1 /* 2 * linux/kernel/workqueue.c 3 * 4 * Generic mechanism for defining kernel helper threads for running 5 * arbitrary tasks in process context. 6 * 7 * Started by Ingo Molnar, Copyright (C) 2002 8 * 9 * Derived from the taskqueue/keventd code by: 10 * 11 * David Woodhouse <dwmw2@infradead.org> 12 * Andrew Morton <andrewm@uow.edu.au> 13 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 14 * Theodore Ts'o <tytso@mit.edu> 15 * 16 * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>. 17 */ 18 19 #include <linux/module.h> 20 #include <linux/kernel.h> 21 #include <linux/sched.h> 22 #include <linux/init.h> 23 #include <linux/signal.h> 24 #include <linux/completion.h> 25 #include <linux/workqueue.h> 26 #include <linux/slab.h> 27 #include <linux/cpu.h> 28 #include <linux/notifier.h> 29 #include <linux/kthread.h> 30 #include <linux/hardirq.h> 31 #include <linux/mempolicy.h> 32 #include <linux/freezer.h> 33 #include <linux/kallsyms.h> 34 #include <linux/debug_locks.h> 35 #include <linux/lockdep.h> 36 37 /* 38 * The per-CPU workqueue (if single thread, we always use the first 39 * possible cpu). 40 */ 41 struct cpu_workqueue_struct { 42 43 spinlock_t lock; 44 45 struct list_head worklist; 46 wait_queue_head_t more_work; 47 struct work_struct *current_work; 48 49 struct workqueue_struct *wq; 50 struct task_struct *thread; 51 52 int run_depth; /* Detect run_workqueue() recursion depth */ 53 } ____cacheline_aligned; 54 55 /* 56 * The externally visible workqueue abstraction is an array of 57 * per-CPU workqueues: 58 */ 59 struct workqueue_struct { 60 struct cpu_workqueue_struct *cpu_wq; 61 struct list_head list; 62 const char *name; 63 int singlethread; 64 int freezeable; /* Freeze threads during suspend */ 65 #ifdef CONFIG_LOCKDEP 66 struct lockdep_map lockdep_map; 67 #endif 68 }; 69 70 /* Serializes the accesses to the list of workqueues. */ 71 static DEFINE_SPINLOCK(workqueue_lock); 72 static LIST_HEAD(workqueues); 73 74 static int singlethread_cpu __read_mostly; 75 static cpumask_t cpu_singlethread_map __read_mostly; 76 /* 77 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD 78 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work 79 * which comes in between can't use for_each_online_cpu(). We could 80 * use cpu_possible_map, the cpumask below is more a documentation 81 * than optimization. 82 */ 83 static cpumask_t cpu_populated_map __read_mostly; 84 85 /* If it's single threaded, it isn't in the list of workqueues. */ 86 static inline int is_single_threaded(struct workqueue_struct *wq) 87 { 88 return wq->singlethread; 89 } 90 91 static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq) 92 { 93 return is_single_threaded(wq) 94 ? &cpu_singlethread_map : &cpu_populated_map; 95 } 96 97 static 98 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu) 99 { 100 if (unlikely(is_single_threaded(wq))) 101 cpu = singlethread_cpu; 102 return per_cpu_ptr(wq->cpu_wq, cpu); 103 } 104 105 /* 106 * Set the workqueue on which a work item is to be run 107 * - Must *only* be called if the pending flag is set 108 */ 109 static inline void set_wq_data(struct work_struct *work, 110 struct cpu_workqueue_struct *cwq) 111 { 112 unsigned long new; 113 114 BUG_ON(!work_pending(work)); 115 116 new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING); 117 new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work); 118 atomic_long_set(&work->data, new); 119 } 120 121 static inline 122 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work) 123 { 124 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK); 125 } 126 127 static void insert_work(struct cpu_workqueue_struct *cwq, 128 struct work_struct *work, int tail) 129 { 130 set_wq_data(work, cwq); 131 /* 132 * Ensure that we get the right work->data if we see the 133 * result of list_add() below, see try_to_grab_pending(). 