xref: /linux/kernel/workqueue.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There is one worker pool for each CPU and
20  * one extra for works which are better served by workers which are
21  * not bound to any specific CPU.
22  *
23  * Please read Documentation/workqueue.txt for details.
24  */
25 
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 
45 #include "workqueue_sched.h"
46 
47 enum {
48 	/*
49 	 * global_cwq flags
50 	 *
51 	 * A bound gcwq is either associated or disassociated with its CPU.
52 	 * While associated (!DISASSOCIATED), all workers are bound to the
53 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
54 	 * is in effect.
55 	 *
56 	 * While DISASSOCIATED, the cpu may be offline and all workers have
57 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
58 	 * be executing on any CPU.  The gcwq behaves as an unbound one.
59 	 *
60 	 * Note that DISASSOCIATED can be flipped only while holding
61 	 * managership of all pools on the gcwq to avoid changing binding
62 	 * state while create_worker() is in progress.
63 	 */
64 	GCWQ_DISASSOCIATED	= 1 << 0,	/* cpu can't serve workers */
65 	GCWQ_FREEZING		= 1 << 1,	/* freeze in progress */
66 
67 	/* pool flags */
68 	POOL_MANAGE_WORKERS	= 1 << 0,	/* need to manage workers */
69 	POOL_MANAGING_WORKERS   = 1 << 1,       /* managing workers */
70 
71 	/* worker flags */
72 	WORKER_STARTED		= 1 << 0,	/* started */
73 	WORKER_DIE		= 1 << 1,	/* die die die */
74 	WORKER_IDLE		= 1 << 2,	/* is idle */
75 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
76 	WORKER_REBIND		= 1 << 5,	/* mom is home, come back */
77 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79 
80 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_REBIND | WORKER_UNBOUND |
81 				  WORKER_CPU_INTENSIVE,
82 
83 	NR_WORKER_POOLS		= 2,		/* # worker pools per gcwq */
84 
85 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
86 	BUSY_WORKER_HASH_SIZE	= 1 << BUSY_WORKER_HASH_ORDER,
87 	BUSY_WORKER_HASH_MASK	= BUSY_WORKER_HASH_SIZE - 1,
88 
89 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
90 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
91 
92 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
93 						/* call for help after 10ms
94 						   (min two ticks) */
95 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
96 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
97 
98 	/*
99 	 * Rescue workers are used only on emergencies and shared by
100 	 * all cpus.  Give -20.
101 	 */
102 	RESCUER_NICE_LEVEL	= -20,
103 	HIGHPRI_NICE_LEVEL	= -20,
104 };
105 
106 /*
107  * Structure fields follow one of the following exclusion rules.
108  *
109  * I: Modifiable by initialization/destruction paths and read-only for
110  *    everyone else.
111  *
112  * P: Preemption protected.  Disabling preemption is enough and should
113  *    only be modified and accessed from the local cpu.
114  *
115  * L: gcwq->lock protected.  Access with gcwq->lock held.
116  *
117  * X: During normal operation, modification requires gcwq->lock and
118  *    should be done only from local cpu.  Either disabling preemption
119  *    on local cpu or grabbing gcwq->lock is enough for read access.
120  *    If GCWQ_DISASSOCIATED is set, it's identical to L.
121  *
122  * F: wq->flush_mutex protected.
123  *
124  * W: workqueue_lock protected.
125  */
126 
127 struct global_cwq;
128 struct worker_pool;
129 struct idle_rebind;
130 
131 /*
132  * The poor guys doing the actual heavy lifting.  All on-duty workers
133  * are either serving the manager role, on idle list or on busy hash.
134  */
135 struct worker {
136 	/* on idle list while idle, on busy hash table while busy */
137 	union {
138 		struct list_head	entry;	/* L: while idle */
139 		struct hlist_node	hentry;	/* L: while busy */
140 	};
141 
142 	struct work_struct	*current_work;	/* L: work being processed */
143 	struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
144 	struct list_head	scheduled;	/* L: scheduled works */
145 	struct task_struct	*task;		/* I: worker task */
146 	struct worker_pool	*pool;		/* I: the associated pool */
147 	/* 64 bytes boundary on 64bit, 32 on 32bit */
148 	unsigned long		last_active;	/* L: last active timestamp */
149 	unsigned int		flags;		/* X: flags */
150 	int			id;		/* I: worker id */
151 
152 	/* for rebinding worker to CPU */
153 	struct idle_rebind	*idle_rebind;	/* L: for idle worker */
154 	struct work_struct	rebind_work;	/* L: for busy worker */
155 };
156 
157 struct worker_pool {
158 	struct global_cwq	*gcwq;		/* I: the owning gcwq */
159 	unsigned int		flags;		/* X: flags */
160 
161 	struct list_head	worklist;	/* L: list of pending works */
162 	int			nr_workers;	/* L: total number of workers */
163 	int			nr_idle;	/* L: currently idle ones */
164 
165 	struct list_head	idle_list;	/* X: list of idle workers */
166 	struct timer_list	idle_timer;	/* L: worker idle timeout */
167 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
168 
169 	struct mutex		manager_mutex;	/* mutex manager should hold */
170 	struct ida		worker_ida;	/* L: for worker IDs */
171 };
172 
173 /*
174  * Global per-cpu workqueue.  There's one and only one for each cpu
175  * and all works are queued and processed here regardless of their
176  * target workqueues.
177  */
178 struct global_cwq {
179 	spinlock_t		lock;		/* the gcwq lock */
180 	unsigned int		cpu;		/* I: the associated cpu */
181 	unsigned int		flags;		/* L: GCWQ_* flags */
182 
183 	/* workers are chained either in busy_hash or pool idle_list */
184 	struct hlist_head	busy_hash[BUSY_WORKER_HASH_SIZE];
185 						/* L: hash of busy workers */
186 
187 	struct worker_pool	pools[2];	/* normal and highpri pools */
188 
189 	wait_queue_head_t	rebind_hold;	/* rebind hold wait */
190 } ____cacheline_aligned_in_smp;
191 
192 /*
193  * The per-CPU workqueue.  The lower WORK_STRUCT_FLAG_BITS of
194  * work_struct->data are used for flags and thus cwqs need to be
195  * aligned at two's power of the number of flag bits.
196  */
197 struct cpu_workqueue_struct {
198 	struct worker_pool	*pool;		/* I: the associated pool */
199 	struct workqueue_struct *wq;		/* I: the owning workqueue */
200 	int			work_color;	/* L: current color */
201 	int			flush_color;	/* L: flushing color */
202 	int			nr_in_flight[WORK_NR_COLORS];
203 						/* L: nr of in_flight works */
204 	int			nr_active;	/* L: nr of active works */
205 	int			max_active;	/* L: max active works */
206 	struct list_head	delayed_works;	/* L: delayed works */
207 };
208 
209 /*
210  * Structure used to wait for workqueue flush.
211  */
212 struct wq_flusher {
213 	struct list_head	list;		/* F: list of flushers */
214 	int			flush_color;	/* F: flush color waiting for */
215 	struct completion	done;		/* flush completion */
216 };
217 
218 /*
219  * All cpumasks are assumed to be always set on UP and thus can't be
220  * used to determine whether there's something to be done.
221  */
222 #ifdef CONFIG_SMP
223 typedef cpumask_var_t mayday_mask_t;
224 #define mayday_test_and_set_cpu(cpu, mask)	\
225 	cpumask_test_and_set_cpu((cpu), (mask))
226 #define mayday_clear_cpu(cpu, mask)		cpumask_clear_cpu((cpu), (mask))
227 #define for_each_mayday_cpu(cpu, mask)		for_each_cpu((cpu), (mask))
228 #define alloc_mayday_mask(maskp, gfp)		zalloc_cpumask_var((maskp), (gfp))
229 #define free_mayday_mask(mask)			free_cpumask_var((mask))
230 #else
231 typedef unsigned long mayday_mask_t;
232 #define mayday_test_and_set_cpu(cpu, mask)	test_and_set_bit(0, &(mask))
233 #define mayday_clear_cpu(cpu, mask)		clear_bit(0, &(mask))
234 #define for_each_mayday_cpu(cpu, mask)		if ((cpu) = 0, (mask))
235 #define alloc_mayday_mask(maskp, gfp)		true
236 #define free_mayday_mask(mask)			do { } while (0)
237 #endif
238 
239 /*
240  * The externally visible workqueue abstraction is an array of
241  * per-CPU workqueues:
242  */
243 struct workqueue_struct {
244 	unsigned int		flags;		/* W: WQ_* flags */
245 	union {
246 		struct cpu_workqueue_struct __percpu	*pcpu;
247 		struct cpu_workqueue_struct		*single;
248 		unsigned long				v;
249 	} cpu_wq;				/* I: cwq's */
250 	struct list_head	list;		/* W: list of all workqueues */
251 
252 	struct mutex		flush_mutex;	/* protects wq flushing */
253 	int			work_color;	/* F: current work color */
254 	int			flush_color;	/* F: current flush color */
255 	atomic_t		nr_cwqs_to_flush; /* flush in progress */
256 	struct wq_flusher	*first_flusher;	/* F: first flusher */
257 	struct list_head	flusher_queue;	/* F: flush waiters */
258 	struct list_head	flusher_overflow; /* F: flush overflow list */
259 
260 	mayday_mask_t		mayday_mask;	/* cpus requesting rescue */
261 	struct worker		*rescuer;	/* I: rescue worker */
262 
263 	int			nr_drainers;	/* W: drain in progress */
264 	int			saved_max_active; /* W: saved cwq max_active */
265 #ifdef CONFIG_LOCKDEP
266 	struct lockdep_map	lockdep_map;
267 #endif
268 	char			name[];		/* I: workqueue name */
269 };
270 
271 struct workqueue_struct *system_wq __read_mostly;
272 struct workqueue_struct *system_long_wq __read_mostly;
273 struct workqueue_struct *system_nrt_wq __read_mostly;
274 struct workqueue_struct *system_unbound_wq __read_mostly;
275 struct workqueue_struct *system_freezable_wq __read_mostly;
276 struct workqueue_struct *system_nrt_freezable_wq __read_mostly;
277 EXPORT_SYMBOL_GPL(system_wq);
278 EXPORT_SYMBOL_GPL(system_long_wq);
279 EXPORT_SYMBOL_GPL(system_nrt_wq);
280 EXPORT_SYMBOL_GPL(system_unbound_wq);
281 EXPORT_SYMBOL_GPL(system_freezable_wq);
282 EXPORT_SYMBOL_GPL(system_nrt_freezable_wq);
283 
284 #define CREATE_TRACE_POINTS
285 #include <trace/events/workqueue.h>
286 
287 #define for_each_worker_pool(pool, gcwq)				\
288 	for ((pool) = &(gcwq)->pools[0];				\
289 	     (pool) < &(gcwq)->pools[NR_WORKER_POOLS]; (pool)++)
290 
291 #define for_each_busy_worker(worker, i, pos, gcwq)			\
292 	for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)			\
293 		hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
294 
295 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
296 				  unsigned int sw)
297 {
298 	if (cpu < nr_cpu_ids) {
299 		if (sw & 1) {
300 			cpu = cpumask_next(cpu, mask);
301 			if (cpu < nr_cpu_ids)
302 				return cpu;
303 		}
304 		if (sw & 2)
305 			return WORK_CPU_UNBOUND;
306 	}
307 	return WORK_CPU_NONE;
308 }
309 
310 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
311 				struct workqueue_struct *wq)
312 {
313 	return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
314 }
315 
316 /*
317  * CPU iterators
318  *
319  * An extra gcwq is defined for an invalid cpu number
320  * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
321  * specific CPU.  The following iterators are similar to
322  * for_each_*_cpu() iterators but also considers the unbound gcwq.
323  *
324  * for_each_gcwq_cpu()		: possible CPUs + WORK_CPU_UNBOUND
325  * for_each_online_gcwq_cpu()	: online CPUs + WORK_CPU_UNBOUND
326  * for_each_cwq_cpu()		: possible CPUs for bound workqueues,
327  *				  WORK_CPU_UNBOUND for unbound workqueues
328  */
329 #define for_each_gcwq_cpu(cpu)						\
330 	for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3);		\
331 	     (cpu) < WORK_CPU_NONE;					\
332 	     (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
333 
334 #define for_each_online_gcwq_cpu(cpu)					\
335 	for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3);		\
336 	     (cpu) < WORK_CPU_NONE;					\
337 	     (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
338 
339 #define for_each_cwq_cpu(cpu, wq)					\
340 	for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq));	\
341 	     (cpu) < WORK_CPU_NONE;					\
342 	     (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
343 
344 #ifdef CONFIG_DEBUG_OBJECTS_WORK
345 
346 static struct debug_obj_descr work_debug_descr;
347 
348 static void *work_debug_hint(void *addr)
349 {
350 	return ((struct work_struct *) addr)->func;
351 }
352 
353 /*
354  * fixup_init is called when:
355  * - an active object is initialized
356  */
357 static int work_fixup_init(void *addr, enum debug_obj_state state)
358 {
359 	struct work_struct *work = addr;
360 
361 	switch (state) {
362 	case ODEBUG_STATE_ACTIVE:
363 		cancel_work_sync(work);
364 		debug_object_init(work, &work_debug_descr);
365 		return 1;
366 	default:
367 		return 0;
368 	}
369 }
370 
371 /*
372  * fixup_activate is called when:
373  * - an active object is activated
374  * - an unknown object is activated (might be a statically initialized object)
375  */
376 static int work_fixup_activate(void *addr, enum debug_obj_state state)
377 {
378 	struct work_struct *work = addr;
379 
380 	switch (state) {
381 
382 	case ODEBUG_STATE_NOTAVAILABLE:
383 		/*
384 		 * This is not really a fixup. The work struct was
385 		 * statically initialized. We just make sure that it
386 		 * is tracked in the object tracker.
387 		 */
388 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
389 			debug_object_init(work, &work_debug_descr);
390 			debug_object_activate(work, &work_debug_descr);
391 			return 0;
392 		}
393 		WARN_ON_ONCE(1);
394 		return 0;
395 
396 	case ODEBUG_STATE_ACTIVE:
397 		WARN_ON(1);
398 
399 	default:
400 		return 0;
401 	}
402 }
403 
404 /*
405  * fixup_free is called when:
406  * - an active object is freed
407  */
408 static int work_fixup_free(void *addr, enum debug_obj_state state)
409 {
410 	struct work_struct *work = addr;
411 
412 	switch (state) {
413 	case ODEBUG_STATE_ACTIVE:
414 		cancel_work_sync(work);
415 		debug_object_free(work, &work_debug_descr);
416 		return 1;
417 	default:
418 		return 0;
419 	}
420 }
421 
422 static struct debug_obj_descr work_debug_descr = {
423 	.name		= "work_struct",
424 	.debug_hint	= work_debug_hint,
425 	.fixup_init	= work_fixup_init,
426 	.fixup_activate	= work_fixup_activate,
427 	.fixup_free	= work_fixup_free,
428 };
429 
430 static inline void debug_work_activate(struct work_struct *work)
431 {
432 	debug_object_activate(work, &work_debug_descr);
433 }
434 
435 static inline void debug_work_deactivate(struct work_struct *work)
436 {
437 	debug_object_deactivate(work, &work_debug_descr);
438 }
439 
440 void __init_work(struct work_struct *work, int onstack)
441 {
442 	if (onstack)
443 		debug_object_init_on_stack(work, &work_debug_descr);
444 	else
445 		debug_object_init(work, &work_debug_descr);
446 }
447 EXPORT_SYMBOL_GPL(__init_work);
448 
449 void destroy_work_on_stack(struct work_struct *work)
450 {
451 	debug_object_free(work, &work_debug_descr);
452 }
453 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
454 
455 #else
456 static inline void debug_work_activate(struct work_struct *work) { }
457 static inline void debug_work_deactivate(struct work_struct *work) { }
458 #endif
459 
460 /* Serializes the accesses to the list of workqueues. */
461 static DEFINE_SPINLOCK(workqueue_lock);
462 static LIST_HEAD(workqueues);
463 static bool workqueue_freezing;		/* W: have wqs started freezing? */
464 
465 /*
466  * The almighty global cpu workqueues.  nr_running is the only field
467  * which is expected to be used frequently by other cpus via
468  * try_to_wake_up().  Put it in a separate cacheline.
469  */
470 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
471 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, pool_nr_running[NR_WORKER_POOLS]);
472 
473 /*
474  * Global cpu workqueue and nr_running counter for unbound gcwq.  The
475  * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
476  * workers have WORKER_UNBOUND set.
