1 /* 2 * kernel/workqueue.c - generic async execution with shared worker pool 3 * 4 * Copyright (C) 2002 Ingo Molnar 5 * 6 * Derived from the taskqueue/keventd code by: 7 * David Woodhouse <dwmw2@infradead.org> 8 * Andrew Morton 9 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 10 * Theodore Ts'o <tytso@mit.edu> 11 * 12 * Made to use alloc_percpu by Christoph Lameter. 13 * 14 * Copyright (C) 2010 SUSE Linux Products GmbH 15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 16 * 17 * This is the generic async execution mechanism. Work items as are 18 * executed in process context. The worker pool is shared and 19 * automatically managed. There are two worker pools for each CPU (one for 20 * normal work items and the other for high priority ones) and some extra 21 * pools for workqueues which are not bound to any specific CPU - the 22 * number of these backing pools is dynamic. 23 * 24 * Please read Documentation/workqueue.txt for details. 25 */ 26 27 #include <linux/export.h> 28 #include <linux/kernel.h> 29 #include <linux/sched.h> 30 #include <linux/init.h> 31 #include <linux/signal.h> 32 #include <linux/completion.h> 33 #include <linux/workqueue.h> 34 #include <linux/slab.h> 35 #include <linux/cpu.h> 36 #include <linux/notifier.h> 37 #include <linux/kthread.h> 38 #include <linux/hardirq.h> 39 #include <linux/mempolicy.h> 40 #include <linux/freezer.h> 41 #include <linux/kallsyms.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 52 #include "workqueue_internal.h" 53 54 enum { 55 /* 56 * worker_pool flags 57 * 58 * A bound pool is either associated or disassociated with its CPU. 59 * While associated (!DISASSOCIATED), all workers are bound to the 60 * CPU and none has %WORKER_UNBOUND set and concurrency management 61 * is in effect. 62 * 63 * While DISASSOCIATED, the cpu may be offline and all workers have 64 * %WORKER_UNBOUND set and concurrency management disabled, and may 65 * be executing on any CPU. The pool behaves as an unbound one. 66 * 67 * Note that DISASSOCIATED should be flipped only while holding 68 * attach_mutex to avoid changing binding state while 69 * worker_attach_to_pool() is in progress. 70 */ 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 72 73 /* worker flags */ 74 WORKER_DIE = 1 << 1, /* die die die */ 75 WORKER_IDLE = 1 << 2, /* is idle */ 76 WORKER_PREP = 1 << 3, /* preparing to run works */ 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 80 81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 82 WORKER_UNBOUND | WORKER_REBOUND, 83 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 85 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 88 89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 91 92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 93 /* call for help after 10ms 94 (min two ticks) */ 95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 96 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 97 98 /* 99 * Rescue workers are used only on emergencies and shared by 100 * all cpus. Give MIN_NICE. 101 */ 102 RESCUER_NICE_LEVEL = MIN_NICE, 103 HIGHPRI_NICE_LEVEL = MIN_NICE, 104 105 WQ_NAME_LEN = 24, 106 }; 107 108 /* 109 * Structure fields follow one of the following exclusion rules. 110 * 111 * I: Modifiable by initialization/destruction paths and read-only for 112 * everyone else. 113 * 114 * P: Preemption protected. Disabling preemption is enough and should 115 * only be modified and accessed from the local cpu. 116 * 117 * L: pool->lock protected. Access with pool->lock held. 118 * 119 * X: During normal operation, modification requires pool->lock and should 120 * be done only from local cpu. Either disabling preemption on local 121 * cpu or grabbing pool->lock is enough for read access. If 122 * POOL_DISASSOCIATED is set, it's identical to L. 123 * 124 * A: pool->attach_mutex protected. 125 * 126 * PL: wq_pool_mutex protected. 127 * 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads. 129 * 130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 131 * 132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 133 * sched-RCU for reads. 134 * 135 * WQ: wq->mutex protected. 136 * 137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads. 138 * 139 * MD: wq_mayday_lock protected. 140 */ 141 142 /* struct worker is defined in workqueue_internal.h */ 143 144 struct worker_pool { 145 spinlock_t lock; /* the pool lock */ 146 int cpu; /* I: the associated cpu */ 147 int node; /* I: the associated node ID */ 148 int id; /* I: pool ID */ 149 unsigned int flags; /* X: flags */ 150 151 unsigned long watchdog_ts; /* L: watchdog timestamp */ 152 153 struct list_head worklist; /* L: list of pending works */ 154 int nr_workers; /* L: total number of workers */ 155 156 /* nr_idle includes the ones off idle_list for rebinding */ 157 int nr_idle; /* L: currently idle ones */ 158 159 struct list_head idle_list; /* X: list of idle workers */ 160 struct timer_list idle_timer; /* L: worker idle timeout */ 161 struct timer_list mayday_timer; /* L: SOS timer for workers */ 162 163 /* a workers is either on busy_hash or idle_list, or the manager */ 164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 165 /* L: hash of busy workers */ 166 167 /* see manage_workers() for details on the two manager mutexes */ 168 struct mutex manager_arb; /* manager arbitration */ 169 struct worker *manager; /* L: purely informational */ 170 struct mutex attach_mutex; /* attach/detach exclusion */ 171 struct list_head workers; /* A: attached workers */ 172 struct completion *detach_completion; /* all workers detached */ 173 174 struct ida worker_ida; /* worker IDs for task name */ 175 176 struct workqueue_attrs *attrs; /* I: worker attributes */ 177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 178 int refcnt; /* PL: refcnt for unbound pools */ 179 180 /* 181 * The current concurrency level. As it's likely to be accessed 182 * from other CPUs during try_to_wake_up(), put it in a separate 183 * cacheline. 184 */ 185 atomic_t nr_running ____cacheline_aligned_in_smp; 186 187 /* 188 * Destruction of pool is sched-RCU protected to allow dereferences 189 * from get_work_pool(). 190 */ 191 struct rcu_head rcu; 192 } ____cacheline_aligned_in_smp; 193 194 /* 195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 196 * of work_struct->data are used for flags and the remaining high bits 197 * point to the pwq; thus, pwqs need to be aligned at two's power of the 198 * number of flag bits. 199 */ 200 struct pool_workqueue { 201 struct worker_pool *pool; /* I: the associated pool */ 202 struct workqueue_struct *wq; /* I: the owning workqueue */ 203 int work_color; /* L: current color */ 204 int flush_color; /* L: flushing color */ 205 int refcnt; /* L: reference count */ 206 int nr_in_flight[WORK_NR_COLORS]; 207 /* L: nr of in_flight works */ 208 int nr_active; /* L: nr of active works */ 209 int max_active; /* L: max active works */ 210 struct list_head delayed_works; /* L: delayed works */ 211 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 212 struct list_head mayday_node; /* MD: node on wq->maydays */ 213 214 /* 215 * Release of unbound pwq is punted to system_wq. See put_pwq() 216 * and pwq_unbound_release_workfn() for details. pool_workqueue 217 * itself is also sched-RCU protected so that the first pwq can be 218 * determined without grabbing wq->mutex. 219 */ 220 struct work_struct unbound_release_work; 221 struct rcu_head rcu; 222 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 223 224 /* 225 * Structure used to wait for workqueue flush. 226 */ 227 struct wq_flusher { 228 struct list_head list; /* WQ: list of flushers */ 229 int flush_color; /* WQ: flush color waiting for */ 230 struct completion done; /* flush completion */ 231 }; 232 233 struct wq_device; 234 235 /* 236 * The externally visible workqueue. It relays the issued work items to 237 * the appropriate worker_pool through its pool_workqueues. 238 */ 239 struct workqueue_struct { 240 struct list_head pwqs; /* WR: all pwqs of this wq */ 241 struct list_head list; /* PR: list of all workqueues */ 242 243 struct mutex mutex; /* protects this wq */ 244 int work_color; /* WQ: current work color */ 245 int flush_color; /* WQ: current flush color */ 246 atomic_t nr_pwqs_to_flush; /* flush in progress */ 247 struct wq_flusher *first_flusher; /* WQ: first flusher */ 248 struct list_head flusher_queue; /* WQ: flush waiters */ 249 struct list_head flusher_overflow; /* WQ: flush overflow list */ 250 251 struct list_head maydays; /* MD: pwqs requesting rescue */ 252 struct worker *rescuer; /* I: rescue worker */ 253 254 int nr_drainers; /* WQ: drain in progress */ 255 int saved_max_active; /* WQ: saved pwq max_active */ 256 257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 259 260 #ifdef CONFIG_SYSFS 261 struct wq_device *wq_dev; /* I: for sysfs interface */ 262 #endif 263 #ifdef CONFIG_LOCKDEP 264 struct lockdep_map lockdep_map; 265 #endif 266 char name[WQ_NAME_LEN]; /* I: workqueue name */ 267 268 /* 269 * Destruction of workqueue_struct is sched-RCU protected to allow 270 * walking the workqueues list without grabbing wq_pool_mutex. 271 * This is used to dump all workqueues from sysrq. 272 */ 273 struct rcu_head rcu; 274 275 /* hot fields used during command issue, aligned to cacheline */ 276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 279 }; 280 281 static struct kmem_cache *pwq_cache; 282 283 static cpumask_var_t *wq_numa_possible_cpumask; 284 /* possible CPUs of each node */ 285 286 static bool wq_disable_numa; 287 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 288 289 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 291 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 292 293 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 294 295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 297 298 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 299 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 300 301 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 302 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 303 304 /* PL: allowable cpus for unbound wqs and work items */ 305 static cpumask_var_t wq_unbound_cpumask; 306 307 /* CPU where unbound work was last round robin scheduled from this CPU */ 308 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 309 310 /* 311 * Local execution of unbound work items is no longer guaranteed. The 312 * following always forces round-robin CPU selection on unbound work items 313 * to uncover usages which depend on it. 314 */ 315 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 316 static bool wq_debug_force_rr_cpu = true; 317 #else 318 static bool wq_debug_force_rr_cpu = false; 319 #endif 320 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 321 322 /* the per-cpu worker pools */ 323 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 324 325 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 326 327 /* PL: hash of all unbound pools keyed by pool->attrs */ 328 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 329 330 /* I: attributes used when instantiating standard unbound pools on demand */ 331 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 332 333 /* I: attributes used when instantiating ordered pools on demand */ 334 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 335 336 struct workqueue_struct *system_wq __read_mostly; 337 EXPORT_SYMBOL(system_wq); 338 struct workqueue_struct *system_highpri_wq __read_mostly; 339 EXPORT_SYMBOL_GPL(system_highpri_wq); 340 struct workqueue_struct *system_long_wq __read_mostly; 341 EXPORT_SYMBOL_GPL(system_long_wq); 342 struct workqueue_struct *system_unbound_wq __read_mostly; 343 EXPORT_SYMBOL_GPL(system_unbound_wq); 344 struct workqueue_struct *system_freezable_wq __read_mostly; 345 EXPORT_SYMBOL_GPL(system_freezable_wq); 346 struct workqueue_struct *system_power_efficient_wq __read_mostly; 347 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 348 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 349 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 350 351 static int worker_thread(void *__worker); 352 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 353 354 #define CREATE_TRACE_POINTS 355 #include <trace/events/workqueue.h> 356 357 #define assert_rcu_or_pool_mutex() \ 358 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 359 !lockdep_is_held(&wq_pool_mutex), \ 360 "sched RCU or wq_pool_mutex should be held") 361 362 #define assert_rcu_or_wq_mutex(wq) \ 363 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 364 !lockdep_is_held(&wq->mutex), \ 365 "sched RCU or wq->mutex should be held") 366 367 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 368 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \ 369 !lockdep_is_held(&wq->mutex) && \ 370 !lockdep_is_held(&wq_pool_mutex), \ 371 "sched RCU, wq->mutex or wq_pool_mutex should be held") 372 373 #define for_each_cpu_worker_pool(pool, cpu) \ 374 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 375 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 376 (pool)++) 377 378 /** 379 * for_each_pool - iterate through all worker_pools in the system 380 * @pool: iteration cursor 381 * @pi: integer used for iteration 382 * 383 * This must be called either with wq_pool_mutex held or sched RCU read 384 * locked. If the pool needs to be used beyond the locking in effect, the 385 * caller is responsible for guaranteeing that the pool stays online. 386 * 387 * The if/else clause exists only for the lockdep assertion and can be 388 * ignored. 389 */ 390 #define for_each_pool(pool, pi) \ 391 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 392 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 393 else 394 395 /** 396 * for_each_pool_worker - iterate through all workers of a worker_pool 397 * @worker: iteration cursor 398 * @pool: worker_pool to iterate workers of 399 * 400 * This must be called with @pool->attach_mutex. 401 * 402 * The if/else clause exists only for the lockdep assertion and can be 403 * ignored. 404 */ 405 #define for_each_pool_worker(worker, pool) \ 406 list_for_each_entry((worker), &(pool)->workers, node) \ 407 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \ 408 else 409 410 /** 411 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 412 * @pwq: iteration cursor 413 * @wq: the target workqueue 414 * 415 * This must be called either with wq->mutex held or sched RCU read locked. 416 * If the pwq needs to be used beyond the locking in effect, the caller is 417 * responsible for guaranteeing that the pwq stays online. 418 * 419 * The if/else clause exists only for the lockdep assertion and can be 420 * ignored. 421 */ 422 #define for_each_pwq(pwq, wq) \ 423 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \ 424 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \ 425 else 426 427 #ifdef CONFIG_DEBUG_OBJECTS_WORK 428 429 static struct debug_obj_descr work_debug_descr; 430 431 static void *work_debug_hint(void *addr) 432 { 433 return ((struct work_struct *) addr)->func; 434 } 435 436 /* 437 * fixup_init is called when: 438 * - an active object is initialized 439 */ 440 static int work_fixup_init(void *addr, enum debug_obj_state state) 441 { 442 struct work_struct *work = addr; 443 444 switch (state) { 445 case ODEBUG_STATE_ACTIVE: 446 cancel_work_sync(work); 447 debug_object_init(work, &work_debug_descr); 448 return 1; 449 default: 450 return 0; 451 } 452 } 453 454 /* 455 * fixup_activate is called when: 456 * - an active object is activated 457 * - an unknown object is activated (might be a statically initialized object) 458 */ 459 static int work_fixup_activate(void *addr, enum debug_obj_state state) 460 { 461 struct work_struct *work = addr; 462 463 switch (state) { 464 465 case ODEBUG_STATE_NOTAVAILABLE: 466 /* 467 * This is not really a fixup. The work struct was 468 * statically initialized. We just make sure that it 469 * is tracked in the object tracker. 470 */ 471 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) { 472 debug_object_init(work, &work_debug_descr); 473 debug_object_activate(work, &work_debug_descr); 474 return 0; 475 } 476 WARN_ON_ONCE(1); 477 return 0; 478 479 case ODEBUG_STATE_ACTIVE: 480 WARN_ON(1); 481 482 default: 483 return 0; 484 } 485 } 486 487 /* 488 * fixup_free is called when: 489 * - an active object is freed 490 */ 491 static int work_fixup_free(void *addr, enum debug_obj_state state) 492 { 493 struct work_struct *work = addr; 494 495 switch (state) { 496 case ODEBUG_STATE_ACTIVE: 497 cancel_work_sync(work); 498 debug_object_free(work, &work_debug_descr); 499 return 1; 500 default: 501 return 0; 502 } 503 } 504 505 static struct debug_obj_descr work_debug_descr = { 506 .name = "work_struct", 507 .debug_hint = work_debug_hint, 508 .fixup_init = work_fixup_init, 509 .fixup_activate = work_fixup_activate, 510 .fixup_free = work_fixup_free, 511 }; 512 513 static inline void debug_work_activate(struct work_struct *work) 514 { 515 debug_object_activate(work, &work_debug_descr); 516 } 517 518 static inline void debug_work_deactivate(struct work_struct *work) 519 { 520 debug_object_deactivate(work, &work_debug_descr); 521 } 522 523 void __init_work(struct work_struct *work, int onstack) 524 { 525 if (onstack) 526 debug_object_init_on_stack(work, &work_debug_descr); 527 else 528 debug_object_init(work, &work_debug_descr); 529 } 530 EXPORT_SYMBOL_GPL(__init_work); 531 532 void destroy_work_on_stack(struct work_struct *work) 533 { 534 debug_object_free(work, &work_debug_descr); 535 } 536 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 537 538 void destroy_delayed_work_on_stack(struct delayed_work *work) 539 { 540 destroy_timer_on_stack(&work->timer); 541 debug_object_free(&work->work, &work_debug_descr); 542 } 543 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 544 545 #else 546 static inline void debug_work_activate(struct work_struct *work) { } 547 static inline void debug_work_deactivate(struct work_struct *work) { } 548 #endif 549 550 /** 551 * worker_pool_assign_id - allocate ID and assing it to @pool 552 * @pool: the pool pointer of interest 553 * 554 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 555 * successfully, -errno on failure. 556 */ 557 static int worker_pool_assign_id(struct worker_pool *pool) 558 { 559 int ret; 560 561 lockdep_assert_held(&wq_pool_mutex); 562 563 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 564 GFP_KERNEL); 565 if (ret >= 0) { 566 pool->id = ret; 567 return 0; 568 } 569 return ret; 570 } 571 572 /** 573 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 574 * @wq: the target workqueue 575 * @node: the node ID 576 * 577 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU 578 * read locked. 579 * If the pwq needs to be used beyond the locking in effect, the caller is 580 * responsible for guaranteeing that the pwq stays online. 581 * 582 * Return: The unbound pool_workqueue for @node. 583 */ 584 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 585 int node) 586 { 587 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 588 589 /* 590 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 591 * delayed item is pending. The plan is to keep CPU -> NODE 592 * mapping valid and stable across CPU on/offlines. Once that 593 * happens, this workaround can be removed. 594 */ 595 if (unlikely(node == NUMA_NO_NODE)) 596 return wq->dfl_pwq; 597 598 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 599 } 600 601 static unsigned int work_color_to_flags(int color) 602 { 603 return color << WORK_STRUCT_COLOR_SHIFT; 604 } 605 606 static int get_work_color(struct work_struct *work) 607 { 608 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 609 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 610 } 611 612 static int work_next_color(int color) 613 { 614 return (color + 1) % WORK_NR_COLORS; 615 } 616 617 /* 618 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 619 * contain the pointer to the queued pwq. Once execution starts, the flag 620 * is cleared and the high bits contain OFFQ flags and pool ID. 621 * 622 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 623 * and clear_work_data() can be used to set the pwq, pool or clear 624 * work->data. These functions should only be called while the work is 625 * owned - ie. while the PENDING bit is set. 626 * 627 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 628 * corresponding to a work. Pool is available once the work has been 629 * queued anywhere after initialization until it is sync canceled. pwq is 630 * available only while the work item is queued. 631 * 632 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 633 * canceled. While being canceled, a work item may have its PENDING set 634 * but stay off timer and worklist for arbitrarily long and nobody should 635 * try to steal the PENDING bit. 636 */ 637 static inline void set_work_data(struct work_struct *work, unsigned long data, 638 unsigned long flags) 639 { 640 WARN_ON_ONCE(!work_pending(work)); 641 atomic_long_set(&work->data, data | flags | work_static(work)); 642 } 643 644 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 645 unsigned long extra_flags) 646 { 647 set_work_data(work, (unsigned long)pwq, 648 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 649 } 650 651 static void set_work_pool_and_keep_pending(struct work_struct *work, 652 int pool_id) 653 { 654 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 655 WORK_STRUCT_PENDING); 656 } 657 658 static void set_work_pool_and_clear_pending(struct work_struct *work, 659 int pool_id) 660 { 661 /* 662 * The following wmb is paired with the implied mb in 663 * test_and_set_bit(PENDING) and ensures all updates to @work made 664 * here are visible to and precede any updates by the next PENDING 665 * owner. 