xref: /linux/kernel/workqueue.c (revision 3ce095c16263630dde46d6051854073edaacf3d7)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/workqueue.txt for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * attach_mutex to avoid changing binding state while
69 	 * worker_attach_to_pool() is in progress.
70 	 */
71 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72 
73 	/* worker flags */
74 	WORKER_DIE		= 1 << 1,	/* die die die */
75 	WORKER_IDLE		= 1 << 2,	/* is idle */
76 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80 
81 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
82 				  WORKER_UNBOUND | WORKER_REBOUND,
83 
84 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85 
86 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
87 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88 
89 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
90 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
91 
92 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
93 						/* call for help after 10ms
94 						   (min two ticks) */
95 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
96 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
97 
98 	/*
99 	 * Rescue workers are used only on emergencies and shared by
100 	 * all cpus.  Give MIN_NICE.
101 	 */
102 	RESCUER_NICE_LEVEL	= MIN_NICE,
103 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 
105 	WQ_NAME_LEN		= 24,
106 };
107 
108 /*
109  * Structure fields follow one of the following exclusion rules.
110  *
111  * I: Modifiable by initialization/destruction paths and read-only for
112  *    everyone else.
113  *
114  * P: Preemption protected.  Disabling preemption is enough and should
115  *    only be modified and accessed from the local cpu.
116  *
117  * L: pool->lock protected.  Access with pool->lock held.
118  *
119  * X: During normal operation, modification requires pool->lock and should
120  *    be done only from local cpu.  Either disabling preemption on local
121  *    cpu or grabbing pool->lock is enough for read access.  If
122  *    POOL_DISASSOCIATED is set, it's identical to L.
123  *
124  * A: pool->attach_mutex protected.
125  *
126  * PL: wq_pool_mutex protected.
127  *
128  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129  *
130  * WQ: wq->mutex protected.
131  *
132  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
133  *
134  * MD: wq_mayday_lock protected.
135  */
136 
137 /* struct worker is defined in workqueue_internal.h */
138 
139 struct worker_pool {
140 	spinlock_t		lock;		/* the pool lock */
141 	int			cpu;		/* I: the associated cpu */
142 	int			node;		/* I: the associated node ID */
143 	int			id;		/* I: pool ID */
144 	unsigned int		flags;		/* X: flags */
145 
146 	struct list_head	worklist;	/* L: list of pending works */
147 	int			nr_workers;	/* L: total number of workers */
148 
149 	/* nr_idle includes the ones off idle_list for rebinding */
150 	int			nr_idle;	/* L: currently idle ones */
151 
152 	struct list_head	idle_list;	/* X: list of idle workers */
153 	struct timer_list	idle_timer;	/* L: worker idle timeout */
154 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
155 
156 	/* a workers is either on busy_hash or idle_list, or the manager */
157 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
158 						/* L: hash of busy workers */
159 
160 	/* see manage_workers() for details on the two manager mutexes */
161 	struct mutex		manager_arb;	/* manager arbitration */
162 	struct worker		*manager;	/* L: purely informational */
163 	struct mutex		attach_mutex;	/* attach/detach exclusion */
164 	struct list_head	workers;	/* A: attached workers */
165 	struct completion	*detach_completion; /* all workers detached */
166 
167 	struct ida		worker_ida;	/* worker IDs for task name */
168 
169 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
170 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
171 	int			refcnt;		/* PL: refcnt for unbound pools */
172 
173 	/*
174 	 * The current concurrency level.  As it's likely to be accessed
175 	 * from other CPUs during try_to_wake_up(), put it in a separate
176 	 * cacheline.
177 	 */
178 	atomic_t		nr_running ____cacheline_aligned_in_smp;
179 
180 	/*
181 	 * Destruction of pool is sched-RCU protected to allow dereferences
182 	 * from get_work_pool().
183 	 */
184 	struct rcu_head		rcu;
185 } ____cacheline_aligned_in_smp;
186 
187 /*
188  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
189  * of work_struct->data are used for flags and the remaining high bits
190  * point to the pwq; thus, pwqs need to be aligned at two's power of the
191  * number of flag bits.
192  */
193 struct pool_workqueue {
194 	struct worker_pool	*pool;		/* I: the associated pool */
195 	struct workqueue_struct *wq;		/* I: the owning workqueue */
196 	int			work_color;	/* L: current color */
197 	int			flush_color;	/* L: flushing color */
198 	int			refcnt;		/* L: reference count */
199 	int			nr_in_flight[WORK_NR_COLORS];
200 						/* L: nr of in_flight works */
201 	int			nr_active;	/* L: nr of active works */
202 	int			max_active;	/* L: max active works */
203 	struct list_head	delayed_works;	/* L: delayed works */
204 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
205 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
206 
207 	/*
208 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
209 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
210 	 * itself is also sched-RCU protected so that the first pwq can be
211 	 * determined without grabbing wq->mutex.
212 	 */
213 	struct work_struct	unbound_release_work;
214 	struct rcu_head		rcu;
215 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
216 
217 /*
218  * Structure used to wait for workqueue flush.
219  */
220 struct wq_flusher {
221 	struct list_head	list;		/* WQ: list of flushers */
222 	int			flush_color;	/* WQ: flush color waiting for */
223 	struct completion	done;		/* flush completion */
224 };
225 
226 struct wq_device;
227 
228 /*
229  * The externally visible workqueue.  It relays the issued work items to
230  * the appropriate worker_pool through its pool_workqueues.
231  */
232 struct workqueue_struct {
233 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
234 	struct list_head	list;		/* PR: list of all workqueues */
235 
236 	struct mutex		mutex;		/* protects this wq */
237 	int			work_color;	/* WQ: current work color */
238 	int			flush_color;	/* WQ: current flush color */
239 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
240 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
241 	struct list_head	flusher_queue;	/* WQ: flush waiters */
242 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
243 
244 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
245 	struct worker		*rescuer;	/* I: rescue worker */
246 
247 	int			nr_drainers;	/* WQ: drain in progress */
248 	int			saved_max_active; /* WQ: saved pwq max_active */
249 
250 	struct workqueue_attrs	*unbound_attrs;	/* WQ: only for unbound wqs */
251 	struct pool_workqueue	*dfl_pwq;	/* WQ: only for unbound wqs */
252 
253 #ifdef CONFIG_SYSFS
254 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
255 #endif
256 #ifdef CONFIG_LOCKDEP
257 	struct lockdep_map	lockdep_map;
258 #endif
259 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
260 
261 	/*
262 	 * Destruction of workqueue_struct is sched-RCU protected to allow
263 	 * walking the workqueues list without grabbing wq_pool_mutex.
264 	 * This is used to dump all workqueues from sysrq.
265 	 */
266 	struct rcu_head		rcu;
267 
268 	/* hot fields used during command issue, aligned to cacheline */
269 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
270 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
271 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
272 };
273 
274 static struct kmem_cache *pwq_cache;
275 
276 static cpumask_var_t *wq_numa_possible_cpumask;
277 					/* possible CPUs of each node */
278 
279 static bool wq_disable_numa;
280 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
281 
282 /* see the comment above the definition of WQ_POWER_EFFICIENT */
283 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
284 static bool wq_power_efficient = true;
285 #else
286 static bool wq_power_efficient;
287 #endif
288 
289 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
290 
291 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
292 
293 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
294 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
295 
296 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
297 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
298 
299 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
300 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
301 
302 /* the per-cpu worker pools */
303 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
304 				     cpu_worker_pools);
305 
306 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
307 
308 /* PL: hash of all unbound pools keyed by pool->attrs */
309 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
310 
311 /* I: attributes used when instantiating standard unbound pools on demand */
312 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
313 
314 /* I: attributes used when instantiating ordered pools on demand */
315 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
316 
317 struct workqueue_struct *system_wq __read_mostly;
318 EXPORT_SYMBOL(system_wq);
319 struct workqueue_struct *system_highpri_wq __read_mostly;
320 EXPORT_SYMBOL_GPL(system_highpri_wq);
321 struct workqueue_struct *system_long_wq __read_mostly;
322 EXPORT_SYMBOL_GPL(system_long_wq);
323 struct workqueue_struct *system_unbound_wq __read_mostly;
324 EXPORT_SYMBOL_GPL(system_unbound_wq);
325 struct workqueue_struct *system_freezable_wq __read_mostly;
326 EXPORT_SYMBOL_GPL(system_freezable_wq);
327 struct workqueue_struct *system_power_efficient_wq __read_mostly;
328 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
329 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
330 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
331 
332 static int worker_thread(void *__worker);
333 static void copy_workqueue_attrs(struct workqueue_attrs *to,
334 				 const struct workqueue_attrs *from);
335 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
336 
337 #define CREATE_TRACE_POINTS
338 #include <trace/events/workqueue.h>
339 
340 #define assert_rcu_or_pool_mutex()					\
341 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
342 			   lockdep_is_held(&wq_pool_mutex),		\
343 			   "sched RCU or wq_pool_mutex should be held")
344 
345 #define assert_rcu_or_wq_mutex(wq)					\
346 	rcu_lockdep_assert(rcu_read_lock_sched_held() ||		\
347 			   lockdep_is_held(&wq->mutex),			\
348 			   "sched RCU or wq->mutex should be held")
349 
350 #define for_each_cpu_worker_pool(pool, cpu)				\
351 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
352 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
353 	     (pool)++)
354 
355 /**
356  * for_each_pool - iterate through all worker_pools in the system
357  * @pool: iteration cursor
358  * @pi: integer used for iteration
359  *
360  * This must be called either with wq_pool_mutex held or sched RCU read
361  * locked.  If the pool needs to be used beyond the locking in effect, the
362  * caller is responsible for guaranteeing that the pool stays online.
363  *
364  * The if/else clause exists only for the lockdep assertion and can be
365  * ignored.
366  */
367 #define for_each_pool(pool, pi)						\
368 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
369 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
370 		else
371 
372 /**
373  * for_each_pool_worker - iterate through all workers of a worker_pool
374  * @worker: iteration cursor
375  * @pool: worker_pool to iterate workers of
376  *
377  * This must be called with @pool->attach_mutex.
378  *
379  * The if/else clause exists only for the lockdep assertion and can be
380  * ignored.
381  */
382 #define for_each_pool_worker(worker, pool)				\
383 	list_for_each_entry((worker), &(pool)->workers, node)		\
384 		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
385 		else
386 
387 /**
388  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
389  * @pwq: iteration cursor
390  * @wq: the target workqueue
391  *
392  * This must be called either with wq->mutex held or sched RCU read locked.
393  * If the pwq needs to be used beyond the locking in effect, the caller is
394  * responsible for guaranteeing that the pwq stays online.
395  *
396  * The if/else clause exists only for the lockdep assertion and can be
397  * ignored.
398  */
399 #define for_each_pwq(pwq, wq)						\
400 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
401 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
402 		else
403 
404 #ifdef CONFIG_DEBUG_OBJECTS_WORK
405 
406 static struct debug_obj_descr work_debug_descr;
407 
408 static void *work_debug_hint(void *addr)
409 {
410 	return ((struct work_struct *) addr)->func;
411 }
412 
413 /*
414  * fixup_init is called when:
415  * - an active object is initialized
416  */
417 static int work_fixup_init(void *addr, enum debug_obj_state state)
418 {
419 	struct work_struct *work = addr;
420 
421 	switch (state) {
422 	case ODEBUG_STATE_ACTIVE:
423 		cancel_work_sync(work);
424 		debug_object_init(work, &work_debug_descr);
425 		return 1;
426 	default:
427 		return 0;
428 	}
429 }
430 
431 /*
432  * fixup_activate is called when:
433  * - an active object is activated
434  * - an unknown object is activated (might be a statically initialized object)
435  */
436 static int work_fixup_activate(void *addr, enum debug_obj_state state)
437 {
438 	struct work_struct *work = addr;
439 
440 	switch (state) {
441 
442 	case ODEBUG_STATE_NOTAVAILABLE:
443 		/*
444 		 * This is not really a fixup. The work struct was
445 		 * statically initialized. We just make sure that it
446 		 * is tracked in the object tracker.
447 		 */
448 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
449 			debug_object_init(work, &work_debug_descr);
450 			debug_object_activate(work, &work_debug_descr);
451 			return 0;
452 		}
453 		WARN_ON_ONCE(1);
454 		return 0;
455 
456 	case ODEBUG_STATE_ACTIVE:
457 		WARN_ON(1);
458 
459 	default:
460 		return 0;
461 	}
462 }
463 
464 /*
465  * fixup_free is called when:
466  * - an active object is freed
467  */
468 static int work_fixup_free(void *addr, enum debug_obj_state state)
469 {
470 	struct work_struct *work = addr;
471 
472 	switch (state) {
473 	case ODEBUG_STATE_ACTIVE:
474 		cancel_work_sync(work);
475 		debug_object_free(work, &work_debug_descr);
476 		return 1;
477 	default:
478 		return 0;
479 	}
480 }
481 
482 static struct debug_obj_descr work_debug_descr = {
483 	.name		= "work_struct",
484 	.debug_hint	= work_debug_hint,
485 	.fixup_init	= work_fixup_init,
486 	.fixup_activate	= work_fixup_activate,
487 	.fixup_free	= work_fixup_free,
488 };
489 
490 static inline void debug_work_activate(struct work_struct *work)
491 {
492 	debug_object_activate(work, &work_debug_descr);
493 }
494 
495 static inline void debug_work_deactivate(struct work_struct *work)
496 {
497 	debug_object_deactivate(work, &work_debug_descr);
498 }
499 
500 void __init_work(struct work_struct *work, int onstack)
501 {
502 	if (onstack)
503 		debug_object_init_on_stack(work, &work_debug_descr);
504 	else
505 		debug_object_init(work, &work_debug_descr);
506 }
507 EXPORT_SYMBOL_GPL(__init_work);
508 
509 void destroy_work_on_stack(struct work_struct *work)
510 {
511 	debug_object_free(work, &work_debug_descr);
512 }
513 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
514 
515 void destroy_delayed_work_on_stack(struct delayed_work *work)
516 {
517 	destroy_timer_on_stack(&work->timer);
518 	debug_object_free(&work->work, &work_debug_descr);
519 }
520 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
521 
522 #else
523 static inline void debug_work_activate(struct work_struct *work) { }
524 static inline void debug_work_deactivate(struct work_struct *work) { }
525 #endif
526 
527 /**
528  * worker_pool_assign_id - allocate ID and assing it to @pool
529  * @pool: the pool pointer of interest
530  *
531  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
532  * successfully, -errno on failure.
533  */
534 static int worker_pool_assign_id(struct worker_pool *pool)
535 {
536 	int ret;
537 
538 	lockdep_assert_held(&wq_pool_mutex);
539 
540 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
541 			GFP_KERNEL);
542 	if (ret >= 0) {
543 		pool->id = ret;
544 		return 0;
545 	}
546 	return ret;
547 }
548 
549 /**
550  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
551  * @wq: the target workqueue
552  * @node: the node ID
553  *
554  * This must be called either with pwq_lock held or sched RCU read locked.
555  * If the pwq needs to be used beyond the locking in effect, the caller is
556  * responsible for guaranteeing that the pwq stays online.
557  *
558  * Return: The unbound pool_workqueue for @node.
559  */
560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 						  int node)
562 {
563 	assert_rcu_or_wq_mutex(wq);
564 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
565 }
566 
567 static unsigned int work_color_to_flags(int color)
568 {
569 	return color << WORK_STRUCT_COLOR_SHIFT;
570 }
571 
572 static int get_work_color(struct work_struct *work)
573 {
574 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
575 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
576 }
577 
578 static int work_next_color(int color)
579 {
580 	return (color + 1) % WORK_NR_COLORS;
581 }
582 
583 /*
584  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
585  * contain the pointer to the queued pwq.  Once execution starts, the flag
586  * is cleared and the high bits contain OFFQ flags and pool ID.
587  *
588  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
589  * and clear_work_data() can be used to set the pwq, pool or clear
590  * work->data.  These functions should only be called while the work is
591  * owned - ie. while the PENDING bit is set.
592  *
593  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
594  * corresponding to a work.  Pool is available once the work has been
595  * queued anywhere after initialization until it is sync canceled.  pwq is
596  * available only while the work item is queued.
597  *
598  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
599  * canceled.  While being canceled, a work item may have its PENDING set
600  * but stay off timer and worklist for arbitrarily long and nobody should
601  * try to steal the PENDING bit.
602  */
603 static inline void set_work_data(struct work_struct *work, unsigned long data,
604 				 unsigned long flags)
605 {
606 	WARN_ON_ONCE(!work_pending(work));
607 	atomic_long_set(&work->data, data | flags | work_static(work));
608 }
609 
610 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
611 			 unsigned long extra_flags)
612 {
613 	set_work_data(work, (unsigned long)pwq,
614 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
615 }
616 
617 static void set_work_pool_and_keep_pending(struct work_struct *work,
618 					   int pool_id)
619 {
620 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
621 		      WORK_STRUCT_PENDING);
622 }
623 
624 static void set_work_pool_and_clear_pending(struct work_struct *work,
625 					    int pool_id)
626 {
627 	/*
628 	 * The following wmb is paired with the implied mb in
629 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
630 	 * here are visible to and precede any updates by the next PENDING
631 	 * owner.
632 	 */
633 	smp_wmb();
634 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
635 }
636 
637 static void clear_work_data(struct work_struct *work)
638 {
639 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
640 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
641 }
642 
643 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
644 {
645 	unsigned long data = atomic_long_read(&work->data);
646 
647 	if (data & WORK_STRUCT_PWQ)
648 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
649 	else
650 		return NULL;
651 }
652 
653 /**
654  * get_work_pool - return the worker_pool a given work was associated with
655  * @work: the work item of interest
656  *
657  * Pools are created and destroyed under wq_pool_mutex, and allows read
658  * access under sched-RCU read lock.  As such, this function should be
659  * called under wq_pool_mutex or with preemption disabled.
660  *
661  * All fields of the returned pool are accessible as long as the above
662  * mentioned locking is in effect.  If the returned pool needs to be used
663  * beyond the critical section, the caller is responsible for ensuring the
664  * returned pool is and stays online.
665  *
666  * Return: The worker_pool @work was last associated with.  %NULL if none.
667  */
668 static struct worker_pool *get_work_pool(struct work_struct *work)
669 {
670 	unsigned long data = atomic_long_read(&work->data);
671 	int pool_id;
672 
673 	assert_rcu_or_pool_mutex();
674 
675 	if (data & WORK_STRUCT_PWQ)
676 		return ((struct pool_workqueue *)
677 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
678 
679 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
680 	if (pool_id == WORK_OFFQ_POOL_NONE)
681 		return NULL;
682 
683 	return idr_find(&worker_pool_idr, pool_id);
684 }
685 
686 /**
687  * get_work_pool_id - return the worker pool ID a given work is associated with
688  * @work: the work item of interest
689  *
690  * Return: The worker_pool ID @work was last associated with.
691  * %WORK_OFFQ_POOL_NONE if none.
692  */
693 static int get_work_pool_id(struct work_struct *work)
694 {
695 	unsigned long data = atomic_long_read(&work->data);
696 
697 	if (data & WORK_STRUCT_PWQ)
698 		return ((struct pool_workqueue *)
699 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
700 
701 	return data >> WORK_OFFQ_POOL_SHIFT;
702 }
703 
704 static void mark_work_canceling(struct work_struct *work)
705 {
706 	unsigned long pool_id = get_work_pool_id(work);
707 
708 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
709 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
710 }
711 
712 static bool work_is_canceling(struct work_struct *work)
713 {
714 	unsigned long data = atomic_long_read(&work->data);
715 
716 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
717 }
718 
719 /*
720  * Policy functions.  These define the policies on how the global worker
721  * pools are managed.  Unless noted otherwise, these functions assume that
722  * they're being called with pool->lock held.
723  */
724 
725 static bool __need_more_worker(struct worker_pool *pool)
726 {
727 	return !atomic_read(&pool->nr_running);
728 }
729 
730 /*
731  * Need to wake up a worker?  Called from anything but currently
732  * running workers.
733  *
734  * Note that, because unbound workers never contribute to nr_running, this
735  * function will always return %true for unbound pools as long as the
736  * worklist isn't empty.
