affn_dfl;
4703 	else
4704 		scope = attrs->affn_scope;
4705 
4706 	pt = &wq_pod_types[scope];
4707 
4708 	if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) &&
4709 	    likely(pt->nr_pods))
4710 		return pt;
4711 
4712 	/*
4713 	 * Before workqueue_init_topology(), only SYSTEM is available which is
4714 	 * initialized in workqueue_init_early().
4715 	 */
4716 	pt = &wq_pod_types[WQ_AFFN_SYSTEM];
4717 	BUG_ON(!pt->nr_pods);
4718 	return pt;
4719 }
4720 
4721 /**
4722  * init_worker_pool - initialize a newly zalloc'd worker_pool
4723  * @pool: worker_pool to initialize
4724  *
4725  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
4726  *
4727  * Return: 0 on success, -errno on failure.  Even on failure, all fields
4728  * inside @pool proper are initialized and put_unbound_pool() can be called
4729  * on @pool safely to release it.
4730  */
4731 static int init_worker_pool(struct worker_pool *pool)
4732 {
4733 	raw_spin_lock_init(&pool->lock);
4734 	pool->id = -1;
4735 	pool->cpu = -1;
4736 	pool->node = NUMA_NO_NODE;
4737 	pool->flags |= POOL_DISASSOCIATED;
4738 	pool->watchdog_ts = jiffies;
4739 	INIT_LIST_HEAD(&pool->worklist);
4740 	INIT_LIST_HEAD(&pool->idle_list);
4741 	hash_init(pool->busy_hash);
4742 
4743 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
4744 	INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
4745 
4746 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
4747 
4748 	INIT_LIST_HEAD(&pool->workers);
4749 
4750 	ida_init(&pool->worker_ida);
4751 	INIT_HLIST_NODE(&pool->hash_node);
4752 	pool->refcnt = 1;
4753 
4754 	/* shouldn't fail above this point */
4755 	pool->attrs = alloc_workqueue_attrs();
4756 	if (!pool->attrs)
4757 		return -ENOMEM;
4758 
4759 	wqattrs_clear_for_pool(pool->attrs);
4760 
4761 	return 0;
4762 }
4763 
4764 #ifdef CONFIG_LOCKDEP
4765 static void wq_init_lockdep(struct workqueue_struct *wq)
4766 {
4767 	char *lock_name;
4768 
4769 	lockdep_register_key(&wq->key);
4770 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
4771 	if (!lock_name)
4772 		lock_name = wq->name;
4773 
4774 	wq->lock_name = lock_name;
4775 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
4776 }
4777 
4778 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4779 {
4780 	lockdep_unregister_key(&wq->key);
4781 }
4782 
4783 static void wq_free_lockdep(struct workqueue_struct *wq)
4784 {
4785 	if (wq->lock_name != wq->name)
4786 		kfree(wq->lock_name);
4787 }
4788 #else
4789 static void wq_init_lockdep(struct workqueue_struct *wq)
4790 {
4791 }
4792 
4793 static void wq_unregister_lockdep(struct workqueue_struct *wq)
4794 {
4795 }
4796 
4797 static void wq_free_lockdep(struct workqueue_struct *wq)
4798 {
4799 }
4800 #endif
4801 
4802 static void free_node_nr_active(struct wq_node_nr_active **nna_ar)
4803 {
4804 	int node;
4805 
4806 	for_each_node(node) {
4807 		kfree(nna_ar[node]);
4808 		nna_ar[node] = NULL;
4809 	}
4810 
4811 	kfree(nna_ar[nr_node_ids]);
4812 	nna_ar[nr_node_ids] = NULL;
4813 }
4814 
4815 static void init_node_nr_active(struct wq_node_nr_active *nna)
4816 {
4817 	nna->max = WQ_DFL_MIN_ACTIVE;
4818 	atomic_set(&nna->nr, 0);
4819 	raw_spin_lock_init(&nna->lock);
4820 	INIT_LIST_HEAD(&nna->pending_pwqs);
4821 }
4822 
4823 /*
4824  * Each node's nr_active counter will be accessed mostly from its own node and
4825  * should be allocated in the node.
4826  */
4827 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar)
4828 {
4829 	struct wq_node_nr_active *nna;
4830 	int node;
4831 
4832 	for_each_node(node) {
4833 		nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node);
4834 		if (!nna)
4835 			goto err_free;
4836 		init_node_nr_active(nna);
4837 		nna_ar[node] = nna;
4838 	}
4839 
4840 	/* [nr_node_ids] is used as the fallback */
4841 	nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE);
4842 	if (!nna)
4843 		goto err_free;
4844 	init_node_nr_active(nna);
4845 	nna_ar[nr_node_ids] = nna;
4846 
4847 	return 0;
4848 
4849 err_free:
4850 	free_node_nr_active(nna_ar);
4851 	return -ENOMEM;
4852 }
4853 
4854 static void rcu_free_wq(struct rcu_head *rcu)
4855 {
4856 	struct workqueue_struct *wq =
4857 		container_of(rcu, struct workqueue_struct, rcu);
4858 
4859 	if (wq->flags & WQ_UNBOUND)
4860 		free_node_nr_active(wq->node_nr_active);
4861 
4862 	wq_free_lockdep(wq);
4863 	free_percpu(wq->cpu_pwq);
4864 	free_workqueue_attrs(wq->unbound_attrs);
4865 	kfree(wq);
4866 }
4867 
4868 static void rcu_free_pool(struct rcu_head *rcu)
4869 {
4870 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
4871 
4872 	ida_destroy(&pool->worker_ida);
4873 	free_workqueue_attrs(pool->attrs);
4874 	kfree(pool);
4875 }
4876 
4877 /**
4878  * put_unbound_pool - put a worker_pool
4879  * @pool: worker_pool to put
4880  *
4881  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
4882  * safe manner.  get_unbound_pool() calls this function on its failure path
4883  * and this function should be able to release pools which went through,
4884  * successfully or not, init_worker_pool().
4885  *
4886  * Should be called with wq_pool_mutex held.
4887  */
4888 static void put_unbound_pool(struct worker_pool *pool)
4889 {
4890 	struct worker *worker;
4891 	LIST_HEAD(cull_list);
4892 
4893 	lockdep_assert_held(&wq_pool_mutex);
4894 
4895 	if (--pool->refcnt)
4896 		return;
4897 
4898 	/* sanity checks */
4899 	if (WARN_ON(!(pool->cpu < 0)) ||
4900 	    WARN_ON(!list_empty(&pool->worklist)))
4901 		return;
4902 
4903 	/* release id and unhash */
4904 	if (pool->id >= 0)
4905 		idr_remove(&worker_pool_idr, pool->id);
4906 	hash_del(&pool->hash_node);
4907 
4908 	/*
4909 	 * Become the manager and destroy all workers.  This prevents
4910 	 * @pool's workers from blocking on attach_mutex.  We're the last
4911 	 * manager and @pool gets freed with the flag set.
4912 	 *
4913 	 * Having a concurrent manager is quite unlikely to happen as we can
4914 	 * only get here with
4915 	 *   pwq->refcnt == pool->refcnt == 0
4916 	 * which implies no work queued to the pool, which implies no worker can
4917 	 * become the manager. However a worker could have taken the role of
4918 	 * manager before the refcnts dropped to 0, since maybe_create_worker()
4919 	 * drops pool->lock
4920 	 */
4921 	while (true) {
4922 		rcuwait_wait_event(&manager_wait,
4923 				   !(pool->flags & POOL_MANAGER_ACTIVE),
4924 				   TASK_UNINTERRUPTIBLE);
4925 
4926 		mutex_lock(&wq_pool_attach_mutex);
4927 		raw_spin_lock_irq(&pool->lock);
4928 		if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
4929 			pool->flags |= POOL_MANAGER_ACTIVE;
4930 			break;
4931 		}
4932 		raw_spin_unlock_irq(&pool->lock);
4933 		mutex_unlock(&wq_pool_attach_mutex);
4934 	}
4935 
4936 	while ((worker = first_idle_worker(pool)))
4937 		set_worker_dying(worker, &cull_list);
4938 	WARN_ON(pool->nr_workers || pool->nr_idle);
4939 	raw_spin_unlock_irq(&pool->lock);
4940 
4941 	detach_dying_workers(&cull_list);
4942 
4943 	mutex_unlock(&wq_pool_attach_mutex);
4944 
4945 	reap_dying_workers(&cull_list);
4946 
4947 	/* shut down the timers */
4948 	del_timer_sync(&pool->idle_timer);
4949 	cancel_work_sync(&pool->idle_cull_work);
4950 	del_timer_sync(&pool->mayday_timer);
4951 
4952 	/* RCU protected to allow dereferences from get_work_pool() */
4953 	call_rcu(&pool->rcu, rcu_free_pool);
4954 }
4955 
4956 /**
4957  * get_unbound_pool - get a worker_pool with the specified attributes
4958  * @attrs: the attributes of the worker_pool to get
4959  *
4960  * Obtain a worker_pool which has the same attributes as @attrs, bump the
4961  * reference count and return it.  If there already is a matching
4962  * worker_pool, it will be used; otherwise, this function attempts to
4963  * create a new one.
4964  *
4965  * Should be called with wq_pool_mutex held.
4966  *
4967  * Return: On success, a worker_pool with the same attributes as @attrs.
4968  * On failure, %NULL.
4969  */
4970 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
4971 {
4972 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA];
4973 	u32 hash = wqattrs_hash(attrs);
4974 	struct worker_pool *pool;
4975 	int pod, node = NUMA_NO_NODE;
4976 
4977 	lockdep_assert_held(&wq_pool_mutex);
4978 
4979 	/* do we already have a matching pool? */
4980 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
4981 		if (wqattrs_equal(pool->attrs, attrs)) {
4982 			pool->refcnt++;
4983 			return pool;
4984 		}
4985 	}
4986 
4987 	/* If __pod_cpumask is contained inside a NUMA pod, that's our node */
4988 	for (pod = 0; pod < pt->nr_pods; pod++) {
4989 		if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) {
4990 			node = pt->pod_node[pod];
4991 			break;
4992 		}
4993 	}
4994 
4995 	/* nope, create a new one */
4996 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node);
4997 	if (!pool || init_worker_pool(pool) < 0)
4998 		goto fail;
4999 
5000 	pool->node = node;
5001 	copy_workqueue_attrs(pool->attrs, attrs);
5002 	wqattrs_clear_for_pool(pool->attrs);
5003 
5004 	if (worker_pool_assign_id(pool) < 0)
5005 		goto fail;
5006 
5007 	/* create and start the initial worker */
5008 	if (wq_online && !create_worker(pool))
5009 		goto fail;
5010 
5011 	/* install */
5012 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
5013 
5014 	return pool;
5015 fail:
5016 	if (pool)
5017 		put_unbound_pool(pool);
5018 	return NULL;
5019 }
5020 
5021 /*
5022  * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero
5023  * refcnt and needs to be destroyed.
5024  */
5025 static void pwq_release_workfn(struct kthread_work *work)
5026 {
5027 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
5028 						  release_work);
5029 	struct workqueue_struct *wq = pwq->wq;
5030 	struct worker_pool *pool = pwq->pool;
5031 	bool is_last = false;
5032 
5033 	/*
5034 	 * When @pwq is not linked, it doesn't hold any reference to the
5035 	 * @wq, and @wq is invalid to access.
5036 	 */
5037 	if (!list_empty(&pwq->pwqs_node)) {
5038 		mutex_lock(&wq->mutex);
5039 		list_del_rcu(&pwq->pwqs_node);
5040 		is_last = list_empty(&wq->pwqs);
5041 
5042 		/*
5043 		 * For ordered workqueue with a plugged dfl_pwq, restart it now.
5044 		 */
5045 		if (!is_last && (wq->flags & __WQ_ORDERED))
5046 			unplug_oldest_pwq(wq);
5047 
5048 		mutex_unlock(&wq->mutex);
5049 	}
5050 
5051 	if (wq->flags & WQ_UNBOUND) {
5052 		mutex_lock(&wq_pool_mutex);
5053 		put_unbound_pool(pool);
5054 		mutex_unlock(&wq_pool_mutex);
5055 	}
5056 
5057 	if (!list_empty(&pwq->pending_node)) {
5058 		struct wq_node_nr_active *nna =
5059 			wq_node_nr_active(pwq->wq, pwq->pool->node);
5060 
5061 		raw_spin_lock_irq(&nna->lock);
5062 		list_del_init(&pwq->pending_node);
5063 		raw_spin_unlock_irq(&nna->lock);
5064 	}
5065 
5066 	kfree_rcu(pwq, rcu);
5067 
5068 	/*
5069 	 * If we're the last pwq going away, @wq is already dead and no one
5070 	 * is gonna access it anymore.  Schedule RCU free.