477  */
478 static struct global_cwq unbound_global_cwq;
479 static atomic_t unbound_pool_nr_running[NR_WORKER_POOLS] = {
480 	[0 ... NR_WORKER_POOLS - 1]	= ATOMIC_INIT(0),	/* always 0 */
481 };
482 
483 static int worker_thread(void *__worker);
484 
485 static int worker_pool_pri(struct worker_pool *pool)
486 {
487 	return pool - pool->gcwq->pools;
488 }
489 
490 static struct global_cwq *get_gcwq(unsigned int cpu)
491 {
492 	if (cpu != WORK_CPU_UNBOUND)
493 		return &per_cpu(global_cwq, cpu);
494 	else
495 		return &unbound_global_cwq;
496 }
497 
498 static atomic_t *get_pool_nr_running(struct worker_pool *pool)
499 {
500 	int cpu = pool->gcwq->cpu;
501 	int idx = worker_pool_pri(pool);
502 
503 	if (cpu != WORK_CPU_UNBOUND)
504 		return &per_cpu(pool_nr_running, cpu)[idx];
505 	else
506 		return &unbound_pool_nr_running[idx];
507 }
508 
509 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
510 					    struct workqueue_struct *wq)
511 {
512 	if (!(wq->flags & WQ_UNBOUND)) {
513 		if (likely(cpu < nr_cpu_ids))
514 			return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
515 	} else if (likely(cpu == WORK_CPU_UNBOUND))
516 		return wq->cpu_wq.single;
517 	return NULL;
518 }
519 
520 static unsigned int work_color_to_flags(int color)
521 {
522 	return color << WORK_STRUCT_COLOR_SHIFT;
523 }
524 
525 static int get_work_color(struct work_struct *work)
526 {
527 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
528 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
529 }
530 
531 static int work_next_color(int color)
532 {
533 	return (color + 1) % WORK_NR_COLORS;
534 }
535 
536 /*
537  * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
538  * work is on queue.  Once execution starts, WORK_STRUCT_CWQ is
539  * cleared and the work data contains the cpu number it was last on.
540  *
541  * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
542  * cwq, cpu or clear work->data.  These functions should only be
543  * called while the work is owned - ie. while the PENDING bit is set.
544  *
545  * get_work_[g]cwq() can be used to obtain the gcwq or cwq
546  * corresponding to a work.  gcwq is available once the work has been
547  * queued anywhere after initialization.  cwq is available only from
548  * queueing until execution starts.
549  */
550 static inline void set_work_data(struct work_struct *work, unsigned long data,
551 				 unsigned long flags)
552 {
553 	BUG_ON(!work_pending(work));
554 	atomic_long_set(&work->data, data | flags | work_static(work));
555 }
556 
557 static void set_work_cwq(struct work_struct *work,
558 			 struct cpu_workqueue_struct *cwq,
559 			 unsigned long extra_flags)
560 {
561 	set_work_data(work, (unsigned long)cwq,
562 		      WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
563 }
564 
565 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
566 {
567 	set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
568 }
569 
570 static void clear_work_data(struct work_struct *work)
571 {
572 	set_work_data(work, WORK_STRUCT_NO_CPU, 0);
573 }
574 
575 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
576 {
577 	unsigned long data = atomic_long_read(&work->data);
578 
579 	if (data & WORK_STRUCT_CWQ)
580 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
581 	else
582 		return NULL;
583 }
584 
585 static struct global_cwq *get_work_gcwq(struct work_struct *work)
586 {
587 	unsigned long data = atomic_long_read(&work->data);
588 	unsigned int cpu;
589 
590 	if (data & WORK_STRUCT_CWQ)
591 		return ((struct cpu_workqueue_struct *)
592 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->gcwq;
593 
594 	cpu = data >> WORK_STRUCT_FLAG_BITS;
595 	if (cpu == WORK_CPU_NONE)
596 		return NULL;
597 
598 	BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
599 	return get_gcwq(cpu);
600 }
601 
602 /*
603  * Policy functions.  These define the policies on how the global worker
604  * pools are managed.  Unless noted otherwise, these functions assume that
605  * they're being called with gcwq->lock held.
606  */
607 
608 static bool __need_more_worker(struct worker_pool *pool)
609 {
610 	return !atomic_read(get_pool_nr_running(pool));
611 }
612 
613 /*
614  * Need to wake up a worker?  Called from anything but currently
615  * running workers.
616  *
617  * Note that, because unbound workers never contribute to nr_running, this
618  * function will always return %true for unbound gcwq as long as the
619  * worklist isn't empty.
620  */
621 static bool need_more_worker(struct worker_pool *pool)
622 {
623 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
624 }
625 
626 /* Can I start working?  Called from busy but !running workers. */
627 static bool may_start_working(struct worker_pool *pool)
628 {
629 	return pool->nr_idle;
630 }
631 
632 /* Do I need to keep working?  Called from currently running workers. */
633 static bool keep_working(struct worker_pool *pool)
634 {
635 	atomic_t *nr_running = get_pool_nr_running(pool);
636 
637 	return !list_empty(&pool->worklist) && atomic_read(nr_running) <= 1;
638 }
639 
640 /* Do we need a new worker?  Called from manager. */
641 static bool need_to_create_worker(struct worker_pool *pool)
642 {
643 	return need_more_worker(pool) && !may_start_working(pool);
644 }
645 
646 /* Do I need to be the manager? */
647 static bool need_to_manage_workers(struct worker_pool *pool)
648 {
649 	return need_to_create_worker(pool) ||
650 		(pool->flags & POOL_MANAGE_WORKERS);
651 }
652 
653 /* Do we have too many workers and should some go away? */
654 static bool too_many_workers(struct worker_pool *pool)
655 {
656 	bool managing = pool->flags & POOL_MANAGING_WORKERS;
657 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
658 	int nr_busy = pool->nr_workers - nr_idle;
659 
660 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
661 }
662 
663 /*
664  * Wake up functions.
665  */
666 
667 /* Return the first worker.  Safe with preemption disabled */
668 static struct worker *first_worker(struct worker_pool *pool)
669 {
670 	if (unlikely(list_empty(&pool->idle_list)))
671 		return NULL;
672 
673 	return list_first_entry(&pool->idle_list, struct worker, entry);
674 }
675 
676 /**
677  * wake_up_worker - wake up an idle worker
678  * @pool: worker pool to wake worker from
679  *
680  * Wake up the first idle worker of @pool.
681  *
682  * CONTEXT:
683  * spin_lock_irq(gcwq->lock).
684  */
685 static void wake_up_worker(struct worker_pool *pool)
686 {
687 	struct worker *worker = first_worker(pool);
688 
689 	if (likely(worker))
690 		wake_up_process(worker->task);
691 }
692 
693 /**
694  * wq_worker_waking_up - a worker is waking up
695  * @task: task waking up
696  * @cpu: CPU @task is waking up to
697  *
698  * This function is called during try_to_wake_up() when a worker is
699  * being awoken.
700  *
701  * CONTEXT:
702  * spin_lock_irq(rq->lock)
703  */
704 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
705 {
706 	struct worker *worker = kthread_data(task);
707 
708 	if (!(worker->flags & WORKER_NOT_RUNNING))
709 		atomic_inc(get_pool_nr_running(worker->pool));
710 }
711 
712 /**
713  * wq_worker_sleeping - a worker is going to sleep
714  * @task: task going to sleep
715  * @cpu: CPU in question, must be the current CPU number
716  *
717  * This function is called during schedule() when a busy worker is
718  * going to sleep.  Worker on the same cpu can be woken up by
719  * returning pointer to its task.
720  *
721  * CONTEXT:
722  * spin_lock_irq(rq->lock)
723  *
724  * RETURNS:
725  * Worker task on @cpu to wake up, %NULL if none.
726  */
727 struct task_struct *wq_worker_sleeping(struct task_struct *task,
728 				       unsigned int cpu)
729 {
730 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
731 	struct worker_pool *pool = worker->pool;
732 	atomic_t *nr_running = get_pool_nr_running(pool);
733 
734 	if (worker->flags & WORKER_NOT_RUNNING)
735 		return NULL;
736 
737 	/* this can only happen on the local cpu */
738 	BUG_ON(cpu != raw_smp_processor_id());
739 
740 	/*
741 	 * The counterpart of the following dec_and_test, implied mb,
742 	 * worklist not empty test sequence is in insert_work().
743 	 * Please read comment there.
744 	 *
745 	 * NOT_RUNNING is clear.  This means that we're bound to and
746 	 * running on the local cpu w/ rq lock held and preemption
747 	 * disabled, which in turn means that none else could be
748 	 * manipulating idle_list, so dereferencing idle_list without gcwq
749 	 * lock is safe.
750 	 */
751 	if (atomic_dec_and_test(nr_running) && !list_empty(&pool->worklist))
752 		to_wakeup = first_worker(pool);
753 	return to_wakeup ? to_wakeup->task : NULL;
754 }
755 
756 /**
757  * worker_set_flags - set worker flags and adjust nr_running accordingly
758  * @worker: self
759  * @flags: flags to set
760  * @wakeup: wakeup an idle worker if necessary
761  *
762  * Set @flags in @worker->flags and adjust nr_running accordingly.  If
763  * nr_running becomes zero and @wakeup is %true, an idle worker is
764  * woken up.
765  *
766  * CONTEXT:
767  * spin_lock_irq(gcwq->lock)
768  */
769 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
770 				    bool wakeup)
771 {
772 	struct worker_pool *pool = worker->pool;
773 
774 	WARN_ON_ONCE(worker->task != current);
775 
776 	/*
777 	 * If transitioning into NOT_RUNNING, adjust nr_running and
778 	 * wake up an idle worker as necessary if requested by
779 	 * @wakeup.
780 	 */
781 	if ((flags & WORKER_NOT_RUNNING) &&
782 	    !(worker->flags & WORKER_NOT_RUNNING)) {
783 		atomic_t *nr_running = get_pool_nr_running(pool);
784 
785 		if (wakeup) {
786 			if (atomic_dec_and_test(nr_running) &&
787 			    !list_empty(&pool->worklist))
788 				wake_up_worker(pool);
789 		} else
790 			atomic_dec(nr_running);
791 	}
792 
793 	worker->flags |= flags;
794 }
795 
796 /**
797  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
798  * @worker: self
799  * @flags: flags to clear
800  *
801  * Clear @flags in @worker->flags and adjust nr_running accordingly.
802  *
803  * CONTEXT:
804  * spin_lock_irq(gcwq->lock)
805  */
806 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
807 {
808 	struct worker_pool *pool = worker->pool;
809 	unsigned int oflags = worker->flags;
810 
811 	WARN_ON_ONCE(worker->task != current);
812 
813 	worker->flags &= ~flags;
814 
815 	/*
816 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
817 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
818 	 * of multiple flags, not a single flag.
819 	 */
820 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
821 		if (!(worker->flags & WORKER_NOT_RUNNING))
822 			atomic_inc(get_pool_nr_running(pool));
823 }
824 
825 /**
826  * busy_worker_head - return the busy hash head for a work
827  * @gcwq: gcwq of interest
828  * @work: work to be hashed
829  *
830  * Return hash head of @gcwq for @work.
831  *
832  * CONTEXT:
833  * spin_lock_irq(gcwq->lock).
834  *
835  * RETURNS:
836  * Pointer to the hash head.
837  */
838 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
839 					   struct work_struct *work)
840 {
841 	const int base_shift = ilog2(sizeof(struct work_struct));
842 	unsigned long v = (unsigned long)work;
843 
844 	/* simple shift and fold hash, do we need something better? */
845 	v >>= base_shift;
846 	v += v >> BUSY_WORKER_HASH_ORDER;
847 	v &= BUSY_WORKER_HASH_MASK;
848 
849 	return &gcwq->busy_hash[v];
850 }
851 
852 /**
853  * __find_worker_executing_work - find worker which is executing a work
854  * @gcwq: gcwq of interest
855  * @bwh: hash head as returned by busy_worker_head()
856  * @work: work to find worker for
857  *
858  * Find a worker which is executing @work on @gcwq.  @bwh should be
859  * the hash head obtained by calling busy_worker_head() with the same
860  * work.
861  *
862  * CONTEXT:
863  * spin_lock_irq(gcwq->lock).
864  *
865  * RETURNS:
866  * Pointer to worker which is executing @work if found, NULL
867  * otherwise.
868  */
869 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
870 						   struct hlist_head *bwh,
871 						   struct work_struct *work)
872 {
873 	struct worker *worker;
874 	struct hlist_node *tmp;
875 
876 	hlist_for_each_entry(worker, tmp, bwh, hentry)
877 		if (worker->current_work == work)
878 			return worker;
879 	return NULL;
880 }
881 
882 /**
883  * find_worker_executing_work - find worker which is executing a work
884  * @gcwq: gcwq of interest
885  * @work: work to find worker for
886  *
887  * Find a worker which is executing @work on @gcwq.  This function is
888  * identical to __find_worker_executing_work() except that this
889  * function calculates @bwh itself.
890  *
891  * CONTEXT:
892  * spin_lock_irq(gcwq->lock).
893  *
894  * RETURNS:
895  * Pointer to worker which is executing @work if found, NULL
896  * otherwise.
897  */
898 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
899 						 struct work_struct *work)
900 {
901 	return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
902 					    work);
903 }
904 
905 /**
906  * insert_work - insert a work into gcwq
907  * @cwq: cwq @work belongs to
908  * @work: work to insert
909  * @head: insertion point
910  * @extra_flags: extra WORK_STRUCT_* flags to set
911  *
912  * Insert @work which belongs to @cwq into @gcwq after @head.
913  * @extra_flags is or'd to work_struct flags.
914  *
915  * CONTEXT:
916  * spin_lock_irq(gcwq->lock).
917  */
918 static void insert_work(struct cpu_workqueue_struct *cwq,
919 			struct work_struct *work, struct list_head *head,
920 			unsigned int extra_flags)
921 {
922 	struct worker_pool *pool = cwq->pool;
923 
924 	/* we own @work, set data and link */
925 	set_work_cwq(work, cwq, extra_flags);
926 
927 	/*
928 	 * Ensure that we get the right work->data if we see the
929 	 * result of list_add() below, see try_to_grab_pending().
930 	 */
931 	smp_wmb();
932 
933 	list_add_tail(&work->entry, head);
934 
935 	/*
936 	 * Ensure either worker_sched_deactivated() sees the above
937 	 * list_add_tail() or we see zero nr_running to avoid workers
938 	 * lying around lazily while there are works to be processed.
939 	 */
940 	smp_mb();
941 
942 	if (__need_more_worker(pool))
943 		wake_up_worker(pool);
944 }
945 
946 /*
947  * Test whether @work is being queued from another work executing on the
948  * same workqueue.  This is rather expensive and should only be used from
949  * cold paths.
950  */
951 static bool is_chained_work(struct workqueue_struct *wq)
952 {
953 	unsigned long flags;
954 	unsigned int cpu;
955 
956 	for_each_gcwq_cpu(cpu) {
957 		struct global_cwq *gcwq = get_gcwq(cpu);
958 		struct worker *worker;
959 		struct hlist_node *pos;
960 		int i;
961 
962 		spin_lock_irqsave(&gcwq->lock, flags);
963 		for_each_busy_worker(worker, i, pos, gcwq) {
964 			if (worker->task != current)
965 				continue;
966 			spin_unlock_irqrestore(&gcwq->lock, flags);
967 			/*
968 			 * I'm @worker, no locking necessary.  See if @work
969 			 * is headed to the same workqueue.
970 			 */
971 			return worker->current_cwq->wq == wq;
972 		}
973 		spin_unlock_irqrestore(&gcwq->lock, flags);
974 	}
975 	return false;
976 }
977 
978 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
979 			 struct work_struct *work)
980 {
981 	struct global_cwq *gcwq;
982 	struct cpu_workqueue_struct *cwq;
983 	struct list_head *worklist;
984 	unsigned int work_flags;
985 	unsigned long flags;
986 
987 	debug_work_activate(work);
988 
989 	/* if dying, only works from the same workqueue are allowed */
990 	if (unlikely(wq->flags & WQ_DRAINING) &&
991 	    WARN_ON_ONCE(!is_chained_work(wq)))
992 		return;
993 
994 	/* determine gcwq to use */
995 	if (!(wq->flags & WQ_UNBOUND)) {
996 		struct global_cwq *last_gcwq;
997 
998 		if (unlikely(cpu == WORK_CPU_UNBOUND))
999 			cpu = raw_smp_processor_id();
1000 
1001 		/*
1002 		 * It's multi cpu.  If @wq is non-reentrant and @work
1003 		 * was previously on a different cpu, it might still
1004 		 * be running there, in which case the work needs to
1005 		 * be queued on that cpu to guarantee non-reentrance.
