xref: /linux/kernel/workqueue.c (revision 4745dc8abb0a0a9851c07265eea01d844886d5c8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 
54 #include "workqueue_internal.h"
55 
56 enum {
57 	/*
58 	 * worker_pool flags
59 	 *
60 	 * A bound pool is either associated or disassociated with its CPU.
61 	 * While associated (!DISASSOCIATED), all workers are bound to the
62 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 	 * is in effect.
64 	 *
65 	 * While DISASSOCIATED, the cpu may be offline and all workers have
66 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
67 	 * be executing on any CPU.  The pool behaves as an unbound one.
68 	 *
69 	 * Note that DISASSOCIATED should be flipped only while holding
70 	 * wq_pool_attach_mutex to avoid changing binding state while
71 	 * worker_attach_to_pool() is in progress.
72 	 */
73 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
74 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
75 
76 	/* worker flags */
77 	WORKER_DIE		= 1 << 1,	/* die die die */
78 	WORKER_IDLE		= 1 << 2,	/* is idle */
79 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
80 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
81 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
82 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
83 
84 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
85 				  WORKER_UNBOUND | WORKER_REBOUND,
86 
87 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
88 
89 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
90 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
91 
92 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
93 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
94 
95 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
96 						/* call for help after 10ms
97 						   (min two ticks) */
98 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
99 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
100 
101 	/*
102 	 * Rescue workers are used only on emergencies and shared by
103 	 * all cpus.  Give MIN_NICE.
104 	 */
105 	RESCUER_NICE_LEVEL	= MIN_NICE,
106 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
107 
108 	WQ_NAME_LEN		= 24,
109 };
110 
111 /*
112  * Structure fields follow one of the following exclusion rules.
113  *
114  * I: Modifiable by initialization/destruction paths and read-only for
115  *    everyone else.
116  *
117  * P: Preemption protected.  Disabling preemption is enough and should
118  *    only be modified and accessed from the local cpu.
119  *
120  * L: pool->lock protected.  Access with pool->lock held.
121  *
122  * X: During normal operation, modification requires pool->lock and should
123  *    be done only from local cpu.  Either disabling preemption on local
124  *    cpu or grabbing pool->lock is enough for read access.  If
125  *    POOL_DISASSOCIATED is set, it's identical to L.
126  *
127  * A: wq_pool_attach_mutex protected.
128  *
129  * PL: wq_pool_mutex protected.
130  *
131  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
132  *
133  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
134  *
135  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
136  *      RCU for reads.
137  *
138  * WQ: wq->mutex protected.
139  *
140  * WR: wq->mutex protected for writes.  RCU protected for reads.
141  *
142  * MD: wq_mayday_lock protected.
143  */
144 
145 /* struct worker is defined in workqueue_internal.h */
146 
147 struct worker_pool {
148 	spinlock_t		lock;		/* the pool lock */
149 	int			cpu;		/* I: the associated cpu */
150 	int			node;		/* I: the associated node ID */
151 	int			id;		/* I: pool ID */
152 	unsigned int		flags;		/* X: flags */
153 
154 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
155 
156 	struct list_head	worklist;	/* L: list of pending works */
157 
158 	int			nr_workers;	/* L: total number of workers */
159 	int			nr_idle;	/* L: currently idle workers */
160 
161 	struct list_head	idle_list;	/* X: list of idle workers */
162 	struct timer_list	idle_timer;	/* L: worker idle timeout */
163 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
164 
165 	/* a workers is either on busy_hash or idle_list, or the manager */
166 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
167 						/* L: hash of busy workers */
168 
169 	struct worker		*manager;	/* L: purely informational */
170 	struct list_head	workers;	/* A: attached workers */
171 	struct completion	*detach_completion; /* all workers detached */
172 
173 	struct ida		worker_ida;	/* worker IDs for task name */
174 
175 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
176 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
177 	int			refcnt;		/* PL: refcnt for unbound pools */
178 
179 	/*
180 	 * The current concurrency level.  As it's likely to be accessed
181 	 * from other CPUs during try_to_wake_up(), put it in a separate
182 	 * cacheline.
183 	 */
184 	atomic_t		nr_running ____cacheline_aligned_in_smp;
185 
186 	/*
187 	 * Destruction of pool is RCU protected to allow dereferences
188 	 * from get_work_pool().
189 	 */
190 	struct rcu_head		rcu;
191 } ____cacheline_aligned_in_smp;
192 
193 /*
194  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
195  * of work_struct->data are used for flags and the remaining high bits
196  * point to the pwq; thus, pwqs need to be aligned at two's power of the
197  * number of flag bits.
198  */
199 struct pool_workqueue {
200 	struct worker_pool	*pool;		/* I: the associated pool */
201 	struct workqueue_struct *wq;		/* I: the owning workqueue */
202 	int			work_color;	/* L: current color */
203 	int			flush_color;	/* L: flushing color */
204 	int			refcnt;		/* L: reference count */
205 	int			nr_in_flight[WORK_NR_COLORS];
206 						/* L: nr of in_flight works */
207 	int			nr_active;	/* L: nr of active works */
208 	int			max_active;	/* L: max active works */
209 	struct list_head	delayed_works;	/* L: delayed works */
210 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
211 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
212 
213 	/*
214 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
215 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
216 	 * itself is also RCU protected so that the first pwq can be
217 	 * determined without grabbing wq->mutex.
218 	 */
219 	struct work_struct	unbound_release_work;
220 	struct rcu_head		rcu;
221 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
222 
223 /*
224  * Structure used to wait for workqueue flush.
225  */
226 struct wq_flusher {
227 	struct list_head	list;		/* WQ: list of flushers */
228 	int			flush_color;	/* WQ: flush color waiting for */
229 	struct completion	done;		/* flush completion */
230 };
231 
232 struct wq_device;
233 
234 /*
235  * The externally visible workqueue.  It relays the issued work items to
236  * the appropriate worker_pool through its pool_workqueues.
237  */
238 struct workqueue_struct {
239 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
240 	struct list_head	list;		/* PR: list of all workqueues */
241 
242 	struct mutex		mutex;		/* protects this wq */
243 	int			work_color;	/* WQ: current work color */
244 	int			flush_color;	/* WQ: current flush color */
245 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
246 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
247 	struct list_head	flusher_queue;	/* WQ: flush waiters */
248 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
249 
250 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
251 	struct worker		*rescuer;	/* I: rescue worker */
252 
253 	int			nr_drainers;	/* WQ: drain in progress */
254 	int			saved_max_active; /* WQ: saved pwq max_active */
255 
256 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
257 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
258 
259 #ifdef CONFIG_SYSFS
260 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
261 #endif
262 #ifdef CONFIG_LOCKDEP
263 	char			*lock_name;
264 	struct lock_class_key	key;
265 	struct lockdep_map	lockdep_map;
266 #endif
267 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
268 
269 	/*
270 	 * Destruction of workqueue_struct is RCU protected to allow walking
271 	 * the workqueues list without grabbing wq_pool_mutex.
272 	 * This is used to dump all workqueues from sysrq.
273 	 */
274 	struct rcu_head		rcu;
275 
276 	/* hot fields used during command issue, aligned to cacheline */
277 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
278 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
279 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
280 };
281 
282 static struct kmem_cache *pwq_cache;
283 
284 static cpumask_var_t *wq_numa_possible_cpumask;
285 					/* possible CPUs of each node */
286 
287 static bool wq_disable_numa;
288 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
289 
290 /* see the comment above the definition of WQ_POWER_EFFICIENT */
291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
292 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
293 
294 static bool wq_online;			/* can kworkers be created yet? */
295 
296 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
297 
298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
300 
301 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
303 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
304 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
305 
306 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
307 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
308 
309 /* PL: allowable cpus for unbound wqs and work items */
310 static cpumask_var_t wq_unbound_cpumask;
311 
312 /* CPU where unbound work was last round robin scheduled from this CPU */
313 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
314 
315 /*
316  * Local execution of unbound work items is no longer guaranteed.  The
317  * following always forces round-robin CPU selection on unbound work items
318  * to uncover usages which depend on it.
319  */
320 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
321 static bool wq_debug_force_rr_cpu = true;
322 #else
323 static bool wq_debug_force_rr_cpu = false;
324 #endif
325 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
326 
327 /* the per-cpu worker pools */
328 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
329 
330 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
331 
332 /* PL: hash of all unbound pools keyed by pool->attrs */
333 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
334 
335 /* I: attributes used when instantiating standard unbound pools on demand */
336 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
337 
338 /* I: attributes used when instantiating ordered pools on demand */
339 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
340 
341 struct workqueue_struct *system_wq __read_mostly;
342 EXPORT_SYMBOL(system_wq);
343 struct workqueue_struct *system_highpri_wq __read_mostly;
344 EXPORT_SYMBOL_GPL(system_highpri_wq);
345 struct workqueue_struct *system_long_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_long_wq);
347 struct workqueue_struct *system_unbound_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_unbound_wq);
349 struct workqueue_struct *system_freezable_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_freezable_wq);
351 struct workqueue_struct *system_power_efficient_wq __read_mostly;
352 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
353 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
354 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
355 
356 static int worker_thread(void *__worker);
357 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
358 
359 #define CREATE_TRACE_POINTS
360 #include <trace/events/workqueue.h>
361 
362 #define assert_rcu_or_pool_mutex()					\
363 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
364 			 !lockdep_is_held(&wq_pool_mutex),		\
365 			 "RCU or wq_pool_mutex should be held")
366 
367 #define assert_rcu_or_wq_mutex(wq)					\
368 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
369 			 !lockdep_is_held(&wq->mutex),			\
370 			 "RCU or wq->mutex should be held")
371 
372 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
373 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
374 			 !lockdep_is_held(&wq->mutex) &&		\
375 			 !lockdep_is_held(&wq_pool_mutex),		\
376 			 "RCU, wq->mutex or wq_pool_mutex should be held")
377 
378 #define for_each_cpu_worker_pool(pool, cpu)				\
379 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
380 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
381 	     (pool)++)
382 
383 /**
384  * for_each_pool - iterate through all worker_pools in the system
385  * @pool: iteration cursor
386  * @pi: integer used for iteration
387  *
388  * This must be called either with wq_pool_mutex held or RCU read
389  * locked.  If the pool needs to be used beyond the locking in effect, the
390  * caller is responsible for guaranteeing that the pool stays online.
391  *
392  * The if/else clause exists only for the lockdep assertion and can be
393  * ignored.
394  */
395 #define for_each_pool(pool, pi)						\
396 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
397 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
398 		else
399 
400 /**
401  * for_each_pool_worker - iterate through all workers of a worker_pool
402  * @worker: iteration cursor
403  * @pool: worker_pool to iterate workers of
404  *
405  * This must be called with wq_pool_attach_mutex.
406  *
407  * The if/else clause exists only for the lockdep assertion and can be
408  * ignored.
409  */
410 #define for_each_pool_worker(worker, pool)				\
411 	list_for_each_entry((worker), &(pool)->workers, node)		\
412 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
413 		else
414 
415 /**
416  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
417  * @pwq: iteration cursor
418  * @wq: the target workqueue
419  *
420  * This must be called either with wq->mutex held or RCU read locked.
421  * If the pwq needs to be used beyond the locking in effect, the caller is
422  * responsible for guaranteeing that the pwq stays online.
423  *
424  * The if/else clause exists only for the lockdep assertion and can be
425  * ignored.
426  */
427 #define for_each_pwq(pwq, wq)						\
428 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
429 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
430 		else
431 
432 #ifdef CONFIG_DEBUG_OBJECTS_WORK
433 
434 static struct debug_obj_descr work_debug_descr;
435 
436 static void *work_debug_hint(void *addr)
437 {
438 	return ((struct work_struct *) addr)->func;
439 }
440 
441 static bool work_is_static_object(void *addr)
442 {
443 	struct work_struct *work = addr;
444 
445 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
446 }
447 
448 /*
449  * fixup_init is called when:
450  * - an active object is initialized
451  */
452 static bool work_fixup_init(void *addr, enum debug_obj_state state)
453 {
454 	struct work_struct *work = addr;
455 
456 	switch (state) {
457 	case ODEBUG_STATE_ACTIVE:
458 		cancel_work_sync(work);
459 		debug_object_init(work, &work_debug_descr);
460 		return true;
461 	default:
462 		return false;
463 	}
464 }
465 
466 /*
467  * fixup_free is called when:
468  * - an active object is freed
469  */
470 static bool work_fixup_free(void *addr, enum debug_obj_state state)
471 {
472 	struct work_struct *work = addr;
473 
474 	switch (state) {
475 	case ODEBUG_STATE_ACTIVE:
476 		cancel_work_sync(work);
477 		debug_object_free(work, &work_debug_descr);
478 		return true;
479 	default:
480 		return false;
481 	}
482 }
483 
484 static struct debug_obj_descr work_debug_descr = {
485 	.name		= "work_struct",
486 	.debug_hint	= work_debug_hint,
487 	.is_static_object = work_is_static_object,
488 	.fixup_init	= work_fixup_init,
489 	.fixup_free	= work_fixup_free,
490 };
491 
492 static inline void debug_work_activate(struct work_struct *work)
493 {
494 	debug_object_activate(work, &work_debug_descr);
495 }
496 
497 static inline void debug_work_deactivate(struct work_struct *work)
498 {
499 	debug_object_deactivate(work, &work_debug_descr);
500 }
501 
502 void __init_work(struct work_struct *work, int onstack)
503 {
504 	if (onstack)
505 		debug_object_init_on_stack(work, &work_debug_descr);
506 	else
507 		debug_object_init(work, &work_debug_descr);
508 }
509 EXPORT_SYMBOL_GPL(__init_work);
510 
511 void destroy_work_on_stack(struct work_struct *work)
512 {
513 	debug_object_free(work, &work_debug_descr);
514 }
515 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
516 
517 void destroy_delayed_work_on_stack(struct delayed_work *work)
518 {
519 	destroy_timer_on_stack(&work->timer);
520 	debug_object_free(&work->work, &work_debug_descr);
521 }
522 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
523 
524 #else
525 static inline void debug_work_activate(struct work_struct *work) { }
526 static inline void debug_work_deactivate(struct work_struct *work) { }
527 #endif
528 
529 /**
530  * worker_pool_assign_id - allocate ID and assing it to @pool
531  * @pool: the pool pointer of interest
532  *
533  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
534  * successfully, -errno on failure.
535  */
536 static int worker_pool_assign_id(struct worker_pool *pool)
537 {
538 	int ret;
539 
540 	lockdep_assert_held(&wq_pool_mutex);
541 
542 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
543 			GFP_KERNEL);
544 	if (ret >= 0) {
545 		pool->id = ret;
546 		return 0;
547 	}
548 	return ret;
549 }
550 
551 /**
552  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
553  * @wq: the target workqueue
554  * @node: the node ID
555  *
556  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
557  * read locked.
558  * If the pwq needs to be used beyond the locking in effect, the caller is
559  * responsible for guaranteeing that the pwq stays online.
560  *
561  * Return: The unbound pool_workqueue for @node.
562  */
563 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
564 						  int node)
565 {
566 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
567 
568 	/*
569 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
570 	 * delayed item is pending.  The plan is to keep CPU -> NODE
571 	 * mapping valid and stable across CPU on/offlines.  Once that
572 	 * happens, this workaround can be removed.
573 	 */
574 	if (unlikely(node == NUMA_NO_NODE))
575 		return wq->dfl_pwq;
576 
577 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
578 }
579 
580 static unsigned int work_color_to_flags(int color)
581 {
582 	return color << WORK_STRUCT_COLOR_SHIFT;
583 }
584 
585 static int get_work_color(struct work_struct *work)
586 {
587 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
588 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
589 }
590 
591 static int work_next_color(int color)
592 {
593 	return (color + 1) % WORK_NR_COLORS;
594 }
595 
596 /*
597  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
598  * contain the pointer to the queued pwq.  Once execution starts, the flag
599  * is cleared and the high bits contain OFFQ flags and pool ID.
600  *
601  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
602  * and clear_work_data() can be used to set the pwq, pool or clear
603  * work->data.  These functions should only be called while the work is
604  * owned - ie. while the PENDING bit is set.
605  *
606  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
607  * corresponding to a work.  Pool is available once the work has been
608  * queued anywhere after initialization until it is sync canceled.  pwq is
609  * available only while the work item is queued.
610  *
611  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
612  * canceled.  While being canceled, a work item may have its PENDING set
613  * but stay off timer and worklist for arbitrarily long and nobody should
614  * try to steal the PENDING bit.
615  */
616 static inline void set_work_data(struct work_struct *work, unsigned long data,
617 				 unsigned long flags)
618 {
619 	WARN_ON_ONCE(!work_pending(work));
620 	atomic_long_set(&work->data, data | flags | work_static(work));
621 }
622 
623 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
624 			 unsigned long extra_flags)
625 {
626 	set_work_data(work, (unsigned long)pwq,
627 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
628 }
629 
630 static void set_work_pool_and_keep_pending(struct work_struct *work,
631 					   int pool_id)
632 {
633 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
634 		      WORK_STRUCT_PENDING);
635 }
636 
637 static void set_work_pool_and_clear_pending(struct work_struct *work,
638 					    int pool_id)
639 {
640 	/*
641 	 * The following wmb is paired with the implied mb in
642 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
643 	 * here are visible to and precede any updates by the next PENDING
644 	 * owner.
645 	 */
646 	smp_wmb();
647 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
648 	/*
649 	 * The following mb guarantees that previous clear of a PENDING bit
650 	 * will not be reordered with any speculative LOADS or STORES from
651 	 * work->current_func, which is executed afterwards.  This possible
652 	 * reordering can lead to a missed execution on attempt to queue
653 	 * the same @work.  E.g. consider this case:
654 	 *
655 	 *   CPU#0                         CPU#1
656 	 *   ----------------------------  --------------------------------
657 	 *
658 	 * 1  STORE event_indicated
659 	 * 2  queue_work_on() {
660 	 * 3    test_and_set_bit(PENDING)
661 	 * 4 }                             set_..._and_clear_pending() {
662 	 * 5                                 set_work_data() # clear bit
663 	 * 6                                 smp_mb()
664 	 * 7                               work->current_func() {
665 	 * 8				      LOAD event_indicated
666 	 *				   }
667 	 *
668 	 * Without an explicit full barrier speculative LOAD on line 8 can
669 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
670 	 * CPU#0 observes the PENDING bit is still set and new execution of
671 	 * a @work is not queued in a hope, that CPU#1 will eventually
672 	 * finish the queued @work.  Meanwhile CPU#1 does not see
673 	 * event_indicated is set, because speculative LOAD was executed
674 	 * before actual STORE.
675 	 */
676 	smp_mb();
677 }
678 
679 static void clear_work_data(struct work_struct *work)
680 {
681 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
682 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
683 }
684 
685 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
686 {
687 	unsigned long data = atomic_long_read(&work->data);
688 
689 	if (data & WORK_STRUCT_PWQ)
690 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
691 	else
692 		return NULL;
693 }
694 
695 /**
696  * get_work_pool - return the worker_pool a given work was associated with
697  * @work: the work item of interest
698  *
699  * Pools are created and destroyed under wq_pool_mutex, and allows read
700  * access under RCU read lock.  As such, this function should be
701  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
702  *
703  * All fields of the returned pool are accessible as long as the above
704  * mentioned locking is in effect.  If the returned pool needs to be used
705  * beyond the critical section, the caller is responsible for ensuring the
706  * returned pool is and stays online.
707  *
708  * Return: The worker_pool @work was last associated with.  %NULL if none.
709  */
710 static struct worker_pool *get_work_pool(struct work_struct *work)
711 {
712 	unsigned long data = atomic_long_read(&work->data);
713 	int pool_id;
714 
715 	assert_rcu_or_pool_mutex();
716 
717 	if (data & WORK_STRUCT_PWQ)
718 		return ((struct pool_workqueue *)
719 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
720 
721 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
722 	if (pool_id == WORK_OFFQ_POOL_NONE)
723 		return NULL;
724 
725 	return idr_find(&worker_pool_idr, pool_id);
726 }
727 
728 /**
729  * get_work_pool_id - return the worker pool ID a given work is associated with
730  * @work: the work item of interest
731  *
732  * Return: The worker_pool ID @work was last associated with.
733  * %WORK_OFFQ_POOL_NONE if none.
734  */
735 static int get_work_pool_id(struct work_struct *work)
736 {
737 	unsigned long data = atomic_long_read(&work->data);
738 
739 	if (data & WORK_STRUCT_PWQ)
740 		return ((struct pool_workqueue *)
741 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
742 
743 	return data >> WORK_OFFQ_POOL_SHIFT;
744 }
745 
746 static void mark_work_canceling(struct work_struct *work)
747 {
748 	unsigned long pool_id = get_work_pool_id(work);
749 
750 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
751 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
752 }
753 
754 static bool work_is_canceling(struct work_struct *work)
755 {
756 	unsigned long data = atomic_long_read(&work->data);
757 
758 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
759 }
760 
761 /*
762  * Policy functions.  These define the policies on how the global worker
763  * pools are managed.  Unless noted otherwise, these functions assume that
764  * they're being called with pool->lock held.
765  */
766 
767 static bool __need_more_worker(struct worker_pool *pool)
768 {
769 	return !atomic_read(&pool->nr_running);
770 }
771 
772 /*
773  * Need to wake up a worker?  Called from anything but currently
774  * running workers.
775  *
776  * Note that, because unbound workers never contribute to nr_running, this
777  * function will always return %true for unbound pools as long as the
778  * worklist isn't empty.
779  */
780 static bool need_more_worker(struct worker_pool *pool)
781 {
782 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
783 }
784 
785 /* Can I start working?  Called from busy but !running workers. */
786 static bool may_start_working(struct worker_pool *pool)
787 {
788 	return pool->nr_idle;
789 }
790 
791 /* Do I need to keep working?  Called from currently running workers. */
792 static bool keep_working(struct worker_pool *pool)
793 {
794 	return !list_empty(&pool->worklist) &&
795 		atomic_read(&pool->nr_running) <= 1;
796 }
797 
798 /* Do we need a new worker?  Called from manager. */
799 static bool need_to_create_worker(struct worker_pool *pool)
800 {
801 	return need_more_worker(pool) && !may_start_working(pool);
802 }
803 
804 /* Do we have too many workers and should some go away? */
805 static bool too_many_workers(struct worker_pool *pool)
806 {
807 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
808 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
809 	int nr_busy = pool->nr_workers - nr_idle;
810 
811 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
812 }
813 
814 /*
815  * Wake up functions.
816  */
817 
818 /* Return the first idle worker.  Safe with preemption disabled */
819 static struct worker *first_idle_worker(struct worker_pool *pool)
820 {
821 	if (unlikely(list_empty(&pool->idle_list)))
822 		return NULL;
823 
824 	return list_first_entry(&pool->idle_list, struct worker, entry);
825 }
826 
827 /**
828  * wake_up_worker - wake up an idle worker
829  * @pool: worker pool to wake worker from
830  *
831  * Wake up the first idle worker of @pool.
832  *
833  * CONTEXT:
834  * spin_lock_irq(pool->lock).