666 */ 667 smp_wmb(); 668 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 669 } 670 671 static void clear_work_data(struct work_struct *work) 672 { 673 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 674 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 675 } 676 677 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 678 { 679 unsigned long data = atomic_long_read(&work->data); 680 681 if (data & WORK_STRUCT_PWQ) 682 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 683 else 684 return NULL; 685 } 686 687 /** 688 * get_work_pool - return the worker_pool a given work was associated with 689 * @work: the work item of interest 690 * 691 * Pools are created and destroyed under wq_pool_mutex, and allows read 692 * access under sched-RCU read lock. As such, this function should be 693 * called under wq_pool_mutex or with preemption disabled. 694 * 695 * All fields of the returned pool are accessible as long as the above 696 * mentioned locking is in effect. If the returned pool needs to be used 697 * beyond the critical section, the caller is responsible for ensuring the 698 * returned pool is and stays online. 699 * 700 * Return: The worker_pool @work was last associated with. %NULL if none. 701 */ 702 static struct worker_pool *get_work_pool(struct work_struct *work) 703 { 704 unsigned long data = atomic_long_read(&work->data); 705 int pool_id; 706 707 assert_rcu_or_pool_mutex(); 708 709 if (data & WORK_STRUCT_PWQ) 710 return ((struct pool_workqueue *) 711 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 712 713 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 714 if (pool_id == WORK_OFFQ_POOL_NONE) 715 return NULL; 716 717 return idr_find(&worker_pool_idr, pool_id); 718 } 719 720 /** 721 * get_work_pool_id - return the worker pool ID a given work is associated with 722 * @work: the work item of interest 723 * 724 * Return: The worker_pool ID @work was last associated with. 725 * %WORK_OFFQ_POOL_NONE if none. 726 */ 727 static int get_work_pool_id(struct work_struct *work) 728 { 729 unsigned long data = atomic_long_read(&work->data); 730 731 if (data & WORK_STRUCT_PWQ) 732 return ((struct pool_workqueue *) 733 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 734 735 return data >> WORK_OFFQ_POOL_SHIFT; 736 } 737 738 static void mark_work_canceling(struct work_struct *work) 739 { 740 unsigned long pool_id = get_work_pool_id(work); 741 742 pool_id <<= WORK_OFFQ_POOL_SHIFT; 743 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 744 } 745 746 static bool work_is_canceling(struct work_struct *work) 747 { 748 unsigned long data = atomic_long_read(&work->data); 749 750 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 751 } 752 753 /* 754 * Policy functions. These define the policies on how the global worker 755 * pools are managed. Unless noted otherwise, these functions assume that 756 * they're being called with pool->lock held. 757 */ 758 759 static bool __need_more_worker(struct worker_pool *pool) 760 { 761 return !atomic_read(&pool->nr_running); 762 } 763 764 /* 765 * Need to wake up a worker? Called from anything but currently 766 * running workers. 767 * 768 * Note that, because unbound workers never contribute to nr_running, this 769 * function will always return %true for unbound pools as long as the 770 * worklist isn't empty. 771 */ 772 static bool need_more_worker(struct worker_pool *pool) 773 { 774 return !list_empty(&pool->worklist) && __need_more_worker(pool); 775 } 776 777 /* Can I start working? Called from busy but !running workers. */ 778 static bool may_start_working(struct worker_pool *pool) 779 { 780 return pool->nr_idle; 781 } 782 783 /* Do I need to keep working? Called from currently running workers. */ 784 static bool keep_working(struct worker_pool *pool) 785 { 786 return !list_empty(&pool->worklist) && 787 atomic_read(&pool->nr_running) <= 1; 788 } 789 790 /* Do we need a new worker? Called from manager. */ 791 static bool need_to_create_worker(struct worker_pool *pool) 792 { 793 return need_more_worker(pool) && !may_start_working(pool); 794 } 795 796 /* Do we have too many workers and should some go away? */ 797 static bool too_many_workers(struct worker_pool *pool) 798 { 799 bool managing = mutex_is_locked(&pool->manager_arb); 800 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 801 int nr_busy = pool->nr_workers - nr_idle; 802 803 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 804 } 805 806 /* 807 * Wake up functions. 808 */ 809 810 /* Return the first idle worker. Safe with preemption disabled */ 811 static struct worker *first_idle_worker(struct worker_pool *pool) 812 { 813 if (unlikely(list_empty(&pool->idle_list))) 814 return NULL; 815 816 return list_first_entry(&pool->idle_list, struct worker, entry); 817 } 818 819 /** 820 * wake_up_worker - wake up an idle worker 821 * @pool: worker pool to wake worker from 822 * 823 * Wake up the first idle worker of @pool. 824 * 825 * CONTEXT: 826 * spin_lock_irq(pool->lock). 827 */ 828 static void wake_up_worker(struct worker_pool *pool) 829 { 830 struct worker *worker = first_idle_worker(pool); 831 832 if (likely(worker)) 833 wake_up_process(worker->task); 834 } 835 836 /** 837 * wq_worker_waking_up - a worker is waking up 838 * @task: task waking up 839 * @cpu: CPU @task is waking up to 840 * 841 * This function is called during try_to_wake_up() when a worker is 842 * being awoken. 843 * 844 * CONTEXT: 845 * spin_lock_irq(rq->lock) 846 */ 847 void wq_worker_waking_up(struct task_struct *task, int cpu) 848 { 849 struct worker *worker = kthread_data(task); 850 851 if (!(worker->flags & WORKER_NOT_RUNNING)) { 852 WARN_ON_ONCE(worker->pool->cpu != cpu); 853 atomic_inc(&worker->pool->nr_running); 854 } 855 } 856 857 /** 858 * wq_worker_sleeping - a worker is going to sleep 859 * @task: task going to sleep 860 * @cpu: CPU in question, must be the current CPU number 861 * 862 * This function is called during schedule() when a busy worker is 863 * going to sleep. Worker on the same cpu can be woken up by 864 * returning pointer to its task. 865 * 866 * CONTEXT: 867 * spin_lock_irq(rq->lock) 868 * 869 * Return: 870 * Worker task on @cpu to wake up, %NULL if none. 871 */ 872 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu) 873 { 874 struct worker *worker = kthread_data(task), *to_wakeup = NULL; 875 struct worker_pool *pool; 876 877 /* 878 * Rescuers, which may not have all the fields set up like normal 879 * workers, also reach here, let's not access anything before 880 * checking NOT_RUNNING. 881 */ 882 if (worker->flags & WORKER_NOT_RUNNING) 883 return NULL; 884 885 pool = worker->pool; 886 887 /* this can only happen on the local cpu */ 888 if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu)) 889 return NULL; 890 891 /* 892 * The counterpart of the following dec_and_test, implied mb, 893 * worklist not empty test sequence is in insert_work(). 894 * Please read comment there. 895 * 896 * NOT_RUNNING is clear. This means that we're bound to and 897 * running on the local cpu w/ rq lock held and preemption 898 * disabled, which in turn means that none else could be 899 * manipulating idle_list, so dereferencing idle_list without pool 900 * lock is safe. 901 */ 902 if (atomic_dec_and_test(&pool->nr_running) && 903 !list_empty(&pool->worklist)) 904 to_wakeup = first_idle_worker(pool); 905 return to_wakeup ? to_wakeup->task : NULL; 906 } 907 908 /** 909 * worker_set_flags - set worker flags and adjust nr_running accordingly 910 * @worker: self 911 * @flags: flags to set 912 * 913 * Set @flags in @worker->flags and adjust nr_running accordingly. 914 * 915 * CONTEXT: 916 * spin_lock_irq(pool->lock) 917 */ 918 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 919 { 920 struct worker_pool *pool = worker->pool; 921 922 WARN_ON_ONCE(worker->task != current); 923 924 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 925 if ((flags & WORKER_NOT_RUNNING) && 926 !(worker->flags & WORKER_NOT_RUNNING)) { 927 atomic_dec(&pool->nr_running); 928 } 929 930 worker->flags |= flags; 931 } 932 933 /** 934 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 935 * @worker: self 936 * @flags: flags to clear 937 * 938 * Clear @flags in @worker->flags and adjust nr_running accordingly. 939 * 940 * CONTEXT: 941 * spin_lock_irq(pool->lock) 942 */ 943 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 944 { 945 struct worker_pool *pool = worker->pool; 946 unsigned int oflags = worker->flags; 947 948 WARN_ON_ONCE(worker->task != current); 949 950 worker->flags &= ~flags; 951 952 /* 953 * If transitioning out of NOT_RUNNING, increment nr_running. Note 954 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 955 * of multiple flags, not a single flag. 956 */ 957 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 958 if (!(worker->flags & WORKER_NOT_RUNNING)) 959 atomic_inc(&pool->nr_running); 960 } 961 962 /** 963 * find_worker_executing_work - find worker which is executing a work 964 * @pool: pool of interest 965 * @work: work to find worker for 966 * 967 * Find a worker which is executing @work on @pool by searching 968 * @pool->busy_hash which is keyed by the address of @work. For a worker 969 * to match, its current execution should match the address of @work and 970 * its work function. This is to avoid unwanted dependency between 971 * unrelated work executions through a work item being recycled while still 972 * being executed. 973 * 974 * This is a bit tricky. A work item may be freed once its execution 975 * starts and nothing prevents the freed area from being recycled for 976 * another work item. If the same work item address ends up being reused 977 * before the original execution finishes, workqueue will identify the 978 * recycled work item as currently executing and make it wait until the 979 * current execution finishes, introducing an unwanted dependency. 980 * 981 * This function checks the work item address and work function to avoid 982 * false positives. Note that this isn't complete as one may construct a 983 * work function which can introduce dependency onto itself through a 984 * recycled work item. Well, if somebody wants to shoot oneself in the 985 * foot that badly, there's only so much we can do, and if such deadlock 986 * actually occurs, it should be easy to locate the culprit work function. 987 * 988 * CONTEXT: 989 * spin_lock_irq(pool->lock). 990 * 991 * Return: 992 * Pointer to worker which is executing @work if found, %NULL 993 * otherwise. 994 */ 995 static struct worker *find_worker_executing_work(struct worker_pool *pool, 996 struct work_struct *work) 997 { 998 struct worker *worker; 999 1000 hash_for_each_possible(pool->busy_hash, worker, hentry, 1001 (unsigned long)work) 1002 if (worker->current_work == work && 1003 worker->current_func == work->func) 1004 return worker; 1005 1006 return NULL; 1007 } 1008 1009 /** 1010 * move_linked_works - move linked works to a list 1011 * @work: start of series of works to be scheduled 1012 * @head: target list to append @work to 1013 * @nextp: out parameter for nested worklist walking 1014 * 1015 * Schedule linked works starting from @work to @head. Work series to 1016 * be scheduled starts at @work and includes any consecutive work with 1017 * WORK_STRUCT_LINKED set in its predecessor. 1018 * 1019 * If @nextp is not NULL, it's updated to point to the next work of 1020 * the last scheduled work. This allows move_linked_works() to be 1021 * nested inside outer list_for_each_entry_safe(). 1022 * 1023 * CONTEXT: 1024 * spin_lock_irq(pool->lock). 1025 */ 1026 static void move_linked_works(struct work_struct *work, struct list_head *head, 1027 struct work_struct **nextp) 1028 { 1029 struct work_struct *n; 1030 1031 /* 1032 * Linked worklist will always end before the end of the list, 1033 * use NULL for list head. 1034 */ 1035 list_for_each_entry_safe_from(work, n, NULL, entry) { 1036 list_move_tail(&work->entry, head); 1037 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1038 break; 1039 } 1040 1041 /* 1042 * If we're already inside safe list traversal and have moved 1043 * multiple works to the scheduled queue, the next position 1044 * needs to be updated. 1045 */ 1046 if (nextp) 1047 *nextp = n; 1048 } 1049 1050 /** 1051 * get_pwq - get an extra reference on the specified pool_workqueue 1052 * @pwq: pool_workqueue to get 1053 * 1054 * Obtain an extra reference on @pwq. The caller should guarantee that 1055 * @pwq has positive refcnt and be holding the matching pool->lock. 1056 */ 1057 static void get_pwq(struct pool_workqueue *pwq) 1058 { 1059 lockdep_assert_held(&pwq->pool->lock); 1060 WARN_ON_ONCE(pwq->refcnt <= 0); 1061 pwq->refcnt++; 1062 } 1063 1064 /** 1065 * put_pwq - put a pool_workqueue reference 1066 * @pwq: pool_workqueue to put 1067 * 1068 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1069 * destruction. The caller should be holding the matching pool->lock. 1070 */ 1071 static void put_pwq(struct pool_workqueue *pwq) 1072 { 1073 lockdep_assert_held(&pwq->pool->lock); 1074 if (likely(--pwq->refcnt)) 1075 return; 1076 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1077 return; 1078 /* 1079 * @pwq can't be released under pool->lock, bounce to 1080 * pwq_unbound_release_workfn(). This never recurses on the same 1081 * pool->lock as this path is taken only for unbound workqueues and 1082 * the release work item is scheduled on a per-cpu workqueue. To 1083 * avoid lockdep warning, unbound pool->locks are given lockdep 1084 * subclass of 1 in get_unbound_pool(). 1085 */ 1086 schedule_work(&pwq->unbound_release_work); 1087 } 1088 1089 /** 1090 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1091 * @pwq: pool_workqueue to put (can be %NULL) 1092 * 1093 * put_pwq() with locking. This function also allows %NULL @pwq. 1094 */ 1095 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1096 { 1097 if (pwq) { 1098 /* 1099 * As both pwqs and pools are sched-RCU protected, the 1100 * following lock operations are safe. 1101 */ 1102 spin_lock_irq(&pwq->pool->lock); 1103 put_pwq(pwq); 1104 spin_unlock_irq(&pwq->pool->lock); 1105 } 1106 } 1107 1108 static void pwq_activate_delayed_work(struct work_struct *work) 1109 { 1110 struct pool_workqueue *pwq = get_work_pwq(work); 1111 1112 trace_workqueue_activate_work(work); 1113 if (list_empty(&pwq->pool->worklist)) 1114 pwq->pool->watchdog_ts = jiffies; 1115 move_linked_works(work, &pwq->pool->worklist, NULL); 1116 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1117 pwq->nr_active++; 1118 } 1119 1120 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1121 { 1122 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1123 struct work_struct, entry); 1124 1125 pwq_activate_delayed_work(work); 1126 } 1127 1128 /** 1129 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1130 * @pwq: pwq of interest 1131 * @color: color of work which left the queue 1132 * 1133 * A work either has completed or is removed from pending queue, 1134 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1135 * 1136 * CONTEXT: 1137 * spin_lock_irq(pool->lock). 1138 */ 1139 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1140 { 1141 /* uncolored work items don't participate in flushing or nr_active */ 1142 if (color == WORK_NO_COLOR) 1143 goto out_put; 1144 1145 pwq->nr_in_flight[color]--; 1146 1147 pwq->nr_active--; 1148 if (!list_empty(&pwq->delayed_works)) { 1149 /* one down, submit a delayed one */ 1150 if (pwq->nr_active < pwq->max_active) 1151 pwq_activate_first_delayed(pwq); 1152 } 1153 1154 /* is flush in progress and are we at the flushing tip? */ 1155 if (likely(pwq->flush_color != color)) 1156 goto out_put; 1157 1158 /* are there still in-flight works? */ 1159 if (pwq->nr_in_flight[color]) 1160 goto out_put; 1161 1162 /* this pwq is done, clear flush_color */ 1163 pwq->flush_color = -1; 1164 1165 /* 1166 * If this was the last pwq, wake up the first flusher. It 1167 * will handle the rest. 1168 */ 1169 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1170 complete(&pwq->wq->first_flusher->done); 1171 out_put: 1172 put_pwq(pwq); 1173 } 1174 1175 /** 1176 * try_to_grab_pending - steal work item from worklist and disable irq 1177 * @work: work item to steal 1178 * @is_dwork: @work is a delayed_work 1179 * @flags: place to store irq state 1180 * 1181 * Try to grab PENDING bit of @work. This function can handle @work in any 1182 * stable state - idle, on timer or on worklist. 1183 * 1184 * Return: 1185 * 1 if @work was pending and we successfully stole PENDING 1186 * 0 if @work was idle and we claimed PENDING 1187 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1188 * -ENOENT if someone else is canceling @work, this state may persist 1189 * for arbitrarily long 1190 * 1191 * Note: 1192 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1193 * interrupted while holding PENDING and @work off queue, irq must be 1194 * disabled on entry. This, combined with delayed_work->timer being 1195 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1196 * 1197 * On successful return, >= 0, irq is disabled and the caller is 1198 * responsible for releasing it using local_irq_restore(*@flags). 1199 * 1200 * This function is safe to call from any context including IRQ handler. 1201 */ 1202 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1203 unsigned long *flags) 1204 { 1205 struct worker_pool *pool; 1206 struct pool_workqueue *pwq; 1207 1208 local_irq_save(*flags); 1209 1210 /* try to steal the timer if it exists */ 1211 if (is_dwork) { 1212 struct delayed_work *dwork = to_delayed_work(work); 1213 1214 /* 1215 * dwork->timer is irqsafe. If del_timer() fails, it's 1216 * guaranteed that the timer is not queued anywhere and not 1217 * running on the local CPU. 1218 */ 1219 if (likely(del_timer(&dwork->timer))) 1220 return 1; 1221 } 1222 1223 /* try to claim PENDING the normal way */ 1224 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1225 return 0; 1226 1227 /* 1228 * The queueing is in progress, or it is already queued. Try to 1229 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1230 */ 1231 pool = get_work_pool(work); 1232 if (!pool) 1233 goto fail; 1234 1235 spin_lock(&pool->lock); 1236 /* 1237 * work->data is guaranteed to point to pwq only while the work 1238 * item is queued on pwq->wq, and both updating work->data to point 1239 * to pwq on queueing and to pool on dequeueing are done under 1240 * pwq->pool->lock. This in turn guarantees that, if work->data 1241 * points to pwq which is associated with a locked pool, the work 1242 * item is currently queued on that pool. 1243 */ 1244 pwq = get_work_pwq(work); 1245 if (pwq && pwq->pool == pool) { 1246 debug_work_deactivate(work); 1247 1248 /* 1249 * A delayed work item cannot be grabbed directly because 1250 * it might have linked NO_COLOR work items which, if left 1251 * on the delayed_list, will confuse pwq->nr_active 1252 * management later on and cause stall. Make sure the work 1253 * item is activated before grabbing. 1254 */ 1255 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1256 pwq_activate_delayed_work(work); 1257 1258 list_del_init(&work->entry); 1259 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1260 1261 /* work->data points to pwq iff queued, point to pool */ 1262 set_work_pool_and_keep_pending(work, pool->id); 1263 1264 spin_unlock(&pool->lock); 1265 return 1; 1266 } 1267 spin_unlock(&pool->lock); 1268 fail: 1269 local_irq_restore(*flags); 1270 if (work_is_canceling(work)) 1271 return -ENOENT; 1272 cpu_relax(); 1273 return -EAGAIN; 1274 } 1275 1276 /** 1277 * insert_work - insert a work into a pool 1278 * @pwq: pwq @work belongs to 1279 * @work: work to insert 1280 * @head: insertion point 1281 * @extra_flags: extra WORK_STRUCT_* flags to set 1282 * 1283 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1284 * work_struct flags. 1285 * 1286 * CONTEXT: 1287 * spin_lock_irq(pool->lock). 1288 */ 1289 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1290 struct list_head *head, unsigned int extra_flags) 1291 { 1292 struct worker_pool *pool = pwq->pool; 1293 1294 /* we own @work, set data and link */ 1295 set_work_pwq(work, pwq, extra_flags); 1296 list_add_tail(&work->entry, head); 1297 get_pwq(pwq); 1298 1299 /* 1300 * Ensure either wq_worker_sleeping() sees the above 1301 * list_add_tail() or we see zero nr_running to avoid workers lying 1302 * around lazily while there are works to be processed. 1303 */ 1304 smp_mb(); 1305 1306 if (__need_more_worker(pool)) 1307 wake_up_worker(pool); 1308 } 1309 1310 /* 1311 * Test whether @work is being queued from another work executing on the 1312 * same workqueue. 1313 */ 1314 static bool is_chained_work(struct workqueue_struct *wq) 1315 { 1316 struct worker *worker; 1317 1318 worker = current_wq_worker(); 1319 /* 1320 * Return %true iff I'm a worker execuing a work item on @wq. If 1321 * I'm @worker, it's safe to dereference it without locking. 