xref: /linux/kernel/workqueue.c (revision 498ade1a133dffd0f3ee90952737045d56e6689a)
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton <andrewm@uow.edu.au>
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  *
16  * Made to use alloc_percpu by Christoph Lameter <clameter@sgi.com>.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
36 
37 /*
38  * The per-CPU workqueue (if single thread, we always use the first
39  * possible cpu).
40  */
41 struct cpu_workqueue_struct {
42 
43 	spinlock_t lock;
44 
45 	struct list_head worklist;
46 	wait_queue_head_t more_work;
47 	struct work_struct *current_work;
48 
49 	struct workqueue_struct *wq;
50 	struct task_struct *thread;
51 
52 	int run_depth;		/* Detect run_workqueue() recursion depth */
53 } ____cacheline_aligned;
54 
55 /*
56  * The externally visible workqueue abstraction is an array of
57  * per-CPU workqueues:
58  */
59 struct workqueue_struct {
60 	struct cpu_workqueue_struct *cpu_wq;
61 	struct list_head list;
62 	const char *name;
63 	int singlethread;
64 	int freezeable;		/* Freeze threads during suspend */
65 #ifdef CONFIG_LOCKDEP
66 	struct lockdep_map lockdep_map;
67 #endif
68 };
69 
70 /* Serializes the accesses to the list of workqueues. */
71 static DEFINE_SPINLOCK(workqueue_lock);
72 static LIST_HEAD(workqueues);
73 
74 static int singlethread_cpu __read_mostly;
75 static cpumask_t cpu_singlethread_map __read_mostly;
76 /*
77  * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
78  * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
79  * which comes in between can't use for_each_online_cpu(). We could
80  * use cpu_possible_map, the cpumask below is more a documentation
81  * than optimization.
82  */
83 static cpumask_t cpu_populated_map __read_mostly;
84 
85 /* If it's single threaded, it isn't in the list of workqueues. */
86 static inline int is_single_threaded(struct workqueue_struct *wq)
87 {
88 	return wq->singlethread;
89 }
90 
91 static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq)
92 {
93 	return is_single_threaded(wq)
94 		? &cpu_singlethread_map : &cpu_populated_map;
95 }
96 
97 static
98 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
99 {
100 	if (unlikely(is_single_threaded(wq)))
101 		cpu = singlethread_cpu;
102 	return per_cpu_ptr(wq->cpu_wq, cpu);
103 }
104 
105 /*
106  * Set the workqueue on which a work item is to be run
107  * - Must *only* be called if the pending flag is set
108  */
109 static inline void set_wq_data(struct work_struct *work,
110 				struct cpu_workqueue_struct *cwq)
111 {
112 	unsigned long new;
113 
114 	BUG_ON(!work_pending(work));
115 
116 	new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
117 	new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
118 	atomic_long_set(&work->data, new);
119 }
120 
121 static inline
122 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
123 {
124 	return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
125 }
126 
127 static void insert_work(struct cpu_workqueue_struct *cwq,
128 				struct work_struct *work, int tail)
129 {
130 	set_wq_data(work, cwq);
131 	/*
132 	 * Ensure that we get the right work->data if we see the
133 	 * result of list_add() below, see try_to_grab_pending().
134 	 */
135 	smp_wmb();
136 	if (tail)
137 		list_add_tail(&work->entry, &cwq->worklist);
138 	else
139 		list_add(&work->entry, &cwq->worklist);
140 	wake_up(&cwq->more_work);
141 }
142 
143 /* Preempt must be disabled. */
144 static void __queue_work(struct cpu_workqueue_struct *cwq,
145 			 struct work_struct *work)
146 {
147 	unsigned long flags;
148 
149 	spin_lock_irqsave(&cwq->lock, flags);
150 	insert_work(cwq, work, 1);
151 	spin_unlock_irqrestore(&cwq->lock, flags);
152 }
153 
154 /**
155  * queue_work - queue work on a workqueue
156  * @wq: workqueue to use
157  * @work: work to queue
158  *
159  * Returns 0 if @work was already on a queue, non-zero otherwise.
160  *
161  * We queue the work to the CPU it was submitted, but there is no
162  * guarantee that it will be processed by that CPU.
