xref: /linux/kernel/workqueue.c (revision 450cbdd0125cfa5d7bbf9e2a6b6961cc48d29730)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/core-api/workqueue.rst for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * attach_mutex to avoid changing binding state while
69 	 * worker_attach_to_pool() is in progress.
70 	 */
71 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
72 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
73 
74 	/* worker flags */
75 	WORKER_DIE		= 1 << 1,	/* die die die */
76 	WORKER_IDLE		= 1 << 2,	/* is idle */
77 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
78 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
79 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
80 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
81 
82 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
83 				  WORKER_UNBOUND | WORKER_REBOUND,
84 
85 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
86 
87 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
88 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
89 
90 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
91 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
92 
93 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
94 						/* call for help after 10ms
95 						   (min two ticks) */
96 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
97 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
98 
99 	/*
100 	 * Rescue workers are used only on emergencies and shared by
101 	 * all cpus.  Give MIN_NICE.
102 	 */
103 	RESCUER_NICE_LEVEL	= MIN_NICE,
104 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
105 
106 	WQ_NAME_LEN		= 24,
107 };
108 
109 /*
110  * Structure fields follow one of the following exclusion rules.
111  *
112  * I: Modifiable by initialization/destruction paths and read-only for
113  *    everyone else.
114  *
115  * P: Preemption protected.  Disabling preemption is enough and should
116  *    only be modified and accessed from the local cpu.
117  *
118  * L: pool->lock protected.  Access with pool->lock held.
119  *
120  * X: During normal operation, modification requires pool->lock and should
121  *    be done only from local cpu.  Either disabling preemption on local
122  *    cpu or grabbing pool->lock is enough for read access.  If
123  *    POOL_DISASSOCIATED is set, it's identical to L.
124  *
125  * A: pool->attach_mutex protected.
126  *
127  * PL: wq_pool_mutex protected.
128  *
129  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
130  *
131  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
132  *
133  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
134  *      sched-RCU for reads.
135  *
136  * WQ: wq->mutex protected.
137  *
138  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
139  *
140  * MD: wq_mayday_lock protected.
141  */
142 
143 /* struct worker is defined in workqueue_internal.h */
144 
145 struct worker_pool {
146 	spinlock_t		lock;		/* the pool lock */
147 	int			cpu;		/* I: the associated cpu */
148 	int			node;		/* I: the associated node ID */
149 	int			id;		/* I: pool ID */
150 	unsigned int		flags;		/* X: flags */
151 
152 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
153 
154 	struct list_head	worklist;	/* L: list of pending works */
155 	int			nr_workers;	/* L: total number of workers */
156 
157 	/* nr_idle includes the ones off idle_list for rebinding */
158 	int			nr_idle;	/* L: currently idle ones */
159 
160 	struct list_head	idle_list;	/* X: list of idle workers */
161 	struct timer_list	idle_timer;	/* L: worker idle timeout */
162 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
163 
164 	/* a workers is either on busy_hash or idle_list, or the manager */
165 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
166 						/* L: hash of busy workers */
167 
168 	/* see manage_workers() for details on the two manager mutexes */
169 	struct worker		*manager;	/* L: purely informational */
170 	struct mutex		attach_mutex;	/* attach/detach exclusion */
171 	struct list_head	workers;	/* A: attached workers */
172 	struct completion	*detach_completion; /* all workers detached */
173 
174 	struct ida		worker_ida;	/* worker IDs for task name */
175 
176 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
177 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
178 	int			refcnt;		/* PL: refcnt for unbound pools */
179 
180 	/*
181 	 * The current concurrency level.  As it's likely to be accessed
182 	 * from other CPUs during try_to_wake_up(), put it in a separate
183 	 * cacheline.
184 	 */
185 	atomic_t		nr_running ____cacheline_aligned_in_smp;
186 
187 	/*
188 	 * Destruction of pool is sched-RCU protected to allow dereferences
189 	 * from get_work_pool().
190 	 */
191 	struct rcu_head		rcu;
192 } ____cacheline_aligned_in_smp;
193 
194 /*
195  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
196  * of work_struct->data are used for flags and the remaining high bits
197  * point to the pwq; thus, pwqs need to be aligned at two's power of the
198  * number of flag bits.
199  */
200 struct pool_workqueue {
201 	struct worker_pool	*pool;		/* I: the associated pool */
202 	struct workqueue_struct *wq;		/* I: the owning workqueue */
203 	int			work_color;	/* L: current color */
204 	int			flush_color;	/* L: flushing color */
205 	int			refcnt;		/* L: reference count */
206 	int			nr_in_flight[WORK_NR_COLORS];
207 						/* L: nr of in_flight works */
208 	int			nr_active;	/* L: nr of active works */
209 	int			max_active;	/* L: max active works */
210 	struct list_head	delayed_works;	/* L: delayed works */
211 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
212 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
213 
214 	/*
215 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
216 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
217 	 * itself is also sched-RCU protected so that the first pwq can be
218 	 * determined without grabbing wq->mutex.
219 	 */
220 	struct work_struct	unbound_release_work;
221 	struct rcu_head		rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223 
224 /*
225  * Structure used to wait for workqueue flush.
226  */
227 struct wq_flusher {
228 	struct list_head	list;		/* WQ: list of flushers */
229 	int			flush_color;	/* WQ: flush color waiting for */
230 	struct completion	done;		/* flush completion */
231 };
232 
233 struct wq_device;
234 
235 /*
236  * The externally visible workqueue.  It relays the issued work items to
237  * the appropriate worker_pool through its pool_workqueues.
238  */
239 struct workqueue_struct {
240 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
241 	struct list_head	list;		/* PR: list of all workqueues */
242 
243 	struct mutex		mutex;		/* protects this wq */
244 	int			work_color;	/* WQ: current work color */
245 	int			flush_color;	/* WQ: current flush color */
246 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
247 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
248 	struct list_head	flusher_queue;	/* WQ: flush waiters */
249 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
250 
251 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
252 	struct worker		*rescuer;	/* I: rescue worker */
253 
254 	int			nr_drainers;	/* WQ: drain in progress */
255 	int			saved_max_active; /* WQ: saved pwq max_active */
256 
257 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
258 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
259 
260 #ifdef CONFIG_SYSFS
261 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 	struct lockdep_map	lockdep_map;
265 #endif
266 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
267 
268 	/*
269 	 * Destruction of workqueue_struct is sched-RCU protected to allow
270 	 * walking the workqueues list without grabbing wq_pool_mutex.
271 	 * This is used to dump all workqueues from sysrq.
272 	 */
273 	struct rcu_head		rcu;
274 
275 	/* hot fields used during command issue, aligned to cacheline */
276 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280 
281 static struct kmem_cache *pwq_cache;
282 
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 					/* possible CPUs of each node */
285 
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288 
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292 
293 static bool wq_online;			/* can kworkers be created yet? */
294 
295 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
296 
297 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
298 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
299 
300 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
301 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
302 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
303 
304 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
305 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
306 
307 /* PL: allowable cpus for unbound wqs and work items */
308 static cpumask_var_t wq_unbound_cpumask;
309 
310 /* CPU where unbound work was last round robin scheduled from this CPU */
311 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
312 
313 /*
314  * Local execution of unbound work items is no longer guaranteed.  The
315  * following always forces round-robin CPU selection on unbound work items
316  * to uncover usages which depend on it.
317  */
318 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
319 static bool wq_debug_force_rr_cpu = true;
320 #else
321 static bool wq_debug_force_rr_cpu = false;
322 #endif
323 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
324 
325 /* the per-cpu worker pools */
326 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
327 
328 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
329 
330 /* PL: hash of all unbound pools keyed by pool->attrs */
331 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
332 
333 /* I: attributes used when instantiating standard unbound pools on demand */
334 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
335 
336 /* I: attributes used when instantiating ordered pools on demand */
337 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
338 
339 struct workqueue_struct *system_wq __read_mostly;
340 EXPORT_SYMBOL(system_wq);
341 struct workqueue_struct *system_highpri_wq __read_mostly;
342 EXPORT_SYMBOL_GPL(system_highpri_wq);
343 struct workqueue_struct *system_long_wq __read_mostly;
344 EXPORT_SYMBOL_GPL(system_long_wq);
345 struct workqueue_struct *system_unbound_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_unbound_wq);
347 struct workqueue_struct *system_freezable_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_freezable_wq);
349 struct workqueue_struct *system_power_efficient_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
351 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
352 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
353 
354 static int worker_thread(void *__worker);
355 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
356 
357 #define CREATE_TRACE_POINTS
358 #include <trace/events/workqueue.h>
359 
360 #define assert_rcu_or_pool_mutex()					\
361 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
362 			 !lockdep_is_held(&wq_pool_mutex),		\
363 			 "sched RCU or wq_pool_mutex should be held")
364 
365 #define assert_rcu_or_wq_mutex(wq)					\
366 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
367 			 !lockdep_is_held(&wq->mutex),			\
368 			 "sched RCU or wq->mutex should be held")
369 
370 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
371 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
372 			 !lockdep_is_held(&wq->mutex) &&		\
373 			 !lockdep_is_held(&wq_pool_mutex),		\
374 			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
375 
376 #define for_each_cpu_worker_pool(pool, cpu)				\
377 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
378 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
379 	     (pool)++)
380 
381 /**
382  * for_each_pool - iterate through all worker_pools in the system
383  * @pool: iteration cursor
384  * @pi: integer used for iteration
385  *
386  * This must be called either with wq_pool_mutex held or sched RCU read
387  * locked.  If the pool needs to be used beyond the locking in effect, the
388  * caller is responsible for guaranteeing that the pool stays online.
389  *
390  * The if/else clause exists only for the lockdep assertion and can be
391  * ignored.
392  */
393 #define for_each_pool(pool, pi)						\
394 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
395 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
396 		else
397 
398 /**
399  * for_each_pool_worker - iterate through all workers of a worker_pool
400  * @worker: iteration cursor
401  * @pool: worker_pool to iterate workers of
402  *
403  * This must be called with @pool->attach_mutex.
404  *
405  * The if/else clause exists only for the lockdep assertion and can be
406  * ignored.
407  */
408 #define for_each_pool_worker(worker, pool)				\
409 	list_for_each_entry((worker), &(pool)->workers, node)		\
410 		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
411 		else
412 
413 /**
414  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
415  * @pwq: iteration cursor
416  * @wq: the target workqueue
417  *
418  * This must be called either with wq->mutex held or sched RCU read locked.
419  * If the pwq needs to be used beyond the locking in effect, the caller is
420  * responsible for guaranteeing that the pwq stays online.
421  *
422  * The if/else clause exists only for the lockdep assertion and can be
423  * ignored.
424  */
425 #define for_each_pwq(pwq, wq)						\
426 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
427 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
428 		else
429 
430 #ifdef CONFIG_DEBUG_OBJECTS_WORK
431 
432 static struct debug_obj_descr work_debug_descr;
433 
434 static void *work_debug_hint(void *addr)
435 {
436 	return ((struct work_struct *) addr)->func;
437 }
438 
439 static bool work_is_static_object(void *addr)
440 {
441 	struct work_struct *work = addr;
442 
443 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
444 }
445 
446 /*
447  * fixup_init is called when:
448  * - an active object is initialized
449  */
450 static bool work_fixup_init(void *addr, enum debug_obj_state state)
451 {
452 	struct work_struct *work = addr;
453 
454 	switch (state) {
455 	case ODEBUG_STATE_ACTIVE:
456 		cancel_work_sync(work);
457 		debug_object_init(work, &work_debug_descr);
458 		return true;
459 	default:
460 		return false;
461 	}
462 }
463 
464 /*
465  * fixup_free is called when:
466  * - an active object is freed
467  */
468 static bool work_fixup_free(void *addr, enum debug_obj_state state)
469 {
470 	struct work_struct *work = addr;
471 
472 	switch (state) {
473 	case ODEBUG_STATE_ACTIVE:
474 		cancel_work_sync(work);
475 		debug_object_free(work, &work_debug_descr);
476 		return true;
477 	default:
478 		return false;
479 	}
480 }
481 
482 static struct debug_obj_descr work_debug_descr = {
483 	.name		= "work_struct",
484 	.debug_hint	= work_debug_hint,
485 	.is_static_object = work_is_static_object,
486 	.fixup_init	= work_fixup_init,
487 	.fixup_free	= work_fixup_free,
488 };
489 
490 static inline void debug_work_activate(struct work_struct *work)
491 {
492 	debug_object_activate(work, &work_debug_descr);
493 }
494 
495 static inline void debug_work_deactivate(struct work_struct *work)
496 {
497 	debug_object_deactivate(work, &work_debug_descr);
498 }
499 
500 void __init_work(struct work_struct *work, int onstack)
501 {
502 	if (onstack)
503 		debug_object_init_on_stack(work, &work_debug_descr);
504 	else
505 		debug_object_init(work, &work_debug_descr);
506 }
507 EXPORT_SYMBOL_GPL(__init_work);
508 
509 void destroy_work_on_stack(struct work_struct *work)
510 {
511 	debug_object_free(work, &work_debug_descr);
512 }
513 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
514 
515 void destroy_delayed_work_on_stack(struct delayed_work *work)
516 {
517 	destroy_timer_on_stack(&work->timer);
518 	debug_object_free(&work->work, &work_debug_descr);
519 }
520 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
521 
522 #else
523 static inline void debug_work_activate(struct work_struct *work) { }
524 static inline void debug_work_deactivate(struct work_struct *work) { }
525 #endif
526 
527 /**
528  * worker_pool_assign_id - allocate ID and assing it to @pool
529  * @pool: the pool pointer of interest
530  *
531  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
532  * successfully, -errno on failure.
533  */
534 static int worker_pool_assign_id(struct worker_pool *pool)
535 {
536 	int ret;
537 
538 	lockdep_assert_held(&wq_pool_mutex);
539 
540 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
541 			GFP_KERNEL);
542 	if (ret >= 0) {
543 		pool->id = ret;
544 		return 0;
545 	}
546 	return ret;
547 }
548 
549 /**
550  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
551  * @wq: the target workqueue
552  * @node: the node ID
553  *
554  * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
555  * read locked.
556  * If the pwq needs to be used beyond the locking in effect, the caller is
557  * responsible for guaranteeing that the pwq stays online.
558  *
559  * Return: The unbound pool_workqueue for @node.
560  */
561 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
562 						  int node)
563 {
564 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
565 
566 	/*
567 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
568 	 * delayed item is pending.  The plan is to keep CPU -> NODE
569 	 * mapping valid and stable across CPU on/offlines.  Once that
570 	 * happens, this workaround can be removed.
571 	 */
572 	if (unlikely(node == NUMA_NO_NODE))
573 		return wq->dfl_pwq;
574 
575 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
576 }
577 
578 static unsigned int work_color_to_flags(int color)
579 {
580 	return color << WORK_STRUCT_COLOR_SHIFT;
581 }
582 
583 static int get_work_color(struct work_struct *work)
584 {
585 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
586 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
587 }
588 
589 static int work_next_color(int color)
590 {
591 	return (color + 1) % WORK_NR_COLORS;
592 }
593 
594 /*
595  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
596  * contain the pointer to the queued pwq.  Once execution starts, the flag
597  * is cleared and the high bits contain OFFQ flags and pool ID.
598  *
599  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
600  * and clear_work_data() can be used to set the pwq, pool or clear
601  * work->data.  These functions should only be called while the work is
602  * owned - ie. while the PENDING bit is set.
603  *
604  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
605  * corresponding to a work.  Pool is available once the work has been
606  * queued anywhere after initialization until it is sync canceled.  pwq is
607  * available only while the work item is queued.
608  *
609  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
610  * canceled.  While being canceled, a work item may have its PENDING set
611  * but stay off timer and worklist for arbitrarily long and nobody should
612  * try to steal the PENDING bit.
613  */
614 static inline void set_work_data(struct work_struct *work, unsigned long data,
615 				 unsigned long flags)
616 {
617 	WARN_ON_ONCE(!work_pending(work));
618 	atomic_long_set(&work->data, data | flags | work_static(work));
619 }
620 
621 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
622 			 unsigned long extra_flags)
623 {
624 	set_work_data(work, (unsigned long)pwq,
625 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
626 }
627 
628 static void set_work_pool_and_keep_pending(struct work_struct *work,
629 					   int pool_id)
630 {
631 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
632 		      WORK_STRUCT_PENDING);
633 }
634 
635 static void set_work_pool_and_clear_pending(struct work_struct *work,
636 					    int pool_id)
637 {
638 	/*
639 	 * The following wmb is paired with the implied mb in
640 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
641 	 * here are visible to and precede any updates by the next PENDING
642 	 * owner.
643 	 */
644 	smp_wmb();
645 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
646 	/*
647 	 * The following mb guarantees that previous clear of a PENDING bit
648 	 * will not be reordered with any speculative LOADS or STORES from
649 	 * work->current_func, which is executed afterwards.  This possible
650 	 * reordering can lead to a missed execution on attempt to qeueue
651 	 * the same @work.  E.g. consider this case:
652 	 *
653 	 *   CPU#0                         CPU#1
654 	 *   ----------------------------  --------------------------------
655 	 *
656 	 * 1  STORE event_indicated
657 	 * 2  queue_work_on() {
658 	 * 3    test_and_set_bit(PENDING)
659 	 * 4 }                             set_..._and_clear_pending() {
660 	 * 5                                 set_work_data() # clear bit
661 	 * 6                                 smp_mb()
662 	 * 7                               work->current_func() {
663 	 * 8				      LOAD event_indicated
664 	 *				   }
665 	 *
666 	 * Without an explicit full barrier speculative LOAD on line 8 can
667 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
668 	 * CPU#0 observes the PENDING bit is still set and new execution of
669 	 * a @work is not queued in a hope, that CPU#1 will eventually
670 	 * finish the queued @work.  Meanwhile CPU#1 does not see
671 	 * event_indicated is set, because speculative LOAD was executed
672 	 * before actual STORE.
673 	 */
674 	smp_mb();
675 }
676 
677 static void clear_work_data(struct work_struct *work)
678 {
679 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
680 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
681 }
682 
683 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
684 {
685 	unsigned long data = atomic_long_read(&work->data);
686 
687 	if (data & WORK_STRUCT_PWQ)
688 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
689 	else
690 		return NULL;
691 }
692 
693 /**
694  * get_work_pool - return the worker_pool a given work was associated with
695  * @work: the work item of interest
696  *
697  * Pools are created and destroyed under wq_pool_mutex, and allows read
698  * access under sched-RCU read lock.  As such, this function should be
699  * called under wq_pool_mutex or with preemption disabled.
700  *
701  * All fields of the returned pool are accessible as long as the above
702  * mentioned locking is in effect.  If the returned pool needs to be used
703  * beyond the critical section, the caller is responsible for ensuring the
704  * returned pool is and stays online.
705  *
706  * Return: The worker_pool @work was last associated with.  %NULL if none.
707  */
708 static struct worker_pool *get_work_pool(struct work_struct *work)
709 {
710 	unsigned long data = atomic_long_read(&work->data);
711 	int pool_id;
712 
713 	assert_rcu_or_pool_mutex();
714 
715 	if (data & WORK_STRUCT_PWQ)
716 		return ((struct pool_workqueue *)
717 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
718 
719 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
720 	if (pool_id == WORK_OFFQ_POOL_NONE)
721 		return NULL;
722 
723 	return idr_find(&worker_pool_idr, pool_id);
724 }
725 
726 /**
727  * get_work_pool_id - return the worker pool ID a given work is associated with
728  * @work: the work item of interest
729  *
730  * Return: The worker_pool ID @work was last associated with.
731  * %WORK_OFFQ_POOL_NONE if none.
732  */
733 static int get_work_pool_id(struct work_struct *work)
734 {
735 	unsigned long data = atomic_long_read(&work->data);
736 
737 	if (data & WORK_STRUCT_PWQ)
738 		return ((struct pool_workqueue *)
739 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
740 
741 	return data >> WORK_OFFQ_POOL_SHIFT;
742 }
743 
744 static void mark_work_canceling(struct work_struct *work)
745 {
746 	unsigned long pool_id = get_work_pool_id(work);
747 
748 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
749 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
750 }
751 
752 static bool work_is_canceling(struct work_struct *work)
753 {
754 	unsigned long data = atomic_long_read(&work->data);
755 
756 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
757 }
758 
759 /*
760  * Policy functions.  These define the policies on how the global worker
761  * pools are managed.  Unless noted otherwise, these functions assume that
762  * they're being called with pool->lock held.
763  */
764 
765 static bool __need_more_worker(struct worker_pool *pool)
766 {
767 	return !atomic_read(&pool->nr_running);
768 }
769 
770 /*
771  * Need to wake up a worker?  Called from anything but currently
772  * running workers.
773  *
774  * Note that, because unbound workers never contribute to nr_running, this
775  * function will always return %true for unbound pools as long as the
776  * worklist isn't empty.
777  */
778 static bool need_more_worker(struct worker_pool *pool)
779 {
780 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
781 }
782 
783 /* Can I start working?  Called from busy but !running workers. */
784 static bool may_start_working(struct worker_pool *pool)
785 {
786 	return pool->nr_idle;
787 }
788 
789 /* Do I need to keep working?  Called from currently running workers. */
790 static bool keep_working(struct worker_pool *pool)
791 {
792 	return !list_empty(&pool->worklist) &&
793 		atomic_read(&pool->nr_running) <= 1;
794 }
795 
796 /* Do we need a new worker?  Called from manager. */
797 static bool need_to_create_worker(struct worker_pool *pool)
798 {
799 	return need_more_worker(pool) && !may_start_working(pool);
800 }
801 
802 /* Do we have too many workers and should some go away? */
803 static bool too_many_workers(struct worker_pool *pool)
804 {
805 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
806 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
807 	int nr_busy = pool->nr_workers - nr_idle;
808 
809 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
810 }
811 
812 /*
813  * Wake up functions.