1322 */ 1323 return worker && worker->current_pwq->wq == wq; 1324 } 1325 1326 /* 1327 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1328 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1329 * avoid perturbing sensitive tasks. 1330 */ 1331 static int wq_select_unbound_cpu(int cpu) 1332 { 1333 static bool printed_dbg_warning; 1334 int new_cpu; 1335 1336 if (likely(!wq_debug_force_rr_cpu)) { 1337 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1338 return cpu; 1339 } else if (!printed_dbg_warning) { 1340 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1341 printed_dbg_warning = true; 1342 } 1343 1344 if (cpumask_empty(wq_unbound_cpumask)) 1345 return cpu; 1346 1347 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1348 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1349 if (unlikely(new_cpu >= nr_cpu_ids)) { 1350 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1351 if (unlikely(new_cpu >= nr_cpu_ids)) 1352 return cpu; 1353 } 1354 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1355 1356 return new_cpu; 1357 } 1358 1359 static void __queue_work(int cpu, struct workqueue_struct *wq, 1360 struct work_struct *work) 1361 { 1362 struct pool_workqueue *pwq; 1363 struct worker_pool *last_pool; 1364 struct list_head *worklist; 1365 unsigned int work_flags; 1366 unsigned int req_cpu = cpu; 1367 1368 /* 1369 * While a work item is PENDING && off queue, a task trying to 1370 * steal the PENDING will busy-loop waiting for it to either get 1371 * queued or lose PENDING. Grabbing PENDING and queueing should 1372 * happen with IRQ disabled. 1373 */ 1374 WARN_ON_ONCE(!irqs_disabled()); 1375 1376 debug_work_activate(work); 1377 1378 /* if draining, only works from the same workqueue are allowed */ 1379 if (unlikely(wq->flags & __WQ_DRAINING) && 1380 WARN_ON_ONCE(!is_chained_work(wq))) 1381 return; 1382 retry: 1383 if (req_cpu == WORK_CPU_UNBOUND) 1384 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1385 1386 /* pwq which will be used unless @work is executing elsewhere */ 1387 if (!(wq->flags & WQ_UNBOUND)) 1388 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1389 else 1390 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1391 1392 /* 1393 * If @work was previously on a different pool, it might still be 1394 * running there, in which case the work needs to be queued on that 1395 * pool to guarantee non-reentrancy. 1396 */ 1397 last_pool = get_work_pool(work); 1398 if (last_pool && last_pool != pwq->pool) { 1399 struct worker *worker; 1400 1401 spin_lock(&last_pool->lock); 1402 1403 worker = find_worker_executing_work(last_pool, work); 1404 1405 if (worker && worker->current_pwq->wq == wq) { 1406 pwq = worker->current_pwq; 1407 } else { 1408 /* meh... not running there, queue here */ 1409 spin_unlock(&last_pool->lock); 1410 spin_lock(&pwq->pool->lock); 1411 } 1412 } else { 1413 spin_lock(&pwq->pool->lock); 1414 } 1415 1416 /* 1417 * pwq is determined and locked. For unbound pools, we could have 1418 * raced with pwq release and it could already be dead. If its 1419 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1420 * without another pwq replacing it in the numa_pwq_tbl or while 1421 * work items are executing on it, so the retrying is guaranteed to 1422 * make forward-progress. 1423 */ 1424 if (unlikely(!pwq->refcnt)) { 1425 if (wq->flags & WQ_UNBOUND) { 1426 spin_unlock(&pwq->pool->lock); 1427 cpu_relax(); 1428 goto retry; 1429 } 1430 /* oops */ 1431 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1432 wq->name, cpu); 1433 } 1434 1435 /* pwq determined, queue */ 1436 trace_workqueue_queue_work(req_cpu, pwq, work); 1437 1438 if (WARN_ON(!list_empty(&work->entry))) { 1439 spin_unlock(&pwq->pool->lock); 1440 return; 1441 } 1442 1443 pwq->nr_in_flight[pwq->work_color]++; 1444 work_flags = work_color_to_flags(pwq->work_color); 1445 1446 if (likely(pwq->nr_active < pwq->max_active)) { 1447 trace_workqueue_activate_work(work); 1448 pwq->nr_active++; 1449 worklist = &pwq->pool->worklist; 1450 if (list_empty(worklist)) 1451 pwq->pool->watchdog_ts = jiffies; 1452 } else { 1453 work_flags |= WORK_STRUCT_DELAYED; 1454 worklist = &pwq->delayed_works; 1455 } 1456 1457 insert_work(pwq, work, worklist, work_flags); 1458 1459 spin_unlock(&pwq->pool->lock); 1460 } 1461 1462 /** 1463 * queue_work_on - queue work on specific cpu 1464 * @cpu: CPU number to execute work on 1465 * @wq: workqueue to use 1466 * @work: work to queue 1467 * 1468 * We queue the work to a specific CPU, the caller must ensure it 1469 * can't go away. 1470 * 1471 * Return: %false if @work was already on a queue, %true otherwise. 1472 */ 1473 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1474 struct work_struct *work) 1475 { 1476 bool ret = false; 1477 unsigned long flags; 1478 1479 local_irq_save(flags); 1480 1481 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1482 __queue_work(cpu, wq, work); 1483 ret = true; 1484 } 1485 1486 local_irq_restore(flags); 1487 return ret; 1488 } 1489 EXPORT_SYMBOL(queue_work_on); 1490 1491 void delayed_work_timer_fn(unsigned long __data) 1492 { 1493 struct delayed_work *dwork = (struct delayed_work *)__data; 1494 1495 /* should have been called from irqsafe timer with irq already off */ 1496 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1497 } 1498 EXPORT_SYMBOL(delayed_work_timer_fn); 1499 1500 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1501 struct delayed_work *dwork, unsigned long delay) 1502 { 1503 struct timer_list *timer = &dwork->timer; 1504 struct work_struct *work = &dwork->work; 1505 1506 WARN_ON_ONCE(timer->function != delayed_work_timer_fn || 1507 timer->data != (unsigned long)dwork); 1508 WARN_ON_ONCE(timer_pending(timer)); 1509 WARN_ON_ONCE(!list_empty(&work->entry)); 1510 1511 /* 1512 * If @delay is 0, queue @dwork->work immediately. This is for 1513 * both optimization and correctness. The earliest @timer can 1514 * expire is on the closest next tick and delayed_work users depend 1515 * on that there's no such delay when @delay is 0. 1516 */ 1517 if (!delay) { 1518 __queue_work(cpu, wq, &dwork->work); 1519 return; 1520 } 1521 1522 timer_stats_timer_set_start_info(&dwork->timer); 1523 1524 dwork->wq = wq; 1525 dwork->cpu = cpu; 1526 timer->expires = jiffies + delay; 1527 1528 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1529 add_timer_on(timer, cpu); 1530 else 1531 add_timer(timer); 1532 } 1533 1534 /** 1535 * queue_delayed_work_on - queue work on specific CPU after delay 1536 * @cpu: CPU number to execute work on 1537 * @wq: workqueue to use 1538 * @dwork: work to queue 1539 * @delay: number of jiffies to wait before queueing 1540 * 1541 * Return: %false if @work was already on a queue, %true otherwise. If 1542 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1543 * execution. 1544 */ 1545 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1546 struct delayed_work *dwork, unsigned long delay) 1547 { 1548 struct work_struct *work = &dwork->work; 1549 bool ret = false; 1550 unsigned long flags; 1551 1552 /* read the comment in __queue_work() */ 1553 local_irq_save(flags); 1554 1555 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1556 __queue_delayed_work(cpu, wq, dwork, delay); 1557 ret = true; 1558 } 1559 1560 local_irq_restore(flags); 1561 return ret; 1562 } 1563 EXPORT_SYMBOL(queue_delayed_work_on); 1564 1565 /** 1566 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1567 * @cpu: CPU number to execute work on 1568 * @wq: workqueue to use 1569 * @dwork: work to queue 1570 * @delay: number of jiffies to wait before queueing 1571 * 1572 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1573 * modify @dwork's timer so that it expires after @delay. If @delay is 1574 * zero, @work is guaranteed to be scheduled immediately regardless of its 1575 * current state. 1576 * 1577 * Return: %false if @dwork was idle and queued, %true if @dwork was 1578 * pending and its timer was modified. 1579 * 1580 * This function is safe to call from any context including IRQ handler. 1581 * See try_to_grab_pending() for details. 1582 */ 1583 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1584 struct delayed_work *dwork, unsigned long delay) 1585 { 1586 unsigned long flags; 1587 int ret; 1588 1589 do { 1590 ret = try_to_grab_pending(&dwork->work, true, &flags); 1591 } while (unlikely(ret == -EAGAIN)); 1592 1593 if (likely(ret >= 0)) { 1594 __queue_delayed_work(cpu, wq, dwork, delay); 1595 local_irq_restore(flags); 1596 } 1597 1598 /* -ENOENT from try_to_grab_pending() becomes %true */ 1599 return ret; 1600 } 1601 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1602 1603 /** 1604 * worker_enter_idle - enter idle state 1605 * @worker: worker which is entering idle state 1606 * 1607 * @worker is entering idle state. Update stats and idle timer if 1608 * necessary. 1609 * 1610 * LOCKING: 1611 * spin_lock_irq(pool->lock). 1612 */ 1613 static void worker_enter_idle(struct worker *worker) 1614 { 1615 struct worker_pool *pool = worker->pool; 1616 1617 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1618 WARN_ON_ONCE(!list_empty(&worker->entry) && 1619 (worker->hentry.next || worker->hentry.pprev))) 1620 return; 1621 1622 /* can't use worker_set_flags(), also called from create_worker() */ 1623 worker->flags |= WORKER_IDLE; 1624 pool->nr_idle++; 1625 worker->last_active = jiffies; 1626 1627 /* idle_list is LIFO */ 1628 list_add(&worker->entry, &pool->idle_list); 1629 1630 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1631 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1632 1633 /* 1634 * Sanity check nr_running. Because wq_unbind_fn() releases 1635 * pool->lock between setting %WORKER_UNBOUND and zapping 1636 * nr_running, the warning may trigger spuriously. Check iff 1637 * unbind is not in progress. 1638 */ 1639 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1640 pool->nr_workers == pool->nr_idle && 1641 atomic_read(&pool->nr_running)); 1642 } 1643 1644 /** 1645 * worker_leave_idle - leave idle state 1646 * @worker: worker which is leaving idle state 1647 * 1648 * @worker is leaving idle state. Update stats. 1649 * 1650 * LOCKING: 1651 * spin_lock_irq(pool->lock). 1652 */ 1653 static void worker_leave_idle(struct worker *worker) 1654 { 1655 struct worker_pool *pool = worker->pool; 1656 1657 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1658 return; 1659 worker_clr_flags(worker, WORKER_IDLE); 1660 pool->nr_idle--; 1661 list_del_init(&worker->entry); 1662 } 1663 1664 static struct worker *alloc_worker(int node) 1665 { 1666 struct worker *worker; 1667 1668 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1669 if (worker) { 1670 INIT_LIST_HEAD(&worker->entry); 1671 INIT_LIST_HEAD(&worker->scheduled); 1672 INIT_LIST_HEAD(&worker->node); 1673 /* on creation a worker is in !idle && prep state */ 1674 worker->flags = WORKER_PREP; 1675 } 1676 return worker; 1677 } 1678 1679 /** 1680 * worker_attach_to_pool() - attach a worker to a pool 1681 * @worker: worker to be attached 1682 * @pool: the target pool 1683 * 1684 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1685 * cpu-binding of @worker are kept coordinated with the pool across 1686 * cpu-[un]hotplugs. 1687 */ 1688 static void worker_attach_to_pool(struct worker *worker, 1689 struct worker_pool *pool) 1690 { 1691 mutex_lock(&pool->attach_mutex); 1692 1693 /* 1694 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1695 * online CPUs. It'll be re-applied when any of the CPUs come up. 1696 */ 1697 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1698 1699 /* 1700 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains 1701 * stable across this function. See the comments above the 1702 * flag definition for details. 1703 */ 1704 if (pool->flags & POOL_DISASSOCIATED) 1705 worker->flags |= WORKER_UNBOUND; 1706 1707 list_add_tail(&worker->node, &pool->workers); 1708 1709 mutex_unlock(&pool->attach_mutex); 1710 } 1711 1712 /** 1713 * worker_detach_from_pool() - detach a worker from its pool 1714 * @worker: worker which is attached to its pool 1715 * @pool: the pool @worker is attached to 1716 * 1717 * Undo the attaching which had been done in worker_attach_to_pool(). The 1718 * caller worker shouldn't access to the pool after detached except it has 1719 * other reference to the pool. 1720 */ 1721 static void worker_detach_from_pool(struct worker *worker, 1722 struct worker_pool *pool) 1723 { 1724 struct completion *detach_completion = NULL; 1725 1726 mutex_lock(&pool->attach_mutex); 1727 list_del(&worker->node); 1728 if (list_empty(&pool->workers)) 1729 detach_completion = pool->detach_completion; 1730 mutex_unlock(&pool->attach_mutex); 1731 1732 /* clear leftover flags without pool->lock after it is detached */ 1733 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1734 1735 if (detach_completion) 1736 complete(detach_completion); 1737 } 1738 1739 /** 1740 * create_worker - create a new workqueue worker 1741 * @pool: pool the new worker will belong to 1742 * 1743 * Create and start a new worker which is attached to @pool. 1744 * 1745 * CONTEXT: 1746 * Might sleep. Does GFP_KERNEL allocations. 1747 * 1748 * Return: 1749 * Pointer to the newly created worker. 1750 */ 1751 static struct worker *create_worker(struct worker_pool *pool) 1752 { 1753 struct worker *worker = NULL; 1754 int id = -1; 1755 char id_buf[16]; 1756 1757 /* ID is needed to determine kthread name */ 1758 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1759 if (id < 0) 1760 goto fail; 1761 1762 worker = alloc_worker(pool->node); 1763 if (!worker) 1764 goto fail; 1765 1766 worker->pool = pool; 1767 worker->id = id; 1768 1769 if (pool->cpu >= 0) 1770 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1771 pool->attrs->nice < 0 ? "H" : ""); 1772 else 1773 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1774 1775 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1776 "kworker/%s", id_buf); 1777 if (IS_ERR(worker->task)) 1778 goto fail; 1779 1780 set_user_nice(worker->task, pool->attrs->nice); 1781 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1782 1783 /* successful, attach the worker to the pool */ 1784 worker_attach_to_pool(worker, pool); 1785 1786 /* start the newly created worker */ 1787 spin_lock_irq(&pool->lock); 1788 worker->pool->nr_workers++; 1789 worker_enter_idle(worker); 1790 wake_up_process(worker->task); 1791 spin_unlock_irq(&pool->lock); 1792 1793 return worker; 1794 1795 fail: 1796 if (id >= 0) 1797 ida_simple_remove(&pool->worker_ida, id); 1798 kfree(worker); 1799 return NULL; 1800 } 1801 1802 /** 1803 * destroy_worker - destroy a workqueue worker 1804 * @worker: worker to be destroyed 1805 * 1806 * Destroy @worker and adjust @pool stats accordingly. The worker should 1807 * be idle. 1808 * 1809 * CONTEXT: 1810 * spin_lock_irq(pool->lock). 1811 */ 1812 static void destroy_worker(struct worker *worker) 1813 { 1814 struct worker_pool *pool = worker->pool; 1815 1816 lockdep_assert_held(&pool->lock); 1817 1818 /* sanity check frenzy */ 1819 if (WARN_ON(worker->current_work) || 1820 WARN_ON(!list_empty(&worker->scheduled)) || 1821 WARN_ON(!(worker->flags & WORKER_IDLE))) 1822 return; 1823 1824 pool->nr_workers--; 1825 pool->nr_idle--; 1826 1827 list_del_init(&worker->entry); 1828 worker->flags |= WORKER_DIE; 1829 wake_up_process(worker->task); 1830 } 1831 1832 static void idle_worker_timeout(unsigned long __pool) 1833 { 1834 struct worker_pool *pool = (void *)__pool; 1835 1836 spin_lock_irq(&pool->lock); 1837 1838 while (too_many_workers(pool)) { 1839 struct worker *worker; 1840 unsigned long expires; 1841 1842 /* idle_list is kept in LIFO order, check the last one */ 1843 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1844 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1845 1846 if (time_before(jiffies, expires)) { 1847 mod_timer(&pool->idle_timer, expires); 1848 break; 1849 } 1850 1851 destroy_worker(worker); 1852 } 1853 1854 spin_unlock_irq(&pool->lock); 1855 } 1856 1857 static void send_mayday(struct work_struct *work) 1858 { 1859 struct pool_workqueue *pwq = get_work_pwq(work); 1860 struct workqueue_struct *wq = pwq->wq; 1861 1862 lockdep_assert_held(&wq_mayday_lock); 1863 1864 if (!wq->rescuer) 1865 return; 1866 1867 /* mayday mayday mayday */ 1868 if (list_empty(&pwq->mayday_node)) { 1869 /* 1870 * If @pwq is for an unbound wq, its base ref may be put at 1871 * any time due to an attribute change. Pin @pwq until the 1872 * rescuer is done with it. 1873 */ 1874 get_pwq(pwq); 1875 list_add_tail(&pwq->mayday_node, &wq->maydays); 1876 wake_up_process(wq->rescuer->task); 1877 } 1878 } 1879 1880 static void pool_mayday_timeout(unsigned long __pool) 1881 { 1882 struct worker_pool *pool = (void *)__pool; 1883 struct work_struct *work; 1884 1885 spin_lock_irq(&pool->lock); 1886 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 1887 1888 if (need_to_create_worker(pool)) { 1889 /* 1890 * We've been trying to create a new worker but 1891 * haven't been successful. We might be hitting an 1892 * allocation deadlock. Send distress signals to 1893 * rescuers. 1894 */ 1895 list_for_each_entry(work, &pool->worklist, entry) 1896 send_mayday(work); 1897 } 1898 1899 spin_unlock(&wq_mayday_lock); 1900 spin_unlock_irq(&pool->lock); 1901 1902 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 1903 } 1904 1905 /** 1906 * maybe_create_worker - create a new worker if necessary 1907 * @pool: pool to create a new worker for 1908 * 1909 * Create a new worker for @pool if necessary. @pool is guaranteed to 1910 * have at least one idle worker on return from this function. If 1911 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 1912 * sent to all rescuers with works scheduled on @pool to resolve 1913 * possible allocation deadlock. 1914 * 1915 * On return, need_to_create_worker() is guaranteed to be %false and 1916 * may_start_working() %true. 1917 * 1918 * LOCKING: 1919 * spin_lock_irq(pool->lock) which may be released and regrabbed 1920 * multiple times. Does GFP_KERNEL allocations. Called only from 1921 * manager. 1922 */ 1923 static void maybe_create_worker(struct worker_pool *pool) 1924 __releases(&pool->lock) 1925 __acquires(&pool->lock) 1926 { 1927 restart: 1928 spin_unlock_irq(&pool->lock); 1929 1930 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 1931 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 1932 1933 while (true) { 1934 if (create_worker(pool) || !need_to_create_worker(pool)) 1935 break; 1936 1937 schedule_timeout_interruptible(CREATE_COOLDOWN); 1938 1939 if (!need_to_create_worker(pool)) 1940 break; 1941 } 1942 1943 del_timer_sync(&pool->mayday_timer); 1944 spin_lock_irq(&pool->lock); 1945 /* 1946 * This is necessary even after a new worker was just successfully 1947 * created as @pool->lock was dropped and the new worker might have 1948 * already become busy. 1949 */ 1950 if (need_to_create_worker(pool)) 1951 goto restart; 1952 } 1953 1954 /** 1955 * manage_workers - manage worker pool 1956 * @worker: self 1957 * 1958 * Assume the manager role and manage the worker pool @worker belongs 1959 * to. At any given time, there can be only zero or one manager per 1960 * pool. The exclusion is handled automatically by this function. 1961 * 1962 * The caller can safely start processing works on false return. On 1963 * true return, it's guaranteed that need_to_create_worker() is false 1964 * and may_start_working() is true. 1965 * 1966 * CONTEXT: 1967 * spin_lock_irq(pool->lock) which may be released and regrabbed 1968 * multiple times. Does GFP_KERNEL allocations. 1969 * 1970 * Return: 1971 * %false if the pool doesn't need management and the caller can safely 1972 * start processing works, %true if management function was performed and 1973 * the conditions that the caller verified before calling the function may 1974 * no longer be true. 1975 */ 1976 static bool manage_workers(struct worker *worker) 1977 { 1978 struct worker_pool *pool = worker->pool; 1979 1980 /* 1981 * Anyone who successfully grabs manager_arb wins the arbitration 1982 * and becomes the manager. mutex_trylock() on pool->manager_arb 1983 * failure while holding pool->lock reliably indicates that someone 1984 * else is managing the pool and the worker which failed trylock 1985 * can proceed to executing work items. This means that anyone 1986 * grabbing manager_arb is responsible for actually performing 1987 * manager duties. If manager_arb is grabbed and released without 1988 * actual management, the pool may stall indefinitely. 1989 */ 1990 if (!mutex_trylock(&pool->manager_arb)) 1991 return false; 1992 pool->manager = worker; 1993 1994 maybe_create_worker(pool); 1995 1996 pool->manager = NULL; 1997 mutex_unlock(&pool->manager_arb); 1998 return true; 1999 } 2000 2001 /** 2002 * process_one_work - process single work 2003 * @worker: self 2004 * @work: work to process 2005 * 2006 * Process @work. This function contains all the logics necessary to 2007 * process a single work including synchronization against and 2008 * interaction with other workers on the same cpu, queueing and 2009 * flushing. As long as context requirement is met, any worker can 2010 * call this function to process a work. 2011 * 2012 * CONTEXT: 2013 * spin_lock_irq(pool->lock) which is released and regrabbed. 