1006 		 */
1007 		gcwq = get_gcwq(cpu);
1008 		if (wq->flags & WQ_NON_REENTRANT &&
1009 		    (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
1010 			struct worker *worker;
1011 
1012 			spin_lock_irqsave(&last_gcwq->lock, flags);
1013 
1014 			worker = find_worker_executing_work(last_gcwq, work);
1015 
1016 			if (worker && worker->current_cwq->wq == wq)
1017 				gcwq = last_gcwq;
1018 			else {
1019 				/* meh... not running there, queue here */
1020 				spin_unlock_irqrestore(&last_gcwq->lock, flags);
1021 				spin_lock_irqsave(&gcwq->lock, flags);
1022 			}
1023 		} else
1024 			spin_lock_irqsave(&gcwq->lock, flags);
1025 	} else {
1026 		gcwq = get_gcwq(WORK_CPU_UNBOUND);
1027 		spin_lock_irqsave(&gcwq->lock, flags);
1028 	}
1029 
1030 	/* gcwq determined, get cwq and queue */
1031 	cwq = get_cwq(gcwq->cpu, wq);
1032 	trace_workqueue_queue_work(cpu, cwq, work);
1033 
1034 	if (WARN_ON(!list_empty(&work->entry))) {
1035 		spin_unlock_irqrestore(&gcwq->lock, flags);
1036 		return;
1037 	}
1038 
1039 	cwq->nr_in_flight[cwq->work_color]++;
1040 	work_flags = work_color_to_flags(cwq->work_color);
1041 
1042 	if (likely(cwq->nr_active < cwq->max_active)) {
1043 		trace_workqueue_activate_work(work);
1044 		cwq->nr_active++;
1045 		worklist = &cwq->pool->worklist;
1046 	} else {
1047 		work_flags |= WORK_STRUCT_DELAYED;
1048 		worklist = &cwq->delayed_works;
1049 	}
1050 
1051 	insert_work(cwq, work, worklist, work_flags);
1052 
1053 	spin_unlock_irqrestore(&gcwq->lock, flags);
1054 }
1055 
1056 /**
1057  * queue_work - queue work on a workqueue
1058  * @wq: workqueue to use
1059  * @work: work to queue
1060  *
1061  * Returns 0 if @work was already on a queue, non-zero otherwise.
1062  *
1063  * We queue the work to the CPU on which it was submitted, but if the CPU dies
1064  * it can be processed by another CPU.
1065  */
1066 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
1067 {
1068 	int ret;
1069 
1070 	ret = queue_work_on(get_cpu(), wq, work);
1071 	put_cpu();
1072 
1073 	return ret;
1074 }
1075 EXPORT_SYMBOL_GPL(queue_work);
1076 
1077 /**
1078  * queue_work_on - queue work on specific cpu
1079  * @cpu: CPU number to execute work on
1080  * @wq: workqueue to use
1081  * @work: work to queue
1082  *
1083  * Returns 0 if @work was already on a queue, non-zero otherwise.
1084  *
1085  * We queue the work to a specific CPU, the caller must ensure it
1086  * can't go away.
1087  */
1088 int
1089 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1090 {
1091 	int ret = 0;
1092 
1093 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1094 		__queue_work(cpu, wq, work);
1095 		ret = 1;
1096 	}
1097 	return ret;
1098 }
1099 EXPORT_SYMBOL_GPL(queue_work_on);
1100 
1101 static void delayed_work_timer_fn(unsigned long __data)
1102 {
1103 	struct delayed_work *dwork = (struct delayed_work *)__data;
1104 	struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1105 
1106 	__queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1107 }
1108 
1109 /**
1110  * queue_delayed_work - queue work on a workqueue after delay
1111  * @wq: workqueue to use
1112  * @dwork: delayable work to queue
1113  * @delay: number of jiffies to wait before queueing
1114  *
1115  * Returns 0 if @work was already on a queue, non-zero otherwise.
1116  */
1117 int queue_delayed_work(struct workqueue_struct *wq,
1118 			struct delayed_work *dwork, unsigned long delay)
1119 {
1120 	if (delay == 0)
1121 		return queue_work(wq, &dwork->work);
1122 
1123 	return queue_delayed_work_on(-1, wq, dwork, delay);
1124 }
1125 EXPORT_SYMBOL_GPL(queue_delayed_work);
1126 
1127 /**
1128  * queue_delayed_work_on - queue work on specific CPU after delay
1129  * @cpu: CPU number to execute work on
1130  * @wq: workqueue to use
1131  * @dwork: work to queue
1132  * @delay: number of jiffies to wait before queueing
1133  *
1134  * Returns 0 if @work was already on a queue, non-zero otherwise.
1135  */
1136 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1137 			struct delayed_work *dwork, unsigned long delay)
1138 {
1139 	int ret = 0;
1140 	struct timer_list *timer = &dwork->timer;
1141 	struct work_struct *work = &dwork->work;
1142 
1143 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1144 		unsigned int lcpu;
1145 
1146 		BUG_ON(timer_pending(timer));
1147 		BUG_ON(!list_empty(&work->entry));
1148 
1149 		timer_stats_timer_set_start_info(&dwork->timer);
1150 
1151 		/*
1152 		 * This stores cwq for the moment, for the timer_fn.
1153 		 * Note that the work's gcwq is preserved to allow
1154 		 * reentrance detection for delayed works.
1155 		 */
1156 		if (!(wq->flags & WQ_UNBOUND)) {
1157 			struct global_cwq *gcwq = get_work_gcwq(work);
1158 
1159 			if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1160 				lcpu = gcwq->cpu;
1161 			else
1162 				lcpu = raw_smp_processor_id();
1163 		} else
1164 			lcpu = WORK_CPU_UNBOUND;
1165 
1166 		set_work_cwq(work, get_cwq(lcpu, wq), 0);
1167 
1168 		timer->expires = jiffies + delay;
1169 		timer->data = (unsigned long)dwork;
1170 		timer->function = delayed_work_timer_fn;
1171 
1172 		if (unlikely(cpu >= 0))
1173 			add_timer_on(timer, cpu);
1174 		else
1175 			add_timer(timer);
1176 		ret = 1;
1177 	}
1178 	return ret;
1179 }
1180 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1181 
1182 /**
1183  * worker_enter_idle - enter idle state
1184  * @worker: worker which is entering idle state
1185  *
1186  * @worker is entering idle state.  Update stats and idle timer if
1187  * necessary.
1188  *
1189  * LOCKING:
1190  * spin_lock_irq(gcwq->lock).
1191  */
1192 static void worker_enter_idle(struct worker *worker)
1193 {
1194 	struct worker_pool *pool = worker->pool;
1195 	struct global_cwq *gcwq = pool->gcwq;
1196 
1197 	BUG_ON(worker->flags & WORKER_IDLE);
1198 	BUG_ON(!list_empty(&worker->entry) &&
1199 	       (worker->hentry.next || worker->hentry.pprev));
1200 
1201 	/* can't use worker_set_flags(), also called from start_worker() */
1202 	worker->flags |= WORKER_IDLE;
1203 	pool->nr_idle++;
1204 	worker->last_active = jiffies;
1205 
1206 	/* idle_list is LIFO */
1207 	list_add(&worker->entry, &pool->idle_list);
1208 
1209 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1210 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1211 
1212 	/*
1213 	 * Sanity check nr_running.  Because gcwq_unbind_fn() releases
1214 	 * gcwq->lock between setting %WORKER_UNBOUND and zapping
1215 	 * nr_running, the warning may trigger spuriously.  Check iff
1216 	 * unbind is not in progress.
1217 	 */
1218 	WARN_ON_ONCE(!(gcwq->flags & GCWQ_DISASSOCIATED) &&
1219 		     pool->nr_workers == pool->nr_idle &&
1220 		     atomic_read(get_pool_nr_running(pool)));
1221 }
1222 
1223 /**
1224  * worker_leave_idle - leave idle state
1225  * @worker: worker which is leaving idle state
1226  *
1227  * @worker is leaving idle state.  Update stats.
1228  *
1229  * LOCKING:
1230  * spin_lock_irq(gcwq->lock).
1231  */
1232 static void worker_leave_idle(struct worker *worker)
1233 {
1234 	struct worker_pool *pool = worker->pool;
1235 
1236 	BUG_ON(!(worker->flags & WORKER_IDLE));
1237 	worker_clr_flags(worker, WORKER_IDLE);
1238 	pool->nr_idle--;
1239 	list_del_init(&worker->entry);
1240 }
1241 
1242 /**
1243  * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1244  * @worker: self
1245  *
1246  * Works which are scheduled while the cpu is online must at least be
1247  * scheduled to a worker which is bound to the cpu so that if they are
1248  * flushed from cpu callbacks while cpu is going down, they are
1249  * guaranteed to execute on the cpu.
1250  *
1251  * This function is to be used by rogue workers and rescuers to bind
1252  * themselves to the target cpu and may race with cpu going down or
1253  * coming online.  kthread_bind() can't be used because it may put the
1254  * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1255  * verbatim as it's best effort and blocking and gcwq may be
1256  * [dis]associated in the meantime.
1257  *
1258  * This function tries set_cpus_allowed() and locks gcwq and verifies the
1259  * binding against %GCWQ_DISASSOCIATED which is set during
1260  * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1261  * enters idle state or fetches works without dropping lock, it can
1262  * guarantee the scheduling requirement described in the first paragraph.
1263  *
1264  * CONTEXT:
1265  * Might sleep.  Called without any lock but returns with gcwq->lock
1266  * held.
1267  *
1268  * RETURNS:
1269  * %true if the associated gcwq is online (@worker is successfully
1270  * bound), %false if offline.
1271  */
1272 static bool worker_maybe_bind_and_lock(struct worker *worker)
1273 __acquires(&gcwq->lock)
1274 {
1275 	struct global_cwq *gcwq = worker->pool->gcwq;
1276 	struct task_struct *task = worker->task;
1277 
1278 	while (true) {
1279 		/*
1280 		 * The following call may fail, succeed or succeed
1281 		 * without actually migrating the task to the cpu if
1282 		 * it races with cpu hotunplug operation.  Verify
1283 		 * against GCWQ_DISASSOCIATED.
1284 		 */
1285 		if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1286 			set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1287 
1288 		spin_lock_irq(&gcwq->lock);
1289 		if (gcwq->flags & GCWQ_DISASSOCIATED)
1290 			return false;
1291 		if (task_cpu(task) == gcwq->cpu &&
1292 		    cpumask_equal(&current->cpus_allowed,
1293 				  get_cpu_mask(gcwq->cpu)))
1294 			return true;
1295 		spin_unlock_irq(&gcwq->lock);
1296 
1297 		/*
1298 		 * We've raced with CPU hot[un]plug.  Give it a breather
1299 		 * and retry migration.  cond_resched() is required here;
1300 		 * otherwise, we might deadlock against cpu_stop trying to
1301 		 * bring down the CPU on non-preemptive kernel.
1302 		 */
1303 		cpu_relax();
1304 		cond_resched();
1305 	}
1306 }
1307 
1308 struct idle_rebind {
1309 	int			cnt;		/* # workers to be rebound */
1310 	struct completion	done;		/* all workers rebound */
1311 };
1312 
1313 /*
1314  * Rebind an idle @worker to its CPU.  During CPU onlining, this has to
1315  * happen synchronously for idle workers.  worker_thread() will test
1316  * %WORKER_REBIND before leaving idle and call this function.
1317  */
1318 static void idle_worker_rebind(struct worker *worker)
1319 {
1320 	struct global_cwq *gcwq = worker->pool->gcwq;
1321 
1322 	/* CPU must be online at this point */
1323 	WARN_ON(!worker_maybe_bind_and_lock(worker));
1324 	if (!--worker->idle_rebind->cnt)
1325 		complete(&worker->idle_rebind->done);
1326 	spin_unlock_irq(&worker->pool->gcwq->lock);
1327 
1328 	/* we did our part, wait for rebind_workers() to finish up */
1329 	wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));
1330 
1331 	/*
1332 	 * rebind_workers() shouldn't finish until all workers passed the
1333 	 * above WORKER_REBIND wait.  Tell it when done.
1334 	 */
1335 	spin_lock_irq(&worker->pool->gcwq->lock);
1336 	if (!--worker->idle_rebind->cnt)
1337 		complete(&worker->idle_rebind->done);
1338 	spin_unlock_irq(&worker->pool->gcwq->lock);
1339 }
1340 
1341 /*
1342  * Function for @worker->rebind.work used to rebind unbound busy workers to
1343  * the associated cpu which is coming back online.  This is scheduled by
1344  * cpu up but can race with other cpu hotplug operations and may be
1345  * executed twice without intervening cpu down.
1346  */
1347 static void busy_worker_rebind_fn(struct work_struct *work)
1348 {
1349 	struct worker *worker = container_of(work, struct worker, rebind_work);
1350 	struct global_cwq *gcwq = worker->pool->gcwq;
1351 
1352 	worker_maybe_bind_and_lock(worker);
1353 
1354 	/*
1355 	 * %WORKER_REBIND must be cleared even if the above binding failed;
1356 	 * otherwise, we may confuse the next CPU_UP cycle or oops / get
1357 	 * stuck by calling idle_worker_rebind() prematurely.  If CPU went
1358 	 * down again inbetween, %WORKER_UNBOUND would be set, so clearing
1359 	 * %WORKER_REBIND is always safe.
1360 	 */
1361 	worker_clr_flags(worker, WORKER_REBIND);
1362 
1363 	spin_unlock_irq(&gcwq->lock);
1364 }
1365 
1366 /**
1367  * rebind_workers - rebind all workers of a gcwq to the associated CPU
1368  * @gcwq: gcwq of interest
1369  *
1370  * @gcwq->cpu is coming online.  Rebind all workers to the CPU.  Rebinding
1371  * is different for idle and busy ones.
1372  *
1373  * The idle ones should be rebound synchronously and idle rebinding should
1374  * be complete before any worker starts executing work items with
1375  * concurrency management enabled; otherwise, scheduler may oops trying to
1376  * wake up non-local idle worker from wq_worker_sleeping().
1377  *
1378  * This is achieved by repeatedly requesting rebinding until all idle
1379  * workers are known to have been rebound under @gcwq->lock and holding all
1380  * idle workers from becoming busy until idle rebinding is complete.
1381  *
1382  * Once idle workers are rebound, busy workers can be rebound as they
1383  * finish executing their current work items.  Queueing the rebind work at
1384  * the head of their scheduled lists is enough.  Note that nr_running will
1385  * be properbly bumped as busy workers rebind.
1386  *
1387  * On return, all workers are guaranteed to either be bound or have rebind
1388  * work item scheduled.
1389  */
1390 static void rebind_workers(struct global_cwq *gcwq)
1391 	__releases(&gcwq->lock) __acquires(&gcwq->lock)
1392 {
1393 	struct idle_rebind idle_rebind;
1394 	struct worker_pool *pool;
1395 	struct worker *worker;
1396 	struct hlist_node *pos;
1397 	int i;
1398 
1399 	lockdep_assert_held(&gcwq->lock);
1400 
1401 	for_each_worker_pool(pool, gcwq)
1402 		lockdep_assert_held(&pool->manager_mutex);
1403 
1404 	/*
1405 	 * Rebind idle workers.  Interlocked both ways.  We wait for
1406 	 * workers to rebind via @idle_rebind.done.  Workers will wait for
1407 	 * us to finish up by watching %WORKER_REBIND.
1408 	 */
1409 	init_completion(&idle_rebind.done);
1410 retry:
1411 	idle_rebind.cnt = 1;
1412 	INIT_COMPLETION(idle_rebind.done);
1413 
1414 	/* set REBIND and kick idle ones, we'll wait for these later */
1415 	for_each_worker_pool(pool, gcwq) {
1416 		list_for_each_entry(worker, &pool->idle_list, entry) {
1417 			unsigned long worker_flags = worker->flags;
1418 
1419 			if (worker->flags & WORKER_REBIND)
1420 				continue;
1421 
1422 			/* morph UNBOUND to REBIND atomically */
1423 			worker_flags &= ~WORKER_UNBOUND;
1424 			worker_flags |= WORKER_REBIND;
1425 			ACCESS_ONCE(worker->flags) = worker_flags;
1426 
1427 			idle_rebind.cnt++;
1428 			worker->idle_rebind = &idle_rebind;
1429 
1430 			/* worker_thread() will call idle_worker_rebind() */
1431 			wake_up_process(worker->task);
1432 		}
1433 	}
1434 
1435 	if (--idle_rebind.cnt) {
1436 		spin_unlock_irq(&gcwq->lock);
1437 		wait_for_completion(&idle_rebind.done);
1438 		spin_lock_irq(&gcwq->lock);
1439 		/* busy ones might have become idle while waiting, retry */
1440 		goto retry;
1441 	}
1442 
1443 	/* all idle workers are rebound, rebind busy workers */
1444 	for_each_busy_worker(worker, i, pos, gcwq) {
1445 		struct work_struct *rebind_work = &worker->rebind_work;
1446 		unsigned long worker_flags = worker->flags;
1447 
1448 		/* morph UNBOUND to REBIND atomically */
1449 		worker_flags &= ~WORKER_UNBOUND;
1450 		worker_flags |= WORKER_REBIND;
1451 		ACCESS_ONCE(worker->flags) = worker_flags;
1452 
1453 		if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1454 				     work_data_bits(rebind_work)))
1455 			continue;
1456 
1457 		/* wq doesn't matter, use the default one */
1458 		debug_work_activate(rebind_work);
1459 		insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
1460 			    worker->scheduled.next,
1461 			    work_color_to_flags(WORK_NO_COLOR));
1462 	}
1463 
1464 	/*
1465 	 * All idle workers are rebound and waiting for %WORKER_REBIND to
1466 	 * be cleared inside idle_worker_rebind().  Clear and release.
