xref: /linux/kernel/workqueue.c (revision 3b812ecce736432e6b55e77028ea387eb1517d24)
1 /*
2  * kernel/workqueue.c - generic async execution with shared worker pool
3  *
4  * Copyright (C) 2002		Ingo Molnar
5  *
6  *   Derived from the taskqueue/keventd code by:
7  *     David Woodhouse <dwmw2@infradead.org>
8  *     Andrew Morton
9  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
10  *     Theodore Ts'o <tytso@mit.edu>
11  *
12  * Made to use alloc_percpu by Christoph Lameter.
13  *
14  * Copyright (C) 2010		SUSE Linux Products GmbH
15  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
16  *
17  * This is the generic async execution mechanism.  Work items as are
18  * executed in process context.  The worker pool is shared and
19  * automatically managed.  There are two worker pools for each CPU (one for
20  * normal work items and the other for high priority ones) and some extra
21  * pools for workqueues which are not bound to any specific CPU - the
22  * number of these backing pools is dynamic.
23  *
24  * Please read Documentation/workqueue.txt for details.
25  */
26 
27 #include <linux/export.h>
28 #include <linux/kernel.h>
29 #include <linux/sched.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/completion.h>
33 #include <linux/workqueue.h>
34 #include <linux/slab.h>
35 #include <linux/cpu.h>
36 #include <linux/notifier.h>
37 #include <linux/kthread.h>
38 #include <linux/hardirq.h>
39 #include <linux/mempolicy.h>
40 #include <linux/freezer.h>
41 #include <linux/kallsyms.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 
52 #include "workqueue_internal.h"
53 
54 enum {
55 	/*
56 	 * worker_pool flags
57 	 *
58 	 * A bound pool is either associated or disassociated with its CPU.
59 	 * While associated (!DISASSOCIATED), all workers are bound to the
60 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 	 * is in effect.
62 	 *
63 	 * While DISASSOCIATED, the cpu may be offline and all workers have
64 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
65 	 * be executing on any CPU.  The pool behaves as an unbound one.
66 	 *
67 	 * Note that DISASSOCIATED should be flipped only while holding
68 	 * attach_mutex to avoid changing binding state while
69 	 * worker_attach_to_pool() is in progress.
70 	 */
71 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
72 
73 	/* worker flags */
74 	WORKER_DIE		= 1 << 1,	/* die die die */
75 	WORKER_IDLE		= 1 << 2,	/* is idle */
76 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
77 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
78 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
79 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
80 
81 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
82 				  WORKER_UNBOUND | WORKER_REBOUND,
83 
84 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
85 
86 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
87 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
88 
89 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
90 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
91 
92 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
93 						/* call for help after 10ms
94 						   (min two ticks) */
95 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
96 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
97 
98 	/*
99 	 * Rescue workers are used only on emergencies and shared by
100 	 * all cpus.  Give MIN_NICE.
101 	 */
102 	RESCUER_NICE_LEVEL	= MIN_NICE,
103 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
104 
105 	WQ_NAME_LEN		= 24,
106 };
107 
108 /*
109  * Structure fields follow one of the following exclusion rules.
110  *
111  * I: Modifiable by initialization/destruction paths and read-only for
112  *    everyone else.
113  *
114  * P: Preemption protected.  Disabling preemption is enough and should
115  *    only be modified and accessed from the local cpu.
116  *
117  * L: pool->lock protected.  Access with pool->lock held.
118  *
119  * X: During normal operation, modification requires pool->lock and should
120  *    be done only from local cpu.  Either disabling preemption on local
121  *    cpu or grabbing pool->lock is enough for read access.  If
122  *    POOL_DISASSOCIATED is set, it's identical to L.
123  *
124  * A: pool->attach_mutex protected.
125  *
126  * PL: wq_pool_mutex protected.
127  *
128  * PR: wq_pool_mutex protected for writes.  Sched-RCU protected for reads.
129  *
130  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
131  *
132  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
133  *      sched-RCU for reads.
134  *
135  * WQ: wq->mutex protected.
136  *
137  * WR: wq->mutex protected for writes.  Sched-RCU protected for reads.
138  *
139  * MD: wq_mayday_lock protected.
140  */
141 
142 /* struct worker is defined in workqueue_internal.h */
143 
144 struct worker_pool {
145 	spinlock_t		lock;		/* the pool lock */
146 	int			cpu;		/* I: the associated cpu */
147 	int			node;		/* I: the associated node ID */
148 	int			id;		/* I: pool ID */
149 	unsigned int		flags;		/* X: flags */
150 
151 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
152 
153 	struct list_head	worklist;	/* L: list of pending works */
154 	int			nr_workers;	/* L: total number of workers */
155 
156 	/* nr_idle includes the ones off idle_list for rebinding */
157 	int			nr_idle;	/* L: currently idle ones */
158 
159 	struct list_head	idle_list;	/* X: list of idle workers */
160 	struct timer_list	idle_timer;	/* L: worker idle timeout */
161 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
162 
163 	/* a workers is either on busy_hash or idle_list, or the manager */
164 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 						/* L: hash of busy workers */
166 
167 	/* see manage_workers() for details on the two manager mutexes */
168 	struct mutex		manager_arb;	/* manager arbitration */
169 	struct worker		*manager;	/* L: purely informational */
170 	struct mutex		attach_mutex;	/* attach/detach exclusion */
171 	struct list_head	workers;	/* A: attached workers */
172 	struct completion	*detach_completion; /* all workers detached */
173 
174 	struct ida		worker_ida;	/* worker IDs for task name */
175 
176 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
177 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
178 	int			refcnt;		/* PL: refcnt for unbound pools */
179 
180 	/*
181 	 * The current concurrency level.  As it's likely to be accessed
182 	 * from other CPUs during try_to_wake_up(), put it in a separate
183 	 * cacheline.
184 	 */
185 	atomic_t		nr_running ____cacheline_aligned_in_smp;
186 
187 	/*
188 	 * Destruction of pool is sched-RCU protected to allow dereferences
189 	 * from get_work_pool().
190 	 */
191 	struct rcu_head		rcu;
192 } ____cacheline_aligned_in_smp;
193 
194 /*
195  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
196  * of work_struct->data are used for flags and the remaining high bits
197  * point to the pwq; thus, pwqs need to be aligned at two's power of the
198  * number of flag bits.
199  */
200 struct pool_workqueue {
201 	struct worker_pool	*pool;		/* I: the associated pool */
202 	struct workqueue_struct *wq;		/* I: the owning workqueue */
203 	int			work_color;	/* L: current color */
204 	int			flush_color;	/* L: flushing color */
205 	int			refcnt;		/* L: reference count */
206 	int			nr_in_flight[WORK_NR_COLORS];
207 						/* L: nr of in_flight works */
208 	int			nr_active;	/* L: nr of active works */
209 	int			max_active;	/* L: max active works */
210 	struct list_head	delayed_works;	/* L: delayed works */
211 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
212 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
213 
214 	/*
215 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
216 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
217 	 * itself is also sched-RCU protected so that the first pwq can be
218 	 * determined without grabbing wq->mutex.
219 	 */
220 	struct work_struct	unbound_release_work;
221 	struct rcu_head		rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223 
224 /*
225  * Structure used to wait for workqueue flush.
226  */
227 struct wq_flusher {
228 	struct list_head	list;		/* WQ: list of flushers */
229 	int			flush_color;	/* WQ: flush color waiting for */
230 	struct completion	done;		/* flush completion */
231 };
232 
233 struct wq_device;
234 
235 /*
236  * The externally visible workqueue.  It relays the issued work items to
237  * the appropriate worker_pool through its pool_workqueues.
238  */
239 struct workqueue_struct {
240 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
241 	struct list_head	list;		/* PR: list of all workqueues */
242 
243 	struct mutex		mutex;		/* protects this wq */
244 	int			work_color;	/* WQ: current work color */
245 	int			flush_color;	/* WQ: current flush color */
246 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
247 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
248 	struct list_head	flusher_queue;	/* WQ: flush waiters */
249 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
250 
251 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
252 	struct worker		*rescuer;	/* I: rescue worker */
253 
254 	int			nr_drainers;	/* WQ: drain in progress */
255 	int			saved_max_active; /* WQ: saved pwq max_active */
256 
257 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
258 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
259 
260 #ifdef CONFIG_SYSFS
261 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 	struct lockdep_map	lockdep_map;
265 #endif
266 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
267 
268 	/*
269 	 * Destruction of workqueue_struct is sched-RCU protected to allow
270 	 * walking the workqueues list without grabbing wq_pool_mutex.
271 	 * This is used to dump all workqueues from sysrq.
272 	 */
273 	struct rcu_head		rcu;
274 
275 	/* hot fields used during command issue, aligned to cacheline */
276 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
278 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
279 };
280 
281 static struct kmem_cache *pwq_cache;
282 
283 static cpumask_var_t *wq_numa_possible_cpumask;
284 					/* possible CPUs of each node */
285 
286 static bool wq_disable_numa;
287 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288 
289 /* see the comment above the definition of WQ_POWER_EFFICIENT */
290 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
291 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292 
293 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
294 
295 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297 
298 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
299 static DEFINE_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
300 
301 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
302 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
303 
304 /* PL: allowable cpus for unbound wqs and work items */
305 static cpumask_var_t wq_unbound_cpumask;
306 
307 /* CPU where unbound work was last round robin scheduled from this CPU */
308 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
309 
310 /*
311  * Local execution of unbound work items is no longer guaranteed.  The
312  * following always forces round-robin CPU selection on unbound work items
313  * to uncover usages which depend on it.
314  */
315 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
316 static bool wq_debug_force_rr_cpu = true;
317 #else
318 static bool wq_debug_force_rr_cpu = false;
319 #endif
320 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
321 
322 /* the per-cpu worker pools */
323 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
324 
325 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
326 
327 /* PL: hash of all unbound pools keyed by pool->attrs */
328 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
329 
330 /* I: attributes used when instantiating standard unbound pools on demand */
331 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
332 
333 /* I: attributes used when instantiating ordered pools on demand */
334 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
335 
336 struct workqueue_struct *system_wq __read_mostly;
337 EXPORT_SYMBOL(system_wq);
338 struct workqueue_struct *system_highpri_wq __read_mostly;
339 EXPORT_SYMBOL_GPL(system_highpri_wq);
340 struct workqueue_struct *system_long_wq __read_mostly;
341 EXPORT_SYMBOL_GPL(system_long_wq);
342 struct workqueue_struct *system_unbound_wq __read_mostly;
343 EXPORT_SYMBOL_GPL(system_unbound_wq);
344 struct workqueue_struct *system_freezable_wq __read_mostly;
345 EXPORT_SYMBOL_GPL(system_freezable_wq);
346 struct workqueue_struct *system_power_efficient_wq __read_mostly;
347 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
348 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
349 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
350 
351 static int worker_thread(void *__worker);
352 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
353 
354 #define CREATE_TRACE_POINTS
355 #include <trace/events/workqueue.h>
356 
357 #define assert_rcu_or_pool_mutex()					\
358 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
359 			 !lockdep_is_held(&wq_pool_mutex),		\
360 			 "sched RCU or wq_pool_mutex should be held")
361 
362 #define assert_rcu_or_wq_mutex(wq)					\
363 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
364 			 !lockdep_is_held(&wq->mutex),			\
365 			 "sched RCU or wq->mutex should be held")
366 
367 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
368 	RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() &&			\
369 			 !lockdep_is_held(&wq->mutex) &&		\
370 			 !lockdep_is_held(&wq_pool_mutex),		\
371 			 "sched RCU, wq->mutex or wq_pool_mutex should be held")
372 
373 #define for_each_cpu_worker_pool(pool, cpu)				\
374 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
375 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
376 	     (pool)++)
377 
378 /**
379  * for_each_pool - iterate through all worker_pools in the system
380  * @pool: iteration cursor
381  * @pi: integer used for iteration
382  *
383  * This must be called either with wq_pool_mutex held or sched RCU read
384  * locked.  If the pool needs to be used beyond the locking in effect, the
385  * caller is responsible for guaranteeing that the pool stays online.
386  *
387  * The if/else clause exists only for the lockdep assertion and can be
388  * ignored.
389  */
390 #define for_each_pool(pool, pi)						\
391 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
392 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
393 		else
394 
395 /**
396  * for_each_pool_worker - iterate through all workers of a worker_pool
397  * @worker: iteration cursor
398  * @pool: worker_pool to iterate workers of
399  *
400  * This must be called with @pool->attach_mutex.
401  *
402  * The if/else clause exists only for the lockdep assertion and can be
403  * ignored.
404  */
405 #define for_each_pool_worker(worker, pool)				\
406 	list_for_each_entry((worker), &(pool)->workers, node)		\
407 		if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
408 		else
409 
410 /**
411  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
412  * @pwq: iteration cursor
413  * @wq: the target workqueue
414  *
415  * This must be called either with wq->mutex held or sched RCU read locked.
416  * If the pwq needs to be used beyond the locking in effect, the caller is
417  * responsible for guaranteeing that the pwq stays online.
418  *
419  * The if/else clause exists only for the lockdep assertion and can be
420  * ignored.
421  */
422 #define for_each_pwq(pwq, wq)						\
423 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node)		\
424 		if (({ assert_rcu_or_wq_mutex(wq); false; })) { }	\
425 		else
426 
427 #ifdef CONFIG_DEBUG_OBJECTS_WORK
428 
429 static struct debug_obj_descr work_debug_descr;
430 
431 static void *work_debug_hint(void *addr)
432 {
433 	return ((struct work_struct *) addr)->func;
434 }
435 
436 /*
437  * fixup_init is called when:
438  * - an active object is initialized
439  */
440 static int work_fixup_init(void *addr, enum debug_obj_state state)
441 {
442 	struct work_struct *work = addr;
443 
444 	switch (state) {
445 	case ODEBUG_STATE_ACTIVE:
446 		cancel_work_sync(work);
447 		debug_object_init(work, &work_debug_descr);
448 		return 1;
449 	default:
450 		return 0;
451 	}
452 }
453 
454 /*
455  * fixup_activate is called when:
456  * - an active object is activated
457  * - an unknown object is activated (might be a statically initialized object)
458  */
459 static int work_fixup_activate(void *addr, enum debug_obj_state state)
460 {
461 	struct work_struct *work = addr;
462 
463 	switch (state) {
464 
465 	case ODEBUG_STATE_NOTAVAILABLE:
466 		/*
467 		 * This is not really a fixup. The work struct was
468 		 * statically initialized. We just make sure that it
469 		 * is tracked in the object tracker.
470 		 */
471 		if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
472 			debug_object_init(work, &work_debug_descr);
473 			debug_object_activate(work, &work_debug_descr);
474 			return 0;
475 		}
476 		WARN_ON_ONCE(1);
477 		return 0;
478 
479 	case ODEBUG_STATE_ACTIVE:
480 		WARN_ON(1);
481 
482 	default:
483 		return 0;
484 	}
485 }
486 
487 /*
488  * fixup_free is called when:
489  * - an active object is freed
490  */
491 static int work_fixup_free(void *addr, enum debug_obj_state state)
492 {
493 	struct work_struct *work = addr;
494 
495 	switch (state) {
496 	case ODEBUG_STATE_ACTIVE:
497 		cancel_work_sync(work);
498 		debug_object_free(work, &work_debug_descr);
499 		return 1;
500 	default:
501 		return 0;
502 	}
503 }
504 
505 static struct debug_obj_descr work_debug_descr = {
506 	.name		= "work_struct",
507 	.debug_hint	= work_debug_hint,
508 	.fixup_init	= work_fixup_init,
509 	.fixup_activate	= work_fixup_activate,
510 	.fixup_free	= work_fixup_free,
511 };
512 
513 static inline void debug_work_activate(struct work_struct *work)
514 {
515 	debug_object_activate(work, &work_debug_descr);
516 }
517 
518 static inline void debug_work_deactivate(struct work_struct *work)
519 {
520 	debug_object_deactivate(work, &work_debug_descr);
521 }
522 
523 void __init_work(struct work_struct *work, int onstack)
524 {
525 	if (onstack)
526 		debug_object_init_on_stack(work, &work_debug_descr);
527 	else
528 		debug_object_init(work, &work_debug_descr);
529 }
530 EXPORT_SYMBOL_GPL(__init_work);
531 
532 void destroy_work_on_stack(struct work_struct *work)
533 {
534 	debug_object_free(work, &work_debug_descr);
535 }
536 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
537 
538 void destroy_delayed_work_on_stack(struct delayed_work *work)
539 {
540 	destroy_timer_on_stack(&work->timer);
541 	debug_object_free(&work->work, &work_debug_descr);
542 }
543 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
544 
545 #else
546 static inline void debug_work_activate(struct work_struct *work) { }
547 static inline void debug_work_deactivate(struct work_struct *work) { }
548 #endif
549 
550 /**
551  * worker_pool_assign_id - allocate ID and assing it to @pool
552  * @pool: the pool pointer of interest
553  *
554  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
555  * successfully, -errno on failure.
556  */
557 static int worker_pool_assign_id(struct worker_pool *pool)
558 {
559 	int ret;
560 
561 	lockdep_assert_held(&wq_pool_mutex);
562 
563 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
564 			GFP_KERNEL);
565 	if (ret >= 0) {
566 		pool->id = ret;
567 		return 0;
568 	}
569 	return ret;
570 }
571 
572 /**
573  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
574  * @wq: the target workqueue
575  * @node: the node ID
576  *
577  * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
578  * read locked.
579  * If the pwq needs to be used beyond the locking in effect, the caller is
580  * responsible for guaranteeing that the pwq stays online.
581  *
582  * Return: The unbound pool_workqueue for @node.
583  */
584 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
585 						  int node)
586 {
587 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
588 
589 	/*
590 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
591 	 * delayed item is pending.  The plan is to keep CPU -> NODE
592 	 * mapping valid and stable across CPU on/offlines.  Once that
593 	 * happens, this workaround can be removed.
594 	 */
595 	if (unlikely(node == NUMA_NO_NODE))
596 		return wq->dfl_pwq;
597 
598 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
599 }
600 
601 static unsigned int work_color_to_flags(int color)
602 {
603 	return color << WORK_STRUCT_COLOR_SHIFT;
604 }
605 
606 static int get_work_color(struct work_struct *work)
607 {
608 	return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
609 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
610 }
611 
612 static int work_next_color(int color)
613 {
614 	return (color + 1) % WORK_NR_COLORS;
615 }
616 
617 /*
618  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
619  * contain the pointer to the queued pwq.  Once execution starts, the flag
620  * is cleared and the high bits contain OFFQ flags and pool ID.
621  *
622  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
623  * and clear_work_data() can be used to set the pwq, pool or clear
624  * work->data.  These functions should only be called while the work is
625  * owned - ie. while the PENDING bit is set.
626  *
627  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
628  * corresponding to a work.  Pool is available once the work has been
629  * queued anywhere after initialization until it is sync canceled.  pwq is
630  * available only while the work item is queued.
631  *
632  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
633  * canceled.  While being canceled, a work item may have its PENDING set
634  * but stay off timer and worklist for arbitrarily long and nobody should
635  * try to steal the PENDING bit.
636  */
637 static inline void set_work_data(struct work_struct *work, unsigned long data,
638 				 unsigned long flags)
639 {
640 	WARN_ON_ONCE(!work_pending(work));
641 	atomic_long_set(&work->data, data | flags | work_static(work));
642 }
643 
644 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
645 			 unsigned long extra_flags)
646 {
647 	set_work_data(work, (unsigned long)pwq,
648 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
649 }
650 
651 static void set_work_pool_and_keep_pending(struct work_struct *work,
652 					   int pool_id)
653 {
654 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
655 		      WORK_STRUCT_PENDING);
656 }
657 
658 static void set_work_pool_and_clear_pending(struct work_struct *work,
659 					    int pool_id)
660 {
661 	/*
662 	 * The following wmb is paired with the implied mb in
663 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
664 	 * here are visible to and precede any updates by the next PENDING
665 	 * owner.
666 	 */
667 	smp_wmb();
668 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
669 }
670 
671 static void clear_work_data(struct work_struct *work)
672 {
673 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
674 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
675 }
676 
677 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
678 {
679 	unsigned long data = atomic_long_read(&work->data);
680 
681 	if (data & WORK_STRUCT_PWQ)
682 		return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
683 	else
684 		return NULL;
685 }
686 
687 /**
688  * get_work_pool - return the worker_pool a given work was associated with
689  * @work: the work item of interest
690  *
691  * Pools are created and destroyed under wq_pool_mutex, and allows read
692  * access under sched-RCU read lock.  As such, this function should be
693  * called under wq_pool_mutex or with preemption disabled.
694  *
695  * All fields of the returned pool are accessible as long as the above
696  * mentioned locking is in effect.  If the returned pool needs to be used
697  * beyond the critical section, the caller is responsible for ensuring the
698  * returned pool is and stays online.
699  *
700  * Return: The worker_pool @work was last associated with.  %NULL if none.
701  */
702 static struct worker_pool *get_work_pool(struct work_struct *work)
703 {
704 	unsigned long data = atomic_long_read(&work->data);
705 	int pool_id;
706 
707 	assert_rcu_or_pool_mutex();
708 
709 	if (data & WORK_STRUCT_PWQ)
710 		return ((struct pool_workqueue *)
711 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool;
712 
713 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
714 	if (pool_id == WORK_OFFQ_POOL_NONE)
715 		return NULL;
716 
717 	return idr_find(&worker_pool_idr, pool_id);
718 }
719 
720 /**
721  * get_work_pool_id - return the worker pool ID a given work is associated with
722  * @work: the work item of interest
723  *
724  * Return: The worker_pool ID @work was last associated with.
725  * %WORK_OFFQ_POOL_NONE if none.
726  */
727 static int get_work_pool_id(struct work_struct *work)
728 {
729 	unsigned long data = atomic_long_read(&work->data);
730 
731 	if (data & WORK_STRUCT_PWQ)
732 		return ((struct pool_workqueue *)
733 			(data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
734 
735 	return data >> WORK_OFFQ_POOL_SHIFT;
736 }
737 
738 static void mark_work_canceling(struct work_struct *work)
739 {
740 	unsigned long pool_id = get_work_pool_id(work);
741 
742 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
743 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
744 }
745 
746 static bool work_is_canceling(struct work_struct *work)
747 {
748 	unsigned long data = atomic_long_read(&work->data);
749 
750 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
751 }
752 
753 /*
754  * Policy functions.  These define the policies on how the global worker
755  * pools are managed.  Unless noted otherwise, these functions assume that
756  * they're being called with pool->lock held.