5071 	 */
5072 	if (is_last) {
5073 		wq_unregister_lockdep(wq);
5074 		call_rcu(&wq->rcu, rcu_free_wq);
5075 	}
5076 }
5077 
5078 /* initialize newly allocated @pwq which is associated with @wq and @pool */
5079 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
5080 		     struct worker_pool *pool)
5081 {
5082 	BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK);
5083 
5084 	memset(pwq, 0, sizeof(*pwq));
5085 
5086 	pwq->pool = pool;
5087 	pwq->wq = wq;
5088 	pwq->flush_color = -1;
5089 	pwq->refcnt = 1;
5090 	INIT_LIST_HEAD(&pwq->inactive_works);
5091 	INIT_LIST_HEAD(&pwq->pending_node);
5092 	INIT_LIST_HEAD(&pwq->pwqs_node);
5093 	INIT_LIST_HEAD(&pwq->mayday_node);
5094 	kthread_init_work(&pwq->release_work, pwq_release_workfn);
5095 }
5096 
5097 /* sync @pwq with the current state of its associated wq and link it */
5098 static void link_pwq(struct pool_workqueue *pwq)
5099 {
5100 	struct workqueue_struct *wq = pwq->wq;
5101 
5102 	lockdep_assert_held(&wq->mutex);
5103 
5104 	/* may be called multiple times, ignore if already linked */
5105 	if (!list_empty(&pwq->pwqs_node))
5106 		return;
5107 
5108 	/* set the matching work_color */
5109 	pwq->work_color = wq->work_color;
5110 
5111 	/* link in @pwq */
5112 	list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs);
5113 }
5114 
5115 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
5116 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
5117 					const struct workqueue_attrs *attrs)
5118 {
5119 	struct worker_pool *pool;
5120 	struct pool_workqueue *pwq;
5121 
5122 	lockdep_assert_held(&wq_pool_mutex);
5123 
5124 	pool = get_unbound_pool(attrs);
5125 	if (!pool)
5126 		return NULL;
5127 
5128 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
5129 	if (!pwq) {
5130 		put_unbound_pool(pool);
5131 		return NULL;
5132 	}
5133 
5134 	init_pwq(pwq, wq, pool);
5135 	return pwq;
5136 }
5137 
5138 static void apply_wqattrs_lock(void)
5139 {
5140 	mutex_lock(&wq_pool_mutex);
5141 }
5142 
5143 static void apply_wqattrs_unlock(void)
5144 {
5145 	mutex_unlock(&wq_pool_mutex);
5146 }
5147 
5148 /**
5149  * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod
5150  * @attrs: the wq_attrs of the default pwq of the target workqueue
5151  * @cpu: the target CPU
5152  *
5153  * Calculate the cpumask a workqueue with @attrs should use on @pod.
5154  * The result is stored in @attrs->__pod_cpumask.
5155  *
5156  * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled
5157  * and @pod has online CPUs requested by @attrs, the returned cpumask is the
5158  * intersection of the possible CPUs of @pod and @attrs->cpumask.
5159  *
5160  * The caller is responsible for ensuring that the cpumask of @pod stays stable.
5161  */
5162 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu)
5163 {
5164 	const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
5165 	int pod = pt->cpu_pod[cpu];
5166 
5167 	/* calculate possible CPUs in @pod that @attrs wants */
5168 	cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask);
5169 	/* does @pod have any online CPUs @attrs wants? */
5170 	if (!cpumask_intersects(attrs->__pod_cpumask, wq_online_cpumask)) {
5171 		cpumask_copy(attrs->__pod_cpumask, attrs->cpumask);
5172 		return;
5173 	}
5174 }
5175 
5176 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */
5177 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq,
5178 					int cpu, struct pool_workqueue *pwq)
5179 {
5180 	struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu);
5181 	struct pool_workqueue *old_pwq;
5182 
5183 	lockdep_assert_held(&wq_pool_mutex);
5184 	lockdep_assert_held(&wq->mutex);
5185 
5186 	/* link_pwq() can handle duplicate calls */
5187 	link_pwq(pwq);
5188 
5189 	old_pwq = rcu_access_pointer(*slot);
5190 	rcu_assign_pointer(*slot, pwq);
5191 	return old_pwq;
5192 }
5193 
5194 /* context to store the prepared attrs & pwqs before applying */
5195 struct apply_wqattrs_ctx {
5196 	struct workqueue_struct	*wq;		/* target workqueue */
5197 	struct workqueue_attrs	*attrs;		/* attrs to apply */
5198 	struct list_head	list;		/* queued for batching commit */
5199 	struct pool_workqueue	*dfl_pwq;
5200 	struct pool_workqueue	*pwq_tbl[];
5201 };
5202 
5203 /* free the resources after success or abort */
5204 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
5205 {
5206 	if (ctx) {
5207 		int cpu;
5208 
5209 		for_each_possible_cpu(cpu)
5210 			put_pwq_unlocked(ctx->pwq_tbl[cpu]);
5211 		put_pwq_unlocked(ctx->dfl_pwq);
5212 
5213 		free_workqueue_attrs(ctx->attrs);
5214 
5215 		kfree(ctx);
5216 	}
5217 }
5218 
5219 /* allocate the attrs and pwqs for later installation */
5220 static struct apply_wqattrs_ctx *
5221 apply_wqattrs_prepare(struct workqueue_struct *wq,
5222 		      const struct workqueue_attrs *attrs,
5223 		      const cpumask_var_t unbound_cpumask)
5224 {
5225 	struct apply_wqattrs_ctx *ctx;
5226 	struct workqueue_attrs *new_attrs;
5227 	int cpu;
5228 
5229 	lockdep_assert_held(&wq_pool_mutex);
5230 
5231 	if (WARN_ON(attrs->affn_scope < 0 ||
5232 		    attrs->affn_scope >= WQ_AFFN_NR_TYPES))
5233 		return ERR_PTR(-EINVAL);
5234 
5235 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL);
5236 
5237 	new_attrs = alloc_workqueue_attrs();
5238 	if (!ctx || !new_attrs)
5239 		goto out_free;
5240 
5241 	/*
5242 	 * If something goes wrong during CPU up/down, we'll fall back to
5243 	 * the default pwq covering whole @attrs->cpumask.  Always create
5244 	 * it even if we don't use it immediately.
5245 	 */
5246 	copy_workqueue_attrs(new_attrs, attrs);
5247 	wqattrs_actualize_cpumask(new_attrs, unbound_cpumask);
5248 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5249 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
5250 	if (!ctx->dfl_pwq)
5251 		goto out_free;
5252 
5253 	for_each_possible_cpu(cpu) {
5254 		if (new_attrs->ordered) {
5255 			ctx->dfl_pwq->refcnt++;
5256 			ctx->pwq_tbl[cpu] = ctx->dfl_pwq;
5257 		} else {
5258 			wq_calc_pod_cpumask(new_attrs, cpu);
5259 			ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs);
5260 			if (!ctx->pwq_tbl[cpu])
5261 				goto out_free;
5262 		}
5263 	}
5264 
5265 	/* save the user configured attrs and sanitize it. */
5266 	copy_workqueue_attrs(new_attrs, attrs);
5267 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
5268 	cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask);
5269 	ctx->attrs = new_attrs;
5270 
5271 	/*
5272 	 * For initialized ordered workqueues, there should only be one pwq
5273 	 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution
5274 	 * of newly queued work items until execution of older work items in
5275 	 * the old pwq's have completed.
5276 	 */
5277 	if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))
5278 		ctx->dfl_pwq->plugged = true;
5279 
5280 	ctx->wq = wq;
5281 	return ctx;
5282 
5283 out_free:
5284 	free_workqueue_attrs(new_attrs);
5285 	apply_wqattrs_cleanup(ctx);
5286 	return ERR_PTR(-ENOMEM);
5287 }
5288 
5289 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
5290 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
5291 {
5292 	int cpu;
5293 
5294 	/* all pwqs have been created successfully, let's install'em */
5295 	mutex_lock(&ctx->wq->mutex);
5296 
5297 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
5298 
5299 	/* save the previous pwqs and install the new ones */
5300 	for_each_possible_cpu(cpu)
5301 		ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu,
5302 							ctx->pwq_tbl[cpu]);
5303 	ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq);
5304 
5305 	/* update node_nr_active->max */
5306 	wq_update_node_max_active(ctx->wq, -1);
5307 
5308 	/* rescuer needs to respect wq cpumask changes */
5309 	if (ctx->wq->rescuer)
5310 		set_cpus_allowed_ptr(ctx->wq->rescuer->task,
5311 				     unbound_effective_cpumask(ctx->wq));
5312 
5313 	mutex_unlock(&ctx->wq->mutex);
5314 }
5315 
5316 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
5317 					const struct workqueue_attrs *attrs)
5318 {
5319 	struct apply_wqattrs_ctx *ctx;
5320 
5321 	/* only unbound workqueues can change attributes */
5322 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
5323 		return -EINVAL;
5324 
5325 	ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
5326 	if (IS_ERR(ctx))
5327 		return PTR_ERR(ctx);
5328 
5329 	/* the ctx has been prepared successfully, let's commit it */
5330 	apply_wqattrs_commit(ctx);
5331 	apply_wqattrs_cleanup(ctx);
5332 
5333 	return 0;
5334 }
5335 
5336 /**
5337  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
5338  * @wq: the target workqueue
5339  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
5340  *
5341  * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps
5342  * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that
5343  * work items are affine to the pod it was issued on. Older pwqs are released as
5344  * in-flight work items finish. Note that a work item which repeatedly requeues
5345  * itself back-to-back will stay on its current pwq.
5346  *
5347  * Performs GFP_KERNEL allocations.
5348  *
5349  * Return: 0 on success and -errno on failure.
5350  */
5351 int apply_workqueue_attrs(struct workqueue_struct *wq,
5352 			  const struct workqueue_attrs *attrs)
5353 {
5354 	int ret;
5355 
5356 	mutex_lock(&wq_pool_mutex);
5357 	ret = apply_workqueue_attrs_locked(wq, attrs);
5358 	mutex_unlock(&wq_pool_mutex);
5359 
5360 	return ret;
5361 }
5362 
5363 /**
5364  * unbound_wq_update_pwq - update a pwq slot for CPU hot[un]plug
5365  * @wq: the target workqueue
5366  * @cpu: the CPU to update the pwq slot for
5367  *
5368  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
5369  * %CPU_DOWN_FAILED.  @cpu is in the same pod of the CPU being hot[un]plugged.
5370  *
5371  *
5372  * If pod affinity can't be adjusted due to memory allocation failure, it falls
5373  * back to @wq->dfl_pwq which may not be optimal but is always correct.
5374  *
5375  * Note that when the last allowed CPU of a pod goes offline for a workqueue
5376  * with a cpumask spanning multiple pods, the workers which were already
5377  * executing the work items for the workqueue will lose their CPU affinity and
5378  * may execute on any CPU. This is similar to how per-cpu workqueues behave on
5379  * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's
5380  * responsibility to flush the work item from CPU_DOWN_PREPARE.
5381  */
5382 static void unbound_wq_update_pwq(struct workqueue_struct *wq, int cpu)
5383 {
5384 	struct pool_workqueue *old_pwq = NULL, *pwq;
5385 	struct workqueue_attrs *target_attrs;
5386 
5387 	lockdep_assert_held(&wq_pool_mutex);
5388 
5389 	if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered)
5390 		return;
5391 
5392 	/*
5393 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
5394 	 * Let's use a preallocated one.  The following buf is protected by
5395 	 * CPU hotplug exclusion.
5396 	 */
5397 	target_attrs = unbound_wq_update_pwq_attrs_buf;
5398 
5399 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
5400 	wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask);
5401 
5402 	/* nothing to do if the target cpumask matches the current pwq */
5403 	wq_calc_pod_cpumask(target_attrs, cpu);
5404 	if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs))
5405 		return;
5406 
5407 	/* create a new pwq */
5408 	pwq = alloc_unbound_pwq(wq, target_attrs);
5409 	if (!pwq) {
5410 		pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n",
5411 			wq->name);
5412 		goto use_dfl_pwq;
5413 	}
5414 
5415 	/* Install the new pwq. */
5416 	mutex_lock(&wq->mutex);
5417 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5418 	goto out_unlock;
5419 
5420 use_dfl_pwq:
5421 	mutex_lock(&wq->mutex);
5422 	pwq = unbound_pwq(wq, -1);
5423 	raw_spin_lock_irq(&pwq->pool->lock);
5424 	get_pwq(pwq);
5425 	raw_spin_unlock_irq(&pwq->pool->lock);
5426 	old_pwq = install_unbound_pwq(wq, cpu, pwq);
5427 out_unlock:
5428 	mutex_unlock(&wq->mutex);
5429 	put_pwq_unlocked(old_pwq);
5430 }
5431 
5432 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
5433 {
5434 	bool highpri = wq->flags & WQ_HIGHPRI;
5435 	int cpu, ret;
5436 
5437 	lockdep_assert_held(&wq_pool_mutex);
5438 
5439 	wq->cpu_pwq = alloc_percpu(struct pool_workqueue *);
5440 	if (!wq->cpu_pwq)
5441 		goto enomem;
5442 
5443 	if (!(wq->flags & WQ_UNBOUND)) {
5444 		struct worker_pool __percpu *pools;
5445 
5446 		if (wq->flags & WQ_BH)
5447 			pools = bh_worker_pools;
5448 		else
5449 			pools = cpu_worker_pools;
5450 
5451 		for_each_possible_cpu(cpu) {
5452 			struct pool_workqueue **pwq_p;
5453 			struct worker_pool *pool;
5454 
5455 			pool = &(per_cpu_ptr(pools, cpu)[highpri]);
5456 			pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu);
5457 
5458 			*pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL,
5459 						       pool->node);
5460 			if (!*pwq_p)
5461 				goto enomem;
5462 
5463 			init_pwq(*pwq_p, wq, pool);
5464 
5465 			mutex_lock(&wq->mutex);
5466 			link_pwq(*pwq_p);
5467 			mutex_unlock(&wq->mutex);
5468 		}
5469 		return 0;
5470 	}
5471 
5472 	if (wq->flags & __WQ_ORDERED) {
5473 		struct pool_workqueue *dfl_pwq;
5474 
5475 		ret = apply_workqueue_attrs_locked(wq, ordered_wq_attrs[highpri]);
5476 		/* there should only be single pwq for ordering guarantee */
5477 		dfl_pwq = rcu_access_pointer(wq->dfl_pwq);
5478 		WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node ||
5479 			      wq->pwqs.prev != &dfl_pwq->pwqs_node),
5480 		     "ordering guarantee broken for workqueue %s\n", wq->name);
5481 	} else {
5482 		ret = apply_workqueue_attrs_locked(wq, unbound_std_wq_attrs[highpri]);
5483 	}
5484 
5485 	return ret;
5486 
5487 enomem:
5488 	if (wq->cpu_pwq) {
5489 		for_each_possible_cpu(cpu) {
5490 			struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5491 
5492 			if (pwq)
5493 				kmem_cache_free(pwq_cache, pwq);
5494 		}
5495 		free_percpu(wq->cpu_pwq);
5496 		wq->cpu_pwq = NULL;
5497 	}
5498 	return -ENOMEM;
5499 }
5500 
5501 static int wq_clamp_max_active(int max_active, unsigned int flags,
5502 			       const char *name)
5503 {
5504 	if (max_active < 1 || max_active > WQ_MAX_ACTIVE)
5505 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
5506 			max_active, name, 1, WQ_MAX_ACTIVE);
5507 
5508 	return clamp_val(max_active, 1, WQ_MAX_ACTIVE);
5509 }
5510 
5511 /*
5512  * Workqueues which may be used during memory reclaim should have a rescuer
5513  * to guarantee forward progress.