134 */ 135 smp_wmb(); 136 if (tail) 137 list_add_tail(&work->entry, &cwq->worklist); 138 else 139 list_add(&work->entry, &cwq->worklist); 140 wake_up(&cwq->more_work); 141 } 142 143 /* Preempt must be disabled. */ 144 static void __queue_work(struct cpu_workqueue_struct *cwq, 145 struct work_struct *work) 146 { 147 unsigned long flags; 148 149 spin_lock_irqsave(&cwq->lock, flags); 150 insert_work(cwq, work, 1); 151 spin_unlock_irqrestore(&cwq->lock, flags); 152 } 153 154 /** 155 * queue_work - queue work on a workqueue 156 * @wq: workqueue to use 157 * @work: work to queue 158 * 159 * Returns 0 if @work was already on a queue, non-zero otherwise. 160 * 161 * We queue the work to the CPU it was submitted, but there is no 162 * guarantee that it will be processed by that CPU. 163 */ 164 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work) 165 { 166 int ret = 0; 167 168 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { 169 BUG_ON(!list_empty(&work->entry)); 170 __queue_work(wq_per_cpu(wq, get_cpu()), work); 171 put_cpu(); 172 ret = 1; 173 } 174 return ret; 175 } 176 EXPORT_SYMBOL_GPL(queue_work); 177 178 void delayed_work_timer_fn(unsigned long __data) 179 { 180 struct delayed_work *dwork = (struct delayed_work *)__data; 181 struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work); 182 struct workqueue_struct *wq = cwq->wq; 183 184 __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work); 185 } 186 187 /** 188 * queue_delayed_work - queue work on a workqueue after delay 189 * @wq: workqueue to use 190 * @dwork: delayable work to queue 191 * @delay: number of jiffies to wait before queueing 192 * 193 * Returns 0 if @work was already on a queue, non-zero otherwise. 194 */ 195 int fastcall queue_delayed_work(struct workqueue_struct *wq, 196 struct delayed_work *dwork, unsigned long delay) 197 { 198 timer_stats_timer_set_start_info(&dwork->timer); 199 if (delay == 0) 200 return queue_work(wq, &dwork->work); 201 202 return queue_delayed_work_on(-1, wq, dwork, delay); 203 } 204 EXPORT_SYMBOL_GPL(queue_delayed_work); 205 206 /** 207 * queue_delayed_work_on - queue work on specific CPU after delay 208 * @cpu: CPU number to execute work on 209 * @wq: workqueue to use 210 * @dwork: work to queue 211 * @delay: number of jiffies to wait before queueing 212 * 213 * Returns 0 if @work was already on a queue, non-zero otherwise. 214 */ 215 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 216 struct delayed_work *dwork, unsigned long delay) 217 { 218 int ret = 0; 219 struct timer_list *timer = &dwork->timer; 220 struct work_struct *work = &dwork->work; 221 222 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { 223 BUG_ON(timer_pending(timer)); 224 BUG_ON(!list_empty(&work->entry)); 225 226 /* This stores cwq for the moment, for the timer_fn */ 227 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id())); 228 timer->expires = jiffies + delay; 229 timer->data = (unsigned long)dwork; 230 timer->function = delayed_work_timer_fn; 231 232 if (unlikely(cpu >= 0)) 233 add_timer_on(timer, cpu); 234 else 235 add_timer(timer); 236 ret = 1; 237 } 238 return ret; 239 } 240 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 241 242 static void run_workqueue(struct cpu_workqueue_struct *cwq) 243 { 244 spin_lock_irq(&cwq->lock); 245 cwq->run_depth++; 246 if (cwq->run_depth > 3) { 247 /* morton gets to eat his hat */ 248 printk("%s: recursion depth exceeded: %d\n", 249 __FUNCTION__, cwq->run_depth); 250 dump_stack(); 251 } 252 while (!list_empty(&cwq->worklist)) { 253 struct work_struct *work = list_entry(cwq->worklist.next, 254 struct work_struct, entry); 255 work_func_t f = work->func; 256 #ifdef CONFIG_LOCKDEP 257 /* 258 * It is permissible to free the struct work_struct 259 * from inside the function that is called from it, 260 * this we need to take into account for lockdep too. 261 * To avoid bogus "held lock freed" warnings as well 262 * as problems when looking into work->lockdep_map, 263 * make a copy and use that here. 264 */ 265 struct lockdep_map lockdep_map = work->lockdep_map; 266 #endif 267 268 cwq->current_work = work; 269 list_del_init(cwq->worklist.next); 270 spin_unlock_irq(&cwq->lock); 271 272 BUG_ON(get_wq_data(work) != cwq); 273 work_clear_pending(work); 