1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/workqueue.c - generic async execution with shared worker pool 4 * 5 * Copyright (C) 2002 Ingo Molnar 6 * 7 * Derived from the taskqueue/keventd code by: 8 * David Woodhouse <dwmw2@infradead.org> 9 * Andrew Morton 10 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 11 * Theodore Ts'o <tytso@mit.edu> 12 * 13 * Made to use alloc_percpu by Christoph Lameter. 14 * 15 * Copyright (C) 2010 SUSE Linux Products GmbH 16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org> 17 * 18 * This is the generic async execution mechanism. Work items as are 19 * executed in process context. The worker pool is shared and 20 * automatically managed. There are two worker pools for each CPU (one for 21 * normal work items and the other for high priority ones) and some extra 22 * pools for workqueues which are not bound to any specific CPU - the 23 * number of these backing pools is dynamic. 24 * 25 * Please read Documentation/core-api/workqueue.rst for details. 26 */ 27 28 #include <linux/export.h> 29 #include <linux/kernel.h> 30 #include <linux/sched.h> 31 #include <linux/init.h> 32 #include <linux/signal.h> 33 #include <linux/completion.h> 34 #include <linux/workqueue.h> 35 #include <linux/slab.h> 36 #include <linux/cpu.h> 37 #include <linux/notifier.h> 38 #include <linux/kthread.h> 39 #include <linux/hardirq.h> 40 #include <linux/mempolicy.h> 41 #include <linux/freezer.h> 42 #include <linux/debug_locks.h> 43 #include <linux/lockdep.h> 44 #include <linux/idr.h> 45 #include <linux/jhash.h> 46 #include <linux/hashtable.h> 47 #include <linux/rculist.h> 48 #include <linux/nodemask.h> 49 #include <linux/moduleparam.h> 50 #include <linux/uaccess.h> 51 #include <linux/sched/isolation.h> 52 #include <linux/nmi.h> 53 54 #include "workqueue_internal.h" 55 56 enum { 57 /* 58 * worker_pool flags 59 * 60 * A bound pool is either associated or disassociated with its CPU. 61 * While associated (!DISASSOCIATED), all workers are bound to the 62 * CPU and none has %WORKER_UNBOUND set and concurrency management 63 * is in effect. 64 * 65 * While DISASSOCIATED, the cpu may be offline and all workers have 66 * %WORKER_UNBOUND set and concurrency management disabled, and may 67 * be executing on any CPU. The pool behaves as an unbound one. 68 * 69 * Note that DISASSOCIATED should be flipped only while holding 70 * wq_pool_attach_mutex to avoid changing binding state while 71 * worker_attach_to_pool() is in progress. 72 */ 73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */ 74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */ 75 76 /* worker flags */ 77 WORKER_DIE = 1 << 1, /* die die die */ 78 WORKER_IDLE = 1 << 2, /* is idle */ 79 WORKER_PREP = 1 << 3, /* preparing to run works */ 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */ 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */ 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */ 83 84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE | 85 WORKER_UNBOUND | WORKER_REBOUND, 86 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */ 88 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */ 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */ 91 92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */ 93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */ 94 95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2, 96 /* call for help after 10ms 97 (min two ticks) */ 98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */ 99 CREATE_COOLDOWN = HZ, /* time to breath after fail */ 100 101 /* 102 * Rescue workers are used only on emergencies and shared by 103 * all cpus. Give MIN_NICE. 104 */ 105 RESCUER_NICE_LEVEL = MIN_NICE, 106 HIGHPRI_NICE_LEVEL = MIN_NICE, 107 108 WQ_NAME_LEN = 24, 109 }; 110 111 /* 112 * Structure fields follow one of the following exclusion rules. 113 * 114 * I: Modifiable by initialization/destruction paths and read-only for 115 * everyone else. 116 * 117 * P: Preemption protected. Disabling preemption is enough and should 118 * only be modified and accessed from the local cpu. 119 * 120 * L: pool->lock protected. Access with pool->lock held. 121 * 122 * X: During normal operation, modification requires pool->lock and should 123 * be done only from local cpu. Either disabling preemption on local 124 * cpu or grabbing pool->lock is enough for read access. If 125 * POOL_DISASSOCIATED is set, it's identical to L. 126 * 127 * A: wq_pool_attach_mutex protected. 128 * 129 * PL: wq_pool_mutex protected. 130 * 131 * PR: wq_pool_mutex protected for writes. RCU protected for reads. 132 * 133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads. 134 * 135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or 136 * RCU for reads. 137 * 138 * WQ: wq->mutex protected. 139 * 140 * WR: wq->mutex protected for writes. RCU protected for reads. 141 * 142 * MD: wq_mayday_lock protected. 143 */ 144 145 /* struct worker is defined in workqueue_internal.h */ 146 147 struct worker_pool { 148 spinlock_t lock; /* the pool lock */ 149 int cpu; /* I: the associated cpu */ 150 int node; /* I: the associated node ID */ 151 int id; /* I: pool ID */ 152 unsigned int flags; /* X: flags */ 153 154 unsigned long watchdog_ts; /* L: watchdog timestamp */ 155 156 struct list_head worklist; /* L: list of pending works */ 157 158 int nr_workers; /* L: total number of workers */ 159 int nr_idle; /* L: currently idle workers */ 160 161 struct list_head idle_list; /* X: list of idle workers */ 162 struct timer_list idle_timer; /* L: worker idle timeout */ 163 struct timer_list mayday_timer; /* L: SOS timer for workers */ 164 165 /* a workers is either on busy_hash or idle_list, or the manager */ 166 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER); 167 /* L: hash of busy workers */ 168 169 struct worker *manager; /* L: purely informational */ 170 struct list_head workers; /* A: attached workers */ 171 struct completion *detach_completion; /* all workers detached */ 172 173 struct ida worker_ida; /* worker IDs for task name */ 174 175 struct workqueue_attrs *attrs; /* I: worker attributes */ 176 struct hlist_node hash_node; /* PL: unbound_pool_hash node */ 177 int refcnt; /* PL: refcnt for unbound pools */ 178 179 /* 180 * The current concurrency level. As it's likely to be accessed 181 * from other CPUs during try_to_wake_up(), put it in a separate 182 * cacheline. 183 */ 184 atomic_t nr_running ____cacheline_aligned_in_smp; 185 186 /* 187 * Destruction of pool is RCU protected to allow dereferences 188 * from get_work_pool(). 189 */ 190 struct rcu_head rcu; 191 } ____cacheline_aligned_in_smp; 192 193 /* 194 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS 195 * of work_struct->data are used for flags and the remaining high bits 196 * point to the pwq; thus, pwqs need to be aligned at two's power of the 197 * number of flag bits. 198 */ 199 struct pool_workqueue { 200 struct worker_pool *pool; /* I: the associated pool */ 201 struct workqueue_struct *wq; /* I: the owning workqueue */ 202 int work_color; /* L: current color */ 203 int flush_color; /* L: flushing color */ 204 int refcnt; /* L: reference count */ 205 int nr_in_flight[WORK_NR_COLORS]; 206 /* L: nr of in_flight works */ 207 int nr_active; /* L: nr of active works */ 208 int max_active; /* L: max active works */ 209 struct list_head delayed_works; /* L: delayed works */ 210 struct list_head pwqs_node; /* WR: node on wq->pwqs */ 211 struct list_head mayday_node; /* MD: node on wq->maydays */ 212 213 /* 214 * Release of unbound pwq is punted to system_wq. See put_pwq() 215 * and pwq_unbound_release_workfn() for details. pool_workqueue 216 * itself is also RCU protected so that the first pwq can be 217 * determined without grabbing wq->mutex. 218 */ 219 struct work_struct unbound_release_work; 220 struct rcu_head rcu; 221 } __aligned(1 << WORK_STRUCT_FLAG_BITS); 222 223 /* 224 * Structure used to wait for workqueue flush. 225 */ 226 struct wq_flusher { 227 struct list_head list; /* WQ: list of flushers */ 228 int flush_color; /* WQ: flush color waiting for */ 229 struct completion done; /* flush completion */ 230 }; 231 232 struct wq_device; 233 234 /* 235 * The externally visible workqueue. It relays the issued work items to 236 * the appropriate worker_pool through its pool_workqueues. 