1467 	 * Clearing %WORKER_REBIND from this foreign context is safe
1468 	 * because these workers are still guaranteed to be idle.
1469 	 *
1470 	 * We need to make sure all idle workers passed WORKER_REBIND wait
1471 	 * in idle_worker_rebind() before returning; otherwise, workers can
1472 	 * get stuck at the wait if hotplug cycle repeats.
1473 	 */
1474 	idle_rebind.cnt = 1;
1475 	INIT_COMPLETION(idle_rebind.done);
1476 
1477 	for_each_worker_pool(pool, gcwq) {
1478 		list_for_each_entry(worker, &pool->idle_list, entry) {
1479 			worker->flags &= ~WORKER_REBIND;
1480 			idle_rebind.cnt++;
1481 		}
1482 	}
1483 
1484 	wake_up_all(&gcwq->rebind_hold);
1485 
1486 	if (--idle_rebind.cnt) {
1487 		spin_unlock_irq(&gcwq->lock);
1488 		wait_for_completion(&idle_rebind.done);
1489 		spin_lock_irq(&gcwq->lock);
1490 	}
1491 }
1492 
1493 static struct worker *alloc_worker(void)
1494 {
1495 	struct worker *worker;
1496 
1497 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1498 	if (worker) {
1499 		INIT_LIST_HEAD(&worker->entry);
1500 		INIT_LIST_HEAD(&worker->scheduled);
1501 		INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
1502 		/* on creation a worker is in !idle && prep state */
1503 		worker->flags = WORKER_PREP;
1504 	}
1505 	return worker;
1506 }
1507 
1508 /**
1509  * create_worker - create a new workqueue worker
1510  * @pool: pool the new worker will belong to
1511  *
1512  * Create a new worker which is bound to @pool.  The returned worker
1513  * can be started by calling start_worker() or destroyed using
1514  * destroy_worker().
1515  *
1516  * CONTEXT:
1517  * Might sleep.  Does GFP_KERNEL allocations.
1518  *
1519  * RETURNS:
1520  * Pointer to the newly created worker.
1521  */
1522 static struct worker *create_worker(struct worker_pool *pool)
1523 {
1524 	struct global_cwq *gcwq = pool->gcwq;
1525 	const char *pri = worker_pool_pri(pool) ? "H" : "";
1526 	struct worker *worker = NULL;
1527 	int id = -1;
1528 
1529 	spin_lock_irq(&gcwq->lock);
1530 	while (ida_get_new(&pool->worker_ida, &id)) {
1531 		spin_unlock_irq(&gcwq->lock);
1532 		if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
1533 			goto fail;
1534 		spin_lock_irq(&gcwq->lock);
1535 	}
1536 	spin_unlock_irq(&gcwq->lock);
1537 
1538 	worker = alloc_worker();
1539 	if (!worker)
1540 		goto fail;
1541 
1542 	worker->pool = pool;
1543 	worker->id = id;
1544 
1545 	if (gcwq->cpu != WORK_CPU_UNBOUND)
1546 		worker->task = kthread_create_on_node(worker_thread,
1547 					worker, cpu_to_node(gcwq->cpu),
1548 					"kworker/%u:%d%s", gcwq->cpu, id, pri);
1549 	else
1550 		worker->task = kthread_create(worker_thread, worker,
1551 					      "kworker/u:%d%s", id, pri);
1552 	if (IS_ERR(worker->task))
1553 		goto fail;
1554 
1555 	if (worker_pool_pri(pool))
1556 		set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1557 
1558 	/*
1559 	 * Determine CPU binding of the new worker depending on
1560 	 * %GCWQ_DISASSOCIATED.  The caller is responsible for ensuring the
1561 	 * flag remains stable across this function.  See the comments
1562 	 * above the flag definition for details.
1563 	 *
1564 	 * As an unbound worker may later become a regular one if CPU comes
1565 	 * online, make sure every worker has %PF_THREAD_BOUND set.
1566 	 */
1567 	if (!(gcwq->flags & GCWQ_DISASSOCIATED)) {
1568 		kthread_bind(worker->task, gcwq->cpu);
1569 	} else {
1570 		worker->task->flags |= PF_THREAD_BOUND;
1571 		worker->flags |= WORKER_UNBOUND;
1572 	}
1573 
1574 	return worker;
1575 fail:
1576 	if (id >= 0) {
1577 		spin_lock_irq(&gcwq->lock);
1578 		ida_remove(&pool->worker_ida, id);
1579 		spin_unlock_irq(&gcwq->lock);
1580 	}
1581 	kfree(worker);
1582 	return NULL;
1583 }
1584 
1585 /**
1586  * start_worker - start a newly created worker
1587  * @worker: worker to start
1588  *
1589  * Make the gcwq aware of @worker and start it.
1590  *
1591  * CONTEXT:
1592  * spin_lock_irq(gcwq->lock).
1593  */
1594 static void start_worker(struct worker *worker)
1595 {
1596 	worker->flags |= WORKER_STARTED;
1597 	worker->pool->nr_workers++;
1598 	worker_enter_idle(worker);
1599 	wake_up_process(worker->task);
1600 }
1601 
1602 /**
1603  * destroy_worker - destroy a workqueue worker
1604  * @worker: worker to be destroyed
1605  *
1606  * Destroy @worker and adjust @gcwq stats accordingly.
1607  *
1608  * CONTEXT:
1609  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1610  */
1611 static void destroy_worker(struct worker *worker)
1612 {
1613 	struct worker_pool *pool = worker->pool;
1614 	struct global_cwq *gcwq = pool->gcwq;
1615 	int id = worker->id;
1616 
1617 	/* sanity check frenzy */
1618 	BUG_ON(worker->current_work);
1619 	BUG_ON(!list_empty(&worker->scheduled));
1620 
1621 	if (worker->flags & WORKER_STARTED)
1622 		pool->nr_workers--;
1623 	if (worker->flags & WORKER_IDLE)
1624 		pool->nr_idle--;
1625 
1626 	list_del_init(&worker->entry);
1627 	worker->flags |= WORKER_DIE;
1628 
1629 	spin_unlock_irq(&gcwq->lock);
1630 
1631 	kthread_stop(worker->task);
1632 	kfree(worker);
1633 
1634 	spin_lock_irq(&gcwq->lock);
1635 	ida_remove(&pool->worker_ida, id);
1636 }
1637 
1638 static void idle_worker_timeout(unsigned long __pool)
1639 {
1640 	struct worker_pool *pool = (void *)__pool;
1641 	struct global_cwq *gcwq = pool->gcwq;
1642 
1643 	spin_lock_irq(&gcwq->lock);
1644 
1645 	if (too_many_workers(pool)) {
1646 		struct worker *worker;
1647 		unsigned long expires;
1648 
1649 		/* idle_list is kept in LIFO order, check the last one */
1650 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1651 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1652 
1653 		if (time_before(jiffies, expires))
1654 			mod_timer(&pool->idle_timer, expires);
1655 		else {
1656 			/* it's been idle for too long, wake up manager */
1657 			pool->flags |= POOL_MANAGE_WORKERS;
1658 			wake_up_worker(pool);
1659 		}
1660 	}
1661 
1662 	spin_unlock_irq(&gcwq->lock);
1663 }
1664 
1665 static bool send_mayday(struct work_struct *work)
1666 {
1667 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1668 	struct workqueue_struct *wq = cwq->wq;
1669 	unsigned int cpu;
1670 
1671 	if (!(wq->flags & WQ_RESCUER))
1672 		return false;
1673 
1674 	/* mayday mayday mayday */
1675 	cpu = cwq->pool->gcwq->cpu;
1676 	/* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1677 	if (cpu == WORK_CPU_UNBOUND)
1678 		cpu = 0;
1679 	if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1680 		wake_up_process(wq->rescuer->task);
1681 	return true;
1682 }
1683 
1684 static void gcwq_mayday_timeout(unsigned long __pool)
1685 {
1686 	struct worker_pool *pool = (void *)__pool;
1687 	struct global_cwq *gcwq = pool->gcwq;
1688 	struct work_struct *work;
1689 
1690 	spin_lock_irq(&gcwq->lock);
1691 
1692 	if (need_to_create_worker(pool)) {
1693 		/*
1694 		 * We've been trying to create a new worker but
1695 		 * haven't been successful.  We might be hitting an
1696 		 * allocation deadlock.  Send distress signals to
1697 		 * rescuers.
1698 		 */
1699 		list_for_each_entry(work, &pool->worklist, entry)
1700 			send_mayday(work);
1701 	}
1702 
1703 	spin_unlock_irq(&gcwq->lock);
1704 
1705 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1706 }
1707 
1708 /**
1709  * maybe_create_worker - create a new worker if necessary
1710  * @pool: pool to create a new worker for
1711  *
1712  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1713  * have at least one idle worker on return from this function.  If
1714  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1715  * sent to all rescuers with works scheduled on @pool to resolve
1716  * possible allocation deadlock.
1717  *
1718  * On return, need_to_create_worker() is guaranteed to be false and
1719  * may_start_working() true.
1720  *
1721  * LOCKING:
1722  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1723  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1724  * manager.
1725  *
1726  * RETURNS:
1727  * false if no action was taken and gcwq->lock stayed locked, true
1728  * otherwise.
1729  */
1730 static bool maybe_create_worker(struct worker_pool *pool)
1731 __releases(&gcwq->lock)
1732 __acquires(&gcwq->lock)
1733 {
1734 	struct global_cwq *gcwq = pool->gcwq;
1735 
1736 	if (!need_to_create_worker(pool))
1737 		return false;
1738 restart:
1739 	spin_unlock_irq(&gcwq->lock);
1740 
1741 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1742 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1743 
1744 	while (true) {
1745 		struct worker *worker;
1746 
1747 		worker = create_worker(pool);
1748 		if (worker) {
1749 			del_timer_sync(&pool->mayday_timer);
1750 			spin_lock_irq(&gcwq->lock);
1751 			start_worker(worker);
1752 			BUG_ON(need_to_create_worker(pool));
1753 			return true;
1754 		}
1755 
1756 		if (!need_to_create_worker(pool))
1757 			break;
1758 
1759 		__set_current_state(TASK_INTERRUPTIBLE);
1760 		schedule_timeout(CREATE_COOLDOWN);
1761 
1762 		if (!need_to_create_worker(pool))
1763 			break;
1764 	}
1765 
1766 	del_timer_sync(&pool->mayday_timer);
1767 	spin_lock_irq(&gcwq->lock);
1768 	if (need_to_create_worker(pool))
1769 		goto restart;
1770 	return true;
1771 }
1772 
1773 /**
1774  * maybe_destroy_worker - destroy workers which have been idle for a while
1775  * @pool: pool to destroy workers for
1776  *
1777  * Destroy @pool workers which have been idle for longer than
1778  * IDLE_WORKER_TIMEOUT.
1779  *
1780  * LOCKING:
1781  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1782  * multiple times.  Called only from manager.
1783  *
1784  * RETURNS:
1785  * false if no action was taken and gcwq->lock stayed locked, true
1786  * otherwise.
1787  */
1788 static bool maybe_destroy_workers(struct worker_pool *pool)
1789 {
1790 	bool ret = false;
1791 
1792 	while (too_many_workers(pool)) {
1793 		struct worker *worker;
1794 		unsigned long expires;
1795 
1796 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1797 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1798 
1799 		if (time_before(jiffies, expires)) {
1800 			mod_timer(&pool->idle_timer, expires);
1801 			break;
1802 		}
1803 
1804 		destroy_worker(worker);
1805 		ret = true;
1806 	}
1807 
1808 	return ret;
1809 }
1810 
1811 /**
1812  * manage_workers - manage worker pool
1813  * @worker: self
1814  *
1815  * Assume the manager role and manage gcwq worker pool @worker belongs
1816  * to.  At any given time, there can be only zero or one manager per
1817  * gcwq.  The exclusion is handled automatically by this function.
1818  *
1819  * The caller can safely start processing works on false return.  On
1820  * true return, it's guaranteed that need_to_create_worker() is false
1821  * and may_start_working() is true.
1822  *
1823  * CONTEXT:
1824  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1825  * multiple times.  Does GFP_KERNEL allocations.
1826  *
1827  * RETURNS:
1828  * false if no action was taken and gcwq->lock stayed locked, true if
1829  * some action was taken.
1830  */
1831 static bool manage_workers(struct worker *worker)
1832 {
1833 	struct worker_pool *pool = worker->pool;
1834 	bool ret = false;
1835 
1836 	if (pool->flags & POOL_MANAGING_WORKERS)
1837 		return ret;
1838 
1839 	pool->flags |= POOL_MANAGING_WORKERS;
1840 
1841 	/*
1842 	 * To simplify both worker management and CPU hotplug, hold off
1843 	 * management while hotplug is in progress.  CPU hotplug path can't
1844 	 * grab %POOL_MANAGING_WORKERS to achieve this because that can
1845 	 * lead to idle worker depletion (all become busy thinking someone
1846 	 * else is managing) which in turn can result in deadlock under
1847 	 * extreme circumstances.  Use @pool->manager_mutex to synchronize
1848 	 * manager against CPU hotplug.
1849 	 *
1850 	 * manager_mutex would always be free unless CPU hotplug is in
1851 	 * progress.  trylock first without dropping @gcwq->lock.
1852 	 */
1853 	if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
1854 		spin_unlock_irq(&pool->gcwq->lock);
1855 		mutex_lock(&pool->manager_mutex);
1856 		/*
1857 		 * CPU hotplug could have happened while we were waiting
1858 		 * for manager_mutex.  Hotplug itself can't handle us
1859 		 * because manager isn't either on idle or busy list, and
1860 		 * @gcwq's state and ours could have deviated.
1861 		 *
1862 		 * As hotplug is now excluded via manager_mutex, we can
1863 		 * simply try to bind.  It will succeed or fail depending
1864 		 * on @gcwq's current state.  Try it and adjust
1865 		 * %WORKER_UNBOUND accordingly.
1866 		 */
1867 		if (worker_maybe_bind_and_lock(worker))
1868 			worker->flags &= ~WORKER_UNBOUND;
1869 		else
1870 			worker->flags |= WORKER_UNBOUND;
1871 
1872 		ret = true;
1873 	}
1874 
1875 	pool->flags &= ~POOL_MANAGE_WORKERS;
1876 
1877 	/*
1878 	 * Destroy and then create so that may_start_working() is true
1879 	 * on return.
1880 	 */
1881 	ret |= maybe_destroy_workers(pool);
1882 	ret |= maybe_create_worker(pool);
1883 
1884 	pool->flags &= ~POOL_MANAGING_WORKERS;
1885 	mutex_unlock(&pool->manager_mutex);
1886 	return ret;
1887 }
1888 
1889 /**
1890  * move_linked_works - move linked works to a list
1891  * @work: start of series of works to be scheduled
1892  * @head: target list to append @work to
1893  * @nextp: out paramter for nested worklist walking
1894  *
1895  * Schedule linked works starting from @work to @head.  Work series to
1896  * be scheduled starts at @work and includes any consecutive work with
1897  * WORK_STRUCT_LINKED set in its predecessor.
1898  *
1899  * If @nextp is not NULL, it's updated to point to the next work of
1900  * the last scheduled work.  This allows move_linked_works() to be
1901  * nested inside outer list_for_each_entry_safe().
1902  *
1903  * CONTEXT:
1904  * spin_lock_irq(gcwq->lock).
1905  */
1906 static void move_linked_works(struct work_struct *work, struct list_head *head,
1907 			      struct work_struct **nextp)
1908 {
1909 	struct work_struct *n;
1910 
1911 	/*
1912 	 * Linked worklist will always end before the end of the list,
1913 	 * use NULL for list head.