2014 */ 2015 static void process_one_work(struct worker *worker, struct work_struct *work) 2016 __releases(&pool->lock) 2017 __acquires(&pool->lock) 2018 { 2019 struct pool_workqueue *pwq = get_work_pwq(work); 2020 struct worker_pool *pool = worker->pool; 2021 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2022 int work_color; 2023 struct worker *collision; 2024 #ifdef CONFIG_LOCKDEP 2025 /* 2026 * It is permissible to free the struct work_struct from 2027 * inside the function that is called from it, this we need to 2028 * take into account for lockdep too. To avoid bogus "held 2029 * lock freed" warnings as well as problems when looking into 2030 * work->lockdep_map, make a copy and use that here. 2031 */ 2032 struct lockdep_map lockdep_map; 2033 2034 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2035 #endif 2036 /* ensure we're on the correct CPU */ 2037 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2038 raw_smp_processor_id() != pool->cpu); 2039 2040 /* 2041 * A single work shouldn't be executed concurrently by 2042 * multiple workers on a single cpu. Check whether anyone is 2043 * already processing the work. If so, defer the work to the 2044 * currently executing one. 2045 */ 2046 collision = find_worker_executing_work(pool, work); 2047 if (unlikely(collision)) { 2048 move_linked_works(work, &collision->scheduled, NULL); 2049 return; 2050 } 2051 2052 /* claim and dequeue */ 2053 debug_work_deactivate(work); 2054 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2055 worker->current_work = work; 2056 worker->current_func = work->func; 2057 worker->current_pwq = pwq; 2058 work_color = get_work_color(work); 2059 2060 list_del_init(&work->entry); 2061 2062 /* 2063 * CPU intensive works don't participate in concurrency management. 2064 * They're the scheduler's responsibility. This takes @worker out 2065 * of concurrency management and the next code block will chain 2066 * execution of the pending work items. 2067 */ 2068 if (unlikely(cpu_intensive)) 2069 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2070 2071 /* 2072 * Wake up another worker if necessary. The condition is always 2073 * false for normal per-cpu workers since nr_running would always 2074 * be >= 1 at this point. This is used to chain execution of the 2075 * pending work items for WORKER_NOT_RUNNING workers such as the 2076 * UNBOUND and CPU_INTENSIVE ones. 2077 */ 2078 if (need_more_worker(pool)) 2079 wake_up_worker(pool); 2080 2081 /* 2082 * Record the last pool and clear PENDING which should be the last 2083 * update to @work. Also, do this inside @pool->lock so that 2084 * PENDING and queued state changes happen together while IRQ is 2085 * disabled. 2086 */ 2087 set_work_pool_and_clear_pending(work, pool->id); 2088 2089 spin_unlock_irq(&pool->lock); 2090 2091 lock_map_acquire_read(&pwq->wq->lockdep_map); 2092 lock_map_acquire(&lockdep_map); 2093 trace_workqueue_execute_start(work); 2094 worker->current_func(work); 2095 /* 2096 * While we must be careful to not use "work" after this, the trace 2097 * point will only record its address. 2098 */ 2099 trace_workqueue_execute_end(work); 2100 lock_map_release(&lockdep_map); 2101 lock_map_release(&pwq->wq->lockdep_map); 2102 2103 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2104 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2105 " last function: %pf\n", 2106 current->comm, preempt_count(), task_pid_nr(current), 2107 worker->current_func); 2108 debug_show_held_locks(current); 2109 dump_stack(); 2110 } 2111 2112 /* 2113 * The following prevents a kworker from hogging CPU on !PREEMPT 2114 * kernels, where a requeueing work item waiting for something to 2115 * happen could deadlock with stop_machine as such work item could 2116 * indefinitely requeue itself while all other CPUs are trapped in 2117 * stop_machine. At the same time, report a quiescent RCU state so 2118 * the same condition doesn't freeze RCU. 2119 */ 2120 cond_resched_rcu_qs(); 2121 2122 spin_lock_irq(&pool->lock); 2123 2124 /* clear cpu intensive status */ 2125 if (unlikely(cpu_intensive)) 2126 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2127 2128 /* we're done with it, release */ 2129 hash_del(&worker->hentry); 2130 worker->current_work = NULL; 2131 worker->current_func = NULL; 2132 worker->current_pwq = NULL; 2133 worker->desc_valid = false; 2134 pwq_dec_nr_in_flight(pwq, work_color); 2135 } 2136 2137 /** 2138 * process_scheduled_works - process scheduled works 2139 * @worker: self 2140 * 2141 * Process all scheduled works. Please note that the scheduled list 2142 * may change while processing a work, so this function repeatedly 2143 * fetches a work from the top and executes it. 2144 * 2145 * CONTEXT: 2146 * spin_lock_irq(pool->lock) which may be released and regrabbed 2147 * multiple times. 2148 */ 2149 static void process_scheduled_works(struct worker *worker) 2150 { 2151 while (!list_empty(&worker->scheduled)) { 2152 struct work_struct *work = list_first_entry(&worker->scheduled, 2153 struct work_struct, entry); 2154 process_one_work(worker, work); 2155 } 2156 } 2157 2158 /** 2159 * worker_thread - the worker thread function 2160 * @__worker: self 2161 * 2162 * The worker thread function. All workers belong to a worker_pool - 2163 * either a per-cpu one or dynamic unbound one. These workers process all 2164 * work items regardless of their specific target workqueue. The only 2165 * exception is work items which belong to workqueues with a rescuer which 2166 * will be explained in rescuer_thread(). 2167 * 2168 * Return: 0 2169 */ 2170 static int worker_thread(void *__worker) 2171 { 2172 struct worker *worker = __worker; 2173 struct worker_pool *pool = worker->pool; 2174 2175 /* tell the scheduler that this is a workqueue worker */ 2176 worker->task->flags |= PF_WQ_WORKER; 2177 woke_up: 2178 spin_lock_irq(&pool->lock); 2179 2180 /* am I supposed to die? */ 2181 if (unlikely(worker->flags & WORKER_DIE)) { 2182 spin_unlock_irq(&pool->lock); 2183 WARN_ON_ONCE(!list_empty(&worker->entry)); 2184 worker->task->flags &= ~PF_WQ_WORKER; 2185 2186 set_task_comm(worker->task, "kworker/dying"); 2187 ida_simple_remove(&pool->worker_ida, worker->id); 2188 worker_detach_from_pool(worker, pool); 2189 kfree(worker); 2190 return 0; 2191 } 2192 2193 worker_leave_idle(worker); 2194 recheck: 2195 /* no more worker necessary? */ 2196 if (!need_more_worker(pool)) 2197 goto sleep; 2198 2199 /* do we need to manage? */ 2200 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2201 goto recheck; 2202 2203 /* 2204 * ->scheduled list can only be filled while a worker is 2205 * preparing to process a work or actually processing it. 2206 * Make sure nobody diddled with it while I was sleeping. 2207 */ 2208 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2209 2210 /* 2211 * Finish PREP stage. We're guaranteed to have at least one idle 2212 * worker or that someone else has already assumed the manager 2213 * role. This is where @worker starts participating in concurrency 2214 * management if applicable and concurrency management is restored 2215 * after being rebound. See rebind_workers() for details. 2216 */ 2217 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2218 2219 do { 2220 struct work_struct *work = 2221 list_first_entry(&pool->worklist, 2222 struct work_struct, entry); 2223 2224 pool->watchdog_ts = jiffies; 2225 2226 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2227 /* optimization path, not strictly necessary */ 2228 process_one_work(worker, work); 2229 if (unlikely(!list_empty(&worker->scheduled))) 2230 process_scheduled_works(worker); 2231 } else { 2232 move_linked_works(work, &worker->scheduled, NULL); 2233 process_scheduled_works(worker); 2234 } 2235 } while (keep_working(pool)); 2236 2237 worker_set_flags(worker, WORKER_PREP); 2238 sleep: 2239 /* 2240 * pool->lock is held and there's no work to process and no need to 2241 * manage, sleep. Workers are woken up only while holding 2242 * pool->lock or from local cpu, so setting the current state 2243 * before releasing pool->lock is enough to prevent losing any 2244 * event. 2245 */ 2246 worker_enter_idle(worker); 2247 __set_current_state(TASK_INTERRUPTIBLE); 2248 spin_unlock_irq(&pool->lock); 2249 schedule(); 2250 goto woke_up; 2251 } 2252 2253 /** 2254 * rescuer_thread - the rescuer thread function 2255 * @__rescuer: self 2256 * 2257 * Workqueue rescuer thread function. There's one rescuer for each 2258 * workqueue which has WQ_MEM_RECLAIM set. 2259 * 2260 * Regular work processing on a pool may block trying to create a new 2261 * worker which uses GFP_KERNEL allocation which has slight chance of 2262 * developing into deadlock if some works currently on the same queue 2263 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2264 * the problem rescuer solves. 2265 * 2266 * When such condition is possible, the pool summons rescuers of all 2267 * workqueues which have works queued on the pool and let them process 2268 * those works so that forward progress can be guaranteed. 2269 * 2270 * This should happen rarely. 2271 * 2272 * Return: 0 2273 */ 2274 static int rescuer_thread(void *__rescuer) 2275 { 2276 struct worker *rescuer = __rescuer; 2277 struct workqueue_struct *wq = rescuer->rescue_wq; 2278 struct list_head *scheduled = &rescuer->scheduled; 2279 bool should_stop; 2280 2281 set_user_nice(current, RESCUER_NICE_LEVEL); 2282 2283 /* 2284 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2285 * doesn't participate in concurrency management. 2286 */ 2287 rescuer->task->flags |= PF_WQ_WORKER; 2288 repeat: 2289 set_current_state(TASK_INTERRUPTIBLE); 2290 2291 /* 2292 * By the time the rescuer is requested to stop, the workqueue 2293 * shouldn't have any work pending, but @wq->maydays may still have 2294 * pwq(s) queued. This can happen by non-rescuer workers consuming 2295 * all the work items before the rescuer got to them. Go through 2296 * @wq->maydays processing before acting on should_stop so that the 2297 * list is always empty on exit. 2298 */ 2299 should_stop = kthread_should_stop(); 2300 2301 /* see whether any pwq is asking for help */ 2302 spin_lock_irq(&wq_mayday_lock); 2303 2304 while (!list_empty(&wq->maydays)) { 2305 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2306 struct pool_workqueue, mayday_node); 2307 struct worker_pool *pool = pwq->pool; 2308 struct work_struct *work, *n; 2309 bool first = true; 2310 2311 __set_current_state(TASK_RUNNING); 2312 list_del_init(&pwq->mayday_node); 2313 2314 spin_unlock_irq(&wq_mayday_lock); 2315 2316 worker_attach_to_pool(rescuer, pool); 2317 2318 spin_lock_irq(&pool->lock); 2319 rescuer->pool = pool; 2320 2321 /* 2322 * Slurp in all works issued via this workqueue and 2323 * process'em. 2324 */ 2325 WARN_ON_ONCE(!list_empty(scheduled)); 2326 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2327 if (get_work_pwq(work) == pwq) { 2328 if (first) 2329 pool->watchdog_ts = jiffies; 2330 move_linked_works(work, scheduled, &n); 2331 } 2332 first = false; 2333 } 2334 2335 if (!list_empty(scheduled)) { 2336 process_scheduled_works(rescuer); 2337 2338 /* 2339 * The above execution of rescued work items could 2340 * have created more to rescue through 2341 * pwq_activate_first_delayed() or chained 2342 * queueing. Let's put @pwq back on mayday list so 2343 * that such back-to-back work items, which may be 2344 * being used to relieve memory pressure, don't 2345 * incur MAYDAY_INTERVAL delay inbetween. 2346 */ 2347 if (need_to_create_worker(pool)) { 2348 spin_lock(&wq_mayday_lock); 2349 get_pwq(pwq); 2350 list_move_tail(&pwq->mayday_node, &wq->maydays); 2351 spin_unlock(&wq_mayday_lock); 2352 } 2353 } 2354 2355 /* 2356 * Put the reference grabbed by send_mayday(). @pool won't 2357 * go away while we're still attached to it. 2358 */ 2359 put_pwq(pwq); 2360 2361 /* 2362 * Leave this pool. If need_more_worker() is %true, notify a 2363 * regular worker; otherwise, we end up with 0 concurrency 2364 * and stalling the execution. 2365 */ 2366 if (need_more_worker(pool)) 2367 wake_up_worker(pool); 2368 2369 rescuer->pool = NULL; 2370 spin_unlock_irq(&pool->lock); 2371 2372 worker_detach_from_pool(rescuer, pool); 2373 2374 spin_lock_irq(&wq_mayday_lock); 2375 } 2376 2377 spin_unlock_irq(&wq_mayday_lock); 2378 2379 if (should_stop) { 2380 __set_current_state(TASK_RUNNING); 2381 rescuer->task->flags &= ~PF_WQ_WORKER; 2382 return 0; 2383 } 2384 2385 /* rescuers should never participate in concurrency management */ 2386 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2387 schedule(); 2388 goto repeat; 2389 } 2390 2391 /** 2392 * check_flush_dependency - check for flush dependency sanity 2393 * @target_wq: workqueue being flushed 2394 * @target_work: work item being flushed (NULL for workqueue flushes) 2395 * 2396 * %current is trying to flush the whole @target_wq or @target_work on it. 2397 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2398 * reclaiming memory or running on a workqueue which doesn't have 2399 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2400 * a deadlock. 2401 */ 2402 static void check_flush_dependency(struct workqueue_struct *target_wq, 2403 struct work_struct *target_work) 2404 { 2405 work_func_t target_func = target_work ? target_work->func : NULL; 2406 struct worker *worker; 2407 2408 if (target_wq->flags & WQ_MEM_RECLAIM) 2409 return; 2410 2411 worker = current_wq_worker(); 2412 2413 WARN_ONCE(current->flags & PF_MEMALLOC, 2414 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf", 2415 current->pid, current->comm, target_wq->name, target_func); 2416 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2417 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2418 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf", 2419 worker->current_pwq->wq->name, worker->current_func, 2420 target_wq->name, target_func); 2421 } 2422 2423 struct wq_barrier { 2424 struct work_struct work; 2425 struct completion done; 2426 struct task_struct *task; /* purely informational */ 2427 }; 2428 2429 static void wq_barrier_func(struct work_struct *work) 2430 { 2431 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2432 complete(&barr->done); 2433 } 2434 2435 /** 2436 * insert_wq_barrier - insert a barrier work 2437 * @pwq: pwq to insert barrier into 2438 * @barr: wq_barrier to insert 2439 * @target: target work to attach @barr to 2440 * @worker: worker currently executing @target, NULL if @target is not executing 2441 * 2442 * @barr is linked to @target such that @barr is completed only after 2443 * @target finishes execution. Please note that the ordering 2444 * guarantee is observed only with respect to @target and on the local 2445 * cpu. 2446 * 2447 * Currently, a queued barrier can't be canceled. This is because 2448 * try_to_grab_pending() can't determine whether the work to be 2449 * grabbed is at the head of the queue and thus can't clear LINKED 2450 * flag of the previous work while there must be a valid next work 2451 * after a work with LINKED flag set. 2452 * 2453 * Note that when @worker is non-NULL, @target may be modified 2454 * underneath us, so we can't reliably determine pwq from @target. 2455 * 2456 * CONTEXT: 2457 * spin_lock_irq(pool->lock). 2458 */ 2459 static void insert_wq_barrier(struct pool_workqueue *pwq, 2460 struct wq_barrier *barr, 2461 struct work_struct *target, struct worker *worker) 2462 { 2463 struct list_head *head; 2464 unsigned int linked = 0; 2465 2466 /* 2467 * debugobject calls are safe here even with pool->lock locked 2468 * as we know for sure that this will not trigger any of the 2469 * checks and call back into the fixup functions where we 2470 * might deadlock. 2471 */ 2472 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2473 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2474 init_completion(&barr->done); 2475 barr->task = current; 2476 2477 /* 2478 * If @target is currently being executed, schedule the 2479 * barrier to the worker; otherwise, put it after @target. 2480 */ 2481 if (worker) 2482 head = worker->scheduled.next; 2483 else { 2484 unsigned long *bits = work_data_bits(target); 2485 2486 head = target->entry.next; 2487 /* there can already be other linked works, inherit and set */ 2488 linked = *bits & WORK_STRUCT_LINKED; 2489 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2490 } 2491 2492 debug_work_activate(&barr->work); 2493 insert_work(pwq, &barr->work, head, 2494 work_color_to_flags(WORK_NO_COLOR) | linked); 2495 } 2496 2497 /** 2498 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2499 * @wq: workqueue being flushed 2500 * @flush_color: new flush color, < 0 for no-op 2501 * @work_color: new work color, < 0 for no-op 2502 * 2503 * Prepare pwqs for workqueue flushing. 2504 * 2505 * If @flush_color is non-negative, flush_color on all pwqs should be 2506 * -1. If no pwq has in-flight commands at the specified color, all 2507 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2508 * has in flight commands, its pwq->flush_color is set to 2509 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2510 * wakeup logic is armed and %true is returned. 2511 * 2512 * The caller should have initialized @wq->first_flusher prior to 2513 * calling this function with non-negative @flush_color. If 2514 * @flush_color is negative, no flush color update is done and %false 2515 * is returned. 2516 * 2517 * If @work_color is non-negative, all pwqs should have the same 2518 * work_color which is previous to @work_color and all will be 2519 * advanced to @work_color. 2520 * 2521 * CONTEXT: 2522 * mutex_lock(wq->mutex). 2523 * 2524 * Return: 2525 * %true if @flush_color >= 0 and there's something to flush. %false 2526 * otherwise. 2527 */ 2528 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2529 int flush_color, int work_color) 2530 { 2531 bool wait = false; 2532 struct pool_workqueue *pwq; 2533 2534 if (flush_color >= 0) { 2535 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2536 atomic_set(&wq->nr_pwqs_to_flush, 1); 2537 } 2538 2539 for_each_pwq(pwq, wq) { 2540 struct worker_pool *pool = pwq->pool; 2541 2542 spin_lock_irq(&pool->lock); 2543 2544 if (flush_color >= 0) { 2545 WARN_ON_ONCE(pwq->flush_color != -1); 2546 2547 if (pwq->nr_in_flight[flush_color]) { 2548 pwq->flush_color = flush_color; 2549 atomic_inc(&wq->nr_pwqs_to_flush); 2550 wait = true; 2551 } 2552 } 2553 2554 if (work_color >= 0) { 2555 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2556 pwq->work_color = work_color; 2557 } 2558 2559 spin_unlock_irq(&pool->lock); 2560 } 2561 2562 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2563 complete(&wq->first_flusher->done); 2564 2565 return wait; 2566 } 2567 2568 /** 2569 * flush_workqueue - ensure that any scheduled work has run to completion. 2570 * @wq: workqueue to flush 2571 * 2572 * This function sleeps until all work items which were queued on entry 2573 * have finished execution, but it is not livelocked by new incoming ones. 2574 */ 2575 void flush_workqueue(struct workqueue_struct *wq) 2576 { 2577 struct wq_flusher this_flusher = { 2578 .list = LIST_HEAD_INIT(this_flusher.list), 2579 .flush_color = -1, 2580 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done), 2581 }; 2582 int next_color; 2583 2584 lock_map_acquire(&wq->lockdep_map); 2585 lock_map_release(&wq->lockdep_map); 2586 2587 mutex_lock(&wq->mutex); 2588 2589 /* 2590 * Start-to-wait phase 2591 */ 2592 next_color = work_next_color(wq->work_color); 2593 2594 if (next_color != wq->flush_color) { 2595 /* 2596 * Color space is not full. The current work_color 2597 * becomes our flush_color and work_color is advanced 2598 * by one. 2599 */ 2600 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2601 this_flusher.flush_color = wq->work_color; 2602 wq->work_color = next_color; 2603 2604 if (!wq->first_flusher) { 2605 /* no flush in progress, become the first flusher */ 2606 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2607 2608 wq->first_flusher = &this_flusher; 2609 2610 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2611 wq->work_color)) { 2612 /* nothing to flush, done */ 2613 wq->flush_color = next_color; 2614 wq->first_flusher = NULL; 2615 goto out_unlock; 2616 } 2617 } else { 2618 /* wait in queue */ 2619 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2620 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2621 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2622 } 2623 } else { 2624 /* 2625 * Oops, color space is full, wait on overflow queue. 2626 * The next flush completion will assign us 2627 * flush_color and transfer to flusher_queue. 2628 */ 2629 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2630 } 2631 2632 check_flush_dependency(wq, NULL); 2633 2634 mutex_unlock(&wq->mutex); 2635 2636 wait_for_completion(&this_flusher.done); 2637 2638 /* 2639 * Wake-up-and-cascade phase 2640 * 2641 * First flushers are responsible for cascading flushes and 2642 * handling overflow. Non-first flushers can simply return. 