237 */ 238 struct workqueue_struct { 239 struct list_head pwqs; /* WR: all pwqs of this wq */ 240 struct list_head list; /* PR: list of all workqueues */ 241 242 struct mutex mutex; /* protects this wq */ 243 int work_color; /* WQ: current work color */ 244 int flush_color; /* WQ: current flush color */ 245 atomic_t nr_pwqs_to_flush; /* flush in progress */ 246 struct wq_flusher *first_flusher; /* WQ: first flusher */ 247 struct list_head flusher_queue; /* WQ: flush waiters */ 248 struct list_head flusher_overflow; /* WQ: flush overflow list */ 249 250 struct list_head maydays; /* MD: pwqs requesting rescue */ 251 struct worker *rescuer; /* MD: rescue worker */ 252 253 int nr_drainers; /* WQ: drain in progress */ 254 int saved_max_active; /* WQ: saved pwq max_active */ 255 256 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */ 257 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */ 258 259 #ifdef CONFIG_SYSFS 260 struct wq_device *wq_dev; /* I: for sysfs interface */ 261 #endif 262 #ifdef CONFIG_LOCKDEP 263 char *lock_name; 264 struct lock_class_key key; 265 struct lockdep_map lockdep_map; 266 #endif 267 char name[WQ_NAME_LEN]; /* I: workqueue name */ 268 269 /* 270 * Destruction of workqueue_struct is RCU protected to allow walking 271 * the workqueues list without grabbing wq_pool_mutex. 272 * This is used to dump all workqueues from sysrq. 273 */ 274 struct rcu_head rcu; 275 276 /* hot fields used during command issue, aligned to cacheline */ 277 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */ 278 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */ 279 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */ 280 }; 281 282 static struct kmem_cache *pwq_cache; 283 284 static cpumask_var_t *wq_numa_possible_cpumask; 285 /* possible CPUs of each node */ 286 287 static bool wq_disable_numa; 288 module_param_named(disable_numa, wq_disable_numa, bool, 0444); 289 290 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 291 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT); 292 module_param_named(power_efficient, wq_power_efficient, bool, 0444); 293 294 static bool wq_online; /* can kworkers be created yet? */ 295 296 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */ 297 298 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */ 299 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf; 300 301 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */ 302 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */ 303 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */ 304 static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */ 305 306 static LIST_HEAD(workqueues); /* PR: list of all workqueues */ 307 static bool workqueue_freezing; /* PL: have wqs started freezing? */ 308 309 /* PL: allowable cpus for unbound wqs and work items */ 310 static cpumask_var_t wq_unbound_cpumask; 311 312 /* CPU where unbound work was last round robin scheduled from this CPU */ 313 static DEFINE_PER_CPU(int, wq_rr_cpu_last); 314 315 /* 316 * Local execution of unbound work items is no longer guaranteed. The 317 * following always forces round-robin CPU selection on unbound work items 318 * to uncover usages which depend on it. 319 */ 320 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU 321 static bool wq_debug_force_rr_cpu = true; 322 #else 323 static bool wq_debug_force_rr_cpu = false; 324 #endif 325 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644); 326 327 /* the per-cpu worker pools */ 328 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools); 329 330 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */ 331 332 /* PL: hash of all unbound pools keyed by pool->attrs */ 333 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER); 334 335 /* I: attributes used when instantiating standard unbound pools on demand */ 336 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS]; 337 338 /* I: attributes used when instantiating ordered pools on demand */ 339 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS]; 340 341 struct workqueue_struct *system_wq __read_mostly; 342 EXPORT_SYMBOL(system_wq); 343 struct workqueue_struct *system_highpri_wq __read_mostly; 344 EXPORT_SYMBOL_GPL(system_highpri_wq); 345 struct workqueue_struct *system_long_wq __read_mostly; 346 EXPORT_SYMBOL_GPL(system_long_wq); 347 struct workqueue_struct *system_unbound_wq __read_mostly; 348 EXPORT_SYMBOL_GPL(system_unbound_wq); 349 struct workqueue_struct *system_freezable_wq __read_mostly; 350 EXPORT_SYMBOL_GPL(system_freezable_wq); 351 struct workqueue_struct *system_power_efficient_wq __read_mostly; 352 EXPORT_SYMBOL_GPL(system_power_efficient_wq); 353 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly; 354 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq); 355 356 static int worker_thread(void *__worker); 357 static void workqueue_sysfs_unregister(struct workqueue_struct *wq); 358 static void show_pwq(struct pool_workqueue *pwq); 359 360 #define CREATE_TRACE_POINTS 361 #include <trace/events/workqueue.h> 362 363 #define assert_rcu_or_pool_mutex() \ 364 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 365 !lockdep_is_held(&wq_pool_mutex), \ 366 "RCU or wq_pool_mutex should be held") 367 368 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \ 369 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ 370 !lockdep_is_held(&wq->mutex) && \ 371 !lockdep_is_held(&wq_pool_mutex), \ 372 "RCU, wq->mutex or wq_pool_mutex should be held") 373 374 #define for_each_cpu_worker_pool(pool, cpu) \ 375 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \ 376 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \ 377 (pool)++) 378 379 /** 380 * for_each_pool - iterate through all worker_pools in the system 381 * @pool: iteration cursor 382 * @pi: integer used for iteration 383 * 384 * This must be called either with wq_pool_mutex held or RCU read 385 * locked. If the pool needs to be used beyond the locking in effect, the 386 * caller is responsible for guaranteeing that the pool stays online. 387 * 388 * The if/else clause exists only for the lockdep assertion and can be 389 * ignored. 390 */ 391 #define for_each_pool(pool, pi) \ 392 idr_for_each_entry(&worker_pool_idr, pool, pi) \ 393 if (({ assert_rcu_or_pool_mutex(); false; })) { } \ 394 else 395 396 /** 397 * for_each_pool_worker - iterate through all workers of a worker_pool 398 * @worker: iteration cursor 399 * @pool: worker_pool to iterate workers of 400 * 401 * This must be called with wq_pool_attach_mutex. 402 * 403 * The if/else clause exists only for the lockdep assertion and can be 404 * ignored. 405 */ 406 #define for_each_pool_worker(worker, pool) \ 407 list_for_each_entry((worker), &(pool)->workers, node) \ 408 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \ 409 else 410 411 /** 412 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue 413 * @pwq: iteration cursor 414 * @wq: the target workqueue 415 * 416 * This must be called either with wq->mutex held or RCU read locked. 417 * If the pwq needs to be used beyond the locking in effect, the caller is 418 * responsible for guaranteeing that the pwq stays online. 419 * 420 * The if/else clause exists only for the lockdep assertion and can be 421 * ignored. 422 */ 423 #define for_each_pwq(pwq, wq) \ 424 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \ 425 lockdep_is_held(&(wq->mutex))) 426 427 #ifdef CONFIG_DEBUG_OBJECTS_WORK 428 429 static struct debug_obj_descr work_debug_descr; 430 431 static void *work_debug_hint(void *addr) 432 { 433 return ((struct work_struct *) addr)->func; 434 } 435 436 static bool work_is_static_object(void *addr) 437 { 438 struct work_struct *work = addr; 439 440 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work)); 441 } 442 443 /* 444 * fixup_init is called when: 445 * - an active object is initialized 446 */ 447 static bool work_fixup_init(void *addr, enum debug_obj_state state) 448 { 449 struct work_struct *work = addr; 450 451 switch (state) { 452 case ODEBUG_STATE_ACTIVE: 453 cancel_work_sync(work); 454 debug_object_init(work, &work_debug_descr); 455 return true; 456 default: 457 return false; 458 } 459 } 460 461 /* 462 * fixup_free is called when: 463 * - an active object is freed 464 */ 465 static bool work_fixup_free(void *addr, enum debug_obj_state state) 466 { 467 struct work_struct *work = addr; 468 469 switch (state) { 470 case ODEBUG_STATE_ACTIVE: 471 cancel_work_sync(work); 472 debug_object_free(work, &work_debug_descr); 473 return true; 474 default: 475 return false; 476 } 477 } 478 479 static struct debug_obj_descr work_debug_descr = { 480 .name = "work_struct", 481 .debug_hint = work_debug_hint, 482 .is_static_object = work_is_static_object, 483 .fixup_init = work_fixup_init, 