1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/interrupt.h> 33 #include <linux/signal.h> 34 #include <linux/completion.h> 35 #include <linux/workqueue.h> 36 #include <linux/slab.h> 37 #include <linux/cpu.h> 38 #include <linux/notifier.h> 39 #include <linux/kthread.h> 40 #include <linux/hardirq.h> 41 #include <linux/mempolicy.h> 42 #include <linux/freezer.h> 43 #include <linux/debug_locks.h> 44 #include <linux/lockdep.h> 45 #include <linux/idr.h> 46 #include <linux/jhash.h> 47 #include <linux/hashtable.h> 48 #include <linux/rculist.h> 49 #include <linux/nodemask.h> 50 #include <linux/moduleparam.h> 51 #include <linux/uaccess.h> 52 #include <linux/sched/isolation.h> 53 #include <linux/sched/debug.h> 54 #include <linux/nmi.h> 55 #include <linux/kvm_para.h> 56 #include <linux/delay.h> 57 #include <linux/irq_work.h> 58 59 #include "workqueue_internal.h" 60 61 enum worker_pool_flags { 62 /* 63 * worker_pool flags 64 * 65 * A bound pool is either associated or disassociated with its CPU. 66 * While associated (!DISASSOCIATED), all workers are bound to the 67 * CPU and none has %WORKER_UNBOUND set and concurrency management 68 * is in effect. 69 * 70 * While DISASSOCIATED, the cpu may be offline and all workers have 71 * %WORKER_UNBOUND set and concurrency management disabled, and may 72 * be executing on any CPU. The pool behaves as an unbound one. 73 * 74 * Note that DISASSOCIATED should be flipped only while holding 75 * wq_pool_attach_mutex to avoid changing binding state while 76 * worker_attach_to_pool() is in progress. 77 * 78 * As there can only be one concurrent BH execution context per CPU, a 79 * BH pool is per-CPU and always DISASSOCIATED. 80 */ 81 POOL_BH = 1 << 0, /* is a BH pool */ 82 POOL_MANAGER_ACTIVE = 1 << 1, /* being managed */ 83 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 84 POOL_BH_DRAINING = 1 << 3, /* draining after CPU offline */ 85 }; 86 87 enum worker_flags { 88 /* worker flags */ 89 WORKER_DIE = 1 << 1, /* die die die */ 90 WORKER_IDLE = 1 << 2, /* is idle */ 91 WORKER_PREP = 1 << 3, /* preparing to run works */ 92 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 93 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 94 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 95 96 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 97 WORKER_UNBOUND | WORKER_REBOUND, 98 }; 99 100 enum work_cancel_flags { 101 WORK_CANCEL_DELAYED = 1 << 0, /* canceling a delayed_work */ 102 WORK_CANCEL_DISABLE = 1 << 1, /* canceling to disable */ 103 }; 104 105 enum wq_internal_consts { 106 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 107 108 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 109 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 110 111 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 112 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 113 114 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 115 /* call for help after 10ms 116 (min two ticks) */ 117 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 118 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 119 120 /* 121 * Rescue workers are used only on emergencies and shared by 122 * all cpus. Give MIN_NICE. 123 */ 124 RESCUER_NICE_LEVEL = MIN_NICE, 125 HIGHPRI_NICE_LEVEL = MIN_NICE, 126 127 WQ_NAME_LEN = 32, 128 }; 129 130 /* 131 * We don't want to trap softirq for too long. See MAX_SOFTIRQ_TIME and 132 * MAX_SOFTIRQ_RESTART in kernel/softirq.c. These are macros because 133 * msecs_to_jiffies() can't be an initializer. 134 */ 135 #define BH_WORKER_JIFFIES msecs_to_jiffies(2) 136 #define BH_WORKER_RESTARTS 10 137 138 /* 139 * Structure fields follow one of the following exclusion rules. 140 * 141 * I: Modifiable by initialization/destruction paths and read-only for 142 * everyone else. 143 * 144 * P: Preemption protected. Disabling preemption is enough and should 145 * only be modified and accessed from the local cpu. 146 * 147 * L: pool->lock protected. Access with pool->lock held. 148 * 149 * LN: pool->lock and wq_node_nr_active->lock protected for writes. Either for 150 * reads. 151 * 152 * K: Only modified by worker while holding pool->lock. Can be safely read by 153 * self, while holding pool->lock or from IRQ context if %current is the 154 * kworker. 155 * 156 * S: Only modified by worker self. 157 * 158 * A: wq_pool_attach_mutex protected. 159 * 160 * PL: wq_pool_mutex protected. 161 * 162 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 163 * 164 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 165 * 166 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 167 * RCU for reads. 168 * 169 * WQ: wq->mutex protected. 170 * 171 * WR: wq->mutex protected for writes. RCU protected for reads. 172 * 173 * WO: wq->mutex protected for writes. Updated with WRITE_ONCE() and can be read 174 * with READ_ONCE() without locking. 175 * 176 * MD: wq_mayday_lock protected. 177 * 178 * WD: Used internally by the watchdog. 179 */ 180 181 /* struct worker is defined in workqueue_internal.h */ 182 183 struct worker_pool { 184 raw_spinlock_t lock; /* the pool lock */ 185 int cpu; /* I: the associated cpu */ 186 int node; /* I: the associated node ID */ 187 int id; /* I: pool ID */ 188 unsigned int flags; /* L: flags */ 189 190 unsigned long watchdog_ts; /* L: watchdog timestamp */ 191 bool cpu_stall; /* WD: stalled cpu bound pool */ 192 193 /* 194 * The counter is incremented in a process context on the associated CPU 195 * w/ preemption disabled, and decremented or reset in the same context 196 * but w/ pool->lock held. The readers grab pool->lock and are 197 * guaranteed to see if the counter reached zero. 198 */ 199 int nr_running; 200 201 struct list_head worklist; /* L: list of pending works */ 202 203 int nr_workers; /* L: total number of workers */ 204 int nr_idle; /* L: currently idle workers */ 205 206 struct list_head idle_list; /* L: list of idle workers */ 207 struct timer_list idle_timer; /* L: worker idle timeout */ 208 struct work_struct idle_cull_work; /* L: worker idle cleanup */ 209 210 struct timer_list mayday_timer; /* L: SOS timer for workers */ 211 212 /* a workers is either on busy_hash or idle_list, or the manager */ 213 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 214 /* L: hash of busy workers */ 215 216 struct worker *manager; /* L: purely informational */ 217 struct list_head workers; /* A: attached workers */ 218 struct list_head dying_workers; /* A: workers about to die */ 219 struct completion *detach_completion; /* all workers detached */ 220 221 struct ida worker_ida; /* worker IDs for task name */ 222 223 struct workqueue_attrs *attrs; /* I: worker attributes */ 224 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 225 int refcnt; /* PL: refcnt for unbound pools */ 226 227 /* 228 * Destruction of pool is RCU protected to allow dereferences 229 * from get_work_pool(). 230 */ 231 struct rcu_head rcu; 232 }; 233 234 /* 235 * Per-pool_workqueue statistics. These can be monitored using 236 * tools/workqueue/wq_monitor.py. 237 */ 238 enum pool_workqueue_stats { 239 PWQ_STAT_STARTED, /* work items started execution */ 240 PWQ_STAT_COMPLETED, /* work items completed execution */ 241 PWQ_STAT_CPU_TIME, /* total CPU time consumed */ 242 PWQ_STAT_CPU_INTENSIVE, /* wq_cpu_intensive_thresh_us violations */ 243 PWQ_STAT_CM_WAKEUP, /* concurrency-management worker wakeups */ 244 PWQ_STAT_REPATRIATED, /* unbound workers brought back into scope */ 245 PWQ_STAT_MAYDAY, /* maydays to rescuer */ 246 PWQ_STAT_RESCUED, /* linked work items executed by rescuer */ 247 248 PWQ_NR_STATS, 249 }; 250 251 /* 252 * The per-pool workqueue. While queued, bits below WORK_PWQ_SHIFT 253 * of work_struct->data are used for flags and the remaining high bits 254 * point to the pwq; thus, pwqs need to be aligned at two's power of the 255 * number of flag bits. 256 */ 257 struct pool_workqueue { 258 struct worker_pool *pool; /* I: the associated pool */ 259 struct workqueue_struct *wq; /* I: the owning workqueue */ 260 int work_color; /* L: current color */ 261 int flush_color; /* L: flushing color */ 262 int refcnt; /* L: reference count */ 263 int nr_in_flight[WORK_NR_COLORS]; 264 /* L: nr of in_flight works */ 265 bool plugged; /* L: execution suspended */ 266 267 /* 268 * nr_active management and WORK_STRUCT_INACTIVE: 269 * 270 * When pwq->nr_active >= max_active, new work item is queued to 271 * pwq->inactive_works instead of pool->worklist and marked with 272 * WORK_STRUCT_INACTIVE. 273 * 274 * All work items marked with WORK_STRUCT_INACTIVE do not participate in 275 * nr_active and all work items in pwq->inactive_works are marked with 276 * WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE work items are 277 * in pwq->inactive_works. Some of them are ready to run in 278 * pool->worklist or worker->scheduled. Those work itmes are only struct 279 * wq_barrier which is used for flush_work() and should not participate 280 * in nr_active. For non-barrier work item, it is marked with 281 * WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works. 282 */ 283 int nr_active; /* L: nr of active works */ 284 struct list_head inactive_works; /* L: inactive works */ 285 struct list_head pending_node; /* LN: node on wq_node_nr_active->pending_pwqs */ 286 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 287 struct list_head mayday_node; /* MD: node on wq->maydays */ 288 289 u64 stats[PWQ_NR_STATS]; 290 291 /* 292 * Release of unbound pwq is punted to a kthread_worker. See put_pwq() 293 * and pwq_release_workfn() for details. pool_workqueue itself is also 294 * RCU protected so that the first pwq can be determined without 295 * grabbing wq->mutex. 296 */ 297 struct kthread_work release_work; 298 struct rcu_head rcu; 299 } __aligned(1 << WORK_STRUCT_PWQ_SHIFT); 300 301 /* 302 * Structure used to wait for workqueue flush. 303 */ 304 struct wq_flusher { 305 struct list_head list; /* WQ: list of flushers */ 306 int flush_color; /* WQ: flush color waiting for */ 307 struct completion done; /* flush completion */ 308 }; 309 310 struct wq_device; 311 312 /* 313 * Unlike in a per-cpu workqueue where max_active limits its concurrency level 314 * on each CPU, in an unbound workqueue, max_active applies to the whole system. 315 * As sharing a single nr_active across multiple sockets can be very expensive, 316 * the counting and enforcement is per NUMA node. 317 * 318 * The following struct is used to enforce per-node max_active. When a pwq wants 319 * to start executing a work item, it should increment ->nr using 320 * tryinc_node_nr_active(). If acquisition fails due to ->nr already being over 321 * ->max, the pwq is queued on ->pending_pwqs. As in-flight work items finish 322 * and decrement ->nr, node_activate_pending_pwq() activates the pending pwqs in 323 * round-robin order. 324 */ 325 struct wq_node_nr_active { 326 int max; /* per-node max_active */ 327 atomic_t nr; /* per-node nr_active */ 328 raw_spinlock_t lock; /* nests inside pool locks */ 329 struct list_head pending_pwqs; /* LN: pwqs with inactive works */ 330 }; 331 332 /* 333 * The externally visible workqueue. It relays the issued work items to 334 * the appropriate worker_pool through its pool_workqueues. 335 */ 336 struct workqueue_struct { 337 struct list_head pwqs; /* WR: all pwqs of this wq */ 338 struct list_head list; /* PR: list of all workqueues */ 339 340 struct mutex mutex; /* protects this wq */ 341 int work_color; /* WQ: current work color */ 342 int flush_color; /* WQ: current flush color */ 343 atomic_t nr_pwqs_to_flush; /* flush in progress */ 344 struct wq_flusher *first_flusher; /* WQ: first flusher */ 345 struct list_head flusher_queue; /* WQ: flush waiters */ 346 struct list_head flusher_overflow; /* WQ: flush overflow list */ 347 348 struct list_head maydays; /* MD: pwqs requesting rescue */ 349 struct worker *rescuer; /* MD: rescue worker */ 350 351 int nr_drainers; /* WQ: drain in progress */ 352 353 /* See alloc_workqueue() function comment for info on min/max_active */ 354 int max_active; /* WO: max active works */ 355 int min_active; /* WO: min active works */ 356 int saved_max_active; /* WQ: saved max_active */ 357 int saved_min_active; /* WQ: saved min_active */ 358 359 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 360 struct pool_workqueue __rcu *dfl_pwq; /* PW: only for unbound wqs */ 361 362 #ifdef CONFIG_SYSFS 363 struct wq_device *wq_dev; /* I: for sysfs interface */ 364 #endif 365 #ifdef CONFIG_LOCKDEP 366 char *lock_name; 367 struct lock_class_key key; 368 struct lockdep_map lockdep_map; 369 #endif 370 char name[WQ_NAME_LEN]; /* I: workqueue name */ 371 372 /* 373 * Destruction of workqueue_struct is RCU protected to allow walking 374 * the workqueues list without grabbing wq_pool_mutex. 375 * This is used to dump all workqueues from sysrq. 376 */ 377 struct rcu_head rcu; 378 379 /* hot fields used during command issue, aligned to cacheline */ 380 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 381 struct pool_workqueue __percpu __rcu **cpu_pwq; /* I: per-cpu pwqs */ 382 struct wq_node_nr_active *node_nr_active[]; /* I: per-node nr_active */ 383 }; 384 385 /* 386 * Each pod type describes how CPUs should be grouped for unbound workqueues. 387 * See the comment above workqueue_attrs->affn_scope. 388 */ 389 struct wq_pod_type { 390 int nr_pods; /* number of pods */ 391 cpumask_var_t *pod_cpus; /* pod -> cpus */ 392 int *pod_node; /* pod -> node */ 393 int *cpu_pod; /* cpu -> pod */ 394 }; 395 396 struct work_offq_data { 397 u32 pool_id; 398 u32 disable; 399 u32 flags; 400 }; 401 402 static const char *wq_affn_names[WQ_AFFN_NR_TYPES] = { 403 [WQ_AFFN_DFL] = "default", 404 [WQ_AFFN_CPU] = "cpu", 405 [WQ_AFFN_SMT] = "smt", 406 [WQ_AFFN_CACHE] = "cache", 407 [WQ_AFFN_NUMA] = "numa", 408 [WQ_AFFN_SYSTEM] = "system", 409 }; 410 411 /* 412 * Per-cpu work items which run for longer than the following threshold are 413 * automatically considered CPU intensive and excluded from concurrency 414 * management to prevent them from noticeably delaying other per-cpu work items. 415 * ULONG_MAX indicates that the user hasn't overridden it with a boot parameter. 416 * The actual value is initialized in wq_cpu_intensive_thresh_init(). 417 */ 418 static unsigned long wq_cpu_intensive_thresh_us = ULONG_MAX; 419 module_param_named(cpu_intensive_thresh_us, wq_cpu_intensive_thresh_us, ulong, 0644); 420 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 421 static unsigned int wq_cpu_intensive_warning_thresh = 4; 422 module_param_named(cpu_intensive_warning_thresh, wq_cpu_intensive_warning_thresh, uint, 0644); 423 #endif 424 425 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 426 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 427 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 428 429 static bool wq_online; /* can kworkers be created yet? */ 430 static bool wq_topo_initialized __read_mostly = false; 431 432 static struct kmem_cache *pwq_cache; 433 434 static struct wq_pod_type wq_pod_types[WQ_AFFN_NR_TYPES]; 435 static enum wq_affn_scope wq_affn_dfl = WQ_AFFN_CACHE; 436 437 /* buf for wq_update_unbound_pod_attrs(), protected by CPU hotplug exclusion */ 438 static struct workqueue_attrs *wq_update_pod_attrs_buf; 439 440 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 441 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 442 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 443 /* wait for manager to go away */ 444 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait); 445 446 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 447 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 448 449 /* PL&A: allowable cpus for unbound wqs and work items */ 450 static cpumask_var_t wq_unbound_cpumask; 451 452 /* PL: user requested unbound cpumask via sysfs */ 453 static cpumask_var_t wq_requested_unbound_cpumask; 454 455 /* PL: isolated cpumask to be excluded from unbound cpumask */ 456 static cpumask_var_t wq_isolated_cpumask; 457 458 /* for further constrain wq_unbound_cpumask by cmdline parameter*/ 459 static struct cpumask wq_cmdline_cpumask __initdata; 460 461 /* CPU where unbound work was last round robin scheduled from this CPU */ 462 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 463 464 /* 465 * Local execution of unbound work items is no longer guaranteed. The 466 * following always forces round-robin CPU selection on unbound work items 467 * to uncover usages which depend on it. 468 */ 469 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 470 static bool wq_debug_force_rr_cpu = true; 471 #else 472 static bool wq_debug_force_rr_cpu = false; 473 #endif 474 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 475 476 /* to raise softirq for the BH worker pools on other CPUs */ 477 static DEFINE_PER_CPU_SHARED_ALIGNED(struct irq_work [NR_STD_WORKER_POOLS], 478 bh_pool_irq_works); 479 480 /* the BH worker pools */ 481 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 482 bh_worker_pools); 483 484 /* the per-cpu worker pools */ 485 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], 486 cpu_worker_pools); 487 488 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 489 490 /* PL: hash of all unbound pools keyed by pool->attrs */ 491 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 492 493 /* I: attributes used when instantiating standard unbound pools on demand */ 494 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 495 496 /* I: attributes used when instantiating ordered pools on demand */ 497 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 498 499 /* 500 * I: kthread_worker to release pwq's. pwq release needs to be bounced to a 501 * process context while holding a pool lock. Bounce to a dedicated kthread 502 * worker to avoid A-A deadlocks. 503 */ 504 static struct kthread_worker *pwq_release_worker __ro_after_init; 505 506 struct workqueue_struct *system_wq __ro_after_init; 507 EXPORT_SYMBOL(system_wq); 508 struct workqueue_struct *system_highpri_wq __ro_after_init; 509 EXPORT_SYMBOL_GPL(system_highpri_wq); 510 struct workqueue_struct *system_long_wq __ro_after_init; 511 EXPORT_SYMBOL_GPL(system_long_wq); 512 struct workqueue_struct *system_unbound_wq __ro_after_init; 513 EXPORT_SYMBOL_GPL(system_unbound_wq); 514 struct workqueue_struct *system_freezable_wq __ro_after_init; 515 EXPORT_SYMBOL_GPL(system_freezable_wq); 516 struct workqueue_struct *system_power_efficient_wq __ro_after_init; 517 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 518 struct workqueue_struct *system_freezable_power_efficient_wq __ro_after_init; 519 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 520 struct workqueue_struct *system_bh_wq; 521 EXPORT_SYMBOL_GPL(system_bh_wq); 522 struct workqueue_struct *system_bh_highpri_wq; 523 EXPORT_SYMBOL_GPL(system_bh_highpri_wq); 524 525 static int worker_thread(void *__worker); 526 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 527 static void show_pwq(struct pool_workqueue *pwq); 528 static void show_one_worker_pool(struct worker_pool *pool); 529 530 #define CREATE_TRACE_POINTS 531 #include <trace/events/workqueue.h> 532 533 #define assert_rcu_or_pool_mutex() \ 534 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 535 !lockdep_is_held(&wq_pool_mutex), \ 536 "RCU or wq_pool_mutex should be held") 537 538 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 539 RCU_LOCKDEP_WARN(!rcu_read_lock_any_held() && \ 540 !lockdep_is_held(&wq->mutex) && \ 541 !lockdep_is_held(&wq_pool_mutex), \ 542 "RCU, wq->mutex or wq_pool_mutex should be held") 543 544 #define for_each_bh_worker_pool(pool, cpu) \ 545 for ((pool) = &per_cpu(bh_worker_pools, cpu)[0]; \ 546 (pool) < &per_cpu(bh_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 547 (pool)++) 548 549 #define for_each_cpu_worker_pool(pool, cpu) \ 550 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 551 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 552 (pool)++) 553 554 /** 555 * for_each_pool - iterate through all worker_pools in the system 556 * @pool: iteration cursor 557 * @pi: integer used for iteration 558 * 559 * This must be called either with wq_pool_mutex held or RCU read 560 * locked. If the pool needs to be used beyond the locking in effect, the 561 * caller is responsible for guaranteeing that the pool stays online. 562 * 563 * The if/else clause exists only for the lockdep assertion and can be 564 * ignored. 565 */ 566 #define for_each_pool(pool, pi) \ 567 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 568 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 569 else 570 571 /** 572 * for_each_pool_worker - iterate through all workers of a worker_pool 573 * @worker: iteration cursor 574 * @pool: worker_pool to iterate workers of 575 * 576 * This must be called with wq_pool_attach_mutex. 577 * 578 * The if/else clause exists only for the lockdep assertion and can be 579 * ignored. 580 */ 581 #define for_each_pool_worker(worker, pool) \ 582 list_for_each_entry((worker), &(pool)->workers, node) \ 583 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 584 else 585 586 /** 587 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 588 * @pwq: iteration cursor 589 * @wq: the target workqueue 590 * 591 * This must be called either with wq->mutex held or RCU read locked. 592 * If the pwq needs to be used beyond the locking in effect, the caller is 593 * responsible for guaranteeing that the pwq stays online. 594 * 595 * The if/else clause exists only for the lockdep assertion and can be 596 * ignored. 597 */ 598 #define for_each_pwq(pwq, wq) \ 599 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 600 lockdep_is_held(&(wq->mutex))) 601 602 #ifdef CONFIG_DEBUG_OBJECTS_WORK 603 604 static const struct debug_obj_descr work_debug_descr; 605 606 static void *work_debug_hint(void *addr) 607 { 608 return ((struct work_struct *) addr)->func; 609 } 610 611 static bool work_is_static_object(void *addr) 612 { 613 struct work_struct *work = addr; 614 615 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 616 } 617 618 /* 619 * fixup_init is called when: 620 * - an active object is initialized 621 */ 622 static bool work_fixup_init(void *addr, enum debug_obj_state state) 623 { 624 struct work_struct *work = addr; 625 626 switch (state) { 627 case ODEBUG_STATE_ACTIVE: 628 cancel_work_sync(work); 629 debug_object_init(work, &work_debug_descr); 630 return true; 631 default: 632 return false; 633 } 634 } 635 636 /* 637 * fixup_free is called when: 638 * - an active object is freed 639 */ 640 static bool work_fixup_free(void *addr, enum debug_obj_state state) 641 { 642 struct work_struct *work = addr; 643 644 switch (state) { 645 case ODEBUG_STATE_ACTIVE: 646 cancel_work_sync(work); 647 debug_object_free(work, &work_debug_descr); 648 return true; 649 default: 650 return false; 651 } 652 } 653 654 static const struct debug_obj_descr work_debug_descr = { 655 .name = "work_struct", 656 .debug_hint = work_debug_hint, 657 .is_static_object = work_is_static_object, 658 .fixup_init = work_fixup_init, 659 .fixup_free = work_fixup_free, 660 }; 661 662 static inline void debug_work_activate(struct work_struct *work) 663 { 664 debug_object_activate(work, &work_debug_descr); 665 } 666 667 static inline void debug_work_deactivate(struct work_struct *work) 668 { 669 debug_object_deactivate(work, &work_debug_descr); 670 } 671 672 void __init_work(struct work_struct *work, int onstack) 673 { 674 if (onstack) 675 debug_object_init_on_stack(work, &work_debug_descr); 676 else 677 debug_object_init(work, &work_debug_descr); 678 } 679 EXPORT_SYMBOL_GPL(__init_work); 680 681 void destroy_work_on_stack(struct work_struct *work) 682 { 683 debug_object_free(work, &work_debug_descr); 684 } 685 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 686 687 void destroy_delayed_work_on_stack(struct delayed_work *work) 688 { 689 destroy_timer_on_stack(&work->timer); 690 debug_object_free(&work->work, &work_debug_descr); 691 } 692 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 693 694 #else 695 static inline void debug_work_activate(struct work_struct *work) { } 696 static inline void debug_work_deactivate(struct work_struct *work) { } 697 #endif 698 699 /** 700 * worker_pool_assign_id - allocate ID and assign it to @pool 701 * @pool: the pool pointer of interest 702 * 703 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 704 * successfully, -errno on failure. 705 */ 706 static int worker_pool_assign_id(struct worker_pool *pool) 707 { 708 int ret; 709 710 lockdep_assert_held(&wq_pool_mutex); 711 712 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 713 GFP_KERNEL); 714 if (ret >= 0) { 715 pool->id = ret; 716 return 0; 717 } 718 return ret; 719 } 720 721 static struct pool_workqueue __rcu ** 722 unbound_pwq_slot(struct workqueue_struct *wq, int cpu) 723 { 724 if (cpu >= 0) 725 return per_cpu_ptr(wq->cpu_pwq, cpu); 726 else 727 return &wq->dfl_pwq; 728 } 729 730 /* @cpu < 0 for dfl_pwq */ 731 static struct pool_workqueue *unbound_pwq(struct workqueue_struct *wq, int cpu) 732 { 733 return rcu_dereference_check(*unbound_pwq_slot(wq, cpu), 734 lockdep_is_held(&wq_pool_mutex) || 735 lockdep_is_held(&wq->mutex)); 736 } 737 738 /** 739 * unbound_effective_cpumask - effective cpumask of an unbound workqueue 740 * @wq: workqueue of interest 741 * 742 * @wq->unbound_attrs->cpumask contains the cpumask requested by the user which 743 * is masked with wq_unbound_cpumask to determine the effective cpumask. The 744 * default pwq is always mapped to the pool with the current effective cpumask. 745 */ 746 static struct cpumask *unbound_effective_cpumask(struct workqueue_struct *wq) 747 { 748 return unbound_pwq(wq, -1)->pool->attrs->__pod_cpumask; 749 } 750 751 static unsigned int work_color_to_flags(int color) 752 { 753 return color << WORK_STRUCT_COLOR_SHIFT; 754 } 755 756 static int get_work_color(unsigned long work_data) 757 { 758 return (work_data >> WORK_STRUCT_COLOR_SHIFT) & 759 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 760 } 761 762 static int work_next_color(int color) 763 { 764 return (color + 1) % WORK_NR_COLORS; 765 } 766 767 static unsigned long pool_offq_flags(struct worker_pool *pool) 768 { 769 return (pool->flags & POOL_BH) ? WORK_OFFQ_BH : 0; 770 } 771 772 /* 773 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 774 * contain the pointer to the queued pwq. Once execution starts, the flag 775 * is cleared and the high bits contain OFFQ flags and pool ID. 776 * 777 * set_work_pwq(), set_work_pool_and_clear_pending() and mark_work_canceling() 778 * can be used to set the pwq, pool or clear work->data. These functions should 779 * only be called while the work is owned - ie. while the PENDING bit is set. 780 * 781 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 782 * corresponding to a work. Pool is available once the work has been 783 * queued anywhere after initialization until it is sync canceled. pwq is 784 * available only while the work item is queued. 785 */ 786 static inline void set_work_data(struct work_struct *work, unsigned long data) 787 { 788 WARN_ON_ONCE(!work_pending(work)); 789 atomic_long_set(&work->data, data | work_static(work)); 790 } 791 792 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 793 unsigned long flags) 794 { 795 set_work_data(work, (unsigned long)pwq | WORK_STRUCT_PENDING | 796 WORK_STRUCT_PWQ | flags); 797 } 798 799 static void set_work_pool_and_keep_pending(struct work_struct *work, 800 int pool_id, unsigned long flags) 801 { 802 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 803 WORK_STRUCT_PENDING | flags); 804 } 805 806 static void set_work_pool_and_clear_pending(struct work_struct *work, 807 int pool_id, unsigned long flags) 808 { 809 /* 810 * The following wmb is paired with the implied mb in 811 * test_and_set_bit(PENDING) and ensures all updates to @work made 812 * here are visible to and precede any updates by the next PENDING 813 * owner. 814 */ 815 smp_wmb(); 816 set_work_data(work, ((unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT) | 817 flags); 818 /* 819 * The following mb guarantees that previous clear of a PENDING bit 820 * will not be reordered with any speculative LOADS or STORES from 821 * work->current_func, which is executed afterwards. This possible 822 * reordering can lead to a missed execution on attempt to queue 823 * the same @work. E.g. consider this case: 824 * 825 * CPU#0 CPU#1 826 * ---------------------------- -------------------------------- 827 * 828 * 1 STORE event_indicated 829 * 2 queue_work_on() { 830 * 3 test_and_set_bit(PENDING) 831 * 4 } set_..._and_clear_pending() { 832 * 5 set_work_data() # clear bit 833 * 6 smp_mb() 834 * 7 work->current_func() { 835 * 8 LOAD event_indicated 836 * } 837 * 838 * Without an explicit full barrier speculative LOAD on line 8 can 839 * be executed before CPU#0 does STORE on line 1. If that happens, 840 * CPU#0 observes the PENDING bit is still set and new execution of 841 * a @work is not queued in a hope, that CPU#1 will eventually 842 * finish the queued @work. Meanwhile CPU#1 does not see 843 * event_indicated is set, because speculative LOAD was executed 844 * before actual STORE. 845 */ 846 smp_mb(); 847 } 848 849 static inline struct pool_workqueue *work_struct_pwq(unsigned long data) 850 { 851 return (struct pool_workqueue *)(data & WORK_STRUCT_PWQ_MASK); 852 } 853 854 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 855 { 856 unsigned long data = atomic_long_read(&work->data); 857 858 if (data & WORK_STRUCT_PWQ) 859 return work_struct_pwq(data); 860 else 861 return NULL; 862 } 863 864 /** 865 * get_work_pool - return the worker_pool a given work was associated with 866 * @work: the work item of interest 867 * 868 * Pools are created and destroyed under wq_pool_mutex, and allows read 869 * access under RCU read lock. As such, this function should be 870 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 871 * 872 * All fields of the returned pool are accessible as long as the above 873 * mentioned locking is in effect. If the returned pool needs to be used 874 * beyond the critical section, the caller is responsible for ensuring the 875 * returned pool is and stays online. 876 * 877 * Return: The worker_pool @work was last associated with. %NULL if none. 878 */ 879 static struct worker_pool *get_work_pool(struct work_struct *work) 880 { 881 unsigned long data = atomic_long_read(&work->data); 882 int pool_id; 883 884 assert_rcu_or_pool_mutex(); 885 886 if (data & WORK_STRUCT_PWQ) 887 return work_struct_pwq(data)->pool; 888 889 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 890 if (pool_id == WORK_OFFQ_POOL_NONE) 891 return NULL; 892 893 return idr_find(&worker_pool_idr, pool_id); 894 } 895 896 static unsigned long shift_and_mask(unsigned long v, u32 shift, u32 bits) 897 { 898 return (v >> shift) & ((1 << bits) - 1); 899 } 900 901 static void work_offqd_unpack(struct work_offq_data *offqd, unsigned long data) 902 { 903 WARN_ON_ONCE(data & WORK_STRUCT_PWQ); 904 905 offqd->pool_id = shift_and_mask(data, WORK_OFFQ_POOL_SHIFT, 906 WORK_OFFQ_POOL_BITS); 907 offqd->disable = shift_and_mask(data, WORK_OFFQ_DISABLE_SHIFT, 908 WORK_OFFQ_DISABLE_BITS); 909 offqd->flags = data & WORK_OFFQ_FLAG_MASK; 910 } 911 912 static unsigned long work_offqd_pack_flags(struct work_offq_data *offqd) 913 { 914 return ((unsigned long)offqd->disable << WORK_OFFQ_DISABLE_SHIFT) | 915 ((unsigned long)offqd->flags); 916 } 917 918 /* 919 * Policy functions. These define the policies on how the global worker 920 * pools are managed. Unless noted otherwise, these functions assume that 921 * they're being called with pool->lock held. 922 */ 923 924 /* 925 * Need to wake up a worker? Called from anything but currently 926 * running workers. 