5514  */
5515 static int init_rescuer(struct workqueue_struct *wq)
5516 {
5517 	struct worker *rescuer;
5518 	char id_buf[WORKER_ID_LEN];
5519 	int ret;
5520 
5521 	lockdep_assert_held(&wq_pool_mutex);
5522 
5523 	if (!(wq->flags & WQ_MEM_RECLAIM))
5524 		return 0;
5525 
5526 	rescuer = alloc_worker(NUMA_NO_NODE);
5527 	if (!rescuer) {
5528 		pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n",
5529 		       wq->name);
5530 		return -ENOMEM;
5531 	}
5532 
5533 	rescuer->rescue_wq = wq;
5534 	format_worker_id(id_buf, sizeof(id_buf), rescuer, NULL);
5535 
5536 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", id_buf);
5537 	if (IS_ERR(rescuer->task)) {
5538 		ret = PTR_ERR(rescuer->task);
5539 		pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe",
5540 		       wq->name, ERR_PTR(ret));
5541 		kfree(rescuer);
5542 		return ret;
5543 	}
5544 
5545 	wq->rescuer = rescuer;
5546 	if (wq->flags & WQ_UNBOUND)
5547 		kthread_bind_mask(rescuer->task, unbound_effective_cpumask(wq));
5548 	else
5549 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
5550 	wake_up_process(rescuer->task);
5551 
5552 	return 0;
5553 }
5554 
5555 /**
5556  * wq_adjust_max_active - update a wq's max_active to the current setting
5557  * @wq: target workqueue
5558  *
5559  * If @wq isn't freezing, set @wq->max_active to the saved_max_active and
5560  * activate inactive work items accordingly. If @wq is freezing, clear
5561  * @wq->max_active to zero.
5562  */
5563 static void wq_adjust_max_active(struct workqueue_struct *wq)
5564 {
5565 	bool activated;
5566 	int new_max, new_min;
5567 
5568 	lockdep_assert_held(&wq->mutex);
5569 
5570 	if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) {
5571 		new_max = 0;
5572 		new_min = 0;
5573 	} else {
5574 		new_max = wq->saved_max_active;
5575 		new_min = wq->saved_min_active;
5576 	}
5577 
5578 	if (wq->max_active == new_max && wq->min_active == new_min)
5579 		return;
5580 
5581 	/*
5582 	 * Update @wq->max/min_active and then kick inactive work items if more
5583 	 * active work items are allowed. This doesn't break work item ordering
5584 	 * because new work items are always queued behind existing inactive
5585 	 * work items if there are any.
5586 	 */
5587 	WRITE_ONCE(wq->max_active, new_max);
5588 	WRITE_ONCE(wq->min_active, new_min);
5589 
5590 	if (wq->flags & WQ_UNBOUND)
5591 		wq_update_node_max_active(wq, -1);
5592 
5593 	if (new_max == 0)
5594 		return;
5595 
5596 	/*
5597 	 * Round-robin through pwq's activating the first inactive work item
5598 	 * until max_active is filled.
5599 	 */
5600 	do {
5601 		struct pool_workqueue *pwq;
5602 
5603 		activated = false;
5604 		for_each_pwq(pwq, wq) {
5605 			unsigned long irq_flags;
5606 
5607 			/* can be called during early boot w/ irq disabled */
5608 			raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
5609 			if (pwq_activate_first_inactive(pwq, true)) {
5610 				activated = true;
5611 				kick_pool(pwq->pool);
5612 			}
5613 			raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
5614 		}
5615 	} while (activated);
5616 }
5617 
5618 __printf(1, 4)
5619 struct workqueue_struct *alloc_workqueue(const char *fmt,
5620 					 unsigned int flags,
5621 					 int max_active, ...)
5622 {
5623 	va_list args;
5624 	struct workqueue_struct *wq;
5625 	size_t wq_size;
5626 	int name_len;
5627 
5628 	if (flags & WQ_BH) {
5629 		if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS))
5630 			return NULL;
5631 		if (WARN_ON_ONCE(max_active))
5632 			return NULL;
5633 	}
5634 
5635 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
5636 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
5637 		flags |= WQ_UNBOUND;
5638 
5639 	/* allocate wq and format name */
5640 	if (flags & WQ_UNBOUND)
5641 		wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1);
5642 	else
5643 		wq_size = sizeof(*wq);
5644 
5645 	wq = kzalloc(wq_size, GFP_KERNEL);
5646 	if (!wq)
5647 		return NULL;
5648 
5649 	if (flags & WQ_UNBOUND) {
5650 		wq->unbound_attrs = alloc_workqueue_attrs();
5651 		if (!wq->unbound_attrs)
5652 			goto err_free_wq;
5653 	}
5654 
5655 	va_start(args, max_active);
5656 	name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args);
5657 	va_end(args);
5658 
5659 	if (name_len >= WQ_NAME_LEN)
5660 		pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n",
5661 			     wq->name);
5662 
5663 	if (flags & WQ_BH) {
5664 		/*
5665 		 * BH workqueues always share a single execution context per CPU
5666 		 * and don't impose any max_active limit.
5667 		 */
5668 		max_active = INT_MAX;
5669 	} else {
5670 		max_active = max_active ?: WQ_DFL_ACTIVE;
5671 		max_active = wq_clamp_max_active(max_active, flags, wq->name);
5672 	}
5673 
5674 	/* init wq */
5675 	wq->flags = flags;
5676 	wq->max_active = max_active;
5677 	wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE);
5678 	wq->saved_max_active = wq->max_active;
5679 	wq->saved_min_active = wq->min_active;
5680 	mutex_init(&wq->mutex);
5681 	atomic_set(&wq->nr_pwqs_to_flush, 0);
5682 	INIT_LIST_HEAD(&wq->pwqs);
5683 	INIT_LIST_HEAD(&wq->flusher_queue);
5684 	INIT_LIST_HEAD(&wq->flusher_overflow);
5685 	INIT_LIST_HEAD(&wq->maydays);
5686 
5687 	wq_init_lockdep(wq);
5688 	INIT_LIST_HEAD(&wq->list);
5689 
5690 	if (flags & WQ_UNBOUND) {
5691 		if (alloc_node_nr_active(wq->node_nr_active) < 0)
5692 			goto err_unreg_lockdep;
5693 	}
5694 
5695 	/*
5696 	 * wq_pool_mutex protects the workqueues list, allocations of PWQs,
5697 	 * and the global freeze state.
5698 	 */
5699 	apply_wqattrs_lock();
5700 
5701 	if (alloc_and_link_pwqs(wq) < 0)
5702 		goto err_unlock_free_node_nr_active;
5703 
5704 	mutex_lock(&wq->mutex);
5705 	wq_adjust_max_active(wq);
5706 	mutex_unlock(&wq->mutex);
5707 
5708 	list_add_tail_rcu(&wq->list, &workqueues);
5709 
5710 	if (wq_online && init_rescuer(wq) < 0)
5711 		goto err_unlock_destroy;
5712 
5713 	apply_wqattrs_unlock();
5714 
5715 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
5716 		goto err_destroy;
5717 
5718 	return wq;
5719 
5720 err_unlock_free_node_nr_active:
5721 	apply_wqattrs_unlock();
5722 	/*
5723 	 * Failed alloc_and_link_pwqs() may leave pending pwq->release_work,
5724 	 * flushing the pwq_release_worker ensures that the pwq_release_workfn()
5725 	 * completes before calling kfree(wq).
5726 	 */
5727 	if (wq->flags & WQ_UNBOUND) {
5728 		kthread_flush_worker(pwq_release_worker);
5729 		free_node_nr_active(wq->node_nr_active);
5730 	}
5731 err_unreg_lockdep:
5732 	wq_unregister_lockdep(wq);
5733 	wq_free_lockdep(wq);
5734 err_free_wq:
5735 	free_workqueue_attrs(wq->unbound_attrs);
5736 	kfree(wq);
5737 	return NULL;
5738 err_unlock_destroy:
5739 	apply_wqattrs_unlock();
5740 err_destroy:
5741 	destroy_workqueue(wq);
5742 	return NULL;
5743 }
5744 EXPORT_SYMBOL_GPL(alloc_workqueue);
5745 
5746 static bool pwq_busy(struct pool_workqueue *pwq)
5747 {
5748 	int i;
5749 
5750 	for (i = 0; i < WORK_NR_COLORS; i++)
5751 		if (pwq->nr_in_flight[i])
5752 			return true;
5753 
5754 	if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1))
5755 		return true;
5756 	if (!pwq_is_empty(pwq))
5757 		return true;
5758 
5759 	return false;
5760 }
5761 
5762 /**
5763  * destroy_workqueue - safely terminate a workqueue
5764  * @wq: target workqueue
5765  *
5766  * Safely destroy a workqueue. All work currently pending will be done first.
5767  */
5768 void destroy_workqueue(struct workqueue_struct *wq)
5769 {
5770 	struct pool_workqueue *pwq;
5771 	int cpu;
5772 
5773 	/*
5774 	 * Remove it from sysfs first so that sanity check failure doesn't
5775 	 * lead to sysfs name conflicts.
5776 	 */
5777 	workqueue_sysfs_unregister(wq);
5778 
5779 	/* mark the workqueue destruction is in progress */
5780 	mutex_lock(&wq->mutex);
5781 	wq->flags |= __WQ_DESTROYING;
5782 	mutex_unlock(&wq->mutex);
5783 
5784 	/* drain it before proceeding with destruction */
5785 	drain_workqueue(wq);
5786 
5787 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
5788 	if (wq->rescuer) {
5789 		struct worker *rescuer = wq->rescuer;
5790 
5791 		/* this prevents new queueing */
5792 		raw_spin_lock_irq(&wq_mayday_lock);
5793 		wq->rescuer = NULL;
5794 		raw_spin_unlock_irq(&wq_mayday_lock);
5795 
5796 		/* rescuer will empty maydays list before exiting */
5797 		kthread_stop(rescuer->task);
5798 		kfree(rescuer);
5799 	}
5800 
5801 	/*
5802 	 * Sanity checks - grab all the locks so that we wait for all
5803 	 * in-flight operations which may do put_pwq().
5804 	 */
5805 	mutex_lock(&wq_pool_mutex);
5806 	mutex_lock(&wq->mutex);
5807 	for_each_pwq(pwq, wq) {
5808 		raw_spin_lock_irq(&pwq->pool->lock);
5809 		if (WARN_ON(pwq_busy(pwq))) {
5810 			pr_warn("%s: %s has the following busy pwq\n",
5811 				__func__, wq->name);
5812 			show_pwq(pwq);
5813 			raw_spin_unlock_irq(&pwq->pool->lock);
5814 			mutex_unlock(&wq->mutex);
5815 			mutex_unlock(&wq_pool_mutex);
5816 			show_one_workqueue(wq);
5817 			return;
5818 		}
5819 		raw_spin_unlock_irq(&pwq->pool->lock);
5820 	}
5821 	mutex_unlock(&wq->mutex);
5822 
5823 	/*
5824 	 * wq list is used to freeze wq, remove from list after
5825 	 * flushing is complete in case freeze races us.
5826 	 */
5827 	list_del_rcu(&wq->list);
5828 	mutex_unlock(&wq_pool_mutex);
5829 
5830 	/*
5831 	 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq
5832 	 * to put the base refs. @wq will be auto-destroyed from the last
5833 	 * pwq_put. RCU read lock prevents @wq from going away from under us.
5834 	 */
5835 	rcu_read_lock();
5836 
5837 	for_each_possible_cpu(cpu) {
5838 		put_pwq_unlocked(unbound_pwq(wq, cpu));
5839 		RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL);
5840 	}
5841 
5842 	put_pwq_unlocked(unbound_pwq(wq, -1));
5843 	RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL);
5844 
5845 	rcu_read_unlock();
5846 }
5847 EXPORT_SYMBOL_GPL(destroy_workqueue);
5848 
5849 /**
5850  * workqueue_set_max_active - adjust max_active of a workqueue
5851  * @wq: target workqueue
5852  * @max_active: new max_active value.
5853  *
5854  * Set max_active of @wq to @max_active. See the alloc_workqueue() function
5855  * comment.
5856  *
5857  * CONTEXT:
5858  * Don't call from IRQ context.
5859  */
5860 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
5861 {
5862 	/* max_active doesn't mean anything for BH workqueues */
5863 	if (WARN_ON(wq->flags & WQ_BH))
5864 		return;
5865 	/* disallow meddling with max_active for ordered workqueues */
5866 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5867 		return;
5868 
5869 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
5870 
5871 	mutex_lock(&wq->mutex);
5872 
5873 	wq->saved_max_active = max_active;
5874 	if (wq->flags & WQ_UNBOUND)
5875 		wq->saved_min_active = min(wq->saved_min_active, max_active);
5876 
5877 	wq_adjust_max_active(wq);
5878 
5879 	mutex_unlock(&wq->mutex);
5880 }
5881 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
5882 
5883 /**
5884  * workqueue_set_min_active - adjust min_active of an unbound workqueue
5885  * @wq: target unbound workqueue
5886  * @min_active: new min_active value
5887  *
5888  * Set min_active of an unbound workqueue. Unlike other types of workqueues, an
5889  * unbound workqueue is not guaranteed to be able to process max_active
5890  * interdependent work items. Instead, an unbound workqueue is guaranteed to be
5891  * able to process min_active number of interdependent work items which is
5892  * %WQ_DFL_MIN_ACTIVE by default.