484 .fixup_free = work_fixup_free, 485 }; 486 487 static inline void debug_work_activate(struct work_struct *work) 488 { 489 debug_object_activate(work, &work_debug_descr); 490 } 491 492 static inline void debug_work_deactivate(struct work_struct *work) 493 { 494 debug_object_deactivate(work, &work_debug_descr); 495 } 496 497 void __init_work(struct work_struct *work, int onstack) 498 { 499 if (onstack) 500 debug_object_init_on_stack(work, &work_debug_descr); 501 else 502 debug_object_init(work, &work_debug_descr); 503 } 504 EXPORT_SYMBOL_GPL(__init_work); 505 506 void destroy_work_on_stack(struct work_struct *work) 507 { 508 debug_object_free(work, &work_debug_descr); 509 } 510 EXPORT_SYMBOL_GPL(destroy_work_on_stack); 511 512 void destroy_delayed_work_on_stack(struct delayed_work *work) 513 { 514 destroy_timer_on_stack(&work->timer); 515 debug_object_free(&work->work, &work_debug_descr); 516 } 517 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack); 518 519 #else 520 static inline void debug_work_activate(struct work_struct *work) { } 521 static inline void debug_work_deactivate(struct work_struct *work) { } 522 #endif 523 524 /** 525 * worker_pool_assign_id - allocate ID and assing it to @pool 526 * @pool: the pool pointer of interest 527 * 528 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned 529 * successfully, -errno on failure. 530 */ 531 static int worker_pool_assign_id(struct worker_pool *pool) 532 { 533 int ret; 534 535 lockdep_assert_held(&wq_pool_mutex); 536 537 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE, 538 GFP_KERNEL); 539 if (ret >= 0) { 540 pool->id = ret; 541 return 0; 542 } 543 return ret; 544 } 545 546 /** 547 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node 548 * @wq: the target workqueue 549 * @node: the node ID 550 * 551 * This must be called with any of wq_pool_mutex, wq->mutex or RCU 552 * read locked. 553 * If the pwq needs to be used beyond the locking in effect, the caller is 554 * responsible for guaranteeing that the pwq stays online. 555 * 556 * Return: The unbound pool_workqueue for @node. 557 */ 558 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq, 559 int node) 560 { 561 assert_rcu_or_wq_mutex_or_pool_mutex(wq); 562 563 /* 564 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a 565 * delayed item is pending. The plan is to keep CPU -> NODE 566 * mapping valid and stable across CPU on/offlines. Once that 567 * happens, this workaround can be removed. 568 */ 569 if (unlikely(node == NUMA_NO_NODE)) 570 return wq->dfl_pwq; 571 572 return rcu_dereference_raw(wq->numa_pwq_tbl[node]); 573 } 574 575 static unsigned int work_color_to_flags(int color) 576 { 577 return color << WORK_STRUCT_COLOR_SHIFT; 578 } 579 580 static int get_work_color(struct work_struct *work) 581 { 582 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) & 583 ((1 << WORK_STRUCT_COLOR_BITS) - 1); 584 } 585 586 static int work_next_color(int color) 587 { 588 return (color + 1) % WORK_NR_COLORS; 589 } 590 591 /* 592 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data 593 * contain the pointer to the queued pwq. Once execution starts, the flag 594 * is cleared and the high bits contain OFFQ flags and pool ID. 595 * 596 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling() 597 * and clear_work_data() can be used to set the pwq, pool or clear 598 * work->data. These functions should only be called while the work is 599 * owned - ie. while the PENDING bit is set. 600 * 601 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq 602 * corresponding to a work. Pool is available once the work has been 603 * queued anywhere after initialization until it is sync canceled. pwq is 604 * available only while the work item is queued. 605 * 606 * %WORK_OFFQ_CANCELING is used to mark a work item which is being 607 * canceled. While being canceled, a work item may have its PENDING set 608 * but stay off timer and worklist for arbitrarily long and nobody should 609 * try to steal the PENDING bit. 610 */ 611 static inline void set_work_data(struct work_struct *work, unsigned long data, 612 unsigned long flags) 613 { 614 WARN_ON_ONCE(!work_pending(work)); 615 atomic_long_set(&work->data, data | flags | work_static(work)); 616 } 617 618 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq, 619 unsigned long extra_flags) 620 { 621 set_work_data(work, (unsigned long)pwq, 622 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags); 623 } 624 625 static void set_work_pool_and_keep_pending(struct work_struct *work, 626 int pool_id) 627 { 628 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 629 WORK_STRUCT_PENDING); 630 } 631 632 static void set_work_pool_and_clear_pending(struct work_struct *work, 633 int pool_id) 634 { 635 /* 636 * The following wmb is paired with the implied mb in 637 * test_and_set_bit(PENDING) and ensures all updates to @work made 638 * here are visible to and precede any updates by the next PENDING 639 * owner. 640 */ 641 smp_wmb(); 642 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0); 643 /* 644 * The following mb guarantees that previous clear of a PENDING bit 645 * will not be reordered with any speculative LOADS or STORES from 646 * work->current_func, which is executed afterwards. This possible 647 * reordering can lead to a missed execution on attempt to queue 648 * the same @work. E.g. consider this case: 649 * 650 * CPU#0 CPU#1 651 * ---------------------------- -------------------------------- 652 * 653 * 1 STORE event_indicated 654 * 2 queue_work_on() { 655 * 3 test_and_set_bit(PENDING) 656 * 4 } set_..._and_clear_pending() { 657 * 5 set_work_data() # clear bit 658 * 6 smp_mb() 659 * 7 work->current_func() { 660 * 8 LOAD event_indicated 661 * } 662 * 663 * Without an explicit full barrier speculative LOAD on line 8 can 664 * be executed before CPU#0 does STORE on line 1. If that happens, 665 * CPU#0 observes the PENDING bit is still set and new execution of 666 * a @work is not queued in a hope, that CPU#1 will eventually 667 * finish the queued @work. Meanwhile CPU#1 does not see 668 * event_indicated is set, because speculative LOAD was executed 669 * before actual STORE. 670 */ 671 smp_mb(); 672 } 673 674 static void clear_work_data(struct work_struct *work) 675 { 676 smp_wmb(); /* see set_work_pool_and_clear_pending() */ 677 set_work_data(work, WORK_STRUCT_NO_POOL, 0); 678 } 679 680 static struct pool_workqueue *get_work_pwq(struct work_struct *work) 681 { 682 unsigned long data = atomic_long_read(&work->data); 683 684 if (data & WORK_STRUCT_PWQ) 685 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK); 686 else 687 return NULL; 688 } 689 690 /** 691 * get_work_pool - return the worker_pool a given work was associated with 692 * @work: the work item of interest 693 * 694 * Pools are created and destroyed under wq_pool_mutex, and allows read 695 * access under RCU read lock. As such, this function should be 696 * called under wq_pool_mutex or inside of a rcu_read_lock() region. 697 * 698 * All fields of the returned pool are accessible as long as the above 699 * mentioned locking is in effect. If the returned pool needs to be used 700 * beyond the critical section, the caller is responsible for ensuring the 701 * returned pool is and stays online. 702 * 703 * Return: The worker_pool @work was last associated with. %NULL if none. 704 */ 705 static struct worker_pool *get_work_pool(struct work_struct *work) 706 { 707 unsigned long data = atomic_long_read(&work->data); 708 int pool_id; 709 710 assert_rcu_or_pool_mutex(); 711 712 if (data & WORK_STRUCT_PWQ) 713 return ((struct pool_workqueue *) 714 (data & WORK_STRUCT_WQ_DATA_MASK))->pool; 715 716 pool_id = data >> WORK_OFFQ_POOL_SHIFT; 717 if (pool_id == WORK_OFFQ_POOL_NONE) 718 return NULL; 719 720 return idr_find(&worker_pool_idr, pool_id); 721 } 722 723 /** 724 * get_work_pool_id - return the worker pool ID a given work is associated with 725 * @work: the work item of interest 726 * 727 * Return: The worker_pool ID @work was last associated with. 728 * %WORK_OFFQ_POOL_NONE if none. 729 */ 730 static int get_work_pool_id(struct work_struct *work) 731 { 732 unsigned long data = atomic_long_read(&work->data); 733 734 if (data & WORK_STRUCT_PWQ) 735 return ((struct pool_workqueue *) 736 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id; 737 738 return data >> WORK_OFFQ_POOL_SHIFT; 739 } 740 741 static void mark_work_canceling(struct work_struct *work) 742 { 743 unsigned long pool_id = get_work_pool_id(work); 744 745 pool_id <<= WORK_OFFQ_POOL_SHIFT; 746 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING); 747 } 748 749 static bool work_is_canceling(struct work_struct *work) 750 { 751 unsigned long data = atomic_long_read(&work->data); 752 753 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING); 754 } 755 756 /* 757 * Policy functions. These define the policies on how the global worker 758 * pools are managed. Unless noted otherwise, these functions assume that 759 * they're being called with pool->lock held. 760 */ 761 762 static bool __need_more_worker(struct worker_pool *pool) 763 { 764 return !atomic_read(&pool->nr_running); 765 } 766 767 /* 768 * Need to wake up a worker? Called from anything but currently 769 * running workers. 