927 * 928 * Note that, because unbound workers never contribute to nr_running, this 929 * function will always return %true for unbound pools as long as the 930 * worklist isn't empty. 931 */ 932 static bool need_more_worker(struct worker_pool *pool) 933 { 934 return !list_empty(&pool->worklist) && !pool->nr_running; 935 } 936 937 /* Can I start working? Called from busy but !running workers. */ 938 static bool may_start_working(struct worker_pool *pool) 939 { 940 return pool->nr_idle; 941 } 942 943 /* Do I need to keep working? Called from currently running workers. */ 944 static bool keep_working(struct worker_pool *pool) 945 { 946 return !list_empty(&pool->worklist) && (pool->nr_running <= 1); 947 } 948 949 /* Do we need a new worker? Called from manager. */ 950 static bool need_to_create_worker(struct worker_pool *pool) 951 { 952 return need_more_worker(pool) && !may_start_working(pool); 953 } 954 955 /* Do we have too many workers and should some go away? */ 956 static bool too_many_workers(struct worker_pool *pool) 957 { 958 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 959 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 960 int nr_busy = pool->nr_workers - nr_idle; 961 962 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 963 } 964 965 /** 966 * worker_set_flags - set worker flags and adjust nr_running accordingly 967 * @worker: self 968 * @flags: flags to set 969 * 970 * Set @flags in @worker->flags and adjust nr_running accordingly. 971 */ 972 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 973 { 974 struct worker_pool *pool = worker->pool; 975 976 lockdep_assert_held(&pool->lock); 977 978 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 979 if ((flags & WORKER_NOT_RUNNING) && 980 !(worker->flags & WORKER_NOT_RUNNING)) { 981 pool->nr_running--; 982 } 983 984 worker->flags |= flags; 985 } 986 987 /** 988 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 989 * @worker: self 990 * @flags: flags to clear 991 * 992 * Clear @flags in @worker->flags and adjust nr_running accordingly. 993 */ 994 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 995 { 996 struct worker_pool *pool = worker->pool; 997 unsigned int oflags = worker->flags; 998 999 lockdep_assert_held(&pool->lock); 1000 1001 worker->flags &= ~flags; 1002 1003 /* 1004 * If transitioning out of NOT_RUNNING, increment nr_running. Note 1005 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 1006 * of multiple flags, not a single flag. 1007 */ 1008 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 1009 if (!(worker->flags & WORKER_NOT_RUNNING)) 1010 pool->nr_running++; 1011 } 1012 1013 /* Return the first idle worker. Called with pool->lock held. */ 1014 static struct worker *first_idle_worker(struct worker_pool *pool) 1015 { 1016 if (unlikely(list_empty(&pool->idle_list))) 1017 return NULL; 1018 1019 return list_first_entry(&pool->idle_list, struct worker, entry); 1020 } 1021 1022 /** 1023 * worker_enter_idle - enter idle state 1024 * @worker: worker which is entering idle state 1025 * 1026 * @worker is entering idle state. Update stats and idle timer if 1027 * necessary. 1028 * 1029 * LOCKING: 1030 * raw_spin_lock_irq(pool->lock). 1031 */ 1032 static void worker_enter_idle(struct worker *worker) 1033 { 1034 struct worker_pool *pool = worker->pool; 1035 1036 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1037 WARN_ON_ONCE(!list_empty(&worker->entry) && 1038 (worker->hentry.next || worker->hentry.pprev))) 1039 return; 1040 1041 /* can't use worker_set_flags(), also called from create_worker() */ 1042 worker->flags |= WORKER_IDLE; 1043 pool->nr_idle++; 1044 worker->last_active = jiffies; 1045 1046 /* idle_list is LIFO */ 1047 list_add(&worker->entry, &pool->idle_list); 1048 1049 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1050 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1051 1052 /* Sanity check nr_running. */ 1053 WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running); 1054 } 1055 1056 /** 1057 * worker_leave_idle - leave idle state 1058 * @worker: worker which is leaving idle state 1059 * 1060 * @worker is leaving idle state. Update stats. 1061 * 1062 * LOCKING: 1063 * raw_spin_lock_irq(pool->lock). 1064 */ 1065 static void worker_leave_idle(struct worker *worker) 1066 { 1067 struct worker_pool *pool = worker->pool; 1068 1069 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1070 return; 1071 worker_clr_flags(worker, WORKER_IDLE); 1072 pool->nr_idle--; 1073 list_del_init(&worker->entry); 1074 } 1075 1076 /** 1077 * find_worker_executing_work - find worker which is executing a work 1078 * @pool: pool of interest 1079 * @work: work to find worker for 1080 * 1081 * Find a worker which is executing @work on @pool by searching 1082 * @pool->busy_hash which is keyed by the address of @work. For a worker 1083 * to match, its current execution should match the address of @work and 1084 * its work function. This is to avoid unwanted dependency between 1085 * unrelated work executions through a work item being recycled while still 1086 * being executed. 1087 * 1088 * This is a bit tricky. A work item may be freed once its execution 1089 * starts and nothing prevents the freed area from being recycled for 1090 * another work item. If the same work item address ends up being reused 1091 * before the original execution finishes, workqueue will identify the 1092 * recycled work item as currently executing and make it wait until the 1093 * current execution finishes, introducing an unwanted dependency. 1094 * 1095 * This function checks the work item address and work function to avoid 1096 * false positives. Note that this isn't complete as one may construct a 1097 * work function which can introduce dependency onto itself through a 1098 * recycled work item. Well, if somebody wants to shoot oneself in the 1099 * foot that badly, there's only so much we can do, and if such deadlock 1100 * actually occurs, it should be easy to locate the culprit work function. 1101 * 1102 * CONTEXT: 1103 * raw_spin_lock_irq(pool->lock). 1104 * 1105 * Return: 1106 * Pointer to worker which is executing @work if found, %NULL 1107 * otherwise. 1108 */ 1109 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1110 struct work_struct *work) 1111 { 1112 struct worker *worker; 1113 1114 hash_for_each_possible(pool->busy_hash, worker, hentry, 1115 (unsigned long)work) 1116 if (worker->current_work == work && 1117 worker->current_func == work->func) 1118 return worker; 1119 1120 return NULL; 1121 } 1122 1123 /** 1124 * move_linked_works - move linked works to a list 1125 * @work: start of series of works to be scheduled 1126 * @head: target list to append @work to 1127 * @nextp: out parameter for nested worklist walking 1128 * 1129 * Schedule linked works starting from @work to @head. Work series to be 1130 * scheduled starts at @work and includes any consecutive work with 1131 * WORK_STRUCT_LINKED set in its predecessor. See assign_work() for details on 1132 * @nextp. 1133 * 1134 * CONTEXT: 1135 * raw_spin_lock_irq(pool->lock). 1136 */ 1137 static void move_linked_works(struct work_struct *work, struct list_head *head, 1138 struct work_struct **nextp) 1139 { 1140 struct work_struct *n; 1141 1142 /* 1143 * Linked worklist will always end before the end of the list, 1144 * use NULL for list head. 1145 */ 1146 list_for_each_entry_safe_from(work, n, NULL, entry) { 1147 list_move_tail(&work->entry, head); 1148 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1149 break; 1150 } 1151 1152 /* 1153 * If we're already inside safe list traversal and have moved 1154 * multiple works to the scheduled queue, the next position 1155 * needs to be updated. 1156 */ 1157 if (nextp) 1158 *nextp = n; 1159 } 1160 1161 /** 1162 * assign_work - assign a work item and its linked work items to a worker 1163 * @work: work to assign 1164 * @worker: worker to assign to 1165 * @nextp: out parameter for nested worklist walking 1166 * 1167 * Assign @work and its linked work items to @worker. If @work is already being 1168 * executed by another worker in the same pool, it'll be punted there. 1169 * 1170 * If @nextp is not NULL, it's updated to point to the next work of the last 1171 * scheduled work. This allows assign_work() to be nested inside 1172 * list_for_each_entry_safe(). 1173 * 1174 * Returns %true if @work was successfully assigned to @worker. %false if @work 1175 * was punted to another worker already executing it. 1176 */ 1177 static bool assign_work(struct work_struct *work, struct worker *worker, 1178 struct work_struct **nextp) 1179 { 1180 struct worker_pool *pool = worker->pool; 1181 struct worker *collision; 1182 1183 lockdep_assert_held(&pool->lock); 1184 1185 /* 1186 * A single work shouldn't be executed concurrently by multiple workers. 1187 * __queue_work() ensures that @work doesn't jump to a different pool 1188 * while still running in the previous pool. Here, we should ensure that 1189 * @work is not executed concurrently by multiple workers from the same 1190 * pool. Check whether anyone is already processing the work. If so, 1191 * defer the work to the currently executing one. 1192 */ 1193 collision = find_worker_executing_work(pool, work); 1194 if (unlikely(collision)) { 1195 move_linked_works(work, &collision->scheduled, nextp); 1196 return false; 1197 } 1198 1199 move_linked_works(work, &worker->scheduled, nextp); 1200 return true; 1201 } 1202 1203 static struct irq_work *bh_pool_irq_work(struct worker_pool *pool) 1204 { 1205 int high = pool->attrs->nice == HIGHPRI_NICE_LEVEL ? 1 : 0; 1206 1207 return &per_cpu(bh_pool_irq_works, pool->cpu)[high]; 1208 } 1209 1210 static void kick_bh_pool(struct worker_pool *pool) 1211 { 1212 #ifdef CONFIG_SMP 1213 /* see drain_dead_softirq_workfn() for BH_DRAINING */ 1214 if (unlikely(pool->cpu != smp_processor_id() && 1215 !(pool->flags & POOL_BH_DRAINING))) { 1216 irq_work_queue_on(bh_pool_irq_work(pool), pool->cpu); 1217 return; 1218 } 1219 #endif 1220 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 1221 raise_softirq_irqoff(HI_SOFTIRQ); 1222 else 1223 raise_softirq_irqoff(TASKLET_SOFTIRQ); 1224 } 1225 1226 /** 1227 * kick_pool - wake up an idle worker if necessary 1228 * @pool: pool to kick 1229 * 1230 * @pool may have pending work items. Wake up worker if necessary. Returns 1231 * whether a worker was woken up. 1232 */ 1233 static bool kick_pool(struct worker_pool *pool) 1234 { 1235 struct worker *worker = first_idle_worker(pool); 1236 struct task_struct *p; 1237 1238 lockdep_assert_held(&pool->lock); 1239 1240 if (!need_more_worker(pool) || !worker) 1241 return false; 1242 1243 if (pool->flags & POOL_BH) { 1244 kick_bh_pool(pool); 1245 return true; 1246 } 1247 1248 p = worker->task; 1249 1250 #ifdef CONFIG_SMP 1251 /* 1252 * Idle @worker is about to execute @work and waking up provides an 1253 * opportunity to migrate @worker at a lower cost by setting the task's 1254 * wake_cpu field. Let's see if we want to move @worker to improve 1255 * execution locality. 1256 * 1257 * We're waking the worker that went idle the latest and there's some 1258 * chance that @worker is marked idle but hasn't gone off CPU yet. If 1259 * so, setting the wake_cpu won't do anything. As this is a best-effort 1260 * optimization and the race window is narrow, let's leave as-is for 1261 * now. If this becomes pronounced, we can skip over workers which are 1262 * still on cpu when picking an idle worker. 1263 * 1264 * If @pool has non-strict affinity, @worker might have ended up outside 1265 * its affinity scope. Repatriate. 1266 */ 1267 if (!pool->attrs->affn_strict && 1268 !cpumask_test_cpu(p->wake_cpu, pool->attrs->__pod_cpumask)) { 1269 struct work_struct *work = list_first_entry(&pool->worklist, 1270 struct work_struct, entry); 1271 int wake_cpu = cpumask_any_and_distribute(pool->attrs->__pod_cpumask, 1272 cpu_online_mask); 1273 if (wake_cpu < nr_cpu_ids) { 1274 p->wake_cpu = wake_cpu; 1275 get_work_pwq(work)->stats[PWQ_STAT_REPATRIATED]++; 1276 } 1277 } 1278 #endif 1279 wake_up_process(p); 1280 return true; 1281 } 1282 1283 #ifdef CONFIG_WQ_CPU_INTENSIVE_REPORT 1284 1285 /* 1286 * Concurrency-managed per-cpu work items that hog CPU for longer than 1287 * wq_cpu_intensive_thresh_us trigger the automatic CPU_INTENSIVE mechanism, 1288 * which prevents them from stalling other concurrency-managed work items. If a 1289 * work function keeps triggering this mechanism, it's likely that the work item 1290 * should be using an unbound workqueue instead. 1291 * 1292 * wq_cpu_intensive_report() tracks work functions which trigger such conditions 1293 * and report them so that they can be examined and converted to use unbound 1294 * workqueues as appropriate. To avoid flooding the console, each violating work 1295 * function is tracked and reported with exponential backoff. 1296 */ 1297 #define WCI_MAX_ENTS 128 1298 1299 struct wci_ent { 1300 work_func_t func; 1301 atomic64_t cnt; 1302 struct hlist_node hash_node; 1303 }; 1304 1305 static struct wci_ent wci_ents[WCI_MAX_ENTS]; 1306 static int wci_nr_ents; 1307 static DEFINE_RAW_SPINLOCK(wci_lock); 1308 static DEFINE_HASHTABLE(wci_hash, ilog2(WCI_MAX_ENTS)); 1309 1310 static struct wci_ent *wci_find_ent(work_func_t func) 1311 { 1312 struct wci_ent *ent; 1313 1314 hash_for_each_possible_rcu(wci_hash, ent, hash_node, 1315 (unsigned long)func) { 1316 if (ent->func == func) 1317 return ent; 1318 } 1319 return NULL; 1320 } 1321 1322 static void wq_cpu_intensive_report(work_func_t func) 1323 { 1324 struct wci_ent *ent; 1325 1326 restart: 1327 ent = wci_find_ent(func); 1328 if (ent) { 1329 u64 cnt; 1330 1331 /* 1332 * Start reporting from the warning_thresh and back off 1333 * exponentially. 1334 */ 1335 cnt = atomic64_inc_return_relaxed(&ent->cnt); 1336 if (wq_cpu_intensive_warning_thresh && 1337 cnt >= wq_cpu_intensive_warning_thresh && 1338 is_power_of_2(cnt + 1 - wq_cpu_intensive_warning_thresh)) 1339 printk_deferred(KERN_WARNING "workqueue: %ps hogged CPU for >%luus %llu times, consider switching to WQ_UNBOUND\n", 1340 ent->func, wq_cpu_intensive_thresh_us, 1341 atomic64_read(&ent->cnt)); 1342 return; 1343 } 1344 1345 /* 1346 * @func is a new violation. Allocate a new entry for it. If wcn_ents[] 1347 * is exhausted, something went really wrong and we probably made enough 1348 * noise already. 1349 */ 1350 if (wci_nr_ents >= WCI_MAX_ENTS) 1351 return; 1352 1353 raw_spin_lock(&wci_lock); 1354 1355 if (wci_nr_ents >= WCI_MAX_ENTS) { 1356 raw_spin_unlock(&wci_lock); 1357 return; 1358 } 1359 1360 if (wci_find_ent(func)) { 1361 raw_spin_unlock(&wci_lock); 1362 goto restart; 1363 } 1364 1365 ent = &wci_ents[wci_nr_ents++]; 1366 ent->func = func; 1367 atomic64_set(&ent->cnt, 0); 1368 hash_add_rcu(wci_hash, &ent->hash_node, (unsigned long)func); 1369 1370 raw_spin_unlock(&wci_lock); 1371 1372 goto restart; 1373 } 1374 1375 #else /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1376 static void wq_cpu_intensive_report(work_func_t func) {} 1377 #endif /* CONFIG_WQ_CPU_INTENSIVE_REPORT */ 1378 1379 /** 1380 * wq_worker_running - a worker is running again 1381 * @task: task waking up 1382 * 1383 * This function is called when a worker returns from schedule() 1384 */ 1385 void wq_worker_running(struct task_struct *task) 1386 { 1387 struct worker *worker = kthread_data(task); 1388 1389 if (!READ_ONCE(worker->sleeping)) 1390 return; 1391 1392 /* 1393 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check 1394 * and the nr_running increment below, we may ruin the nr_running reset 1395 * and leave with an unexpected pool->nr_running == 1 on the newly unbound 1396 * pool. Protect against such race. 1397 */ 1398 preempt_disable(); 1399 if (!(worker->flags & WORKER_NOT_RUNNING)) 1400 worker->pool->nr_running++; 1401 preempt_enable(); 1402 1403 /* 1404 * CPU intensive auto-detection cares about how long a work item hogged 1405 * CPU without sleeping. Reset the starting timestamp on wakeup. 1406 */ 1407 worker->current_at = worker->task->se.sum_exec_runtime; 1408 1409 WRITE_ONCE(worker->sleeping, 0); 1410 } 1411 1412 /** 1413 * wq_worker_sleeping - a worker is going to sleep 1414 * @task: task going to sleep 1415 * 1416 * This function is called from schedule() when a busy worker is 1417 * going to sleep. 1418 */ 1419 void wq_worker_sleeping(struct task_struct *task) 1420 { 1421 struct worker *worker = kthread_data(task); 1422 struct worker_pool *pool; 1423 1424 /* 1425 * Rescuers, which may not have all the fields set up like normal 1426 * workers, also reach here, let's not access anything before 1427 * checking NOT_RUNNING. 1428 */ 1429 if (worker->flags & WORKER_NOT_RUNNING) 1430 return; 1431 1432 pool = worker->pool; 1433 1434 /* Return if preempted before wq_worker_running() was reached */ 1435 if (READ_ONCE(worker->sleeping)) 1436 return; 1437 1438 WRITE_ONCE(worker->sleeping, 1); 1439 raw_spin_lock_irq(&pool->lock); 1440 1441 /* 1442 * Recheck in case unbind_workers() preempted us. We don't 1443 * want to decrement nr_running after the worker is unbound 1444 * and nr_running has been reset. 1445 */ 1446 if (worker->flags & WORKER_NOT_RUNNING) { 1447 raw_spin_unlock_irq(&pool->lock); 1448 return; 1449 } 1450 1451 pool->nr_running--; 1452 if (kick_pool(pool)) 1453 worker->current_pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1454 1455 raw_spin_unlock_irq(&pool->lock); 1456 } 1457 1458 /** 1459 * wq_worker_tick - a scheduler tick occurred while a kworker is running 1460 * @task: task currently running 1461 * 1462 * Called from sched_tick(). We're in the IRQ context and the current 1463 * worker's fields which follow the 'K' locking rule can be accessed safely. 1464 */ 1465 void wq_worker_tick(struct task_struct *task) 1466 { 1467 struct worker *worker = kthread_data(task); 1468 struct pool_workqueue *pwq = worker->current_pwq; 1469 struct worker_pool *pool = worker->pool; 1470 1471 if (!pwq) 1472 return; 1473 1474 pwq->stats[PWQ_STAT_CPU_TIME] += TICK_USEC; 1475 1476 if (!wq_cpu_intensive_thresh_us) 1477 return; 1478 1479 /* 1480 * If the current worker is concurrency managed and hogged the CPU for 1481 * longer than wq_cpu_intensive_thresh_us, it's automatically marked 1482 * CPU_INTENSIVE to avoid stalling other concurrency-managed work items. 1483 * 1484 * Set @worker->sleeping means that @worker is in the process of 1485 * switching out voluntarily and won't be contributing to 1486 * @pool->nr_running until it wakes up. As wq_worker_sleeping() also 1487 * decrements ->nr_running, setting CPU_INTENSIVE here can lead to 1488 * double decrements. The task is releasing the CPU anyway. Let's skip. 1489 * We probably want to make this prettier in the future. 1490 */ 1491 if ((worker->flags & WORKER_NOT_RUNNING) || READ_ONCE(worker->sleeping) || 1492 worker->task->se.sum_exec_runtime - worker->current_at < 1493 wq_cpu_intensive_thresh_us * NSEC_PER_USEC) 1494 return; 1495 1496 raw_spin_lock(&pool->lock); 1497 1498 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 1499 wq_cpu_intensive_report(worker->current_func); 1500 pwq->stats[PWQ_STAT_CPU_INTENSIVE]++; 1501 1502 if (kick_pool(pool)) 1503 pwq->stats[PWQ_STAT_CM_WAKEUP]++; 1504 1505 raw_spin_unlock(&pool->lock); 1506 } 1507 1508 /** 1509 * wq_worker_last_func - retrieve worker's last work function 1510 * @task: Task to retrieve last work function of. 1511 * 1512 * Determine the last function a worker executed. This is called from 1513 * the scheduler to get a worker's last known identity. 1514 * 1515 * CONTEXT: 1516 * raw_spin_lock_irq(rq->lock) 1517 * 1518 * This function is called during schedule() when a kworker is going 1519 * to sleep. It's used by psi to identify aggregation workers during 1520 * dequeuing, to allow periodic aggregation to shut-off when that 1521 * worker is the last task in the system or cgroup to go to sleep. 1522 * 1523 * As this function doesn't involve any workqueue-related locking, it 1524 * only returns stable values when called from inside the scheduler's 1525 * queuing and dequeuing paths, when @task, which must be a kworker, 1526 * is guaranteed to not be processing any works. 1527 * 1528 * Return: 1529 * The last work function %current executed as a worker, NULL if it 1530 * hasn't executed any work yet. 1531 */ 1532 work_func_t wq_worker_last_func(struct task_struct *task) 1533 { 1534 struct worker *worker = kthread_data(task); 1535 1536 return worker->last_func; 1537 } 1538 1539 /** 1540 * wq_node_nr_active - Determine wq_node_nr_active to use 1541 * @wq: workqueue of interest 1542 * @node: NUMA node, can be %NUMA_NO_NODE 1543 * 1544 * Determine wq_node_nr_active to use for @wq on @node. Returns: 1545 * 1546 * - %NULL for per-cpu workqueues as they don't need to use shared nr_active. 1547 * 1548 * - node_nr_active[nr_node_ids] if @node is %NUMA_NO_NODE. 1549 * 1550 * - Otherwise, node_nr_active[@node]. 1551 */ 1552 static struct wq_node_nr_active *wq_node_nr_active(struct workqueue_struct *wq, 1553 int node) 1554 { 1555 if (!(wq->flags & WQ_UNBOUND)) 1556 return NULL; 1557 1558 if (node == NUMA_NO_NODE) 1559 node = nr_node_ids; 1560 1561 return wq->node_nr_active[node]; 1562 } 1563 1564 /** 1565 * wq_update_node_max_active - Update per-node max_actives to use 1566 * @wq: workqueue to update 1567 * @off_cpu: CPU that's going down, -1 if a CPU is not going down 1568 * 1569 * Update @wq->node_nr_active[]->max. @wq must be unbound. max_active is 1570 * distributed among nodes according to the proportions of numbers of online 1571 * cpus. The result is always between @wq->min_active and max_active. 1572 */ 1573 static void wq_update_node_max_active(struct workqueue_struct *wq, int off_cpu) 1574 { 1575 struct cpumask *effective = unbound_effective_cpumask(wq); 1576 int min_active = READ_ONCE(wq->min_active); 1577 int max_active = READ_ONCE(wq->max_active); 1578 int total_cpus, node; 1579 1580 lockdep_assert_held(&wq->mutex); 1581 1582 if (!wq_topo_initialized) 1583 return; 1584 1585 if (off_cpu >= 0 && !cpumask_test_cpu(off_cpu, effective)) 1586 off_cpu = -1; 1587 1588 total_cpus = cpumask_weight_and(effective, cpu_online_mask); 1589 if (off_cpu >= 0) 1590 total_cpus--; 1591 1592 /* If all CPUs of the wq get offline, use the default values */ 1593 if (unlikely(!total_cpus)) { 1594 for_each_node(node) 1595 wq_node_nr_active(wq, node)->max = min_active; 1596 1597 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; 1598 return; 1599 } 1600 1601 for_each_node(node) { 1602 int node_cpus; 1603 1604 node_cpus = cpumask_weight_and(effective, cpumask_of_node(node)); 1605 if (off_cpu >= 0 && cpu_to_node(off_cpu) == node) 1606 node_cpus--; 1607 1608 wq_node_nr_active(wq, node)->max = 1609 clamp(DIV_ROUND_UP(max_active * node_cpus, total_cpus), 1610 min_active, max_active); 1611 } 1612 1613 wq_node_nr_active(wq, NUMA_NO_NODE)->max = max_active; 1614 } 1615 1616 /** 1617 * get_pwq - get an extra reference on the specified pool_workqueue 1618 * @pwq: pool_workqueue to get 1619 * 1620 * Obtain an extra reference on @pwq. The caller should guarantee that 1621 * @pwq has positive refcnt and be holding the matching pool->lock. 1622 */ 1623 static void get_pwq(struct pool_workqueue *pwq) 1624 { 1625 lockdep_assert_held(&pwq->pool->lock); 1626 WARN_ON_ONCE(pwq->refcnt <= 0); 1627 pwq->refcnt++; 1628 } 1629 1630 /** 1631 * put_pwq - put a pool_workqueue reference 1632 * @pwq: pool_workqueue to put 1633 * 1634 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1635 * destruction. The caller should be holding the matching pool->lock. 1636 */ 1637 static void put_pwq(struct pool_workqueue *pwq) 1638 { 1639 lockdep_assert_held(&pwq->pool->lock); 1640 if (likely(--pwq->refcnt)) 1641 return; 1642 /* 1643 * @pwq can't be released under pool->lock, bounce to a dedicated 1644 * kthread_worker to avoid A-A deadlocks. 1645 */ 1646 kthread_queue_work(pwq_release_worker, &pwq->release_work); 1647 } 1648 1649 /** 1650 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1651 * @pwq: pool_workqueue to put (can be %NULL) 1652 * 1653 * put_pwq() with locking. This function also allows %NULL @pwq. 1654 */ 1655 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1656 { 1657 if (pwq) { 1658 /* 1659 * As both pwqs and pools are RCU protected, the 1660 * following lock operations are safe. 1661 */ 1662 raw_spin_lock_irq(&pwq->pool->lock); 1663 put_pwq(pwq); 1664 raw_spin_unlock_irq(&pwq->pool->lock); 1665 } 1666 } 1667 1668 static bool pwq_is_empty(struct pool_workqueue *pwq) 1669 { 1670 return !pwq->nr_active && list_empty(&pwq->inactive_works); 1671 } 1672 1673 static void __pwq_activate_work(struct pool_workqueue *pwq, 1674 struct work_struct *work) 1675 { 1676 unsigned long *wdb = work_data_bits(work); 1677 1678 WARN_ON_ONCE(!(*wdb & WORK_STRUCT_INACTIVE)); 1679 trace_workqueue_activate_work(work); 1680 if (list_empty(&pwq->pool->worklist)) 1681 pwq->pool->watchdog_ts = jiffies; 1682 move_linked_works(work, &pwq->pool->worklist, NULL); 1683 __clear_bit(WORK_STRUCT_INACTIVE_BIT, wdb); 1684 } 1685 1686 /** 1687 * pwq_activate_work - Activate a work item if inactive 1688 * @pwq: pool_workqueue @work belongs to 1689 * @work: work item to activate 1690 * 1691 * Returns %true if activated. %false if already active. 1692 */ 1693 static bool pwq_activate_work(struct pool_workqueue *pwq, 1694 struct work_struct *work) 1695 { 1696 struct worker_pool *pool = pwq->pool; 1697 struct wq_node_nr_active *nna; 1698 1699 lockdep_assert_held(&pool->lock); 1700 1701 if (!(*work_data_bits(work) & WORK_STRUCT_INACTIVE)) 1702 return false; 1703 1704 nna = wq_node_nr_active(pwq->wq, pool->node); 1705 if (nna) 1706 atomic_inc(&nna->nr); 1707 1708 pwq->nr_active++; 1709 __pwq_activate_work(pwq, work); 1710 return true; 1711 } 1712 1713 static bool tryinc_node_nr_active(struct wq_node_nr_active *nna) 1714 { 1715 int max = READ_ONCE(nna->max); 1716 1717 while (true) { 1718 int old, tmp; 1719 1720 old = atomic_read(&nna->nr); 1721 if (old >= max) 1722 return false; 1723 tmp = atomic_cmpxchg_relaxed(&nna->nr, old, old + 1); 1724 if (tmp == old) 1725 return true; 1726 } 1727 } 1728 1729 /** 1730 * pwq_tryinc_nr_active - Try to increment nr_active for a pwq 1731 * @pwq: pool_workqueue of interest 1732 * @fill: max_active may have increased, try to increase concurrency level 1733 * 1734 * Try to increment nr_active for @pwq. Returns %true if an nr_active count is 1735 * successfully obtained. %false otherwise. 1736 */ 1737 static bool pwq_tryinc_nr_active(struct pool_workqueue *pwq, bool fill) 1738 { 1739 struct workqueue_struct *wq = pwq->wq; 1740 struct worker_pool *pool = pwq->pool; 1741 struct wq_node_nr_active *nna = wq_node_nr_active(wq, pool->node); 1742 bool obtained = false; 1743 1744 lockdep_assert_held(&pool->lock); 1745 1746 if (!nna) { 1747 /* BH or per-cpu workqueue, pwq->nr_active is sufficient */ 1748 obtained = pwq->nr_active < READ_ONCE(wq->max_active); 1749 goto out; 1750 } 1751 1752 if (unlikely(pwq->plugged)) 1753 return false; 1754 1755 /* 1756 * Unbound workqueue uses per-node shared nr_active $nna. If @pwq is 1757 * already waiting on $nna, pwq_dec_nr_active() will maintain the 1758 * concurrency level. Don't jump the line. 1759 * 1760 * We need to ignore the pending test after max_active has increased as 1761 * pwq_dec_nr_active() can only maintain the concurrency level but not 1762 * increase it. This is indicated by @fill. 1763 */ 1764 if (!list_empty(&pwq->pending_node) && likely(!fill)) 1765 goto out; 1766 1767 obtained = tryinc_node_nr_active(nna); 1768 if (obtained) 1769 goto out; 1770 1771 /* 1772 * Lockless acquisition failed. Lock, add ourself to $nna->pending_pwqs 1773 * and try again. The smp_mb() is paired with the implied memory barrier 1774 * of atomic_dec_return() in pwq_dec_nr_active() to ensure that either 1775 * we see the decremented $nna->nr or they see non-empty 1776 * $nna->pending_pwqs. 1777 */ 1778 raw_spin_lock(&nna->lock); 1779 1780 if (list_empty(&pwq->pending_node)) 1781 list_add_tail(&pwq->pending_node, &nna->pending_pwqs); 1782 else if (likely(!fill)) 1783 goto out_unlock; 1784 1785 smp_mb(); 1786 1787 obtained = tryinc_node_nr_active(nna); 1788 1789 /* 1790 * If @fill, @pwq might have already been pending. Being spuriously 1791 * pending in cold paths doesn't affect anything. Let's leave it be. 1792 */ 1793 if (obtained && likely(!fill)) 1794 list_del_init(&pwq->pending_node); 1795 1796 out_unlock: 1797 raw_spin_unlock(&nna->lock); 1798 out: 1799 if (obtained) 1800 pwq->nr_active++; 1801 return obtained; 1802 } 1803 1804 /** 1805 * pwq_activate_first_inactive - Activate the first inactive work item on a pwq 1806 * @pwq: pool_workqueue of interest 1807 * @fill: max_active may have increased, try to increase concurrency level 1808 * 1809 * Activate the first inactive work item of @pwq if available and allowed by 1810 * max_active limit. 1811 * 1812 * Returns %true if an inactive work item has been activated. %false if no 1813 * inactive work item is found or max_active limit is reached. 1814 */ 1815 static bool pwq_activate_first_inactive(struct pool_workqueue *pwq, bool fill) 1816 { 1817 struct work_struct *work = 1818 list_first_entry_or_null(&pwq->inactive_works, 1819 struct work_struct, entry); 1820 1821 if (work && pwq_tryinc_nr_active(pwq, fill)) { 1822 __pwq_activate_work(pwq, work); 1823 return true; 1824 } else { 1825 return false; 1826 } 1827 } 1828 1829 /** 1830 * unplug_oldest_pwq - unplug the oldest pool_workqueue 1831 * @wq: workqueue_struct where its oldest pwq is to be unplugged 1832 * 1833 * This function should only be called for ordered workqueues where only the 1834 * oldest pwq is unplugged, the others are plugged to suspend execution to 1835 * ensure proper work item ordering:: 1836 * 1837 * dfl_pwq --------------+ [P] - plugged 1838 * | 1839 * v 1840 * pwqs -> A -> B [P] -> C [P] (newest) 1841 * | | | 1842 * 1 3 5 1843 * | | | 1844 * 2 4 6 1845 * 1846 * When the oldest pwq is drained and removed, this function should be called 1847 * to unplug the next oldest one to start its work item execution. Note that 1848 * pwq's are linked into wq->pwqs with the oldest first, so the first one in 1849 * the list is the oldest. 1850 */ 1851 static void unplug_oldest_pwq(struct workqueue_struct *wq) 1852 { 1853 struct pool_workqueue *pwq; 1854 1855 lockdep_assert_held(&wq->mutex); 1856 1857 /* Caller should make sure that pwqs isn't empty before calling */ 1858 pwq = list_first_entry_or_null(&wq->pwqs, struct pool_workqueue, 1859 pwqs_node); 1860 raw_spin_lock_irq(&pwq->pool->lock); 1861 if (pwq->plugged) { 1862 pwq->plugged = false; 1863 if (pwq_activate_first_inactive(pwq, true)) 1864 kick_pool(pwq->pool); 1865 } 1866 raw_spin_unlock_irq(&pwq->pool->lock); 1867 } 1868 1869 /** 1870 * node_activate_pending_pwq - Activate a pending pwq on a wq_node_nr_active 1871 * @nna: wq_node_nr_active to activate a pending pwq for 1872 * @caller_pool: worker_pool the caller is locking 1873 * 1874 * Activate a pwq in @nna->pending_pwqs. Called with @caller_pool locked. 1875 * @caller_pool may be unlocked and relocked to lock other worker_pools. 