814  */
815 
816 /* Return the first idle worker.  Safe with preemption disabled */
817 static struct worker *first_idle_worker(struct worker_pool *pool)
818 {
819 	if (unlikely(list_empty(&pool->idle_list)))
820 		return NULL;
821 
822 	return list_first_entry(&pool->idle_list, struct worker, entry);
823 }
824 
825 /**
826  * wake_up_worker - wake up an idle worker
827  * @pool: worker pool to wake worker from
828  *
829  * Wake up the first idle worker of @pool.
830  *
831  * CONTEXT:
832  * spin_lock_irq(pool->lock).
833  */
834 static void wake_up_worker(struct worker_pool *pool)
835 {
836 	struct worker *worker = first_idle_worker(pool);
837 
838 	if (likely(worker))
839 		wake_up_process(worker->task);
840 }
841 
842 /**
843  * wq_worker_waking_up - a worker is waking up
844  * @task: task waking up
845  * @cpu: CPU @task is waking up to
846  *
847  * This function is called during try_to_wake_up() when a worker is
848  * being awoken.
849  *
850  * CONTEXT:
851  * spin_lock_irq(rq->lock)
852  */
853 void wq_worker_waking_up(struct task_struct *task, int cpu)
854 {
855 	struct worker *worker = kthread_data(task);
856 
857 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
858 		WARN_ON_ONCE(worker->pool->cpu != cpu);
859 		atomic_inc(&worker->pool->nr_running);
860 	}
861 }
862 
863 /**
864  * wq_worker_sleeping - a worker is going to sleep
865  * @task: task going to sleep
866  *
867  * This function is called during schedule() when a busy worker is
868  * going to sleep.  Worker on the same cpu can be woken up by
869  * returning pointer to its task.
870  *
871  * CONTEXT:
872  * spin_lock_irq(rq->lock)
873  *
874  * Return:
875  * Worker task on @cpu to wake up, %NULL if none.
876  */
877 struct task_struct *wq_worker_sleeping(struct task_struct *task)
878 {
879 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
880 	struct worker_pool *pool;
881 
882 	/*
883 	 * Rescuers, which may not have all the fields set up like normal
884 	 * workers, also reach here, let's not access anything before
885 	 * checking NOT_RUNNING.
886 	 */
887 	if (worker->flags & WORKER_NOT_RUNNING)
888 		return NULL;
889 
890 	pool = worker->pool;
891 
892 	/* this can only happen on the local cpu */
893 	if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
894 		return NULL;
895 
896 	/*
897 	 * The counterpart of the following dec_and_test, implied mb,
898 	 * worklist not empty test sequence is in insert_work().
899 	 * Please read comment there.
900 	 *
901 	 * NOT_RUNNING is clear.  This means that we're bound to and
902 	 * running on the local cpu w/ rq lock held and preemption
903 	 * disabled, which in turn means that none else could be
904 	 * manipulating idle_list, so dereferencing idle_list without pool
905 	 * lock is safe.
906 	 */
907 	if (atomic_dec_and_test(&pool->nr_running) &&
908 	    !list_empty(&pool->worklist))
909 		to_wakeup = first_idle_worker(pool);
910 	return to_wakeup ? to_wakeup->task : NULL;
911 }
912 
913 /**
914  * worker_set_flags - set worker flags and adjust nr_running accordingly
915  * @worker: self
916  * @flags: flags to set
917  *
918  * Set @flags in @worker->flags and adjust nr_running accordingly.
919  *
920  * CONTEXT:
921  * spin_lock_irq(pool->lock)
922  */
923 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
924 {
925 	struct worker_pool *pool = worker->pool;
926 
927 	WARN_ON_ONCE(worker->task != current);
928 
929 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
930 	if ((flags & WORKER_NOT_RUNNING) &&
931 	    !(worker->flags & WORKER_NOT_RUNNING)) {
932 		atomic_dec(&pool->nr_running);
933 	}
934 
935 	worker->flags |= flags;
936 }
937 
938 /**
939  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
940  * @worker: self
941  * @flags: flags to clear
942  *
943  * Clear @flags in @worker->flags and adjust nr_running accordingly.
944  *
945  * CONTEXT:
946  * spin_lock_irq(pool->lock)
947  */
948 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
949 {
950 	struct worker_pool *pool = worker->pool;
951 	unsigned int oflags = worker->flags;
952 
953 	WARN_ON_ONCE(worker->task != current);
954 
955 	worker->flags &= ~flags;
956 
957 	/*
958 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
959 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
960 	 * of multiple flags, not a single flag.
961 	 */
962 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
963 		if (!(worker->flags & WORKER_NOT_RUNNING))
964 			atomic_inc(&pool->nr_running);
965 }
966 
967 /**
968  * find_worker_executing_work - find worker which is executing a work
969  * @pool: pool of interest
970  * @work: work to find worker for
971  *
972  * Find a worker which is executing @work on @pool by searching
973  * @pool->busy_hash which is keyed by the address of @work.  For a worker
974  * to match, its current execution should match the address of @work and
975  * its work function.  This is to avoid unwanted dependency between
976  * unrelated work executions through a work item being recycled while still
977  * being executed.
978  *
979  * This is a bit tricky.  A work item may be freed once its execution
980  * starts and nothing prevents the freed area from being recycled for
981  * another work item.  If the same work item address ends up being reused
982  * before the original execution finishes, workqueue will identify the
983  * recycled work item as currently executing and make it wait until the
984  * current execution finishes, introducing an unwanted dependency.
985  *
986  * This function checks the work item address and work function to avoid
987  * false positives.  Note that this isn't complete as one may construct a
988  * work function which can introduce dependency onto itself through a
989  * recycled work item.  Well, if somebody wants to shoot oneself in the
990  * foot that badly, there's only so much we can do, and if such deadlock
991  * actually occurs, it should be easy to locate the culprit work function.
992  *
993  * CONTEXT:
994  * spin_lock_irq(pool->lock).
995  *
996  * Return:
997  * Pointer to worker which is executing @work if found, %NULL
998  * otherwise.
999  */
1000 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1001 						 struct work_struct *work)
1002 {
1003 	struct worker *worker;
1004 
1005 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1006 			       (unsigned long)work)
1007 		if (worker->current_work == work &&
1008 		    worker->current_func == work->func)
1009 			return worker;
1010 
1011 	return NULL;
1012 }
1013 
1014 /**
1015  * move_linked_works - move linked works to a list
1016  * @work: start of series of works to be scheduled
1017  * @head: target list to append @work to
1018  * @nextp: out parameter for nested worklist walking
1019  *
1020  * Schedule linked works starting from @work to @head.  Work series to
1021  * be scheduled starts at @work and includes any consecutive work with
1022  * WORK_STRUCT_LINKED set in its predecessor.
1023  *
1024  * If @nextp is not NULL, it's updated to point to the next work of
1025  * the last scheduled work.  This allows move_linked_works() to be
1026  * nested inside outer list_for_each_entry_safe().
1027  *
1028  * CONTEXT:
1029  * spin_lock_irq(pool->lock).
1030  */
1031 static void move_linked_works(struct work_struct *work, struct list_head *head,
1032 			      struct work_struct **nextp)
1033 {
1034 	struct work_struct *n;
1035 
1036 	/*
1037 	 * Linked worklist will always end before the end of the list,
1038 	 * use NULL for list head.
1039 	 */
1040 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1041 		list_move_tail(&work->entry, head);
1042 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1043 			break;
1044 	}
1045 
1046 	/*
1047 	 * If we're already inside safe list traversal and have moved
1048 	 * multiple works to the scheduled queue, the next position
1049 	 * needs to be updated.
1050 	 */
1051 	if (nextp)
1052 		*nextp = n;
1053 }
1054 
1055 /**
1056  * get_pwq - get an extra reference on the specified pool_workqueue
1057  * @pwq: pool_workqueue to get
1058  *
1059  * Obtain an extra reference on @pwq.  The caller should guarantee that
1060  * @pwq has positive refcnt and be holding the matching pool->lock.
1061  */
1062 static void get_pwq(struct pool_workqueue *pwq)
1063 {
1064 	lockdep_assert_held(&pwq->pool->lock);
1065 	WARN_ON_ONCE(pwq->refcnt <= 0);
1066 	pwq->refcnt++;
1067 }
1068 
1069 /**
1070  * put_pwq - put a pool_workqueue reference
1071  * @pwq: pool_workqueue to put
1072  *
1073  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1074  * destruction.  The caller should be holding the matching pool->lock.
1075  */
1076 static void put_pwq(struct pool_workqueue *pwq)
1077 {
1078 	lockdep_assert_held(&pwq->pool->lock);
1079 	if (likely(--pwq->refcnt))
1080 		return;
1081 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1082 		return;
1083 	/*
1084 	 * @pwq can't be released under pool->lock, bounce to
1085 	 * pwq_unbound_release_workfn().  This never recurses on the same
1086 	 * pool->lock as this path is taken only for unbound workqueues and
1087 	 * the release work item is scheduled on a per-cpu workqueue.  To
1088 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1089 	 * subclass of 1 in get_unbound_pool().
1090 	 */
1091 	schedule_work(&pwq->unbound_release_work);
1092 }
1093 
1094 /**
1095  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1096  * @pwq: pool_workqueue to put (can be %NULL)
1097  *
1098  * put_pwq() with locking.  This function also allows %NULL @pwq.
1099  */
1100 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1101 {
1102 	if (pwq) {
1103 		/*
1104 		 * As both pwqs and pools are sched-RCU protected, the
1105 		 * following lock operations are safe.
1106 		 */
1107 		spin_lock_irq(&pwq->pool->lock);
1108 		put_pwq(pwq);
1109 		spin_unlock_irq(&pwq->pool->lock);
1110 	}
1111 }
1112 
1113 static void pwq_activate_delayed_work(struct work_struct *work)
1114 {
1115 	struct pool_workqueue *pwq = get_work_pwq(work);
1116 
1117 	trace_workqueue_activate_work(work);
1118 	if (list_empty(&pwq->pool->worklist))
1119 		pwq->pool->watchdog_ts = jiffies;
1120 	move_linked_works(work, &pwq->pool->worklist, NULL);
1121 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1122 	pwq->nr_active++;
1123 }
1124 
1125 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1126 {
1127 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1128 						    struct work_struct, entry);
1129 
1130 	pwq_activate_delayed_work(work);
1131 }
1132 
1133 /**
1134  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1135  * @pwq: pwq of interest
1136  * @color: color of work which left the queue
1137  *
1138  * A work either has completed or is removed from pending queue,
1139  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1140  *
1141  * CONTEXT:
1142  * spin_lock_irq(pool->lock).
1143  */
1144 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1145 {
1146 	/* uncolored work items don't participate in flushing or nr_active */
1147 	if (color == WORK_NO_COLOR)
1148 		goto out_put;
1149 
1150 	pwq->nr_in_flight[color]--;
1151 
1152 	pwq->nr_active--;
1153 	if (!list_empty(&pwq->delayed_works)) {
1154 		/* one down, submit a delayed one */
1155 		if (pwq->nr_active < pwq->max_active)
1156 			pwq_activate_first_delayed(pwq);
1157 	}
1158 
1159 	/* is flush in progress and are we at the flushing tip? */
1160 	if (likely(pwq->flush_color != color))
1161 		goto out_put;
1162 
1163 	/* are there still in-flight works? */
1164 	if (pwq->nr_in_flight[color])
1165 		goto out_put;
1166 
1167 	/* this pwq is done, clear flush_color */
1168 	pwq->flush_color = -1;
1169 
1170 	/*
1171 	 * If this was the last pwq, wake up the first flusher.  It
1172 	 * will handle the rest.
1173 	 */
1174 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1175 		complete(&pwq->wq->first_flusher->done);
1176 out_put:
1177 	put_pwq(pwq);
1178 }
1179 
1180 /**
1181  * try_to_grab_pending - steal work item from worklist and disable irq
1182  * @work: work item to steal
1183  * @is_dwork: @work is a delayed_work
1184  * @flags: place to store irq state
1185  *
1186  * Try to grab PENDING bit of @work.  This function can handle @work in any
1187  * stable state - idle, on timer or on worklist.
1188  *
1189  * Return:
1190  *  1		if @work was pending and we successfully stole PENDING
1191  *  0		if @work was idle and we claimed PENDING
1192  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1193  *  -ENOENT	if someone else is canceling @work, this state may persist
1194  *		for arbitrarily long
1195  *
1196  * Note:
1197  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1198  * interrupted while holding PENDING and @work off queue, irq must be
1199  * disabled on entry.  This, combined with delayed_work->timer being
1200  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1201  *
1202  * On successful return, >= 0, irq is disabled and the caller is
1203  * responsible for releasing it using local_irq_restore(*@flags).
1204  *
1205  * This function is safe to call from any context including IRQ handler.
1206  */
1207 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1208 			       unsigned long *flags)
1209 {
1210 	struct worker_pool *pool;
1211 	struct pool_workqueue *pwq;
1212 
1213 	local_irq_save(*flags);
1214 
1215 	/* try to steal the timer if it exists */
1216 	if (is_dwork) {
1217 		struct delayed_work *dwork = to_delayed_work(work);
1218 
1219 		/*
1220 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1221 		 * guaranteed that the timer is not queued anywhere and not
1222 		 * running on the local CPU.
1223 		 */
1224 		if (likely(del_timer(&dwork->timer)))
1225 			return 1;
1226 	}
1227 
1228 	/* try to claim PENDING the normal way */
1229 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1230 		return 0;
1231 
1232 	/*
1233 	 * The queueing is in progress, or it is already queued. Try to
1234 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1235 	 */
1236 	pool = get_work_pool(work);
1237 	if (!pool)
1238 		goto fail;
1239 
1240 	spin_lock(&pool->lock);
1241 	/*
1242 	 * work->data is guaranteed to point to pwq only while the work
1243 	 * item is queued on pwq->wq, and both updating work->data to point
1244 	 * to pwq on queueing and to pool on dequeueing are done under
1245 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1246 	 * points to pwq which is associated with a locked pool, the work
1247 	 * item is currently queued on that pool.
1248 	 */
1249 	pwq = get_work_pwq(work);
1250 	if (pwq && pwq->pool == pool) {
1251 		debug_work_deactivate(work);
1252 
1253 		/*
1254 		 * A delayed work item cannot be grabbed directly because
1255 		 * it might have linked NO_COLOR work items which, if left
1256 		 * on the delayed_list, will confuse pwq->nr_active
1257 		 * management later on and cause stall.  Make sure the work
1258 		 * item is activated before grabbing.
1259 		 */
1260 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1261 			pwq_activate_delayed_work(work);
1262 
1263 		list_del_init(&work->entry);
1264 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1265 
1266 		/* work->data points to pwq iff queued, point to pool */
1267 		set_work_pool_and_keep_pending(work, pool->id);
1268 
1269 		spin_unlock(&pool->lock);
1270 		return 1;
1271 	}
1272 	spin_unlock(&pool->lock);
1273 fail:
1274 	local_irq_restore(*flags);
1275 	if (work_is_canceling(work))
1276 		return -ENOENT;
1277 	cpu_relax();
1278 	return -EAGAIN;
1279 }
1280 
1281 /**
1282  * insert_work - insert a work into a pool
1283  * @pwq: pwq @work belongs to
1284  * @work: work to insert
1285  * @head: insertion point
1286  * @extra_flags: extra WORK_STRUCT_* flags to set
1287  *
1288  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1289  * work_struct flags.
1290  *
1291  * CONTEXT:
1292  * spin_lock_irq(pool->lock).
1293  */
1294 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1295 			struct list_head *head, unsigned int extra_flags)
1296 {
1297 	struct worker_pool *pool = pwq->pool;
1298 
1299 	/* we own @work, set data and link */
1300 	set_work_pwq(work, pwq, extra_flags);
1301 	list_add_tail(&work->entry, head);
1302 	get_pwq(pwq);
1303 
1304 	/*
1305 	 * Ensure either wq_worker_sleeping() sees the above
1306 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1307 	 * around lazily while there are works to be processed.
1308 	 */
1309 	smp_mb();
1310 
1311 	if (__need_more_worker(pool))
1312 		wake_up_worker(pool);
1313 }
1314 
1315 /*
1316  * Test whether @work is being queued from another work executing on the
1317  * same workqueue.
1318  */
1319 static bool is_chained_work(struct workqueue_struct *wq)
1320 {
1321 	struct worker *worker;
1322 
1323 	worker = current_wq_worker();
1324 	/*
1325 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1326 	 * I'm @worker, it's safe to dereference it without locking.
1327 	 */
1328 	return worker && worker->current_pwq->wq == wq;
1329 }
1330 
1331 /*
1332  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1333  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1334  * avoid perturbing sensitive tasks.
1335  */
1336 static int wq_select_unbound_cpu(int cpu)
1337 {
1338 	static bool printed_dbg_warning;
1339 	int new_cpu;
1340 
1341 	if (likely(!wq_debug_force_rr_cpu)) {
1342 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1343 			return cpu;
1344 	} else if (!printed_dbg_warning) {
1345 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1346 		printed_dbg_warning = true;
1347 	}
1348 
1349 	if (cpumask_empty(wq_unbound_cpumask))
1350 		return cpu;
1351 
1352 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1353 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1354 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1355 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1356 		if (unlikely(new_cpu >= nr_cpu_ids))
1357 			return cpu;
1358 	}
1359 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1360 
1361 	return new_cpu;
1362 }
1363 
1364 static void __queue_work(int cpu, struct workqueue_struct *wq,
1365 			 struct work_struct *work)
1366 {
1367 	struct pool_workqueue *pwq;
1368 	struct worker_pool *last_pool;
1369 	struct list_head *worklist;
1370 	unsigned int work_flags;
1371 	unsigned int req_cpu = cpu;
1372 
1373 	/*
1374 	 * While a work item is PENDING && off queue, a task trying to
1375 	 * steal the PENDING will busy-loop waiting for it to either get
1376 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1377 	 * happen with IRQ disabled.
1378 	 */
1379 	lockdep_assert_irqs_disabled();
1380 
1381 	debug_work_activate(work);
1382 
1383 	/* if draining, only works from the same workqueue are allowed */
1384 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1385 	    WARN_ON_ONCE(!is_chained_work(wq)))
1386 		return;
1387 retry:
1388 	if (req_cpu == WORK_CPU_UNBOUND)
1389 		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1390 
1391 	/* pwq which will be used unless @work is executing elsewhere */
1392 	if (!(wq->flags & WQ_UNBOUND))
1393 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1394 	else
1395 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1396 
1397 	/*
1398 	 * If @work was previously on a different pool, it might still be
1399 	 * running there, in which case the work needs to be queued on that
1400 	 * pool to guarantee non-reentrancy.
1401 	 */
1402 	last_pool = get_work_pool(work);
1403 	if (last_pool && last_pool != pwq->pool) {
1404 		struct worker *worker;
1405 
1406 		spin_lock(&last_pool->lock);
1407 
1408 		worker = find_worker_executing_work(last_pool, work);
1409 
1410 		if (worker && worker->current_pwq->wq == wq) {
1411 			pwq = worker->current_pwq;
1412 		} else {
1413 			/* meh... not running there, queue here */
1414 			spin_unlock(&last_pool->lock);
1415 			spin_lock(&pwq->pool->lock);
1416 		}
1417 	} else {
1418 		spin_lock(&pwq->pool->lock);
1419 	}
1420 
1421 	/*
1422 	 * pwq is determined and locked.  For unbound pools, we could have
1423 	 * raced with pwq release and it could already be dead.  If its
1424 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1425 	 * without another pwq replacing it in the numa_pwq_tbl or while
1426 	 * work items are executing on it, so the retrying is guaranteed to
1427 	 * make forward-progress.
1428 	 */
1429 	if (unlikely(!pwq->refcnt)) {
1430 		if (wq->flags & WQ_UNBOUND) {
1431 			spin_unlock(&pwq->pool->lock);
1432 			cpu_relax();
1433 			goto retry;
1434 		}
1435 		/* oops */
1436 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1437 			  wq->name, cpu);
1438 	}
1439 
1440 	/* pwq determined, queue */
1441 	trace_workqueue_queue_work(req_cpu, pwq, work);
1442 
1443 	if (WARN_ON(!list_empty(&work->entry))) {
1444 		spin_unlock(&pwq->pool->lock);
1445 		return;
1446 	}
1447 
1448 	pwq->nr_in_flight[pwq->work_color]++;
1449 	work_flags = work_color_to_flags(pwq->work_color);
1450 
1451 	if (likely(pwq->nr_active < pwq->max_active)) {
1452 		trace_workqueue_activate_work(work);
1453 		pwq->nr_active++;
1454 		worklist = &pwq->pool->worklist;
1455 		if (list_empty(worklist))
1456 			pwq->pool->watchdog_ts = jiffies;
1457 	} else {
1458 		work_flags |= WORK_STRUCT_DELAYED;
1459 		worklist = &pwq->delayed_works;
1460 	}
1461 
1462 	insert_work(pwq, work, worklist, work_flags);
1463 
1464 	spin_unlock(&pwq->pool->lock);
1465 }
1466 
1467 /**
1468  * queue_work_on - queue work on specific cpu
1469  * @cpu: CPU number to execute work on
1470  * @wq: workqueue to use
1471  * @work: work to queue
1472  *
1473  * We queue the work to a specific CPU, the caller must ensure it
1474  * can't go away.
1475  *
1476  * Return: %false if @work was already on a queue, %true otherwise.
1477  */
1478 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1479 		   struct work_struct *work)
1480 {
1481 	bool ret = false;
1482 	unsigned long flags;
1483 
1484 	local_irq_save(flags);
1485 
1486 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1487 		__queue_work(cpu, wq, work);
1488 		ret = true;
1489 	}
1490 
1491 	local_irq_restore(flags);
1492 	return ret;
1493 }
1494 EXPORT_SYMBOL(queue_work_on);
1495 
1496 void delayed_work_timer_fn(unsigned long __data)
1497 {
1498 	struct delayed_work *dwork = (struct delayed_work *)__data;
1499 
1500 	/* should have been called from irqsafe timer with irq already off */
1501 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1502 }
1503 EXPORT_SYMBOL(delayed_work_timer_fn);
1504 
1505 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1506 				struct delayed_work *dwork, unsigned long delay)
1507 {
1508 	struct timer_list *timer = &dwork->timer;
1509 	struct work_struct *work = &dwork->work;
1510 
1511 	WARN_ON_ONCE(!wq);
1512 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1513 		     timer->data != (unsigned long)dwork);
1514 	WARN_ON_ONCE(timer_pending(timer));
1515 	WARN_ON_ONCE(!list_empty(&work->entry));
1516 
1517 	/*
1518 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1519 	 * both optimization and correctness.  The earliest @timer can
1520 	 * expire is on the closest next tick and delayed_work users depend
1521 	 * on that there's no such delay when @delay is 0.