835  */
836 static void wake_up_worker(struct worker_pool *pool)
837 {
838 	struct worker *worker = first_idle_worker(pool);
839 
840 	if (likely(worker))
841 		wake_up_process(worker->task);
842 }
843 
844 /**
845  * wq_worker_running - a worker is running again
846  * @task: task waking up
847  *
848  * This function is called when a worker returns from schedule()
849  */
850 void wq_worker_running(struct task_struct *task)
851 {
852 	struct worker *worker = kthread_data(task);
853 
854 	if (!worker->sleeping)
855 		return;
856 	if (!(worker->flags & WORKER_NOT_RUNNING))
857 		atomic_inc(&worker->pool->nr_running);
858 	worker->sleeping = 0;
859 }
860 
861 /**
862  * wq_worker_sleeping - a worker is going to sleep
863  * @task: task going to sleep
864  *
865  * This function is called from schedule() when a busy worker is
866  * going to sleep.
867  */
868 void wq_worker_sleeping(struct task_struct *task)
869 {
870 	struct worker *next, *worker = kthread_data(task);
871 	struct worker_pool *pool;
872 
873 	/*
874 	 * Rescuers, which may not have all the fields set up like normal
875 	 * workers, also reach here, let's not access anything before
876 	 * checking NOT_RUNNING.
877 	 */
878 	if (worker->flags & WORKER_NOT_RUNNING)
879 		return;
880 
881 	pool = worker->pool;
882 
883 	if (WARN_ON_ONCE(worker->sleeping))
884 		return;
885 
886 	worker->sleeping = 1;
887 	spin_lock_irq(&pool->lock);
888 
889 	/*
890 	 * The counterpart of the following dec_and_test, implied mb,
891 	 * worklist not empty test sequence is in insert_work().
892 	 * Please read comment there.
893 	 *
894 	 * NOT_RUNNING is clear.  This means that we're bound to and
895 	 * running on the local cpu w/ rq lock held and preemption
896 	 * disabled, which in turn means that none else could be
897 	 * manipulating idle_list, so dereferencing idle_list without pool
898 	 * lock is safe.
899 	 */
900 	if (atomic_dec_and_test(&pool->nr_running) &&
901 	    !list_empty(&pool->worklist)) {
902 		next = first_idle_worker(pool);
903 		if (next)
904 			wake_up_process(next->task);
905 	}
906 	spin_unlock_irq(&pool->lock);
907 }
908 
909 /**
910  * wq_worker_last_func - retrieve worker's last work function
911  * @task: Task to retrieve last work function of.
912  *
913  * Determine the last function a worker executed. This is called from
914  * the scheduler to get a worker's last known identity.
915  *
916  * CONTEXT:
917  * spin_lock_irq(rq->lock)
918  *
919  * This function is called during schedule() when a kworker is going
920  * to sleep. It's used by psi to identify aggregation workers during
921  * dequeuing, to allow periodic aggregation to shut-off when that
922  * worker is the last task in the system or cgroup to go to sleep.
923  *
924  * As this function doesn't involve any workqueue-related locking, it
925  * only returns stable values when called from inside the scheduler's
926  * queuing and dequeuing paths, when @task, which must be a kworker,
927  * is guaranteed to not be processing any works.
928  *
929  * Return:
930  * The last work function %current executed as a worker, NULL if it
931  * hasn't executed any work yet.
932  */
933 work_func_t wq_worker_last_func(struct task_struct *task)
934 {
935 	struct worker *worker = kthread_data(task);
936 
937 	return worker->last_func;
938 }
939 
940 /**
941  * worker_set_flags - set worker flags and adjust nr_running accordingly
942  * @worker: self
943  * @flags: flags to set
944  *
945  * Set @flags in @worker->flags and adjust nr_running accordingly.
946  *
947  * CONTEXT:
948  * spin_lock_irq(pool->lock)
949  */
950 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
951 {
952 	struct worker_pool *pool = worker->pool;
953 
954 	WARN_ON_ONCE(worker->task != current);
955 
956 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
957 	if ((flags & WORKER_NOT_RUNNING) &&
958 	    !(worker->flags & WORKER_NOT_RUNNING)) {
959 		atomic_dec(&pool->nr_running);
960 	}
961 
962 	worker->flags |= flags;
963 }
964 
965 /**
966  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
967  * @worker: self
968  * @flags: flags to clear
969  *
970  * Clear @flags in @worker->flags and adjust nr_running accordingly.
971  *
972  * CONTEXT:
973  * spin_lock_irq(pool->lock)
974  */
975 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
976 {
977 	struct worker_pool *pool = worker->pool;
978 	unsigned int oflags = worker->flags;
979 
980 	WARN_ON_ONCE(worker->task != current);
981 
982 	worker->flags &= ~flags;
983 
984 	/*
985 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
986 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
987 	 * of multiple flags, not a single flag.
988 	 */
989 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
990 		if (!(worker->flags & WORKER_NOT_RUNNING))
991 			atomic_inc(&pool->nr_running);
992 }
993 
994 /**
995  * find_worker_executing_work - find worker which is executing a work
996  * @pool: pool of interest
997  * @work: work to find worker for
998  *
999  * Find a worker which is executing @work on @pool by searching
1000  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1001  * to match, its current execution should match the address of @work and
1002  * its work function.  This is to avoid unwanted dependency between
1003  * unrelated work executions through a work item being recycled while still
1004  * being executed.
1005  *
1006  * This is a bit tricky.  A work item may be freed once its execution
1007  * starts and nothing prevents the freed area from being recycled for
1008  * another work item.  If the same work item address ends up being reused
1009  * before the original execution finishes, workqueue will identify the
1010  * recycled work item as currently executing and make it wait until the
1011  * current execution finishes, introducing an unwanted dependency.
1012  *
1013  * This function checks the work item address and work function to avoid
1014  * false positives.  Note that this isn't complete as one may construct a
1015  * work function which can introduce dependency onto itself through a
1016  * recycled work item.  Well, if somebody wants to shoot oneself in the
1017  * foot that badly, there's only so much we can do, and if such deadlock
1018  * actually occurs, it should be easy to locate the culprit work function.
1019  *
1020  * CONTEXT:
1021  * spin_lock_irq(pool->lock).
1022  *
1023  * Return:
1024  * Pointer to worker which is executing @work if found, %NULL
1025  * otherwise.
1026  */
1027 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1028 						 struct work_struct *work)
1029 {
1030 	struct worker *worker;
1031 
1032 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1033 			       (unsigned long)work)
1034 		if (worker->current_work == work &&
1035 		    worker->current_func == work->func)
1036 			return worker;
1037 
1038 	return NULL;
1039 }
1040 
1041 /**
1042  * move_linked_works - move linked works to a list
1043  * @work: start of series of works to be scheduled
1044  * @head: target list to append @work to
1045  * @nextp: out parameter for nested worklist walking
1046  *
1047  * Schedule linked works starting from @work to @head.  Work series to
1048  * be scheduled starts at @work and includes any consecutive work with
1049  * WORK_STRUCT_LINKED set in its predecessor.
1050  *
1051  * If @nextp is not NULL, it's updated to point to the next work of
1052  * the last scheduled work.  This allows move_linked_works() to be
1053  * nested inside outer list_for_each_entry_safe().
1054  *
1055  * CONTEXT:
1056  * spin_lock_irq(pool->lock).
1057  */
1058 static void move_linked_works(struct work_struct *work, struct list_head *head,
1059 			      struct work_struct **nextp)
1060 {
1061 	struct work_struct *n;
1062 
1063 	/*
1064 	 * Linked worklist will always end before the end of the list,
1065 	 * use NULL for list head.
1066 	 */
1067 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1068 		list_move_tail(&work->entry, head);
1069 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1070 			break;
1071 	}
1072 
1073 	/*
1074 	 * If we're already inside safe list traversal and have moved
1075 	 * multiple works to the scheduled queue, the next position
1076 	 * needs to be updated.
1077 	 */
1078 	if (nextp)
1079 		*nextp = n;
1080 }
1081 
1082 /**
1083  * get_pwq - get an extra reference on the specified pool_workqueue
1084  * @pwq: pool_workqueue to get
1085  *
1086  * Obtain an extra reference on @pwq.  The caller should guarantee that
1087  * @pwq has positive refcnt and be holding the matching pool->lock.
1088  */
1089 static void get_pwq(struct pool_workqueue *pwq)
1090 {
1091 	lockdep_assert_held(&pwq->pool->lock);
1092 	WARN_ON_ONCE(pwq->refcnt <= 0);
1093 	pwq->refcnt++;
1094 }
1095 
1096 /**
1097  * put_pwq - put a pool_workqueue reference
1098  * @pwq: pool_workqueue to put
1099  *
1100  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1101  * destruction.  The caller should be holding the matching pool->lock.
1102  */
1103 static void put_pwq(struct pool_workqueue *pwq)
1104 {
1105 	lockdep_assert_held(&pwq->pool->lock);
1106 	if (likely(--pwq->refcnt))
1107 		return;
1108 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1109 		return;
1110 	/*
1111 	 * @pwq can't be released under pool->lock, bounce to
1112 	 * pwq_unbound_release_workfn().  This never recurses on the same
1113 	 * pool->lock as this path is taken only for unbound workqueues and
1114 	 * the release work item is scheduled on a per-cpu workqueue.  To
1115 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1116 	 * subclass of 1 in get_unbound_pool().
1117 	 */
1118 	schedule_work(&pwq->unbound_release_work);
1119 }
1120 
1121 /**
1122  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1123  * @pwq: pool_workqueue to put (can be %NULL)
1124  *
1125  * put_pwq() with locking.  This function also allows %NULL @pwq.
1126  */
1127 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1128 {
1129 	if (pwq) {
1130 		/*
1131 		 * As both pwqs and pools are RCU protected, the
1132 		 * following lock operations are safe.
1133 		 */
1134 		spin_lock_irq(&pwq->pool->lock);
1135 		put_pwq(pwq);
1136 		spin_unlock_irq(&pwq->pool->lock);
1137 	}
1138 }
1139 
1140 static void pwq_activate_delayed_work(struct work_struct *work)
1141 {
1142 	struct pool_workqueue *pwq = get_work_pwq(work);
1143 
1144 	trace_workqueue_activate_work(work);
1145 	if (list_empty(&pwq->pool->worklist))
1146 		pwq->pool->watchdog_ts = jiffies;
1147 	move_linked_works(work, &pwq->pool->worklist, NULL);
1148 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1149 	pwq->nr_active++;
1150 }
1151 
1152 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1153 {
1154 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1155 						    struct work_struct, entry);
1156 
1157 	pwq_activate_delayed_work(work);
1158 }
1159 
1160 /**
1161  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1162  * @pwq: pwq of interest
1163  * @color: color of work which left the queue
1164  *
1165  * A work either has completed or is removed from pending queue,
1166  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1167  *
1168  * CONTEXT:
1169  * spin_lock_irq(pool->lock).
1170  */
1171 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1172 {
1173 	/* uncolored work items don't participate in flushing or nr_active */
1174 	if (color == WORK_NO_COLOR)
1175 		goto out_put;
1176 
1177 	pwq->nr_in_flight[color]--;
1178 
1179 	pwq->nr_active--;
1180 	if (!list_empty(&pwq->delayed_works)) {
1181 		/* one down, submit a delayed one */
1182 		if (pwq->nr_active < pwq->max_active)
1183 			pwq_activate_first_delayed(pwq);
1184 	}
1185 
1186 	/* is flush in progress and are we at the flushing tip? */
1187 	if (likely(pwq->flush_color != color))
1188 		goto out_put;
1189 
1190 	/* are there still in-flight works? */
1191 	if (pwq->nr_in_flight[color])
1192 		goto out_put;
1193 
1194 	/* this pwq is done, clear flush_color */
1195 	pwq->flush_color = -1;
1196 
1197 	/*
1198 	 * If this was the last pwq, wake up the first flusher.  It
1199 	 * will handle the rest.
1200 	 */
1201 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1202 		complete(&pwq->wq->first_flusher->done);
1203 out_put:
1204 	put_pwq(pwq);
1205 }
1206 
1207 /**
1208  * try_to_grab_pending - steal work item from worklist and disable irq
1209  * @work: work item to steal
1210  * @is_dwork: @work is a delayed_work
1211  * @flags: place to store irq state
1212  *
1213  * Try to grab PENDING bit of @work.  This function can handle @work in any
1214  * stable state - idle, on timer or on worklist.
1215  *
1216  * Return:
1217  *  1		if @work was pending and we successfully stole PENDING
1218  *  0		if @work was idle and we claimed PENDING
1219  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1220  *  -ENOENT	if someone else is canceling @work, this state may persist
1221  *		for arbitrarily long
1222  *
1223  * Note:
1224  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1225  * interrupted while holding PENDING and @work off queue, irq must be
1226  * disabled on entry.  This, combined with delayed_work->timer being
1227  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1228  *
1229  * On successful return, >= 0, irq is disabled and the caller is
1230  * responsible for releasing it using local_irq_restore(*@flags).
1231  *
1232  * This function is safe to call from any context including IRQ handler.
1233  */
1234 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1235 			       unsigned long *flags)
1236 {
1237 	struct worker_pool *pool;
1238 	struct pool_workqueue *pwq;
1239 
1240 	local_irq_save(*flags);
1241 
1242 	/* try to steal the timer if it exists */
1243 	if (is_dwork) {
1244 		struct delayed_work *dwork = to_delayed_work(work);
1245 
1246 		/*
1247 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1248 		 * guaranteed that the timer is not queued anywhere and not
1249 		 * running on the local CPU.
1250 		 */
1251 		if (likely(del_timer(&dwork->timer)))
1252 			return 1;
1253 	}
1254 
1255 	/* try to claim PENDING the normal way */
1256 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1257 		return 0;
1258 
1259 	rcu_read_lock();
1260 	/*
1261 	 * The queueing is in progress, or it is already queued. Try to
1262 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1263 	 */
1264 	pool = get_work_pool(work);
1265 	if (!pool)
1266 		goto fail;
1267 
1268 	spin_lock(&pool->lock);
1269 	/*
1270 	 * work->data is guaranteed to point to pwq only while the work
1271 	 * item is queued on pwq->wq, and both updating work->data to point
1272 	 * to pwq on queueing and to pool on dequeueing are done under
1273 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1274 	 * points to pwq which is associated with a locked pool, the work
1275 	 * item is currently queued on that pool.
1276 	 */
1277 	pwq = get_work_pwq(work);
1278 	if (pwq && pwq->pool == pool) {
1279 		debug_work_deactivate(work);
1280 
1281 		/*
1282 		 * A delayed work item cannot be grabbed directly because
1283 		 * it might have linked NO_COLOR work items which, if left
1284 		 * on the delayed_list, will confuse pwq->nr_active
1285 		 * management later on and cause stall.  Make sure the work
1286 		 * item is activated before grabbing.
1287 		 */
1288 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1289 			pwq_activate_delayed_work(work);
1290 
1291 		list_del_init(&work->entry);
1292 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1293 
1294 		/* work->data points to pwq iff queued, point to pool */
1295 		set_work_pool_and_keep_pending(work, pool->id);
1296 
1297 		spin_unlock(&pool->lock);
1298 		rcu_read_unlock();
1299 		return 1;
1300 	}
1301 	spin_unlock(&pool->lock);
1302 fail:
1303 	rcu_read_unlock();
1304 	local_irq_restore(*flags);
1305 	if (work_is_canceling(work))
1306 		return -ENOENT;
1307 	cpu_relax();
1308 	return -EAGAIN;
1309 }
1310 
1311 /**
1312  * insert_work - insert a work into a pool
1313  * @pwq: pwq @work belongs to
1314  * @work: work to insert
1315  * @head: insertion point
1316  * @extra_flags: extra WORK_STRUCT_* flags to set
1317  *
1318  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1319  * work_struct flags.
1320  *
1321  * CONTEXT:
1322  * spin_lock_irq(pool->lock).
1323  */
1324 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1325 			struct list_head *head, unsigned int extra_flags)
1326 {
1327 	struct worker_pool *pool = pwq->pool;
1328 
1329 	/* we own @work, set data and link */
1330 	set_work_pwq(work, pwq, extra_flags);
1331 	list_add_tail(&work->entry, head);
1332 	get_pwq(pwq);
1333 
1334 	/*
1335 	 * Ensure either wq_worker_sleeping() sees the above
1336 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1337 	 * around lazily while there are works to be processed.
1338 	 */
1339 	smp_mb();
1340 
1341 	if (__need_more_worker(pool))
1342 		wake_up_worker(pool);
1343 }
1344 
1345 /*
1346  * Test whether @work is being queued from another work executing on the
1347  * same workqueue.
1348  */
1349 static bool is_chained_work(struct workqueue_struct *wq)
1350 {
1351 	struct worker *worker;
1352 
1353 	worker = current_wq_worker();
1354 	/*
1355 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1356 	 * I'm @worker, it's safe to dereference it without locking.
1357 	 */
1358 	return worker && worker->current_pwq->wq == wq;
1359 }
1360 
1361 /*
1362  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1363  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1364  * avoid perturbing sensitive tasks.
1365  */
1366 static int wq_select_unbound_cpu(int cpu)
1367 {
1368 	static bool printed_dbg_warning;
1369 	int new_cpu;
1370 
1371 	if (likely(!wq_debug_force_rr_cpu)) {
1372 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1373 			return cpu;
1374 	} else if (!printed_dbg_warning) {
1375 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1376 		printed_dbg_warning = true;
1377 	}
1378 
1379 	if (cpumask_empty(wq_unbound_cpumask))
1380 		return cpu;
1381 
1382 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1383 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1384 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1385 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1386 		if (unlikely(new_cpu >= nr_cpu_ids))
1387 			return cpu;
1388 	}
1389 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1390 
1391 	return new_cpu;
1392 }
1393 
1394 static void __queue_work(int cpu, struct workqueue_struct *wq,
1395 			 struct work_struct *work)
1396 {
1397 	struct pool_workqueue *pwq;
1398 	struct worker_pool *last_pool;
1399 	struct list_head *worklist;
1400 	unsigned int work_flags;
1401 	unsigned int req_cpu = cpu;
1402 
1403 	/*
1404 	 * While a work item is PENDING && off queue, a task trying to
1405 	 * steal the PENDING will busy-loop waiting for it to either get
1406 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1407 	 * happen with IRQ disabled.
1408 	 */
1409 	lockdep_assert_irqs_disabled();
1410 
1411 	debug_work_activate(work);
1412 
1413 	/* if draining, only works from the same workqueue are allowed */
1414 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1415 	    WARN_ON_ONCE(!is_chained_work(wq)))
1416 		return;
1417 	rcu_read_lock();
1418 retry:
1419 	if (req_cpu == WORK_CPU_UNBOUND)
1420 		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1421 
1422 	/* pwq which will be used unless @work is executing elsewhere */
1423 	if (!(wq->flags & WQ_UNBOUND))
1424 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1425 	else
1426 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1427 
1428 	/*
1429 	 * If @work was previously on a different pool, it might still be
1430 	 * running there, in which case the work needs to be queued on that
1431 	 * pool to guarantee non-reentrancy.
1432 	 */
1433 	last_pool = get_work_pool(work);
1434 	if (last_pool && last_pool != pwq->pool) {
1435 		struct worker *worker;
1436 
1437 		spin_lock(&last_pool->lock);
1438 
1439 		worker = find_worker_executing_work(last_pool, work);
1440 
1441 		if (worker && worker->current_pwq->wq == wq) {
1442 			pwq = worker->current_pwq;
1443 		} else {
1444 			/* meh... not running there, queue here */
1445 			spin_unlock(&last_pool->lock);
1446 			spin_lock(&pwq->pool->lock);
1447 		}
1448 	} else {
1449 		spin_lock(&pwq->pool->lock);
1450 	}
1451 
1452 	/*
1453 	 * pwq is determined and locked.  For unbound pools, we could have
1454 	 * raced with pwq release and it could already be dead.  If its
1455 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1456 	 * without another pwq replacing it in the numa_pwq_tbl or while
1457 	 * work items are executing on it, so the retrying is guaranteed to
1458 	 * make forward-progress.
1459 	 */
1460 	if (unlikely(!pwq->refcnt)) {
1461 		if (wq->flags & WQ_UNBOUND) {
1462 			spin_unlock(&pwq->pool->lock);
1463 			cpu_relax();
1464 			goto retry;
1465 		}
1466 		/* oops */
1467 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1468 			  wq->name, cpu);
1469 	}
1470 
1471 	/* pwq determined, queue */
1472 	trace_workqueue_queue_work(req_cpu, pwq, work);
1473 
1474 	if (WARN_ON(!list_empty(&work->entry)))
1475 		goto out;
1476 
1477 	pwq->nr_in_flight[pwq->work_color]++;
1478 	work_flags = work_color_to_flags(pwq->work_color);
1479 
1480 	if (likely(pwq->nr_active < pwq->max_active)) {
1481 		trace_workqueue_activate_work(work);
1482 		pwq->nr_active++;
1483 		worklist = &pwq->pool->worklist;
1484 		if (list_empty(worklist))
1485 			pwq->pool->watchdog_ts = jiffies;
1486 	} else {
1487 		work_flags |= WORK_STRUCT_DELAYED;
1488 		worklist = &pwq->delayed_works;
1489 	}
1490 
1491 	insert_work(pwq, work, worklist, work_flags);
1492 
1493 out:
1494 	spin_unlock(&pwq->pool->lock);
1495 	rcu_read_unlock();
1496 }
1497 
1498 /**
1499  * queue_work_on - queue work on specific cpu
1500  * @cpu: CPU number to execute work on
1501  * @wq: workqueue to use
1502  * @work: work to queue
1503  *
1504  * We queue the work to a specific CPU, the caller must ensure it
1505  * can't go away.
1506  *
1507  * Return: %false if @work was already on a queue, %true otherwise.
1508  */
1509 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1510 		   struct work_struct *work)
1511 {
1512 	bool ret = false;
1513 	unsigned long flags;
1514 
1515 	local_irq_save(flags);
1516 
1517 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1518 		__queue_work(cpu, wq, work);
1519 		ret = true;
1520 	}
1521 
1522 	local_irq_restore(flags);
1523 	return ret;
1524 }
1525 EXPORT_SYMBOL(queue_work_on);
1526 
1527 /**
1528  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1529  * @node: NUMA node ID that we want to select a CPU from
1530  *
1531  * This function will attempt to find a "random" cpu available on a given
1532  * node. If there are no CPUs available on the given node it will return
1533  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1534  * available CPU if we need to schedule this work.
1535  */
1536 static int workqueue_select_cpu_near(int node)
1537 {
1538 	int cpu;
1539 
1540 	/* No point in doing this if NUMA isn't enabled for workqueues */
1541 	if (!wq_numa_enabled)
1542 		return WORK_CPU_UNBOUND;
1543 
1544 	/* Delay binding to CPU if node is not valid or online */
1545 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1546 		return WORK_CPU_UNBOUND;
1547 
1548 	/* Use local node/cpu if we are already there */
1549 	cpu = raw_smp_processor_id();
1550 	if (node == cpu_to_node(cpu))
1551 		return cpu;
1552 
1553 	/* Use "random" otherwise know as "first" online CPU of node */
1554 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1555 
1556 	/* If CPU is valid return that, otherwise just defer */
1557 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1558 }
1559 
1560 /**
1561  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1562  * @node: NUMA node that we are targeting the work for
1563  * @wq: workqueue to use
1564  * @work: work to queue
1565  *
1566  * We queue the work to a "random" CPU within a given NUMA node. The basic
1567  * idea here is to provide a way to somehow associate work with a given
1568  * NUMA node.