770 * 771 * Note that, because unbound workers never contribute to nr_running, this 772 * function will always return %true for unbound pools as long as the 773 * worklist isn't empty. 774 */ 775 static bool need_more_worker(struct worker_pool *pool) 776 { 777 return !list_empty(&pool->worklist) && __need_more_worker(pool); 778 } 779 780 /* Can I start working? Called from busy but !running workers. */ 781 static bool may_start_working(struct worker_pool *pool) 782 { 783 return pool->nr_idle; 784 } 785 786 /* Do I need to keep working? Called from currently running workers. */ 787 static bool keep_working(struct worker_pool *pool) 788 { 789 return !list_empty(&pool->worklist) && 790 atomic_read(&pool->nr_running) <= 1; 791 } 792 793 /* Do we need a new worker? Called from manager. */ 794 static bool need_to_create_worker(struct worker_pool *pool) 795 { 796 return need_more_worker(pool) && !may_start_working(pool); 797 } 798 799 /* Do we have too many workers and should some go away? */ 800 static bool too_many_workers(struct worker_pool *pool) 801 { 802 bool managing = pool->flags & POOL_MANAGER_ACTIVE; 803 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */ 804 int nr_busy = pool->nr_workers - nr_idle; 805 806 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy; 807 } 808 809 /* 810 * Wake up functions. 811 */ 812 813 /* Return the first idle worker. Safe with preemption disabled */ 814 static struct worker *first_idle_worker(struct worker_pool *pool) 815 { 816 if (unlikely(list_empty(&pool->idle_list))) 817 return NULL; 818 819 return list_first_entry(&pool->idle_list, struct worker, entry); 820 } 821 822 /** 823 * wake_up_worker - wake up an idle worker 824 * @pool: worker pool to wake worker from 825 * 826 * Wake up the first idle worker of @pool. 827 * 828 * CONTEXT: 829 * spin_lock_irq(pool->lock). 830 */ 831 static void wake_up_worker(struct worker_pool *pool) 832 { 833 struct worker *worker = first_idle_worker(pool); 834 835 if (likely(worker)) 836 wake_up_process(worker->task); 837 } 838 839 /** 840 * wq_worker_running - a worker is running again 841 * @task: task waking up 842 * 843 * This function is called when a worker returns from schedule() 844 */ 845 void wq_worker_running(struct task_struct *task) 846 { 847 struct worker *worker = kthread_data(task); 848 849 if (!worker->sleeping) 850 return; 851 if (!(worker->flags & WORKER_NOT_RUNNING)) 852 atomic_inc(&worker->pool->nr_running); 853 worker->sleeping = 0; 854 } 855 856 /** 857 * wq_worker_sleeping - a worker is going to sleep 858 * @task: task going to sleep 859 * 860 * This function is called from schedule() when a busy worker is 861 * going to sleep. Preemption needs to be disabled to protect ->sleeping 862 * assignment. 863 */ 864 void wq_worker_sleeping(struct task_struct *task) 865 { 866 struct worker *next, *worker = kthread_data(task); 867 struct worker_pool *pool; 868 869 /* 870 * Rescuers, which may not have all the fields set up like normal 871 * workers, also reach here, let's not access anything before 872 * checking NOT_RUNNING. 873 */ 874 if (worker->flags & WORKER_NOT_RUNNING) 875 return; 876 877 pool = worker->pool; 878 879 /* Return if preempted before wq_worker_running() was reached */ 880 if (worker->sleeping) 881 return; 882 883 worker->sleeping = 1; 884 spin_lock_irq(&pool->lock); 885 886 /* 887 * The counterpart of the following dec_and_test, implied mb, 888 * worklist not empty test sequence is in insert_work(). 889 * Please read comment there. 890 * 891 * NOT_RUNNING is clear. This means that we're bound to and 892 * running on the local cpu w/ rq lock held and preemption 893 * disabled, which in turn means that none else could be 894 * manipulating idle_list, so dereferencing idle_list without pool 895 * lock is safe. 896 */ 897 if (atomic_dec_and_test(&pool->nr_running) && 898 !list_empty(&pool->worklist)) { 899 next = first_idle_worker(pool); 900 if (next) 901 wake_up_process(next->task); 902 } 903 spin_unlock_irq(&pool->lock); 904 } 905 906 /** 907 * wq_worker_last_func - retrieve worker's last work function 908 * @task: Task to retrieve last work function of. 909 * 910 * Determine the last function a worker executed. This is called from 911 * the scheduler to get a worker's last known identity. 912 * 913 * CONTEXT: 914 * spin_lock_irq(rq->lock) 915 * 916 * This function is called during schedule() when a kworker is going 917 * to sleep. It's used by psi to identify aggregation workers during 918 * dequeuing, to allow periodic aggregation to shut-off when that 919 * worker is the last task in the system or cgroup to go to sleep. 920 * 921 * As this function doesn't involve any workqueue-related locking, it 922 * only returns stable values when called from inside the scheduler's 923 * queuing and dequeuing paths, when @task, which must be a kworker, 924 * is guaranteed to not be processing any works. 925 * 926 * Return: 927 * The last work function %current executed as a worker, NULL if it 928 * hasn't executed any work yet. 929 */ 930 work_func_t wq_worker_last_func(struct task_struct *task) 931 { 932 struct worker *worker = kthread_data(task); 933 934 return worker->last_func; 935 } 936 937 /** 938 * worker_set_flags - set worker flags and adjust nr_running accordingly 939 * @worker: self 940 * @flags: flags to set 941 * 942 * Set @flags in @worker->flags and adjust nr_running accordingly. 943 * 944 * CONTEXT: 945 * spin_lock_irq(pool->lock) 946 */ 947 static inline void worker_set_flags(struct worker *worker, unsigned int flags) 948 { 949 struct worker_pool *pool = worker->pool; 950 951 WARN_ON_ONCE(worker->task != current); 952 953 /* If transitioning into NOT_RUNNING, adjust nr_running. */ 954 if ((flags & WORKER_NOT_RUNNING) && 955 !(worker->flags & WORKER_NOT_RUNNING)) { 956 atomic_dec(&pool->nr_running); 957 } 958 959 worker->flags |= flags; 960 } 961 962 /** 963 * worker_clr_flags - clear worker flags and adjust nr_running accordingly 964 * @worker: self 965 * @flags: flags to clear 966 * 967 * Clear @flags in @worker->flags and adjust nr_running accordingly. 968 * 969 * CONTEXT: 970 * spin_lock_irq(pool->lock) 971 */ 972 static inline void worker_clr_flags(struct worker *worker, unsigned int flags) 973 { 974 struct worker_pool *pool = worker->pool; 975 unsigned int oflags = worker->flags; 976 977 WARN_ON_ONCE(worker->task != current); 978 979 worker->flags &= ~flags; 980 981 /* 982 * If transitioning out of NOT_RUNNING, increment nr_running. Note 983 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask 984 * of multiple flags, not a single flag. 985 */ 986 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING)) 987 if (!(worker->flags & WORKER_NOT_RUNNING)) 988 atomic_inc(&pool->nr_running); 989 } 990 991 /** 992 * find_worker_executing_work - find worker which is executing a work 993 * @pool: pool of interest 994 * @work: work to find worker for 995 * 996 * Find a worker which is executing @work on @pool by searching 997 * @pool->busy_hash which is keyed by the address of @work. For a worker 998 * to match, its current execution should match the address of @work and 999 * its work function. This is to avoid unwanted dependency between 1000 * unrelated work executions through a work item being recycled while still 1001 * being executed. 1002 * 1003 * This is a bit tricky. A work item may be freed once its execution 1004 * starts and nothing prevents the freed area from being recycled for 1005 * another work item. If the same work item address ends up being reused 1006 * before the original execution finishes, workqueue will identify the 1007 * recycled work item as currently executing and make it wait until the 1008 * current execution finishes, introducing an unwanted dependency. 