1914 	 */
1915 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1916 		list_move_tail(&work->entry, head);
1917 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1918 			break;
1919 	}
1920 
1921 	/*
1922 	 * If we're already inside safe list traversal and have moved
1923 	 * multiple works to the scheduled queue, the next position
1924 	 * needs to be updated.
1925 	 */
1926 	if (nextp)
1927 		*nextp = n;
1928 }
1929 
1930 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1931 {
1932 	struct work_struct *work = list_first_entry(&cwq->delayed_works,
1933 						    struct work_struct, entry);
1934 
1935 	trace_workqueue_activate_work(work);
1936 	move_linked_works(work, &cwq->pool->worklist, NULL);
1937 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1938 	cwq->nr_active++;
1939 }
1940 
1941 /**
1942  * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1943  * @cwq: cwq of interest
1944  * @color: color of work which left the queue
1945  * @delayed: for a delayed work
1946  *
1947  * A work either has completed or is removed from pending queue,
1948  * decrement nr_in_flight of its cwq and handle workqueue flushing.
1949  *
1950  * CONTEXT:
1951  * spin_lock_irq(gcwq->lock).
1952  */
1953 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color,
1954 				 bool delayed)
1955 {
1956 	/* ignore uncolored works */
1957 	if (color == WORK_NO_COLOR)
1958 		return;
1959 
1960 	cwq->nr_in_flight[color]--;
1961 
1962 	if (!delayed) {
1963 		cwq->nr_active--;
1964 		if (!list_empty(&cwq->delayed_works)) {
1965 			/* one down, submit a delayed one */
1966 			if (cwq->nr_active < cwq->max_active)
1967 				cwq_activate_first_delayed(cwq);
1968 		}
1969 	}
1970 
1971 	/* is flush in progress and are we at the flushing tip? */
1972 	if (likely(cwq->flush_color != color))
1973 		return;
1974 
1975 	/* are there still in-flight works? */
1976 	if (cwq->nr_in_flight[color])
1977 		return;
1978 
1979 	/* this cwq is done, clear flush_color */
1980 	cwq->flush_color = -1;
1981 
1982 	/*
1983 	 * If this was the last cwq, wake up the first flusher.  It
1984 	 * will handle the rest.
1985 	 */
1986 	if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1987 		complete(&cwq->wq->first_flusher->done);
1988 }
1989 
1990 /**
1991  * process_one_work - process single work
1992  * @worker: self
1993  * @work: work to process
1994  *
1995  * Process @work.  This function contains all the logics necessary to
1996  * process a single work including synchronization against and
1997  * interaction with other workers on the same cpu, queueing and
1998  * flushing.  As long as context requirement is met, any worker can
1999  * call this function to process a work.
2000  *
2001  * CONTEXT:
2002  * spin_lock_irq(gcwq->lock) which is released and regrabbed.
2003  */
2004 static void process_one_work(struct worker *worker, struct work_struct *work)
2005 __releases(&gcwq->lock)
2006 __acquires(&gcwq->lock)
2007 {
2008 	struct cpu_workqueue_struct *cwq = get_work_cwq(work);
2009 	struct worker_pool *pool = worker->pool;
2010 	struct global_cwq *gcwq = pool->gcwq;
2011 	struct hlist_head *bwh = busy_worker_head(gcwq, work);
2012 	bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
2013 	work_func_t f = work->func;
2014 	int work_color;
2015 	struct worker *collision;
2016 #ifdef CONFIG_LOCKDEP
2017 	/*
2018 	 * It is permissible to free the struct work_struct from
2019 	 * inside the function that is called from it, this we need to
2020 	 * take into account for lockdep too.  To avoid bogus "held
2021 	 * lock freed" warnings as well as problems when looking into
2022 	 * work->lockdep_map, make a copy and use that here.
2023 	 */
2024 	struct lockdep_map lockdep_map;
2025 
2026 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2027 #endif
2028 	/*
2029 	 * Ensure we're on the correct CPU.  DISASSOCIATED test is
2030 	 * necessary to avoid spurious warnings from rescuers servicing the
2031 	 * unbound or a disassociated gcwq.
2032 	 */
2033 	WARN_ON_ONCE(!(worker->flags & (WORKER_UNBOUND | WORKER_REBIND)) &&
2034 		     !(gcwq->flags & GCWQ_DISASSOCIATED) &&
2035 		     raw_smp_processor_id() != gcwq->cpu);
2036 
2037 	/*
2038 	 * A single work shouldn't be executed concurrently by
2039 	 * multiple workers on a single cpu.  Check whether anyone is
2040 	 * already processing the work.  If so, defer the work to the
2041 	 * currently executing one.
2042 	 */
2043 	collision = __find_worker_executing_work(gcwq, bwh, work);
2044 	if (unlikely(collision)) {
2045 		move_linked_works(work, &collision->scheduled, NULL);
2046 		return;
2047 	}
2048 
2049 	/* claim and process */
2050 	debug_work_deactivate(work);
2051 	hlist_add_head(&worker->hentry, bwh);
2052 	worker->current_work = work;
2053 	worker->current_cwq = cwq;
2054 	work_color = get_work_color(work);
2055 
2056 	/* record the current cpu number in the work data and dequeue */
2057 	set_work_cpu(work, gcwq->cpu);
2058 	list_del_init(&work->entry);
2059 
2060 	/*
2061 	 * CPU intensive works don't participate in concurrency
2062 	 * management.  They're the scheduler's responsibility.
2063 	 */
2064 	if (unlikely(cpu_intensive))
2065 		worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2066 
2067 	/*
2068 	 * Unbound gcwq isn't concurrency managed and work items should be
2069 	 * executed ASAP.  Wake up another worker if necessary.
2070 	 */
2071 	if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2072 		wake_up_worker(pool);
2073 
2074 	spin_unlock_irq(&gcwq->lock);
2075 
2076 	work_clear_pending(work);
2077 	lock_map_acquire_read(&cwq->wq->lockdep_map);
2078 	lock_map_acquire(&lockdep_map);
2079 	trace_workqueue_execute_start(work);
2080 	f(work);
2081 	/*
2082 	 * While we must be careful to not use "work" after this, the trace
2083 	 * point will only record its address.
2084 	 */
2085 	trace_workqueue_execute_end(work);
2086 	lock_map_release(&lockdep_map);
2087 	lock_map_release(&cwq->wq->lockdep_map);
2088 
2089 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2090 		printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
2091 		       "%s/0x%08x/%d\n",
2092 		       current->comm, preempt_count(), task_pid_nr(current));
2093 		printk(KERN_ERR "    last function: ");
2094 		print_symbol("%s\n", (unsigned long)f);
2095 		debug_show_held_locks(current);
2096 		dump_stack();
2097 	}
2098 
2099 	spin_lock_irq(&gcwq->lock);
2100 
2101 	/* clear cpu intensive status */
2102 	if (unlikely(cpu_intensive))
2103 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2104 
2105 	/* we're done with it, release */
2106 	hlist_del_init(&worker->hentry);
2107 	worker->current_work = NULL;
2108 	worker->current_cwq = NULL;
2109 	cwq_dec_nr_in_flight(cwq, work_color, false);
2110 }
2111 
2112 /**
2113  * process_scheduled_works - process scheduled works
2114  * @worker: self
2115  *
2116  * Process all scheduled works.  Please note that the scheduled list
2117  * may change while processing a work, so this function repeatedly
2118  * fetches a work from the top and executes it.
2119  *
2120  * CONTEXT:
2121  * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2122  * multiple times.
2123  */
2124 static void process_scheduled_works(struct worker *worker)
2125 {
2126 	while (!list_empty(&worker->scheduled)) {
2127 		struct work_struct *work = list_first_entry(&worker->scheduled,
2128 						struct work_struct, entry);
2129 		process_one_work(worker, work);
2130 	}
2131 }
2132 
2133 /**
2134  * worker_thread - the worker thread function
2135  * @__worker: self
2136  *
2137  * The gcwq worker thread function.  There's a single dynamic pool of
2138  * these per each cpu.  These workers process all works regardless of
2139  * their specific target workqueue.  The only exception is works which
2140  * belong to workqueues with a rescuer which will be explained in
2141  * rescuer_thread().
2142  */
2143 static int worker_thread(void *__worker)
2144 {
2145 	struct worker *worker = __worker;
2146 	struct worker_pool *pool = worker->pool;
2147 	struct global_cwq *gcwq = pool->gcwq;
2148 
2149 	/* tell the scheduler that this is a workqueue worker */
2150 	worker->task->flags |= PF_WQ_WORKER;
2151 woke_up:
2152 	spin_lock_irq(&gcwq->lock);
2153 
2154 	/*
2155 	 * DIE can be set only while idle and REBIND set while busy has
2156 	 * @worker->rebind_work scheduled.  Checking here is enough.
2157 	 */
2158 	if (unlikely(worker->flags & (WORKER_REBIND | WORKER_DIE))) {
2159 		spin_unlock_irq(&gcwq->lock);
2160 
2161 		if (worker->flags & WORKER_DIE) {
2162 			worker->task->flags &= ~PF_WQ_WORKER;
2163 			return 0;
2164 		}
2165 
2166 		idle_worker_rebind(worker);
2167 		goto woke_up;
2168 	}
2169 
2170 	worker_leave_idle(worker);
2171 recheck:
2172 	/* no more worker necessary? */
2173 	if (!need_more_worker(pool))
2174 		goto sleep;
2175 
2176 	/* do we need to manage? */
2177 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2178 		goto recheck;
2179 
2180 	/*
2181 	 * ->scheduled list can only be filled while a worker is
2182 	 * preparing to process a work or actually processing it.
2183 	 * Make sure nobody diddled with it while I was sleeping.
2184 	 */
2185 	BUG_ON(!list_empty(&worker->scheduled));
2186 
2187 	/*
2188 	 * When control reaches this point, we're guaranteed to have
2189 	 * at least one idle worker or that someone else has already
2190 	 * assumed the manager role.
2191 	 */
2192 	worker_clr_flags(worker, WORKER_PREP);
2193 
2194 	do {
2195 		struct work_struct *work =
2196 			list_first_entry(&pool->worklist,
2197 					 struct work_struct, entry);
2198 
2199 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2200 			/* optimization path, not strictly necessary */
2201 			process_one_work(worker, work);
2202 			if (unlikely(!list_empty(&worker->scheduled)))
2203 				process_scheduled_works(worker);
2204 		} else {
2205 			move_linked_works(work, &worker->scheduled, NULL);
2206 			process_scheduled_works(worker);
2207 		}
2208 	} while (keep_working(pool));
2209 
2210 	worker_set_flags(worker, WORKER_PREP, false);
2211 sleep:
2212 	if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2213 		goto recheck;
2214 
2215 	/*
2216 	 * gcwq->lock is held and there's no work to process and no
2217 	 * need to manage, sleep.  Workers are woken up only while
2218 	 * holding gcwq->lock or from local cpu, so setting the
2219 	 * current state before releasing gcwq->lock is enough to
2220 	 * prevent losing any event.
2221 	 */
2222 	worker_enter_idle(worker);
2223 	__set_current_state(TASK_INTERRUPTIBLE);
2224 	spin_unlock_irq(&gcwq->lock);
2225 	schedule();
2226 	goto woke_up;
2227 }
2228 
2229 /**
2230  * rescuer_thread - the rescuer thread function
2231  * @__wq: the associated workqueue
2232  *
2233  * Workqueue rescuer thread function.  There's one rescuer for each
2234  * workqueue which has WQ_RESCUER set.
2235  *
2236  * Regular work processing on a gcwq may block trying to create a new
2237  * worker which uses GFP_KERNEL allocation which has slight chance of
2238  * developing into deadlock if some works currently on the same queue
2239  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2240  * the problem rescuer solves.
2241  *
2242  * When such condition is possible, the gcwq summons rescuers of all
2243  * workqueues which have works queued on the gcwq and let them process
2244  * those works so that forward progress can be guaranteed.
2245  *
2246  * This should happen rarely.
2247  */
2248 static int rescuer_thread(void *__wq)
2249 {
2250 	struct workqueue_struct *wq = __wq;
2251 	struct worker *rescuer = wq->rescuer;
2252 	struct list_head *scheduled = &rescuer->scheduled;
2253 	bool is_unbound = wq->flags & WQ_UNBOUND;
2254 	unsigned int cpu;
2255 
2256 	set_user_nice(current, RESCUER_NICE_LEVEL);
2257 repeat:
2258 	set_current_state(TASK_INTERRUPTIBLE);
2259 
2260 	if (kthread_should_stop())
2261 		return 0;
2262 
2263 	/*
2264 	 * See whether any cpu is asking for help.  Unbounded
2265 	 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2266 	 */
2267 	for_each_mayday_cpu(cpu, wq->mayday_mask) {
2268 		unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
2269 		struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
2270 		struct worker_pool *pool = cwq->pool;
2271 		struct global_cwq *gcwq = pool->gcwq;
2272 		struct work_struct *work, *n;
2273 
2274 		__set_current_state(TASK_RUNNING);
2275 		mayday_clear_cpu(cpu, wq->mayday_mask);
2276 
2277 		/* migrate to the target cpu if possible */
2278 		rescuer->pool = pool;
2279 		worker_maybe_bind_and_lock(rescuer);
2280 
2281 		/*
2282 		 * Slurp in all works issued via this workqueue and
2283 		 * process'em.
2284 		 */
2285 		BUG_ON(!list_empty(&rescuer->scheduled));
2286 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2287 			if (get_work_cwq(work) == cwq)
2288 				move_linked_works(work, scheduled, &n);
2289 
2290 		process_scheduled_works(rescuer);
2291 
2292 		/*
2293 		 * Leave this gcwq.  If keep_working() is %true, notify a
2294 		 * regular worker; otherwise, we end up with 0 concurrency
2295 		 * and stalling the execution.
2296 		 */
2297 		if (keep_working(pool))
2298 			wake_up_worker(pool);
2299 
2300 		spin_unlock_irq(&gcwq->lock);
2301 	}
2302 
2303 	schedule();
2304 	goto repeat;
2305 }
2306 
2307 struct wq_barrier {
2308 	struct work_struct	work;
2309 	struct completion	done;
2310 };
2311 
2312 static void wq_barrier_func(struct work_struct *work)
2313 {
2314 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2315 	complete(&barr->done);
2316 }
2317 
2318 /**
2319  * insert_wq_barrier - insert a barrier work
2320  * @cwq: cwq to insert barrier into
2321  * @barr: wq_barrier to insert
2322  * @target: target work to attach @barr to
2323  * @worker: worker currently executing @target, NULL if @target is not executing
2324  *
2325  * @barr is linked to @target such that @barr is completed only after
2326  * @target finishes execution.  Please note that the ordering
2327  * guarantee is observed only with respect to @target and on the local
2328  * cpu.
2329  *
2330  * Currently, a queued barrier can't be canceled.  This is because
2331  * try_to_grab_pending() can't determine whether the work to be
2332  * grabbed is at the head of the queue and thus can't clear LINKED
2333  * flag of the previous work while there must be a valid next work
2334  * after a work with LINKED flag set.
2335  *
2336  * Note that when @worker is non-NULL, @target may be modified
2337  * underneath us, so we can't reliably determine cwq from @target.
2338  *
2339  * CONTEXT:
2340  * spin_lock_irq(gcwq->lock).
2341  */
2342 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2343 			      struct wq_barrier *barr,
2344 			      struct work_struct *target, struct worker *worker)
2345 {
2346 	struct list_head *head;
2347 	unsigned int linked = 0;
2348 
2349 	/*
2350 	 * debugobject calls are safe here even with gcwq->lock locked
2351 	 * as we know for sure that this will not trigger any of the
2352 	 * checks and call back into the fixup functions where we
2353 	 * might deadlock.
2354 	 */
2355 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2356 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2357 	init_completion(&barr->done);
2358 
2359 	/*
2360 	 * If @target is currently being executed, schedule the
2361 	 * barrier to the worker; otherwise, put it after @target.
2362 	 */
2363 	if (worker)
2364 		head = worker->scheduled.next;
2365 	else {
2366 		unsigned long *bits = work_data_bits(target);
2367 
2368 		head = target->entry.next;
2369 		/* there can already be other linked works, inherit and set */
2370 		linked = *bits & WORK_STRUCT_LINKED;
2371 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2372 	}
2373 
2374 	debug_work_activate(&barr->work);
2375 	insert_work(cwq, &barr->work, head,
2376 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2377 }
2378 
2379 /**
2380  * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2381  * @wq: workqueue being flushed
2382  * @flush_color: new flush color, < 0 for no-op
2383  * @work_color: new work color, < 0 for no-op
2384  *
2385  * Prepare cwqs for workqueue flushing.
2386  *
2387  * If @flush_color is non-negative, flush_color on all cwqs should be
2388  * -1.  If no cwq has in-flight commands at the specified color, all
2389  * cwq->flush_color's stay at -1 and %false is returned.  If any cwq
2390  * has in flight commands, its cwq->flush_color is set to
2391  * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2392  * wakeup logic is armed and %true is returned.