757  */
758 
759 static bool __need_more_worker(struct worker_pool *pool)
760 {
761 	return !atomic_read(&pool->nr_running);
762 }
763 
764 /*
765  * Need to wake up a worker?  Called from anything but currently
766  * running workers.
767  *
768  * Note that, because unbound workers never contribute to nr_running, this
769  * function will always return %true for unbound pools as long as the
770  * worklist isn't empty.
771  */
772 static bool need_more_worker(struct worker_pool *pool)
773 {
774 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
775 }
776 
777 /* Can I start working?  Called from busy but !running workers. */
778 static bool may_start_working(struct worker_pool *pool)
779 {
780 	return pool->nr_idle;
781 }
782 
783 /* Do I need to keep working?  Called from currently running workers. */
784 static bool keep_working(struct worker_pool *pool)
785 {
786 	return !list_empty(&pool->worklist) &&
787 		atomic_read(&pool->nr_running) <= 1;
788 }
789 
790 /* Do we need a new worker?  Called from manager. */
791 static bool need_to_create_worker(struct worker_pool *pool)
792 {
793 	return need_more_worker(pool) && !may_start_working(pool);
794 }
795 
796 /* Do we have too many workers and should some go away? */
797 static bool too_many_workers(struct worker_pool *pool)
798 {
799 	bool managing = mutex_is_locked(&pool->manager_arb);
800 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
801 	int nr_busy = pool->nr_workers - nr_idle;
802 
803 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
804 }
805 
806 /*
807  * Wake up functions.
808  */
809 
810 /* Return the first idle worker.  Safe with preemption disabled */
811 static struct worker *first_idle_worker(struct worker_pool *pool)
812 {
813 	if (unlikely(list_empty(&pool->idle_list)))
814 		return NULL;
815 
816 	return list_first_entry(&pool->idle_list, struct worker, entry);
817 }
818 
819 /**
820  * wake_up_worker - wake up an idle worker
821  * @pool: worker pool to wake worker from
822  *
823  * Wake up the first idle worker of @pool.
824  *
825  * CONTEXT:
826  * spin_lock_irq(pool->lock).
827  */
828 static void wake_up_worker(struct worker_pool *pool)
829 {
830 	struct worker *worker = first_idle_worker(pool);
831 
832 	if (likely(worker))
833 		wake_up_process(worker->task);
834 }
835 
836 /**
837  * wq_worker_waking_up - a worker is waking up
838  * @task: task waking up
839  * @cpu: CPU @task is waking up to
840  *
841  * This function is called during try_to_wake_up() when a worker is
842  * being awoken.
843  *
844  * CONTEXT:
845  * spin_lock_irq(rq->lock)
846  */
847 void wq_worker_waking_up(struct task_struct *task, int cpu)
848 {
849 	struct worker *worker = kthread_data(task);
850 
851 	if (!(worker->flags & WORKER_NOT_RUNNING)) {
852 		WARN_ON_ONCE(worker->pool->cpu != cpu);
853 		atomic_inc(&worker->pool->nr_running);
854 	}
855 }
856 
857 /**
858  * wq_worker_sleeping - a worker is going to sleep
859  * @task: task going to sleep
860  * @cpu: CPU in question, must be the current CPU number
861  *
862  * This function is called during schedule() when a busy worker is
863  * going to sleep.  Worker on the same cpu can be woken up by
864  * returning pointer to its task.
865  *
866  * CONTEXT:
867  * spin_lock_irq(rq->lock)
868  *
869  * Return:
870  * Worker task on @cpu to wake up, %NULL if none.
871  */
872 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
873 {
874 	struct worker *worker = kthread_data(task), *to_wakeup = NULL;
875 	struct worker_pool *pool;
876 
877 	/*
878 	 * Rescuers, which may not have all the fields set up like normal
879 	 * workers, also reach here, let's not access anything before
880 	 * checking NOT_RUNNING.
881 	 */
882 	if (worker->flags & WORKER_NOT_RUNNING)
883 		return NULL;
884 
885 	pool = worker->pool;
886 
887 	/* this can only happen on the local cpu */
888 	if (WARN_ON_ONCE(cpu != raw_smp_processor_id() || pool->cpu != cpu))
889 		return NULL;
890 
891 	/*
892 	 * The counterpart of the following dec_and_test, implied mb,
893 	 * worklist not empty test sequence is in insert_work().
894 	 * Please read comment there.
895 	 *
896 	 * NOT_RUNNING is clear.  This means that we're bound to and
897 	 * running on the local cpu w/ rq lock held and preemption
898 	 * disabled, which in turn means that none else could be
899 	 * manipulating idle_list, so dereferencing idle_list without pool
900 	 * lock is safe.
901 	 */
902 	if (atomic_dec_and_test(&pool->nr_running) &&
903 	    !list_empty(&pool->worklist))
904 		to_wakeup = first_idle_worker(pool);
905 	return to_wakeup ? to_wakeup->task : NULL;
906 }
907 
908 /**
909  * worker_set_flags - set worker flags and adjust nr_running accordingly
910  * @worker: self
911  * @flags: flags to set
912  *
913  * Set @flags in @worker->flags and adjust nr_running accordingly.
914  *
915  * CONTEXT:
916  * spin_lock_irq(pool->lock)
917  */
918 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
919 {
920 	struct worker_pool *pool = worker->pool;
921 
922 	WARN_ON_ONCE(worker->task != current);
923 
924 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
925 	if ((flags & WORKER_NOT_RUNNING) &&
926 	    !(worker->flags & WORKER_NOT_RUNNING)) {
927 		atomic_dec(&pool->nr_running);
928 	}
929 
930 	worker->flags |= flags;
931 }
932 
933 /**
934  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
935  * @worker: self
936  * @flags: flags to clear
937  *
938  * Clear @flags in @worker->flags and adjust nr_running accordingly.
939  *
940  * CONTEXT:
941  * spin_lock_irq(pool->lock)
942  */
943 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
944 {
945 	struct worker_pool *pool = worker->pool;
946 	unsigned int oflags = worker->flags;
947 
948 	WARN_ON_ONCE(worker->task != current);
949 
950 	worker->flags &= ~flags;
951 
952 	/*
953 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
954 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
955 	 * of multiple flags, not a single flag.
956 	 */
957 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
958 		if (!(worker->flags & WORKER_NOT_RUNNING))
959 			atomic_inc(&pool->nr_running);
960 }
961 
962 /**
963  * find_worker_executing_work - find worker which is executing a work
964  * @pool: pool of interest
965  * @work: work to find worker for
966  *
967  * Find a worker which is executing @work on @pool by searching
968  * @pool->busy_hash which is keyed by the address of @work.  For a worker
969  * to match, its current execution should match the address of @work and
970  * its work function.  This is to avoid unwanted dependency between
971  * unrelated work executions through a work item being recycled while still
972  * being executed.
973  *
974  * This is a bit tricky.  A work item may be freed once its execution
975  * starts and nothing prevents the freed area from being recycled for
976  * another work item.  If the same work item address ends up being reused
977  * before the original execution finishes, workqueue will identify the
978  * recycled work item as currently executing and make it wait until the
979  * current execution finishes, introducing an unwanted dependency.
980  *
981  * This function checks the work item address and work function to avoid
982  * false positives.  Note that this isn't complete as one may construct a
983  * work function which can introduce dependency onto itself through a
984  * recycled work item.  Well, if somebody wants to shoot oneself in the
985  * foot that badly, there's only so much we can do, and if such deadlock
986  * actually occurs, it should be easy to locate the culprit work function.
987  *
988  * CONTEXT:
989  * spin_lock_irq(pool->lock).
990  *
991  * Return:
992  * Pointer to worker which is executing @work if found, %NULL
993  * otherwise.
994  */
995 static struct worker *find_worker_executing_work(struct worker_pool *pool,
996 						 struct work_struct *work)
997 {
998 	struct worker *worker;
999 
1000 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1001 			       (unsigned long)work)
1002 		if (worker->current_work == work &&
1003 		    worker->current_func == work->func)
1004 			return worker;
1005 
1006 	return NULL;
1007 }
1008 
1009 /**
1010  * move_linked_works - move linked works to a list
1011  * @work: start of series of works to be scheduled
1012  * @head: target list to append @work to
1013  * @nextp: out parameter for nested worklist walking
1014  *
1015  * Schedule linked works starting from @work to @head.  Work series to
1016  * be scheduled starts at @work and includes any consecutive work with
1017  * WORK_STRUCT_LINKED set in its predecessor.
1018  *
1019  * If @nextp is not NULL, it's updated to point to the next work of
1020  * the last scheduled work.  This allows move_linked_works() to be
1021  * nested inside outer list_for_each_entry_safe().
1022  *
1023  * CONTEXT:
1024  * spin_lock_irq(pool->lock).
1025  */
1026 static void move_linked_works(struct work_struct *work, struct list_head *head,
1027 			      struct work_struct **nextp)
1028 {
1029 	struct work_struct *n;
1030 
1031 	/*
1032 	 * Linked worklist will always end before the end of the list,
1033 	 * use NULL for list head.
1034 	 */
1035 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1036 		list_move_tail(&work->entry, head);
1037 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1038 			break;
1039 	}
1040 
1041 	/*
1042 	 * If we're already inside safe list traversal and have moved
1043 	 * multiple works to the scheduled queue, the next position
1044 	 * needs to be updated.
1045 	 */
1046 	if (nextp)
1047 		*nextp = n;
1048 }
1049 
1050 /**
1051  * get_pwq - get an extra reference on the specified pool_workqueue
1052  * @pwq: pool_workqueue to get
1053  *
1054  * Obtain an extra reference on @pwq.  The caller should guarantee that
1055  * @pwq has positive refcnt and be holding the matching pool->lock.
1056  */
1057 static void get_pwq(struct pool_workqueue *pwq)
1058 {
1059 	lockdep_assert_held(&pwq->pool->lock);
1060 	WARN_ON_ONCE(pwq->refcnt <= 0);
1061 	pwq->refcnt++;
1062 }
1063 
1064 /**
1065  * put_pwq - put a pool_workqueue reference
1066  * @pwq: pool_workqueue to put
1067  *
1068  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1069  * destruction.  The caller should be holding the matching pool->lock.
1070  */
1071 static void put_pwq(struct pool_workqueue *pwq)
1072 {
1073 	lockdep_assert_held(&pwq->pool->lock);
1074 	if (likely(--pwq->refcnt))
1075 		return;
1076 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1077 		return;
1078 	/*
1079 	 * @pwq can't be released under pool->lock, bounce to
1080 	 * pwq_unbound_release_workfn().  This never recurses on the same
1081 	 * pool->lock as this path is taken only for unbound workqueues and
1082 	 * the release work item is scheduled on a per-cpu workqueue.  To
1083 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1084 	 * subclass of 1 in get_unbound_pool().
1085 	 */
1086 	schedule_work(&pwq->unbound_release_work);
1087 }
1088 
1089 /**
1090  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1091  * @pwq: pool_workqueue to put (can be %NULL)
1092  *
1093  * put_pwq() with locking.  This function also allows %NULL @pwq.
1094  */
1095 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1096 {
1097 	if (pwq) {
1098 		/*
1099 		 * As both pwqs and pools are sched-RCU protected, the
1100 		 * following lock operations are safe.
1101 		 */
1102 		spin_lock_irq(&pwq->pool->lock);
1103 		put_pwq(pwq);
1104 		spin_unlock_irq(&pwq->pool->lock);
1105 	}
1106 }
1107 
1108 static void pwq_activate_delayed_work(struct work_struct *work)
1109 {
1110 	struct pool_workqueue *pwq = get_work_pwq(work);
1111 
1112 	trace_workqueue_activate_work(work);
1113 	if (list_empty(&pwq->pool->worklist))
1114 		pwq->pool->watchdog_ts = jiffies;
1115 	move_linked_works(work, &pwq->pool->worklist, NULL);
1116 	__clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1117 	pwq->nr_active++;
1118 }
1119 
1120 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1121 {
1122 	struct work_struct *work = list_first_entry(&pwq->delayed_works,
1123 						    struct work_struct, entry);
1124 
1125 	pwq_activate_delayed_work(work);
1126 }
1127 
1128 /**
1129  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1130  * @pwq: pwq of interest
1131  * @color: color of work which left the queue
1132  *
1133  * A work either has completed or is removed from pending queue,
1134  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1135  *
1136  * CONTEXT:
1137  * spin_lock_irq(pool->lock).
1138  */
1139 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1140 {
1141 	/* uncolored work items don't participate in flushing or nr_active */
1142 	if (color == WORK_NO_COLOR)
1143 		goto out_put;
1144 
1145 	pwq->nr_in_flight[color]--;
1146 
1147 	pwq->nr_active--;
1148 	if (!list_empty(&pwq->delayed_works)) {
1149 		/* one down, submit a delayed one */
1150 		if (pwq->nr_active < pwq->max_active)
1151 			pwq_activate_first_delayed(pwq);
1152 	}
1153 
1154 	/* is flush in progress and are we at the flushing tip? */
1155 	if (likely(pwq->flush_color != color))
1156 		goto out_put;
1157 
1158 	/* are there still in-flight works? */
1159 	if (pwq->nr_in_flight[color])
1160 		goto out_put;
1161 
1162 	/* this pwq is done, clear flush_color */
1163 	pwq->flush_color = -1;
1164 
1165 	/*
1166 	 * If this was the last pwq, wake up the first flusher.  It
1167 	 * will handle the rest.
1168 	 */
1169 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1170 		complete(&pwq->wq->first_flusher->done);
1171 out_put:
1172 	put_pwq(pwq);
1173 }
1174 
1175 /**
1176  * try_to_grab_pending - steal work item from worklist and disable irq
1177  * @work: work item to steal
1178  * @is_dwork: @work is a delayed_work
1179  * @flags: place to store irq state
1180  *
1181  * Try to grab PENDING bit of @work.  This function can handle @work in any
1182  * stable state - idle, on timer or on worklist.
1183  *
1184  * Return:
1185  *  1		if @work was pending and we successfully stole PENDING
1186  *  0		if @work was idle and we claimed PENDING
1187  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1188  *  -ENOENT	if someone else is canceling @work, this state may persist
1189  *		for arbitrarily long
1190  *
1191  * Note:
1192  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1193  * interrupted while holding PENDING and @work off queue, irq must be
1194  * disabled on entry.  This, combined with delayed_work->timer being
1195  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1196  *
1197  * On successful return, >= 0, irq is disabled and the caller is
1198  * responsible for releasing it using local_irq_restore(*@flags).
1199  *
1200  * This function is safe to call from any context including IRQ handler.
1201  */
1202 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1203 			       unsigned long *flags)
1204 {
1205 	struct worker_pool *pool;
1206 	struct pool_workqueue *pwq;
1207 
1208 	local_irq_save(*flags);
1209 
1210 	/* try to steal the timer if it exists */
1211 	if (is_dwork) {
1212 		struct delayed_work *dwork = to_delayed_work(work);
1213 
1214 		/*
1215 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1216 		 * guaranteed that the timer is not queued anywhere and not
1217 		 * running on the local CPU.
1218 		 */
1219 		if (likely(del_timer(&dwork->timer)))
1220 			return 1;
1221 	}
1222 
1223 	/* try to claim PENDING the normal way */
1224 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1225 		return 0;
1226 
1227 	/*
1228 	 * The queueing is in progress, or it is already queued. Try to
1229 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1230 	 */
1231 	pool = get_work_pool(work);
1232 	if (!pool)
1233 		goto fail;
1234 
1235 	spin_lock(&pool->lock);
1236 	/*
1237 	 * work->data is guaranteed to point to pwq only while the work
1238 	 * item is queued on pwq->wq, and both updating work->data to point
1239 	 * to pwq on queueing and to pool on dequeueing are done under
1240 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1241 	 * points to pwq which is associated with a locked pool, the work
1242 	 * item is currently queued on that pool.
1243 	 */
1244 	pwq = get_work_pwq(work);
1245 	if (pwq && pwq->pool == pool) {
1246 		debug_work_deactivate(work);
1247 
1248 		/*
1249 		 * A delayed work item cannot be grabbed directly because
1250 		 * it might have linked NO_COLOR work items which, if left
1251 		 * on the delayed_list, will confuse pwq->nr_active
1252 		 * management later on and cause stall.  Make sure the work
1253 		 * item is activated before grabbing.
1254 		 */
1255 		if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1256 			pwq_activate_delayed_work(work);
1257 
1258 		list_del_init(&work->entry);
1259 		pwq_dec_nr_in_flight(pwq, get_work_color(work));
1260 
1261 		/* work->data points to pwq iff queued, point to pool */
1262 		set_work_pool_and_keep_pending(work, pool->id);
1263 
1264 		spin_unlock(&pool->lock);
1265 		return 1;
1266 	}
1267 	spin_unlock(&pool->lock);
1268 fail:
1269 	local_irq_restore(*flags);
1270 	if (work_is_canceling(work))
1271 		return -ENOENT;
1272 	cpu_relax();
1273 	return -EAGAIN;
1274 }
1275 
1276 /**
1277  * insert_work - insert a work into a pool
1278  * @pwq: pwq @work belongs to
1279  * @work: work to insert
1280  * @head: insertion point
1281  * @extra_flags: extra WORK_STRUCT_* flags to set
1282  *
1283  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1284  * work_struct flags.
1285  *
1286  * CONTEXT:
1287  * spin_lock_irq(pool->lock).
1288  */
1289 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1290 			struct list_head *head, unsigned int extra_flags)
1291 {
1292 	struct worker_pool *pool = pwq->pool;
1293 
1294 	/* we own @work, set data and link */
1295 	set_work_pwq(work, pwq, extra_flags);
1296 	list_add_tail(&work->entry, head);
1297 	get_pwq(pwq);
1298 
1299 	/*
1300 	 * Ensure either wq_worker_sleeping() sees the above
1301 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1302 	 * around lazily while there are works to be processed.
1303 	 */
1304 	smp_mb();
1305 
1306 	if (__need_more_worker(pool))
1307 		wake_up_worker(pool);
1308 }
1309 
1310 /*
1311  * Test whether @work is being queued from another work executing on the
1312  * same workqueue.
1313  */
1314 static bool is_chained_work(struct workqueue_struct *wq)
1315 {
1316 	struct worker *worker;
1317 
1318 	worker = current_wq_worker();
1319 	/*
1320 	 * Return %true iff I'm a worker execuing a work item on @wq.  If
1321 	 * I'm @worker, it's safe to dereference it without locking.
1322 	 */
1323 	return worker && worker->current_pwq->wq == wq;
1324 }
1325 
1326 /*
1327  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1328  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1329  * avoid perturbing sensitive tasks.
1330  */
1331 static int wq_select_unbound_cpu(int cpu)
1332 {
1333 	static bool printed_dbg_warning;
1334 	int new_cpu;
1335 
1336 	if (likely(!wq_debug_force_rr_cpu)) {
1337 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1338 			return cpu;
1339 	} else if (!printed_dbg_warning) {
1340 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1341 		printed_dbg_warning = true;
1342 	}
1343 
1344 	if (cpumask_empty(wq_unbound_cpumask))
1345 		return cpu;
1346 
1347 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1348 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1349 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1350 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1351 		if (unlikely(new_cpu >= nr_cpu_ids))
1352 			return cpu;
1353 	}
1354 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1355 
1356 	return new_cpu;
1357 }
1358 
1359 static void __queue_work(int cpu, struct workqueue_struct *wq,
1360 			 struct work_struct *work)
1361 {
1362 	struct pool_workqueue *pwq;
1363 	struct worker_pool *last_pool;
1364 	struct list_head *worklist;
1365 	unsigned int work_flags;
1366 	unsigned int req_cpu = cpu;
1367 
1368 	/*
1369 	 * While a work item is PENDING && off queue, a task trying to
1370 	 * steal the PENDING will busy-loop waiting for it to either get
1371 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1372 	 * happen with IRQ disabled.
1373 	 */
1374 	WARN_ON_ONCE(!irqs_disabled());
1375 
1376 	debug_work_activate(work);
1377 
1378 	/* if draining, only works from the same workqueue are allowed */
1379 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1380 	    WARN_ON_ONCE(!is_chained_work(wq)))
1381 		return;
1382 retry:
1383 	if (req_cpu == WORK_CPU_UNBOUND)
1384 		cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1385 
1386 	/* pwq which will be used unless @work is executing elsewhere */
1387 	if (!(wq->flags & WQ_UNBOUND))
1388 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1389 	else
1390 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1391 
1392 	/*
1393 	 * If @work was previously on a different pool, it might still be
1394 	 * running there, in which case the work needs to be queued on that
1395 	 * pool to guarantee non-reentrancy.
1396 	 */
1397 	last_pool = get_work_pool(work);
1398 	if (last_pool && last_pool != pwq->pool) {
1399 		struct worker *worker;
1400 
1401 		spin_lock(&last_pool->lock);
1402 
1403 		worker = find_worker_executing_work(last_pool, work);
1404 
1405 		if (worker && worker->current_pwq->wq == wq) {
1406 			pwq = worker->current_pwq;
1407 		} else {
1408 			/* meh... not running there, queue here */
1409 			spin_unlock(&last_pool->lock);
1410 			spin_lock(&pwq->pool->lock);
1411 		}
1412 	} else {
1413 		spin_lock(&pwq->pool->lock);
1414 	}
1415 
1416 	/*
1417 	 * pwq is determined and locked.  For unbound pools, we could have
1418 	 * raced with pwq release and it could already be dead.  If its
1419 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1420 	 * without another pwq replacing it in the numa_pwq_tbl or while
1421 	 * work items are executing on it, so the retrying is guaranteed to
1422 	 * make forward-progress.