274 lock_acquire(&cwq->wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_); 275 lock_acquire(&lockdep_map, 0, 0, 0, 2, _THIS_IP_); 276 f(work); 277 lock_release(&lockdep_map, 1, _THIS_IP_); 278 lock_release(&cwq->wq->lockdep_map, 1, _THIS_IP_); 279 280 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 281 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " 282 "%s/0x%08x/%d\n", 283 current->comm, preempt_count(), 284 task_pid_nr(current)); 285 printk(KERN_ERR " last function: "); 286 print_symbol("%s\n", (unsigned long)f); 287 debug_show_held_locks(current); 288 dump_stack(); 289 } 290 291 spin_lock_irq(&cwq->lock); 292 cwq->current_work = NULL; 293 } 294 cwq->run_depth--; 295 spin_unlock_irq(&cwq->lock); 296 } 297 298 static int worker_thread(void *__cwq) 299 { 300 struct cpu_workqueue_struct *cwq = __cwq; 301 DEFINE_WAIT(wait); 302 303 if (cwq->wq->freezeable) 304 set_freezable(); 305 306 set_user_nice(current, -5); 307 308 for (;;) { 309 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE); 310 if (!freezing(current) && 311 !kthread_should_stop() && 312 list_empty(&cwq->worklist)) 313 schedule(); 314 finish_wait(&cwq->more_work, &wait); 315 316 try_to_freeze(); 317 318 if (kthread_should_stop()) 319 break; 320 321 run_workqueue(cwq); 322 } 323 324 return 0; 325 } 326 327 struct wq_barrier { 328 struct work_struct work; 329 struct completion done; 330 }; 331 332 static void wq_barrier_func(struct work_struct *work) 333 { 334 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 335 complete(&barr->done); 336 } 337 338 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, 339 struct wq_barrier *barr, int tail) 340 { 341 INIT_WORK(&barr->work, wq_barrier_func); 342 __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work)); 343 344 init_completion(&barr->done); 345 346 insert_work(cwq, &barr->work, tail); 347 } 348 349 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq) 350 { 351 int active; 352 353 if (cwq->thread == current) { 354 /* 355 * Probably keventd trying to flush its own queue. So simply run 356 * it by hand rather than deadlocking. 357 */ 358 run_workqueue(cwq); 359 active = 1; 360 } else { 361 struct wq_barrier barr; 362 363 active = 0; 364 spin_lock_irq(&cwq->lock); 365 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) { 366 insert_wq_barrier(cwq, &barr, 1); 367 active = 1; 368 } 369 spin_unlock_irq(&cwq->lock); 370 371 if (active) 372 wait_for_completion(&barr.done); 373 } 374 375 return active; 376 } 377 378 /** 379 * flush_workqueue - ensure that any scheduled work has run to completion. 380 * @wq: workqueue to flush 381 * 382 * Forces execution of the workqueue and blocks until its completion. 383 * This is typically used in driver shutdown handlers. 384 * 385 * We sleep until all works which were queued on entry have been handled, 386 * but we are not livelocked by new incoming ones. 387 * 388 * This function used to run the workqueues itself. Now we just wait for the 389 * helper threads to do it. 390 */ 391 void fastcall flush_workqueue(struct workqueue_struct *wq) 392 { 393 const cpumask_t *cpu_map = wq_cpu_map(wq); 394 int cpu; 395 396 might_sleep(); 397 lock_acquire(&wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_); 398 lock_release(&wq->lockdep_map, 1, _THIS_IP_); 399 for_each_cpu_mask(cpu, *cpu_map) 400 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu)); 401 } 402 EXPORT_SYMBOL_GPL(flush_workqueue); 403 404 /* 405 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit, 406 * so this work can't be re-armed in any way. 407 */ 408 static int try_to_grab_pending(struct work_struct *work) 409 { 410 struct cpu_workqueue_struct *cwq; 411 int ret = -1; 412 413 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) 414 return 0; 415 416 /* 417 * The queueing is in progress, or it is already queued. Try to 418 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 419 */ 420 421 cwq = get_wq_data(work); 422 if (!cwq) 423 return ret; 424 425 spin_lock_irq(&cwq->lock); 426 if (!list_empty(&work->entry)) { 427 /* 428 * This work is queued, but perhaps we locked the wrong cwq. 429 * In that case we must see the new value after rmb(), see 430 * insert_work()->wmb(). 