2393  *
2394  * The caller should have initialized @wq->first_flusher prior to
2395  * calling this function with non-negative @flush_color.  If
2396  * @flush_color is negative, no flush color update is done and %false
2397  * is returned.
2398  *
2399  * If @work_color is non-negative, all cwqs should have the same
2400  * work_color which is previous to @work_color and all will be
2401  * advanced to @work_color.
2402  *
2403  * CONTEXT:
2404  * mutex_lock(wq->flush_mutex).
2405  *
2406  * RETURNS:
2407  * %true if @flush_color >= 0 and there's something to flush.  %false
2408  * otherwise.
2409  */
2410 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2411 				      int flush_color, int work_color)
2412 {
2413 	bool wait = false;
2414 	unsigned int cpu;
2415 
2416 	if (flush_color >= 0) {
2417 		BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2418 		atomic_set(&wq->nr_cwqs_to_flush, 1);
2419 	}
2420 
2421 	for_each_cwq_cpu(cpu, wq) {
2422 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2423 		struct global_cwq *gcwq = cwq->pool->gcwq;
2424 
2425 		spin_lock_irq(&gcwq->lock);
2426 
2427 		if (flush_color >= 0) {
2428 			BUG_ON(cwq->flush_color != -1);
2429 
2430 			if (cwq->nr_in_flight[flush_color]) {
2431 				cwq->flush_color = flush_color;
2432 				atomic_inc(&wq->nr_cwqs_to_flush);
2433 				wait = true;
2434 			}
2435 		}
2436 
2437 		if (work_color >= 0) {
2438 			BUG_ON(work_color != work_next_color(cwq->work_color));
2439 			cwq->work_color = work_color;
2440 		}
2441 
2442 		spin_unlock_irq(&gcwq->lock);
2443 	}
2444 
2445 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2446 		complete(&wq->first_flusher->done);
2447 
2448 	return wait;
2449 }
2450 
2451 /**
2452  * flush_workqueue - ensure that any scheduled work has run to completion.
2453  * @wq: workqueue to flush
2454  *
2455  * Forces execution of the workqueue and blocks until its completion.
2456  * This is typically used in driver shutdown handlers.
2457  *
2458  * We sleep until all works which were queued on entry have been handled,
2459  * but we are not livelocked by new incoming ones.
2460  */
2461 void flush_workqueue(struct workqueue_struct *wq)
2462 {
2463 	struct wq_flusher this_flusher = {
2464 		.list = LIST_HEAD_INIT(this_flusher.list),
2465 		.flush_color = -1,
2466 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2467 	};
2468 	int next_color;
2469 
2470 	lock_map_acquire(&wq->lockdep_map);
2471 	lock_map_release(&wq->lockdep_map);
2472 
2473 	mutex_lock(&wq->flush_mutex);
2474 
2475 	/*
2476 	 * Start-to-wait phase
2477 	 */
2478 	next_color = work_next_color(wq->work_color);
2479 
2480 	if (next_color != wq->flush_color) {
2481 		/*
2482 		 * Color space is not full.  The current work_color
2483 		 * becomes our flush_color and work_color is advanced
2484 		 * by one.
2485 		 */
2486 		BUG_ON(!list_empty(&wq->flusher_overflow));
2487 		this_flusher.flush_color = wq->work_color;
2488 		wq->work_color = next_color;
2489 
2490 		if (!wq->first_flusher) {
2491 			/* no flush in progress, become the first flusher */
2492 			BUG_ON(wq->flush_color != this_flusher.flush_color);
2493 
2494 			wq->first_flusher = &this_flusher;
2495 
2496 			if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2497 						       wq->work_color)) {
2498 				/* nothing to flush, done */
2499 				wq->flush_color = next_color;
2500 				wq->first_flusher = NULL;
2501 				goto out_unlock;
2502 			}
2503 		} else {
2504 			/* wait in queue */
2505 			BUG_ON(wq->flush_color == this_flusher.flush_color);
2506 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2507 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2508 		}
2509 	} else {
2510 		/*
2511 		 * Oops, color space is full, wait on overflow queue.
2512 		 * The next flush completion will assign us
2513 		 * flush_color and transfer to flusher_queue.
2514 		 */
2515 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2516 	}
2517 
2518 	mutex_unlock(&wq->flush_mutex);
2519 
2520 	wait_for_completion(&this_flusher.done);
2521 
2522 	/*
2523 	 * Wake-up-and-cascade phase
2524 	 *
2525 	 * First flushers are responsible for cascading flushes and
2526 	 * handling overflow.  Non-first flushers can simply return.
2527 	 */
2528 	if (wq->first_flusher != &this_flusher)
2529 		return;
2530 
2531 	mutex_lock(&wq->flush_mutex);
2532 
2533 	/* we might have raced, check again with mutex held */
2534 	if (wq->first_flusher != &this_flusher)
2535 		goto out_unlock;
2536 
2537 	wq->first_flusher = NULL;
2538 
2539 	BUG_ON(!list_empty(&this_flusher.list));
2540 	BUG_ON(wq->flush_color != this_flusher.flush_color);
2541 
2542 	while (true) {
2543 		struct wq_flusher *next, *tmp;
2544 
2545 		/* complete all the flushers sharing the current flush color */
2546 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2547 			if (next->flush_color != wq->flush_color)
2548 				break;
2549 			list_del_init(&next->list);
2550 			complete(&next->done);
2551 		}
2552 
2553 		BUG_ON(!list_empty(&wq->flusher_overflow) &&
2554 		       wq->flush_color != work_next_color(wq->work_color));
2555 
2556 		/* this flush_color is finished, advance by one */
2557 		wq->flush_color = work_next_color(wq->flush_color);
2558 
2559 		/* one color has been freed, handle overflow queue */
2560 		if (!list_empty(&wq->flusher_overflow)) {
2561 			/*
2562 			 * Assign the same color to all overflowed
2563 			 * flushers, advance work_color and append to
2564 			 * flusher_queue.  This is the start-to-wait
2565 			 * phase for these overflowed flushers.
2566 			 */
2567 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2568 				tmp->flush_color = wq->work_color;
2569 
2570 			wq->work_color = work_next_color(wq->work_color);
2571 
2572 			list_splice_tail_init(&wq->flusher_overflow,
2573 					      &wq->flusher_queue);
2574 			flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2575 		}
2576 
2577 		if (list_empty(&wq->flusher_queue)) {
2578 			BUG_ON(wq->flush_color != wq->work_color);
2579 			break;
2580 		}
2581 
2582 		/*
2583 		 * Need to flush more colors.  Make the next flusher
2584 		 * the new first flusher and arm cwqs.
2585 		 */
2586 		BUG_ON(wq->flush_color == wq->work_color);
2587 		BUG_ON(wq->flush_color != next->flush_color);
2588 
2589 		list_del_init(&next->list);
2590 		wq->first_flusher = next;
2591 
2592 		if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2593 			break;
2594 
2595 		/*
2596 		 * Meh... this color is already done, clear first
2597 		 * flusher and repeat cascading.
2598 		 */
2599 		wq->first_flusher = NULL;
2600 	}
2601 
2602 out_unlock:
2603 	mutex_unlock(&wq->flush_mutex);
2604 }
2605 EXPORT_SYMBOL_GPL(flush_workqueue);
2606 
2607 /**
2608  * drain_workqueue - drain a workqueue
2609  * @wq: workqueue to drain
2610  *
2611  * Wait until the workqueue becomes empty.  While draining is in progress,
2612  * only chain queueing is allowed.  IOW, only currently pending or running
2613  * work items on @wq can queue further work items on it.  @wq is flushed
2614  * repeatedly until it becomes empty.  The number of flushing is detemined
2615  * by the depth of chaining and should be relatively short.  Whine if it
2616  * takes too long.
2617  */
2618 void drain_workqueue(struct workqueue_struct *wq)
2619 {
2620 	unsigned int flush_cnt = 0;
2621 	unsigned int cpu;
2622 
2623 	/*
2624 	 * __queue_work() needs to test whether there are drainers, is much
2625 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2626 	 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2627 	 */
2628 	spin_lock(&workqueue_lock);
2629 	if (!wq->nr_drainers++)
2630 		wq->flags |= WQ_DRAINING;
2631 	spin_unlock(&workqueue_lock);
2632 reflush:
2633 	flush_workqueue(wq);
2634 
2635 	for_each_cwq_cpu(cpu, wq) {
2636 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2637 		bool drained;
2638 
2639 		spin_lock_irq(&cwq->pool->gcwq->lock);
2640 		drained = !cwq->nr_active && list_empty(&cwq->delayed_works);
2641 		spin_unlock_irq(&cwq->pool->gcwq->lock);
2642 
2643 		if (drained)
2644 			continue;
2645 
2646 		if (++flush_cnt == 10 ||
2647 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2648 			pr_warning("workqueue %s: flush on destruction isn't complete after %u tries\n",
2649 				   wq->name, flush_cnt);
2650 		goto reflush;
2651 	}
2652 
2653 	spin_lock(&workqueue_lock);
2654 	if (!--wq->nr_drainers)
2655 		wq->flags &= ~WQ_DRAINING;
2656 	spin_unlock(&workqueue_lock);
2657 }
2658 EXPORT_SYMBOL_GPL(drain_workqueue);
2659 
2660 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2661 			     bool wait_executing)
2662 {
2663 	struct worker *worker = NULL;
2664 	struct global_cwq *gcwq;
2665 	struct cpu_workqueue_struct *cwq;
2666 
2667 	might_sleep();
2668 	gcwq = get_work_gcwq(work);
2669 	if (!gcwq)
2670 		return false;
2671 
2672 	spin_lock_irq(&gcwq->lock);
2673 	if (!list_empty(&work->entry)) {
2674 		/*
2675 		 * See the comment near try_to_grab_pending()->smp_rmb().
2676 		 * If it was re-queued to a different gcwq under us, we
2677 		 * are not going to wait.
2678 		 */
2679 		smp_rmb();
2680 		cwq = get_work_cwq(work);
2681 		if (unlikely(!cwq || gcwq != cwq->pool->gcwq))
2682 			goto already_gone;
2683 	} else if (wait_executing) {
2684 		worker = find_worker_executing_work(gcwq, work);
2685 		if (!worker)
2686 			goto already_gone;
2687 		cwq = worker->current_cwq;
2688 	} else
2689 		goto already_gone;
2690 
2691 	insert_wq_barrier(cwq, barr, work, worker);
2692 	spin_unlock_irq(&gcwq->lock);
2693 
2694 	/*
2695 	 * If @max_active is 1 or rescuer is in use, flushing another work
2696 	 * item on the same workqueue may lead to deadlock.  Make sure the
2697 	 * flusher is not running on the same workqueue by verifying write
2698 	 * access.
2699 	 */
2700 	if (cwq->wq->saved_max_active == 1 || cwq->wq->flags & WQ_RESCUER)
2701 		lock_map_acquire(&cwq->wq->lockdep_map);
2702 	else
2703 		lock_map_acquire_read(&cwq->wq->lockdep_map);
2704 	lock_map_release(&cwq->wq->lockdep_map);
2705 
2706 	return true;
2707 already_gone:
2708 	spin_unlock_irq(&gcwq->lock);
2709 	return false;
2710 }
2711 
2712 /**
2713  * flush_work - wait for a work to finish executing the last queueing instance
2714  * @work: the work to flush
2715  *
2716  * Wait until @work has finished execution.  This function considers
2717  * only the last queueing instance of @work.  If @work has been
2718  * enqueued across different CPUs on a non-reentrant workqueue or on
2719  * multiple workqueues, @work might still be executing on return on
2720  * some of the CPUs from earlier queueing.
2721  *
2722  * If @work was queued only on a non-reentrant, ordered or unbound
2723  * workqueue, @work is guaranteed to be idle on return if it hasn't
2724  * been requeued since flush started.
2725  *
2726  * RETURNS:
2727  * %true if flush_work() waited for the work to finish execution,
2728  * %false if it was already idle.
2729  */
2730 bool flush_work(struct work_struct *work)
2731 {
2732 	struct wq_barrier barr;
2733 
2734 	lock_map_acquire(&work->lockdep_map);
2735 	lock_map_release(&work->lockdep_map);
2736 
2737 	if (start_flush_work(work, &barr, true)) {
2738 		wait_for_completion(&barr.done);
2739 		destroy_work_on_stack(&barr.work);
2740 		return true;
2741 	} else
2742 		return false;
2743 }
2744 EXPORT_SYMBOL_GPL(flush_work);
2745 
2746 static bool wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2747 {
2748 	struct wq_barrier barr;
2749 	struct worker *worker;
2750 
2751 	spin_lock_irq(&gcwq->lock);
2752 
2753 	worker = find_worker_executing_work(gcwq, work);
2754 	if (unlikely(worker))
2755 		insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2756 
2757 	spin_unlock_irq(&gcwq->lock);
2758 
2759 	if (unlikely(worker)) {
2760 		wait_for_completion(&barr.done);
2761 		destroy_work_on_stack(&barr.work);
2762 		return true;
2763 	} else
2764 		return false;
2765 }
2766 
2767 static bool wait_on_work(struct work_struct *work)
2768 {
2769 	bool ret = false;
2770 	int cpu;
2771 
2772 	might_sleep();
2773 
2774 	lock_map_acquire(&work->lockdep_map);
2775 	lock_map_release(&work->lockdep_map);
2776 
2777 	for_each_gcwq_cpu(cpu)
2778 		ret |= wait_on_cpu_work(get_gcwq(cpu), work);
2779 	return ret;
2780 }
2781 
2782 /**
2783  * flush_work_sync - wait until a work has finished execution
2784  * @work: the work to flush
2785  *
2786  * Wait until @work has finished execution.  On return, it's
2787  * guaranteed that all queueing instances of @work which happened
2788  * before this function is called are finished.  In other words, if
2789  * @work hasn't been requeued since this function was called, @work is
2790  * guaranteed to be idle on return.
2791  *
2792  * RETURNS:
2793  * %true if flush_work_sync() waited for the work to finish execution,
2794  * %false if it was already idle.
2795  */
2796 bool flush_work_sync(struct work_struct *work)
2797 {
2798 	struct wq_barrier barr;
2799 	bool pending, waited;
2800 
2801 	/* we'll wait for executions separately, queue barr only if pending */
2802 	pending = start_flush_work(work, &barr, false);
2803 
2804 	/* wait for executions to finish */
2805 	waited = wait_on_work(work);
2806 
2807 	/* wait for the pending one */
2808 	if (pending) {
2809 		wait_for_completion(&barr.done);
2810 		destroy_work_on_stack(&barr.work);
2811 	}
2812 
2813 	return pending || waited;
2814 }
2815 EXPORT_SYMBOL_GPL(flush_work_sync);
2816 
2817 /*
2818  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2819  * so this work can't be re-armed in any way.
2820  */
2821 static int try_to_grab_pending(struct work_struct *work)
2822 {
2823 	struct global_cwq *gcwq;
2824 	int ret = -1;
2825 
2826 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2827 		return 0;
2828 
2829 	/*
2830 	 * The queueing is in progress, or it is already queued. Try to
2831 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2832 	 */
2833 	gcwq = get_work_gcwq(work);
2834 	if (!gcwq)
2835 		return ret;
2836 
2837 	spin_lock_irq(&gcwq->lock);
2838 	if (!list_empty(&work->entry)) {
2839 		/*
2840 		 * This work is queued, but perhaps we locked the wrong gcwq.
2841 		 * In that case we must see the new value after rmb(), see
2842 		 * insert_work()->wmb().
2843 		 */
2844 		smp_rmb();
2845 		if (gcwq == get_work_gcwq(work)) {
2846 			debug_work_deactivate(work);
2847 			list_del_init(&work->entry);
2848 			cwq_dec_nr_in_flight(get_work_cwq(work),
2849 				get_work_color(work),
2850 				*work_data_bits(work) & WORK_STRUCT_DELAYED);
2851 			ret = 1;
2852 		}
2853 	}
2854 	spin_unlock_irq(&gcwq->lock);
2855 
2856 	return ret;
2857 }
2858 
2859 static bool __cancel_work_timer(struct work_struct *work,
2860 				struct timer_list* timer)
2861 {
2862 	int ret;
2863 
2864 	do {
2865 		ret = (timer && likely(del_timer(timer)));
2866 		if (!ret)
2867 			ret = try_to_grab_pending(work);
2868 		wait_on_work(work);
2869 	} while (unlikely(ret < 0));
2870 
2871 	clear_work_data(work);
2872 	return ret;
2873 }
2874 
2875 /**
2876  * cancel_work_sync - cancel a work and wait for it to finish
2877  * @work: the work to cancel
2878  *
2879  * Cancel @work and wait for its execution to finish.  This function
2880  * can be used even if the work re-queues itself or migrates to
2881  * another workqueue.  On return from this function, @work is
2882  * guaranteed to be not pending or executing on any CPU.