1876 */ 1877 static void node_activate_pending_pwq(struct wq_node_nr_active *nna, 1878 struct worker_pool *caller_pool) 1879 { 1880 struct worker_pool *locked_pool = caller_pool; 1881 struct pool_workqueue *pwq; 1882 struct work_struct *work; 1883 1884 lockdep_assert_held(&caller_pool->lock); 1885 1886 raw_spin_lock(&nna->lock); 1887 retry: 1888 pwq = list_first_entry_or_null(&nna->pending_pwqs, 1889 struct pool_workqueue, pending_node); 1890 if (!pwq) 1891 goto out_unlock; 1892 1893 /* 1894 * If @pwq is for a different pool than @locked_pool, we need to lock 1895 * @pwq->pool->lock. Let's trylock first. If unsuccessful, do the unlock 1896 * / lock dance. For that, we also need to release @nna->lock as it's 1897 * nested inside pool locks. 1898 */ 1899 if (pwq->pool != locked_pool) { 1900 raw_spin_unlock(&locked_pool->lock); 1901 locked_pool = pwq->pool; 1902 if (!raw_spin_trylock(&locked_pool->lock)) { 1903 raw_spin_unlock(&nna->lock); 1904 raw_spin_lock(&locked_pool->lock); 1905 raw_spin_lock(&nna->lock); 1906 goto retry; 1907 } 1908 } 1909 1910 /* 1911 * $pwq may not have any inactive work items due to e.g. cancellations. 1912 * Drop it from pending_pwqs and see if there's another one. 1913 */ 1914 work = list_first_entry_or_null(&pwq->inactive_works, 1915 struct work_struct, entry); 1916 if (!work) { 1917 list_del_init(&pwq->pending_node); 1918 goto retry; 1919 } 1920 1921 /* 1922 * Acquire an nr_active count and activate the inactive work item. If 1923 * $pwq still has inactive work items, rotate it to the end of the 1924 * pending_pwqs so that we round-robin through them. This means that 1925 * inactive work items are not activated in queueing order which is fine 1926 * given that there has never been any ordering across different pwqs. 1927 */ 1928 if (likely(tryinc_node_nr_active(nna))) { 1929 pwq->nr_active++; 1930 __pwq_activate_work(pwq, work); 1931 1932 if (list_empty(&pwq->inactive_works)) 1933 list_del_init(&pwq->pending_node); 1934 else 1935 list_move_tail(&pwq->pending_node, &nna->pending_pwqs); 1936 1937 /* if activating a foreign pool, make sure it's running */ 1938 if (pwq->pool != caller_pool) 1939 kick_pool(pwq->pool); 1940 } 1941 1942 out_unlock: 1943 raw_spin_unlock(&nna->lock); 1944 if (locked_pool != caller_pool) { 1945 raw_spin_unlock(&locked_pool->lock); 1946 raw_spin_lock(&caller_pool->lock); 1947 } 1948 } 1949 1950 /** 1951 * pwq_dec_nr_active - Retire an active count 1952 * @pwq: pool_workqueue of interest 1953 * 1954 * Decrement @pwq's nr_active and try to activate the first inactive work item. 1955 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock. 1956 */ 1957 static void pwq_dec_nr_active(struct pool_workqueue *pwq) 1958 { 1959 struct worker_pool *pool = pwq->pool; 1960 struct wq_node_nr_active *nna = wq_node_nr_active(pwq->wq, pool->node); 1961 1962 lockdep_assert_held(&pool->lock); 1963 1964 /* 1965 * @pwq->nr_active should be decremented for both percpu and unbound 1966 * workqueues. 1967 */ 1968 pwq->nr_active--; 1969 1970 /* 1971 * For a percpu workqueue, it's simple. Just need to kick the first 1972 * inactive work item on @pwq itself. 1973 */ 1974 if (!nna) { 1975 pwq_activate_first_inactive(pwq, false); 1976 return; 1977 } 1978 1979 /* 1980 * If @pwq is for an unbound workqueue, it's more complicated because 1981 * multiple pwqs and pools may be sharing the nr_active count. When a 1982 * pwq needs to wait for an nr_active count, it puts itself on 1983 * $nna->pending_pwqs. The following atomic_dec_return()'s implied 1984 * memory barrier is paired with smp_mb() in pwq_tryinc_nr_active() to 1985 * guarantee that either we see non-empty pending_pwqs or they see 1986 * decremented $nna->nr. 1987 * 1988 * $nna->max may change as CPUs come online/offline and @pwq->wq's 1989 * max_active gets updated. However, it is guaranteed to be equal to or 1990 * larger than @pwq->wq->min_active which is above zero unless freezing. 1991 * This maintains the forward progress guarantee. 1992 */ 1993 if (atomic_dec_return(&nna->nr) >= READ_ONCE(nna->max)) 1994 return; 1995 1996 if (!list_empty(&nna->pending_pwqs)) 1997 node_activate_pending_pwq(nna, pool); 1998 } 1999 2000 /** 2001 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 2002 * @pwq: pwq of interest 2003 * @work_data: work_data of work which left the queue 2004 * 2005 * A work either has completed or is removed from pending queue, 2006 * decrement nr_in_flight of its pwq and handle workqueue flushing. 2007 * 2008 * NOTE: 2009 * For unbound workqueues, this function may temporarily drop @pwq->pool->lock 2010 * and thus should be called after all other state updates for the in-flight 2011 * work item is complete. 2012 * 2013 * CONTEXT: 2014 * raw_spin_lock_irq(pool->lock). 2015 */ 2016 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data) 2017 { 2018 int color = get_work_color(work_data); 2019 2020 if (!(work_data & WORK_STRUCT_INACTIVE)) 2021 pwq_dec_nr_active(pwq); 2022 2023 pwq->nr_in_flight[color]--; 2024 2025 /* is flush in progress and are we at the flushing tip? */ 2026 if (likely(pwq->flush_color != color)) 2027 goto out_put; 2028 2029 /* are there still in-flight works? */ 2030 if (pwq->nr_in_flight[color]) 2031 goto out_put; 2032 2033 /* this pwq is done, clear flush_color */ 2034 pwq->flush_color = -1; 2035 2036 /* 2037 * If this was the last pwq, wake up the first flusher. It 2038 * will handle the rest. 2039 */ 2040 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 2041 complete(&pwq->wq->first_flusher->done); 2042 out_put: 2043 put_pwq(pwq); 2044 } 2045 2046 /** 2047 * try_to_grab_pending - steal work item from worklist and disable irq 2048 * @work: work item to steal 2049 * @cflags: %WORK_CANCEL_ flags 2050 * @irq_flags: place to store irq state 2051 * 2052 * Try to grab PENDING bit of @work. This function can handle @work in any 2053 * stable state - idle, on timer or on worklist. 2054 * 2055 * Return: 2056 * 2057 * ======== ================================================================ 2058 * 1 if @work was pending and we successfully stole PENDING 2059 * 0 if @work was idle and we claimed PENDING 2060 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 2061 * ======== ================================================================ 2062 * 2063 * Note: 2064 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 2065 * interrupted while holding PENDING and @work off queue, irq must be 2066 * disabled on entry. This, combined with delayed_work->timer being 2067 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 2068 * 2069 * On successful return, >= 0, irq is disabled and the caller is 2070 * responsible for releasing it using local_irq_restore(*@irq_flags). 2071 * 2072 * This function is safe to call from any context including IRQ handler. 2073 */ 2074 static int try_to_grab_pending(struct work_struct *work, u32 cflags, 2075 unsigned long *irq_flags) 2076 { 2077 struct worker_pool *pool; 2078 struct pool_workqueue *pwq; 2079 2080 local_irq_save(*irq_flags); 2081 2082 /* try to steal the timer if it exists */ 2083 if (cflags & WORK_CANCEL_DELAYED) { 2084 struct delayed_work *dwork = to_delayed_work(work); 2085 2086 /* 2087 * dwork->timer is irqsafe. If del_timer() fails, it's 2088 * guaranteed that the timer is not queued anywhere and not 2089 * running on the local CPU. 2090 */ 2091 if (likely(del_timer(&dwork->timer))) 2092 return 1; 2093 } 2094 2095 /* try to claim PENDING the normal way */ 2096 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 2097 return 0; 2098 2099 rcu_read_lock(); 2100 /* 2101 * The queueing is in progress, or it is already queued. Try to 2102 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 2103 */ 2104 pool = get_work_pool(work); 2105 if (!pool) 2106 goto fail; 2107 2108 raw_spin_lock(&pool->lock); 2109 /* 2110 * work->data is guaranteed to point to pwq only while the work 2111 * item is queued on pwq->wq, and both updating work->data to point 2112 * to pwq on queueing and to pool on dequeueing are done under 2113 * pwq->pool->lock. This in turn guarantees that, if work->data 2114 * points to pwq which is associated with a locked pool, the work 2115 * item is currently queued on that pool. 2116 */ 2117 pwq = get_work_pwq(work); 2118 if (pwq && pwq->pool == pool) { 2119 unsigned long work_data; 2120 2121 debug_work_deactivate(work); 2122 2123 /* 2124 * A cancelable inactive work item must be in the 2125 * pwq->inactive_works since a queued barrier can't be 2126 * canceled (see the comments in insert_wq_barrier()). 2127 * 2128 * An inactive work item cannot be grabbed directly because 2129 * it might have linked barrier work items which, if left 2130 * on the inactive_works list, will confuse pwq->nr_active 2131 * management later on and cause stall. Make sure the work 2132 * item is activated before grabbing. 2133 */ 2134 pwq_activate_work(pwq, work); 2135 2136 list_del_init(&work->entry); 2137 2138 /* 2139 * work->data points to pwq iff queued. Let's point to pool. As 2140 * this destroys work->data needed by the next step, stash it. 2141 */ 2142 work_data = *work_data_bits(work); 2143 set_work_pool_and_keep_pending(work, pool->id, 2144 pool_offq_flags(pool)); 2145 2146 /* must be the last step, see the function comment */ 2147 pwq_dec_nr_in_flight(pwq, work_data); 2148 2149 raw_spin_unlock(&pool->lock); 2150 rcu_read_unlock(); 2151 return 1; 2152 } 2153 raw_spin_unlock(&pool->lock); 2154 fail: 2155 rcu_read_unlock(); 2156 local_irq_restore(*irq_flags); 2157 return -EAGAIN; 2158 } 2159 2160 /** 2161 * work_grab_pending - steal work item from worklist and disable irq 2162 * @work: work item to steal 2163 * @cflags: %WORK_CANCEL_ flags 2164 * @irq_flags: place to store IRQ state 2165 * 2166 * Grab PENDING bit of @work. @work can be in any stable state - idle, on timer 2167 * or on worklist. 2168 * 2169 * Can be called from any context. IRQ is disabled on return with IRQ state 2170 * stored in *@irq_flags. The caller is responsible for re-enabling it using 2171 * local_irq_restore(). 2172 * 2173 * Returns %true if @work was pending. %false if idle. 2174 */ 2175 static bool work_grab_pending(struct work_struct *work, u32 cflags, 2176 unsigned long *irq_flags) 2177 { 2178 int ret; 2179 2180 while (true) { 2181 ret = try_to_grab_pending(work, cflags, irq_flags); 2182 if (ret >= 0) 2183 return ret; 2184 cpu_relax(); 2185 } 2186 } 2187 2188 /** 2189 * insert_work - insert a work into a pool 2190 * @pwq: pwq @work belongs to 2191 * @work: work to insert 2192 * @head: insertion point 2193 * @extra_flags: extra WORK_STRUCT_* flags to set 2194 * 2195 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 2196 * work_struct flags. 2197 * 2198 * CONTEXT: 2199 * raw_spin_lock_irq(pool->lock). 2200 */ 2201 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 2202 struct list_head *head, unsigned int extra_flags) 2203 { 2204 debug_work_activate(work); 2205 2206 /* record the work call stack in order to print it in KASAN reports */ 2207 kasan_record_aux_stack_noalloc(work); 2208 2209 /* we own @work, set data and link */ 2210 set_work_pwq(work, pwq, extra_flags); 2211 list_add_tail(&work->entry, head); 2212 get_pwq(pwq); 2213 } 2214 2215 /* 2216 * Test whether @work is being queued from another work executing on the 2217 * same workqueue. 2218 */ 2219 static bool is_chained_work(struct workqueue_struct *wq) 2220 { 2221 struct worker *worker; 2222 2223 worker = current_wq_worker(); 2224 /* 2225 * Return %true iff I'm a worker executing a work item on @wq. If 2226 * I'm @worker, it's safe to dereference it without locking. 2227 */ 2228 return worker && worker->current_pwq->wq == wq; 2229 } 2230 2231 /* 2232 * When queueing an unbound work item to a wq, prefer local CPU if allowed 2233 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 2234 * avoid perturbing sensitive tasks. 2235 */ 2236 static int wq_select_unbound_cpu(int cpu) 2237 { 2238 int new_cpu; 2239 2240 if (likely(!wq_debug_force_rr_cpu)) { 2241 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 2242 return cpu; 2243 } else { 2244 pr_warn_once("workqueue: round-robin CPU selection forced, expect performance impact\n"); 2245 } 2246 2247 new_cpu = __this_cpu_read(wq_rr_cpu_last); 2248 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 2249 if (unlikely(new_cpu >= nr_cpu_ids)) { 2250 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 2251 if (unlikely(new_cpu >= nr_cpu_ids)) 2252 return cpu; 2253 } 2254 __this_cpu_write(wq_rr_cpu_last, new_cpu); 2255 2256 return new_cpu; 2257 } 2258 2259 static void __queue_work(int cpu, struct workqueue_struct *wq, 2260 struct work_struct *work) 2261 { 2262 struct pool_workqueue *pwq; 2263 struct worker_pool *last_pool, *pool; 2264 unsigned int work_flags; 2265 unsigned int req_cpu = cpu; 2266 2267 /* 2268 * While a work item is PENDING && off queue, a task trying to 2269 * steal the PENDING will busy-loop waiting for it to either get 2270 * queued or lose PENDING. Grabbing PENDING and queueing should 2271 * happen with IRQ disabled. 2272 */ 2273 lockdep_assert_irqs_disabled(); 2274 2275 /* 2276 * For a draining wq, only works from the same workqueue are 2277 * allowed. The __WQ_DESTROYING helps to spot the issue that 2278 * queues a new work item to a wq after destroy_workqueue(wq). 2279 */ 2280 if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) && 2281 WARN_ON_ONCE(!is_chained_work(wq)))) 2282 return; 2283 rcu_read_lock(); 2284 retry: 2285 /* pwq which will be used unless @work is executing elsewhere */ 2286 if (req_cpu == WORK_CPU_UNBOUND) { 2287 if (wq->flags & WQ_UNBOUND) 2288 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 2289 else 2290 cpu = raw_smp_processor_id(); 2291 } 2292 2293 pwq = rcu_dereference(*per_cpu_ptr(wq->cpu_pwq, cpu)); 2294 pool = pwq->pool; 2295 2296 /* 2297 * If @work was previously on a different pool, it might still be 2298 * running there, in which case the work needs to be queued on that 2299 * pool to guarantee non-reentrancy. 2300 */ 2301 last_pool = get_work_pool(work); 2302 if (last_pool && last_pool != pool) { 2303 struct worker *worker; 2304 2305 raw_spin_lock(&last_pool->lock); 2306 2307 worker = find_worker_executing_work(last_pool, work); 2308 2309 if (worker && worker->current_pwq->wq == wq) { 2310 pwq = worker->current_pwq; 2311 pool = pwq->pool; 2312 WARN_ON_ONCE(pool != last_pool); 2313 } else { 2314 /* meh... not running there, queue here */ 2315 raw_spin_unlock(&last_pool->lock); 2316 raw_spin_lock(&pool->lock); 2317 } 2318 } else { 2319 raw_spin_lock(&pool->lock); 2320 } 2321 2322 /* 2323 * pwq is determined and locked. For unbound pools, we could have raced 2324 * with pwq release and it could already be dead. If its refcnt is zero, 2325 * repeat pwq selection. Note that unbound pwqs never die without 2326 * another pwq replacing it in cpu_pwq or while work items are executing 2327 * on it, so the retrying is guaranteed to make forward-progress. 2328 */ 2329 if (unlikely(!pwq->refcnt)) { 2330 if (wq->flags & WQ_UNBOUND) { 2331 raw_spin_unlock(&pool->lock); 2332 cpu_relax(); 2333 goto retry; 2334 } 2335 /* oops */ 2336 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 2337 wq->name, cpu); 2338 } 2339 2340 /* pwq determined, queue */ 2341 trace_workqueue_queue_work(req_cpu, pwq, work); 2342 2343 if (WARN_ON(!list_empty(&work->entry))) 2344 goto out; 2345 2346 pwq->nr_in_flight[pwq->work_color]++; 2347 work_flags = work_color_to_flags(pwq->work_color); 2348 2349 /* 2350 * Limit the number of concurrently active work items to max_active. 2351 * @work must also queue behind existing inactive work items to maintain 2352 * ordering when max_active changes. See wq_adjust_max_active(). 2353 */ 2354 if (list_empty(&pwq->inactive_works) && pwq_tryinc_nr_active(pwq, false)) { 2355 if (list_empty(&pool->worklist)) 2356 pool->watchdog_ts = jiffies; 2357 2358 trace_workqueue_activate_work(work); 2359 insert_work(pwq, work, &pool->worklist, work_flags); 2360 kick_pool(pool); 2361 } else { 2362 work_flags |= WORK_STRUCT_INACTIVE; 2363 insert_work(pwq, work, &pwq->inactive_works, work_flags); 2364 } 2365 2366 out: 2367 raw_spin_unlock(&pool->lock); 2368 rcu_read_unlock(); 2369 } 2370 2371 static bool clear_pending_if_disabled(struct work_struct *work) 2372 { 2373 unsigned long data = *work_data_bits(work); 2374 struct work_offq_data offqd; 2375 2376 if (likely((data & WORK_STRUCT_PWQ) || 2377 !(data & WORK_OFFQ_DISABLE_MASK))) 2378 return false; 2379 2380 work_offqd_unpack(&offqd, data); 2381 set_work_pool_and_clear_pending(work, offqd.pool_id, 2382 work_offqd_pack_flags(&offqd)); 2383 return true; 2384 } 2385 2386 /** 2387 * queue_work_on - queue work on specific cpu 2388 * @cpu: CPU number to execute work on 2389 * @wq: workqueue to use 2390 * @work: work to queue 2391 * 2392 * We queue the work to a specific CPU, the caller must ensure it 2393 * can't go away. Callers that fail to ensure that the specified 2394 * CPU cannot go away will execute on a randomly chosen CPU. 2395 * But note well that callers specifying a CPU that never has been 2396 * online will get a splat. 2397 * 2398 * Return: %false if @work was already on a queue, %true otherwise. 2399 */ 2400 bool queue_work_on(int cpu, struct workqueue_struct *wq, 2401 struct work_struct *work) 2402 { 2403 bool ret = false; 2404 unsigned long irq_flags; 2405 2406 local_irq_save(irq_flags); 2407 2408 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2409 !clear_pending_if_disabled(work)) { 2410 __queue_work(cpu, wq, work); 2411 ret = true; 2412 } 2413 2414 local_irq_restore(irq_flags); 2415 return ret; 2416 } 2417 EXPORT_SYMBOL(queue_work_on); 2418 2419 /** 2420 * select_numa_node_cpu - Select a CPU based on NUMA node 2421 * @node: NUMA node ID that we want to select a CPU from 2422 * 2423 * This function will attempt to find a "random" cpu available on a given 2424 * node. If there are no CPUs available on the given node it will return 2425 * WORK_CPU_UNBOUND indicating that we should just schedule to any 2426 * available CPU if we need to schedule this work. 2427 */ 2428 static int select_numa_node_cpu(int node) 2429 { 2430 int cpu; 2431 2432 /* Delay binding to CPU if node is not valid or online */ 2433 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 2434 return WORK_CPU_UNBOUND; 2435 2436 /* Use local node/cpu if we are already there */ 2437 cpu = raw_smp_processor_id(); 2438 if (node == cpu_to_node(cpu)) 2439 return cpu; 2440 2441 /* Use "random" otherwise know as "first" online CPU of node */ 2442 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 2443 2444 /* If CPU is valid return that, otherwise just defer */ 2445 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 2446 } 2447 2448 /** 2449 * queue_work_node - queue work on a "random" cpu for a given NUMA node 2450 * @node: NUMA node that we are targeting the work for 2451 * @wq: workqueue to use 2452 * @work: work to queue 2453 * 2454 * We queue the work to a "random" CPU within a given NUMA node. The basic 2455 * idea here is to provide a way to somehow associate work with a given 2456 * NUMA node. 2457 * 2458 * This function will only make a best effort attempt at getting this onto 2459 * the right NUMA node. If no node is requested or the requested node is 2460 * offline then we just fall back to standard queue_work behavior. 2461 * 2462 * Currently the "random" CPU ends up being the first available CPU in the 2463 * intersection of cpu_online_mask and the cpumask of the node, unless we 2464 * are running on the node. In that case we just use the current CPU. 2465 * 2466 * Return: %false if @work was already on a queue, %true otherwise. 2467 */ 2468 bool queue_work_node(int node, struct workqueue_struct *wq, 2469 struct work_struct *work) 2470 { 2471 unsigned long irq_flags; 2472 bool ret = false; 2473 2474 /* 2475 * This current implementation is specific to unbound workqueues. 2476 * Specifically we only return the first available CPU for a given 2477 * node instead of cycling through individual CPUs within the node. 2478 * 2479 * If this is used with a per-cpu workqueue then the logic in 2480 * workqueue_select_cpu_near would need to be updated to allow for 2481 * some round robin type logic. 2482 */ 2483 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 2484 2485 local_irq_save(irq_flags); 2486 2487 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2488 !clear_pending_if_disabled(work)) { 2489 int cpu = select_numa_node_cpu(node); 2490 2491 __queue_work(cpu, wq, work); 2492 ret = true; 2493 } 2494 2495 local_irq_restore(irq_flags); 2496 return ret; 2497 } 2498 EXPORT_SYMBOL_GPL(queue_work_node); 2499 2500 void delayed_work_timer_fn(struct timer_list *t) 2501 { 2502 struct delayed_work *dwork = from_timer(dwork, t, timer); 2503 2504 /* should have been called from irqsafe timer with irq already off */ 2505 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2506 } 2507 EXPORT_SYMBOL(delayed_work_timer_fn); 2508 2509 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 2510 struct delayed_work *dwork, unsigned long delay) 2511 { 2512 struct timer_list *timer = &dwork->timer; 2513 struct work_struct *work = &dwork->work; 2514 2515 WARN_ON_ONCE(!wq); 2516 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 2517 WARN_ON_ONCE(timer_pending(timer)); 2518 WARN_ON_ONCE(!list_empty(&work->entry)); 2519 2520 /* 2521 * If @delay is 0, queue @dwork->work immediately. This is for 2522 * both optimization and correctness. The earliest @timer can 2523 * expire is on the closest next tick and delayed_work users depend 2524 * on that there's no such delay when @delay is 0. 2525 */ 2526 if (!delay) { 2527 __queue_work(cpu, wq, &dwork->work); 2528 return; 2529 } 2530 2531 dwork->wq = wq; 2532 dwork->cpu = cpu; 2533 timer->expires = jiffies + delay; 2534 2535 if (housekeeping_enabled(HK_TYPE_TIMER)) { 2536 /* If the current cpu is a housekeeping cpu, use it. */ 2537 cpu = smp_processor_id(); 2538 if (!housekeeping_test_cpu(cpu, HK_TYPE_TIMER)) 2539 cpu = housekeeping_any_cpu(HK_TYPE_TIMER); 2540 add_timer_on(timer, cpu); 2541 } else { 2542 if (likely(cpu == WORK_CPU_UNBOUND)) 2543 add_timer_global(timer); 2544 else 2545 add_timer_on(timer, cpu); 2546 } 2547 } 2548 2549 /** 2550 * queue_delayed_work_on - queue work on specific CPU after delay 2551 * @cpu: CPU number to execute work on 2552 * @wq: workqueue to use 2553 * @dwork: work to queue 2554 * @delay: number of jiffies to wait before queueing 2555 * 2556 * Return: %false if @work was already on a queue, %true otherwise. If 2557 * @delay is zero and @dwork is idle, it will be scheduled for immediate 2558 * execution. 2559 */ 2560 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 2561 struct delayed_work *dwork, unsigned long delay) 2562 { 2563 struct work_struct *work = &dwork->work; 2564 bool ret = false; 2565 unsigned long irq_flags; 2566 2567 /* read the comment in __queue_work() */ 2568 local_irq_save(irq_flags); 2569 2570 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2571 !clear_pending_if_disabled(work)) { 2572 __queue_delayed_work(cpu, wq, dwork, delay); 2573 ret = true; 2574 } 2575 2576 local_irq_restore(irq_flags); 2577 return ret; 2578 } 2579 EXPORT_SYMBOL(queue_delayed_work_on); 2580 2581 /** 2582 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 2583 * @cpu: CPU number to execute work on 2584 * @wq: workqueue to use 2585 * @dwork: work to queue 2586 * @delay: number of jiffies to wait before queueing 2587 * 2588 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 2589 * modify @dwork's timer so that it expires after @delay. If @delay is 2590 * zero, @work is guaranteed to be scheduled immediately regardless of its 2591 * current state. 2592 * 2593 * Return: %false if @dwork was idle and queued, %true if @dwork was 2594 * pending and its timer was modified. 2595 * 2596 * This function is safe to call from any context including IRQ handler. 2597 * See try_to_grab_pending() for details. 2598 */ 2599 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 2600 struct delayed_work *dwork, unsigned long delay) 2601 { 2602 unsigned long irq_flags; 2603 bool ret; 2604 2605 ret = work_grab_pending(&dwork->work, WORK_CANCEL_DELAYED, &irq_flags); 2606 2607 if (!clear_pending_if_disabled(&dwork->work)) 2608 __queue_delayed_work(cpu, wq, dwork, delay); 2609 2610 local_irq_restore(irq_flags); 2611 return ret; 2612 } 2613 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 2614 2615 static void rcu_work_rcufn(struct rcu_head *rcu) 2616 { 2617 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 2618 2619 /* read the comment in __queue_work() */ 2620 local_irq_disable(); 2621 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 2622 local_irq_enable(); 2623 } 2624 2625 /** 2626 * queue_rcu_work - queue work after a RCU grace period 2627 * @wq: workqueue to use 2628 * @rwork: work to queue 2629 * 2630 * Return: %false if @rwork was already pending, %true otherwise. Note 2631 * that a full RCU grace period is guaranteed only after a %true return. 2632 * While @rwork is guaranteed to be executed after a %false return, the 2633 * execution may happen before a full RCU grace period has passed. 2634 */ 2635 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 2636 { 2637 struct work_struct *work = &rwork->work; 2638 2639 /* 2640 * rcu_work can't be canceled or disabled. Warn if the user reached 2641 * inside @rwork and disabled the inner work. 2642 */ 2643 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)) && 2644 !WARN_ON_ONCE(clear_pending_if_disabled(work))) { 2645 rwork->wq = wq; 2646 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn); 2647 return true; 2648 } 2649 2650 return false; 2651 } 2652 EXPORT_SYMBOL(queue_rcu_work); 2653 2654 static struct worker *alloc_worker(int node) 2655 { 2656 struct worker *worker; 2657 2658 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 2659 if (worker) { 2660 INIT_LIST_HEAD(&worker->entry); 2661 INIT_LIST_HEAD(&worker->scheduled); 2662 INIT_LIST_HEAD(&worker->node); 2663 /* on creation a worker is in !idle && prep state */ 2664 worker->flags = WORKER_PREP; 2665 } 2666 return worker; 2667 } 2668 2669 static cpumask_t *pool_allowed_cpus(struct worker_pool *pool) 2670 { 2671 if (pool->cpu < 0 && pool->attrs->affn_strict) 2672 return pool->attrs->__pod_cpumask; 2673 else 2674 return pool->attrs->cpumask; 2675 } 2676 2677 /** 2678 * worker_attach_to_pool() - attach a worker to a pool 2679 * @worker: worker to be attached 2680 * @pool: the target pool 2681 * 2682 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 2683 * cpu-binding of @worker are kept coordinated with the pool across 2684 * cpu-[un]hotplugs. 2685 */ 2686 static void worker_attach_to_pool(struct worker *worker, 2687 struct worker_pool *pool) 2688 { 2689 mutex_lock(&wq_pool_attach_mutex); 2690 2691 /* 2692 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains stable 2693 * across this function. See the comments above the flag definition for 2694 * details. BH workers are, while per-CPU, always DISASSOCIATED. 2695 */ 2696 if (pool->flags & POOL_DISASSOCIATED) { 2697 worker->flags |= WORKER_UNBOUND; 2698 } else { 2699 WARN_ON_ONCE(pool->flags & POOL_BH); 2700 kthread_set_per_cpu(worker->task, pool->cpu); 2701 } 2702 2703 if (worker->rescue_wq) 2704 set_cpus_allowed_ptr(worker->task, pool_allowed_cpus(pool)); 2705 2706 list_add_tail(&worker->node, &pool->workers); 2707 worker->pool = pool; 2708 2709 mutex_unlock(&wq_pool_attach_mutex); 2710 } 2711 2712 /** 2713 * worker_detach_from_pool() - detach a worker from its pool 2714 * @worker: worker which is attached to its pool 2715 * 2716 * Undo the attaching which had been done in worker_attach_to_pool(). The 2717 * caller worker shouldn't access to the pool after detached except it has 2718 * other reference to the pool. 2719 */ 2720 static void worker_detach_from_pool(struct worker *worker) 2721 { 2722 struct worker_pool *pool = worker->pool; 2723 struct completion *detach_completion = NULL; 2724 2725 /* there is one permanent BH worker per CPU which should never detach */ 2726 WARN_ON_ONCE(pool->flags & POOL_BH); 2727 2728 mutex_lock(&wq_pool_attach_mutex); 2729 2730 kthread_set_per_cpu(worker->task, -1); 2731 list_del(&worker->node); 2732 worker->pool = NULL; 2733 2734 if (list_empty(&pool->workers) && list_empty(&pool->dying_workers)) 2735 detach_completion = pool->detach_completion; 2736 mutex_unlock(&wq_pool_attach_mutex); 2737 2738 /* clear leftover flags without pool->lock after it is detached */ 2739 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 2740 2741 if (detach_completion) 2742 complete(detach_completion); 2743 } 2744 2745 /** 2746 * create_worker - create a new workqueue worker 2747 * @pool: pool the new worker will belong to 2748 * 2749 * Create and start a new worker which is attached to @pool. 2750 * 2751 * CONTEXT: 2752 * Might sleep. Does GFP_KERNEL allocations. 2753 * 2754 * Return: 2755 * Pointer to the newly created worker. 2756 */ 2757 static struct worker *create_worker(struct worker_pool *pool) 2758 { 2759 struct worker *worker; 2760 int id; 2761 char id_buf[23]; 2762 2763 /* ID is needed to determine kthread name */ 2764 id = ida_alloc(&pool->worker_ida, GFP_KERNEL); 2765 if (id < 0) { 2766 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n", 2767 ERR_PTR(id)); 2768 return NULL; 2769 } 2770 2771 worker = alloc_worker(pool->node); 2772 if (!worker) { 2773 pr_err_once("workqueue: Failed to allocate a worker\n"); 2774 goto fail; 2775 } 2776 2777 worker->id = id; 2778 2779 if (!(pool->flags & POOL_BH)) { 2780 if (pool->cpu >= 0) 2781 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 2782 pool->attrs->nice < 0 ? "H" : ""); 2783 else 2784 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 2785 2786 worker->task = kthread_create_on_node(worker_thread, worker, 2787 pool->node, "kworker/%s", id_buf); 2788 if (IS_ERR(worker->task)) { 2789 if (PTR_ERR(worker->task) == -EINTR) { 2790 pr_err("workqueue: Interrupted when creating a worker thread \"kworker/%s\"\n", 2791 id_buf); 2792 } else { 2793 pr_err_once("workqueue: Failed to create a worker thread: %pe", 2794 worker->task); 2795 } 2796 goto fail; 2797 } 2798 2799 set_user_nice(worker->task, pool->attrs->nice); 2800 kthread_bind_mask(worker->task, pool_allowed_cpus(pool)); 2801 } 2802 2803 /* successful, attach the worker to the pool */ 2804 worker_attach_to_pool(worker, pool); 2805 2806 /* start the newly created worker */ 2807 raw_spin_lock_irq(&pool->lock); 2808 2809 worker->pool->nr_workers++; 2810 worker_enter_idle(worker); 2811 2812 /* 2813 * @worker is waiting on a completion in kthread() and will trigger hung 2814 * check if not woken up soon. As kick_pool() is noop if @pool is empty, 2815 * wake it up explicitly. 2816 */ 2817 if (worker->task) 2818 wake_up_process(worker->task); 2819 2820 raw_spin_unlock_irq(&pool->lock); 2821 2822 return worker; 2823 2824 fail: 2825 ida_free(&pool->worker_ida, id); 2826 kfree(worker); 2827 return NULL; 2828 } 2829 2830 static void unbind_worker(struct worker *worker) 2831 { 2832 lockdep_assert_held(&wq_pool_attach_mutex); 2833 2834 kthread_set_per_cpu(worker->task, -1); 2835 if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask)) 2836 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0); 2837 else 2838 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0); 2839 } 2840 2841 static void wake_dying_workers(struct list_head *cull_list) 2842 { 2843 struct worker *worker, *tmp; 2844 2845 list_for_each_entry_safe(worker, tmp, cull_list, entry) { 2846 list_del_init(&worker->entry); 2847 unbind_worker(worker); 2848 /* 2849 * If the worker was somehow already running, then it had to be 2850 * in pool->idle_list when set_worker_dying() happened or we 2851 * wouldn't have gotten here. 2852 * 2853 * Thus, the worker must either have observed the WORKER_DIE 2854 * flag, or have set its state to TASK_IDLE. Either way, the 2855 * below will be observed by the worker and is safe to do 2856 * outside of pool->lock. 2857 */ 2858 wake_up_process(worker->task); 2859 } 2860 } 2861 2862 /** 2863 * set_worker_dying - Tag a worker for destruction 2864 * @worker: worker to be destroyed 2865 * @list: transfer worker away from its pool->idle_list and into list 2866 * 2867 * Tag @worker for destruction and adjust @pool stats accordingly. The worker 2868 * should be idle. 2869 * 2870 * CONTEXT: 2871 * raw_spin_lock_irq(pool->lock). 