1522 	 */
1523 	if (!delay) {
1524 		__queue_work(cpu, wq, &dwork->work);
1525 		return;
1526 	}
1527 
1528 	dwork->wq = wq;
1529 	dwork->cpu = cpu;
1530 	timer->expires = jiffies + delay;
1531 
1532 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1533 		add_timer_on(timer, cpu);
1534 	else
1535 		add_timer(timer);
1536 }
1537 
1538 /**
1539  * queue_delayed_work_on - queue work on specific CPU after delay
1540  * @cpu: CPU number to execute work on
1541  * @wq: workqueue to use
1542  * @dwork: work to queue
1543  * @delay: number of jiffies to wait before queueing
1544  *
1545  * Return: %false if @work was already on a queue, %true otherwise.  If
1546  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1547  * execution.
1548  */
1549 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1550 			   struct delayed_work *dwork, unsigned long delay)
1551 {
1552 	struct work_struct *work = &dwork->work;
1553 	bool ret = false;
1554 	unsigned long flags;
1555 
1556 	/* read the comment in __queue_work() */
1557 	local_irq_save(flags);
1558 
1559 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1560 		__queue_delayed_work(cpu, wq, dwork, delay);
1561 		ret = true;
1562 	}
1563 
1564 	local_irq_restore(flags);
1565 	return ret;
1566 }
1567 EXPORT_SYMBOL(queue_delayed_work_on);
1568 
1569 /**
1570  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1571  * @cpu: CPU number to execute work on
1572  * @wq: workqueue to use
1573  * @dwork: work to queue
1574  * @delay: number of jiffies to wait before queueing
1575  *
1576  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1577  * modify @dwork's timer so that it expires after @delay.  If @delay is
1578  * zero, @work is guaranteed to be scheduled immediately regardless of its
1579  * current state.
1580  *
1581  * Return: %false if @dwork was idle and queued, %true if @dwork was
1582  * pending and its timer was modified.
1583  *
1584  * This function is safe to call from any context including IRQ handler.
1585  * See try_to_grab_pending() for details.
1586  */
1587 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1588 			 struct delayed_work *dwork, unsigned long delay)
1589 {
1590 	unsigned long flags;
1591 	int ret;
1592 
1593 	do {
1594 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1595 	} while (unlikely(ret == -EAGAIN));
1596 
1597 	if (likely(ret >= 0)) {
1598 		__queue_delayed_work(cpu, wq, dwork, delay);
1599 		local_irq_restore(flags);
1600 	}
1601 
1602 	/* -ENOENT from try_to_grab_pending() becomes %true */
1603 	return ret;
1604 }
1605 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1606 
1607 /**
1608  * worker_enter_idle - enter idle state
1609  * @worker: worker which is entering idle state
1610  *
1611  * @worker is entering idle state.  Update stats and idle timer if
1612  * necessary.
1613  *
1614  * LOCKING:
1615  * spin_lock_irq(pool->lock).
1616  */
1617 static void worker_enter_idle(struct worker *worker)
1618 {
1619 	struct worker_pool *pool = worker->pool;
1620 
1621 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1622 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1623 			 (worker->hentry.next || worker->hentry.pprev)))
1624 		return;
1625 
1626 	/* can't use worker_set_flags(), also called from create_worker() */
1627 	worker->flags |= WORKER_IDLE;
1628 	pool->nr_idle++;
1629 	worker->last_active = jiffies;
1630 
1631 	/* idle_list is LIFO */
1632 	list_add(&worker->entry, &pool->idle_list);
1633 
1634 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1635 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1636 
1637 	/*
1638 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1639 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1640 	 * nr_running, the warning may trigger spuriously.  Check iff
1641 	 * unbind is not in progress.
1642 	 */
1643 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1644 		     pool->nr_workers == pool->nr_idle &&
1645 		     atomic_read(&pool->nr_running));
1646 }
1647 
1648 /**
1649  * worker_leave_idle - leave idle state
1650  * @worker: worker which is leaving idle state
1651  *
1652  * @worker is leaving idle state.  Update stats.
1653  *
1654  * LOCKING:
1655  * spin_lock_irq(pool->lock).
1656  */
1657 static void worker_leave_idle(struct worker *worker)
1658 {
1659 	struct worker_pool *pool = worker->pool;
1660 
1661 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1662 		return;
1663 	worker_clr_flags(worker, WORKER_IDLE);
1664 	pool->nr_idle--;
1665 	list_del_init(&worker->entry);
1666 }
1667 
1668 static struct worker *alloc_worker(int node)
1669 {
1670 	struct worker *worker;
1671 
1672 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1673 	if (worker) {
1674 		INIT_LIST_HEAD(&worker->entry);
1675 		INIT_LIST_HEAD(&worker->scheduled);
1676 		INIT_LIST_HEAD(&worker->node);
1677 		/* on creation a worker is in !idle && prep state */
1678 		worker->flags = WORKER_PREP;
1679 	}
1680 	return worker;
1681 }
1682 
1683 /**
1684  * worker_attach_to_pool() - attach a worker to a pool
1685  * @worker: worker to be attached
1686  * @pool: the target pool
1687  *
1688  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1689  * cpu-binding of @worker are kept coordinated with the pool across
1690  * cpu-[un]hotplugs.
1691  */
1692 static void worker_attach_to_pool(struct worker *worker,
1693 				   struct worker_pool *pool)
1694 {
1695 	mutex_lock(&pool->attach_mutex);
1696 
1697 	/*
1698 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1699 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1700 	 */
1701 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1702 
1703 	/*
1704 	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1705 	 * stable across this function.  See the comments above the
1706 	 * flag definition for details.
1707 	 */
1708 	if (pool->flags & POOL_DISASSOCIATED)
1709 		worker->flags |= WORKER_UNBOUND;
1710 
1711 	list_add_tail(&worker->node, &pool->workers);
1712 
1713 	mutex_unlock(&pool->attach_mutex);
1714 }
1715 
1716 /**
1717  * worker_detach_from_pool() - detach a worker from its pool
1718  * @worker: worker which is attached to its pool
1719  * @pool: the pool @worker is attached to
1720  *
1721  * Undo the attaching which had been done in worker_attach_to_pool().  The
1722  * caller worker shouldn't access to the pool after detached except it has
1723  * other reference to the pool.
1724  */
1725 static void worker_detach_from_pool(struct worker *worker,
1726 				    struct worker_pool *pool)
1727 {
1728 	struct completion *detach_completion = NULL;
1729 
1730 	mutex_lock(&pool->attach_mutex);
1731 	list_del(&worker->node);
1732 	if (list_empty(&pool->workers))
1733 		detach_completion = pool->detach_completion;
1734 	mutex_unlock(&pool->attach_mutex);
1735 
1736 	/* clear leftover flags without pool->lock after it is detached */
1737 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1738 
1739 	if (detach_completion)
1740 		complete(detach_completion);
1741 }
1742 
1743 /**
1744  * create_worker - create a new workqueue worker
1745  * @pool: pool the new worker will belong to
1746  *
1747  * Create and start a new worker which is attached to @pool.
1748  *
1749  * CONTEXT:
1750  * Might sleep.  Does GFP_KERNEL allocations.
1751  *
1752  * Return:
1753  * Pointer to the newly created worker.
1754  */
1755 static struct worker *create_worker(struct worker_pool *pool)
1756 {
1757 	struct worker *worker = NULL;
1758 	int id = -1;
1759 	char id_buf[16];
1760 
1761 	/* ID is needed to determine kthread name */
1762 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1763 	if (id < 0)
1764 		goto fail;
1765 
1766 	worker = alloc_worker(pool->node);
1767 	if (!worker)
1768 		goto fail;
1769 
1770 	worker->pool = pool;
1771 	worker->id = id;
1772 
1773 	if (pool->cpu >= 0)
1774 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1775 			 pool->attrs->nice < 0  ? "H" : "");
1776 	else
1777 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1778 
1779 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1780 					      "kworker/%s", id_buf);
1781 	if (IS_ERR(worker->task))
1782 		goto fail;
1783 
1784 	set_user_nice(worker->task, pool->attrs->nice);
1785 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1786 
1787 	/* successful, attach the worker to the pool */
1788 	worker_attach_to_pool(worker, pool);
1789 
1790 	/* start the newly created worker */
1791 	spin_lock_irq(&pool->lock);
1792 	worker->pool->nr_workers++;
1793 	worker_enter_idle(worker);
1794 	wake_up_process(worker->task);
1795 	spin_unlock_irq(&pool->lock);
1796 
1797 	return worker;
1798 
1799 fail:
1800 	if (id >= 0)
1801 		ida_simple_remove(&pool->worker_ida, id);
1802 	kfree(worker);
1803 	return NULL;
1804 }
1805 
1806 /**
1807  * destroy_worker - destroy a workqueue worker
1808  * @worker: worker to be destroyed
1809  *
1810  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1811  * be idle.
1812  *
1813  * CONTEXT:
1814  * spin_lock_irq(pool->lock).
1815  */
1816 static void destroy_worker(struct worker *worker)
1817 {
1818 	struct worker_pool *pool = worker->pool;
1819 
1820 	lockdep_assert_held(&pool->lock);
1821 
1822 	/* sanity check frenzy */
1823 	if (WARN_ON(worker->current_work) ||
1824 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1825 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1826 		return;
1827 
1828 	pool->nr_workers--;
1829 	pool->nr_idle--;
1830 
1831 	list_del_init(&worker->entry);
1832 	worker->flags |= WORKER_DIE;
1833 	wake_up_process(worker->task);
1834 }
1835 
1836 static void idle_worker_timeout(unsigned long __pool)
1837 {
1838 	struct worker_pool *pool = (void *)__pool;
1839 
1840 	spin_lock_irq(&pool->lock);
1841 
1842 	while (too_many_workers(pool)) {
1843 		struct worker *worker;
1844 		unsigned long expires;
1845 
1846 		/* idle_list is kept in LIFO order, check the last one */
1847 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1848 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1849 
1850 		if (time_before(jiffies, expires)) {
1851 			mod_timer(&pool->idle_timer, expires);
1852 			break;
1853 		}
1854 
1855 		destroy_worker(worker);
1856 	}
1857 
1858 	spin_unlock_irq(&pool->lock);
1859 }
1860 
1861 static void send_mayday(struct work_struct *work)
1862 {
1863 	struct pool_workqueue *pwq = get_work_pwq(work);
1864 	struct workqueue_struct *wq = pwq->wq;
1865 
1866 	lockdep_assert_held(&wq_mayday_lock);
1867 
1868 	if (!wq->rescuer)
1869 		return;
1870 
1871 	/* mayday mayday mayday */
1872 	if (list_empty(&pwq->mayday_node)) {
1873 		/*
1874 		 * If @pwq is for an unbound wq, its base ref may be put at
1875 		 * any time due to an attribute change.  Pin @pwq until the
1876 		 * rescuer is done with it.
1877 		 */
1878 		get_pwq(pwq);
1879 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1880 		wake_up_process(wq->rescuer->task);
1881 	}
1882 }
1883 
1884 static void pool_mayday_timeout(unsigned long __pool)
1885 {
1886 	struct worker_pool *pool = (void *)__pool;
1887 	struct work_struct *work;
1888 
1889 	spin_lock_irq(&pool->lock);
1890 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1891 
1892 	if (need_to_create_worker(pool)) {
1893 		/*
1894 		 * We've been trying to create a new worker but
1895 		 * haven't been successful.  We might be hitting an
1896 		 * allocation deadlock.  Send distress signals to
1897 		 * rescuers.
1898 		 */
1899 		list_for_each_entry(work, &pool->worklist, entry)
1900 			send_mayday(work);
1901 	}
1902 
1903 	spin_unlock(&wq_mayday_lock);
1904 	spin_unlock_irq(&pool->lock);
1905 
1906 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1907 }
1908 
1909 /**
1910  * maybe_create_worker - create a new worker if necessary
1911  * @pool: pool to create a new worker for
1912  *
1913  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1914  * have at least one idle worker on return from this function.  If
1915  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1916  * sent to all rescuers with works scheduled on @pool to resolve
1917  * possible allocation deadlock.
1918  *
1919  * On return, need_to_create_worker() is guaranteed to be %false and
1920  * may_start_working() %true.
1921  *
1922  * LOCKING:
1923  * spin_lock_irq(pool->lock) which may be released and regrabbed
1924  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1925  * manager.
1926  */
1927 static void maybe_create_worker(struct worker_pool *pool)
1928 __releases(&pool->lock)
1929 __acquires(&pool->lock)
1930 {
1931 restart:
1932 	spin_unlock_irq(&pool->lock);
1933 
1934 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1935 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1936 
1937 	while (true) {
1938 		if (create_worker(pool) || !need_to_create_worker(pool))
1939 			break;
1940 
1941 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1942 
1943 		if (!need_to_create_worker(pool))
1944 			break;
1945 	}
1946 
1947 	del_timer_sync(&pool->mayday_timer);
1948 	spin_lock_irq(&pool->lock);
1949 	/*
1950 	 * This is necessary even after a new worker was just successfully
1951 	 * created as @pool->lock was dropped and the new worker might have
1952 	 * already become busy.
1953 	 */
1954 	if (need_to_create_worker(pool))
1955 		goto restart;
1956 }
1957 
1958 /**
1959  * manage_workers - manage worker pool
1960  * @worker: self
1961  *
1962  * Assume the manager role and manage the worker pool @worker belongs
1963  * to.  At any given time, there can be only zero or one manager per
1964  * pool.  The exclusion is handled automatically by this function.
1965  *
1966  * The caller can safely start processing works on false return.  On
1967  * true return, it's guaranteed that need_to_create_worker() is false
1968  * and may_start_working() is true.
1969  *
1970  * CONTEXT:
1971  * spin_lock_irq(pool->lock) which may be released and regrabbed
1972  * multiple times.  Does GFP_KERNEL allocations.
1973  *
1974  * Return:
1975  * %false if the pool doesn't need management and the caller can safely
1976  * start processing works, %true if management function was performed and
1977  * the conditions that the caller verified before calling the function may
1978  * no longer be true.
1979  */
1980 static bool manage_workers(struct worker *worker)
1981 {
1982 	struct worker_pool *pool = worker->pool;
1983 
1984 	if (pool->flags & POOL_MANAGER_ACTIVE)
1985 		return false;
1986 
1987 	pool->flags |= POOL_MANAGER_ACTIVE;
1988 	pool->manager = worker;
1989 
1990 	maybe_create_worker(pool);
1991 
1992 	pool->manager = NULL;
1993 	pool->flags &= ~POOL_MANAGER_ACTIVE;
1994 	wake_up(&wq_manager_wait);
1995 	return true;
1996 }
1997 
1998 /**
1999  * process_one_work - process single work
2000  * @worker: self
2001  * @work: work to process
2002  *
2003  * Process @work.  This function contains all the logics necessary to
2004  * process a single work including synchronization against and
2005  * interaction with other workers on the same cpu, queueing and
2006  * flushing.  As long as context requirement is met, any worker can
2007  * call this function to process a work.
2008  *
2009  * CONTEXT:
2010  * spin_lock_irq(pool->lock) which is released and regrabbed.
2011  */
2012 static void process_one_work(struct worker *worker, struct work_struct *work)
2013 __releases(&pool->lock)
2014 __acquires(&pool->lock)
2015 {
2016 	struct pool_workqueue *pwq = get_work_pwq(work);
2017 	struct worker_pool *pool = worker->pool;
2018 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2019 	int work_color;
2020 	struct worker *collision;
2021 #ifdef CONFIG_LOCKDEP
2022 	/*
2023 	 * It is permissible to free the struct work_struct from
2024 	 * inside the function that is called from it, this we need to
2025 	 * take into account for lockdep too.  To avoid bogus "held
2026 	 * lock freed" warnings as well as problems when looking into
2027 	 * work->lockdep_map, make a copy and use that here.
2028 	 */
2029 	struct lockdep_map lockdep_map;
2030 
2031 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2032 #endif
2033 	/* ensure we're on the correct CPU */
2034 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2035 		     raw_smp_processor_id() != pool->cpu);
2036 
2037 	/*
2038 	 * A single work shouldn't be executed concurrently by
2039 	 * multiple workers on a single cpu.  Check whether anyone is
2040 	 * already processing the work.  If so, defer the work to the
2041 	 * currently executing one.
2042 	 */
2043 	collision = find_worker_executing_work(pool, work);
2044 	if (unlikely(collision)) {
2045 		move_linked_works(work, &collision->scheduled, NULL);
2046 		return;
2047 	}
2048 
2049 	/* claim and dequeue */
2050 	debug_work_deactivate(work);
2051 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2052 	worker->current_work = work;
2053 	worker->current_func = work->func;
2054 	worker->current_pwq = pwq;
2055 	work_color = get_work_color(work);
2056 
2057 	list_del_init(&work->entry);
2058 
2059 	/*
2060 	 * CPU intensive works don't participate in concurrency management.
2061 	 * They're the scheduler's responsibility.  This takes @worker out
2062 	 * of concurrency management and the next code block will chain
2063 	 * execution of the pending work items.
2064 	 */
2065 	if (unlikely(cpu_intensive))
2066 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2067 
2068 	/*
2069 	 * Wake up another worker if necessary.  The condition is always
2070 	 * false for normal per-cpu workers since nr_running would always
2071 	 * be >= 1 at this point.  This is used to chain execution of the
2072 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2073 	 * UNBOUND and CPU_INTENSIVE ones.
2074 	 */
2075 	if (need_more_worker(pool))
2076 		wake_up_worker(pool);
2077 
2078 	/*
2079 	 * Record the last pool and clear PENDING which should be the last
2080 	 * update to @work.  Also, do this inside @pool->lock so that
2081 	 * PENDING and queued state changes happen together while IRQ is
2082 	 * disabled.
2083 	 */
2084 	set_work_pool_and_clear_pending(work, pool->id);
2085 
2086 	spin_unlock_irq(&pool->lock);
2087 
2088 	lock_map_acquire(&pwq->wq->lockdep_map);
2089 	lock_map_acquire(&lockdep_map);
2090 	/*
2091 	 * Strictly speaking we should mark the invariant state without holding
2092 	 * any locks, that is, before these two lock_map_acquire()'s.
2093 	 *
2094 	 * However, that would result in:
2095 	 *
2096 	 *   A(W1)
2097 	 *   WFC(C)
2098 	 *		A(W1)
2099 	 *		C(C)
2100 	 *
2101 	 * Which would create W1->C->W1 dependencies, even though there is no
2102 	 * actual deadlock possible. There are two solutions, using a
2103 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2104 	 * hit the lockdep limitation on recursive locks, or simply discard
2105 	 * these locks.
2106 	 *
2107 	 * AFAICT there is no possible deadlock scenario between the
2108 	 * flush_work() and complete() primitives (except for single-threaded
2109 	 * workqueues), so hiding them isn't a problem.
2110 	 */
2111 	lockdep_invariant_state(true);
2112 	trace_workqueue_execute_start(work);
2113 	worker->current_func(work);
2114 	/*
2115 	 * While we must be careful to not use "work" after this, the trace
2116 	 * point will only record its address.
2117 	 */
2118 	trace_workqueue_execute_end(work);
2119 	lock_map_release(&lockdep_map);
2120 	lock_map_release(&pwq->wq->lockdep_map);
2121 
2122 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2123 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2124 		       "     last function: %pf\n",
2125 		       current->comm, preempt_count(), task_pid_nr(current),
2126 		       worker->current_func);
2127 		debug_show_held_locks(current);
2128 		dump_stack();
2129 	}
2130 
2131 	/*
2132 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2133 	 * kernels, where a requeueing work item waiting for something to
2134 	 * happen could deadlock with stop_machine as such work item could
2135 	 * indefinitely requeue itself while all other CPUs are trapped in
2136 	 * stop_machine. At the same time, report a quiescent RCU state so
2137 	 * the same condition doesn't freeze RCU.
2138 	 */
2139 	cond_resched_rcu_qs();
2140 
2141 	spin_lock_irq(&pool->lock);
2142 
2143 	/* clear cpu intensive status */
2144 	if (unlikely(cpu_intensive))
2145 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2146 
2147 	/* we're done with it, release */
2148 	hash_del(&worker->hentry);
2149 	worker->current_work = NULL;
2150 	worker->current_func = NULL;
2151 	worker->current_pwq = NULL;
2152 	worker->desc_valid = false;
2153 	pwq_dec_nr_in_flight(pwq, work_color);
2154 }
2155 
2156 /**
2157  * process_scheduled_works - process scheduled works
2158  * @worker: self
2159  *
2160  * Process all scheduled works.  Please note that the scheduled list
2161  * may change while processing a work, so this function repeatedly
2162  * fetches a work from the top and executes it.
2163  *
2164  * CONTEXT:
2165  * spin_lock_irq(pool->lock) which may be released and regrabbed
2166  * multiple times.
2167  */
2168 static void process_scheduled_works(struct worker *worker)
2169 {
2170 	while (!list_empty(&worker->scheduled)) {
2171 		struct work_struct *work = list_first_entry(&worker->scheduled,
2172 						struct work_struct, entry);
2173 		process_one_work(worker, work);
2174 	}
2175 }
2176 
2177 /**
2178  * worker_thread - the worker thread function
2179  * @__worker: self
2180  *
2181  * The worker thread function.  All workers belong to a worker_pool -
2182  * either a per-cpu one or dynamic unbound one.  These workers process all
2183  * work items regardless of their specific target workqueue.  The only
2184  * exception is work items which belong to workqueues with a rescuer which
2185  * will be explained in rescuer_thread().