737  */
738 static bool need_more_worker(struct worker_pool *pool)
739 {
740 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
741 }
742 
743 /* Can I start working?  Called from busy but !running workers. */
744 static bool may_start_working(struct worker_pool *pool)
745 {
746 	return pool->nr_idle;
747 }
748 
749 /* Do I need to keep working?  Called from currently running workers. */
750 static bool keep_working(struct worker_pool *pool)
751 {
752 	return !list_empty(&pool->worklist) &&
753 		atomic_read(&pool->nr_running) <= 1;
754 }
755 
756 /* Do we need a new worker?  Called from manager. */
757 static bool need_to_create_worker(struct worker_pool *pool)
758 {
759 	return need_more_worker(pool) && !may_start_working(pool);
760 }
761 
762 /* Do we have too many workers and should some go away? */
763 static bool too_many_workers(struct worker_pool *pool)
764 {
765 	bool managing = mutex_is_locked(&pool->manager_arb);
766 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
767 	int nr_busy = pool->nr_workers - nr_idle;
768 
769 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
770 }
771 
772 /*
773  * Wake up functions.
774  */
775 
776 /* Return the first idle worker.  Safe with preemption disabled */
777 static struct worker *first_idle_worker(struct worker_pool *pool)
778 {
779 	if (unlikely(list_empty(&pool->idle_list)))
780 		return NULL;
781 
782 	return list_first_entry(&pool->idle_list, struct worker, entry);
783 }
784 
785 /**
786  * wake_up_worker - wake up an idle worker
787  * @pool: worker pool to wake worker from
788  *
789  * Wake up the first idle worker of @pool.
790  *
791  * CONTEXT:
792  * spin_lock_irq(pool->lock).
793  */
794 static void wake_up_worker(struct worker_pool *pool)
795 {
796 	struct worker *worker = first_idle_worker(pool);
797 
798 	if (likely(worker))
799 		wake_up_process(worker->task);
800 }
801 
802 /**
803  * wq_worker_waking_up - a worker is waking up
804  * @task: task waking up
805  * @cpu: CPU @task is waking up to
806  *
807  * This function is called during try_to_wake_up() when a worker is
808  * being awoken.
809  *
810  * CONTEXT:
811  * spin_lock_irq(rq->lock)
812  */
813 void wq_worker_waking_up(struct task_struct *task, int cpu)
814 {
815 	struct worker *worker = kthread_data(task);
816 
817 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
818 		WARN_ON_ONCE(worker->pool->cpu != cpu);
819 		atomic_inc(&worker->pool->nr_running);
820 	}
821 }
822 
823 /**
824  * wq_worker_sleeping - a worker is going to sleep
825  * @task: task going to sleep
826  * @cpu: CPU in question, must be the current CPU number
827  *
828  * This function is called during schedule() when a busy worker is
829  * going to sleep.  Worker on the same cpu can be woken up by
830  * returning pointer to its task.
831  *
832  * CONTEXT:
833  * spin_lock_irq(rq->lock)
834  *
835  * Return:
836  * Worker task on @cpu to wake up, %NULL if none.
837  */
838 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
839 {
840 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
841 	struct worker_pool *pool;
842 
843 	/*
844 	 * Rescuers, which may not have all the fields set up like normal
845 	 * workers, also reach here, let's not access anything before
846 	 * checking NOT_RUNNING.
847 	 */
848 	if (worker->flags & WORKER_NOT_RUNNING)
849 		return NULL;
850 
851 	pool = worker->pool;
852 
853 	/* this can only happen on the local cpu */
854 	if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
855 		return NULL;
856 
857 	/*
858 	 * The counterpart of the following dec_and_test, implied mb,
859 	 * worklist not empty test sequence is in insert_work().
860 	 * Please read comment there.
861 	 *
862 	 * NOT_RUNNING is clear.  This means that we're bound to and
863 	 * running on the local cpu w/ rq lock held and preemption
864 	 * disabled, which in turn means that none else could be
865 	 * manipulating idle_list, so dereferencing idle_list without pool
866 	 * lock is safe.
867 	 */
868 	if (atomic_dec_and_test(&pool->nr_running) &&
869 	    !list_empty(&pool->worklist))
870 		to_wakeup = first_idle_worker(pool);
871 	return to_wakeup ? to_wakeup->task : NULL;
872 }
873 
874 /**
875  * worker_set_flags - set worker flags and adjust nr_running accordingly
876  * @worker: self
877  * @flags: flags to set
878  *
879  * Set @flags in @worker->flags and adjust nr_running accordingly.
880  *
881  * CONTEXT:
882  * spin_lock_irq(pool->lock)
883  */
884 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
885 {
886 	struct worker_pool *pool = worker->pool;
887 
888 	WARN_ON_ONCE(worker->task != current);
889 
890 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
891 	if ((flags & WORKER_NOT_RUNNING) &&
892 	    !(worker->flags & WORKER_NOT_RUNNING)) {
893 		atomic_dec(&pool->nr_running);
894 	}
895 
896 	worker->flags |= flags;
897 }
898 
899 /**
900  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
901  * @worker: self
902  * @flags: flags to clear
903  *
904  * Clear @flags in @worker->flags and adjust nr_running accordingly.
905  *
906  * CONTEXT:
907  * spin_lock_irq(pool->lock)
908  */
909 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
910 {
911 	struct worker_pool *pool = worker->pool;
912 	unsigned int oflags = worker->flags;
913 
914 	WARN_ON_ONCE(worker->task != current);
915 
916 	worker->flags &= ~flags;
917 
918 	/*
919 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
920 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
921 	 * of multiple flags, not a single flag.
922 	 */
923 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
924 		if (!(worker->flags & WORKER_NOT_RUNNING))
925 			atomic_inc(&pool->nr_running);
926 }
927 
928 /**
929  * find_worker_executing_work - find worker which is executing a work
930  * @pool: pool of interest
931  * @work: work to find worker for
932  *
933  * Find a worker which is executing @work on @pool by searching
934  * @pool->busy_hash which is keyed by the address of @work.  For a worker
935  * to match, its current execution should match the address of @work and
936  * its work function.  This is to avoid unwanted dependency between
937  * unrelated work executions through a work item being recycled while still
938  * being executed.
939  *
940  * This is a bit tricky.  A work item may be freed once its execution
941  * starts and nothing prevents the freed area from being recycled for
942  * another work item.  If the same work item address ends up being reused
943  * before the original execution finishes, workqueue will identify the
944  * recycled work item as currently executing and make it wait until the
945  * current execution finishes, introducing an unwanted dependency.
946  *
947  * This function checks the work item address and work function to avoid
948  * false positives.  Note that this isn't complete as one may construct a
949  * work function which can introduce dependency onto itself through a
950  * recycled work item.  Well, if somebody wants to shoot oneself in the
951  * foot that badly, there's only so much we can do, and if such deadlock
952  * actually occurs, it should be easy to locate the culprit work function.
953  *
954  * CONTEXT:
955  * spin_lock_irq(pool->lock).
956  *
957  * Return:
958  * Pointer to worker which is executing @work if found, %NULL
959  * otherwise.
960  */
961 static struct worker *find_worker_executing_work(struct worker_pool *pool,
962 						 struct work_struct *work)
963 {
964 	struct worker *worker;
965 
966 	hash_for_each_possible(pool->busy_hash, worker, hentry,
967 			       (unsigned long)work)
968 		if (worker->current_work == work &&
969 		    worker->current_func == work->func)
970 			return worker;
971 
972 	return NULL;
973 }
974 
975 /**
976  * move_linked_works - move linked works to a list
977  * @work: start of series of works to be scheduled
978  * @head: target list to append @work to
979  * @nextp: out paramter for nested worklist walking
980  *
981  * Schedule linked works starting from @work to @head.  Work series to
982  * be scheduled starts at @work and includes any consecutive work with
983  * WORK_STRUCT_LINKED set in its predecessor.
984  *
985  * If @nextp is not NULL, it's updated to point to the next work of
986  * the last scheduled work.  This allows move_linked_works() to be
987  * nested inside outer list_for_each_entry_safe().
988  *
989  * CONTEXT:
990  * spin_lock_irq(pool->lock).
991  */
992 static void move_linked_works(struct work_struct *work, struct list_head *head,
993 			      struct work_struct **nextp)
994 {
995 	struct work_struct *n;
996 
997 	/*
998 	 * Linked worklist will always end before the end of the list,
999 	 * use NULL for list head.
1000 	 */
1001 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1002 		list_move_tail(&work->entry, head);
1003 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1004 			break;
1005 	}
1006 
1007 	/*
1008 	 * If we're already inside safe list traversal and have moved
1009 	 * multiple works to the scheduled queue, the next position
1010 	 * needs to be updated.
1011 	 */
1012 	if (nextp)
1013 		*nextp = n;
1014 }
1015 
1016 /**
1017  * get_pwq - get an extra reference on the specified pool_workqueue
1018  * @pwq: pool_workqueue to get
1019  *
1020  * Obtain an extra reference on @pwq.  The caller should guarantee that
1021  * @pwq has positive refcnt and be holding the matching pool->lock.
1022  */
1023 static void get_pwq(struct pool_workqueue *pwq)
1024 {
1025 	lockdep_assert_held(&pwq->pool->lock);
1026 	WARN_ON_ONCE(pwq->refcnt <= 0);
1027 	pwq->refcnt++;
1028 }
1029 
1030 /**
1031  * put_pwq - put a pool_workqueue reference
1032  * @pwq: pool_workqueue to put
1033  *
1034  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1035  * destruction.  The caller should be holding the matching pool->lock.
1036  */
1037 static void put_pwq(struct pool_workqueue *pwq)
1038 {
1039 	lockdep_assert_held(&pwq->pool->lock);
1040 	if (likely(--pwq->refcnt))
1041 		return;
1042 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1043 		return;
1044 	/*
1045 	 * @pwq can't be released under pool->lock, bounce to
1046 	 * pwq_unbound_release_workfn().  This never recurses on the same
1047 	 * pool->lock as this path is taken only for unbound workqueues and
1048 	 * the release work item is scheduled on a per-cpu workqueue.  To
1049 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1050 	 * subclass of 1 in get_unbound_pool().
1051 	 */
1052 	schedule_work(&pwq->unbound_release_work);
1053 }
1054 
1055 /**
1056  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1057  * @pwq: pool_workqueue to put (can be %NULL)
1058  *
1059  * put_pwq() with locking.  This function also allows %NULL @pwq.
1060  */
1061 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1062 {
1063 	if (pwq) {
1064 		/*
1065 		 * As both pwqs and pools are sched-RCU protected, the
1066 		 * following lock operations are safe.
1067 		 */
1068 		spin_lock_irq(&pwq->pool->lock);
1069 		put_pwq(pwq);
1070 		spin_unlock_irq(&pwq->pool->lock);
1071 	}
1072 }
1073 
1074 static void pwq_activate_delayed_work(struct work_struct *work)
1075 {
1076 	struct pool_workqueue *pwq = get_work_pwq(work);
1077 
1078 	trace_workqueue_activate_work(work);
1079 	move_linked_works(work, &pwq->pool->worklist, NULL);
1080 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1081 	pwq->nr_active++;
1082 }
1083 
1084 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1085 {
1086 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1087 						    struct work_struct, entry);
1088 
1089 	pwq_activate_delayed_work(work);
1090 }
1091 
1092 /**
1093  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1094  * @pwq: pwq of interest
1095  * @color: color of work which left the queue
1096  *
1097  * A work either has completed or is removed from pending queue,
1098  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1099  *
1100  * CONTEXT:
1101  * spin_lock_irq(pool->lock).
1102  */
1103 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1104 {
1105 	/* uncolored work items don't participate in flushing or nr_active */
1106 	if (color == WORK_NO_COLOR)
1107 		goto out_put;
1108 
1109 	pwq->nr_in_flight[color]--;
1110 
1111 	pwq->nr_active--;
1112 	if (!list_empty(&pwq->delayed_works)) {
1113 		/* one down, submit a delayed one */
1114 		if (pwq->nr_active < pwq->max_active)
1115 			pwq_activate_first_delayed(pwq);
1116 	}
1117 
1118 	/* is flush in progress and are we at the flushing tip? */
1119 	if (likely(pwq->flush_color != color))
1120 		goto out_put;
1121 
1122 	/* are there still in-flight works? */
1123 	if (pwq->nr_in_flight[color])
1124 		goto out_put;
1125 
1126 	/* this pwq is done, clear flush_color */
1127 	pwq->flush_color = -1;
1128 
1129 	/*
1130 	 * If this was the last pwq, wake up the first flusher.  It
1131 	 * will handle the rest.
1132 	 */
1133 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1134 		complete(&pwq->wq->first_flusher->done);
1135 out_put:
1136 	put_pwq(pwq);
1137 }
1138 
1139 /**
1140  * try_to_grab_pending - steal work item from worklist and disable irq
1141  * @work: work item to steal
1142  * @is_dwork: @work is a delayed_work
1143  * @flags: place to store irq state
1144  *
1145  * Try to grab PENDING bit of @work.  This function can handle @work in any
1146  * stable state - idle, on timer or on worklist.
1147  *
1148  * Return:
1149  *  1		if @work was pending and we successfully stole PENDING
1150  *  0		if @work was idle and we claimed PENDING
1151  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1152  *  -ENOENT	if someone else is canceling @work, this state may persist
1153  *		for arbitrarily long
1154  *
1155  * Note:
1156  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1157  * interrupted while holding PENDING and @work off queue, irq must be
1158  * disabled on entry.  This, combined with delayed_work->timer being
1159  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1160  *
1161  * On successful return, >= 0, irq is disabled and the caller is
1162  * responsible for releasing it using local_irq_restore(*@flags).
1163  *
1164  * This function is safe to call from any context including IRQ handler.
1165  */
1166 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1167 			       unsigned long *flags)
1168 {
1169 	struct worker_pool *pool;
1170 	struct pool_workqueue *pwq;
1171 
1172 	local_irq_save(*flags);
1173 
1174 	/* try to steal the timer if it exists */
1175 	if (is_dwork) {
1176 		struct delayed_work *dwork = to_delayed_work(work);
1177 
1178 		/*
1179 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1180 		 * guaranteed that the timer is not queued anywhere and not
1181 		 * running on the local CPU.
1182 		 */
1183 		if (likely(del_timer(&dwork->timer)))
1184 			return 1;
1185 	}
1186 
1187 	/* try to claim PENDING the normal way */
1188 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1189 		return 0;
1190 
1191 	/*
1192 	 * The queueing is in progress, or it is already queued. Try to
1193 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1194 	 */
1195 	pool = get_work_pool(work);
1196 	if (!pool)
1197 		goto fail;
1198 
1199 	spin_lock(&pool->lock);
1200 	/*
1201 	 * work->data is guaranteed to point to pwq only while the work
1202 	 * item is queued on pwq->wq, and both updating work->data to point
1203 	 * to pwq on queueing and to pool on dequeueing are done under
1204 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1205 	 * points to pwq which is associated with a locked pool, the work
1206 	 * item is currently queued on that pool.
1207 	 */
1208 	pwq = get_work_pwq(work);
1209 	if (pwq && pwq->pool == pool) {
1210 		debug_work_deactivate(work);
1211 
1212 		/*
1213 		 * A delayed work item cannot be grabbed directly because
1214 		 * it might have linked NO_COLOR work items which, if left
1215 		 * on the delayed_list, will confuse pwq->nr_active
1216 		 * management later on and cause stall.  Make sure the work
1217 		 * item is activated before grabbing.
1218 		 */
1219 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1220 			pwq_activate_delayed_work(work);
1221 
1222 		list_del_init(&work->entry);
1223 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1224 
1225 		/* work->data points to pwq iff queued, point to pool */
1226 		set_work_pool_and_keep_pending(work, pool->id);
1227 
1228 		spin_unlock(&pool->lock);
1229 		return 1;
1230 	}
1231 	spin_unlock(&pool->lock);
1232 fail:
1233 	local_irq_restore(*flags);
1234 	if (work_is_canceling(work))
1235 		return -ENOENT;
1236 	cpu_relax();
1237 	return -EAGAIN;
1238 }
1239 
1240 /**
1241  * insert_work - insert a work into a pool
1242  * @pwq: pwq @work belongs to
1243  * @work: work to insert
1244  * @head: insertion point
1245  * @extra_flags: extra WORK_STRUCT_* flags to set
1246  *
1247  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1248  * work_struct flags.
1249  *
1250  * CONTEXT:
1251  * spin_lock_irq(pool->lock).
1252  */
1253 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1254 			struct list_head *head, unsigned int extra_flags)
1255 {
1256 	struct worker_pool *pool = pwq->pool;
1257 
1258 	/* we own @work, set data and link */
1259 	set_work_pwq(work, pwq, extra_flags);
1260 	list_add_tail(&work->entry, head);
1261 	get_pwq(pwq);
1262 
1263 	/*
1264 	 * Ensure either wq_worker_sleeping() sees the above
1265 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1266 	 * around lazily while there are works to be processed.
1267 	 */
1268 	smp_mb();
1269 
1270 	if (__need_more_worker(pool))
1271 		wake_up_worker(pool);
1272 }
1273 
1274 /*
1275  * Test whether @work is being queued from another work executing on the
1276  * same workqueue.
1277  */
1278 static bool is_chained_work(struct workqueue_struct *wq)
1279 {
1280 	struct worker *worker;
1281 
1282 	worker = current_wq_worker();
1283 	/*
1284 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1285 	 * I'm @worker, it's safe to dereference it without locking.
1286 	 */
1287 	return worker && worker->current_pwq->wq == wq;
1288 }
1289 
1290 static void __queue_work(int cpu, struct workqueue_struct *wq,
1291 			 struct work_struct *work)
1292 {
1293 	struct pool_workqueue *pwq;
1294 	struct worker_pool *last_pool;
1295 	struct list_head *worklist;
1296 	unsigned int work_flags;
1297 	unsigned int req_cpu = cpu;
1298 
1299 	/*
1300 	 * While a work item is PENDING && off queue, a task trying to
1301 	 * steal the PENDING will busy-loop waiting for it to either get
1302 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1303 	 * happen with IRQ disabled.
1304 	 */
1305 	WARN_ON_ONCE(!irqs_disabled());
1306 
1307 	debug_work_activate(work);
1308 
1309 	/* if draining, only works from the same workqueue are allowed */
1310 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1311 	    WARN_ON_ONCE(!is_chained_work(wq)))
1312 		return;
1313 retry:
1314 	if (req_cpu == WORK_CPU_UNBOUND)
1315 		cpu = raw_smp_processor_id();
1316 
1317 	/* pwq which will be used unless @work is executing elsewhere */
1318 	if (!(wq->flags & WQ_UNBOUND))
1319 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1320 	else
1321 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1322 
1323 	/*
1324 	 * If @work was previously on a different pool, it might still be
1325 	 * running there, in which case the work needs to be queued on that
1326 	 * pool to guarantee non-reentrancy.
1327 	 */
1328 	last_pool = get_work_pool(work);
1329 	if (last_pool && last_pool != pwq->pool) {
1330 		struct worker *worker;
1331 
1332 		spin_lock(&last_pool->lock);
1333 
1334 		worker = find_worker_executing_work(last_pool, work);
1335 
1336 		if (worker && worker->current_pwq->wq == wq) {
1337 			pwq = worker->current_pwq;
1338 		} else {
1339 			/* meh... not running there, queue here */
1340 			spin_unlock(&last_pool->lock);
1341 			spin_lock(&pwq->pool->lock);
1342 		}
1343 	} else {
1344 		spin_lock(&pwq->pool->lock);
1345 	}
1346 
1347 	/*
1348 	 * pwq is determined and locked.  For unbound pools, we could have
1349 	 * raced with pwq release and it could already be dead.  If its
1350 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1351 	 * without another pwq replacing it in the numa_pwq_tbl or while
1352 	 * work items are executing on it, so the retrying is guaranteed to
1353 	 * make forward-progress.