5893  *
5894  * Use this function to adjust the min_active value between 0 and the current
5895  * max_active.
5896  */
5897 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active)
5898 {
5899 	/* min_active is only meaningful for non-ordered unbound workqueues */
5900 	if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) !=
5901 		    WQ_UNBOUND))
5902 		return;
5903 
5904 	mutex_lock(&wq->mutex);
5905 	wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active);
5906 	wq_adjust_max_active(wq);
5907 	mutex_unlock(&wq->mutex);
5908 }
5909 
5910 /**
5911  * current_work - retrieve %current task's work struct
5912  *
5913  * Determine if %current task is a workqueue worker and what it's working on.
5914  * Useful to find out the context that the %current task is running in.
5915  *
5916  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
5917  */
5918 struct work_struct *current_work(void)
5919 {
5920 	struct worker *worker = current_wq_worker();
5921 
5922 	return worker ? worker->current_work : NULL;
5923 }
5924 EXPORT_SYMBOL(current_work);
5925 
5926 /**
5927  * current_is_workqueue_rescuer - is %current workqueue rescuer?
5928  *
5929  * Determine whether %current is a workqueue rescuer.  Can be used from
5930  * work functions to determine whether it's being run off the rescuer task.
5931  *
5932  * Return: %true if %current is a workqueue rescuer. %false otherwise.
5933  */
5934 bool current_is_workqueue_rescuer(void)
5935 {
5936 	struct worker *worker = current_wq_worker();
5937 
5938 	return worker && worker->rescue_wq;
5939 }
5940 
5941 /**
5942  * workqueue_congested - test whether a workqueue is congested
5943  * @cpu: CPU in question
5944  * @wq: target workqueue
5945  *
5946  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
5947  * no synchronization around this function and the test result is
5948  * unreliable and only useful as advisory hints or for debugging.
5949  *
5950  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
5951  *
5952  * With the exception of ordered workqueues, all workqueues have per-cpu
5953  * pool_workqueues, each with its own congested state. A workqueue being
5954  * congested on one CPU doesn't mean that the workqueue is contested on any
5955  * other CPUs.
5956  *
5957  * Return:
5958  * %true if congested, %false otherwise.
5959  */
5960 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
5961 {
5962 	struct pool_workqueue *pwq;
5963 	bool ret;
5964 
5965 	rcu_read_lock();
5966 	preempt_disable();
5967 
5968 	if (cpu == WORK_CPU_UNBOUND)
5969 		cpu = smp_processor_id();
5970 
5971 	pwq = *per_cpu_ptr(wq->cpu_pwq, cpu);
5972 	ret = !list_empty(&pwq->inactive_works);
5973 
5974 	preempt_enable();
5975 	rcu_read_unlock();
5976 
5977 	return ret;
5978 }
5979 EXPORT_SYMBOL_GPL(workqueue_congested);
5980 
5981 /**
5982  * work_busy - test whether a work is currently pending or running
5983  * @work: the work to be tested
5984  *
5985  * Test whether @work is currently pending or running.  There is no
5986  * synchronization around this function and the test result is
5987  * unreliable and only useful as advisory hints or for debugging.
5988  *
5989  * Return:
5990  * OR'd bitmask of WORK_BUSY_* bits.
5991  */
5992 unsigned int work_busy(struct work_struct *work)
5993 {
5994 	struct worker_pool *pool;
5995 	unsigned long irq_flags;
5996 	unsigned int ret = 0;
5997 
5998 	if (work_pending(work))
5999 		ret |= WORK_BUSY_PENDING;
6000 
6001 	rcu_read_lock();
6002 	pool = get_work_pool(work);
6003 	if (pool) {
6004 		raw_spin_lock_irqsave(&pool->lock, irq_flags);
6005 		if (find_worker_executing_work(pool, work))
6006 			ret |= WORK_BUSY_RUNNING;
6007 		raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6008 	}
6009 	rcu_read_unlock();
6010 
6011 	return ret;
6012 }
6013 EXPORT_SYMBOL_GPL(work_busy);
6014 
6015 /**
6016  * set_worker_desc - set description for the current work item
6017  * @fmt: printf-style format string
6018  * @...: arguments for the format string
6019  *
6020  * This function can be called by a running work function to describe what
6021  * the work item is about.  If the worker task gets dumped, this
6022  * information will be printed out together to help debugging.  The
6023  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
6024  */
6025 void set_worker_desc(const char *fmt, ...)
6026 {
6027 	struct worker *worker = current_wq_worker();
6028 	va_list args;
6029 
6030 	if (worker) {
6031 		va_start(args, fmt);
6032 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
6033 		va_end(args);
6034 	}
6035 }
6036 EXPORT_SYMBOL_GPL(set_worker_desc);
6037 
6038 /**
6039  * print_worker_info - print out worker information and description
6040  * @log_lvl: the log level to use when printing
6041  * @task: target task
6042  *
6043  * If @task is a worker and currently executing a work item, print out the
6044  * name of the workqueue being serviced and worker description set with
6045  * set_worker_desc() by the currently executing work item.
6046  *
6047  * This function can be safely called on any task as long as the
6048  * task_struct itself is accessible.  While safe, this function isn't
6049  * synchronized and may print out mixups or garbages of limited length.
6050  */
6051 void print_worker_info(const char *log_lvl, struct task_struct *task)
6052 {
6053 	work_func_t *fn = NULL;
6054 	char name[WQ_NAME_LEN] = { };
6055 	char desc[WORKER_DESC_LEN] = { };
6056 	struct pool_workqueue *pwq = NULL;
6057 	struct workqueue_struct *wq = NULL;
6058 	struct worker *worker;
6059 
6060 	if (!(task->flags & PF_WQ_WORKER))
6061 		return;
6062 
6063 	/*
6064 	 * This function is called without any synchronization and @task
6065 	 * could be in any state.  Be careful with dereferences.
6066 	 */
6067 	worker = kthread_probe_data(task);
6068 
6069 	/*
6070 	 * Carefully copy the associated workqueue's workfn, name and desc.
6071 	 * Keep the original last '\0' in case the original is garbage.
6072 	 */
6073 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
6074 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
6075 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
6076 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
6077 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
6078 
6079 	if (fn || name[0] || desc[0]) {
6080 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
6081 		if (strcmp(name, desc))
6082 			pr_cont(" (%s)", desc);
6083 		pr_cont("\n");
6084 	}
6085 }
6086 
6087 static void pr_cont_pool_info(struct worker_pool *pool)
6088 {
6089 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
6090 	if (pool->node != NUMA_NO_NODE)
6091 		pr_cont(" node=%d", pool->node);
6092 	pr_cont(" flags=0x%x", pool->flags);
6093 	if (pool->flags & POOL_BH)
6094 		pr_cont(" bh%s",
6095 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6096 	else
6097 		pr_cont(" nice=%d", pool->attrs->nice);
6098 }
6099 
6100 static void pr_cont_worker_id(struct worker *worker)
6101 {
6102 	struct worker_pool *pool = worker->pool;
6103 
6104 	if (pool->flags & WQ_BH)
6105 		pr_cont("bh%s",
6106 			pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : "");
6107 	else
6108 		pr_cont("%d%s", task_pid_nr(worker->task),
6109 			worker->rescue_wq ? "(RESCUER)" : "");
6110 }
6111 
6112 struct pr_cont_work_struct {
6113 	bool comma;
6114 	work_func_t func;
6115 	long ctr;
6116 };
6117 
6118 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
6119 {
6120 	if (!pcwsp->ctr)
6121 		goto out_record;
6122 	if (func == pcwsp->func) {
6123 		pcwsp->ctr++;
6124 		return;
6125 	}
6126 	if (pcwsp->ctr == 1)
6127 		pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
6128 	else
6129 		pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
6130 	pcwsp->ctr = 0;
6131 out_record:
6132 	if ((long)func == -1L)
6133 		return;
6134 	pcwsp->comma = comma;
6135 	pcwsp->func = func;
6136 	pcwsp->ctr = 1;
6137 }
6138 
6139 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
6140 {
6141 	if (work->func == wq_barrier_func) {
6142 		struct wq_barrier *barr;
6143 
6144 		barr = container_of(work, struct wq_barrier, work);
6145 
6146 		pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6147 		pr_cont("%s BAR(%d)", comma ? "," : "",
6148 			task_pid_nr(barr->task));
6149 	} else {
6150 		if (!comma)
6151 			pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
6152 		pr_cont_work_flush(comma, work->func, pcwsp);
6153 	}
6154 }
6155 
6156 static void show_pwq(struct pool_workqueue *pwq)
6157 {
6158 	struct pr_cont_work_struct pcws = { .ctr = 0, };
6159 	struct worker_pool *pool = pwq->pool;
6160 	struct work_struct *work;
6161 	struct worker *worker;
6162 	bool has_in_flight = false, has_pending = false;
6163 	int bkt;
6164 
6165 	pr_info("  pwq %d:", pool->id);
6166 	pr_cont_pool_info(pool);
6167 
6168 	pr_cont(" active=%d refcnt=%d%s\n",
6169 		pwq->nr_active, pwq->refcnt,
6170 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
6171 
6172 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6173 		if (worker->current_pwq == pwq) {
6174 			has_in_flight = true;
6175 			break;
6176 		}
6177 	}
6178 	if (has_in_flight) {
6179 		bool comma = false;
6180 
6181 		pr_info("    in-flight:");
6182 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
6183 			if (worker->current_pwq != pwq)
6184 				continue;
6185 
6186 			pr_cont(" %s", comma ? "," : "");
6187 			pr_cont_worker_id(worker);
6188 			pr_cont(":%ps", worker->current_func);
6189 			list_for_each_entry(work, &worker->scheduled, entry)
6190 				pr_cont_work(false, work, &pcws);
6191 			pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6192 			comma = true;
6193 		}
6194 		pr_cont("\n");
6195 	}
6196 
6197 	list_for_each_entry(work, &pool->worklist, entry) {
6198 		if (get_work_pwq(work) == pwq) {
6199 			has_pending = true;
6200 			break;
6201 		}
6202 	}
6203 	if (has_pending) {
6204 		bool comma = false;
6205 
6206 		pr_info("    pending:");
6207 		list_for_each_entry(work, &pool->worklist, entry) {
6208 			if (get_work_pwq(work) != pwq)
6209 				continue;
6210 
6211 			pr_cont_work(comma, work, &pcws);
6212 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6213 		}
6214 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6215 		pr_cont("\n");
6216 	}
6217 
6218 	if (!list_empty(&pwq->inactive_works)) {
6219 		bool comma = false;
6220 
6221 		pr_info("    inactive:");
6222 		list_for_each_entry(work, &pwq->inactive_works, entry) {
6223 			pr_cont_work(comma, work, &pcws);
6224 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
6225 		}
6226 		pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
6227 		pr_cont("\n");
6228 	}
6229 }
6230 
6231 /**
6232  * show_one_workqueue - dump state of specified workqueue
6233  * @wq: workqueue whose state will be printed
6234  */
6235 void show_one_workqueue(struct workqueue_struct *wq)
6236 {
6237 	struct pool_workqueue *pwq;
6238 	bool idle = true;
6239 	unsigned long irq_flags;
6240 
6241 	for_each_pwq(pwq, wq) {
6242 		if (!pwq_is_empty(pwq)) {
6243 			idle = false;
6244 			break;
6245 		}
6246 	}
6247 	if (idle) /* Nothing to print for idle workqueue */
6248 		return;
6249 
6250 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
6251 
6252 	for_each_pwq(pwq, wq) {
6253 		raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags);
6254 		if (!pwq_is_empty(pwq)) {
6255 			/*
6256 			 * Defer printing to avoid deadlocks in console
6257 			 * drivers that queue work while holding locks
6258 			 * also taken in their write paths.
6259 			 */
6260 			printk_deferred_enter();
6261 			show_pwq(pwq);
6262 			printk_deferred_exit();
6263 		}
6264 		raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags);
6265 		/*
6266 		 * We could be printing a lot from atomic context, e.g.
6267 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
6268 		 * hard lockup.
6269 		 */
6270 		touch_nmi_watchdog();
6271 	}
6272 
6273 }
6274 
6275 /**
6276  * show_one_worker_pool - dump state of specified worker pool
6277  * @pool: worker pool whose state will be printed
6278  */
6279 static void show_one_worker_pool(struct worker_pool *pool)
6280 {
6281 	struct worker *worker;
6282 	bool first = true;
6283 	unsigned long irq_flags;
6284 	unsigned long hung = 0;
6285 
6286 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
6287 	if (pool->nr_workers == pool->nr_idle)
6288 		goto next_pool;
6289 
6290 	/* How long the first pending work is waiting for a worker. */
6291 	if (!list_empty(&pool->worklist))
6292 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
6293 
6294 	/*
6295 	 * Defer printing to avoid deadlocks in console drivers that
6296 	 * queue work while holding locks also taken in their write
6297 	 * paths.
6298 	 */
6299 	printk_deferred_enter();
6300 	pr_info("pool %d:", pool->id);
6301 	pr_cont_pool_info(pool);
6302 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
6303 	if (pool->manager)
6304 		pr_cont(" manager: %d",
6305 			task_pid_nr(pool->manager->task));
6306 	list_for_each_entry(worker, &pool->idle_list, entry) {
6307 		pr_cont(" %s", first ? "idle: " : "");
6308 		pr_cont_worker_id(worker);
6309 		first = false;
6310 	}
6311 	pr_cont("\n");
6312 	printk_deferred_exit();
6313 next_pool:
6314 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
6315 	/*
6316 	 * We could be printing a lot from atomic context, e.g.