2186  *
2187  * Return: 0
2188  */
2189 static int worker_thread(void *__worker)
2190 {
2191 	struct worker *worker = __worker;
2192 	struct worker_pool *pool = worker->pool;
2193 
2194 	/* tell the scheduler that this is a workqueue worker */
2195 	worker->task->flags |= PF_WQ_WORKER;
2196 woke_up:
2197 	spin_lock_irq(&pool->lock);
2198 
2199 	/* am I supposed to die? */
2200 	if (unlikely(worker->flags & WORKER_DIE)) {
2201 		spin_unlock_irq(&pool->lock);
2202 		WARN_ON_ONCE(!list_empty(&worker->entry));
2203 		worker->task->flags &= ~PF_WQ_WORKER;
2204 
2205 		set_task_comm(worker->task, "kworker/dying");
2206 		ida_simple_remove(&pool->worker_ida, worker->id);
2207 		worker_detach_from_pool(worker, pool);
2208 		kfree(worker);
2209 		return 0;
2210 	}
2211 
2212 	worker_leave_idle(worker);
2213 recheck:
2214 	/* no more worker necessary? */
2215 	if (!need_more_worker(pool))
2216 		goto sleep;
2217 
2218 	/* do we need to manage? */
2219 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2220 		goto recheck;
2221 
2222 	/*
2223 	 * ->scheduled list can only be filled while a worker is
2224 	 * preparing to process a work or actually processing it.
2225 	 * Make sure nobody diddled with it while I was sleeping.
2226 	 */
2227 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2228 
2229 	/*
2230 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2231 	 * worker or that someone else has already assumed the manager
2232 	 * role.  This is where @worker starts participating in concurrency
2233 	 * management if applicable and concurrency management is restored
2234 	 * after being rebound.  See rebind_workers() for details.
2235 	 */
2236 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2237 
2238 	do {
2239 		struct work_struct *work =
2240 			list_first_entry(&pool->worklist,
2241 					 struct work_struct, entry);
2242 
2243 		pool->watchdog_ts = jiffies;
2244 
2245 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2246 			/* optimization path, not strictly necessary */
2247 			process_one_work(worker, work);
2248 			if (unlikely(!list_empty(&worker->scheduled)))
2249 				process_scheduled_works(worker);
2250 		} else {
2251 			move_linked_works(work, &worker->scheduled, NULL);
2252 			process_scheduled_works(worker);
2253 		}
2254 	} while (keep_working(pool));
2255 
2256 	worker_set_flags(worker, WORKER_PREP);
2257 sleep:
2258 	/*
2259 	 * pool->lock is held and there's no work to process and no need to
2260 	 * manage, sleep.  Workers are woken up only while holding
2261 	 * pool->lock or from local cpu, so setting the current state
2262 	 * before releasing pool->lock is enough to prevent losing any
2263 	 * event.
2264 	 */
2265 	worker_enter_idle(worker);
2266 	__set_current_state(TASK_IDLE);
2267 	spin_unlock_irq(&pool->lock);
2268 	schedule();
2269 	goto woke_up;
2270 }
2271 
2272 /**
2273  * rescuer_thread - the rescuer thread function
2274  * @__rescuer: self
2275  *
2276  * Workqueue rescuer thread function.  There's one rescuer for each
2277  * workqueue which has WQ_MEM_RECLAIM set.
2278  *
2279  * Regular work processing on a pool may block trying to create a new
2280  * worker which uses GFP_KERNEL allocation which has slight chance of
2281  * developing into deadlock if some works currently on the same queue
2282  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2283  * the problem rescuer solves.
2284  *
2285  * When such condition is possible, the pool summons rescuers of all
2286  * workqueues which have works queued on the pool and let them process
2287  * those works so that forward progress can be guaranteed.
2288  *
2289  * This should happen rarely.
2290  *
2291  * Return: 0
2292  */
2293 static int rescuer_thread(void *__rescuer)
2294 {
2295 	struct worker *rescuer = __rescuer;
2296 	struct workqueue_struct *wq = rescuer->rescue_wq;
2297 	struct list_head *scheduled = &rescuer->scheduled;
2298 	bool should_stop;
2299 
2300 	set_user_nice(current, RESCUER_NICE_LEVEL);
2301 
2302 	/*
2303 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2304 	 * doesn't participate in concurrency management.
2305 	 */
2306 	rescuer->task->flags |= PF_WQ_WORKER;
2307 repeat:
2308 	set_current_state(TASK_IDLE);
2309 
2310 	/*
2311 	 * By the time the rescuer is requested to stop, the workqueue
2312 	 * shouldn't have any work pending, but @wq->maydays may still have
2313 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2314 	 * all the work items before the rescuer got to them.  Go through
2315 	 * @wq->maydays processing before acting on should_stop so that the
2316 	 * list is always empty on exit.
2317 	 */
2318 	should_stop = kthread_should_stop();
2319 
2320 	/* see whether any pwq is asking for help */
2321 	spin_lock_irq(&wq_mayday_lock);
2322 
2323 	while (!list_empty(&wq->maydays)) {
2324 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2325 					struct pool_workqueue, mayday_node);
2326 		struct worker_pool *pool = pwq->pool;
2327 		struct work_struct *work, *n;
2328 		bool first = true;
2329 
2330 		__set_current_state(TASK_RUNNING);
2331 		list_del_init(&pwq->mayday_node);
2332 
2333 		spin_unlock_irq(&wq_mayday_lock);
2334 
2335 		worker_attach_to_pool(rescuer, pool);
2336 
2337 		spin_lock_irq(&pool->lock);
2338 		rescuer->pool = pool;
2339 
2340 		/*
2341 		 * Slurp in all works issued via this workqueue and
2342 		 * process'em.
2343 		 */
2344 		WARN_ON_ONCE(!list_empty(scheduled));
2345 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2346 			if (get_work_pwq(work) == pwq) {
2347 				if (first)
2348 					pool->watchdog_ts = jiffies;
2349 				move_linked_works(work, scheduled, &n);
2350 			}
2351 			first = false;
2352 		}
2353 
2354 		if (!list_empty(scheduled)) {
2355 			process_scheduled_works(rescuer);
2356 
2357 			/*
2358 			 * The above execution of rescued work items could
2359 			 * have created more to rescue through
2360 			 * pwq_activate_first_delayed() or chained
2361 			 * queueing.  Let's put @pwq back on mayday list so
2362 			 * that such back-to-back work items, which may be
2363 			 * being used to relieve memory pressure, don't
2364 			 * incur MAYDAY_INTERVAL delay inbetween.
2365 			 */
2366 			if (need_to_create_worker(pool)) {
2367 				spin_lock(&wq_mayday_lock);
2368 				get_pwq(pwq);
2369 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2370 				spin_unlock(&wq_mayday_lock);
2371 			}
2372 		}
2373 
2374 		/*
2375 		 * Put the reference grabbed by send_mayday().  @pool won't
2376 		 * go away while we're still attached to it.
2377 		 */
2378 		put_pwq(pwq);
2379 
2380 		/*
2381 		 * Leave this pool.  If need_more_worker() is %true, notify a
2382 		 * regular worker; otherwise, we end up with 0 concurrency
2383 		 * and stalling the execution.
2384 		 */
2385 		if (need_more_worker(pool))
2386 			wake_up_worker(pool);
2387 
2388 		rescuer->pool = NULL;
2389 		spin_unlock_irq(&pool->lock);
2390 
2391 		worker_detach_from_pool(rescuer, pool);
2392 
2393 		spin_lock_irq(&wq_mayday_lock);
2394 	}
2395 
2396 	spin_unlock_irq(&wq_mayday_lock);
2397 
2398 	if (should_stop) {
2399 		__set_current_state(TASK_RUNNING);
2400 		rescuer->task->flags &= ~PF_WQ_WORKER;
2401 		return 0;
2402 	}
2403 
2404 	/* rescuers should never participate in concurrency management */
2405 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2406 	schedule();
2407 	goto repeat;
2408 }
2409 
2410 /**
2411  * check_flush_dependency - check for flush dependency sanity
2412  * @target_wq: workqueue being flushed
2413  * @target_work: work item being flushed (NULL for workqueue flushes)
2414  *
2415  * %current is trying to flush the whole @target_wq or @target_work on it.
2416  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2417  * reclaiming memory or running on a workqueue which doesn't have
2418  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2419  * a deadlock.
2420  */
2421 static void check_flush_dependency(struct workqueue_struct *target_wq,
2422 				   struct work_struct *target_work)
2423 {
2424 	work_func_t target_func = target_work ? target_work->func : NULL;
2425 	struct worker *worker;
2426 
2427 	if (target_wq->flags & WQ_MEM_RECLAIM)
2428 		return;
2429 
2430 	worker = current_wq_worker();
2431 
2432 	WARN_ONCE(current->flags & PF_MEMALLOC,
2433 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2434 		  current->pid, current->comm, target_wq->name, target_func);
2435 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2436 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2437 		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2438 		  worker->current_pwq->wq->name, worker->current_func,
2439 		  target_wq->name, target_func);
2440 }
2441 
2442 struct wq_barrier {
2443 	struct work_struct	work;
2444 	struct completion	done;
2445 	struct task_struct	*task;	/* purely informational */
2446 };
2447 
2448 static void wq_barrier_func(struct work_struct *work)
2449 {
2450 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2451 	complete(&barr->done);
2452 }
2453 
2454 /**
2455  * insert_wq_barrier - insert a barrier work
2456  * @pwq: pwq to insert barrier into
2457  * @barr: wq_barrier to insert
2458  * @target: target work to attach @barr to
2459  * @worker: worker currently executing @target, NULL if @target is not executing
2460  *
2461  * @barr is linked to @target such that @barr is completed only after
2462  * @target finishes execution.  Please note that the ordering
2463  * guarantee is observed only with respect to @target and on the local
2464  * cpu.
2465  *
2466  * Currently, a queued barrier can't be canceled.  This is because
2467  * try_to_grab_pending() can't determine whether the work to be
2468  * grabbed is at the head of the queue and thus can't clear LINKED
2469  * flag of the previous work while there must be a valid next work
2470  * after a work with LINKED flag set.
2471  *
2472  * Note that when @worker is non-NULL, @target may be modified
2473  * underneath us, so we can't reliably determine pwq from @target.
2474  *
2475  * CONTEXT:
2476  * spin_lock_irq(pool->lock).
2477  */
2478 static void insert_wq_barrier(struct pool_workqueue *pwq,
2479 			      struct wq_barrier *barr,
2480 			      struct work_struct *target, struct worker *worker)
2481 {
2482 	struct list_head *head;
2483 	unsigned int linked = 0;
2484 
2485 	/*
2486 	 * debugobject calls are safe here even with pool->lock locked
2487 	 * as we know for sure that this will not trigger any of the
2488 	 * checks and call back into the fixup functions where we
2489 	 * might deadlock.
2490 	 */
2491 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2492 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2493 
2494 	init_completion_map(&barr->done, &target->lockdep_map);
2495 
2496 	barr->task = current;
2497 
2498 	/*
2499 	 * If @target is currently being executed, schedule the
2500 	 * barrier to the worker; otherwise, put it after @target.
2501 	 */
2502 	if (worker)
2503 		head = worker->scheduled.next;
2504 	else {
2505 		unsigned long *bits = work_data_bits(target);
2506 
2507 		head = target->entry.next;
2508 		/* there can already be other linked works, inherit and set */
2509 		linked = *bits & WORK_STRUCT_LINKED;
2510 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2511 	}
2512 
2513 	debug_work_activate(&barr->work);
2514 	insert_work(pwq, &barr->work, head,
2515 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2516 }
2517 
2518 /**
2519  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2520  * @wq: workqueue being flushed
2521  * @flush_color: new flush color, < 0 for no-op
2522  * @work_color: new work color, < 0 for no-op
2523  *
2524  * Prepare pwqs for workqueue flushing.
2525  *
2526  * If @flush_color is non-negative, flush_color on all pwqs should be
2527  * -1.  If no pwq has in-flight commands at the specified color, all
2528  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2529  * has in flight commands, its pwq->flush_color is set to
2530  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2531  * wakeup logic is armed and %true is returned.
2532  *
2533  * The caller should have initialized @wq->first_flusher prior to
2534  * calling this function with non-negative @flush_color.  If
2535  * @flush_color is negative, no flush color update is done and %false
2536  * is returned.
2537  *
2538  * If @work_color is non-negative, all pwqs should have the same
2539  * work_color which is previous to @work_color and all will be
2540  * advanced to @work_color.
2541  *
2542  * CONTEXT:
2543  * mutex_lock(wq->mutex).
2544  *
2545  * Return:
2546  * %true if @flush_color >= 0 and there's something to flush.  %false
2547  * otherwise.
2548  */
2549 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2550 				      int flush_color, int work_color)
2551 {
2552 	bool wait = false;
2553 	struct pool_workqueue *pwq;
2554 
2555 	if (flush_color >= 0) {
2556 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2557 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2558 	}
2559 
2560 	for_each_pwq(pwq, wq) {
2561 		struct worker_pool *pool = pwq->pool;
2562 
2563 		spin_lock_irq(&pool->lock);
2564 
2565 		if (flush_color >= 0) {
2566 			WARN_ON_ONCE(pwq->flush_color != -1);
2567 
2568 			if (pwq->nr_in_flight[flush_color]) {
2569 				pwq->flush_color = flush_color;
2570 				atomic_inc(&wq->nr_pwqs_to_flush);
2571 				wait = true;
2572 			}
2573 		}
2574 
2575 		if (work_color >= 0) {
2576 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2577 			pwq->work_color = work_color;
2578 		}
2579 
2580 		spin_unlock_irq(&pool->lock);
2581 	}
2582 
2583 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2584 		complete(&wq->first_flusher->done);
2585 
2586 	return wait;
2587 }
2588 
2589 /**
2590  * flush_workqueue - ensure that any scheduled work has run to completion.
2591  * @wq: workqueue to flush
2592  *
2593  * This function sleeps until all work items which were queued on entry
2594  * have finished execution, but it is not livelocked by new incoming ones.
2595  */
2596 void flush_workqueue(struct workqueue_struct *wq)
2597 {
2598 	struct wq_flusher this_flusher = {
2599 		.list = LIST_HEAD_INIT(this_flusher.list),
2600 		.flush_color = -1,
2601 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2602 	};
2603 	int next_color;
2604 
2605 	if (WARN_ON(!wq_online))
2606 		return;
2607 
2608 	mutex_lock(&wq->mutex);
2609 
2610 	/*
2611 	 * Start-to-wait phase
2612 	 */
2613 	next_color = work_next_color(wq->work_color);
2614 
2615 	if (next_color != wq->flush_color) {
2616 		/*
2617 		 * Color space is not full.  The current work_color
2618 		 * becomes our flush_color and work_color is advanced
2619 		 * by one.
2620 		 */
2621 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2622 		this_flusher.flush_color = wq->work_color;
2623 		wq->work_color = next_color;
2624 
2625 		if (!wq->first_flusher) {
2626 			/* no flush in progress, become the first flusher */
2627 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2628 
2629 			wq->first_flusher = &this_flusher;
2630 
2631 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2632 						       wq->work_color)) {
2633 				/* nothing to flush, done */
2634 				wq->flush_color = next_color;
2635 				wq->first_flusher = NULL;
2636 				goto out_unlock;
2637 			}
2638 		} else {
2639 			/* wait in queue */
2640 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2641 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2642 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2643 		}
2644 	} else {
2645 		/*
2646 		 * Oops, color space is full, wait on overflow queue.
2647 		 * The next flush completion will assign us
2648 		 * flush_color and transfer to flusher_queue.
2649 		 */
2650 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2651 	}
2652 
2653 	check_flush_dependency(wq, NULL);
2654 
2655 	mutex_unlock(&wq->mutex);
2656 
2657 	wait_for_completion(&this_flusher.done);
2658 
2659 	/*
2660 	 * Wake-up-and-cascade phase
2661 	 *
2662 	 * First flushers are responsible for cascading flushes and
2663 	 * handling overflow.  Non-first flushers can simply return.
2664 	 */
2665 	if (wq->first_flusher != &this_flusher)
2666 		return;
2667 
2668 	mutex_lock(&wq->mutex);
2669 
2670 	/* we might have raced, check again with mutex held */
2671 	if (wq->first_flusher != &this_flusher)
2672 		goto out_unlock;
2673 
2674 	wq->first_flusher = NULL;
2675 
2676 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2677 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2678 
2679 	while (true) {
2680 		struct wq_flusher *next, *tmp;
2681 
2682 		/* complete all the flushers sharing the current flush color */
2683 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2684 			if (next->flush_color != wq->flush_color)
2685 				break;
2686 			list_del_init(&next->list);
2687 			complete(&next->done);
2688 		}
2689 
2690 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2691 			     wq->flush_color != work_next_color(wq->work_color));
2692 
2693 		/* this flush_color is finished, advance by one */
2694 		wq->flush_color = work_next_color(wq->flush_color);
2695 
2696 		/* one color has been freed, handle overflow queue */
2697 		if (!list_empty(&wq->flusher_overflow)) {
2698 			/*
2699 			 * Assign the same color to all overflowed
2700 			 * flushers, advance work_color and append to
2701 			 * flusher_queue.  This is the start-to-wait
2702 			 * phase for these overflowed flushers.
2703 			 */
2704 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2705 				tmp->flush_color = wq->work_color;
2706 
2707 			wq->work_color = work_next_color(wq->work_color);
2708 
2709 			list_splice_tail_init(&wq->flusher_overflow,
2710 					      &wq->flusher_queue);
2711 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2712 		}
2713 
2714 		if (list_empty(&wq->flusher_queue)) {
2715 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2716 			break;
2717 		}
2718 
2719 		/*
2720 		 * Need to flush more colors.  Make the next flusher
2721 		 * the new first flusher and arm pwqs.
2722 		 */
2723 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2724 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2725 
2726 		list_del_init(&next->list);
2727 		wq->first_flusher = next;
2728 
2729 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2730 			break;
2731 
2732 		/*
2733 		 * Meh... this color is already done, clear first
2734 		 * flusher and repeat cascading.
2735 		 */
2736 		wq->first_flusher = NULL;
2737 	}
2738 
2739 out_unlock:
2740 	mutex_unlock(&wq->mutex);
2741 }
2742 EXPORT_SYMBOL(flush_workqueue);
2743 
2744 /**
2745  * drain_workqueue - drain a workqueue
2746  * @wq: workqueue to drain
2747  *
2748  * Wait until the workqueue becomes empty.  While draining is in progress,
2749  * only chain queueing is allowed.  IOW, only currently pending or running
2750  * work items on @wq can queue further work items on it.  @wq is flushed
2751  * repeatedly until it becomes empty.  The number of flushing is determined
2752  * by the depth of chaining and should be relatively short.  Whine if it
2753  * takes too long.
2754  */
2755 void drain_workqueue(struct workqueue_struct *wq)
2756 {
2757 	unsigned int flush_cnt = 0;
2758 	struct pool_workqueue *pwq;
2759 
2760 	/*
2761 	 * __queue_work() needs to test whether there are drainers, is much
2762 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2763 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2764 	 */
2765 	mutex_lock(&wq->mutex);
2766 	if (!wq->nr_drainers++)
2767 		wq->flags |= __WQ_DRAINING;
2768 	mutex_unlock(&wq->mutex);
2769 reflush:
2770 	flush_workqueue(wq);
2771 
2772 	mutex_lock(&wq->mutex);
2773 
2774 	for_each_pwq(pwq, wq) {
2775 		bool drained;
2776 
2777 		spin_lock_irq(&pwq->pool->lock);
2778 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2779 		spin_unlock_irq(&pwq->pool->lock);
2780 
2781 		if (drained)
2782 			continue;
2783 
2784 		if (++flush_cnt == 10 ||
2785 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2786 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2787 				wq->name, flush_cnt);
2788 
2789 		mutex_unlock(&wq->mutex);
2790 		goto reflush;
2791 	}
2792 
2793 	if (!--wq->nr_drainers)
2794 		wq->flags &= ~__WQ_DRAINING;
2795 	mutex_unlock(&wq->mutex);
2796 }
2797 EXPORT_SYMBOL_GPL(drain_workqueue);
2798 
2799 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2800 {
2801 	struct worker *worker = NULL;
2802 	struct worker_pool *pool;
2803 	struct pool_workqueue *pwq;
2804 
2805 	might_sleep();
2806 
2807 	local_irq_disable();
2808 	pool = get_work_pool(work);
2809 	if (!pool) {
2810 		local_irq_enable();
2811 		return false;
2812 	}
2813 
2814 	spin_lock(&pool->lock);
2815 	/* see the comment in try_to_grab_pending() with the same code */
2816 	pwq = get_work_pwq(work);
2817 	if (pwq) {
2818 		if (unlikely(pwq->pool != pool))
2819 			goto already_gone;
2820 	} else {
2821 		worker = find_worker_executing_work(pool, work);
2822 		if (!worker)
2823 			goto already_gone;
2824 		pwq = worker->current_pwq;
2825 	}
2826 
2827 	check_flush_dependency(pwq->wq, work);
2828 
2829 	insert_wq_barrier(pwq, barr, work, worker);
2830 	spin_unlock_irq(&pool->lock);
2831 
2832 	/*
2833 	 * Force a lock recursion deadlock when using flush_work() inside a
2834 	 * single-threaded or rescuer equipped workqueue.
2835 	 *
2836 	 * For single threaded workqueues the deadlock happens when the work
2837 	 * is after the work issuing the flush_work(). For rescuer equipped
2838 	 * workqueues the deadlock happens when the rescuer stalls, blocking
2839 	 * forward progress.
2840 	 */
2841 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) {
2842 		lock_map_acquire(&pwq->wq->lockdep_map);
2843 		lock_map_release(&pwq->wq->lockdep_map);
2844 	}
2845 
2846 	return true;
2847 already_gone:
2848 	spin_unlock_irq(&pool->lock);
2849 	return false;
2850 }
2851 
2852 /**
2853  * flush_work - wait for a work to finish executing the last queueing instance
2854  * @work: the work to flush
2855  *
2856  * Wait until @work has finished execution.  @work is guaranteed to be idle
2857  * on return if it hasn't been requeued since flush started.