1354 	 */
1355 	if (unlikely(!pwq->refcnt)) {
1356 		if (wq->flags & WQ_UNBOUND) {
1357 			spin_unlock(&pwq->pool->lock);
1358 			cpu_relax();
1359 			goto retry;
1360 		}
1361 		/* oops */
1362 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1363 			  wq->name, cpu);
1364 	}
1365 
1366 	/* pwq determined, queue */
1367 	trace_workqueue_queue_work(req_cpu, pwq, work);
1368 
1369 	if (WARN_ON(!list_empty(&work->entry))) {
1370 		spin_unlock(&pwq->pool->lock);
1371 		return;
1372 	}
1373 
1374 	pwq->nr_in_flight[pwq->work_color]++;
1375 	work_flags = work_color_to_flags(pwq->work_color);
1376 
1377 	if (likely(pwq->nr_active < pwq->max_active)) {
1378 		trace_workqueue_activate_work(work);
1379 		pwq->nr_active++;
1380 		worklist = &pwq->pool->worklist;
1381 	} else {
1382 		work_flags |= WORK_STRUCT_DELAYED;
1383 		worklist = &pwq->delayed_works;
1384 	}
1385 
1386 	insert_work(pwq, work, worklist, work_flags);
1387 
1388 	spin_unlock(&pwq->pool->lock);
1389 }
1390 
1391 /**
1392  * queue_work_on - queue work on specific cpu
1393  * @cpu: CPU number to execute work on
1394  * @wq: workqueue to use
1395  * @work: work to queue
1396  *
1397  * We queue the work to a specific CPU, the caller must ensure it
1398  * can't go away.
1399  *
1400  * Return: %false if @work was already on a queue, %true otherwise.
1401  */
1402 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1403 		   struct work_struct *work)
1404 {
1405 	bool ret = false;
1406 	unsigned long flags;
1407 
1408 	local_irq_save(flags);
1409 
1410 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1411 		__queue_work(cpu, wq, work);
1412 		ret = true;
1413 	}
1414 
1415 	local_irq_restore(flags);
1416 	return ret;
1417 }
1418 EXPORT_SYMBOL(queue_work_on);
1419 
1420 void delayed_work_timer_fn(unsigned long __data)
1421 {
1422 	struct delayed_work *dwork = (struct delayed_work *)__data;
1423 
1424 	/* should have been called from irqsafe timer with irq already off */
1425 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1426 }
1427 EXPORT_SYMBOL(delayed_work_timer_fn);
1428 
1429 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1430 				struct delayed_work *dwork, unsigned long delay)
1431 {
1432 	struct timer_list *timer = &dwork->timer;
1433 	struct work_struct *work = &dwork->work;
1434 
1435 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1436 		     timer->data != (unsigned long)dwork);
1437 	WARN_ON_ONCE(timer_pending(timer));
1438 	WARN_ON_ONCE(!list_empty(&work->entry));
1439 
1440 	/*
1441 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1442 	 * both optimization and correctness.  The earliest @timer can
1443 	 * expire is on the closest next tick and delayed_work users depend
1444 	 * on that there's no such delay when @delay is 0.
1445 	 */
1446 	if (!delay) {
1447 		__queue_work(cpu, wq, &dwork->work);
1448 		return;
1449 	}
1450 
1451 	timer_stats_timer_set_start_info(&dwork->timer);
1452 
1453 	dwork->wq = wq;
1454 	dwork->cpu = cpu;
1455 	timer->expires = jiffies + delay;
1456 
1457 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1458 		add_timer_on(timer, cpu);
1459 	else
1460 		add_timer(timer);
1461 }
1462 
1463 /**
1464  * queue_delayed_work_on - queue work on specific CPU after delay
1465  * @cpu: CPU number to execute work on
1466  * @wq: workqueue to use
1467  * @dwork: work to queue
1468  * @delay: number of jiffies to wait before queueing
1469  *
1470  * Return: %false if @work was already on a queue, %true otherwise.  If
1471  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1472  * execution.
1473  */
1474 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1475 			   struct delayed_work *dwork, unsigned long delay)
1476 {
1477 	struct work_struct *work = &dwork->work;
1478 	bool ret = false;
1479 	unsigned long flags;
1480 
1481 	/* read the comment in __queue_work() */
1482 	local_irq_save(flags);
1483 
1484 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1485 		__queue_delayed_work(cpu, wq, dwork, delay);
1486 		ret = true;
1487 	}
1488 
1489 	local_irq_restore(flags);
1490 	return ret;
1491 }
1492 EXPORT_SYMBOL(queue_delayed_work_on);
1493 
1494 /**
1495  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1496  * @cpu: CPU number to execute work on
1497  * @wq: workqueue to use
1498  * @dwork: work to queue
1499  * @delay: number of jiffies to wait before queueing
1500  *
1501  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1502  * modify @dwork's timer so that it expires after @delay.  If @delay is
1503  * zero, @work is guaranteed to be scheduled immediately regardless of its
1504  * current state.
1505  *
1506  * Return: %false if @dwork was idle and queued, %true if @dwork was
1507  * pending and its timer was modified.
1508  *
1509  * This function is safe to call from any context including IRQ handler.
1510  * See try_to_grab_pending() for details.
1511  */
1512 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1513 			 struct delayed_work *dwork, unsigned long delay)
1514 {
1515 	unsigned long flags;
1516 	int ret;
1517 
1518 	do {
1519 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1520 	} while (unlikely(ret == -EAGAIN));
1521 
1522 	if (likely(ret >= 0)) {
1523 		__queue_delayed_work(cpu, wq, dwork, delay);
1524 		local_irq_restore(flags);
1525 	}
1526 
1527 	/* -ENOENT from try_to_grab_pending() becomes %true */
1528 	return ret;
1529 }
1530 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1531 
1532 /**
1533  * worker_enter_idle - enter idle state
1534  * @worker: worker which is entering idle state
1535  *
1536  * @worker is entering idle state.  Update stats and idle timer if
1537  * necessary.
1538  *
1539  * LOCKING:
1540  * spin_lock_irq(pool->lock).
1541  */
1542 static void worker_enter_idle(struct worker *worker)
1543 {
1544 	struct worker_pool *pool = worker->pool;
1545 
1546 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1547 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1548 			 (worker->hentry.next || worker->hentry.pprev)))
1549 		return;
1550 
1551 	/* can't use worker_set_flags(), also called from create_worker() */
1552 	worker->flags |= WORKER_IDLE;
1553 	pool->nr_idle++;
1554 	worker->last_active = jiffies;
1555 
1556 	/* idle_list is LIFO */
1557 	list_add(&worker->entry, &pool->idle_list);
1558 
1559 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1560 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1561 
1562 	/*
1563 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1564 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1565 	 * nr_running, the warning may trigger spuriously.  Check iff
1566 	 * unbind is not in progress.
1567 	 */
1568 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1569 		     pool->nr_workers == pool->nr_idle &&
1570 		     atomic_read(&pool->nr_running));
1571 }
1572 
1573 /**
1574  * worker_leave_idle - leave idle state
1575  * @worker: worker which is leaving idle state
1576  *
1577  * @worker is leaving idle state.  Update stats.
1578  *
1579  * LOCKING:
1580  * spin_lock_irq(pool->lock).
1581  */
1582 static void worker_leave_idle(struct worker *worker)
1583 {
1584 	struct worker_pool *pool = worker->pool;
1585 
1586 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1587 		return;
1588 	worker_clr_flags(worker, WORKER_IDLE);
1589 	pool->nr_idle--;
1590 	list_del_init(&worker->entry);
1591 }
1592 
1593 static struct worker *alloc_worker(int node)
1594 {
1595 	struct worker *worker;
1596 
1597 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1598 	if (worker) {
1599 		INIT_LIST_HEAD(&worker->entry);
1600 		INIT_LIST_HEAD(&worker->scheduled);
1601 		INIT_LIST_HEAD(&worker->node);
1602 		/* on creation a worker is in !idle && prep state */
1603 		worker->flags = WORKER_PREP;
1604 	}
1605 	return worker;
1606 }
1607 
1608 /**
1609  * worker_attach_to_pool() - attach a worker to a pool
1610  * @worker: worker to be attached
1611  * @pool: the target pool
1612  *
1613  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1614  * cpu-binding of @worker are kept coordinated with the pool across
1615  * cpu-[un]hotplugs.
1616  */
1617 static void worker_attach_to_pool(struct worker *worker,
1618 				   struct worker_pool *pool)
1619 {
1620 	mutex_lock(&pool->attach_mutex);
1621 
1622 	/*
1623 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1624 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1625 	 */
1626 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1627 
1628 	/*
1629 	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1630 	 * stable across this function.  See the comments above the
1631 	 * flag definition for details.
1632 	 */
1633 	if (pool->flags & POOL_DISASSOCIATED)
1634 		worker->flags |= WORKER_UNBOUND;
1635 
1636 	list_add_tail(&worker->node, &pool->workers);
1637 
1638 	mutex_unlock(&pool->attach_mutex);
1639 }
1640 
1641 /**
1642  * worker_detach_from_pool() - detach a worker from its pool
1643  * @worker: worker which is attached to its pool
1644  * @pool: the pool @worker is attached to
1645  *
1646  * Undo the attaching which had been done in worker_attach_to_pool().  The
1647  * caller worker shouldn't access to the pool after detached except it has
1648  * other reference to the pool.
1649  */
1650 static void worker_detach_from_pool(struct worker *worker,
1651 				    struct worker_pool *pool)
1652 {
1653 	struct completion *detach_completion = NULL;
1654 
1655 	mutex_lock(&pool->attach_mutex);
1656 	list_del(&worker->node);
1657 	if (list_empty(&pool->workers))
1658 		detach_completion = pool->detach_completion;
1659 	mutex_unlock(&pool->attach_mutex);
1660 
1661 	/* clear leftover flags without pool->lock after it is detached */
1662 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1663 
1664 	if (detach_completion)
1665 		complete(detach_completion);
1666 }
1667 
1668 /**
1669  * create_worker - create a new workqueue worker
1670  * @pool: pool the new worker will belong to
1671  *
1672  * Create and start a new worker which is attached to @pool.
1673  *
1674  * CONTEXT:
1675  * Might sleep.  Does GFP_KERNEL allocations.
1676  *
1677  * Return:
1678  * Pointer to the newly created worker.
1679  */
1680 static struct worker *create_worker(struct worker_pool *pool)
1681 {
1682 	struct worker *worker = NULL;
1683 	int id = -1;
1684 	char id_buf[16];
1685 
1686 	/* ID is needed to determine kthread name */
1687 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1688 	if (id < 0)
1689 		goto fail;
1690 
1691 	worker = alloc_worker(pool->node);
1692 	if (!worker)
1693 		goto fail;
1694 
1695 	worker->pool = pool;
1696 	worker->id = id;
1697 
1698 	if (pool->cpu >= 0)
1699 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1700 			 pool->attrs->nice < 0  ? "H" : "");
1701 	else
1702 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1703 
1704 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1705 					      "kworker/%s", id_buf);
1706 	if (IS_ERR(worker->task))
1707 		goto fail;
1708 
1709 	set_user_nice(worker->task, pool->attrs->nice);
1710 
1711 	/* prevent userland from meddling with cpumask of workqueue workers */
1712 	worker->task->flags |= PF_NO_SETAFFINITY;
1713 
1714 	/* successful, attach the worker to the pool */
1715 	worker_attach_to_pool(worker, pool);
1716 
1717 	/* start the newly created worker */
1718 	spin_lock_irq(&pool->lock);
1719 	worker->pool->nr_workers++;
1720 	worker_enter_idle(worker);
1721 	wake_up_process(worker->task);
1722 	spin_unlock_irq(&pool->lock);
1723 
1724 	return worker;
1725 
1726 fail:
1727 	if (id >= 0)
1728 		ida_simple_remove(&pool->worker_ida, id);
1729 	kfree(worker);
1730 	return NULL;
1731 }
1732 
1733 /**
1734  * destroy_worker - destroy a workqueue worker
1735  * @worker: worker to be destroyed
1736  *
1737  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1738  * be idle.
1739  *
1740  * CONTEXT:
1741  * spin_lock_irq(pool->lock).
1742  */
1743 static void destroy_worker(struct worker *worker)
1744 {
1745 	struct worker_pool *pool = worker->pool;
1746 
1747 	lockdep_assert_held(&pool->lock);
1748 
1749 	/* sanity check frenzy */
1750 	if (WARN_ON(worker->current_work) ||
1751 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1752 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1753 		return;
1754 
1755 	pool->nr_workers--;
1756 	pool->nr_idle--;
1757 
1758 	list_del_init(&worker->entry);
1759 	worker->flags |= WORKER_DIE;
1760 	wake_up_process(worker->task);
1761 }
1762 
1763 static void idle_worker_timeout(unsigned long __pool)
1764 {
1765 	struct worker_pool *pool = (void *)__pool;
1766 
1767 	spin_lock_irq(&pool->lock);
1768 
1769 	while (too_many_workers(pool)) {
1770 		struct worker *worker;
1771 		unsigned long expires;
1772 
1773 		/* idle_list is kept in LIFO order, check the last one */
1774 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1775 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1776 
1777 		if (time_before(jiffies, expires)) {
1778 			mod_timer(&pool->idle_timer, expires);
1779 			break;
1780 		}
1781 
1782 		destroy_worker(worker);
1783 	}
1784 
1785 	spin_unlock_irq(&pool->lock);
1786 }
1787 
1788 static void send_mayday(struct work_struct *work)
1789 {
1790 	struct pool_workqueue *pwq = get_work_pwq(work);
1791 	struct workqueue_struct *wq = pwq->wq;
1792 
1793 	lockdep_assert_held(&wq_mayday_lock);
1794 
1795 	if (!wq->rescuer)
1796 		return;
1797 
1798 	/* mayday mayday mayday */
1799 	if (list_empty(&pwq->mayday_node)) {
1800 		/*
1801 		 * If @pwq is for an unbound wq, its base ref may be put at
1802 		 * any time due to an attribute change.  Pin @pwq until the
1803 		 * rescuer is done with it.
1804 		 */
1805 		get_pwq(pwq);
1806 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1807 		wake_up_process(wq->rescuer->task);
1808 	}
1809 }
1810 
1811 static void pool_mayday_timeout(unsigned long __pool)
1812 {
1813 	struct worker_pool *pool = (void *)__pool;
1814 	struct work_struct *work;
1815 
1816 	spin_lock_irq(&pool->lock);
1817 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1818 
1819 	if (need_to_create_worker(pool)) {
1820 		/*
1821 		 * We've been trying to create a new worker but
1822 		 * haven't been successful.  We might be hitting an
1823 		 * allocation deadlock.  Send distress signals to
1824 		 * rescuers.
1825 		 */
1826 		list_for_each_entry(work, &pool->worklist, entry)
1827 			send_mayday(work);
1828 	}
1829 
1830 	spin_unlock(&wq_mayday_lock);
1831 	spin_unlock_irq(&pool->lock);
1832 
1833 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1834 }
1835 
1836 /**
1837  * maybe_create_worker - create a new worker if necessary
1838  * @pool: pool to create a new worker for
1839  *
1840  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1841  * have at least one idle worker on return from this function.  If
1842  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1843  * sent to all rescuers with works scheduled on @pool to resolve
1844  * possible allocation deadlock.
1845  *
1846  * On return, need_to_create_worker() is guaranteed to be %false and
1847  * may_start_working() %true.
1848  *
1849  * LOCKING:
1850  * spin_lock_irq(pool->lock) which may be released and regrabbed
1851  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1852  * manager.
1853  */
1854 static void maybe_create_worker(struct worker_pool *pool)
1855 __releases(&pool->lock)
1856 __acquires(&pool->lock)
1857 {
1858 restart:
1859 	spin_unlock_irq(&pool->lock);
1860 
1861 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1862 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1863 
1864 	while (true) {
1865 		if (create_worker(pool) || !need_to_create_worker(pool))
1866 			break;
1867 
1868 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1869 
1870 		if (!need_to_create_worker(pool))
1871 			break;
1872 	}
1873 
1874 	del_timer_sync(&pool->mayday_timer);
1875 	spin_lock_irq(&pool->lock);
1876 	/*
1877 	 * This is necessary even after a new worker was just successfully
1878 	 * created as @pool->lock was dropped and the new worker might have
1879 	 * already become busy.
1880 	 */
1881 	if (need_to_create_worker(pool))
1882 		goto restart;
1883 }
1884 
1885 /**
1886  * manage_workers - manage worker pool
1887  * @worker: self
1888  *
1889  * Assume the manager role and manage the worker pool @worker belongs
1890  * to.  At any given time, there can be only zero or one manager per
1891  * pool.  The exclusion is handled automatically by this function.
1892  *
1893  * The caller can safely start processing works on false return.  On
1894  * true return, it's guaranteed that need_to_create_worker() is false
1895  * and may_start_working() is true.
1896  *
1897  * CONTEXT:
1898  * spin_lock_irq(pool->lock) which may be released and regrabbed
1899  * multiple times.  Does GFP_KERNEL allocations.
1900  *
1901  * Return:
1902  * %false if the pool doesn't need management and the caller can safely
1903  * start processing works, %true if management function was performed and
1904  * the conditions that the caller verified before calling the function may
1905  * no longer be true.
1906  */
1907 static bool manage_workers(struct worker *worker)
1908 {
1909 	struct worker_pool *pool = worker->pool;
1910 
1911 	/*
1912 	 * Anyone who successfully grabs manager_arb wins the arbitration
1913 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
1914 	 * failure while holding pool->lock reliably indicates that someone
1915 	 * else is managing the pool and the worker which failed trylock
1916 	 * can proceed to executing work items.  This means that anyone
1917 	 * grabbing manager_arb is responsible for actually performing
1918 	 * manager duties.  If manager_arb is grabbed and released without
1919 	 * actual management, the pool may stall indefinitely.
1920 	 */
1921 	if (!mutex_trylock(&pool->manager_arb))
1922 		return false;
1923 	pool->manager = worker;
1924 
1925 	maybe_create_worker(pool);
1926 
1927 	pool->manager = NULL;
1928 	mutex_unlock(&pool->manager_arb);
1929 	return true;
1930 }
1931 
1932 /**
1933  * process_one_work - process single work
1934  * @worker: self
1935  * @work: work to process
1936  *
1937  * Process @work.  This function contains all the logics necessary to
1938  * process a single work including synchronization against and
1939  * interaction with other workers on the same cpu, queueing and
1940  * flushing.  As long as context requirement is met, any worker can
1941  * call this function to process a work.
1942  *
1943  * CONTEXT:
1944  * spin_lock_irq(pool->lock) which is released and regrabbed.
1945  */
1946 static void process_one_work(struct worker *worker, struct work_struct *work)
1947 __releases(&pool->lock)
1948 __acquires(&pool->lock)
1949 {
1950 	struct pool_workqueue *pwq = get_work_pwq(work);
1951 	struct worker_pool *pool = worker->pool;
1952 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
1953 	int work_color;
1954 	struct worker *collision;
1955 #ifdef CONFIG_LOCKDEP
1956 	/*
1957 	 * It is permissible to free the struct work_struct from
1958 	 * inside the function that is called from it, this we need to
1959 	 * take into account for lockdep too.  To avoid bogus "held
1960 	 * lock freed" warnings as well as problems when looking into
1961 	 * work->lockdep_map, make a copy and use that here.
1962 	 */
1963 	struct lockdep_map lockdep_map;
1964 
1965 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
1966 #endif
1967 	/* ensure we're on the correct CPU */
1968 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1969 		     raw_smp_processor_id() != pool->cpu);
1970 
1971 	/*
1972 	 * A single work shouldn't be executed concurrently by
1973 	 * multiple workers on a single cpu.  Check whether anyone is
1974 	 * already processing the work.  If so, defer the work to the
1975 	 * currently executing one.
1976 	 */
1977 	collision = find_worker_executing_work(pool, work);
1978 	if (unlikely(collision)) {
1979 		move_linked_works(work, &collision->scheduled, NULL);
1980 		return;
1981 	}
1982 
1983 	/* claim and dequeue */
1984 	debug_work_deactivate(work);
1985 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
1986 	worker->current_work = work;
1987 	worker->current_func = work->func;
1988 	worker->current_pwq = pwq;
1989 	work_color = get_work_color(work);
1990 
1991 	list_del_init(&work->entry);
1992 
1993 	/*
1994 	 * CPU intensive works don't participate in concurrency management.
1995 	 * They're the scheduler's responsibility.  This takes @worker out
1996 	 * of concurrency management and the next code block will chain
1997 	 * execution of the pending work items.