6317 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
6318 	 * hard lockup.
6319 	 */
6320 	touch_nmi_watchdog();
6321 
6322 }
6323 
6324 /**
6325  * show_all_workqueues - dump workqueue state
6326  *
6327  * Called from a sysrq handler and prints out all busy workqueues and pools.
6328  */
6329 void show_all_workqueues(void)
6330 {
6331 	struct workqueue_struct *wq;
6332 	struct worker_pool *pool;
6333 	int pi;
6334 
6335 	rcu_read_lock();
6336 
6337 	pr_info("Showing busy workqueues and worker pools:\n");
6338 
6339 	list_for_each_entry_rcu(wq, &workqueues, list)
6340 		show_one_workqueue(wq);
6341 
6342 	for_each_pool(pool, pi)
6343 		show_one_worker_pool(pool);
6344 
6345 	rcu_read_unlock();
6346 }
6347 
6348 /**
6349  * show_freezable_workqueues - dump freezable workqueue state
6350  *
6351  * Called from try_to_freeze_tasks() and prints out all freezable workqueues
6352  * still busy.
6353  */
6354 void show_freezable_workqueues(void)
6355 {
6356 	struct workqueue_struct *wq;
6357 
6358 	rcu_read_lock();
6359 
6360 	pr_info("Showing freezable workqueues that are still busy:\n");
6361 
6362 	list_for_each_entry_rcu(wq, &workqueues, list) {
6363 		if (!(wq->flags & WQ_FREEZABLE))
6364 			continue;
6365 		show_one_workqueue(wq);
6366 	}
6367 
6368 	rcu_read_unlock();
6369 }
6370 
6371 /* used to show worker information through /proc/PID/{comm,stat,status} */
6372 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
6373 {
6374 	/* stabilize PF_WQ_WORKER and worker pool association */
6375 	mutex_lock(&wq_pool_attach_mutex);
6376 
6377 	if (task->flags & PF_WQ_WORKER) {
6378 		struct worker *worker = kthread_data(task);
6379 		struct worker_pool *pool = worker->pool;
6380 		int off;
6381 
6382 		off = format_worker_id(buf, size, worker, pool);
6383 
6384 		if (pool) {
6385 			raw_spin_lock_irq(&pool->lock);
6386 			/*
6387 			 * ->desc tracks information (wq name or
6388 			 * set_worker_desc()) for the latest execution.  If
6389 			 * current, prepend '+', otherwise '-'.
6390 			 */
6391 			if (worker->desc[0] != '\0') {
6392 				if (worker->current_work)
6393 					scnprintf(buf + off, size - off, "+%s",
6394 						  worker->desc);
6395 				else
6396 					scnprintf(buf + off, size - off, "-%s",
6397 						  worker->desc);
6398 			}
6399 			raw_spin_unlock_irq(&pool->lock);
6400 		}
6401 	} else {
6402 		strscpy(buf, task->comm, size);
6403 	}
6404 
6405 	mutex_unlock(&wq_pool_attach_mutex);
6406 }
6407 
6408 #ifdef CONFIG_SMP
6409 
6410 /*
6411  * CPU hotplug.
6412  *
6413  * There are two challenges in supporting CPU hotplug.  Firstly, there
6414  * are a lot of assumptions on strong associations among work, pwq and
6415  * pool which make migrating pending and scheduled works very
6416  * difficult to implement without impacting hot paths.  Secondly,
6417  * worker pools serve mix of short, long and very long running works making
6418  * blocked draining impractical.
6419  *
6420  * This is solved by allowing the pools to be disassociated from the CPU
6421  * running as an unbound one and allowing it to be reattached later if the
6422  * cpu comes back online.
6423  */
6424 
6425 static void unbind_workers(int cpu)
6426 {
6427 	struct worker_pool *pool;
6428 	struct worker *worker;
6429 
6430 	for_each_cpu_worker_pool(pool, cpu) {
6431 		mutex_lock(&wq_pool_attach_mutex);
6432 		raw_spin_lock_irq(&pool->lock);
6433 
6434 		/*
6435 		 * We've blocked all attach/detach operations. Make all workers
6436 		 * unbound and set DISASSOCIATED.  Before this, all workers
6437 		 * must be on the cpu.  After this, they may become diasporas.
6438 		 * And the preemption disabled section in their sched callbacks
6439 		 * are guaranteed to see WORKER_UNBOUND since the code here
6440 		 * is on the same cpu.
6441 		 */
6442 		for_each_pool_worker(worker, pool)
6443 			worker->flags |= WORKER_UNBOUND;
6444 
6445 		pool->flags |= POOL_DISASSOCIATED;
6446 
6447 		/*
6448 		 * The handling of nr_running in sched callbacks are disabled
6449 		 * now.  Zap nr_running.  After this, nr_running stays zero and
6450 		 * need_more_worker() and keep_working() are always true as
6451 		 * long as the worklist is not empty.  This pool now behaves as
6452 		 * an unbound (in terms of concurrency management) pool which
6453 		 * are served by workers tied to the pool.
6454 		 */
6455 		pool->nr_running = 0;
6456 
6457 		/*
6458 		 * With concurrency management just turned off, a busy
6459 		 * worker blocking could lead to lengthy stalls.  Kick off
6460 		 * unbound chain execution of currently pending work items.
6461 		 */
6462 		kick_pool(pool);
6463 
6464 		raw_spin_unlock_irq(&pool->lock);
6465 
6466 		for_each_pool_worker(worker, pool)
6467 			unbind_worker(worker);
6468 
6469 		mutex_unlock(&wq_pool_attach_mutex);
6470 	}
6471 }
6472 
6473 /**
6474  * rebind_workers - rebind all workers of a pool to the associated CPU
6475  * @pool: pool of interest
6476  *
6477  * @pool->cpu is coming online.  Rebind all workers to the CPU.
6478  */
6479 static void rebind_workers(struct worker_pool *pool)
6480 {
6481 	struct worker *worker;
6482 
6483 	lockdep_assert_held(&wq_pool_attach_mutex);
6484 
6485 	/*
6486 	 * Restore CPU affinity of all workers.  As all idle workers should
6487 	 * be on the run-queue of the associated CPU before any local
6488 	 * wake-ups for concurrency management happen, restore CPU affinity
6489 	 * of all workers first and then clear UNBOUND.  As we're called
6490 	 * from CPU_ONLINE, the following shouldn't fail.
6491 	 */
6492 	for_each_pool_worker(worker, pool) {
6493 		kthread_set_per_cpu(worker->task, pool->cpu);
6494 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
6495 						  pool_allowed_cpus(pool)) < 0);
6496 	}
6497 
6498 	raw_spin_lock_irq(&pool->lock);
6499 
6500 	pool->flags &= ~POOL_DISASSOCIATED;
6501 
6502 	for_each_pool_worker(worker, pool) {
6503 		unsigned int worker_flags = worker->flags;
6504 
6505 		/*
6506 		 * We want to clear UNBOUND but can't directly call
6507 		 * worker_clr_flags() or adjust nr_running.  Atomically
6508 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
6509 		 * @worker will clear REBOUND using worker_clr_flags() when
6510 		 * it initiates the next execution cycle thus restoring
6511 		 * concurrency management.  Note that when or whether
6512 		 * @worker clears REBOUND doesn't affect correctness.
6513 		 *
6514 		 * WRITE_ONCE() is necessary because @worker->flags may be
6515 		 * tested without holding any lock in
6516 		 * wq_worker_running().  Without it, NOT_RUNNING test may
6517 		 * fail incorrectly leading to premature concurrency
6518 		 * management operations.
6519 		 */
6520 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
6521 		worker_flags |= WORKER_REBOUND;
6522 		worker_flags &= ~WORKER_UNBOUND;
6523 		WRITE_ONCE(worker->flags, worker_flags);
6524 	}
6525 
6526 	raw_spin_unlock_irq(&pool->lock);
6527 }
6528 
6529 /**
6530  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
6531  * @pool: unbound pool of interest
6532  * @cpu: the CPU which is coming up
6533  *
6534  * An unbound pool may end up with a cpumask which doesn't have any online
6535  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
6536  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
6537  * online CPU before, cpus_allowed of all its workers should be restored.
6538  */
6539 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
6540 {
6541 	static cpumask_t cpumask;
6542 	struct worker *worker;
6543 
6544 	lockdep_assert_held(&wq_pool_attach_mutex);
6545 
6546 	/* is @cpu allowed for @pool? */
6547 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
6548 		return;
6549 
6550 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
6551 
6552 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
6553 	for_each_pool_worker(worker, pool)
6554 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
6555 }
6556 
6557 int workqueue_prepare_cpu(unsigned int cpu)
6558 {
6559 	struct worker_pool *pool;
6560 
6561 	for_each_cpu_worker_pool(pool, cpu) {
6562 		if (pool->nr_workers)
6563 			continue;
6564 		if (!create_worker(pool))
6565 			return -ENOMEM;
6566 	}
6567 	return 0;
6568 }
6569 
6570 int workqueue_online_cpu(unsigned int cpu)
6571 {
6572 	struct worker_pool *pool;
6573 	struct workqueue_struct *wq;
6574 	int pi;
6575 
6576 	mutex_lock(&wq_pool_mutex);
6577 
6578 	cpumask_set_cpu(cpu, wq_online_cpumask);
6579 
6580 	for_each_pool(pool, pi) {
6581 		/* BH pools aren't affected by hotplug */
6582 		if (pool->flags & POOL_BH)
6583 			continue;
6584 
6585 		mutex_lock(&wq_pool_attach_mutex);
6586 		if (pool->cpu == cpu)
6587 			rebind_workers(pool);
6588 		else if (pool->cpu < 0)
6589 			restore_unbound_workers_cpumask(pool, cpu);
6590 		mutex_unlock(&wq_pool_attach_mutex);
6591 	}
6592 
6593 	/* update pod affinity of unbound workqueues */
6594 	list_for_each_entry(wq, &workqueues, list) {
6595 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6596 
6597 		if (attrs) {
6598 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6599 			int tcpu;
6600 
6601 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6602 				unbound_wq_update_pwq(wq, tcpu);
6603 
6604 			mutex_lock(&wq->mutex);
6605 			wq_update_node_max_active(wq, -1);
6606 			mutex_unlock(&wq->mutex);
6607 		}
6608 	}
6609 
6610 	mutex_unlock(&wq_pool_mutex);
6611 	return 0;
6612 }
6613 
6614 int workqueue_offline_cpu(unsigned int cpu)
6615 {
6616 	struct workqueue_struct *wq;
6617 
6618 	/* unbinding per-cpu workers should happen on the local CPU */
6619 	if (WARN_ON(cpu != smp_processor_id()))
6620 		return -1;
6621 
6622 	unbind_workers(cpu);
6623 
6624 	/* update pod affinity of unbound workqueues */
6625 	mutex_lock(&wq_pool_mutex);
6626 
6627 	cpumask_clear_cpu(cpu, wq_online_cpumask);
6628 
6629 	list_for_each_entry(wq, &workqueues, list) {
6630 		struct workqueue_attrs *attrs = wq->unbound_attrs;
6631 
6632 		if (attrs) {
6633 			const struct wq_pod_type *pt = wqattrs_pod_type(attrs);
6634 			int tcpu;
6635 
6636 			for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]])
6637 				unbound_wq_update_pwq(wq, tcpu);
6638 
6639 			mutex_lock(&wq->mutex);
6640 			wq_update_node_max_active(wq, cpu);
6641 			mutex_unlock(&wq->mutex);
6642 		}
6643 	}
6644 	mutex_unlock(&wq_pool_mutex);
6645 
6646 	return 0;
6647 }
6648 
6649 struct work_for_cpu {
6650 	struct work_struct work;
6651 	long (*fn)(void *);
6652 	void *arg;
6653 	long ret;
6654 };
6655 
6656 static void work_for_cpu_fn(struct work_struct *work)
6657 {
6658 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
6659 
6660 	wfc->ret = wfc->fn(wfc->arg);
6661 }
6662 
6663 /**
6664  * work_on_cpu_key - run a function in thread context on a particular cpu
6665  * @cpu: the cpu to run on
6666  * @fn: the function to run
6667  * @arg: the function arg
6668  * @key: The lock class key for lock debugging purposes
6669  *
6670  * It is up to the caller to ensure that the cpu doesn't go offline.
6671  * The caller must not hold any locks which would prevent @fn from completing.
6672  *
6673  * Return: The value @fn returns.
6674  */
6675 long work_on_cpu_key(int cpu, long (*fn)(void *),
6676 		     void *arg, struct lock_class_key *key)
6677 {
6678 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6679 
6680 	INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key);
6681 	schedule_work_on(cpu, &wfc.work);
6682 	flush_work(&wfc.work);
6683 	destroy_work_on_stack(&wfc.work);
6684 	return wfc.ret;
6685 }
6686 EXPORT_SYMBOL_GPL(work_on_cpu_key);
6687 
6688 /**
6689  * work_on_cpu_safe_key - run a function in thread context on a particular cpu
6690  * @cpu: the cpu to run on
6691  * @fn:  the function to run
6692  * @arg: the function argument
6693  * @key: The lock class key for lock debugging purposes
6694  *
6695  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
6696  * any locks which would prevent @fn from completing.
6697  *
6698  * Return: The value @fn returns.
6699  */
6700 long work_on_cpu_safe_key(int cpu, long (*fn)(void *),
6701 			  void *arg, struct lock_class_key *key)
6702 {
6703 	long ret = -ENODEV;
6704 
6705 	cpus_read_lock();
6706 	if (cpu_online(cpu))
6707 		ret = work_on_cpu_key(cpu, fn, arg, key);
6708 	cpus_read_unlock();
6709 	return ret;
6710 }
6711 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key);
6712 #endif /* CONFIG_SMP */
6713 
6714 #ifdef CONFIG_FREEZER
6715 
6716 /**
6717  * freeze_workqueues_begin - begin freezing workqueues
6718  *
6719  * Start freezing workqueues.  After this function returns, all freezable
6720  * workqueues will queue new works to their inactive_works list instead of
6721  * pool->worklist.