2858  *
2859  * Return:
2860  * %true if flush_work() waited for the work to finish execution,
2861  * %false if it was already idle.
2862  */
2863 bool flush_work(struct work_struct *work)
2864 {
2865 	struct wq_barrier barr;
2866 
2867 	if (WARN_ON(!wq_online))
2868 		return false;
2869 
2870 	if (start_flush_work(work, &barr)) {
2871 		wait_for_completion(&barr.done);
2872 		destroy_work_on_stack(&barr.work);
2873 		return true;
2874 	} else {
2875 		return false;
2876 	}
2877 }
2878 EXPORT_SYMBOL_GPL(flush_work);
2879 
2880 struct cwt_wait {
2881 	wait_queue_entry_t		wait;
2882 	struct work_struct	*work;
2883 };
2884 
2885 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2886 {
2887 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2888 
2889 	if (cwait->work != key)
2890 		return 0;
2891 	return autoremove_wake_function(wait, mode, sync, key);
2892 }
2893 
2894 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2895 {
2896 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2897 	unsigned long flags;
2898 	int ret;
2899 
2900 	do {
2901 		ret = try_to_grab_pending(work, is_dwork, &flags);
2902 		/*
2903 		 * If someone else is already canceling, wait for it to
2904 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2905 		 * because we may get scheduled between @work's completion
2906 		 * and the other canceling task resuming and clearing
2907 		 * CANCELING - flush_work() will return false immediately
2908 		 * as @work is no longer busy, try_to_grab_pending() will
2909 		 * return -ENOENT as @work is still being canceled and the
2910 		 * other canceling task won't be able to clear CANCELING as
2911 		 * we're hogging the CPU.
2912 		 *
2913 		 * Let's wait for completion using a waitqueue.  As this
2914 		 * may lead to the thundering herd problem, use a custom
2915 		 * wake function which matches @work along with exclusive
2916 		 * wait and wakeup.
2917 		 */
2918 		if (unlikely(ret == -ENOENT)) {
2919 			struct cwt_wait cwait;
2920 
2921 			init_wait(&cwait.wait);
2922 			cwait.wait.func = cwt_wakefn;
2923 			cwait.work = work;
2924 
2925 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2926 						  TASK_UNINTERRUPTIBLE);
2927 			if (work_is_canceling(work))
2928 				schedule();
2929 			finish_wait(&cancel_waitq, &cwait.wait);
2930 		}
2931 	} while (unlikely(ret < 0));
2932 
2933 	/* tell other tasks trying to grab @work to back off */
2934 	mark_work_canceling(work);
2935 	local_irq_restore(flags);
2936 
2937 	/*
2938 	 * This allows canceling during early boot.  We know that @work
2939 	 * isn't executing.
2940 	 */
2941 	if (wq_online)
2942 		flush_work(work);
2943 
2944 	clear_work_data(work);
2945 
2946 	/*
2947 	 * Paired with prepare_to_wait() above so that either
2948 	 * waitqueue_active() is visible here or !work_is_canceling() is
2949 	 * visible there.
2950 	 */
2951 	smp_mb();
2952 	if (waitqueue_active(&cancel_waitq))
2953 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2954 
2955 	return ret;
2956 }
2957 
2958 /**
2959  * cancel_work_sync - cancel a work and wait for it to finish
2960  * @work: the work to cancel
2961  *
2962  * Cancel @work and wait for its execution to finish.  This function
2963  * can be used even if the work re-queues itself or migrates to
2964  * another workqueue.  On return from this function, @work is
2965  * guaranteed to be not pending or executing on any CPU.
2966  *
2967  * cancel_work_sync(&delayed_work->work) must not be used for
2968  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2969  *
2970  * The caller must ensure that the workqueue on which @work was last
2971  * queued can't be destroyed before this function returns.
2972  *
2973  * Return:
2974  * %true if @work was pending, %false otherwise.
2975  */
2976 bool cancel_work_sync(struct work_struct *work)
2977 {
2978 	return __cancel_work_timer(work, false);
2979 }
2980 EXPORT_SYMBOL_GPL(cancel_work_sync);
2981 
2982 /**
2983  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2984  * @dwork: the delayed work to flush
2985  *
2986  * Delayed timer is cancelled and the pending work is queued for
2987  * immediate execution.  Like flush_work(), this function only
2988  * considers the last queueing instance of @dwork.
2989  *
2990  * Return:
2991  * %true if flush_work() waited for the work to finish execution,
2992  * %false if it was already idle.
2993  */
2994 bool flush_delayed_work(struct delayed_work *dwork)
2995 {
2996 	local_irq_disable();
2997 	if (del_timer_sync(&dwork->timer))
2998 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2999 	local_irq_enable();
3000 	return flush_work(&dwork->work);
3001 }
3002 EXPORT_SYMBOL(flush_delayed_work);
3003 
3004 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3005 {
3006 	unsigned long flags;
3007 	int ret;
3008 
3009 	do {
3010 		ret = try_to_grab_pending(work, is_dwork, &flags);
3011 	} while (unlikely(ret == -EAGAIN));
3012 
3013 	if (unlikely(ret < 0))
3014 		return false;
3015 
3016 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3017 	local_irq_restore(flags);
3018 	return ret;
3019 }
3020 
3021 /*
3022  * See cancel_delayed_work()
3023  */
3024 bool cancel_work(struct work_struct *work)
3025 {
3026 	return __cancel_work(work, false);
3027 }
3028 
3029 /**
3030  * cancel_delayed_work - cancel a delayed work
3031  * @dwork: delayed_work to cancel
3032  *
3033  * Kill off a pending delayed_work.
3034  *
3035  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3036  * pending.
3037  *
3038  * Note:
3039  * The work callback function may still be running on return, unless
3040  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3041  * use cancel_delayed_work_sync() to wait on it.
3042  *
3043  * This function is safe to call from any context including IRQ handler.
3044  */
3045 bool cancel_delayed_work(struct delayed_work *dwork)
3046 {
3047 	return __cancel_work(&dwork->work, true);
3048 }
3049 EXPORT_SYMBOL(cancel_delayed_work);
3050 
3051 /**
3052  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3053  * @dwork: the delayed work cancel
3054  *
3055  * This is cancel_work_sync() for delayed works.
3056  *
3057  * Return:
3058  * %true if @dwork was pending, %false otherwise.
3059  */
3060 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3061 {
3062 	return __cancel_work_timer(&dwork->work, true);
3063 }
3064 EXPORT_SYMBOL(cancel_delayed_work_sync);
3065 
3066 /**
3067  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3068  * @func: the function to call
3069  *
3070  * schedule_on_each_cpu() executes @func on each online CPU using the
3071  * system workqueue and blocks until all CPUs have completed.
3072  * schedule_on_each_cpu() is very slow.
3073  *
3074  * Return:
3075  * 0 on success, -errno on failure.
3076  */
3077 int schedule_on_each_cpu(work_func_t func)
3078 {
3079 	int cpu;
3080 	struct work_struct __percpu *works;
3081 
3082 	works = alloc_percpu(struct work_struct);
3083 	if (!works)
3084 		return -ENOMEM;
3085 
3086 	get_online_cpus();
3087 
3088 	for_each_online_cpu(cpu) {
3089 		struct work_struct *work = per_cpu_ptr(works, cpu);
3090 
3091 		INIT_WORK(work, func);
3092 		schedule_work_on(cpu, work);
3093 	}
3094 
3095 	for_each_online_cpu(cpu)
3096 		flush_work(per_cpu_ptr(works, cpu));
3097 
3098 	put_online_cpus();
3099 	free_percpu(works);
3100 	return 0;
3101 }
3102 
3103 /**
3104  * execute_in_process_context - reliably execute the routine with user context
3105  * @fn:		the function to execute
3106  * @ew:		guaranteed storage for the execute work structure (must
3107  *		be available when the work executes)
3108  *
3109  * Executes the function immediately if process context is available,
3110  * otherwise schedules the function for delayed execution.
3111  *
3112  * Return:	0 - function was executed
3113  *		1 - function was scheduled for execution
3114  */
3115 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3116 {
3117 	if (!in_interrupt()) {
3118 		fn(&ew->work);
3119 		return 0;
3120 	}
3121 
3122 	INIT_WORK(&ew->work, fn);
3123 	schedule_work(&ew->work);
3124 
3125 	return 1;
3126 }
3127 EXPORT_SYMBOL_GPL(execute_in_process_context);
3128 
3129 /**
3130  * free_workqueue_attrs - free a workqueue_attrs
3131  * @attrs: workqueue_attrs to free
3132  *
3133  * Undo alloc_workqueue_attrs().
3134  */
3135 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3136 {
3137 	if (attrs) {
3138 		free_cpumask_var(attrs->cpumask);
3139 		kfree(attrs);
3140 	}
3141 }
3142 
3143 /**
3144  * alloc_workqueue_attrs - allocate a workqueue_attrs
3145  * @gfp_mask: allocation mask to use
3146  *
3147  * Allocate a new workqueue_attrs, initialize with default settings and
3148  * return it.
3149  *
3150  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3151  */
3152 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3153 {
3154 	struct workqueue_attrs *attrs;
3155 
3156 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3157 	if (!attrs)
3158 		goto fail;
3159 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3160 		goto fail;
3161 
3162 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3163 	return attrs;
3164 fail:
3165 	free_workqueue_attrs(attrs);
3166 	return NULL;
3167 }
3168 
3169 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3170 				 const struct workqueue_attrs *from)
3171 {
3172 	to->nice = from->nice;
3173 	cpumask_copy(to->cpumask, from->cpumask);
3174 	/*
3175 	 * Unlike hash and equality test, this function doesn't ignore
3176 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3177 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3178 	 */
3179 	to->no_numa = from->no_numa;
3180 }
3181 
3182 /* hash value of the content of @attr */
3183 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3184 {
3185 	u32 hash = 0;
3186 
3187 	hash = jhash_1word(attrs->nice, hash);
3188 	hash = jhash(cpumask_bits(attrs->cpumask),
3189 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3190 	return hash;
3191 }
3192 
3193 /* content equality test */
3194 static bool wqattrs_equal(const struct workqueue_attrs *a,
3195 			  const struct workqueue_attrs *b)
3196 {
3197 	if (a->nice != b->nice)
3198 		return false;
3199 	if (!cpumask_equal(a->cpumask, b->cpumask))
3200 		return false;
3201 	return true;
3202 }
3203 
3204 /**
3205  * init_worker_pool - initialize a newly zalloc'd worker_pool
3206  * @pool: worker_pool to initialize
3207  *
3208  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3209  *
3210  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3211  * inside @pool proper are initialized and put_unbound_pool() can be called
3212  * on @pool safely to release it.
3213  */
3214 static int init_worker_pool(struct worker_pool *pool)
3215 {
3216 	spin_lock_init(&pool->lock);
3217 	pool->id = -1;
3218 	pool->cpu = -1;
3219 	pool->node = NUMA_NO_NODE;
3220 	pool->flags |= POOL_DISASSOCIATED;
3221 	pool->watchdog_ts = jiffies;
3222 	INIT_LIST_HEAD(&pool->worklist);
3223 	INIT_LIST_HEAD(&pool->idle_list);
3224 	hash_init(pool->busy_hash);
3225 
3226 	setup_deferrable_timer(&pool->idle_timer, idle_worker_timeout,
3227 			       (unsigned long)pool);
3228 
3229 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3230 		    (unsigned long)pool);
3231 
3232 	mutex_init(&pool->attach_mutex);
3233 	INIT_LIST_HEAD(&pool->workers);
3234 
3235 	ida_init(&pool->worker_ida);
3236 	INIT_HLIST_NODE(&pool->hash_node);
3237 	pool->refcnt = 1;
3238 
3239 	/* shouldn't fail above this point */
3240 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3241 	if (!pool->attrs)
3242 		return -ENOMEM;
3243 	return 0;
3244 }
3245 
3246 static void rcu_free_wq(struct rcu_head *rcu)
3247 {
3248 	struct workqueue_struct *wq =
3249 		container_of(rcu, struct workqueue_struct, rcu);
3250 
3251 	if (!(wq->flags & WQ_UNBOUND))
3252 		free_percpu(wq->cpu_pwqs);
3253 	else
3254 		free_workqueue_attrs(wq->unbound_attrs);
3255 
3256 	kfree(wq->rescuer);
3257 	kfree(wq);
3258 }
3259 
3260 static void rcu_free_pool(struct rcu_head *rcu)
3261 {
3262 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3263 
3264 	ida_destroy(&pool->worker_ida);
3265 	free_workqueue_attrs(pool->attrs);
3266 	kfree(pool);
3267 }
3268 
3269 /**
3270  * put_unbound_pool - put a worker_pool
3271  * @pool: worker_pool to put
3272  *
3273  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3274  * safe manner.  get_unbound_pool() calls this function on its failure path
3275  * and this function should be able to release pools which went through,
3276  * successfully or not, init_worker_pool().
3277  *
3278  * Should be called with wq_pool_mutex held.
3279  */
3280 static void put_unbound_pool(struct worker_pool *pool)
3281 {
3282 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3283 	struct worker *worker;
3284 
3285 	lockdep_assert_held(&wq_pool_mutex);
3286 
3287 	if (--pool->refcnt)
3288 		return;
3289 
3290 	/* sanity checks */
3291 	if (WARN_ON(!(pool->cpu < 0)) ||
3292 	    WARN_ON(!list_empty(&pool->worklist)))
3293 		return;
3294 
3295 	/* release id and unhash */
3296 	if (pool->id >= 0)
3297 		idr_remove(&worker_pool_idr, pool->id);
3298 	hash_del(&pool->hash_node);
3299 
3300 	/*
3301 	 * Become the manager and destroy all workers.  This prevents
3302 	 * @pool's workers from blocking on attach_mutex.  We're the last
3303 	 * manager and @pool gets freed with the flag set.
3304 	 */
3305 	spin_lock_irq(&pool->lock);
3306 	wait_event_lock_irq(wq_manager_wait,
3307 			    !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3308 	pool->flags |= POOL_MANAGER_ACTIVE;
3309 
3310 	while ((worker = first_idle_worker(pool)))
3311 		destroy_worker(worker);
3312 	WARN_ON(pool->nr_workers || pool->nr_idle);
3313 	spin_unlock_irq(&pool->lock);
3314 
3315 	mutex_lock(&pool->attach_mutex);
3316 	if (!list_empty(&pool->workers))
3317 		pool->detach_completion = &detach_completion;
3318 	mutex_unlock(&pool->attach_mutex);
3319 
3320 	if (pool->detach_completion)
3321 		wait_for_completion(pool->detach_completion);
3322 
3323 	/* shut down the timers */
3324 	del_timer_sync(&pool->idle_timer);
3325 	del_timer_sync(&pool->mayday_timer);
3326 
3327 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3328 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3329 }
3330 
3331 /**
3332  * get_unbound_pool - get a worker_pool with the specified attributes
3333  * @attrs: the attributes of the worker_pool to get
3334  *
3335  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3336  * reference count and return it.  If there already is a matching
3337  * worker_pool, it will be used; otherwise, this function attempts to
3338  * create a new one.
3339  *
3340  * Should be called with wq_pool_mutex held.
3341  *
3342  * Return: On success, a worker_pool with the same attributes as @attrs.
3343  * On failure, %NULL.
3344  */
3345 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3346 {
3347 	u32 hash = wqattrs_hash(attrs);
3348 	struct worker_pool *pool;
3349 	int node;
3350 	int target_node = NUMA_NO_NODE;
3351 
3352 	lockdep_assert_held(&wq_pool_mutex);
3353 
3354 	/* do we already have a matching pool? */
3355 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3356 		if (wqattrs_equal(pool->attrs, attrs)) {
3357 			pool->refcnt++;
3358 			return pool;
3359 		}
3360 	}
3361 
3362 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3363 	if (wq_numa_enabled) {
3364 		for_each_node(node) {
3365 			if (cpumask_subset(attrs->cpumask,
3366 					   wq_numa_possible_cpumask[node])) {
3367 				target_node = node;
3368 				break;
3369 			}
3370 		}
3371 	}
3372 
3373 	/* nope, create a new one */
3374 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3375 	if (!pool || init_worker_pool(pool) < 0)
3376 		goto fail;
3377 
3378 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3379 	copy_workqueue_attrs(pool->attrs, attrs);
3380 	pool->node = target_node;
3381 
3382 	/*
3383 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3384 	 * 'struct workqueue_attrs' comments for detail.
3385 	 */
3386 	pool->attrs->no_numa = false;
3387 
3388 	if (worker_pool_assign_id(pool) < 0)
3389 		goto fail;
3390 
3391 	/* create and start the initial worker */
3392 	if (wq_online && !create_worker(pool))
3393 		goto fail;
3394 
3395 	/* install */
3396 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3397 
3398 	return pool;
3399 fail:
3400 	if (pool)
3401 		put_unbound_pool(pool);
3402 	return NULL;
3403 }
3404 
3405 static void rcu_free_pwq(struct rcu_head *rcu)
3406 {
3407 	kmem_cache_free(pwq_cache,
3408 			container_of(rcu, struct pool_workqueue, rcu));
3409 }
3410 
3411 /*
3412  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3413  * and needs to be destroyed.
3414  */
3415 static void pwq_unbound_release_workfn(struct work_struct *work)
3416 {
3417 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3418 						  unbound_release_work);
3419 	struct workqueue_struct *wq = pwq->wq;
3420 	struct worker_pool *pool = pwq->pool;
3421 	bool is_last;
3422 
3423 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3424 		return;
3425 
3426 	mutex_lock(&wq->mutex);
3427 	list_del_rcu(&pwq->pwqs_node);
3428 	is_last = list_empty(&wq->pwqs);
3429 	mutex_unlock(&wq->mutex);
3430 
3431 	mutex_lock(&wq_pool_mutex);
3432 	put_unbound_pool(pool);
3433 	mutex_unlock(&wq_pool_mutex);
3434 
3435 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3436 
3437 	/*
3438 	 * If we're the last pwq going away, @wq is already dead and no one
3439 	 * is gonna access it anymore.  Schedule RCU free.
3440 	 */
3441 	if (is_last)
3442 		call_rcu_sched(&wq->rcu, rcu_free_wq);
3443 }
3444 
3445 /**
3446  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3447  * @pwq: target pool_workqueue
3448  *
3449  * If @pwq isn't freezing, set @pwq->max_active to the associated
3450  * workqueue's saved_max_active and activate delayed work items
3451  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3452  */
3453 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3454 {
3455 	struct workqueue_struct *wq = pwq->wq;
3456 	bool freezable = wq->flags & WQ_FREEZABLE;
3457 	unsigned long flags;
3458 
3459 	/* for @wq->saved_max_active */
3460 	lockdep_assert_held(&wq->mutex);
3461 
3462 	/* fast exit for non-freezable wqs */
3463 	if (!freezable && pwq->max_active == wq->saved_max_active)
3464 		return;
3465 
3466 	/* this function can be called during early boot w/ irq disabled */
3467 	spin_lock_irqsave(&pwq->pool->lock, flags);
3468 
3469 	/*
3470 	 * During [un]freezing, the caller is responsible for ensuring that
3471 	 * this function is called at least once after @workqueue_freezing
3472 	 * is updated and visible.
3473 	 */
3474 	if (!freezable || !workqueue_freezing) {
3475 		pwq->max_active = wq->saved_max_active;
3476 
3477 		while (!list_empty(&pwq->delayed_works) &&
3478 		       pwq->nr_active < pwq->max_active)
3479 			pwq_activate_first_delayed(pwq);
3480 
3481 		/*
3482 		 * Need to kick a worker after thawed or an unbound wq's
3483 		 * max_active is bumped.  It's a slow path.  Do it always.
3484 		 */
3485 		wake_up_worker(pwq->pool);
3486 	} else {
3487 		pwq->max_active = 0;
3488 	}
3489 
3490 	spin_unlock_irqrestore(&pwq->pool->lock, flags);
3491 }
3492 
3493 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3494 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3495 		     struct worker_pool *pool)
3496 {
3497 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3498 
3499 	memset(pwq, 0, sizeof(*pwq));
3500 
3501 	pwq->pool = pool;
3502 	pwq->wq = wq;
3503 	pwq->flush_color = -1;
3504 	pwq->refcnt = 1;
3505 	INIT_LIST_HEAD(&pwq->delayed_works);
3506 	INIT_LIST_HEAD(&pwq->pwqs_node);
3507 	INIT_LIST_HEAD(&pwq->mayday_node);
3508 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3509 }
3510 
3511 /* sync @pwq with the current state of its associated wq and link it */
3512 static void link_pwq(struct pool_workqueue *pwq)
3513 {
3514 	struct workqueue_struct *wq = pwq->wq;
3515 
3516 	lockdep_assert_held(&wq->mutex);
3517 
3518 	/* may be called multiple times, ignore if already linked */
3519 	if (!list_empty(&pwq->pwqs_node))
3520 		return;
3521 
3522 	/* set the matching work_color */
3523 	pwq->work_color = wq->work_color;
3524 
3525 	/* sync max_active to the current setting */
3526 	pwq_adjust_max_active(pwq);
3527 
3528 	/* link in @pwq */
3529 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3530 }
3531 
3532 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3533 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3534 					const struct workqueue_attrs *attrs)
3535 {
3536 	struct worker_pool *pool;
3537 	struct pool_workqueue *pwq;
3538 
3539 	lockdep_assert_held(&wq_pool_mutex);
3540 
3541 	pool = get_unbound_pool(attrs);
3542 	if (!pool)
3543 		return NULL;
3544 
3545 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3546 	if (!pwq) {
3547 		put_unbound_pool(pool);
3548 		return NULL;
3549 	}
3550 
3551 	init_pwq(pwq, wq, pool);
3552 	return pwq;
3553 }
3554 
3555 /**
3556  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3557  * @attrs: the wq_attrs of the default pwq of the target workqueue
3558  * @node: the target NUMA node
3559  * @cpu_going_down: if >= 0, the CPU to consider as offline
3560  * @cpumask: outarg, the resulting cpumask
3561  *
3562  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3563  * @cpu_going_down is >= 0, that cpu is considered offline during
3564  * calculation.  The result is stored in @cpumask.