431 */ 432 smp_rmb(); 433 if (cwq == get_wq_data(work)) { 434 list_del_init(&work->entry); 435 ret = 1; 436 } 437 } 438 spin_unlock_irq(&cwq->lock); 439 440 return ret; 441 } 442 443 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq, 444 struct work_struct *work) 445 { 446 struct wq_barrier barr; 447 int running = 0; 448 449 spin_lock_irq(&cwq->lock); 450 if (unlikely(cwq->current_work == work)) { 451 insert_wq_barrier(cwq, &barr, 0); 452 running = 1; 453 } 454 spin_unlock_irq(&cwq->lock); 455 456 if (unlikely(running)) 457 wait_for_completion(&barr.done); 458 } 459 460 static void wait_on_work(struct work_struct *work) 461 { 462 struct cpu_workqueue_struct *cwq; 463 struct workqueue_struct *wq; 464 const cpumask_t *cpu_map; 465 int cpu; 466 467 might_sleep(); 468 469 lock_acquire(&work->lockdep_map, 0, 0, 0, 2, _THIS_IP_); 470 lock_release(&work->lockdep_map, 1, _THIS_IP_); 471 472 cwq = get_wq_data(work); 473 if (!cwq) 474 return; 475 476 wq = cwq->wq; 477 cpu_map = wq_cpu_map(wq); 478 479 for_each_cpu_mask(cpu, *cpu_map) 480 wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work); 481 } 482 483 static int __cancel_work_timer(struct work_struct *work, 484 struct timer_list* timer) 485 { 486 int ret; 487 488 do { 489 ret = (timer && likely(del_timer(timer))); 490 if (!ret) 491 ret = try_to_grab_pending(work); 492 wait_on_work(work); 493 } while (unlikely(ret < 0)); 494 495 work_clear_pending(work); 496 return ret; 497 } 498 499 /** 500 * cancel_work_sync - block until a work_struct's callback has terminated 501 * @work: the work which is to be flushed 502 * 503 * Returns true if @work was pending. 504 * 505 * cancel_work_sync() will cancel the work if it is queued. If the work's 506 * callback appears to be running, cancel_work_sync() will block until it 507 * has completed. 508 * 509 * It is possible to use this function if the work re-queues itself. It can 510 * cancel the work even if it migrates to another workqueue, however in that 511 * case it only guarantees that work->func() has completed on the last queued 512 * workqueue. 513 * 514 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not 515 * pending, otherwise it goes into a busy-wait loop until the timer expires. 516 * 517 * The caller must ensure that workqueue_struct on which this work was last 518 * queued can't be destroyed before this function returns. 519 */ 520 int cancel_work_sync(struct work_struct *work) 521 { 522 return __cancel_work_timer(work, NULL); 523 } 524 EXPORT_SYMBOL_GPL(cancel_work_sync); 525 526 /** 527 * cancel_delayed_work_sync - reliably kill off a delayed work. 528 * @dwork: the delayed work struct 529 * 530 * Returns true if @dwork was pending. 531 * 532 * It is possible to use this function if @dwork rearms itself via queue_work() 533 * or queue_delayed_work(). See also the comment for cancel_work_sync(). 534 */ 535 int cancel_delayed_work_sync(struct delayed_work *dwork) 536 { 537 return __cancel_work_timer(&dwork->work, &dwork->timer); 538 } 539 EXPORT_SYMBOL(cancel_delayed_work_sync); 540 541 static struct workqueue_struct *keventd_wq __read_mostly; 542 543 /** 544 * schedule_work - put work task in global workqueue 545 * @work: job to be done 546 * 547 * This puts a job in the kernel-global workqueue. 548 */ 549 int fastcall schedule_work(struct work_struct *work) 550 { 551 return queue_work(keventd_wq, work); 552 } 553 EXPORT_SYMBOL(schedule_work); 554 555 /** 556 * schedule_delayed_work - put work task in global workqueue after delay 557 * @dwork: job to be done 558 * @delay: number of jiffies to wait or 0 for immediate execution 559 * 560 * After waiting for a given time this puts a job in the kernel-global 561 * workqueue. 