1423 	 */
1424 	if (unlikely(!pwq->refcnt)) {
1425 		if (wq->flags & WQ_UNBOUND) {
1426 			spin_unlock(&pwq->pool->lock);
1427 			cpu_relax();
1428 			goto retry;
1429 		}
1430 		/* oops */
1431 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1432 			  wq->name, cpu);
1433 	}
1434 
1435 	/* pwq determined, queue */
1436 	trace_workqueue_queue_work(req_cpu, pwq, work);
1437 
1438 	if (WARN_ON(!list_empty(&work->entry))) {
1439 		spin_unlock(&pwq->pool->lock);
1440 		return;
1441 	}
1442 
1443 	pwq->nr_in_flight[pwq->work_color]++;
1444 	work_flags = work_color_to_flags(pwq->work_color);
1445 
1446 	if (likely(pwq->nr_active < pwq->max_active)) {
1447 		trace_workqueue_activate_work(work);
1448 		pwq->nr_active++;
1449 		worklist = &pwq->pool->worklist;
1450 		if (list_empty(worklist))
1451 			pwq->pool->watchdog_ts = jiffies;
1452 	} else {
1453 		work_flags |= WORK_STRUCT_DELAYED;
1454 		worklist = &pwq->delayed_works;
1455 	}
1456 
1457 	insert_work(pwq, work, worklist, work_flags);
1458 
1459 	spin_unlock(&pwq->pool->lock);
1460 }
1461 
1462 /**
1463  * queue_work_on - queue work on specific cpu
1464  * @cpu: CPU number to execute work on
1465  * @wq: workqueue to use
1466  * @work: work to queue
1467  *
1468  * We queue the work to a specific CPU, the caller must ensure it
1469  * can't go away.
1470  *
1471  * Return: %false if @work was already on a queue, %true otherwise.
1472  */
1473 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1474 		   struct work_struct *work)
1475 {
1476 	bool ret = false;
1477 	unsigned long flags;
1478 
1479 	local_irq_save(flags);
1480 
1481 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1482 		__queue_work(cpu, wq, work);
1483 		ret = true;
1484 	}
1485 
1486 	local_irq_restore(flags);
1487 	return ret;
1488 }
1489 EXPORT_SYMBOL(queue_work_on);
1490 
1491 void delayed_work_timer_fn(unsigned long __data)
1492 {
1493 	struct delayed_work *dwork = (struct delayed_work *)__data;
1494 
1495 	/* should have been called from irqsafe timer with irq already off */
1496 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1497 }
1498 EXPORT_SYMBOL(delayed_work_timer_fn);
1499 
1500 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1501 				struct delayed_work *dwork, unsigned long delay)
1502 {
1503 	struct timer_list *timer = &dwork->timer;
1504 	struct work_struct *work = &dwork->work;
1505 
1506 	WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1507 		     timer->data != (unsigned long)dwork);
1508 	WARN_ON_ONCE(timer_pending(timer));
1509 	WARN_ON_ONCE(!list_empty(&work->entry));
1510 
1511 	/*
1512 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1513 	 * both optimization and correctness.  The earliest @timer can
1514 	 * expire is on the closest next tick and delayed_work users depend
1515 	 * on that there's no such delay when @delay is 0.
1516 	 */
1517 	if (!delay) {
1518 		__queue_work(cpu, wq, &dwork->work);
1519 		return;
1520 	}
1521 
1522 	timer_stats_timer_set_start_info(&dwork->timer);
1523 
1524 	dwork->wq = wq;
1525 	dwork->cpu = cpu;
1526 	timer->expires = jiffies + delay;
1527 
1528 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1529 		add_timer_on(timer, cpu);
1530 	else
1531 		add_timer(timer);
1532 }
1533 
1534 /**
1535  * queue_delayed_work_on - queue work on specific CPU after delay
1536  * @cpu: CPU number to execute work on
1537  * @wq: workqueue to use
1538  * @dwork: work to queue
1539  * @delay: number of jiffies to wait before queueing
1540  *
1541  * Return: %false if @work was already on a queue, %true otherwise.  If
1542  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1543  * execution.
1544  */
1545 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1546 			   struct delayed_work *dwork, unsigned long delay)
1547 {
1548 	struct work_struct *work = &dwork->work;
1549 	bool ret = false;
1550 	unsigned long flags;
1551 
1552 	/* read the comment in __queue_work() */
1553 	local_irq_save(flags);
1554 
1555 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1556 		__queue_delayed_work(cpu, wq, dwork, delay);
1557 		ret = true;
1558 	}
1559 
1560 	local_irq_restore(flags);
1561 	return ret;
1562 }
1563 EXPORT_SYMBOL(queue_delayed_work_on);
1564 
1565 /**
1566  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1567  * @cpu: CPU number to execute work on
1568  * @wq: workqueue to use
1569  * @dwork: work to queue
1570  * @delay: number of jiffies to wait before queueing
1571  *
1572  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1573  * modify @dwork's timer so that it expires after @delay.  If @delay is
1574  * zero, @work is guaranteed to be scheduled immediately regardless of its
1575  * current state.
1576  *
1577  * Return: %false if @dwork was idle and queued, %true if @dwork was
1578  * pending and its timer was modified.
1579  *
1580  * This function is safe to call from any context including IRQ handler.
1581  * See try_to_grab_pending() for details.
1582  */
1583 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1584 			 struct delayed_work *dwork, unsigned long delay)
1585 {
1586 	unsigned long flags;
1587 	int ret;
1588 
1589 	do {
1590 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1591 	} while (unlikely(ret == -EAGAIN));
1592 
1593 	if (likely(ret >= 0)) {
1594 		__queue_delayed_work(cpu, wq, dwork, delay);
1595 		local_irq_restore(flags);
1596 	}
1597 
1598 	/* -ENOENT from try_to_grab_pending() becomes %true */
1599 	return ret;
1600 }
1601 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1602 
1603 /**
1604  * worker_enter_idle - enter idle state
1605  * @worker: worker which is entering idle state
1606  *
1607  * @worker is entering idle state.  Update stats and idle timer if
1608  * necessary.
1609  *
1610  * LOCKING:
1611  * spin_lock_irq(pool->lock).
1612  */
1613 static void worker_enter_idle(struct worker *worker)
1614 {
1615 	struct worker_pool *pool = worker->pool;
1616 
1617 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1618 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1619 			 (worker->hentry.next || worker->hentry.pprev)))
1620 		return;
1621 
1622 	/* can't use worker_set_flags(), also called from create_worker() */
1623 	worker->flags |= WORKER_IDLE;
1624 	pool->nr_idle++;
1625 	worker->last_active = jiffies;
1626 
1627 	/* idle_list is LIFO */
1628 	list_add(&worker->entry, &pool->idle_list);
1629 
1630 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1631 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1632 
1633 	/*
1634 	 * Sanity check nr_running.  Because wq_unbind_fn() releases
1635 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1636 	 * nr_running, the warning may trigger spuriously.  Check iff
1637 	 * unbind is not in progress.
1638 	 */
1639 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1640 		     pool->nr_workers == pool->nr_idle &&
1641 		     atomic_read(&pool->nr_running));
1642 }
1643 
1644 /**
1645  * worker_leave_idle - leave idle state
1646  * @worker: worker which is leaving idle state
1647  *
1648  * @worker is leaving idle state.  Update stats.
1649  *
1650  * LOCKING:
1651  * spin_lock_irq(pool->lock).
1652  */
1653 static void worker_leave_idle(struct worker *worker)
1654 {
1655 	struct worker_pool *pool = worker->pool;
1656 
1657 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1658 		return;
1659 	worker_clr_flags(worker, WORKER_IDLE);
1660 	pool->nr_idle--;
1661 	list_del_init(&worker->entry);
1662 }
1663 
1664 static struct worker *alloc_worker(int node)
1665 {
1666 	struct worker *worker;
1667 
1668 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1669 	if (worker) {
1670 		INIT_LIST_HEAD(&worker->entry);
1671 		INIT_LIST_HEAD(&worker->scheduled);
1672 		INIT_LIST_HEAD(&worker->node);
1673 		/* on creation a worker is in !idle && prep state */
1674 		worker->flags = WORKER_PREP;
1675 	}
1676 	return worker;
1677 }
1678 
1679 /**
1680  * worker_attach_to_pool() - attach a worker to a pool
1681  * @worker: worker to be attached
1682  * @pool: the target pool
1683  *
1684  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1685  * cpu-binding of @worker are kept coordinated with the pool across
1686  * cpu-[un]hotplugs.
1687  */
1688 static void worker_attach_to_pool(struct worker *worker,
1689 				   struct worker_pool *pool)
1690 {
1691 	mutex_lock(&pool->attach_mutex);
1692 
1693 	/*
1694 	 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1695 	 * online CPUs.  It'll be re-applied when any of the CPUs come up.
1696 	 */
1697 	set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1698 
1699 	/*
1700 	 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1701 	 * stable across this function.  See the comments above the
1702 	 * flag definition for details.
1703 	 */
1704 	if (pool->flags & POOL_DISASSOCIATED)
1705 		worker->flags |= WORKER_UNBOUND;
1706 
1707 	list_add_tail(&worker->node, &pool->workers);
1708 
1709 	mutex_unlock(&pool->attach_mutex);
1710 }
1711 
1712 /**
1713  * worker_detach_from_pool() - detach a worker from its pool
1714  * @worker: worker which is attached to its pool
1715  * @pool: the pool @worker is attached to
1716  *
1717  * Undo the attaching which had been done in worker_attach_to_pool().  The
1718  * caller worker shouldn't access to the pool after detached except it has
1719  * other reference to the pool.
1720  */
1721 static void worker_detach_from_pool(struct worker *worker,
1722 				    struct worker_pool *pool)
1723 {
1724 	struct completion *detach_completion = NULL;
1725 
1726 	mutex_lock(&pool->attach_mutex);
1727 	list_del(&worker->node);
1728 	if (list_empty(&pool->workers))
1729 		detach_completion = pool->detach_completion;
1730 	mutex_unlock(&pool->attach_mutex);
1731 
1732 	/* clear leftover flags without pool->lock after it is detached */
1733 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1734 
1735 	if (detach_completion)
1736 		complete(detach_completion);
1737 }
1738 
1739 /**
1740  * create_worker - create a new workqueue worker
1741  * @pool: pool the new worker will belong to
1742  *
1743  * Create and start a new worker which is attached to @pool.
1744  *
1745  * CONTEXT:
1746  * Might sleep.  Does GFP_KERNEL allocations.
1747  *
1748  * Return:
1749  * Pointer to the newly created worker.
1750  */
1751 static struct worker *create_worker(struct worker_pool *pool)
1752 {
1753 	struct worker *worker = NULL;
1754 	int id = -1;
1755 	char id_buf[16];
1756 
1757 	/* ID is needed to determine kthread name */
1758 	id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1759 	if (id < 0)
1760 		goto fail;
1761 
1762 	worker = alloc_worker(pool->node);
1763 	if (!worker)
1764 		goto fail;
1765 
1766 	worker->pool = pool;
1767 	worker->id = id;
1768 
1769 	if (pool->cpu >= 0)
1770 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1771 			 pool->attrs->nice < 0  ? "H" : "");
1772 	else
1773 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1774 
1775 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1776 					      "kworker/%s", id_buf);
1777 	if (IS_ERR(worker->task))
1778 		goto fail;
1779 
1780 	set_user_nice(worker->task, pool->attrs->nice);
1781 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1782 
1783 	/* successful, attach the worker to the pool */
1784 	worker_attach_to_pool(worker, pool);
1785 
1786 	/* start the newly created worker */
1787 	spin_lock_irq(&pool->lock);
1788 	worker->pool->nr_workers++;
1789 	worker_enter_idle(worker);
1790 	wake_up_process(worker->task);
1791 	spin_unlock_irq(&pool->lock);
1792 
1793 	return worker;
1794 
1795 fail:
1796 	if (id >= 0)
1797 		ida_simple_remove(&pool->worker_ida, id);
1798 	kfree(worker);
1799 	return NULL;
1800 }
1801 
1802 /**
1803  * destroy_worker - destroy a workqueue worker
1804  * @worker: worker to be destroyed
1805  *
1806  * Destroy @worker and adjust @pool stats accordingly.  The worker should
1807  * be idle.
1808  *
1809  * CONTEXT:
1810  * spin_lock_irq(pool->lock).
1811  */
1812 static void destroy_worker(struct worker *worker)
1813 {
1814 	struct worker_pool *pool = worker->pool;
1815 
1816 	lockdep_assert_held(&pool->lock);
1817 
1818 	/* sanity check frenzy */
1819 	if (WARN_ON(worker->current_work) ||
1820 	    WARN_ON(!list_empty(&worker->scheduled)) ||
1821 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
1822 		return;
1823 
1824 	pool->nr_workers--;
1825 	pool->nr_idle--;
1826 
1827 	list_del_init(&worker->entry);
1828 	worker->flags |= WORKER_DIE;
1829 	wake_up_process(worker->task);
1830 }
1831 
1832 static void idle_worker_timeout(unsigned long __pool)
1833 {
1834 	struct worker_pool *pool = (void *)__pool;
1835 
1836 	spin_lock_irq(&pool->lock);
1837 
1838 	while (too_many_workers(pool)) {
1839 		struct worker *worker;
1840 		unsigned long expires;
1841 
1842 		/* idle_list is kept in LIFO order, check the last one */
1843 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
1844 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1845 
1846 		if (time_before(jiffies, expires)) {
1847 			mod_timer(&pool->idle_timer, expires);
1848 			break;
1849 		}
1850 
1851 		destroy_worker(worker);
1852 	}
1853 
1854 	spin_unlock_irq(&pool->lock);
1855 }
1856 
1857 static void send_mayday(struct work_struct *work)
1858 {
1859 	struct pool_workqueue *pwq = get_work_pwq(work);
1860 	struct workqueue_struct *wq = pwq->wq;
1861 
1862 	lockdep_assert_held(&wq_mayday_lock);
1863 
1864 	if (!wq->rescuer)
1865 		return;
1866 
1867 	/* mayday mayday mayday */
1868 	if (list_empty(&pwq->mayday_node)) {
1869 		/*
1870 		 * If @pwq is for an unbound wq, its base ref may be put at
1871 		 * any time due to an attribute change.  Pin @pwq until the
1872 		 * rescuer is done with it.
1873 		 */
1874 		get_pwq(pwq);
1875 		list_add_tail(&pwq->mayday_node, &wq->maydays);
1876 		wake_up_process(wq->rescuer->task);
1877 	}
1878 }
1879 
1880 static void pool_mayday_timeout(unsigned long __pool)
1881 {
1882 	struct worker_pool *pool = (void *)__pool;
1883 	struct work_struct *work;
1884 
1885 	spin_lock_irq(&pool->lock);
1886 	spin_lock(&wq_mayday_lock);		/* for wq->maydays */
1887 
1888 	if (need_to_create_worker(pool)) {
1889 		/*
1890 		 * We've been trying to create a new worker but
1891 		 * haven't been successful.  We might be hitting an
1892 		 * allocation deadlock.  Send distress signals to
1893 		 * rescuers.
1894 		 */
1895 		list_for_each_entry(work, &pool->worklist, entry)
1896 			send_mayday(work);
1897 	}
1898 
1899 	spin_unlock(&wq_mayday_lock);
1900 	spin_unlock_irq(&pool->lock);
1901 
1902 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1903 }
1904 
1905 /**
1906  * maybe_create_worker - create a new worker if necessary
1907  * @pool: pool to create a new worker for
1908  *
1909  * Create a new worker for @pool if necessary.  @pool is guaranteed to
1910  * have at least one idle worker on return from this function.  If
1911  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1912  * sent to all rescuers with works scheduled on @pool to resolve
1913  * possible allocation deadlock.
1914  *
1915  * On return, need_to_create_worker() is guaranteed to be %false and
1916  * may_start_working() %true.
1917  *
1918  * LOCKING:
1919  * spin_lock_irq(pool->lock) which may be released and regrabbed
1920  * multiple times.  Does GFP_KERNEL allocations.  Called only from
1921  * manager.
1922  */
1923 static void maybe_create_worker(struct worker_pool *pool)
1924 __releases(&pool->lock)
1925 __acquires(&pool->lock)
1926 {
1927 restart:
1928 	spin_unlock_irq(&pool->lock);
1929 
1930 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1931 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1932 
1933 	while (true) {
1934 		if (create_worker(pool) || !need_to_create_worker(pool))
1935 			break;
1936 
1937 		schedule_timeout_interruptible(CREATE_COOLDOWN);
1938 
1939 		if (!need_to_create_worker(pool))
1940 			break;
1941 	}
1942 
1943 	del_timer_sync(&pool->mayday_timer);
1944 	spin_lock_irq(&pool->lock);
1945 	/*
1946 	 * This is necessary even after a new worker was just successfully
1947 	 * created as @pool->lock was dropped and the new worker might have
1948 	 * already become busy.
1949 	 */
1950 	if (need_to_create_worker(pool))
1951 		goto restart;
1952 }
1953 
1954 /**
1955  * manage_workers - manage worker pool
1956  * @worker: self
1957  *
1958  * Assume the manager role and manage the worker pool @worker belongs
1959  * to.  At any given time, there can be only zero or one manager per
1960  * pool.  The exclusion is handled automatically by this function.
1961  *
1962  * The caller can safely start processing works on false return.  On
1963  * true return, it's guaranteed that need_to_create_worker() is false
1964  * and may_start_working() is true.
1965  *
1966  * CONTEXT:
1967  * spin_lock_irq(pool->lock) which may be released and regrabbed
1968  * multiple times.  Does GFP_KERNEL allocations.
1969  *
1970  * Return:
1971  * %false if the pool doesn't need management and the caller can safely
1972  * start processing works, %true if management function was performed and
1973  * the conditions that the caller verified before calling the function may
1974  * no longer be true.
1975  */
1976 static bool manage_workers(struct worker *worker)
1977 {
1978 	struct worker_pool *pool = worker->pool;
1979 
1980 	/*
1981 	 * Anyone who successfully grabs manager_arb wins the arbitration
1982 	 * and becomes the manager.  mutex_trylock() on pool->manager_arb
1983 	 * failure while holding pool->lock reliably indicates that someone
1984 	 * else is managing the pool and the worker which failed trylock
1985 	 * can proceed to executing work items.  This means that anyone
1986 	 * grabbing manager_arb is responsible for actually performing
1987 	 * manager duties.  If manager_arb is grabbed and released without
1988 	 * actual management, the pool may stall indefinitely.
1989 	 */
1990 	if (!mutex_trylock(&pool->manager_arb))
1991 		return false;
1992 	pool->manager = worker;
1993 
1994 	maybe_create_worker(pool);
1995 
1996 	pool->manager = NULL;
1997 	mutex_unlock(&pool->manager_arb);
1998 	return true;
1999 }
2000 
2001 /**
2002  * process_one_work - process single work
2003  * @worker: self
2004  * @work: work to process
2005  *
2006  * Process @work.  This function contains all the logics necessary to
2007  * process a single work including synchronization against and
2008  * interaction with other workers on the same cpu, queueing and
2009  * flushing.  As long as context requirement is met, any worker can
2010  * call this function to process a work.
2011  *
2012  * CONTEXT:
2013  * spin_lock_irq(pool->lock) which is released and regrabbed.
2014  */
2015 static void process_one_work(struct worker *worker, struct work_struct *work)
2016 __releases(&pool->lock)
2017 __acquires(&pool->lock)
2018 {
2019 	struct pool_workqueue *pwq = get_work_pwq(work);
2020 	struct worker_pool *pool = worker->pool;
2021 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2022 	int work_color;
2023 	struct worker *collision;
2024 #ifdef CONFIG_LOCKDEP
2025 	/*
2026 	 * It is permissible to free the struct work_struct from
2027 	 * inside the function that is called from it, this we need to
2028 	 * take into account for lockdep too.  To avoid bogus "held
2029 	 * lock freed" warnings as well as problems when looking into
2030 	 * work->lockdep_map, make a copy and use that here.
2031 	 */
2032 	struct lockdep_map lockdep_map;
2033 
2034 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2035 #endif
2036 	/* ensure we're on the correct CPU */
2037 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2038 		     raw_smp_processor_id() != pool->cpu);
2039 
2040 	/*
2041 	 * A single work shouldn't be executed concurrently by
2042 	 * multiple workers on a single cpu.  Check whether anyone is
2043 	 * already processing the work.  If so, defer the work to the
2044 	 * currently executing one.
2045 	 */
2046 	collision = find_worker_executing_work(pool, work);
2047 	if (unlikely(collision)) {
2048 		move_linked_works(work, &collision->scheduled, NULL);
2049 		return;
2050 	}
2051 
2052 	/* claim and dequeue */
2053 	debug_work_deactivate(work);
2054 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2055 	worker->current_work = work;
2056 	worker->current_func = work->func;
2057 	worker->current_pwq = pwq;
2058 	work_color = get_work_color(work);
2059 
2060 	list_del_init(&work->entry);
2061 
2062 	/*
2063 	 * CPU intensive works don't participate in concurrency management.
2064 	 * They're the scheduler's responsibility.  This takes @worker out
2065 	 * of concurrency management and the next code block will chain
2066 	 * execution of the pending work items.
2067 	 */
2068 	if (unlikely(cpu_intensive))
2069 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2070 
2071 	/*
2072 	 * Wake up another worker if necessary.  The condition is always
2073 	 * false for normal per-cpu workers since nr_running would always
2074 	 * be >= 1 at this point.  This is used to chain execution of the
2075 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2076 	 * UNBOUND and CPU_INTENSIVE ones.
2077 	 */
2078 	if (need_more_worker(pool))
2079 		wake_up_worker(pool);
2080 
2081 	/*
2082 	 * Record the last pool and clear PENDING which should be the last
2083 	 * update to @work.  Also, do this inside @pool->lock so that
2084 	 * PENDING and queued state changes happen together while IRQ is
2085 	 * disabled.
2086 	 */
2087 	set_work_pool_and_clear_pending(work, pool->id);
2088 
2089 	spin_unlock_irq(&pool->lock);
2090 
2091 	lock_map_acquire_read(&pwq->wq->lockdep_map);
2092 	lock_map_acquire(&lockdep_map);
2093 	trace_workqueue_execute_start(work);
2094 	worker->current_func(work);
2095 	/*
2096 	 * While we must be careful to not use "work" after this, the trace
2097 	 * point will only record its address.