1998 	 */
1999 	if (unlikely(cpu_intensive))
2000 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2001 
2002 	/*
2003 	 * Wake up another worker if necessary.  The condition is always
2004 	 * false for normal per-cpu workers since nr_running would always
2005 	 * be >= 1 at this point.  This is used to chain execution of the
2006 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2007 	 * UNBOUND and CPU_INTENSIVE ones.
2008 	 */
2009 	if (need_more_worker(pool))
2010 		wake_up_worker(pool);
2011 
2012 	/*
2013 	 * Record the last pool and clear PENDING which should be the last
2014 	 * update to @work.  Also, do this inside @pool->lock so that
2015 	 * PENDING and queued state changes happen together while IRQ is
2016 	 * disabled.
2017 	 */
2018 	set_work_pool_and_clear_pending(work, pool->id);
2019 
2020 	spin_unlock_irq(&pool->lock);
2021 
2022 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2023 	lock_map_acquire(&lockdep_map);
2024 	trace_workqueue_execute_start(work);
2025 	worker->current_func(work);
2026 	/*
2027 	 * While we must be careful to not use "work" after this, the trace
2028 	 * point will only record its address.
2029 	 */
2030 	trace_workqueue_execute_end(work);
2031 	lock_map_release(&lockdep_map);
2032 	lock_map_release(&pwq->wq->lockdep_map);
2033 
2034 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2035 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2036 		       "     last function: %pf\n",
2037 		       current->comm, preempt_count(), task_pid_nr(current),
2038 		       worker->current_func);
2039 		debug_show_held_locks(current);
2040 		dump_stack();
2041 	}
2042 
2043 	/*
2044 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2045 	 * kernels, where a requeueing work item waiting for something to
2046 	 * happen could deadlock with stop_machine as such work item could
2047 	 * indefinitely requeue itself while all other CPUs are trapped in
2048 	 * stop_machine. At the same time, report a quiescent RCU state so
2049 	 * the same condition doesn't freeze RCU.
2050 	 */
2051 	cond_resched_rcu_qs();
2052 
2053 	spin_lock_irq(&pool->lock);
2054 
2055 	/* clear cpu intensive status */
2056 	if (unlikely(cpu_intensive))
2057 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2058 
2059 	/* we're done with it, release */
2060 	hash_del(&worker->hentry);
2061 	worker->current_work = NULL;
2062 	worker->current_func = NULL;
2063 	worker->current_pwq = NULL;
2064 	worker->desc_valid = false;
2065 	pwq_dec_nr_in_flight(pwq, work_color);
2066 }
2067 
2068 /**
2069  * process_scheduled_works - process scheduled works
2070  * @worker: self
2071  *
2072  * Process all scheduled works.  Please note that the scheduled list
2073  * may change while processing a work, so this function repeatedly
2074  * fetches a work from the top and executes it.
2075  *
2076  * CONTEXT:
2077  * spin_lock_irq(pool->lock) which may be released and regrabbed
2078  * multiple times.
2079  */
2080 static void process_scheduled_works(struct worker *worker)
2081 {
2082 	while (!list_empty(&worker->scheduled)) {
2083 		struct work_struct *work = list_first_entry(&worker->scheduled,
2084 						struct work_struct, entry);
2085 		process_one_work(worker, work);
2086 	}
2087 }
2088 
2089 /**
2090  * worker_thread - the worker thread function
2091  * @__worker: self
2092  *
2093  * The worker thread function.  All workers belong to a worker_pool -
2094  * either a per-cpu one or dynamic unbound one.  These workers process all
2095  * work items regardless of their specific target workqueue.  The only
2096  * exception is work items which belong to workqueues with a rescuer which
2097  * will be explained in rescuer_thread().
2098  *
2099  * Return: 0
2100  */
2101 static int worker_thread(void *__worker)
2102 {
2103 	struct worker *worker = __worker;
2104 	struct worker_pool *pool = worker->pool;
2105 
2106 	/* tell the scheduler that this is a workqueue worker */
2107 	worker->task->flags |= PF_WQ_WORKER;
2108 woke_up:
2109 	spin_lock_irq(&pool->lock);
2110 
2111 	/* am I supposed to die? */
2112 	if (unlikely(worker->flags & WORKER_DIE)) {
2113 		spin_unlock_irq(&pool->lock);
2114 		WARN_ON_ONCE(!list_empty(&worker->entry));
2115 		worker->task->flags &= ~PF_WQ_WORKER;
2116 
2117 		set_task_comm(worker->task, "kworker/dying");
2118 		ida_simple_remove(&pool->worker_ida, worker->id);
2119 		worker_detach_from_pool(worker, pool);
2120 		kfree(worker);
2121 		return 0;
2122 	}
2123 
2124 	worker_leave_idle(worker);
2125 recheck:
2126 	/* no more worker necessary? */
2127 	if (!need_more_worker(pool))
2128 		goto sleep;
2129 
2130 	/* do we need to manage? */
2131 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2132 		goto recheck;
2133 
2134 	/*
2135 	 * ->scheduled list can only be filled while a worker is
2136 	 * preparing to process a work or actually processing it.
2137 	 * Make sure nobody diddled with it while I was sleeping.
2138 	 */
2139 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2140 
2141 	/*
2142 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2143 	 * worker or that someone else has already assumed the manager
2144 	 * role.  This is where @worker starts participating in concurrency
2145 	 * management if applicable and concurrency management is restored
2146 	 * after being rebound.  See rebind_workers() for details.
2147 	 */
2148 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2149 
2150 	do {
2151 		struct work_struct *work =
2152 			list_first_entry(&pool->worklist,
2153 					 struct work_struct, entry);
2154 
2155 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2156 			/* optimization path, not strictly necessary */
2157 			process_one_work(worker, work);
2158 			if (unlikely(!list_empty(&worker->scheduled)))
2159 				process_scheduled_works(worker);
2160 		} else {
2161 			move_linked_works(work, &worker->scheduled, NULL);
2162 			process_scheduled_works(worker);
2163 		}
2164 	} while (keep_working(pool));
2165 
2166 	worker_set_flags(worker, WORKER_PREP);
2167 sleep:
2168 	/*
2169 	 * pool->lock is held and there's no work to process and no need to
2170 	 * manage, sleep.  Workers are woken up only while holding
2171 	 * pool->lock or from local cpu, so setting the current state
2172 	 * before releasing pool->lock is enough to prevent losing any
2173 	 * event.
2174 	 */
2175 	worker_enter_idle(worker);
2176 	__set_current_state(TASK_INTERRUPTIBLE);
2177 	spin_unlock_irq(&pool->lock);
2178 	schedule();
2179 	goto woke_up;
2180 }
2181 
2182 /**
2183  * rescuer_thread - the rescuer thread function
2184  * @__rescuer: self
2185  *
2186  * Workqueue rescuer thread function.  There's one rescuer for each
2187  * workqueue which has WQ_MEM_RECLAIM set.
2188  *
2189  * Regular work processing on a pool may block trying to create a new
2190  * worker which uses GFP_KERNEL allocation which has slight chance of
2191  * developing into deadlock if some works currently on the same queue
2192  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2193  * the problem rescuer solves.
2194  *
2195  * When such condition is possible, the pool summons rescuers of all
2196  * workqueues which have works queued on the pool and let them process
2197  * those works so that forward progress can be guaranteed.
2198  *
2199  * This should happen rarely.
2200  *
2201  * Return: 0
2202  */
2203 static int rescuer_thread(void *__rescuer)
2204 {
2205 	struct worker *rescuer = __rescuer;
2206 	struct workqueue_struct *wq = rescuer->rescue_wq;
2207 	struct list_head *scheduled = &rescuer->scheduled;
2208 	bool should_stop;
2209 
2210 	set_user_nice(current, RESCUER_NICE_LEVEL);
2211 
2212 	/*
2213 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2214 	 * doesn't participate in concurrency management.
2215 	 */
2216 	rescuer->task->flags |= PF_WQ_WORKER;
2217 repeat:
2218 	set_current_state(TASK_INTERRUPTIBLE);
2219 
2220 	/*
2221 	 * By the time the rescuer is requested to stop, the workqueue
2222 	 * shouldn't have any work pending, but @wq->maydays may still have
2223 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2224 	 * all the work items before the rescuer got to them.  Go through
2225 	 * @wq->maydays processing before acting on should_stop so that the
2226 	 * list is always empty on exit.
2227 	 */
2228 	should_stop = kthread_should_stop();
2229 
2230 	/* see whether any pwq is asking for help */
2231 	spin_lock_irq(&wq_mayday_lock);
2232 
2233 	while (!list_empty(&wq->maydays)) {
2234 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2235 					struct pool_workqueue, mayday_node);
2236 		struct worker_pool *pool = pwq->pool;
2237 		struct work_struct *work, *n;
2238 
2239 		__set_current_state(TASK_RUNNING);
2240 		list_del_init(&pwq->mayday_node);
2241 
2242 		spin_unlock_irq(&wq_mayday_lock);
2243 
2244 		worker_attach_to_pool(rescuer, pool);
2245 
2246 		spin_lock_irq(&pool->lock);
2247 		rescuer->pool = pool;
2248 
2249 		/*
2250 		 * Slurp in all works issued via this workqueue and
2251 		 * process'em.
2252 		 */
2253 		WARN_ON_ONCE(!list_empty(scheduled));
2254 		list_for_each_entry_safe(work, n, &pool->worklist, entry)
2255 			if (get_work_pwq(work) == pwq)
2256 				move_linked_works(work, scheduled, &n);
2257 
2258 		if (!list_empty(scheduled)) {
2259 			process_scheduled_works(rescuer);
2260 
2261 			/*
2262 			 * The above execution of rescued work items could
2263 			 * have created more to rescue through
2264 			 * pwq_activate_first_delayed() or chained
2265 			 * queueing.  Let's put @pwq back on mayday list so
2266 			 * that such back-to-back work items, which may be
2267 			 * being used to relieve memory pressure, don't
2268 			 * incur MAYDAY_INTERVAL delay inbetween.
2269 			 */
2270 			if (need_to_create_worker(pool)) {
2271 				spin_lock(&wq_mayday_lock);
2272 				get_pwq(pwq);
2273 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2274 				spin_unlock(&wq_mayday_lock);
2275 			}
2276 		}
2277 
2278 		/*
2279 		 * Put the reference grabbed by send_mayday().  @pool won't
2280 		 * go away while we're still attached to it.
2281 		 */
2282 		put_pwq(pwq);
2283 
2284 		/*
2285 		 * Leave this pool.  If need_more_worker() is %true, notify a
2286 		 * regular worker; otherwise, we end up with 0 concurrency
2287 		 * and stalling the execution.
2288 		 */
2289 		if (need_more_worker(pool))
2290 			wake_up_worker(pool);
2291 
2292 		rescuer->pool = NULL;
2293 		spin_unlock_irq(&pool->lock);
2294 
2295 		worker_detach_from_pool(rescuer, pool);
2296 
2297 		spin_lock_irq(&wq_mayday_lock);
2298 	}
2299 
2300 	spin_unlock_irq(&wq_mayday_lock);
2301 
2302 	if (should_stop) {
2303 		__set_current_state(TASK_RUNNING);
2304 		rescuer->task->flags &= ~PF_WQ_WORKER;
2305 		return 0;
2306 	}
2307 
2308 	/* rescuers should never participate in concurrency management */
2309 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2310 	schedule();
2311 	goto repeat;
2312 }
2313 
2314 struct wq_barrier {
2315 	struct work_struct	work;
2316 	struct completion	done;
2317 	struct task_struct	*task;	/* purely informational */
2318 };
2319 
2320 static void wq_barrier_func(struct work_struct *work)
2321 {
2322 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2323 	complete(&barr->done);
2324 }
2325 
2326 /**
2327  * insert_wq_barrier - insert a barrier work
2328  * @pwq: pwq to insert barrier into
2329  * @barr: wq_barrier to insert
2330  * @target: target work to attach @barr to
2331  * @worker: worker currently executing @target, NULL if @target is not executing
2332  *
2333  * @barr is linked to @target such that @barr is completed only after
2334  * @target finishes execution.  Please note that the ordering
2335  * guarantee is observed only with respect to @target and on the local
2336  * cpu.
2337  *
2338  * Currently, a queued barrier can't be canceled.  This is because
2339  * try_to_grab_pending() can't determine whether the work to be
2340  * grabbed is at the head of the queue and thus can't clear LINKED
2341  * flag of the previous work while there must be a valid next work
2342  * after a work with LINKED flag set.
2343  *
2344  * Note that when @worker is non-NULL, @target may be modified
2345  * underneath us, so we can't reliably determine pwq from @target.
2346  *
2347  * CONTEXT:
2348  * spin_lock_irq(pool->lock).
2349  */
2350 static void insert_wq_barrier(struct pool_workqueue *pwq,
2351 			      struct wq_barrier *barr,
2352 			      struct work_struct *target, struct worker *worker)
2353 {
2354 	struct list_head *head;
2355 	unsigned int linked = 0;
2356 
2357 	/*
2358 	 * debugobject calls are safe here even with pool->lock locked
2359 	 * as we know for sure that this will not trigger any of the
2360 	 * checks and call back into the fixup functions where we
2361 	 * might deadlock.
2362 	 */
2363 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2364 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2365 	init_completion(&barr->done);
2366 	barr->task = current;
2367 
2368 	/*
2369 	 * If @target is currently being executed, schedule the
2370 	 * barrier to the worker; otherwise, put it after @target.
2371 	 */
2372 	if (worker)
2373 		head = worker->scheduled.next;
2374 	else {
2375 		unsigned long *bits = work_data_bits(target);
2376 
2377 		head = target->entry.next;
2378 		/* there can already be other linked works, inherit and set */
2379 		linked = *bits & WORK_STRUCT_LINKED;
2380 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2381 	}
2382 
2383 	debug_work_activate(&barr->work);
2384 	insert_work(pwq, &barr->work, head,
2385 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2386 }
2387 
2388 /**
2389  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2390  * @wq: workqueue being flushed
2391  * @flush_color: new flush color, < 0 for no-op
2392  * @work_color: new work color, < 0 for no-op
2393  *
2394  * Prepare pwqs for workqueue flushing.
2395  *
2396  * If @flush_color is non-negative, flush_color on all pwqs should be
2397  * -1.  If no pwq has in-flight commands at the specified color, all
2398  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2399  * has in flight commands, its pwq->flush_color is set to
2400  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2401  * wakeup logic is armed and %true is returned.
2402  *
2403  * The caller should have initialized @wq->first_flusher prior to
2404  * calling this function with non-negative @flush_color.  If
2405  * @flush_color is negative, no flush color update is done and %false
2406  * is returned.
2407  *
2408  * If @work_color is non-negative, all pwqs should have the same
2409  * work_color which is previous to @work_color and all will be
2410  * advanced to @work_color.
2411  *
2412  * CONTEXT:
2413  * mutex_lock(wq->mutex).
2414  *
2415  * Return:
2416  * %true if @flush_color >= 0 and there's something to flush.  %false
2417  * otherwise.
2418  */
2419 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2420 				      int flush_color, int work_color)
2421 {
2422 	bool wait = false;
2423 	struct pool_workqueue *pwq;
2424 
2425 	if (flush_color >= 0) {
2426 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2427 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2428 	}
2429 
2430 	for_each_pwq(pwq, wq) {
2431 		struct worker_pool *pool = pwq->pool;
2432 
2433 		spin_lock_irq(&pool->lock);
2434 
2435 		if (flush_color >= 0) {
2436 			WARN_ON_ONCE(pwq->flush_color != -1);
2437 
2438 			if (pwq->nr_in_flight[flush_color]) {
2439 				pwq->flush_color = flush_color;
2440 				atomic_inc(&wq->nr_pwqs_to_flush);
2441 				wait = true;
2442 			}
2443 		}
2444 
2445 		if (work_color >= 0) {
2446 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2447 			pwq->work_color = work_color;
2448 		}
2449 
2450 		spin_unlock_irq(&pool->lock);
2451 	}
2452 
2453 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2454 		complete(&wq->first_flusher->done);
2455 
2456 	return wait;
2457 }
2458 
2459 /**
2460  * flush_workqueue - ensure that any scheduled work has run to completion.
2461  * @wq: workqueue to flush
2462  *
2463  * This function sleeps until all work items which were queued on entry
2464  * have finished execution, but it is not livelocked by new incoming ones.
2465  */
2466 void flush_workqueue(struct workqueue_struct *wq)
2467 {
2468 	struct wq_flusher this_flusher = {
2469 		.list = LIST_HEAD_INIT(this_flusher.list),
2470 		.flush_color = -1,
2471 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2472 	};
2473 	int next_color;
2474 
2475 	lock_map_acquire(&wq->lockdep_map);
2476 	lock_map_release(&wq->lockdep_map);
2477 
2478 	mutex_lock(&wq->mutex);
2479 
2480 	/*
2481 	 * Start-to-wait phase
2482 	 */
2483 	next_color = work_next_color(wq->work_color);
2484 
2485 	if (next_color != wq->flush_color) {
2486 		/*
2487 		 * Color space is not full.  The current work_color
2488 		 * becomes our flush_color and work_color is advanced
2489 		 * by one.
2490 		 */
2491 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2492 		this_flusher.flush_color = wq->work_color;
2493 		wq->work_color = next_color;
2494 
2495 		if (!wq->first_flusher) {
2496 			/* no flush in progress, become the first flusher */
2497 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2498 
2499 			wq->first_flusher = &this_flusher;
2500 
2501 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2502 						       wq->work_color)) {
2503 				/* nothing to flush, done */
2504 				wq->flush_color = next_color;
2505 				wq->first_flusher = NULL;
2506 				goto out_unlock;
2507 			}
2508 		} else {
2509 			/* wait in queue */
2510 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2511 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2512 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2513 		}
2514 	} else {
2515 		/*
2516 		 * Oops, color space is full, wait on overflow queue.
2517 		 * The next flush completion will assign us
2518 		 * flush_color and transfer to flusher_queue.
2519 		 */
2520 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2521 	}
2522 
2523 	mutex_unlock(&wq->mutex);
2524 
2525 	wait_for_completion(&this_flusher.done);
2526 
2527 	/*
2528 	 * Wake-up-and-cascade phase
2529 	 *
2530 	 * First flushers are responsible for cascading flushes and
2531 	 * handling overflow.  Non-first flushers can simply return.
2532 	 */
2533 	if (wq->first_flusher != &this_flusher)
2534 		return;
2535 
2536 	mutex_lock(&wq->mutex);
2537 
2538 	/* we might have raced, check again with mutex held */
2539 	if (wq->first_flusher != &this_flusher)
2540 		goto out_unlock;
2541 
2542 	wq->first_flusher = NULL;
2543 
2544 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2545 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2546 
2547 	while (true) {
2548 		struct wq_flusher *next, *tmp;
2549 
2550 		/* complete all the flushers sharing the current flush color */
2551 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2552 			if (next->flush_color != wq->flush_color)
2553 				break;
2554 			list_del_init(&next->list);
2555 			complete(&next->done);
2556 		}
2557 
2558 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2559 			     wq->flush_color != work_next_color(wq->work_color));
2560 
2561 		/* this flush_color is finished, advance by one */
2562 		wq->flush_color = work_next_color(wq->flush_color);
2563 
2564 		/* one color has been freed, handle overflow queue */
2565 		if (!list_empty(&wq->flusher_overflow)) {
2566 			/*
2567 			 * Assign the same color to all overflowed
2568 			 * flushers, advance work_color and append to
2569 			 * flusher_queue.  This is the start-to-wait
2570 			 * phase for these overflowed flushers.
2571 			 */
2572 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2573 				tmp->flush_color = wq->work_color;
2574 
2575 			wq->work_color = work_next_color(wq->work_color);
2576 
2577 			list_splice_tail_init(&wq->flusher_overflow,
2578 					      &wq->flusher_queue);
2579 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2580 		}
2581 
2582 		if (list_empty(&wq->flusher_queue)) {
2583 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2584 			break;
2585 		}
2586 
2587 		/*
2588 		 * Need to flush more colors.  Make the next flusher
2589 		 * the new first flusher and arm pwqs.
2590 		 */
2591 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2592 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2593 
2594 		list_del_init(&next->list);
2595 		wq->first_flusher = next;
2596 
2597 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2598 			break;
2599 
2600 		/*
2601 		 * Meh... this color is already done, clear first
2602 		 * flusher and repeat cascading.