3565  *
3566  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3567  * enabled and @node has online CPUs requested by @attrs, the returned
3568  * cpumask is the intersection of the possible CPUs of @node and
3569  * @attrs->cpumask.
3570  *
3571  * The caller is responsible for ensuring that the cpumask of @node stays
3572  * stable.
3573  *
3574  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3575  * %false if equal.
3576  */
3577 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3578 				 int cpu_going_down, cpumask_t *cpumask)
3579 {
3580 	if (!wq_numa_enabled || attrs->no_numa)
3581 		goto use_dfl;
3582 
3583 	/* does @node have any online CPUs @attrs wants? */
3584 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3585 	if (cpu_going_down >= 0)
3586 		cpumask_clear_cpu(cpu_going_down, cpumask);
3587 
3588 	if (cpumask_empty(cpumask))
3589 		goto use_dfl;
3590 
3591 	/* yeap, return possible CPUs in @node that @attrs wants */
3592 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3593 
3594 	if (cpumask_empty(cpumask)) {
3595 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3596 				"possible intersect\n");
3597 		return false;
3598 	}
3599 
3600 	return !cpumask_equal(cpumask, attrs->cpumask);
3601 
3602 use_dfl:
3603 	cpumask_copy(cpumask, attrs->cpumask);
3604 	return false;
3605 }
3606 
3607 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3608 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3609 						   int node,
3610 						   struct pool_workqueue *pwq)
3611 {
3612 	struct pool_workqueue *old_pwq;
3613 
3614 	lockdep_assert_held(&wq_pool_mutex);
3615 	lockdep_assert_held(&wq->mutex);
3616 
3617 	/* link_pwq() can handle duplicate calls */
3618 	link_pwq(pwq);
3619 
3620 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3621 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3622 	return old_pwq;
3623 }
3624 
3625 /* context to store the prepared attrs & pwqs before applying */
3626 struct apply_wqattrs_ctx {
3627 	struct workqueue_struct	*wq;		/* target workqueue */
3628 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3629 	struct list_head	list;		/* queued for batching commit */
3630 	struct pool_workqueue	*dfl_pwq;
3631 	struct pool_workqueue	*pwq_tbl[];
3632 };
3633 
3634 /* free the resources after success or abort */
3635 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3636 {
3637 	if (ctx) {
3638 		int node;
3639 
3640 		for_each_node(node)
3641 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3642 		put_pwq_unlocked(ctx->dfl_pwq);
3643 
3644 		free_workqueue_attrs(ctx->attrs);
3645 
3646 		kfree(ctx);
3647 	}
3648 }
3649 
3650 /* allocate the attrs and pwqs for later installation */
3651 static struct apply_wqattrs_ctx *
3652 apply_wqattrs_prepare(struct workqueue_struct *wq,
3653 		      const struct workqueue_attrs *attrs)
3654 {
3655 	struct apply_wqattrs_ctx *ctx;
3656 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3657 	int node;
3658 
3659 	lockdep_assert_held(&wq_pool_mutex);
3660 
3661 	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3662 		      GFP_KERNEL);
3663 
3664 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3665 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3666 	if (!ctx || !new_attrs || !tmp_attrs)
3667 		goto out_free;
3668 
3669 	/*
3670 	 * Calculate the attrs of the default pwq.
3671 	 * If the user configured cpumask doesn't overlap with the
3672 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3673 	 */
3674 	copy_workqueue_attrs(new_attrs, attrs);
3675 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3676 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3677 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3678 
3679 	/*
3680 	 * We may create multiple pwqs with differing cpumasks.  Make a
3681 	 * copy of @new_attrs which will be modified and used to obtain
3682 	 * pools.
3683 	 */
3684 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3685 
3686 	/*
3687 	 * If something goes wrong during CPU up/down, we'll fall back to
3688 	 * the default pwq covering whole @attrs->cpumask.  Always create
3689 	 * it even if we don't use it immediately.
3690 	 */
3691 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3692 	if (!ctx->dfl_pwq)
3693 		goto out_free;
3694 
3695 	for_each_node(node) {
3696 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3697 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3698 			if (!ctx->pwq_tbl[node])
3699 				goto out_free;
3700 		} else {
3701 			ctx->dfl_pwq->refcnt++;
3702 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3703 		}
3704 	}
3705 
3706 	/* save the user configured attrs and sanitize it. */
3707 	copy_workqueue_attrs(new_attrs, attrs);
3708 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3709 	ctx->attrs = new_attrs;
3710 
3711 	ctx->wq = wq;
3712 	free_workqueue_attrs(tmp_attrs);
3713 	return ctx;
3714 
3715 out_free:
3716 	free_workqueue_attrs(tmp_attrs);
3717 	free_workqueue_attrs(new_attrs);
3718 	apply_wqattrs_cleanup(ctx);
3719 	return NULL;
3720 }
3721 
3722 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3723 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3724 {
3725 	int node;
3726 
3727 	/* all pwqs have been created successfully, let's install'em */
3728 	mutex_lock(&ctx->wq->mutex);
3729 
3730 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3731 
3732 	/* save the previous pwq and install the new one */
3733 	for_each_node(node)
3734 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3735 							  ctx->pwq_tbl[node]);
3736 
3737 	/* @dfl_pwq might not have been used, ensure it's linked */
3738 	link_pwq(ctx->dfl_pwq);
3739 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3740 
3741 	mutex_unlock(&ctx->wq->mutex);
3742 }
3743 
3744 static void apply_wqattrs_lock(void)
3745 {
3746 	/* CPUs should stay stable across pwq creations and installations */
3747 	get_online_cpus();
3748 	mutex_lock(&wq_pool_mutex);
3749 }
3750 
3751 static void apply_wqattrs_unlock(void)
3752 {
3753 	mutex_unlock(&wq_pool_mutex);
3754 	put_online_cpus();
3755 }
3756 
3757 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3758 					const struct workqueue_attrs *attrs)
3759 {
3760 	struct apply_wqattrs_ctx *ctx;
3761 
3762 	/* only unbound workqueues can change attributes */
3763 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3764 		return -EINVAL;
3765 
3766 	/* creating multiple pwqs breaks ordering guarantee */
3767 	if (!list_empty(&wq->pwqs)) {
3768 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3769 			return -EINVAL;
3770 
3771 		wq->flags &= ~__WQ_ORDERED;
3772 	}
3773 
3774 	ctx = apply_wqattrs_prepare(wq, attrs);
3775 	if (!ctx)
3776 		return -ENOMEM;
3777 
3778 	/* the ctx has been prepared successfully, let's commit it */
3779 	apply_wqattrs_commit(ctx);
3780 	apply_wqattrs_cleanup(ctx);
3781 
3782 	return 0;
3783 }
3784 
3785 /**
3786  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3787  * @wq: the target workqueue
3788  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3789  *
3790  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3791  * machines, this function maps a separate pwq to each NUMA node with
3792  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3793  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3794  * items finish.  Note that a work item which repeatedly requeues itself
3795  * back-to-back will stay on its current pwq.
3796  *
3797  * Performs GFP_KERNEL allocations.
3798  *
3799  * Return: 0 on success and -errno on failure.
3800  */
3801 int apply_workqueue_attrs(struct workqueue_struct *wq,
3802 			  const struct workqueue_attrs *attrs)
3803 {
3804 	int ret;
3805 
3806 	apply_wqattrs_lock();
3807 	ret = apply_workqueue_attrs_locked(wq, attrs);
3808 	apply_wqattrs_unlock();
3809 
3810 	return ret;
3811 }
3812 
3813 /**
3814  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3815  * @wq: the target workqueue
3816  * @cpu: the CPU coming up or going down
3817  * @online: whether @cpu is coming up or going down
3818  *
3819  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3820  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3821  * @wq accordingly.
3822  *
3823  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3824  * falls back to @wq->dfl_pwq which may not be optimal but is always
3825  * correct.
3826  *
3827  * Note that when the last allowed CPU of a NUMA node goes offline for a
3828  * workqueue with a cpumask spanning multiple nodes, the workers which were
3829  * already executing the work items for the workqueue will lose their CPU
3830  * affinity and may execute on any CPU.  This is similar to how per-cpu
3831  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3832  * affinity, it's the user's responsibility to flush the work item from
3833  * CPU_DOWN_PREPARE.
3834  */
3835 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3836 				   bool online)
3837 {
3838 	int node = cpu_to_node(cpu);
3839 	int cpu_off = online ? -1 : cpu;
3840 	struct pool_workqueue *old_pwq = NULL, *pwq;
3841 	struct workqueue_attrs *target_attrs;
3842 	cpumask_t *cpumask;
3843 
3844 	lockdep_assert_held(&wq_pool_mutex);
3845 
3846 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3847 	    wq->unbound_attrs->no_numa)
3848 		return;
3849 
3850 	/*
3851 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3852 	 * Let's use a preallocated one.  The following buf is protected by
3853 	 * CPU hotplug exclusion.
3854 	 */
3855 	target_attrs = wq_update_unbound_numa_attrs_buf;
3856 	cpumask = target_attrs->cpumask;
3857 
3858 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3859 	pwq = unbound_pwq_by_node(wq, node);
3860 
3861 	/*
3862 	 * Let's determine what needs to be done.  If the target cpumask is
3863 	 * different from the default pwq's, we need to compare it to @pwq's
3864 	 * and create a new one if they don't match.  If the target cpumask
3865 	 * equals the default pwq's, the default pwq should be used.
3866 	 */
3867 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3868 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3869 			return;
3870 	} else {
3871 		goto use_dfl_pwq;
3872 	}
3873 
3874 	/* create a new pwq */
3875 	pwq = alloc_unbound_pwq(wq, target_attrs);
3876 	if (!pwq) {
3877 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3878 			wq->name);
3879 		goto use_dfl_pwq;
3880 	}
3881 
3882 	/* Install the new pwq. */
3883 	mutex_lock(&wq->mutex);
3884 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3885 	goto out_unlock;
3886 
3887 use_dfl_pwq:
3888 	mutex_lock(&wq->mutex);
3889 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3890 	get_pwq(wq->dfl_pwq);
3891 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3892 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3893 out_unlock:
3894 	mutex_unlock(&wq->mutex);
3895 	put_pwq_unlocked(old_pwq);
3896 }
3897 
3898 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3899 {
3900 	bool highpri = wq->flags & WQ_HIGHPRI;
3901 	int cpu, ret;
3902 
3903 	if (!(wq->flags & WQ_UNBOUND)) {
3904 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3905 		if (!wq->cpu_pwqs)
3906 			return -ENOMEM;
3907 
3908 		for_each_possible_cpu(cpu) {
3909 			struct pool_workqueue *pwq =
3910 				per_cpu_ptr(wq->cpu_pwqs, cpu);
3911 			struct worker_pool *cpu_pools =
3912 				per_cpu(cpu_worker_pools, cpu);
3913 
3914 			init_pwq(pwq, wq, &cpu_pools[highpri]);
3915 
3916 			mutex_lock(&wq->mutex);
3917 			link_pwq(pwq);
3918 			mutex_unlock(&wq->mutex);
3919 		}
3920 		return 0;
3921 	} else if (wq->flags & __WQ_ORDERED) {
3922 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3923 		/* there should only be single pwq for ordering guarantee */
3924 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3925 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3926 		     "ordering guarantee broken for workqueue %s\n", wq->name);
3927 		return ret;
3928 	} else {
3929 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3930 	}
3931 }
3932 
3933 static int wq_clamp_max_active(int max_active, unsigned int flags,
3934 			       const char *name)
3935 {
3936 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3937 
3938 	if (max_active < 1 || max_active > lim)
3939 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3940 			max_active, name, 1, lim);
3941 
3942 	return clamp_val(max_active, 1, lim);
3943 }
3944 
3945 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3946 					       unsigned int flags,
3947 					       int max_active,
3948 					       struct lock_class_key *key,
3949 					       const char *lock_name, ...)
3950 {
3951 	size_t tbl_size = 0;
3952 	va_list args;
3953 	struct workqueue_struct *wq;
3954 	struct pool_workqueue *pwq;
3955 
3956 	/*
3957 	 * Unbound && max_active == 1 used to imply ordered, which is no
3958 	 * longer the case on NUMA machines due to per-node pools.  While
3959 	 * alloc_ordered_workqueue() is the right way to create an ordered
3960 	 * workqueue, keep the previous behavior to avoid subtle breakages
3961 	 * on NUMA.
3962 	 */
3963 	if ((flags & WQ_UNBOUND) && max_active == 1)
3964 		flags |= __WQ_ORDERED;
3965 
3966 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
3967 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3968 		flags |= WQ_UNBOUND;
3969 
3970 	/* allocate wq and format name */
3971 	if (flags & WQ_UNBOUND)
3972 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3973 
3974 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3975 	if (!wq)
3976 		return NULL;
3977 
3978 	if (flags & WQ_UNBOUND) {
3979 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3980 		if (!wq->unbound_attrs)
3981 			goto err_free_wq;
3982 	}
3983 
3984 	va_start(args, lock_name);
3985 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3986 	va_end(args);
3987 
3988 	max_active = max_active ?: WQ_DFL_ACTIVE;
3989 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3990 
3991 	/* init wq */
3992 	wq->flags = flags;
3993 	wq->saved_max_active = max_active;
3994 	mutex_init(&wq->mutex);
3995 	atomic_set(&wq->nr_pwqs_to_flush, 0);
3996 	INIT_LIST_HEAD(&wq->pwqs);
3997 	INIT_LIST_HEAD(&wq->flusher_queue);
3998 	INIT_LIST_HEAD(&wq->flusher_overflow);
3999 	INIT_LIST_HEAD(&wq->maydays);
4000 
4001 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4002 	INIT_LIST_HEAD(&wq->list);
4003 
4004 	if (alloc_and_link_pwqs(wq) < 0)
4005 		goto err_free_wq;
4006 
4007 	/*
4008 	 * Workqueues which may be used during memory reclaim should
4009 	 * have a rescuer to guarantee forward progress.
4010 	 */
4011 	if (flags & WQ_MEM_RECLAIM) {
4012 		struct worker *rescuer;
4013 
4014 		rescuer = alloc_worker(NUMA_NO_NODE);
4015 		if (!rescuer)
4016 			goto err_destroy;
4017 
4018 		rescuer->rescue_wq = wq;
4019 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4020 					       wq->name);
4021 		if (IS_ERR(rescuer->task)) {
4022 			kfree(rescuer);
4023 			goto err_destroy;
4024 		}
4025 
4026 		wq->rescuer = rescuer;
4027 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
4028 		wake_up_process(rescuer->task);
4029 	}
4030 
4031 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4032 		goto err_destroy;
4033 
4034 	/*
4035 	 * wq_pool_mutex protects global freeze state and workqueues list.
4036 	 * Grab it, adjust max_active and add the new @wq to workqueues
4037 	 * list.
4038 	 */
4039 	mutex_lock(&wq_pool_mutex);
4040 
4041 	mutex_lock(&wq->mutex);
4042 	for_each_pwq(pwq, wq)
4043 		pwq_adjust_max_active(pwq);
4044 	mutex_unlock(&wq->mutex);
4045 
4046 	list_add_tail_rcu(&wq->list, &workqueues);
4047 
4048 	mutex_unlock(&wq_pool_mutex);
4049 
4050 	return wq;
4051 
4052 err_free_wq:
4053 	free_workqueue_attrs(wq->unbound_attrs);
4054 	kfree(wq);
4055 	return NULL;
4056 err_destroy:
4057 	destroy_workqueue(wq);
4058 	return NULL;
4059 }
4060 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4061 
4062 /**
4063  * destroy_workqueue - safely terminate a workqueue
4064  * @wq: target workqueue
4065  *
4066  * Safely destroy a workqueue. All work currently pending will be done first.
4067  */
4068 void destroy_workqueue(struct workqueue_struct *wq)
4069 {
4070 	struct pool_workqueue *pwq;
4071 	int node;
4072 
4073 	/* drain it before proceeding with destruction */
4074 	drain_workqueue(wq);
4075 
4076 	/* sanity checks */
4077 	mutex_lock(&wq->mutex);
4078 	for_each_pwq(pwq, wq) {
4079 		int i;
4080 
4081 		for (i = 0; i < WORK_NR_COLORS; i++) {
4082 			if (WARN_ON(pwq->nr_in_flight[i])) {
4083 				mutex_unlock(&wq->mutex);
4084 				show_workqueue_state();
4085 				return;
4086 			}
4087 		}
4088 
4089 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4090 		    WARN_ON(pwq->nr_active) ||
4091 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4092 			mutex_unlock(&wq->mutex);
4093 			show_workqueue_state();
4094 			return;
4095 		}
4096 	}
4097 	mutex_unlock(&wq->mutex);
4098 
4099 	/*
4100 	 * wq list is used to freeze wq, remove from list after
4101 	 * flushing is complete in case freeze races us.
4102 	 */
4103 	mutex_lock(&wq_pool_mutex);
4104 	list_del_rcu(&wq->list);
4105 	mutex_unlock(&wq_pool_mutex);
4106 
4107 	workqueue_sysfs_unregister(wq);
4108 
4109 	if (wq->rescuer)
4110 		kthread_stop(wq->rescuer->task);
4111 
4112 	if (!(wq->flags & WQ_UNBOUND)) {
4113 		/*
4114 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4115 		 * schedule RCU free.
4116 		 */
4117 		call_rcu_sched(&wq->rcu, rcu_free_wq);
4118 	} else {
4119 		/*
4120 		 * We're the sole accessor of @wq at this point.  Directly
4121 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4122 		 * @wq will be freed when the last pwq is released.
4123 		 */
4124 		for_each_node(node) {
4125 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4126 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4127 			put_pwq_unlocked(pwq);
4128 		}
4129 
4130 		/*
4131 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4132 		 * put.  Don't access it afterwards.
4133 		 */
4134 		pwq = wq->dfl_pwq;
4135 		wq->dfl_pwq = NULL;
4136 		put_pwq_unlocked(pwq);
4137 	}
4138 }
4139 EXPORT_SYMBOL_GPL(destroy_workqueue);
4140 
4141 /**
4142  * workqueue_set_max_active - adjust max_active of a workqueue
4143  * @wq: target workqueue
4144  * @max_active: new max_active value.
4145  *
4146  * Set max_active of @wq to @max_active.
4147  *
4148  * CONTEXT:
4149  * Don't call from IRQ context.
4150  */
4151 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4152 {
4153 	struct pool_workqueue *pwq;
4154 
4155 	/* disallow meddling with max_active for ordered workqueues */
4156 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4157 		return;
4158 
4159 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4160 
4161 	mutex_lock(&wq->mutex);
4162 
4163 	wq->flags &= ~__WQ_ORDERED;
4164 	wq->saved_max_active = max_active;
4165 
4166 	for_each_pwq(pwq, wq)
4167 		pwq_adjust_max_active(pwq);
4168 
4169 	mutex_unlock(&wq->mutex);
4170 }
4171 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4172 
4173 /**
4174  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4175  *
4176  * Determine whether %current is a workqueue rescuer.  Can be used from
4177  * work functions to determine whether it's being run off the rescuer task.
4178  *
4179  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4180  */
4181 bool current_is_workqueue_rescuer(void)
4182 {
4183 	struct worker *worker = current_wq_worker();
4184 
4185 	return worker && worker->rescue_wq;
4186 }
4187 
4188 /**
4189  * workqueue_congested - test whether a workqueue is congested
4190  * @cpu: CPU in question
4191  * @wq: target workqueue
4192  *
4193  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4194  * no synchronization around this function and the test result is
4195  * unreliable and only useful as advisory hints or for debugging.
4196  *
4197  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4198  * Note that both per-cpu and unbound workqueues may be associated with
4199  * multiple pool_workqueues which have separate congested states.  A
4200  * workqueue being congested on one CPU doesn't mean the workqueue is also
4201  * contested on other CPUs / NUMA nodes.
4202  *
4203  * Return:
4204  * %true if congested, %false otherwise.
4205  */
4206 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4207 {
4208 	struct pool_workqueue *pwq;
4209 	bool ret;
4210 
4211 	rcu_read_lock_sched();
4212 
4213 	if (cpu == WORK_CPU_UNBOUND)
4214 		cpu = smp_processor_id();
4215 
4216 	if (!(wq->flags & WQ_UNBOUND))
4217 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4218 	else
4219 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4220 
4221 	ret = !list_empty(&pwq->delayed_works);
4222 	rcu_read_unlock_sched();
4223 
4224 	return ret;
4225 }
4226 EXPORT_SYMBOL_GPL(workqueue_congested);
4227 
4228 /**
4229  * work_busy - test whether a work is currently pending or running
4230  * @work: the work to be tested
4231  *
4232  * Test whether @work is currently pending or running.  There is no
4233  * synchronization around this function and the test result is
4234  * unreliable and only useful as advisory hints or for debugging.
4235  *
4236  * Return:
4237  * OR'd bitmask of WORK_BUSY_* bits.
4238  */
4239 unsigned int work_busy(struct work_struct *work)
4240 {
4241 	struct worker_pool *pool;
4242 	unsigned long flags;
4243 	unsigned int ret = 0;
4244 
4245 	if (work_pending(work))
4246 		ret |= WORK_BUSY_PENDING;
4247 
4248 	local_irq_save(flags);
4249 	pool = get_work_pool(work);
4250 	if (pool) {
4251 		spin_lock(&pool->lock);
4252 		if (find_worker_executing_work(pool, work))
4253 			ret |= WORK_BUSY_RUNNING;
4254 		spin_unlock(&pool->lock);
4255 	}
4256 	local_irq_restore(flags);
4257 
4258 	return ret;
4259 }
4260 EXPORT_SYMBOL_GPL(work_busy);
4261 
4262 /**
4263  * set_worker_desc - set description for the current work item
4264  * @fmt: printf-style format string
4265  * @...: arguments for the format string
4266  *
4267  * This function can be called by a running work function to describe what
4268  * the work item is about.  If the worker task gets dumped, this
4269  * information will be printed out together to help debugging.  The
4270  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4271  */
4272 void set_worker_desc(const char *fmt, ...)