2098 	 */
2099 	trace_workqueue_execute_end(work);
2100 	lock_map_release(&lockdep_map);
2101 	lock_map_release(&pwq->wq->lockdep_map);
2102 
2103 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2104 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2105 		       "     last function: %pf\n",
2106 		       current->comm, preempt_count(), task_pid_nr(current),
2107 		       worker->current_func);
2108 		debug_show_held_locks(current);
2109 		dump_stack();
2110 	}
2111 
2112 	/*
2113 	 * The following prevents a kworker from hogging CPU on !PREEMPT
2114 	 * kernels, where a requeueing work item waiting for something to
2115 	 * happen could deadlock with stop_machine as such work item could
2116 	 * indefinitely requeue itself while all other CPUs are trapped in
2117 	 * stop_machine. At the same time, report a quiescent RCU state so
2118 	 * the same condition doesn't freeze RCU.
2119 	 */
2120 	cond_resched_rcu_qs();
2121 
2122 	spin_lock_irq(&pool->lock);
2123 
2124 	/* clear cpu intensive status */
2125 	if (unlikely(cpu_intensive))
2126 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2127 
2128 	/* we're done with it, release */
2129 	hash_del(&worker->hentry);
2130 	worker->current_work = NULL;
2131 	worker->current_func = NULL;
2132 	worker->current_pwq = NULL;
2133 	worker->desc_valid = false;
2134 	pwq_dec_nr_in_flight(pwq, work_color);
2135 }
2136 
2137 /**
2138  * process_scheduled_works - process scheduled works
2139  * @worker: self
2140  *
2141  * Process all scheduled works.  Please note that the scheduled list
2142  * may change while processing a work, so this function repeatedly
2143  * fetches a work from the top and executes it.
2144  *
2145  * CONTEXT:
2146  * spin_lock_irq(pool->lock) which may be released and regrabbed
2147  * multiple times.
2148  */
2149 static void process_scheduled_works(struct worker *worker)
2150 {
2151 	while (!list_empty(&worker->scheduled)) {
2152 		struct work_struct *work = list_first_entry(&worker->scheduled,
2153 						struct work_struct, entry);
2154 		process_one_work(worker, work);
2155 	}
2156 }
2157 
2158 /**
2159  * worker_thread - the worker thread function
2160  * @__worker: self
2161  *
2162  * The worker thread function.  All workers belong to a worker_pool -
2163  * either a per-cpu one or dynamic unbound one.  These workers process all
2164  * work items regardless of their specific target workqueue.  The only
2165  * exception is work items which belong to workqueues with a rescuer which
2166  * will be explained in rescuer_thread().
2167  *
2168  * Return: 0
2169  */
2170 static int worker_thread(void *__worker)
2171 {
2172 	struct worker *worker = __worker;
2173 	struct worker_pool *pool = worker->pool;
2174 
2175 	/* tell the scheduler that this is a workqueue worker */
2176 	worker->task->flags |= PF_WQ_WORKER;
2177 woke_up:
2178 	spin_lock_irq(&pool->lock);
2179 
2180 	/* am I supposed to die? */
2181 	if (unlikely(worker->flags & WORKER_DIE)) {
2182 		spin_unlock_irq(&pool->lock);
2183 		WARN_ON_ONCE(!list_empty(&worker->entry));
2184 		worker->task->flags &= ~PF_WQ_WORKER;
2185 
2186 		set_task_comm(worker->task, "kworker/dying");
2187 		ida_simple_remove(&pool->worker_ida, worker->id);
2188 		worker_detach_from_pool(worker, pool);
2189 		kfree(worker);
2190 		return 0;
2191 	}
2192 
2193 	worker_leave_idle(worker);
2194 recheck:
2195 	/* no more worker necessary? */
2196 	if (!need_more_worker(pool))
2197 		goto sleep;
2198 
2199 	/* do we need to manage? */
2200 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2201 		goto recheck;
2202 
2203 	/*
2204 	 * ->scheduled list can only be filled while a worker is
2205 	 * preparing to process a work or actually processing it.
2206 	 * Make sure nobody diddled with it while I was sleeping.
2207 	 */
2208 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2209 
2210 	/*
2211 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2212 	 * worker or that someone else has already assumed the manager
2213 	 * role.  This is where @worker starts participating in concurrency
2214 	 * management if applicable and concurrency management is restored
2215 	 * after being rebound.  See rebind_workers() for details.
2216 	 */
2217 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2218 
2219 	do {
2220 		struct work_struct *work =
2221 			list_first_entry(&pool->worklist,
2222 					 struct work_struct, entry);
2223 
2224 		pool->watchdog_ts = jiffies;
2225 
2226 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2227 			/* optimization path, not strictly necessary */
2228 			process_one_work(worker, work);
2229 			if (unlikely(!list_empty(&worker->scheduled)))
2230 				process_scheduled_works(worker);
2231 		} else {
2232 			move_linked_works(work, &worker->scheduled, NULL);
2233 			process_scheduled_works(worker);
2234 		}
2235 	} while (keep_working(pool));
2236 
2237 	worker_set_flags(worker, WORKER_PREP);
2238 sleep:
2239 	/*
2240 	 * pool->lock is held and there's no work to process and no need to
2241 	 * manage, sleep.  Workers are woken up only while holding
2242 	 * pool->lock or from local cpu, so setting the current state
2243 	 * before releasing pool->lock is enough to prevent losing any
2244 	 * event.
2245 	 */
2246 	worker_enter_idle(worker);
2247 	__set_current_state(TASK_INTERRUPTIBLE);
2248 	spin_unlock_irq(&pool->lock);
2249 	schedule();
2250 	goto woke_up;
2251 }
2252 
2253 /**
2254  * rescuer_thread - the rescuer thread function
2255  * @__rescuer: self
2256  *
2257  * Workqueue rescuer thread function.  There's one rescuer for each
2258  * workqueue which has WQ_MEM_RECLAIM set.
2259  *
2260  * Regular work processing on a pool may block trying to create a new
2261  * worker which uses GFP_KERNEL allocation which has slight chance of
2262  * developing into deadlock if some works currently on the same queue
2263  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2264  * the problem rescuer solves.
2265  *
2266  * When such condition is possible, the pool summons rescuers of all
2267  * workqueues which have works queued on the pool and let them process
2268  * those works so that forward progress can be guaranteed.
2269  *
2270  * This should happen rarely.
2271  *
2272  * Return: 0
2273  */
2274 static int rescuer_thread(void *__rescuer)
2275 {
2276 	struct worker *rescuer = __rescuer;
2277 	struct workqueue_struct *wq = rescuer->rescue_wq;
2278 	struct list_head *scheduled = &rescuer->scheduled;
2279 	bool should_stop;
2280 
2281 	set_user_nice(current, RESCUER_NICE_LEVEL);
2282 
2283 	/*
2284 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2285 	 * doesn't participate in concurrency management.
2286 	 */
2287 	rescuer->task->flags |= PF_WQ_WORKER;
2288 repeat:
2289 	set_current_state(TASK_INTERRUPTIBLE);
2290 
2291 	/*
2292 	 * By the time the rescuer is requested to stop, the workqueue
2293 	 * shouldn't have any work pending, but @wq->maydays may still have
2294 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2295 	 * all the work items before the rescuer got to them.  Go through
2296 	 * @wq->maydays processing before acting on should_stop so that the
2297 	 * list is always empty on exit.
2298 	 */
2299 	should_stop = kthread_should_stop();
2300 
2301 	/* see whether any pwq is asking for help */
2302 	spin_lock_irq(&wq_mayday_lock);
2303 
2304 	while (!list_empty(&wq->maydays)) {
2305 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2306 					struct pool_workqueue, mayday_node);
2307 		struct worker_pool *pool = pwq->pool;
2308 		struct work_struct *work, *n;
2309 		bool first = true;
2310 
2311 		__set_current_state(TASK_RUNNING);
2312 		list_del_init(&pwq->mayday_node);
2313 
2314 		spin_unlock_irq(&wq_mayday_lock);
2315 
2316 		worker_attach_to_pool(rescuer, pool);
2317 
2318 		spin_lock_irq(&pool->lock);
2319 		rescuer->pool = pool;
2320 
2321 		/*
2322 		 * Slurp in all works issued via this workqueue and
2323 		 * process'em.
2324 		 */
2325 		WARN_ON_ONCE(!list_empty(scheduled));
2326 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2327 			if (get_work_pwq(work) == pwq) {
2328 				if (first)
2329 					pool->watchdog_ts = jiffies;
2330 				move_linked_works(work, scheduled, &n);
2331 			}
2332 			first = false;
2333 		}
2334 
2335 		if (!list_empty(scheduled)) {
2336 			process_scheduled_works(rescuer);
2337 
2338 			/*
2339 			 * The above execution of rescued work items could
2340 			 * have created more to rescue through
2341 			 * pwq_activate_first_delayed() or chained
2342 			 * queueing.  Let's put @pwq back on mayday list so
2343 			 * that such back-to-back work items, which may be
2344 			 * being used to relieve memory pressure, don't
2345 			 * incur MAYDAY_INTERVAL delay inbetween.
2346 			 */
2347 			if (need_to_create_worker(pool)) {
2348 				spin_lock(&wq_mayday_lock);
2349 				get_pwq(pwq);
2350 				list_move_tail(&pwq->mayday_node, &wq->maydays);
2351 				spin_unlock(&wq_mayday_lock);
2352 			}
2353 		}
2354 
2355 		/*
2356 		 * Put the reference grabbed by send_mayday().  @pool won't
2357 		 * go away while we're still attached to it.
2358 		 */
2359 		put_pwq(pwq);
2360 
2361 		/*
2362 		 * Leave this pool.  If need_more_worker() is %true, notify a
2363 		 * regular worker; otherwise, we end up with 0 concurrency
2364 		 * and stalling the execution.
2365 		 */
2366 		if (need_more_worker(pool))
2367 			wake_up_worker(pool);
2368 
2369 		rescuer->pool = NULL;
2370 		spin_unlock_irq(&pool->lock);
2371 
2372 		worker_detach_from_pool(rescuer, pool);
2373 
2374 		spin_lock_irq(&wq_mayday_lock);
2375 	}
2376 
2377 	spin_unlock_irq(&wq_mayday_lock);
2378 
2379 	if (should_stop) {
2380 		__set_current_state(TASK_RUNNING);
2381 		rescuer->task->flags &= ~PF_WQ_WORKER;
2382 		return 0;
2383 	}
2384 
2385 	/* rescuers should never participate in concurrency management */
2386 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2387 	schedule();
2388 	goto repeat;
2389 }
2390 
2391 /**
2392  * check_flush_dependency - check for flush dependency sanity
2393  * @target_wq: workqueue being flushed
2394  * @target_work: work item being flushed (NULL for workqueue flushes)
2395  *
2396  * %current is trying to flush the whole @target_wq or @target_work on it.
2397  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2398  * reclaiming memory or running on a workqueue which doesn't have
2399  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2400  * a deadlock.
2401  */
2402 static void check_flush_dependency(struct workqueue_struct *target_wq,
2403 				   struct work_struct *target_work)
2404 {
2405 	work_func_t target_func = target_work ? target_work->func : NULL;
2406 	struct worker *worker;
2407 
2408 	if (target_wq->flags & WQ_MEM_RECLAIM)
2409 		return;
2410 
2411 	worker = current_wq_worker();
2412 
2413 	WARN_ONCE(current->flags & PF_MEMALLOC,
2414 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2415 		  current->pid, current->comm, target_wq->name, target_func);
2416 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2417 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2418 		  "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2419 		  worker->current_pwq->wq->name, worker->current_func,
2420 		  target_wq->name, target_func);
2421 }
2422 
2423 struct wq_barrier {
2424 	struct work_struct	work;
2425 	struct completion	done;
2426 	struct task_struct	*task;	/* purely informational */
2427 };
2428 
2429 static void wq_barrier_func(struct work_struct *work)
2430 {
2431 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2432 	complete(&barr->done);
2433 }
2434 
2435 /**
2436  * insert_wq_barrier - insert a barrier work
2437  * @pwq: pwq to insert barrier into
2438  * @barr: wq_barrier to insert
2439  * @target: target work to attach @barr to
2440  * @worker: worker currently executing @target, NULL if @target is not executing
2441  *
2442  * @barr is linked to @target such that @barr is completed only after
2443  * @target finishes execution.  Please note that the ordering
2444  * guarantee is observed only with respect to @target and on the local
2445  * cpu.
2446  *
2447  * Currently, a queued barrier can't be canceled.  This is because
2448  * try_to_grab_pending() can't determine whether the work to be
2449  * grabbed is at the head of the queue and thus can't clear LINKED
2450  * flag of the previous work while there must be a valid next work
2451  * after a work with LINKED flag set.
2452  *
2453  * Note that when @worker is non-NULL, @target may be modified
2454  * underneath us, so we can't reliably determine pwq from @target.
2455  *
2456  * CONTEXT:
2457  * spin_lock_irq(pool->lock).
2458  */
2459 static void insert_wq_barrier(struct pool_workqueue *pwq,
2460 			      struct wq_barrier *barr,
2461 			      struct work_struct *target, struct worker *worker)
2462 {
2463 	struct list_head *head;
2464 	unsigned int linked = 0;
2465 
2466 	/*
2467 	 * debugobject calls are safe here even with pool->lock locked
2468 	 * as we know for sure that this will not trigger any of the
2469 	 * checks and call back into the fixup functions where we
2470 	 * might deadlock.
2471 	 */
2472 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2473 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2474 	init_completion(&barr->done);
2475 	barr->task = current;
2476 
2477 	/*
2478 	 * If @target is currently being executed, schedule the
2479 	 * barrier to the worker; otherwise, put it after @target.
2480 	 */
2481 	if (worker)
2482 		head = worker->scheduled.next;
2483 	else {
2484 		unsigned long *bits = work_data_bits(target);
2485 
2486 		head = target->entry.next;
2487 		/* there can already be other linked works, inherit and set */
2488 		linked = *bits & WORK_STRUCT_LINKED;
2489 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2490 	}
2491 
2492 	debug_work_activate(&barr->work);
2493 	insert_work(pwq, &barr->work, head,
2494 		    work_color_to_flags(WORK_NO_COLOR) | linked);
2495 }
2496 
2497 /**
2498  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2499  * @wq: workqueue being flushed
2500  * @flush_color: new flush color, < 0 for no-op
2501  * @work_color: new work color, < 0 for no-op
2502  *
2503  * Prepare pwqs for workqueue flushing.
2504  *
2505  * If @flush_color is non-negative, flush_color on all pwqs should be
2506  * -1.  If no pwq has in-flight commands at the specified color, all
2507  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2508  * has in flight commands, its pwq->flush_color is set to
2509  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2510  * wakeup logic is armed and %true is returned.
2511  *
2512  * The caller should have initialized @wq->first_flusher prior to
2513  * calling this function with non-negative @flush_color.  If
2514  * @flush_color is negative, no flush color update is done and %false
2515  * is returned.
2516  *
2517  * If @work_color is non-negative, all pwqs should have the same
2518  * work_color which is previous to @work_color and all will be
2519  * advanced to @work_color.
2520  *
2521  * CONTEXT:
2522  * mutex_lock(wq->mutex).
2523  *
2524  * Return:
2525  * %true if @flush_color >= 0 and there's something to flush.  %false
2526  * otherwise.
2527  */
2528 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2529 				      int flush_color, int work_color)
2530 {
2531 	bool wait = false;
2532 	struct pool_workqueue *pwq;
2533 
2534 	if (flush_color >= 0) {
2535 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2536 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2537 	}
2538 
2539 	for_each_pwq(pwq, wq) {
2540 		struct worker_pool *pool = pwq->pool;
2541 
2542 		spin_lock_irq(&pool->lock);
2543 
2544 		if (flush_color >= 0) {
2545 			WARN_ON_ONCE(pwq->flush_color != -1);
2546 
2547 			if (pwq->nr_in_flight[flush_color]) {
2548 				pwq->flush_color = flush_color;
2549 				atomic_inc(&wq->nr_pwqs_to_flush);
2550 				wait = true;
2551 			}
2552 		}
2553 
2554 		if (work_color >= 0) {
2555 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2556 			pwq->work_color = work_color;
2557 		}
2558 
2559 		spin_unlock_irq(&pool->lock);
2560 	}
2561 
2562 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2563 		complete(&wq->first_flusher->done);
2564 
2565 	return wait;
2566 }
2567 
2568 /**
2569  * flush_workqueue - ensure that any scheduled work has run to completion.
2570  * @wq: workqueue to flush
2571  *
2572  * This function sleeps until all work items which were queued on entry
2573  * have finished execution, but it is not livelocked by new incoming ones.
2574  */
2575 void flush_workqueue(struct workqueue_struct *wq)
2576 {
2577 	struct wq_flusher this_flusher = {
2578 		.list = LIST_HEAD_INIT(this_flusher.list),
2579 		.flush_color = -1,
2580 		.done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2581 	};
2582 	int next_color;
2583 
2584 	lock_map_acquire(&wq->lockdep_map);
2585 	lock_map_release(&wq->lockdep_map);
2586 
2587 	mutex_lock(&wq->mutex);
2588 
2589 	/*
2590 	 * Start-to-wait phase
2591 	 */
2592 	next_color = work_next_color(wq->work_color);
2593 
2594 	if (next_color != wq->flush_color) {
2595 		/*
2596 		 * Color space is not full.  The current work_color
2597 		 * becomes our flush_color and work_color is advanced
2598 		 * by one.
2599 		 */
2600 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2601 		this_flusher.flush_color = wq->work_color;
2602 		wq->work_color = next_color;
2603 
2604 		if (!wq->first_flusher) {
2605 			/* no flush in progress, become the first flusher */
2606 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2607 
2608 			wq->first_flusher = &this_flusher;
2609 
2610 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2611 						       wq->work_color)) {
2612 				/* nothing to flush, done */
2613 				wq->flush_color = next_color;
2614 				wq->first_flusher = NULL;
2615 				goto out_unlock;
2616 			}
2617 		} else {
2618 			/* wait in queue */
2619 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2620 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2621 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2622 		}
2623 	} else {
2624 		/*
2625 		 * Oops, color space is full, wait on overflow queue.
2626 		 * The next flush completion will assign us
2627 		 * flush_color and transfer to flusher_queue.
2628 		 */
2629 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2630 	}
2631 
2632 	check_flush_dependency(wq, NULL);
2633 
2634 	mutex_unlock(&wq->mutex);
2635 
2636 	wait_for_completion(&this_flusher.done);
2637 
2638 	/*
2639 	 * Wake-up-and-cascade phase
2640 	 *
2641 	 * First flushers are responsible for cascading flushes and
2642 	 * handling overflow.  Non-first flushers can simply return.
2643 	 */
2644 	if (wq->first_flusher != &this_flusher)
2645 		return;
2646 
2647 	mutex_lock(&wq->mutex);
2648 
2649 	/* we might have raced, check again with mutex held */
2650 	if (wq->first_flusher != &this_flusher)
2651 		goto out_unlock;
2652 
2653 	wq->first_flusher = NULL;
2654 
2655 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2656 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2657 
2658 	while (true) {
2659 		struct wq_flusher *next, *tmp;
2660 
2661 		/* complete all the flushers sharing the current flush color */
2662 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2663 			if (next->flush_color != wq->flush_color)
2664 				break;
2665 			list_del_init(&next->list);
2666 			complete(&next->done);
2667 		}
2668 
2669 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2670 			     wq->flush_color != work_next_color(wq->work_color));
2671 
2672 		/* this flush_color is finished, advance by one */
2673 		wq->flush_color = work_next_color(wq->flush_color);
2674 
2675 		/* one color has been freed, handle overflow queue */
2676 		if (!list_empty(&wq->flusher_overflow)) {
2677 			/*
2678 			 * Assign the same color to all overflowed
2679 			 * flushers, advance work_color and append to
2680 			 * flusher_queue.  This is the start-to-wait
2681 			 * phase for these overflowed flushers.
2682 			 */
2683 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2684 				tmp->flush_color = wq->work_color;
2685 
2686 			wq->work_color = work_next_color(wq->work_color);
2687 
2688 			list_splice_tail_init(&wq->flusher_overflow,
2689 					      &wq->flusher_queue);
2690 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2691 		}
2692 
2693 		if (list_empty(&wq->flusher_queue)) {
2694 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2695 			break;
2696 		}
2697 
2698 		/*
2699 		 * Need to flush more colors.  Make the next flusher
2700 		 * the new first flusher and arm pwqs.
2701 		 */
2702 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2703 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2704 
2705 		list_del_init(&next->list);
2706 		wq->first_flusher = next;
2707 
2708 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2709 			break;
2710 
2711 		/*
2712 		 * Meh... this color is already done, clear first
2713 		 * flusher and repeat cascading.
2714 		 */
2715 		wq->first_flusher = NULL;
2716 	}
2717 
2718 out_unlock:
2719 	mutex_unlock(&wq->mutex);
2720 }
2721 EXPORT_SYMBOL(flush_workqueue);
2722 
2723 /**
2724  * drain_workqueue - drain a workqueue
2725  * @wq: workqueue to drain
2726  *
2727  * Wait until the workqueue becomes empty.  While draining is in progress,
2728  * only chain queueing is allowed.  IOW, only currently pending or running
2729  * work items on @wq can queue further work items on it.  @wq is flushed
2730  * repeatedly until it becomes empty.  The number of flushing is determined
2731  * by the depth of chaining and should be relatively short.  Whine if it
2732  * takes too long.
2733  */
2734 void drain_workqueue(struct workqueue_struct *wq)
2735 {
2736 	unsigned int flush_cnt = 0;
2737 	struct pool_workqueue *pwq;
2738 
2739 	/*
2740 	 * __queue_work() needs to test whether there are drainers, is much
2741 	 * hotter than drain_workqueue() and already looks at @wq->flags.