562 */ 563 int fastcall schedule_delayed_work(struct delayed_work *dwork, 564 unsigned long delay) 565 { 566 timer_stats_timer_set_start_info(&dwork->timer); 567 return queue_delayed_work(keventd_wq, dwork, delay); 568 } 569 EXPORT_SYMBOL(schedule_delayed_work); 570 571 /** 572 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 573 * @cpu: cpu to use 574 * @dwork: job to be done 575 * @delay: number of jiffies to wait 576 * 577 * After waiting for a given time this puts a job in the kernel-global 578 * workqueue on the specified CPU. 579 */ 580 int schedule_delayed_work_on(int cpu, 581 struct delayed_work *dwork, unsigned long delay) 582 { 583 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay); 584 } 585 EXPORT_SYMBOL(schedule_delayed_work_on); 586 587 /** 588 * schedule_on_each_cpu - call a function on each online CPU from keventd 589 * @func: the function to call 590 * 591 * Returns zero on success. 592 * Returns -ve errno on failure. 593 * 594 * schedule_on_each_cpu() is very slow. 595 */ 596 int schedule_on_each_cpu(work_func_t func) 597 { 598 int cpu; 599 struct work_struct *works; 600 601 works = alloc_percpu(struct work_struct); 602 if (!works) 603 return -ENOMEM; 604 605 get_online_cpus(); 606 for_each_online_cpu(cpu) { 607 struct work_struct *work = per_cpu_ptr(works, cpu); 608 609 INIT_WORK(work, func); 610 set_bit(WORK_STRUCT_PENDING, work_data_bits(work)); 611 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work); 612 } 613 flush_workqueue(keventd_wq); 614 put_online_cpus(); 615 free_percpu(works); 616 return 0; 617 } 618 619 void flush_scheduled_work(void) 620 { 621 flush_workqueue(keventd_wq); 622 } 623 EXPORT_SYMBOL(flush_scheduled_work); 624 625 /** 626 * execute_in_process_context - reliably execute the routine with user context 627 * @fn: the function to execute 628 * @ew: guaranteed storage for the execute work structure (must 629 * be available when the work executes) 630 * 631 * Executes the function immediately if process context is available, 632 * otherwise schedules the function for delayed execution. 633 * 634 * Returns: 0 - function was executed 635 * 1 - function was scheduled for execution 636 */ 637 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 638 { 639 if (!in_interrupt()) { 640 fn(&ew->work); 641 return 0; 642 } 643 644 INIT_WORK(&ew->work, fn); 645 schedule_work(&ew->work); 646 647 return 1; 648 } 649 EXPORT_SYMBOL_GPL(execute_in_process_context); 650 651 int keventd_up(void) 652 { 653 return keventd_wq != NULL; 654 } 655 656 int current_is_keventd(void) 657 { 658 struct cpu_workqueue_struct *cwq; 659 int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */ 660 int ret = 0; 661 662 BUG_ON(!keventd_wq); 663 664 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu); 665 if (current == cwq->thread) 666 ret = 1; 667 668 return ret; 669 670 } 671 672 static struct cpu_workqueue_struct * 673 init_cpu_workqueue(struct workqueue_struct *wq, int cpu) 674 { 675 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu); 676 677 cwq->wq = wq; 678 spin_lock_init(&cwq->lock); 679 INIT_LIST_HEAD(&cwq->worklist); 680 init_waitqueue_head(&cwq->more_work); 681 682 return cwq; 683 } 684 685 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) 686 { 687 struct workqueue_struct *wq = cwq->wq; 688 const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d"; 689 struct task_struct *p; 690 691 p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu); 692 /* 693 * Nobody can add the work_struct to this cwq, 694 * if (caller is __create_workqueue) 695 * nobody should see this wq 696 * else // caller is CPU_UP_PREPARE 697 * cpu is not on cpu_online_map 698 * so we can abort safely. 