2872 */ 2873 static void set_worker_dying(struct worker *worker, struct list_head *list) 2874 { 2875 struct worker_pool *pool = worker->pool; 2876 2877 lockdep_assert_held(&pool->lock); 2878 lockdep_assert_held(&wq_pool_attach_mutex); 2879 2880 /* sanity check frenzy */ 2881 if (WARN_ON(worker->current_work) || 2882 WARN_ON(!list_empty(&worker->scheduled)) || 2883 WARN_ON(!(worker->flags & WORKER_IDLE))) 2884 return; 2885 2886 pool->nr_workers--; 2887 pool->nr_idle--; 2888 2889 worker->flags |= WORKER_DIE; 2890 2891 list_move(&worker->entry, list); 2892 list_move(&worker->node, &pool->dying_workers); 2893 } 2894 2895 /** 2896 * idle_worker_timeout - check if some idle workers can now be deleted. 2897 * @t: The pool's idle_timer that just expired 2898 * 2899 * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in 2900 * worker_leave_idle(), as a worker flicking between idle and active while its 2901 * pool is at the too_many_workers() tipping point would cause too much timer 2902 * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let 2903 * it expire and re-evaluate things from there. 2904 */ 2905 static void idle_worker_timeout(struct timer_list *t) 2906 { 2907 struct worker_pool *pool = from_timer(pool, t, idle_timer); 2908 bool do_cull = false; 2909 2910 if (work_pending(&pool->idle_cull_work)) 2911 return; 2912 2913 raw_spin_lock_irq(&pool->lock); 2914 2915 if (too_many_workers(pool)) { 2916 struct worker *worker; 2917 unsigned long expires; 2918 2919 /* idle_list is kept in LIFO order, check the last one */ 2920 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2921 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2922 do_cull = !time_before(jiffies, expires); 2923 2924 if (!do_cull) 2925 mod_timer(&pool->idle_timer, expires); 2926 } 2927 raw_spin_unlock_irq(&pool->lock); 2928 2929 if (do_cull) 2930 queue_work(system_unbound_wq, &pool->idle_cull_work); 2931 } 2932 2933 /** 2934 * idle_cull_fn - cull workers that have been idle for too long. 2935 * @work: the pool's work for handling these idle workers 2936 * 2937 * This goes through a pool's idle workers and gets rid of those that have been 2938 * idle for at least IDLE_WORKER_TIMEOUT seconds. 2939 * 2940 * We don't want to disturb isolated CPUs because of a pcpu kworker being 2941 * culled, so this also resets worker affinity. This requires a sleepable 2942 * context, hence the split between timer callback and work item. 2943 */ 2944 static void idle_cull_fn(struct work_struct *work) 2945 { 2946 struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work); 2947 LIST_HEAD(cull_list); 2948 2949 /* 2950 * Grabbing wq_pool_attach_mutex here ensures an already-running worker 2951 * cannot proceed beyong worker_detach_from_pool() in its self-destruct 2952 * path. This is required as a previously-preempted worker could run after 2953 * set_worker_dying() has happened but before wake_dying_workers() did. 2954 */ 2955 mutex_lock(&wq_pool_attach_mutex); 2956 raw_spin_lock_irq(&pool->lock); 2957 2958 while (too_many_workers(pool)) { 2959 struct worker *worker; 2960 unsigned long expires; 2961 2962 worker = list_last_entry(&pool->idle_list, struct worker, entry); 2963 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 2964 2965 if (time_before(jiffies, expires)) { 2966 mod_timer(&pool->idle_timer, expires); 2967 break; 2968 } 2969 2970 set_worker_dying(worker, &cull_list); 2971 } 2972 2973 raw_spin_unlock_irq(&pool->lock); 2974 wake_dying_workers(&cull_list); 2975 mutex_unlock(&wq_pool_attach_mutex); 2976 } 2977 2978 static void send_mayday(struct work_struct *work) 2979 { 2980 struct pool_workqueue *pwq = get_work_pwq(work); 2981 struct workqueue_struct *wq = pwq->wq; 2982 2983 lockdep_assert_held(&wq_mayday_lock); 2984 2985 if (!wq->rescuer) 2986 return; 2987 2988 /* mayday mayday mayday */ 2989 if (list_empty(&pwq->mayday_node)) { 2990 /* 2991 * If @pwq is for an unbound wq, its base ref may be put at 2992 * any time due to an attribute change. Pin @pwq until the 2993 * rescuer is done with it. 2994 */ 2995 get_pwq(pwq); 2996 list_add_tail(&pwq->mayday_node, &wq->maydays); 2997 wake_up_process(wq->rescuer->task); 2998 pwq->stats[PWQ_STAT_MAYDAY]++; 2999 } 3000 } 3001 3002 static void pool_mayday_timeout(struct timer_list *t) 3003 { 3004 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 3005 struct work_struct *work; 3006 3007 raw_spin_lock_irq(&pool->lock); 3008 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */ 3009 3010 if (need_to_create_worker(pool)) { 3011 /* 3012 * We've been trying to create a new worker but 3013 * haven't been successful. We might be hitting an 3014 * allocation deadlock. Send distress signals to 3015 * rescuers. 3016 */ 3017 list_for_each_entry(work, &pool->worklist, entry) 3018 send_mayday(work); 3019 } 3020 3021 raw_spin_unlock(&wq_mayday_lock); 3022 raw_spin_unlock_irq(&pool->lock); 3023 3024 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 3025 } 3026 3027 /** 3028 * maybe_create_worker - create a new worker if necessary 3029 * @pool: pool to create a new worker for 3030 * 3031 * Create a new worker for @pool if necessary. @pool is guaranteed to 3032 * have at least one idle worker on return from this function. If 3033 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 3034 * sent to all rescuers with works scheduled on @pool to resolve 3035 * possible allocation deadlock. 3036 * 3037 * On return, need_to_create_worker() is guaranteed to be %false and 3038 * may_start_working() %true. 3039 * 3040 * LOCKING: 3041 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3042 * multiple times. Does GFP_KERNEL allocations. Called only from 3043 * manager. 3044 */ 3045 static void maybe_create_worker(struct worker_pool *pool) 3046 __releases(&pool->lock) 3047 __acquires(&pool->lock) 3048 { 3049 restart: 3050 raw_spin_unlock_irq(&pool->lock); 3051 3052 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 3053 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 3054 3055 while (true) { 3056 if (create_worker(pool) || !need_to_create_worker(pool)) 3057 break; 3058 3059 schedule_timeout_interruptible(CREATE_COOLDOWN); 3060 3061 if (!need_to_create_worker(pool)) 3062 break; 3063 } 3064 3065 del_timer_sync(&pool->mayday_timer); 3066 raw_spin_lock_irq(&pool->lock); 3067 /* 3068 * This is necessary even after a new worker was just successfully 3069 * created as @pool->lock was dropped and the new worker might have 3070 * already become busy. 3071 */ 3072 if (need_to_create_worker(pool)) 3073 goto restart; 3074 } 3075 3076 /** 3077 * manage_workers - manage worker pool 3078 * @worker: self 3079 * 3080 * Assume the manager role and manage the worker pool @worker belongs 3081 * to. At any given time, there can be only zero or one manager per 3082 * pool. The exclusion is handled automatically by this function. 3083 * 3084 * The caller can safely start processing works on false return. On 3085 * true return, it's guaranteed that need_to_create_worker() is false 3086 * and may_start_working() is true. 3087 * 3088 * CONTEXT: 3089 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3090 * multiple times. Does GFP_KERNEL allocations. 3091 * 3092 * Return: 3093 * %false if the pool doesn't need management and the caller can safely 3094 * start processing works, %true if management function was performed and 3095 * the conditions that the caller verified before calling the function may 3096 * no longer be true. 3097 */ 3098 static bool manage_workers(struct worker *worker) 3099 { 3100 struct worker_pool *pool = worker->pool; 3101 3102 if (pool->flags & POOL_MANAGER_ACTIVE) 3103 return false; 3104 3105 pool->flags |= POOL_MANAGER_ACTIVE; 3106 pool->manager = worker; 3107 3108 maybe_create_worker(pool); 3109 3110 pool->manager = NULL; 3111 pool->flags &= ~POOL_MANAGER_ACTIVE; 3112 rcuwait_wake_up(&manager_wait); 3113 return true; 3114 } 3115 3116 /** 3117 * process_one_work - process single work 3118 * @worker: self 3119 * @work: work to process 3120 * 3121 * Process @work. This function contains all the logics necessary to 3122 * process a single work including synchronization against and 3123 * interaction with other workers on the same cpu, queueing and 3124 * flushing. As long as context requirement is met, any worker can 3125 * call this function to process a work. 3126 * 3127 * CONTEXT: 3128 * raw_spin_lock_irq(pool->lock) which is released and regrabbed. 3129 */ 3130 static void process_one_work(struct worker *worker, struct work_struct *work) 3131 __releases(&pool->lock) 3132 __acquires(&pool->lock) 3133 { 3134 struct pool_workqueue *pwq = get_work_pwq(work); 3135 struct worker_pool *pool = worker->pool; 3136 unsigned long work_data; 3137 int lockdep_start_depth, rcu_start_depth; 3138 bool bh_draining = pool->flags & POOL_BH_DRAINING; 3139 #ifdef CONFIG_LOCKDEP 3140 /* 3141 * It is permissible to free the struct work_struct from 3142 * inside the function that is called from it, this we need to 3143 * take into account for lockdep too. To avoid bogus "held 3144 * lock freed" warnings as well as problems when looking into 3145 * work->lockdep_map, make a copy and use that here. 3146 */ 3147 struct lockdep_map lockdep_map; 3148 3149 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 3150 #endif 3151 /* ensure we're on the correct CPU */ 3152 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 3153 raw_smp_processor_id() != pool->cpu); 3154 3155 /* claim and dequeue */ 3156 debug_work_deactivate(work); 3157 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 3158 worker->current_work = work; 3159 worker->current_func = work->func; 3160 worker->current_pwq = pwq; 3161 if (worker->task) 3162 worker->current_at = worker->task->se.sum_exec_runtime; 3163 work_data = *work_data_bits(work); 3164 worker->current_color = get_work_color(work_data); 3165 3166 /* 3167 * Record wq name for cmdline and debug reporting, may get 3168 * overridden through set_worker_desc(). 3169 */ 3170 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 3171 3172 list_del_init(&work->entry); 3173 3174 /* 3175 * CPU intensive works don't participate in concurrency management. 3176 * They're the scheduler's responsibility. This takes @worker out 3177 * of concurrency management and the next code block will chain 3178 * execution of the pending work items. 3179 */ 3180 if (unlikely(pwq->wq->flags & WQ_CPU_INTENSIVE)) 3181 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 3182 3183 /* 3184 * Kick @pool if necessary. It's always noop for per-cpu worker pools 3185 * since nr_running would always be >= 1 at this point. This is used to 3186 * chain execution of the pending work items for WORKER_NOT_RUNNING 3187 * workers such as the UNBOUND and CPU_INTENSIVE ones. 3188 */ 3189 kick_pool(pool); 3190 3191 /* 3192 * Record the last pool and clear PENDING which should be the last 3193 * update to @work. Also, do this inside @pool->lock so that 3194 * PENDING and queued state changes happen together while IRQ is 3195 * disabled. 3196 */ 3197 set_work_pool_and_clear_pending(work, pool->id, pool_offq_flags(pool)); 3198 3199 pwq->stats[PWQ_STAT_STARTED]++; 3200 raw_spin_unlock_irq(&pool->lock); 3201 3202 rcu_start_depth = rcu_preempt_depth(); 3203 lockdep_start_depth = lockdep_depth(current); 3204 /* see drain_dead_softirq_workfn() */ 3205 if (!bh_draining) 3206 lock_map_acquire(&pwq->wq->lockdep_map); 3207 lock_map_acquire(&lockdep_map); 3208 /* 3209 * Strictly speaking we should mark the invariant state without holding 3210 * any locks, that is, before these two lock_map_acquire()'s. 3211 * 3212 * However, that would result in: 3213 * 3214 * A(W1) 3215 * WFC(C) 3216 * A(W1) 3217 * C(C) 3218 * 3219 * Which would create W1->C->W1 dependencies, even though there is no 3220 * actual deadlock possible. There are two solutions, using a 3221 * read-recursive acquire on the work(queue) 'locks', but this will then 3222 * hit the lockdep limitation on recursive locks, or simply discard 3223 * these locks. 3224 * 3225 * AFAICT there is no possible deadlock scenario between the 3226 * flush_work() and complete() primitives (except for single-threaded 3227 * workqueues), so hiding them isn't a problem. 3228 */ 3229 lockdep_invariant_state(true); 3230 trace_workqueue_execute_start(work); 3231 worker->current_func(work); 3232 /* 3233 * While we must be careful to not use "work" after this, the trace 3234 * point will only record its address. 3235 */ 3236 trace_workqueue_execute_end(work, worker->current_func); 3237 pwq->stats[PWQ_STAT_COMPLETED]++; 3238 lock_map_release(&lockdep_map); 3239 if (!bh_draining) 3240 lock_map_release(&pwq->wq->lockdep_map); 3241 3242 if (unlikely((worker->task && in_atomic()) || 3243 lockdep_depth(current) != lockdep_start_depth || 3244 rcu_preempt_depth() != rcu_start_depth)) { 3245 pr_err("BUG: workqueue leaked atomic, lock or RCU: %s[%d]\n" 3246 " preempt=0x%08x lock=%d->%d RCU=%d->%d workfn=%ps\n", 3247 current->comm, task_pid_nr(current), preempt_count(), 3248 lockdep_start_depth, lockdep_depth(current), 3249 rcu_start_depth, rcu_preempt_depth(), 3250 worker->current_func); 3251 debug_show_held_locks(current); 3252 dump_stack(); 3253 } 3254 3255 /* 3256 * The following prevents a kworker from hogging CPU on !PREEMPTION 3257 * kernels, where a requeueing work item waiting for something to 3258 * happen could deadlock with stop_machine as such work item could 3259 * indefinitely requeue itself while all other CPUs are trapped in 3260 * stop_machine. At the same time, report a quiescent RCU state so 3261 * the same condition doesn't freeze RCU. 3262 */ 3263 if (worker->task) 3264 cond_resched(); 3265 3266 raw_spin_lock_irq(&pool->lock); 3267 3268 /* 3269 * In addition to %WQ_CPU_INTENSIVE, @worker may also have been marked 3270 * CPU intensive by wq_worker_tick() if @work hogged CPU longer than 3271 * wq_cpu_intensive_thresh_us. Clear it. 3272 */ 3273 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 3274 3275 /* tag the worker for identification in schedule() */ 3276 worker->last_func = worker->current_func; 3277 3278 /* we're done with it, release */ 3279 hash_del(&worker->hentry); 3280 worker->current_work = NULL; 3281 worker->current_func = NULL; 3282 worker->current_pwq = NULL; 3283 worker->current_color = INT_MAX; 3284 3285 /* must be the last step, see the function comment */ 3286 pwq_dec_nr_in_flight(pwq, work_data); 3287 } 3288 3289 /** 3290 * process_scheduled_works - process scheduled works 3291 * @worker: self 3292 * 3293 * Process all scheduled works. Please note that the scheduled list 3294 * may change while processing a work, so this function repeatedly 3295 * fetches a work from the top and executes it. 3296 * 3297 * CONTEXT: 3298 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed 3299 * multiple times. 3300 */ 3301 static void process_scheduled_works(struct worker *worker) 3302 { 3303 struct work_struct *work; 3304 bool first = true; 3305 3306 while ((work = list_first_entry_or_null(&worker->scheduled, 3307 struct work_struct, entry))) { 3308 if (first) { 3309 worker->pool->watchdog_ts = jiffies; 3310 first = false; 3311 } 3312 process_one_work(worker, work); 3313 } 3314 } 3315 3316 static void set_pf_worker(bool val) 3317 { 3318 mutex_lock(&wq_pool_attach_mutex); 3319 if (val) 3320 current->flags |= PF_WQ_WORKER; 3321 else 3322 current->flags &= ~PF_WQ_WORKER; 3323 mutex_unlock(&wq_pool_attach_mutex); 3324 } 3325 3326 /** 3327 * worker_thread - the worker thread function 3328 * @__worker: self 3329 * 3330 * The worker thread function. All workers belong to a worker_pool - 3331 * either a per-cpu one or dynamic unbound one. These workers process all 3332 * work items regardless of their specific target workqueue. The only 3333 * exception is work items which belong to workqueues with a rescuer which 3334 * will be explained in rescuer_thread(). 3335 * 3336 * Return: 0 3337 */ 3338 static int worker_thread(void *__worker) 3339 { 3340 struct worker *worker = __worker; 3341 struct worker_pool *pool = worker->pool; 3342 3343 /* tell the scheduler that this is a workqueue worker */ 3344 set_pf_worker(true); 3345 woke_up: 3346 raw_spin_lock_irq(&pool->lock); 3347 3348 /* am I supposed to die? */ 3349 if (unlikely(worker->flags & WORKER_DIE)) { 3350 raw_spin_unlock_irq(&pool->lock); 3351 set_pf_worker(false); 3352 3353 set_task_comm(worker->task, "kworker/dying"); 3354 ida_free(&pool->worker_ida, worker->id); 3355 worker_detach_from_pool(worker); 3356 WARN_ON_ONCE(!list_empty(&worker->entry)); 3357 kfree(worker); 3358 return 0; 3359 } 3360 3361 worker_leave_idle(worker); 3362 recheck: 3363 /* no more worker necessary? */ 3364 if (!need_more_worker(pool)) 3365 goto sleep; 3366 3367 /* do we need to manage? */ 3368 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 3369 goto recheck; 3370 3371 /* 3372 * ->scheduled list can only be filled while a worker is 3373 * preparing to process a work or actually processing it. 3374 * Make sure nobody diddled with it while I was sleeping. 3375 */ 3376 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3377 3378 /* 3379 * Finish PREP stage. We're guaranteed to have at least one idle 3380 * worker or that someone else has already assumed the manager 3381 * role. This is where @worker starts participating in concurrency 3382 * management if applicable and concurrency management is restored 3383 * after being rebound. See rebind_workers() for details. 3384 */ 3385 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3386 3387 do { 3388 struct work_struct *work = 3389 list_first_entry(&pool->worklist, 3390 struct work_struct, entry); 3391 3392 if (assign_work(work, worker, NULL)) 3393 process_scheduled_works(worker); 3394 } while (keep_working(pool)); 3395 3396 worker_set_flags(worker, WORKER_PREP); 3397 sleep: 3398 /* 3399 * pool->lock is held and there's no work to process and no need to 3400 * manage, sleep. Workers are woken up only while holding 3401 * pool->lock or from local cpu, so setting the current state 3402 * before releasing pool->lock is enough to prevent losing any 3403 * event. 3404 */ 3405 worker_enter_idle(worker); 3406 __set_current_state(TASK_IDLE); 3407 raw_spin_unlock_irq(&pool->lock); 3408 schedule(); 3409 goto woke_up; 3410 } 3411 3412 /** 3413 * rescuer_thread - the rescuer thread function 3414 * @__rescuer: self 3415 * 3416 * Workqueue rescuer thread function. There's one rescuer for each 3417 * workqueue which has WQ_MEM_RECLAIM set. 3418 * 3419 * Regular work processing on a pool may block trying to create a new 3420 * worker which uses GFP_KERNEL allocation which has slight chance of 3421 * developing into deadlock if some works currently on the same queue 3422 * need to be processed to satisfy the GFP_KERNEL allocation. This is 3423 * the problem rescuer solves. 3424 * 3425 * When such condition is possible, the pool summons rescuers of all 3426 * workqueues which have works queued on the pool and let them process 3427 * those works so that forward progress can be guaranteed. 3428 * 3429 * This should happen rarely. 3430 * 3431 * Return: 0 3432 */ 3433 static int rescuer_thread(void *__rescuer) 3434 { 3435 struct worker *rescuer = __rescuer; 3436 struct workqueue_struct *wq = rescuer->rescue_wq; 3437 bool should_stop; 3438 3439 set_user_nice(current, RESCUER_NICE_LEVEL); 3440 3441 /* 3442 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 3443 * doesn't participate in concurrency management. 3444 */ 3445 set_pf_worker(true); 3446 repeat: 3447 set_current_state(TASK_IDLE); 3448 3449 /* 3450 * By the time the rescuer is requested to stop, the workqueue 3451 * shouldn't have any work pending, but @wq->maydays may still have 3452 * pwq(s) queued. This can happen by non-rescuer workers consuming 3453 * all the work items before the rescuer got to them. Go through 3454 * @wq->maydays processing before acting on should_stop so that the 3455 * list is always empty on exit. 3456 */ 3457 should_stop = kthread_should_stop(); 3458 3459 /* see whether any pwq is asking for help */ 3460 raw_spin_lock_irq(&wq_mayday_lock); 3461 3462 while (!list_empty(&wq->maydays)) { 3463 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 3464 struct pool_workqueue, mayday_node); 3465 struct worker_pool *pool = pwq->pool; 3466 struct work_struct *work, *n; 3467 3468 __set_current_state(TASK_RUNNING); 3469 list_del_init(&pwq->mayday_node); 3470 3471 raw_spin_unlock_irq(&wq_mayday_lock); 3472 3473 worker_attach_to_pool(rescuer, pool); 3474 3475 raw_spin_lock_irq(&pool->lock); 3476 3477 /* 3478 * Slurp in all works issued via this workqueue and 3479 * process'em. 3480 */ 3481 WARN_ON_ONCE(!list_empty(&rescuer->scheduled)); 3482 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 3483 if (get_work_pwq(work) == pwq && 3484 assign_work(work, rescuer, &n)) 3485 pwq->stats[PWQ_STAT_RESCUED]++; 3486 } 3487 3488 if (!list_empty(&rescuer->scheduled)) { 3489 process_scheduled_works(rescuer); 3490 3491 /* 3492 * The above execution of rescued work items could 3493 * have created more to rescue through 3494 * pwq_activate_first_inactive() or chained 3495 * queueing. Let's put @pwq back on mayday list so 3496 * that such back-to-back work items, which may be 3497 * being used to relieve memory pressure, don't 3498 * incur MAYDAY_INTERVAL delay inbetween. 3499 */ 3500 if (pwq->nr_active && need_to_create_worker(pool)) { 3501 raw_spin_lock(&wq_mayday_lock); 3502 /* 3503 * Queue iff we aren't racing destruction 3504 * and somebody else hasn't queued it already. 3505 */ 3506 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 3507 get_pwq(pwq); 3508 list_add_tail(&pwq->mayday_node, &wq->maydays); 3509 } 3510 raw_spin_unlock(&wq_mayday_lock); 3511 } 3512 } 3513 3514 /* 3515 * Put the reference grabbed by send_mayday(). @pool won't 3516 * go away while we're still attached to it. 3517 */ 3518 put_pwq(pwq); 3519 3520 /* 3521 * Leave this pool. Notify regular workers; otherwise, we end up 3522 * with 0 concurrency and stalling the execution. 3523 */ 3524 kick_pool(pool); 3525 3526 raw_spin_unlock_irq(&pool->lock); 3527 3528 worker_detach_from_pool(rescuer); 3529 3530 raw_spin_lock_irq(&wq_mayday_lock); 3531 } 3532 3533 raw_spin_unlock_irq(&wq_mayday_lock); 3534 3535 if (should_stop) { 3536 __set_current_state(TASK_RUNNING); 3537 set_pf_worker(false); 3538 return 0; 3539 } 3540 3541 /* rescuers should never participate in concurrency management */ 3542 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 3543 schedule(); 3544 goto repeat; 3545 } 3546 3547 static void bh_worker(struct worker *worker) 3548 { 3549 struct worker_pool *pool = worker->pool; 3550 int nr_restarts = BH_WORKER_RESTARTS; 3551 unsigned long end = jiffies + BH_WORKER_JIFFIES; 3552 3553 raw_spin_lock_irq(&pool->lock); 3554 worker_leave_idle(worker); 3555 3556 /* 3557 * This function follows the structure of worker_thread(). See there for 3558 * explanations on each step. 3559 */ 3560 if (!need_more_worker(pool)) 3561 goto done; 3562 3563 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 3564 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 3565 3566 do { 3567 struct work_struct *work = 3568 list_first_entry(&pool->worklist, 3569 struct work_struct, entry); 3570 3571 if (assign_work(work, worker, NULL)) 3572 process_scheduled_works(worker); 3573 } while (keep_working(pool) && 3574 --nr_restarts && time_before(jiffies, end)); 3575 3576 worker_set_flags(worker, WORKER_PREP); 3577 done: 3578 worker_enter_idle(worker); 3579 kick_pool(pool); 3580 raw_spin_unlock_irq(&pool->lock); 3581 } 3582 3583 /* 3584 * TODO: Convert all tasklet users to workqueue and use softirq directly. 3585 * 3586 * This is currently called from tasklet[_hi]action() and thus is also called 3587 * whenever there are tasklets to run. Let's do an early exit if there's nothing 3588 * queued. Once conversion from tasklet is complete, the need_more_worker() test 3589 * can be dropped. 3590 * 3591 * After full conversion, we'll add worker->softirq_action, directly use the 3592 * softirq action and obtain the worker pointer from the softirq_action pointer. 3593 */ 3594 void workqueue_softirq_action(bool highpri) 3595 { 3596 struct worker_pool *pool = 3597 &per_cpu(bh_worker_pools, smp_processor_id())[highpri]; 3598 if (need_more_worker(pool)) 3599 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3600 } 3601 3602 struct wq_drain_dead_softirq_work { 3603 struct work_struct work; 3604 struct worker_pool *pool; 3605 struct completion done; 3606 }; 3607 3608 static void drain_dead_softirq_workfn(struct work_struct *work) 3609 { 3610 struct wq_drain_dead_softirq_work *dead_work = 3611 container_of(work, struct wq_drain_dead_softirq_work, work); 3612 struct worker_pool *pool = dead_work->pool; 3613 bool repeat; 3614 3615 /* 3616 * @pool's CPU is dead and we want to execute its still pending work 3617 * items from this BH work item which is running on a different CPU. As 3618 * its CPU is dead, @pool can't be kicked and, as work execution path 3619 * will be nested, a lockdep annotation needs to be suppressed. Mark 3620 * @pool with %POOL_BH_DRAINING for the special treatments. 3621 */ 3622 raw_spin_lock_irq(&pool->lock); 3623 pool->flags |= POOL_BH_DRAINING; 3624 raw_spin_unlock_irq(&pool->lock); 3625 3626 bh_worker(list_first_entry(&pool->workers, struct worker, node)); 3627 3628 raw_spin_lock_irq(&pool->lock); 3629 pool->flags &= ~POOL_BH_DRAINING; 3630 repeat = need_more_worker(pool); 3631 raw_spin_unlock_irq(&pool->lock); 3632 3633 /* 3634 * bh_worker() might hit consecutive execution limit and bail. If there 3635 * still are pending work items, reschedule self and return so that we 3636 * don't hog this CPU's BH. 3637 */ 3638 if (repeat) { 3639 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3640 queue_work(system_bh_highpri_wq, work); 3641 else 3642 queue_work(system_bh_wq, work); 3643 } else { 3644 complete(&dead_work->done); 3645 } 3646 } 3647 3648 /* 3649 * @cpu is dead. Drain the remaining BH work items on the current CPU. It's 3650 * possible to allocate dead_work per CPU and avoid flushing. However, then we 3651 * have to worry about draining overlapping with CPU coming back online or 3652 * nesting (one CPU's dead_work queued on another CPU which is also dead and so 3653 * on). Let's keep it simple and drain them synchronously. These are BH work 3654 * items which shouldn't be requeued on the same pool. Shouldn't take long. 3655 */ 3656 void workqueue_softirq_dead(unsigned int cpu) 3657 { 3658 int i; 3659 3660 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 3661 struct worker_pool *pool = &per_cpu(bh_worker_pools, cpu)[i]; 3662 struct wq_drain_dead_softirq_work dead_work; 3663 3664 if (!need_more_worker(pool)) 3665 continue; 3666 3667 INIT_WORK_ONSTACK(&dead_work.work, drain_dead_softirq_workfn); 3668 dead_work.pool = pool; 3669 init_completion(&dead_work.done); 3670 3671 if (pool->attrs->nice == HIGHPRI_NICE_LEVEL) 3672 queue_work(system_bh_highpri_wq, &dead_work.work); 3673 else 3674 queue_work(system_bh_wq, &dead_work.work); 3675 3676 wait_for_completion(&dead_work.done); 3677 destroy_work_on_stack(&dead_work.work); 3678 } 3679 } 3680 3681 /** 3682 * check_flush_dependency - check for flush dependency sanity 3683 * @target_wq: workqueue being flushed 3684 * @target_work: work item being flushed (NULL for workqueue flushes) 3685 * 3686 * %current is trying to flush the whole @target_wq or @target_work on it. 3687 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 3688 * reclaiming memory or running on a workqueue which doesn't have 3689 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 3690 * a deadlock. 3691 */ 3692 static void check_flush_dependency(struct workqueue_struct *target_wq, 3693 struct work_struct *target_work) 3694 { 3695 work_func_t target_func = target_work ? target_work->func : NULL; 3696 struct worker *worker; 3697 3698 if (target_wq->flags & WQ_MEM_RECLAIM) 3699 return; 3700 3701 worker = current_wq_worker(); 3702 3703 WARN_ONCE(current->flags & PF_MEMALLOC, 3704 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 3705 current->pid, current->comm, target_wq->name, target_func); 3706 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 3707 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 3708 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 3709 worker->current_pwq->wq->name, worker->current_func, 3710 target_wq->name, target_func); 3711 } 3712 3713 struct wq_barrier { 3714 struct work_struct work; 3715 struct completion done; 3716 struct task_struct *task; /* purely informational */ 3717 }; 3718 3719 static void wq_barrier_func(struct work_struct *work) 3720 { 3721 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 3722 complete(&barr->done); 3723 } 3724 3725 /** 3726 * insert_wq_barrier - insert a barrier work 3727 * @pwq: pwq to insert barrier into 3728 * @barr: wq_barrier to insert 3729 * @target: target work to attach @barr to 3730 * @worker: worker currently executing @target, NULL if @target is not executing 3731 * 3732 * @barr is linked to @target such that @barr is completed only after 3733 * @target finishes execution. Please note that the ordering 3734 * guarantee is observed only with respect to @target and on the local 3735 * cpu. 3736 * 3737 * Currently, a queued barrier can't be canceled. This is because 3738 * try_to_grab_pending() can't determine whether the work to be 3739 * grabbed is at the head of the queue and thus can't clear LINKED 3740 * flag of the previous work while there must be a valid next work 3741 * after a work with LINKED flag set. 3742 * 3743 * Note that when @worker is non-NULL, @target may be modified 3744 * underneath us, so we can't reliably determine pwq from @target. 3745 * 3746 * CONTEXT: 3747 * raw_spin_lock_irq(pool->lock). 3748 */ 3749 static void insert_wq_barrier(struct pool_workqueue *pwq, 3750 struct wq_barrier *barr, 3751 struct work_struct *target, struct worker *worker) 3752 { 3753 static __maybe_unused struct lock_class_key bh_key, thr_key; 3754 unsigned int work_flags = 0; 3755 unsigned int work_color; 3756 struct list_head *head; 3757 3758 /* 3759 * debugobject calls are safe here even with pool->lock locked 3760 * as we know for sure that this will not trigger any of the 3761 * checks and call back into the fixup functions where we 3762 * might deadlock. 3763 * 3764 * BH and threaded workqueues need separate lockdep keys to avoid 3765 * spuriously triggering "inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} 3766 * usage". 3767 */ 3768 INIT_WORK_ONSTACK_KEY(&barr->work, wq_barrier_func, 3769 (pwq->wq->flags & WQ_BH) ? &bh_key : &thr_key); 3770 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 3771 3772 init_completion_map(&barr->done, &target->lockdep_map); 3773 3774 barr->task = current; 3775 3776 /* The barrier work item does not participate in nr_active. */ 3777 work_flags |= WORK_STRUCT_INACTIVE; 3778 3779 /* 3780 * If @target is currently being executed, schedule the 3781 * barrier to the worker; otherwise, put it after @target. 