2603 		 */
2604 		wq->first_flusher = NULL;
2605 	}
2606 
2607 out_unlock:
2608 	mutex_unlock(&wq->mutex);
2609 }
2610 EXPORT_SYMBOL_GPL(flush_workqueue);
2611 
2612 /**
2613  * drain_workqueue - drain a workqueue
2614  * @wq: workqueue to drain
2615  *
2616  * Wait until the workqueue becomes empty.  While draining is in progress,
2617  * only chain queueing is allowed.  IOW, only currently pending or running
2618  * work items on @wq can queue further work items on it.  @wq is flushed
2619  * repeatedly until it becomes empty.  The number of flushing is detemined
2620  * by the depth of chaining and should be relatively short.  Whine if it
2621  * takes too long.
2622  */
2623 void drain_workqueue(struct workqueue_struct *wq)
2624 {
2625 	unsigned int flush_cnt = 0;
2626 	struct pool_workqueue *pwq;
2627 
2628 	/*
2629 	 * __queue_work() needs to test whether there are drainers, is much
2630 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2631 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2632 	 */
2633 	mutex_lock(&wq->mutex);
2634 	if (!wq->nr_drainers++)
2635 		wq->flags |= __WQ_DRAINING;
2636 	mutex_unlock(&wq->mutex);
2637 reflush:
2638 	flush_workqueue(wq);
2639 
2640 	mutex_lock(&wq->mutex);
2641 
2642 	for_each_pwq(pwq, wq) {
2643 		bool drained;
2644 
2645 		spin_lock_irq(&pwq->pool->lock);
2646 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2647 		spin_unlock_irq(&pwq->pool->lock);
2648 
2649 		if (drained)
2650 			continue;
2651 
2652 		if (++flush_cnt == 10 ||
2653 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2654 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2655 				wq->name, flush_cnt);
2656 
2657 		mutex_unlock(&wq->mutex);
2658 		goto reflush;
2659 	}
2660 
2661 	if (!--wq->nr_drainers)
2662 		wq->flags &= ~__WQ_DRAINING;
2663 	mutex_unlock(&wq->mutex);
2664 }
2665 EXPORT_SYMBOL_GPL(drain_workqueue);
2666 
2667 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2668 {
2669 	struct worker *worker = NULL;
2670 	struct worker_pool *pool;
2671 	struct pool_workqueue *pwq;
2672 
2673 	might_sleep();
2674 
2675 	local_irq_disable();
2676 	pool = get_work_pool(work);
2677 	if (!pool) {
2678 		local_irq_enable();
2679 		return false;
2680 	}
2681 
2682 	spin_lock(&pool->lock);
2683 	/* see the comment in try_to_grab_pending() with the same code */
2684 	pwq = get_work_pwq(work);
2685 	if (pwq) {
2686 		if (unlikely(pwq->pool != pool))
2687 			goto already_gone;
2688 	} else {
2689 		worker = find_worker_executing_work(pool, work);
2690 		if (!worker)
2691 			goto already_gone;
2692 		pwq = worker->current_pwq;
2693 	}
2694 
2695 	insert_wq_barrier(pwq, barr, work, worker);
2696 	spin_unlock_irq(&pool->lock);
2697 
2698 	/*
2699 	 * If @max_active is 1 or rescuer is in use, flushing another work
2700 	 * item on the same workqueue may lead to deadlock.  Make sure the
2701 	 * flusher is not running on the same workqueue by verifying write
2702 	 * access.
2703 	 */
2704 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2705 		lock_map_acquire(&pwq->wq->lockdep_map);
2706 	else
2707 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2708 	lock_map_release(&pwq->wq->lockdep_map);
2709 
2710 	return true;
2711 already_gone:
2712 	spin_unlock_irq(&pool->lock);
2713 	return false;
2714 }
2715 
2716 /**
2717  * flush_work - wait for a work to finish executing the last queueing instance
2718  * @work: the work to flush
2719  *
2720  * Wait until @work has finished execution.  @work is guaranteed to be idle
2721  * on return if it hasn't been requeued since flush started.
2722  *
2723  * Return:
2724  * %true if flush_work() waited for the work to finish execution,
2725  * %false if it was already idle.
2726  */
2727 bool flush_work(struct work_struct *work)
2728 {
2729 	struct wq_barrier barr;
2730 
2731 	lock_map_acquire(&work->lockdep_map);
2732 	lock_map_release(&work->lockdep_map);
2733 
2734 	if (start_flush_work(work, &barr)) {
2735 		wait_for_completion(&barr.done);
2736 		destroy_work_on_stack(&barr.work);
2737 		return true;
2738 	} else {
2739 		return false;
2740 	}
2741 }
2742 EXPORT_SYMBOL_GPL(flush_work);
2743 
2744 struct cwt_wait {
2745 	wait_queue_t		wait;
2746 	struct work_struct	*work;
2747 };
2748 
2749 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2750 {
2751 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2752 
2753 	if (cwait->work != key)
2754 		return 0;
2755 	return autoremove_wake_function(wait, mode, sync, key);
2756 }
2757 
2758 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2759 {
2760 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2761 	unsigned long flags;
2762 	int ret;
2763 
2764 	do {
2765 		ret = try_to_grab_pending(work, is_dwork, &flags);
2766 		/*
2767 		 * If someone else is already canceling, wait for it to
2768 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2769 		 * because we may get scheduled between @work's completion
2770 		 * and the other canceling task resuming and clearing
2771 		 * CANCELING - flush_work() will return false immediately
2772 		 * as @work is no longer busy, try_to_grab_pending() will
2773 		 * return -ENOENT as @work is still being canceled and the
2774 		 * other canceling task won't be able to clear CANCELING as
2775 		 * we're hogging the CPU.
2776 		 *
2777 		 * Let's wait for completion using a waitqueue.  As this
2778 		 * may lead to the thundering herd problem, use a custom
2779 		 * wake function which matches @work along with exclusive
2780 		 * wait and wakeup.
2781 		 */
2782 		if (unlikely(ret == -ENOENT)) {
2783 			struct cwt_wait cwait;
2784 
2785 			init_wait(&cwait.wait);
2786 			cwait.wait.func = cwt_wakefn;
2787 			cwait.work = work;
2788 
2789 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2790 						  TASK_UNINTERRUPTIBLE);
2791 			if (work_is_canceling(work))
2792 				schedule();
2793 			finish_wait(&cancel_waitq, &cwait.wait);
2794 		}
2795 	} while (unlikely(ret < 0));
2796 
2797 	/* tell other tasks trying to grab @work to back off */
2798 	mark_work_canceling(work);
2799 	local_irq_restore(flags);
2800 
2801 	flush_work(work);
2802 	clear_work_data(work);
2803 
2804 	/*
2805 	 * Paired with prepare_to_wait() above so that either
2806 	 * waitqueue_active() is visible here or !work_is_canceling() is
2807 	 * visible there.
2808 	 */
2809 	smp_mb();
2810 	if (waitqueue_active(&cancel_waitq))
2811 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2812 
2813 	return ret;
2814 }
2815 
2816 /**
2817  * cancel_work_sync - cancel a work and wait for it to finish
2818  * @work: the work to cancel
2819  *
2820  * Cancel @work and wait for its execution to finish.  This function
2821  * can be used even if the work re-queues itself or migrates to
2822  * another workqueue.  On return from this function, @work is
2823  * guaranteed to be not pending or executing on any CPU.
2824  *
2825  * cancel_work_sync(&delayed_work->work) must not be used for
2826  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2827  *
2828  * The caller must ensure that the workqueue on which @work was last
2829  * queued can't be destroyed before this function returns.
2830  *
2831  * Return:
2832  * %true if @work was pending, %false otherwise.
2833  */
2834 bool cancel_work_sync(struct work_struct *work)
2835 {
2836 	return __cancel_work_timer(work, false);
2837 }
2838 EXPORT_SYMBOL_GPL(cancel_work_sync);
2839 
2840 /**
2841  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2842  * @dwork: the delayed work to flush
2843  *
2844  * Delayed timer is cancelled and the pending work is queued for
2845  * immediate execution.  Like flush_work(), this function only
2846  * considers the last queueing instance of @dwork.
2847  *
2848  * Return:
2849  * %true if flush_work() waited for the work to finish execution,
2850  * %false if it was already idle.
2851  */
2852 bool flush_delayed_work(struct delayed_work *dwork)
2853 {
2854 	local_irq_disable();
2855 	if (del_timer_sync(&dwork->timer))
2856 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2857 	local_irq_enable();
2858 	return flush_work(&dwork->work);
2859 }
2860 EXPORT_SYMBOL(flush_delayed_work);
2861 
2862 /**
2863  * cancel_delayed_work - cancel a delayed work
2864  * @dwork: delayed_work to cancel
2865  *
2866  * Kill off a pending delayed_work.
2867  *
2868  * Return: %true if @dwork was pending and canceled; %false if it wasn't
2869  * pending.
2870  *
2871  * Note:
2872  * The work callback function may still be running on return, unless
2873  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
2874  * use cancel_delayed_work_sync() to wait on it.
2875  *
2876  * This function is safe to call from any context including IRQ handler.
2877  */
2878 bool cancel_delayed_work(struct delayed_work *dwork)
2879 {
2880 	unsigned long flags;
2881 	int ret;
2882 
2883 	do {
2884 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2885 	} while (unlikely(ret == -EAGAIN));
2886 
2887 	if (unlikely(ret < 0))
2888 		return false;
2889 
2890 	set_work_pool_and_clear_pending(&dwork->work,
2891 					get_work_pool_id(&dwork->work));
2892 	local_irq_restore(flags);
2893 	return ret;
2894 }
2895 EXPORT_SYMBOL(cancel_delayed_work);
2896 
2897 /**
2898  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2899  * @dwork: the delayed work cancel
2900  *
2901  * This is cancel_work_sync() for delayed works.
2902  *
2903  * Return:
2904  * %true if @dwork was pending, %false otherwise.
2905  */
2906 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2907 {
2908 	return __cancel_work_timer(&dwork->work, true);
2909 }
2910 EXPORT_SYMBOL(cancel_delayed_work_sync);
2911 
2912 /**
2913  * schedule_on_each_cpu - execute a function synchronously on each online CPU
2914  * @func: the function to call
2915  *
2916  * schedule_on_each_cpu() executes @func on each online CPU using the
2917  * system workqueue and blocks until all CPUs have completed.
2918  * schedule_on_each_cpu() is very slow.
2919  *
2920  * Return:
2921  * 0 on success, -errno on failure.
2922  */
2923 int schedule_on_each_cpu(work_func_t func)
2924 {
2925 	int cpu;
2926 	struct work_struct __percpu *works;
2927 
2928 	works = alloc_percpu(struct work_struct);
2929 	if (!works)
2930 		return -ENOMEM;
2931 
2932 	get_online_cpus();
2933 
2934 	for_each_online_cpu(cpu) {
2935 		struct work_struct *work = per_cpu_ptr(works, cpu);
2936 
2937 		INIT_WORK(work, func);
2938 		schedule_work_on(cpu, work);
2939 	}
2940 
2941 	for_each_online_cpu(cpu)
2942 		flush_work(per_cpu_ptr(works, cpu));
2943 
2944 	put_online_cpus();
2945 	free_percpu(works);
2946 	return 0;
2947 }
2948 
2949 /**
2950  * flush_scheduled_work - ensure that any scheduled work has run to completion.
2951  *
2952  * Forces execution of the kernel-global workqueue and blocks until its
2953  * completion.
2954  *
2955  * Think twice before calling this function!  It's very easy to get into
2956  * trouble if you don't take great care.  Either of the following situations
2957  * will lead to deadlock:
2958  *
2959  *	One of the work items currently on the workqueue needs to acquire
2960  *	a lock held by your code or its caller.
2961  *
2962  *	Your code is running in the context of a work routine.
2963  *
2964  * They will be detected by lockdep when they occur, but the first might not
2965  * occur very often.  It depends on what work items are on the workqueue and
2966  * what locks they need, which you have no control over.
2967  *
2968  * In most situations flushing the entire workqueue is overkill; you merely
2969  * need to know that a particular work item isn't queued and isn't running.
2970  * In such cases you should use cancel_delayed_work_sync() or
2971  * cancel_work_sync() instead.
2972  */
2973 void flush_scheduled_work(void)
2974 {
2975 	flush_workqueue(system_wq);
2976 }
2977 EXPORT_SYMBOL(flush_scheduled_work);
2978 
2979 /**
2980  * execute_in_process_context - reliably execute the routine with user context
2981  * @fn:		the function to execute
2982  * @ew:		guaranteed storage for the execute work structure (must
2983  *		be available when the work executes)
2984  *
2985  * Executes the function immediately if process context is available,
2986  * otherwise schedules the function for delayed execution.
2987  *
2988  * Return:	0 - function was executed
2989  *		1 - function was scheduled for execution
2990  */
2991 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2992 {
2993 	if (!in_interrupt()) {
2994 		fn(&ew->work);
2995 		return 0;
2996 	}
2997 
2998 	INIT_WORK(&ew->work, fn);
2999 	schedule_work(&ew->work);
3000 
3001 	return 1;
3002 }
3003 EXPORT_SYMBOL_GPL(execute_in_process_context);
3004 
3005 /**
3006  * free_workqueue_attrs - free a workqueue_attrs
3007  * @attrs: workqueue_attrs to free
3008  *
3009  * Undo alloc_workqueue_attrs().
3010  */
3011 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3012 {
3013 	if (attrs) {
3014 		free_cpumask_var(attrs->cpumask);
3015 		kfree(attrs);
3016 	}
3017 }
3018 
3019 /**
3020  * alloc_workqueue_attrs - allocate a workqueue_attrs
3021  * @gfp_mask: allocation mask to use
3022  *
3023  * Allocate a new workqueue_attrs, initialize with default settings and
3024  * return it.
3025  *
3026  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3027  */
3028 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3029 {
3030 	struct workqueue_attrs *attrs;
3031 
3032 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3033 	if (!attrs)
3034 		goto fail;
3035 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3036 		goto fail;
3037 
3038 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3039 	return attrs;
3040 fail:
3041 	free_workqueue_attrs(attrs);
3042 	return NULL;
3043 }
3044 
3045 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3046 				 const struct workqueue_attrs *from)
3047 {
3048 	to->nice = from->nice;
3049 	cpumask_copy(to->cpumask, from->cpumask);
3050 	/*
3051 	 * Unlike hash and equality test, this function doesn't ignore
3052 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3053 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3054 	 */
3055 	to->no_numa = from->no_numa;
3056 }
3057 
3058 /* hash value of the content of @attr */
3059 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3060 {
3061 	u32 hash = 0;
3062 
3063 	hash = jhash_1word(attrs->nice, hash);
3064 	hash = jhash(cpumask_bits(attrs->cpumask),
3065 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3066 	return hash;
3067 }
3068 
3069 /* content equality test */
3070 static bool wqattrs_equal(const struct workqueue_attrs *a,
3071 			  const struct workqueue_attrs *b)
3072 {
3073 	if (a->nice != b->nice)
3074 		return false;
3075 	if (!cpumask_equal(a->cpumask, b->cpumask))
3076 		return false;
3077 	return true;
3078 }
3079 
3080 /**
3081  * init_worker_pool - initialize a newly zalloc'd worker_pool
3082  * @pool: worker_pool to initialize
3083  *
3084  * Initiailize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3085  *
3086  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3087  * inside @pool proper are initialized and put_unbound_pool() can be called
3088  * on @pool safely to release it.
3089  */
3090 static int init_worker_pool(struct worker_pool *pool)
3091 {
3092 	spin_lock_init(&pool->lock);
3093 	pool->id = -1;
3094 	pool->cpu = -1;
3095 	pool->node = NUMA_NO_NODE;
3096 	pool->flags |= POOL_DISASSOCIATED;
3097 	INIT_LIST_HEAD(&pool->worklist);
3098 	INIT_LIST_HEAD(&pool->idle_list);
3099 	hash_init(pool->busy_hash);
3100 
3101 	init_timer_deferrable(&pool->idle_timer);
3102 	pool->idle_timer.function = idle_worker_timeout;
3103 	pool->idle_timer.data = (unsigned long)pool;
3104 
3105 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3106 		    (unsigned long)pool);
3107 
3108 	mutex_init(&pool->manager_arb);
3109 	mutex_init(&pool->attach_mutex);
3110 	INIT_LIST_HEAD(&pool->workers);
3111 
3112 	ida_init(&pool->worker_ida);
3113 	INIT_HLIST_NODE(&pool->hash_node);
3114 	pool->refcnt = 1;
3115 
3116 	/* shouldn't fail above this point */
3117 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3118 	if (!pool->attrs)
3119 		return -ENOMEM;
3120 	return 0;
3121 }
3122 
3123 static void rcu_free_wq(struct rcu_head *rcu)
3124 {
3125 	struct workqueue_struct *wq =
3126 		container_of(rcu, struct workqueue_struct, rcu);
3127 
3128 	if (!(wq->flags & WQ_UNBOUND))
3129 		free_percpu(wq->cpu_pwqs);
3130 	else
3131 		free_workqueue_attrs(wq->unbound_attrs);
3132 
3133 	kfree(wq->rescuer);
3134 	kfree(wq);
3135 }
3136 
3137 static void rcu_free_pool(struct rcu_head *rcu)
3138 {
3139 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3140 
3141 	ida_destroy(&pool->worker_ida);
3142 	free_workqueue_attrs(pool->attrs);
3143 	kfree(pool);
3144 }
3145 
3146 /**
3147  * put_unbound_pool - put a worker_pool
3148  * @pool: worker_pool to put
3149  *
3150  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3151  * safe manner.  get_unbound_pool() calls this function on its failure path
3152  * and this function should be able to release pools which went through,
3153  * successfully or not, init_worker_pool().
3154  *
3155  * Should be called with wq_pool_mutex held.
3156  */
3157 static void put_unbound_pool(struct worker_pool *pool)
3158 {
3159 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3160 	struct worker *worker;
3161 
3162 	lockdep_assert_held(&wq_pool_mutex);
3163 
3164 	if (--pool->refcnt)
3165 		return;
3166 
3167 	/* sanity checks */
3168 	if (WARN_ON(!(pool->cpu < 0)) ||
3169 	    WARN_ON(!list_empty(&pool->worklist)))
3170 		return;
3171 
3172 	/* release id and unhash */
3173 	if (pool->id >= 0)
3174 		idr_remove(&worker_pool_idr, pool->id);
3175 	hash_del(&pool->hash_node);
3176 
3177 	/*
3178 	 * Become the manager and destroy all workers.  Grabbing
3179 	 * manager_arb prevents @pool's workers from blocking on
3180 	 * attach_mutex.
3181 	 */
3182 	mutex_lock(&pool->manager_arb);
3183 
3184 	spin_lock_irq(&pool->lock);
3185 	while ((worker = first_idle_worker(pool)))
3186 		destroy_worker(worker);
3187 	WARN_ON(pool->nr_workers || pool->nr_idle);
3188 	spin_unlock_irq(&pool->lock);
3189 
3190 	mutex_lock(&pool->attach_mutex);
3191 	if (!list_empty(&pool->workers))
3192 		pool->detach_completion = &detach_completion;
3193 	mutex_unlock(&pool->attach_mutex);
3194 
3195 	if (pool->detach_completion)
3196 		wait_for_completion(pool->detach_completion);
3197 
3198 	mutex_unlock(&pool->manager_arb);
3199 
3200 	/* shut down the timers */
3201 	del_timer_sync(&pool->idle_timer);
3202 	del_timer_sync(&pool->mayday_timer);
3203 
3204 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3205 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3206 }
3207 
3208 /**
3209  * get_unbound_pool - get a worker_pool with the specified attributes
3210  * @attrs: the attributes of the worker_pool to get
3211  *
3212  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3213  * reference count and return it.  If there already is a matching
3214  * worker_pool, it will be used; otherwise, this function attempts to
3215  * create a new one.
3216  *
3217  * Should be called with wq_pool_mutex held.
3218  *
3219  * Return: On success, a worker_pool with the same attributes as @attrs.
3220  * On failure, %NULL.