1569  *
1570  * This function will only make a best effort attempt at getting this onto
1571  * the right NUMA node. If no node is requested or the requested node is
1572  * offline then we just fall back to standard queue_work behavior.
1573  *
1574  * Currently the "random" CPU ends up being the first available CPU in the
1575  * intersection of cpu_online_mask and the cpumask of the node, unless we
1576  * are running on the node. In that case we just use the current CPU.
1577  *
1578  * Return: %false if @work was already on a queue, %true otherwise.
1579  */
1580 bool queue_work_node(int node, struct workqueue_struct *wq,
1581 		     struct work_struct *work)
1582 {
1583 	unsigned long flags;
1584 	bool ret = false;
1585 
1586 	/*
1587 	 * This current implementation is specific to unbound workqueues.
1588 	 * Specifically we only return the first available CPU for a given
1589 	 * node instead of cycling through individual CPUs within the node.
1590 	 *
1591 	 * If this is used with a per-cpu workqueue then the logic in
1592 	 * workqueue_select_cpu_near would need to be updated to allow for
1593 	 * some round robin type logic.
1594 	 */
1595 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1596 
1597 	local_irq_save(flags);
1598 
1599 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1600 		int cpu = workqueue_select_cpu_near(node);
1601 
1602 		__queue_work(cpu, wq, work);
1603 		ret = true;
1604 	}
1605 
1606 	local_irq_restore(flags);
1607 	return ret;
1608 }
1609 EXPORT_SYMBOL_GPL(queue_work_node);
1610 
1611 void delayed_work_timer_fn(struct timer_list *t)
1612 {
1613 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1614 
1615 	/* should have been called from irqsafe timer with irq already off */
1616 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1617 }
1618 EXPORT_SYMBOL(delayed_work_timer_fn);
1619 
1620 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1621 				struct delayed_work *dwork, unsigned long delay)
1622 {
1623 	struct timer_list *timer = &dwork->timer;
1624 	struct work_struct *work = &dwork->work;
1625 
1626 	WARN_ON_ONCE(!wq);
1627 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
1628 	WARN_ON_ONCE(timer_pending(timer));
1629 	WARN_ON_ONCE(!list_empty(&work->entry));
1630 
1631 	/*
1632 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1633 	 * both optimization and correctness.  The earliest @timer can
1634 	 * expire is on the closest next tick and delayed_work users depend
1635 	 * on that there's no such delay when @delay is 0.
1636 	 */
1637 	if (!delay) {
1638 		__queue_work(cpu, wq, &dwork->work);
1639 		return;
1640 	}
1641 
1642 	dwork->wq = wq;
1643 	dwork->cpu = cpu;
1644 	timer->expires = jiffies + delay;
1645 
1646 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1647 		add_timer_on(timer, cpu);
1648 	else
1649 		add_timer(timer);
1650 }
1651 
1652 /**
1653  * queue_delayed_work_on - queue work on specific CPU after delay
1654  * @cpu: CPU number to execute work on
1655  * @wq: workqueue to use
1656  * @dwork: work to queue
1657  * @delay: number of jiffies to wait before queueing
1658  *
1659  * Return: %false if @work was already on a queue, %true otherwise.  If
1660  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1661  * execution.
1662  */
1663 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1664 			   struct delayed_work *dwork, unsigned long delay)
1665 {
1666 	struct work_struct *work = &dwork->work;
1667 	bool ret = false;
1668 	unsigned long flags;
1669 
1670 	/* read the comment in __queue_work() */
1671 	local_irq_save(flags);
1672 
1673 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1674 		__queue_delayed_work(cpu, wq, dwork, delay);
1675 		ret = true;
1676 	}
1677 
1678 	local_irq_restore(flags);
1679 	return ret;
1680 }
1681 EXPORT_SYMBOL(queue_delayed_work_on);
1682 
1683 /**
1684  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1685  * @cpu: CPU number to execute work on
1686  * @wq: workqueue to use
1687  * @dwork: work to queue
1688  * @delay: number of jiffies to wait before queueing
1689  *
1690  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1691  * modify @dwork's timer so that it expires after @delay.  If @delay is
1692  * zero, @work is guaranteed to be scheduled immediately regardless of its
1693  * current state.
1694  *
1695  * Return: %false if @dwork was idle and queued, %true if @dwork was
1696  * pending and its timer was modified.
1697  *
1698  * This function is safe to call from any context including IRQ handler.
1699  * See try_to_grab_pending() for details.
1700  */
1701 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1702 			 struct delayed_work *dwork, unsigned long delay)
1703 {
1704 	unsigned long flags;
1705 	int ret;
1706 
1707 	do {
1708 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1709 	} while (unlikely(ret == -EAGAIN));
1710 
1711 	if (likely(ret >= 0)) {
1712 		__queue_delayed_work(cpu, wq, dwork, delay);
1713 		local_irq_restore(flags);
1714 	}
1715 
1716 	/* -ENOENT from try_to_grab_pending() becomes %true */
1717 	return ret;
1718 }
1719 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1720 
1721 static void rcu_work_rcufn(struct rcu_head *rcu)
1722 {
1723 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1724 
1725 	/* read the comment in __queue_work() */
1726 	local_irq_disable();
1727 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1728 	local_irq_enable();
1729 }
1730 
1731 /**
1732  * queue_rcu_work - queue work after a RCU grace period
1733  * @wq: workqueue to use
1734  * @rwork: work to queue
1735  *
1736  * Return: %false if @rwork was already pending, %true otherwise.  Note
1737  * that a full RCU grace period is guaranteed only after a %true return.
1738  * While @rwork is guaranteed to be executed after a %false return, the
1739  * execution may happen before a full RCU grace period has passed.
1740  */
1741 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1742 {
1743 	struct work_struct *work = &rwork->work;
1744 
1745 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1746 		rwork->wq = wq;
1747 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1748 		return true;
1749 	}
1750 
1751 	return false;
1752 }
1753 EXPORT_SYMBOL(queue_rcu_work);
1754 
1755 /**
1756  * worker_enter_idle - enter idle state
1757  * @worker: worker which is entering idle state
1758  *
1759  * @worker is entering idle state.  Update stats and idle timer if
1760  * necessary.
1761  *
1762  * LOCKING:
1763  * spin_lock_irq(pool->lock).
1764  */
1765 static void worker_enter_idle(struct worker *worker)
1766 {
1767 	struct worker_pool *pool = worker->pool;
1768 
1769 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1770 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1771 			 (worker->hentry.next || worker->hentry.pprev)))
1772 		return;
1773 
1774 	/* can't use worker_set_flags(), also called from create_worker() */
1775 	worker->flags |= WORKER_IDLE;
1776 	pool->nr_idle++;
1777 	worker->last_active = jiffies;
1778 
1779 	/* idle_list is LIFO */
1780 	list_add(&worker->entry, &pool->idle_list);
1781 
1782 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1783 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1784 
1785 	/*
1786 	 * Sanity check nr_running.  Because unbind_workers() releases
1787 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1788 	 * nr_running, the warning may trigger spuriously.  Check iff
1789 	 * unbind is not in progress.
1790 	 */
1791 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1792 		     pool->nr_workers == pool->nr_idle &&
1793 		     atomic_read(&pool->nr_running));
1794 }
1795 
1796 /**
1797  * worker_leave_idle - leave idle state
1798  * @worker: worker which is leaving idle state
1799  *
1800  * @worker is leaving idle state.  Update stats.
1801  *
1802  * LOCKING:
1803  * spin_lock_irq(pool->lock).
1804  */
1805 static void worker_leave_idle(struct worker *worker)
1806 {
1807 	struct worker_pool *pool = worker->pool;
1808 
1809 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1810 		return;
1811 	worker_clr_flags(worker, WORKER_IDLE);
1812 	pool->nr_idle--;
1813 	list_del_init(&worker->entry);
1814 }
1815 
1816 static struct worker *alloc_worker(int node)
1817 {
1818 	struct worker *worker;
1819 
1820 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1821 	if (worker) {
1822 		INIT_LIST_HEAD(&worker->entry);
1823 		INIT_LIST_HEAD(&worker->scheduled);
1824 		INIT_LIST_HEAD(&worker->node);
1825 		/* on creation a worker is in !idle && prep state */
1826 		worker->flags = WORKER_PREP;
1827 	}
1828 	return worker;
1829 }
1830 
1831 /**
1832  * worker_attach_to_pool() - attach a worker to a pool
1833  * @worker: worker to be attached
1834  * @pool: the target pool
1835  *
1836  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1837  * cpu-binding of @worker are kept coordinated with the pool across
1838  * cpu-[un]hotplugs.
1839  */
1840 static void worker_attach_to_pool(struct worker *worker,
1841 				   struct worker_pool *pool)
1842 {
1843 	mutex_lock(&wq_pool_attach_mutex);
1844 
1845 	/*
1846 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1847 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1848 	 */
1849 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1850 
1851 	/*
1852 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1853 	 * stable across this function.  See the comments above the flag
1854 	 * definition for details.
1855 	 */
1856 	if (pool->flags & POOL_DISASSOCIATED)
1857 		worker->flags |= WORKER_UNBOUND;
1858 
1859 	list_add_tail(&worker->node, &pool->workers);
1860 	worker->pool = pool;
1861 
1862 	mutex_unlock(&wq_pool_attach_mutex);
1863 }
1864 
1865 /**
1866  * worker_detach_from_pool() - detach a worker from its pool
1867  * @worker: worker which is attached to its pool
1868  *
1869  * Undo the attaching which had been done in worker_attach_to_pool().  The
1870  * caller worker shouldn't access to the pool after detached except it has
1871  * other reference to the pool.
1872  */
1873 static void worker_detach_from_pool(struct worker *worker)
1874 {
1875 	struct worker_pool *pool = worker->pool;
1876 	struct completion *detach_completion = NULL;
1877 
1878 	mutex_lock(&wq_pool_attach_mutex);
1879 
1880 	list_del(&worker->node);
1881 	worker->pool = NULL;
1882 
1883 	if (list_empty(&pool->workers))
1884 		detach_completion = pool->detach_completion;
1885 	mutex_unlock(&wq_pool_attach_mutex);
1886 
1887 	/* clear leftover flags without pool->lock after it is detached */
1888 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1889 
1890 	if (detach_completion)
1891 		complete(detach_completion);
1892 }
1893 
1894 /**
1895  * create_worker - create a new workqueue worker
1896  * @pool: pool the new worker will belong to
1897  *
1898  * Create and start a new worker which is attached to @pool.
1899  *
1900  * CONTEXT:
1901  * Might sleep.  Does GFP_KERNEL allocations.
1902  *
1903  * Return:
1904  * Pointer to the newly created worker.
1905  */
1906 static struct worker *create_worker(struct worker_pool *pool)
1907 {
1908 	struct worker *worker = NULL;
1909 	int id = -1;
1910 	char id_buf[16];
1911 
1912 	/* ID is needed to determine kthread name */
1913 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1914 	if (id < 0)
1915 		goto fail;
1916 
1917 	worker = alloc_worker(pool->node);
1918 	if (!worker)
1919 		goto fail;
1920 
1921 	worker->id = id;
1922 
1923 	if (pool->cpu >= 0)
1924 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1925 			 pool->attrs->nice < 0  ? "H" : "");
1926 	else
1927 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1928 
1929 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1930 					      "kworker/%s", id_buf);
1931 	if (IS_ERR(worker->task))
1932 		goto fail;
1933 
1934 	set_user_nice(worker->task, pool->attrs->nice);
1935 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1936 
1937 	/* successful, attach the worker to the pool */
1938 	worker_attach_to_pool(worker, pool);
1939 
1940 	/* start the newly created worker */
1941 	spin_lock_irq(&pool->lock);
1942 	worker->pool->nr_workers++;
1943 	worker_enter_idle(worker);
1944 	wake_up_process(worker->task);
1945 	spin_unlock_irq(&pool->lock);
1946 
1947 	return worker;
1948 
1949 fail:
1950 	if (id >= 0)
1951 		ida_simple_remove(&pool->worker_ida, id);
1952 	kfree(worker);
1953 	return NULL;
1954 }
1955 
1956 /**
1957  * destroy_worker - destroy a workqueue worker
1958  * @worker: worker to be destroyed
1959  *
1960  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1961  * be idle.
1962  *
1963  * CONTEXT:
1964  * spin_lock_irq(pool->lock).
1965  */
1966 static void destroy_worker(struct worker *worker)
1967 {
1968 	struct worker_pool *pool = worker->pool;
1969 
1970 	lockdep_assert_held(&pool->lock);
1971 
1972 	/* sanity check frenzy */
1973 	if (WARN_ON(worker->current_work) ||
1974 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1975 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1976 		return;
1977 
1978 	pool->nr_workers--;
1979 	pool->nr_idle--;
1980 
1981 	list_del_init(&worker->entry);
1982 	worker->flags |= WORKER_DIE;
1983 	wake_up_process(worker->task);
1984 }
1985 
1986 static void idle_worker_timeout(struct timer_list *t)
1987 {
1988 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
1989 
1990 	spin_lock_irq(&pool->lock);
1991 
1992 	while (too_many_workers(pool)) {
1993 		struct worker *worker;
1994 		unsigned long expires;
1995 
1996 		/* idle_list is kept in LIFO order, check the last one */
1997 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1998 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1999 
2000 		if (time_before(jiffies, expires)) {
2001 			mod_timer(&pool->idle_timer, expires);
2002 			break;
2003 		}
2004 
2005 		destroy_worker(worker);
2006 	}
2007 
2008 	spin_unlock_irq(&pool->lock);
2009 }
2010 
2011 static void send_mayday(struct work_struct *work)
2012 {
2013 	struct pool_workqueue *pwq = get_work_pwq(work);
2014 	struct workqueue_struct *wq = pwq->wq;
2015 
2016 	lockdep_assert_held(&wq_mayday_lock);
2017 
2018 	if (!wq->rescuer)
2019 		return;
2020 
2021 	/* mayday mayday mayday */
2022 	if (list_empty(&pwq->mayday_node)) {
2023 		/*
2024 		 * If @pwq is for an unbound wq, its base ref may be put at
2025 		 * any time due to an attribute change.  Pin @pwq until the
2026 		 * rescuer is done with it.
2027 		 */
2028 		get_pwq(pwq);
2029 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2030 		wake_up_process(wq->rescuer->task);
2031 	}
2032 }
2033 
2034 static void pool_mayday_timeout(struct timer_list *t)
2035 {
2036 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2037 	struct work_struct *work;
2038 
2039 	spin_lock_irq(&pool->lock);
2040 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2041 
2042 	if (need_to_create_worker(pool)) {
2043 		/*
2044 		 * We've been trying to create a new worker but
2045 		 * haven't been successful.  We might be hitting an
2046 		 * allocation deadlock.  Send distress signals to
2047 		 * rescuers.
2048 		 */
2049 		list_for_each_entry(work, &pool->worklist, entry)
2050 			send_mayday(work);
2051 	}
2052 
2053 	spin_unlock(&wq_mayday_lock);
2054 	spin_unlock_irq(&pool->lock);
2055 
2056 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2057 }
2058 
2059 /**
2060  * maybe_create_worker - create a new worker if necessary
2061  * @pool: pool to create a new worker for
2062  *
2063  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2064  * have at least one idle worker on return from this function.  If
2065  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2066  * sent to all rescuers with works scheduled on @pool to resolve
2067  * possible allocation deadlock.
2068  *
2069  * On return, need_to_create_worker() is guaranteed to be %false and
2070  * may_start_working() %true.
2071  *
2072  * LOCKING:
2073  * spin_lock_irq(pool->lock) which may be released and regrabbed
2074  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2075  * manager.
2076  */
2077 static void maybe_create_worker(struct worker_pool *pool)
2078 __releases(&pool->lock)
2079 __acquires(&pool->lock)
2080 {
2081 restart:
2082 	spin_unlock_irq(&pool->lock);
2083 
2084 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2085 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2086 
2087 	while (true) {
2088 		if (create_worker(pool) || !need_to_create_worker(pool))
2089 			break;
2090 
2091 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2092 
2093 		if (!need_to_create_worker(pool))
2094 			break;
2095 	}
2096 
2097 	del_timer_sync(&pool->mayday_timer);
2098 	spin_lock_irq(&pool->lock);
2099 	/*
2100 	 * This is necessary even after a new worker was just successfully
2101 	 * created as @pool->lock was dropped and the new worker might have
2102 	 * already become busy.
2103 	 */
2104 	if (need_to_create_worker(pool))
2105 		goto restart;
2106 }
2107 
2108 /**
2109  * manage_workers - manage worker pool
2110  * @worker: self
2111  *
2112  * Assume the manager role and manage the worker pool @worker belongs
2113  * to.  At any given time, there can be only zero or one manager per
2114  * pool.  The exclusion is handled automatically by this function.
2115  *
2116  * The caller can safely start processing works on false return.  On
2117  * true return, it's guaranteed that need_to_create_worker() is false
2118  * and may_start_working() is true.
2119  *
2120  * CONTEXT:
2121  * spin_lock_irq(pool->lock) which may be released and regrabbed
2122  * multiple times.  Does GFP_KERNEL allocations.
2123  *
2124  * Return:
2125  * %false if the pool doesn't need management and the caller can safely
2126  * start processing works, %true if management function was performed and
2127  * the conditions that the caller verified before calling the function may
2128  * no longer be true.
2129  */
2130 static bool manage_workers(struct worker *worker)
2131 {
2132 	struct worker_pool *pool = worker->pool;
2133 
2134 	if (pool->flags & POOL_MANAGER_ACTIVE)
2135 		return false;
2136 
2137 	pool->flags |= POOL_MANAGER_ACTIVE;
2138 	pool->manager = worker;
2139 
2140 	maybe_create_worker(pool);
2141 
2142 	pool->manager = NULL;
2143 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2144 	wake_up(&wq_manager_wait);
2145 	return true;
2146 }
2147 
2148 /**
2149  * process_one_work - process single work
2150  * @worker: self
2151  * @work: work to process
2152  *
2153  * Process @work.  This function contains all the logics necessary to
2154  * process a single work including synchronization against and
2155  * interaction with other workers on the same cpu, queueing and
2156  * flushing.  As long as context requirement is met, any worker can
2157  * call this function to process a work.
2158  *
2159  * CONTEXT:
2160  * spin_lock_irq(pool->lock) which is released and regrabbed.
2161  */
2162 static void process_one_work(struct worker *worker, struct work_struct *work)
2163 __releases(&pool->lock)
2164 __acquires(&pool->lock)
2165 {
2166 	struct pool_workqueue *pwq = get_work_pwq(work);
2167 	struct worker_pool *pool = worker->pool;
2168 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2169 	int work_color;
2170 	struct worker *collision;
2171 #ifdef CONFIG_LOCKDEP
2172 	/*
2173 	 * It is permissible to free the struct work_struct from
2174 	 * inside the function that is called from it, this we need to
2175 	 * take into account for lockdep too.  To avoid bogus "held
2176 	 * lock freed" warnings as well as problems when looking into
2177 	 * work->lockdep_map, make a copy and use that here.
2178 	 */
2179 	struct lockdep_map lockdep_map;
2180 
2181 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2182 #endif
2183 	/* ensure we're on the correct CPU */
2184 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2185 		     raw_smp_processor_id() != pool->cpu);
2186 
2187 	/*
2188 	 * A single work shouldn't be executed concurrently by
2189 	 * multiple workers on a single cpu.  Check whether anyone is
2190 	 * already processing the work.  If so, defer the work to the
2191 	 * currently executing one.
2192 	 */
2193 	collision = find_worker_executing_work(pool, work);
2194 	if (unlikely(collision)) {
2195 		move_linked_works(work, &collision->scheduled, NULL);
2196 		return;
2197 	}
2198 
2199 	/* claim and dequeue */
2200 	debug_work_deactivate(work);
2201 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2202 	worker->current_work = work;
2203 	worker->current_func = work->func;
2204 	worker->current_pwq = pwq;
2205 	work_color = get_work_color(work);
2206 
2207 	/*
2208 	 * Record wq name for cmdline and debug reporting, may get
2209 	 * overridden through set_worker_desc().
2210 	 */
2211 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2212 
2213 	list_del_init(&work->entry);
2214 
2215 	/*
2216 	 * CPU intensive works don't participate in concurrency management.
2217 	 * They're the scheduler's responsibility.  This takes @worker out
2218 	 * of concurrency management and the next code block will chain
2219 	 * execution of the pending work items.
2220 	 */
2221 	if (unlikely(cpu_intensive))
2222 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2223 
2224 	/*
2225 	 * Wake up another worker if necessary.  The condition is always
2226 	 * false for normal per-cpu workers since nr_running would always
2227 	 * be >= 1 at this point.  This is used to chain execution of the
2228 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2229 	 * UNBOUND and CPU_INTENSIVE ones.
2230 	 */
2231 	if (need_more_worker(pool))
2232 		wake_up_worker(pool);
2233 
2234 	/*
2235 	 * Record the last pool and clear PENDING which should be the last
2236 	 * update to @work.  Also, do this inside @pool->lock so that
2237 	 * PENDING and queued state changes happen together while IRQ is
2238 	 * disabled.
2239 	 */
2240 	set_work_pool_and_clear_pending(work, pool->id);
2241 
2242 	spin_unlock_irq(&pool->lock);
2243 
2244 	lock_map_acquire(&pwq->wq->lockdep_map);
2245 	lock_map_acquire(&lockdep_map);
2246 	/*
2247 	 * Strictly speaking we should mark the invariant state without holding
2248 	 * any locks, that is, before these two lock_map_acquire()'s.
2249 	 *
2250 	 * However, that would result in:
2251 	 *
2252 	 *   A(W1)
2253 	 *   WFC(C)
2254 	 *		A(W1)
2255 	 *		C(C)
2256 	 *
2257 	 * Which would create W1->C->W1 dependencies, even though there is no
2258 	 * actual deadlock possible. There are two solutions, using a
2259 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2260 	 * hit the lockdep limitation on recursive locks, or simply discard
2261 	 * these locks.
2262 	 *
2263 	 * AFAICT there is no possible deadlock scenario between the
2264 	 * flush_work() and complete() primitives (except for single-threaded
2265 	 * workqueues), so hiding them isn't a problem.
2266 	 */
2267 	lockdep_invariant_state(true);
2268 	trace_workqueue_execute_start(work);
2269 	worker->current_func(work);
2270 	/*
2271 	 * While we must be careful to not use "work" after this, the trace
2272 	 * point will only record its address.
2273 	 */
2274 	trace_workqueue_execute_end(work);
2275 	lock_map_release(&lockdep_map);
2276 	lock_map_release(&pwq->wq->lockdep_map);
2277 
2278 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2279 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2280 		       "     last function: %ps\n",
2281 		       current->comm, preempt_count(), task_pid_nr(current),
2282 		       worker->current_func);
2283 		debug_show_held_locks(current);
2284 		dump_stack();
2285 	}
2286 
2287 	/*
2288 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2289 	 * kernels, where a requeueing work item waiting for something to
2290 	 * happen could deadlock with stop_machine as such work item could
2291 	 * indefinitely requeue itself while all other CPUs are trapped in
2292 	 * stop_machine. At the same time, report a quiescent RCU state so
2293 	 * the same condition doesn't freeze RCU.