3782 */ 3783 if (worker) { 3784 head = worker->scheduled.next; 3785 work_color = worker->current_color; 3786 } else { 3787 unsigned long *bits = work_data_bits(target); 3788 3789 head = target->entry.next; 3790 /* there can already be other linked works, inherit and set */ 3791 work_flags |= *bits & WORK_STRUCT_LINKED; 3792 work_color = get_work_color(*bits); 3793 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 3794 } 3795 3796 pwq->nr_in_flight[work_color]++; 3797 work_flags |= work_color_to_flags(work_color); 3798 3799 insert_work(pwq, &barr->work, head, work_flags); 3800 } 3801 3802 /** 3803 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 3804 * @wq: workqueue being flushed 3805 * @flush_color: new flush color, < 0 for no-op 3806 * @work_color: new work color, < 0 for no-op 3807 * 3808 * Prepare pwqs for workqueue flushing. 3809 * 3810 * If @flush_color is non-negative, flush_color on all pwqs should be 3811 * -1. If no pwq has in-flight commands at the specified color, all 3812 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 3813 * has in flight commands, its pwq->flush_color is set to 3814 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 3815 * wakeup logic is armed and %true is returned. 3816 * 3817 * The caller should have initialized @wq->first_flusher prior to 3818 * calling this function with non-negative @flush_color. If 3819 * @flush_color is negative, no flush color update is done and %false 3820 * is returned. 3821 * 3822 * If @work_color is non-negative, all pwqs should have the same 3823 * work_color which is previous to @work_color and all will be 3824 * advanced to @work_color. 3825 * 3826 * CONTEXT: 3827 * mutex_lock(wq->mutex). 3828 * 3829 * Return: 3830 * %true if @flush_color >= 0 and there's something to flush. %false 3831 * otherwise. 3832 */ 3833 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 3834 int flush_color, int work_color) 3835 { 3836 bool wait = false; 3837 struct pool_workqueue *pwq; 3838 3839 if (flush_color >= 0) { 3840 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 3841 atomic_set(&wq->nr_pwqs_to_flush, 1); 3842 } 3843 3844 for_each_pwq(pwq, wq) { 3845 struct worker_pool *pool = pwq->pool; 3846 3847 raw_spin_lock_irq(&pool->lock); 3848 3849 if (flush_color >= 0) { 3850 WARN_ON_ONCE(pwq->flush_color != -1); 3851 3852 if (pwq->nr_in_flight[flush_color]) { 3853 pwq->flush_color = flush_color; 3854 atomic_inc(&wq->nr_pwqs_to_flush); 3855 wait = true; 3856 } 3857 } 3858 3859 if (work_color >= 0) { 3860 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 3861 pwq->work_color = work_color; 3862 } 3863 3864 raw_spin_unlock_irq(&pool->lock); 3865 } 3866 3867 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 3868 complete(&wq->first_flusher->done); 3869 3870 return wait; 3871 } 3872 3873 static void touch_wq_lockdep_map(struct workqueue_struct *wq) 3874 { 3875 #ifdef CONFIG_LOCKDEP 3876 if (wq->flags & WQ_BH) 3877 local_bh_disable(); 3878 3879 lock_map_acquire(&wq->lockdep_map); 3880 lock_map_release(&wq->lockdep_map); 3881 3882 if (wq->flags & WQ_BH) 3883 local_bh_enable(); 3884 #endif 3885 } 3886 3887 static void touch_work_lockdep_map(struct work_struct *work, 3888 struct workqueue_struct *wq) 3889 { 3890 #ifdef CONFIG_LOCKDEP 3891 if (wq->flags & WQ_BH) 3892 local_bh_disable(); 3893 3894 lock_map_acquire(&work->lockdep_map); 3895 lock_map_release(&work->lockdep_map); 3896 3897 if (wq->flags & WQ_BH) 3898 local_bh_enable(); 3899 #endif 3900 } 3901 3902 /** 3903 * __flush_workqueue - ensure that any scheduled work has run to completion. 3904 * @wq: workqueue to flush 3905 * 3906 * This function sleeps until all work items which were queued on entry 3907 * have finished execution, but it is not livelocked by new incoming ones. 3908 */ 3909 void __flush_workqueue(struct workqueue_struct *wq) 3910 { 3911 struct wq_flusher this_flusher = { 3912 .list = LIST_HEAD_INIT(this_flusher.list), 3913 .flush_color = -1, 3914 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 3915 }; 3916 int next_color; 3917 3918 if (WARN_ON(!wq_online)) 3919 return; 3920 3921 touch_wq_lockdep_map(wq); 3922 3923 mutex_lock(&wq->mutex); 3924 3925 /* 3926 * Start-to-wait phase 3927 */ 3928 next_color = work_next_color(wq->work_color); 3929 3930 if (next_color != wq->flush_color) { 3931 /* 3932 * Color space is not full. The current work_color 3933 * becomes our flush_color and work_color is advanced 3934 * by one. 3935 */ 3936 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 3937 this_flusher.flush_color = wq->work_color; 3938 wq->work_color = next_color; 3939 3940 if (!wq->first_flusher) { 3941 /* no flush in progress, become the first flusher */ 3942 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3943 3944 wq->first_flusher = &this_flusher; 3945 3946 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 3947 wq->work_color)) { 3948 /* nothing to flush, done */ 3949 wq->flush_color = next_color; 3950 wq->first_flusher = NULL; 3951 goto out_unlock; 3952 } 3953 } else { 3954 /* wait in queue */ 3955 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 3956 list_add_tail(&this_flusher.list, &wq->flusher_queue); 3957 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 3958 } 3959 } else { 3960 /* 3961 * Oops, color space is full, wait on overflow queue. 3962 * The next flush completion will assign us 3963 * flush_color and transfer to flusher_queue. 3964 */ 3965 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 3966 } 3967 3968 check_flush_dependency(wq, NULL); 3969 3970 mutex_unlock(&wq->mutex); 3971 3972 wait_for_completion(&this_flusher.done); 3973 3974 /* 3975 * Wake-up-and-cascade phase 3976 * 3977 * First flushers are responsible for cascading flushes and 3978 * handling overflow. Non-first flushers can simply return. 3979 */ 3980 if (READ_ONCE(wq->first_flusher) != &this_flusher) 3981 return; 3982 3983 mutex_lock(&wq->mutex); 3984 3985 /* we might have raced, check again with mutex held */ 3986 if (wq->first_flusher != &this_flusher) 3987 goto out_unlock; 3988 3989 WRITE_ONCE(wq->first_flusher, NULL); 3990 3991 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 3992 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 3993 3994 while (true) { 3995 struct wq_flusher *next, *tmp; 3996 3997 /* complete all the flushers sharing the current flush color */ 3998 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 3999 if (next->flush_color != wq->flush_color) 4000 break; 4001 list_del_init(&next->list); 4002 complete(&next->done); 4003 } 4004 4005 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 4006 wq->flush_color != work_next_color(wq->work_color)); 4007 4008 /* this flush_color is finished, advance by one */ 4009 wq->flush_color = work_next_color(wq->flush_color); 4010 4011 /* one color has been freed, handle overflow queue */ 4012 if (!list_empty(&wq->flusher_overflow)) { 4013 /* 4014 * Assign the same color to all overflowed 4015 * flushers, advance work_color and append to 4016 * flusher_queue. This is the start-to-wait 4017 * phase for these overflowed flushers. 4018 */ 4019 list_for_each_entry(tmp, &wq->flusher_overflow, list) 4020 tmp->flush_color = wq->work_color; 4021 4022 wq->work_color = work_next_color(wq->work_color); 4023 4024 list_splice_tail_init(&wq->flusher_overflow, 4025 &wq->flusher_queue); 4026 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 4027 } 4028 4029 if (list_empty(&wq->flusher_queue)) { 4030 WARN_ON_ONCE(wq->flush_color != wq->work_color); 4031 break; 4032 } 4033 4034 /* 4035 * Need to flush more colors. Make the next flusher 4036 * the new first flusher and arm pwqs. 4037 */ 4038 WARN_ON_ONCE(wq->flush_color == wq->work_color); 4039 WARN_ON_ONCE(wq->flush_color != next->flush_color); 4040 4041 list_del_init(&next->list); 4042 wq->first_flusher = next; 4043 4044 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 4045 break; 4046 4047 /* 4048 * Meh... this color is already done, clear first 4049 * flusher and repeat cascading. 4050 */ 4051 wq->first_flusher = NULL; 4052 } 4053 4054 out_unlock: 4055 mutex_unlock(&wq->mutex); 4056 } 4057 EXPORT_SYMBOL(__flush_workqueue); 4058 4059 /** 4060 * drain_workqueue - drain a workqueue 4061 * @wq: workqueue to drain 4062 * 4063 * Wait until the workqueue becomes empty. While draining is in progress, 4064 * only chain queueing is allowed. IOW, only currently pending or running 4065 * work items on @wq can queue further work items on it. @wq is flushed 4066 * repeatedly until it becomes empty. The number of flushing is determined 4067 * by the depth of chaining and should be relatively short. Whine if it 4068 * takes too long. 4069 */ 4070 void drain_workqueue(struct workqueue_struct *wq) 4071 { 4072 unsigned int flush_cnt = 0; 4073 struct pool_workqueue *pwq; 4074 4075 /* 4076 * __queue_work() needs to test whether there are drainers, is much 4077 * hotter than drain_workqueue() and already looks at @wq->flags. 4078 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 4079 */ 4080 mutex_lock(&wq->mutex); 4081 if (!wq->nr_drainers++) 4082 wq->flags |= __WQ_DRAINING; 4083 mutex_unlock(&wq->mutex); 4084 reflush: 4085 __flush_workqueue(wq); 4086 4087 mutex_lock(&wq->mutex); 4088 4089 for_each_pwq(pwq, wq) { 4090 bool drained; 4091 4092 raw_spin_lock_irq(&pwq->pool->lock); 4093 drained = pwq_is_empty(pwq); 4094 raw_spin_unlock_irq(&pwq->pool->lock); 4095 4096 if (drained) 4097 continue; 4098 4099 if (++flush_cnt == 10 || 4100 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 4101 pr_warn("workqueue %s: %s() isn't complete after %u tries\n", 4102 wq->name, __func__, flush_cnt); 4103 4104 mutex_unlock(&wq->mutex); 4105 goto reflush; 4106 } 4107 4108 if (!--wq->nr_drainers) 4109 wq->flags &= ~__WQ_DRAINING; 4110 mutex_unlock(&wq->mutex); 4111 } 4112 EXPORT_SYMBOL_GPL(drain_workqueue); 4113 4114 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 4115 bool from_cancel) 4116 { 4117 struct worker *worker = NULL; 4118 struct worker_pool *pool; 4119 struct pool_workqueue *pwq; 4120 struct workqueue_struct *wq; 4121 4122 rcu_read_lock(); 4123 pool = get_work_pool(work); 4124 if (!pool) { 4125 rcu_read_unlock(); 4126 return false; 4127 } 4128 4129 raw_spin_lock_irq(&pool->lock); 4130 /* see the comment in try_to_grab_pending() with the same code */ 4131 pwq = get_work_pwq(work); 4132 if (pwq) { 4133 if (unlikely(pwq->pool != pool)) 4134 goto already_gone; 4135 } else { 4136 worker = find_worker_executing_work(pool, work); 4137 if (!worker) 4138 goto already_gone; 4139 pwq = worker->current_pwq; 4140 } 4141 4142 wq = pwq->wq; 4143 check_flush_dependency(wq, work); 4144 4145 insert_wq_barrier(pwq, barr, work, worker); 4146 raw_spin_unlock_irq(&pool->lock); 4147 4148 touch_work_lockdep_map(work, wq); 4149 4150 /* 4151 * Force a lock recursion deadlock when using flush_work() inside a 4152 * single-threaded or rescuer equipped workqueue. 4153 * 4154 * For single threaded workqueues the deadlock happens when the work 4155 * is after the work issuing the flush_work(). For rescuer equipped 4156 * workqueues the deadlock happens when the rescuer stalls, blocking 4157 * forward progress. 4158 */ 4159 if (!from_cancel && (wq->saved_max_active == 1 || wq->rescuer)) 4160 touch_wq_lockdep_map(wq); 4161 4162 rcu_read_unlock(); 4163 return true; 4164 already_gone: 4165 raw_spin_unlock_irq(&pool->lock); 4166 rcu_read_unlock(); 4167 return false; 4168 } 4169 4170 static bool __flush_work(struct work_struct *work, bool from_cancel) 4171 { 4172 struct wq_barrier barr; 4173 unsigned long data; 4174 4175 if (WARN_ON(!wq_online)) 4176 return false; 4177 4178 if (WARN_ON(!work->func)) 4179 return false; 4180 4181 if (!start_flush_work(work, &barr, from_cancel)) 4182 return false; 4183 4184 /* 4185 * start_flush_work() returned %true. If @from_cancel is set, we know 4186 * that @work must have been executing during start_flush_work() and 4187 * can't currently be queued. Its data must contain OFFQ bits. If @work 4188 * was queued on a BH workqueue, we also know that it was running in the 4189 * BH context and thus can be busy-waited. 4190 */ 4191 data = *work_data_bits(work); 4192 if (from_cancel && 4193 !WARN_ON_ONCE(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_BH)) { 4194 /* 4195 * On RT, prevent a live lock when %current preempted soft 4196 * interrupt processing or prevents ksoftirqd from running by 4197 * keeping flipping BH. If the BH work item runs on a different 4198 * CPU then this has no effect other than doing the BH 4199 * disable/enable dance for nothing. This is copied from 4200 * kernel/softirq.c::tasklet_unlock_spin_wait(). 4201 */ 4202 while (!try_wait_for_completion(&barr.done)) { 4203 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 4204 local_bh_disable(); 4205 local_bh_enable(); 4206 } else { 4207 cpu_relax(); 4208 } 4209 } 4210 } else { 4211 wait_for_completion(&barr.done); 4212 } 4213 4214 destroy_work_on_stack(&barr.work); 4215 return true; 4216 } 4217 4218 /** 4219 * flush_work - wait for a work to finish executing the last queueing instance 4220 * @work: the work to flush 4221 * 4222 * Wait until @work has finished execution. @work is guaranteed to be idle 4223 * on return if it hasn't been requeued since flush started. 4224 * 4225 * Return: 4226 * %true if flush_work() waited for the work to finish execution, 4227 * %false if it was already idle. 4228 */ 4229 bool flush_work(struct work_struct *work) 4230 { 4231 might_sleep(); 4232 return __flush_work(work, false); 4233 } 4234 EXPORT_SYMBOL_GPL(flush_work); 4235 4236 /** 4237 * flush_delayed_work - wait for a dwork to finish executing the last queueing 4238 * @dwork: the delayed work to flush 4239 * 4240 * Delayed timer is cancelled and the pending work is queued for 4241 * immediate execution. Like flush_work(), this function only 4242 * considers the last queueing instance of @dwork. 4243 * 4244 * Return: 4245 * %true if flush_work() waited for the work to finish execution, 4246 * %false if it was already idle. 4247 */ 4248 bool flush_delayed_work(struct delayed_work *dwork) 4249 { 4250 local_irq_disable(); 4251 if (del_timer_sync(&dwork->timer)) 4252 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 4253 local_irq_enable(); 4254 return flush_work(&dwork->work); 4255 } 4256 EXPORT_SYMBOL(flush_delayed_work); 4257 4258 /** 4259 * flush_rcu_work - wait for a rwork to finish executing the last queueing 4260 * @rwork: the rcu work to flush 4261 * 4262 * Return: 4263 * %true if flush_rcu_work() waited for the work to finish execution, 4264 * %false if it was already idle. 4265 */ 4266 bool flush_rcu_work(struct rcu_work *rwork) 4267 { 4268 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 4269 rcu_barrier(); 4270 flush_work(&rwork->work); 4271 return true; 4272 } else { 4273 return flush_work(&rwork->work); 4274 } 4275 } 4276 EXPORT_SYMBOL(flush_rcu_work); 4277 4278 static void work_offqd_disable(struct work_offq_data *offqd) 4279 { 4280 const unsigned long max = (1lu << WORK_OFFQ_DISABLE_BITS) - 1; 4281 4282 if (likely(offqd->disable < max)) 4283 offqd->disable++; 4284 else 4285 WARN_ONCE(true, "workqueue: work disable count overflowed\n"); 4286 } 4287 4288 static void work_offqd_enable(struct work_offq_data *offqd) 4289 { 4290 if (likely(offqd->disable > 0)) 4291 offqd->disable--; 4292 else 4293 WARN_ONCE(true, "workqueue: work disable count underflowed\n"); 4294 } 4295 4296 static bool __cancel_work(struct work_struct *work, u32 cflags) 4297 { 4298 struct work_offq_data offqd; 4299 unsigned long irq_flags; 4300 int ret; 4301 4302 ret = work_grab_pending(work, cflags, &irq_flags); 4303 4304 work_offqd_unpack(&offqd, *work_data_bits(work)); 4305 4306 if (cflags & WORK_CANCEL_DISABLE) 4307 work_offqd_disable(&offqd); 4308 4309 set_work_pool_and_clear_pending(work, offqd.pool_id, 4310 work_offqd_pack_flags(&offqd)); 4311 local_irq_restore(irq_flags); 4312 return ret; 4313 } 4314 4315 static bool __cancel_work_sync(struct work_struct *work, u32 cflags) 4316 { 4317 bool ret; 4318 4319 ret = __cancel_work(work, cflags | WORK_CANCEL_DISABLE); 4320 4321 if (*work_data_bits(work) & WORK_OFFQ_BH) 4322 WARN_ON_ONCE(in_hardirq()); 4323 else 4324 might_sleep(); 4325 4326 /* 4327 * Skip __flush_work() during early boot when we know that @work isn't 4328 * executing. This allows canceling during early boot. 4329 */ 4330 if (wq_online) 4331 __flush_work(work, true); 4332 4333 if (!(cflags & WORK_CANCEL_DISABLE)) 4334 enable_work(work); 4335 4336 return ret; 4337 } 4338 4339 /* 4340 * See cancel_delayed_work() 4341 */ 4342 bool cancel_work(struct work_struct *work) 4343 { 4344 return __cancel_work(work, 0); 4345 } 4346 EXPORT_SYMBOL(cancel_work); 4347 4348 /** 4349 * cancel_work_sync - cancel a work and wait for it to finish 4350 * @work: the work to cancel 4351 * 4352 * Cancel @work and wait for its execution to finish. This function can be used 4353 * even if the work re-queues itself or migrates to another workqueue. On return 4354 * from this function, @work is guaranteed to be not pending or executing on any 4355 * CPU as long as there aren't racing enqueues. 4356 * 4357 * cancel_work_sync(&delayed_work->work) must not be used for delayed_work's. 4358 * Use cancel_delayed_work_sync() instead. 4359 * 4360 * Must be called from a sleepable context if @work was last queued on a non-BH 4361 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4362 * if @work was last queued on a BH workqueue. 4363 * 4364 * Returns %true if @work was pending, %false otherwise. 4365 */ 4366 bool cancel_work_sync(struct work_struct *work) 4367 { 4368 return __cancel_work_sync(work, 0); 4369 } 4370 EXPORT_SYMBOL_GPL(cancel_work_sync); 4371 4372 /** 4373 * cancel_delayed_work - cancel a delayed work 4374 * @dwork: delayed_work to cancel 4375 * 4376 * Kill off a pending delayed_work. 4377 * 4378 * Return: %true if @dwork was pending and canceled; %false if it wasn't 4379 * pending. 4380 * 4381 * Note: 4382 * The work callback function may still be running on return, unless 4383 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 4384 * use cancel_delayed_work_sync() to wait on it. 4385 * 4386 * This function is safe to call from any context including IRQ handler. 4387 */ 4388 bool cancel_delayed_work(struct delayed_work *dwork) 4389 { 4390 return __cancel_work(&dwork->work, WORK_CANCEL_DELAYED); 4391 } 4392 EXPORT_SYMBOL(cancel_delayed_work); 4393 4394 /** 4395 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 4396 * @dwork: the delayed work cancel 4397 * 4398 * This is cancel_work_sync() for delayed works. 4399 * 4400 * Return: 4401 * %true if @dwork was pending, %false otherwise. 4402 */ 4403 bool cancel_delayed_work_sync(struct delayed_work *dwork) 4404 { 4405 return __cancel_work_sync(&dwork->work, WORK_CANCEL_DELAYED); 4406 } 4407 EXPORT_SYMBOL(cancel_delayed_work_sync); 4408 4409 /** 4410 * disable_work - Disable and cancel a work item 4411 * @work: work item to disable 4412 * 4413 * Disable @work by incrementing its disable count and cancel it if currently 4414 * pending. As long as the disable count is non-zero, any attempt to queue @work 4415 * will fail and return %false. The maximum supported disable depth is 2 to the 4416 * power of %WORK_OFFQ_DISABLE_BITS, currently 65536. 4417 * 4418 * Can be called from any context. Returns %true if @work was pending, %false 4419 * otherwise. 4420 */ 4421 bool disable_work(struct work_struct *work) 4422 { 4423 return __cancel_work(work, WORK_CANCEL_DISABLE); 4424 } 4425 EXPORT_SYMBOL_GPL(disable_work); 4426 4427 /** 4428 * disable_work_sync - Disable, cancel and drain a work item 4429 * @work: work item to disable 4430 * 4431 * Similar to disable_work() but also wait for @work to finish if currently 4432 * executing. 4433 * 4434 * Must be called from a sleepable context if @work was last queued on a non-BH 4435 * workqueue. Can also be called from non-hardirq atomic contexts including BH 4436 * if @work was last queued on a BH workqueue. 4437 * 4438 * Returns %true if @work was pending, %false otherwise. 4439 */ 4440 bool disable_work_sync(struct work_struct *work) 4441 { 4442 return __cancel_work_sync(work, WORK_CANCEL_DISABLE); 4443 } 4444 EXPORT_SYMBOL_GPL(disable_work_sync); 4445 4446 /** 4447 * enable_work - Enable a work item 4448 * @work: work item to enable 4449 * 4450 * Undo disable_work[_sync]() by decrementing @work's disable count. @work can 4451 * only be queued if its disable count is 0. 4452 * 4453 * Can be called from any context. Returns %true if the disable count reached 0. 4454 * Otherwise, %false. 4455 */ 4456 bool enable_work(struct work_struct *work) 4457 { 4458 struct work_offq_data offqd; 4459 unsigned long irq_flags; 4460 4461 work_grab_pending(work, 0, &irq_flags); 4462 4463 work_offqd_unpack(&offqd, *work_data_bits(work)); 4464 work_offqd_enable(&offqd); 4465 set_work_pool_and_clear_pending(work, offqd.pool_id, 4466 work_offqd_pack_flags(&offqd)); 4467 local_irq_restore(irq_flags); 4468 4469 return !offqd.disable; 4470 } 4471 EXPORT_SYMBOL_GPL(enable_work); 4472 4473 /** 4474 * disable_delayed_work - Disable and cancel a delayed work item 4475 * @dwork: delayed work item to disable 4476 * 4477 * disable_work() for delayed work items. 4478 */ 4479 bool disable_delayed_work(struct delayed_work *dwork) 4480 { 4481 return __cancel_work(&dwork->work, 4482 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4483 } 4484 EXPORT_SYMBOL_GPL(disable_delayed_work); 4485 4486 /** 4487 * disable_delayed_work_sync - Disable, cancel and drain a delayed work item 4488 * @dwork: delayed work item to disable 4489 * 4490 * disable_work_sync() for delayed work items. 4491 */ 4492 bool disable_delayed_work_sync(struct delayed_work *dwork) 4493 { 4494 return __cancel_work_sync(&dwork->work, 4495 WORK_CANCEL_DELAYED | WORK_CANCEL_DISABLE); 4496 } 4497 EXPORT_SYMBOL_GPL(disable_delayed_work_sync); 4498 4499 /** 4500 * enable_delayed_work - Enable a delayed work item 4501 * @dwork: delayed work item to enable 4502 * 4503 * enable_work() for delayed work items. 4504 */ 4505 bool enable_delayed_work(struct delayed_work *dwork) 4506 { 4507 return enable_work(&dwork->work); 4508 } 4509 EXPORT_SYMBOL_GPL(enable_delayed_work); 4510 4511 /** 4512 * schedule_on_each_cpu - execute a function synchronously on each online CPU 4513 * @func: the function to call 4514 * 4515 * schedule_on_each_cpu() executes @func on each online CPU using the 4516 * system workqueue and blocks until all CPUs have completed. 4517 * schedule_on_each_cpu() is very slow. 4518 * 4519 * Return: 4520 * 0 on success, -errno on failure. 4521 */ 4522 int schedule_on_each_cpu(work_func_t func) 4523 { 4524 int cpu; 4525 struct work_struct __percpu *works; 4526 4527 works = alloc_percpu(struct work_struct); 4528 if (!works) 4529 return -ENOMEM; 4530 4531 cpus_read_lock(); 4532 4533 for_each_online_cpu(cpu) { 4534 struct work_struct *work = per_cpu_ptr(works, cpu); 4535 4536 INIT_WORK(work, func); 4537 schedule_work_on(cpu, work); 4538 } 4539 4540 for_each_online_cpu(cpu) 4541 flush_work(per_cpu_ptr(works, cpu)); 4542 4543 cpus_read_unlock(); 4544 free_percpu(works); 4545 return 0; 4546 } 4547 4548 /** 4549 * execute_in_process_context - reliably execute the routine with user context 4550 * @fn: the function to execute 4551 * @ew: guaranteed storage for the execute work structure (must 4552 * be available when the work executes) 4553 * 4554 * Executes the function immediately if process context is available, 4555 * otherwise schedules the function for delayed execution. 4556 * 4557 * Return: 0 - function was executed 4558 * 1 - function was scheduled for execution 4559 */ 4560 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 4561 { 4562 if (!in_interrupt()) { 4563 fn(&ew->work); 4564 return 0; 4565 } 4566 4567 INIT_WORK(&ew->work, fn); 4568 schedule_work(&ew->work); 4569 4570 return 1; 4571 } 4572 EXPORT_SYMBOL_GPL(execute_in_process_context); 4573 4574 /** 4575 * free_workqueue_attrs - free a workqueue_attrs 4576 * @attrs: workqueue_attrs to free 4577 * 4578 * Undo alloc_workqueue_attrs(). 4579 */ 4580 void free_workqueue_attrs(struct workqueue_attrs *attrs) 4581 { 4582 if (attrs) { 4583 free_cpumask_var(attrs->cpumask); 4584 free_cpumask_var(attrs->__pod_cpumask); 4585 kfree(attrs); 4586 } 4587 } 4588 4589 /** 4590 * alloc_workqueue_attrs - allocate a workqueue_attrs 4591 * 4592 * Allocate a new workqueue_attrs, initialize with default settings and 4593 * return it. 4594 * 4595 * Return: The allocated new workqueue_attr on success. %NULL on failure. 4596 */ 4597 struct workqueue_attrs *alloc_workqueue_attrs(void) 4598 { 4599 struct workqueue_attrs *attrs; 4600 4601 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 4602 if (!attrs) 4603 goto fail; 4604 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 4605 goto fail; 4606 if (!alloc_cpumask_var(&attrs->__pod_cpumask, GFP_KERNEL)) 4607 goto fail; 4608 4609 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4610 attrs->affn_scope = WQ_AFFN_DFL; 4611 return attrs; 4612 fail: 4613 free_workqueue_attrs(attrs); 4614 return NULL; 4615 } 4616 4617 static void copy_workqueue_attrs(struct workqueue_attrs *to, 4618 const struct workqueue_attrs *from) 4619 { 4620 to->nice = from->nice; 4621 cpumask_copy(to->cpumask, from->cpumask); 4622 cpumask_copy(to->__pod_cpumask, from->__pod_cpumask); 4623 to->affn_strict = from->affn_strict; 4624 4625 /* 4626 * Unlike hash and equality test, copying shouldn't ignore wq-only 4627 * fields as copying is used for both pool and wq attrs. Instead, 4628 * get_unbound_pool() explicitly clears the fields. 4629 */ 4630 to->affn_scope = from->affn_scope; 4631 to->ordered = from->ordered; 4632 } 4633 4634 /* 4635 * Some attrs fields are workqueue-only. Clear them for worker_pool's. See the 4636 * comments in 'struct workqueue_attrs' definition. 4637 */ 4638 static void wqattrs_clear_for_pool(struct workqueue_attrs *attrs) 4639 { 4640 attrs->affn_scope = WQ_AFFN_NR_TYPES; 4641 attrs->ordered = false; 4642 if (attrs->affn_strict) 4643 cpumask_copy(attrs->cpumask, cpu_possible_mask); 4644 } 4645 4646 /* hash value of the content of @attr */ 4647 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 4648 { 4649 u32 hash = 0; 4650 4651 hash = jhash_1word(attrs->nice, hash); 4652 hash = jhash_1word(attrs->affn_strict, hash); 4653 hash = jhash(cpumask_bits(attrs->__pod_cpumask), 4654 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4655 if (!attrs->affn_strict) 4656 hash = jhash(cpumask_bits(attrs->cpumask), 4657 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 4658 return hash; 4659 } 4660 4661 /* content equality test */ 4662 static bool wqattrs_equal(const struct workqueue_attrs *a, 4663 const struct workqueue_attrs *b) 4664 { 4665 if (a->nice != b->nice) 4666 return false; 4667 if (a->affn_strict != b->affn_strict) 4668 return false; 4669 if (!cpumask_equal(a->__pod_cpumask, b->__pod_cpumask)) 4670 return false; 4671 if (!a->affn_strict && !cpumask_equal(a->cpumask, b->cpumask)) 4672 return false; 4673 return true; 4674 } 4675 4676 /* Update @attrs with actually available CPUs */ 4677 static void wqattrs_actualize_cpumask(struct workqueue_attrs *attrs, 4678 const cpumask_t *unbound_cpumask) 4679 { 4680 /* 4681 * Calculate the effective CPU mask of @attrs given @unbound_cpumask. If 4682 * @attrs->cpumask doesn't overlap with @unbound_cpumask, we fallback to 4683 * @unbound_cpumask. 4684 */ 4685 cpumask_and(attrs->cpumask, attrs->cpumask, unbound_cpumask); 4686 if (unlikely(cpumask_empty(attrs->cpumask))) 4687 cpumask_copy(attrs->cpumask, unbound_cpumask); 4688 } 4689 4690 /* find wq_pod_type to use for @attrs */ 4691 static const struct wq_pod_type * 4692 wqattrs_pod_type(const struct workqueue_attrs *attrs) 4693 { 4694 enum wq_affn_scope scope; 4695 struct wq_pod_type *pt; 4696 4697 /* to synchronize access to wq_affn_dfl */ 4698 lockdep_assert_held(&wq_pool_mutex); 4699 4700 if (attrs->affn_scope == WQ_AFFN_DFL) 4701 scope = wq_affn_dfl; 4702 else 4703 scope = attrs->affn_scope; 4704 4705 pt = &wq_pod_types[scope]; 4706 4707 if (!WARN_ON_ONCE(attrs->affn_scope == WQ_AFFN_NR_TYPES) && 4708 likely(pt->nr_pods)) 4709 return pt; 4710 4711 /* 4712 * Before workqueue_init_topology(), only SYSTEM is available which is 4713 * initialized in workqueue_init_early(). 4714 */ 4715 pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 4716 BUG_ON(!pt->nr_pods); 4717 return pt; 4718 } 4719 4720 /** 4721 * init_worker_pool - initialize a newly zalloc'd worker_pool 4722 * @pool: worker_pool to initialize 4723 * 4724 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 4725 * 4726 * Return: 0 on success, -errno on failure. Even on failure, all fields 4727 * inside @pool proper are initialized and put_unbound_pool() can be called 4728 * on @pool safely to release it. 4729 */ 4730 static int init_worker_pool(struct worker_pool *pool) 4731 { 4732 raw_spin_lock_init(&pool->lock); 4733 pool->id = -1; 4734 pool->cpu = -1; 4735 pool->node = NUMA_NO_NODE; 4736 pool->flags |= POOL_DISASSOCIATED; 4737 pool->watchdog_ts = jiffies; 4738 INIT_LIST_HEAD(&pool->worklist); 4739 INIT_LIST_HEAD(&pool->idle_list); 4740 hash_init(pool->busy_hash); 4741 4742 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 4743 INIT_WORK(&pool->idle_cull_work, idle_cull_fn); 4744 4745 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 4746 4747 INIT_LIST_HEAD(&pool->workers); 4748 INIT_LIST_HEAD(&pool->dying_workers); 4749 4750 ida_init(&pool->worker_ida); 4751 INIT_HLIST_NODE(&pool->hash_node); 4752 pool->refcnt = 1; 4753 4754 /* shouldn't fail above this point */ 4755 pool->attrs = alloc_workqueue_attrs(); 4756 if (!pool->attrs) 4757 return -ENOMEM; 4758 4759 wqattrs_clear_for_pool(pool->attrs); 4760 4761 return 0; 4762 } 4763 4764 #ifdef CONFIG_LOCKDEP 4765 static void wq_init_lockdep(struct workqueue_struct *wq) 4766 { 4767 char *lock_name; 4768 4769 lockdep_register_key(&wq->key); 4770 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 4771 if (!lock_name) 4772 lock_name = wq->name; 4773 4774 wq->lock_name = lock_name; 4775 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 4776 } 4777 4778 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4779 { 4780 lockdep_unregister_key(&wq->key); 4781 } 4782 4783 static void wq_free_lockdep(struct workqueue_struct *wq) 4784 { 4785 if (wq->lock_name != wq->name) 4786 kfree(wq->lock_name); 4787 } 4788 #else 4789 static void wq_init_lockdep(struct workqueue_struct *wq) 4790 { 4791 } 4792 4793 static void wq_unregister_lockdep(struct workqueue_struct *wq) 4794 { 4795 } 4796 4797 static void wq_free_lockdep(struct workqueue_struct *wq) 4798 { 4799 } 4800 #endif 4801 4802 static void free_node_nr_active(struct wq_node_nr_active **nna_ar) 4803 { 4804 int node; 4805 4806 for_each_node(node) { 4807 kfree(nna_ar[node]); 4808 nna_ar[node] = NULL; 4809 } 4810 4811 kfree(nna_ar[nr_node_ids]); 4812 nna_ar[nr_node_ids] = NULL; 4813 } 4814 4815 static void init_node_nr_active(struct wq_node_nr_active *nna) 4816 { 4817 nna->max = WQ_DFL_MIN_ACTIVE; 4818 atomic_set(&nna->nr, 0); 4819 raw_spin_lock_init(&nna->lock); 4820 INIT_LIST_HEAD(&nna->pending_pwqs); 4821 } 4822 4823 /* 4824 * Each node's nr_active counter will be accessed mostly from its own node and 4825 * should be allocated in the node. 4826 */ 4827 static int alloc_node_nr_active(struct wq_node_nr_active **nna_ar) 4828 { 4829 struct wq_node_nr_active *nna; 4830 int node; 4831 4832 for_each_node(node) { 4833 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, node); 4834 if (!nna) 4835 goto err_free; 4836 init_node_nr_active(nna); 4837 nna_ar[node] = nna; 4838 } 4839 4840 /* [nr_node_ids] is used as the fallback */ 4841 nna = kzalloc_node(sizeof(*nna), GFP_KERNEL, NUMA_NO_NODE); 4842 if (!nna) 4843 goto err_free; 4844 init_node_nr_active(nna); 4845 nna_ar[nr_node_ids] = nna; 4846 4847 return 0; 4848 4849 err_free: 4850 free_node_nr_active(nna_ar); 4851 return -ENOMEM; 4852 } 4853 4854 static void rcu_free_wq(struct rcu_head *rcu) 4855 { 4856 struct workqueue_struct *wq = 4857 container_of(rcu, struct workqueue_struct, rcu); 4858 4859 if (wq->flags & WQ_UNBOUND) 4860 free_node_nr_active(wq->node_nr_active); 4861 4862 wq_free_lockdep(wq); 4863 free_percpu(wq->cpu_pwq); 4864 free_workqueue_attrs(wq->unbound_attrs); 4865 kfree(wq); 4866 } 4867 4868 static void rcu_free_pool(struct rcu_head *rcu) 4869 { 4870 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 4871 4872 ida_destroy(&pool->worker_ida); 4873 free_workqueue_attrs(pool->attrs); 4874 kfree(pool); 4875 } 4876 4877 /** 4878 * put_unbound_pool - put a worker_pool 4879 * @pool: worker_pool to put 4880 * 4881 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 4882 * safe manner. get_unbound_pool() calls this function on its failure path 4883 * and this function should be able to release pools which went through, 4884 * successfully or not, init_worker_pool(). 