2883  *
2884  * cancel_work_sync(&delayed_work->work) must not be used for
2885  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2886  *
2887  * The caller must ensure that the workqueue on which @work was last
2888  * queued can't be destroyed before this function returns.
2889  *
2890  * RETURNS:
2891  * %true if @work was pending, %false otherwise.
2892  */
2893 bool cancel_work_sync(struct work_struct *work)
2894 {
2895 	return __cancel_work_timer(work, NULL);
2896 }
2897 EXPORT_SYMBOL_GPL(cancel_work_sync);
2898 
2899 /**
2900  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2901  * @dwork: the delayed work to flush
2902  *
2903  * Delayed timer is cancelled and the pending work is queued for
2904  * immediate execution.  Like flush_work(), this function only
2905  * considers the last queueing instance of @dwork.
2906  *
2907  * RETURNS:
2908  * %true if flush_work() waited for the work to finish execution,
2909  * %false if it was already idle.
2910  */
2911 bool flush_delayed_work(struct delayed_work *dwork)
2912 {
2913 	if (del_timer_sync(&dwork->timer))
2914 		__queue_work(raw_smp_processor_id(),
2915 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2916 	return flush_work(&dwork->work);
2917 }
2918 EXPORT_SYMBOL(flush_delayed_work);
2919 
2920 /**
2921  * flush_delayed_work_sync - wait for a dwork to finish
2922  * @dwork: the delayed work to flush
2923  *
2924  * Delayed timer is cancelled and the pending work is queued for
2925  * execution immediately.  Other than timer handling, its behavior
2926  * is identical to flush_work_sync().
2927  *
2928  * RETURNS:
2929  * %true if flush_work_sync() waited for the work to finish execution,
2930  * %false if it was already idle.
2931  */
2932 bool flush_delayed_work_sync(struct delayed_work *dwork)
2933 {
2934 	if (del_timer_sync(&dwork->timer))
2935 		__queue_work(raw_smp_processor_id(),
2936 			     get_work_cwq(&dwork->work)->wq, &dwork->work);
2937 	return flush_work_sync(&dwork->work);
2938 }
2939 EXPORT_SYMBOL(flush_delayed_work_sync);
2940 
2941 /**
2942  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2943  * @dwork: the delayed work cancel
2944  *
2945  * This is cancel_work_sync() for delayed works.
2946  *
2947  * RETURNS:
2948  * %true if @dwork was pending, %false otherwise.
2949  */
2950 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2951 {
2952 	return __cancel_work_timer(&dwork->work, &dwork->timer);
2953 }
2954 EXPORT_SYMBOL(cancel_delayed_work_sync);
2955 
2956 /**
2957  * schedule_work - put work task in global workqueue
2958  * @work: job to be done
2959  *
2960  * Returns zero if @work was already on the kernel-global workqueue and
2961  * non-zero otherwise.
2962  *
2963  * This puts a job in the kernel-global workqueue if it was not already
2964  * queued and leaves it in the same position on the kernel-global
2965  * workqueue otherwise.
2966  */
2967 int schedule_work(struct work_struct *work)
2968 {
2969 	return queue_work(system_wq, work);
2970 }
2971 EXPORT_SYMBOL(schedule_work);
2972 
2973 /*
2974  * schedule_work_on - put work task on a specific cpu
2975  * @cpu: cpu to put the work task on
2976  * @work: job to be done
2977  *
2978  * This puts a job on a specific cpu
2979  */
2980 int schedule_work_on(int cpu, struct work_struct *work)
2981 {
2982 	return queue_work_on(cpu, system_wq, work);
2983 }
2984 EXPORT_SYMBOL(schedule_work_on);
2985 
2986 /**
2987  * schedule_delayed_work - put work task in global workqueue after delay
2988  * @dwork: job to be done
2989  * @delay: number of jiffies to wait or 0 for immediate execution
2990  *
2991  * After waiting for a given time this puts a job in the kernel-global
2992  * workqueue.
2993  */
2994 int schedule_delayed_work(struct delayed_work *dwork,
2995 					unsigned long delay)
2996 {
2997 	return queue_delayed_work(system_wq, dwork, delay);
2998 }
2999 EXPORT_SYMBOL(schedule_delayed_work);
3000 
3001 /**
3002  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
3003  * @cpu: cpu to use
3004  * @dwork: job to be done
3005  * @delay: number of jiffies to wait
3006  *
3007  * After waiting for a given time this puts a job in the kernel-global
3008  * workqueue on the specified CPU.
3009  */
3010 int schedule_delayed_work_on(int cpu,
3011 			struct delayed_work *dwork, unsigned long delay)
3012 {
3013 	return queue_delayed_work_on(cpu, system_wq, dwork, delay);
3014 }
3015 EXPORT_SYMBOL(schedule_delayed_work_on);
3016 
3017 /**
3018  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3019  * @func: the function to call
3020  *
3021  * schedule_on_each_cpu() executes @func on each online CPU using the
3022  * system workqueue and blocks until all CPUs have completed.
3023  * schedule_on_each_cpu() is very slow.
3024  *
3025  * RETURNS:
3026  * 0 on success, -errno on failure.
3027  */
3028 int schedule_on_each_cpu(work_func_t func)
3029 {
3030 	int cpu;
3031 	struct work_struct __percpu *works;
3032 
3033 	works = alloc_percpu(struct work_struct);
3034 	if (!works)
3035 		return -ENOMEM;
3036 
3037 	get_online_cpus();
3038 
3039 	for_each_online_cpu(cpu) {
3040 		struct work_struct *work = per_cpu_ptr(works, cpu);
3041 
3042 		INIT_WORK(work, func);
3043 		schedule_work_on(cpu, work);
3044 	}
3045 
3046 	for_each_online_cpu(cpu)
3047 		flush_work(per_cpu_ptr(works, cpu));
3048 
3049 	put_online_cpus();
3050 	free_percpu(works);
3051 	return 0;
3052 }
3053 
3054 /**
3055  * flush_scheduled_work - ensure that any scheduled work has run to completion.
3056  *
3057  * Forces execution of the kernel-global workqueue and blocks until its
3058  * completion.
3059  *
3060  * Think twice before calling this function!  It's very easy to get into
3061  * trouble if you don't take great care.  Either of the following situations
3062  * will lead to deadlock:
3063  *
3064  *	One of the work items currently on the workqueue needs to acquire
3065  *	a lock held by your code or its caller.
3066  *
3067  *	Your code is running in the context of a work routine.
3068  *
3069  * They will be detected by lockdep when they occur, but the first might not
3070  * occur very often.  It depends on what work items are on the workqueue and
3071  * what locks they need, which you have no control over.
3072  *
3073  * In most situations flushing the entire workqueue is overkill; you merely
3074  * need to know that a particular work item isn't queued and isn't running.
3075  * In such cases you should use cancel_delayed_work_sync() or
3076  * cancel_work_sync() instead.
3077  */
3078 void flush_scheduled_work(void)
3079 {
3080 	flush_workqueue(system_wq);
3081 }
3082 EXPORT_SYMBOL(flush_scheduled_work);
3083 
3084 /**
3085  * execute_in_process_context - reliably execute the routine with user context
3086  * @fn:		the function to execute
3087  * @ew:		guaranteed storage for the execute work structure (must
3088  *		be available when the work executes)
3089  *
3090  * Executes the function immediately if process context is available,
3091  * otherwise schedules the function for delayed execution.
3092  *
3093  * Returns:	0 - function was executed
3094  *		1 - function was scheduled for execution
3095  */
3096 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3097 {
3098 	if (!in_interrupt()) {
3099 		fn(&ew->work);
3100 		return 0;
3101 	}
3102 
3103 	INIT_WORK(&ew->work, fn);
3104 	schedule_work(&ew->work);
3105 
3106 	return 1;
3107 }
3108 EXPORT_SYMBOL_GPL(execute_in_process_context);
3109 
3110 int keventd_up(void)
3111 {
3112 	return system_wq != NULL;
3113 }
3114 
3115 static int alloc_cwqs(struct workqueue_struct *wq)
3116 {
3117 	/*
3118 	 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
3119 	 * Make sure that the alignment isn't lower than that of
3120 	 * unsigned long long.
3121 	 */
3122 	const size_t size = sizeof(struct cpu_workqueue_struct);
3123 	const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3124 				   __alignof__(unsigned long long));
3125 
3126 	if (!(wq->flags & WQ_UNBOUND))
3127 		wq->cpu_wq.pcpu = __alloc_percpu(size, align);
3128 	else {
3129 		void *ptr;
3130 
3131 		/*
3132 		 * Allocate enough room to align cwq and put an extra
3133 		 * pointer at the end pointing back to the originally
3134 		 * allocated pointer which will be used for free.
3135 		 */
3136 		ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3137 		if (ptr) {
3138 			wq->cpu_wq.single = PTR_ALIGN(ptr, align);
3139 			*(void **)(wq->cpu_wq.single + 1) = ptr;
3140 		}
3141 	}
3142 
3143 	/* just in case, make sure it's actually aligned */
3144 	BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
3145 	return wq->cpu_wq.v ? 0 : -ENOMEM;
3146 }
3147 
3148 static void free_cwqs(struct workqueue_struct *wq)
3149 {
3150 	if (!(wq->flags & WQ_UNBOUND))
3151 		free_percpu(wq->cpu_wq.pcpu);
3152 	else if (wq->cpu_wq.single) {
3153 		/* the pointer to free is stored right after the cwq */
3154 		kfree(*(void **)(wq->cpu_wq.single + 1));
3155 	}
3156 }
3157 
3158 static int wq_clamp_max_active(int max_active, unsigned int flags,
3159 			       const char *name)
3160 {
3161 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3162 
3163 	if (max_active < 1 || max_active > lim)
3164 		printk(KERN_WARNING "workqueue: max_active %d requested for %s "
3165 		       "is out of range, clamping between %d and %d\n",
3166 		       max_active, name, 1, lim);
3167 
3168 	return clamp_val(max_active, 1, lim);
3169 }
3170 
3171 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3172 					       unsigned int flags,
3173 					       int max_active,
3174 					       struct lock_class_key *key,
3175 					       const char *lock_name, ...)
3176 {
3177 	va_list args, args1;
3178 	struct workqueue_struct *wq;
3179 	unsigned int cpu;
3180 	size_t namelen;
3181 
3182 	/* determine namelen, allocate wq and format name */
3183 	va_start(args, lock_name);
3184 	va_copy(args1, args);
3185 	namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3186 
3187 	wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3188 	if (!wq)
3189 		goto err;
3190 
3191 	vsnprintf(wq->name, namelen, fmt, args1);
3192 	va_end(args);
3193 	va_end(args1);
3194 
3195 	/*
3196 	 * Workqueues which may be used during memory reclaim should
3197 	 * have a rescuer to guarantee forward progress.
3198 	 */
3199 	if (flags & WQ_MEM_RECLAIM)
3200 		flags |= WQ_RESCUER;
3201 
3202 	max_active = max_active ?: WQ_DFL_ACTIVE;
3203 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3204 
3205 	/* init wq */
3206 	wq->flags = flags;
3207 	wq->saved_max_active = max_active;
3208 	mutex_init(&wq->flush_mutex);
3209 	atomic_set(&wq->nr_cwqs_to_flush, 0);
3210 	INIT_LIST_HEAD(&wq->flusher_queue);
3211 	INIT_LIST_HEAD(&wq->flusher_overflow);
3212 
3213 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3214 	INIT_LIST_HEAD(&wq->list);
3215 
3216 	if (alloc_cwqs(wq) < 0)
3217 		goto err;
3218 
3219 	for_each_cwq_cpu(cpu, wq) {
3220 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3221 		struct global_cwq *gcwq = get_gcwq(cpu);
3222 		int pool_idx = (bool)(flags & WQ_HIGHPRI);
3223 
3224 		BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
3225 		cwq->pool = &gcwq->pools[pool_idx];
3226 		cwq->wq = wq;
3227 		cwq->flush_color = -1;
3228 		cwq->max_active = max_active;
3229 		INIT_LIST_HEAD(&cwq->delayed_works);
3230 	}
3231 
3232 	if (flags & WQ_RESCUER) {
3233 		struct worker *rescuer;
3234 
3235 		if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
3236 			goto err;
3237 
3238 		wq->rescuer = rescuer = alloc_worker();
3239 		if (!rescuer)
3240 			goto err;
3241 
3242 		rescuer->task = kthread_create(rescuer_thread, wq, "%s",
3243 					       wq->name);
3244 		if (IS_ERR(rescuer->task))
3245 			goto err;
3246 
3247 		rescuer->task->flags |= PF_THREAD_BOUND;
3248 		wake_up_process(rescuer->task);
3249 	}
3250 
3251 	/*
3252 	 * workqueue_lock protects global freeze state and workqueues
3253 	 * list.  Grab it, set max_active accordingly and add the new
3254 	 * workqueue to workqueues list.
3255 	 */
3256 	spin_lock(&workqueue_lock);
3257 
3258 	if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
3259 		for_each_cwq_cpu(cpu, wq)
3260 			get_cwq(cpu, wq)->max_active = 0;
3261 
3262 	list_add(&wq->list, &workqueues);
3263 
3264 	spin_unlock(&workqueue_lock);
3265 
3266 	return wq;
3267 err:
3268 	if (wq) {
3269 		free_cwqs(wq);
3270 		free_mayday_mask(wq->mayday_mask);
3271 		kfree(wq->rescuer);
3272 		kfree(wq);
3273 	}
3274 	return NULL;
3275 }
3276 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3277 
3278 /**
3279  * destroy_workqueue - safely terminate a workqueue
3280  * @wq: target workqueue
3281  *
3282  * Safely destroy a workqueue. All work currently pending will be done first.
3283  */
3284 void destroy_workqueue(struct workqueue_struct *wq)
3285 {
3286 	unsigned int cpu;
3287 
3288 	/* drain it before proceeding with destruction */
3289 	drain_workqueue(wq);
3290 
3291 	/*
3292 	 * wq list is used to freeze wq, remove from list after
3293 	 * flushing is complete in case freeze races us.
3294 	 */
3295 	spin_lock(&workqueue_lock);
3296 	list_del(&wq->list);
3297 	spin_unlock(&workqueue_lock);
3298 
3299 	/* sanity check */
3300 	for_each_cwq_cpu(cpu, wq) {
3301 		struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3302 		int i;
3303 
3304 		for (i = 0; i < WORK_NR_COLORS; i++)
3305 			BUG_ON(cwq->nr_in_flight[i]);
3306 		BUG_ON(cwq->nr_active);
3307 		BUG_ON(!list_empty(&cwq->delayed_works));
3308 	}
3309 
3310 	if (wq->flags & WQ_RESCUER) {
3311 		kthread_stop(wq->rescuer->task);
3312 		free_mayday_mask(wq->mayday_mask);
3313 		kfree(wq->rescuer);
3314 	}
3315 
3316 	free_cwqs(wq);
3317 	kfree(wq);
3318 }
3319 EXPORT_SYMBOL_GPL(destroy_workqueue);
3320 
3321 /**
3322  * workqueue_set_max_active - adjust max_active of a workqueue
3323  * @wq: target workqueue
3324  * @max_active: new max_active value.
3325  *
3326  * Set max_active of @wq to @max_active.
3327  *
3328  * CONTEXT:
3329  * Don't call from IRQ context.
3330  */
3331 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3332 {
3333 	unsigned int cpu;
3334 
3335 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3336 
3337 	spin_lock(&workqueue_lock);
3338 
3339 	wq->saved_max_active = max_active;
3340 
3341 	for_each_cwq_cpu(cpu, wq) {
3342 		struct global_cwq *gcwq = get_gcwq(cpu);
3343 
3344 		spin_lock_irq(&gcwq->lock);
3345 
3346 		if (!(wq->flags & WQ_FREEZABLE) ||
3347 		    !(gcwq->flags & GCWQ_FREEZING))
3348 			get_cwq(gcwq->cpu, wq)->max_active = max_active;
3349 
3350 		spin_unlock_irq(&gcwq->lock);
3351 	}
3352 
3353 	spin_unlock(&workqueue_lock);
3354 }
3355 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3356 
3357 /**
3358  * workqueue_congested - test whether a workqueue is congested
3359  * @cpu: CPU in question
3360  * @wq: target workqueue
3361  *
3362  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
3363  * no synchronization around this function and the test result is
3364  * unreliable and only useful as advisory hints or for debugging.