4273 {
4274 	struct worker *worker = current_wq_worker();
4275 	va_list args;
4276 
4277 	if (worker) {
4278 		va_start(args, fmt);
4279 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4280 		va_end(args);
4281 		worker->desc_valid = true;
4282 	}
4283 }
4284 
4285 /**
4286  * print_worker_info - print out worker information and description
4287  * @log_lvl: the log level to use when printing
4288  * @task: target task
4289  *
4290  * If @task is a worker and currently executing a work item, print out the
4291  * name of the workqueue being serviced and worker description set with
4292  * set_worker_desc() by the currently executing work item.
4293  *
4294  * This function can be safely called on any task as long as the
4295  * task_struct itself is accessible.  While safe, this function isn't
4296  * synchronized and may print out mixups or garbages of limited length.
4297  */
4298 void print_worker_info(const char *log_lvl, struct task_struct *task)
4299 {
4300 	work_func_t *fn = NULL;
4301 	char name[WQ_NAME_LEN] = { };
4302 	char desc[WORKER_DESC_LEN] = { };
4303 	struct pool_workqueue *pwq = NULL;
4304 	struct workqueue_struct *wq = NULL;
4305 	bool desc_valid = false;
4306 	struct worker *worker;
4307 
4308 	if (!(task->flags & PF_WQ_WORKER))
4309 		return;
4310 
4311 	/*
4312 	 * This function is called without any synchronization and @task
4313 	 * could be in any state.  Be careful with dereferences.
4314 	 */
4315 	worker = kthread_probe_data(task);
4316 
4317 	/*
4318 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4319 	 * the original last '\0' in case the original contains garbage.
4320 	 */
4321 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4322 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4323 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4324 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4325 
4326 	/* copy worker description */
4327 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4328 	if (desc_valid)
4329 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4330 
4331 	if (fn || name[0] || desc[0]) {
4332 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4333 		if (desc[0])
4334 			pr_cont(" (%s)", desc);
4335 		pr_cont("\n");
4336 	}
4337 }
4338 
4339 static void pr_cont_pool_info(struct worker_pool *pool)
4340 {
4341 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4342 	if (pool->node != NUMA_NO_NODE)
4343 		pr_cont(" node=%d", pool->node);
4344 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4345 }
4346 
4347 static void pr_cont_work(bool comma, struct work_struct *work)
4348 {
4349 	if (work->func == wq_barrier_func) {
4350 		struct wq_barrier *barr;
4351 
4352 		barr = container_of(work, struct wq_barrier, work);
4353 
4354 		pr_cont("%s BAR(%d)", comma ? "," : "",
4355 			task_pid_nr(barr->task));
4356 	} else {
4357 		pr_cont("%s %pf", comma ? "," : "", work->func);
4358 	}
4359 }
4360 
4361 static void show_pwq(struct pool_workqueue *pwq)
4362 {
4363 	struct worker_pool *pool = pwq->pool;
4364 	struct work_struct *work;
4365 	struct worker *worker;
4366 	bool has_in_flight = false, has_pending = false;
4367 	int bkt;
4368 
4369 	pr_info("  pwq %d:", pool->id);
4370 	pr_cont_pool_info(pool);
4371 
4372 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4373 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4374 
4375 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4376 		if (worker->current_pwq == pwq) {
4377 			has_in_flight = true;
4378 			break;
4379 		}
4380 	}
4381 	if (has_in_flight) {
4382 		bool comma = false;
4383 
4384 		pr_info("    in-flight:");
4385 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4386 			if (worker->current_pwq != pwq)
4387 				continue;
4388 
4389 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4390 				task_pid_nr(worker->task),
4391 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4392 				worker->current_func);
4393 			list_for_each_entry(work, &worker->scheduled, entry)
4394 				pr_cont_work(false, work);
4395 			comma = true;
4396 		}
4397 		pr_cont("\n");
4398 	}
4399 
4400 	list_for_each_entry(work, &pool->worklist, entry) {
4401 		if (get_work_pwq(work) == pwq) {
4402 			has_pending = true;
4403 			break;
4404 		}
4405 	}
4406 	if (has_pending) {
4407 		bool comma = false;
4408 
4409 		pr_info("    pending:");
4410 		list_for_each_entry(work, &pool->worklist, entry) {
4411 			if (get_work_pwq(work) != pwq)
4412 				continue;
4413 
4414 			pr_cont_work(comma, work);
4415 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4416 		}
4417 		pr_cont("\n");
4418 	}
4419 
4420 	if (!list_empty(&pwq->delayed_works)) {
4421 		bool comma = false;
4422 
4423 		pr_info("    delayed:");
4424 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4425 			pr_cont_work(comma, work);
4426 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4427 		}
4428 		pr_cont("\n");
4429 	}
4430 }
4431 
4432 /**
4433  * show_workqueue_state - dump workqueue state
4434  *
4435  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4436  * all busy workqueues and pools.
4437  */
4438 void show_workqueue_state(void)
4439 {
4440 	struct workqueue_struct *wq;
4441 	struct worker_pool *pool;
4442 	unsigned long flags;
4443 	int pi;
4444 
4445 	rcu_read_lock_sched();
4446 
4447 	pr_info("Showing busy workqueues and worker pools:\n");
4448 
4449 	list_for_each_entry_rcu(wq, &workqueues, list) {
4450 		struct pool_workqueue *pwq;
4451 		bool idle = true;
4452 
4453 		for_each_pwq(pwq, wq) {
4454 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4455 				idle = false;
4456 				break;
4457 			}
4458 		}
4459 		if (idle)
4460 			continue;
4461 
4462 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4463 
4464 		for_each_pwq(pwq, wq) {
4465 			spin_lock_irqsave(&pwq->pool->lock, flags);
4466 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4467 				show_pwq(pwq);
4468 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4469 		}
4470 	}
4471 
4472 	for_each_pool(pool, pi) {
4473 		struct worker *worker;
4474 		bool first = true;
4475 
4476 		spin_lock_irqsave(&pool->lock, flags);
4477 		if (pool->nr_workers == pool->nr_idle)
4478 			goto next_pool;
4479 
4480 		pr_info("pool %d:", pool->id);
4481 		pr_cont_pool_info(pool);
4482 		pr_cont(" hung=%us workers=%d",
4483 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4484 			pool->nr_workers);
4485 		if (pool->manager)
4486 			pr_cont(" manager: %d",
4487 				task_pid_nr(pool->manager->task));
4488 		list_for_each_entry(worker, &pool->idle_list, entry) {
4489 			pr_cont(" %s%d", first ? "idle: " : "",
4490 				task_pid_nr(worker->task));
4491 			first = false;
4492 		}
4493 		pr_cont("\n");
4494 	next_pool:
4495 		spin_unlock_irqrestore(&pool->lock, flags);
4496 	}
4497 
4498 	rcu_read_unlock_sched();
4499 }
4500 
4501 /*
4502  * CPU hotplug.
4503  *
4504  * There are two challenges in supporting CPU hotplug.  Firstly, there
4505  * are a lot of assumptions on strong associations among work, pwq and
4506  * pool which make migrating pending and scheduled works very
4507  * difficult to implement without impacting hot paths.  Secondly,
4508  * worker pools serve mix of short, long and very long running works making
4509  * blocked draining impractical.
4510  *
4511  * This is solved by allowing the pools to be disassociated from the CPU
4512  * running as an unbound one and allowing it to be reattached later if the
4513  * cpu comes back online.
4514  */
4515 
4516 static void wq_unbind_fn(struct work_struct *work)
4517 {
4518 	int cpu = smp_processor_id();
4519 	struct worker_pool *pool;
4520 	struct worker *worker;
4521 
4522 	for_each_cpu_worker_pool(pool, cpu) {
4523 		mutex_lock(&pool->attach_mutex);
4524 		spin_lock_irq(&pool->lock);
4525 
4526 		/*
4527 		 * We've blocked all attach/detach operations. Make all workers
4528 		 * unbound and set DISASSOCIATED.  Before this, all workers
4529 		 * except for the ones which are still executing works from
4530 		 * before the last CPU down must be on the cpu.  After
4531 		 * this, they may become diasporas.
4532 		 */
4533 		for_each_pool_worker(worker, pool)
4534 			worker->flags |= WORKER_UNBOUND;
4535 
4536 		pool->flags |= POOL_DISASSOCIATED;
4537 
4538 		spin_unlock_irq(&pool->lock);
4539 		mutex_unlock(&pool->attach_mutex);
4540 
4541 		/*
4542 		 * Call schedule() so that we cross rq->lock and thus can
4543 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4544 		 * This is necessary as scheduler callbacks may be invoked
4545 		 * from other cpus.
4546 		 */
4547 		schedule();
4548 
4549 		/*
4550 		 * Sched callbacks are disabled now.  Zap nr_running.
4551 		 * After this, nr_running stays zero and need_more_worker()
4552 		 * and keep_working() are always true as long as the
4553 		 * worklist is not empty.  This pool now behaves as an
4554 		 * unbound (in terms of concurrency management) pool which
4555 		 * are served by workers tied to the pool.
4556 		 */
4557 		atomic_set(&pool->nr_running, 0);
4558 
4559 		/*
4560 		 * With concurrency management just turned off, a busy
4561 		 * worker blocking could lead to lengthy stalls.  Kick off
4562 		 * unbound chain execution of currently pending work items.
4563 		 */
4564 		spin_lock_irq(&pool->lock);
4565 		wake_up_worker(pool);
4566 		spin_unlock_irq(&pool->lock);
4567 	}
4568 }
4569 
4570 /**
4571  * rebind_workers - rebind all workers of a pool to the associated CPU
4572  * @pool: pool of interest
4573  *
4574  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4575  */
4576 static void rebind_workers(struct worker_pool *pool)
4577 {
4578 	struct worker *worker;
4579 
4580 	lockdep_assert_held(&pool->attach_mutex);
4581 
4582 	/*
4583 	 * Restore CPU affinity of all workers.  As all idle workers should
4584 	 * be on the run-queue of the associated CPU before any local
4585 	 * wake-ups for concurrency management happen, restore CPU affinity
4586 	 * of all workers first and then clear UNBOUND.  As we're called
4587 	 * from CPU_ONLINE, the following shouldn't fail.
4588 	 */
4589 	for_each_pool_worker(worker, pool)
4590 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4591 						  pool->attrs->cpumask) < 0);
4592 
4593 	spin_lock_irq(&pool->lock);
4594 
4595 	/*
4596 	 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4597 	 * w/o preceding DOWN_PREPARE.  Work around it.  CPU hotplug is
4598 	 * being reworked and this can go away in time.
4599 	 */
4600 	if (!(pool->flags & POOL_DISASSOCIATED)) {
4601 		spin_unlock_irq(&pool->lock);
4602 		return;
4603 	}
4604 
4605 	pool->flags &= ~POOL_DISASSOCIATED;
4606 
4607 	for_each_pool_worker(worker, pool) {
4608 		unsigned int worker_flags = worker->flags;
4609 
4610 		/*
4611 		 * A bound idle worker should actually be on the runqueue
4612 		 * of the associated CPU for local wake-ups targeting it to
4613 		 * work.  Kick all idle workers so that they migrate to the
4614 		 * associated CPU.  Doing this in the same loop as
4615 		 * replacing UNBOUND with REBOUND is safe as no worker will
4616 		 * be bound before @pool->lock is released.
4617 		 */
4618 		if (worker_flags & WORKER_IDLE)
4619 			wake_up_process(worker->task);
4620 
4621 		/*
4622 		 * We want to clear UNBOUND but can't directly call
4623 		 * worker_clr_flags() or adjust nr_running.  Atomically
4624 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4625 		 * @worker will clear REBOUND using worker_clr_flags() when
4626 		 * it initiates the next execution cycle thus restoring
4627 		 * concurrency management.  Note that when or whether
4628 		 * @worker clears REBOUND doesn't affect correctness.
4629 		 *
4630 		 * WRITE_ONCE() is necessary because @worker->flags may be
4631 		 * tested without holding any lock in
4632 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4633 		 * fail incorrectly leading to premature concurrency
4634 		 * management operations.
4635 		 */
4636 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4637 		worker_flags |= WORKER_REBOUND;
4638 		worker_flags &= ~WORKER_UNBOUND;
4639 		WRITE_ONCE(worker->flags, worker_flags);
4640 	}
4641 
4642 	spin_unlock_irq(&pool->lock);
4643 }
4644 
4645 /**
4646  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4647  * @pool: unbound pool of interest
4648  * @cpu: the CPU which is coming up
4649  *
4650  * An unbound pool may end up with a cpumask which doesn't have any online
4651  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4652  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4653  * online CPU before, cpus_allowed of all its workers should be restored.
4654  */
4655 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4656 {
4657 	static cpumask_t cpumask;
4658 	struct worker *worker;
4659 
4660 	lockdep_assert_held(&pool->attach_mutex);
4661 
4662 	/* is @cpu allowed for @pool? */
4663 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4664 		return;
4665 
4666 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4667 
4668 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4669 	for_each_pool_worker(worker, pool)
4670 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
4671 }
4672 
4673 int workqueue_prepare_cpu(unsigned int cpu)
4674 {
4675 	struct worker_pool *pool;
4676 
4677 	for_each_cpu_worker_pool(pool, cpu) {
4678 		if (pool->nr_workers)
4679 			continue;
4680 		if (!create_worker(pool))
4681 			return -ENOMEM;
4682 	}
4683 	return 0;
4684 }
4685 
4686 int workqueue_online_cpu(unsigned int cpu)
4687 {
4688 	struct worker_pool *pool;
4689 	struct workqueue_struct *wq;
4690 	int pi;
4691 
4692 	mutex_lock(&wq_pool_mutex);
4693 
4694 	for_each_pool(pool, pi) {
4695 		mutex_lock(&pool->attach_mutex);
4696 
4697 		if (pool->cpu == cpu)
4698 			rebind_workers(pool);
4699 		else if (pool->cpu < 0)
4700 			restore_unbound_workers_cpumask(pool, cpu);
4701 
4702 		mutex_unlock(&pool->attach_mutex);
4703 	}
4704 
4705 	/* update NUMA affinity of unbound workqueues */
4706 	list_for_each_entry(wq, &workqueues, list)
4707 		wq_update_unbound_numa(wq, cpu, true);
4708 
4709 	mutex_unlock(&wq_pool_mutex);
4710 	return 0;
4711 }
4712 
4713 int workqueue_offline_cpu(unsigned int cpu)
4714 {
4715 	struct work_struct unbind_work;
4716 	struct workqueue_struct *wq;
4717 
4718 	/* unbinding per-cpu workers should happen on the local CPU */
4719 	INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4720 	queue_work_on(cpu, system_highpri_wq, &unbind_work);
4721 
4722 	/* update NUMA affinity of unbound workqueues */
4723 	mutex_lock(&wq_pool_mutex);
4724 	list_for_each_entry(wq, &workqueues, list)
4725 		wq_update_unbound_numa(wq, cpu, false);
4726 	mutex_unlock(&wq_pool_mutex);
4727 
4728 	/* wait for per-cpu unbinding to finish */
4729 	flush_work(&unbind_work);
4730 	destroy_work_on_stack(&unbind_work);
4731 	return 0;
4732 }
4733 
4734 #ifdef CONFIG_SMP
4735 
4736 struct work_for_cpu {
4737 	struct work_struct work;
4738 	long (*fn)(void *);
4739 	void *arg;
4740 	long ret;
4741 };
4742 
4743 static void work_for_cpu_fn(struct work_struct *work)
4744 {
4745 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4746 
4747 	wfc->ret = wfc->fn(wfc->arg);
4748 }
4749 
4750 /**
4751  * work_on_cpu - run a function in thread context on a particular cpu
4752  * @cpu: the cpu to run on
4753  * @fn: the function to run
4754  * @arg: the function arg
4755  *
4756  * It is up to the caller to ensure that the cpu doesn't go offline.
4757  * The caller must not hold any locks which would prevent @fn from completing.
4758  *
4759  * Return: The value @fn returns.
4760  */
4761 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4762 {
4763 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4764 
4765 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4766 	schedule_work_on(cpu, &wfc.work);
4767 	flush_work(&wfc.work);
4768 	destroy_work_on_stack(&wfc.work);
4769 	return wfc.ret;
4770 }
4771 EXPORT_SYMBOL_GPL(work_on_cpu);
4772 
4773 /**
4774  * work_on_cpu_safe - run a function in thread context on a particular cpu
4775  * @cpu: the cpu to run on
4776  * @fn:  the function to run
4777  * @arg: the function argument
4778  *
4779  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4780  * any locks which would prevent @fn from completing.
4781  *
4782  * Return: The value @fn returns.
4783  */
4784 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4785 {
4786 	long ret = -ENODEV;
4787 
4788 	get_online_cpus();
4789 	if (cpu_online(cpu))
4790 		ret = work_on_cpu(cpu, fn, arg);
4791 	put_online_cpus();
4792 	return ret;
4793 }
4794 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
4795 #endif /* CONFIG_SMP */
4796 
4797 #ifdef CONFIG_FREEZER
4798 
4799 /**
4800  * freeze_workqueues_begin - begin freezing workqueues
4801  *
4802  * Start freezing workqueues.  After this function returns, all freezable
4803  * workqueues will queue new works to their delayed_works list instead of
4804  * pool->worklist.
4805  *
4806  * CONTEXT:
4807  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4808  */
4809 void freeze_workqueues_begin(void)
4810 {
4811 	struct workqueue_struct *wq;
4812 	struct pool_workqueue *pwq;
4813 
4814 	mutex_lock(&wq_pool_mutex);
4815 
4816 	WARN_ON_ONCE(workqueue_freezing);
4817 	workqueue_freezing = true;
4818 
4819 	list_for_each_entry(wq, &workqueues, list) {
4820 		mutex_lock(&wq->mutex);
4821 		for_each_pwq(pwq, wq)
4822 			pwq_adjust_max_active(pwq);
4823 		mutex_unlock(&wq->mutex);
4824 	}
4825 
4826 	mutex_unlock(&wq_pool_mutex);
4827 }
4828 
4829 /**
4830  * freeze_workqueues_busy - are freezable workqueues still busy?
4831  *
4832  * Check whether freezing is complete.  This function must be called
4833  * between freeze_workqueues_begin() and thaw_workqueues().
4834  *
4835  * CONTEXT:
4836  * Grabs and releases wq_pool_mutex.
4837  *
4838  * Return:
4839  * %true if some freezable workqueues are still busy.  %false if freezing
4840  * is complete.
4841  */
4842 bool freeze_workqueues_busy(void)
4843 {
4844 	bool busy = false;
4845 	struct workqueue_struct *wq;
4846 	struct pool_workqueue *pwq;
4847 
4848 	mutex_lock(&wq_pool_mutex);
4849 
4850 	WARN_ON_ONCE(!workqueue_freezing);
4851 
4852 	list_for_each_entry(wq, &workqueues, list) {
4853 		if (!(wq->flags & WQ_FREEZABLE))
4854 			continue;
4855 		/*
4856 		 * nr_active is monotonically decreasing.  It's safe
4857 		 * to peek without lock.
4858 		 */
4859 		rcu_read_lock_sched();
4860 		for_each_pwq(pwq, wq) {
4861 			WARN_ON_ONCE(pwq->nr_active < 0);
4862 			if (pwq->nr_active) {
4863 				busy = true;
4864 				rcu_read_unlock_sched();
4865 				goto out_unlock;
4866 			}
4867 		}
4868 		rcu_read_unlock_sched();
4869 	}
4870 out_unlock:
4871 	mutex_unlock(&wq_pool_mutex);
4872 	return busy;
4873 }
4874 
4875 /**
4876  * thaw_workqueues - thaw workqueues
4877  *
4878  * Thaw workqueues.  Normal queueing is restored and all collected
4879  * frozen works are transferred to their respective pool worklists.
4880  *
4881  * CONTEXT:
4882  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4883  */
4884 void thaw_workqueues(void)
4885 {
4886 	struct workqueue_struct *wq;
4887 	struct pool_workqueue *pwq;
4888 
4889 	mutex_lock(&wq_pool_mutex);
4890 
4891 	if (!workqueue_freezing)
4892 		goto out_unlock;
4893 
4894 	workqueue_freezing = false;
4895 
4896 	/* restore max_active and repopulate worklist */
4897 	list_for_each_entry(wq, &workqueues, list) {
4898 		mutex_lock(&wq->mutex);
4899 		for_each_pwq(pwq, wq)
4900 			pwq_adjust_max_active(pwq);
4901 		mutex_unlock(&wq->mutex);
4902 	}
4903 
4904 out_unlock:
4905 	mutex_unlock(&wq_pool_mutex);
4906 }
4907 #endif /* CONFIG_FREEZER */
4908 
4909 static int workqueue_apply_unbound_cpumask(void)
4910 {
4911 	LIST_HEAD(ctxs);
4912 	int ret = 0;
4913 	struct workqueue_struct *wq;
4914 	struct apply_wqattrs_ctx *ctx, *n;
4915 
4916 	lockdep_assert_held(&wq_pool_mutex);
4917 
4918 	list_for_each_entry(wq, &workqueues, list) {
4919 		if (!(wq->flags & WQ_UNBOUND))
4920 			continue;
4921 		/* creating multiple pwqs breaks ordering guarantee */
4922 		if (wq->flags & __WQ_ORDERED)
4923 			continue;
4924 
4925 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4926 		if (!ctx) {
4927 			ret = -ENOMEM;
4928 			break;
4929 		}
4930 
4931 		list_add_tail(&ctx->list, &ctxs);
4932 	}
4933 
4934 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
4935 		if (!ret)
4936 			apply_wqattrs_commit(ctx);
4937 		apply_wqattrs_cleanup(ctx);
4938 	}
4939 
4940 	return ret;
4941 }
4942 
4943 /**
4944  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4945  *  @cpumask: the cpumask to set
4946  *
4947  *  The low-level workqueues cpumask is a global cpumask that limits
4948  *  the affinity of all unbound workqueues.  This function check the @cpumask
4949  *  and apply it to all unbound workqueues and updates all pwqs of them.