3221  */
3222 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3223 {
3224 	u32 hash = wqattrs_hash(attrs);
3225 	struct worker_pool *pool;
3226 	int node;
3227 
3228 	lockdep_assert_held(&wq_pool_mutex);
3229 
3230 	/* do we already have a matching pool? */
3231 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3232 		if (wqattrs_equal(pool->attrs, attrs)) {
3233 			pool->refcnt++;
3234 			return pool;
3235 		}
3236 	}
3237 
3238 	/* nope, create a new one */
3239 	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3240 	if (!pool || init_worker_pool(pool) < 0)
3241 		goto fail;
3242 
3243 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3244 	copy_workqueue_attrs(pool->attrs, attrs);
3245 
3246 	/*
3247 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3248 	 * 'struct workqueue_attrs' comments for detail.
3249 	 */
3250 	pool->attrs->no_numa = false;
3251 
3252 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3253 	if (wq_numa_enabled) {
3254 		for_each_node(node) {
3255 			if (cpumask_subset(pool->attrs->cpumask,
3256 					   wq_numa_possible_cpumask[node])) {
3257 				pool->node = node;
3258 				break;
3259 			}
3260 		}
3261 	}
3262 
3263 	if (worker_pool_assign_id(pool) < 0)
3264 		goto fail;
3265 
3266 	/* create and start the initial worker */
3267 	if (!create_worker(pool))
3268 		goto fail;
3269 
3270 	/* install */
3271 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3272 
3273 	return pool;
3274 fail:
3275 	if (pool)
3276 		put_unbound_pool(pool);
3277 	return NULL;
3278 }
3279 
3280 static void rcu_free_pwq(struct rcu_head *rcu)
3281 {
3282 	kmem_cache_free(pwq_cache,
3283 			container_of(rcu, struct pool_workqueue, rcu));
3284 }
3285 
3286 /*
3287  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3288  * and needs to be destroyed.
3289  */
3290 static void pwq_unbound_release_workfn(struct work_struct *work)
3291 {
3292 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3293 						  unbound_release_work);
3294 	struct workqueue_struct *wq = pwq->wq;
3295 	struct worker_pool *pool = pwq->pool;
3296 	bool is_last;
3297 
3298 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3299 		return;
3300 
3301 	mutex_lock(&wq->mutex);
3302 	list_del_rcu(&pwq->pwqs_node);
3303 	is_last = list_empty(&wq->pwqs);
3304 	mutex_unlock(&wq->mutex);
3305 
3306 	mutex_lock(&wq_pool_mutex);
3307 	put_unbound_pool(pool);
3308 	mutex_unlock(&wq_pool_mutex);
3309 
3310 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3311 
3312 	/*
3313 	 * If we're the last pwq going away, @wq is already dead and no one
3314 	 * is gonna access it anymore.  Schedule RCU free.
3315 	 */
3316 	if (is_last)
3317 		call_rcu_sched(&wq->rcu, rcu_free_wq);
3318 }
3319 
3320 /**
3321  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3322  * @pwq: target pool_workqueue
3323  *
3324  * If @pwq isn't freezing, set @pwq->max_active to the associated
3325  * workqueue's saved_max_active and activate delayed work items
3326  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3327  */
3328 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3329 {
3330 	struct workqueue_struct *wq = pwq->wq;
3331 	bool freezable = wq->flags & WQ_FREEZABLE;
3332 
3333 	/* for @wq->saved_max_active */
3334 	lockdep_assert_held(&wq->mutex);
3335 
3336 	/* fast exit for non-freezable wqs */
3337 	if (!freezable && pwq->max_active == wq->saved_max_active)
3338 		return;
3339 
3340 	spin_lock_irq(&pwq->pool->lock);
3341 
3342 	/*
3343 	 * During [un]freezing, the caller is responsible for ensuring that
3344 	 * this function is called at least once after @workqueue_freezing
3345 	 * is updated and visible.
3346 	 */
3347 	if (!freezable || !workqueue_freezing) {
3348 		pwq->max_active = wq->saved_max_active;
3349 
3350 		while (!list_empty(&pwq->delayed_works) &&
3351 		       pwq->nr_active < pwq->max_active)
3352 			pwq_activate_first_delayed(pwq);
3353 
3354 		/*
3355 		 * Need to kick a worker after thawed or an unbound wq's
3356 		 * max_active is bumped.  It's a slow path.  Do it always.
3357 		 */
3358 		wake_up_worker(pwq->pool);
3359 	} else {
3360 		pwq->max_active = 0;
3361 	}
3362 
3363 	spin_unlock_irq(&pwq->pool->lock);
3364 }
3365 
3366 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3367 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3368 		     struct worker_pool *pool)
3369 {
3370 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3371 
3372 	memset(pwq, 0, sizeof(*pwq));
3373 
3374 	pwq->pool = pool;
3375 	pwq->wq = wq;
3376 	pwq->flush_color = -1;
3377 	pwq->refcnt = 1;
3378 	INIT_LIST_HEAD(&pwq->delayed_works);
3379 	INIT_LIST_HEAD(&pwq->pwqs_node);
3380 	INIT_LIST_HEAD(&pwq->mayday_node);
3381 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3382 }
3383 
3384 /* sync @pwq with the current state of its associated wq and link it */
3385 static void link_pwq(struct pool_workqueue *pwq)
3386 {
3387 	struct workqueue_struct *wq = pwq->wq;
3388 
3389 	lockdep_assert_held(&wq->mutex);
3390 
3391 	/* may be called multiple times, ignore if already linked */
3392 	if (!list_empty(&pwq->pwqs_node))
3393 		return;
3394 
3395 	/* set the matching work_color */
3396 	pwq->work_color = wq->work_color;
3397 
3398 	/* sync max_active to the current setting */
3399 	pwq_adjust_max_active(pwq);
3400 
3401 	/* link in @pwq */
3402 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3403 }
3404 
3405 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3406 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3407 					const struct workqueue_attrs *attrs)
3408 {
3409 	struct worker_pool *pool;
3410 	struct pool_workqueue *pwq;
3411 
3412 	lockdep_assert_held(&wq_pool_mutex);
3413 
3414 	pool = get_unbound_pool(attrs);
3415 	if (!pool)
3416 		return NULL;
3417 
3418 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3419 	if (!pwq) {
3420 		put_unbound_pool(pool);
3421 		return NULL;
3422 	}
3423 
3424 	init_pwq(pwq, wq, pool);
3425 	return pwq;
3426 }
3427 
3428 /* undo alloc_unbound_pwq(), used only in the error path */
3429 static void free_unbound_pwq(struct pool_workqueue *pwq)
3430 {
3431 	lockdep_assert_held(&wq_pool_mutex);
3432 
3433 	if (pwq) {
3434 		put_unbound_pool(pwq->pool);
3435 		kmem_cache_free(pwq_cache, pwq);
3436 	}
3437 }
3438 
3439 /**
3440  * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3441  * @attrs: the wq_attrs of interest
3442  * @node: the target NUMA node
3443  * @cpu_going_down: if >= 0, the CPU to consider as offline
3444  * @cpumask: outarg, the resulting cpumask
3445  *
3446  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3447  * @cpu_going_down is >= 0, that cpu is considered offline during
3448  * calculation.  The result is stored in @cpumask.
3449  *
3450  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3451  * enabled and @node has online CPUs requested by @attrs, the returned
3452  * cpumask is the intersection of the possible CPUs of @node and
3453  * @attrs->cpumask.
3454  *
3455  * The caller is responsible for ensuring that the cpumask of @node stays
3456  * stable.
3457  *
3458  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3459  * %false if equal.
3460  */
3461 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3462 				 int cpu_going_down, cpumask_t *cpumask)
3463 {
3464 	if (!wq_numa_enabled || attrs->no_numa)
3465 		goto use_dfl;
3466 
3467 	/* does @node have any online CPUs @attrs wants? */
3468 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3469 	if (cpu_going_down >= 0)
3470 		cpumask_clear_cpu(cpu_going_down, cpumask);
3471 
3472 	if (cpumask_empty(cpumask))
3473 		goto use_dfl;
3474 
3475 	/* yeap, return possible CPUs in @node that @attrs wants */
3476 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3477 	return !cpumask_equal(cpumask, attrs->cpumask);
3478 
3479 use_dfl:
3480 	cpumask_copy(cpumask, attrs->cpumask);
3481 	return false;
3482 }
3483 
3484 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3485 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3486 						   int node,
3487 						   struct pool_workqueue *pwq)
3488 {
3489 	struct pool_workqueue *old_pwq;
3490 
3491 	lockdep_assert_held(&wq->mutex);
3492 
3493 	/* link_pwq() can handle duplicate calls */
3494 	link_pwq(pwq);
3495 
3496 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3497 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3498 	return old_pwq;
3499 }
3500 
3501 /**
3502  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3503  * @wq: the target workqueue
3504  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3505  *
3506  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3507  * machines, this function maps a separate pwq to each NUMA node with
3508  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3509  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3510  * items finish.  Note that a work item which repeatedly requeues itself
3511  * back-to-back will stay on its current pwq.
3512  *
3513  * Performs GFP_KERNEL allocations.
3514  *
3515  * Return: 0 on success and -errno on failure.
3516  */
3517 int apply_workqueue_attrs(struct workqueue_struct *wq,
3518 			  const struct workqueue_attrs *attrs)
3519 {
3520 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3521 	struct pool_workqueue **pwq_tbl, *dfl_pwq;
3522 	int node, ret;
3523 
3524 	/* only unbound workqueues can change attributes */
3525 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3526 		return -EINVAL;
3527 
3528 	/* creating multiple pwqs breaks ordering guarantee */
3529 	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3530 		return -EINVAL;
3531 
3532 	pwq_tbl = kzalloc(nr_node_ids * sizeof(pwq_tbl[0]), GFP_KERNEL);
3533 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3534 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3535 	if (!pwq_tbl || !new_attrs || !tmp_attrs)
3536 		goto enomem;
3537 
3538 	/* make a copy of @attrs and sanitize it */
3539 	copy_workqueue_attrs(new_attrs, attrs);
3540 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3541 
3542 	/*
3543 	 * We may create multiple pwqs with differing cpumasks.  Make a
3544 	 * copy of @new_attrs which will be modified and used to obtain
3545 	 * pools.
3546 	 */
3547 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3548 
3549 	/*
3550 	 * CPUs should stay stable across pwq creations and installations.
3551 	 * Pin CPUs, determine the target cpumask for each node and create
3552 	 * pwqs accordingly.
3553 	 */
3554 	get_online_cpus();
3555 
3556 	mutex_lock(&wq_pool_mutex);
3557 
3558 	/*
3559 	 * If something goes wrong during CPU up/down, we'll fall back to
3560 	 * the default pwq covering whole @attrs->cpumask.  Always create
3561 	 * it even if we don't use it immediately.
3562 	 */
3563 	dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3564 	if (!dfl_pwq)
3565 		goto enomem_pwq;
3566 
3567 	for_each_node(node) {
3568 		if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3569 			pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3570 			if (!pwq_tbl[node])
3571 				goto enomem_pwq;
3572 		} else {
3573 			dfl_pwq->refcnt++;
3574 			pwq_tbl[node] = dfl_pwq;
3575 		}
3576 	}
3577 
3578 	mutex_unlock(&wq_pool_mutex);
3579 
3580 	/* all pwqs have been created successfully, let's install'em */
3581 	mutex_lock(&wq->mutex);
3582 
3583 	copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3584 
3585 	/* save the previous pwq and install the new one */
3586 	for_each_node(node)
3587 		pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3588 
3589 	/* @dfl_pwq might not have been used, ensure it's linked */
3590 	link_pwq(dfl_pwq);
3591 	swap(wq->dfl_pwq, dfl_pwq);
3592 
3593 	mutex_unlock(&wq->mutex);
3594 
3595 	/* put the old pwqs */
3596 	for_each_node(node)
3597 		put_pwq_unlocked(pwq_tbl[node]);
3598 	put_pwq_unlocked(dfl_pwq);
3599 
3600 	put_online_cpus();
3601 	ret = 0;
3602 	/* fall through */
3603 out_free:
3604 	free_workqueue_attrs(tmp_attrs);
3605 	free_workqueue_attrs(new_attrs);
3606 	kfree(pwq_tbl);
3607 	return ret;
3608 
3609 enomem_pwq:
3610 	free_unbound_pwq(dfl_pwq);
3611 	for_each_node(node)
3612 		if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3613 			free_unbound_pwq(pwq_tbl[node]);
3614 	mutex_unlock(&wq_pool_mutex);
3615 	put_online_cpus();
3616 enomem:
3617 	ret = -ENOMEM;
3618 	goto out_free;
3619 }
3620 
3621 /**
3622  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3623  * @wq: the target workqueue
3624  * @cpu: the CPU coming up or going down
3625  * @online: whether @cpu is coming up or going down
3626  *
3627  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3628  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3629  * @wq accordingly.
3630  *
3631  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3632  * falls back to @wq->dfl_pwq which may not be optimal but is always
3633  * correct.
3634  *
3635  * Note that when the last allowed CPU of a NUMA node goes offline for a
3636  * workqueue with a cpumask spanning multiple nodes, the workers which were
3637  * already executing the work items for the workqueue will lose their CPU
3638  * affinity and may execute on any CPU.  This is similar to how per-cpu
3639  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3640  * affinity, it's the user's responsibility to flush the work item from
3641  * CPU_DOWN_PREPARE.
3642  */
3643 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3644 				   bool online)
3645 {
3646 	int node = cpu_to_node(cpu);
3647 	int cpu_off = online ? -1 : cpu;
3648 	struct pool_workqueue *old_pwq = NULL, *pwq;
3649 	struct workqueue_attrs *target_attrs;
3650 	cpumask_t *cpumask;
3651 
3652 	lockdep_assert_held(&wq_pool_mutex);
3653 
3654 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
3655 		return;
3656 
3657 	/*
3658 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3659 	 * Let's use a preallocated one.  The following buf is protected by
3660 	 * CPU hotplug exclusion.
3661 	 */
3662 	target_attrs = wq_update_unbound_numa_attrs_buf;
3663 	cpumask = target_attrs->cpumask;
3664 
3665 	mutex_lock(&wq->mutex);
3666 	if (wq->unbound_attrs->no_numa)
3667 		goto out_unlock;
3668 
3669 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3670 	pwq = unbound_pwq_by_node(wq, node);
3671 
3672 	/*
3673 	 * Let's determine what needs to be done.  If the target cpumask is
3674 	 * different from wq's, we need to compare it to @pwq's and create
3675 	 * a new one if they don't match.  If the target cpumask equals
3676 	 * wq's, the default pwq should be used.
3677 	 */
3678 	if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
3679 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3680 			goto out_unlock;
3681 	} else {
3682 		goto use_dfl_pwq;
3683 	}
3684 
3685 	mutex_unlock(&wq->mutex);
3686 
3687 	/* create a new pwq */
3688 	pwq = alloc_unbound_pwq(wq, target_attrs);
3689 	if (!pwq) {
3690 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3691 			wq->name);
3692 		mutex_lock(&wq->mutex);
3693 		goto use_dfl_pwq;
3694 	}
3695 
3696 	/*
3697 	 * Install the new pwq.  As this function is called only from CPU
3698 	 * hotplug callbacks and applying a new attrs is wrapped with
3699 	 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
3700 	 * inbetween.
3701 	 */
3702 	mutex_lock(&wq->mutex);
3703 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3704 	goto out_unlock;
3705 
3706 use_dfl_pwq:
3707 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3708 	get_pwq(wq->dfl_pwq);
3709 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3710 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3711 out_unlock:
3712 	mutex_unlock(&wq->mutex);
3713 	put_pwq_unlocked(old_pwq);
3714 }
3715 
3716 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3717 {
3718 	bool highpri = wq->flags & WQ_HIGHPRI;
3719 	int cpu, ret;
3720 
3721 	if (!(wq->flags & WQ_UNBOUND)) {
3722 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3723 		if (!wq->cpu_pwqs)
3724 			return -ENOMEM;
3725 
3726 		for_each_possible_cpu(cpu) {
3727 			struct pool_workqueue *pwq =
3728 				per_cpu_ptr(wq->cpu_pwqs, cpu);
3729 			struct worker_pool *cpu_pools =
3730 				per_cpu(cpu_worker_pools, cpu);
3731 
3732 			init_pwq(pwq, wq, &cpu_pools[highpri]);
3733 
3734 			mutex_lock(&wq->mutex);
3735 			link_pwq(pwq);
3736 			mutex_unlock(&wq->mutex);
3737 		}
3738 		return 0;
3739 	} else if (wq->flags & __WQ_ORDERED) {
3740 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3741 		/* there should only be single pwq for ordering guarantee */
3742 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3743 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3744 		     "ordering guarantee broken for workqueue %s\n", wq->name);
3745 		return ret;
3746 	} else {
3747 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3748 	}
3749 }
3750 
3751 static int wq_clamp_max_active(int max_active, unsigned int flags,
3752 			       const char *name)
3753 {
3754 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3755 
3756 	if (max_active < 1 || max_active > lim)
3757 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3758 			max_active, name, 1, lim);
3759 
3760 	return clamp_val(max_active, 1, lim);
3761 }
3762 
3763 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3764 					       unsigned int flags,
3765 					       int max_active,
3766 					       struct lock_class_key *key,
3767 					       const char *lock_name, ...)
3768 {
3769 	size_t tbl_size = 0;
3770 	va_list args;
3771 	struct workqueue_struct *wq;
3772 	struct pool_workqueue *pwq;
3773 
3774 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
3775 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3776 		flags |= WQ_UNBOUND;
3777 
3778 	/* allocate wq and format name */
3779 	if (flags & WQ_UNBOUND)
3780 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3781 
3782 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3783 	if (!wq)
3784 		return NULL;
3785 
3786 	if (flags & WQ_UNBOUND) {
3787 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3788 		if (!wq->unbound_attrs)
3789 			goto err_free_wq;
3790 	}
3791 
3792 	va_start(args, lock_name);
3793 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3794 	va_end(args);
3795 
3796 	max_active = max_active ?: WQ_DFL_ACTIVE;
3797 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3798 
3799 	/* init wq */
3800 	wq->flags = flags;
3801 	wq->saved_max_active = max_active;
3802 	mutex_init(&wq->mutex);
3803 	atomic_set(&wq->nr_pwqs_to_flush, 0);
3804 	INIT_LIST_HEAD(&wq->pwqs);
3805 	INIT_LIST_HEAD(&wq->flusher_queue);
3806 	INIT_LIST_HEAD(&wq->flusher_overflow);
3807 	INIT_LIST_HEAD(&wq->maydays);
3808 
3809 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3810 	INIT_LIST_HEAD(&wq->list);
3811 
3812 	if (alloc_and_link_pwqs(wq) < 0)
3813 		goto err_free_wq;
3814 
3815 	/*
3816 	 * Workqueues which may be used during memory reclaim should
3817 	 * have a rescuer to guarantee forward progress.
3818 	 */
3819 	if (flags & WQ_MEM_RECLAIM) {
3820 		struct worker *rescuer;
3821 
3822 		rescuer = alloc_worker(NUMA_NO_NODE);
3823 		if (!rescuer)
3824 			goto err_destroy;
3825 
3826 		rescuer->rescue_wq = wq;
3827 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3828 					       wq->name);
3829 		if (IS_ERR(rescuer->task)) {
3830 			kfree(rescuer);
3831 			goto err_destroy;
3832 		}
3833 
3834 		wq->rescuer = rescuer;
3835 		rescuer->task->flags |= PF_NO_SETAFFINITY;
3836 		wake_up_process(rescuer->task);
3837 	}
3838 
3839 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3840 		goto err_destroy;
3841 
3842 	/*
3843 	 * wq_pool_mutex protects global freeze state and workqueues list.
3844 	 * Grab it, adjust max_active and add the new @wq to workqueues
3845 	 * list.
3846 	 */
3847 	mutex_lock(&wq_pool_mutex);
3848 
3849 	mutex_lock(&wq->mutex);
3850 	for_each_pwq(pwq, wq)
3851 		pwq_adjust_max_active(pwq);
3852 	mutex_unlock(&wq->mutex);
3853 
3854 	list_add_tail_rcu(&wq->list, &workqueues);
3855 
3856 	mutex_unlock(&wq_pool_mutex);
3857 
3858 	return wq;
3859 
3860 err_free_wq:
3861 	free_workqueue_attrs(wq->unbound_attrs);
3862 	kfree(wq);
3863 	return NULL;
3864 err_destroy:
3865 	destroy_workqueue(wq);
3866 	return NULL;
3867 }
3868 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3869 
3870 /**
3871  * destroy_workqueue - safely terminate a workqueue
3872  * @wq: target workqueue
3873  *
3874  * Safely destroy a workqueue. All work currently pending will be done first.