2742 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2743 	 */
2744 	mutex_lock(&wq->mutex);
2745 	if (!wq->nr_drainers++)
2746 		wq->flags |= __WQ_DRAINING;
2747 	mutex_unlock(&wq->mutex);
2748 reflush:
2749 	flush_workqueue(wq);
2750 
2751 	mutex_lock(&wq->mutex);
2752 
2753 	for_each_pwq(pwq, wq) {
2754 		bool drained;
2755 
2756 		spin_lock_irq(&pwq->pool->lock);
2757 		drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2758 		spin_unlock_irq(&pwq->pool->lock);
2759 
2760 		if (drained)
2761 			continue;
2762 
2763 		if (++flush_cnt == 10 ||
2764 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2765 			pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2766 				wq->name, flush_cnt);
2767 
2768 		mutex_unlock(&wq->mutex);
2769 		goto reflush;
2770 	}
2771 
2772 	if (!--wq->nr_drainers)
2773 		wq->flags &= ~__WQ_DRAINING;
2774 	mutex_unlock(&wq->mutex);
2775 }
2776 EXPORT_SYMBOL_GPL(drain_workqueue);
2777 
2778 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2779 {
2780 	struct worker *worker = NULL;
2781 	struct worker_pool *pool;
2782 	struct pool_workqueue *pwq;
2783 
2784 	might_sleep();
2785 
2786 	local_irq_disable();
2787 	pool = get_work_pool(work);
2788 	if (!pool) {
2789 		local_irq_enable();
2790 		return false;
2791 	}
2792 
2793 	spin_lock(&pool->lock);
2794 	/* see the comment in try_to_grab_pending() with the same code */
2795 	pwq = get_work_pwq(work);
2796 	if (pwq) {
2797 		if (unlikely(pwq->pool != pool))
2798 			goto already_gone;
2799 	} else {
2800 		worker = find_worker_executing_work(pool, work);
2801 		if (!worker)
2802 			goto already_gone;
2803 		pwq = worker->current_pwq;
2804 	}
2805 
2806 	check_flush_dependency(pwq->wq, work);
2807 
2808 	insert_wq_barrier(pwq, barr, work, worker);
2809 	spin_unlock_irq(&pool->lock);
2810 
2811 	/*
2812 	 * If @max_active is 1 or rescuer is in use, flushing another work
2813 	 * item on the same workqueue may lead to deadlock.  Make sure the
2814 	 * flusher is not running on the same workqueue by verifying write
2815 	 * access.
2816 	 */
2817 	if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2818 		lock_map_acquire(&pwq->wq->lockdep_map);
2819 	else
2820 		lock_map_acquire_read(&pwq->wq->lockdep_map);
2821 	lock_map_release(&pwq->wq->lockdep_map);
2822 
2823 	return true;
2824 already_gone:
2825 	spin_unlock_irq(&pool->lock);
2826 	return false;
2827 }
2828 
2829 /**
2830  * flush_work - wait for a work to finish executing the last queueing instance
2831  * @work: the work to flush
2832  *
2833  * Wait until @work has finished execution.  @work is guaranteed to be idle
2834  * on return if it hasn't been requeued since flush started.
2835  *
2836  * Return:
2837  * %true if flush_work() waited for the work to finish execution,
2838  * %false if it was already idle.
2839  */
2840 bool flush_work(struct work_struct *work)
2841 {
2842 	struct wq_barrier barr;
2843 
2844 	lock_map_acquire(&work->lockdep_map);
2845 	lock_map_release(&work->lockdep_map);
2846 
2847 	if (start_flush_work(work, &barr)) {
2848 		wait_for_completion(&barr.done);
2849 		destroy_work_on_stack(&barr.work);
2850 		return true;
2851 	} else {
2852 		return false;
2853 	}
2854 }
2855 EXPORT_SYMBOL_GPL(flush_work);
2856 
2857 struct cwt_wait {
2858 	wait_queue_t		wait;
2859 	struct work_struct	*work;
2860 };
2861 
2862 static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2863 {
2864 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2865 
2866 	if (cwait->work != key)
2867 		return 0;
2868 	return autoremove_wake_function(wait, mode, sync, key);
2869 }
2870 
2871 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2872 {
2873 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
2874 	unsigned long flags;
2875 	int ret;
2876 
2877 	do {
2878 		ret = try_to_grab_pending(work, is_dwork, &flags);
2879 		/*
2880 		 * If someone else is already canceling, wait for it to
2881 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
2882 		 * because we may get scheduled between @work's completion
2883 		 * and the other canceling task resuming and clearing
2884 		 * CANCELING - flush_work() will return false immediately
2885 		 * as @work is no longer busy, try_to_grab_pending() will
2886 		 * return -ENOENT as @work is still being canceled and the
2887 		 * other canceling task won't be able to clear CANCELING as
2888 		 * we're hogging the CPU.
2889 		 *
2890 		 * Let's wait for completion using a waitqueue.  As this
2891 		 * may lead to the thundering herd problem, use a custom
2892 		 * wake function which matches @work along with exclusive
2893 		 * wait and wakeup.
2894 		 */
2895 		if (unlikely(ret == -ENOENT)) {
2896 			struct cwt_wait cwait;
2897 
2898 			init_wait(&cwait.wait);
2899 			cwait.wait.func = cwt_wakefn;
2900 			cwait.work = work;
2901 
2902 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2903 						  TASK_UNINTERRUPTIBLE);
2904 			if (work_is_canceling(work))
2905 				schedule();
2906 			finish_wait(&cancel_waitq, &cwait.wait);
2907 		}
2908 	} while (unlikely(ret < 0));
2909 
2910 	/* tell other tasks trying to grab @work to back off */
2911 	mark_work_canceling(work);
2912 	local_irq_restore(flags);
2913 
2914 	flush_work(work);
2915 	clear_work_data(work);
2916 
2917 	/*
2918 	 * Paired with prepare_to_wait() above so that either
2919 	 * waitqueue_active() is visible here or !work_is_canceling() is
2920 	 * visible there.
2921 	 */
2922 	smp_mb();
2923 	if (waitqueue_active(&cancel_waitq))
2924 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2925 
2926 	return ret;
2927 }
2928 
2929 /**
2930  * cancel_work_sync - cancel a work and wait for it to finish
2931  * @work: the work to cancel
2932  *
2933  * Cancel @work and wait for its execution to finish.  This function
2934  * can be used even if the work re-queues itself or migrates to
2935  * another workqueue.  On return from this function, @work is
2936  * guaranteed to be not pending or executing on any CPU.
2937  *
2938  * cancel_work_sync(&delayed_work->work) must not be used for
2939  * delayed_work's.  Use cancel_delayed_work_sync() instead.
2940  *
2941  * The caller must ensure that the workqueue on which @work was last
2942  * queued can't be destroyed before this function returns.
2943  *
2944  * Return:
2945  * %true if @work was pending, %false otherwise.
2946  */
2947 bool cancel_work_sync(struct work_struct *work)
2948 {
2949 	return __cancel_work_timer(work, false);
2950 }
2951 EXPORT_SYMBOL_GPL(cancel_work_sync);
2952 
2953 /**
2954  * flush_delayed_work - wait for a dwork to finish executing the last queueing
2955  * @dwork: the delayed work to flush
2956  *
2957  * Delayed timer is cancelled and the pending work is queued for
2958  * immediate execution.  Like flush_work(), this function only
2959  * considers the last queueing instance of @dwork.
2960  *
2961  * Return:
2962  * %true if flush_work() waited for the work to finish execution,
2963  * %false if it was already idle.
2964  */
2965 bool flush_delayed_work(struct delayed_work *dwork)
2966 {
2967 	local_irq_disable();
2968 	if (del_timer_sync(&dwork->timer))
2969 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
2970 	local_irq_enable();
2971 	return flush_work(&dwork->work);
2972 }
2973 EXPORT_SYMBOL(flush_delayed_work);
2974 
2975 /**
2976  * cancel_delayed_work - cancel a delayed work
2977  * @dwork: delayed_work to cancel
2978  *
2979  * Kill off a pending delayed_work.
2980  *
2981  * Return: %true if @dwork was pending and canceled; %false if it wasn't
2982  * pending.
2983  *
2984  * Note:
2985  * The work callback function may still be running on return, unless
2986  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
2987  * use cancel_delayed_work_sync() to wait on it.
2988  *
2989  * This function is safe to call from any context including IRQ handler.
2990  */
2991 bool cancel_delayed_work(struct delayed_work *dwork)
2992 {
2993 	unsigned long flags;
2994 	int ret;
2995 
2996 	do {
2997 		ret = try_to_grab_pending(&dwork->work, true, &flags);
2998 	} while (unlikely(ret == -EAGAIN));
2999 
3000 	if (unlikely(ret < 0))
3001 		return false;
3002 
3003 	set_work_pool_and_clear_pending(&dwork->work,
3004 					get_work_pool_id(&dwork->work));
3005 	local_irq_restore(flags);
3006 	return ret;
3007 }
3008 EXPORT_SYMBOL(cancel_delayed_work);
3009 
3010 /**
3011  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3012  * @dwork: the delayed work cancel
3013  *
3014  * This is cancel_work_sync() for delayed works.
3015  *
3016  * Return:
3017  * %true if @dwork was pending, %false otherwise.
3018  */
3019 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3020 {
3021 	return __cancel_work_timer(&dwork->work, true);
3022 }
3023 EXPORT_SYMBOL(cancel_delayed_work_sync);
3024 
3025 /**
3026  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3027  * @func: the function to call
3028  *
3029  * schedule_on_each_cpu() executes @func on each online CPU using the
3030  * system workqueue and blocks until all CPUs have completed.
3031  * schedule_on_each_cpu() is very slow.
3032  *
3033  * Return:
3034  * 0 on success, -errno on failure.
3035  */
3036 int schedule_on_each_cpu(work_func_t func)
3037 {
3038 	int cpu;
3039 	struct work_struct __percpu *works;
3040 
3041 	works = alloc_percpu(struct work_struct);
3042 	if (!works)
3043 		return -ENOMEM;
3044 
3045 	get_online_cpus();
3046 
3047 	for_each_online_cpu(cpu) {
3048 		struct work_struct *work = per_cpu_ptr(works, cpu);
3049 
3050 		INIT_WORK(work, func);
3051 		schedule_work_on(cpu, work);
3052 	}
3053 
3054 	for_each_online_cpu(cpu)
3055 		flush_work(per_cpu_ptr(works, cpu));
3056 
3057 	put_online_cpus();
3058 	free_percpu(works);
3059 	return 0;
3060 }
3061 
3062 /**
3063  * execute_in_process_context - reliably execute the routine with user context
3064  * @fn:		the function to execute
3065  * @ew:		guaranteed storage for the execute work structure (must
3066  *		be available when the work executes)
3067  *
3068  * Executes the function immediately if process context is available,
3069  * otherwise schedules the function for delayed execution.
3070  *
3071  * Return:	0 - function was executed
3072  *		1 - function was scheduled for execution
3073  */
3074 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3075 {
3076 	if (!in_interrupt()) {
3077 		fn(&ew->work);
3078 		return 0;
3079 	}
3080 
3081 	INIT_WORK(&ew->work, fn);
3082 	schedule_work(&ew->work);
3083 
3084 	return 1;
3085 }
3086 EXPORT_SYMBOL_GPL(execute_in_process_context);
3087 
3088 /**
3089  * free_workqueue_attrs - free a workqueue_attrs
3090  * @attrs: workqueue_attrs to free
3091  *
3092  * Undo alloc_workqueue_attrs().
3093  */
3094 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3095 {
3096 	if (attrs) {
3097 		free_cpumask_var(attrs->cpumask);
3098 		kfree(attrs);
3099 	}
3100 }
3101 
3102 /**
3103  * alloc_workqueue_attrs - allocate a workqueue_attrs
3104  * @gfp_mask: allocation mask to use
3105  *
3106  * Allocate a new workqueue_attrs, initialize with default settings and
3107  * return it.
3108  *
3109  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3110  */
3111 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3112 {
3113 	struct workqueue_attrs *attrs;
3114 
3115 	attrs = kzalloc(sizeof(*attrs), gfp_mask);
3116 	if (!attrs)
3117 		goto fail;
3118 	if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3119 		goto fail;
3120 
3121 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3122 	return attrs;
3123 fail:
3124 	free_workqueue_attrs(attrs);
3125 	return NULL;
3126 }
3127 
3128 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3129 				 const struct workqueue_attrs *from)
3130 {
3131 	to->nice = from->nice;
3132 	cpumask_copy(to->cpumask, from->cpumask);
3133 	/*
3134 	 * Unlike hash and equality test, this function doesn't ignore
3135 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3136 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3137 	 */
3138 	to->no_numa = from->no_numa;
3139 }
3140 
3141 /* hash value of the content of @attr */
3142 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3143 {
3144 	u32 hash = 0;
3145 
3146 	hash = jhash_1word(attrs->nice, hash);
3147 	hash = jhash(cpumask_bits(attrs->cpumask),
3148 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3149 	return hash;
3150 }
3151 
3152 /* content equality test */
3153 static bool wqattrs_equal(const struct workqueue_attrs *a,
3154 			  const struct workqueue_attrs *b)
3155 {
3156 	if (a->nice != b->nice)
3157 		return false;
3158 	if (!cpumask_equal(a->cpumask, b->cpumask))
3159 		return false;
3160 	return true;
3161 }
3162 
3163 /**
3164  * init_worker_pool - initialize a newly zalloc'd worker_pool
3165  * @pool: worker_pool to initialize
3166  *
3167  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3168  *
3169  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3170  * inside @pool proper are initialized and put_unbound_pool() can be called
3171  * on @pool safely to release it.
3172  */
3173 static int init_worker_pool(struct worker_pool *pool)
3174 {
3175 	spin_lock_init(&pool->lock);
3176 	pool->id = -1;
3177 	pool->cpu = -1;
3178 	pool->node = NUMA_NO_NODE;
3179 	pool->flags |= POOL_DISASSOCIATED;
3180 	pool->watchdog_ts = jiffies;
3181 	INIT_LIST_HEAD(&pool->worklist);
3182 	INIT_LIST_HEAD(&pool->idle_list);
3183 	hash_init(pool->busy_hash);
3184 
3185 	init_timer_deferrable(&pool->idle_timer);
3186 	pool->idle_timer.function = idle_worker_timeout;
3187 	pool->idle_timer.data = (unsigned long)pool;
3188 
3189 	setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3190 		    (unsigned long)pool);
3191 
3192 	mutex_init(&pool->manager_arb);
3193 	mutex_init(&pool->attach_mutex);
3194 	INIT_LIST_HEAD(&pool->workers);
3195 
3196 	ida_init(&pool->worker_ida);
3197 	INIT_HLIST_NODE(&pool->hash_node);
3198 	pool->refcnt = 1;
3199 
3200 	/* shouldn't fail above this point */
3201 	pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3202 	if (!pool->attrs)
3203 		return -ENOMEM;
3204 	return 0;
3205 }
3206 
3207 static void rcu_free_wq(struct rcu_head *rcu)
3208 {
3209 	struct workqueue_struct *wq =
3210 		container_of(rcu, struct workqueue_struct, rcu);
3211 
3212 	if (!(wq->flags & WQ_UNBOUND))
3213 		free_percpu(wq->cpu_pwqs);
3214 	else
3215 		free_workqueue_attrs(wq->unbound_attrs);
3216 
3217 	kfree(wq->rescuer);
3218 	kfree(wq);
3219 }
3220 
3221 static void rcu_free_pool(struct rcu_head *rcu)
3222 {
3223 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3224 
3225 	ida_destroy(&pool->worker_ida);
3226 	free_workqueue_attrs(pool->attrs);
3227 	kfree(pool);
3228 }
3229 
3230 /**
3231  * put_unbound_pool - put a worker_pool
3232  * @pool: worker_pool to put
3233  *
3234  * Put @pool.  If its refcnt reaches zero, it gets destroyed in sched-RCU
3235  * safe manner.  get_unbound_pool() calls this function on its failure path
3236  * and this function should be able to release pools which went through,
3237  * successfully or not, init_worker_pool().
3238  *
3239  * Should be called with wq_pool_mutex held.
3240  */
3241 static void put_unbound_pool(struct worker_pool *pool)
3242 {
3243 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3244 	struct worker *worker;
3245 
3246 	lockdep_assert_held(&wq_pool_mutex);
3247 
3248 	if (--pool->refcnt)
3249 		return;
3250 
3251 	/* sanity checks */
3252 	if (WARN_ON(!(pool->cpu < 0)) ||
3253 	    WARN_ON(!list_empty(&pool->worklist)))
3254 		return;
3255 
3256 	/* release id and unhash */
3257 	if (pool->id >= 0)
3258 		idr_remove(&worker_pool_idr, pool->id);
3259 	hash_del(&pool->hash_node);
3260 
3261 	/*
3262 	 * Become the manager and destroy all workers.  Grabbing
3263 	 * manager_arb prevents @pool's workers from blocking on
3264 	 * attach_mutex.
3265 	 */
3266 	mutex_lock(&pool->manager_arb);
3267 
3268 	spin_lock_irq(&pool->lock);
3269 	while ((worker = first_idle_worker(pool)))
3270 		destroy_worker(worker);
3271 	WARN_ON(pool->nr_workers || pool->nr_idle);
3272 	spin_unlock_irq(&pool->lock);
3273 
3274 	mutex_lock(&pool->attach_mutex);
3275 	if (!list_empty(&pool->workers))
3276 		pool->detach_completion = &detach_completion;
3277 	mutex_unlock(&pool->attach_mutex);
3278 
3279 	if (pool->detach_completion)
3280 		wait_for_completion(pool->detach_completion);
3281 
3282 	mutex_unlock(&pool->manager_arb);
3283 
3284 	/* shut down the timers */
3285 	del_timer_sync(&pool->idle_timer);
3286 	del_timer_sync(&pool->mayday_timer);
3287 
3288 	/* sched-RCU protected to allow dereferences from get_work_pool() */
3289 	call_rcu_sched(&pool->rcu, rcu_free_pool);
3290 }
3291 
3292 /**
3293  * get_unbound_pool - get a worker_pool with the specified attributes
3294  * @attrs: the attributes of the worker_pool to get
3295  *
3296  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3297  * reference count and return it.  If there already is a matching
3298  * worker_pool, it will be used; otherwise, this function attempts to
3299  * create a new one.
3300  *
3301  * Should be called with wq_pool_mutex held.
3302  *
3303  * Return: On success, a worker_pool with the same attributes as @attrs.
3304  * On failure, %NULL.
3305  */
3306 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3307 {
3308 	u32 hash = wqattrs_hash(attrs);
3309 	struct worker_pool *pool;
3310 	int node;
3311 	int target_node = NUMA_NO_NODE;
3312 
3313 	lockdep_assert_held(&wq_pool_mutex);
3314 
3315 	/* do we already have a matching pool? */
3316 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3317 		if (wqattrs_equal(pool->attrs, attrs)) {
3318 			pool->refcnt++;
3319 			return pool;
3320 		}
3321 	}
3322 
3323 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3324 	if (wq_numa_enabled) {
3325 		for_each_node(node) {
3326 			if (cpumask_subset(attrs->cpumask,
3327 					   wq_numa_possible_cpumask[node])) {
3328 				target_node = node;
3329 				break;
3330 			}
3331 		}
3332 	}
3333 
3334 	/* nope, create a new one */
3335 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3336 	if (!pool || init_worker_pool(pool) < 0)
3337 		goto fail;
3338 
3339 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3340 	copy_workqueue_attrs(pool->attrs, attrs);
3341 	pool->node = target_node;
3342 
3343 	/*
3344 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3345 	 * 'struct workqueue_attrs' comments for detail.
3346 	 */
3347 	pool->attrs->no_numa = false;
3348 
3349 	if (worker_pool_assign_id(pool) < 0)
3350 		goto fail;
3351 
3352 	/* create and start the initial worker */
3353 	if (!create_worker(pool))
3354 		goto fail;
3355 
3356 	/* install */
3357 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3358 
3359 	return pool;
3360 fail:
3361 	if (pool)
3362 		put_unbound_pool(pool);
3363 	return NULL;
3364 }
3365 
3366 static void rcu_free_pwq(struct rcu_head *rcu)
3367 {
3368 	kmem_cache_free(pwq_cache,
3369 			container_of(rcu, struct pool_workqueue, rcu));
3370 }
3371 
3372 /*
3373  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3374  * and needs to be destroyed.
3375  */
3376 static void pwq_unbound_release_workfn(struct work_struct *work)
3377 {
3378 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3379 						  unbound_release_work);
3380 	struct workqueue_struct *wq = pwq->wq;
3381 	struct worker_pool *pool = pwq->pool;
3382 	bool is_last;
3383 
3384 	if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3385 		return;
3386 
3387 	mutex_lock(&wq->mutex);
3388 	list_del_rcu(&pwq->pwqs_node);
3389 	is_last = list_empty(&wq->pwqs);
3390 	mutex_unlock(&wq->mutex);
3391 
3392 	mutex_lock(&wq_pool_mutex);
3393 	put_unbound_pool(pool);
3394 	mutex_unlock(&wq_pool_mutex);
3395 
3396 	call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3397 
3398 	/*
3399 	 * If we're the last pwq going away, @wq is already dead and no one
3400 	 * is gonna access it anymore.  Schedule RCU free.
3401 	 */
3402 	if (is_last)
3403 		call_rcu_sched(&wq->rcu, rcu_free_wq);
3404 }
3405 
3406 /**
3407  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3408  * @pwq: target pool_workqueue
3409  *
3410  * If @pwq isn't freezing, set @pwq->max_active to the associated
3411  * workqueue's saved_max_active and activate delayed work items
3412  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3413  */
3414 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3415 {
3416 	struct workqueue_struct *wq = pwq->wq;
3417 	bool freezable = wq->flags & WQ_FREEZABLE;
3418 
3419 	/* for @wq->saved_max_active */
3420 	lockdep_assert_held(&wq->mutex);
3421 
3422 	/* fast exit for non-freezable wqs */
3423 	if (!freezable && pwq->max_active == wq->saved_max_active)
3424 		return;
3425 
3426 	spin_lock_irq(&pwq->pool->lock);
3427 
3428 	/*
3429 	 * During [un]freezing, the caller is responsible for ensuring that
3430 	 * this function is called at least once after @workqueue_freezing
3431 	 * is updated and visible.
3432 	 */
3433 	if (!freezable || !workqueue_freezing) {
3434 		pwq->max_active = wq->saved_max_active;
3435 
3436 		while (!list_empty(&pwq->delayed_works) &&
3437 		       pwq->nr_active < pwq->max_active)
3438 			pwq_activate_first_delayed(pwq);
3439 
3440 		/*
3441 		 * Need to kick a worker after thawed or an unbound wq's
3442 		 * max_active is bumped.  It's a slow path.  Do it always.