163  */
164 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
165 {
166 	int ret = 0;
167 
168 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
169 		BUG_ON(!list_empty(&work->entry));
170 		__queue_work(wq_per_cpu(wq, get_cpu()), work);
171 		put_cpu();
172 		ret = 1;
173 	}
174 	return ret;
175 }
176 EXPORT_SYMBOL_GPL(queue_work);
177 
178 void delayed_work_timer_fn(unsigned long __data)
179 {
180 	struct delayed_work *dwork = (struct delayed_work *)__data;
181 	struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
182 	struct workqueue_struct *wq = cwq->wq;
183 
184 	__queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
185 }
186 
187 /**
188  * queue_delayed_work - queue work on a workqueue after delay
189  * @wq: workqueue to use
190  * @dwork: delayable work to queue
191  * @delay: number of jiffies to wait before queueing
192  *
193  * Returns 0 if @work was already on a queue, non-zero otherwise.
194  */
195 int fastcall queue_delayed_work(struct workqueue_struct *wq,
196 			struct delayed_work *dwork, unsigned long delay)
197 {
198 	timer_stats_timer_set_start_info(&dwork->timer);
199 	if (delay == 0)
200 		return queue_work(wq, &dwork->work);
201 
202 	return queue_delayed_work_on(-1, wq, dwork, delay);
203 }
204 EXPORT_SYMBOL_GPL(queue_delayed_work);
205 
206 /**
207  * queue_delayed_work_on - queue work on specific CPU after delay
208  * @cpu: CPU number to execute work on
209  * @wq: workqueue to use
210  * @dwork: work to queue
211  * @delay: number of jiffies to wait before queueing
212  *
213  * Returns 0 if @work was already on a queue, non-zero otherwise.
214  */
215 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
216 			struct delayed_work *dwork, unsigned long delay)
217 {
218 	int ret = 0;
219 	struct timer_list *timer = &dwork->timer;
220 	struct work_struct *work = &dwork->work;
221 
222 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
223 		BUG_ON(timer_pending(timer));
224 		BUG_ON(!list_empty(&work->entry));
225 
226 		/* This stores cwq for the moment, for the timer_fn */
227 		set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
228 		timer->expires = jiffies + delay;
229 		timer->data = (unsigned long)dwork;
230 		timer->function = delayed_work_timer_fn;
231 
232 		if (unlikely(cpu >= 0))
233 			add_timer_on(timer, cpu);
234 		else
235 			add_timer(timer);
236 		ret = 1;
237 	}
238 	return ret;
239 }
240 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
241 
242 static void run_workqueue(struct cpu_workqueue_struct *cwq)
243 {
244 	spin_lock_irq(&cwq->lock);
245 	cwq->run_depth++;
246 	if (cwq->run_depth > 3) {
247 		/* morton gets to eat his hat */
248 		printk("%s: recursion depth exceeded: %d\n",
249 			__FUNCTION__, cwq->run_depth);
250 		dump_stack();
251 	}
252 	while (!list_empty(&cwq->worklist)) {
253 		struct work_struct *work = list_entry(cwq->worklist.next,
254 						struct work_struct, entry);
255 		work_func_t f = work->func;
256 #ifdef CONFIG_LOCKDEP
257 		/*
258 		 * It is permissible to free the struct work_struct
259 		 * from inside the function that is called from it,
260 		 * this we need to take into account for lockdep too.
261 		 * To avoid bogus "held lock freed" warnings as well
262 		 * as problems when looking into work->lockdep_map,
263 		 * make a copy and use that here.