4885 * 4886 * Should be called with wq_pool_mutex held. 4887 */ 4888 static void put_unbound_pool(struct worker_pool *pool) 4889 { 4890 DECLARE_COMPLETION_ONSTACK(detach_completion); 4891 struct worker *worker; 4892 LIST_HEAD(cull_list); 4893 4894 lockdep_assert_held(&wq_pool_mutex); 4895 4896 if (--pool->refcnt) 4897 return; 4898 4899 /* sanity checks */ 4900 if (WARN_ON(!(pool->cpu < 0)) || 4901 WARN_ON(!list_empty(&pool->worklist))) 4902 return; 4903 4904 /* release id and unhash */ 4905 if (pool->id >= 0) 4906 idr_remove(&worker_pool_idr, pool->id); 4907 hash_del(&pool->hash_node); 4908 4909 /* 4910 * Become the manager and destroy all workers. This prevents 4911 * @pool's workers from blocking on attach_mutex. We're the last 4912 * manager and @pool gets freed with the flag set. 4913 * 4914 * Having a concurrent manager is quite unlikely to happen as we can 4915 * only get here with 4916 * pwq->refcnt == pool->refcnt == 0 4917 * which implies no work queued to the pool, which implies no worker can 4918 * become the manager. However a worker could have taken the role of 4919 * manager before the refcnts dropped to 0, since maybe_create_worker() 4920 * drops pool->lock 4921 */ 4922 while (true) { 4923 rcuwait_wait_event(&manager_wait, 4924 !(pool->flags & POOL_MANAGER_ACTIVE), 4925 TASK_UNINTERRUPTIBLE); 4926 4927 mutex_lock(&wq_pool_attach_mutex); 4928 raw_spin_lock_irq(&pool->lock); 4929 if (!(pool->flags & POOL_MANAGER_ACTIVE)) { 4930 pool->flags |= POOL_MANAGER_ACTIVE; 4931 break; 4932 } 4933 raw_spin_unlock_irq(&pool->lock); 4934 mutex_unlock(&wq_pool_attach_mutex); 4935 } 4936 4937 while ((worker = first_idle_worker(pool))) 4938 set_worker_dying(worker, &cull_list); 4939 WARN_ON(pool->nr_workers || pool->nr_idle); 4940 raw_spin_unlock_irq(&pool->lock); 4941 4942 wake_dying_workers(&cull_list); 4943 4944 if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers)) 4945 pool->detach_completion = &detach_completion; 4946 mutex_unlock(&wq_pool_attach_mutex); 4947 4948 if (pool->detach_completion) 4949 wait_for_completion(pool->detach_completion); 4950 4951 /* shut down the timers */ 4952 del_timer_sync(&pool->idle_timer); 4953 cancel_work_sync(&pool->idle_cull_work); 4954 del_timer_sync(&pool->mayday_timer); 4955 4956 /* RCU protected to allow dereferences from get_work_pool() */ 4957 call_rcu(&pool->rcu, rcu_free_pool); 4958 } 4959 4960 /** 4961 * get_unbound_pool - get a worker_pool with the specified attributes 4962 * @attrs: the attributes of the worker_pool to get 4963 * 4964 * Obtain a worker_pool which has the same attributes as @attrs, bump the 4965 * reference count and return it. If there already is a matching 4966 * worker_pool, it will be used; otherwise, this function attempts to 4967 * create a new one. 4968 * 4969 * Should be called with wq_pool_mutex held. 4970 * 4971 * Return: On success, a worker_pool with the same attributes as @attrs. 4972 * On failure, %NULL. 4973 */ 4974 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 4975 { 4976 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_NUMA]; 4977 u32 hash = wqattrs_hash(attrs); 4978 struct worker_pool *pool; 4979 int pod, node = NUMA_NO_NODE; 4980 4981 lockdep_assert_held(&wq_pool_mutex); 4982 4983 /* do we already have a matching pool? */ 4984 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 4985 if (wqattrs_equal(pool->attrs, attrs)) { 4986 pool->refcnt++; 4987 return pool; 4988 } 4989 } 4990 4991 /* If __pod_cpumask is contained inside a NUMA pod, that's our node */ 4992 for (pod = 0; pod < pt->nr_pods; pod++) { 4993 if (cpumask_subset(attrs->__pod_cpumask, pt->pod_cpus[pod])) { 4994 node = pt->pod_node[pod]; 4995 break; 4996 } 4997 } 4998 4999 /* nope, create a new one */ 5000 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, node); 5001 if (!pool || init_worker_pool(pool) < 0) 5002 goto fail; 5003 5004 pool->node = node; 5005 copy_workqueue_attrs(pool->attrs, attrs); 5006 wqattrs_clear_for_pool(pool->attrs); 5007 5008 if (worker_pool_assign_id(pool) < 0) 5009 goto fail; 5010 5011 /* create and start the initial worker */ 5012 if (wq_online && !create_worker(pool)) 5013 goto fail; 5014 5015 /* install */ 5016 hash_add(unbound_pool_hash, &pool->hash_node, hash); 5017 5018 return pool; 5019 fail: 5020 if (pool) 5021 put_unbound_pool(pool); 5022 return NULL; 5023 } 5024 5025 static void rcu_free_pwq(struct rcu_head *rcu) 5026 { 5027 kmem_cache_free(pwq_cache, 5028 container_of(rcu, struct pool_workqueue, rcu)); 5029 } 5030 5031 /* 5032 * Scheduled on pwq_release_worker by put_pwq() when an unbound pwq hits zero 5033 * refcnt and needs to be destroyed. 5034 */ 5035 static void pwq_release_workfn(struct kthread_work *work) 5036 { 5037 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 5038 release_work); 5039 struct workqueue_struct *wq = pwq->wq; 5040 struct worker_pool *pool = pwq->pool; 5041 bool is_last = false; 5042 5043 /* 5044 * When @pwq is not linked, it doesn't hold any reference to the 5045 * @wq, and @wq is invalid to access. 5046 */ 5047 if (!list_empty(&pwq->pwqs_node)) { 5048 mutex_lock(&wq->mutex); 5049 list_del_rcu(&pwq->pwqs_node); 5050 is_last = list_empty(&wq->pwqs); 5051 5052 /* 5053 * For ordered workqueue with a plugged dfl_pwq, restart it now. 5054 */ 5055 if (!is_last && (wq->flags & __WQ_ORDERED)) 5056 unplug_oldest_pwq(wq); 5057 5058 mutex_unlock(&wq->mutex); 5059 } 5060 5061 if (wq->flags & WQ_UNBOUND) { 5062 mutex_lock(&wq_pool_mutex); 5063 put_unbound_pool(pool); 5064 mutex_unlock(&wq_pool_mutex); 5065 } 5066 5067 if (!list_empty(&pwq->pending_node)) { 5068 struct wq_node_nr_active *nna = 5069 wq_node_nr_active(pwq->wq, pwq->pool->node); 5070 5071 raw_spin_lock_irq(&nna->lock); 5072 list_del_init(&pwq->pending_node); 5073 raw_spin_unlock_irq(&nna->lock); 5074 } 5075 5076 call_rcu(&pwq->rcu, rcu_free_pwq); 5077 5078 /* 5079 * If we're the last pwq going away, @wq is already dead and no one 5080 * is gonna access it anymore. Schedule RCU free. 5081 */ 5082 if (is_last) { 5083 wq_unregister_lockdep(wq); 5084 call_rcu(&wq->rcu, rcu_free_wq); 5085 } 5086 } 5087 5088 /* initialize newly allocated @pwq which is associated with @wq and @pool */ 5089 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 5090 struct worker_pool *pool) 5091 { 5092 BUG_ON((unsigned long)pwq & ~WORK_STRUCT_PWQ_MASK); 5093 5094 memset(pwq, 0, sizeof(*pwq)); 5095 5096 pwq->pool = pool; 5097 pwq->wq = wq; 5098 pwq->flush_color = -1; 5099 pwq->refcnt = 1; 5100 INIT_LIST_HEAD(&pwq->inactive_works); 5101 INIT_LIST_HEAD(&pwq->pending_node); 5102 INIT_LIST_HEAD(&pwq->pwqs_node); 5103 INIT_LIST_HEAD(&pwq->mayday_node); 5104 kthread_init_work(&pwq->release_work, pwq_release_workfn); 5105 } 5106 5107 /* sync @pwq with the current state of its associated wq and link it */ 5108 static void link_pwq(struct pool_workqueue *pwq) 5109 { 5110 struct workqueue_struct *wq = pwq->wq; 5111 5112 lockdep_assert_held(&wq->mutex); 5113 5114 /* may be called multiple times, ignore if already linked */ 5115 if (!list_empty(&pwq->pwqs_node)) 5116 return; 5117 5118 /* set the matching work_color */ 5119 pwq->work_color = wq->work_color; 5120 5121 /* link in @pwq */ 5122 list_add_tail_rcu(&pwq->pwqs_node, &wq->pwqs); 5123 } 5124 5125 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 5126 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 5127 const struct workqueue_attrs *attrs) 5128 { 5129 struct worker_pool *pool; 5130 struct pool_workqueue *pwq; 5131 5132 lockdep_assert_held(&wq_pool_mutex); 5133 5134 pool = get_unbound_pool(attrs); 5135 if (!pool) 5136 return NULL; 5137 5138 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 5139 if (!pwq) { 5140 put_unbound_pool(pool); 5141 return NULL; 5142 } 5143 5144 init_pwq(pwq, wq, pool); 5145 return pwq; 5146 } 5147 5148 /** 5149 * wq_calc_pod_cpumask - calculate a wq_attrs' cpumask for a pod 5150 * @attrs: the wq_attrs of the default pwq of the target workqueue 5151 * @cpu: the target CPU 5152 * @cpu_going_down: if >= 0, the CPU to consider as offline 5153 * 5154 * Calculate the cpumask a workqueue with @attrs should use on @pod. If 5155 * @cpu_going_down is >= 0, that cpu is considered offline during calculation. 5156 * The result is stored in @attrs->__pod_cpumask. 5157 * 5158 * If pod affinity is not enabled, @attrs->cpumask is always used. If enabled 5159 * and @pod has online CPUs requested by @attrs, the returned cpumask is the 5160 * intersection of the possible CPUs of @pod and @attrs->cpumask. 5161 * 5162 * The caller is responsible for ensuring that the cpumask of @pod stays stable. 5163 */ 5164 static void wq_calc_pod_cpumask(struct workqueue_attrs *attrs, int cpu, 5165 int cpu_going_down) 5166 { 5167 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 5168 int pod = pt->cpu_pod[cpu]; 5169 5170 /* does @pod have any online CPUs @attrs wants? */ 5171 cpumask_and(attrs->__pod_cpumask, pt->pod_cpus[pod], attrs->cpumask); 5172 cpumask_and(attrs->__pod_cpumask, attrs->__pod_cpumask, cpu_online_mask); 5173 if (cpu_going_down >= 0) 5174 cpumask_clear_cpu(cpu_going_down, attrs->__pod_cpumask); 5175 5176 if (cpumask_empty(attrs->__pod_cpumask)) { 5177 cpumask_copy(attrs->__pod_cpumask, attrs->cpumask); 5178 return; 5179 } 5180 5181 /* yeap, return possible CPUs in @pod that @attrs wants */ 5182 cpumask_and(attrs->__pod_cpumask, attrs->cpumask, pt->pod_cpus[pod]); 5183 5184 if (cpumask_empty(attrs->__pod_cpumask)) 5185 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 5186 "possible intersect\n"); 5187 } 5188 5189 /* install @pwq into @wq and return the old pwq, @cpu < 0 for dfl_pwq */ 5190 static struct pool_workqueue *install_unbound_pwq(struct workqueue_struct *wq, 5191 int cpu, struct pool_workqueue *pwq) 5192 { 5193 struct pool_workqueue __rcu **slot = unbound_pwq_slot(wq, cpu); 5194 struct pool_workqueue *old_pwq; 5195 5196 lockdep_assert_held(&wq_pool_mutex); 5197 lockdep_assert_held(&wq->mutex); 5198 5199 /* link_pwq() can handle duplicate calls */ 5200 link_pwq(pwq); 5201 5202 old_pwq = rcu_access_pointer(*slot); 5203 rcu_assign_pointer(*slot, pwq); 5204 return old_pwq; 5205 } 5206 5207 /* context to store the prepared attrs & pwqs before applying */ 5208 struct apply_wqattrs_ctx { 5209 struct workqueue_struct *wq; /* target workqueue */ 5210 struct workqueue_attrs *attrs; /* attrs to apply */ 5211 struct list_head list; /* queued for batching commit */ 5212 struct pool_workqueue *dfl_pwq; 5213 struct pool_workqueue *pwq_tbl[]; 5214 }; 5215 5216 /* free the resources after success or abort */ 5217 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 5218 { 5219 if (ctx) { 5220 int cpu; 5221 5222 for_each_possible_cpu(cpu) 5223 put_pwq_unlocked(ctx->pwq_tbl[cpu]); 5224 put_pwq_unlocked(ctx->dfl_pwq); 5225 5226 free_workqueue_attrs(ctx->attrs); 5227 5228 kfree(ctx); 5229 } 5230 } 5231 5232 /* allocate the attrs and pwqs for later installation */ 5233 static struct apply_wqattrs_ctx * 5234 apply_wqattrs_prepare(struct workqueue_struct *wq, 5235 const struct workqueue_attrs *attrs, 5236 const cpumask_var_t unbound_cpumask) 5237 { 5238 struct apply_wqattrs_ctx *ctx; 5239 struct workqueue_attrs *new_attrs; 5240 int cpu; 5241 5242 lockdep_assert_held(&wq_pool_mutex); 5243 5244 if (WARN_ON(attrs->affn_scope < 0 || 5245 attrs->affn_scope >= WQ_AFFN_NR_TYPES)) 5246 return ERR_PTR(-EINVAL); 5247 5248 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_cpu_ids), GFP_KERNEL); 5249 5250 new_attrs = alloc_workqueue_attrs(); 5251 if (!ctx || !new_attrs) 5252 goto out_free; 5253 5254 /* 5255 * If something goes wrong during CPU up/down, we'll fall back to 5256 * the default pwq covering whole @attrs->cpumask. Always create 5257 * it even if we don't use it immediately. 5258 */ 5259 copy_workqueue_attrs(new_attrs, attrs); 5260 wqattrs_actualize_cpumask(new_attrs, unbound_cpumask); 5261 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5262 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 5263 if (!ctx->dfl_pwq) 5264 goto out_free; 5265 5266 for_each_possible_cpu(cpu) { 5267 if (new_attrs->ordered) { 5268 ctx->dfl_pwq->refcnt++; 5269 ctx->pwq_tbl[cpu] = ctx->dfl_pwq; 5270 } else { 5271 wq_calc_pod_cpumask(new_attrs, cpu, -1); 5272 ctx->pwq_tbl[cpu] = alloc_unbound_pwq(wq, new_attrs); 5273 if (!ctx->pwq_tbl[cpu]) 5274 goto out_free; 5275 } 5276 } 5277 5278 /* save the user configured attrs and sanitize it. */ 5279 copy_workqueue_attrs(new_attrs, attrs); 5280 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 5281 cpumask_copy(new_attrs->__pod_cpumask, new_attrs->cpumask); 5282 ctx->attrs = new_attrs; 5283 5284 /* 5285 * For initialized ordered workqueues, there should only be one pwq 5286 * (dfl_pwq). Set the plugged flag of ctx->dfl_pwq to suspend execution 5287 * of newly queued work items until execution of older work items in 5288 * the old pwq's have completed. 5289 */ 5290 if ((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)) 5291 ctx->dfl_pwq->plugged = true; 5292 5293 ctx->wq = wq; 5294 return ctx; 5295 5296 out_free: 5297 free_workqueue_attrs(new_attrs); 5298 apply_wqattrs_cleanup(ctx); 5299 return ERR_PTR(-ENOMEM); 5300 } 5301 5302 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 5303 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 5304 { 5305 int cpu; 5306 5307 /* all pwqs have been created successfully, let's install'em */ 5308 mutex_lock(&ctx->wq->mutex); 5309 5310 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 5311 5312 /* save the previous pwqs and install the new ones */ 5313 for_each_possible_cpu(cpu) 5314 ctx->pwq_tbl[cpu] = install_unbound_pwq(ctx->wq, cpu, 5315 ctx->pwq_tbl[cpu]); 5316 ctx->dfl_pwq = install_unbound_pwq(ctx->wq, -1, ctx->dfl_pwq); 5317 5318 /* update node_nr_active->max */ 5319 wq_update_node_max_active(ctx->wq, -1); 5320 5321 /* rescuer needs to respect wq cpumask changes */ 5322 if (ctx->wq->rescuer) 5323 set_cpus_allowed_ptr(ctx->wq->rescuer->task, 5324 unbound_effective_cpumask(ctx->wq)); 5325 5326 mutex_unlock(&ctx->wq->mutex); 5327 } 5328 5329 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 5330 const struct workqueue_attrs *attrs) 5331 { 5332 struct apply_wqattrs_ctx *ctx; 5333 5334 /* only unbound workqueues can change attributes */ 5335 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 5336 return -EINVAL; 5337 5338 ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask); 5339 if (IS_ERR(ctx)) 5340 return PTR_ERR(ctx); 5341 5342 /* the ctx has been prepared successfully, let's commit it */ 5343 apply_wqattrs_commit(ctx); 5344 apply_wqattrs_cleanup(ctx); 5345 5346 return 0; 5347 } 5348 5349 /** 5350 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 5351 * @wq: the target workqueue 5352 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 5353 * 5354 * Apply @attrs to an unbound workqueue @wq. Unless disabled, this function maps 5355 * a separate pwq to each CPU pod with possibles CPUs in @attrs->cpumask so that 5356 * work items are affine to the pod it was issued on. Older pwqs are released as 5357 * in-flight work items finish. Note that a work item which repeatedly requeues 5358 * itself back-to-back will stay on its current pwq. 5359 * 5360 * Performs GFP_KERNEL allocations. 5361 * 5362 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock(). 5363 * 5364 * Return: 0 on success and -errno on failure. 5365 */ 5366 int apply_workqueue_attrs(struct workqueue_struct *wq, 5367 const struct workqueue_attrs *attrs) 5368 { 5369 int ret; 5370 5371 lockdep_assert_cpus_held(); 5372 5373 mutex_lock(&wq_pool_mutex); 5374 ret = apply_workqueue_attrs_locked(wq, attrs); 5375 mutex_unlock(&wq_pool_mutex); 5376 5377 return ret; 5378 } 5379 5380 /** 5381 * wq_update_pod - update pod affinity of a wq for CPU hot[un]plug 5382 * @wq: the target workqueue 5383 * @cpu: the CPU to update pool association for 5384 * @hotplug_cpu: the CPU coming up or going down 5385 * @online: whether @cpu is coming up or going down 5386 * 5387 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 5388 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update pod affinity of 5389 * @wq accordingly. 5390 * 5391 * 5392 * If pod affinity can't be adjusted due to memory allocation failure, it falls 5393 * back to @wq->dfl_pwq which may not be optimal but is always correct. 5394 * 5395 * Note that when the last allowed CPU of a pod goes offline for a workqueue 5396 * with a cpumask spanning multiple pods, the workers which were already 5397 * executing the work items for the workqueue will lose their CPU affinity and 5398 * may execute on any CPU. This is similar to how per-cpu workqueues behave on 5399 * CPU_DOWN. If a workqueue user wants strict affinity, it's the user's 5400 * responsibility to flush the work item from CPU_DOWN_PREPARE. 5401 */ 5402 static void wq_update_pod(struct workqueue_struct *wq, int cpu, 5403 int hotplug_cpu, bool online) 5404 { 5405 int off_cpu = online ? -1 : hotplug_cpu; 5406 struct pool_workqueue *old_pwq = NULL, *pwq; 5407 struct workqueue_attrs *target_attrs; 5408 5409 lockdep_assert_held(&wq_pool_mutex); 5410 5411 if (!(wq->flags & WQ_UNBOUND) || wq->unbound_attrs->ordered) 5412 return; 5413 5414 /* 5415 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 5416 * Let's use a preallocated one. The following buf is protected by 5417 * CPU hotplug exclusion. 5418 */ 5419 target_attrs = wq_update_pod_attrs_buf; 5420 5421 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 5422 wqattrs_actualize_cpumask(target_attrs, wq_unbound_cpumask); 5423 5424 /* nothing to do if the target cpumask matches the current pwq */ 5425 wq_calc_pod_cpumask(target_attrs, cpu, off_cpu); 5426 if (wqattrs_equal(target_attrs, unbound_pwq(wq, cpu)->pool->attrs)) 5427 return; 5428 5429 /* create a new pwq */ 5430 pwq = alloc_unbound_pwq(wq, target_attrs); 5431 if (!pwq) { 5432 pr_warn("workqueue: allocation failed while updating CPU pod affinity of \"%s\"\n", 5433 wq->name); 5434 goto use_dfl_pwq; 5435 } 5436 5437 /* Install the new pwq. */ 5438 mutex_lock(&wq->mutex); 5439 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5440 goto out_unlock; 5441 5442 use_dfl_pwq: 5443 mutex_lock(&wq->mutex); 5444 pwq = unbound_pwq(wq, -1); 5445 raw_spin_lock_irq(&pwq->pool->lock); 5446 get_pwq(pwq); 5447 raw_spin_unlock_irq(&pwq->pool->lock); 5448 old_pwq = install_unbound_pwq(wq, cpu, pwq); 5449 out_unlock: 5450 mutex_unlock(&wq->mutex); 5451 put_pwq_unlocked(old_pwq); 5452 } 5453 5454 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 5455 { 5456 bool highpri = wq->flags & WQ_HIGHPRI; 5457 int cpu, ret; 5458 5459 wq->cpu_pwq = alloc_percpu(struct pool_workqueue *); 5460 if (!wq->cpu_pwq) 5461 goto enomem; 5462 5463 if (!(wq->flags & WQ_UNBOUND)) { 5464 for_each_possible_cpu(cpu) { 5465 struct pool_workqueue **pwq_p; 5466 struct worker_pool __percpu *pools; 5467 struct worker_pool *pool; 5468 5469 if (wq->flags & WQ_BH) 5470 pools = bh_worker_pools; 5471 else 5472 pools = cpu_worker_pools; 5473 5474 pool = &(per_cpu_ptr(pools, cpu)[highpri]); 5475 pwq_p = per_cpu_ptr(wq->cpu_pwq, cpu); 5476 5477 *pwq_p = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, 5478 pool->node); 5479 if (!*pwq_p) 5480 goto enomem; 5481 5482 init_pwq(*pwq_p, wq, pool); 5483 5484 mutex_lock(&wq->mutex); 5485 link_pwq(*pwq_p); 5486 mutex_unlock(&wq->mutex); 5487 } 5488 return 0; 5489 } 5490 5491 cpus_read_lock(); 5492 if (wq->flags & __WQ_ORDERED) { 5493 struct pool_workqueue *dfl_pwq; 5494 5495 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 5496 /* there should only be single pwq for ordering guarantee */ 5497 dfl_pwq = rcu_access_pointer(wq->dfl_pwq); 5498 WARN(!ret && (wq->pwqs.next != &dfl_pwq->pwqs_node || 5499 wq->pwqs.prev != &dfl_pwq->pwqs_node), 5500 "ordering guarantee broken for workqueue %s\n", wq->name); 5501 } else { 5502 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 5503 } 5504 cpus_read_unlock(); 5505 5506 /* for unbound pwq, flush the pwq_release_worker ensures that the 5507 * pwq_release_workfn() completes before calling kfree(wq). 5508 */ 5509 if (ret) 5510 kthread_flush_worker(pwq_release_worker); 5511 5512 return ret; 5513 5514 enomem: 5515 if (wq->cpu_pwq) { 5516 for_each_possible_cpu(cpu) { 5517 struct pool_workqueue *pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5518 5519 if (pwq) 5520 kmem_cache_free(pwq_cache, pwq); 5521 } 5522 free_percpu(wq->cpu_pwq); 5523 wq->cpu_pwq = NULL; 5524 } 5525 return -ENOMEM; 5526 } 5527 5528 static int wq_clamp_max_active(int max_active, unsigned int flags, 5529 const char *name) 5530 { 5531 if (max_active < 1 || max_active > WQ_MAX_ACTIVE) 5532 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 5533 max_active, name, 1, WQ_MAX_ACTIVE); 5534 5535 return clamp_val(max_active, 1, WQ_MAX_ACTIVE); 5536 } 5537 5538 /* 5539 * Workqueues which may be used during memory reclaim should have a rescuer 5540 * to guarantee forward progress. 5541 */ 5542 static int init_rescuer(struct workqueue_struct *wq) 5543 { 5544 struct worker *rescuer; 5545 int ret; 5546 5547 if (!(wq->flags & WQ_MEM_RECLAIM)) 5548 return 0; 5549 5550 rescuer = alloc_worker(NUMA_NO_NODE); 5551 if (!rescuer) { 5552 pr_err("workqueue: Failed to allocate a rescuer for wq \"%s\"\n", 5553 wq->name); 5554 return -ENOMEM; 5555 } 5556 5557 rescuer->rescue_wq = wq; 5558 rescuer->task = kthread_create(rescuer_thread, rescuer, "kworker/R-%s", wq->name); 5559 if (IS_ERR(rescuer->task)) { 5560 ret = PTR_ERR(rescuer->task); 5561 pr_err("workqueue: Failed to create a rescuer kthread for wq \"%s\": %pe", 5562 wq->name, ERR_PTR(ret)); 5563 kfree(rescuer); 5564 return ret; 5565 } 5566 5567 wq->rescuer = rescuer; 5568 if (wq->flags & WQ_UNBOUND) 5569 kthread_bind_mask(rescuer->task, wq_unbound_cpumask); 5570 else 5571 kthread_bind_mask(rescuer->task, cpu_possible_mask); 5572 wake_up_process(rescuer->task); 5573 5574 return 0; 5575 } 5576 5577 /** 5578 * wq_adjust_max_active - update a wq's max_active to the current setting 5579 * @wq: target workqueue 5580 * 5581 * If @wq isn't freezing, set @wq->max_active to the saved_max_active and 5582 * activate inactive work items accordingly. If @wq is freezing, clear 5583 * @wq->max_active to zero. 5584 */ 5585 static void wq_adjust_max_active(struct workqueue_struct *wq) 5586 { 5587 bool activated; 5588 int new_max, new_min; 5589 5590 lockdep_assert_held(&wq->mutex); 5591 5592 if ((wq->flags & WQ_FREEZABLE) && workqueue_freezing) { 5593 new_max = 0; 5594 new_min = 0; 5595 } else { 5596 new_max = wq->saved_max_active; 5597 new_min = wq->saved_min_active; 5598 } 5599 5600 if (wq->max_active == new_max && wq->min_active == new_min) 5601 return; 5602 5603 /* 5604 * Update @wq->max/min_active and then kick inactive work items if more 5605 * active work items are allowed. This doesn't break work item ordering 5606 * because new work items are always queued behind existing inactive 5607 * work items if there are any. 5608 */ 5609 WRITE_ONCE(wq->max_active, new_max); 5610 WRITE_ONCE(wq->min_active, new_min); 5611 5612 if (wq->flags & WQ_UNBOUND) 5613 wq_update_node_max_active(wq, -1); 5614 5615 if (new_max == 0) 5616 return; 5617 5618 /* 5619 * Round-robin through pwq's activating the first inactive work item 5620 * until max_active is filled. 5621 */ 5622 do { 5623 struct pool_workqueue *pwq; 5624 5625 activated = false; 5626 for_each_pwq(pwq, wq) { 5627 unsigned long irq_flags; 5628 5629 /* can be called during early boot w/ irq disabled */ 5630 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 5631 if (pwq_activate_first_inactive(pwq, true)) { 5632 activated = true; 5633 kick_pool(pwq->pool); 5634 } 5635 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 5636 } 5637 } while (activated); 5638 } 5639 5640 __printf(1, 4) 5641 struct workqueue_struct *alloc_workqueue(const char *fmt, 5642 unsigned int flags, 5643 int max_active, ...) 5644 { 5645 va_list args; 5646 struct workqueue_struct *wq; 5647 size_t wq_size; 5648 int name_len; 5649 5650 if (flags & WQ_BH) { 5651 if (WARN_ON_ONCE(flags & ~__WQ_BH_ALLOWS)) 5652 return NULL; 5653 if (WARN_ON_ONCE(max_active)) 5654 return NULL; 5655 } 5656 5657 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 5658 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 5659 flags |= WQ_UNBOUND; 5660 5661 /* allocate wq and format name */ 5662 if (flags & WQ_UNBOUND) 5663 wq_size = struct_size(wq, node_nr_active, nr_node_ids + 1); 5664 else 5665 wq_size = sizeof(*wq); 5666 5667 wq = kzalloc(wq_size, GFP_KERNEL); 5668 if (!wq) 5669 return NULL; 5670 5671 if (flags & WQ_UNBOUND) { 5672 wq->unbound_attrs = alloc_workqueue_attrs(); 5673 if (!wq->unbound_attrs) 5674 goto err_free_wq; 5675 } 5676 5677 va_start(args, max_active); 5678 name_len = vsnprintf(wq->name, sizeof(wq->name), fmt, args); 5679 va_end(args); 5680 5681 if (name_len >= WQ_NAME_LEN) 5682 pr_warn_once("workqueue: name exceeds WQ_NAME_LEN. Truncating to: %s\n", 5683 wq->name); 5684 5685 if (flags & WQ_BH) { 5686 /* 5687 * BH workqueues always share a single execution context per CPU 5688 * and don't impose any max_active limit. 5689 */ 5690 max_active = INT_MAX; 5691 } else { 5692 max_active = max_active ?: WQ_DFL_ACTIVE; 5693 max_active = wq_clamp_max_active(max_active, flags, wq->name); 5694 } 5695 5696 /* init wq */ 5697 wq->flags = flags; 5698 wq->max_active = max_active; 5699 wq->min_active = min(max_active, WQ_DFL_MIN_ACTIVE); 5700 wq->saved_max_active = wq->max_active; 5701 wq->saved_min_active = wq->min_active; 5702 mutex_init(&wq->mutex); 5703 atomic_set(&wq->nr_pwqs_to_flush, 0); 5704 INIT_LIST_HEAD(&wq->pwqs); 5705 INIT_LIST_HEAD(&wq->flusher_queue); 5706 INIT_LIST_HEAD(&wq->flusher_overflow); 5707 INIT_LIST_HEAD(&wq->maydays); 5708 5709 wq_init_lockdep(wq); 5710 INIT_LIST_HEAD(&wq->list); 5711 5712 if (flags & WQ_UNBOUND) { 5713 if (alloc_node_nr_active(wq->node_nr_active) < 0) 5714 goto err_unreg_lockdep; 5715 } 5716 5717 if (alloc_and_link_pwqs(wq) < 0) 5718 goto err_free_node_nr_active; 5719 5720 if (wq_online && init_rescuer(wq) < 0) 5721 goto err_destroy; 5722 5723 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 5724 goto err_destroy; 5725 5726 /* 5727 * wq_pool_mutex protects global freeze state and workqueues list. 5728 * Grab it, adjust max_active and add the new @wq to workqueues 5729 * list. 5730 */ 5731 mutex_lock(&wq_pool_mutex); 5732 5733 mutex_lock(&wq->mutex); 5734 wq_adjust_max_active(wq); 5735 mutex_unlock(&wq->mutex); 5736 5737 list_add_tail_rcu(&wq->list, &workqueues); 5738 5739 mutex_unlock(&wq_pool_mutex); 5740 5741 return wq; 5742 5743 err_free_node_nr_active: 5744 if (wq->flags & WQ_UNBOUND) 5745 free_node_nr_active(wq->node_nr_active); 5746 err_unreg_lockdep: 5747 wq_unregister_lockdep(wq); 5748 wq_free_lockdep(wq); 5749 err_free_wq: 5750 free_workqueue_attrs(wq->unbound_attrs); 5751 kfree(wq); 5752 return NULL; 5753 err_destroy: 5754 destroy_workqueue(wq); 5755 return NULL; 5756 } 5757 EXPORT_SYMBOL_GPL(alloc_workqueue); 5758 5759 static bool pwq_busy(struct pool_workqueue *pwq) 5760 { 5761 int i; 5762 5763 for (i = 0; i < WORK_NR_COLORS; i++) 5764 if (pwq->nr_in_flight[i]) 5765 return true; 5766 5767 if ((pwq != rcu_access_pointer(pwq->wq->dfl_pwq)) && (pwq->refcnt > 1)) 5768 return true; 5769 if (!pwq_is_empty(pwq)) 5770 return true; 5771 5772 return false; 5773 } 5774 5775 /** 5776 * destroy_workqueue - safely terminate a workqueue 5777 * @wq: target workqueue 5778 * 5779 * Safely destroy a workqueue. All work currently pending will be done first. 5780 */ 5781 void destroy_workqueue(struct workqueue_struct *wq) 5782 { 5783 struct pool_workqueue *pwq; 5784 int cpu; 5785 5786 /* 5787 * Remove it from sysfs first so that sanity check failure doesn't 5788 * lead to sysfs name conflicts. 5789 */ 5790 workqueue_sysfs_unregister(wq); 5791 5792 /* mark the workqueue destruction is in progress */ 5793 mutex_lock(&wq->mutex); 5794 wq->flags |= __WQ_DESTROYING; 5795 mutex_unlock(&wq->mutex); 5796 5797 /* drain it before proceeding with destruction */ 5798 drain_workqueue(wq); 5799 5800 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 5801 if (wq->rescuer) { 5802 struct worker *rescuer = wq->rescuer; 5803 5804 /* this prevents new queueing */ 5805 raw_spin_lock_irq(&wq_mayday_lock); 5806 wq->rescuer = NULL; 5807 raw_spin_unlock_irq(&wq_mayday_lock); 5808 5809 /* rescuer will empty maydays list before exiting */ 5810 kthread_stop(rescuer->task); 5811 kfree(rescuer); 5812 } 5813 5814 /* 5815 * Sanity checks - grab all the locks so that we wait for all 5816 * in-flight operations which may do put_pwq(). 5817 */ 5818 mutex_lock(&wq_pool_mutex); 5819 mutex_lock(&wq->mutex); 5820 for_each_pwq(pwq, wq) { 5821 raw_spin_lock_irq(&pwq->pool->lock); 5822 if (WARN_ON(pwq_busy(pwq))) { 5823 pr_warn("%s: %s has the following busy pwq\n", 5824 __func__, wq->name); 5825 show_pwq(pwq); 5826 raw_spin_unlock_irq(&pwq->pool->lock); 5827 mutex_unlock(&wq->mutex); 5828 mutex_unlock(&wq_pool_mutex); 5829 show_one_workqueue(wq); 5830 return; 5831 } 5832 raw_spin_unlock_irq(&pwq->pool->lock); 5833 } 5834 mutex_unlock(&wq->mutex); 5835 5836 /* 5837 * wq list is used to freeze wq, remove from list after 5838 * flushing is complete in case freeze races us. 5839 */ 5840 list_del_rcu(&wq->list); 5841 mutex_unlock(&wq_pool_mutex); 5842 5843 /* 5844 * We're the sole accessor of @wq. Directly access cpu_pwq and dfl_pwq 5845 * to put the base refs. @wq will be auto-destroyed from the last 5846 * pwq_put. RCU read lock prevents @wq from going away from under us. 5847 */ 5848 rcu_read_lock(); 5849 5850 for_each_possible_cpu(cpu) { 5851 put_pwq_unlocked(unbound_pwq(wq, cpu)); 5852 RCU_INIT_POINTER(*unbound_pwq_slot(wq, cpu), NULL); 5853 } 5854 5855 put_pwq_unlocked(unbound_pwq(wq, -1)); 5856 RCU_INIT_POINTER(*unbound_pwq_slot(wq, -1), NULL); 5857 5858 rcu_read_unlock(); 5859 } 5860 EXPORT_SYMBOL_GPL(destroy_workqueue); 5861 5862 /** 5863 * workqueue_set_max_active - adjust max_active of a workqueue 5864 * @wq: target workqueue 5865 * @max_active: new max_active value. 5866 * 5867 * Set max_active of @wq to @max_active. See the alloc_workqueue() function 5868 * comment. 5869 * 5870 * CONTEXT: 5871 * Don't call from IRQ context. 