2643 */ 2644 if (wq->first_flusher != &this_flusher) 2645 return; 2646 2647 mutex_lock(&wq->mutex); 2648 2649 /* we might have raced, check again with mutex held */ 2650 if (wq->first_flusher != &this_flusher) 2651 goto out_unlock; 2652 2653 wq->first_flusher = NULL; 2654 2655 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2656 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2657 2658 while (true) { 2659 struct wq_flusher *next, *tmp; 2660 2661 /* complete all the flushers sharing the current flush color */ 2662 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2663 if (next->flush_color != wq->flush_color) 2664 break; 2665 list_del_init(&next->list); 2666 complete(&next->done); 2667 } 2668 2669 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2670 wq->flush_color != work_next_color(wq->work_color)); 2671 2672 /* this flush_color is finished, advance by one */ 2673 wq->flush_color = work_next_color(wq->flush_color); 2674 2675 /* one color has been freed, handle overflow queue */ 2676 if (!list_empty(&wq->flusher_overflow)) { 2677 /* 2678 * Assign the same color to all overflowed 2679 * flushers, advance work_color and append to 2680 * flusher_queue. This is the start-to-wait 2681 * phase for these overflowed flushers. 2682 */ 2683 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2684 tmp->flush_color = wq->work_color; 2685 2686 wq->work_color = work_next_color(wq->work_color); 2687 2688 list_splice_tail_init(&wq->flusher_overflow, 2689 &wq->flusher_queue); 2690 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2691 } 2692 2693 if (list_empty(&wq->flusher_queue)) { 2694 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2695 break; 2696 } 2697 2698 /* 2699 * Need to flush more colors. Make the next flusher 2700 * the new first flusher and arm pwqs. 2701 */ 2702 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2703 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2704 2705 list_del_init(&next->list); 2706 wq->first_flusher = next; 2707 2708 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2709 break; 2710 2711 /* 2712 * Meh... this color is already done, clear first 2713 * flusher and repeat cascading. 2714 */ 2715 wq->first_flusher = NULL; 2716 } 2717 2718 out_unlock: 2719 mutex_unlock(&wq->mutex); 2720 } 2721 EXPORT_SYMBOL(flush_workqueue); 2722 2723 /** 2724 * drain_workqueue - drain a workqueue 2725 * @wq: workqueue to drain 2726 * 2727 * Wait until the workqueue becomes empty. While draining is in progress, 2728 * only chain queueing is allowed. IOW, only currently pending or running 2729 * work items on @wq can queue further work items on it. @wq is flushed 2730 * repeatedly until it becomes empty. The number of flushing is determined 2731 * by the depth of chaining and should be relatively short. Whine if it 2732 * takes too long. 2733 */ 2734 void drain_workqueue(struct workqueue_struct *wq) 2735 { 2736 unsigned int flush_cnt = 0; 2737 struct pool_workqueue *pwq; 2738 2739 /* 2740 * __queue_work() needs to test whether there are drainers, is much 2741 * hotter than drain_workqueue() and already looks at @wq->flags. 2742 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2743 */ 2744 mutex_lock(&wq->mutex); 2745 if (!wq->nr_drainers++) 2746 wq->flags |= __WQ_DRAINING; 2747 mutex_unlock(&wq->mutex); 2748 reflush: 2749 flush_workqueue(wq); 2750 2751 mutex_lock(&wq->mutex); 2752 2753 for_each_pwq(pwq, wq) { 2754 bool drained; 2755 2756 spin_lock_irq(&pwq->pool->lock); 2757 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2758 spin_unlock_irq(&pwq->pool->lock); 2759 2760 if (drained) 2761 continue; 2762 2763 if (++flush_cnt == 10 || 2764 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2765 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2766 wq->name, flush_cnt); 2767 2768 mutex_unlock(&wq->mutex); 2769 goto reflush; 2770 } 2771 2772 if (!--wq->nr_drainers) 2773 wq->flags &= ~__WQ_DRAINING; 2774 mutex_unlock(&wq->mutex); 2775 } 2776 EXPORT_SYMBOL_GPL(drain_workqueue); 2777 2778 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr) 2779 { 2780 struct worker *worker = NULL; 2781 struct worker_pool *pool; 2782 struct pool_workqueue *pwq; 2783 2784 might_sleep(); 2785 2786 local_irq_disable(); 2787 pool = get_work_pool(work); 2788 if (!pool) { 2789 local_irq_enable(); 2790 return false; 2791 } 2792 2793 spin_lock(&pool->lock); 2794 /* see the comment in try_to_grab_pending() with the same code */ 2795 pwq = get_work_pwq(work); 2796 if (pwq) { 2797 if (unlikely(pwq->pool != pool)) 2798 goto already_gone; 2799 } else { 2800 worker = find_worker_executing_work(pool, work); 2801 if (!worker) 2802 goto already_gone; 2803 pwq = worker->current_pwq; 2804 } 2805 2806 check_flush_dependency(pwq->wq, work); 2807 2808 insert_wq_barrier(pwq, barr, work, worker); 2809 spin_unlock_irq(&pool->lock); 2810 2811 /* 2812 * If @max_active is 1 or rescuer is in use, flushing another work 2813 * item on the same workqueue may lead to deadlock. Make sure the 2814 * flusher is not running on the same workqueue by verifying write 2815 * access. 2816 */ 2817 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) 2818 lock_map_acquire(&pwq->wq->lockdep_map); 2819 else 2820 lock_map_acquire_read(&pwq->wq->lockdep_map); 2821 lock_map_release(&pwq->wq->lockdep_map); 2822 2823 return true; 2824 already_gone: 2825 spin_unlock_irq(&pool->lock); 2826 return false; 2827 } 2828 2829 /** 2830 * flush_work - wait for a work to finish executing the last queueing instance 2831 * @work: the work to flush 2832 * 2833 * Wait until @work has finished execution. @work is guaranteed to be idle 2834 * on return if it hasn't been requeued since flush started. 2835 * 2836 * Return: 2837 * %true if flush_work() waited for the work to finish execution, 2838 * %false if it was already idle. 2839 */ 2840 bool flush_work(struct work_struct *work) 2841 { 2842 struct wq_barrier barr; 2843 2844 lock_map_acquire(&work->lockdep_map); 2845 lock_map_release(&work->lockdep_map); 2846 2847 if (start_flush_work(work, &barr)) { 2848 wait_for_completion(&barr.done); 2849 destroy_work_on_stack(&barr.work); 2850 return true; 2851 } else { 2852 return false; 2853 } 2854 } 2855 EXPORT_SYMBOL_GPL(flush_work); 2856 2857 struct cwt_wait { 2858 wait_queue_t wait; 2859 struct work_struct *work; 2860 }; 2861 2862 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key) 2863 { 2864 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 2865 2866 if (cwait->work != key) 2867 return 0; 2868 return autoremove_wake_function(wait, mode, sync, key); 2869 } 2870 2871 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 2872 { 2873 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 2874 unsigned long flags; 2875 int ret; 2876 2877 do { 2878 ret = try_to_grab_pending(work, is_dwork, &flags); 2879 /* 2880 * If someone else is already canceling, wait for it to 2881 * finish. flush_work() doesn't work for PREEMPT_NONE 2882 * because we may get scheduled between @work's completion 2883 * and the other canceling task resuming and clearing 2884 * CANCELING - flush_work() will return false immediately 2885 * as @work is no longer busy, try_to_grab_pending() will 2886 * return -ENOENT as @work is still being canceled and the 2887 * other canceling task won't be able to clear CANCELING as 2888 * we're hogging the CPU. 2889 * 2890 * Let's wait for completion using a waitqueue. As this 2891 * may lead to the thundering herd problem, use a custom 2892 * wake function which matches @work along with exclusive 2893 * wait and wakeup. 2894 */ 2895 if (unlikely(ret == -ENOENT)) { 2896 struct cwt_wait cwait; 2897 2898 init_wait(&cwait.wait); 2899 cwait.wait.func = cwt_wakefn; 2900 cwait.work = work; 2901 2902 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 2903 TASK_UNINTERRUPTIBLE); 2904 if (work_is_canceling(work)) 2905 schedule(); 2906 finish_wait(&cancel_waitq, &cwait.wait); 2907 } 2908 } while (unlikely(ret < 0)); 2909 2910 /* tell other tasks trying to grab @work to back off */ 2911 mark_work_canceling(work); 2912 local_irq_restore(flags); 2913 2914 flush_work(work); 2915 clear_work_data(work); 2916 2917 /* 2918 * Paired with prepare_to_wait() above so that either 2919 * waitqueue_active() is visible here or !work_is_canceling() is 2920 * visible there. 2921 */ 2922 smp_mb(); 2923 if (waitqueue_active(&cancel_waitq)) 2924 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 2925 2926 return ret; 2927 } 2928 2929 /** 2930 * cancel_work_sync - cancel a work and wait for it to finish 2931 * @work: the work to cancel 2932 * 2933 * Cancel @work and wait for its execution to finish. This function 2934 * can be used even if the work re-queues itself or migrates to 2935 * another workqueue. On return from this function, @work is 2936 * guaranteed to be not pending or executing on any CPU. 2937 * 2938 * cancel_work_sync(&delayed_work->work) must not be used for 2939 * delayed_work's. Use cancel_delayed_work_sync() instead. 2940 * 2941 * The caller must ensure that the workqueue on which @work was last 2942 * queued can't be destroyed before this function returns. 2943 * 2944 * Return: 2945 * %true if @work was pending, %false otherwise. 2946 */ 2947 bool cancel_work_sync(struct work_struct *work) 2948 { 2949 return __cancel_work_timer(work, false); 2950 } 2951 EXPORT_SYMBOL_GPL(cancel_work_sync); 2952 2953 /** 2954 * flush_delayed_work - wait for a dwork to finish executing the last queueing 2955 * @dwork: the delayed work to flush 2956 * 2957 * Delayed timer is cancelled and the pending work is queued for 2958 * immediate execution. Like flush_work(), this function only 2959 * considers the last queueing instance of @dwork. 2960 * 2961 * Return: 2962 * %true if flush_work() waited for the work to finish execution, 2963 * %false if it was already idle. 2964 */ 2965 bool flush_delayed_work(struct delayed_work *dwork) 2966 { 2967 local_irq_disable(); 2968 if (del_timer_sync(&dwork->timer)) 2969 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 2970 local_irq_enable(); 2971 return flush_work(&dwork->work); 2972 } 2973 EXPORT_SYMBOL(flush_delayed_work); 2974 2975 /** 2976 * cancel_delayed_work - cancel a delayed work 2977 * @dwork: delayed_work to cancel 2978 * 2979 * Kill off a pending delayed_work. 2980 * 2981 * Return: %true if @dwork was pending and canceled; %false if it wasn't 2982 * pending. 2983 * 2984 * Note: 2985 * The work callback function may still be running on return, unless 2986 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 2987 * use cancel_delayed_work_sync() to wait on it. 2988 * 2989 * This function is safe to call from any context including IRQ handler. 2990 */ 2991 bool cancel_delayed_work(struct delayed_work *dwork) 2992 { 2993 unsigned long flags; 2994 int ret; 2995 2996 do { 2997 ret = try_to_grab_pending(&dwork->work, true, &flags); 2998 } while (unlikely(ret == -EAGAIN)); 2999 3000 if (unlikely(ret < 0)) 3001 return false; 3002 3003 set_work_pool_and_clear_pending(&dwork->work, 3004 get_work_pool_id(&dwork->work)); 3005 local_irq_restore(flags); 3006 return ret; 3007 } 3008 EXPORT_SYMBOL(cancel_delayed_work); 3009 3010 /** 3011 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3012 * @dwork: the delayed work cancel 3013 * 3014 * This is cancel_work_sync() for delayed works. 3015 * 3016 * Return: 3017 * %true if @dwork was pending, %false otherwise. 3018 */ 3019 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3020 { 3021 return __cancel_work_timer(&dwork->work, true); 3022 } 3023 EXPORT_SYMBOL(cancel_delayed_work_sync); 3024 3025 /** 3026 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3027 * @func: the function to call 3028 * 3029 * schedule_on_each_cpu() executes @func on each online CPU using the 3030 * system workqueue and blocks until all CPUs have completed. 3031 * schedule_on_each_cpu() is very slow. 3032 * 3033 * Return: 3034 * 0 on success, -errno on failure. 3035 */ 3036 int schedule_on_each_cpu(work_func_t func) 3037 { 3038 int cpu; 3039 struct work_struct __percpu *works; 3040 3041 works = alloc_percpu(struct work_struct); 3042 if (!works) 3043 return -ENOMEM; 3044 3045 get_online_cpus(); 3046 3047 for_each_online_cpu(cpu) { 3048 struct work_struct *work = per_cpu_ptr(works, cpu); 3049 3050 INIT_WORK(work, func); 3051 schedule_work_on(cpu, work); 3052 } 3053 3054 for_each_online_cpu(cpu) 3055 flush_work(per_cpu_ptr(works, cpu)); 3056 3057 put_online_cpus(); 3058 free_percpu(works); 3059 return 0; 3060 } 3061 3062 /** 3063 * execute_in_process_context - reliably execute the routine with user context 3064 * @fn: the function to execute 3065 * @ew: guaranteed storage for the execute work structure (must 3066 * be available when the work executes) 3067 * 3068 * Executes the function immediately if process context is available, 3069 * otherwise schedules the function for delayed execution. 3070 * 3071 * Return: 0 - function was executed 3072 * 1 - function was scheduled for execution 3073 */ 3074 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3075 { 3076 if (!in_interrupt()) { 3077 fn(&ew->work); 3078 return 0; 3079 } 3080 3081 INIT_WORK(&ew->work, fn); 3082 schedule_work(&ew->work); 3083 3084 return 1; 3085 } 3086 EXPORT_SYMBOL_GPL(execute_in_process_context); 3087 3088 /** 3089 * free_workqueue_attrs - free a workqueue_attrs 3090 * @attrs: workqueue_attrs to free 3091 * 3092 * Undo alloc_workqueue_attrs(). 3093 */ 3094 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3095 { 3096 if (attrs) { 3097 free_cpumask_var(attrs->cpumask); 3098 kfree(attrs); 3099 } 3100 } 3101 3102 /** 3103 * alloc_workqueue_attrs - allocate a workqueue_attrs 3104 * @gfp_mask: allocation mask to use 3105 * 3106 * Allocate a new workqueue_attrs, initialize with default settings and 3107 * return it. 3108 * 3109 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3110 */ 3111 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask) 3112 { 3113 struct workqueue_attrs *attrs; 3114 3115 attrs = kzalloc(sizeof(*attrs), gfp_mask); 3116 if (!attrs) 3117 goto fail; 3118 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask)) 3119 goto fail; 3120 3121 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3122 return attrs; 3123 fail: 3124 free_workqueue_attrs(attrs); 3125 return NULL; 3126 } 3127 3128 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3129 const struct workqueue_attrs *from) 3130 { 3131 to->nice = from->nice; 3132 cpumask_copy(to->cpumask, from->cpumask); 3133 /* 3134 * Unlike hash and equality test, this function doesn't ignore 3135 * ->no_numa as it is used for both pool and wq attrs. Instead, 3136 * get_unbound_pool() explicitly clears ->no_numa after copying. 3137 */ 3138 to->no_numa = from->no_numa; 3139 } 3140 3141 /* hash value of the content of @attr */ 3142 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3143 { 3144 u32 hash = 0; 3145 3146 hash = jhash_1word(attrs->nice, hash); 3147 hash = jhash(cpumask_bits(attrs->cpumask), 3148 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3149 return hash; 3150 } 3151 3152 /* content equality test */ 3153 static bool wqattrs_equal(const struct workqueue_attrs *a, 3154 const struct workqueue_attrs *b) 3155 { 3156 if (a->nice != b->nice) 3157 return false; 3158 if (!cpumask_equal(a->cpumask, b->cpumask)) 3159 return false; 3160 return true; 3161 } 3162 3163 /** 3164 * init_worker_pool - initialize a newly zalloc'd worker_pool 3165 * @pool: worker_pool to initialize 3166 * 3167 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3168 * 3169 * Return: 0 on success, -errno on failure. Even on failure, all fields 3170 * inside @pool proper are initialized and put_unbound_pool() can be called 3171 * on @pool safely to release it. 3172 */ 3173 static int init_worker_pool(struct worker_pool *pool) 3174 { 3175 spin_lock_init(&pool->lock); 3176 pool->id = -1; 3177 pool->cpu = -1; 3178 pool->node = NUMA_NO_NODE; 3179 pool->flags |= POOL_DISASSOCIATED; 3180 pool->watchdog_ts = jiffies; 3181 INIT_LIST_HEAD(&pool->worklist); 3182 INIT_LIST_HEAD(&pool->idle_list); 3183 hash_init(pool->busy_hash); 3184 3185 init_timer_deferrable(&pool->idle_timer); 3186 pool->idle_timer.function = idle_worker_timeout; 3187 pool->idle_timer.data = (unsigned long)pool; 3188 3189 setup_timer(&pool->mayday_timer, pool_mayday_timeout, 3190 (unsigned long)pool); 3191 3192 mutex_init(&pool->manager_arb); 3193 mutex_init(&pool->attach_mutex); 3194 INIT_LIST_HEAD(&pool->workers); 3195 3196 ida_init(&pool->worker_ida); 3197 INIT_HLIST_NODE(&pool->hash_node); 3198 pool->refcnt = 1; 3199 3200 /* shouldn't fail above this point */ 3201 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL); 3202 if (!pool->attrs) 3203 return -ENOMEM; 3204 return 0; 3205 } 3206 3207 static void rcu_free_wq(struct rcu_head *rcu) 3208 { 3209 struct workqueue_struct *wq = 3210 container_of(rcu, struct workqueue_struct, rcu); 3211 3212 if (!(wq->flags & WQ_UNBOUND)) 3213 free_percpu(wq->cpu_pwqs); 3214 else 3215 free_workqueue_attrs(wq->unbound_attrs); 3216 3217 kfree(wq->rescuer); 3218 kfree(wq); 3219 } 3220 3221 static void rcu_free_pool(struct rcu_head *rcu) 3222 { 3223 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3224 3225 ida_destroy(&pool->worker_ida); 3226 free_workqueue_attrs(pool->attrs); 3227 kfree(pool); 3228 } 3229 3230 /** 3231 * put_unbound_pool - put a worker_pool 3232 * @pool: worker_pool to put 3233 * 3234 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU 3235 * safe manner. get_unbound_pool() calls this function on its failure path 3236 * and this function should be able to release pools which went through, 3237 * successfully or not, init_worker_pool(). 3238 * 3239 * Should be called with wq_pool_mutex held. 3240 */ 3241 static void put_unbound_pool(struct worker_pool *pool) 3242 { 3243 DECLARE_COMPLETION_ONSTACK(detach_completion); 3244 struct worker *worker; 3245 3246 lockdep_assert_held(&wq_pool_mutex); 3247 3248 if (--pool->refcnt) 3249 return; 3250 3251 /* sanity checks */ 3252 if (WARN_ON(!(pool->cpu < 0)) || 3253 WARN_ON(!list_empty(&pool->worklist))) 3254 return; 3255 3256 /* release id and unhash */ 3257 if (pool->id >= 0) 3258 idr_remove(&worker_pool_idr, pool->id); 3259 hash_del(&pool->hash_node); 3260 3261 /* 3262 * Become the manager and destroy all workers. Grabbing 3263 * manager_arb prevents @pool's workers from blocking on 3264 * attach_mutex. 3265 */ 3266 mutex_lock(&pool->manager_arb); 3267 3268 spin_lock_irq(&pool->lock); 3269 while ((worker = first_idle_worker(pool))) 3270 destroy_worker(worker); 3271 WARN_ON(pool->nr_workers || pool->nr_idle); 3272 spin_unlock_irq(&pool->lock); 3273 3274 mutex_lock(&pool->attach_mutex); 3275 if (!list_empty(&pool->workers)) 3276 pool->detach_completion = &detach_completion; 3277 mutex_unlock(&pool->attach_mutex); 3278 3279 if (pool->detach_completion) 3280 wait_for_completion(pool->detach_completion); 3281 3282 mutex_unlock(&pool->manager_arb); 3283 3284 /* shut down the timers */ 3285 del_timer_sync(&pool->idle_timer); 3286 del_timer_sync(&pool->mayday_timer); 3287 3288 /* sched-RCU protected to allow dereferences from get_work_pool() */ 3289 call_rcu_sched(&pool->rcu, rcu_free_pool); 3290 } 3291 3292 /** 3293 * get_unbound_pool - get a worker_pool with the specified attributes 3294 * @attrs: the attributes of the worker_pool to get 3295 * 3296 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3297 * reference count and return it. If there already is a matching 3298 * worker_pool, it will be used; otherwise, this function attempts to 3299 * create a new one. 3300 * 3301 * Should be called with wq_pool_mutex held. 3302 * 3303 * Return: On success, a worker_pool with the same attributes as @attrs. 3304 * On failure, %NULL. 3305 */ 3306 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3307 { 3308 u32 hash = wqattrs_hash(attrs); 3309 struct worker_pool *pool; 3310 int node; 3311 int target_node = NUMA_NO_NODE; 3312 3313 lockdep_assert_held(&wq_pool_mutex); 3314 3315 /* do we already have a matching pool? */ 3316 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3317 if (wqattrs_equal(pool->attrs, attrs)) { 3318 pool->refcnt++; 3319 return pool; 3320 } 3321 } 3322 3323 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3324 if (wq_numa_enabled) { 3325 for_each_node(node) { 3326 if (cpumask_subset(attrs->cpumask, 3327 wq_numa_possible_cpumask[node])) { 3328 target_node = node; 3329 break; 3330 } 3331 } 3332 } 3333 3334 /* nope, create a new one */ 3335 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3336 if (!pool || init_worker_pool(pool) < 0) 3337 goto fail; 3338 3339 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3340 copy_workqueue_attrs(pool->attrs, attrs); 3341 pool->node = target_node; 3342 3343 /* 3344 * no_numa isn't a worker_pool attribute, always clear it. See 3345 * 'struct workqueue_attrs' comments for detail. 3346 */ 3347 pool->attrs->no_numa = false; 3348 3349 if (worker_pool_assign_id(pool) < 0) 3350 goto fail; 3351 3352 /* create and start the initial worker */ 3353 if (!create_worker(pool)) 3354 goto fail; 3355 3356 /* install */ 3357 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3358 3359 return pool; 3360 fail: 3361 if (pool) 3362 put_unbound_pool(pool); 3363 return NULL; 3364 } 3365 3366 static void rcu_free_pwq(struct rcu_head *rcu) 3367 { 3368 kmem_cache_free(pwq_cache, 3369 container_of(rcu, struct pool_workqueue, rcu)); 3370 } 3371 3372 /* 3373 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3374 * and needs to be destroyed. 