3875  */
3876 void destroy_workqueue(struct workqueue_struct *wq)
3877 {
3878 	struct pool_workqueue *pwq;
3879 	int node;
3880 
3881 	/* drain it before proceeding with destruction */
3882 	drain_workqueue(wq);
3883 
3884 	/* sanity checks */
3885 	mutex_lock(&wq->mutex);
3886 	for_each_pwq(pwq, wq) {
3887 		int i;
3888 
3889 		for (i = 0; i < WORK_NR_COLORS; i++) {
3890 			if (WARN_ON(pwq->nr_in_flight[i])) {
3891 				mutex_unlock(&wq->mutex);
3892 				return;
3893 			}
3894 		}
3895 
3896 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
3897 		    WARN_ON(pwq->nr_active) ||
3898 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
3899 			mutex_unlock(&wq->mutex);
3900 			return;
3901 		}
3902 	}
3903 	mutex_unlock(&wq->mutex);
3904 
3905 	/*
3906 	 * wq list is used to freeze wq, remove from list after
3907 	 * flushing is complete in case freeze races us.
3908 	 */
3909 	mutex_lock(&wq_pool_mutex);
3910 	list_del_rcu(&wq->list);
3911 	mutex_unlock(&wq_pool_mutex);
3912 
3913 	workqueue_sysfs_unregister(wq);
3914 
3915 	if (wq->rescuer)
3916 		kthread_stop(wq->rescuer->task);
3917 
3918 	if (!(wq->flags & WQ_UNBOUND)) {
3919 		/*
3920 		 * The base ref is never dropped on per-cpu pwqs.  Directly
3921 		 * schedule RCU free.
3922 		 */
3923 		call_rcu_sched(&wq->rcu, rcu_free_wq);
3924 	} else {
3925 		/*
3926 		 * We're the sole accessor of @wq at this point.  Directly
3927 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
3928 		 * @wq will be freed when the last pwq is released.
3929 		 */
3930 		for_each_node(node) {
3931 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3932 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
3933 			put_pwq_unlocked(pwq);
3934 		}
3935 
3936 		/*
3937 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
3938 		 * put.  Don't access it afterwards.
3939 		 */
3940 		pwq = wq->dfl_pwq;
3941 		wq->dfl_pwq = NULL;
3942 		put_pwq_unlocked(pwq);
3943 	}
3944 }
3945 EXPORT_SYMBOL_GPL(destroy_workqueue);
3946 
3947 /**
3948  * workqueue_set_max_active - adjust max_active of a workqueue
3949  * @wq: target workqueue
3950  * @max_active: new max_active value.
3951  *
3952  * Set max_active of @wq to @max_active.
3953  *
3954  * CONTEXT:
3955  * Don't call from IRQ context.
3956  */
3957 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3958 {
3959 	struct pool_workqueue *pwq;
3960 
3961 	/* disallow meddling with max_active for ordered workqueues */
3962 	if (WARN_ON(wq->flags & __WQ_ORDERED))
3963 		return;
3964 
3965 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
3966 
3967 	mutex_lock(&wq->mutex);
3968 
3969 	wq->saved_max_active = max_active;
3970 
3971 	for_each_pwq(pwq, wq)
3972 		pwq_adjust_max_active(pwq);
3973 
3974 	mutex_unlock(&wq->mutex);
3975 }
3976 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
3977 
3978 /**
3979  * current_is_workqueue_rescuer - is %current workqueue rescuer?
3980  *
3981  * Determine whether %current is a workqueue rescuer.  Can be used from
3982  * work functions to determine whether it's being run off the rescuer task.
3983  *
3984  * Return: %true if %current is a workqueue rescuer. %false otherwise.
3985  */
3986 bool current_is_workqueue_rescuer(void)
3987 {
3988 	struct worker *worker = current_wq_worker();
3989 
3990 	return worker && worker->rescue_wq;
3991 }
3992 
3993 /**
3994  * workqueue_congested - test whether a workqueue is congested
3995  * @cpu: CPU in question
3996  * @wq: target workqueue
3997  *
3998  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
3999  * no synchronization around this function and the test result is
4000  * unreliable and only useful as advisory hints or for debugging.
4001  *
4002  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4003  * Note that both per-cpu and unbound workqueues may be associated with
4004  * multiple pool_workqueues which have separate congested states.  A
4005  * workqueue being congested on one CPU doesn't mean the workqueue is also
4006  * contested on other CPUs / NUMA nodes.
4007  *
4008  * Return:
4009  * %true if congested, %false otherwise.
4010  */
4011 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4012 {
4013 	struct pool_workqueue *pwq;
4014 	bool ret;
4015 
4016 	rcu_read_lock_sched();
4017 
4018 	if (cpu == WORK_CPU_UNBOUND)
4019 		cpu = smp_processor_id();
4020 
4021 	if (!(wq->flags & WQ_UNBOUND))
4022 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4023 	else
4024 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4025 
4026 	ret = !list_empty(&pwq->delayed_works);
4027 	rcu_read_unlock_sched();
4028 
4029 	return ret;
4030 }
4031 EXPORT_SYMBOL_GPL(workqueue_congested);
4032 
4033 /**
4034  * work_busy - test whether a work is currently pending or running
4035  * @work: the work to be tested
4036  *
4037  * Test whether @work is currently pending or running.  There is no
4038  * synchronization around this function and the test result is
4039  * unreliable and only useful as advisory hints or for debugging.
4040  *
4041  * Return:
4042  * OR'd bitmask of WORK_BUSY_* bits.
4043  */
4044 unsigned int work_busy(struct work_struct *work)
4045 {
4046 	struct worker_pool *pool;
4047 	unsigned long flags;
4048 	unsigned int ret = 0;
4049 
4050 	if (work_pending(work))
4051 		ret |= WORK_BUSY_PENDING;
4052 
4053 	local_irq_save(flags);
4054 	pool = get_work_pool(work);
4055 	if (pool) {
4056 		spin_lock(&pool->lock);
4057 		if (find_worker_executing_work(pool, work))
4058 			ret |= WORK_BUSY_RUNNING;
4059 		spin_unlock(&pool->lock);
4060 	}
4061 	local_irq_restore(flags);
4062 
4063 	return ret;
4064 }
4065 EXPORT_SYMBOL_GPL(work_busy);
4066 
4067 /**
4068  * set_worker_desc - set description for the current work item
4069  * @fmt: printf-style format string
4070  * @...: arguments for the format string
4071  *
4072  * This function can be called by a running work function to describe what
4073  * the work item is about.  If the worker task gets dumped, this
4074  * information will be printed out together to help debugging.  The
4075  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4076  */
4077 void set_worker_desc(const char *fmt, ...)
4078 {
4079 	struct worker *worker = current_wq_worker();
4080 	va_list args;
4081 
4082 	if (worker) {
4083 		va_start(args, fmt);
4084 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4085 		va_end(args);
4086 		worker->desc_valid = true;
4087 	}
4088 }
4089 
4090 /**
4091  * print_worker_info - print out worker information and description
4092  * @log_lvl: the log level to use when printing
4093  * @task: target task
4094  *
4095  * If @task is a worker and currently executing a work item, print out the
4096  * name of the workqueue being serviced and worker description set with
4097  * set_worker_desc() by the currently executing work item.
4098  *
4099  * This function can be safely called on any task as long as the
4100  * task_struct itself is accessible.  While safe, this function isn't
4101  * synchronized and may print out mixups or garbages of limited length.
4102  */
4103 void print_worker_info(const char *log_lvl, struct task_struct *task)
4104 {
4105 	work_func_t *fn = NULL;
4106 	char name[WQ_NAME_LEN] = { };
4107 	char desc[WORKER_DESC_LEN] = { };
4108 	struct pool_workqueue *pwq = NULL;
4109 	struct workqueue_struct *wq = NULL;
4110 	bool desc_valid = false;
4111 	struct worker *worker;
4112 
4113 	if (!(task->flags & PF_WQ_WORKER))
4114 		return;
4115 
4116 	/*
4117 	 * This function is called without any synchronization and @task
4118 	 * could be in any state.  Be careful with dereferences.
4119 	 */
4120 	worker = probe_kthread_data(task);
4121 
4122 	/*
4123 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4124 	 * the original last '\0' in case the original contains garbage.
4125 	 */
4126 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4127 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4128 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4129 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4130 
4131 	/* copy worker description */
4132 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4133 	if (desc_valid)
4134 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4135 
4136 	if (fn || name[0] || desc[0]) {
4137 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4138 		if (desc[0])
4139 			pr_cont(" (%s)", desc);
4140 		pr_cont("\n");
4141 	}
4142 }
4143 
4144 static void pr_cont_pool_info(struct worker_pool *pool)
4145 {
4146 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4147 	if (pool->node != NUMA_NO_NODE)
4148 		pr_cont(" node=%d", pool->node);
4149 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4150 }
4151 
4152 static void pr_cont_work(bool comma, struct work_struct *work)
4153 {
4154 	if (work->func == wq_barrier_func) {
4155 		struct wq_barrier *barr;
4156 
4157 		barr = container_of(work, struct wq_barrier, work);
4158 
4159 		pr_cont("%s BAR(%d)", comma ? "," : "",
4160 			task_pid_nr(barr->task));
4161 	} else {
4162 		pr_cont("%s %pf", comma ? "," : "", work->func);
4163 	}
4164 }
4165 
4166 static void show_pwq(struct pool_workqueue *pwq)
4167 {
4168 	struct worker_pool *pool = pwq->pool;
4169 	struct work_struct *work;
4170 	struct worker *worker;
4171 	bool has_in_flight = false, has_pending = false;
4172 	int bkt;
4173 
4174 	pr_info("  pwq %d:", pool->id);
4175 	pr_cont_pool_info(pool);
4176 
4177 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4178 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4179 
4180 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4181 		if (worker->current_pwq == pwq) {
4182 			has_in_flight = true;
4183 			break;
4184 		}
4185 	}
4186 	if (has_in_flight) {
4187 		bool comma = false;
4188 
4189 		pr_info("    in-flight:");
4190 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4191 			if (worker->current_pwq != pwq)
4192 				continue;
4193 
4194 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4195 				task_pid_nr(worker->task),
4196 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4197 				worker->current_func);
4198 			list_for_each_entry(work, &worker->scheduled, entry)
4199 				pr_cont_work(false, work);
4200 			comma = true;
4201 		}
4202 		pr_cont("\n");
4203 	}
4204 
4205 	list_for_each_entry(work, &pool->worklist, entry) {
4206 		if (get_work_pwq(work) == pwq) {
4207 			has_pending = true;
4208 			break;
4209 		}
4210 	}
4211 	if (has_pending) {
4212 		bool comma = false;
4213 
4214 		pr_info("    pending:");
4215 		list_for_each_entry(work, &pool->worklist, entry) {
4216 			if (get_work_pwq(work) != pwq)
4217 				continue;
4218 
4219 			pr_cont_work(comma, work);
4220 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4221 		}
4222 		pr_cont("\n");
4223 	}
4224 
4225 	if (!list_empty(&pwq->delayed_works)) {
4226 		bool comma = false;
4227 
4228 		pr_info("    delayed:");
4229 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4230 			pr_cont_work(comma, work);
4231 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4232 		}
4233 		pr_cont("\n");
4234 	}
4235 }
4236 
4237 /**
4238  * show_workqueue_state - dump workqueue state
4239  *
4240  * Called from a sysrq handler and prints out all busy workqueues and
4241  * pools.
4242  */
4243 void show_workqueue_state(void)
4244 {
4245 	struct workqueue_struct *wq;
4246 	struct worker_pool *pool;
4247 	unsigned long flags;
4248 	int pi;
4249 
4250 	rcu_read_lock_sched();
4251 
4252 	pr_info("Showing busy workqueues and worker pools:\n");
4253 
4254 	list_for_each_entry_rcu(wq, &workqueues, list) {
4255 		struct pool_workqueue *pwq;
4256 		bool idle = true;
4257 
4258 		for_each_pwq(pwq, wq) {
4259 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4260 				idle = false;
4261 				break;
4262 			}
4263 		}
4264 		if (idle)
4265 			continue;
4266 
4267 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4268 
4269 		for_each_pwq(pwq, wq) {
4270 			spin_lock_irqsave(&pwq->pool->lock, flags);
4271 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4272 				show_pwq(pwq);
4273 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4274 		}
4275 	}
4276 
4277 	for_each_pool(pool, pi) {
4278 		struct worker *worker;
4279 		bool first = true;
4280 
4281 		spin_lock_irqsave(&pool->lock, flags);
4282 		if (pool->nr_workers == pool->nr_idle)
4283 			goto next_pool;
4284 
4285 		pr_info("pool %d:", pool->id);
4286 		pr_cont_pool_info(pool);
4287 		pr_cont(" workers=%d", pool->nr_workers);
4288 		if (pool->manager)
4289 			pr_cont(" manager: %d",
4290 				task_pid_nr(pool->manager->task));
4291 		list_for_each_entry(worker, &pool->idle_list, entry) {
4292 			pr_cont(" %s%d", first ? "idle: " : "",
4293 				task_pid_nr(worker->task));
4294 			first = false;
4295 		}
4296 		pr_cont("\n");
4297 	next_pool:
4298 		spin_unlock_irqrestore(&pool->lock, flags);
4299 	}
4300 
4301 	rcu_read_unlock_sched();
4302 }
4303 
4304 /*
4305  * CPU hotplug.
4306  *
4307  * There are two challenges in supporting CPU hotplug.  Firstly, there
4308  * are a lot of assumptions on strong associations among work, pwq and
4309  * pool which make migrating pending and scheduled works very
4310  * difficult to implement without impacting hot paths.  Secondly,
4311  * worker pools serve mix of short, long and very long running works making
4312  * blocked draining impractical.
4313  *
4314  * This is solved by allowing the pools to be disassociated from the CPU
4315  * running as an unbound one and allowing it to be reattached later if the
4316  * cpu comes back online.
4317  */
4318 
4319 static void wq_unbind_fn(struct work_struct *work)
4320 {
4321 	int cpu = smp_processor_id();
4322 	struct worker_pool *pool;
4323 	struct worker *worker;
4324 
4325 	for_each_cpu_worker_pool(pool, cpu) {
4326 		mutex_lock(&pool->attach_mutex);
4327 		spin_lock_irq(&pool->lock);
4328 
4329 		/*
4330 		 * We've blocked all attach/detach operations. Make all workers
4331 		 * unbound and set DISASSOCIATED.  Before this, all workers
4332 		 * except for the ones which are still executing works from
4333 		 * before the last CPU down must be on the cpu.  After
4334 		 * this, they may become diasporas.
4335 		 */
4336 		for_each_pool_worker(worker, pool)
4337 			worker->flags |= WORKER_UNBOUND;
4338 
4339 		pool->flags |= POOL_DISASSOCIATED;
4340 
4341 		spin_unlock_irq(&pool->lock);
4342 		mutex_unlock(&pool->attach_mutex);
4343 
4344 		/*
4345 		 * Call schedule() so that we cross rq->lock and thus can
4346 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4347 		 * This is necessary as scheduler callbacks may be invoked
4348 		 * from other cpus.
4349 		 */
4350 		schedule();
4351 
4352 		/*
4353 		 * Sched callbacks are disabled now.  Zap nr_running.
4354 		 * After this, nr_running stays zero and need_more_worker()
4355 		 * and keep_working() are always true as long as the
4356 		 * worklist is not empty.  This pool now behaves as an
4357 		 * unbound (in terms of concurrency management) pool which
4358 		 * are served by workers tied to the pool.
4359 		 */
4360 		atomic_set(&pool->nr_running, 0);
4361 
4362 		/*
4363 		 * With concurrency management just turned off, a busy
4364 		 * worker blocking could lead to lengthy stalls.  Kick off
4365 		 * unbound chain execution of currently pending work items.
4366 		 */
4367 		spin_lock_irq(&pool->lock);
4368 		wake_up_worker(pool);
4369 		spin_unlock_irq(&pool->lock);
4370 	}
4371 }
4372 
4373 /**
4374  * rebind_workers - rebind all workers of a pool to the associated CPU
4375  * @pool: pool of interest
4376  *
4377  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4378  */
4379 static void rebind_workers(struct worker_pool *pool)
4380 {
4381 	struct worker *worker;
4382 
4383 	lockdep_assert_held(&pool->attach_mutex);
4384 
4385 	/*
4386 	 * Restore CPU affinity of all workers.  As all idle workers should
4387 	 * be on the run-queue of the associated CPU before any local
4388 	 * wake-ups for concurrency management happen, restore CPU affinty
4389 	 * of all workers first and then clear UNBOUND.  As we're called
4390 	 * from CPU_ONLINE, the following shouldn't fail.
4391 	 */
4392 	for_each_pool_worker(worker, pool)
4393 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4394 						  pool->attrs->cpumask) < 0);
4395 
4396 	spin_lock_irq(&pool->lock);
4397 	pool->flags &= ~POOL_DISASSOCIATED;
4398 
4399 	for_each_pool_worker(worker, pool) {
4400 		unsigned int worker_flags = worker->flags;
4401 
4402 		/*
4403 		 * A bound idle worker should actually be on the runqueue
4404 		 * of the associated CPU for local wake-ups targeting it to
4405 		 * work.  Kick all idle workers so that they migrate to the
4406 		 * associated CPU.  Doing this in the same loop as
4407 		 * replacing UNBOUND with REBOUND is safe as no worker will
4408 		 * be bound before @pool->lock is released.
4409 		 */
4410 		if (worker_flags & WORKER_IDLE)
4411 			wake_up_process(worker->task);
4412 
4413 		/*
4414 		 * We want to clear UNBOUND but can't directly call
4415 		 * worker_clr_flags() or adjust nr_running.  Atomically
4416 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4417 		 * @worker will clear REBOUND using worker_clr_flags() when
4418 		 * it initiates the next execution cycle thus restoring
4419 		 * concurrency management.  Note that when or whether
4420 		 * @worker clears REBOUND doesn't affect correctness.
4421 		 *
4422 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4423 		 * tested without holding any lock in
4424 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4425 		 * fail incorrectly leading to premature concurrency
4426 		 * management operations.
4427 		 */
4428 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4429 		worker_flags |= WORKER_REBOUND;
4430 		worker_flags &= ~WORKER_UNBOUND;
4431 		ACCESS_ONCE(worker->flags) = worker_flags;
4432 	}
4433 
4434 	spin_unlock_irq(&pool->lock);
4435 }
4436 
4437 /**
4438  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4439  * @pool: unbound pool of interest
4440  * @cpu: the CPU which is coming up
4441  *
4442  * An unbound pool may end up with a cpumask which doesn't have any online
4443  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4444  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4445  * online CPU before, cpus_allowed of all its workers should be restored.
4446  */
4447 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4448 {
4449 	static cpumask_t cpumask;
4450 	struct worker *worker;
4451 
4452 	lockdep_assert_held(&pool->attach_mutex);
4453 
4454 	/* is @cpu allowed for @pool? */
4455 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4456 		return;
4457 
4458 	/* is @cpu the only online CPU? */
4459 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4460 	if (cpumask_weight(&cpumask) != 1)
4461 		return;
4462 
4463 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4464 	for_each_pool_worker(worker, pool)
4465 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4466 						  pool->attrs->cpumask) < 0);
4467 }
4468 
4469 /*
4470  * Workqueues should be brought up before normal priority CPU notifiers.
4471  * This will be registered high priority CPU notifier.