2294 	 */
2295 	cond_resched();
2296 
2297 	spin_lock_irq(&pool->lock);
2298 
2299 	/* clear cpu intensive status */
2300 	if (unlikely(cpu_intensive))
2301 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2302 
2303 	/* tag the worker for identification in schedule() */
2304 	worker->last_func = worker->current_func;
2305 
2306 	/* we're done with it, release */
2307 	hash_del(&worker->hentry);
2308 	worker->current_work = NULL;
2309 	worker->current_func = NULL;
2310 	worker->current_pwq = NULL;
2311 	pwq_dec_nr_in_flight(pwq, work_color);
2312 }
2313 
2314 /**
2315  * process_scheduled_works - process scheduled works
2316  * @worker: self
2317  *
2318  * Process all scheduled works.  Please note that the scheduled list
2319  * may change while processing a work, so this function repeatedly
2320  * fetches a work from the top and executes it.
2321  *
2322  * CONTEXT:
2323  * spin_lock_irq(pool->lock) which may be released and regrabbed
2324  * multiple times.
2325  */
2326 static void process_scheduled_works(struct worker *worker)
2327 {
2328 	while (!list_empty(&worker->scheduled)) {
2329 		struct work_struct *work = list_first_entry(&worker->scheduled,
2330 						struct work_struct, entry);
2331 		process_one_work(worker, work);
2332 	}
2333 }
2334 
2335 static void set_pf_worker(bool val)
2336 {
2337 	mutex_lock(&wq_pool_attach_mutex);
2338 	if (val)
2339 		current->flags |= PF_WQ_WORKER;
2340 	else
2341 		current->flags &= ~PF_WQ_WORKER;
2342 	mutex_unlock(&wq_pool_attach_mutex);
2343 }
2344 
2345 /**
2346  * worker_thread - the worker thread function
2347  * @__worker: self
2348  *
2349  * The worker thread function.  All workers belong to a worker_pool -
2350  * either a per-cpu one or dynamic unbound one.  These workers process all
2351  * work items regardless of their specific target workqueue.  The only
2352  * exception is work items which belong to workqueues with a rescuer which
2353  * will be explained in rescuer_thread().
2354  *
2355  * Return: 0
2356  */
2357 static int worker_thread(void *__worker)
2358 {
2359 	struct worker *worker = __worker;
2360 	struct worker_pool *pool = worker->pool;
2361 
2362 	/* tell the scheduler that this is a workqueue worker */
2363 	set_pf_worker(true);
2364 woke_up:
2365 	spin_lock_irq(&pool->lock);
2366 
2367 	/* am I supposed to die? */
2368 	if (unlikely(worker->flags & WORKER_DIE)) {
2369 		spin_unlock_irq(&pool->lock);
2370 		WARN_ON_ONCE(!list_empty(&worker->entry));
2371 		set_pf_worker(false);
2372 
2373 		set_task_comm(worker->task, "kworker/dying");
2374 		ida_simple_remove(&pool->worker_ida, worker->id);
2375 		worker_detach_from_pool(worker);
2376 		kfree(worker);
2377 		return 0;
2378 	}
2379 
2380 	worker_leave_idle(worker);
2381 recheck:
2382 	/* no more worker necessary? */
2383 	if (!need_more_worker(pool))
2384 		goto sleep;
2385 
2386 	/* do we need to manage? */
2387 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2388 		goto recheck;
2389 
2390 	/*
2391 	 * ->scheduled list can only be filled while a worker is
2392 	 * preparing to process a work or actually processing it.
2393 	 * Make sure nobody diddled with it while I was sleeping.
2394 	 */
2395 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2396 
2397 	/*
2398 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2399 	 * worker or that someone else has already assumed the manager
2400 	 * role.  This is where @worker starts participating in concurrency
2401 	 * management if applicable and concurrency management is restored
2402 	 * after being rebound.  See rebind_workers() for details.
2403 	 */
2404 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2405 
2406 	do {
2407 		struct work_struct *work =
2408 			list_first_entry(&pool->worklist,
2409 					 struct work_struct, entry);
2410 
2411 		pool->watchdog_ts = jiffies;
2412 
2413 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2414 			/* optimization path, not strictly necessary */
2415 			process_one_work(worker, work);
2416 			if (unlikely(!list_empty(&worker->scheduled)))
2417 				process_scheduled_works(worker);
2418 		} else {
2419 			move_linked_works(work, &worker->scheduled, NULL);
2420 			process_scheduled_works(worker);
2421 		}
2422 	} while (keep_working(pool));
2423 
2424 	worker_set_flags(worker, WORKER_PREP);
2425 sleep:
2426 	/*
2427 	 * pool->lock is held and there's no work to process and no need to
2428 	 * manage, sleep.  Workers are woken up only while holding
2429 	 * pool->lock or from local cpu, so setting the current state
2430 	 * before releasing pool->lock is enough to prevent losing any
2431 	 * event.
2432 	 */
2433 	worker_enter_idle(worker);
2434 	__set_current_state(TASK_IDLE);
2435 	spin_unlock_irq(&pool->lock);
2436 	schedule();
2437 	goto woke_up;
2438 }
2439 
2440 /**
2441  * rescuer_thread - the rescuer thread function
2442  * @__rescuer: self
2443  *
2444  * Workqueue rescuer thread function.  There's one rescuer for each
2445  * workqueue which has WQ_MEM_RECLAIM set.
2446  *
2447  * Regular work processing on a pool may block trying to create a new
2448  * worker which uses GFP_KERNEL allocation which has slight chance of
2449  * developing into deadlock if some works currently on the same queue
2450  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2451  * the problem rescuer solves.
2452  *
2453  * When such condition is possible, the pool summons rescuers of all
2454  * workqueues which have works queued on the pool and let them process
2455  * those works so that forward progress can be guaranteed.
2456  *
2457  * This should happen rarely.
2458  *
2459  * Return: 0
2460  */
2461 static int rescuer_thread(void *__rescuer)
2462 {
2463 	struct worker *rescuer = __rescuer;
2464 	struct workqueue_struct *wq = rescuer->rescue_wq;
2465 	struct list_head *scheduled = &rescuer->scheduled;
2466 	bool should_stop;
2467 
2468 	set_user_nice(current, RESCUER_NICE_LEVEL);
2469 
2470 	/*
2471 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2472 	 * doesn't participate in concurrency management.
2473 	 */
2474 	set_pf_worker(true);
2475 repeat:
2476 	set_current_state(TASK_IDLE);
2477 
2478 	/*
2479 	 * By the time the rescuer is requested to stop, the workqueue
2480 	 * shouldn't have any work pending, but @wq->maydays may still have
2481 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2482 	 * all the work items before the rescuer got to them.  Go through
2483 	 * @wq->maydays processing before acting on should_stop so that the
2484 	 * list is always empty on exit.
2485 	 */
2486 	should_stop = kthread_should_stop();
2487 
2488 	/* see whether any pwq is asking for help */
2489 	spin_lock_irq(&wq_mayday_lock);
2490 
2491 	while (!list_empty(&wq->maydays)) {
2492 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2493 					struct pool_workqueue, mayday_node);
2494 		struct worker_pool *pool = pwq->pool;
2495 		struct work_struct *work, *n;
2496 		bool first = true;
2497 
2498 		__set_current_state(TASK_RUNNING);
2499 		list_del_init(&pwq->mayday_node);
2500 
2501 		spin_unlock_irq(&wq_mayday_lock);
2502 
2503 		worker_attach_to_pool(rescuer, pool);
2504 
2505 		spin_lock_irq(&pool->lock);
2506 
2507 		/*
2508 		 * Slurp in all works issued via this workqueue and
2509 		 * process'em.
2510 		 */
2511 		WARN_ON_ONCE(!list_empty(scheduled));
2512 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2513 			if (get_work_pwq(work) == pwq) {
2514 				if (first)
2515 					pool->watchdog_ts = jiffies;
2516 				move_linked_works(work, scheduled, &n);
2517 			}
2518 			first = false;
2519 		}
2520 
2521 		if (!list_empty(scheduled)) {
2522 			process_scheduled_works(rescuer);
2523 
2524 			/*
2525 			 * The above execution of rescued work items could
2526 			 * have created more to rescue through
2527 			 * pwq_activate_first_delayed() or chained
2528 			 * queueing.  Let's put @pwq back on mayday list so
2529 			 * that such back-to-back work items, which may be
2530 			 * being used to relieve memory pressure, don't
2531 			 * incur MAYDAY_INTERVAL delay inbetween.
2532 			 */
2533 			if (need_to_create_worker(pool)) {
2534 				spin_lock(&wq_mayday_lock);
2535 				get_pwq(pwq);
2536 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2537 				spin_unlock(&wq_mayday_lock);
2538 			}
2539 		}
2540 
2541 		/*
2542 		 * Put the reference grabbed by send_mayday().  @pool won't
2543 		 * go away while we're still attached to it.
2544 		 */
2545 		put_pwq(pwq);
2546 
2547 		/*
2548 		 * Leave this pool.  If need_more_worker() is %true, notify a
2549 		 * regular worker; otherwise, we end up with 0 concurrency
2550 		 * and stalling the execution.
2551 		 */
2552 		if (need_more_worker(pool))
2553 			wake_up_worker(pool);
2554 
2555 		spin_unlock_irq(&pool->lock);
2556 
2557 		worker_detach_from_pool(rescuer);
2558 
2559 		spin_lock_irq(&wq_mayday_lock);
2560 	}
2561 
2562 	spin_unlock_irq(&wq_mayday_lock);
2563 
2564 	if (should_stop) {
2565 		__set_current_state(TASK_RUNNING);
2566 		set_pf_worker(false);
2567 		return 0;
2568 	}
2569 
2570 	/* rescuers should never participate in concurrency management */
2571 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2572 	schedule();
2573 	goto repeat;
2574 }
2575 
2576 /**
2577  * check_flush_dependency - check for flush dependency sanity
2578  * @target_wq: workqueue being flushed
2579  * @target_work: work item being flushed (NULL for workqueue flushes)
2580  *
2581  * %current is trying to flush the whole @target_wq or @target_work on it.
2582  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2583  * reclaiming memory or running on a workqueue which doesn't have
2584  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2585  * a deadlock.
2586  */
2587 static void check_flush_dependency(struct workqueue_struct *target_wq,
2588 				   struct work_struct *target_work)
2589 {
2590 	work_func_t target_func = target_work ? target_work->func : NULL;
2591 	struct worker *worker;
2592 
2593 	if (target_wq->flags & WQ_MEM_RECLAIM)
2594 		return;
2595 
2596 	worker = current_wq_worker();
2597 
2598 	WARN_ONCE(current->flags & PF_MEMALLOC,
2599 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2600 		  current->pid, current->comm, target_wq->name, target_func);
2601 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2602 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2603 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2604 		  worker->current_pwq->wq->name, worker->current_func,
2605 		  target_wq->name, target_func);
2606 }
2607 
2608 struct wq_barrier {
2609 	struct work_struct	work;
2610 	struct completion	done;
2611 	struct task_struct	*task;	/* purely informational */
2612 };
2613 
2614 static void wq_barrier_func(struct work_struct *work)
2615 {
2616 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2617 	complete(&barr->done);
2618 }
2619 
2620 /**
2621  * insert_wq_barrier - insert a barrier work
2622  * @pwq: pwq to insert barrier into
2623  * @barr: wq_barrier to insert
2624  * @target: target work to attach @barr to
2625  * @worker: worker currently executing @target, NULL if @target is not executing
2626  *
2627  * @barr is linked to @target such that @barr is completed only after
2628  * @target finishes execution.  Please note that the ordering
2629  * guarantee is observed only with respect to @target and on the local
2630  * cpu.
2631  *
2632  * Currently, a queued barrier can't be canceled.  This is because
2633  * try_to_grab_pending() can't determine whether the work to be
2634  * grabbed is at the head of the queue and thus can't clear LINKED
2635  * flag of the previous work while there must be a valid next work
2636  * after a work with LINKED flag set.
2637  *
2638  * Note that when @worker is non-NULL, @target may be modified
2639  * underneath us, so we can't reliably determine pwq from @target.
2640  *
2641  * CONTEXT:
2642  * spin_lock_irq(pool->lock).
2643  */
2644 static void insert_wq_barrier(struct pool_workqueue *pwq,
2645 			      struct wq_barrier *barr,
2646 			      struct work_struct *target, struct worker *worker)
2647 {
2648 	struct list_head *head;
2649 	unsigned int linked = 0;
2650 
2651 	/*
2652 	 * debugobject calls are safe here even with pool->lock locked
2653 	 * as we know for sure that this will not trigger any of the
2654 	 * checks and call back into the fixup functions where we
2655 	 * might deadlock.
2656 	 */
2657 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2658 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2659 
2660 	init_completion_map(&barr->done, &target->lockdep_map);
2661 
2662 	barr->task = current;
2663 
2664 	/*
2665 	 * If @target is currently being executed, schedule the
2666 	 * barrier to the worker; otherwise, put it after @target.
2667 	 */
2668 	if (worker)
2669 		head = worker->scheduled.next;
2670 	else {
2671 		unsigned long *bits = work_data_bits(target);
2672 
2673 		head = target->entry.next;
2674 		/* there can already be other linked works, inherit and set */
2675 		linked = *bits & WORK_STRUCT_LINKED;
2676 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2677 	}
2678 
2679 	debug_work_activate(&barr->work);
2680 	insert_work(pwq, &barr->work, head,
2681 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2682 }
2683 
2684 /**
2685  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2686  * @wq: workqueue being flushed
2687  * @flush_color: new flush color, < 0 for no-op
2688  * @work_color: new work color, < 0 for no-op
2689  *
2690  * Prepare pwqs for workqueue flushing.
2691  *
2692  * If @flush_color is non-negative, flush_color on all pwqs should be
2693  * -1.  If no pwq has in-flight commands at the specified color, all
2694  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2695  * has in flight commands, its pwq->flush_color is set to
2696  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2697  * wakeup logic is armed and %true is returned.
2698  *
2699  * The caller should have initialized @wq->first_flusher prior to
2700  * calling this function with non-negative @flush_color.  If
2701  * @flush_color is negative, no flush color update is done and %false
2702  * is returned.
2703  *
2704  * If @work_color is non-negative, all pwqs should have the same
2705  * work_color which is previous to @work_color and all will be
2706  * advanced to @work_color.
2707  *
2708  * CONTEXT:
2709  * mutex_lock(wq->mutex).
2710  *
2711  * Return:
2712  * %true if @flush_color >= 0 and there's something to flush.  %false
2713  * otherwise.
2714  */
2715 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2716 				      int flush_color, int work_color)
2717 {
2718 	bool wait = false;
2719 	struct pool_workqueue *pwq;
2720 
2721 	if (flush_color >= 0) {
2722 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2723 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2724 	}
2725 
2726 	for_each_pwq(pwq, wq) {
2727 		struct worker_pool *pool = pwq->pool;
2728 
2729 		spin_lock_irq(&pool->lock);
2730 
2731 		if (flush_color >= 0) {
2732 			WARN_ON_ONCE(pwq->flush_color != -1);
2733 
2734 			if (pwq->nr_in_flight[flush_color]) {
2735 				pwq->flush_color = flush_color;
2736 				atomic_inc(&wq->nr_pwqs_to_flush);
2737 				wait = true;
2738 			}
2739 		}
2740 
2741 		if (work_color >= 0) {
2742 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2743 			pwq->work_color = work_color;
2744 		}
2745 
2746 		spin_unlock_irq(&pool->lock);
2747 	}
2748 
2749 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2750 		complete(&wq->first_flusher->done);
2751 
2752 	return wait;
2753 }
2754 
2755 /**
2756  * flush_workqueue - ensure that any scheduled work has run to completion.
2757  * @wq: workqueue to flush
2758  *
2759  * This function sleeps until all work items which were queued on entry
2760  * have finished execution, but it is not livelocked by new incoming ones.
2761  */
2762 void flush_workqueue(struct workqueue_struct *wq)
2763 {
2764 	struct wq_flusher this_flusher = {
2765 		.list = LIST_HEAD_INIT(this_flusher.list),
2766 		.flush_color = -1,
2767 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2768 	};
2769 	int next_color;
2770 
2771 	if (WARN_ON(!wq_online))
2772 		return;
2773 
2774 	lock_map_acquire(&wq->lockdep_map);
2775 	lock_map_release(&wq->lockdep_map);
2776 
2777 	mutex_lock(&wq->mutex);
2778 
2779 	/*
2780 	 * Start-to-wait phase
2781 	 */
2782 	next_color = work_next_color(wq->work_color);
2783 
2784 	if (next_color != wq->flush_color) {
2785 		/*
2786 		 * Color space is not full.  The current work_color
2787 		 * becomes our flush_color and work_color is advanced
2788 		 * by one.
2789 		 */
2790 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2791 		this_flusher.flush_color = wq->work_color;
2792 		wq->work_color = next_color;
2793 
2794 		if (!wq->first_flusher) {
2795 			/* no flush in progress, become the first flusher */
2796 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2797 
2798 			wq->first_flusher = &this_flusher;
2799 
2800 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2801 						       wq->work_color)) {
2802 				/* nothing to flush, done */
2803 				wq->flush_color = next_color;
2804 				wq->first_flusher = NULL;
2805 				goto out_unlock;
2806 			}
2807 		} else {
2808 			/* wait in queue */
2809 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2810 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2811 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2812 		}
2813 	} else {
2814 		/*
2815 		 * Oops, color space is full, wait on overflow queue.
2816 		 * The next flush completion will assign us
2817 		 * flush_color and transfer to flusher_queue.
2818 		 */
2819 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2820 	}
2821 
2822 	check_flush_dependency(wq, NULL);
2823 
2824 	mutex_unlock(&wq->mutex);
2825 
2826 	wait_for_completion(&this_flusher.done);
2827 
2828 	/*
2829 	 * Wake-up-and-cascade phase
2830 	 *
2831 	 * First flushers are responsible for cascading flushes and
2832 	 * handling overflow.  Non-first flushers can simply return.
2833 	 */
2834 	if (wq->first_flusher != &this_flusher)
2835 		return;
2836 
2837 	mutex_lock(&wq->mutex);
2838 
2839 	/* we might have raced, check again with mutex held */
2840 	if (wq->first_flusher != &this_flusher)
2841 		goto out_unlock;
2842 
2843 	wq->first_flusher = NULL;
2844 
2845 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2846 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2847 
2848 	while (true) {
2849 		struct wq_flusher *next, *tmp;
2850 
2851 		/* complete all the flushers sharing the current flush color */
2852 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2853 			if (next->flush_color != wq->flush_color)
2854 				break;
2855 			list_del_init(&next->list);
2856 			complete(&next->done);
2857 		}
2858 
2859 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2860 			     wq->flush_color != work_next_color(wq->work_color));
2861 
2862 		/* this flush_color is finished, advance by one */
2863 		wq->flush_color = work_next_color(wq->flush_color);
2864 
2865 		/* one color has been freed, handle overflow queue */
2866 		if (!list_empty(&wq->flusher_overflow)) {
2867 			/*
2868 			 * Assign the same color to all overflowed
2869 			 * flushers, advance work_color and append to
2870 			 * flusher_queue.  This is the start-to-wait
2871 			 * phase for these overflowed flushers.
2872 			 */
2873 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2874 				tmp->flush_color = wq->work_color;
2875 
2876 			wq->work_color = work_next_color(wq->work_color);
2877 
2878 			list_splice_tail_init(&wq->flusher_overflow,
2879 					      &wq->flusher_queue);
2880 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2881 		}
2882 
2883 		if (list_empty(&wq->flusher_queue)) {
2884 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2885 			break;
2886 		}
2887 
2888 		/*
2889 		 * Need to flush more colors.  Make the next flusher
2890 		 * the new first flusher and arm pwqs.
2891 		 */
2892 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2893 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2894 
2895 		list_del_init(&next->list);
2896 		wq->first_flusher = next;
2897 
2898 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2899 			break;
2900 
2901 		/*
2902 		 * Meh... this color is already done, clear first
2903 		 * flusher and repeat cascading.
2904 		 */
2905 		wq->first_flusher = NULL;
2906 	}
2907 
2908 out_unlock:
2909 	mutex_unlock(&wq->mutex);
2910 }
2911 EXPORT_SYMBOL(flush_workqueue);
2912 
2913 /**
2914  * drain_workqueue - drain a workqueue
2915  * @wq: workqueue to drain
2916  *
2917  * Wait until the workqueue becomes empty.  While draining is in progress,
2918  * only chain queueing is allowed.  IOW, only currently pending or running
2919  * work items on @wq can queue further work items on it.  @wq is flushed
2920  * repeatedly until it becomes empty.  The number of flushing is determined
2921  * by the depth of chaining and should be relatively short.  Whine if it
2922  * takes too long.
2923  */
2924 void drain_workqueue(struct workqueue_struct *wq)
2925 {
2926 	unsigned int flush_cnt = 0;
2927 	struct pool_workqueue *pwq;
2928 
2929 	/*
2930 	 * __queue_work() needs to test whether there are drainers, is much
2931 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2932 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2933 	 */
2934 	mutex_lock(&wq->mutex);
2935 	if (!wq->nr_drainers++)
2936 		wq->flags |= __WQ_DRAINING;
2937 	mutex_unlock(&wq->mutex);
2938 reflush:
2939 	flush_workqueue(wq);
2940 
2941 	mutex_lock(&wq->mutex);
2942 
2943 	for_each_pwq(pwq, wq) {
2944 		bool drained;
2945 
2946 		spin_lock_irq(&pwq->pool->lock);
2947 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2948 		spin_unlock_irq(&pwq->pool->lock);
2949 
2950 		if (drained)
2951 			continue;
2952 
2953 		if (++flush_cnt == 10 ||
2954 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2955 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2956 				wq->name, flush_cnt);
2957 
2958 		mutex_unlock(&wq->mutex);
2959 		goto reflush;
2960 	}
2961 
2962 	if (!--wq->nr_drainers)
2963 		wq->flags &= ~__WQ_DRAINING;
2964 	mutex_unlock(&wq->mutex);
2965 }
2966 EXPORT_SYMBOL_GPL(drain_workqueue);
2967 
2968 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2969 			     bool from_cancel)
2970 {
2971 	struct worker *worker = NULL;
2972 	struct worker_pool *pool;
2973 	struct pool_workqueue *pwq;
2974 
2975 	might_sleep();
2976 
2977 	rcu_read_lock();
2978 	pool = get_work_pool(work);
2979 	if (!pool) {
2980 		rcu_read_unlock();
2981 		return false;
2982 	}
2983 
2984 	spin_lock_irq(&pool->lock);
2985 	/* see the comment in try_to_grab_pending() with the same code */
2986 	pwq = get_work_pwq(work);
2987 	if (pwq) {
2988 		if (unlikely(pwq->pool != pool))
2989 			goto already_gone;
2990 	} else {
2991 		worker = find_worker_executing_work(pool, work);
2992 		if (!worker)
2993 			goto already_gone;
2994 		pwq = worker->current_pwq;
2995 	}
2996 
2997 	check_flush_dependency(pwq->wq, work);
2998 
2999 	insert_wq_barrier(pwq, barr, work, worker);
3000 	spin_unlock_irq(&pool->lock);
3001 
3002 	/*
3003 	 * Force a lock recursion deadlock when using flush_work() inside a
3004 	 * single-threaded or rescuer equipped workqueue.