1009 * 1010 * This function checks the work item address and work function to avoid 1011 * false positives. Note that this isn't complete as one may construct a 1012 * work function which can introduce dependency onto itself through a 1013 * recycled work item. Well, if somebody wants to shoot oneself in the 1014 * foot that badly, there's only so much we can do, and if such deadlock 1015 * actually occurs, it should be easy to locate the culprit work function. 1016 * 1017 * CONTEXT: 1018 * spin_lock_irq(pool->lock). 1019 * 1020 * Return: 1021 * Pointer to worker which is executing @work if found, %NULL 1022 * otherwise. 1023 */ 1024 static struct worker *find_worker_executing_work(struct worker_pool *pool, 1025 struct work_struct *work) 1026 { 1027 struct worker *worker; 1028 1029 hash_for_each_possible(pool->busy_hash, worker, hentry, 1030 (unsigned long)work) 1031 if (worker->current_work == work && 1032 worker->current_func == work->func) 1033 return worker; 1034 1035 return NULL; 1036 } 1037 1038 /** 1039 * move_linked_works - move linked works to a list 1040 * @work: start of series of works to be scheduled 1041 * @head: target list to append @work to 1042 * @nextp: out parameter for nested worklist walking 1043 * 1044 * Schedule linked works starting from @work to @head. Work series to 1045 * be scheduled starts at @work and includes any consecutive work with 1046 * WORK_STRUCT_LINKED set in its predecessor. 1047 * 1048 * If @nextp is not NULL, it's updated to point to the next work of 1049 * the last scheduled work. This allows move_linked_works() to be 1050 * nested inside outer list_for_each_entry_safe(). 1051 * 1052 * CONTEXT: 1053 * spin_lock_irq(pool->lock). 1054 */ 1055 static void move_linked_works(struct work_struct *work, struct list_head *head, 1056 struct work_struct **nextp) 1057 { 1058 struct work_struct *n; 1059 1060 /* 1061 * Linked worklist will always end before the end of the list, 1062 * use NULL for list head. 1063 */ 1064 list_for_each_entry_safe_from(work, n, NULL, entry) { 1065 list_move_tail(&work->entry, head); 1066 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED)) 1067 break; 1068 } 1069 1070 /* 1071 * If we're already inside safe list traversal and have moved 1072 * multiple works to the scheduled queue, the next position 1073 * needs to be updated. 1074 */ 1075 if (nextp) 1076 *nextp = n; 1077 } 1078 1079 /** 1080 * get_pwq - get an extra reference on the specified pool_workqueue 1081 * @pwq: pool_workqueue to get 1082 * 1083 * Obtain an extra reference on @pwq. The caller should guarantee that 1084 * @pwq has positive refcnt and be holding the matching pool->lock. 1085 */ 1086 static void get_pwq(struct pool_workqueue *pwq) 1087 { 1088 lockdep_assert_held(&pwq->pool->lock); 1089 WARN_ON_ONCE(pwq->refcnt <= 0); 1090 pwq->refcnt++; 1091 } 1092 1093 /** 1094 * put_pwq - put a pool_workqueue reference 1095 * @pwq: pool_workqueue to put 1096 * 1097 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its 1098 * destruction. The caller should be holding the matching pool->lock. 1099 */ 1100 static void put_pwq(struct pool_workqueue *pwq) 1101 { 1102 lockdep_assert_held(&pwq->pool->lock); 1103 if (likely(--pwq->refcnt)) 1104 return; 1105 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND))) 1106 return; 1107 /* 1108 * @pwq can't be released under pool->lock, bounce to 1109 * pwq_unbound_release_workfn(). This never recurses on the same 1110 * pool->lock as this path is taken only for unbound workqueues and 1111 * the release work item is scheduled on a per-cpu workqueue. To 1112 * avoid lockdep warning, unbound pool->locks are given lockdep 1113 * subclass of 1 in get_unbound_pool(). 1114 */ 1115 schedule_work(&pwq->unbound_release_work); 1116 } 1117 1118 /** 1119 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock 1120 * @pwq: pool_workqueue to put (can be %NULL) 1121 * 1122 * put_pwq() with locking. This function also allows %NULL @pwq. 1123 */ 1124 static void put_pwq_unlocked(struct pool_workqueue *pwq) 1125 { 1126 if (pwq) { 1127 /* 1128 * As both pwqs and pools are RCU protected, the 1129 * following lock operations are safe. 1130 */ 1131 spin_lock_irq(&pwq->pool->lock); 1132 put_pwq(pwq); 1133 spin_unlock_irq(&pwq->pool->lock); 1134 } 1135 } 1136 1137 static void pwq_activate_delayed_work(struct work_struct *work) 1138 { 1139 struct pool_workqueue *pwq = get_work_pwq(work); 1140 1141 trace_workqueue_activate_work(work); 1142 if (list_empty(&pwq->pool->worklist)) 1143 pwq->pool->watchdog_ts = jiffies; 1144 move_linked_works(work, &pwq->pool->worklist, NULL); 1145 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work)); 1146 pwq->nr_active++; 1147 } 1148 1149 static void pwq_activate_first_delayed(struct pool_workqueue *pwq) 1150 { 1151 struct work_struct *work = list_first_entry(&pwq->delayed_works, 1152 struct work_struct, entry); 1153 1154 pwq_activate_delayed_work(work); 1155 } 1156 1157 /** 1158 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight 1159 * @pwq: pwq of interest 1160 * @color: color of work which left the queue 1161 * 1162 * A work either has completed or is removed from pending queue, 1163 * decrement nr_in_flight of its pwq and handle workqueue flushing. 1164 * 1165 * CONTEXT: 1166 * spin_lock_irq(pool->lock). 1167 */ 1168 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color) 1169 { 1170 /* uncolored work items don't participate in flushing or nr_active */ 1171 if (color == WORK_NO_COLOR) 1172 goto out_put; 1173 1174 pwq->nr_in_flight[color]--; 1175 1176 pwq->nr_active--; 1177 if (!list_empty(&pwq->delayed_works)) { 1178 /* one down, submit a delayed one */ 1179 if (pwq->nr_active < pwq->max_active) 1180 pwq_activate_first_delayed(pwq); 1181 } 1182 1183 /* is flush in progress and are we at the flushing tip? */ 1184 if (likely(pwq->flush_color != color)) 1185 goto out_put; 1186 1187 /* are there still in-flight works? */ 1188 if (pwq->nr_in_flight[color]) 1189 goto out_put; 1190 1191 /* this pwq is done, clear flush_color */ 1192 pwq->flush_color = -1; 1193 1194 /* 1195 * If this was the last pwq, wake up the first flusher. It 1196 * will handle the rest. 1197 */ 1198 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush)) 1199 complete(&pwq->wq->first_flusher->done); 1200 out_put: 1201 put_pwq(pwq); 1202 } 1203 1204 /** 1205 * try_to_grab_pending - steal work item from worklist and disable irq 1206 * @work: work item to steal 1207 * @is_dwork: @work is a delayed_work 1208 * @flags: place to store irq state 1209 * 1210 * Try to grab PENDING bit of @work. This function can handle @work in any 1211 * stable state - idle, on timer or on worklist. 1212 * 1213 * Return: 1214 * 1 if @work was pending and we successfully stole PENDING 1215 * 0 if @work was idle and we claimed PENDING 1216 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry 1217 * -ENOENT if someone else is canceling @work, this state may persist 1218 * for arbitrarily long 1219 * 1220 * Note: 1221 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting 1222 * interrupted while holding PENDING and @work off queue, irq must be 1223 * disabled on entry. This, combined with delayed_work->timer being 1224 * irqsafe, ensures that we return -EAGAIN for finite short period of time. 1225 * 1226 * On successful return, >= 0, irq is disabled and the caller is 1227 * responsible for releasing it using local_irq_restore(*@flags). 1228 * 1229 * This function is safe to call from any context including IRQ handler. 1230 */ 1231 static int try_to_grab_pending(struct work_struct *work, bool is_dwork, 1232 unsigned long *flags) 1233 { 1234 struct worker_pool *pool; 1235 struct pool_workqueue *pwq; 1236 1237 local_irq_save(*flags); 1238 1239 /* try to steal the timer if it exists */ 1240 if (is_dwork) { 1241 struct delayed_work *dwork = to_delayed_work(work); 1242 1243 /* 1244 * dwork->timer is irqsafe. If del_timer() fails, it's 1245 * guaranteed that the timer is not queued anywhere and not 1246 * running on the local CPU. 1247 */ 1248 if (likely(del_timer(&dwork->timer))) 1249 return 1; 1250 } 1251 1252 /* try to claim PENDING the normal way */ 1253 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) 1254 return 0; 1255 1256 rcu_read_lock(); 1257 /* 1258 * The queueing is in progress, or it is already queued. Try to 1259 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 1260 */ 1261 pool = get_work_pool(work); 1262 if (!pool) 1263 goto fail; 1264 1265 spin_lock(&pool->lock); 1266 /* 1267 * work->data is guaranteed to point to pwq only while the work 1268 * item is queued on pwq->wq, and both updating work->data to point 1269 * to pwq on queueing and to pool on dequeueing are done under 1270 * pwq->pool->lock. This in turn guarantees that, if work->data 1271 * points to pwq which is associated with a locked pool, the work 1272 * item is currently queued on that pool. 1273 */ 1274 pwq = get_work_pwq(work); 1275 if (pwq && pwq->pool == pool) { 1276 debug_work_deactivate(work); 1277 1278 /* 1279 * A delayed work item cannot be grabbed directly because 1280 * it might have linked NO_COLOR work items which, if left 1281 * on the delayed_list, will confuse pwq->nr_active 1282 * management later on and cause stall. Make sure the work 1283 * item is activated before grabbing. 