264 		 */
265 		struct lockdep_map lockdep_map = work->lockdep_map;
266 #endif
267 
268 		cwq->current_work = work;
269 		list_del_init(cwq->worklist.next);
270 		spin_unlock_irq(&cwq->lock);
271 
272 		BUG_ON(get_wq_data(work) != cwq);
273 		work_clear_pending(work);
274 		lock_acquire(&cwq->wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
275 		lock_acquire(&lockdep_map, 0, 0, 0, 2, _THIS_IP_);
276 		f(work);
277 		lock_release(&lockdep_map, 1, _THIS_IP_);
278 		lock_release(&cwq->wq->lockdep_map, 1, _THIS_IP_);
279 
280 		if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
281 			printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
282 					"%s/0x%08x/%d\n",
283 					current->comm, preempt_count(),
284 				       	task_pid_nr(current));
285 			printk(KERN_ERR "    last function: ");
286 			print_symbol("%s\n", (unsigned long)f);
287 			debug_show_held_locks(current);
288 			dump_stack();
289 		}
290 
291 		spin_lock_irq(&cwq->lock);
292 		cwq->current_work = NULL;
293 	}
294 	cwq->run_depth--;
295 	spin_unlock_irq(&cwq->lock);
296 }
297 
298 static int worker_thread(void *__cwq)
299 {
300 	struct cpu_workqueue_struct *cwq = __cwq;
301 	DEFINE_WAIT(wait);
302 
303 	if (cwq->wq->freezeable)
304 		set_freezable();
305 
306 	set_user_nice(current, -5);
307 
308 	for (;;) {
309 		prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
310 		if (!freezing(current) &&
311 		    !kthread_should_stop() &&
312 		    list_empty(&cwq->worklist))
313 			schedule();
314 		finish_wait(&cwq->more_work, &wait);
315 
316 		try_to_freeze();
317 
318 		if (kthread_should_stop())
319 			break;
320 
321 		run_workqueue(cwq);
322 	}
323 
324 	return 0;
325 }
326 
327 struct wq_barrier {
328 	struct work_struct	work;
329 	struct completion	done;
330 };
331 
332 static void wq_barrier_func(struct work_struct *work)
333 {
334 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
335 	complete(&barr->done);
336 }
337 
338 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
339 					struct wq_barrier *barr, int tail)
340 {
341 	INIT_WORK(&barr->work, wq_barrier_func);
342 	__set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
343 
344 	init_completion(&barr->done);
345 
346 	insert_work(cwq, &barr->work, tail);
347 }
348 
349 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
350 {
351 	int active;
352 
353 	if (cwq->thread == current) {
354 		/*
355 		 * Probably keventd trying to flush its own queue. So simply run
356 		 * it by hand rather than deadlocking.
357 		 */
358 		run_workqueue(cwq);
359 		active = 1;
360 	} else {
361 		struct wq_barrier barr;
362 
363 		active = 0;
364 		spin_lock_irq(&cwq->lock);
365 		if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
366 			insert_wq_barrier(cwq, &barr, 1);
367 			active = 1;
368 		}
369 		spin_unlock_irq(&cwq->lock);
370 
371 		if (active)
372 			wait_for_completion(&barr.done);
373 	}
374 
375 	return active;
376 }
377 
378 /**
379  * flush_workqueue - ensure that any scheduled work has run to completion.
380  * @wq: workqueue to flush
381  *
382  * Forces execution of the workqueue and blocks until its completion.
383  * This is typically used in driver shutdown handlers.
384  *
385  * We sleep until all works which were queued on entry have been handled,
386  * but we are not livelocked by new incoming ones.
387  *
388  * This function used to run the workqueues itself.  Now we just wait for the
389  * helper threads to do it.
390  */
391 void fastcall flush_workqueue(struct workqueue_struct *wq)
392 {
393 	const cpumask_t *cpu_map = wq_cpu_map(wq);
394 	int cpu;
395 
396 	might_sleep();
397 	lock_acquire(&wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
398 	lock_release(&wq->lockdep_map, 1, _THIS_IP_);
399 	for_each_cpu_mask(cpu, *cpu_map)
400 		flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
401 }
402 EXPORT_SYMBOL_GPL(flush_workqueue);
403 
404 /*
405  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
406  * so this work can't be re-armed in any way.
407  */
408 static int try_to_grab_pending(struct work_struct *work)
409 {
410 	struct cpu_workqueue_struct *cwq;
411 	int ret = -1;
412 
413 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
414 		return 0;
415 
416 	/*
417 	 * The queueing is in progress, or it is already queued. Try to
418 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
419 	 */
420 
421 	cwq = get_wq_data(work);
422 	if (!cwq)
423 		return ret;
424 
425 	spin_lock_irq(&cwq->lock);
426 	if (!list_empty(&work->entry)) {
427 		/*
428 		 * This work is queued, but perhaps we locked the wrong cwq.
429 		 * In that case we must see the new value after rmb(), see
430 		 * insert_work()->wmb().