3005 	 *
3006 	 * For single threaded workqueues the deadlock happens when the work
3007 	 * is after the work issuing the flush_work(). For rescuer equipped
3008 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3009 	 * forward progress.
3010 	 */
3011 	if (!from_cancel &&
3012 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3013 		lock_map_acquire(&pwq->wq->lockdep_map);
3014 		lock_map_release(&pwq->wq->lockdep_map);
3015 	}
3016 	rcu_read_unlock();
3017 	return true;
3018 already_gone:
3019 	spin_unlock_irq(&pool->lock);
3020 	rcu_read_unlock();
3021 	return false;
3022 }
3023 
3024 static bool __flush_work(struct work_struct *work, bool from_cancel)
3025 {
3026 	struct wq_barrier barr;
3027 
3028 	if (WARN_ON(!wq_online))
3029 		return false;
3030 
3031 	if (WARN_ON(!work->func))
3032 		return false;
3033 
3034 	if (!from_cancel) {
3035 		lock_map_acquire(&work->lockdep_map);
3036 		lock_map_release(&work->lockdep_map);
3037 	}
3038 
3039 	if (start_flush_work(work, &barr, from_cancel)) {
3040 		wait_for_completion(&barr.done);
3041 		destroy_work_on_stack(&barr.work);
3042 		return true;
3043 	} else {
3044 		return false;
3045 	}
3046 }
3047 
3048 /**
3049  * flush_work - wait for a work to finish executing the last queueing instance
3050  * @work: the work to flush
3051  *
3052  * Wait until @work has finished execution.  @work is guaranteed to be idle
3053  * on return if it hasn't been requeued since flush started.
3054  *
3055  * Return:
3056  * %true if flush_work() waited for the work to finish execution,
3057  * %false if it was already idle.
3058  */
3059 bool flush_work(struct work_struct *work)
3060 {
3061 	return __flush_work(work, false);
3062 }
3063 EXPORT_SYMBOL_GPL(flush_work);
3064 
3065 struct cwt_wait {
3066 	wait_queue_entry_t		wait;
3067 	struct work_struct	*work;
3068 };
3069 
3070 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3071 {
3072 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3073 
3074 	if (cwait->work != key)
3075 		return 0;
3076 	return autoremove_wake_function(wait, mode, sync, key);
3077 }
3078 
3079 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3080 {
3081 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3082 	unsigned long flags;
3083 	int ret;
3084 
3085 	do {
3086 		ret = try_to_grab_pending(work, is_dwork, &flags);
3087 		/*
3088 		 * If someone else is already canceling, wait for it to
3089 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3090 		 * because we may get scheduled between @work's completion
3091 		 * and the other canceling task resuming and clearing
3092 		 * CANCELING - flush_work() will return false immediately
3093 		 * as @work is no longer busy, try_to_grab_pending() will
3094 		 * return -ENOENT as @work is still being canceled and the
3095 		 * other canceling task won't be able to clear CANCELING as
3096 		 * we're hogging the CPU.
3097 		 *
3098 		 * Let's wait for completion using a waitqueue.  As this
3099 		 * may lead to the thundering herd problem, use a custom
3100 		 * wake function which matches @work along with exclusive
3101 		 * wait and wakeup.
3102 		 */
3103 		if (unlikely(ret == -ENOENT)) {
3104 			struct cwt_wait cwait;
3105 
3106 			init_wait(&cwait.wait);
3107 			cwait.wait.func = cwt_wakefn;
3108 			cwait.work = work;
3109 
3110 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3111 						  TASK_UNINTERRUPTIBLE);
3112 			if (work_is_canceling(work))
3113 				schedule();
3114 			finish_wait(&cancel_waitq, &cwait.wait);
3115 		}
3116 	} while (unlikely(ret < 0));
3117 
3118 	/* tell other tasks trying to grab @work to back off */
3119 	mark_work_canceling(work);
3120 	local_irq_restore(flags);
3121 
3122 	/*
3123 	 * This allows canceling during early boot.  We know that @work
3124 	 * isn't executing.
3125 	 */
3126 	if (wq_online)
3127 		__flush_work(work, true);
3128 
3129 	clear_work_data(work);
3130 
3131 	/*
3132 	 * Paired with prepare_to_wait() above so that either
3133 	 * waitqueue_active() is visible here or !work_is_canceling() is
3134 	 * visible there.
3135 	 */
3136 	smp_mb();
3137 	if (waitqueue_active(&cancel_waitq))
3138 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3139 
3140 	return ret;
3141 }
3142 
3143 /**
3144  * cancel_work_sync - cancel a work and wait for it to finish
3145  * @work: the work to cancel
3146  *
3147  * Cancel @work and wait for its execution to finish.  This function
3148  * can be used even if the work re-queues itself or migrates to
3149  * another workqueue.  On return from this function, @work is
3150  * guaranteed to be not pending or executing on any CPU.
3151  *
3152  * cancel_work_sync(&delayed_work->work) must not be used for
3153  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3154  *
3155  * The caller must ensure that the workqueue on which @work was last
3156  * queued can't be destroyed before this function returns.
3157  *
3158  * Return:
3159  * %true if @work was pending, %false otherwise.
3160  */
3161 bool cancel_work_sync(struct work_struct *work)
3162 {
3163 	return __cancel_work_timer(work, false);
3164 }
3165 EXPORT_SYMBOL_GPL(cancel_work_sync);
3166 
3167 /**
3168  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3169  * @dwork: the delayed work to flush
3170  *
3171  * Delayed timer is cancelled and the pending work is queued for
3172  * immediate execution.  Like flush_work(), this function only
3173  * considers the last queueing instance of @dwork.
3174  *
3175  * Return:
3176  * %true if flush_work() waited for the work to finish execution,
3177  * %false if it was already idle.
3178  */
3179 bool flush_delayed_work(struct delayed_work *dwork)
3180 {
3181 	local_irq_disable();
3182 	if (del_timer_sync(&dwork->timer))
3183 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3184 	local_irq_enable();
3185 	return flush_work(&dwork->work);
3186 }
3187 EXPORT_SYMBOL(flush_delayed_work);
3188 
3189 /**
3190  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3191  * @rwork: the rcu work to flush
3192  *
3193  * Return:
3194  * %true if flush_rcu_work() waited for the work to finish execution,
3195  * %false if it was already idle.
3196  */
3197 bool flush_rcu_work(struct rcu_work *rwork)
3198 {
3199 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3200 		rcu_barrier();
3201 		flush_work(&rwork->work);
3202 		return true;
3203 	} else {
3204 		return flush_work(&rwork->work);
3205 	}
3206 }
3207 EXPORT_SYMBOL(flush_rcu_work);
3208 
3209 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3210 {
3211 	unsigned long flags;
3212 	int ret;
3213 
3214 	do {
3215 		ret = try_to_grab_pending(work, is_dwork, &flags);
3216 	} while (unlikely(ret == -EAGAIN));
3217 
3218 	if (unlikely(ret < 0))
3219 		return false;
3220 
3221 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3222 	local_irq_restore(flags);
3223 	return ret;
3224 }
3225 
3226 /**
3227  * cancel_delayed_work - cancel a delayed work
3228  * @dwork: delayed_work to cancel
3229  *
3230  * Kill off a pending delayed_work.
3231  *
3232  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3233  * pending.
3234  *
3235  * Note:
3236  * The work callback function may still be running on return, unless
3237  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3238  * use cancel_delayed_work_sync() to wait on it.
3239  *
3240  * This function is safe to call from any context including IRQ handler.
3241  */
3242 bool cancel_delayed_work(struct delayed_work *dwork)
3243 {
3244 	return __cancel_work(&dwork->work, true);
3245 }
3246 EXPORT_SYMBOL(cancel_delayed_work);
3247 
3248 /**
3249  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3250  * @dwork: the delayed work cancel
3251  *
3252  * This is cancel_work_sync() for delayed works.
3253  *
3254  * Return:
3255  * %true if @dwork was pending, %false otherwise.
3256  */
3257 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3258 {
3259 	return __cancel_work_timer(&dwork->work, true);
3260 }
3261 EXPORT_SYMBOL(cancel_delayed_work_sync);
3262 
3263 /**
3264  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3265  * @func: the function to call
3266  *
3267  * schedule_on_each_cpu() executes @func on each online CPU using the
3268  * system workqueue and blocks until all CPUs have completed.
3269  * schedule_on_each_cpu() is very slow.
3270  *
3271  * Return:
3272  * 0 on success, -errno on failure.
3273  */
3274 int schedule_on_each_cpu(work_func_t func)
3275 {
3276 	int cpu;
3277 	struct work_struct __percpu *works;
3278 
3279 	works = alloc_percpu(struct work_struct);
3280 	if (!works)
3281 		return -ENOMEM;
3282 
3283 	get_online_cpus();
3284 
3285 	for_each_online_cpu(cpu) {
3286 		struct work_struct *work = per_cpu_ptr(works, cpu);
3287 
3288 		INIT_WORK(work, func);
3289 		schedule_work_on(cpu, work);
3290 	}
3291 
3292 	for_each_online_cpu(cpu)
3293 		flush_work(per_cpu_ptr(works, cpu));
3294 
3295 	put_online_cpus();
3296 	free_percpu(works);
3297 	return 0;
3298 }
3299 
3300 /**
3301  * execute_in_process_context - reliably execute the routine with user context
3302  * @fn:		the function to execute
3303  * @ew:		guaranteed storage for the execute work structure (must
3304  *		be available when the work executes)
3305  *
3306  * Executes the function immediately if process context is available,
3307  * otherwise schedules the function for delayed execution.
3308  *
3309  * Return:	0 - function was executed
3310  *		1 - function was scheduled for execution
3311  */
3312 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3313 {
3314 	if (!in_interrupt()) {
3315 		fn(&ew->work);
3316 		return 0;
3317 	}
3318 
3319 	INIT_WORK(&ew->work, fn);
3320 	schedule_work(&ew->work);
3321 
3322 	return 1;
3323 }
3324 EXPORT_SYMBOL_GPL(execute_in_process_context);
3325 
3326 /**
3327  * free_workqueue_attrs - free a workqueue_attrs
3328  * @attrs: workqueue_attrs to free
3329  *
3330  * Undo alloc_workqueue_attrs().
3331  */
3332 static void free_workqueue_attrs(struct workqueue_attrs *attrs)
3333 {
3334 	if (attrs) {
3335 		free_cpumask_var(attrs->cpumask);
3336 		kfree(attrs);
3337 	}
3338 }
3339 
3340 /**
3341  * alloc_workqueue_attrs - allocate a workqueue_attrs
3342  *
3343  * Allocate a new workqueue_attrs, initialize with default settings and
3344  * return it.
3345  *
3346  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3347  */
3348 static struct workqueue_attrs *alloc_workqueue_attrs(void)
3349 {
3350 	struct workqueue_attrs *attrs;
3351 
3352 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3353 	if (!attrs)
3354 		goto fail;
3355 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3356 		goto fail;
3357 
3358 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3359 	return attrs;
3360 fail:
3361 	free_workqueue_attrs(attrs);
3362 	return NULL;
3363 }
3364 
3365 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3366 				 const struct workqueue_attrs *from)
3367 {
3368 	to->nice = from->nice;
3369 	cpumask_copy(to->cpumask, from->cpumask);
3370 	/*
3371 	 * Unlike hash and equality test, this function doesn't ignore
3372 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3373 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3374 	 */
3375 	to->no_numa = from->no_numa;
3376 }
3377 
3378 /* hash value of the content of @attr */
3379 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3380 {
3381 	u32 hash = 0;
3382 
3383 	hash = jhash_1word(attrs->nice, hash);
3384 	hash = jhash(cpumask_bits(attrs->cpumask),
3385 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3386 	return hash;
3387 }
3388 
3389 /* content equality test */
3390 static bool wqattrs_equal(const struct workqueue_attrs *a,
3391 			  const struct workqueue_attrs *b)
3392 {
3393 	if (a->nice != b->nice)
3394 		return false;
3395 	if (!cpumask_equal(a->cpumask, b->cpumask))
3396 		return false;
3397 	return true;
3398 }
3399 
3400 /**
3401  * init_worker_pool - initialize a newly zalloc'd worker_pool
3402  * @pool: worker_pool to initialize
3403  *
3404  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3405  *
3406  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3407  * inside @pool proper are initialized and put_unbound_pool() can be called
3408  * on @pool safely to release it.
3409  */
3410 static int init_worker_pool(struct worker_pool *pool)
3411 {
3412 	spin_lock_init(&pool->lock);
3413 	pool->id = -1;
3414 	pool->cpu = -1;
3415 	pool->node = NUMA_NO_NODE;
3416 	pool->flags |= POOL_DISASSOCIATED;
3417 	pool->watchdog_ts = jiffies;
3418 	INIT_LIST_HEAD(&pool->worklist);
3419 	INIT_LIST_HEAD(&pool->idle_list);
3420 	hash_init(pool->busy_hash);
3421 
3422 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3423 
3424 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3425 
3426 	INIT_LIST_HEAD(&pool->workers);
3427 
3428 	ida_init(&pool->worker_ida);
3429 	INIT_HLIST_NODE(&pool->hash_node);
3430 	pool->refcnt = 1;
3431 
3432 	/* shouldn't fail above this point */
3433 	pool->attrs = alloc_workqueue_attrs();
3434 	if (!pool->attrs)
3435 		return -ENOMEM;
3436 	return 0;
3437 }
3438 
3439 #ifdef CONFIG_LOCKDEP
3440 static void wq_init_lockdep(struct workqueue_struct *wq)
3441 {
3442 	char *lock_name;
3443 
3444 	lockdep_register_key(&wq->key);
3445 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3446 	if (!lock_name)
3447 		lock_name = wq->name;
3448 
3449 	wq->lock_name = lock_name;
3450 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3451 }
3452 
3453 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3454 {
3455 	lockdep_unregister_key(&wq->key);
3456 }
3457 
3458 static void wq_free_lockdep(struct workqueue_struct *wq)
3459 {
3460 	if (wq->lock_name != wq->name)
3461 		kfree(wq->lock_name);
3462 }
3463 #else
3464 static void wq_init_lockdep(struct workqueue_struct *wq)
3465 {
3466 }
3467 
3468 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3469 {
3470 }
3471 
3472 static void wq_free_lockdep(struct workqueue_struct *wq)
3473 {
3474 }
3475 #endif
3476 
3477 static void rcu_free_wq(struct rcu_head *rcu)
3478 {
3479 	struct workqueue_struct *wq =
3480 		container_of(rcu, struct workqueue_struct, rcu);
3481 
3482 	wq_free_lockdep(wq);
3483 
3484 	if (!(wq->flags & WQ_UNBOUND))
3485 		free_percpu(wq->cpu_pwqs);
3486 	else
3487 		free_workqueue_attrs(wq->unbound_attrs);
3488 
3489 	kfree(wq->rescuer);
3490 	kfree(wq);
3491 }
3492 
3493 static void rcu_free_pool(struct rcu_head *rcu)
3494 {
3495 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3496 
3497 	ida_destroy(&pool->worker_ida);
3498 	free_workqueue_attrs(pool->attrs);
3499 	kfree(pool);
3500 }
3501 
3502 /**
3503  * put_unbound_pool - put a worker_pool
3504  * @pool: worker_pool to put
3505  *
3506  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3507  * safe manner.  get_unbound_pool() calls this function on its failure path
3508  * and this function should be able to release pools which went through,
3509  * successfully or not, init_worker_pool().
3510  *
3511  * Should be called with wq_pool_mutex held.
3512  */
3513 static void put_unbound_pool(struct worker_pool *pool)
3514 {
3515 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3516 	struct worker *worker;
3517 
3518 	lockdep_assert_held(&wq_pool_mutex);
3519 
3520 	if (--pool->refcnt)
3521 		return;
3522 
3523 	/* sanity checks */
3524 	if (WARN_ON(!(pool->cpu < 0)) ||
3525 	    WARN_ON(!list_empty(&pool->worklist)))
3526 		return;
3527 
3528 	/* release id and unhash */
3529 	if (pool->id >= 0)
3530 		idr_remove(&worker_pool_idr, pool->id);
3531 	hash_del(&pool->hash_node);
3532 
3533 	/*
3534 	 * Become the manager and destroy all workers.  This prevents
3535 	 * @pool's workers from blocking on attach_mutex.  We're the last
3536 	 * manager and @pool gets freed with the flag set.
3537 	 */
3538 	spin_lock_irq(&pool->lock);
3539 	wait_event_lock_irq(wq_manager_wait,
3540 			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3541 	pool->flags |= POOL_MANAGER_ACTIVE;
3542 
3543 	while ((worker = first_idle_worker(pool)))
3544 		destroy_worker(worker);
3545 	WARN_ON(pool->nr_workers || pool->nr_idle);
3546 	spin_unlock_irq(&pool->lock);
3547 
3548 	mutex_lock(&wq_pool_attach_mutex);
3549 	if (!list_empty(&pool->workers))
3550 		pool->detach_completion = &detach_completion;
3551 	mutex_unlock(&wq_pool_attach_mutex);
3552 
3553 	if (pool->detach_completion)
3554 		wait_for_completion(pool->detach_completion);
3555 
3556 	/* shut down the timers */
3557 	del_timer_sync(&pool->idle_timer);
3558 	del_timer_sync(&pool->mayday_timer);
3559 
3560 	/* RCU protected to allow dereferences from get_work_pool() */
3561 	call_rcu(&pool->rcu, rcu_free_pool);
3562 }
3563 
3564 /**
3565  * get_unbound_pool - get a worker_pool with the specified attributes
3566  * @attrs: the attributes of the worker_pool to get
3567  *
3568  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3569  * reference count and return it.  If there already is a matching
3570  * worker_pool, it will be used; otherwise, this function attempts to
3571  * create a new one.
3572  *
3573  * Should be called with wq_pool_mutex held.
3574  *
3575  * Return: On success, a worker_pool with the same attributes as @attrs.
3576  * On failure, %NULL.
3577  */
3578 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3579 {
3580 	u32 hash = wqattrs_hash(attrs);
3581 	struct worker_pool *pool;
3582 	int node;
3583 	int target_node = NUMA_NO_NODE;
3584 
3585 	lockdep_assert_held(&wq_pool_mutex);
3586 
3587 	/* do we already have a matching pool? */
3588 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3589 		if (wqattrs_equal(pool->attrs, attrs)) {
3590 			pool->refcnt++;
3591 			return pool;
3592 		}
3593 	}
3594 
3595 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3596 	if (wq_numa_enabled) {
3597 		for_each_node(node) {
3598 			if (cpumask_subset(attrs->cpumask,
3599 					   wq_numa_possible_cpumask[node])) {
3600 				target_node = node;
3601 				break;
3602 			}
3603 		}
3604 	}
3605 
3606 	/* nope, create a new one */
3607 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3608 	if (!pool || init_worker_pool(pool) < 0)
3609 		goto fail;
3610 
3611 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3612 	copy_workqueue_attrs(pool->attrs, attrs);
3613 	pool->node = target_node;
3614 
3615 	/*
3616 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3617 	 * 'struct workqueue_attrs' comments for detail.
3618 	 */
3619 	pool->attrs->no_numa = false;
3620 
3621 	if (worker_pool_assign_id(pool) < 0)
3622 		goto fail;
3623 
3624 	/* create and start the initial worker */
3625 	if (wq_online && !create_worker(pool))
3626 		goto fail;
3627 
3628 	/* install */
3629 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3630 
3631 	return pool;
3632 fail:
3633 	if (pool)
3634 		put_unbound_pool(pool);
3635 	return NULL;
3636 }
3637 
3638 static void rcu_free_pwq(struct rcu_head *rcu)
3639 {
3640 	kmem_cache_free(pwq_cache,
3641 			container_of(rcu, struct pool_workqueue, rcu));
3642 }
3643 
3644 /*
3645  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3646  * and needs to be destroyed.
3647  */
3648 static void pwq_unbound_release_workfn(struct work_struct *work)
3649 {
3650 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3651 						  unbound_release_work);
3652 	struct workqueue_struct *wq = pwq->wq;
3653 	struct worker_pool *pool = pwq->pool;
3654 	bool is_last;
3655 
3656 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3657 		return;
3658 
3659 	mutex_lock(&wq->mutex);
3660 	list_del_rcu(&pwq->pwqs_node);
3661 	is_last = list_empty(&wq->pwqs);
3662 	mutex_unlock(&wq->mutex);
3663 
3664 	mutex_lock(&wq_pool_mutex);
3665 	put_unbound_pool(pool);
3666 	mutex_unlock(&wq_pool_mutex);
3667 
3668 	call_rcu(&pwq->rcu, rcu_free_pwq);
3669 
3670 	/*
3671 	 * If we're the last pwq going away, @wq is already dead and no one
3672 	 * is gonna access it anymore.  Schedule RCU free.
3673 	 */
3674 	if (is_last) {
3675 		wq_unregister_lockdep(wq);
3676 		call_rcu(&wq->rcu, rcu_free_wq);
3677 	}
3678 }
3679 
3680 /**
3681  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3682  * @pwq: target pool_workqueue
3683  *
3684  * If @pwq isn't freezing, set @pwq->max_active to the associated
3685  * workqueue's saved_max_active and activate delayed work items
3686  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3687  */
3688 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3689 {
3690 	struct workqueue_struct *wq = pwq->wq;
3691 	bool freezable = wq->flags & WQ_FREEZABLE;
3692 	unsigned long flags;
3693 
3694 	/* for @wq->saved_max_active */
3695 	lockdep_assert_held(&wq->mutex);
3696 
3697 	/* fast exit for non-freezable wqs */
3698 	if (!freezable && pwq->max_active == wq->saved_max_active)
3699 		return;
3700 
3701 	/* this function can be called during early boot w/ irq disabled */
3702 	spin_lock_irqsave(&pwq->pool->lock, flags);
3703 
3704 	/*
3705 	 * During [un]freezing, the caller is responsible for ensuring that
3706 	 * this function is called at least once after @workqueue_freezing
3707 	 * is updated and visible.
3708 	 */
3709 	if (!freezable || !workqueue_freezing) {
3710 		pwq->max_active = wq->saved_max_active;
3711 
3712 		while (!list_empty(&pwq->delayed_works) &&
3713 		       pwq->nr_active < pwq->max_active)
3714 			pwq_activate_first_delayed(pwq);
3715 
3716 		/*
3717 		 * Need to kick a worker after thawed or an unbound wq's
3718 		 * max_active is bumped.  It's a slow path.  Do it always.