3443 		 */
3444 		wake_up_worker(pwq->pool);
3445 	} else {
3446 		pwq->max_active = 0;
3447 	}
3448 
3449 	spin_unlock_irq(&pwq->pool->lock);
3450 }
3451 
3452 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3453 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3454 		     struct worker_pool *pool)
3455 {
3456 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3457 
3458 	memset(pwq, 0, sizeof(*pwq));
3459 
3460 	pwq->pool = pool;
3461 	pwq->wq = wq;
3462 	pwq->flush_color = -1;
3463 	pwq->refcnt = 1;
3464 	INIT_LIST_HEAD(&pwq->delayed_works);
3465 	INIT_LIST_HEAD(&pwq->pwqs_node);
3466 	INIT_LIST_HEAD(&pwq->mayday_node);
3467 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3468 }
3469 
3470 /* sync @pwq with the current state of its associated wq and link it */
3471 static void link_pwq(struct pool_workqueue *pwq)
3472 {
3473 	struct workqueue_struct *wq = pwq->wq;
3474 
3475 	lockdep_assert_held(&wq->mutex);
3476 
3477 	/* may be called multiple times, ignore if already linked */
3478 	if (!list_empty(&pwq->pwqs_node))
3479 		return;
3480 
3481 	/* set the matching work_color */
3482 	pwq->work_color = wq->work_color;
3483 
3484 	/* sync max_active to the current setting */
3485 	pwq_adjust_max_active(pwq);
3486 
3487 	/* link in @pwq */
3488 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3489 }
3490 
3491 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3492 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3493 					const struct workqueue_attrs *attrs)
3494 {
3495 	struct worker_pool *pool;
3496 	struct pool_workqueue *pwq;
3497 
3498 	lockdep_assert_held(&wq_pool_mutex);
3499 
3500 	pool = get_unbound_pool(attrs);
3501 	if (!pool)
3502 		return NULL;
3503 
3504 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3505 	if (!pwq) {
3506 		put_unbound_pool(pool);
3507 		return NULL;
3508 	}
3509 
3510 	init_pwq(pwq, wq, pool);
3511 	return pwq;
3512 }
3513 
3514 /**
3515  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3516  * @attrs: the wq_attrs of the default pwq of the target workqueue
3517  * @node: the target NUMA node
3518  * @cpu_going_down: if >= 0, the CPU to consider as offline
3519  * @cpumask: outarg, the resulting cpumask
3520  *
3521  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3522  * @cpu_going_down is >= 0, that cpu is considered offline during
3523  * calculation.  The result is stored in @cpumask.
3524  *
3525  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3526  * enabled and @node has online CPUs requested by @attrs, the returned
3527  * cpumask is the intersection of the possible CPUs of @node and
3528  * @attrs->cpumask.
3529  *
3530  * The caller is responsible for ensuring that the cpumask of @node stays
3531  * stable.
3532  *
3533  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3534  * %false if equal.
3535  */
3536 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3537 				 int cpu_going_down, cpumask_t *cpumask)
3538 {
3539 	if (!wq_numa_enabled || attrs->no_numa)
3540 		goto use_dfl;
3541 
3542 	/* does @node have any online CPUs @attrs wants? */
3543 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3544 	if (cpu_going_down >= 0)
3545 		cpumask_clear_cpu(cpu_going_down, cpumask);
3546 
3547 	if (cpumask_empty(cpumask))
3548 		goto use_dfl;
3549 
3550 	/* yeap, return possible CPUs in @node that @attrs wants */
3551 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3552 	return !cpumask_equal(cpumask, attrs->cpumask);
3553 
3554 use_dfl:
3555 	cpumask_copy(cpumask, attrs->cpumask);
3556 	return false;
3557 }
3558 
3559 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3560 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3561 						   int node,
3562 						   struct pool_workqueue *pwq)
3563 {
3564 	struct pool_workqueue *old_pwq;
3565 
3566 	lockdep_assert_held(&wq_pool_mutex);
3567 	lockdep_assert_held(&wq->mutex);
3568 
3569 	/* link_pwq() can handle duplicate calls */
3570 	link_pwq(pwq);
3571 
3572 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3573 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3574 	return old_pwq;
3575 }
3576 
3577 /* context to store the prepared attrs & pwqs before applying */
3578 struct apply_wqattrs_ctx {
3579 	struct workqueue_struct	*wq;		/* target workqueue */
3580 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3581 	struct list_head	list;		/* queued for batching commit */
3582 	struct pool_workqueue	*dfl_pwq;
3583 	struct pool_workqueue	*pwq_tbl[];
3584 };
3585 
3586 /* free the resources after success or abort */
3587 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3588 {
3589 	if (ctx) {
3590 		int node;
3591 
3592 		for_each_node(node)
3593 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3594 		put_pwq_unlocked(ctx->dfl_pwq);
3595 
3596 		free_workqueue_attrs(ctx->attrs);
3597 
3598 		kfree(ctx);
3599 	}
3600 }
3601 
3602 /* allocate the attrs and pwqs for later installation */
3603 static struct apply_wqattrs_ctx *
3604 apply_wqattrs_prepare(struct workqueue_struct *wq,
3605 		      const struct workqueue_attrs *attrs)
3606 {
3607 	struct apply_wqattrs_ctx *ctx;
3608 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3609 	int node;
3610 
3611 	lockdep_assert_held(&wq_pool_mutex);
3612 
3613 	ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3614 		      GFP_KERNEL);
3615 
3616 	new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3617 	tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3618 	if (!ctx || !new_attrs || !tmp_attrs)
3619 		goto out_free;
3620 
3621 	/*
3622 	 * Calculate the attrs of the default pwq.
3623 	 * If the user configured cpumask doesn't overlap with the
3624 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3625 	 */
3626 	copy_workqueue_attrs(new_attrs, attrs);
3627 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3628 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
3629 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3630 
3631 	/*
3632 	 * We may create multiple pwqs with differing cpumasks.  Make a
3633 	 * copy of @new_attrs which will be modified and used to obtain
3634 	 * pools.
3635 	 */
3636 	copy_workqueue_attrs(tmp_attrs, new_attrs);
3637 
3638 	/*
3639 	 * If something goes wrong during CPU up/down, we'll fall back to
3640 	 * the default pwq covering whole @attrs->cpumask.  Always create
3641 	 * it even if we don't use it immediately.
3642 	 */
3643 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3644 	if (!ctx->dfl_pwq)
3645 		goto out_free;
3646 
3647 	for_each_node(node) {
3648 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3649 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3650 			if (!ctx->pwq_tbl[node])
3651 				goto out_free;
3652 		} else {
3653 			ctx->dfl_pwq->refcnt++;
3654 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
3655 		}
3656 	}
3657 
3658 	/* save the user configured attrs and sanitize it. */
3659 	copy_workqueue_attrs(new_attrs, attrs);
3660 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3661 	ctx->attrs = new_attrs;
3662 
3663 	ctx->wq = wq;
3664 	free_workqueue_attrs(tmp_attrs);
3665 	return ctx;
3666 
3667 out_free:
3668 	free_workqueue_attrs(tmp_attrs);
3669 	free_workqueue_attrs(new_attrs);
3670 	apply_wqattrs_cleanup(ctx);
3671 	return NULL;
3672 }
3673 
3674 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3675 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3676 {
3677 	int node;
3678 
3679 	/* all pwqs have been created successfully, let's install'em */
3680 	mutex_lock(&ctx->wq->mutex);
3681 
3682 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
3683 
3684 	/* save the previous pwq and install the new one */
3685 	for_each_node(node)
3686 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3687 							  ctx->pwq_tbl[node]);
3688 
3689 	/* @dfl_pwq might not have been used, ensure it's linked */
3690 	link_pwq(ctx->dfl_pwq);
3691 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
3692 
3693 	mutex_unlock(&ctx->wq->mutex);
3694 }
3695 
3696 static void apply_wqattrs_lock(void)
3697 {
3698 	/* CPUs should stay stable across pwq creations and installations */
3699 	get_online_cpus();
3700 	mutex_lock(&wq_pool_mutex);
3701 }
3702 
3703 static void apply_wqattrs_unlock(void)
3704 {
3705 	mutex_unlock(&wq_pool_mutex);
3706 	put_online_cpus();
3707 }
3708 
3709 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3710 					const struct workqueue_attrs *attrs)
3711 {
3712 	struct apply_wqattrs_ctx *ctx;
3713 
3714 	/* only unbound workqueues can change attributes */
3715 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3716 		return -EINVAL;
3717 
3718 	/* creating multiple pwqs breaks ordering guarantee */
3719 	if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3720 		return -EINVAL;
3721 
3722 	ctx = apply_wqattrs_prepare(wq, attrs);
3723 	if (!ctx)
3724 		return -ENOMEM;
3725 
3726 	/* the ctx has been prepared successfully, let's commit it */
3727 	apply_wqattrs_commit(ctx);
3728 	apply_wqattrs_cleanup(ctx);
3729 
3730 	return 0;
3731 }
3732 
3733 /**
3734  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3735  * @wq: the target workqueue
3736  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3737  *
3738  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
3739  * machines, this function maps a separate pwq to each NUMA node with
3740  * possibles CPUs in @attrs->cpumask so that work items are affine to the
3741  * NUMA node it was issued on.  Older pwqs are released as in-flight work
3742  * items finish.  Note that a work item which repeatedly requeues itself
3743  * back-to-back will stay on its current pwq.
3744  *
3745  * Performs GFP_KERNEL allocations.
3746  *
3747  * Return: 0 on success and -errno on failure.
3748  */
3749 int apply_workqueue_attrs(struct workqueue_struct *wq,
3750 			  const struct workqueue_attrs *attrs)
3751 {
3752 	int ret;
3753 
3754 	apply_wqattrs_lock();
3755 	ret = apply_workqueue_attrs_locked(wq, attrs);
3756 	apply_wqattrs_unlock();
3757 
3758 	return ret;
3759 }
3760 
3761 /**
3762  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3763  * @wq: the target workqueue
3764  * @cpu: the CPU coming up or going down
3765  * @online: whether @cpu is coming up or going down
3766  *
3767  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3768  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
3769  * @wq accordingly.
3770  *
3771  * If NUMA affinity can't be adjusted due to memory allocation failure, it
3772  * falls back to @wq->dfl_pwq which may not be optimal but is always
3773  * correct.
3774  *
3775  * Note that when the last allowed CPU of a NUMA node goes offline for a
3776  * workqueue with a cpumask spanning multiple nodes, the workers which were
3777  * already executing the work items for the workqueue will lose their CPU
3778  * affinity and may execute on any CPU.  This is similar to how per-cpu
3779  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
3780  * affinity, it's the user's responsibility to flush the work item from
3781  * CPU_DOWN_PREPARE.
3782  */
3783 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3784 				   bool online)
3785 {
3786 	int node = cpu_to_node(cpu);
3787 	int cpu_off = online ? -1 : cpu;
3788 	struct pool_workqueue *old_pwq = NULL, *pwq;
3789 	struct workqueue_attrs *target_attrs;
3790 	cpumask_t *cpumask;
3791 
3792 	lockdep_assert_held(&wq_pool_mutex);
3793 
3794 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3795 	    wq->unbound_attrs->no_numa)
3796 		return;
3797 
3798 	/*
3799 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3800 	 * Let's use a preallocated one.  The following buf is protected by
3801 	 * CPU hotplug exclusion.
3802 	 */
3803 	target_attrs = wq_update_unbound_numa_attrs_buf;
3804 	cpumask = target_attrs->cpumask;
3805 
3806 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3807 	pwq = unbound_pwq_by_node(wq, node);
3808 
3809 	/*
3810 	 * Let's determine what needs to be done.  If the target cpumask is
3811 	 * different from the default pwq's, we need to compare it to @pwq's
3812 	 * and create a new one if they don't match.  If the target cpumask
3813 	 * equals the default pwq's, the default pwq should be used.
3814 	 */
3815 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
3816 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
3817 			return;
3818 	} else {
3819 		goto use_dfl_pwq;
3820 	}
3821 
3822 	/* create a new pwq */
3823 	pwq = alloc_unbound_pwq(wq, target_attrs);
3824 	if (!pwq) {
3825 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3826 			wq->name);
3827 		goto use_dfl_pwq;
3828 	}
3829 
3830 	/* Install the new pwq. */
3831 	mutex_lock(&wq->mutex);
3832 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3833 	goto out_unlock;
3834 
3835 use_dfl_pwq:
3836 	mutex_lock(&wq->mutex);
3837 	spin_lock_irq(&wq->dfl_pwq->pool->lock);
3838 	get_pwq(wq->dfl_pwq);
3839 	spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3840 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3841 out_unlock:
3842 	mutex_unlock(&wq->mutex);
3843 	put_pwq_unlocked(old_pwq);
3844 }
3845 
3846 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
3847 {
3848 	bool highpri = wq->flags & WQ_HIGHPRI;
3849 	int cpu, ret;
3850 
3851 	if (!(wq->flags & WQ_UNBOUND)) {
3852 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3853 		if (!wq->cpu_pwqs)
3854 			return -ENOMEM;
3855 
3856 		for_each_possible_cpu(cpu) {
3857 			struct pool_workqueue *pwq =
3858 				per_cpu_ptr(wq->cpu_pwqs, cpu);
3859 			struct worker_pool *cpu_pools =
3860 				per_cpu(cpu_worker_pools, cpu);
3861 
3862 			init_pwq(pwq, wq, &cpu_pools[highpri]);
3863 
3864 			mutex_lock(&wq->mutex);
3865 			link_pwq(pwq);
3866 			mutex_unlock(&wq->mutex);
3867 		}
3868 		return 0;
3869 	} else if (wq->flags & __WQ_ORDERED) {
3870 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3871 		/* there should only be single pwq for ordering guarantee */
3872 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3873 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3874 		     "ordering guarantee broken for workqueue %s\n", wq->name);
3875 		return ret;
3876 	} else {
3877 		return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
3878 	}
3879 }
3880 
3881 static int wq_clamp_max_active(int max_active, unsigned int flags,
3882 			       const char *name)
3883 {
3884 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3885 
3886 	if (max_active < 1 || max_active > lim)
3887 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3888 			max_active, name, 1, lim);
3889 
3890 	return clamp_val(max_active, 1, lim);
3891 }
3892 
3893 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
3894 					       unsigned int flags,
3895 					       int max_active,
3896 					       struct lock_class_key *key,
3897 					       const char *lock_name, ...)
3898 {
3899 	size_t tbl_size = 0;
3900 	va_list args;
3901 	struct workqueue_struct *wq;
3902 	struct pool_workqueue *pwq;
3903 
3904 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
3905 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3906 		flags |= WQ_UNBOUND;
3907 
3908 	/* allocate wq and format name */
3909 	if (flags & WQ_UNBOUND)
3910 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
3911 
3912 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
3913 	if (!wq)
3914 		return NULL;
3915 
3916 	if (flags & WQ_UNBOUND) {
3917 		wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3918 		if (!wq->unbound_attrs)
3919 			goto err_free_wq;
3920 	}
3921 
3922 	va_start(args, lock_name);
3923 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
3924 	va_end(args);
3925 
3926 	max_active = max_active ?: WQ_DFL_ACTIVE;
3927 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
3928 
3929 	/* init wq */
3930 	wq->flags = flags;
3931 	wq->saved_max_active = max_active;
3932 	mutex_init(&wq->mutex);
3933 	atomic_set(&wq->nr_pwqs_to_flush, 0);
3934 	INIT_LIST_HEAD(&wq->pwqs);
3935 	INIT_LIST_HEAD(&wq->flusher_queue);
3936 	INIT_LIST_HEAD(&wq->flusher_overflow);
3937 	INIT_LIST_HEAD(&wq->maydays);
3938 
3939 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
3940 	INIT_LIST_HEAD(&wq->list);
3941 
3942 	if (alloc_and_link_pwqs(wq) < 0)
3943 		goto err_free_wq;
3944 
3945 	/*
3946 	 * Workqueues which may be used during memory reclaim should
3947 	 * have a rescuer to guarantee forward progress.
3948 	 */
3949 	if (flags & WQ_MEM_RECLAIM) {
3950 		struct worker *rescuer;
3951 
3952 		rescuer = alloc_worker(NUMA_NO_NODE);
3953 		if (!rescuer)
3954 			goto err_destroy;
3955 
3956 		rescuer->rescue_wq = wq;
3957 		rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
3958 					       wq->name);
3959 		if (IS_ERR(rescuer->task)) {
3960 			kfree(rescuer);
3961 			goto err_destroy;
3962 		}
3963 
3964 		wq->rescuer = rescuer;
3965 		kthread_bind_mask(rescuer->task, cpu_possible_mask);
3966 		wake_up_process(rescuer->task);
3967 	}
3968 
3969 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3970 		goto err_destroy;
3971 
3972 	/*
3973 	 * wq_pool_mutex protects global freeze state and workqueues list.
3974 	 * Grab it, adjust max_active and add the new @wq to workqueues
3975 	 * list.
3976 	 */
3977 	mutex_lock(&wq_pool_mutex);
3978 
3979 	mutex_lock(&wq->mutex);
3980 	for_each_pwq(pwq, wq)
3981 		pwq_adjust_max_active(pwq);
3982 	mutex_unlock(&wq->mutex);
3983 
3984 	list_add_tail_rcu(&wq->list, &workqueues);
3985 
3986 	mutex_unlock(&wq_pool_mutex);
3987 
3988 	return wq;
3989 
3990 err_free_wq:
3991 	free_workqueue_attrs(wq->unbound_attrs);
3992 	kfree(wq);
3993 	return NULL;
3994 err_destroy:
3995 	destroy_workqueue(wq);
3996 	return NULL;
3997 }
3998 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
3999 
4000 /**
4001  * destroy_workqueue - safely terminate a workqueue
4002  * @wq: target workqueue
4003  *
4004  * Safely destroy a workqueue. All work currently pending will be done first.
4005  */
4006 void destroy_workqueue(struct workqueue_struct *wq)
4007 {
4008 	struct pool_workqueue *pwq;
4009 	int node;
4010 
4011 	/* drain it before proceeding with destruction */
4012 	drain_workqueue(wq);
4013 
4014 	/* sanity checks */
4015 	mutex_lock(&wq->mutex);
4016 	for_each_pwq(pwq, wq) {
4017 		int i;
4018 
4019 		for (i = 0; i < WORK_NR_COLORS; i++) {
4020 			if (WARN_ON(pwq->nr_in_flight[i])) {
4021 				mutex_unlock(&wq->mutex);
4022 				return;
4023 			}
4024 		}
4025 
4026 		if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4027 		    WARN_ON(pwq->nr_active) ||
4028 		    WARN_ON(!list_empty(&pwq->delayed_works))) {
4029 			mutex_unlock(&wq->mutex);
4030 			return;
4031 		}
4032 	}
4033 	mutex_unlock(&wq->mutex);
4034 
4035 	/*
4036 	 * wq list is used to freeze wq, remove from list after
4037 	 * flushing is complete in case freeze races us.
4038 	 */
4039 	mutex_lock(&wq_pool_mutex);
4040 	list_del_rcu(&wq->list);
4041 	mutex_unlock(&wq_pool_mutex);
4042 
4043 	workqueue_sysfs_unregister(wq);
4044 
4045 	if (wq->rescuer)
4046 		kthread_stop(wq->rescuer->task);
4047 
4048 	if (!(wq->flags & WQ_UNBOUND)) {
4049 		/*
4050 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4051 		 * schedule RCU free.
4052 		 */
4053 		call_rcu_sched(&wq->rcu, rcu_free_wq);
4054 	} else {
4055 		/*
4056 		 * We're the sole accessor of @wq at this point.  Directly
4057 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4058 		 * @wq will be freed when the last pwq is released.
4059 		 */
4060 		for_each_node(node) {
4061 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4062 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4063 			put_pwq_unlocked(pwq);
4064 		}
4065 
4066 		/*
4067 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4068 		 * put.  Don't access it afterwards.
4069 		 */
4070 		pwq = wq->dfl_pwq;
4071 		wq->dfl_pwq = NULL;
4072 		put_pwq_unlocked(pwq);
4073 	}
4074 }
4075 EXPORT_SYMBOL_GPL(destroy_workqueue);
4076 
4077 /**
4078  * workqueue_set_max_active - adjust max_active of a workqueue
4079  * @wq: target workqueue
4080  * @max_active: new max_active value.
4081  *
4082  * Set max_active of @wq to @max_active.
4083  *
4084  * CONTEXT:
4085  * Don't call from IRQ context.
4086  */
4087 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4088 {
4089 	struct pool_workqueue *pwq;
4090 
4091 	/* disallow meddling with max_active for ordered workqueues */
4092 	if (WARN_ON(wq->flags & __WQ_ORDERED))
4093 		return;
4094 
4095 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4096 
4097 	mutex_lock(&wq->mutex);
4098 
4099 	wq->saved_max_active = max_active;
4100 
4101 	for_each_pwq(pwq, wq)
4102 		pwq_adjust_max_active(pwq);
4103 
4104 	mutex_unlock(&wq->mutex);
4105 }
4106 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4107 
4108 /**
4109  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4110  *
4111  * Determine whether %current is a workqueue rescuer.  Can be used from
4112  * work functions to determine whether it's being run off the rescuer task.
4113  *
4114  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4115  */
4116 bool current_is_workqueue_rescuer(void)
4117 {
4118 	struct worker *worker = current_wq_worker();
4119 
4120 	return worker && worker->rescue_wq;
4121 }
4122 
4123 /**
4124  * workqueue_congested - test whether a workqueue is congested
4125  * @cpu: CPU in question
4126  * @wq: target workqueue
4127  *
4128  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4129  * no synchronization around this function and the test result is
4130  * unreliable and only useful as advisory hints or for debugging.
4131  *
4132  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4133  * Note that both per-cpu and unbound workqueues may be associated with
4134  * multiple pool_workqueues which have separate congested states.  A
4135  * workqueue being congested on one CPU doesn't mean the workqueue is also
4136  * contested on other CPUs / NUMA nodes.
4137  *
4138  * Return:
4139  * %true if congested, %false otherwise.