431 		 */
432 		smp_rmb();
433 		if (cwq == get_wq_data(work)) {
434 			list_del_init(&work->entry);
435 			ret = 1;
436 		}
437 	}
438 	spin_unlock_irq(&cwq->lock);
439 
440 	return ret;
441 }
442 
443 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
444 				struct work_struct *work)
445 {
446 	struct wq_barrier barr;
447 	int running = 0;
448 
449 	spin_lock_irq(&cwq->lock);
450 	if (unlikely(cwq->current_work == work)) {
451 		insert_wq_barrier(cwq, &barr, 0);
452 		running = 1;
453 	}
454 	spin_unlock_irq(&cwq->lock);
455 
456 	if (unlikely(running))
457 		wait_for_completion(&barr.done);
458 }
459 
460 static void wait_on_work(struct work_struct *work)
461 {
462 	struct cpu_workqueue_struct *cwq;
463 	struct workqueue_struct *wq;
464 	const cpumask_t *cpu_map;
465 	int cpu;
466 
467 	might_sleep();
468 
469 	lock_acquire(&work->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
470 	lock_release(&work->lockdep_map, 1, _THIS_IP_);
471 
472 	cwq = get_wq_data(work);
473 	if (!cwq)
474 		return;
475 
476 	wq = cwq->wq;
477 	cpu_map = wq_cpu_map(wq);
478 
479 	for_each_cpu_mask(cpu, *cpu_map)
480 		wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
481 }
482 
483 static int __cancel_work_timer(struct work_struct *work,
484 				struct timer_list* timer)
485 {
486 	int ret;
487 
488 	do {
489 		ret = (timer && likely(del_timer(timer)));
490 		if (!ret)
491 			ret = try_to_grab_pending(work);
492 		wait_on_work(work);
493 	} while (unlikely(ret < 0));
494 
495 	work_clear_pending(work);
496 	return ret;
497 }
498 
499 /**
500  * cancel_work_sync - block until a work_struct's callback has terminated
501  * @work: the work which is to be flushed
502  *
503  * Returns true if @work was pending.
504  *
505  * cancel_work_sync() will cancel the work if it is queued. If the work's
506  * callback appears to be running, cancel_work_sync() will block until it
507  * has completed.
508  *
509  * It is possible to use this function if the work re-queues itself. It can
510  * cancel the work even if it migrates to another workqueue, however in that
511  * case it only guarantees that work->func() has completed on the last queued
512  * workqueue.
513  *
514  * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
515  * pending, otherwise it goes into a busy-wait loop until the timer expires.
516  *
517  * The caller must ensure that workqueue_struct on which this work was last
518  * queued can't be destroyed before this function returns.
519  */
520 int cancel_work_sync(struct work_struct *work)
521 {
522 	return __cancel_work_timer(work, NULL);
523 }
524 EXPORT_SYMBOL_GPL(cancel_work_sync);
525 
526 /**
527  * cancel_delayed_work_sync - reliably kill off a delayed work.
528  * @dwork: the delayed work struct
529  *
530  * Returns true if @dwork was pending.
531  *
532  * It is possible to use this function if @dwork rearms itself via queue_work()
533  * or queue_delayed_work(). See also the comment for cancel_work_sync().
534  */
535 int cancel_delayed_work_sync(struct delayed_work *dwork)
536 {
537 	return __cancel_work_timer(&dwork->work, &dwork->timer);
538 }
539 EXPORT_SYMBOL(cancel_delayed_work_sync);
540 
541 static struct workqueue_struct *keventd_wq __read_mostly;
542 
543 /**
544  * schedule_work - put work task in global workqueue
545  * @work: job to be done
546  *
547  * This puts a job in the kernel-global workqueue.
548  */
549 int fastcall schedule_work(struct work_struct *work)
550 {
551 	return queue_work(keventd_wq, work);
552 }
553 EXPORT_SYMBOL(schedule_work);
554 
555 /**
556  * schedule_delayed_work - put work task in global workqueue after delay
557  * @dwork: job to be done
558  * @delay: number of jiffies to wait or 0 for immediate execution
559  *
560  * After waiting for a given time this puts a job in the kernel-global
561  * workqueue.
562  */
563 int fastcall schedule_delayed_work(struct delayed_work *dwork,
564 					unsigned long delay)
565 {
566 	timer_stats_timer_set_start_info(&dwork->timer);
567 	return queue_delayed_work(keventd_wq, dwork, delay);
568 }
569 EXPORT_SYMBOL(schedule_delayed_work);
570 
571 /**
572  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
573  * @cpu: cpu to use
574  * @dwork: job to be done
575  * @delay: number of jiffies to wait
576  *
577  * After waiting for a given time this puts a job in the kernel-global
578  * workqueue on the specified CPU.
579  */
580 int schedule_delayed_work_on(int cpu,
581 			struct delayed_work *dwork, unsigned long delay)
582 {
583 	return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
584 }
585 EXPORT_SYMBOL(schedule_delayed_work_on);
586 
587 /**
588  * schedule_on_each_cpu - call a function on each online CPU from keventd
589  * @func: the function to call
590  *
591  * Returns zero on success.