5872 */ 5873 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 5874 { 5875 /* max_active doesn't mean anything for BH workqueues */ 5876 if (WARN_ON(wq->flags & WQ_BH)) 5877 return; 5878 /* disallow meddling with max_active for ordered workqueues */ 5879 if (WARN_ON(wq->flags & __WQ_ORDERED)) 5880 return; 5881 5882 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 5883 5884 mutex_lock(&wq->mutex); 5885 5886 wq->saved_max_active = max_active; 5887 if (wq->flags & WQ_UNBOUND) 5888 wq->saved_min_active = min(wq->saved_min_active, max_active); 5889 5890 wq_adjust_max_active(wq); 5891 5892 mutex_unlock(&wq->mutex); 5893 } 5894 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 5895 5896 /** 5897 * workqueue_set_min_active - adjust min_active of an unbound workqueue 5898 * @wq: target unbound workqueue 5899 * @min_active: new min_active value 5900 * 5901 * Set min_active of an unbound workqueue. Unlike other types of workqueues, an 5902 * unbound workqueue is not guaranteed to be able to process max_active 5903 * interdependent work items. Instead, an unbound workqueue is guaranteed to be 5904 * able to process min_active number of interdependent work items which is 5905 * %WQ_DFL_MIN_ACTIVE by default. 5906 * 5907 * Use this function to adjust the min_active value between 0 and the current 5908 * max_active. 5909 */ 5910 void workqueue_set_min_active(struct workqueue_struct *wq, int min_active) 5911 { 5912 /* min_active is only meaningful for non-ordered unbound workqueues */ 5913 if (WARN_ON((wq->flags & (WQ_BH | WQ_UNBOUND | __WQ_ORDERED)) != 5914 WQ_UNBOUND)) 5915 return; 5916 5917 mutex_lock(&wq->mutex); 5918 wq->saved_min_active = clamp(min_active, 0, wq->saved_max_active); 5919 wq_adjust_max_active(wq); 5920 mutex_unlock(&wq->mutex); 5921 } 5922 5923 /** 5924 * current_work - retrieve %current task's work struct 5925 * 5926 * Determine if %current task is a workqueue worker and what it's working on. 5927 * Useful to find out the context that the %current task is running in. 5928 * 5929 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 5930 */ 5931 struct work_struct *current_work(void) 5932 { 5933 struct worker *worker = current_wq_worker(); 5934 5935 return worker ? worker->current_work : NULL; 5936 } 5937 EXPORT_SYMBOL(current_work); 5938 5939 /** 5940 * current_is_workqueue_rescuer - is %current workqueue rescuer? 5941 * 5942 * Determine whether %current is a workqueue rescuer. Can be used from 5943 * work functions to determine whether it's being run off the rescuer task. 5944 * 5945 * Return: %true if %current is a workqueue rescuer. %false otherwise. 5946 */ 5947 bool current_is_workqueue_rescuer(void) 5948 { 5949 struct worker *worker = current_wq_worker(); 5950 5951 return worker && worker->rescue_wq; 5952 } 5953 5954 /** 5955 * workqueue_congested - test whether a workqueue is congested 5956 * @cpu: CPU in question 5957 * @wq: target workqueue 5958 * 5959 * Test whether @wq's cpu workqueue for @cpu is congested. There is 5960 * no synchronization around this function and the test result is 5961 * unreliable and only useful as advisory hints or for debugging. 5962 * 5963 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 5964 * 5965 * With the exception of ordered workqueues, all workqueues have per-cpu 5966 * pool_workqueues, each with its own congested state. A workqueue being 5967 * congested on one CPU doesn't mean that the workqueue is contested on any 5968 * other CPUs. 5969 * 5970 * Return: 5971 * %true if congested, %false otherwise. 5972 */ 5973 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 5974 { 5975 struct pool_workqueue *pwq; 5976 bool ret; 5977 5978 rcu_read_lock(); 5979 preempt_disable(); 5980 5981 if (cpu == WORK_CPU_UNBOUND) 5982 cpu = smp_processor_id(); 5983 5984 pwq = *per_cpu_ptr(wq->cpu_pwq, cpu); 5985 ret = !list_empty(&pwq->inactive_works); 5986 5987 preempt_enable(); 5988 rcu_read_unlock(); 5989 5990 return ret; 5991 } 5992 EXPORT_SYMBOL_GPL(workqueue_congested); 5993 5994 /** 5995 * work_busy - test whether a work is currently pending or running 5996 * @work: the work to be tested 5997 * 5998 * Test whether @work is currently pending or running. There is no 5999 * synchronization around this function and the test result is 6000 * unreliable and only useful as advisory hints or for debugging. 6001 * 6002 * Return: 6003 * OR'd bitmask of WORK_BUSY_* bits. 6004 */ 6005 unsigned int work_busy(struct work_struct *work) 6006 { 6007 struct worker_pool *pool; 6008 unsigned long irq_flags; 6009 unsigned int ret = 0; 6010 6011 if (work_pending(work)) 6012 ret |= WORK_BUSY_PENDING; 6013 6014 rcu_read_lock(); 6015 pool = get_work_pool(work); 6016 if (pool) { 6017 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6018 if (find_worker_executing_work(pool, work)) 6019 ret |= WORK_BUSY_RUNNING; 6020 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6021 } 6022 rcu_read_unlock(); 6023 6024 return ret; 6025 } 6026 EXPORT_SYMBOL_GPL(work_busy); 6027 6028 /** 6029 * set_worker_desc - set description for the current work item 6030 * @fmt: printf-style format string 6031 * @...: arguments for the format string 6032 * 6033 * This function can be called by a running work function to describe what 6034 * the work item is about. If the worker task gets dumped, this 6035 * information will be printed out together to help debugging. The 6036 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 6037 */ 6038 void set_worker_desc(const char *fmt, ...) 6039 { 6040 struct worker *worker = current_wq_worker(); 6041 va_list args; 6042 6043 if (worker) { 6044 va_start(args, fmt); 6045 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 6046 va_end(args); 6047 } 6048 } 6049 EXPORT_SYMBOL_GPL(set_worker_desc); 6050 6051 /** 6052 * print_worker_info - print out worker information and description 6053 * @log_lvl: the log level to use when printing 6054 * @task: target task 6055 * 6056 * If @task is a worker and currently executing a work item, print out the 6057 * name of the workqueue being serviced and worker description set with 6058 * set_worker_desc() by the currently executing work item. 6059 * 6060 * This function can be safely called on any task as long as the 6061 * task_struct itself is accessible. While safe, this function isn't 6062 * synchronized and may print out mixups or garbages of limited length. 6063 */ 6064 void print_worker_info(const char *log_lvl, struct task_struct *task) 6065 { 6066 work_func_t *fn = NULL; 6067 char name[WQ_NAME_LEN] = { }; 6068 char desc[WORKER_DESC_LEN] = { }; 6069 struct pool_workqueue *pwq = NULL; 6070 struct workqueue_struct *wq = NULL; 6071 struct worker *worker; 6072 6073 if (!(task->flags & PF_WQ_WORKER)) 6074 return; 6075 6076 /* 6077 * This function is called without any synchronization and @task 6078 * could be in any state. Be careful with dereferences. 6079 */ 6080 worker = kthread_probe_data(task); 6081 6082 /* 6083 * Carefully copy the associated workqueue's workfn, name and desc. 6084 * Keep the original last '\0' in case the original is garbage. 6085 */ 6086 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn)); 6087 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq)); 6088 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq)); 6089 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1); 6090 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1); 6091 6092 if (fn || name[0] || desc[0]) { 6093 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 6094 if (strcmp(name, desc)) 6095 pr_cont(" (%s)", desc); 6096 pr_cont("\n"); 6097 } 6098 } 6099 6100 static void pr_cont_pool_info(struct worker_pool *pool) 6101 { 6102 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 6103 if (pool->node != NUMA_NO_NODE) 6104 pr_cont(" node=%d", pool->node); 6105 pr_cont(" flags=0x%x", pool->flags); 6106 if (pool->flags & POOL_BH) 6107 pr_cont(" bh%s", 6108 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6109 else 6110 pr_cont(" nice=%d", pool->attrs->nice); 6111 } 6112 6113 static void pr_cont_worker_id(struct worker *worker) 6114 { 6115 struct worker_pool *pool = worker->pool; 6116 6117 if (pool->flags & WQ_BH) 6118 pr_cont("bh%s", 6119 pool->attrs->nice == HIGHPRI_NICE_LEVEL ? "-hi" : ""); 6120 else 6121 pr_cont("%d%s", task_pid_nr(worker->task), 6122 worker->rescue_wq ? "(RESCUER)" : ""); 6123 } 6124 6125 struct pr_cont_work_struct { 6126 bool comma; 6127 work_func_t func; 6128 long ctr; 6129 }; 6130 6131 static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp) 6132 { 6133 if (!pcwsp->ctr) 6134 goto out_record; 6135 if (func == pcwsp->func) { 6136 pcwsp->ctr++; 6137 return; 6138 } 6139 if (pcwsp->ctr == 1) 6140 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func); 6141 else 6142 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func); 6143 pcwsp->ctr = 0; 6144 out_record: 6145 if ((long)func == -1L) 6146 return; 6147 pcwsp->comma = comma; 6148 pcwsp->func = func; 6149 pcwsp->ctr = 1; 6150 } 6151 6152 static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp) 6153 { 6154 if (work->func == wq_barrier_func) { 6155 struct wq_barrier *barr; 6156 6157 barr = container_of(work, struct wq_barrier, work); 6158 6159 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6160 pr_cont("%s BAR(%d)", comma ? "," : "", 6161 task_pid_nr(barr->task)); 6162 } else { 6163 if (!comma) 6164 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp); 6165 pr_cont_work_flush(comma, work->func, pcwsp); 6166 } 6167 } 6168 6169 static void show_pwq(struct pool_workqueue *pwq) 6170 { 6171 struct pr_cont_work_struct pcws = { .ctr = 0, }; 6172 struct worker_pool *pool = pwq->pool; 6173 struct work_struct *work; 6174 struct worker *worker; 6175 bool has_in_flight = false, has_pending = false; 6176 int bkt; 6177 6178 pr_info(" pwq %d:", pool->id); 6179 pr_cont_pool_info(pool); 6180 6181 pr_cont(" active=%d refcnt=%d%s\n", 6182 pwq->nr_active, pwq->refcnt, 6183 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 6184 6185 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6186 if (worker->current_pwq == pwq) { 6187 has_in_flight = true; 6188 break; 6189 } 6190 } 6191 if (has_in_flight) { 6192 bool comma = false; 6193 6194 pr_info(" in-flight:"); 6195 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 6196 if (worker->current_pwq != pwq) 6197 continue; 6198 6199 pr_cont(" %s", comma ? "," : ""); 6200 pr_cont_worker_id(worker); 6201 pr_cont(":%ps", worker->current_func); 6202 list_for_each_entry(work, &worker->scheduled, entry) 6203 pr_cont_work(false, work, &pcws); 6204 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6205 comma = true; 6206 } 6207 pr_cont("\n"); 6208 } 6209 6210 list_for_each_entry(work, &pool->worklist, entry) { 6211 if (get_work_pwq(work) == pwq) { 6212 has_pending = true; 6213 break; 6214 } 6215 } 6216 if (has_pending) { 6217 bool comma = false; 6218 6219 pr_info(" pending:"); 6220 list_for_each_entry(work, &pool->worklist, entry) { 6221 if (get_work_pwq(work) != pwq) 6222 continue; 6223 6224 pr_cont_work(comma, work, &pcws); 6225 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6226 } 6227 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6228 pr_cont("\n"); 6229 } 6230 6231 if (!list_empty(&pwq->inactive_works)) { 6232 bool comma = false; 6233 6234 pr_info(" inactive:"); 6235 list_for_each_entry(work, &pwq->inactive_works, entry) { 6236 pr_cont_work(comma, work, &pcws); 6237 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 6238 } 6239 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws); 6240 pr_cont("\n"); 6241 } 6242 } 6243 6244 /** 6245 * show_one_workqueue - dump state of specified workqueue 6246 * @wq: workqueue whose state will be printed 6247 */ 6248 void show_one_workqueue(struct workqueue_struct *wq) 6249 { 6250 struct pool_workqueue *pwq; 6251 bool idle = true; 6252 unsigned long irq_flags; 6253 6254 for_each_pwq(pwq, wq) { 6255 if (!pwq_is_empty(pwq)) { 6256 idle = false; 6257 break; 6258 } 6259 } 6260 if (idle) /* Nothing to print for idle workqueue */ 6261 return; 6262 6263 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 6264 6265 for_each_pwq(pwq, wq) { 6266 raw_spin_lock_irqsave(&pwq->pool->lock, irq_flags); 6267 if (!pwq_is_empty(pwq)) { 6268 /* 6269 * Defer printing to avoid deadlocks in console 6270 * drivers that queue work while holding locks 6271 * also taken in their write paths. 6272 */ 6273 printk_deferred_enter(); 6274 show_pwq(pwq); 6275 printk_deferred_exit(); 6276 } 6277 raw_spin_unlock_irqrestore(&pwq->pool->lock, irq_flags); 6278 /* 6279 * We could be printing a lot from atomic context, e.g. 6280 * sysrq-t -> show_all_workqueues(). Avoid triggering 6281 * hard lockup. 6282 */ 6283 touch_nmi_watchdog(); 6284 } 6285 6286 } 6287 6288 /** 6289 * show_one_worker_pool - dump state of specified worker pool 6290 * @pool: worker pool whose state will be printed 6291 */ 6292 static void show_one_worker_pool(struct worker_pool *pool) 6293 { 6294 struct worker *worker; 6295 bool first = true; 6296 unsigned long irq_flags; 6297 unsigned long hung = 0; 6298 6299 raw_spin_lock_irqsave(&pool->lock, irq_flags); 6300 if (pool->nr_workers == pool->nr_idle) 6301 goto next_pool; 6302 6303 /* How long the first pending work is waiting for a worker. */ 6304 if (!list_empty(&pool->worklist)) 6305 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000; 6306 6307 /* 6308 * Defer printing to avoid deadlocks in console drivers that 6309 * queue work while holding locks also taken in their write 6310 * paths. 6311 */ 6312 printk_deferred_enter(); 6313 pr_info("pool %d:", pool->id); 6314 pr_cont_pool_info(pool); 6315 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers); 6316 if (pool->manager) 6317 pr_cont(" manager: %d", 6318 task_pid_nr(pool->manager->task)); 6319 list_for_each_entry(worker, &pool->idle_list, entry) { 6320 pr_cont(" %s", first ? "idle: " : ""); 6321 pr_cont_worker_id(worker); 6322 first = false; 6323 } 6324 pr_cont("\n"); 6325 printk_deferred_exit(); 6326 next_pool: 6327 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 6328 /* 6329 * We could be printing a lot from atomic context, e.g. 6330 * sysrq-t -> show_all_workqueues(). Avoid triggering 6331 * hard lockup. 6332 */ 6333 touch_nmi_watchdog(); 6334 6335 } 6336 6337 /** 6338 * show_all_workqueues - dump workqueue state 6339 * 6340 * Called from a sysrq handler and prints out all busy workqueues and pools. 6341 */ 6342 void show_all_workqueues(void) 6343 { 6344 struct workqueue_struct *wq; 6345 struct worker_pool *pool; 6346 int pi; 6347 6348 rcu_read_lock(); 6349 6350 pr_info("Showing busy workqueues and worker pools:\n"); 6351 6352 list_for_each_entry_rcu(wq, &workqueues, list) 6353 show_one_workqueue(wq); 6354 6355 for_each_pool(pool, pi) 6356 show_one_worker_pool(pool); 6357 6358 rcu_read_unlock(); 6359 } 6360 6361 /** 6362 * show_freezable_workqueues - dump freezable workqueue state 6363 * 6364 * Called from try_to_freeze_tasks() and prints out all freezable workqueues 6365 * still busy. 6366 */ 6367 void show_freezable_workqueues(void) 6368 { 6369 struct workqueue_struct *wq; 6370 6371 rcu_read_lock(); 6372 6373 pr_info("Showing freezable workqueues that are still busy:\n"); 6374 6375 list_for_each_entry_rcu(wq, &workqueues, list) { 6376 if (!(wq->flags & WQ_FREEZABLE)) 6377 continue; 6378 show_one_workqueue(wq); 6379 } 6380 6381 rcu_read_unlock(); 6382 } 6383 6384 /* used to show worker information through /proc/PID/{comm,stat,status} */ 6385 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 6386 { 6387 int off; 6388 6389 /* always show the actual comm */ 6390 off = strscpy(buf, task->comm, size); 6391 if (off < 0) 6392 return; 6393 6394 /* stabilize PF_WQ_WORKER and worker pool association */ 6395 mutex_lock(&wq_pool_attach_mutex); 6396 6397 if (task->flags & PF_WQ_WORKER) { 6398 struct worker *worker = kthread_data(task); 6399 struct worker_pool *pool = worker->pool; 6400 6401 if (pool) { 6402 raw_spin_lock_irq(&pool->lock); 6403 /* 6404 * ->desc tracks information (wq name or 6405 * set_worker_desc()) for the latest execution. If 6406 * current, prepend '+', otherwise '-'. 6407 */ 6408 if (worker->desc[0] != '\0') { 6409 if (worker->current_work) 6410 scnprintf(buf + off, size - off, "+%s", 6411 worker->desc); 6412 else 6413 scnprintf(buf + off, size - off, "-%s", 6414 worker->desc); 6415 } 6416 raw_spin_unlock_irq(&pool->lock); 6417 } 6418 } 6419 6420 mutex_unlock(&wq_pool_attach_mutex); 6421 } 6422 6423 #ifdef CONFIG_SMP 6424 6425 /* 6426 * CPU hotplug. 6427 * 6428 * There are two challenges in supporting CPU hotplug. Firstly, there 6429 * are a lot of assumptions on strong associations among work, pwq and 6430 * pool which make migrating pending and scheduled works very 6431 * difficult to implement without impacting hot paths. Secondly, 6432 * worker pools serve mix of short, long and very long running works making 6433 * blocked draining impractical. 6434 * 6435 * This is solved by allowing the pools to be disassociated from the CPU 6436 * running as an unbound one and allowing it to be reattached later if the 6437 * cpu comes back online. 6438 */ 6439 6440 static void unbind_workers(int cpu) 6441 { 6442 struct worker_pool *pool; 6443 struct worker *worker; 6444 6445 for_each_cpu_worker_pool(pool, cpu) { 6446 mutex_lock(&wq_pool_attach_mutex); 6447 raw_spin_lock_irq(&pool->lock); 6448 6449 /* 6450 * We've blocked all attach/detach operations. Make all workers 6451 * unbound and set DISASSOCIATED. Before this, all workers 6452 * must be on the cpu. After this, they may become diasporas. 6453 * And the preemption disabled section in their sched callbacks 6454 * are guaranteed to see WORKER_UNBOUND since the code here 6455 * is on the same cpu. 6456 */ 6457 for_each_pool_worker(worker, pool) 6458 worker->flags |= WORKER_UNBOUND; 6459 6460 pool->flags |= POOL_DISASSOCIATED; 6461 6462 /* 6463 * The handling of nr_running in sched callbacks are disabled 6464 * now. Zap nr_running. After this, nr_running stays zero and 6465 * need_more_worker() and keep_working() are always true as 6466 * long as the worklist is not empty. This pool now behaves as 6467 * an unbound (in terms of concurrency management) pool which 6468 * are served by workers tied to the pool. 6469 */ 6470 pool->nr_running = 0; 6471 6472 /* 6473 * With concurrency management just turned off, a busy 6474 * worker blocking could lead to lengthy stalls. Kick off 6475 * unbound chain execution of currently pending work items. 6476 */ 6477 kick_pool(pool); 6478 6479 raw_spin_unlock_irq(&pool->lock); 6480 6481 for_each_pool_worker(worker, pool) 6482 unbind_worker(worker); 6483 6484 mutex_unlock(&wq_pool_attach_mutex); 6485 } 6486 } 6487 6488 /** 6489 * rebind_workers - rebind all workers of a pool to the associated CPU 6490 * @pool: pool of interest 6491 * 6492 * @pool->cpu is coming online. Rebind all workers to the CPU. 6493 */ 6494 static void rebind_workers(struct worker_pool *pool) 6495 { 6496 struct worker *worker; 6497 6498 lockdep_assert_held(&wq_pool_attach_mutex); 6499 6500 /* 6501 * Restore CPU affinity of all workers. As all idle workers should 6502 * be on the run-queue of the associated CPU before any local 6503 * wake-ups for concurrency management happen, restore CPU affinity 6504 * of all workers first and then clear UNBOUND. As we're called 6505 * from CPU_ONLINE, the following shouldn't fail. 6506 */ 6507 for_each_pool_worker(worker, pool) { 6508 kthread_set_per_cpu(worker->task, pool->cpu); 6509 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 6510 pool_allowed_cpus(pool)) < 0); 6511 } 6512 6513 raw_spin_lock_irq(&pool->lock); 6514 6515 pool->flags &= ~POOL_DISASSOCIATED; 6516 6517 for_each_pool_worker(worker, pool) { 6518 unsigned int worker_flags = worker->flags; 6519 6520 /* 6521 * We want to clear UNBOUND but can't directly call 6522 * worker_clr_flags() or adjust nr_running. Atomically 6523 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 6524 * @worker will clear REBOUND using worker_clr_flags() when 6525 * it initiates the next execution cycle thus restoring 6526 * concurrency management. Note that when or whether 6527 * @worker clears REBOUND doesn't affect correctness. 6528 * 6529 * WRITE_ONCE() is necessary because @worker->flags may be 6530 * tested without holding any lock in 6531 * wq_worker_running(). Without it, NOT_RUNNING test may 6532 * fail incorrectly leading to premature concurrency 6533 * management operations. 6534 */ 6535 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 6536 worker_flags |= WORKER_REBOUND; 6537 worker_flags &= ~WORKER_UNBOUND; 6538 WRITE_ONCE(worker->flags, worker_flags); 6539 } 6540 6541 raw_spin_unlock_irq(&pool->lock); 6542 } 6543 6544 /** 6545 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 6546 * @pool: unbound pool of interest 6547 * @cpu: the CPU which is coming up 6548 * 6549 * An unbound pool may end up with a cpumask which doesn't have any online 6550 * CPUs. When a worker of such pool get scheduled, the scheduler resets 6551 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 6552 * online CPU before, cpus_allowed of all its workers should be restored. 6553 */ 6554 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 6555 { 6556 static cpumask_t cpumask; 6557 struct worker *worker; 6558 6559 lockdep_assert_held(&wq_pool_attach_mutex); 6560 6561 /* is @cpu allowed for @pool? */ 6562 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 6563 return; 6564 6565 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 6566 6567 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 6568 for_each_pool_worker(worker, pool) 6569 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 6570 } 6571 6572 int workqueue_prepare_cpu(unsigned int cpu) 6573 { 6574 struct worker_pool *pool; 6575 6576 for_each_cpu_worker_pool(pool, cpu) { 6577 if (pool->nr_workers) 6578 continue; 6579 if (!create_worker(pool)) 6580 return -ENOMEM; 6581 } 6582 return 0; 6583 } 6584 6585 int workqueue_online_cpu(unsigned int cpu) 6586 { 6587 struct worker_pool *pool; 6588 struct workqueue_struct *wq; 6589 int pi; 6590 6591 mutex_lock(&wq_pool_mutex); 6592 6593 for_each_pool(pool, pi) { 6594 /* BH pools aren't affected by hotplug */ 6595 if (pool->flags & POOL_BH) 6596 continue; 6597 6598 mutex_lock(&wq_pool_attach_mutex); 6599 if (pool->cpu == cpu) 6600 rebind_workers(pool); 6601 else if (pool->cpu < 0) 6602 restore_unbound_workers_cpumask(pool, cpu); 6603 mutex_unlock(&wq_pool_attach_mutex); 6604 } 6605 6606 /* update pod affinity of unbound workqueues */ 6607 list_for_each_entry(wq, &workqueues, list) { 6608 struct workqueue_attrs *attrs = wq->unbound_attrs; 6609 6610 if (attrs) { 6611 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6612 int tcpu; 6613 6614 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6615 wq_update_pod(wq, tcpu, cpu, true); 6616 6617 mutex_lock(&wq->mutex); 6618 wq_update_node_max_active(wq, -1); 6619 mutex_unlock(&wq->mutex); 6620 } 6621 } 6622 6623 mutex_unlock(&wq_pool_mutex); 6624 return 0; 6625 } 6626 6627 int workqueue_offline_cpu(unsigned int cpu) 6628 { 6629 struct workqueue_struct *wq; 6630 6631 /* unbinding per-cpu workers should happen on the local CPU */ 6632 if (WARN_ON(cpu != smp_processor_id())) 6633 return -1; 6634 6635 unbind_workers(cpu); 6636 6637 /* update pod affinity of unbound workqueues */ 6638 mutex_lock(&wq_pool_mutex); 6639 list_for_each_entry(wq, &workqueues, list) { 6640 struct workqueue_attrs *attrs = wq->unbound_attrs; 6641 6642 if (attrs) { 6643 const struct wq_pod_type *pt = wqattrs_pod_type(attrs); 6644 int tcpu; 6645 6646 for_each_cpu(tcpu, pt->pod_cpus[pt->cpu_pod[cpu]]) 6647 wq_update_pod(wq, tcpu, cpu, false); 6648 6649 mutex_lock(&wq->mutex); 6650 wq_update_node_max_active(wq, cpu); 6651 mutex_unlock(&wq->mutex); 6652 } 6653 } 6654 mutex_unlock(&wq_pool_mutex); 6655 6656 return 0; 6657 } 6658 6659 struct work_for_cpu { 6660 struct work_struct work; 6661 long (*fn)(void *); 6662 void *arg; 6663 long ret; 6664 }; 6665 6666 static void work_for_cpu_fn(struct work_struct *work) 6667 { 6668 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 6669 6670 wfc->ret = wfc->fn(wfc->arg); 6671 } 6672 6673 /** 6674 * work_on_cpu_key - run a function in thread context on a particular cpu 6675 * @cpu: the cpu to run on 6676 * @fn: the function to run 6677 * @arg: the function arg 6678 * @key: The lock class key for lock debugging purposes 6679 * 6680 * It is up to the caller to ensure that the cpu doesn't go offline. 6681 * The caller must not hold any locks which would prevent @fn from completing. 6682 * 6683 * Return: The value @fn returns. 6684 */ 6685 long work_on_cpu_key(int cpu, long (*fn)(void *), 6686 void *arg, struct lock_class_key *key) 6687 { 6688 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 6689 6690 INIT_WORK_ONSTACK_KEY(&wfc.work, work_for_cpu_fn, key); 6691 schedule_work_on(cpu, &wfc.work); 6692 flush_work(&wfc.work); 6693 destroy_work_on_stack(&wfc.work); 6694 return wfc.ret; 6695 } 6696 EXPORT_SYMBOL_GPL(work_on_cpu_key); 6697 6698 /** 6699 * work_on_cpu_safe_key - run a function in thread context on a particular cpu 6700 * @cpu: the cpu to run on 6701 * @fn: the function to run 6702 * @arg: the function argument 6703 * @key: The lock class key for lock debugging purposes 6704 * 6705 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 6706 * any locks which would prevent @fn from completing. 6707 * 6708 * Return: The value @fn returns. 6709 */ 6710 long work_on_cpu_safe_key(int cpu, long (*fn)(void *), 6711 void *arg, struct lock_class_key *key) 6712 { 6713 long ret = -ENODEV; 6714 6715 cpus_read_lock(); 6716 if (cpu_online(cpu)) 6717 ret = work_on_cpu_key(cpu, fn, arg, key); 6718 cpus_read_unlock(); 6719 return ret; 6720 } 6721 EXPORT_SYMBOL_GPL(work_on_cpu_safe_key); 6722 #endif /* CONFIG_SMP */ 6723 6724 #ifdef CONFIG_FREEZER 6725 6726 /** 6727 * freeze_workqueues_begin - begin freezing workqueues 6728 * 6729 * Start freezing workqueues. After this function returns, all freezable 6730 * workqueues will queue new works to their inactive_works list instead of 6731 * pool->worklist. 6732 * 6733 * CONTEXT: 6734 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6735 */ 6736 void freeze_workqueues_begin(void) 6737 { 6738 struct workqueue_struct *wq; 6739 6740 mutex_lock(&wq_pool_mutex); 6741 6742 WARN_ON_ONCE(workqueue_freezing); 6743 workqueue_freezing = true; 6744 6745 list_for_each_entry(wq, &workqueues, list) { 6746 mutex_lock(&wq->mutex); 6747 wq_adjust_max_active(wq); 6748 mutex_unlock(&wq->mutex); 6749 } 6750 6751 mutex_unlock(&wq_pool_mutex); 6752 } 6753 6754 /** 6755 * freeze_workqueues_busy - are freezable workqueues still busy? 6756 * 6757 * Check whether freezing is complete. This function must be called 6758 * between freeze_workqueues_begin() and thaw_workqueues(). 6759 * 6760 * CONTEXT: 6761 * Grabs and releases wq_pool_mutex. 6762 * 6763 * Return: 6764 * %true if some freezable workqueues are still busy. %false if freezing 6765 * is complete. 6766 */ 6767 bool freeze_workqueues_busy(void) 6768 { 6769 bool busy = false; 6770 struct workqueue_struct *wq; 6771 struct pool_workqueue *pwq; 6772 6773 mutex_lock(&wq_pool_mutex); 6774 6775 WARN_ON_ONCE(!workqueue_freezing); 6776 6777 list_for_each_entry(wq, &workqueues, list) { 6778 if (!(wq->flags & WQ_FREEZABLE)) 6779 continue; 6780 /* 6781 * nr_active is monotonically decreasing. It's safe 6782 * to peek without lock. 6783 */ 6784 rcu_read_lock(); 6785 for_each_pwq(pwq, wq) { 6786 WARN_ON_ONCE(pwq->nr_active < 0); 6787 if (pwq->nr_active) { 6788 busy = true; 6789 rcu_read_unlock(); 6790 goto out_unlock; 6791 } 6792 } 6793 rcu_read_unlock(); 6794 } 6795 out_unlock: 6796 mutex_unlock(&wq_pool_mutex); 6797 return busy; 6798 } 6799 6800 /** 6801 * thaw_workqueues - thaw workqueues 6802 * 6803 * Thaw workqueues. Normal queueing is restored and all collected 6804 * frozen works are transferred to their respective pool worklists. 6805 * 6806 * CONTEXT: 6807 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 6808 */ 6809 void thaw_workqueues(void) 6810 { 6811 struct workqueue_struct *wq; 6812 6813 mutex_lock(&wq_pool_mutex); 6814 6815 if (!workqueue_freezing) 6816 goto out_unlock; 6817 6818 workqueue_freezing = false; 6819 6820 /* restore max_active and repopulate worklist */ 6821 list_for_each_entry(wq, &workqueues, list) { 6822 mutex_lock(&wq->mutex); 6823 wq_adjust_max_active(wq); 6824 mutex_unlock(&wq->mutex); 6825 } 6826 6827 out_unlock: 6828 mutex_unlock(&wq_pool_mutex); 6829 } 6830 #endif /* CONFIG_FREEZER */ 6831 6832 static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask) 6833 { 6834 LIST_HEAD(ctxs); 6835 int ret = 0; 6836 struct workqueue_struct *wq; 6837 struct apply_wqattrs_ctx *ctx, *n; 6838 6839 lockdep_assert_held(&wq_pool_mutex); 6840 6841 list_for_each_entry(wq, &workqueues, list) { 6842 if (!(wq->flags & WQ_UNBOUND) || (wq->flags & __WQ_DESTROYING)) 6843 continue; 6844 6845 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask); 6846 if (IS_ERR(ctx)) { 6847 ret = PTR_ERR(ctx); 6848 break; 6849 } 6850 6851 list_add_tail(&ctx->list, &ctxs); 6852 } 6853 6854 list_for_each_entry_safe(ctx, n, &ctxs, list) { 6855 if (!ret) 6856 apply_wqattrs_commit(ctx); 6857 apply_wqattrs_cleanup(ctx); 6858 } 6859 6860 if (!ret) { 6861 mutex_lock(&wq_pool_attach_mutex); 6862 cpumask_copy(wq_unbound_cpumask, unbound_cpumask); 6863 mutex_unlock(&wq_pool_attach_mutex); 6864 } 6865 return ret; 6866 } 6867 6868 /** 6869 * workqueue_unbound_exclude_cpumask - Exclude given CPUs from unbound cpumask 6870 * @exclude_cpumask: the cpumask to be excluded from wq_unbound_cpumask 6871 * 6872 * This function can be called from cpuset code to provide a set of isolated 6873 * CPUs that should be excluded from wq_unbound_cpumask. The caller must hold 6874 * either cpus_read_lock or cpus_write_lock. 6875 */ 6876 int workqueue_unbound_exclude_cpumask(cpumask_var_t exclude_cpumask) 6877 { 6878 cpumask_var_t cpumask; 6879 int ret = 0; 6880 6881 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 6882 return -ENOMEM; 6883 6884 lockdep_assert_cpus_held(); 6885 mutex_lock(&wq_pool_mutex); 6886 6887 /* Save the current isolated cpumask & export it via sysfs */ 6888 cpumask_copy(wq_isolated_cpumask, exclude_cpumask); 6889 6890 /* 6891 * If the operation fails, it will fall back to 6892 * wq_requested_unbound_cpumask which is initially set to 6893 * (HK_TYPE_WQ ∩ HK_TYPE_DOMAIN) house keeping mask and rewritten 6894 * by any subsequent write to workqueue/cpumask sysfs file. 6895 */ 6896 if (!cpumask_andnot(cpumask, wq_requested_unbound_cpumask, exclude_cpumask)) 6897 cpumask_copy(cpumask, wq_requested_unbound_cpumask); 6898 if (!cpumask_equal(cpumask, wq_unbound_cpumask)) 6899 ret = workqueue_apply_unbound_cpumask(cpumask); 6900 6901 mutex_unlock(&wq_pool_mutex); 6902 free_cpumask_var(cpumask); 6903 return ret; 6904 } 6905 6906 static int parse_affn_scope(const char *val) 6907 { 6908 int i; 6909 6910 for (i = 0; i < ARRAY_SIZE(wq_affn_names); i++) { 6911 if (!strncasecmp(val, wq_affn_names[i], strlen(wq_affn_names[i]))) 6912 return i; 6913 } 6914 return -EINVAL; 6915 } 6916 6917 static int wq_affn_dfl_set(const char *val, const struct kernel_param *kp) 6918 { 6919 struct workqueue_struct *wq; 6920 int affn, cpu; 6921 6922 affn = parse_affn_scope(val); 6923 if (affn < 0) 6924 return affn; 6925 if (affn == WQ_AFFN_DFL) 6926 return -EINVAL; 6927 6928 cpus_read_lock(); 6929 mutex_lock(&wq_pool_mutex); 6930 6931 wq_affn_dfl = affn; 6932 6933 list_for_each_entry(wq, &workqueues, list) { 6934 for_each_online_cpu(cpu) { 6935 wq_update_pod(wq, cpu, cpu, true); 6936 } 6937 } 6938 6939 mutex_unlock(&wq_pool_mutex); 6940 cpus_read_unlock(); 6941 6942 return 0; 6943 } 6944 6945 static int wq_affn_dfl_get(char *buffer, const struct kernel_param *kp) 6946 { 6947 return scnprintf(buffer, PAGE_SIZE, "%s\n", wq_affn_names[wq_affn_dfl]); 6948 } 6949 6950 static const struct kernel_param_ops wq_affn_dfl_ops = { 6951 .set = wq_affn_dfl_set, 6952 .get = wq_affn_dfl_get, 6953 }; 6954 6955 module_param_cb(default_affinity_scope, &wq_affn_dfl_ops, NULL, 0644); 6956 6957 #ifdef CONFIG_SYSFS 6958 /* 6959 * Workqueues with WQ_SYSFS flag set is visible to userland via 6960 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 6961 * following attributes. 