6722  *
6723  * CONTEXT:
6724  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6725  */
6726 void freeze_workqueues_begin(void)
6727 {
6728 	struct workqueue_struct *wq;
6729 
6730 	mutex_lock(&wq_pool_mutex);
6731 
6732 	WARN_ON_ONCE(workqueue_freezing);
6733 	workqueue_freezing = true;
6734 
6735 	list_for_each_entry(wq, &workqueues, list) {
6736 		mutex_lock(&wq->mutex);
6737 		wq_adjust_max_active(wq);
6738 		mutex_unlock(&wq->mutex);
6739 	}
6740 
6741 	mutex_unlock(&wq_pool_mutex);
6742 }
6743 
6744 /**
6745  * freeze_workqueues_busy - are freezable workqueues still busy?
6746  *
6747  * Check whether freezing is complete.  This function must be called
6748  * between freeze_workqueues_begin() and thaw_workqueues().
6749  *
6750  * CONTEXT:
6751  * Grabs and releases wq_pool_mutex.
6752  *
6753  * Return:
6754  * %true if some freezable workqueues are still busy.  %false if freezing
6755  * is complete.
6756  */
6757 bool freeze_workqueues_busy(void)
6758 {
6759 	bool busy = false;
6760 	struct workqueue_struct *wq;
6761 	struct pool_workqueue *pwq;
6762 
6763 	mutex_lock(&wq_pool_mutex);
6764 
6765 	WARN_ON_ONCE(!workqueue_freezing);
6766 
6767 	list_for_each_entry(wq, &workqueues, list) {
6768 		if (!(wq->flags & WQ_FREEZABLE))
6769 			continue;
6770 		/*
6771 		 * nr_active is monotonically decreasing.  It's safe
6772 		 * to peek without lock.
6773 		 */
6774 		rcu_read_lock();
6775 		for_each_pwq(pwq, wq) {
6776 			WARN_ON_ONCE(pwq->nr_active < 0);
6777 			if (pwq->nr_active) {
6778 				busy = true;
6779 				rcu_read_unlock();
6780 				goto out_unlock;
6781 			}
6782 		}
6783 		rcu_read_unlock();
6784 	}
6785 out_unlock:
6786 	mutex_unlock(&wq_pool_mutex);
6787 	return busy;
6788 }
6789 
6790 /**
6791  * thaw_workqueues - thaw workqueues
6792  *
6793  * Thaw workqueues.  Normal queueing is restored and all collected
6794  * frozen works are transferred to their respective pool worklists.
6795  *
6796  * CONTEXT:
6797  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
6798  */
6799 void thaw_workqueues(void)
6800 {
6801 	struct workqueue_struct *wq;
6802 
6803 	mutex_lock(&wq_pool_mutex);
6804 
6805 	if (!workqueue_freezing)
6806 		goto out_unlock;
6807 
6808 	workqueue_freezing = false;
6809 
6810 	/* restore max_active and repopulate worklist */
6811 	list_for_each_entry(wq, &workqueues, list) {
6812 		mutex_lock(&wq->mutex);
6813 		wq_adjust_max_active(wq);
6814 		mutex_unlock(&wq->mutex);
6815 	}
6816 
6817 out_unlock:
6818 	mutex_unlock(&wq_pool_mutex);
6819 }
6820 #endif /* CONFIG_FREEZER */
6821 
6822 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
6823 {
6824 	LIST_HEAD(ctxs);
6825 	int ret = 0;
6826 	struct workqueue_struct *wq;
6827 	struct apply_wqattrs_ctx *ctx, *n;
6828 
6829 	lockdep_assert_held(&wq_pool_mutex);
6830 
6831 	list_for_each_entry(wq, &workqueues, list) {
6832 		if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING))
6833 			continue;
6834 
6835 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
6836 		if (IS_ERR(ctx)) {
6837 			ret = PTR_ERR(ctx);
6838 			break;
6839 		}
6840 
6841 		list_add_tail(&ctx->list, &ctxs);
6842 	}
6843 
6844 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
6845 		if (!ret)
6846 			apply_wqattrs_commit(ctx);
6847 		apply_wqattrs_cleanup(ctx);
6848 	}
6849 
6850 	if (!ret) {
6851 		mutex_lock(&wq_pool_attach_mutex);
6852 		cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
6853 		mutex_unlock(&wq_pool_attach_mutex);
6854 	}
6855 	return ret;
6856 }
6857 
6858 /**
6859  * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask
6860  * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask
6861  *
6862  * This function can be called from cpuset code to provide a set of isolated
6863  * CPUs that should be excluded from wq_unbound_cpumask.
6864  */
6865 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask)
6866 {
6867 	cpumask_var_t cpumask;
6868 	int ret = 0;
6869 
6870 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
6871 		return -ENOMEM;
6872 
6873 	mutex_lock(&wq_pool_mutex);
6874 
6875 	/*
6876 	 * If the operation fails, it will fall back to
6877 	 * wq_requested_unbound_cpumask which is initially set to
6878 	 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten
6879 	 * by any subsequent write to workqueue/cpumask sysfs file.
6880 	 */
6881 	if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask))
6882 		cpumask_copy(cpumask, wq_requested_unbound_cpumask);
6883 	if (!cpumask_equal(cpumask, wq_unbound_cpumask))
6884 		ret = workqueue_apply_unbound_cpumask(cpumask);
6885 
6886 	/* Save the current isolated cpumask & export it via sysfs */
6887 	if (!ret)
6888 		cpumask_copy(wq_isolated_cpumask, exclude_cpumask);
6889 
6890 	mutex_unlock(&wq_pool_mutex);
6891 	free_cpumask_var(cpumask);
6892 	return ret;
6893 }
6894 
6895 static int parse_affn_scope(const char *val)
6896 {
6897 	int i;
6898 
6899 	for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) {
6900 		if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i])))
6901 			return i;
6902 	}
6903 	return -EINVAL;
6904 }
6905 
6906 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp)
6907 {
6908 	struct workqueue_struct *wq;
6909 	int affn, cpu;
6910 
6911 	affn = parse_affn_scope(val);
6912 	if (affn < 0)
6913 		return affn;
6914 	if (affn == WQ_AFFN_DFL)
6915 		return -EINVAL;
6916 
6917 	cpus_read_lock();
6918 	mutex_lock(&wq_pool_mutex);
6919 
6920 	wq_affn_dfl = affn;
6921 
6922 	list_for_each_entry(wq, &workqueues, list) {
6923 		for_each_online_cpu(cpu)
6924 			unbound_wq_update_pwq(wq, cpu);
6925 	}
6926 
6927 	mutex_unlock(&wq_pool_mutex);
6928 	cpus_read_unlock();
6929 
6930 	return 0;
6931 }
6932 
6933 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp)
6934 {
6935 	return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]);
6936 }
6937 
6938 static const struct kernel_param_ops wq_affn_dfl_ops = {
6939 	.set	= wq_affn_dfl_set,
6940 	.get	= wq_affn_dfl_get,
6941 };
6942 
6943 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644);
6944 
6945 #ifdef CONFIG_SYSFS
6946 /*
6947  * Workqueues with WQ_SYSFS flag set is visible to userland via
6948  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
6949  * following attributes.
6950  *
6951  *  per_cpu		RO bool	: whether the workqueue is per-cpu or unbound
6952  *  max_active		RW int	: maximum number of in-flight work items
6953  *
6954  * Unbound workqueues have the following extra attributes.
6955  *
6956  *  nice		RW int	: nice value of the workers
6957  *  cpumask		RW mask	: bitmask of allowed CPUs for the workers
6958  *  affinity_scope	RW str  : worker CPU affinity scope (cache, numa, none)
6959  *  affinity_strict	RW bool : worker CPU affinity is strict
6960  */
6961 struct wq_device {
6962 	struct workqueue_struct		*wq;
6963 	struct device			dev;
6964 };
6965 
6966 static struct workqueue_struct *dev_to_wq(struct device *dev)
6967 {
6968 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6969 
6970 	return wq_dev->wq;
6971 }
6972 
6973 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
6974 			    char *buf)
6975 {
6976 	struct workqueue_struct *wq = dev_to_wq(dev);
6977 
6978 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
6979 }
6980 static DEVICE_ATTR_RO(per_cpu);
6981 
6982 static ssize_t max_active_show(struct device *dev,
6983 			       struct device_attribute *attr, char *buf)
6984 {
6985 	struct workqueue_struct *wq = dev_to_wq(dev);
6986 
6987 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
6988 }
6989 
6990 static ssize_t max_active_store(struct device *dev,
6991 				struct device_attribute *attr, const char *buf,
6992 				size_t count)
6993 {
6994 	struct workqueue_struct *wq = dev_to_wq(dev);
6995 	int val;
6996 
6997 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
6998 		return -EINVAL;
6999 
7000 	workqueue_set_max_active(wq, val);
7001 	return count;
7002 }
7003 static DEVICE_ATTR_RW(max_active);
7004 
7005 static struct attribute *wq_sysfs_attrs[] = {
7006 	&dev_attr_per_cpu.attr,
7007 	&dev_attr_max_active.attr,
7008 	NULL,
7009 };
7010 ATTRIBUTE_GROUPS(wq_sysfs);
7011 
7012 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
7013 			    char *buf)
7014 {
7015 	struct workqueue_struct *wq = dev_to_wq(dev);
7016 	int written;
7017 
7018 	mutex_lock(&wq->mutex);
7019 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
7020 	mutex_unlock(&wq->mutex);
7021 
7022 	return written;
7023 }
7024 
7025 /* prepare workqueue_attrs for sysfs store operations */
7026 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
7027 {
7028 	struct workqueue_attrs *attrs;
7029 
7030 	lockdep_assert_held(&wq_pool_mutex);
7031 
7032 	attrs = alloc_workqueue_attrs();
7033 	if (!attrs)
7034 		return NULL;
7035 
7036 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
7037 	return attrs;
7038 }
7039 
7040 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
7041 			     const char *buf, size_t count)
7042 {
7043 	struct workqueue_struct *wq = dev_to_wq(dev);
7044 	struct workqueue_attrs *attrs;
7045 	int ret = -ENOMEM;
7046 
7047 	apply_wqattrs_lock();
7048 
7049 	attrs = wq_sysfs_prep_attrs(wq);
7050 	if (!attrs)
7051 		goto out_unlock;
7052 
7053 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
7054 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
7055 		ret = apply_workqueue_attrs_locked(wq, attrs);
7056 	else
7057 		ret = -EINVAL;
7058 
7059 out_unlock:
7060 	apply_wqattrs_unlock();
7061 	free_workqueue_attrs(attrs);
7062 	return ret ?: count;
7063 }
7064 
7065 static ssize_t wq_cpumask_show(struct device *dev,
7066 			       struct device_attribute *attr, char *buf)
7067 {
7068 	struct workqueue_struct *wq = dev_to_wq(dev);
7069 	int written;
7070 
7071 	mutex_lock(&wq->mutex);
7072 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
7073 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
7074 	mutex_unlock(&wq->mutex);
7075 	return written;
7076 }
7077 
7078 static ssize_t wq_cpumask_store(struct device *dev,
7079 				struct device_attribute *attr,
7080 				const char *buf, size_t count)
7081 {
7082 	struct workqueue_struct *wq = dev_to_wq(dev);
7083 	struct workqueue_attrs *attrs;
7084 	int ret = -ENOMEM;
7085 
7086 	apply_wqattrs_lock();
7087 
7088 	attrs = wq_sysfs_prep_attrs(wq);
7089 	if (!attrs)
7090 		goto out_unlock;
7091 
7092 	ret = cpumask_parse(buf, attrs->cpumask);
7093 	if (!ret)
7094 		ret = apply_workqueue_attrs_locked(wq, attrs);
7095 
7096 out_unlock:
7097 	apply_wqattrs_unlock();
7098 	free_workqueue_attrs(attrs);
7099 	return ret ?: count;
7100 }
7101 
7102 static ssize_t wq_affn_scope_show(struct device *dev,
7103 				  struct device_attribute *attr, char *buf)
7104 {
7105 	struct workqueue_struct *wq = dev_to_wq(dev);
7106 	int written;
7107 
7108 	mutex_lock(&wq->mutex);
7109 	if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL)
7110 		written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n",
7111 				    wq_affn_names[WQ_AFFN_DFL],
7112 				    wq_affn_names[wq_affn_dfl]);
7113 	else
7114 		written = scnprintf(buf, PAGE_SIZE, "%s\n",
7115 				    wq_affn_names[wq->unbound_attrs->affn_scope]);
7116 	mutex_unlock(&wq->mutex);
7117 
7118 	return written;
7119 }
7120 
7121 static ssize_t wq_affn_scope_store(struct device *dev,
7122 				   struct device_attribute *attr,
7123 				   const char *buf, size_t count)
7124 {
7125 	struct workqueue_struct *wq = dev_to_wq(dev);
7126 	struct workqueue_attrs *attrs;
7127 	int affn, ret = -ENOMEM;
7128 
7129 	affn = parse_affn_scope(buf);
7130 	if (affn < 0)
7131 		return affn;
7132 
7133 	apply_wqattrs_lock();
7134 	attrs = wq_sysfs_prep_attrs(wq);
7135 	if (attrs) {
7136 		attrs->affn_scope = affn;
7137 		ret = apply_workqueue_attrs_locked(wq, attrs);
7138 	}
7139 	apply_wqattrs_unlock();
7140 	free_workqueue_attrs(attrs);
7141 	return ret ?: count;
7142 }
7143 
7144 static ssize_t wq_affinity_strict_show(struct device *dev,
7145 				       struct device_attribute *attr, char *buf)
7146 {
7147 	struct workqueue_struct *wq = dev_to_wq(dev);
7148 
7149 	return scnprintf(buf, PAGE_SIZE, "%d\n",
7150 			 wq->unbound_attrs->affn_strict);
7151 }
7152 
7153 static ssize_t wq_affinity_strict_store(struct device *dev,
7154 					struct device_attribute *attr,
7155 					const char *buf, size_t count)
7156 {
7157 	struct workqueue_struct *wq = dev_to_wq(dev);
7158 	struct workqueue_attrs *attrs;
7159 	int v, ret = -ENOMEM;
7160 
7161 	if (sscanf(buf, "%d", &v) != 1)
7162 		return -EINVAL;
7163 
7164 	apply_wqattrs_lock();
7165 	attrs = wq_sysfs_prep_attrs(wq);
7166 	if (attrs) {
7167 		attrs->affn_strict = (bool)v;
7168 		ret = apply_workqueue_attrs_locked(wq, attrs);
7169 	}
7170 	apply_wqattrs_unlock();
7171 	free_workqueue_attrs(attrs);
7172 	return ret ?: count;
7173 }
7174 
7175 static struct device_attribute wq_sysfs_unbound_attrs[] = {
7176 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
7177 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
7178 	__ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store),
7179 	__ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store),
7180 	__ATTR_NULL,
7181 };
7182 
7183 static const struct bus_type wq_subsys = {
7184 	.name				= "workqueue",
7185 	.dev_groups			= wq_sysfs_groups,
7186 };
7187 
7188 /**
7189  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
7190  *  @cpumask: the cpumask to set
7191  *
7192  *  The low-level workqueues cpumask is a global cpumask that limits
7193  *  the affinity of all unbound workqueues.  This function check the @cpumask
7194  *  and apply it to all unbound workqueues and updates all pwqs of them.