4472  */
4473 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4474 					       unsigned long action,
4475 					       void *hcpu)
4476 {
4477 	int cpu = (unsigned long)hcpu;
4478 	struct worker_pool *pool;
4479 	struct workqueue_struct *wq;
4480 	int pi;
4481 
4482 	switch (action & ~CPU_TASKS_FROZEN) {
4483 	case CPU_UP_PREPARE:
4484 		for_each_cpu_worker_pool(pool, cpu) {
4485 			if (pool->nr_workers)
4486 				continue;
4487 			if (!create_worker(pool))
4488 				return NOTIFY_BAD;
4489 		}
4490 		break;
4491 
4492 	case CPU_DOWN_FAILED:
4493 	case CPU_ONLINE:
4494 		mutex_lock(&wq_pool_mutex);
4495 
4496 		for_each_pool(pool, pi) {
4497 			mutex_lock(&pool->attach_mutex);
4498 
4499 			if (pool->cpu == cpu)
4500 				rebind_workers(pool);
4501 			else if (pool->cpu < 0)
4502 				restore_unbound_workers_cpumask(pool, cpu);
4503 
4504 			mutex_unlock(&pool->attach_mutex);
4505 		}
4506 
4507 		/* update NUMA affinity of unbound workqueues */
4508 		list_for_each_entry(wq, &workqueues, list)
4509 			wq_update_unbound_numa(wq, cpu, true);
4510 
4511 		mutex_unlock(&wq_pool_mutex);
4512 		break;
4513 	}
4514 	return NOTIFY_OK;
4515 }
4516 
4517 /*
4518  * Workqueues should be brought down after normal priority CPU notifiers.
4519  * This will be registered as low priority CPU notifier.
4520  */
4521 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4522 						 unsigned long action,
4523 						 void *hcpu)
4524 {
4525 	int cpu = (unsigned long)hcpu;
4526 	struct work_struct unbind_work;
4527 	struct workqueue_struct *wq;
4528 
4529 	switch (action & ~CPU_TASKS_FROZEN) {
4530 	case CPU_DOWN_PREPARE:
4531 		/* unbinding per-cpu workers should happen on the local CPU */
4532 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4533 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4534 
4535 		/* update NUMA affinity of unbound workqueues */
4536 		mutex_lock(&wq_pool_mutex);
4537 		list_for_each_entry(wq, &workqueues, list)
4538 			wq_update_unbound_numa(wq, cpu, false);
4539 		mutex_unlock(&wq_pool_mutex);
4540 
4541 		/* wait for per-cpu unbinding to finish */
4542 		flush_work(&unbind_work);
4543 		destroy_work_on_stack(&unbind_work);
4544 		break;
4545 	}
4546 	return NOTIFY_OK;
4547 }
4548 
4549 #ifdef CONFIG_SMP
4550 
4551 struct work_for_cpu {
4552 	struct work_struct work;
4553 	long (*fn)(void *);
4554 	void *arg;
4555 	long ret;
4556 };
4557 
4558 static void work_for_cpu_fn(struct work_struct *work)
4559 {
4560 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4561 
4562 	wfc->ret = wfc->fn(wfc->arg);
4563 }
4564 
4565 /**
4566  * work_on_cpu - run a function in user context on a particular cpu
4567  * @cpu: the cpu to run on
4568  * @fn: the function to run
4569  * @arg: the function arg
4570  *
4571  * It is up to the caller to ensure that the cpu doesn't go offline.
4572  * The caller must not hold any locks which would prevent @fn from completing.
4573  *
4574  * Return: The value @fn returns.
4575  */
4576 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4577 {
4578 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4579 
4580 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4581 	schedule_work_on(cpu, &wfc.work);
4582 	flush_work(&wfc.work);
4583 	destroy_work_on_stack(&wfc.work);
4584 	return wfc.ret;
4585 }
4586 EXPORT_SYMBOL_GPL(work_on_cpu);
4587 #endif /* CONFIG_SMP */
4588 
4589 #ifdef CONFIG_FREEZER
4590 
4591 /**
4592  * freeze_workqueues_begin - begin freezing workqueues
4593  *
4594  * Start freezing workqueues.  After this function returns, all freezable
4595  * workqueues will queue new works to their delayed_works list instead of
4596  * pool->worklist.
4597  *
4598  * CONTEXT:
4599  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4600  */
4601 void freeze_workqueues_begin(void)
4602 {
4603 	struct workqueue_struct *wq;
4604 	struct pool_workqueue *pwq;
4605 
4606 	mutex_lock(&wq_pool_mutex);
4607 
4608 	WARN_ON_ONCE(workqueue_freezing);
4609 	workqueue_freezing = true;
4610 
4611 	list_for_each_entry(wq, &workqueues, list) {
4612 		mutex_lock(&wq->mutex);
4613 		for_each_pwq(pwq, wq)
4614 			pwq_adjust_max_active(pwq);
4615 		mutex_unlock(&wq->mutex);
4616 	}
4617 
4618 	mutex_unlock(&wq_pool_mutex);
4619 }
4620 
4621 /**
4622  * freeze_workqueues_busy - are freezable workqueues still busy?
4623  *
4624  * Check whether freezing is complete.  This function must be called
4625  * between freeze_workqueues_begin() and thaw_workqueues().
4626  *
4627  * CONTEXT:
4628  * Grabs and releases wq_pool_mutex.
4629  *
4630  * Return:
4631  * %true if some freezable workqueues are still busy.  %false if freezing
4632  * is complete.
4633  */
4634 bool freeze_workqueues_busy(void)
4635 {
4636 	bool busy = false;
4637 	struct workqueue_struct *wq;
4638 	struct pool_workqueue *pwq;
4639 
4640 	mutex_lock(&wq_pool_mutex);
4641 
4642 	WARN_ON_ONCE(!workqueue_freezing);
4643 
4644 	list_for_each_entry(wq, &workqueues, list) {
4645 		if (!(wq->flags & WQ_FREEZABLE))
4646 			continue;
4647 		/*
4648 		 * nr_active is monotonically decreasing.  It's safe
4649 		 * to peek without lock.
4650 		 */
4651 		rcu_read_lock_sched();
4652 		for_each_pwq(pwq, wq) {
4653 			WARN_ON_ONCE(pwq->nr_active < 0);
4654 			if (pwq->nr_active) {
4655 				busy = true;
4656 				rcu_read_unlock_sched();
4657 				goto out_unlock;
4658 			}
4659 		}
4660 		rcu_read_unlock_sched();
4661 	}
4662 out_unlock:
4663 	mutex_unlock(&wq_pool_mutex);
4664 	return busy;
4665 }
4666 
4667 /**
4668  * thaw_workqueues - thaw workqueues
4669  *
4670  * Thaw workqueues.  Normal queueing is restored and all collected
4671  * frozen works are transferred to their respective pool worklists.
4672  *
4673  * CONTEXT:
4674  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4675  */
4676 void thaw_workqueues(void)
4677 {
4678 	struct workqueue_struct *wq;
4679 	struct pool_workqueue *pwq;
4680 
4681 	mutex_lock(&wq_pool_mutex);
4682 
4683 	if (!workqueue_freezing)
4684 		goto out_unlock;
4685 
4686 	workqueue_freezing = false;
4687 
4688 	/* restore max_active and repopulate worklist */
4689 	list_for_each_entry(wq, &workqueues, list) {
4690 		mutex_lock(&wq->mutex);
4691 		for_each_pwq(pwq, wq)
4692 			pwq_adjust_max_active(pwq);
4693 		mutex_unlock(&wq->mutex);
4694 	}
4695 
4696 out_unlock:
4697 	mutex_unlock(&wq_pool_mutex);
4698 }
4699 #endif /* CONFIG_FREEZER */
4700 
4701 #ifdef CONFIG_SYSFS
4702 /*
4703  * Workqueues with WQ_SYSFS flag set is visible to userland via
4704  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
4705  * following attributes.
4706  *
4707  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
4708  *  max_active	RW int	: maximum number of in-flight work items
4709  *
4710  * Unbound workqueues have the following extra attributes.
4711  *
4712  *  id		RO int	: the associated pool ID
4713  *  nice	RW int	: nice value of the workers
4714  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
4715  */
4716 struct wq_device {
4717 	struct workqueue_struct		*wq;
4718 	struct device			dev;
4719 };
4720 
4721 static struct workqueue_struct *dev_to_wq(struct device *dev)
4722 {
4723 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4724 
4725 	return wq_dev->wq;
4726 }
4727 
4728 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4729 			    char *buf)
4730 {
4731 	struct workqueue_struct *wq = dev_to_wq(dev);
4732 
4733 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4734 }
4735 static DEVICE_ATTR_RO(per_cpu);
4736 
4737 static ssize_t max_active_show(struct device *dev,
4738 			       struct device_attribute *attr, char *buf)
4739 {
4740 	struct workqueue_struct *wq = dev_to_wq(dev);
4741 
4742 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4743 }
4744 
4745 static ssize_t max_active_store(struct device *dev,
4746 				struct device_attribute *attr, const char *buf,
4747 				size_t count)
4748 {
4749 	struct workqueue_struct *wq = dev_to_wq(dev);
4750 	int val;
4751 
4752 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4753 		return -EINVAL;
4754 
4755 	workqueue_set_max_active(wq, val);
4756 	return count;
4757 }
4758 static DEVICE_ATTR_RW(max_active);
4759 
4760 static struct attribute *wq_sysfs_attrs[] = {
4761 	&dev_attr_per_cpu.attr,
4762 	&dev_attr_max_active.attr,
4763 	NULL,
4764 };
4765 ATTRIBUTE_GROUPS(wq_sysfs);
4766 
4767 static ssize_t wq_pool_ids_show(struct device *dev,
4768 				struct device_attribute *attr, char *buf)
4769 {
4770 	struct workqueue_struct *wq = dev_to_wq(dev);
4771 	const char *delim = "";
4772 	int node, written = 0;
4773 
4774 	rcu_read_lock_sched();
4775 	for_each_node(node) {
4776 		written += scnprintf(buf + written, PAGE_SIZE - written,
4777 				     "%s%d:%d", delim, node,
4778 				     unbound_pwq_by_node(wq, node)->pool->id);
4779 		delim = " ";
4780 	}
4781 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4782 	rcu_read_unlock_sched();
4783 
4784 	return written;
4785 }
4786 
4787 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4788 			    char *buf)
4789 {
4790 	struct workqueue_struct *wq = dev_to_wq(dev);
4791 	int written;
4792 
4793 	mutex_lock(&wq->mutex);
4794 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
4795 	mutex_unlock(&wq->mutex);
4796 
4797 	return written;
4798 }
4799 
4800 /* prepare workqueue_attrs for sysfs store operations */
4801 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
4802 {
4803 	struct workqueue_attrs *attrs;
4804 
4805 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
4806 	if (!attrs)
4807 		return NULL;
4808 
4809 	mutex_lock(&wq->mutex);
4810 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
4811 	mutex_unlock(&wq->mutex);
4812 	return attrs;
4813 }
4814 
4815 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
4816 			     const char *buf, size_t count)
4817 {
4818 	struct workqueue_struct *wq = dev_to_wq(dev);
4819 	struct workqueue_attrs *attrs;
4820 	int ret;
4821 
4822 	attrs = wq_sysfs_prep_attrs(wq);
4823 	if (!attrs)
4824 		return -ENOMEM;
4825 
4826 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
4827 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
4828 		ret = apply_workqueue_attrs(wq, attrs);
4829 	else
4830 		ret = -EINVAL;
4831 
4832 	free_workqueue_attrs(attrs);
4833 	return ret ?: count;
4834 }
4835 
4836 static ssize_t wq_cpumask_show(struct device *dev,
4837 			       struct device_attribute *attr, char *buf)
4838 {
4839 	struct workqueue_struct *wq = dev_to_wq(dev);
4840 	int written;
4841 
4842 	mutex_lock(&wq->mutex);
4843 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
4844 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
4845 	mutex_unlock(&wq->mutex);
4846 	return written;
4847 }
4848 
4849 static ssize_t wq_cpumask_store(struct device *dev,
4850 				struct device_attribute *attr,
4851 				const char *buf, size_t count)
4852 {
4853 	struct workqueue_struct *wq = dev_to_wq(dev);
4854 	struct workqueue_attrs *attrs;
4855 	int ret;
4856 
4857 	attrs = wq_sysfs_prep_attrs(wq);
4858 	if (!attrs)
4859 		return -ENOMEM;
4860 
4861 	ret = cpumask_parse(buf, attrs->cpumask);
4862 	if (!ret)
4863 		ret = apply_workqueue_attrs(wq, attrs);
4864 
4865 	free_workqueue_attrs(attrs);
4866 	return ret ?: count;
4867 }
4868 
4869 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
4870 			    char *buf)
4871 {
4872 	struct workqueue_struct *wq = dev_to_wq(dev);
4873 	int written;
4874 
4875 	mutex_lock(&wq->mutex);
4876 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
4877 			    !wq->unbound_attrs->no_numa);
4878 	mutex_unlock(&wq->mutex);
4879 
4880 	return written;
4881 }
4882 
4883 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
4884 			     const char *buf, size_t count)
4885 {
4886 	struct workqueue_struct *wq = dev_to_wq(dev);
4887 	struct workqueue_attrs *attrs;
4888 	int v, ret;
4889 
4890 	attrs = wq_sysfs_prep_attrs(wq);
4891 	if (!attrs)
4892 		return -ENOMEM;
4893 
4894 	ret = -EINVAL;
4895 	if (sscanf(buf, "%d", &v) == 1) {
4896 		attrs->no_numa = !v;
4897 		ret = apply_workqueue_attrs(wq, attrs);
4898 	}
4899 
4900 	free_workqueue_attrs(attrs);
4901 	return ret ?: count;
4902 }
4903 
4904 static struct device_attribute wq_sysfs_unbound_attrs[] = {
4905 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
4906 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
4907 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
4908 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
4909 	__ATTR_NULL,
4910 };
4911 
4912 static struct bus_type wq_subsys = {
4913 	.name				= "workqueue",
4914 	.dev_groups			= wq_sysfs_groups,
4915 };
4916 
4917 static int __init wq_sysfs_init(void)
4918 {
4919 	return subsys_virtual_register(&wq_subsys, NULL);
4920 }
4921 core_initcall(wq_sysfs_init);
4922 
4923 static void wq_device_release(struct device *dev)
4924 {
4925 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4926 
4927 	kfree(wq_dev);
4928 }
4929 
4930 /**
4931  * workqueue_sysfs_register - make a workqueue visible in sysfs
4932  * @wq: the workqueue to register
4933  *
4934  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
4935  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
4936  * which is the preferred method.
4937  *
4938  * Workqueue user should use this function directly iff it wants to apply
4939  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
4940  * apply_workqueue_attrs() may race against userland updating the
4941  * attributes.
4942  *
4943  * Return: 0 on success, -errno on failure.
4944  */
4945 int workqueue_sysfs_register(struct workqueue_struct *wq)
4946 {
4947 	struct wq_device *wq_dev;
4948 	int ret;
4949 
4950 	/*
4951 	 * Adjusting max_active or creating new pwqs by applyting
4952 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
4953 	 * workqueues.
4954 	 */
4955 	if (WARN_ON(wq->flags & __WQ_ORDERED))
4956 		return -EINVAL;
4957 
4958 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
4959 	if (!wq_dev)
4960 		return -ENOMEM;
4961 
4962 	wq_dev->wq = wq;
4963 	wq_dev->dev.bus = &wq_subsys;
4964 	wq_dev->dev.init_name = wq->name;
4965 	wq_dev->dev.release = wq_device_release;
4966 
4967 	/*
4968 	 * unbound_attrs are created separately.  Suppress uevent until
4969 	 * everything is ready.
4970 	 */
4971 	dev_set_uevent_suppress(&wq_dev->dev, true);
4972 
4973 	ret = device_register(&wq_dev->dev);
4974 	if (ret) {
4975 		kfree(wq_dev);
4976 		wq->wq_dev = NULL;
4977 		return ret;
4978 	}
4979 
4980 	if (wq->flags & WQ_UNBOUND) {
4981 		struct device_attribute *attr;
4982 
4983 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
4984 			ret = device_create_file(&wq_dev->dev, attr);
4985 			if (ret) {
4986 				device_unregister(&wq_dev->dev);
4987 				wq->wq_dev = NULL;
4988 				return ret;
4989 			}
4990 		}
4991 	}
4992 
4993 	dev_set_uevent_suppress(&wq_dev->dev, false);
4994 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
4995 	return 0;
4996 }
4997 
4998 /**
4999  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5000  * @wq: the workqueue to unregister
5001  *
5002  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5003  */
5004 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5005 {
5006 	struct wq_device *wq_dev = wq->wq_dev;
5007 
5008 	if (!wq->wq_dev)
5009 		return;
5010 
5011 	wq->wq_dev = NULL;
5012 	device_unregister(&wq_dev->dev);
5013 }
5014 #else	/* CONFIG_SYSFS */
5015 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5016 #endif	/* CONFIG_SYSFS */
5017 
5018 static void __init wq_numa_init(void)
5019 {
5020 	cpumask_var_t *tbl;
5021 	int node, cpu;
5022 
5023 	if (num_possible_nodes() <= 1)
5024 		return;
5025 
5026 	if (wq_disable_numa) {
5027 		pr_info("workqueue: NUMA affinity support disabled\n");
5028 		return;
5029 	}
5030 
5031 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5032 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5033 
5034 	/*
5035 	 * We want masks of possible CPUs of each node which isn't readily
5036 	 * available.  Build one from cpu_to_node() which should have been
5037 	 * fully initialized by now.
5038 	 */
5039 	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5040 	BUG_ON(!tbl);
5041 
5042 	for_each_node(node)
5043 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5044 				node_online(node) ? node : NUMA_NO_NODE));
5045 
5046 	for_each_possible_cpu(cpu) {
5047 		node = cpu_to_node(cpu);
5048 		if (WARN_ON(node == NUMA_NO_NODE)) {
5049 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5050 			/* happens iff arch is bonkers, let's just proceed */
5051 			return;
5052 		}
5053 		cpumask_set_cpu(cpu, tbl[node]);
5054 	}
5055 
5056 	wq_numa_possible_cpumask = tbl;
5057 	wq_numa_enabled = true;
5058 }
5059 
5060 static int __init init_workqueues(void)
5061 {
5062 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5063 	int i, cpu;
5064 
5065 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5066 
5067 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5068 
5069 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5070 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5071 
5072 	wq_numa_init();
5073 
5074 	/* initialize CPU pools */
5075 	for_each_possible_cpu(cpu) {
5076 		struct worker_pool *pool;
5077 
5078 		i = 0;
5079 		for_each_cpu_worker_pool(pool, cpu) {
5080 			BUG_ON(init_worker_pool(pool));
5081 			pool->cpu = cpu;
5082 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5083 			pool->attrs->nice = std_nice[i++];
5084 			pool->node = cpu_to_node(cpu);
5085 
5086 			/* alloc pool ID */
5087 			mutex_lock(&wq_pool_mutex);
5088 			BUG_ON(worker_pool_assign_id(pool));
5089 			mutex_unlock(&wq_pool_mutex);
5090 		}
5091 	}
5092 
5093 	/* create the initial worker */
5094 	for_each_online_cpu(cpu) {
5095 		struct worker_pool *pool;
5096 
5097 		for_each_cpu_worker_pool(pool, cpu) {
5098 			pool->flags &= ~POOL_DISASSOCIATED;
5099 			BUG_ON(!create_worker(pool));
5100 		}
5101 	}
5102 
5103 	/* create default unbound and ordered wq attrs */
5104 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5105 		struct workqueue_attrs *attrs;
5106 
5107 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5108 		attrs->nice = std_nice[i];
5109 		unbound_std_wq_attrs[i] = attrs;
5110 
5111 		/*
5112 		 * An ordered wq should have only one pwq as ordering is
5113 		 * guaranteed by max_active which is enforced by pwqs.
5114 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5115 		 */
5116 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5117 		attrs->nice = std_nice[i];
5118 		attrs->no_numa = true;
5119 		ordered_wq_attrs[i] = attrs;
5120 	}
5121 
5122 	system_wq = alloc_workqueue("events", 0, 0);
5123 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5124 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5125 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5126 					    WQ_UNBOUND_MAX_ACTIVE);
5127 	system_freezable_wq = alloc_workqueue("events_freezable",
5128 					      WQ_FREEZABLE, 0);
5129 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5130 					      WQ_POWER_EFFICIENT, 0);
5131 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5132 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5133 					      0);
5134 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5135 	       !system_unbound_wq || !system_freezable_wq ||
5136 	       !system_power_efficient_wq ||
5137 	       !system_freezable_power_efficient_wq);
5138 	return 0;
5139 }
5140 early_initcall(init_workqueues);
5141