4140  */
4141 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4142 {
4143 	struct pool_workqueue *pwq;
4144 	bool ret;
4145 
4146 	rcu_read_lock_sched();
4147 
4148 	if (cpu == WORK_CPU_UNBOUND)
4149 		cpu = smp_processor_id();
4150 
4151 	if (!(wq->flags & WQ_UNBOUND))
4152 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4153 	else
4154 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4155 
4156 	ret = !list_empty(&pwq->delayed_works);
4157 	rcu_read_unlock_sched();
4158 
4159 	return ret;
4160 }
4161 EXPORT_SYMBOL_GPL(workqueue_congested);
4162 
4163 /**
4164  * work_busy - test whether a work is currently pending or running
4165  * @work: the work to be tested
4166  *
4167  * Test whether @work is currently pending or running.  There is no
4168  * synchronization around this function and the test result is
4169  * unreliable and only useful as advisory hints or for debugging.
4170  *
4171  * Return:
4172  * OR'd bitmask of WORK_BUSY_* bits.
4173  */
4174 unsigned int work_busy(struct work_struct *work)
4175 {
4176 	struct worker_pool *pool;
4177 	unsigned long flags;
4178 	unsigned int ret = 0;
4179 
4180 	if (work_pending(work))
4181 		ret |= WORK_BUSY_PENDING;
4182 
4183 	local_irq_save(flags);
4184 	pool = get_work_pool(work);
4185 	if (pool) {
4186 		spin_lock(&pool->lock);
4187 		if (find_worker_executing_work(pool, work))
4188 			ret |= WORK_BUSY_RUNNING;
4189 		spin_unlock(&pool->lock);
4190 	}
4191 	local_irq_restore(flags);
4192 
4193 	return ret;
4194 }
4195 EXPORT_SYMBOL_GPL(work_busy);
4196 
4197 /**
4198  * set_worker_desc - set description for the current work item
4199  * @fmt: printf-style format string
4200  * @...: arguments for the format string
4201  *
4202  * This function can be called by a running work function to describe what
4203  * the work item is about.  If the worker task gets dumped, this
4204  * information will be printed out together to help debugging.  The
4205  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4206  */
4207 void set_worker_desc(const char *fmt, ...)
4208 {
4209 	struct worker *worker = current_wq_worker();
4210 	va_list args;
4211 
4212 	if (worker) {
4213 		va_start(args, fmt);
4214 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4215 		va_end(args);
4216 		worker->desc_valid = true;
4217 	}
4218 }
4219 
4220 /**
4221  * print_worker_info - print out worker information and description
4222  * @log_lvl: the log level to use when printing
4223  * @task: target task
4224  *
4225  * If @task is a worker and currently executing a work item, print out the
4226  * name of the workqueue being serviced and worker description set with
4227  * set_worker_desc() by the currently executing work item.
4228  *
4229  * This function can be safely called on any task as long as the
4230  * task_struct itself is accessible.  While safe, this function isn't
4231  * synchronized and may print out mixups or garbages of limited length.
4232  */
4233 void print_worker_info(const char *log_lvl, struct task_struct *task)
4234 {
4235 	work_func_t *fn = NULL;
4236 	char name[WQ_NAME_LEN] = { };
4237 	char desc[WORKER_DESC_LEN] = { };
4238 	struct pool_workqueue *pwq = NULL;
4239 	struct workqueue_struct *wq = NULL;
4240 	bool desc_valid = false;
4241 	struct worker *worker;
4242 
4243 	if (!(task->flags & PF_WQ_WORKER))
4244 		return;
4245 
4246 	/*
4247 	 * This function is called without any synchronization and @task
4248 	 * could be in any state.  Be careful with dereferences.
4249 	 */
4250 	worker = probe_kthread_data(task);
4251 
4252 	/*
4253 	 * Carefully copy the associated workqueue's workfn and name.  Keep
4254 	 * the original last '\0' in case the original contains garbage.
4255 	 */
4256 	probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4257 	probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4258 	probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4259 	probe_kernel_read(name, wq->name, sizeof(name) - 1);
4260 
4261 	/* copy worker description */
4262 	probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4263 	if (desc_valid)
4264 		probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4265 
4266 	if (fn || name[0] || desc[0]) {
4267 		printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4268 		if (desc[0])
4269 			pr_cont(" (%s)", desc);
4270 		pr_cont("\n");
4271 	}
4272 }
4273 
4274 static void pr_cont_pool_info(struct worker_pool *pool)
4275 {
4276 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4277 	if (pool->node != NUMA_NO_NODE)
4278 		pr_cont(" node=%d", pool->node);
4279 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4280 }
4281 
4282 static void pr_cont_work(bool comma, struct work_struct *work)
4283 {
4284 	if (work->func == wq_barrier_func) {
4285 		struct wq_barrier *barr;
4286 
4287 		barr = container_of(work, struct wq_barrier, work);
4288 
4289 		pr_cont("%s BAR(%d)", comma ? "," : "",
4290 			task_pid_nr(barr->task));
4291 	} else {
4292 		pr_cont("%s %pf", comma ? "," : "", work->func);
4293 	}
4294 }
4295 
4296 static void show_pwq(struct pool_workqueue *pwq)
4297 {
4298 	struct worker_pool *pool = pwq->pool;
4299 	struct work_struct *work;
4300 	struct worker *worker;
4301 	bool has_in_flight = false, has_pending = false;
4302 	int bkt;
4303 
4304 	pr_info("  pwq %d:", pool->id);
4305 	pr_cont_pool_info(pool);
4306 
4307 	pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4308 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4309 
4310 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4311 		if (worker->current_pwq == pwq) {
4312 			has_in_flight = true;
4313 			break;
4314 		}
4315 	}
4316 	if (has_in_flight) {
4317 		bool comma = false;
4318 
4319 		pr_info("    in-flight:");
4320 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4321 			if (worker->current_pwq != pwq)
4322 				continue;
4323 
4324 			pr_cont("%s %d%s:%pf", comma ? "," : "",
4325 				task_pid_nr(worker->task),
4326 				worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4327 				worker->current_func);
4328 			list_for_each_entry(work, &worker->scheduled, entry)
4329 				pr_cont_work(false, work);
4330 			comma = true;
4331 		}
4332 		pr_cont("\n");
4333 	}
4334 
4335 	list_for_each_entry(work, &pool->worklist, entry) {
4336 		if (get_work_pwq(work) == pwq) {
4337 			has_pending = true;
4338 			break;
4339 		}
4340 	}
4341 	if (has_pending) {
4342 		bool comma = false;
4343 
4344 		pr_info("    pending:");
4345 		list_for_each_entry(work, &pool->worklist, entry) {
4346 			if (get_work_pwq(work) != pwq)
4347 				continue;
4348 
4349 			pr_cont_work(comma, work);
4350 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4351 		}
4352 		pr_cont("\n");
4353 	}
4354 
4355 	if (!list_empty(&pwq->delayed_works)) {
4356 		bool comma = false;
4357 
4358 		pr_info("    delayed:");
4359 		list_for_each_entry(work, &pwq->delayed_works, entry) {
4360 			pr_cont_work(comma, work);
4361 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4362 		}
4363 		pr_cont("\n");
4364 	}
4365 }
4366 
4367 /**
4368  * show_workqueue_state - dump workqueue state
4369  *
4370  * Called from a sysrq handler and prints out all busy workqueues and
4371  * pools.
4372  */
4373 void show_workqueue_state(void)
4374 {
4375 	struct workqueue_struct *wq;
4376 	struct worker_pool *pool;
4377 	unsigned long flags;
4378 	int pi;
4379 
4380 	rcu_read_lock_sched();
4381 
4382 	pr_info("Showing busy workqueues and worker pools:\n");
4383 
4384 	list_for_each_entry_rcu(wq, &workqueues, list) {
4385 		struct pool_workqueue *pwq;
4386 		bool idle = true;
4387 
4388 		for_each_pwq(pwq, wq) {
4389 			if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4390 				idle = false;
4391 				break;
4392 			}
4393 		}
4394 		if (idle)
4395 			continue;
4396 
4397 		pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4398 
4399 		for_each_pwq(pwq, wq) {
4400 			spin_lock_irqsave(&pwq->pool->lock, flags);
4401 			if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4402 				show_pwq(pwq);
4403 			spin_unlock_irqrestore(&pwq->pool->lock, flags);
4404 		}
4405 	}
4406 
4407 	for_each_pool(pool, pi) {
4408 		struct worker *worker;
4409 		bool first = true;
4410 
4411 		spin_lock_irqsave(&pool->lock, flags);
4412 		if (pool->nr_workers == pool->nr_idle)
4413 			goto next_pool;
4414 
4415 		pr_info("pool %d:", pool->id);
4416 		pr_cont_pool_info(pool);
4417 		pr_cont(" hung=%us workers=%d",
4418 			jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4419 			pool->nr_workers);
4420 		if (pool->manager)
4421 			pr_cont(" manager: %d",
4422 				task_pid_nr(pool->manager->task));
4423 		list_for_each_entry(worker, &pool->idle_list, entry) {
4424 			pr_cont(" %s%d", first ? "idle: " : "",
4425 				task_pid_nr(worker->task));
4426 			first = false;
4427 		}
4428 		pr_cont("\n");
4429 	next_pool:
4430 		spin_unlock_irqrestore(&pool->lock, flags);
4431 	}
4432 
4433 	rcu_read_unlock_sched();
4434 }
4435 
4436 /*
4437  * CPU hotplug.
4438  *
4439  * There are two challenges in supporting CPU hotplug.  Firstly, there
4440  * are a lot of assumptions on strong associations among work, pwq and
4441  * pool which make migrating pending and scheduled works very
4442  * difficult to implement without impacting hot paths.  Secondly,
4443  * worker pools serve mix of short, long and very long running works making
4444  * blocked draining impractical.
4445  *
4446  * This is solved by allowing the pools to be disassociated from the CPU
4447  * running as an unbound one and allowing it to be reattached later if the
4448  * cpu comes back online.
4449  */
4450 
4451 static void wq_unbind_fn(struct work_struct *work)
4452 {
4453 	int cpu = smp_processor_id();
4454 	struct worker_pool *pool;
4455 	struct worker *worker;
4456 
4457 	for_each_cpu_worker_pool(pool, cpu) {
4458 		mutex_lock(&pool->attach_mutex);
4459 		spin_lock_irq(&pool->lock);
4460 
4461 		/*
4462 		 * We've blocked all attach/detach operations. Make all workers
4463 		 * unbound and set DISASSOCIATED.  Before this, all workers
4464 		 * except for the ones which are still executing works from
4465 		 * before the last CPU down must be on the cpu.  After
4466 		 * this, they may become diasporas.
4467 		 */
4468 		for_each_pool_worker(worker, pool)
4469 			worker->flags |= WORKER_UNBOUND;
4470 
4471 		pool->flags |= POOL_DISASSOCIATED;
4472 
4473 		spin_unlock_irq(&pool->lock);
4474 		mutex_unlock(&pool->attach_mutex);
4475 
4476 		/*
4477 		 * Call schedule() so that we cross rq->lock and thus can
4478 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4479 		 * This is necessary as scheduler callbacks may be invoked
4480 		 * from other cpus.
4481 		 */
4482 		schedule();
4483 
4484 		/*
4485 		 * Sched callbacks are disabled now.  Zap nr_running.
4486 		 * After this, nr_running stays zero and need_more_worker()
4487 		 * and keep_working() are always true as long as the
4488 		 * worklist is not empty.  This pool now behaves as an
4489 		 * unbound (in terms of concurrency management) pool which
4490 		 * are served by workers tied to the pool.
4491 		 */
4492 		atomic_set(&pool->nr_running, 0);
4493 
4494 		/*
4495 		 * With concurrency management just turned off, a busy
4496 		 * worker blocking could lead to lengthy stalls.  Kick off
4497 		 * unbound chain execution of currently pending work items.
4498 		 */
4499 		spin_lock_irq(&pool->lock);
4500 		wake_up_worker(pool);
4501 		spin_unlock_irq(&pool->lock);
4502 	}
4503 }
4504 
4505 /**
4506  * rebind_workers - rebind all workers of a pool to the associated CPU
4507  * @pool: pool of interest
4508  *
4509  * @pool->cpu is coming online.  Rebind all workers to the CPU.
4510  */
4511 static void rebind_workers(struct worker_pool *pool)
4512 {
4513 	struct worker *worker;
4514 
4515 	lockdep_assert_held(&pool->attach_mutex);
4516 
4517 	/*
4518 	 * Restore CPU affinity of all workers.  As all idle workers should
4519 	 * be on the run-queue of the associated CPU before any local
4520 	 * wake-ups for concurrency management happen, restore CPU affinity
4521 	 * of all workers first and then clear UNBOUND.  As we're called
4522 	 * from CPU_ONLINE, the following shouldn't fail.
4523 	 */
4524 	for_each_pool_worker(worker, pool)
4525 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4526 						  pool->attrs->cpumask) < 0);
4527 
4528 	spin_lock_irq(&pool->lock);
4529 	pool->flags &= ~POOL_DISASSOCIATED;
4530 
4531 	for_each_pool_worker(worker, pool) {
4532 		unsigned int worker_flags = worker->flags;
4533 
4534 		/*
4535 		 * A bound idle worker should actually be on the runqueue
4536 		 * of the associated CPU for local wake-ups targeting it to
4537 		 * work.  Kick all idle workers so that they migrate to the
4538 		 * associated CPU.  Doing this in the same loop as
4539 		 * replacing UNBOUND with REBOUND is safe as no worker will
4540 		 * be bound before @pool->lock is released.
4541 		 */
4542 		if (worker_flags & WORKER_IDLE)
4543 			wake_up_process(worker->task);
4544 
4545 		/*
4546 		 * We want to clear UNBOUND but can't directly call
4547 		 * worker_clr_flags() or adjust nr_running.  Atomically
4548 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4549 		 * @worker will clear REBOUND using worker_clr_flags() when
4550 		 * it initiates the next execution cycle thus restoring
4551 		 * concurrency management.  Note that when or whether
4552 		 * @worker clears REBOUND doesn't affect correctness.
4553 		 *
4554 		 * ACCESS_ONCE() is necessary because @worker->flags may be
4555 		 * tested without holding any lock in
4556 		 * wq_worker_waking_up().  Without it, NOT_RUNNING test may
4557 		 * fail incorrectly leading to premature concurrency
4558 		 * management operations.
4559 		 */
4560 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4561 		worker_flags |= WORKER_REBOUND;
4562 		worker_flags &= ~WORKER_UNBOUND;
4563 		ACCESS_ONCE(worker->flags) = worker_flags;
4564 	}
4565 
4566 	spin_unlock_irq(&pool->lock);
4567 }
4568 
4569 /**
4570  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4571  * @pool: unbound pool of interest
4572  * @cpu: the CPU which is coming up
4573  *
4574  * An unbound pool may end up with a cpumask which doesn't have any online
4575  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
4576  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
4577  * online CPU before, cpus_allowed of all its workers should be restored.
4578  */
4579 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4580 {
4581 	static cpumask_t cpumask;
4582 	struct worker *worker;
4583 
4584 	lockdep_assert_held(&pool->attach_mutex);
4585 
4586 	/* is @cpu allowed for @pool? */
4587 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4588 		return;
4589 
4590 	/* is @cpu the only online CPU? */
4591 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4592 	if (cpumask_weight(&cpumask) != 1)
4593 		return;
4594 
4595 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
4596 	for_each_pool_worker(worker, pool)
4597 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4598 						  pool->attrs->cpumask) < 0);
4599 }
4600 
4601 /*
4602  * Workqueues should be brought up before normal priority CPU notifiers.
4603  * This will be registered high priority CPU notifier.
4604  */
4605 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4606 					       unsigned long action,
4607 					       void *hcpu)
4608 {
4609 	int cpu = (unsigned long)hcpu;
4610 	struct worker_pool *pool;
4611 	struct workqueue_struct *wq;
4612 	int pi;
4613 
4614 	switch (action & ~CPU_TASKS_FROZEN) {
4615 	case CPU_UP_PREPARE:
4616 		for_each_cpu_worker_pool(pool, cpu) {
4617 			if (pool->nr_workers)
4618 				continue;
4619 			if (!create_worker(pool))
4620 				return NOTIFY_BAD;
4621 		}
4622 		break;
4623 
4624 	case CPU_DOWN_FAILED:
4625 	case CPU_ONLINE:
4626 		mutex_lock(&wq_pool_mutex);
4627 
4628 		for_each_pool(pool, pi) {
4629 			mutex_lock(&pool->attach_mutex);
4630 
4631 			if (pool->cpu == cpu)
4632 				rebind_workers(pool);
4633 			else if (pool->cpu < 0)
4634 				restore_unbound_workers_cpumask(pool, cpu);
4635 
4636 			mutex_unlock(&pool->attach_mutex);
4637 		}
4638 
4639 		/* update NUMA affinity of unbound workqueues */
4640 		list_for_each_entry(wq, &workqueues, list)
4641 			wq_update_unbound_numa(wq, cpu, true);
4642 
4643 		mutex_unlock(&wq_pool_mutex);
4644 		break;
4645 	}
4646 	return NOTIFY_OK;
4647 }
4648 
4649 /*
4650  * Workqueues should be brought down after normal priority CPU notifiers.
4651  * This will be registered as low priority CPU notifier.
4652  */
4653 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4654 						 unsigned long action,
4655 						 void *hcpu)
4656 {
4657 	int cpu = (unsigned long)hcpu;
4658 	struct work_struct unbind_work;
4659 	struct workqueue_struct *wq;
4660 
4661 	switch (action & ~CPU_TASKS_FROZEN) {
4662 	case CPU_DOWN_PREPARE:
4663 		/* unbinding per-cpu workers should happen on the local CPU */
4664 		INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4665 		queue_work_on(cpu, system_highpri_wq, &unbind_work);
4666 
4667 		/* update NUMA affinity of unbound workqueues */
4668 		mutex_lock(&wq_pool_mutex);
4669 		list_for_each_entry(wq, &workqueues, list)
4670 			wq_update_unbound_numa(wq, cpu, false);
4671 		mutex_unlock(&wq_pool_mutex);
4672 
4673 		/* wait for per-cpu unbinding to finish */
4674 		flush_work(&unbind_work);
4675 		destroy_work_on_stack(&unbind_work);
4676 		break;
4677 	}
4678 	return NOTIFY_OK;
4679 }
4680 
4681 #ifdef CONFIG_SMP
4682 
4683 struct work_for_cpu {
4684 	struct work_struct work;
4685 	long (*fn)(void *);
4686 	void *arg;
4687 	long ret;
4688 };
4689 
4690 static void work_for_cpu_fn(struct work_struct *work)
4691 {
4692 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4693 
4694 	wfc->ret = wfc->fn(wfc->arg);
4695 }
4696 
4697 /**
4698  * work_on_cpu - run a function in user context on a particular cpu
4699  * @cpu: the cpu to run on
4700  * @fn: the function to run
4701  * @arg: the function arg
4702  *
4703  * It is up to the caller to ensure that the cpu doesn't go offline.
4704  * The caller must not hold any locks which would prevent @fn from completing.
4705  *
4706  * Return: The value @fn returns.
4707  */
4708 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4709 {
4710 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4711 
4712 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4713 	schedule_work_on(cpu, &wfc.work);
4714 	flush_work(&wfc.work);
4715 	destroy_work_on_stack(&wfc.work);
4716 	return wfc.ret;
4717 }
4718 EXPORT_SYMBOL_GPL(work_on_cpu);
4719 #endif /* CONFIG_SMP */
4720 
4721 #ifdef CONFIG_FREEZER
4722 
4723 /**
4724  * freeze_workqueues_begin - begin freezing workqueues
4725  *
4726  * Start freezing workqueues.  After this function returns, all freezable
4727  * workqueues will queue new works to their delayed_works list instead of
4728  * pool->worklist.
4729  *
4730  * CONTEXT:
4731  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4732  */
4733 void freeze_workqueues_begin(void)
4734 {
4735 	struct workqueue_struct *wq;
4736 	struct pool_workqueue *pwq;
4737 
4738 	mutex_lock(&wq_pool_mutex);
4739 
4740 	WARN_ON_ONCE(workqueue_freezing);
4741 	workqueue_freezing = true;
4742 
4743 	list_for_each_entry(wq, &workqueues, list) {
4744 		mutex_lock(&wq->mutex);
4745 		for_each_pwq(pwq, wq)
4746 			pwq_adjust_max_active(pwq);
4747 		mutex_unlock(&wq->mutex);
4748 	}
4749 
4750 	mutex_unlock(&wq_pool_mutex);
4751 }
4752 
4753 /**
4754  * freeze_workqueues_busy - are freezable workqueues still busy?
4755  *
4756  * Check whether freezing is complete.  This function must be called
4757  * between freeze_workqueues_begin() and thaw_workqueues().
4758  *
4759  * CONTEXT:
4760  * Grabs and releases wq_pool_mutex.
4761  *
4762  * Return:
4763  * %true if some freezable workqueues are still busy.  %false if freezing
4764  * is complete.
4765  */
4766 bool freeze_workqueues_busy(void)
4767 {
4768 	bool busy = false;
4769 	struct workqueue_struct *wq;
4770 	struct pool_workqueue *pwq;
4771 
4772 	mutex_lock(&wq_pool_mutex);
4773 
4774 	WARN_ON_ONCE(!workqueue_freezing);
4775 
4776 	list_for_each_entry(wq, &workqueues, list) {
4777 		if (!(wq->flags & WQ_FREEZABLE))
4778 			continue;
4779 		/*
4780 		 * nr_active is monotonically decreasing.  It's safe
4781 		 * to peek without lock.
4782 		 */
4783 		rcu_read_lock_sched();
4784 		for_each_pwq(pwq, wq) {
4785 			WARN_ON_ONCE(pwq->nr_active < 0);
4786 			if (pwq->nr_active) {
4787 				busy = true;
4788 				rcu_read_unlock_sched();
4789 				goto out_unlock;
4790 			}
4791 		}
4792 		rcu_read_unlock_sched();
4793 	}
4794 out_unlock:
4795 	mutex_unlock(&wq_pool_mutex);
4796 	return busy;
4797 }
4798 
4799 /**
4800  * thaw_workqueues - thaw workqueues
4801  *
4802  * Thaw workqueues.  Normal queueing is restored and all collected
4803  * frozen works are transferred to their respective pool worklists.