7195  *
7196  *  Return:	0	- Success
7197  *		-EINVAL	- Invalid @cpumask
7198  *		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
7199  */
7200 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
7201 {
7202 	int ret = -EINVAL;
7203 
7204 	/*
7205 	 * Not excluding isolated cpus on purpose.
7206 	 * If the user wishes to include them, we allow that.
7207 	 */
7208 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
7209 	if (!cpumask_empty(cpumask)) {
7210 		ret = 0;
7211 		apply_wqattrs_lock();
7212 		if (!cpumask_equal(cpumask, wq_unbound_cpumask))
7213 			ret = workqueue_apply_unbound_cpumask(cpumask);
7214 		if (!ret)
7215 			cpumask_copy(wq_requested_unbound_cpumask, cpumask);
7216 		apply_wqattrs_unlock();
7217 	}
7218 
7219 	return ret;
7220 }
7221 
7222 static ssize_t __wq_cpumask_show(struct device *dev,
7223 		struct device_attribute *attr, char *buf, cpumask_var_t mask)
7224 {
7225 	int written;
7226 
7227 	mutex_lock(&wq_pool_mutex);
7228 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask));
7229 	mutex_unlock(&wq_pool_mutex);
7230 
7231 	return written;
7232 }
7233 
7234 static ssize_t cpumask_requested_show(struct device *dev,
7235 		struct device_attribute *attr, char *buf)
7236 {
7237 	return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask);
7238 }
7239 static DEVICE_ATTR_RO(cpumask_requested);
7240 
7241 static ssize_t cpumask_isolated_show(struct device *dev,
7242 		struct device_attribute *attr, char *buf)
7243 {
7244 	return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask);
7245 }
7246 static DEVICE_ATTR_RO(cpumask_isolated);
7247 
7248 static ssize_t cpumask_show(struct device *dev,
7249 		struct device_attribute *attr, char *buf)
7250 {
7251 	return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask);
7252 }
7253 
7254 static ssize_t cpumask_store(struct device *dev,
7255 		struct device_attribute *attr, const char *buf, size_t count)
7256 {
7257 	cpumask_var_t cpumask;
7258 	int ret;
7259 
7260 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
7261 		return -ENOMEM;
7262 
7263 	ret = cpumask_parse(buf, cpumask);
7264 	if (!ret)
7265 		ret = workqueue_set_unbound_cpumask(cpumask);
7266 
7267 	free_cpumask_var(cpumask);
7268 	return ret ? ret : count;
7269 }
7270 static DEVICE_ATTR_RW(cpumask);
7271 
7272 static struct attribute *wq_sysfs_cpumask_attrs[] = {
7273 	&dev_attr_cpumask.attr,
7274 	&dev_attr_cpumask_requested.attr,
7275 	&dev_attr_cpumask_isolated.attr,
7276 	NULL,
7277 };
7278 ATTRIBUTE_GROUPS(wq_sysfs_cpumask);
7279 
7280 static int __init wq_sysfs_init(void)
7281 {
7282 	return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups);
7283 }
7284 core_initcall(wq_sysfs_init);
7285 
7286 static void wq_device_release(struct device *dev)
7287 {
7288 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
7289 
7290 	kfree(wq_dev);
7291 }
7292 
7293 /**
7294  * workqueue_sysfs_register - make a workqueue visible in sysfs
7295  * @wq: the workqueue to register
7296  *
7297  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
7298  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
7299  * which is the preferred method.
7300  *
7301  * Workqueue user should use this function directly iff it wants to apply
7302  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
7303  * apply_workqueue_attrs() may race against userland updating the
7304  * attributes.
7305  *
7306  * Return: 0 on success, -errno on failure.
7307  */
7308 int workqueue_sysfs_register(struct workqueue_struct *wq)
7309 {
7310 	struct wq_device *wq_dev;
7311 	int ret;
7312 
7313 	/*
7314 	 * Adjusting max_active breaks ordering guarantee.  Disallow exposing
7315 	 * ordered workqueues.
7316 	 */
7317 	if (WARN_ON(wq->flags & __WQ_ORDERED))
7318 		return -EINVAL;
7319 
7320 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
7321 	if (!wq_dev)
7322 		return -ENOMEM;
7323 
7324 	wq_dev->wq = wq;
7325 	wq_dev->dev.bus = &wq_subsys;
7326 	wq_dev->dev.release = wq_device_release;
7327 	dev_set_name(&wq_dev->dev, "%s", wq->name);
7328 
7329 	/*
7330 	 * unbound_attrs are created separately.  Suppress uevent until
7331 	 * everything is ready.
7332 	 */
7333 	dev_set_uevent_suppress(&wq_dev->dev, true);
7334 
7335 	ret = device_register(&wq_dev->dev);
7336 	if (ret) {
7337 		put_device(&wq_dev->dev);
7338 		wq->wq_dev = NULL;
7339 		return ret;
7340 	}
7341 
7342 	if (wq->flags & WQ_UNBOUND) {
7343 		struct device_attribute *attr;
7344 
7345 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
7346 			ret = device_create_file(&wq_dev->dev, attr);
7347 			if (ret) {
7348 				device_unregister(&wq_dev->dev);
7349 				wq->wq_dev = NULL;
7350 				return ret;
7351 			}
7352 		}
7353 	}
7354 
7355 	dev_set_uevent_suppress(&wq_dev->dev, false);
7356 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
7357 	return 0;
7358 }
7359 
7360 /**
7361  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
7362  * @wq: the workqueue to unregister
7363  *
7364  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
7365  */
7366 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
7367 {
7368 	struct wq_device *wq_dev = wq->wq_dev;
7369 
7370 	if (!wq->wq_dev)
7371 		return;
7372 
7373 	wq->wq_dev = NULL;
7374 	device_unregister(&wq_dev->dev);
7375 }
7376 #else	/* CONFIG_SYSFS */
7377 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
7378 #endif	/* CONFIG_SYSFS */
7379 
7380 /*
7381  * Workqueue watchdog.
7382  *
7383  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
7384  * flush dependency, a concurrency managed work item which stays RUNNING
7385  * indefinitely.  Workqueue stalls can be very difficult to debug as the
7386  * usual warning mechanisms don't trigger and internal workqueue state is
7387  * largely opaque.
7388  *
7389  * Workqueue watchdog monitors all worker pools periodically and dumps
7390  * state if some pools failed to make forward progress for a while where
7391  * forward progress is defined as the first item on ->worklist changing.
7392  *
7393  * This mechanism is controlled through the kernel parameter
7394  * "workqueue.watchdog_thresh" which can be updated at runtime through the
7395  * corresponding sysfs parameter file.
7396  */
7397 #ifdef CONFIG_WQ_WATCHDOG
7398 
7399 static unsigned long wq_watchdog_thresh = 30;
7400 static struct timer_list wq_watchdog_timer;
7401 
7402 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
7403 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
7404 
7405 /*
7406  * Show workers that might prevent the processing of pending work items.
7407  * The only candidates are CPU-bound workers in the running state.
7408  * Pending work items should be handled by another idle worker
7409  * in all other situations.
7410  */
7411 static void show_cpu_pool_hog(struct worker_pool *pool)
7412 {
7413 	struct worker *worker;
7414 	unsigned long irq_flags;
7415 	int bkt;
7416 
7417 	raw_spin_lock_irqsave(&pool->lock, irq_flags);
7418 
7419 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
7420 		if (task_is_running(worker->task)) {
7421 			/*
7422 			 * Defer printing to avoid deadlocks in console
7423 			 * drivers that queue work while holding locks
7424 			 * also taken in their write paths.
7425 			 */
7426 			printk_deferred_enter();
7427 
7428 			pr_info("pool %d:\n", pool->id);
7429 			sched_show_task(worker->task);
7430 
7431 			printk_deferred_exit();
7432 		}
7433 	}
7434 
7435 	raw_spin_unlock_irqrestore(&pool->lock, irq_flags);
7436 }
7437 
7438 static void show_cpu_pools_hogs(void)
7439 {
7440 	struct worker_pool *pool;
7441 	int pi;
7442 
7443 	pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n");
7444 
7445 	rcu_read_lock();
7446 
7447 	for_each_pool(pool, pi) {
7448 		if (pool->cpu_stall)
7449 			show_cpu_pool_hog(pool);
7450 
7451 	}
7452 
7453 	rcu_read_unlock();
7454 }
7455 
7456 static void wq_watchdog_reset_touched(void)
7457 {
7458 	int cpu;
7459 
7460 	wq_watchdog_touched = jiffies;
7461 	for_each_possible_cpu(cpu)
7462 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
7463 }
7464 
7465 static void wq_watchdog_timer_fn(struct timer_list *unused)
7466 {
7467 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7468 	bool lockup_detected = false;
7469 	bool cpu_pool_stall = false;
7470 	unsigned long now = jiffies;
7471 	struct worker_pool *pool;
7472 	int pi;
7473 
7474 	if (!thresh)
7475 		return;
7476 
7477 	rcu_read_lock();
7478 
7479 	for_each_pool(pool, pi) {
7480 		unsigned long pool_ts, touched, ts;
7481 
7482 		pool->cpu_stall = false;
7483 		if (list_empty(&pool->worklist))
7484 			continue;
7485 
7486 		/*
7487 		 * If a virtual machine is stopped by the host it can look to
7488 		 * the watchdog like a stall.
7489 		 */
7490 		kvm_check_and_clear_guest_paused();
7491 
7492 		/* get the latest of pool and touched timestamps */
7493 		if (pool->cpu >= 0)
7494 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
7495 		else
7496 			touched = READ_ONCE(wq_watchdog_touched);
7497 		pool_ts = READ_ONCE(pool->watchdog_ts);
7498 
7499 		if (time_after(pool_ts, touched))
7500 			ts = pool_ts;
7501 		else
7502 			ts = touched;
7503 
7504 		/* did we stall? */
7505 		if (time_after(now, ts + thresh)) {
7506 			lockup_detected = true;
7507 			if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) {
7508 				pool->cpu_stall = true;
7509 				cpu_pool_stall = true;
7510 			}
7511 			pr_emerg("BUG: workqueue lockup - pool");
7512 			pr_cont_pool_info(pool);
7513 			pr_cont(" stuck for %us!\n",
7514 				jiffies_to_msecs(now - pool_ts) / 1000);
7515 		}
7516 
7517 
7518 	}
7519 
7520 	rcu_read_unlock();
7521 
7522 	if (lockup_detected)
7523 		show_all_workqueues();
7524 
7525 	if (cpu_pool_stall)
7526 		show_cpu_pools_hogs();
7527 
7528 	wq_watchdog_reset_touched();
7529 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
7530 }
7531 
7532 notrace void wq_watchdog_touch(int cpu)
7533 {
7534 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
7535 	unsigned long touch_ts = READ_ONCE(wq_watchdog_touched);
7536 	unsigned long now = jiffies;
7537 
7538 	if (cpu >= 0)
7539 		per_cpu(wq_watchdog_touched_cpu, cpu) = now;
7540 	else
7541 		WARN_ONCE(1, "%s should be called with valid CPU", __func__);
7542 
7543 	/* Don't unnecessarily store to global cacheline */
7544 	if (time_after(now, touch_ts + thresh / 4))
7545 		WRITE_ONCE(wq_watchdog_touched, jiffies);
7546 }
7547 
7548 static void wq_watchdog_set_thresh(unsigned long thresh)
7549 {
7550 	wq_watchdog_thresh = 0;
7551 	del_timer_sync(&wq_watchdog_timer);
7552 
7553 	if (thresh) {
7554 		wq_watchdog_thresh = thresh;
7555 		wq_watchdog_reset_touched();
7556 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
7557 	}
7558 }
7559 
7560 static int wq_watchdog_param_set_thresh(const char *val,
7561 					const struct kernel_param *kp)
7562 {
7563 	unsigned long thresh;
7564 	int ret;
7565 
7566 	ret = kstrtoul(val, 0, &thresh);
7567 	if (ret)
7568 		return ret;
7569 
7570 	if (system_wq)
7571 		wq_watchdog_set_thresh(thresh);
7572 	else
7573 		wq_watchdog_thresh = thresh;
7574 
7575 	return 0;
7576 }
7577 
7578 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
7579 	.set	= wq_watchdog_param_set_thresh,
7580 	.get	= param_get_ulong,
7581 };
7582 
7583 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
7584 		0644);
7585 
7586 static void wq_watchdog_init(void)
7587 {
7588 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
7589 	wq_watchdog_set_thresh(wq_watchdog_thresh);
7590 }
7591 
7592 #else	/* CONFIG_WQ_WATCHDOG */
7593 
7594 static inline void wq_watchdog_init(void) { }
7595 
7596 #endif	/* CONFIG_WQ_WATCHDOG */
7597 
7598 static void bh_pool_kick_normal(struct irq_work *irq_work)
7599 {
7600 	raise_softirq_irqoff(TASKLET_SOFTIRQ);
7601 }
7602 
7603 static void bh_pool_kick_highpri(struct irq_work *irq_work)
7604 {
7605 	raise_softirq_irqoff(HI_SOFTIRQ);
7606 }
7607 
7608 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask)
7609 {
7610 	if (!cpumask_intersects(wq_unbound_cpumask, mask)) {
7611 		pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n",
7612 			cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask));
7613 		return;
7614 	}
7615 
7616 	cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask);
7617 }
7618 
7619 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice)
7620 {
7621 	BUG_ON(init_worker_pool(pool));
7622 	pool->cpu = cpu;
7623 	cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7624 	cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu));
7625 	pool->attrs->nice = nice;
7626 	pool->attrs->affn_strict = true;
7627 	pool->node = cpu_to_node(cpu);
7628 
7629 	/* alloc pool ID */
7630 	mutex_lock(&wq_pool_mutex);
7631 	BUG_ON(worker_pool_assign_id(pool));
7632 	mutex_unlock(&wq_pool_mutex);
7633 }
7634 
7635 /**
7636  * workqueue_init_early - early init for workqueue subsystem
7637  *
7638  * This is the first step of three-staged workqueue subsystem initialization and
7639  * invoked as soon as the bare basics - memory allocation, cpumasks and idr are
7640  * up. It sets up all the data structures and system workqueues and allows early
7641  * boot code to create workqueues and queue/cancel work items. Actual work item
7642  * execution starts only after kthreads can be created and scheduled right
7643  * before early initcalls.