592  * Returns -ve errno on failure.
593  *
594  * schedule_on_each_cpu() is very slow.
595  */
596 int schedule_on_each_cpu(work_func_t func)
597 {
598 	int cpu;
599 	struct work_struct *works;
600 
601 	works = alloc_percpu(struct work_struct);
602 	if (!works)
603 		return -ENOMEM;
604 
605 	get_online_cpus();
606 	for_each_online_cpu(cpu) {
607 		struct work_struct *work = per_cpu_ptr(works, cpu);
608 
609 		INIT_WORK(work, func);
610 		set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
611 		__queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
612 	}
613 	flush_workqueue(keventd_wq);
614 	put_online_cpus();
615 	free_percpu(works);
616 	return 0;
617 }
618 
619 void flush_scheduled_work(void)
620 {
621 	flush_workqueue(keventd_wq);
622 }
623 EXPORT_SYMBOL(flush_scheduled_work);
624 
625 /**
626  * execute_in_process_context - reliably execute the routine with user context
627  * @fn:		the function to execute
628  * @ew:		guaranteed storage for the execute work structure (must
629  *		be available when the work executes)
630  *
631  * Executes the function immediately if process context is available,
632  * otherwise schedules the function for delayed execution.
633  *
634  * Returns:	0 - function was executed
635  *		1 - function was scheduled for execution
636  */
637 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
638 {
639 	if (!in_interrupt()) {
640 		fn(&ew->work);
641 		return 0;
642 	}
643 
644 	INIT_WORK(&ew->work, fn);
645 	schedule_work(&ew->work);
646 
647 	return 1;
648 }
649 EXPORT_SYMBOL_GPL(execute_in_process_context);
650 
651 int keventd_up(void)
652 {
653 	return keventd_wq != NULL;
654 }
655 
656 int current_is_keventd(void)
657 {
658 	struct cpu_workqueue_struct *cwq;
659 	int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
660 	int ret = 0;
661 
662 	BUG_ON(!keventd_wq);
663 
664 	cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
665 	if (current == cwq->thread)
666 		ret = 1;
667 
668 	return ret;
669 
670 }
671 
672 static struct cpu_workqueue_struct *
673 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
674 {
675 	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
676 
677 	cwq->wq = wq;
678 	spin_lock_init(&cwq->lock);
679 	INIT_LIST_HEAD(&cwq->worklist);
680 	init_waitqueue_head(&cwq->more_work);
681 
682 	return cwq;
683 }
684 
685 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
686 {
687 	struct workqueue_struct *wq = cwq->wq;
688 	const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d";
689 	struct task_struct *p;
690 
691 	p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
692 	/*
693 	 * Nobody can add the work_struct to this cwq,
694 	 *	if (caller is __create_workqueue)
695 	 *		nobody should see this wq
696 	 *	else // caller is CPU_UP_PREPARE
697 	 *		cpu is not on cpu_online_map
698 	 * so we can abort safely.
699 	 */
700 	if (IS_ERR(p))
701 		return PTR_ERR(p);
702 
703 	cwq->thread = p;
704 
705 	return 0;
706 }
707 
708 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
709 {
710 	struct task_struct *p = cwq->thread;
711 
712 	if (p != NULL) {
713 		if (cpu >= 0)
714 			kthread_bind(p, cpu);
715 		wake_up_process(p);
716 	}
717 }
718 
719 struct workqueue_struct *__create_workqueue_key(const char *name,
720 						int singlethread,
721 						int freezeable,
722 						struct lock_class_key *key,
723 						const char *lock_name)
724 {
725 	struct workqueue_struct *wq;
726 	struct cpu_workqueue_struct *cwq;
727 	int err = 0, cpu;
728 
729 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
730 	if (!wq)
731 		return NULL;
732 
733 	wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
734 	if (!wq->cpu_wq) {
735 		kfree(wq);
736 		return NULL;
737 	}
738 
739 	wq->name = name;
740 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
741 	wq->singlethread = singlethread;
742 	wq->freezeable = freezeable;
743 	INIT_LIST_HEAD(&wq->list);
744 
745 	if (singlethread) {
746 		cwq = init_cpu_workqueue(wq, singlethread_cpu);
747 		err = create_workqueue_thread(cwq, singlethread_cpu);
748 		start_workqueue_thread(cwq, -1);
749 	} else {
750 		get_online_cpus();
751 		spin_lock(&workqueue_lock);
752 		list_add(&wq->list, &workqueues);
753 		spin_unlock(&workqueue_lock);
754 
755 		for_each_possible_cpu(cpu) {
756 			cwq = init_cpu_workqueue(wq, cpu);
757 			if (err || !cpu_online(cpu))
758 				continue;
759 			err = create_workqueue_thread(cwq, cpu);
760 			start_workqueue_thread(cwq, cpu);
761 		}
762 		put_online_cpus();
763 	}
764 
765 	if (err) {
766 		destroy_workqueue(wq);
767 		wq = NULL;
768 	}
769 	return wq;
770 }
771 EXPORT_SYMBOL_GPL(__create_workqueue_key);
772 
773 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
774 {
775 	/*
776 	 * Our caller is either destroy_workqueue() or CPU_DEAD,
777 	 * get_online_cpus() protects cwq->thread.