3375 */ 3376 static void pwq_unbound_release_workfn(struct work_struct *work) 3377 { 3378 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3379 unbound_release_work); 3380 struct workqueue_struct *wq = pwq->wq; 3381 struct worker_pool *pool = pwq->pool; 3382 bool is_last; 3383 3384 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3385 return; 3386 3387 mutex_lock(&wq->mutex); 3388 list_del_rcu(&pwq->pwqs_node); 3389 is_last = list_empty(&wq->pwqs); 3390 mutex_unlock(&wq->mutex); 3391 3392 mutex_lock(&wq_pool_mutex); 3393 put_unbound_pool(pool); 3394 mutex_unlock(&wq_pool_mutex); 3395 3396 call_rcu_sched(&pwq->rcu, rcu_free_pwq); 3397 3398 /* 3399 * If we're the last pwq going away, @wq is already dead and no one 3400 * is gonna access it anymore. Schedule RCU free. 3401 */ 3402 if (is_last) 3403 call_rcu_sched(&wq->rcu, rcu_free_wq); 3404 } 3405 3406 /** 3407 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3408 * @pwq: target pool_workqueue 3409 * 3410 * If @pwq isn't freezing, set @pwq->max_active to the associated 3411 * workqueue's saved_max_active and activate delayed work items 3412 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3413 */ 3414 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3415 { 3416 struct workqueue_struct *wq = pwq->wq; 3417 bool freezable = wq->flags & WQ_FREEZABLE; 3418 3419 /* for @wq->saved_max_active */ 3420 lockdep_assert_held(&wq->mutex); 3421 3422 /* fast exit for non-freezable wqs */ 3423 if (!freezable && pwq->max_active == wq->saved_max_active) 3424 return; 3425 3426 spin_lock_irq(&pwq->pool->lock); 3427 3428 /* 3429 * During [un]freezing, the caller is responsible for ensuring that 3430 * this function is called at least once after @workqueue_freezing 3431 * is updated and visible. 3432 */ 3433 if (!freezable || !workqueue_freezing) { 3434 pwq->max_active = wq->saved_max_active; 3435 3436 while (!list_empty(&pwq->delayed_works) && 3437 pwq->nr_active < pwq->max_active) 3438 pwq_activate_first_delayed(pwq); 3439 3440 /* 3441 * Need to kick a worker after thawed or an unbound wq's 3442 * max_active is bumped. It's a slow path. Do it always. 3443 */ 3444 wake_up_worker(pwq->pool); 3445 } else { 3446 pwq->max_active = 0; 3447 } 3448 3449 spin_unlock_irq(&pwq->pool->lock); 3450 } 3451 3452 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3453 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3454 struct worker_pool *pool) 3455 { 3456 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3457 3458 memset(pwq, 0, sizeof(*pwq)); 3459 3460 pwq->pool = pool; 3461 pwq->wq = wq; 3462 pwq->flush_color = -1; 3463 pwq->refcnt = 1; 3464 INIT_LIST_HEAD(&pwq->delayed_works); 3465 INIT_LIST_HEAD(&pwq->pwqs_node); 3466 INIT_LIST_HEAD(&pwq->mayday_node); 3467 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3468 } 3469 3470 /* sync @pwq with the current state of its associated wq and link it */ 3471 static void link_pwq(struct pool_workqueue *pwq) 3472 { 3473 struct workqueue_struct *wq = pwq->wq; 3474 3475 lockdep_assert_held(&wq->mutex); 3476 3477 /* may be called multiple times, ignore if already linked */ 3478 if (!list_empty(&pwq->pwqs_node)) 3479 return; 3480 3481 /* set the matching work_color */ 3482 pwq->work_color = wq->work_color; 3483 3484 /* sync max_active to the current setting */ 3485 pwq_adjust_max_active(pwq); 3486 3487 /* link in @pwq */ 3488 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3489 } 3490 3491 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3492 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3493 const struct workqueue_attrs *attrs) 3494 { 3495 struct worker_pool *pool; 3496 struct pool_workqueue *pwq; 3497 3498 lockdep_assert_held(&wq_pool_mutex); 3499 3500 pool = get_unbound_pool(attrs); 3501 if (!pool) 3502 return NULL; 3503 3504 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3505 if (!pwq) { 3506 put_unbound_pool(pool); 3507 return NULL; 3508 } 3509 3510 init_pwq(pwq, wq, pool); 3511 return pwq; 3512 } 3513 3514 /** 3515 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3516 * @attrs: the wq_attrs of the default pwq of the target workqueue 3517 * @node: the target NUMA node 3518 * @cpu_going_down: if >= 0, the CPU to consider as offline 3519 * @cpumask: outarg, the resulting cpumask 3520 * 3521 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3522 * @cpu_going_down is >= 0, that cpu is considered offline during 3523 * calculation. The result is stored in @cpumask. 3524 * 3525 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3526 * enabled and @node has online CPUs requested by @attrs, the returned 3527 * cpumask is the intersection of the possible CPUs of @node and 3528 * @attrs->cpumask. 3529 * 3530 * The caller is responsible for ensuring that the cpumask of @node stays 3531 * stable. 3532 * 3533 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3534 * %false if equal. 3535 */ 3536 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3537 int cpu_going_down, cpumask_t *cpumask) 3538 { 3539 if (!wq_numa_enabled || attrs->no_numa) 3540 goto use_dfl; 3541 3542 /* does @node have any online CPUs @attrs wants? */ 3543 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3544 if (cpu_going_down >= 0) 3545 cpumask_clear_cpu(cpu_going_down, cpumask); 3546 3547 if (cpumask_empty(cpumask)) 3548 goto use_dfl; 3549 3550 /* yeap, return possible CPUs in @node that @attrs wants */ 3551 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3552 return !cpumask_equal(cpumask, attrs->cpumask); 3553 3554 use_dfl: 3555 cpumask_copy(cpumask, attrs->cpumask); 3556 return false; 3557 } 3558 3559 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3560 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3561 int node, 3562 struct pool_workqueue *pwq) 3563 { 3564 struct pool_workqueue *old_pwq; 3565 3566 lockdep_assert_held(&wq_pool_mutex); 3567 lockdep_assert_held(&wq->mutex); 3568 3569 /* link_pwq() can handle duplicate calls */ 3570 link_pwq(pwq); 3571 3572 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3573 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3574 return old_pwq; 3575 } 3576 3577 /* context to store the prepared attrs & pwqs before applying */ 3578 struct apply_wqattrs_ctx { 3579 struct workqueue_struct *wq; /* target workqueue */ 3580 struct workqueue_attrs *attrs; /* attrs to apply */ 3581 struct list_head list; /* queued for batching commit */ 3582 struct pool_workqueue *dfl_pwq; 3583 struct pool_workqueue *pwq_tbl[]; 3584 }; 3585 3586 /* free the resources after success or abort */ 3587 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3588 { 3589 if (ctx) { 3590 int node; 3591 3592 for_each_node(node) 3593 put_pwq_unlocked(ctx->pwq_tbl[node]); 3594 put_pwq_unlocked(ctx->dfl_pwq); 3595 3596 free_workqueue_attrs(ctx->attrs); 3597 3598 kfree(ctx); 3599 } 3600 } 3601 3602 /* allocate the attrs and pwqs for later installation */ 3603 static struct apply_wqattrs_ctx * 3604 apply_wqattrs_prepare(struct workqueue_struct *wq, 3605 const struct workqueue_attrs *attrs) 3606 { 3607 struct apply_wqattrs_ctx *ctx; 3608 struct workqueue_attrs *new_attrs, *tmp_attrs; 3609 int node; 3610 3611 lockdep_assert_held(&wq_pool_mutex); 3612 3613 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]), 3614 GFP_KERNEL); 3615 3616 new_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3617 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3618 if (!ctx || !new_attrs || !tmp_attrs) 3619 goto out_free; 3620 3621 /* 3622 * Calculate the attrs of the default pwq. 3623 * If the user configured cpumask doesn't overlap with the 3624 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3625 */ 3626 copy_workqueue_attrs(new_attrs, attrs); 3627 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3628 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3629 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3630 3631 /* 3632 * We may create multiple pwqs with differing cpumasks. Make a 3633 * copy of @new_attrs which will be modified and used to obtain 3634 * pools. 3635 */ 3636 copy_workqueue_attrs(tmp_attrs, new_attrs); 3637 3638 /* 3639 * If something goes wrong during CPU up/down, we'll fall back to 3640 * the default pwq covering whole @attrs->cpumask. Always create 3641 * it even if we don't use it immediately. 3642 */ 3643 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3644 if (!ctx->dfl_pwq) 3645 goto out_free; 3646 3647 for_each_node(node) { 3648 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3649 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3650 if (!ctx->pwq_tbl[node]) 3651 goto out_free; 3652 } else { 3653 ctx->dfl_pwq->refcnt++; 3654 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3655 } 3656 } 3657 3658 /* save the user configured attrs and sanitize it. */ 3659 copy_workqueue_attrs(new_attrs, attrs); 3660 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3661 ctx->attrs = new_attrs; 3662 3663 ctx->wq = wq; 3664 free_workqueue_attrs(tmp_attrs); 3665 return ctx; 3666 3667 out_free: 3668 free_workqueue_attrs(tmp_attrs); 3669 free_workqueue_attrs(new_attrs); 3670 apply_wqattrs_cleanup(ctx); 3671 return NULL; 3672 } 3673 3674 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3675 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3676 { 3677 int node; 3678 3679 /* all pwqs have been created successfully, let's install'em */ 3680 mutex_lock(&ctx->wq->mutex); 3681 3682 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3683 3684 /* save the previous pwq and install the new one */ 3685 for_each_node(node) 3686 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3687 ctx->pwq_tbl[node]); 3688 3689 /* @dfl_pwq might not have been used, ensure it's linked */ 3690 link_pwq(ctx->dfl_pwq); 3691 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3692 3693 mutex_unlock(&ctx->wq->mutex); 3694 } 3695 3696 static void apply_wqattrs_lock(void) 3697 { 3698 /* CPUs should stay stable across pwq creations and installations */ 3699 get_online_cpus(); 3700 mutex_lock(&wq_pool_mutex); 3701 } 3702 3703 static void apply_wqattrs_unlock(void) 3704 { 3705 mutex_unlock(&wq_pool_mutex); 3706 put_online_cpus(); 3707 } 3708 3709 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3710 const struct workqueue_attrs *attrs) 3711 { 3712 struct apply_wqattrs_ctx *ctx; 3713 3714 /* only unbound workqueues can change attributes */ 3715 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 3716 return -EINVAL; 3717 3718 /* creating multiple pwqs breaks ordering guarantee */ 3719 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs))) 3720 return -EINVAL; 3721 3722 ctx = apply_wqattrs_prepare(wq, attrs); 3723 if (!ctx) 3724 return -ENOMEM; 3725 3726 /* the ctx has been prepared successfully, let's commit it */ 3727 apply_wqattrs_commit(ctx); 3728 apply_wqattrs_cleanup(ctx); 3729 3730 return 0; 3731 } 3732 3733 /** 3734 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 3735 * @wq: the target workqueue 3736 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 3737 * 3738 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 3739 * machines, this function maps a separate pwq to each NUMA node with 3740 * possibles CPUs in @attrs->cpumask so that work items are affine to the 3741 * NUMA node it was issued on. Older pwqs are released as in-flight work 3742 * items finish. Note that a work item which repeatedly requeues itself 3743 * back-to-back will stay on its current pwq. 3744 * 3745 * Performs GFP_KERNEL allocations. 3746 * 3747 * Return: 0 on success and -errno on failure. 3748 */ 3749 int apply_workqueue_attrs(struct workqueue_struct *wq, 3750 const struct workqueue_attrs *attrs) 3751 { 3752 int ret; 3753 3754 apply_wqattrs_lock(); 3755 ret = apply_workqueue_attrs_locked(wq, attrs); 3756 apply_wqattrs_unlock(); 3757 3758 return ret; 3759 } 3760 3761 /** 3762 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 3763 * @wq: the target workqueue 3764 * @cpu: the CPU coming up or going down 3765 * @online: whether @cpu is coming up or going down 3766 * 3767 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 3768 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 3769 * @wq accordingly. 3770 * 3771 * If NUMA affinity can't be adjusted due to memory allocation failure, it 3772 * falls back to @wq->dfl_pwq which may not be optimal but is always 3773 * correct. 3774 * 3775 * Note that when the last allowed CPU of a NUMA node goes offline for a 3776 * workqueue with a cpumask spanning multiple nodes, the workers which were 3777 * already executing the work items for the workqueue will lose their CPU 3778 * affinity and may execute on any CPU. This is similar to how per-cpu 3779 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 3780 * affinity, it's the user's responsibility to flush the work item from 3781 * CPU_DOWN_PREPARE. 3782 */ 3783 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 3784 bool online) 3785 { 3786 int node = cpu_to_node(cpu); 3787 int cpu_off = online ? -1 : cpu; 3788 struct pool_workqueue *old_pwq = NULL, *pwq; 3789 struct workqueue_attrs *target_attrs; 3790 cpumask_t *cpumask; 3791 3792 lockdep_assert_held(&wq_pool_mutex); 3793 3794 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 3795 wq->unbound_attrs->no_numa) 3796 return; 3797 3798 /* 3799 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 3800 * Let's use a preallocated one. The following buf is protected by 3801 * CPU hotplug exclusion. 3802 */ 3803 target_attrs = wq_update_unbound_numa_attrs_buf; 3804 cpumask = target_attrs->cpumask; 3805 3806 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 3807 pwq = unbound_pwq_by_node(wq, node); 3808 3809 /* 3810 * Let's determine what needs to be done. If the target cpumask is 3811 * different from the default pwq's, we need to compare it to @pwq's 3812 * and create a new one if they don't match. If the target cpumask 3813 * equals the default pwq's, the default pwq should be used. 3814 */ 3815 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 3816 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 3817 return; 3818 } else { 3819 goto use_dfl_pwq; 3820 } 3821 3822 /* create a new pwq */ 3823 pwq = alloc_unbound_pwq(wq, target_attrs); 3824 if (!pwq) { 3825 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 3826 wq->name); 3827 goto use_dfl_pwq; 3828 } 3829 3830 /* Install the new pwq. */ 3831 mutex_lock(&wq->mutex); 3832 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 3833 goto out_unlock; 3834 3835 use_dfl_pwq: 3836 mutex_lock(&wq->mutex); 3837 spin_lock_irq(&wq->dfl_pwq->pool->lock); 3838 get_pwq(wq->dfl_pwq); 3839 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 3840 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 3841 out_unlock: 3842 mutex_unlock(&wq->mutex); 3843 put_pwq_unlocked(old_pwq); 3844 } 3845 3846 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 3847 { 3848 bool highpri = wq->flags & WQ_HIGHPRI; 3849 int cpu, ret; 3850 3851 if (!(wq->flags & WQ_UNBOUND)) { 3852 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 3853 if (!wq->cpu_pwqs) 3854 return -ENOMEM; 3855 3856 for_each_possible_cpu(cpu) { 3857 struct pool_workqueue *pwq = 3858 per_cpu_ptr(wq->cpu_pwqs, cpu); 3859 struct worker_pool *cpu_pools = 3860 per_cpu(cpu_worker_pools, cpu); 3861 3862 init_pwq(pwq, wq, &cpu_pools[highpri]); 3863 3864 mutex_lock(&wq->mutex); 3865 link_pwq(pwq); 3866 mutex_unlock(&wq->mutex); 3867 } 3868 return 0; 3869 } else if (wq->flags & __WQ_ORDERED) { 3870 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 3871 /* there should only be single pwq for ordering guarantee */ 3872 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 3873 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 3874 "ordering guarantee broken for workqueue %s\n", wq->name); 3875 return ret; 3876 } else { 3877 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 3878 } 3879 } 3880 3881 static int wq_clamp_max_active(int max_active, unsigned int flags, 3882 const char *name) 3883 { 3884 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 3885 3886 if (max_active < 1 || max_active > lim) 3887 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 3888 max_active, name, 1, lim); 3889 3890 return clamp_val(max_active, 1, lim); 3891 } 3892 3893 struct workqueue_struct *__alloc_workqueue_key(const char *fmt, 3894 unsigned int flags, 3895 int max_active, 3896 struct lock_class_key *key, 3897 const char *lock_name, ...) 3898 { 3899 size_t tbl_size = 0; 3900 va_list args; 3901 struct workqueue_struct *wq; 3902 struct pool_workqueue *pwq; 3903 3904 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 3905 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 3906 flags |= WQ_UNBOUND; 3907 3908 /* allocate wq and format name */ 3909 if (flags & WQ_UNBOUND) 3910 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 3911 3912 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 3913 if (!wq) 3914 return NULL; 3915 3916 if (flags & WQ_UNBOUND) { 3917 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL); 3918 if (!wq->unbound_attrs) 3919 goto err_free_wq; 3920 } 3921 3922 va_start(args, lock_name); 3923 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 3924 va_end(args); 3925 3926 max_active = max_active ?: WQ_DFL_ACTIVE; 3927 max_active = wq_clamp_max_active(max_active, flags, wq->name); 3928 3929 /* init wq */ 3930 wq->flags = flags; 3931 wq->saved_max_active = max_active; 3932 mutex_init(&wq->mutex); 3933 atomic_set(&wq->nr_pwqs_to_flush, 0); 3934 INIT_LIST_HEAD(&wq->pwqs); 3935 INIT_LIST_HEAD(&wq->flusher_queue); 3936 INIT_LIST_HEAD(&wq->flusher_overflow); 3937 INIT_LIST_HEAD(&wq->maydays); 3938 3939 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 3940 INIT_LIST_HEAD(&wq->list); 3941 3942 if (alloc_and_link_pwqs(wq) < 0) 3943 goto err_free_wq; 3944 3945 /* 3946 * Workqueues which may be used during memory reclaim should 3947 * have a rescuer to guarantee forward progress. 3948 */ 3949 if (flags & WQ_MEM_RECLAIM) { 3950 struct worker *rescuer; 3951 3952 rescuer = alloc_worker(NUMA_NO_NODE); 3953 if (!rescuer) 3954 goto err_destroy; 3955 3956 rescuer->rescue_wq = wq; 3957 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", 3958 wq->name); 3959 if (IS_ERR(rescuer->task)) { 3960 kfree(rescuer); 3961 goto err_destroy; 3962 } 3963 3964 wq->rescuer = rescuer; 3965 kthread_bind_mask(rescuer->task, cpu_possible_mask); 3966 wake_up_process(rescuer->task); 3967 } 3968 3969 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 3970 goto err_destroy; 3971 3972 /* 3973 * wq_pool_mutex protects global freeze state and workqueues list. 3974 * Grab it, adjust max_active and add the new @wq to workqueues 3975 * list. 3976 */ 3977 mutex_lock(&wq_pool_mutex); 3978 3979 mutex_lock(&wq->mutex); 3980 for_each_pwq(pwq, wq) 3981 pwq_adjust_max_active(pwq); 3982 mutex_unlock(&wq->mutex); 3983 3984 list_add_tail_rcu(&wq->list, &workqueues); 3985 3986 mutex_unlock(&wq_pool_mutex); 3987 3988 return wq; 3989 3990 err_free_wq: 3991 free_workqueue_attrs(wq->unbound_attrs); 3992 kfree(wq); 3993 return NULL; 3994 err_destroy: 3995 destroy_workqueue(wq); 3996 return NULL; 3997 } 3998 EXPORT_SYMBOL_GPL(__alloc_workqueue_key); 3999 4000 /** 4001 * destroy_workqueue - safely terminate a workqueue 4002 * @wq: target workqueue 4003 * 4004 * Safely destroy a workqueue. All work currently pending will be done first. 4005 */ 4006 void destroy_workqueue(struct workqueue_struct *wq) 4007 { 4008 struct pool_workqueue *pwq; 4009 int node; 4010 4011 /* drain it before proceeding with destruction */ 4012 drain_workqueue(wq); 4013 4014 /* sanity checks */ 4015 mutex_lock(&wq->mutex); 4016 for_each_pwq(pwq, wq) { 4017 int i; 4018 4019 for (i = 0; i < WORK_NR_COLORS; i++) { 4020 if (WARN_ON(pwq->nr_in_flight[i])) { 4021 mutex_unlock(&wq->mutex); 4022 return; 4023 } 4024 } 4025 4026 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) || 4027 WARN_ON(pwq->nr_active) || 4028 WARN_ON(!list_empty(&pwq->delayed_works))) { 4029 mutex_unlock(&wq->mutex); 4030 return; 4031 } 4032 } 4033 mutex_unlock(&wq->mutex); 4034 4035 /* 4036 * wq list is used to freeze wq, remove from list after 4037 * flushing is complete in case freeze races us. 4038 */ 4039 mutex_lock(&wq_pool_mutex); 4040 list_del_rcu(&wq->list); 4041 mutex_unlock(&wq_pool_mutex); 4042 4043 workqueue_sysfs_unregister(wq); 4044 4045 if (wq->rescuer) 4046 kthread_stop(wq->rescuer->task); 4047 4048 if (!(wq->flags & WQ_UNBOUND)) { 4049 /* 4050 * The base ref is never dropped on per-cpu pwqs. Directly 4051 * schedule RCU free. 4052 */ 4053 call_rcu_sched(&wq->rcu, rcu_free_wq); 4054 } else { 4055 /* 4056 * We're the sole accessor of @wq at this point. Directly 4057 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4058 * @wq will be freed when the last pwq is released. 4059 */ 4060 for_each_node(node) { 4061 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4062 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4063 put_pwq_unlocked(pwq); 4064 } 4065 4066 /* 4067 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4068 * put. Don't access it afterwards. 4069 */ 4070 pwq = wq->dfl_pwq; 4071 wq->dfl_pwq = NULL; 4072 put_pwq_unlocked(pwq); 4073 } 4074 } 4075 EXPORT_SYMBOL_GPL(destroy_workqueue); 4076 4077 /** 4078 * workqueue_set_max_active - adjust max_active of a workqueue 4079 * @wq: target workqueue 4080 * @max_active: new max_active value. 