699 */ 700 if (IS_ERR(p)) 701 return PTR_ERR(p); 702 703 cwq->thread = p; 704 705 return 0; 706 } 707 708 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) 709 { 710 struct task_struct *p = cwq->thread; 711 712 if (p != NULL) { 713 if (cpu >= 0) 714 kthread_bind(p, cpu); 715 wake_up_process(p); 716 } 717 } 718 719 struct workqueue_struct *__create_workqueue_key(const char *name, 720 int singlethread, 721 int freezeable, 722 struct lock_class_key *key, 723 const char *lock_name) 724 { 725 struct workqueue_struct *wq; 726 struct cpu_workqueue_struct *cwq; 727 int err = 0, cpu; 728 729 wq = kzalloc(sizeof(*wq), GFP_KERNEL); 730 if (!wq) 731 return NULL; 732 733 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct); 734 if (!wq->cpu_wq) { 735 kfree(wq); 736 return NULL; 737 } 738 739 wq->name = name; 740 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 741 wq->singlethread = singlethread; 742 wq->freezeable = freezeable; 743 INIT_LIST_HEAD(&wq->list); 744 745 if (singlethread) { 746 cwq = init_cpu_workqueue(wq, singlethread_cpu); 747 err = create_workqueue_thread(cwq, singlethread_cpu); 748 start_workqueue_thread(cwq, -1); 749 } else { 750 get_online_cpus(); 751 spin_lock(&workqueue_lock); 752 list_add(&wq->list, &workqueues); 753 spin_unlock(&workqueue_lock); 754 755 for_each_possible_cpu(cpu) { 756 cwq = init_cpu_workqueue(wq, cpu); 757 if (err || !cpu_online(cpu)) 758 continue; 759 err = create_workqueue_thread(cwq, cpu); 760 start_workqueue_thread(cwq, cpu); 761 } 762 put_online_cpus(); 763 } 764 765 if (err) { 766 destroy_workqueue(wq); 767 wq = NULL; 768 } 769 return wq; 770 } 771 EXPORT_SYMBOL_GPL(__create_workqueue_key); 772 773 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) 774 { 775 /* 776 * Our caller is either destroy_workqueue() or CPU_DEAD, 777 * get_online_cpus() protects cwq->thread. 778 */ 779 if (cwq->thread == NULL) 780 return; 781 782 lock_acquire(&cwq->wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_); 783 lock_release(&cwq->wq->lockdep_map, 1, _THIS_IP_); 784 785 flush_cpu_workqueue(cwq); 786 /* 787 * If the caller is CPU_DEAD and cwq->worklist was not empty, 788 * a concurrent flush_workqueue() can insert a barrier after us. 789 * However, in that case run_workqueue() won't return and check 790 * kthread_should_stop() until it flushes all work_struct's. 791 * When ->worklist becomes empty it is safe to exit because no 792 * more work_structs can be queued on this cwq: flush_workqueue 793 * checks list_empty(), and a "normal" queue_work() can't use 794 * a dead CPU. 795 */ 796 kthread_stop(cwq->thread); 797 cwq->thread = NULL; 798 } 799 800 /** 801 * destroy_workqueue - safely terminate a workqueue 802 * @wq: target workqueue 803 * 804 * Safely destroy a workqueue. All work currently pending will be done first. 805 */ 806 void destroy_workqueue(struct workqueue_struct *wq) 807 { 808 const cpumask_t *cpu_map = wq_cpu_map(wq); 809 struct cpu_workqueue_struct *cwq; 810 int cpu; 811 812 get_online_cpus(); 813 spin_lock(&workqueue_lock); 814 list_del(&wq->list); 815 spin_unlock(&workqueue_lock); 816 put_online_cpus(); 817 818 for_each_cpu_mask(cpu, *cpu_map) { 819 cwq = per_cpu_ptr(wq->cpu_wq, cpu); 820 cleanup_workqueue_thread(cwq, cpu); 821 } 822 823 free_percpu(wq->cpu_wq); 824 kfree(wq); 825 } 826 EXPORT_SYMBOL_GPL(destroy_workqueue); 827 828 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, 829 unsigned long action, 830 void *hcpu) 831 { 832 unsigned int cpu = (unsigned long)hcpu; 833 struct cpu_workqueue_struct *cwq; 834 struct workqueue_struct *wq; 835 836 action &= ~CPU_TASKS_FROZEN; 837 838 switch (action) { 839 840 case CPU_UP_PREPARE: 841 cpu_set(cpu, cpu_populated_map); 842 } 843 844 list_for_each_entry(wq, &workqueues, list) { 845 cwq = per_cpu_ptr(wq->cpu_wq, cpu); 846 847 switch (action) { 848 case CPU_UP_PREPARE: 849 if (!create_workqueue_thread(cwq, cpu)) 850 break; 851 printk(KERN_ERR "workqueue [%s] for %i failed\n", 852 wq->name, cpu); 853 return NOTIFY_BAD; 854 855 case CPU_ONLINE: 856 start_workqueue_thread(cwq, cpu); 857 break; 858 859 case CPU_UP_CANCELED: 860 start_workqueue_thread(cwq, -1); 861 case CPU_DEAD: 862 cleanup_workqueue_thread(cwq, cpu); 863 break; 864 } 865 } 866 867 return NOTIFY_OK; 868 } 869 870 void __init init_workqueues(void) 871 { 872 cpu_populated_map = cpu_online_map; 873 singlethread_cpu = first_cpu(cpu_possible_map); 874 cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu); 875 hotcpu_notifier(workqueue_cpu_callback, 0); 876 keventd_wq = create_workqueue("events"); 877 BUG_ON(!keventd_wq); 878 } 879