1284 */ 1285 if (*work_data_bits(work) & WORK_STRUCT_DELAYED) 1286 pwq_activate_delayed_work(work); 1287 1288 list_del_init(&work->entry); 1289 pwq_dec_nr_in_flight(pwq, get_work_color(work)); 1290 1291 /* work->data points to pwq iff queued, point to pool */ 1292 set_work_pool_and_keep_pending(work, pool->id); 1293 1294 spin_unlock(&pool->lock); 1295 rcu_read_unlock(); 1296 return 1; 1297 } 1298 spin_unlock(&pool->lock); 1299 fail: 1300 rcu_read_unlock(); 1301 local_irq_restore(*flags); 1302 if (work_is_canceling(work)) 1303 return -ENOENT; 1304 cpu_relax(); 1305 return -EAGAIN; 1306 } 1307 1308 /** 1309 * insert_work - insert a work into a pool 1310 * @pwq: pwq @work belongs to 1311 * @work: work to insert 1312 * @head: insertion point 1313 * @extra_flags: extra WORK_STRUCT_* flags to set 1314 * 1315 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to 1316 * work_struct flags. 1317 * 1318 * CONTEXT: 1319 * spin_lock_irq(pool->lock). 1320 */ 1321 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work, 1322 struct list_head *head, unsigned int extra_flags) 1323 { 1324 struct worker_pool *pool = pwq->pool; 1325 1326 /* we own @work, set data and link */ 1327 set_work_pwq(work, pwq, extra_flags); 1328 list_add_tail(&work->entry, head); 1329 get_pwq(pwq); 1330 1331 /* 1332 * Ensure either wq_worker_sleeping() sees the above 1333 * list_add_tail() or we see zero nr_running to avoid workers lying 1334 * around lazily while there are works to be processed. 1335 */ 1336 smp_mb(); 1337 1338 if (__need_more_worker(pool)) 1339 wake_up_worker(pool); 1340 } 1341 1342 /* 1343 * Test whether @work is being queued from another work executing on the 1344 * same workqueue. 1345 */ 1346 static bool is_chained_work(struct workqueue_struct *wq) 1347 { 1348 struct worker *worker; 1349 1350 worker = current_wq_worker(); 1351 /* 1352 * Return %true iff I'm a worker executing a work item on @wq. If 1353 * I'm @worker, it's safe to dereference it without locking. 1354 */ 1355 return worker && worker->current_pwq->wq == wq; 1356 } 1357 1358 /* 1359 * When queueing an unbound work item to a wq, prefer local CPU if allowed 1360 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to 1361 * avoid perturbing sensitive tasks. 1362 */ 1363 static int wq_select_unbound_cpu(int cpu) 1364 { 1365 static bool printed_dbg_warning; 1366 int new_cpu; 1367 1368 if (likely(!wq_debug_force_rr_cpu)) { 1369 if (cpumask_test_cpu(cpu, wq_unbound_cpumask)) 1370 return cpu; 1371 } else if (!printed_dbg_warning) { 1372 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n"); 1373 printed_dbg_warning = true; 1374 } 1375 1376 if (cpumask_empty(wq_unbound_cpumask)) 1377 return cpu; 1378 1379 new_cpu = __this_cpu_read(wq_rr_cpu_last); 1380 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask); 1381 if (unlikely(new_cpu >= nr_cpu_ids)) { 1382 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask); 1383 if (unlikely(new_cpu >= nr_cpu_ids)) 1384 return cpu; 1385 } 1386 __this_cpu_write(wq_rr_cpu_last, new_cpu); 1387 1388 return new_cpu; 1389 } 1390 1391 static void __queue_work(int cpu, struct workqueue_struct *wq, 1392 struct work_struct *work) 1393 { 1394 struct pool_workqueue *pwq; 1395 struct worker_pool *last_pool; 1396 struct list_head *worklist; 1397 unsigned int work_flags; 1398 unsigned int req_cpu = cpu; 1399 1400 /* 1401 * While a work item is PENDING && off queue, a task trying to 1402 * steal the PENDING will busy-loop waiting for it to either get 1403 * queued or lose PENDING. Grabbing PENDING and queueing should 1404 * happen with IRQ disabled. 1405 */ 1406 lockdep_assert_irqs_disabled(); 1407 1408 debug_work_activate(work); 1409 1410 /* if draining, only works from the same workqueue are allowed */ 1411 if (unlikely(wq->flags & __WQ_DRAINING) && 1412 WARN_ON_ONCE(!is_chained_work(wq))) 1413 return; 1414 rcu_read_lock(); 1415 retry: 1416 /* pwq which will be used unless @work is executing elsewhere */ 1417 if (wq->flags & WQ_UNBOUND) { 1418 if (req_cpu == WORK_CPU_UNBOUND) 1419 cpu = wq_select_unbound_cpu(raw_smp_processor_id()); 1420 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 1421 } else { 1422 if (req_cpu == WORK_CPU_UNBOUND) 1423 cpu = raw_smp_processor_id(); 1424 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 1425 } 1426 1427 /* 1428 * If @work was previously on a different pool, it might still be 1429 * running there, in which case the work needs to be queued on that 1430 * pool to guarantee non-reentrancy. 1431 */ 1432 last_pool = get_work_pool(work); 1433 if (last_pool && last_pool != pwq->pool) { 1434 struct worker *worker; 1435 1436 spin_lock(&last_pool->lock); 1437 1438 worker = find_worker_executing_work(last_pool, work); 1439 1440 if (worker && worker->current_pwq->wq == wq) { 1441 pwq = worker->current_pwq; 1442 } else { 1443 /* meh... not running there, queue here */ 1444 spin_unlock(&last_pool->lock); 1445 spin_lock(&pwq->pool->lock); 1446 } 1447 } else { 1448 spin_lock(&pwq->pool->lock); 1449 } 1450 1451 /* 1452 * pwq is determined and locked. For unbound pools, we could have 1453 * raced with pwq release and it could already be dead. If its 1454 * refcnt is zero, repeat pwq selection. Note that pwqs never die 1455 * without another pwq replacing it in the numa_pwq_tbl or while 1456 * work items are executing on it, so the retrying is guaranteed to 1457 * make forward-progress. 1458 */ 1459 if (unlikely(!pwq->refcnt)) { 1460 if (wq->flags & WQ_UNBOUND) { 1461 spin_unlock(&pwq->pool->lock); 1462 cpu_relax(); 1463 goto retry; 1464 } 1465 /* oops */ 1466 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt", 1467 wq->name, cpu); 1468 } 1469 1470 /* pwq determined, queue */ 1471 trace_workqueue_queue_work(req_cpu, pwq, work); 1472 1473 if (WARN_ON(!list_empty(&work->entry))) 1474 goto out; 1475 1476 pwq->nr_in_flight[pwq->work_color]++; 1477 work_flags = work_color_to_flags(pwq->work_color); 1478 1479 if (likely(pwq->nr_active < pwq->max_active)) { 1480 trace_workqueue_activate_work(work); 1481 pwq->nr_active++; 1482 worklist = &pwq->pool->worklist; 1483 if (list_empty(worklist)) 1484 pwq->pool->watchdog_ts = jiffies; 1485 } else { 1486 work_flags |= WORK_STRUCT_DELAYED; 1487 worklist = &pwq->delayed_works; 1488 } 1489 1490 insert_work(pwq, work, worklist, work_flags); 1491 1492 out: 1493 spin_unlock(&pwq->pool->lock); 1494 rcu_read_unlock(); 1495 } 1496 1497 /** 1498 * queue_work_on - queue work on specific cpu 1499 * @cpu: CPU number to execute work on 1500 * @wq: workqueue to use 1501 * @work: work to queue 1502 * 1503 * We queue the work to a specific CPU, the caller must ensure it 1504 * can't go away. 1505 * 1506 * Return: %false if @work was already on a queue, %true otherwise. 