778 	 */
779 	if (cwq->thread == NULL)
780 		return;
781 
782 	lock_acquire(&cwq->wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
783 	lock_release(&cwq->wq->lockdep_map, 1, _THIS_IP_);
784 
785 	flush_cpu_workqueue(cwq);
786 	/*
787 	 * If the caller is CPU_DEAD and cwq->worklist was not empty,
788 	 * a concurrent flush_workqueue() can insert a barrier after us.
789 	 * However, in that case run_workqueue() won't return and check
790 	 * kthread_should_stop() until it flushes all work_struct's.
791 	 * When ->worklist becomes empty it is safe to exit because no
792 	 * more work_structs can be queued on this cwq: flush_workqueue
793 	 * checks list_empty(), and a "normal" queue_work() can't use
794 	 * a dead CPU.
795 	 */
796 	kthread_stop(cwq->thread);
797 	cwq->thread = NULL;
798 }
799 
800 /**
801  * destroy_workqueue - safely terminate a workqueue
802  * @wq: target workqueue
803  *
804  * Safely destroy a workqueue. All work currently pending will be done first.
805  */
806 void destroy_workqueue(struct workqueue_struct *wq)
807 {
808 	const cpumask_t *cpu_map = wq_cpu_map(wq);
809 	struct cpu_workqueue_struct *cwq;
810 	int cpu;
811 
812 	get_online_cpus();
813 	spin_lock(&workqueue_lock);
814 	list_del(&wq->list);
815 	spin_unlock(&workqueue_lock);
816 	put_online_cpus();
817 
818 	for_each_cpu_mask(cpu, *cpu_map) {
819 		cwq = per_cpu_ptr(wq->cpu_wq, cpu);
820 		cleanup_workqueue_thread(cwq, cpu);
821 	}
822 
823 	free_percpu(wq->cpu_wq);
824 	kfree(wq);
825 }
826 EXPORT_SYMBOL_GPL(destroy_workqueue);
827 
828 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
829 						unsigned long action,
830 						void *hcpu)
831 {
832 	unsigned int cpu = (unsigned long)hcpu;
833 	struct cpu_workqueue_struct *cwq;
834 	struct workqueue_struct *wq;
835 
836 	action &= ~CPU_TASKS_FROZEN;
837 
838 	switch (action) {
839 
840 	case CPU_UP_PREPARE:
841 		cpu_set(cpu, cpu_populated_map);
842 	}
843 
844 	list_for_each_entry(wq, &workqueues, list) {
845 		cwq = per_cpu_ptr(wq->cpu_wq, cpu);
846 
847 		switch (action) {
848 		case CPU_UP_PREPARE:
849 			if (!create_workqueue_thread(cwq, cpu))
850 				break;
851 			printk(KERN_ERR "workqueue [%s] for %i failed\n",
852 				wq->name, cpu);
853 			return NOTIFY_BAD;
854 
855 		case CPU_ONLINE:
856 			start_workqueue_thread(cwq, cpu);
857 			break;
858 
859 		case CPU_UP_CANCELED:
860 			start_workqueue_thread(cwq, -1);
861 		case CPU_DEAD:
862 			cleanup_workqueue_thread(cwq, cpu);
863 			break;
864 		}
865 	}
866 
867 	return NOTIFY_OK;
868 }
869 
870 void __init init_workqueues(void)
871 {
872 	cpu_populated_map = cpu_online_map;
873 	singlethread_cpu = first_cpu(cpu_possible_map);
874 	cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu);
875 	hotcpu_notifier(workqueue_cpu_callback, 0);
876 	keventd_wq = create_workqueue("events");
877 	BUG_ON(!keventd_wq);
878 }
879