3365  *
3366  * RETURNS:
3367  * %true if congested, %false otherwise.
3368  */
3369 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
3370 {
3371 	struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3372 
3373 	return !list_empty(&cwq->delayed_works);
3374 }
3375 EXPORT_SYMBOL_GPL(workqueue_congested);
3376 
3377 /**
3378  * work_cpu - return the last known associated cpu for @work
3379  * @work: the work of interest
3380  *
3381  * RETURNS:
3382  * CPU number if @work was ever queued.  WORK_CPU_NONE otherwise.
3383  */
3384 unsigned int work_cpu(struct work_struct *work)
3385 {
3386 	struct global_cwq *gcwq = get_work_gcwq(work);
3387 
3388 	return gcwq ? gcwq->cpu : WORK_CPU_NONE;
3389 }
3390 EXPORT_SYMBOL_GPL(work_cpu);
3391 
3392 /**
3393  * work_busy - test whether a work is currently pending or running
3394  * @work: the work to be tested
3395  *
3396  * Test whether @work is currently pending or running.  There is no
3397  * synchronization around this function and the test result is
3398  * unreliable and only useful as advisory hints or for debugging.
3399  * Especially for reentrant wqs, the pending state might hide the
3400  * running state.
3401  *
3402  * RETURNS:
3403  * OR'd bitmask of WORK_BUSY_* bits.
3404  */
3405 unsigned int work_busy(struct work_struct *work)
3406 {
3407 	struct global_cwq *gcwq = get_work_gcwq(work);
3408 	unsigned long flags;
3409 	unsigned int ret = 0;
3410 
3411 	if (!gcwq)
3412 		return false;
3413 
3414 	spin_lock_irqsave(&gcwq->lock, flags);
3415 
3416 	if (work_pending(work))
3417 		ret |= WORK_BUSY_PENDING;
3418 	if (find_worker_executing_work(gcwq, work))
3419 		ret |= WORK_BUSY_RUNNING;
3420 
3421 	spin_unlock_irqrestore(&gcwq->lock, flags);
3422 
3423 	return ret;
3424 }
3425 EXPORT_SYMBOL_GPL(work_busy);
3426 
3427 /*
3428  * CPU hotplug.
3429  *
3430  * There are two challenges in supporting CPU hotplug.  Firstly, there
3431  * are a lot of assumptions on strong associations among work, cwq and
3432  * gcwq which make migrating pending and scheduled works very
3433  * difficult to implement without impacting hot paths.  Secondly,
3434  * gcwqs serve mix of short, long and very long running works making
3435  * blocked draining impractical.
3436  *
3437  * This is solved by allowing a gcwq to be disassociated from the CPU
3438  * running as an unbound one and allowing it to be reattached later if the
3439  * cpu comes back online.
3440  */
3441 
3442 /* claim manager positions of all pools */
3443 static void gcwq_claim_management_and_lock(struct global_cwq *gcwq)
3444 {
3445 	struct worker_pool *pool;
3446 
3447 	for_each_worker_pool(pool, gcwq)
3448 		mutex_lock_nested(&pool->manager_mutex, pool - gcwq->pools);
3449 	spin_lock_irq(&gcwq->lock);
3450 }
3451 
3452 /* release manager positions */
3453 static void gcwq_release_management_and_unlock(struct global_cwq *gcwq)
3454 {
3455 	struct worker_pool *pool;
3456 
3457 	spin_unlock_irq(&gcwq->lock);
3458 	for_each_worker_pool(pool, gcwq)
3459 		mutex_unlock(&pool->manager_mutex);
3460 }
3461 
3462 static void gcwq_unbind_fn(struct work_struct *work)
3463 {
3464 	struct global_cwq *gcwq = get_gcwq(smp_processor_id());
3465 	struct worker_pool *pool;
3466 	struct worker *worker;
3467 	struct hlist_node *pos;
3468 	int i;
3469 
3470 	BUG_ON(gcwq->cpu != smp_processor_id());
3471 
3472 	gcwq_claim_management_and_lock(gcwq);
3473 
3474 	/*
3475 	 * We've claimed all manager positions.  Make all workers unbound
3476 	 * and set DISASSOCIATED.  Before this, all workers except for the
3477 	 * ones which are still executing works from before the last CPU
3478 	 * down must be on the cpu.  After this, they may become diasporas.
3479 	 */
3480 	for_each_worker_pool(pool, gcwq)
3481 		list_for_each_entry(worker, &pool->idle_list, entry)
3482 			worker->flags |= WORKER_UNBOUND;
3483 
3484 	for_each_busy_worker(worker, i, pos, gcwq)
3485 		worker->flags |= WORKER_UNBOUND;
3486 
3487 	gcwq->flags |= GCWQ_DISASSOCIATED;
3488 
3489 	gcwq_release_management_and_unlock(gcwq);
3490 
3491 	/*
3492 	 * Call schedule() so that we cross rq->lock and thus can guarantee
3493 	 * sched callbacks see the %WORKER_UNBOUND flag.  This is necessary
3494 	 * as scheduler callbacks may be invoked from other cpus.
3495 	 */
3496 	schedule();
3497 
3498 	/*
3499 	 * Sched callbacks are disabled now.  Zap nr_running.  After this,
3500 	 * nr_running stays zero and need_more_worker() and keep_working()
3501 	 * are always true as long as the worklist is not empty.  @gcwq now
3502 	 * behaves as unbound (in terms of concurrency management) gcwq
3503 	 * which is served by workers tied to the CPU.
3504 	 *
3505 	 * On return from this function, the current worker would trigger
3506 	 * unbound chain execution of pending work items if other workers
3507 	 * didn't already.
3508 	 */
3509 	for_each_worker_pool(pool, gcwq)
3510 		atomic_set(get_pool_nr_running(pool), 0);
3511 }
3512 
3513 /*
3514  * Workqueues should be brought up before normal priority CPU notifiers.
3515  * This will be registered high priority CPU notifier.
3516  */
3517 static int __devinit workqueue_cpu_up_callback(struct notifier_block *nfb,
3518 					       unsigned long action,
3519 					       void *hcpu)
3520 {
3521 	unsigned int cpu = (unsigned long)hcpu;
3522 	struct global_cwq *gcwq = get_gcwq(cpu);
3523 	struct worker_pool *pool;
3524 
3525 	switch (action & ~CPU_TASKS_FROZEN) {
3526 	case CPU_UP_PREPARE:
3527 		for_each_worker_pool(pool, gcwq) {
3528 			struct worker *worker;
3529 
3530 			if (pool->nr_workers)
3531 				continue;
3532 
3533 			worker = create_worker(pool);
3534 			if (!worker)
3535 				return NOTIFY_BAD;
3536 
3537 			spin_lock_irq(&gcwq->lock);
3538 			start_worker(worker);
3539 			spin_unlock_irq(&gcwq->lock);
3540 		}
3541 		break;
3542 
3543 	case CPU_DOWN_FAILED:
3544 	case CPU_ONLINE:
3545 		gcwq_claim_management_and_lock(gcwq);
3546 		gcwq->flags &= ~GCWQ_DISASSOCIATED;
3547 		rebind_workers(gcwq);
3548 		gcwq_release_management_and_unlock(gcwq);
3549 		break;
3550 	}
3551 	return NOTIFY_OK;
3552 }
3553 
3554 /*
3555  * Workqueues should be brought down after normal priority CPU notifiers.
3556  * This will be registered as low priority CPU notifier.
3557  */
3558 static int __devinit workqueue_cpu_down_callback(struct notifier_block *nfb,
3559 						 unsigned long action,
3560 						 void *hcpu)
3561 {
3562 	unsigned int cpu = (unsigned long)hcpu;
3563 	struct work_struct unbind_work;
3564 
3565 	switch (action & ~CPU_TASKS_FROZEN) {
3566 	case CPU_DOWN_PREPARE:
3567 		/* unbinding should happen on the local CPU */
3568 		INIT_WORK_ONSTACK(&unbind_work, gcwq_unbind_fn);
3569 		schedule_work_on(cpu, &unbind_work);
3570 		flush_work(&unbind_work);
3571 		break;
3572 	}
3573 	return NOTIFY_OK;
3574 }
3575 
3576 #ifdef CONFIG_SMP
3577 
3578 struct work_for_cpu {
3579 	struct work_struct work;
3580 	long (*fn)(void *);
3581 	void *arg;
3582 	long ret;
3583 };
3584 
3585 static void work_for_cpu_fn(struct work_struct *work)
3586 {
3587 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3588 
3589 	wfc->ret = wfc->fn(wfc->arg);
3590 }
3591 
3592 /**
3593  * work_on_cpu - run a function in user context on a particular cpu
3594  * @cpu: the cpu to run on
3595  * @fn: the function to run
3596  * @arg: the function arg
3597  *
3598  * This will return the value @fn returns.
3599  * It is up to the caller to ensure that the cpu doesn't go offline.
3600  * The caller must not hold any locks which would prevent @fn from completing.
3601  */
3602 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3603 {
3604 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
3605 
3606 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3607 	schedule_work_on(cpu, &wfc.work);
3608 	flush_work(&wfc.work);
3609 	return wfc.ret;
3610 }
3611 EXPORT_SYMBOL_GPL(work_on_cpu);
3612 #endif /* CONFIG_SMP */
3613 
3614 #ifdef CONFIG_FREEZER
3615 
3616 /**
3617  * freeze_workqueues_begin - begin freezing workqueues
3618  *
3619  * Start freezing workqueues.  After this function returns, all freezable
3620  * workqueues will queue new works to their frozen_works list instead of
3621  * gcwq->worklist.
3622  *
3623  * CONTEXT:
3624  * Grabs and releases workqueue_lock and gcwq->lock's.
3625  */
3626 void freeze_workqueues_begin(void)
3627 {
3628 	unsigned int cpu;
3629 
3630 	spin_lock(&workqueue_lock);
3631 
3632 	BUG_ON(workqueue_freezing);
3633 	workqueue_freezing = true;
3634 
3635 	for_each_gcwq_cpu(cpu) {
3636 		struct global_cwq *gcwq = get_gcwq(cpu);
3637 		struct workqueue_struct *wq;
3638 
3639 		spin_lock_irq(&gcwq->lock);
3640 
3641 		BUG_ON(gcwq->flags & GCWQ_FREEZING);
3642 		gcwq->flags |= GCWQ_FREEZING;
3643 
3644 		list_for_each_entry(wq, &workqueues, list) {
3645 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3646 
3647 			if (cwq && wq->flags & WQ_FREEZABLE)
3648 				cwq->max_active = 0;
3649 		}
3650 
3651 		spin_unlock_irq(&gcwq->lock);
3652 	}
3653 
3654 	spin_unlock(&workqueue_lock);
3655 }
3656 
3657 /**
3658  * freeze_workqueues_busy - are freezable workqueues still busy?
3659  *
3660  * Check whether freezing is complete.  This function must be called
3661  * between freeze_workqueues_begin() and thaw_workqueues().
3662  *
3663  * CONTEXT:
3664  * Grabs and releases workqueue_lock.
3665  *
3666  * RETURNS:
3667  * %true if some freezable workqueues are still busy.  %false if freezing
3668  * is complete.
3669  */
3670 bool freeze_workqueues_busy(void)
3671 {
3672 	unsigned int cpu;
3673 	bool busy = false;
3674 
3675 	spin_lock(&workqueue_lock);
3676 
3677 	BUG_ON(!workqueue_freezing);
3678 
3679 	for_each_gcwq_cpu(cpu) {
3680 		struct workqueue_struct *wq;
3681 		/*
3682 		 * nr_active is monotonically decreasing.  It's safe
3683 		 * to peek without lock.
3684 		 */
3685 		list_for_each_entry(wq, &workqueues, list) {
3686 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3687 
3688 			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3689 				continue;
3690 
3691 			BUG_ON(cwq->nr_active < 0);
3692 			if (cwq->nr_active) {
3693 				busy = true;
3694 				goto out_unlock;
3695 			}
3696 		}
3697 	}
3698 out_unlock:
3699 	spin_unlock(&workqueue_lock);
3700 	return busy;
3701 }
3702 
3703 /**
3704  * thaw_workqueues - thaw workqueues
3705  *
3706  * Thaw workqueues.  Normal queueing is restored and all collected
3707  * frozen works are transferred to their respective gcwq worklists.
3708  *
3709  * CONTEXT:
3710  * Grabs and releases workqueue_lock and gcwq->lock's.
3711  */
3712 void thaw_workqueues(void)
3713 {
3714 	unsigned int cpu;
3715 
3716 	spin_lock(&workqueue_lock);
3717 
3718 	if (!workqueue_freezing)
3719 		goto out_unlock;
3720 
3721 	for_each_gcwq_cpu(cpu) {
3722 		struct global_cwq *gcwq = get_gcwq(cpu);
3723 		struct worker_pool *pool;
3724 		struct workqueue_struct *wq;
3725 
3726 		spin_lock_irq(&gcwq->lock);
3727 
3728 		BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3729 		gcwq->flags &= ~GCWQ_FREEZING;
3730 
3731 		list_for_each_entry(wq, &workqueues, list) {
3732 			struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3733 
3734 			if (!cwq || !(wq->flags & WQ_FREEZABLE))
3735 				continue;
3736 
3737 			/* restore max_active and repopulate worklist */
3738 			cwq->max_active = wq->saved_max_active;
3739 
3740 			while (!list_empty(&cwq->delayed_works) &&
3741 			       cwq->nr_active < cwq->max_active)
3742 				cwq_activate_first_delayed(cwq);
3743 		}
3744 
3745 		for_each_worker_pool(pool, gcwq)
3746 			wake_up_worker(pool);
3747 
3748 		spin_unlock_irq(&gcwq->lock);
3749 	}
3750 
3751 	workqueue_freezing = false;
3752 out_unlock:
3753 	spin_unlock(&workqueue_lock);
3754 }
3755 #endif /* CONFIG_FREEZER */
3756 
3757 static int __init init_workqueues(void)
3758 {
3759 	unsigned int cpu;
3760 	int i;
3761 
3762 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
3763 	cpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
3764 
3765 	/* initialize gcwqs */
3766 	for_each_gcwq_cpu(cpu) {
3767 		struct global_cwq *gcwq = get_gcwq(cpu);
3768 		struct worker_pool *pool;
3769 
3770 		spin_lock_init(&gcwq->lock);
3771 		gcwq->cpu = cpu;
3772 		gcwq->flags |= GCWQ_DISASSOCIATED;
3773 
3774 		for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3775 			INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3776 
3777 		for_each_worker_pool(pool, gcwq) {
3778 			pool->gcwq = gcwq;
3779 			INIT_LIST_HEAD(&pool->worklist);
3780 			INIT_LIST_HEAD(&pool->idle_list);
3781 
3782 			init_timer_deferrable(&pool->idle_timer);
3783 			pool->idle_timer.function = idle_worker_timeout;
3784 			pool->idle_timer.data = (unsigned long)pool;
3785 
3786 			setup_timer(&pool->mayday_timer, gcwq_mayday_timeout,
3787 				    (unsigned long)pool);
3788 
3789 			mutex_init(&pool->manager_mutex);
3790 			ida_init(&pool->worker_ida);
3791 		}
3792 
3793 		init_waitqueue_head(&gcwq->rebind_hold);
3794 	}
3795 
3796 	/* create the initial worker */
3797 	for_each_online_gcwq_cpu(cpu) {
3798 		struct global_cwq *gcwq = get_gcwq(cpu);
3799 		struct worker_pool *pool;
3800 
3801 		if (cpu != WORK_CPU_UNBOUND)
3802 			gcwq->flags &= ~GCWQ_DISASSOCIATED;
3803 
3804 		for_each_worker_pool(pool, gcwq) {
3805 			struct worker *worker;
3806 
3807 			worker = create_worker(pool);
3808 			BUG_ON(!worker);
3809 			spin_lock_irq(&gcwq->lock);
3810 			start_worker(worker);
3811 			spin_unlock_irq(&gcwq->lock);
3812 		}
3813 	}
3814 
3815 	system_wq = alloc_workqueue("events", 0, 0);
3816 	system_long_wq = alloc_workqueue("events_long", 0, 0);
3817 	system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3818 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3819 					    WQ_UNBOUND_MAX_ACTIVE);
3820 	system_freezable_wq = alloc_workqueue("events_freezable",
3821 					      WQ_FREEZABLE, 0);
3822 	system_nrt_freezable_wq = alloc_workqueue("events_nrt_freezable",
3823 			WQ_NON_REENTRANT | WQ_FREEZABLE, 0);
3824 	BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq ||
3825 	       !system_unbound_wq || !system_freezable_wq ||
3826 		!system_nrt_freezable_wq);
3827 	return 0;
3828 }
3829 early_initcall(init_workqueues);
3830