1507 */ 1508 bool queue_work_on(int cpu, struct workqueue_struct *wq, 1509 struct work_struct *work) 1510 { 1511 bool ret = false; 1512 unsigned long flags; 1513 1514 local_irq_save(flags); 1515 1516 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1517 __queue_work(cpu, wq, work); 1518 ret = true; 1519 } 1520 1521 local_irq_restore(flags); 1522 return ret; 1523 } 1524 EXPORT_SYMBOL(queue_work_on); 1525 1526 /** 1527 * workqueue_select_cpu_near - Select a CPU based on NUMA node 1528 * @node: NUMA node ID that we want to select a CPU from 1529 * 1530 * This function will attempt to find a "random" cpu available on a given 1531 * node. If there are no CPUs available on the given node it will return 1532 * WORK_CPU_UNBOUND indicating that we should just schedule to any 1533 * available CPU if we need to schedule this work. 1534 */ 1535 static int workqueue_select_cpu_near(int node) 1536 { 1537 int cpu; 1538 1539 /* No point in doing this if NUMA isn't enabled for workqueues */ 1540 if (!wq_numa_enabled) 1541 return WORK_CPU_UNBOUND; 1542 1543 /* Delay binding to CPU if node is not valid or online */ 1544 if (node < 0 || node >= MAX_NUMNODES || !node_online(node)) 1545 return WORK_CPU_UNBOUND; 1546 1547 /* Use local node/cpu if we are already there */ 1548 cpu = raw_smp_processor_id(); 1549 if (node == cpu_to_node(cpu)) 1550 return cpu; 1551 1552 /* Use "random" otherwise know as "first" online CPU of node */ 1553 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 1554 1555 /* If CPU is valid return that, otherwise just defer */ 1556 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND; 1557 } 1558 1559 /** 1560 * queue_work_node - queue work on a "random" cpu for a given NUMA node 1561 * @node: NUMA node that we are targeting the work for 1562 * @wq: workqueue to use 1563 * @work: work to queue 1564 * 1565 * We queue the work to a "random" CPU within a given NUMA node. The basic 1566 * idea here is to provide a way to somehow associate work with a given 1567 * NUMA node. 1568 * 1569 * This function will only make a best effort attempt at getting this onto 1570 * the right NUMA node. If no node is requested or the requested node is 1571 * offline then we just fall back to standard queue_work behavior. 1572 * 1573 * Currently the "random" CPU ends up being the first available CPU in the 1574 * intersection of cpu_online_mask and the cpumask of the node, unless we 1575 * are running on the node. In that case we just use the current CPU. 1576 * 1577 * Return: %false if @work was already on a queue, %true otherwise. 1578 */ 1579 bool queue_work_node(int node, struct workqueue_struct *wq, 1580 struct work_struct *work) 1581 { 1582 unsigned long flags; 1583 bool ret = false; 1584 1585 /* 1586 * This current implementation is specific to unbound workqueues. 1587 * Specifically we only return the first available CPU for a given 1588 * node instead of cycling through individual CPUs within the node. 1589 * 1590 * If this is used with a per-cpu workqueue then the logic in 1591 * workqueue_select_cpu_near would need to be updated to allow for 1592 * some round robin type logic. 1593 */ 1594 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)); 1595 1596 local_irq_save(flags); 1597 1598 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1599 int cpu = workqueue_select_cpu_near(node); 1600 1601 __queue_work(cpu, wq, work); 1602 ret = true; 1603 } 1604 1605 local_irq_restore(flags); 1606 return ret; 1607 } 1608 EXPORT_SYMBOL_GPL(queue_work_node); 1609 1610 void delayed_work_timer_fn(struct timer_list *t) 1611 { 1612 struct delayed_work *dwork = from_timer(dwork, t, timer); 1613 1614 /* should have been called from irqsafe timer with irq already off */ 1615 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 1616 } 1617 EXPORT_SYMBOL(delayed_work_timer_fn); 1618 1619 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq, 1620 struct delayed_work *dwork, unsigned long delay) 1621 { 1622 struct timer_list *timer = &dwork->timer; 1623 struct work_struct *work = &dwork->work; 1624 1625 WARN_ON_ONCE(!wq); 1626 WARN_ON_ONCE(timer->function != delayed_work_timer_fn); 1627 WARN_ON_ONCE(timer_pending(timer)); 1628 WARN_ON_ONCE(!list_empty(&work->entry)); 1629 1630 /* 1631 * If @delay is 0, queue @dwork->work immediately. This is for 1632 * both optimization and correctness. The earliest @timer can 1633 * expire is on the closest next tick and delayed_work users depend 1634 * on that there's no such delay when @delay is 0. 1635 */ 1636 if (!delay) { 1637 __queue_work(cpu, wq, &dwork->work); 1638 return; 1639 } 1640 1641 dwork->wq = wq; 1642 dwork->cpu = cpu; 1643 timer->expires = jiffies + delay; 1644 1645 if (unlikely(cpu != WORK_CPU_UNBOUND)) 1646 add_timer_on(timer, cpu); 1647 else 1648 add_timer(timer); 1649 } 1650 1651 /** 1652 * queue_delayed_work_on - queue work on specific CPU after delay 1653 * @cpu: CPU number to execute work on 1654 * @wq: workqueue to use 1655 * @dwork: work to queue 1656 * @delay: number of jiffies to wait before queueing 1657 * 1658 * Return: %false if @work was already on a queue, %true otherwise. If 1659 * @delay is zero and @dwork is idle, it will be scheduled for immediate 1660 * execution. 1661 */ 1662 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 1663 struct delayed_work *dwork, unsigned long delay) 1664 { 1665 struct work_struct *work = &dwork->work; 1666 bool ret = false; 1667 unsigned long flags; 1668 1669 /* read the comment in __queue_work() */ 1670 local_irq_save(flags); 1671 1672 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1673 __queue_delayed_work(cpu, wq, dwork, delay); 1674 ret = true; 1675 } 1676 1677 local_irq_restore(flags); 1678 return ret; 1679 } 1680 EXPORT_SYMBOL(queue_delayed_work_on); 1681 1682 /** 1683 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU 1684 * @cpu: CPU number to execute work on 1685 * @wq: workqueue to use 1686 * @dwork: work to queue 1687 * @delay: number of jiffies to wait before queueing 1688 * 1689 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise, 1690 * modify @dwork's timer so that it expires after @delay. If @delay is 1691 * zero, @work is guaranteed to be scheduled immediately regardless of its 1692 * current state. 1693 * 1694 * Return: %false if @dwork was idle and queued, %true if @dwork was 1695 * pending and its timer was modified. 1696 * 1697 * This function is safe to call from any context including IRQ handler. 1698 * See try_to_grab_pending() for details. 1699 */ 1700 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, 1701 struct delayed_work *dwork, unsigned long delay) 1702 { 1703 unsigned long flags; 1704 int ret; 1705 1706 do { 1707 ret = try_to_grab_pending(&dwork->work, true, &flags); 1708 } while (unlikely(ret == -EAGAIN)); 1709 1710 if (likely(ret >= 0)) { 1711 __queue_delayed_work(cpu, wq, dwork, delay); 1712 local_irq_restore(flags); 1713 } 1714 1715 /* -ENOENT from try_to_grab_pending() becomes %true */ 1716 return ret; 1717 } 1718 EXPORT_SYMBOL_GPL(mod_delayed_work_on); 1719 1720 static void rcu_work_rcufn(struct rcu_head *rcu) 1721 { 1722 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu); 1723 1724 /* read the comment in __queue_work() */ 1725 local_irq_disable(); 1726 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work); 1727 local_irq_enable(); 1728 } 1729 1730 /** 1731 * queue_rcu_work - queue work after a RCU grace period 1732 * @wq: workqueue to use 1733 * @rwork: work to queue 1734 * 1735 * Return: %false if @rwork was already pending, %true otherwise. Note 1736 * that a full RCU grace period is guaranteed only after a %true return. 1737 * While @rwork is guaranteed to be executed after a %false return, the 1738 * execution may happen before a full RCU grace period has passed. 1739 */ 1740 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork) 1741 { 1742 struct work_struct *work = &rwork->work; 1743 1744 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) { 1745 rwork->wq = wq; 1746 call_rcu(&rwork->rcu, rcu_work_rcufn); 1747 return true; 1748 } 1749 1750 return false; 1751 } 1752 EXPORT_SYMBOL(queue_rcu_work); 1753 1754 /** 1755 * worker_enter_idle - enter idle state 1756 * @worker: worker which is entering idle state 1757 * 1758 * @worker is entering idle state. Update stats and idle timer if 1759 * necessary. 1760 * 1761 * LOCKING: 1762 * spin_lock_irq(pool->lock). 1763 */ 1764 static void worker_enter_idle(struct worker *worker) 1765 { 1766 struct worker_pool *pool = worker->pool; 1767 1768 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) || 1769 WARN_ON_ONCE(!list_empty(&worker->entry) && 1770 (worker->hentry.next || worker->hentry.pprev))) 1771 return; 1772 1773 /* can't use worker_set_flags(), also called from create_worker() */ 1774 worker->flags |= WORKER_IDLE; 1775 pool->nr_idle++; 1776 worker->last_active = jiffies; 1777 1778 /* idle_list is LIFO */ 1779 list_add(&worker->entry, &pool->idle_list); 1780 1781 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer)) 1782 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT); 1783 1784 /* 1785 * Sanity check nr_running. Because unbind_workers() releases 1786 * pool->lock between setting %WORKER_UNBOUND and zapping 1787 * nr_running, the warning may trigger spuriously. Check iff 1788 * unbind is not in progress. 1789 */ 1790 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 1791 pool->nr_workers == pool->nr_idle && 1792 atomic_read(&pool->nr_running)); 1793 } 1794 1795 /** 1796 * worker_leave_idle - leave idle state 1797 * @worker: worker which is leaving idle state 1798 * 1799 * @worker is leaving idle state. Update stats. 