6962 * 6963 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 6964 * max_active RW int : maximum number of in-flight work items 6965 * 6966 * Unbound workqueues have the following extra attributes. 6967 * 6968 * nice RW int : nice value of the workers 6969 * cpumask RW mask : bitmask of allowed CPUs for the workers 6970 * affinity_scope RW str : worker CPU affinity scope (cache, numa, none) 6971 * affinity_strict RW bool : worker CPU affinity is strict 6972 */ 6973 struct wq_device { 6974 struct workqueue_struct *wq; 6975 struct device dev; 6976 }; 6977 6978 static struct workqueue_struct *dev_to_wq(struct device *dev) 6979 { 6980 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 6981 6982 return wq_dev->wq; 6983 } 6984 6985 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 6986 char *buf) 6987 { 6988 struct workqueue_struct *wq = dev_to_wq(dev); 6989 6990 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 6991 } 6992 static DEVICE_ATTR_RO(per_cpu); 6993 6994 static ssize_t max_active_show(struct device *dev, 6995 struct device_attribute *attr, char *buf) 6996 { 6997 struct workqueue_struct *wq = dev_to_wq(dev); 6998 6999 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 7000 } 7001 7002 static ssize_t max_active_store(struct device *dev, 7003 struct device_attribute *attr, const char *buf, 7004 size_t count) 7005 { 7006 struct workqueue_struct *wq = dev_to_wq(dev); 7007 int val; 7008 7009 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 7010 return -EINVAL; 7011 7012 workqueue_set_max_active(wq, val); 7013 return count; 7014 } 7015 static DEVICE_ATTR_RW(max_active); 7016 7017 static struct attribute *wq_sysfs_attrs[] = { 7018 &dev_attr_per_cpu.attr, 7019 &dev_attr_max_active.attr, 7020 NULL, 7021 }; 7022 ATTRIBUTE_GROUPS(wq_sysfs); 7023 7024 static void apply_wqattrs_lock(void) 7025 { 7026 /* CPUs should stay stable across pwq creations and installations */ 7027 cpus_read_lock(); 7028 mutex_lock(&wq_pool_mutex); 7029 } 7030 7031 static void apply_wqattrs_unlock(void) 7032 { 7033 mutex_unlock(&wq_pool_mutex); 7034 cpus_read_unlock(); 7035 } 7036 7037 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 7038 char *buf) 7039 { 7040 struct workqueue_struct *wq = dev_to_wq(dev); 7041 int written; 7042 7043 mutex_lock(&wq->mutex); 7044 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 7045 mutex_unlock(&wq->mutex); 7046 7047 return written; 7048 } 7049 7050 /* prepare workqueue_attrs for sysfs store operations */ 7051 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 7052 { 7053 struct workqueue_attrs *attrs; 7054 7055 lockdep_assert_held(&wq_pool_mutex); 7056 7057 attrs = alloc_workqueue_attrs(); 7058 if (!attrs) 7059 return NULL; 7060 7061 copy_workqueue_attrs(attrs, wq->unbound_attrs); 7062 return attrs; 7063 } 7064 7065 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 7066 const char *buf, size_t count) 7067 { 7068 struct workqueue_struct *wq = dev_to_wq(dev); 7069 struct workqueue_attrs *attrs; 7070 int ret = -ENOMEM; 7071 7072 apply_wqattrs_lock(); 7073 7074 attrs = wq_sysfs_prep_attrs(wq); 7075 if (!attrs) 7076 goto out_unlock; 7077 7078 if (sscanf(buf, "%d", &attrs->nice) == 1 && 7079 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 7080 ret = apply_workqueue_attrs_locked(wq, attrs); 7081 else 7082 ret = -EINVAL; 7083 7084 out_unlock: 7085 apply_wqattrs_unlock(); 7086 free_workqueue_attrs(attrs); 7087 return ret ?: count; 7088 } 7089 7090 static ssize_t wq_cpumask_show(struct device *dev, 7091 struct device_attribute *attr, char *buf) 7092 { 7093 struct workqueue_struct *wq = dev_to_wq(dev); 7094 int written; 7095 7096 mutex_lock(&wq->mutex); 7097 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 7098 cpumask_pr_args(wq->unbound_attrs->cpumask)); 7099 mutex_unlock(&wq->mutex); 7100 return written; 7101 } 7102 7103 static ssize_t wq_cpumask_store(struct device *dev, 7104 struct device_attribute *attr, 7105 const char *buf, size_t count) 7106 { 7107 struct workqueue_struct *wq = dev_to_wq(dev); 7108 struct workqueue_attrs *attrs; 7109 int ret = -ENOMEM; 7110 7111 apply_wqattrs_lock(); 7112 7113 attrs = wq_sysfs_prep_attrs(wq); 7114 if (!attrs) 7115 goto out_unlock; 7116 7117 ret = cpumask_parse(buf, attrs->cpumask); 7118 if (!ret) 7119 ret = apply_workqueue_attrs_locked(wq, attrs); 7120 7121 out_unlock: 7122 apply_wqattrs_unlock(); 7123 free_workqueue_attrs(attrs); 7124 return ret ?: count; 7125 } 7126 7127 static ssize_t wq_affn_scope_show(struct device *dev, 7128 struct device_attribute *attr, char *buf) 7129 { 7130 struct workqueue_struct *wq = dev_to_wq(dev); 7131 int written; 7132 7133 mutex_lock(&wq->mutex); 7134 if (wq->unbound_attrs->affn_scope == WQ_AFFN_DFL) 7135 written = scnprintf(buf, PAGE_SIZE, "%s (%s)\n", 7136 wq_affn_names[WQ_AFFN_DFL], 7137 wq_affn_names[wq_affn_dfl]); 7138 else 7139 written = scnprintf(buf, PAGE_SIZE, "%s\n", 7140 wq_affn_names[wq->unbound_attrs->affn_scope]); 7141 mutex_unlock(&wq->mutex); 7142 7143 return written; 7144 } 7145 7146 static ssize_t wq_affn_scope_store(struct device *dev, 7147 struct device_attribute *attr, 7148 const char *buf, size_t count) 7149 { 7150 struct workqueue_struct *wq = dev_to_wq(dev); 7151 struct workqueue_attrs *attrs; 7152 int affn, ret = -ENOMEM; 7153 7154 affn = parse_affn_scope(buf); 7155 if (affn < 0) 7156 return affn; 7157 7158 apply_wqattrs_lock(); 7159 attrs = wq_sysfs_prep_attrs(wq); 7160 if (attrs) { 7161 attrs->affn_scope = affn; 7162 ret = apply_workqueue_attrs_locked(wq, attrs); 7163 } 7164 apply_wqattrs_unlock(); 7165 free_workqueue_attrs(attrs); 7166 return ret ?: count; 7167 } 7168 7169 static ssize_t wq_affinity_strict_show(struct device *dev, 7170 struct device_attribute *attr, char *buf) 7171 { 7172 struct workqueue_struct *wq = dev_to_wq(dev); 7173 7174 return scnprintf(buf, PAGE_SIZE, "%d\n", 7175 wq->unbound_attrs->affn_strict); 7176 } 7177 7178 static ssize_t wq_affinity_strict_store(struct device *dev, 7179 struct device_attribute *attr, 7180 const char *buf, size_t count) 7181 { 7182 struct workqueue_struct *wq = dev_to_wq(dev); 7183 struct workqueue_attrs *attrs; 7184 int v, ret = -ENOMEM; 7185 7186 if (sscanf(buf, "%d", &v) != 1) 7187 return -EINVAL; 7188 7189 apply_wqattrs_lock(); 7190 attrs = wq_sysfs_prep_attrs(wq); 7191 if (attrs) { 7192 attrs->affn_strict = (bool)v; 7193 ret = apply_workqueue_attrs_locked(wq, attrs); 7194 } 7195 apply_wqattrs_unlock(); 7196 free_workqueue_attrs(attrs); 7197 return ret ?: count; 7198 } 7199 7200 static struct device_attribute wq_sysfs_unbound_attrs[] = { 7201 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 7202 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 7203 __ATTR(affinity_scope, 0644, wq_affn_scope_show, wq_affn_scope_store), 7204 __ATTR(affinity_strict, 0644, wq_affinity_strict_show, wq_affinity_strict_store), 7205 __ATTR_NULL, 7206 }; 7207 7208 static const struct bus_type wq_subsys = { 7209 .name = "workqueue", 7210 .dev_groups = wq_sysfs_groups, 7211 }; 7212 7213 /** 7214 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 7215 * @cpumask: the cpumask to set 7216 * 7217 * The low-level workqueues cpumask is a global cpumask that limits 7218 * the affinity of all unbound workqueues. This function check the @cpumask 7219 * and apply it to all unbound workqueues and updates all pwqs of them. 7220 * 7221 * Return: 0 - Success 7222 * -EINVAL - Invalid @cpumask 7223 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 7224 */ 7225 static int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 7226 { 7227 int ret = -EINVAL; 7228 7229 /* 7230 * Not excluding isolated cpus on purpose. 7231 * If the user wishes to include them, we allow that. 7232 */ 7233 cpumask_and(cpumask, cpumask, cpu_possible_mask); 7234 if (!cpumask_empty(cpumask)) { 7235 apply_wqattrs_lock(); 7236 cpumask_copy(wq_requested_unbound_cpumask, cpumask); 7237 if (cpumask_equal(cpumask, wq_unbound_cpumask)) { 7238 ret = 0; 7239 goto out_unlock; 7240 } 7241 7242 ret = workqueue_apply_unbound_cpumask(cpumask); 7243 7244 out_unlock: 7245 apply_wqattrs_unlock(); 7246 } 7247 7248 return ret; 7249 } 7250 7251 static ssize_t __wq_cpumask_show(struct device *dev, 7252 struct device_attribute *attr, char *buf, cpumask_var_t mask) 7253 { 7254 int written; 7255 7256 mutex_lock(&wq_pool_mutex); 7257 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", cpumask_pr_args(mask)); 7258 mutex_unlock(&wq_pool_mutex); 7259 7260 return written; 7261 } 7262 7263 static ssize_t cpumask_requested_show(struct device *dev, 7264 struct device_attribute *attr, char *buf) 7265 { 7266 return __wq_cpumask_show(dev, attr, buf, wq_requested_unbound_cpumask); 7267 } 7268 static DEVICE_ATTR_RO(cpumask_requested); 7269 7270 static ssize_t cpumask_isolated_show(struct device *dev, 7271 struct device_attribute *attr, char *buf) 7272 { 7273 return __wq_cpumask_show(dev, attr, buf, wq_isolated_cpumask); 7274 } 7275 static DEVICE_ATTR_RO(cpumask_isolated); 7276 7277 static ssize_t cpumask_show(struct device *dev, 7278 struct device_attribute *attr, char *buf) 7279 { 7280 return __wq_cpumask_show(dev, attr, buf, wq_unbound_cpumask); 7281 } 7282 7283 static ssize_t cpumask_store(struct device *dev, 7284 struct device_attribute *attr, const char *buf, size_t count) 7285 { 7286 cpumask_var_t cpumask; 7287 int ret; 7288 7289 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 7290 return -ENOMEM; 7291 7292 ret = cpumask_parse(buf, cpumask); 7293 if (!ret) 7294 ret = workqueue_set_unbound_cpumask(cpumask); 7295 7296 free_cpumask_var(cpumask); 7297 return ret ? ret : count; 7298 } 7299 static DEVICE_ATTR_RW(cpumask); 7300 7301 static struct attribute *wq_sysfs_cpumask_attrs[] = { 7302 &dev_attr_cpumask.attr, 7303 &dev_attr_cpumask_requested.attr, 7304 &dev_attr_cpumask_isolated.attr, 7305 NULL, 7306 }; 7307 ATTRIBUTE_GROUPS(wq_sysfs_cpumask); 7308 7309 static int __init wq_sysfs_init(void) 7310 { 7311 return subsys_virtual_register(&wq_subsys, wq_sysfs_cpumask_groups); 7312 } 7313 core_initcall(wq_sysfs_init); 7314 7315 static void wq_device_release(struct device *dev) 7316 { 7317 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 7318 7319 kfree(wq_dev); 7320 } 7321 7322 /** 7323 * workqueue_sysfs_register - make a workqueue visible in sysfs 7324 * @wq: the workqueue to register 7325 * 7326 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 7327 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 7328 * which is the preferred method. 7329 * 7330 * Workqueue user should use this function directly iff it wants to apply 7331 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 7332 * apply_workqueue_attrs() may race against userland updating the 7333 * attributes. 7334 * 7335 * Return: 0 on success, -errno on failure. 7336 */ 7337 int workqueue_sysfs_register(struct workqueue_struct *wq) 7338 { 7339 struct wq_device *wq_dev; 7340 int ret; 7341 7342 /* 7343 * Adjusting max_active breaks ordering guarantee. Disallow exposing 7344 * ordered workqueues. 7345 */ 7346 if (WARN_ON(wq->flags & __WQ_ORDERED)) 7347 return -EINVAL; 7348 7349 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 7350 if (!wq_dev) 7351 return -ENOMEM; 7352 7353 wq_dev->wq = wq; 7354 wq_dev->dev.bus = &wq_subsys; 7355 wq_dev->dev.release = wq_device_release; 7356 dev_set_name(&wq_dev->dev, "%s", wq->name); 7357 7358 /* 7359 * unbound_attrs are created separately. Suppress uevent until 7360 * everything is ready. 7361 */ 7362 dev_set_uevent_suppress(&wq_dev->dev, true); 7363 7364 ret = device_register(&wq_dev->dev); 7365 if (ret) { 7366 put_device(&wq_dev->dev); 7367 wq->wq_dev = NULL; 7368 return ret; 7369 } 7370 7371 if (wq->flags & WQ_UNBOUND) { 7372 struct device_attribute *attr; 7373 7374 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 7375 ret = device_create_file(&wq_dev->dev, attr); 7376 if (ret) { 7377 device_unregister(&wq_dev->dev); 7378 wq->wq_dev = NULL; 7379 return ret; 7380 } 7381 } 7382 } 7383 7384 dev_set_uevent_suppress(&wq_dev->dev, false); 7385 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 7386 return 0; 7387 } 7388 7389 /** 7390 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 7391 * @wq: the workqueue to unregister 7392 * 7393 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 7394 */ 7395 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 7396 { 7397 struct wq_device *wq_dev = wq->wq_dev; 7398 7399 if (!wq->wq_dev) 7400 return; 7401 7402 wq->wq_dev = NULL; 7403 device_unregister(&wq_dev->dev); 7404 } 7405 #else /* CONFIG_SYSFS */ 7406 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 7407 #endif /* CONFIG_SYSFS */ 7408 7409 /* 7410 * Workqueue watchdog. 7411 * 7412 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 7413 * flush dependency, a concurrency managed work item which stays RUNNING 7414 * indefinitely. Workqueue stalls can be very difficult to debug as the 7415 * usual warning mechanisms don't trigger and internal workqueue state is 7416 * largely opaque. 7417 * 7418 * Workqueue watchdog monitors all worker pools periodically and dumps 7419 * state if some pools failed to make forward progress for a while where 7420 * forward progress is defined as the first item on ->worklist changing. 7421 * 7422 * This mechanism is controlled through the kernel parameter 7423 * "workqueue.watchdog_thresh" which can be updated at runtime through the 7424 * corresponding sysfs parameter file. 7425 */ 7426 #ifdef CONFIG_WQ_WATCHDOG 7427 7428 static unsigned long wq_watchdog_thresh = 30; 7429 static struct timer_list wq_watchdog_timer; 7430 7431 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 7432 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 7433 7434 /* 7435 * Show workers that might prevent the processing of pending work items. 7436 * The only candidates are CPU-bound workers in the running state. 7437 * Pending work items should be handled by another idle worker 7438 * in all other situations. 7439 */ 7440 static void show_cpu_pool_hog(struct worker_pool *pool) 7441 { 7442 struct worker *worker; 7443 unsigned long irq_flags; 7444 int bkt; 7445 7446 raw_spin_lock_irqsave(&pool->lock, irq_flags); 7447 7448 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 7449 if (task_is_running(worker->task)) { 7450 /* 7451 * Defer printing to avoid deadlocks in console 7452 * drivers that queue work while holding locks 7453 * also taken in their write paths. 7454 */ 7455 printk_deferred_enter(); 7456 7457 pr_info("pool %d:\n", pool->id); 7458 sched_show_task(worker->task); 7459 7460 printk_deferred_exit(); 7461 } 7462 } 7463 7464 raw_spin_unlock_irqrestore(&pool->lock, irq_flags); 7465 } 7466 7467 static void show_cpu_pools_hogs(void) 7468 { 7469 struct worker_pool *pool; 7470 int pi; 7471 7472 pr_info("Showing backtraces of running workers in stalled CPU-bound worker pools:\n"); 7473 7474 rcu_read_lock(); 7475 7476 for_each_pool(pool, pi) { 7477 if (pool->cpu_stall) 7478 show_cpu_pool_hog(pool); 7479 7480 } 7481 7482 rcu_read_unlock(); 7483 } 7484 7485 static void wq_watchdog_reset_touched(void) 7486 { 7487 int cpu; 7488 7489 wq_watchdog_touched = jiffies; 7490 for_each_possible_cpu(cpu) 7491 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 7492 } 7493 7494 static void wq_watchdog_timer_fn(struct timer_list *unused) 7495 { 7496 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 7497 bool lockup_detected = false; 7498 bool cpu_pool_stall = false; 7499 unsigned long now = jiffies; 7500 struct worker_pool *pool; 7501 int pi; 7502 7503 if (!thresh) 7504 return; 7505 7506 rcu_read_lock(); 7507 7508 for_each_pool(pool, pi) { 7509 unsigned long pool_ts, touched, ts; 7510 7511 pool->cpu_stall = false; 7512 if (list_empty(&pool->worklist)) 7513 continue; 7514 7515 /* 7516 * If a virtual machine is stopped by the host it can look to 7517 * the watchdog like a stall. 7518 */ 7519 kvm_check_and_clear_guest_paused(); 7520 7521 /* get the latest of pool and touched timestamps */ 7522 if (pool->cpu >= 0) 7523 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu)); 7524 else 7525 touched = READ_ONCE(wq_watchdog_touched); 7526 pool_ts = READ_ONCE(pool->watchdog_ts); 7527 7528 if (time_after(pool_ts, touched)) 7529 ts = pool_ts; 7530 else 7531 ts = touched; 7532 7533 /* did we stall? */ 7534 if (time_after(now, ts + thresh)) { 7535 lockup_detected = true; 7536 if (pool->cpu >= 0 && !(pool->flags & POOL_BH)) { 7537 pool->cpu_stall = true; 7538 cpu_pool_stall = true; 7539 } 7540 pr_emerg("BUG: workqueue lockup - pool"); 7541 pr_cont_pool_info(pool); 7542 pr_cont(" stuck for %us!\n", 7543 jiffies_to_msecs(now - pool_ts) / 1000); 7544 } 7545 7546 7547 } 7548 7549 rcu_read_unlock(); 7550 7551 if (lockup_detected) 7552 show_all_workqueues(); 7553 7554 if (cpu_pool_stall) 7555 show_cpu_pools_hogs(); 7556 7557 wq_watchdog_reset_touched(); 7558 mod_timer(&wq_watchdog_timer, jiffies + thresh); 7559 } 7560 7561 notrace void wq_watchdog_touch(int cpu) 7562 { 7563 if (cpu >= 0) 7564 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 7565 7566 wq_watchdog_touched = jiffies; 7567 } 7568 7569 static void wq_watchdog_set_thresh(unsigned long thresh) 7570 { 7571 wq_watchdog_thresh = 0; 7572 del_timer_sync(&wq_watchdog_timer); 7573 7574 if (thresh) { 7575 wq_watchdog_thresh = thresh; 7576 wq_watchdog_reset_touched(); 7577 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 7578 } 7579 } 7580 7581 static int wq_watchdog_param_set_thresh(const char *val, 7582 const struct kernel_param *kp) 7583 { 7584 unsigned long thresh; 7585 int ret; 7586 7587 ret = kstrtoul(val, 0, &thresh); 7588 if (ret) 7589 return ret; 7590 7591 if (system_wq) 7592 wq_watchdog_set_thresh(thresh); 7593 else 7594 wq_watchdog_thresh = thresh; 7595 7596 return 0; 7597 } 7598 7599 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 7600 .set = wq_watchdog_param_set_thresh, 7601 .get = param_get_ulong, 7602 }; 7603 7604 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 7605 0644); 7606 7607 static void wq_watchdog_init(void) 7608 { 7609 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 7610 wq_watchdog_set_thresh(wq_watchdog_thresh); 7611 } 7612 7613 #else /* CONFIG_WQ_WATCHDOG */ 7614 7615 static inline void wq_watchdog_init(void) { } 7616 7617 #endif /* CONFIG_WQ_WATCHDOG */ 7618 7619 static void bh_pool_kick_normal(struct irq_work *irq_work) 7620 { 7621 raise_softirq_irqoff(TASKLET_SOFTIRQ); 7622 } 7623 7624 static void bh_pool_kick_highpri(struct irq_work *irq_work) 7625 { 7626 raise_softirq_irqoff(HI_SOFTIRQ); 7627 } 7628 7629 static void __init restrict_unbound_cpumask(const char *name, const struct cpumask *mask) 7630 { 7631 if (!cpumask_intersects(wq_unbound_cpumask, mask)) { 7632 pr_warn("workqueue: Restricting unbound_cpumask (%*pb) with %s (%*pb) leaves no CPU, ignoring\n", 7633 cpumask_pr_args(wq_unbound_cpumask), name, cpumask_pr_args(mask)); 7634 return; 7635 } 7636 7637 cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, mask); 7638 } 7639 7640 static void __init init_cpu_worker_pool(struct worker_pool *pool, int cpu, int nice) 7641 { 7642 BUG_ON(init_worker_pool(pool)); 7643 pool->cpu = cpu; 7644 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 7645 cpumask_copy(pool->attrs->__pod_cpumask, cpumask_of(cpu)); 7646 pool->attrs->nice = nice; 7647 pool->attrs->affn_strict = true; 7648 pool->node = cpu_to_node(cpu); 7649 7650 /* alloc pool ID */ 7651 mutex_lock(&wq_pool_mutex); 7652 BUG_ON(worker_pool_assign_id(pool)); 7653 mutex_unlock(&wq_pool_mutex); 7654 } 7655 7656 /** 7657 * workqueue_init_early - early init for workqueue subsystem 7658 * 7659 * This is the first step of three-staged workqueue subsystem initialization and 7660 * invoked as soon as the bare basics - memory allocation, cpumasks and idr are 7661 * up. It sets up all the data structures and system workqueues and allows early 7662 * boot code to create workqueues and queue/cancel work items. Actual work item 7663 * execution starts only after kthreads can be created and scheduled right 7664 * before early initcalls. 7665 */ 7666 void __init workqueue_init_early(void) 7667 { 7668 struct wq_pod_type *pt = &wq_pod_types[WQ_AFFN_SYSTEM]; 7669 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 7670 void (*irq_work_fns[2])(struct irq_work *) = { bh_pool_kick_normal, 7671 bh_pool_kick_highpri }; 7672 int i, cpu; 7673 7674 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 7675 7676 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 7677 BUG_ON(!alloc_cpumask_var(&wq_requested_unbound_cpumask, GFP_KERNEL)); 7678 BUG_ON(!zalloc_cpumask_var(&wq_isolated_cpumask, GFP_KERNEL)); 7679 7680 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 7681 restrict_unbound_cpumask("HK_TYPE_WQ", housekeeping_cpumask(HK_TYPE_WQ)); 7682 restrict_unbound_cpumask("HK_TYPE_DOMAIN", housekeeping_cpumask(HK_TYPE_DOMAIN)); 7683 if (!cpumask_empty(&wq_cmdline_cpumask)) 7684 restrict_unbound_cpumask("workqueue.unbound_cpus", &wq_cmdline_cpumask); 7685 7686 cpumask_copy(wq_requested_unbound_cpumask, wq_unbound_cpumask); 7687 7688 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 7689 7690 wq_update_pod_attrs_buf = alloc_workqueue_attrs(); 7691 BUG_ON(!wq_update_pod_attrs_buf); 7692 7693 /* 7694 * If nohz_full is enabled, set power efficient workqueue as unbound. 7695 * This allows workqueue items to be moved to HK CPUs. 7696 */ 7697 if (housekeeping_enabled(HK_TYPE_TICK)) 7698 wq_power_efficient = true; 7699 7700 /* initialize WQ_AFFN_SYSTEM pods */ 7701 pt->pod_cpus = kcalloc(1, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7702 pt->pod_node = kcalloc(1, sizeof(pt->pod_node[0]), GFP_KERNEL); 7703 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7704 BUG_ON(!pt->pod_cpus || !pt->pod_node || !pt->cpu_pod); 7705 7706 BUG_ON(!zalloc_cpumask_var_node(&pt->pod_cpus[0], GFP_KERNEL, NUMA_NO_NODE)); 7707 7708 pt->nr_pods = 1; 7709 cpumask_copy(pt->pod_cpus[0], cpu_possible_mask); 7710 pt->pod_node[0] = NUMA_NO_NODE; 7711 pt->cpu_pod[0] = 0; 7712 7713 /* initialize BH and CPU pools */ 7714 for_each_possible_cpu(cpu) { 7715 struct worker_pool *pool; 7716 7717 i = 0; 7718 for_each_bh_worker_pool(pool, cpu) { 7719 init_cpu_worker_pool(pool, cpu, std_nice[i]); 7720 pool->flags |= POOL_BH; 7721 init_irq_work(bh_pool_irq_work(pool), irq_work_fns[i]); 7722 i++; 7723 } 7724 7725 i = 0; 7726 for_each_cpu_worker_pool(pool, cpu) 7727 init_cpu_worker_pool(pool, cpu, std_nice[i++]); 7728 } 7729 7730 /* create default unbound and ordered wq attrs */ 7731 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 7732 struct workqueue_attrs *attrs; 7733 7734 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7735 attrs->nice = std_nice[i]; 7736 unbound_std_wq_attrs[i] = attrs; 7737 7738 /* 7739 * An ordered wq should have only one pwq as ordering is 7740 * guaranteed by max_active which is enforced by pwqs. 7741 */ 7742 BUG_ON(!(attrs = alloc_workqueue_attrs())); 7743 attrs->nice = std_nice[i]; 7744 attrs->ordered = true; 7745 ordered_wq_attrs[i] = attrs; 7746 } 7747 7748 system_wq = alloc_workqueue("events", 0, 0); 7749 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 7750 system_long_wq = alloc_workqueue("events_long", 0, 0); 7751 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 7752 WQ_MAX_ACTIVE); 7753 system_freezable_wq = alloc_workqueue("events_freezable", 7754 WQ_FREEZABLE, 0); 7755 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 7756 WQ_POWER_EFFICIENT, 0); 7757 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_pwr_efficient", 7758 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 7759 0); 7760 system_bh_wq = alloc_workqueue("events_bh", WQ_BH, 0); 7761 system_bh_highpri_wq = alloc_workqueue("events_bh_highpri", 7762 WQ_BH | WQ_HIGHPRI, 0); 7763 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 7764 !system_unbound_wq || !system_freezable_wq || 7765 !system_power_efficient_wq || 7766 !system_freezable_power_efficient_wq || 7767 !system_bh_wq || !system_bh_highpri_wq); 7768 } 7769 7770 static void __init wq_cpu_intensive_thresh_init(void) 7771 { 7772 unsigned long thresh; 7773 unsigned long bogo; 7774 7775 pwq_release_worker = kthread_create_worker(0, "pool_workqueue_release"); 7776 BUG_ON(IS_ERR(pwq_release_worker)); 7777 7778 /* if the user set it to a specific value, keep it */ 7779 if (wq_cpu_intensive_thresh_us != ULONG_MAX) 7780 return; 7781 7782 /* 7783 * The default of 10ms is derived from the fact that most modern (as of 7784 * 2023) processors can do a lot in 10ms and that it's just below what 7785 * most consider human-perceivable. However, the kernel also runs on a 7786 * lot slower CPUs including microcontrollers where the threshold is way 7787 * too low. 7788 * 7789 * Let's scale up the threshold upto 1 second if BogoMips is below 4000. 7790 * This is by no means accurate but it doesn't have to be. The mechanism 7791 * is still useful even when the threshold is fully scaled up. Also, as 7792 * the reports would usually be applicable to everyone, some machines 7793 * operating on longer thresholds won't significantly diminish their 7794 * usefulness. 7795 */ 7796 thresh = 10 * USEC_PER_MSEC; 7797 7798 /* see init/calibrate.c for lpj -> BogoMIPS calculation */ 7799 bogo = max_t(unsigned long, loops_per_jiffy / 500000 * HZ, 1); 7800 if (bogo < 4000) 7801 thresh = min_t(unsigned long, thresh * 4000 / bogo, USEC_PER_SEC); 7802 7803 pr_debug("wq_cpu_intensive_thresh: lpj=%lu BogoMIPS=%lu thresh_us=%lu\n", 7804 loops_per_jiffy, bogo, thresh); 7805 7806 wq_cpu_intensive_thresh_us = thresh; 7807 } 7808 7809 /** 7810 * workqueue_init - bring workqueue subsystem fully online 7811 * 7812 * This is the second step of three-staged workqueue subsystem initialization 7813 * and invoked as soon as kthreads can be created and scheduled. Workqueues have 7814 * been created and work items queued on them, but there are no kworkers 7815 * executing the work items yet. Populate the worker pools with the initial 7816 * workers and enable future kworker creations. 7817 */ 7818 void __init workqueue_init(void) 7819 { 7820 struct workqueue_struct *wq; 7821 struct worker_pool *pool; 7822 int cpu, bkt; 7823 7824 wq_cpu_intensive_thresh_init(); 7825 7826 mutex_lock(&wq_pool_mutex); 7827 7828 /* 7829 * Per-cpu pools created earlier could be missing node hint. Fix them 7830 * up. Also, create a rescuer for workqueues that requested it. 7831 */ 7832 for_each_possible_cpu(cpu) { 7833 for_each_bh_worker_pool(pool, cpu) 7834 pool->node = cpu_to_node(cpu); 7835 for_each_cpu_worker_pool(pool, cpu) 7836 pool->node = cpu_to_node(cpu); 7837 } 7838 7839 list_for_each_entry(wq, &workqueues, list) { 7840 WARN(init_rescuer(wq), 7841 "workqueue: failed to create early rescuer for %s", 7842 wq->name); 7843 } 7844 7845 mutex_unlock(&wq_pool_mutex); 7846 7847 /* 7848 * Create the initial workers. A BH pool has one pseudo worker that 7849 * represents the shared BH execution context and thus doesn't get 7850 * affected by hotplug events. Create the BH pseudo workers for all 7851 * possible CPUs here. 7852 */ 7853 for_each_possible_cpu(cpu) 7854 for_each_bh_worker_pool(pool, cpu) 7855 BUG_ON(!create_worker(pool)); 7856 7857 for_each_online_cpu(cpu) { 7858 for_each_cpu_worker_pool(pool, cpu) { 7859 pool->flags &= ~POOL_DISASSOCIATED; 7860 BUG_ON(!create_worker(pool)); 7861 } 7862 } 7863 7864 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 7865 BUG_ON(!create_worker(pool)); 7866 7867 wq_online = true; 7868 wq_watchdog_init(); 7869 } 7870 7871 /* 7872 * Initialize @pt by first initializing @pt->cpu_pod[] with pod IDs according to 7873 * @cpu_shares_pod(). Each subset of CPUs that share a pod is assigned a unique 7874 * and consecutive pod ID. The rest of @pt is initialized accordingly. 7875 */ 7876 static void __init init_pod_type(struct wq_pod_type *pt, 7877 bool (*cpus_share_pod)(int, int)) 7878 { 7879 int cur, pre, cpu, pod; 7880 7881 pt->nr_pods = 0; 7882 7883 /* init @pt->cpu_pod[] according to @cpus_share_pod() */ 7884 pt->cpu_pod = kcalloc(nr_cpu_ids, sizeof(pt->cpu_pod[0]), GFP_KERNEL); 7885 BUG_ON(!pt->cpu_pod); 7886 7887 for_each_possible_cpu(cur) { 7888 for_each_possible_cpu(pre) { 7889 if (pre >= cur) { 7890 pt->cpu_pod[cur] = pt->nr_pods++; 7891 break; 7892 } 7893 if (cpus_share_pod(cur, pre)) { 7894 pt->cpu_pod[cur] = pt->cpu_pod[pre]; 7895 break; 7896 } 7897 } 7898 } 7899 7900 /* init the rest to match @pt->cpu_pod[] */ 7901 pt->pod_cpus = kcalloc(pt->nr_pods, sizeof(pt->pod_cpus[0]), GFP_KERNEL); 7902 pt->pod_node = kcalloc(pt->nr_pods, sizeof(pt->pod_node[0]), GFP_KERNEL); 7903 BUG_ON(!pt->pod_cpus || !pt->pod_node); 7904 7905 for (pod = 0; pod < pt->nr_pods; pod++) 7906 BUG_ON(!zalloc_cpumask_var(&pt->pod_cpus[pod], GFP_KERNEL)); 7907 7908 for_each_possible_cpu(cpu) { 7909 cpumask_set_cpu(cpu, pt->pod_cpus[pt->cpu_pod[cpu]]); 7910 pt->pod_node[pt->cpu_pod[cpu]] = cpu_to_node(cpu); 7911 } 7912 } 7913 7914 static bool __init cpus_dont_share(int cpu0, int cpu1) 7915 { 7916 return false; 7917 } 7918 7919 static bool __init cpus_share_smt(int cpu0, int cpu1) 7920 { 7921 #ifdef CONFIG_SCHED_SMT 7922 return cpumask_test_cpu(cpu0, cpu_smt_mask(cpu1)); 7923 #else 7924 return false; 7925 #endif 7926 } 7927 7928 static bool __init cpus_share_numa(int cpu0, int cpu1) 7929 { 7930 return cpu_to_node(cpu0) == cpu_to_node(cpu1); 7931 } 7932 7933 /** 7934 * workqueue_init_topology - initialize CPU pods for unbound workqueues 7935 * 7936 * This is the third step of three-staged workqueue subsystem initialization and 7937 * invoked after SMP and topology information are fully initialized. It 7938 * initializes the unbound CPU pods accordingly. 7939 */ 7940 void __init workqueue_init_topology(void) 7941 { 7942 struct workqueue_struct *wq; 7943 int cpu; 7944 7945 init_pod_type(&wq_pod_types[WQ_AFFN_CPU], cpus_dont_share); 7946 init_pod_type(&wq_pod_types[WQ_AFFN_SMT], cpus_share_smt); 7947 init_pod_type(&wq_pod_types[WQ_AFFN_CACHE], cpus_share_cache); 7948 init_pod_type(&wq_pod_types[WQ_AFFN_NUMA], cpus_share_numa); 7949 7950 wq_topo_initialized = true; 7951 7952 mutex_lock(&wq_pool_mutex); 7953 7954 /* 7955 * Workqueues allocated earlier would have all CPUs sharing the default 7956 * worker pool. Explicitly call wq_update_pod() on all workqueue and CPU 7957 * combinations to apply per-pod sharing. 7958 */ 7959 list_for_each_entry(wq, &workqueues, list) { 7960 for_each_online_cpu(cpu) 7961 wq_update_pod(wq, cpu, cpu, true); 7962 if (wq->flags & WQ_UNBOUND) { 7963 mutex_lock(&wq->mutex); 7964 wq_update_node_max_active(wq, -1); 7965 mutex_unlock(&wq->mutex); 7966 } 7967 } 7968 7969 mutex_unlock(&wq_pool_mutex); 7970 } 7971 7972 void __warn_flushing_systemwide_wq(void) 7973 { 7974 pr_warn("WARNING: Flushing system-wide workqueues will be prohibited in near future.\n"); 7975 dump_stack(); 7976 } 7977 EXPORT_SYMBOL(__warn_flushing_systemwide_wq); 7978 7979 static int __init workqueue_unbound_cpus_setup(char *str) 7980 { 7981 if (cpulist_parse(str, &wq_cmdline_cpumask) < 0) { 7982 cpumask_clear(&wq_cmdline_cpumask); 7983 pr_warn("workqueue.unbound_cpus: incorrect CPU range, using default\n"); 7984 } 7985 7986 return 1; 7987 } 7988 __setup("workqueue.unbound_cpus=", workqueue_unbound_cpus_setup); 7989