3719 		 */
3720 		wake_up_worker(pwq->pool);
3721 	} else {
3722 		pwq->max_active = 0;
3723 	}
3724 
3725 	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3726 }
3727 
3728 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3729 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3730 		     struct worker_pool *pool)
3731 {
3732 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3733 
3734 	memset(pwq, 0, sizeof(*pwq));
3735 
3736 	pwq->pool = pool;
3737 	pwq->wq = wq;
3738 	pwq->flush_color = -1;
3739 	pwq->refcnt = 1;
3740 	INIT_LIST_HEAD(&pwq->delayed_works);
3741 	INIT_LIST_HEAD(&pwq->pwqs_node);
3742 	INIT_LIST_HEAD(&pwq->mayday_node);
3743 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3744 }
3745 
3746 /* sync @pwq with the current state of its associated wq and link it */
3747 static void link_pwq(struct pool_workqueue *pwq)
3748 {
3749 	struct workqueue_struct *wq = pwq->wq;
3750 
3751 	lockdep_assert_held(&wq->mutex);
3752 
3753 	/* may be called multiple times, ignore if already linked */
3754 	if (!list_empty(&pwq->pwqs_node))
3755 		return;
3756 
3757 	/* set the matching work_color */
3758 	pwq->work_color = wq->work_color;
3759 
3760 	/* sync max_active to the current setting */
3761 	pwq_adjust_max_active(pwq);
3762 
3763 	/* link in @pwq */
3764 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3765 }
3766 
3767 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3768 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3769 					const struct workqueue_attrs *attrs)
3770 {
3771 	struct worker_pool *pool;
3772 	struct pool_workqueue *pwq;
3773 
3774 	lockdep_assert_held(&wq_pool_mutex);
3775 
3776 	pool = get_unbound_pool(attrs);
3777 	if (!pool)
3778 		return NULL;
3779 
3780 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3781 	if (!pwq) {
3782 		put_unbound_pool(pool);
3783 		return NULL;
3784 	}
3785 
3786 	init_pwq(pwq, wq, pool);
3787 	return pwq;
3788 }
3789 
3790 /**
3791  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3792  * @attrs: the wq_attrs of the default pwq of the target workqueue
3793  * @node: the target NUMA node
3794  * @cpu_going_down: if >= 0, the CPU to consider as offline
3795  * @cpumask: outarg, the resulting cpumask
3796  *
3797  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3798  * @cpu_going_down is >= 0, that cpu is considered offline during
3799  * calculation.  The result is stored in @cpumask.
3800  *
3801  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3802  * enabled and @node has online CPUs requested by @attrs, the returned
3803  * cpumask is the intersection of the possible CPUs of @node and
3804  * @attrs->cpumask.
3805  *
3806  * The caller is responsible for ensuring that the cpumask of @node stays
3807  * stable.
3808  *
3809  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3810  * %false if equal.
3811  */
3812 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3813 				 int cpu_going_down, cpumask_t *cpumask)
3814 {
3815 	if (!wq_numa_enabled || attrs->no_numa)
3816 		goto use_dfl;
3817 
3818 	/* does @node have any online CPUs @attrs wants? */
3819 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3820 	if (cpu_going_down >= 0)
3821 		cpumask_clear_cpu(cpu_going_down, cpumask);
3822 
3823 	if (cpumask_empty(cpumask))
3824 		goto use_dfl;
3825 
3826 	/* yeap, return possible CPUs in @node that @attrs wants */
3827 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3828 
3829 	if (cpumask_empty(cpumask)) {
3830 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3831 				"possible intersect\n");
3832 		return false;
3833 	}
3834 
3835 	return !cpumask_equal(cpumask, attrs->cpumask);
3836 
3837 use_dfl:
3838 	cpumask_copy(cpumask, attrs->cpumask);
3839 	return false;
3840 }
3841 
3842 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3843 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3844 						   int node,
3845 						   struct pool_workqueue *pwq)
3846 {
3847 	struct pool_workqueue *old_pwq;
3848 
3849 	lockdep_assert_held(&wq_pool_mutex);
3850 	lockdep_assert_held(&wq->mutex);
3851 
3852 	/* link_pwq() can handle duplicate calls */
3853 	link_pwq(pwq);
3854 
3855 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3856 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3857 	return old_pwq;
3858 }
3859 
3860 /* context to store the prepared attrs & pwqs before applying */
3861 struct apply_wqattrs_ctx {
3862 	struct workqueue_struct	*wq;		/* target workqueue */
3863 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3864 	struct list_head	list;		/* queued for batching commit */
3865 	struct pool_workqueue	*dfl_pwq;
3866 	struct pool_workqueue	*pwq_tbl[];
3867 };
3868 
3869 /* free the resources after success or abort */
3870 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3871 {
3872 	if (ctx) {
3873 		int node;
3874 
3875 		for_each_node(node)
3876 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3877 		put_pwq_unlocked(ctx->dfl_pwq);
3878 
3879 		free_workqueue_attrs(ctx->attrs);
3880 
3881 		kfree(ctx);
3882 	}
3883 }
3884 
3885 /* allocate the attrs and pwqs for later installation */
3886 static struct apply_wqattrs_ctx *
3887 apply_wqattrs_prepare(struct workqueue_struct *wq,
3888 		      const struct workqueue_attrs *attrs)
3889 {
3890 	struct apply_wqattrs_ctx *ctx;
3891 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3892 	int node;
3893 
3894 	lockdep_assert_held(&wq_pool_mutex);
3895 
3896 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3897 
3898 	new_attrs = alloc_workqueue_attrs();
3899 	tmp_attrs = alloc_workqueue_attrs();
3900 	if (!ctx || !new_attrs || !tmp_attrs)
3901 		goto out_free;
3902 
3903 	/*
3904 	 * Calculate the attrs of the default pwq.
3905 	 * If the user configured cpumask doesn't overlap with the
3906 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3907 	 */
3908 	copy_workqueue_attrs(new_attrs, attrs);
3909 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3910 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3911 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3912 
3913 	/*
3914 	 * We may create multiple pwqs with differing cpumasks.  Make a
3915 	 * copy of @new_attrs which will be modified and used to obtain
3916 	 * pools.
3917 	 */
3918 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3919 
3920 	/*
3921 	 * If something goes wrong during CPU up/down, we'll fall back to
3922 	 * the default pwq covering whole @attrs->cpumask.  Always create
3923 	 * it even if we don't use it immediately.
3924 	 */
3925 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3926 	if (!ctx->dfl_pwq)
3927 		goto out_free;
3928 
3929 	for_each_node(node) {
3930 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3931 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3932 			if (!ctx->pwq_tbl[node])
3933 				goto out_free;
3934 		} else {
3935 			ctx->dfl_pwq->refcnt++;
3936 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3937 		}
3938 	}
3939 
3940 	/* save the user configured attrs and sanitize it. */
3941 	copy_workqueue_attrs(new_attrs, attrs);
3942 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3943 	ctx->attrs = new_attrs;
3944 
3945 	ctx->wq = wq;
3946 	free_workqueue_attrs(tmp_attrs);
3947 	return ctx;
3948 
3949 out_free:
3950 	free_workqueue_attrs(tmp_attrs);
3951 	free_workqueue_attrs(new_attrs);
3952 	apply_wqattrs_cleanup(ctx);
3953 	return NULL;
3954 }
3955 
3956 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3957 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3958 {
3959 	int node;
3960 
3961 	/* all pwqs have been created successfully, let's install'em */
3962 	mutex_lock(&ctx->wq->mutex);
3963 
3964 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3965 
3966 	/* save the previous pwq and install the new one */
3967 	for_each_node(node)
3968 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3969 							  ctx->pwq_tbl[node]);
3970 
3971 	/* @dfl_pwq might not have been used, ensure it's linked */
3972 	link_pwq(ctx->dfl_pwq);
3973 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3974 
3975 	mutex_unlock(&ctx->wq->mutex);
3976 }
3977 
3978 static void apply_wqattrs_lock(void)
3979 {
3980 	/* CPUs should stay stable across pwq creations and installations */
3981 	get_online_cpus();
3982 	mutex_lock(&wq_pool_mutex);
3983 }
3984 
3985 static void apply_wqattrs_unlock(void)
3986 {
3987 	mutex_unlock(&wq_pool_mutex);
3988 	put_online_cpus();
3989 }
3990 
3991 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3992 					const struct workqueue_attrs *attrs)
3993 {
3994 	struct apply_wqattrs_ctx *ctx;
3995 
3996 	/* only unbound workqueues can change attributes */
3997 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3998 		return -EINVAL;
3999 
4000 	/* creating multiple pwqs breaks ordering guarantee */
4001 	if (!list_empty(&wq->pwqs)) {
4002 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4003 			return -EINVAL;
4004 
4005 		wq->flags &= ~__WQ_ORDERED;
4006 	}
4007 
4008 	ctx = apply_wqattrs_prepare(wq, attrs);
4009 	if (!ctx)
4010 		return -ENOMEM;
4011 
4012 	/* the ctx has been prepared successfully, let's commit it */
4013 	apply_wqattrs_commit(ctx);
4014 	apply_wqattrs_cleanup(ctx);
4015 
4016 	return 0;
4017 }
4018 
4019 /**
4020  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4021  * @wq: the target workqueue
4022  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4023  *
4024  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4025  * machines, this function maps a separate pwq to each NUMA node with
4026  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4027  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4028  * items finish.  Note that a work item which repeatedly requeues itself
4029  * back-to-back will stay on its current pwq.
4030  *
4031  * Performs GFP_KERNEL allocations.
4032  *
4033  * Return: 0 on success and -errno on failure.
4034  */
4035 static int apply_workqueue_attrs(struct workqueue_struct *wq,
4036 			  const struct workqueue_attrs *attrs)
4037 {
4038 	int ret;
4039 
4040 	apply_wqattrs_lock();
4041 	ret = apply_workqueue_attrs_locked(wq, attrs);
4042 	apply_wqattrs_unlock();
4043 
4044 	return ret;
4045 }
4046 
4047 /**
4048  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4049  * @wq: the target workqueue
4050  * @cpu: the CPU coming up or going down
4051  * @online: whether @cpu is coming up or going down
4052  *
4053  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4054  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4055  * @wq accordingly.
4056  *
4057  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4058  * falls back to @wq->dfl_pwq which may not be optimal but is always
4059  * correct.
4060  *
4061  * Note that when the last allowed CPU of a NUMA node goes offline for a
4062  * workqueue with a cpumask spanning multiple nodes, the workers which were
4063  * already executing the work items for the workqueue will lose their CPU
4064  * affinity and may execute on any CPU.  This is similar to how per-cpu
4065  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4066  * affinity, it's the user's responsibility to flush the work item from
4067  * CPU_DOWN_PREPARE.
4068  */
4069 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4070 				   bool online)
4071 {
4072 	int node = cpu_to_node(cpu);
4073 	int cpu_off = online ? -1 : cpu;
4074 	struct pool_workqueue *old_pwq = NULL, *pwq;
4075 	struct workqueue_attrs *target_attrs;
4076 	cpumask_t *cpumask;
4077 
4078 	lockdep_assert_held(&wq_pool_mutex);
4079 
4080 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4081 	    wq->unbound_attrs->no_numa)
4082 		return;
4083 
4084 	/*
4085 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4086 	 * Let's use a preallocated one.  The following buf is protected by
4087 	 * CPU hotplug exclusion.
4088 	 */
4089 	target_attrs = wq_update_unbound_numa_attrs_buf;
4090 	cpumask = target_attrs->cpumask;
4091 
4092 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4093 	pwq = unbound_pwq_by_node(wq, node);
4094 
4095 	/*
4096 	 * Let's determine what needs to be done.  If the target cpumask is
4097 	 * different from the default pwq's, we need to compare it to @pwq's
4098 	 * and create a new one if they don't match.  If the target cpumask
4099 	 * equals the default pwq's, the default pwq should be used.
4100 	 */
4101 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4102 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4103 			return;
4104 	} else {
4105 		goto use_dfl_pwq;
4106 	}
4107 
4108 	/* create a new pwq */
4109 	pwq = alloc_unbound_pwq(wq, target_attrs);
4110 	if (!pwq) {
4111 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4112 			wq->name);
4113 		goto use_dfl_pwq;
4114 	}
4115 
4116 	/* Install the new pwq. */
4117 	mutex_lock(&wq->mutex);
4118 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4119 	goto out_unlock;
4120 
4121 use_dfl_pwq:
4122 	mutex_lock(&wq->mutex);
4123 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
4124 	get_pwq(wq->dfl_pwq);
4125 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4126 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4127 out_unlock:
4128 	mutex_unlock(&wq->mutex);
4129 	put_pwq_unlocked(old_pwq);
4130 }
4131 
4132 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4133 {
4134 	bool highpri = wq->flags & WQ_HIGHPRI;
4135 	int cpu, ret;
4136 
4137 	if (!(wq->flags & WQ_UNBOUND)) {
4138 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4139 		if (!wq->cpu_pwqs)
4140 			return -ENOMEM;
4141 
4142 		for_each_possible_cpu(cpu) {
4143 			struct pool_workqueue *pwq =
4144 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4145 			struct worker_pool *cpu_pools =
4146 				per_cpu(cpu_worker_pools, cpu);
4147 
4148 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4149 
4150 			mutex_lock(&wq->mutex);
4151 			link_pwq(pwq);
4152 			mutex_unlock(&wq->mutex);
4153 		}
4154 		return 0;
4155 	} else if (wq->flags & __WQ_ORDERED) {
4156 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4157 		/* there should only be single pwq for ordering guarantee */
4158 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4159 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4160 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4161 		return ret;
4162 	} else {
4163 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4164 	}
4165 }
4166 
4167 static int wq_clamp_max_active(int max_active, unsigned int flags,
4168 			       const char *name)
4169 {
4170 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4171 
4172 	if (max_active < 1 || max_active > lim)
4173 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4174 			max_active, name, 1, lim);
4175 
4176 	return clamp_val(max_active, 1, lim);
4177 }
4178 
4179 /*
4180  * Workqueues which may be used during memory reclaim should have a rescuer
4181  * to guarantee forward progress.
4182  */
4183 static int init_rescuer(struct workqueue_struct *wq)
4184 {
4185 	struct worker *rescuer;
4186 	int ret;
4187 
4188 	if (!(wq->flags & WQ_MEM_RECLAIM))
4189 		return 0;
4190 
4191 	rescuer = alloc_worker(NUMA_NO_NODE);
4192 	if (!rescuer)
4193 		return -ENOMEM;
4194 
4195 	rescuer->rescue_wq = wq;
4196 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4197 	ret = PTR_ERR_OR_ZERO(rescuer->task);
4198 	if (ret) {
4199 		kfree(rescuer);
4200 		return ret;
4201 	}
4202 
4203 	wq->rescuer = rescuer;
4204 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4205 	wake_up_process(rescuer->task);
4206 
4207 	return 0;
4208 }
4209 
4210 __printf(1, 4)
4211 struct workqueue_struct *alloc_workqueue(const char *fmt,
4212 					 unsigned int flags,
4213 					 int max_active, ...)
4214 {
4215 	size_t tbl_size = 0;
4216 	va_list args;
4217 	struct workqueue_struct *wq;
4218 	struct pool_workqueue *pwq;
4219 
4220 	/*
4221 	 * Unbound && max_active == 1 used to imply ordered, which is no
4222 	 * longer the case on NUMA machines due to per-node pools.  While
4223 	 * alloc_ordered_workqueue() is the right way to create an ordered
4224 	 * workqueue, keep the previous behavior to avoid subtle breakages
4225 	 * on NUMA.
4226 	 */
4227 	if ((flags & WQ_UNBOUND) && max_active == 1)
4228 		flags |= __WQ_ORDERED;
4229 
4230 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4231 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4232 		flags |= WQ_UNBOUND;
4233 
4234 	/* allocate wq and format name */
4235 	if (flags & WQ_UNBOUND)
4236 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4237 
4238 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4239 	if (!wq)
4240 		return NULL;
4241 
4242 	if (flags & WQ_UNBOUND) {
4243 		wq->unbound_attrs = alloc_workqueue_attrs();
4244 		if (!wq->unbound_attrs)
4245 			goto err_free_wq;
4246 	}
4247 
4248 	va_start(args, max_active);
4249 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4250 	va_end(args);
4251 
4252 	max_active = max_active ?: WQ_DFL_ACTIVE;
4253 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4254 
4255 	/* init wq */
4256 	wq->flags = flags;
4257 	wq->saved_max_active = max_active;
4258 	mutex_init(&wq->mutex);
4259 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4260 	INIT_LIST_HEAD(&wq->pwqs);
4261 	INIT_LIST_HEAD(&wq->flusher_queue);
4262 	INIT_LIST_HEAD(&wq->flusher_overflow);
4263 	INIT_LIST_HEAD(&wq->maydays);
4264 
4265 	wq_init_lockdep(wq);
4266 	INIT_LIST_HEAD(&wq->list);
4267 
4268 	if (alloc_and_link_pwqs(wq) < 0)
4269 		goto err_unreg_lockdep;
4270 
4271 	if (wq_online && init_rescuer(wq) < 0)
4272 		goto err_destroy;
4273 
4274 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4275 		goto err_destroy;
4276 
4277 	/*
4278 	 * wq_pool_mutex protects global freeze state and workqueues list.
4279 	 * Grab it, adjust max_active and add the new @wq to workqueues
4280 	 * list.
4281 	 */
4282 	mutex_lock(&wq_pool_mutex);
4283 
4284 	mutex_lock(&wq->mutex);
4285 	for_each_pwq(pwq, wq)
4286 		pwq_adjust_max_active(pwq);
4287 	mutex_unlock(&wq->mutex);
4288 
4289 	list_add_tail_rcu(&wq->list, &workqueues);
4290 
4291 	mutex_unlock(&wq_pool_mutex);
4292 
4293 	return wq;
4294 
4295 err_unreg_lockdep:
4296 	wq_unregister_lockdep(wq);
4297 	wq_free_lockdep(wq);
4298 err_free_wq:
4299 	free_workqueue_attrs(wq->unbound_attrs);
4300 	kfree(wq);
4301 	return NULL;
4302 err_destroy:
4303 	destroy_workqueue(wq);
4304 	return NULL;
4305 }
4306 EXPORT_SYMBOL_GPL(alloc_workqueue);
4307 
4308 /**
4309  * destroy_workqueue - safely terminate a workqueue
4310  * @wq: target workqueue
4311  *
4312  * Safely destroy a workqueue. All work currently pending will be done first.
4313  */
4314 void destroy_workqueue(struct workqueue_struct *wq)
4315 {
4316 	struct pool_workqueue *pwq;
4317 	int node;
4318 
4319 	/* drain it before proceeding with destruction */
4320 	drain_workqueue(wq);
4321 
4322 	/* sanity checks */
4323 	mutex_lock(&wq->mutex);
4324 	for_each_pwq(pwq, wq) {
4325 		int i;
4326 
4327 		for (i = 0; i < WORK_NR_COLORS; i++) {
4328 			if (WARN_ON(pwq->nr_in_flight[i])) {
4329 				mutex_unlock(&wq->mutex);
4330 				show_workqueue_state();
4331 				return;
4332 			}
4333 		}
4334 
4335 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4336 		    WARN_ON(pwq->nr_active) ||
4337 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4338 			mutex_unlock(&wq->mutex);
4339 			show_workqueue_state();
4340 			return;
4341 		}
4342 	}
4343 	mutex_unlock(&wq->mutex);
4344 
4345 	/*
4346 	 * wq list is used to freeze wq, remove from list after
4347 	 * flushing is complete in case freeze races us.
4348 	 */
4349 	mutex_lock(&wq_pool_mutex);
4350 	list_del_rcu(&wq->list);
4351 	mutex_unlock(&wq_pool_mutex);
4352 
4353 	workqueue_sysfs_unregister(wq);
4354 
4355 	if (wq->rescuer)
4356 		kthread_stop(wq->rescuer->task);
4357 
4358 	if (!(wq->flags & WQ_UNBOUND)) {
4359 		wq_unregister_lockdep(wq);
4360 		/*
4361 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4362 		 * schedule RCU free.
4363 		 */
4364 		call_rcu(&wq->rcu, rcu_free_wq);
4365 	} else {
4366 		/*
4367 		 * We're the sole accessor of @wq at this point.  Directly
4368 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4369 		 * @wq will be freed when the last pwq is released.
4370 		 */
4371 		for_each_node(node) {
4372 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4373 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4374 			put_pwq_unlocked(pwq);
4375 		}
4376 
4377 		/*
4378 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4379 		 * put.  Don't access it afterwards.
4380 		 */
4381 		pwq = wq->dfl_pwq;
4382 		wq->dfl_pwq = NULL;
4383 		put_pwq_unlocked(pwq);
4384 	}
4385 }
4386 EXPORT_SYMBOL_GPL(destroy_workqueue);
4387 
4388 /**
4389  * workqueue_set_max_active - adjust max_active of a workqueue
4390  * @wq: target workqueue
4391  * @max_active: new max_active value.
4392  *
4393  * Set max_active of @wq to @max_active.
4394  *
4395  * CONTEXT:
4396  * Don't call from IRQ context.
4397  */
4398 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4399 {
4400 	struct pool_workqueue *pwq;
4401 
4402 	/* disallow meddling with max_active for ordered workqueues */
4403 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4404 		return;
4405 
4406 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4407 
4408 	mutex_lock(&wq->mutex);
4409 
4410 	wq->flags &= ~__WQ_ORDERED;
4411 	wq->saved_max_active = max_active;
4412 
4413 	for_each_pwq(pwq, wq)
4414 		pwq_adjust_max_active(pwq);
4415 
4416 	mutex_unlock(&wq->mutex);
4417 }
4418 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4419 
4420 /**
4421  * current_work - retrieve %current task's work struct
4422  *
4423  * Determine if %current task is a workqueue worker and what it's working on.
4424  * Useful to find out the context that the %current task is running in.
4425  *
4426  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4427  */
4428 struct work_struct *current_work(void)
4429 {
4430 	struct worker *worker = current_wq_worker();
4431 
4432 	return worker ? worker->current_work : NULL;
4433 }
4434 EXPORT_SYMBOL(current_work);
4435 
4436 /**
4437  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4438  *
4439  * Determine whether %current is a workqueue rescuer.  Can be used from
4440  * work functions to determine whether it's being run off the rescuer task.
4441  *
4442  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4443  */
4444 bool current_is_workqueue_rescuer(void)
4445 {
4446 	struct worker *worker = current_wq_worker();
4447 
4448 	return worker && worker->rescue_wq;
4449 }
4450 
4451 /**
4452  * workqueue_congested - test whether a workqueue is congested
4453  * @cpu: CPU in question
4454  * @wq: target workqueue
4455  *
4456  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4457  * no synchronization around this function and the test result is
4458  * unreliable and only useful as advisory hints or for debugging.
4459  *
4460  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4461  * Note that both per-cpu and unbound workqueues may be associated with
4462  * multiple pool_workqueues which have separate congested states.  A
4463  * workqueue being congested on one CPU doesn't mean the workqueue is also
4464  * contested on other CPUs / NUMA nodes.
4465  *
4466  * Return:
4467  * %true if congested, %false otherwise.
4468  */
4469 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4470 {
4471 	struct pool_workqueue *pwq;
4472 	bool ret;
4473 
4474 	rcu_read_lock();
4475 	preempt_disable();
4476 
4477 	if (cpu == WORK_CPU_UNBOUND)
4478 		cpu = smp_processor_id();
4479 
4480 	if (!(wq->flags & WQ_UNBOUND))
4481 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4482 	else
4483 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4484 
4485 	ret = !list_empty(&pwq->delayed_works);
4486 	preempt_enable();
4487 	rcu_read_unlock();
4488 
4489 	return ret;
4490 }
4491 EXPORT_SYMBOL_GPL(workqueue_congested);
4492 
4493 /**
4494  * work_busy - test whether a work is currently pending or running
4495  * @work: the work to be tested
4496  *
4497  * Test whether @work is currently pending or running.  There is no
4498  * synchronization around this function and the test result is
4499  * unreliable and only useful as advisory hints or for debugging.