7644  */
7645 void __init workqueue_init_early(void)
7646 {
7647 	struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM];
7648 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
7649 	void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal,
7650 						       bh_pool_kick_highpri };
7651 	int i, cpu;
7652 
7653 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
7654 
7655 	BUG_ON(!alloc_cpumask_var(&wq_online_cpumask, GFP_KERNEL));
7656 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
7657 	BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL));
7658 	BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL));
7659 
7660 	cpumask_copy(wq_online_cpumask, cpu_online_mask);
7661 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
7662 	restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ));
7663 	restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN));
7664 	if (!cpumask_empty(&wq_cmdline_cpumask))
7665 		restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask);
7666 
7667 	cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask);
7668 
7669 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
7670 
7671 	unbound_wq_update_pwq_attrs_buf = alloc_workqueue_attrs();
7672 	BUG_ON(!unbound_wq_update_pwq_attrs_buf);
7673 
7674 	/*
7675 	 * If nohz_full is enabled, set power efficient workqueue as unbound.
7676 	 * This allows workqueue items to be moved to HK CPUs.
7677 	 */
7678 	if (housekeeping_enabled(HK_TYPE_TICK))
7679 		wq_power_efficient = true;
7680 
7681 	/* initialize WQ_AFFN_SYSTEM pods */
7682 	pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7683 	pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL);
7684 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7685 	BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod);
7686 
7687 	BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE));
7688 
7689 	pt->nr_pods = 1;
7690 	cpumask_copy(pt->pod_cpus[0], cpu_possible_mask);
7691 	pt->pod_node[0] = NUMA_NO_NODE;
7692 	pt->cpu_pod[0] = 0;
7693 
7694 	/* initialize BH and CPU pools */
7695 	for_each_possible_cpu(cpu) {
7696 		struct worker_pool *pool;
7697 
7698 		i = 0;
7699 		for_each_bh_worker_pool(pool, cpu) {
7700 			init_cpu_worker_pool(pool, cpu, std_nice[i]);
7701 			pool->flags |= POOL_BH;
7702 			init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]);
7703 			i++;
7704 		}
7705 
7706 		i = 0;
7707 		for_each_cpu_worker_pool(pool, cpu)
7708 			init_cpu_worker_pool(pool, cpu, std_nice[i++]);
7709 	}
7710 
7711 	/* create default unbound and ordered wq attrs */
7712 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
7713 		struct workqueue_attrs *attrs;
7714 
7715 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7716 		attrs->nice = std_nice[i];
7717 		unbound_std_wq_attrs[i] = attrs;
7718 
7719 		/*
7720 		 * An ordered wq should have only one pwq as ordering is
7721 		 * guaranteed by max_active which is enforced by pwqs.
7722 		 */
7723 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
7724 		attrs->nice = std_nice[i];
7725 		attrs->ordered = true;
7726 		ordered_wq_attrs[i] = attrs;
7727 	}
7728 
7729 	system_wq = alloc_workqueue("events", 0, 0);
7730 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
7731 	system_long_wq = alloc_workqueue("events_long", 0, 0);
7732 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
7733 					    WQ_MAX_ACTIVE);
7734 	system_freezable_wq = alloc_workqueue("events_freezable",
7735 					      WQ_FREEZABLE, 0);
7736 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
7737 					      WQ_POWER_EFFICIENT, 0);
7738 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient",
7739 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
7740 					      0);
7741 	system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0);
7742 	system_bh_highpri_wq = alloc_workqueue("events_bh_highpri",
7743 					       WQ_BH | WQ_HIGHPRI, 0);
7744 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
7745 	       !system_unbound_wq || !system_freezable_wq ||
7746 	       !system_power_efficient_wq ||
7747 	       !system_freezable_power_efficient_wq ||
7748 	       !system_bh_wq || !system_bh_highpri_wq);
7749 }
7750 
7751 static void __init wq_cpu_intensive_thresh_init(void)
7752 {
7753 	unsigned long thresh;
7754 	unsigned long bogo;
7755 
7756 	pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release");
7757 	BUG_ON(IS_ERR(pwq_release_worker));
7758 
7759 	/* if the user set it to a specific value, keep it */
7760 	if (wq_cpu_intensive_thresh_us != ULONG_MAX)
7761 		return;
7762 
7763 	/*
7764 	 * The default of 10ms is derived from the fact that most modern (as of
7765 	 * 2023) processors can do a lot in 10ms and that it's just below what
7766 	 * most consider human-perceivable. However, the kernel also runs on a
7767 	 * lot slower CPUs including microcontrollers where the threshold is way
7768 	 * too low.
7769 	 *
7770 	 * Let's scale up the threshold upto 1 second if BogoMips is below 4000.
7771 	 * This is by no means accurate but it doesn't have to be. The mechanism
7772 	 * is still useful even when the threshold is fully scaled up. Also, as
7773 	 * the reports would usually be applicable to everyone, some machines
7774 	 * operating on longer thresholds won't significantly diminish their
7775 	 * usefulness.
7776 	 */
7777 	thresh = 10 * USEC_PER_MSEC;
7778 
7779 	/* see init/calibrate.c for lpj -> BogoMIPS calculation */
7780 	bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1);
7781 	if (bogo < 4000)
7782 		thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC);
7783 
7784 	pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n",
7785 		 loops_per_jiffy, bogo, thresh);
7786 
7787 	wq_cpu_intensive_thresh_us = thresh;
7788 }
7789 
7790 /**
7791  * workqueue_init - bring workqueue subsystem fully online
7792  *
7793  * This is the second step of three-staged workqueue subsystem initialization
7794  * and invoked as soon as kthreads can be created and scheduled. Workqueues have
7795  * been created and work items queued on them, but there are no kworkers
7796  * executing the work items yet. Populate the worker pools with the initial
7797  * workers and enable future kworker creations.
7798  */
7799 void __init workqueue_init(void)
7800 {
7801 	struct workqueue_struct *wq;
7802 	struct worker_pool *pool;
7803 	int cpu, bkt;
7804 
7805 	wq_cpu_intensive_thresh_init();
7806 
7807 	mutex_lock(&wq_pool_mutex);
7808 
7809 	/*
7810 	 * Per-cpu pools created earlier could be missing node hint. Fix them
7811 	 * up. Also, create a rescuer for workqueues that requested it.
7812 	 */
7813 	for_each_possible_cpu(cpu) {
7814 		for_each_bh_worker_pool(pool, cpu)
7815 			pool->node = cpu_to_node(cpu);
7816 		for_each_cpu_worker_pool(pool, cpu)
7817 			pool->node = cpu_to_node(cpu);
7818 	}
7819 
7820 	list_for_each_entry(wq, &workqueues, list) {
7821 		WARN(init_rescuer(wq),
7822 		     "workqueue: failed to create early rescuer for %s",
7823 		     wq->name);
7824 	}
7825 
7826 	mutex_unlock(&wq_pool_mutex);
7827 
7828 	/*
7829 	 * Create the initial workers. A BH pool has one pseudo worker that
7830 	 * represents the shared BH execution context and thus doesn't get
7831 	 * affected by hotplug events. Create the BH pseudo workers for all
7832 	 * possible CPUs here.
7833 	 */
7834 	for_each_possible_cpu(cpu)
7835 		for_each_bh_worker_pool(pool, cpu)
7836 			BUG_ON(!create_worker(pool));
7837 
7838 	for_each_online_cpu(cpu) {
7839 		for_each_cpu_worker_pool(pool, cpu) {
7840 			pool->flags &= ~POOL_DISASSOCIATED;
7841 			BUG_ON(!create_worker(pool));
7842 		}
7843 	}
7844 
7845 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
7846 		BUG_ON(!create_worker(pool));
7847 
7848 	wq_online = true;
7849 	wq_watchdog_init();
7850 }
7851 
7852 /*
7853  * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to
7854  * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique
7855  * and consecutive pod ID. The rest of @pt is initialized accordingly.
7856  */
7857 static void __init init_pod_type(struct wq_pod_type *pt,
7858 				 bool (*cpus_share_pod)(int, int))
7859 {
7860 	int cur, pre, cpu, pod;
7861 
7862 	pt->nr_pods = 0;
7863 
7864 	/* init @pt->cpu_pod[] according to @cpus_share_pod() */
7865 	pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL);
7866 	BUG_ON(!pt->cpu_pod);
7867 
7868 	for_each_possible_cpu(cur) {
7869 		for_each_possible_cpu(pre) {
7870 			if (pre >= cur) {
7871 				pt->cpu_pod[cur] = pt->nr_pods++;
7872 				break;
7873 			}
7874 			if (cpus_share_pod(cur, pre)) {
7875 				pt->cpu_pod[cur] = pt->cpu_pod[pre];
7876 				break;
7877 			}
7878 		}
7879 	}
7880 
7881 	/* init the rest to match @pt->cpu_pod[] */
7882 	pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL);
7883 	pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL);
7884 	BUG_ON(!pt->pod_cpus || !pt->pod_node);
7885 
7886 	for (pod = 0; pod < pt->nr_pods; pod++)
7887 		BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL));
7888 
7889 	for_each_possible_cpu(cpu) {
7890 		cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]);
7891 		pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu);
7892 	}
7893 }
7894 
7895 static bool __init cpus_dont_share(int cpu0, int cpu1)
7896 {
7897 	return false;
7898 }
7899 
7900 static bool __init cpus_share_smt(int cpu0, int cpu1)
7901 {
7902 #ifdef CONFIG_SCHED_SMT
7903 	return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1));
7904 #else
7905 	return false;
7906 #endif
7907 }
7908 
7909 static bool __init cpus_share_numa(int cpu0, int cpu1)
7910 {
7911 	return cpu_to_node(cpu0) == cpu_to_node(cpu1);
7912 }
7913 
7914 /**
7915  * workqueue_init_topology - initialize CPU pods for unbound workqueues
7916  *
7917  * This is the third step of three-staged workqueue subsystem initialization and
7918  * invoked after SMP and topology information are fully initialized. It
7919  * initializes the unbound CPU pods accordingly.
7920  */
7921 void __init workqueue_init_topology(void)
7922 {
7923 	struct workqueue_struct *wq;
7924 	int cpu;
7925 
7926 	init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share);
7927 	init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt);
7928 	init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache);
7929 	init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa);
7930 
7931 	wq_topo_initialized = true;
7932 
7933 	mutex_lock(&wq_pool_mutex);
7934 
7935 	/*
7936 	 * Workqueues allocated earlier would have all CPUs sharing the default
7937 	 * worker pool. Explicitly call unbound_wq_update_pwq() on all workqueue
7938 	 * and CPU combinations to apply per-pod sharing.
7939 	 */
7940 	list_for_each_entry(wq, &workqueues, list) {
7941 		for_each_online_cpu(cpu)
7942 			unbound_wq_update_pwq(wq, cpu);
7943 		if (wq->flags & WQ_UNBOUND) {
7944 			mutex_lock(&wq->mutex);
7945 			wq_update_node_max_active(wq, -1);
7946 			mutex_unlock(&wq->mutex);
7947 		}
7948 	}
7949 
7950 	mutex_unlock(&wq_pool_mutex);
7951 }
7952 
7953 void __warn_flushing_systemwide_wq(void)
7954 {
7955 	pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n");
7956 	dump_stack();
7957 }
7958 EXPORT_SYMBOL(__warn_flushing_systemwide_wq);
7959 
7960 static int __init workqueue_unbound_cpus_setup(char *str)
7961 {
7962 	if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) {
7963 		cpumask_clear(&wq_cmdline_cpumask);
7964 		pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n");
7965 	}
7966 
7967 	return 1;
7968 }
7969 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup);
7970