4804  *
4805  * CONTEXT:
4806  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4807  */
4808 void thaw_workqueues(void)
4809 {
4810 	struct workqueue_struct *wq;
4811 	struct pool_workqueue *pwq;
4812 
4813 	mutex_lock(&wq_pool_mutex);
4814 
4815 	if (!workqueue_freezing)
4816 		goto out_unlock;
4817 
4818 	workqueue_freezing = false;
4819 
4820 	/* restore max_active and repopulate worklist */
4821 	list_for_each_entry(wq, &workqueues, list) {
4822 		mutex_lock(&wq->mutex);
4823 		for_each_pwq(pwq, wq)
4824 			pwq_adjust_max_active(pwq);
4825 		mutex_unlock(&wq->mutex);
4826 	}
4827 
4828 out_unlock:
4829 	mutex_unlock(&wq_pool_mutex);
4830 }
4831 #endif /* CONFIG_FREEZER */
4832 
4833 static int workqueue_apply_unbound_cpumask(void)
4834 {
4835 	LIST_HEAD(ctxs);
4836 	int ret = 0;
4837 	struct workqueue_struct *wq;
4838 	struct apply_wqattrs_ctx *ctx, *n;
4839 
4840 	lockdep_assert_held(&wq_pool_mutex);
4841 
4842 	list_for_each_entry(wq, &workqueues, list) {
4843 		if (!(wq->flags & WQ_UNBOUND))
4844 			continue;
4845 		/* creating multiple pwqs breaks ordering guarantee */
4846 		if (wq->flags & __WQ_ORDERED)
4847 			continue;
4848 
4849 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4850 		if (!ctx) {
4851 			ret = -ENOMEM;
4852 			break;
4853 		}
4854 
4855 		list_add_tail(&ctx->list, &ctxs);
4856 	}
4857 
4858 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
4859 		if (!ret)
4860 			apply_wqattrs_commit(ctx);
4861 		apply_wqattrs_cleanup(ctx);
4862 	}
4863 
4864 	return ret;
4865 }
4866 
4867 /**
4868  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4869  *  @cpumask: the cpumask to set
4870  *
4871  *  The low-level workqueues cpumask is a global cpumask that limits
4872  *  the affinity of all unbound workqueues.  This function check the @cpumask
4873  *  and apply it to all unbound workqueues and updates all pwqs of them.
4874  *
4875  *  Retun:	0	- Success
4876  *  		-EINVAL	- Invalid @cpumask
4877  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
4878  */
4879 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4880 {
4881 	int ret = -EINVAL;
4882 	cpumask_var_t saved_cpumask;
4883 
4884 	if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4885 		return -ENOMEM;
4886 
4887 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
4888 	if (!cpumask_empty(cpumask)) {
4889 		apply_wqattrs_lock();
4890 
4891 		/* save the old wq_unbound_cpumask. */
4892 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4893 
4894 		/* update wq_unbound_cpumask at first and apply it to wqs. */
4895 		cpumask_copy(wq_unbound_cpumask, cpumask);
4896 		ret = workqueue_apply_unbound_cpumask();
4897 
4898 		/* restore the wq_unbound_cpumask when failed. */
4899 		if (ret < 0)
4900 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4901 
4902 		apply_wqattrs_unlock();
4903 	}
4904 
4905 	free_cpumask_var(saved_cpumask);
4906 	return ret;
4907 }
4908 
4909 #ifdef CONFIG_SYSFS
4910 /*
4911  * Workqueues with WQ_SYSFS flag set is visible to userland via
4912  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
4913  * following attributes.
4914  *
4915  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
4916  *  max_active	RW int	: maximum number of in-flight work items
4917  *
4918  * Unbound workqueues have the following extra attributes.
4919  *
4920  *  id		RO int	: the associated pool ID
4921  *  nice	RW int	: nice value of the workers
4922  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
4923  */
4924 struct wq_device {
4925 	struct workqueue_struct		*wq;
4926 	struct device			dev;
4927 };
4928 
4929 static struct workqueue_struct *dev_to_wq(struct device *dev)
4930 {
4931 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4932 
4933 	return wq_dev->wq;
4934 }
4935 
4936 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4937 			    char *buf)
4938 {
4939 	struct workqueue_struct *wq = dev_to_wq(dev);
4940 
4941 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4942 }
4943 static DEVICE_ATTR_RO(per_cpu);
4944 
4945 static ssize_t max_active_show(struct device *dev,
4946 			       struct device_attribute *attr, char *buf)
4947 {
4948 	struct workqueue_struct *wq = dev_to_wq(dev);
4949 
4950 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4951 }
4952 
4953 static ssize_t max_active_store(struct device *dev,
4954 				struct device_attribute *attr, const char *buf,
4955 				size_t count)
4956 {
4957 	struct workqueue_struct *wq = dev_to_wq(dev);
4958 	int val;
4959 
4960 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4961 		return -EINVAL;
4962 
4963 	workqueue_set_max_active(wq, val);
4964 	return count;
4965 }
4966 static DEVICE_ATTR_RW(max_active);
4967 
4968 static struct attribute *wq_sysfs_attrs[] = {
4969 	&dev_attr_per_cpu.attr,
4970 	&dev_attr_max_active.attr,
4971 	NULL,
4972 };
4973 ATTRIBUTE_GROUPS(wq_sysfs);
4974 
4975 static ssize_t wq_pool_ids_show(struct device *dev,
4976 				struct device_attribute *attr, char *buf)
4977 {
4978 	struct workqueue_struct *wq = dev_to_wq(dev);
4979 	const char *delim = "";
4980 	int node, written = 0;
4981 
4982 	rcu_read_lock_sched();
4983 	for_each_node(node) {
4984 		written += scnprintf(buf + written, PAGE_SIZE - written,
4985 				     "%s%d:%d", delim, node,
4986 				     unbound_pwq_by_node(wq, node)->pool->id);
4987 		delim = " ";
4988 	}
4989 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4990 	rcu_read_unlock_sched();
4991 
4992 	return written;
4993 }
4994 
4995 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4996 			    char *buf)
4997 {
4998 	struct workqueue_struct *wq = dev_to_wq(dev);
4999 	int written;
5000 
5001 	mutex_lock(&wq->mutex);
5002 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5003 	mutex_unlock(&wq->mutex);
5004 
5005 	return written;
5006 }
5007 
5008 /* prepare workqueue_attrs for sysfs store operations */
5009 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5010 {
5011 	struct workqueue_attrs *attrs;
5012 
5013 	lockdep_assert_held(&wq_pool_mutex);
5014 
5015 	attrs = alloc_workqueue_attrs(GFP_KERNEL);
5016 	if (!attrs)
5017 		return NULL;
5018 
5019 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5020 	return attrs;
5021 }
5022 
5023 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5024 			     const char *buf, size_t count)
5025 {
5026 	struct workqueue_struct *wq = dev_to_wq(dev);
5027 	struct workqueue_attrs *attrs;
5028 	int ret = -ENOMEM;
5029 
5030 	apply_wqattrs_lock();
5031 
5032 	attrs = wq_sysfs_prep_attrs(wq);
5033 	if (!attrs)
5034 		goto out_unlock;
5035 
5036 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5037 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5038 		ret = apply_workqueue_attrs_locked(wq, attrs);
5039 	else
5040 		ret = -EINVAL;
5041 
5042 out_unlock:
5043 	apply_wqattrs_unlock();
5044 	free_workqueue_attrs(attrs);
5045 	return ret ?: count;
5046 }
5047 
5048 static ssize_t wq_cpumask_show(struct device *dev,
5049 			       struct device_attribute *attr, char *buf)
5050 {
5051 	struct workqueue_struct *wq = dev_to_wq(dev);
5052 	int written;
5053 
5054 	mutex_lock(&wq->mutex);
5055 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5056 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5057 	mutex_unlock(&wq->mutex);
5058 	return written;
5059 }
5060 
5061 static ssize_t wq_cpumask_store(struct device *dev,
5062 				struct device_attribute *attr,
5063 				const char *buf, size_t count)
5064 {
5065 	struct workqueue_struct *wq = dev_to_wq(dev);
5066 	struct workqueue_attrs *attrs;
5067 	int ret = -ENOMEM;
5068 
5069 	apply_wqattrs_lock();
5070 
5071 	attrs = wq_sysfs_prep_attrs(wq);
5072 	if (!attrs)
5073 		goto out_unlock;
5074 
5075 	ret = cpumask_parse(buf, attrs->cpumask);
5076 	if (!ret)
5077 		ret = apply_workqueue_attrs_locked(wq, attrs);
5078 
5079 out_unlock:
5080 	apply_wqattrs_unlock();
5081 	free_workqueue_attrs(attrs);
5082 	return ret ?: count;
5083 }
5084 
5085 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5086 			    char *buf)
5087 {
5088 	struct workqueue_struct *wq = dev_to_wq(dev);
5089 	int written;
5090 
5091 	mutex_lock(&wq->mutex);
5092 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5093 			    !wq->unbound_attrs->no_numa);
5094 	mutex_unlock(&wq->mutex);
5095 
5096 	return written;
5097 }
5098 
5099 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5100 			     const char *buf, size_t count)
5101 {
5102 	struct workqueue_struct *wq = dev_to_wq(dev);
5103 	struct workqueue_attrs *attrs;
5104 	int v, ret = -ENOMEM;
5105 
5106 	apply_wqattrs_lock();
5107 
5108 	attrs = wq_sysfs_prep_attrs(wq);
5109 	if (!attrs)
5110 		goto out_unlock;
5111 
5112 	ret = -EINVAL;
5113 	if (sscanf(buf, "%d", &v) == 1) {
5114 		attrs->no_numa = !v;
5115 		ret = apply_workqueue_attrs_locked(wq, attrs);
5116 	}
5117 
5118 out_unlock:
5119 	apply_wqattrs_unlock();
5120 	free_workqueue_attrs(attrs);
5121 	return ret ?: count;
5122 }
5123 
5124 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5125 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5126 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5127 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5128 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5129 	__ATTR_NULL,
5130 };
5131 
5132 static struct bus_type wq_subsys = {
5133 	.name				= "workqueue",
5134 	.dev_groups			= wq_sysfs_groups,
5135 };
5136 
5137 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5138 		struct device_attribute *attr, char *buf)
5139 {
5140 	int written;
5141 
5142 	mutex_lock(&wq_pool_mutex);
5143 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5144 			    cpumask_pr_args(wq_unbound_cpumask));
5145 	mutex_unlock(&wq_pool_mutex);
5146 
5147 	return written;
5148 }
5149 
5150 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5151 		struct device_attribute *attr, const char *buf, size_t count)
5152 {
5153 	cpumask_var_t cpumask;
5154 	int ret;
5155 
5156 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5157 		return -ENOMEM;
5158 
5159 	ret = cpumask_parse(buf, cpumask);
5160 	if (!ret)
5161 		ret = workqueue_set_unbound_cpumask(cpumask);
5162 
5163 	free_cpumask_var(cpumask);
5164 	return ret ? ret : count;
5165 }
5166 
5167 static struct device_attribute wq_sysfs_cpumask_attr =
5168 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5169 	       wq_unbound_cpumask_store);
5170 
5171 static int __init wq_sysfs_init(void)
5172 {
5173 	int err;
5174 
5175 	err = subsys_virtual_register(&wq_subsys, NULL);
5176 	if (err)
5177 		return err;
5178 
5179 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5180 }
5181 core_initcall(wq_sysfs_init);
5182 
5183 static void wq_device_release(struct device *dev)
5184 {
5185 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5186 
5187 	kfree(wq_dev);
5188 }
5189 
5190 /**
5191  * workqueue_sysfs_register - make a workqueue visible in sysfs
5192  * @wq: the workqueue to register
5193  *
5194  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5195  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5196  * which is the preferred method.
5197  *
5198  * Workqueue user should use this function directly iff it wants to apply
5199  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5200  * apply_workqueue_attrs() may race against userland updating the
5201  * attributes.
5202  *
5203  * Return: 0 on success, -errno on failure.
5204  */
5205 int workqueue_sysfs_register(struct workqueue_struct *wq)
5206 {
5207 	struct wq_device *wq_dev;
5208 	int ret;
5209 
5210 	/*
5211 	 * Adjusting max_active or creating new pwqs by applying
5212 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5213 	 * workqueues.
5214 	 */
5215 	if (WARN_ON(wq->flags & __WQ_ORDERED))
5216 		return -EINVAL;
5217 
5218 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5219 	if (!wq_dev)
5220 		return -ENOMEM;
5221 
5222 	wq_dev->wq = wq;
5223 	wq_dev->dev.bus = &wq_subsys;
5224 	wq_dev->dev.init_name = wq->name;
5225 	wq_dev->dev.release = wq_device_release;
5226 
5227 	/*
5228 	 * unbound_attrs are created separately.  Suppress uevent until
5229 	 * everything is ready.
5230 	 */
5231 	dev_set_uevent_suppress(&wq_dev->dev, true);
5232 
5233 	ret = device_register(&wq_dev->dev);
5234 	if (ret) {
5235 		kfree(wq_dev);
5236 		wq->wq_dev = NULL;
5237 		return ret;
5238 	}
5239 
5240 	if (wq->flags & WQ_UNBOUND) {
5241 		struct device_attribute *attr;
5242 
5243 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5244 			ret = device_create_file(&wq_dev->dev, attr);
5245 			if (ret) {
5246 				device_unregister(&wq_dev->dev);
5247 				wq->wq_dev = NULL;
5248 				return ret;
5249 			}
5250 		}
5251 	}
5252 
5253 	dev_set_uevent_suppress(&wq_dev->dev, false);
5254 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5255 	return 0;
5256 }
5257 
5258 /**
5259  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5260  * @wq: the workqueue to unregister
5261  *
5262  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5263  */
5264 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5265 {
5266 	struct wq_device *wq_dev = wq->wq_dev;
5267 
5268 	if (!wq->wq_dev)
5269 		return;
5270 
5271 	wq->wq_dev = NULL;
5272 	device_unregister(&wq_dev->dev);
5273 }
5274 #else	/* CONFIG_SYSFS */
5275 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5276 #endif	/* CONFIG_SYSFS */
5277 
5278 /*
5279  * Workqueue watchdog.
5280  *
5281  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5282  * flush dependency, a concurrency managed work item which stays RUNNING
5283  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5284  * usual warning mechanisms don't trigger and internal workqueue state is
5285  * largely opaque.
5286  *
5287  * Workqueue watchdog monitors all worker pools periodically and dumps
5288  * state if some pools failed to make forward progress for a while where
5289  * forward progress is defined as the first item on ->worklist changing.
5290  *
5291  * This mechanism is controlled through the kernel parameter
5292  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5293  * corresponding sysfs parameter file.
5294  */
5295 #ifdef CONFIG_WQ_WATCHDOG
5296 
5297 static void wq_watchdog_timer_fn(unsigned long data);
5298 
5299 static unsigned long wq_watchdog_thresh = 30;
5300 static struct timer_list wq_watchdog_timer =
5301 	TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5302 
5303 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5304 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5305 
5306 static void wq_watchdog_reset_touched(void)
5307 {
5308 	int cpu;
5309 
5310 	wq_watchdog_touched = jiffies;
5311 	for_each_possible_cpu(cpu)
5312 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5313 }
5314 
5315 static void wq_watchdog_timer_fn(unsigned long data)
5316 {
5317 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5318 	bool lockup_detected = false;
5319 	struct worker_pool *pool;
5320 	int pi;
5321 
5322 	if (!thresh)
5323 		return;
5324 
5325 	rcu_read_lock();
5326 
5327 	for_each_pool(pool, pi) {
5328 		unsigned long pool_ts, touched, ts;
5329 
5330 		if (list_empty(&pool->worklist))
5331 			continue;
5332 
5333 		/* get the latest of pool and touched timestamps */
5334 		pool_ts = READ_ONCE(pool->watchdog_ts);
5335 		touched = READ_ONCE(wq_watchdog_touched);
5336 
5337 		if (time_after(pool_ts, touched))
5338 			ts = pool_ts;
5339 		else
5340 			ts = touched;
5341 
5342 		if (pool->cpu >= 0) {
5343 			unsigned long cpu_touched =
5344 				READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5345 						  pool->cpu));
5346 			if (time_after(cpu_touched, ts))
5347 				ts = cpu_touched;
5348 		}
5349 
5350 		/* did we stall? */
5351 		if (time_after(jiffies, ts + thresh)) {
5352 			lockup_detected = true;
5353 			pr_emerg("BUG: workqueue lockup - pool");
5354 			pr_cont_pool_info(pool);
5355 			pr_cont(" stuck for %us!\n",
5356 				jiffies_to_msecs(jiffies - pool_ts) / 1000);
5357 		}
5358 	}
5359 
5360 	rcu_read_unlock();
5361 
5362 	if (lockup_detected)
5363 		show_workqueue_state();
5364 
5365 	wq_watchdog_reset_touched();
5366 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5367 }
5368 
5369 void wq_watchdog_touch(int cpu)
5370 {
5371 	if (cpu >= 0)
5372 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5373 	else
5374 		wq_watchdog_touched = jiffies;
5375 }
5376 
5377 static void wq_watchdog_set_thresh(unsigned long thresh)
5378 {
5379 	wq_watchdog_thresh = 0;
5380 	del_timer_sync(&wq_watchdog_timer);
5381 
5382 	if (thresh) {
5383 		wq_watchdog_thresh = thresh;
5384 		wq_watchdog_reset_touched();
5385 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5386 	}
5387 }
5388 
5389 static int wq_watchdog_param_set_thresh(const char *val,
5390 					const struct kernel_param *kp)
5391 {
5392 	unsigned long thresh;
5393 	int ret;
5394 
5395 	ret = kstrtoul(val, 0, &thresh);
5396 	if (ret)
5397 		return ret;
5398 
5399 	if (system_wq)
5400 		wq_watchdog_set_thresh(thresh);
5401 	else
5402 		wq_watchdog_thresh = thresh;
5403 
5404 	return 0;
5405 }
5406 
5407 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5408 	.set	= wq_watchdog_param_set_thresh,
5409 	.get	= param_get_ulong,
5410 };
5411 
5412 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5413 		0644);
5414 
5415 static void wq_watchdog_init(void)
5416 {
5417 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5418 }
5419 
5420 #else	/* CONFIG_WQ_WATCHDOG */
5421 
5422 static inline void wq_watchdog_init(void) { }
5423 
5424 #endif	/* CONFIG_WQ_WATCHDOG */
5425 
5426 static void __init wq_numa_init(void)
5427 {
5428 	cpumask_var_t *tbl;
5429 	int node, cpu;
5430 
5431 	if (num_possible_nodes() <= 1)
5432 		return;
5433 
5434 	if (wq_disable_numa) {
5435 		pr_info("workqueue: NUMA affinity support disabled\n");
5436 		return;
5437 	}
5438 
5439 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5440 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
5441 
5442 	/*
5443 	 * We want masks of possible CPUs of each node which isn't readily
5444 	 * available.  Build one from cpu_to_node() which should have been
5445 	 * fully initialized by now.
5446 	 */
5447 	tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
5448 	BUG_ON(!tbl);
5449 
5450 	for_each_node(node)
5451 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5452 				node_online(node) ? node : NUMA_NO_NODE));
5453 
5454 	for_each_possible_cpu(cpu) {
5455 		node = cpu_to_node(cpu);
5456 		if (WARN_ON(node == NUMA_NO_NODE)) {
5457 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5458 			/* happens iff arch is bonkers, let's just proceed */
5459 			return;
5460 		}
5461 		cpumask_set_cpu(cpu, tbl[node]);
5462 	}
5463 
5464 	wq_numa_possible_cpumask = tbl;
5465 	wq_numa_enabled = true;
5466 }
5467 
5468 static int __init init_workqueues(void)
5469 {
5470 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5471 	int i, cpu;
5472 
5473 	WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5474 
5475 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5476 	cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5477 
5478 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5479 
5480 	cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
5481 	hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
5482 
5483 	wq_numa_init();
5484 
5485 	/* initialize CPU pools */
5486 	for_each_possible_cpu(cpu) {
5487 		struct worker_pool *pool;
5488 
5489 		i = 0;
5490 		for_each_cpu_worker_pool(pool, cpu) {
5491 			BUG_ON(init_worker_pool(pool));
5492 			pool->cpu = cpu;
5493 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5494 			pool->attrs->nice = std_nice[i++];
5495 			pool->node = cpu_to_node(cpu);
5496 
5497 			/* alloc pool ID */
5498 			mutex_lock(&wq_pool_mutex);
5499 			BUG_ON(worker_pool_assign_id(pool));
5500 			mutex_unlock(&wq_pool_mutex);
5501 		}
5502 	}
5503 
5504 	/* create the initial worker */
5505 	for_each_online_cpu(cpu) {
5506 		struct worker_pool *pool;
5507 
5508 		for_each_cpu_worker_pool(pool, cpu) {
5509 			pool->flags &= ~POOL_DISASSOCIATED;
5510 			BUG_ON(!create_worker(pool));
5511 		}
5512 	}
5513 
5514 	/* create default unbound and ordered wq attrs */
5515 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5516 		struct workqueue_attrs *attrs;
5517 
5518 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5519 		attrs->nice = std_nice[i];
5520 		unbound_std_wq_attrs[i] = attrs;
5521 
5522 		/*
5523 		 * An ordered wq should have only one pwq as ordering is
5524 		 * guaranteed by max_active which is enforced by pwqs.
5525 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
5526 		 */
5527 		BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5528 		attrs->nice = std_nice[i];
5529 		attrs->no_numa = true;
5530 		ordered_wq_attrs[i] = attrs;
5531 	}
5532 
5533 	system_wq = alloc_workqueue("events", 0, 0);
5534 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5535 	system_long_wq = alloc_workqueue("events_long", 0, 0);
5536 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5537 					    WQ_UNBOUND_MAX_ACTIVE);
5538 	system_freezable_wq = alloc_workqueue("events_freezable",
5539 					      WQ_FREEZABLE, 0);
5540 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5541 					      WQ_POWER_EFFICIENT, 0);
5542 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5543 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5544 					      0);
5545 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5546 	       !system_unbound_wq || !system_freezable_wq ||
5547 	       !system_power_efficient_wq ||
5548 	       !system_freezable_power_efficient_wq);
5549 
5550 	wq_watchdog_init();
5551 
5552 	return 0;
5553 }
5554 early_initcall(init_workqueues);
5555