4500  *
4501  * Return:
4502  * OR'd bitmask of WORK_BUSY_* bits.
4503  */
4504 unsigned int work_busy(struct work_struct *work)
4505 {
4506 	struct worker_pool *pool;
4507 	unsigned long flags;
4508 	unsigned int ret = 0;
4509 
4510 	if (work_pending(work))
4511 		ret |= WORK_BUSY_PENDING;
4512 
4513 	rcu_read_lock();
4514 	pool = get_work_pool(work);
4515 	if (pool) {
4516 		spin_lock_irqsave(&pool->lock, flags);
4517 		if (find_worker_executing_work(pool, work))
4518 			ret |= WORK_BUSY_RUNNING;
4519 		spin_unlock_irqrestore(&pool->lock, flags);
4520 	}
4521 	rcu_read_unlock();
4522 
4523 	return ret;
4524 }
4525 EXPORT_SYMBOL_GPL(work_busy);
4526 
4527 /**
4528  * set_worker_desc - set description for the current work item
4529  * @fmt: printf-style format string
4530  * @...: arguments for the format string
4531  *
4532  * This function can be called by a running work function to describe what
4533  * the work item is about.  If the worker task gets dumped, this
4534  * information will be printed out together to help debugging.  The
4535  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4536  */
4537 void set_worker_desc(const char *fmt, ...)
4538 {
4539 	struct worker *worker = current_wq_worker();
4540 	va_list args;
4541 
4542 	if (worker) {
4543 		va_start(args, fmt);
4544 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4545 		va_end(args);
4546 	}
4547 }
4548 EXPORT_SYMBOL_GPL(set_worker_desc);
4549 
4550 /**
4551  * print_worker_info - print out worker information and description
4552  * @log_lvl: the log level to use when printing
4553  * @task: target task
4554  *
4555  * If @task is a worker and currently executing a work item, print out the
4556  * name of the workqueue being serviced and worker description set with
4557  * set_worker_desc() by the currently executing work item.
4558  *
4559  * This function can be safely called on any task as long as the
4560  * task_struct itself is accessible.  While safe, this function isn't
4561  * synchronized and may print out mixups or garbages of limited length.
4562  */
4563 void print_worker_info(const char *log_lvl, struct task_struct *task)
4564 {
4565 	work_func_t *fn = NULL;
4566 	char name[WQ_NAME_LEN] = { };
4567 	char desc[WORKER_DESC_LEN] = { };
4568 	struct pool_workqueue *pwq = NULL;
4569 	struct workqueue_struct *wq = NULL;
4570 	struct worker *worker;
4571 
4572 	if (!(task->flags & PF_WQ_WORKER))
4573 		return;
4574 
4575 	/*
4576 	 * This function is called without any synchronization and @task
4577 	 * could be in any state.  Be careful with dereferences.
4578 	 */
4579 	worker = kthread_probe_data(task);
4580 
4581 	/*
4582 	 * Carefully copy the associated workqueue's workfn, name and desc.
4583 	 * Keep the original last '\0' in case the original is garbage.
4584 	 */
4585 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4586 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4587 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4588 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4589 	probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4590 
4591 	if (fn || name[0] || desc[0]) {
4592 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4593 		if (strcmp(name, desc))
4594 			pr_cont(" (%s)", desc);
4595 		pr_cont("\n");
4596 	}
4597 }
4598 
4599 static void pr_cont_pool_info(struct worker_pool *pool)
4600 {
4601 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4602 	if (pool->node != NUMA_NO_NODE)
4603 		pr_cont(" node=%d", pool->node);
4604 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4605 }
4606 
4607 static void pr_cont_work(bool comma, struct work_struct *work)
4608 {
4609 	if (work->func == wq_barrier_func) {
4610 		struct wq_barrier *barr;
4611 
4612 		barr = container_of(work, struct wq_barrier, work);
4613 
4614 		pr_cont("%s BAR(%d)", comma ? "," : "",
4615 			task_pid_nr(barr->task));
4616 	} else {
4617 		pr_cont("%s %ps", comma ? "," : "", work->func);
4618 	}
4619 }
4620 
4621 static void show_pwq(struct pool_workqueue *pwq)
4622 {
4623 	struct worker_pool *pool = pwq->pool;
4624 	struct work_struct *work;
4625 	struct worker *worker;
4626 	bool has_in_flight = false, has_pending = false;
4627 	int bkt;
4628 
4629 	pr_info("  pwq %d:", pool->id);
4630 	pr_cont_pool_info(pool);
4631 
4632 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4633 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4634 
4635 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4636 		if (worker->current_pwq == pwq) {
4637 			has_in_flight = true;
4638 			break;
4639 		}
4640 	}
4641 	if (has_in_flight) {
4642 		bool comma = false;
4643 
4644 		pr_info("    in-flight:");
4645 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4646 			if (worker->current_pwq != pwq)
4647 				continue;
4648 
4649 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4650 				task_pid_nr(worker->task),
4651 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4652 				worker->current_func);
4653 			list_for_each_entry(work, &worker->scheduled, entry)
4654 				pr_cont_work(false, work);
4655 			comma = true;
4656 		}
4657 		pr_cont("\n");
4658 	}
4659 
4660 	list_for_each_entry(work, &pool->worklist, entry) {
4661 		if (get_work_pwq(work) == pwq) {
4662 			has_pending = true;
4663 			break;
4664 		}
4665 	}
4666 	if (has_pending) {
4667 		bool comma = false;
4668 
4669 		pr_info("    pending:");
4670 		list_for_each_entry(work, &pool->worklist, entry) {
4671 			if (get_work_pwq(work) != pwq)
4672 				continue;
4673 
4674 			pr_cont_work(comma, work);
4675 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4676 		}
4677 		pr_cont("\n");
4678 	}
4679 
4680 	if (!list_empty(&pwq->delayed_works)) {
4681 		bool comma = false;
4682 
4683 		pr_info("    delayed:");
4684 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4685 			pr_cont_work(comma, work);
4686 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4687 		}
4688 		pr_cont("\n");
4689 	}
4690 }
4691 
4692 /**
4693  * show_workqueue_state - dump workqueue state
4694  *
4695  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4696  * all busy workqueues and pools.
4697  */
4698 void show_workqueue_state(void)
4699 {
4700 	struct workqueue_struct *wq;
4701 	struct worker_pool *pool;
4702 	unsigned long flags;
4703 	int pi;
4704 
4705 	rcu_read_lock();
4706 
4707 	pr_info("Showing busy workqueues and worker pools:\n");
4708 
4709 	list_for_each_entry_rcu(wq, &workqueues, list) {
4710 		struct pool_workqueue *pwq;
4711 		bool idle = true;
4712 
4713 		for_each_pwq(pwq, wq) {
4714 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4715 				idle = false;
4716 				break;
4717 			}
4718 		}
4719 		if (idle)
4720 			continue;
4721 
4722 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4723 
4724 		for_each_pwq(pwq, wq) {
4725 			spin_lock_irqsave(&pwq->pool->lock, flags);
4726 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4727 				show_pwq(pwq);
4728 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4729 			/*
4730 			 * We could be printing a lot from atomic context, e.g.
4731 			 * sysrq-t -> show_workqueue_state(). Avoid triggering
4732 			 * hard lockup.
4733 			 */
4734 			touch_nmi_watchdog();
4735 		}
4736 	}
4737 
4738 	for_each_pool(pool, pi) {
4739 		struct worker *worker;
4740 		bool first = true;
4741 
4742 		spin_lock_irqsave(&pool->lock, flags);
4743 		if (pool->nr_workers == pool->nr_idle)
4744 			goto next_pool;
4745 
4746 		pr_info("pool %d:", pool->id);
4747 		pr_cont_pool_info(pool);
4748 		pr_cont(" hung=%us workers=%d",
4749 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4750 			pool->nr_workers);
4751 		if (pool->manager)
4752 			pr_cont(" manager: %d",
4753 				task_pid_nr(pool->manager->task));
4754 		list_for_each_entry(worker, &pool->idle_list, entry) {
4755 			pr_cont(" %s%d", first ? "idle: " : "",
4756 				task_pid_nr(worker->task));
4757 			first = false;
4758 		}
4759 		pr_cont("\n");
4760 	next_pool:
4761 		spin_unlock_irqrestore(&pool->lock, flags);
4762 		/*
4763 		 * We could be printing a lot from atomic context, e.g.
4764 		 * sysrq-t -> show_workqueue_state(). Avoid triggering
4765 		 * hard lockup.
4766 		 */
4767 		touch_nmi_watchdog();
4768 	}
4769 
4770 	rcu_read_unlock();
4771 }
4772 
4773 /* used to show worker information through /proc/PID/{comm,stat,status} */
4774 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4775 {
4776 	int off;
4777 
4778 	/* always show the actual comm */
4779 	off = strscpy(buf, task->comm, size);
4780 	if (off < 0)
4781 		return;
4782 
4783 	/* stabilize PF_WQ_WORKER and worker pool association */
4784 	mutex_lock(&wq_pool_attach_mutex);
4785 
4786 	if (task->flags & PF_WQ_WORKER) {
4787 		struct worker *worker = kthread_data(task);
4788 		struct worker_pool *pool = worker->pool;
4789 
4790 		if (pool) {
4791 			spin_lock_irq(&pool->lock);
4792 			/*
4793 			 * ->desc tracks information (wq name or
4794 			 * set_worker_desc()) for the latest execution.  If
4795 			 * current, prepend '+', otherwise '-'.
4796 			 */
4797 			if (worker->desc[0] != '\0') {
4798 				if (worker->current_work)
4799 					scnprintf(buf + off, size - off, "+%s",
4800 						  worker->desc);
4801 				else
4802 					scnprintf(buf + off, size - off, "-%s",
4803 						  worker->desc);
4804 			}
4805 			spin_unlock_irq(&pool->lock);
4806 		}
4807 	}
4808 
4809 	mutex_unlock(&wq_pool_attach_mutex);
4810 }
4811 
4812 #ifdef CONFIG_SMP
4813 
4814 /*
4815  * CPU hotplug.
4816  *
4817  * There are two challenges in supporting CPU hotplug.  Firstly, there
4818  * are a lot of assumptions on strong associations among work, pwq and
4819  * pool which make migrating pending and scheduled works very
4820  * difficult to implement without impacting hot paths.  Secondly,
4821  * worker pools serve mix of short, long and very long running works making
4822  * blocked draining impractical.
4823  *
4824  * This is solved by allowing the pools to be disassociated from the CPU
4825  * running as an unbound one and allowing it to be reattached later if the
4826  * cpu comes back online.
4827  */
4828 
4829 static void unbind_workers(int cpu)
4830 {
4831 	struct worker_pool *pool;
4832 	struct worker *worker;
4833 
4834 	for_each_cpu_worker_pool(pool, cpu) {
4835 		mutex_lock(&wq_pool_attach_mutex);
4836 		spin_lock_irq(&pool->lock);
4837 
4838 		/*
4839 		 * We've blocked all attach/detach operations. Make all workers
4840 		 * unbound and set DISASSOCIATED.  Before this, all workers
4841 		 * except for the ones which are still executing works from
4842 		 * before the last CPU down must be on the cpu.  After
4843 		 * this, they may become diasporas.
4844 		 */
4845 		for_each_pool_worker(worker, pool)
4846 			worker->flags |= WORKER_UNBOUND;
4847 
4848 		pool->flags |= POOL_DISASSOCIATED;
4849 
4850 		spin_unlock_irq(&pool->lock);
4851 		mutex_unlock(&wq_pool_attach_mutex);
4852 
4853 		/*
4854 		 * Call schedule() so that we cross rq->lock and thus can
4855 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4856 		 * This is necessary as scheduler callbacks may be invoked
4857 		 * from other cpus.
4858 		 */
4859 		schedule();
4860 
4861 		/*
4862 		 * Sched callbacks are disabled now.  Zap nr_running.
4863 		 * After this, nr_running stays zero and need_more_worker()
4864 		 * and keep_working() are always true as long as the
4865 		 * worklist is not empty.  This pool now behaves as an
4866 		 * unbound (in terms of concurrency management) pool which
4867 		 * are served by workers tied to the pool.
4868 		 */
4869 		atomic_set(&pool->nr_running, 0);
4870 
4871 		/*
4872 		 * With concurrency management just turned off, a busy
4873 		 * worker blocking could lead to lengthy stalls.  Kick off
4874 		 * unbound chain execution of currently pending work items.
4875 		 */
4876 		spin_lock_irq(&pool->lock);
4877 		wake_up_worker(pool);
4878 		spin_unlock_irq(&pool->lock);
4879 	}
4880 }
4881 
4882 /**
4883  * rebind_workers - rebind all workers of a pool to the associated CPU
4884  * @pool: pool of interest
4885  *
4886  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4887  */
4888 static void rebind_workers(struct worker_pool *pool)
4889 {
4890 	struct worker *worker;
4891 
4892 	lockdep_assert_held(&wq_pool_attach_mutex);
4893 
4894 	/*
4895 	 * Restore CPU affinity of all workers.  As all idle workers should
4896 	 * be on the run-queue of the associated CPU before any local
4897 	 * wake-ups for concurrency management happen, restore CPU affinity
4898 	 * of all workers first and then clear UNBOUND.  As we're called
4899 	 * from CPU_ONLINE, the following shouldn't fail.
4900 	 */
4901 	for_each_pool_worker(worker, pool)
4902 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4903 						  pool->attrs->cpumask) < 0);
4904 
4905 	spin_lock_irq(&pool->lock);
4906 
4907 	pool->flags &= ~POOL_DISASSOCIATED;
4908 
4909 	for_each_pool_worker(worker, pool) {
4910 		unsigned int worker_flags = worker->flags;
4911 
4912 		/*
4913 		 * A bound idle worker should actually be on the runqueue
4914 		 * of the associated CPU for local wake-ups targeting it to
4915 		 * work.  Kick all idle workers so that they migrate to the
4916 		 * associated CPU.  Doing this in the same loop as
4917 		 * replacing UNBOUND with REBOUND is safe as no worker will
4918 		 * be bound before @pool->lock is released.
4919 		 */
4920 		if (worker_flags & WORKER_IDLE)
4921 			wake_up_process(worker->task);
4922 
4923 		/*
4924 		 * We want to clear UNBOUND but can't directly call
4925 		 * worker_clr_flags() or adjust nr_running.  Atomically
4926 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4927 		 * @worker will clear REBOUND using worker_clr_flags() when
4928 		 * it initiates the next execution cycle thus restoring
4929 		 * concurrency management.  Note that when or whether
4930 		 * @worker clears REBOUND doesn't affect correctness.
4931 		 *
4932 		 * WRITE_ONCE() is necessary because @worker->flags may be
4933 		 * tested without holding any lock in
4934 		 * wq_worker_running().  Without it, NOT_RUNNING test may
4935 		 * fail incorrectly leading to premature concurrency
4936 		 * management operations.
4937 		 */
4938 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4939 		worker_flags |= WORKER_REBOUND;
4940 		worker_flags &= ~WORKER_UNBOUND;
4941 		WRITE_ONCE(worker->flags, worker_flags);
4942 	}
4943 
4944 	spin_unlock_irq(&pool->lock);
4945 }
4946 
4947 /**
4948  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4949  * @pool: unbound pool of interest
4950  * @cpu: the CPU which is coming up
4951  *
4952  * An unbound pool may end up with a cpumask which doesn't have any online
4953  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4954  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4955  * online CPU before, cpus_allowed of all its workers should be restored.
4956  */
4957 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4958 {
4959 	static cpumask_t cpumask;
4960 	struct worker *worker;
4961 
4962 	lockdep_assert_held(&wq_pool_attach_mutex);
4963 
4964 	/* is @cpu allowed for @pool? */
4965 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4966 		return;
4967 
4968 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4969 
4970 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4971 	for_each_pool_worker(worker, pool)
4972 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4973 }
4974 
4975 int workqueue_prepare_cpu(unsigned int cpu)
4976 {
4977 	struct worker_pool *pool;
4978 
4979 	for_each_cpu_worker_pool(pool, cpu) {
4980 		if (pool->nr_workers)
4981 			continue;
4982 		if (!create_worker(pool))
4983 			return -ENOMEM;
4984 	}
4985 	return 0;
4986 }
4987 
4988 int workqueue_online_cpu(unsigned int cpu)
4989 {
4990 	struct worker_pool *pool;
4991 	struct workqueue_struct *wq;
4992 	int pi;
4993 
4994 	mutex_lock(&wq_pool_mutex);
4995 
4996 	for_each_pool(pool, pi) {
4997 		mutex_lock(&wq_pool_attach_mutex);
4998 
4999 		if (pool->cpu == cpu)
5000 			rebind_workers(pool);
5001 		else if (pool->cpu < 0)
5002 			restore_unbound_workers_cpumask(pool, cpu);
5003 
5004 		mutex_unlock(&wq_pool_attach_mutex);
5005 	}
5006 
5007 	/* update NUMA affinity of unbound workqueues */
5008 	list_for_each_entry(wq, &workqueues, list)
5009 		wq_update_unbound_numa(wq, cpu, true);
5010 
5011 	mutex_unlock(&wq_pool_mutex);
5012 	return 0;
5013 }
5014 
5015 int workqueue_offline_cpu(unsigned int cpu)
5016 {
5017 	struct workqueue_struct *wq;
5018 
5019 	/* unbinding per-cpu workers should happen on the local CPU */
5020 	if (WARN_ON(cpu != smp_processor_id()))
5021 		return -1;
5022 
5023 	unbind_workers(cpu);
5024 
5025 	/* update NUMA affinity of unbound workqueues */
5026 	mutex_lock(&wq_pool_mutex);
5027 	list_for_each_entry(wq, &workqueues, list)
5028 		wq_update_unbound_numa(wq, cpu, false);
5029 	mutex_unlock(&wq_pool_mutex);
5030 
5031 	return 0;
5032 }
5033 
5034 struct work_for_cpu {
5035 	struct work_struct work;
5036 	long (*fn)(void *);
5037 	void *arg;
5038 	long ret;
5039 };
5040 
5041 static void work_for_cpu_fn(struct work_struct *work)
5042 {
5043 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5044 
5045 	wfc->ret = wfc->fn(wfc->arg);
5046 }
5047 
5048 /**
5049  * work_on_cpu - run a function in thread context on a particular cpu
5050  * @cpu: the cpu to run on
5051  * @fn: the function to run
5052  * @arg: the function arg
5053  *
5054  * It is up to the caller to ensure that the cpu doesn't go offline.
5055  * The caller must not hold any locks which would prevent @fn from completing.
5056  *
5057  * Return: The value @fn returns.
5058  */
5059 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5060 {
5061 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5062 
5063 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5064 	schedule_work_on(cpu, &wfc.work);
5065 	flush_work(&wfc.work);
5066 	destroy_work_on_stack(&wfc.work);
5067 	return wfc.ret;
5068 }
5069 EXPORT_SYMBOL_GPL(work_on_cpu);
5070 
5071 /**
5072  * work_on_cpu_safe - run a function in thread context on a particular cpu
5073  * @cpu: the cpu to run on
5074  * @fn:  the function to run
5075  * @arg: the function argument
5076  *
5077  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5078  * any locks which would prevent @fn from completing.
5079  *
5080  * Return: The value @fn returns.
5081  */
5082 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5083 {
5084 	long ret = -ENODEV;
5085 
5086 	get_online_cpus();
5087 	if (cpu_online(cpu))
5088 		ret = work_on_cpu(cpu, fn, arg);
5089 	put_online_cpus();
5090 	return ret;
5091 }
5092 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5093 #endif /* CONFIG_SMP */
5094 
5095 #ifdef CONFIG_FREEZER
5096 
5097 /**
5098  * freeze_workqueues_begin - begin freezing workqueues
5099  *
5100  * Start freezing workqueues.  After this function returns, all freezable
5101  * workqueues will queue new works to their delayed_works list instead of
5102  * pool->worklist.
5103  *
5104  * CONTEXT:
5105  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5106  */
5107 void freeze_workqueues_begin(void)
5108 {
5109 	struct workqueue_struct *wq;
5110 	struct pool_workqueue *pwq;
5111 
5112 	mutex_lock(&wq_pool_mutex);
5113 
5114 	WARN_ON_ONCE(workqueue_freezing);
5115 	workqueue_freezing = true;
5116 
5117 	list_for_each_entry(wq, &workqueues, list) {
5118 		mutex_lock(&wq->mutex);
5119 		for_each_pwq(pwq, wq)
5120 			pwq_adjust_max_active(pwq);
5121 		mutex_unlock(&wq->mutex);
5122 	}
5123 
5124 	mutex_unlock(&wq_pool_mutex);
5125 }
5126 
5127 /**
5128  * freeze_workqueues_busy - are freezable workqueues still busy?
5129  *
5130  * Check whether freezing is complete.  This function must be called
5131  * between freeze_workqueues_begin() and thaw_workqueues().
5132  *
5133  * CONTEXT:
5134  * Grabs and releases wq_pool_mutex.
5135  *
5136  * Return:
5137  * %true if some freezable workqueues are still busy.  %false if freezing
5138  * is complete.
5139  */
5140 bool freeze_workqueues_busy(void)
5141 {
5142 	bool busy = false;
5143 	struct workqueue_struct *wq;
5144 	struct pool_workqueue *pwq;
5145 
5146 	mutex_lock(&wq_pool_mutex);
5147 
5148 	WARN_ON_ONCE(!workqueue_freezing);
5149 
5150 	list_for_each_entry(wq, &workqueues, list) {
5151 		if (!(wq->flags & WQ_FREEZABLE))
5152 			continue;
5153 		/*
5154 		 * nr_active is monotonically decreasing.  It's safe
5155 		 * to peek without lock.
5156 		 */
5157 		rcu_read_lock();
5158 		for_each_pwq(pwq, wq) {
5159 			WARN_ON_ONCE(pwq->nr_active < 0);
5160 			if (pwq->nr_active) {
5161 				busy = true;
5162 				rcu_read_unlock();
5163 				goto out_unlock;
5164 			}
5165 		}
5166 		rcu_read_unlock();
5167 	}
5168 out_unlock:
5169 	mutex_unlock(&wq_pool_mutex);
5170 	return busy;
5171 }
5172 
5173 /**
5174  * thaw_workqueues - thaw workqueues
5175  *
5176  * Thaw workqueues.  Normal queueing is restored and all collected
5177  * frozen works are transferred to their respective pool worklists.