4950  *
4951  *  Retun:	0	- Success
4952  *  		-EINVAL	- Invalid @cpumask
4953  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
4954  */
4955 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4956 {
4957 	int ret = -EINVAL;
4958 	cpumask_var_t saved_cpumask;
4959 
4960 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4961 		return -ENOMEM;
4962 
4963 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
4964 	if (!cpumask_empty(cpumask)) {
4965 		apply_wqattrs_lock();
4966 
4967 		/* save the old wq_unbound_cpumask. */
4968 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4969 
4970 		/* update wq_unbound_cpumask at first and apply it to wqs. */
4971 		cpumask_copy(wq_unbound_cpumask, cpumask);
4972 		ret = workqueue_apply_unbound_cpumask();
4973 
4974 		/* restore the wq_unbound_cpumask when failed. */
4975 		if (ret < 0)
4976 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4977 
4978 		apply_wqattrs_unlock();
4979 	}
4980 
4981 	free_cpumask_var(saved_cpumask);
4982 	return ret;
4983 }
4984 
4985 #ifdef CONFIG_SYSFS
4986 /*
4987  * Workqueues with WQ_SYSFS flag set is visible to userland via
4988  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
4989  * following attributes.
4990  *
4991  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
4992  *  max_active	RW int	: maximum number of in-flight work items
4993  *
4994  * Unbound workqueues have the following extra attributes.
4995  *
4996  *  id		RO int	: the associated pool ID
4997  *  nice	RW int	: nice value of the workers
4998  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
4999  */
5000 struct wq_device {
5001 	struct workqueue_struct		*wq;
5002 	struct device			dev;
5003 };
5004 
5005 static struct workqueue_struct *dev_to_wq(struct device *dev)
5006 {
5007 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5008 
5009 	return wq_dev->wq;
5010 }
5011 
5012 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5013 			    char *buf)
5014 {
5015 	struct workqueue_struct *wq = dev_to_wq(dev);
5016 
5017 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5018 }
5019 static DEVICE_ATTR_RO(per_cpu);
5020 
5021 static ssize_t max_active_show(struct device *dev,
5022 			       struct device_attribute *attr, char *buf)
5023 {
5024 	struct workqueue_struct *wq = dev_to_wq(dev);
5025 
5026 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5027 }
5028 
5029 static ssize_t max_active_store(struct device *dev,
5030 				struct device_attribute *attr, const char *buf,
5031 				size_t count)
5032 {
5033 	struct workqueue_struct *wq = dev_to_wq(dev);
5034 	int val;
5035 
5036 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5037 		return -EINVAL;
5038 
5039 	workqueue_set_max_active(wq, val);
5040 	return count;
5041 }
5042 static DEVICE_ATTR_RW(max_active);
5043 
5044 static struct attribute *wq_sysfs_attrs[] = {
5045 	&dev_attr_per_cpu.attr,
5046 	&dev_attr_max_active.attr,
5047 	NULL,
5048 };
5049 ATTRIBUTE_GROUPS(wq_sysfs);
5050 
5051 static ssize_t wq_pool_ids_show(struct device *dev,
5052 				struct device_attribute *attr, char *buf)
5053 {
5054 	struct workqueue_struct *wq = dev_to_wq(dev);
5055 	const char *delim = "";
5056 	int node, written = 0;
5057 
5058 	rcu_read_lock_sched();
5059 	for_each_node(node) {
5060 		written += scnprintf(buf + written, PAGE_SIZE - written,
5061 				     "%s%d:%d", delim, node,
5062 				     unbound_pwq_by_node(wq, node)->pool->id);
5063 		delim = " ";
5064 	}
5065 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5066 	rcu_read_unlock_sched();
5067 
5068 	return written;
5069 }
5070 
5071 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5072 			    char *buf)
5073 {
5074 	struct workqueue_struct *wq = dev_to_wq(dev);
5075 	int written;
5076 
5077 	mutex_lock(&wq->mutex);
5078 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5079 	mutex_unlock(&wq->mutex);
5080 
5081 	return written;
5082 }
5083 
5084 /* prepare workqueue_attrs for sysfs store operations */
5085 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5086 {
5087 	struct workqueue_attrs *attrs;
5088 
5089 	lockdep_assert_held(&wq_pool_mutex);
5090 
5091 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5092 	if (!attrs)
5093 		return NULL;
5094 
5095 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5096 	return attrs;
5097 }
5098 
5099 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5100 			     const char *buf, size_t count)
5101 {
5102 	struct workqueue_struct *wq = dev_to_wq(dev);
5103 	struct workqueue_attrs *attrs;
5104 	int ret = -ENOMEM;
5105 
5106 	apply_wqattrs_lock();
5107 
5108 	attrs = wq_sysfs_prep_attrs(wq);
5109 	if (!attrs)
5110 		goto out_unlock;
5111 
5112 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5113 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5114 		ret = apply_workqueue_attrs_locked(wq, attrs);
5115 	else
5116 		ret = -EINVAL;
5117 
5118 out_unlock:
5119 	apply_wqattrs_unlock();
5120 	free_workqueue_attrs(attrs);
5121 	return ret ?: count;
5122 }
5123 
5124 static ssize_t wq_cpumask_show(struct device *dev,
5125 			       struct device_attribute *attr, char *buf)
5126 {
5127 	struct workqueue_struct *wq = dev_to_wq(dev);
5128 	int written;
5129 
5130 	mutex_lock(&wq->mutex);
5131 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5132 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5133 	mutex_unlock(&wq->mutex);
5134 	return written;
5135 }
5136 
5137 static ssize_t wq_cpumask_store(struct device *dev,
5138 				struct device_attribute *attr,
5139 				const char *buf, size_t count)
5140 {
5141 	struct workqueue_struct *wq = dev_to_wq(dev);
5142 	struct workqueue_attrs *attrs;
5143 	int ret = -ENOMEM;
5144 
5145 	apply_wqattrs_lock();
5146 
5147 	attrs = wq_sysfs_prep_attrs(wq);
5148 	if (!attrs)
5149 		goto out_unlock;
5150 
5151 	ret = cpumask_parse(buf, attrs->cpumask);
5152 	if (!ret)
5153 		ret = apply_workqueue_attrs_locked(wq, attrs);
5154 
5155 out_unlock:
5156 	apply_wqattrs_unlock();
5157 	free_workqueue_attrs(attrs);
5158 	return ret ?: count;
5159 }
5160 
5161 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5162 			    char *buf)
5163 {
5164 	struct workqueue_struct *wq = dev_to_wq(dev);
5165 	int written;
5166 
5167 	mutex_lock(&wq->mutex);
5168 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5169 			    !wq->unbound_attrs->no_numa);
5170 	mutex_unlock(&wq->mutex);
5171 
5172 	return written;
5173 }
5174 
5175 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5176 			     const char *buf, size_t count)
5177 {
5178 	struct workqueue_struct *wq = dev_to_wq(dev);
5179 	struct workqueue_attrs *attrs;
5180 	int v, ret = -ENOMEM;
5181 
5182 	apply_wqattrs_lock();
5183 
5184 	attrs = wq_sysfs_prep_attrs(wq);
5185 	if (!attrs)
5186 		goto out_unlock;
5187 
5188 	ret = -EINVAL;
5189 	if (sscanf(buf, "%d", &v) == 1) {
5190 		attrs->no_numa = !v;
5191 		ret = apply_workqueue_attrs_locked(wq, attrs);
5192 	}
5193 
5194 out_unlock:
5195 	apply_wqattrs_unlock();
5196 	free_workqueue_attrs(attrs);
5197 	return ret ?: count;
5198 }
5199 
5200 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5201 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5202 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5203 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5204 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5205 	__ATTR_NULL,
5206 };
5207 
5208 static struct bus_type wq_subsys = {
5209 	.name				= "workqueue",
5210 	.dev_groups			= wq_sysfs_groups,
5211 };
5212 
5213 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5214 		struct device_attribute *attr, char *buf)
5215 {
5216 	int written;
5217 
5218 	mutex_lock(&wq_pool_mutex);
5219 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5220 			    cpumask_pr_args(wq_unbound_cpumask));
5221 	mutex_unlock(&wq_pool_mutex);
5222 
5223 	return written;
5224 }
5225 
5226 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5227 		struct device_attribute *attr, const char *buf, size_t count)
5228 {
5229 	cpumask_var_t cpumask;
5230 	int ret;
5231 
5232 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5233 		return -ENOMEM;
5234 
5235 	ret = cpumask_parse(buf, cpumask);
5236 	if (!ret)
5237 		ret = workqueue_set_unbound_cpumask(cpumask);
5238 
5239 	free_cpumask_var(cpumask);
5240 	return ret ? ret : count;
5241 }
5242 
5243 static struct device_attribute wq_sysfs_cpumask_attr =
5244 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5245 	       wq_unbound_cpumask_store);
5246 
5247 static int __init wq_sysfs_init(void)
5248 {
5249 	int err;
5250 
5251 	err = subsys_virtual_register(&wq_subsys, NULL);
5252 	if (err)
5253 		return err;
5254 
5255 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5256 }
5257 core_initcall(wq_sysfs_init);
5258 
5259 static void wq_device_release(struct device *dev)
5260 {
5261 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5262 
5263 	kfree(wq_dev);
5264 }
5265 
5266 /**
5267  * workqueue_sysfs_register - make a workqueue visible in sysfs
5268  * @wq: the workqueue to register
5269  *
5270  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5271  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5272  * which is the preferred method.
5273  *
5274  * Workqueue user should use this function directly iff it wants to apply
5275  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5276  * apply_workqueue_attrs() may race against userland updating the
5277  * attributes.
5278  *
5279  * Return: 0 on success, -errno on failure.
5280  */
5281 int workqueue_sysfs_register(struct workqueue_struct *wq)
5282 {
5283 	struct wq_device *wq_dev;
5284 	int ret;
5285 
5286 	/*
5287 	 * Adjusting max_active or creating new pwqs by applying
5288 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5289 	 * workqueues.
5290 	 */
5291 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5292 		return -EINVAL;
5293 
5294 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5295 	if (!wq_dev)
5296 		return -ENOMEM;
5297 
5298 	wq_dev->wq = wq;
5299 	wq_dev->dev.bus = &wq_subsys;
5300 	wq_dev->dev.release = wq_device_release;
5301 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5302 
5303 	/*
5304 	 * unbound_attrs are created separately.  Suppress uevent until
5305 	 * everything is ready.
5306 	 */
5307 	dev_set_uevent_suppress(&wq_dev->dev, true);
5308 
5309 	ret = device_register(&wq_dev->dev);
5310 	if (ret) {
5311 		kfree(wq_dev);
5312 		wq->wq_dev = NULL;
5313 		return ret;
5314 	}
5315 
5316 	if (wq->flags & WQ_UNBOUND) {
5317 		struct device_attribute *attr;
5318 
5319 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5320 			ret = device_create_file(&wq_dev->dev, attr);
5321 			if (ret) {
5322 				device_unregister(&wq_dev->dev);
5323 				wq->wq_dev = NULL;
5324 				return ret;
5325 			}
5326 		}
5327 	}
5328 
5329 	dev_set_uevent_suppress(&wq_dev->dev, false);
5330 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5331 	return 0;
5332 }
5333 
5334 /**
5335  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5336  * @wq: the workqueue to unregister
5337  *
5338  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5339  */
5340 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5341 {
5342 	struct wq_device *wq_dev = wq->wq_dev;
5343 
5344 	if (!wq->wq_dev)
5345 		return;
5346 
5347 	wq->wq_dev = NULL;
5348 	device_unregister(&wq_dev->dev);
5349 }
5350 #else	/* CONFIG_SYSFS */
5351 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5352 #endif	/* CONFIG_SYSFS */
5353 
5354 /*
5355  * Workqueue watchdog.
5356  *
5357  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5358  * flush dependency, a concurrency managed work item which stays RUNNING
5359  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5360  * usual warning mechanisms don't trigger and internal workqueue state is
5361  * largely opaque.
5362  *
5363  * Workqueue watchdog monitors all worker pools periodically and dumps
5364  * state if some pools failed to make forward progress for a while where
5365  * forward progress is defined as the first item on ->worklist changing.
5366  *
5367  * This mechanism is controlled through the kernel parameter
5368  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5369  * corresponding sysfs parameter file.
5370  */
5371 #ifdef CONFIG_WQ_WATCHDOG
5372 
5373 static void wq_watchdog_timer_fn(unsigned long data);
5374 
5375 static unsigned long wq_watchdog_thresh = 30;
5376 static struct timer_list wq_watchdog_timer =
5377 	TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5378 
5379 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5380 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5381 
5382 static void wq_watchdog_reset_touched(void)
5383 {
5384 	int cpu;
5385 
5386 	wq_watchdog_touched = jiffies;
5387 	for_each_possible_cpu(cpu)
5388 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5389 }
5390 
5391 static void wq_watchdog_timer_fn(unsigned long data)
5392 {
5393 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5394 	bool lockup_detected = false;
5395 	struct worker_pool *pool;
5396 	int pi;
5397 
5398 	if (!thresh)
5399 		return;
5400 
5401 	rcu_read_lock();
5402 
5403 	for_each_pool(pool, pi) {
5404 		unsigned long pool_ts, touched, ts;
5405 
5406 		if (list_empty(&pool->worklist))
5407 			continue;
5408 
5409 		/* get the latest of pool and touched timestamps */
5410 		pool_ts = READ_ONCE(pool->watchdog_ts);
5411 		touched = READ_ONCE(wq_watchdog_touched);
5412 
5413 		if (time_after(pool_ts, touched))
5414 			ts = pool_ts;
5415 		else
5416 			ts = touched;
5417 
5418 		if (pool->cpu >= 0) {
5419 			unsigned long cpu_touched =
5420 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5421 						  pool->cpu));
5422 			if (time_after(cpu_touched, ts))
5423 				ts = cpu_touched;
5424 		}
5425 
5426 		/* did we stall? */
5427 		if (time_after(jiffies, ts + thresh)) {
5428 			lockup_detected = true;
5429 			pr_emerg("BUG: workqueue lockup - pool");
5430 			pr_cont_pool_info(pool);
5431 			pr_cont(" stuck for %us!\n",
5432 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5433 		}
5434 	}
5435 
5436 	rcu_read_unlock();
5437 
5438 	if (lockup_detected)
5439 		show_workqueue_state();
5440 
5441 	wq_watchdog_reset_touched();
5442 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5443 }
5444 
5445 void wq_watchdog_touch(int cpu)
5446 {
5447 	if (cpu >= 0)
5448 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5449 	else
5450 		wq_watchdog_touched = jiffies;
5451 }
5452 
5453 static void wq_watchdog_set_thresh(unsigned long thresh)
5454 {
5455 	wq_watchdog_thresh = 0;
5456 	del_timer_sync(&wq_watchdog_timer);
5457 
5458 	if (thresh) {
5459 		wq_watchdog_thresh = thresh;
5460 		wq_watchdog_reset_touched();
5461 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5462 	}
5463 }
5464 
5465 static int wq_watchdog_param_set_thresh(const char *val,
5466 					const struct kernel_param *kp)
5467 {
5468 	unsigned long thresh;
5469 	int ret;
5470 
5471 	ret = kstrtoul(val, 0, &thresh);
5472 	if (ret)
5473 		return ret;
5474 
5475 	if (system_wq)
5476 		wq_watchdog_set_thresh(thresh);
5477 	else
5478 		wq_watchdog_thresh = thresh;
5479 
5480 	return 0;
5481 }
5482 
5483 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5484 	.set	= wq_watchdog_param_set_thresh,
5485 	.get	= param_get_ulong,
5486 };
5487 
5488 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5489 		0644);
5490 
5491 static void wq_watchdog_init(void)
5492 {
5493 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5494 }
5495 
5496 #else	/* CONFIG_WQ_WATCHDOG */
5497 
5498 static inline void wq_watchdog_init(void) { }
5499 
5500 #endif	/* CONFIG_WQ_WATCHDOG */
5501 
5502 static void __init wq_numa_init(void)
5503 {
5504 	cpumask_var_t *tbl;
5505 	int node, cpu;
5506 
5507 	if (num_possible_nodes() <= 1)
5508 		return;
5509 
5510 	if (wq_disable_numa) {
5511 		pr_info("workqueue: NUMA affinity support disabled\n");
5512 		return;
5513 	}
5514 
5515 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5516 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5517 
5518 	/*
5519 	 * We want masks of possible CPUs of each node which isn't readily
5520 	 * available.  Build one from cpu_to_node() which should have been
5521 	 * fully initialized by now.
5522 	 */
5523 	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5524 	BUG_ON(!tbl);
5525 
5526 	for_each_node(node)
5527 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5528 				node_online(node) ? node : NUMA_NO_NODE));
5529 
5530 	for_each_possible_cpu(cpu) {
5531 		node = cpu_to_node(cpu);
5532 		if (WARN_ON(node == NUMA_NO_NODE)) {
5533 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5534 			/* happens iff arch is bonkers, let's just proceed */
5535 			return;
5536 		}
5537 		cpumask_set_cpu(cpu, tbl[node]);
5538 	}
5539 
5540 	wq_numa_possible_cpumask = tbl;
5541 	wq_numa_enabled = true;
5542 }
5543 
5544 /**
5545  * workqueue_init_early - early init for workqueue subsystem
5546  *
5547  * This is the first half of two-staged workqueue subsystem initialization
5548  * and invoked as soon as the bare basics - memory allocation, cpumasks and
5549  * idr are up.  It sets up all the data structures and system workqueues
5550  * and allows early boot code to create workqueues and queue/cancel work
5551  * items.  Actual work item execution starts only after kthreads can be
5552  * created and scheduled right before early initcalls.
5553  */
5554 int __init workqueue_init_early(void)
5555 {
5556 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5557 	int i, cpu;
5558 
5559 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5560 
5561 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5562 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5563 
5564 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5565 
5566 	/* initialize CPU pools */
5567 	for_each_possible_cpu(cpu) {
5568 		struct worker_pool *pool;
5569 
5570 		i = 0;
5571 		for_each_cpu_worker_pool(pool, cpu) {
5572 			BUG_ON(init_worker_pool(pool));
5573 			pool->cpu = cpu;
5574 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5575 			pool->attrs->nice = std_nice[i++];
5576 			pool->node = cpu_to_node(cpu);
5577 
5578 			/* alloc pool ID */
5579 			mutex_lock(&wq_pool_mutex);
5580 			BUG_ON(worker_pool_assign_id(pool));
5581 			mutex_unlock(&wq_pool_mutex);
5582 		}
5583 	}
5584 
5585 	/* create default unbound and ordered wq attrs */
5586 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5587 		struct workqueue_attrs *attrs;
5588 
5589 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5590 		attrs->nice = std_nice[i];
5591 		unbound_std_wq_attrs[i] = attrs;
5592 
5593 		/*
5594 		 * An ordered wq should have only one pwq as ordering is
5595 		 * guaranteed by max_active which is enforced by pwqs.
5596 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5597 		 */
5598 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5599 		attrs->nice = std_nice[i];
5600 		attrs->no_numa = true;
5601 		ordered_wq_attrs[i] = attrs;
5602 	}
5603 
5604 	system_wq = alloc_workqueue("events", 0, 0);
5605 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5606 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5607 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5608 					    WQ_UNBOUND_MAX_ACTIVE);
5609 	system_freezable_wq = alloc_workqueue("events_freezable",
5610 					      WQ_FREEZABLE, 0);
5611 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5612 					      WQ_POWER_EFFICIENT, 0);
5613 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5614 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5615 					      0);
5616 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5617 	       !system_unbound_wq || !system_freezable_wq ||
5618 	       !system_power_efficient_wq ||
5619 	       !system_freezable_power_efficient_wq);
5620 
5621 	return 0;
5622 }
5623 
5624 /**
5625  * workqueue_init - bring workqueue subsystem fully online
5626  *
5627  * This is the latter half of two-staged workqueue subsystem initialization
5628  * and invoked as soon as kthreads can be created and scheduled.
5629  * Workqueues have been created and work items queued on them, but there
5630  * are no kworkers executing the work items yet.  Populate the worker pools
5631  * with the initial workers and enable future kworker creations.
5632  */
5633 int __init workqueue_init(void)
5634 {
5635 	struct workqueue_struct *wq;
5636 	struct worker_pool *pool;
5637 	int cpu, bkt;
5638 
5639 	/*
5640 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5641 	 * CPU to node mapping may not be available that early on some
5642 	 * archs such as power and arm64.  As per-cpu pools created
5643 	 * previously could be missing node hint and unbound pools NUMA
5644 	 * affinity, fix them up.
5645 	 */
5646 	wq_numa_init();
5647 
5648 	mutex_lock(&wq_pool_mutex);
5649 
5650 	for_each_possible_cpu(cpu) {
5651 		for_each_cpu_worker_pool(pool, cpu) {
5652 			pool->node = cpu_to_node(cpu);
5653 		}
5654 	}
5655 
5656 	list_for_each_entry(wq, &workqueues, list)
5657 		wq_update_unbound_numa(wq, smp_processor_id(), true);
5658 
5659 	mutex_unlock(&wq_pool_mutex);
5660 
5661 	/* create the initial workers */
5662 	for_each_online_cpu(cpu) {
5663 		for_each_cpu_worker_pool(pool, cpu) {
5664 			pool->flags &= ~POOL_DISASSOCIATED;
5665 			BUG_ON(!create_worker(pool));
5666 		}
5667 	}
5668 
5669 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5670 		BUG_ON(!create_worker(pool));
5671 
5672 	wq_online = true;
5673 	wq_watchdog_init();
5674 
5675 	return 0;
5676 }
5677