4081 * 4082 * Set max_active of @wq to @max_active. 4083 * 4084 * CONTEXT: 4085 * Don't call from IRQ context. 4086 */ 4087 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4088 { 4089 struct pool_workqueue *pwq; 4090 4091 /* disallow meddling with max_active for ordered workqueues */ 4092 if (WARN_ON(wq->flags & __WQ_ORDERED)) 4093 return; 4094 4095 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4096 4097 mutex_lock(&wq->mutex); 4098 4099 wq->saved_max_active = max_active; 4100 4101 for_each_pwq(pwq, wq) 4102 pwq_adjust_max_active(pwq); 4103 4104 mutex_unlock(&wq->mutex); 4105 } 4106 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4107 4108 /** 4109 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4110 * 4111 * Determine whether %current is a workqueue rescuer. Can be used from 4112 * work functions to determine whether it's being run off the rescuer task. 4113 * 4114 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4115 */ 4116 bool current_is_workqueue_rescuer(void) 4117 { 4118 struct worker *worker = current_wq_worker(); 4119 4120 return worker && worker->rescue_wq; 4121 } 4122 4123 /** 4124 * workqueue_congested - test whether a workqueue is congested 4125 * @cpu: CPU in question 4126 * @wq: target workqueue 4127 * 4128 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4129 * no synchronization around this function and the test result is 4130 * unreliable and only useful as advisory hints or for debugging. 4131 * 4132 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4133 * Note that both per-cpu and unbound workqueues may be associated with 4134 * multiple pool_workqueues which have separate congested states. A 4135 * workqueue being congested on one CPU doesn't mean the workqueue is also 4136 * contested on other CPUs / NUMA nodes. 4137 * 4138 * Return: 4139 * %true if congested, %false otherwise. 4140 */ 4141 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4142 { 4143 struct pool_workqueue *pwq; 4144 bool ret; 4145 4146 rcu_read_lock_sched(); 4147 4148 if (cpu == WORK_CPU_UNBOUND) 4149 cpu = smp_processor_id(); 4150 4151 if (!(wq->flags & WQ_UNBOUND)) 4152 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4153 else 4154 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4155 4156 ret = !list_empty(&pwq->delayed_works); 4157 rcu_read_unlock_sched(); 4158 4159 return ret; 4160 } 4161 EXPORT_SYMBOL_GPL(workqueue_congested); 4162 4163 /** 4164 * work_busy - test whether a work is currently pending or running 4165 * @work: the work to be tested 4166 * 4167 * Test whether @work is currently pending or running. There is no 4168 * synchronization around this function and the test result is 4169 * unreliable and only useful as advisory hints or for debugging. 4170 * 4171 * Return: 4172 * OR'd bitmask of WORK_BUSY_* bits. 4173 */ 4174 unsigned int work_busy(struct work_struct *work) 4175 { 4176 struct worker_pool *pool; 4177 unsigned long flags; 4178 unsigned int ret = 0; 4179 4180 if (work_pending(work)) 4181 ret |= WORK_BUSY_PENDING; 4182 4183 local_irq_save(flags); 4184 pool = get_work_pool(work); 4185 if (pool) { 4186 spin_lock(&pool->lock); 4187 if (find_worker_executing_work(pool, work)) 4188 ret |= WORK_BUSY_RUNNING; 4189 spin_unlock(&pool->lock); 4190 } 4191 local_irq_restore(flags); 4192 4193 return ret; 4194 } 4195 EXPORT_SYMBOL_GPL(work_busy); 4196 4197 /** 4198 * set_worker_desc - set description for the current work item 4199 * @fmt: printf-style format string 4200 * @...: arguments for the format string 4201 * 4202 * This function can be called by a running work function to describe what 4203 * the work item is about. If the worker task gets dumped, this 4204 * information will be printed out together to help debugging. The 4205 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4206 */ 4207 void set_worker_desc(const char *fmt, ...) 4208 { 4209 struct worker *worker = current_wq_worker(); 4210 va_list args; 4211 4212 if (worker) { 4213 va_start(args, fmt); 4214 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4215 va_end(args); 4216 worker->desc_valid = true; 4217 } 4218 } 4219 4220 /** 4221 * print_worker_info - print out worker information and description 4222 * @log_lvl: the log level to use when printing 4223 * @task: target task 4224 * 4225 * If @task is a worker and currently executing a work item, print out the 4226 * name of the workqueue being serviced and worker description set with 4227 * set_worker_desc() by the currently executing work item. 4228 * 4229 * This function can be safely called on any task as long as the 4230 * task_struct itself is accessible. While safe, this function isn't 4231 * synchronized and may print out mixups or garbages of limited length. 4232 */ 4233 void print_worker_info(const char *log_lvl, struct task_struct *task) 4234 { 4235 work_func_t *fn = NULL; 4236 char name[WQ_NAME_LEN] = { }; 4237 char desc[WORKER_DESC_LEN] = { }; 4238 struct pool_workqueue *pwq = NULL; 4239 struct workqueue_struct *wq = NULL; 4240 bool desc_valid = false; 4241 struct worker *worker; 4242 4243 if (!(task->flags & PF_WQ_WORKER)) 4244 return; 4245 4246 /* 4247 * This function is called without any synchronization and @task 4248 * could be in any state. Be careful with dereferences. 4249 */ 4250 worker = probe_kthread_data(task); 4251 4252 /* 4253 * Carefully copy the associated workqueue's workfn and name. Keep 4254 * the original last '\0' in case the original contains garbage. 4255 */ 4256 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4257 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4258 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4259 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4260 4261 /* copy worker description */ 4262 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid)); 4263 if (desc_valid) 4264 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4265 4266 if (fn || name[0] || desc[0]) { 4267 printk("%sWorkqueue: %s %pf", log_lvl, name, fn); 4268 if (desc[0]) 4269 pr_cont(" (%s)", desc); 4270 pr_cont("\n"); 4271 } 4272 } 4273 4274 static void pr_cont_pool_info(struct worker_pool *pool) 4275 { 4276 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4277 if (pool->node != NUMA_NO_NODE) 4278 pr_cont(" node=%d", pool->node); 4279 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4280 } 4281 4282 static void pr_cont_work(bool comma, struct work_struct *work) 4283 { 4284 if (work->func == wq_barrier_func) { 4285 struct wq_barrier *barr; 4286 4287 barr = container_of(work, struct wq_barrier, work); 4288 4289 pr_cont("%s BAR(%d)", comma ? "," : "", 4290 task_pid_nr(barr->task)); 4291 } else { 4292 pr_cont("%s %pf", comma ? "," : "", work->func); 4293 } 4294 } 4295 4296 static void show_pwq(struct pool_workqueue *pwq) 4297 { 4298 struct worker_pool *pool = pwq->pool; 4299 struct work_struct *work; 4300 struct worker *worker; 4301 bool has_in_flight = false, has_pending = false; 4302 int bkt; 4303 4304 pr_info(" pwq %d:", pool->id); 4305 pr_cont_pool_info(pool); 4306 4307 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active, 4308 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4309 4310 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4311 if (worker->current_pwq == pwq) { 4312 has_in_flight = true; 4313 break; 4314 } 4315 } 4316 if (has_in_flight) { 4317 bool comma = false; 4318 4319 pr_info(" in-flight:"); 4320 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4321 if (worker->current_pwq != pwq) 4322 continue; 4323 4324 pr_cont("%s %d%s:%pf", comma ? "," : "", 4325 task_pid_nr(worker->task), 4326 worker == pwq->wq->rescuer ? "(RESCUER)" : "", 4327 worker->current_func); 4328 list_for_each_entry(work, &worker->scheduled, entry) 4329 pr_cont_work(false, work); 4330 comma = true; 4331 } 4332 pr_cont("\n"); 4333 } 4334 4335 list_for_each_entry(work, &pool->worklist, entry) { 4336 if (get_work_pwq(work) == pwq) { 4337 has_pending = true; 4338 break; 4339 } 4340 } 4341 if (has_pending) { 4342 bool comma = false; 4343 4344 pr_info(" pending:"); 4345 list_for_each_entry(work, &pool->worklist, entry) { 4346 if (get_work_pwq(work) != pwq) 4347 continue; 4348 4349 pr_cont_work(comma, work); 4350 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4351 } 4352 pr_cont("\n"); 4353 } 4354 4355 if (!list_empty(&pwq->delayed_works)) { 4356 bool comma = false; 4357 4358 pr_info(" delayed:"); 4359 list_for_each_entry(work, &pwq->delayed_works, entry) { 4360 pr_cont_work(comma, work); 4361 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4362 } 4363 pr_cont("\n"); 4364 } 4365 } 4366 4367 /** 4368 * show_workqueue_state - dump workqueue state 4369 * 4370 * Called from a sysrq handler and prints out all busy workqueues and 4371 * pools. 4372 */ 4373 void show_workqueue_state(void) 4374 { 4375 struct workqueue_struct *wq; 4376 struct worker_pool *pool; 4377 unsigned long flags; 4378 int pi; 4379 4380 rcu_read_lock_sched(); 4381 4382 pr_info("Showing busy workqueues and worker pools:\n"); 4383 4384 list_for_each_entry_rcu(wq, &workqueues, list) { 4385 struct pool_workqueue *pwq; 4386 bool idle = true; 4387 4388 for_each_pwq(pwq, wq) { 4389 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4390 idle = false; 4391 break; 4392 } 4393 } 4394 if (idle) 4395 continue; 4396 4397 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4398 4399 for_each_pwq(pwq, wq) { 4400 spin_lock_irqsave(&pwq->pool->lock, flags); 4401 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4402 show_pwq(pwq); 4403 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4404 } 4405 } 4406 4407 for_each_pool(pool, pi) { 4408 struct worker *worker; 4409 bool first = true; 4410 4411 spin_lock_irqsave(&pool->lock, flags); 4412 if (pool->nr_workers == pool->nr_idle) 4413 goto next_pool; 4414 4415 pr_info("pool %d:", pool->id); 4416 pr_cont_pool_info(pool); 4417 pr_cont(" hung=%us workers=%d", 4418 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4419 pool->nr_workers); 4420 if (pool->manager) 4421 pr_cont(" manager: %d", 4422 task_pid_nr(pool->manager->task)); 4423 list_for_each_entry(worker, &pool->idle_list, entry) { 4424 pr_cont(" %s%d", first ? "idle: " : "", 4425 task_pid_nr(worker->task)); 4426 first = false; 4427 } 4428 pr_cont("\n"); 4429 next_pool: 4430 spin_unlock_irqrestore(&pool->lock, flags); 4431 } 4432 4433 rcu_read_unlock_sched(); 4434 } 4435 4436 /* 4437 * CPU hotplug. 4438 * 4439 * There are two challenges in supporting CPU hotplug. Firstly, there 4440 * are a lot of assumptions on strong associations among work, pwq and 4441 * pool which make migrating pending and scheduled works very 4442 * difficult to implement without impacting hot paths. Secondly, 4443 * worker pools serve mix of short, long and very long running works making 4444 * blocked draining impractical. 4445 * 4446 * This is solved by allowing the pools to be disassociated from the CPU 4447 * running as an unbound one and allowing it to be reattached later if the 4448 * cpu comes back online. 4449 */ 4450 4451 static void wq_unbind_fn(struct work_struct *work) 4452 { 4453 int cpu = smp_processor_id(); 4454 struct worker_pool *pool; 4455 struct worker *worker; 4456 4457 for_each_cpu_worker_pool(pool, cpu) { 4458 mutex_lock(&pool->attach_mutex); 4459 spin_lock_irq(&pool->lock); 4460 4461 /* 4462 * We've blocked all attach/detach operations. Make all workers 4463 * unbound and set DISASSOCIATED. Before this, all workers 4464 * except for the ones which are still executing works from 4465 * before the last CPU down must be on the cpu. After 4466 * this, they may become diasporas. 4467 */ 4468 for_each_pool_worker(worker, pool) 4469 worker->flags |= WORKER_UNBOUND; 4470 4471 pool->flags |= POOL_DISASSOCIATED; 4472 4473 spin_unlock_irq(&pool->lock); 4474 mutex_unlock(&pool->attach_mutex); 4475 4476 /* 4477 * Call schedule() so that we cross rq->lock and thus can 4478 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4479 * This is necessary as scheduler callbacks may be invoked 4480 * from other cpus. 4481 */ 4482 schedule(); 4483 4484 /* 4485 * Sched callbacks are disabled now. Zap nr_running. 4486 * After this, nr_running stays zero and need_more_worker() 4487 * and keep_working() are always true as long as the 4488 * worklist is not empty. This pool now behaves as an 4489 * unbound (in terms of concurrency management) pool which 4490 * are served by workers tied to the pool. 4491 */ 4492 atomic_set(&pool->nr_running, 0); 4493 4494 /* 4495 * With concurrency management just turned off, a busy 4496 * worker blocking could lead to lengthy stalls. Kick off 4497 * unbound chain execution of currently pending work items. 4498 */ 4499 spin_lock_irq(&pool->lock); 4500 wake_up_worker(pool); 4501 spin_unlock_irq(&pool->lock); 4502 } 4503 } 4504 4505 /** 4506 * rebind_workers - rebind all workers of a pool to the associated CPU 4507 * @pool: pool of interest 4508 * 4509 * @pool->cpu is coming online. Rebind all workers to the CPU. 4510 */ 4511 static void rebind_workers(struct worker_pool *pool) 4512 { 4513 struct worker *worker; 4514 4515 lockdep_assert_held(&pool->attach_mutex); 4516 4517 /* 4518 * Restore CPU affinity of all workers. As all idle workers should 4519 * be on the run-queue of the associated CPU before any local 4520 * wake-ups for concurrency management happen, restore CPU affinity 4521 * of all workers first and then clear UNBOUND. As we're called 4522 * from CPU_ONLINE, the following shouldn't fail. 4523 */ 4524 for_each_pool_worker(worker, pool) 4525 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4526 pool->attrs->cpumask) < 0); 4527 4528 spin_lock_irq(&pool->lock); 4529 pool->flags &= ~POOL_DISASSOCIATED; 4530 4531 for_each_pool_worker(worker, pool) { 4532 unsigned int worker_flags = worker->flags; 4533 4534 /* 4535 * A bound idle worker should actually be on the runqueue 4536 * of the associated CPU for local wake-ups targeting it to 4537 * work. Kick all idle workers so that they migrate to the 4538 * associated CPU. Doing this in the same loop as 4539 * replacing UNBOUND with REBOUND is safe as no worker will 4540 * be bound before @pool->lock is released. 4541 */ 4542 if (worker_flags & WORKER_IDLE) 4543 wake_up_process(worker->task); 4544 4545 /* 4546 * We want to clear UNBOUND but can't directly call 4547 * worker_clr_flags() or adjust nr_running. Atomically 4548 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4549 * @worker will clear REBOUND using worker_clr_flags() when 4550 * it initiates the next execution cycle thus restoring 4551 * concurrency management. Note that when or whether 4552 * @worker clears REBOUND doesn't affect correctness. 4553 * 4554 * ACCESS_ONCE() is necessary because @worker->flags may be 4555 * tested without holding any lock in 4556 * wq_worker_waking_up(). Without it, NOT_RUNNING test may 4557 * fail incorrectly leading to premature concurrency 4558 * management operations. 4559 */ 4560 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4561 worker_flags |= WORKER_REBOUND; 4562 worker_flags &= ~WORKER_UNBOUND; 4563 ACCESS_ONCE(worker->flags) = worker_flags; 4564 } 4565 4566 spin_unlock_irq(&pool->lock); 4567 } 4568 4569 /** 4570 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4571 * @pool: unbound pool of interest 4572 * @cpu: the CPU which is coming up 4573 * 4574 * An unbound pool may end up with a cpumask which doesn't have any online 4575 * CPUs. When a worker of such pool get scheduled, the scheduler resets 4576 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 4577 * online CPU before, cpus_allowed of all its workers should be restored. 4578 */ 4579 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 4580 { 4581 static cpumask_t cpumask; 4582 struct worker *worker; 4583 4584 lockdep_assert_held(&pool->attach_mutex); 4585 4586 /* is @cpu allowed for @pool? */ 4587 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 4588 return; 4589 4590 /* is @cpu the only online CPU? */ 4591 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 4592 if (cpumask_weight(&cpumask) != 1) 4593 return; 4594 4595 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 4596 for_each_pool_worker(worker, pool) 4597 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4598 pool->attrs->cpumask) < 0); 4599 } 4600 4601 /* 4602 * Workqueues should be brought up before normal priority CPU notifiers. 4603 * This will be registered high priority CPU notifier. 4604 */ 4605 static int workqueue_cpu_up_callback(struct notifier_block *nfb, 4606 unsigned long action, 4607 void *hcpu) 4608 { 4609 int cpu = (unsigned long)hcpu; 4610 struct worker_pool *pool; 4611 struct workqueue_struct *wq; 4612 int pi; 4613 4614 switch (action & ~CPU_TASKS_FROZEN) { 4615 case CPU_UP_PREPARE: 4616 for_each_cpu_worker_pool(pool, cpu) { 4617 if (pool->nr_workers) 4618 continue; 4619 if (!create_worker(pool)) 4620 return NOTIFY_BAD; 4621 } 4622 break; 4623 4624 case CPU_DOWN_FAILED: 4625 case CPU_ONLINE: 4626 mutex_lock(&wq_pool_mutex); 4627 4628 for_each_pool(pool, pi) { 4629 mutex_lock(&pool->attach_mutex); 4630 4631 if (pool->cpu == cpu) 4632 rebind_workers(pool); 4633 else if (pool->cpu < 0) 4634 restore_unbound_workers_cpumask(pool, cpu); 4635 4636 mutex_unlock(&pool->attach_mutex); 4637 } 4638 4639 /* update NUMA affinity of unbound workqueues */ 4640 list_for_each_entry(wq, &workqueues, list) 4641 wq_update_unbound_numa(wq, cpu, true); 4642 4643 mutex_unlock(&wq_pool_mutex); 4644 break; 4645 } 4646 return NOTIFY_OK; 4647 } 4648 4649 /* 4650 * Workqueues should be brought down after normal priority CPU notifiers. 4651 * This will be registered as low priority CPU notifier. 4652 */ 4653 static int workqueue_cpu_down_callback(struct notifier_block *nfb, 4654 unsigned long action, 4655 void *hcpu) 4656 { 4657 int cpu = (unsigned long)hcpu; 4658 struct work_struct unbind_work; 4659 struct workqueue_struct *wq; 4660 4661 switch (action & ~CPU_TASKS_FROZEN) { 4662 case CPU_DOWN_PREPARE: 4663 /* unbinding per-cpu workers should happen on the local CPU */ 4664 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn); 4665 queue_work_on(cpu, system_highpri_wq, &unbind_work); 4666 4667 /* update NUMA affinity of unbound workqueues */ 4668 mutex_lock(&wq_pool_mutex); 4669 list_for_each_entry(wq, &workqueues, list) 4670 wq_update_unbound_numa(wq, cpu, false); 4671 mutex_unlock(&wq_pool_mutex); 4672 4673 /* wait for per-cpu unbinding to finish */ 4674 flush_work(&unbind_work); 4675 destroy_work_on_stack(&unbind_work); 4676 break; 4677 } 4678 return NOTIFY_OK; 4679 } 4680 4681 #ifdef CONFIG_SMP 4682 4683 struct work_for_cpu { 4684 struct work_struct work; 4685 long (*fn)(void *); 4686 void *arg; 4687 long ret; 4688 }; 4689 4690 static void work_for_cpu_fn(struct work_struct *work) 4691 { 4692 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 4693 4694 wfc->ret = wfc->fn(wfc->arg); 4695 } 4696 4697 /** 4698 * work_on_cpu - run a function in user context on a particular cpu 4699 * @cpu: the cpu to run on 4700 * @fn: the function to run 4701 * @arg: the function arg 4702 * 4703 * It is up to the caller to ensure that the cpu doesn't go offline. 4704 * The caller must not hold any locks which would prevent @fn from completing. 4705 * 4706 * Return: The value @fn returns. 4707 */ 4708 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 4709 { 4710 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 4711 4712 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 4713 schedule_work_on(cpu, &wfc.work); 4714 flush_work(&wfc.work); 4715 destroy_work_on_stack(&wfc.work); 4716 return wfc.ret; 4717 } 4718 EXPORT_SYMBOL_GPL(work_on_cpu); 4719 #endif /* CONFIG_SMP */ 4720 4721 #ifdef CONFIG_FREEZER 4722 4723 /** 4724 * freeze_workqueues_begin - begin freezing workqueues 4725 * 4726 * Start freezing workqueues. After this function returns, all freezable 4727 * workqueues will queue new works to their delayed_works list instead of 4728 * pool->worklist. 4729 * 4730 * CONTEXT: 4731 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4732 */ 4733 void freeze_workqueues_begin(void) 4734 { 4735 struct workqueue_struct *wq; 4736 struct pool_workqueue *pwq; 4737 4738 mutex_lock(&wq_pool_mutex); 4739 4740 WARN_ON_ONCE(workqueue_freezing); 4741 workqueue_freezing = true; 4742 4743 list_for_each_entry(wq, &workqueues, list) { 4744 mutex_lock(&wq->mutex); 4745 for_each_pwq(pwq, wq) 4746 pwq_adjust_max_active(pwq); 4747 mutex_unlock(&wq->mutex); 4748 } 4749 4750 mutex_unlock(&wq_pool_mutex); 4751 } 4752 4753 /** 4754 * freeze_workqueues_busy - are freezable workqueues still busy? 4755 * 4756 * Check whether freezing is complete. This function must be called 4757 * between freeze_workqueues_begin() and thaw_workqueues(). 4758 * 4759 * CONTEXT: 4760 * Grabs and releases wq_pool_mutex. 4761 * 4762 * Return: 4763 * %true if some freezable workqueues are still busy. %false if freezing 4764 * is complete. 4765 */ 4766 bool freeze_workqueues_busy(void) 4767 { 4768 bool busy = false; 4769 struct workqueue_struct *wq; 4770 struct pool_workqueue *pwq; 4771 4772 mutex_lock(&wq_pool_mutex); 4773 4774 WARN_ON_ONCE(!workqueue_freezing); 4775 4776 list_for_each_entry(wq, &workqueues, list) { 4777 if (!