5178  *
5179  * CONTEXT:
5180  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5181  */
5182 void thaw_workqueues(void)
5183 {
5184 	struct workqueue_struct *wq;
5185 	struct pool_workqueue *pwq;
5186 
5187 	mutex_lock(&wq_pool_mutex);
5188 
5189 	if (!workqueue_freezing)
5190 		goto out_unlock;
5191 
5192 	workqueue_freezing = false;
5193 
5194 	/* restore max_active and repopulate worklist */
5195 	list_for_each_entry(wq, &workqueues, list) {
5196 		mutex_lock(&wq->mutex);
5197 		for_each_pwq(pwq, wq)
5198 			pwq_adjust_max_active(pwq);
5199 		mutex_unlock(&wq->mutex);
5200 	}
5201 
5202 out_unlock:
5203 	mutex_unlock(&wq_pool_mutex);
5204 }
5205 #endif /* CONFIG_FREEZER */
5206 
5207 static int workqueue_apply_unbound_cpumask(void)
5208 {
5209 	LIST_HEAD(ctxs);
5210 	int ret = 0;
5211 	struct workqueue_struct *wq;
5212 	struct apply_wqattrs_ctx *ctx, *n;
5213 
5214 	lockdep_assert_held(&wq_pool_mutex);
5215 
5216 	list_for_each_entry(wq, &workqueues, list) {
5217 		if (!(wq->flags & WQ_UNBOUND))
5218 			continue;
5219 		/* creating multiple pwqs breaks ordering guarantee */
5220 		if (wq->flags & __WQ_ORDERED)
5221 			continue;
5222 
5223 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5224 		if (!ctx) {
5225 			ret = -ENOMEM;
5226 			break;
5227 		}
5228 
5229 		list_add_tail(&ctx->list, &ctxs);
5230 	}
5231 
5232 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5233 		if (!ret)
5234 			apply_wqattrs_commit(ctx);
5235 		apply_wqattrs_cleanup(ctx);
5236 	}
5237 
5238 	return ret;
5239 }
5240 
5241 /**
5242  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5243  *  @cpumask: the cpumask to set
5244  *
5245  *  The low-level workqueues cpumask is a global cpumask that limits
5246  *  the affinity of all unbound workqueues.  This function check the @cpumask
5247  *  and apply it to all unbound workqueues and updates all pwqs of them.
5248  *
5249  *  Retun:	0	- Success
5250  *  		-EINVAL	- Invalid @cpumask
5251  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5252  */
5253 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5254 {
5255 	int ret = -EINVAL;
5256 	cpumask_var_t saved_cpumask;
5257 
5258 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5259 		return -ENOMEM;
5260 
5261 	/*
5262 	 * Not excluding isolated cpus on purpose.
5263 	 * If the user wishes to include them, we allow that.
5264 	 */
5265 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5266 	if (!cpumask_empty(cpumask)) {
5267 		apply_wqattrs_lock();
5268 
5269 		/* save the old wq_unbound_cpumask. */
5270 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5271 
5272 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5273 		cpumask_copy(wq_unbound_cpumask, cpumask);
5274 		ret = workqueue_apply_unbound_cpumask();
5275 
5276 		/* restore the wq_unbound_cpumask when failed. */
5277 		if (ret < 0)
5278 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5279 
5280 		apply_wqattrs_unlock();
5281 	}
5282 
5283 	free_cpumask_var(saved_cpumask);
5284 	return ret;
5285 }
5286 
5287 #ifdef CONFIG_SYSFS
5288 /*
5289  * Workqueues with WQ_SYSFS flag set is visible to userland via
5290  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5291  * following attributes.
5292  *
5293  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5294  *  max_active	RW int	: maximum number of in-flight work items
5295  *
5296  * Unbound workqueues have the following extra attributes.
5297  *
5298  *  pool_ids	RO int	: the associated pool IDs for each node
5299  *  nice	RW int	: nice value of the workers
5300  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5301  *  numa	RW bool	: whether enable NUMA affinity
5302  */
5303 struct wq_device {
5304 	struct workqueue_struct		*wq;
5305 	struct device			dev;
5306 };
5307 
5308 static struct workqueue_struct *dev_to_wq(struct device *dev)
5309 {
5310 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5311 
5312 	return wq_dev->wq;
5313 }
5314 
5315 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5316 			    char *buf)
5317 {
5318 	struct workqueue_struct *wq = dev_to_wq(dev);
5319 
5320 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5321 }
5322 static DEVICE_ATTR_RO(per_cpu);
5323 
5324 static ssize_t max_active_show(struct device *dev,
5325 			       struct device_attribute *attr, char *buf)
5326 {
5327 	struct workqueue_struct *wq = dev_to_wq(dev);
5328 
5329 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5330 }
5331 
5332 static ssize_t max_active_store(struct device *dev,
5333 				struct device_attribute *attr, const char *buf,
5334 				size_t count)
5335 {
5336 	struct workqueue_struct *wq = dev_to_wq(dev);
5337 	int val;
5338 
5339 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5340 		return -EINVAL;
5341 
5342 	workqueue_set_max_active(wq, val);
5343 	return count;
5344 }
5345 static DEVICE_ATTR_RW(max_active);
5346 
5347 static struct attribute *wq_sysfs_attrs[] = {
5348 	&dev_attr_per_cpu.attr,
5349 	&dev_attr_max_active.attr,
5350 	NULL,
5351 };
5352 ATTRIBUTE_GROUPS(wq_sysfs);
5353 
5354 static ssize_t wq_pool_ids_show(struct device *dev,
5355 				struct device_attribute *attr, char *buf)
5356 {
5357 	struct workqueue_struct *wq = dev_to_wq(dev);
5358 	const char *delim = "";
5359 	int node, written = 0;
5360 
5361 	get_online_cpus();
5362 	rcu_read_lock();
5363 	for_each_node(node) {
5364 		written += scnprintf(buf + written, PAGE_SIZE - written,
5365 				     "%s%d:%d", delim, node,
5366 				     unbound_pwq_by_node(wq, node)->pool->id);
5367 		delim = " ";
5368 	}
5369 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5370 	rcu_read_unlock();
5371 	put_online_cpus();
5372 
5373 	return written;
5374 }
5375 
5376 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5377 			    char *buf)
5378 {
5379 	struct workqueue_struct *wq = dev_to_wq(dev);
5380 	int written;
5381 
5382 	mutex_lock(&wq->mutex);
5383 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5384 	mutex_unlock(&wq->mutex);
5385 
5386 	return written;
5387 }
5388 
5389 /* prepare workqueue_attrs for sysfs store operations */
5390 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5391 {
5392 	struct workqueue_attrs *attrs;
5393 
5394 	lockdep_assert_held(&wq_pool_mutex);
5395 
5396 	attrs = alloc_workqueue_attrs();
5397 	if (!attrs)
5398 		return NULL;
5399 
5400 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5401 	return attrs;
5402 }
5403 
5404 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5405 			     const char *buf, size_t count)
5406 {
5407 	struct workqueue_struct *wq = dev_to_wq(dev);
5408 	struct workqueue_attrs *attrs;
5409 	int ret = -ENOMEM;
5410 
5411 	apply_wqattrs_lock();
5412 
5413 	attrs = wq_sysfs_prep_attrs(wq);
5414 	if (!attrs)
5415 		goto out_unlock;
5416 
5417 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5418 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5419 		ret = apply_workqueue_attrs_locked(wq, attrs);
5420 	else
5421 		ret = -EINVAL;
5422 
5423 out_unlock:
5424 	apply_wqattrs_unlock();
5425 	free_workqueue_attrs(attrs);
5426 	return ret ?: count;
5427 }
5428 
5429 static ssize_t wq_cpumask_show(struct device *dev,
5430 			       struct device_attribute *attr, char *buf)
5431 {
5432 	struct workqueue_struct *wq = dev_to_wq(dev);
5433 	int written;
5434 
5435 	mutex_lock(&wq->mutex);
5436 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5437 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5438 	mutex_unlock(&wq->mutex);
5439 	return written;
5440 }
5441 
5442 static ssize_t wq_cpumask_store(struct device *dev,
5443 				struct device_attribute *attr,
5444 				const char *buf, size_t count)
5445 {
5446 	struct workqueue_struct *wq = dev_to_wq(dev);
5447 	struct workqueue_attrs *attrs;
5448 	int ret = -ENOMEM;
5449 
5450 	apply_wqattrs_lock();
5451 
5452 	attrs = wq_sysfs_prep_attrs(wq);
5453 	if (!attrs)
5454 		goto out_unlock;
5455 
5456 	ret = cpumask_parse(buf, attrs->cpumask);
5457 	if (!ret)
5458 		ret = apply_workqueue_attrs_locked(wq, attrs);
5459 
5460 out_unlock:
5461 	apply_wqattrs_unlock();
5462 	free_workqueue_attrs(attrs);
5463 	return ret ?: count;
5464 }
5465 
5466 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5467 			    char *buf)
5468 {
5469 	struct workqueue_struct *wq = dev_to_wq(dev);
5470 	int written;
5471 
5472 	mutex_lock(&wq->mutex);
5473 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5474 			    !wq->unbound_attrs->no_numa);
5475 	mutex_unlock(&wq->mutex);
5476 
5477 	return written;
5478 }
5479 
5480 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5481 			     const char *buf, size_t count)
5482 {
5483 	struct workqueue_struct *wq = dev_to_wq(dev);
5484 	struct workqueue_attrs *attrs;
5485 	int v, ret = -ENOMEM;
5486 
5487 	apply_wqattrs_lock();
5488 
5489 	attrs = wq_sysfs_prep_attrs(wq);
5490 	if (!attrs)
5491 		goto out_unlock;
5492 
5493 	ret = -EINVAL;
5494 	if (sscanf(buf, "%d", &v) == 1) {
5495 		attrs->no_numa = !v;
5496 		ret = apply_workqueue_attrs_locked(wq, attrs);
5497 	}
5498 
5499 out_unlock:
5500 	apply_wqattrs_unlock();
5501 	free_workqueue_attrs(attrs);
5502 	return ret ?: count;
5503 }
5504 
5505 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5506 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5507 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5508 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5509 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5510 	__ATTR_NULL,
5511 };
5512 
5513 static struct bus_type wq_subsys = {
5514 	.name				= "workqueue",
5515 	.dev_groups			= wq_sysfs_groups,
5516 };
5517 
5518 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5519 		struct device_attribute *attr, char *buf)
5520 {
5521 	int written;
5522 
5523 	mutex_lock(&wq_pool_mutex);
5524 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5525 			    cpumask_pr_args(wq_unbound_cpumask));
5526 	mutex_unlock(&wq_pool_mutex);
5527 
5528 	return written;
5529 }
5530 
5531 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5532 		struct device_attribute *attr, const char *buf, size_t count)
5533 {
5534 	cpumask_var_t cpumask;
5535 	int ret;
5536 
5537 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5538 		return -ENOMEM;
5539 
5540 	ret = cpumask_parse(buf, cpumask);
5541 	if (!ret)
5542 		ret = workqueue_set_unbound_cpumask(cpumask);
5543 
5544 	free_cpumask_var(cpumask);
5545 	return ret ? ret : count;
5546 }
5547 
5548 static struct device_attribute wq_sysfs_cpumask_attr =
5549 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5550 	       wq_unbound_cpumask_store);
5551 
5552 static int __init wq_sysfs_init(void)
5553 {
5554 	int err;
5555 
5556 	err = subsys_virtual_register(&wq_subsys, NULL);
5557 	if (err)
5558 		return err;
5559 
5560 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5561 }
5562 core_initcall(wq_sysfs_init);
5563 
5564 static void wq_device_release(struct device *dev)
5565 {
5566 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5567 
5568 	kfree(wq_dev);
5569 }
5570 
5571 /**
5572  * workqueue_sysfs_register - make a workqueue visible in sysfs
5573  * @wq: the workqueue to register
5574  *
5575  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5576  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5577  * which is the preferred method.
5578  *
5579  * Workqueue user should use this function directly iff it wants to apply
5580  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5581  * apply_workqueue_attrs() may race against userland updating the
5582  * attributes.
5583  *
5584  * Return: 0 on success, -errno on failure.
5585  */
5586 int workqueue_sysfs_register(struct workqueue_struct *wq)
5587 {
5588 	struct wq_device *wq_dev;
5589 	int ret;
5590 
5591 	/*
5592 	 * Adjusting max_active or creating new pwqs by applying
5593 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5594 	 * workqueues.
5595 	 */
5596 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5597 		return -EINVAL;
5598 
5599 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5600 	if (!wq_dev)
5601 		return -ENOMEM;
5602 
5603 	wq_dev->wq = wq;
5604 	wq_dev->dev.bus = &wq_subsys;
5605 	wq_dev->dev.release = wq_device_release;
5606 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5607 
5608 	/*
5609 	 * unbound_attrs are created separately.  Suppress uevent until
5610 	 * everything is ready.
5611 	 */
5612 	dev_set_uevent_suppress(&wq_dev->dev, true);
5613 
5614 	ret = device_register(&wq_dev->dev);
5615 	if (ret) {
5616 		put_device(&wq_dev->dev);
5617 		wq->wq_dev = NULL;
5618 		return ret;
5619 	}
5620 
5621 	if (wq->flags & WQ_UNBOUND) {
5622 		struct device_attribute *attr;
5623 
5624 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5625 			ret = device_create_file(&wq_dev->dev, attr);
5626 			if (ret) {
5627 				device_unregister(&wq_dev->dev);
5628 				wq->wq_dev = NULL;
5629 				return ret;
5630 			}
5631 		}
5632 	}
5633 
5634 	dev_set_uevent_suppress(&wq_dev->dev, false);
5635 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5636 	return 0;
5637 }
5638 
5639 /**
5640  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5641  * @wq: the workqueue to unregister
5642  *
5643  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5644  */
5645 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5646 {
5647 	struct wq_device *wq_dev = wq->wq_dev;
5648 
5649 	if (!wq->wq_dev)
5650 		return;
5651 
5652 	wq->wq_dev = NULL;
5653 	device_unregister(&wq_dev->dev);
5654 }
5655 #else	/* CONFIG_SYSFS */
5656 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5657 #endif	/* CONFIG_SYSFS */
5658 
5659 /*
5660  * Workqueue watchdog.
5661  *
5662  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5663  * flush dependency, a concurrency managed work item which stays RUNNING
5664  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5665  * usual warning mechanisms don't trigger and internal workqueue state is
5666  * largely opaque.
5667  *
5668  * Workqueue watchdog monitors all worker pools periodically and dumps
5669  * state if some pools failed to make forward progress for a while where
5670  * forward progress is defined as the first item on ->worklist changing.
5671  *
5672  * This mechanism is controlled through the kernel parameter
5673  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5674  * corresponding sysfs parameter file.
5675  */
5676 #ifdef CONFIG_WQ_WATCHDOG
5677 
5678 static unsigned long wq_watchdog_thresh = 30;
5679 static struct timer_list wq_watchdog_timer;
5680 
5681 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5682 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5683 
5684 static void wq_watchdog_reset_touched(void)
5685 {
5686 	int cpu;
5687 
5688 	wq_watchdog_touched = jiffies;
5689 	for_each_possible_cpu(cpu)
5690 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5691 }
5692 
5693 static void wq_watchdog_timer_fn(struct timer_list *unused)
5694 {
5695 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5696 	bool lockup_detected = false;
5697 	struct worker_pool *pool;
5698 	int pi;
5699 
5700 	if (!thresh)
5701 		return;
5702 
5703 	rcu_read_lock();
5704 
5705 	for_each_pool(pool, pi) {
5706 		unsigned long pool_ts, touched, ts;
5707 
5708 		if (list_empty(&pool->worklist))
5709 			continue;
5710 
5711 		/* get the latest of pool and touched timestamps */
5712 		pool_ts = READ_ONCE(pool->watchdog_ts);
5713 		touched = READ_ONCE(wq_watchdog_touched);
5714 
5715 		if (time_after(pool_ts, touched))
5716 			ts = pool_ts;
5717 		else
5718 			ts = touched;
5719 
5720 		if (pool->cpu >= 0) {
5721 			unsigned long cpu_touched =
5722 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5723 						  pool->cpu));
5724 			if (time_after(cpu_touched, ts))
5725 				ts = cpu_touched;
5726 		}
5727 
5728 		/* did we stall? */
5729 		if (time_after(jiffies, ts + thresh)) {
5730 			lockup_detected = true;
5731 			pr_emerg("BUG: workqueue lockup - pool");
5732 			pr_cont_pool_info(pool);
5733 			pr_cont(" stuck for %us!\n",
5734 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5735 		}
5736 	}
5737 
5738 	rcu_read_unlock();
5739 
5740 	if (lockup_detected)
5741 		show_workqueue_state();
5742 
5743 	wq_watchdog_reset_touched();
5744 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5745 }
5746 
5747 notrace void wq_watchdog_touch(int cpu)
5748 {
5749 	if (cpu >= 0)
5750 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5751 	else
5752 		wq_watchdog_touched = jiffies;
5753 }
5754 
5755 static void wq_watchdog_set_thresh(unsigned long thresh)
5756 {
5757 	wq_watchdog_thresh = 0;
5758 	del_timer_sync(&wq_watchdog_timer);
5759 
5760 	if (thresh) {
5761 		wq_watchdog_thresh = thresh;
5762 		wq_watchdog_reset_touched();
5763 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5764 	}
5765 }
5766 
5767 static int wq_watchdog_param_set_thresh(const char *val,
5768 					const struct kernel_param *kp)
5769 {
5770 	unsigned long thresh;
5771 	int ret;
5772 
5773 	ret = kstrtoul(val, 0, &thresh);
5774 	if (ret)
5775 		return ret;
5776 
5777 	if (system_wq)
5778 		wq_watchdog_set_thresh(thresh);
5779 	else
5780 		wq_watchdog_thresh = thresh;
5781 
5782 	return 0;
5783 }
5784 
5785 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5786 	.set	= wq_watchdog_param_set_thresh,
5787 	.get	= param_get_ulong,
5788 };
5789 
5790 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5791 		0644);
5792 
5793 static void wq_watchdog_init(void)
5794 {
5795 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5796 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5797 }
5798 
5799 #else	/* CONFIG_WQ_WATCHDOG */
5800 
5801 static inline void wq_watchdog_init(void) { }
5802 
5803 #endif	/* CONFIG_WQ_WATCHDOG */
5804 
5805 static void __init wq_numa_init(void)
5806 {
5807 	cpumask_var_t *tbl;
5808 	int node, cpu;
5809 
5810 	if (num_possible_nodes() <= 1)
5811 		return;
5812 
5813 	if (wq_disable_numa) {
5814 		pr_info("workqueue: NUMA affinity support disabled\n");
5815 		return;
5816 	}
5817 
5818 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5819 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5820 
5821 	/*
5822 	 * We want masks of possible CPUs of each node which isn't readily
5823 	 * available.  Build one from cpu_to_node() which should have been
5824 	 * fully initialized by now.
5825 	 */
5826 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5827 	BUG_ON(!tbl);
5828 
5829 	for_each_node(node)
5830 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5831 				node_online(node) ? node : NUMA_NO_NODE));
5832 
5833 	for_each_possible_cpu(cpu) {
5834 		node = cpu_to_node(cpu);
5835 		if (WARN_ON(node == NUMA_NO_NODE)) {
5836 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5837 			/* happens iff arch is bonkers, let's just proceed */
5838 			return;
5839 		}
5840 		cpumask_set_cpu(cpu, tbl[node]);
5841 	}
5842 
5843 	wq_numa_possible_cpumask = tbl;
5844 	wq_numa_enabled = true;
5845 }
5846 
5847 /**
5848  * workqueue_init_early - early init for workqueue subsystem
5849  *
5850  * This is the first half of two-staged workqueue subsystem initialization
5851  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5852  * idr are up.  It sets up all the data structures and system workqueues
5853  * and allows early boot code to create workqueues and queue/cancel work
5854  * items.  Actual work item execution starts only after kthreads can be
5855  * created and scheduled right before early initcalls.
5856  */
5857 int __init workqueue_init_early(void)
5858 {
5859 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5860 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5861 	int i, cpu;
5862 
5863 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5864 
5865 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5866 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5867 
5868 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5869 
5870 	/* initialize CPU pools */
5871 	for_each_possible_cpu(cpu) {
5872 		struct worker_pool *pool;
5873 
5874 		i = 0;
5875 		for_each_cpu_worker_pool(pool, cpu) {
5876 			BUG_ON(init_worker_pool(pool));
5877 			pool->cpu = cpu;
5878 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5879 			pool->attrs->nice = std_nice[i++];
5880 			pool->node = cpu_to_node(cpu);
5881 
5882 			/* alloc pool ID */
5883 			mutex_lock(&wq_pool_mutex);
5884 			BUG_ON(worker_pool_assign_id(pool));
5885 			mutex_unlock(&wq_pool_mutex);
5886 		}
5887 	}
5888 
5889 	/* create default unbound and ordered wq attrs */
5890 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5891 		struct workqueue_attrs *attrs;
5892 
5893 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5894 		attrs->nice = std_nice[i];
5895 		unbound_std_wq_attrs[i] = attrs;
5896 
5897 		/*
5898 		 * An ordered wq should have only one pwq as ordering is
5899 		 * guaranteed by max_active which is enforced by pwqs.
5900 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5901 		 */
5902 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
5903 		attrs->nice = std_nice[i];
5904 		attrs->no_numa = true;
5905 		ordered_wq_attrs[i] = attrs;
5906 	}
5907 
5908 	system_wq = alloc_workqueue("events", 0, 0);
5909 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5910 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5911 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5912 					    WQ_UNBOUND_MAX_ACTIVE);
5913 	system_freezable_wq = alloc_workqueue("events_freezable",
5914 					      WQ_FREEZABLE, 0);
5915 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5916 					      WQ_POWER_EFFICIENT, 0);
5917 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5918 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5919 					      0);
5920 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5921 	       !system_unbound_wq || !system_freezable_wq ||
5922 	       !system_power_efficient_wq ||
5923 	       !system_freezable_power_efficient_wq);
5924 
5925 	return 0;
5926 }
5927 
5928 /**
5929  * workqueue_init - bring workqueue subsystem fully online
5930  *
5931  * This is the latter half of two-staged workqueue subsystem initialization
5932  * and invoked as soon as kthreads can be created and scheduled.
5933  * Workqueues have been created and work items queued on them, but there
5934  * are no kworkers executing the work items yet.  Populate the worker pools
5935  * with the initial workers and enable future kworker creations.
5936  */
5937 int __init workqueue_init(void)
5938 {
5939 	struct workqueue_struct *wq;
5940 	struct worker_pool *pool;
5941 	int cpu, bkt;
5942 
5943 	/*
5944 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5945 	 * CPU to node mapping may not be available that early on some
5946 	 * archs such as power and arm64.  As per-cpu pools created
5947 	 * previously could be missing node hint and unbound pools NUMA
5948 	 * affinity, fix them up.
5949 	 *
5950 	 * Also, while iterating workqueues, create rescuers if requested.
5951 	 */
5952 	wq_numa_init();
5953 
5954 	mutex_lock(&wq_pool_mutex);
5955 
5956 	for_each_possible_cpu(cpu) {
5957 		for_each_cpu_worker_pool(pool, cpu) {
5958 			pool->node = cpu_to_node(cpu);
5959 		}
5960 	}
5961 
5962 	list_for_each_entry(wq, &workqueues, list) {
5963 		wq_update_unbound_numa(wq, smp_processor_id(), true);
5964 		WARN(init_rescuer(wq),
5965 		     "workqueue: failed to create early rescuer for %s",
5966 		     wq->name);
5967 	}
5968 
5969 	mutex_unlock(&wq_pool_mutex);
5970 
5971 	/* create the initial workers */
5972 	for_each_online_cpu(cpu) {
5973 		for_each_cpu_worker_pool(pool, cpu) {
5974 			pool->flags &= ~POOL_DISASSOCIATED;
5975 			BUG_ON(!create_worker(pool));
5976 		}
5977 	}
5978 
5979 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5980 		BUG_ON(!create_worker(pool));
5981 
5982 	wq_online = true;
5983 	wq_watchdog_init();
5984 
5985 	return 0;
5986 }
5987