(wq->flags & WQ_FREEZABLE)) 4778 continue; 4779 /* 4780 * nr_active is monotonically decreasing. It's safe 4781 * to peek without lock. 4782 */ 4783 rcu_read_lock_sched(); 4784 for_each_pwq(pwq, wq) { 4785 WARN_ON_ONCE(pwq->nr_active < 0); 4786 if (pwq->nr_active) { 4787 busy = true; 4788 rcu_read_unlock_sched(); 4789 goto out_unlock; 4790 } 4791 } 4792 rcu_read_unlock_sched(); 4793 } 4794 out_unlock: 4795 mutex_unlock(&wq_pool_mutex); 4796 return busy; 4797 } 4798 4799 /** 4800 * thaw_workqueues - thaw workqueues 4801 * 4802 * Thaw workqueues. Normal queueing is restored and all collected 4803 * frozen works are transferred to their respective pool worklists. 4804 * 4805 * CONTEXT: 4806 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 4807 */ 4808 void thaw_workqueues(void) 4809 { 4810 struct workqueue_struct *wq; 4811 struct pool_workqueue *pwq; 4812 4813 mutex_lock(&wq_pool_mutex); 4814 4815 if (!workqueue_freezing) 4816 goto out_unlock; 4817 4818 workqueue_freezing = false; 4819 4820 /* restore max_active and repopulate worklist */ 4821 list_for_each_entry(wq, &workqueues, list) { 4822 mutex_lock(&wq->mutex); 4823 for_each_pwq(pwq, wq) 4824 pwq_adjust_max_active(pwq); 4825 mutex_unlock(&wq->mutex); 4826 } 4827 4828 out_unlock: 4829 mutex_unlock(&wq_pool_mutex); 4830 } 4831 #endif /* CONFIG_FREEZER */ 4832 4833 static int workqueue_apply_unbound_cpumask(void) 4834 { 4835 LIST_HEAD(ctxs); 4836 int ret = 0; 4837 struct workqueue_struct *wq; 4838 struct apply_wqattrs_ctx *ctx, *n; 4839 4840 lockdep_assert_held(&wq_pool_mutex); 4841 4842 list_for_each_entry(wq, &workqueues, list) { 4843 if (!(wq->flags & WQ_UNBOUND)) 4844 continue; 4845 /* creating multiple pwqs breaks ordering guarantee */ 4846 if (wq->flags & __WQ_ORDERED) 4847 continue; 4848 4849 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 4850 if (!ctx) { 4851 ret = -ENOMEM; 4852 break; 4853 } 4854 4855 list_add_tail(&ctx->list, &ctxs); 4856 } 4857 4858 list_for_each_entry_safe(ctx, n, &ctxs, list) { 4859 if (!ret) 4860 apply_wqattrs_commit(ctx); 4861 apply_wqattrs_cleanup(ctx); 4862 } 4863 4864 return ret; 4865 } 4866 4867 /** 4868 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 4869 * @cpumask: the cpumask to set 4870 * 4871 * The low-level workqueues cpumask is a global cpumask that limits 4872 * the affinity of all unbound workqueues. This function check the @cpumask 4873 * and apply it to all unbound workqueues and updates all pwqs of them. 4874 * 4875 * Retun: 0 - Success 4876 * -EINVAL - Invalid @cpumask 4877 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 4878 */ 4879 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 4880 { 4881 int ret = -EINVAL; 4882 cpumask_var_t saved_cpumask; 4883 4884 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 4885 return -ENOMEM; 4886 4887 cpumask_and(cpumask, cpumask, cpu_possible_mask); 4888 if (!cpumask_empty(cpumask)) { 4889 apply_wqattrs_lock(); 4890 4891 /* save the old wq_unbound_cpumask. */ 4892 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 4893 4894 /* update wq_unbound_cpumask at first and apply it to wqs. */ 4895 cpumask_copy(wq_unbound_cpumask, cpumask); 4896 ret = workqueue_apply_unbound_cpumask(); 4897 4898 /* restore the wq_unbound_cpumask when failed. */ 4899 if (ret < 0) 4900 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 4901 4902 apply_wqattrs_unlock(); 4903 } 4904 4905 free_cpumask_var(saved_cpumask); 4906 return ret; 4907 } 4908 4909 #ifdef CONFIG_SYSFS 4910 /* 4911 * Workqueues with WQ_SYSFS flag set is visible to userland via 4912 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 4913 * following attributes. 4914 * 4915 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 4916 * max_active RW int : maximum number of in-flight work items 4917 * 4918 * Unbound workqueues have the following extra attributes. 4919 * 4920 * id RO int : the associated pool ID 4921 * nice RW int : nice value of the workers 4922 * cpumask RW mask : bitmask of allowed CPUs for the workers 4923 */ 4924 struct wq_device { 4925 struct workqueue_struct *wq; 4926 struct device dev; 4927 }; 4928 4929 static struct workqueue_struct *dev_to_wq(struct device *dev) 4930 { 4931 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 4932 4933 return wq_dev->wq; 4934 } 4935 4936 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 4937 char *buf) 4938 { 4939 struct workqueue_struct *wq = dev_to_wq(dev); 4940 4941 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 4942 } 4943 static DEVICE_ATTR_RO(per_cpu); 4944 4945 static ssize_t max_active_show(struct device *dev, 4946 struct device_attribute *attr, char *buf) 4947 { 4948 struct workqueue_struct *wq = dev_to_wq(dev); 4949 4950 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 4951 } 4952 4953 static ssize_t max_active_store(struct device *dev, 4954 struct device_attribute *attr, const char *buf, 4955 size_t count) 4956 { 4957 struct workqueue_struct *wq = dev_to_wq(dev); 4958 int val; 4959 4960 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 4961 return -EINVAL; 4962 4963 workqueue_set_max_active(wq, val); 4964 return count; 4965 } 4966 static DEVICE_ATTR_RW(max_active); 4967 4968 static struct attribute *wq_sysfs_attrs[] = { 4969 &dev_attr_per_cpu.attr, 4970 &dev_attr_max_active.attr, 4971 NULL, 4972 }; 4973 ATTRIBUTE_GROUPS(wq_sysfs); 4974 4975 static ssize_t wq_pool_ids_show(struct device *dev, 4976 struct device_attribute *attr, char *buf) 4977 { 4978 struct workqueue_struct *wq = dev_to_wq(dev); 4979 const char *delim = ""; 4980 int node, written = 0; 4981 4982 rcu_read_lock_sched(); 4983 for_each_node(node) { 4984 written += scnprintf(buf + written, PAGE_SIZE - written, 4985 "%s%d:%d", delim, node, 4986 unbound_pwq_by_node(wq, node)->pool->id); 4987 delim = " "; 4988 } 4989 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 4990 rcu_read_unlock_sched(); 4991 4992 return written; 4993 } 4994 4995 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 4996 char *buf) 4997 { 4998 struct workqueue_struct *wq = dev_to_wq(dev); 4999 int written; 5000 5001 mutex_lock(&wq->mutex); 5002 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5003 mutex_unlock(&wq->mutex); 5004 5005 return written; 5006 } 5007 5008 /* prepare workqueue_attrs for sysfs store operations */ 5009 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5010 { 5011 struct workqueue_attrs *attrs; 5012 5013 lockdep_assert_held(&wq_pool_mutex); 5014 5015 attrs = alloc_workqueue_attrs(GFP_KERNEL); 5016 if (!attrs) 5017 return NULL; 5018 5019 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5020 return attrs; 5021 } 5022 5023 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5024 const char *buf, size_t count) 5025 { 5026 struct workqueue_struct *wq = dev_to_wq(dev); 5027 struct workqueue_attrs *attrs; 5028 int ret = -ENOMEM; 5029 5030 apply_wqattrs_lock(); 5031 5032 attrs = wq_sysfs_prep_attrs(wq); 5033 if (!attrs) 5034 goto out_unlock; 5035 5036 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5037 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5038 ret = apply_workqueue_attrs_locked(wq, attrs); 5039 else 5040 ret = -EINVAL; 5041 5042 out_unlock: 5043 apply_wqattrs_unlock(); 5044 free_workqueue_attrs(attrs); 5045 return ret ?: count; 5046 } 5047 5048 static ssize_t wq_cpumask_show(struct device *dev, 5049 struct device_attribute *attr, char *buf) 5050 { 5051 struct workqueue_struct *wq = dev_to_wq(dev); 5052 int written; 5053 5054 mutex_lock(&wq->mutex); 5055 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5056 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5057 mutex_unlock(&wq->mutex); 5058 return written; 5059 } 5060 5061 static ssize_t wq_cpumask_store(struct device *dev, 5062 struct device_attribute *attr, 5063 const char *buf, size_t count) 5064 { 5065 struct workqueue_struct *wq = dev_to_wq(dev); 5066 struct workqueue_attrs *attrs; 5067 int ret = -ENOMEM; 5068 5069 apply_wqattrs_lock(); 5070 5071 attrs = wq_sysfs_prep_attrs(wq); 5072 if (!attrs) 5073 goto out_unlock; 5074 5075 ret = cpumask_parse(buf, attrs->cpumask); 5076 if (!ret) 5077 ret = apply_workqueue_attrs_locked(wq, attrs); 5078 5079 out_unlock: 5080 apply_wqattrs_unlock(); 5081 free_workqueue_attrs(attrs); 5082 return ret ?: count; 5083 } 5084 5085 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5086 char *buf) 5087 { 5088 struct workqueue_struct *wq = dev_to_wq(dev); 5089 int written; 5090 5091 mutex_lock(&wq->mutex); 5092 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5093 !wq->unbound_attrs->no_numa); 5094 mutex_unlock(&wq->mutex); 5095 5096 return written; 5097 } 5098 5099 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5100 const char *buf, size_t count) 5101 { 5102 struct workqueue_struct *wq = dev_to_wq(dev); 5103 struct workqueue_attrs *attrs; 5104 int v, ret = -ENOMEM; 5105 5106 apply_wqattrs_lock(); 5107 5108 attrs = wq_sysfs_prep_attrs(wq); 5109 if (!attrs) 5110 goto out_unlock; 5111 5112 ret = -EINVAL; 5113 if (sscanf(buf, "%d", &v) == 1) { 5114 attrs->no_numa = !v; 5115 ret = apply_workqueue_attrs_locked(wq, attrs); 5116 } 5117 5118 out_unlock: 5119 apply_wqattrs_unlock(); 5120 free_workqueue_attrs(attrs); 5121 return ret ?: count; 5122 } 5123 5124 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5125 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5126 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5127 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5128 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5129 __ATTR_NULL, 5130 }; 5131 5132 static struct bus_type wq_subsys = { 5133 .name = "workqueue", 5134 .dev_groups = wq_sysfs_groups, 5135 }; 5136 5137 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5138 struct device_attribute *attr, char *buf) 5139 { 5140 int written; 5141 5142 mutex_lock(&wq_pool_mutex); 5143 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5144 cpumask_pr_args(wq_unbound_cpumask)); 5145 mutex_unlock(&wq_pool_mutex); 5146 5147 return written; 5148 } 5149 5150 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5151 struct device_attribute *attr, const char *buf, size_t count) 5152 { 5153 cpumask_var_t cpumask; 5154 int ret; 5155 5156 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5157 return -ENOMEM; 5158 5159 ret = cpumask_parse(buf, cpumask); 5160 if (!ret) 5161 ret = workqueue_set_unbound_cpumask(cpumask); 5162 5163 free_cpumask_var(cpumask); 5164 return ret ? ret : count; 5165 } 5166 5167 static struct device_attribute wq_sysfs_cpumask_attr = 5168 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5169 wq_unbound_cpumask_store); 5170 5171 static int __init wq_sysfs_init(void) 5172 { 5173 int err; 5174 5175 err = subsys_virtual_register(&wq_subsys, NULL); 5176 if (err) 5177 return err; 5178 5179 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5180 } 5181 core_initcall(wq_sysfs_init); 5182 5183 static void wq_device_release(struct device *dev) 5184 { 5185 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5186 5187 kfree(wq_dev); 5188 } 5189 5190 /** 5191 * workqueue_sysfs_register - make a workqueue visible in sysfs 5192 * @wq: the workqueue to register 5193 * 5194 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5195 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5196 * which is the preferred method. 5197 * 5198 * Workqueue user should use this function directly iff it wants to apply 5199 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5200 * apply_workqueue_attrs() may race against userland updating the 5201 * attributes. 5202 * 5203 * Return: 0 on success, -errno on failure. 5204 */ 5205 int workqueue_sysfs_register(struct workqueue_struct *wq) 5206 { 5207 struct wq_device *wq_dev; 5208 int ret; 5209 5210 /* 5211 * Adjusting max_active or creating new pwqs by applying 5212 * attributes breaks ordering guarantee. Disallow exposing ordered 5213 * workqueues. 5214 */ 5215 if (WARN_ON(wq->flags & __WQ_ORDERED)) 5216 return -EINVAL; 5217 5218 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5219 if (!wq_dev) 5220 return -ENOMEM; 5221 5222 wq_dev->wq = wq; 5223 wq_dev->dev.bus = &wq_subsys; 5224 wq_dev->dev.init_name = wq->name; 5225 wq_dev->dev.release = wq_device_release; 5226 5227 /* 5228 * unbound_attrs are created separately. Suppress uevent until 5229 * everything is ready. 5230 */ 5231 dev_set_uevent_suppress(&wq_dev->dev, true); 5232 5233 ret = device_register(&wq_dev->dev); 5234 if (ret) { 5235 kfree(wq_dev); 5236 wq->wq_dev = NULL; 5237 return ret; 5238 } 5239 5240 if (wq->flags & WQ_UNBOUND) { 5241 struct device_attribute *attr; 5242 5243 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5244 ret = device_create_file(&wq_dev->dev, attr); 5245 if (ret) { 5246 device_unregister(&wq_dev->dev); 5247 wq->wq_dev = NULL; 5248 return ret; 5249 } 5250 } 5251 } 5252 5253 dev_set_uevent_suppress(&wq_dev->dev, false); 5254 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5255 return 0; 5256 } 5257 5258 /** 5259 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5260 * @wq: the workqueue to unregister 5261 * 5262 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5263 */ 5264 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5265 { 5266 struct wq_device *wq_dev = wq->wq_dev; 5267 5268 if (!wq->wq_dev) 5269 return; 5270 5271 wq->wq_dev = NULL; 5272 device_unregister(&wq_dev->dev); 5273 } 5274 #else /* CONFIG_SYSFS */ 5275 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5276 #endif /* CONFIG_SYSFS */ 5277 5278 /* 5279 * Workqueue watchdog. 5280 * 5281 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5282 * flush dependency, a concurrency managed work item which stays RUNNING 5283 * indefinitely. Workqueue stalls can be very difficult to debug as the 5284 * usual warning mechanisms don't trigger and internal workqueue state is 5285 * largely opaque. 5286 * 5287 * Workqueue watchdog monitors all worker pools periodically and dumps 5288 * state if some pools failed to make forward progress for a while where 5289 * forward progress is defined as the first item on ->worklist changing. 5290 * 5291 * This mechanism is controlled through the kernel parameter 5292 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5293 * corresponding sysfs parameter file. 5294 */ 5295 #ifdef CONFIG_WQ_WATCHDOG 5296 5297 static void wq_watchdog_timer_fn(unsigned long data); 5298 5299 static unsigned long wq_watchdog_thresh = 30; 5300 static struct timer_list wq_watchdog_timer = 5301 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0); 5302 5303 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5304 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5305 5306 static void wq_watchdog_reset_touched(void) 5307 { 5308 int cpu; 5309 5310 wq_watchdog_touched = jiffies; 5311 for_each_possible_cpu(cpu) 5312 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5313 } 5314 5315 static void wq_watchdog_timer_fn(unsigned long data) 5316 { 5317 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5318 bool lockup_detected = false; 5319 struct worker_pool *pool; 5320 int pi; 5321 5322 if (!thresh) 5323 return; 5324 5325 rcu_read_lock(); 5326 5327 for_each_pool(pool, pi) { 5328 unsigned long pool_ts, touched, ts; 5329 5330 if (list_empty(&pool->worklist)) 5331 continue; 5332 5333 /* get the latest of pool and touched timestamps */ 5334 pool_ts = READ_ONCE(pool->watchdog_ts); 5335 touched = READ_ONCE(wq_watchdog_touched); 5336 5337 if (time_after(pool_ts, touched)) 5338 ts = pool_ts; 5339 else 5340 ts = touched; 5341 5342 if (pool->cpu >= 0) { 5343 unsigned long cpu_touched = 5344 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5345 pool->cpu)); 5346 if (time_after(cpu_touched, ts)) 5347 ts = cpu_touched; 5348 } 5349 5350 /* did we stall? */ 5351 if (time_after(jiffies, ts + thresh)) { 5352 lockup_detected = true; 5353 pr_emerg("BUG: workqueue lockup - pool"); 5354 pr_cont_pool_info(pool); 5355 pr_cont(" stuck for %us!\n", 5356 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5357 } 5358 } 5359 5360 rcu_read_unlock(); 5361 5362 if (lockup_detected) 5363 show_workqueue_state(); 5364 5365 wq_watchdog_reset_touched(); 5366 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5367 } 5368 5369 void wq_watchdog_touch(int cpu) 5370 { 5371 if (cpu >= 0) 5372 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5373 else 5374 wq_watchdog_touched = jiffies; 5375 } 5376 5377 static void wq_watchdog_set_thresh(unsigned long thresh) 5378 { 5379 wq_watchdog_thresh = 0; 5380 del_timer_sync(&wq_watchdog_timer); 5381 5382 if (thresh) { 5383 wq_watchdog_thresh = thresh; 5384 wq_watchdog_reset_touched(); 5385 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5386 } 5387 } 5388 5389 static int wq_watchdog_param_set_thresh(const char *val, 5390 const struct kernel_param *kp) 5391 { 5392 unsigned long thresh; 5393 int ret; 5394 5395 ret = kstrtoul(val, 0, &thresh); 5396 if (ret) 5397 return ret; 5398 5399 if (system_wq) 5400 wq_watchdog_set_thresh(thresh); 5401 else 5402 wq_watchdog_thresh = thresh; 5403 5404 return 0; 5405 } 5406 5407 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5408 .set = wq_watchdog_param_set_thresh, 5409 .get = param_get_ulong, 5410 }; 5411 5412 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5413 0644); 5414 5415 static void wq_watchdog_init(void) 5416 { 5417 wq_watchdog_set_thresh(wq_watchdog_thresh); 5418 } 5419 5420 #else /* CONFIG_WQ_WATCHDOG */ 5421 5422 static inline void wq_watchdog_init(void) { } 5423 5424 #endif /* CONFIG_WQ_WATCHDOG */ 5425 5426 static void __init wq_numa_init(void) 5427 { 5428 cpumask_var_t *tbl; 5429 int node, cpu; 5430 5431 if (num_possible_nodes() <= 1) 5432 return; 5433 5434 if (wq_disable_numa) { 5435 pr_info("workqueue: NUMA affinity support disabled\n"); 5436 return; 5437 } 5438 5439 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL); 5440 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5441 5442 /* 5443 * We want masks of possible CPUs of each node which isn't readily 5444 * available. Build one from cpu_to_node() which should have been 5445 * fully initialized by now. 5446 */ 5447 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL); 5448 BUG_ON(!tbl); 5449 5450 for_each_node(node) 5451 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5452 node_online(node) ? node : NUMA_NO_NODE)); 5453 5454 for_each_possible_cpu(cpu) { 5455 node = cpu_to_node(cpu); 5456 if (WARN_ON(node == NUMA_NO_NODE)) { 5457 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5458 /* happens iff arch is bonkers, let's just proceed */ 5459 return; 5460 } 5461 cpumask_set_cpu(cpu, tbl[node]); 5462 } 5463 5464 wq_numa_possible_cpumask = tbl; 5465 wq_numa_enabled = true; 5466 } 5467 5468 static int __init init_workqueues(void) 5469 { 5470 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5471 int i, cpu; 5472 5473 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5474 5475 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5476 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask); 5477 5478 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5479 5480 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP); 5481 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN); 5482 5483 wq_numa_init(); 5484 5485 /* initialize CPU pools */ 5486 for_each_possible_cpu(cpu) { 5487 struct worker_pool *pool; 5488 5489 i = 0; 5490 for_each_cpu_worker_pool(pool, cpu) { 5491 BUG_ON(init_worker_pool(pool)); 5492 pool->cpu = cpu; 5493 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5494 pool->attrs->nice = std_nice[i++]; 5495 pool->node = cpu_to_node(cpu); 5496 5497 /* alloc pool ID */ 5498 mutex_lock(&wq_pool_mutex); 5499 BUG_ON(worker_pool_assign_id(pool)); 5500 mutex_unlock(&wq_pool_mutex); 5501 } 5502 } 5503 5504 /* create the initial worker */ 5505 for_each_online_cpu(cpu) { 5506 struct worker_pool *pool; 5507 5508 for_each_cpu_worker_pool(pool, cpu) { 5509 pool->flags &= ~POOL_DISASSOCIATED; 5510 BUG_ON(!create_worker(pool)); 5511 } 5512 } 5513 5514 /* create default unbound and ordered wq attrs */ 5515 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5516 struct workqueue_attrs *attrs; 5517 5518 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5519 attrs->nice = std_nice[i]; 5520 unbound_std_wq_attrs[i] = attrs; 5521 5522 /* 5523 * An ordered wq should have only one pwq as ordering is 5524 * guaranteed by max_active which is enforced by pwqs. 5525 * Turn off NUMA so that dfl_pwq is used for all nodes. 5526 */ 5527 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL))); 5528 attrs->nice = std_nice[i]; 5529 attrs->no_numa = true; 5530 ordered_wq_attrs[i] = attrs; 5531 } 5532 5533 system_wq = alloc_workqueue("events", 0, 0); 5534 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5535 system_long_wq = alloc_workqueue("events_long", 0, 0); 5536 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5537 WQ_UNBOUND_MAX_ACTIVE); 5538 system_freezable_wq = alloc_workqueue("events_freezable", 5539 WQ_FREEZABLE, 0); 5540 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5541 WQ_POWER_EFFICIENT, 0); 5542 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5543 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5544 0); 5545 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5546 !system_unbound_wq || !system_freezable_wq || 5547 !system_power_efficient_wq || 5548 !system_freezable_power_efficient_wq); 5549 5550 wq_watchdog_init(); 5551 5552 return 0; 5553 } 5554 early_initcall(init_workqueues); 5555