1800 * 1801 * LOCKING: 1802 * spin_lock_irq(pool->lock). 1803 */ 1804 static void worker_leave_idle(struct worker *worker) 1805 { 1806 struct worker_pool *pool = worker->pool; 1807 1808 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE))) 1809 return; 1810 worker_clr_flags(worker, WORKER_IDLE); 1811 pool->nr_idle--; 1812 list_del_init(&worker->entry); 1813 } 1814 1815 static struct worker *alloc_worker(int node) 1816 { 1817 struct worker *worker; 1818 1819 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node); 1820 if (worker) { 1821 INIT_LIST_HEAD(&worker->entry); 1822 INIT_LIST_HEAD(&worker->scheduled); 1823 INIT_LIST_HEAD(&worker->node); 1824 /* on creation a worker is in !idle && prep state */ 1825 worker->flags = WORKER_PREP; 1826 } 1827 return worker; 1828 } 1829 1830 /** 1831 * worker_attach_to_pool() - attach a worker to a pool 1832 * @worker: worker to be attached 1833 * @pool: the target pool 1834 * 1835 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and 1836 * cpu-binding of @worker are kept coordinated with the pool across 1837 * cpu-[un]hotplugs. 1838 */ 1839 static void worker_attach_to_pool(struct worker *worker, 1840 struct worker_pool *pool) 1841 { 1842 mutex_lock(&wq_pool_attach_mutex); 1843 1844 /* 1845 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any 1846 * online CPUs. It'll be re-applied when any of the CPUs come up. 1847 */ 1848 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask); 1849 1850 /* 1851 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains 1852 * stable across this function. See the comments above the flag 1853 * definition for details. 1854 */ 1855 if (pool->flags & POOL_DISASSOCIATED) 1856 worker->flags |= WORKER_UNBOUND; 1857 1858 list_add_tail(&worker->node, &pool->workers); 1859 worker->pool = pool; 1860 1861 mutex_unlock(&wq_pool_attach_mutex); 1862 } 1863 1864 /** 1865 * worker_detach_from_pool() - detach a worker from its pool 1866 * @worker: worker which is attached to its pool 1867 * 1868 * Undo the attaching which had been done in worker_attach_to_pool(). The 1869 * caller worker shouldn't access to the pool after detached except it has 1870 * other reference to the pool. 1871 */ 1872 static void worker_detach_from_pool(struct worker *worker) 1873 { 1874 struct worker_pool *pool = worker->pool; 1875 struct completion *detach_completion = NULL; 1876 1877 mutex_lock(&wq_pool_attach_mutex); 1878 1879 list_del(&worker->node); 1880 worker->pool = NULL; 1881 1882 if (list_empty(&pool->workers)) 1883 detach_completion = pool->detach_completion; 1884 mutex_unlock(&wq_pool_attach_mutex); 1885 1886 /* clear leftover flags without pool->lock after it is detached */ 1887 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND); 1888 1889 if (detach_completion) 1890 complete(detach_completion); 1891 } 1892 1893 /** 1894 * create_worker - create a new workqueue worker 1895 * @pool: pool the new worker will belong to 1896 * 1897 * Create and start a new worker which is attached to @pool. 1898 * 1899 * CONTEXT: 1900 * Might sleep. Does GFP_KERNEL allocations. 1901 * 1902 * Return: 1903 * Pointer to the newly created worker. 1904 */ 1905 static struct worker *create_worker(struct worker_pool *pool) 1906 { 1907 struct worker *worker = NULL; 1908 int id = -1; 1909 char id_buf[16]; 1910 1911 /* ID is needed to determine kthread name */ 1912 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL); 1913 if (id < 0) 1914 goto fail; 1915 1916 worker = alloc_worker(pool->node); 1917 if (!worker) 1918 goto fail; 1919 1920 worker->id = id; 1921 1922 if (pool->cpu >= 0) 1923 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id, 1924 pool->attrs->nice < 0 ? "H" : ""); 1925 else 1926 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id); 1927 1928 worker->task = kthread_create_on_node(worker_thread, worker, pool->node, 1929 "kworker/%s", id_buf); 1930 if (IS_ERR(worker->task)) 1931 goto fail; 1932 1933 set_user_nice(worker->task, pool->attrs->nice); 1934 kthread_bind_mask(worker->task, pool->attrs->cpumask); 1935 1936 /* successful, attach the worker to the pool */ 1937 worker_attach_to_pool(worker, pool); 1938 1939 /* start the newly created worker */ 1940 spin_lock_irq(&pool->lock); 1941 worker->pool->nr_workers++; 1942 worker_enter_idle(worker); 1943 wake_up_process(worker->task); 1944 spin_unlock_irq(&pool->lock); 1945 1946 return worker; 1947 1948 fail: 1949 if (id >= 0) 1950 ida_simple_remove(&pool->worker_ida, id); 1951 kfree(worker); 1952 return NULL; 1953 } 1954 1955 /** 1956 * destroy_worker - destroy a workqueue worker 1957 * @worker: worker to be destroyed 1958 * 1959 * Destroy @worker and adjust @pool stats accordingly. The worker should 1960 * be idle. 1961 * 1962 * CONTEXT: 1963 * spin_lock_irq(pool->lock). 1964 */ 1965 static void destroy_worker(struct worker *worker) 1966 { 1967 struct worker_pool *pool = worker->pool; 1968 1969 lockdep_assert_held(&pool->lock); 1970 1971 /* sanity check frenzy */ 1972 if (WARN_ON(worker->current_work) || 1973 WARN_ON(!list_empty(&worker->scheduled)) || 1974 WARN_ON(!(worker->flags & WORKER_IDLE))) 1975 return; 1976 1977 pool->nr_workers--; 1978 pool->nr_idle--; 1979 1980 list_del_init(&worker->entry); 1981 worker->flags |= WORKER_DIE; 1982 wake_up_process(worker->task); 1983 } 1984 1985 static void idle_worker_timeout(struct timer_list *t) 1986 { 1987 struct worker_pool *pool = from_timer(pool, t, idle_timer); 1988 1989 spin_lock_irq(&pool->lock); 1990 1991 while (too_many_workers(pool)) { 1992 struct worker *worker; 1993 unsigned long expires; 1994 1995 /* idle_list is kept in LIFO order, check the last one */ 1996 worker = list_entry(pool->idle_list.prev, struct worker, entry); 1997 expires = worker->last_active + IDLE_WORKER_TIMEOUT; 1998 1999 if (time_before(jiffies, expires)) { 2000 mod_timer(&pool->idle_timer, expires); 2001 break; 2002 } 2003 2004 destroy_worker(worker); 2005 } 2006 2007 spin_unlock_irq(&pool->lock); 2008 } 2009 2010 static void send_mayday(struct work_struct *work) 2011 { 2012 struct pool_workqueue *pwq = get_work_pwq(work); 2013 struct workqueue_struct *wq = pwq->wq; 2014 2015 lockdep_assert_held(&wq_mayday_lock); 2016 2017 if (!wq->rescuer) 2018 return; 2019 2020 /* mayday mayday mayday */ 2021 if (list_empty(&pwq->mayday_node)) { 2022 /* 2023 * If @pwq is for an unbound wq, its base ref may be put at 2024 * any time due to an attribute change. Pin @pwq until the 2025 * rescuer is done with it. 2026 */ 2027 get_pwq(pwq); 2028 list_add_tail(&pwq->mayday_node, &wq->maydays); 2029 wake_up_process(wq->rescuer->task); 2030 } 2031 } 2032 2033 static void pool_mayday_timeout(struct timer_list *t) 2034 { 2035 struct worker_pool *pool = from_timer(pool, t, mayday_timer); 2036 struct work_struct *work; 2037 2038 spin_lock_irq(&pool->lock); 2039 spin_lock(&wq_mayday_lock); /* for wq->maydays */ 2040 2041 if (need_to_create_worker(pool)) { 2042 /* 2043 * We've been trying to create a new worker but 2044 * haven't been successful. We might be hitting an 2045 * allocation deadlock. Send distress signals to 2046 * rescuers. 2047 */ 2048 list_for_each_entry(work, &pool->worklist, entry) 2049 send_mayday(work); 2050 } 2051 2052 spin_unlock(&wq_mayday_lock); 2053 spin_unlock_irq(&pool->lock); 2054 2055 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL); 2056 } 2057 2058 /** 2059 * maybe_create_worker - create a new worker if necessary 2060 * @pool: pool to create a new worker for 2061 * 2062 * Create a new worker for @pool if necessary. @pool is guaranteed to 2063 * have at least one idle worker on return from this function. If 2064 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is 2065 * sent to all rescuers with works scheduled on @pool to resolve 2066 * possible allocation deadlock. 2067 * 2068 * On return, need_to_create_worker() is guaranteed to be %false and 2069 * may_start_working() %true. 2070 * 2071 * LOCKING: 2072 * spin_lock_irq(pool->lock) which may be released and regrabbed 2073 * multiple times. Does GFP_KERNEL allocations. Called only from 2074 * manager. 2075 */ 2076 static void maybe_create_worker(struct worker_pool *pool) 2077 __releases(&pool->lock) 2078 __acquires(&pool->lock) 2079 { 2080 restart: 2081 spin_unlock_irq(&pool->lock); 2082 2083 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */ 2084 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT); 2085 2086 while (true) { 2087 if (create_worker(pool) || !need_to_create_worker(pool)) 2088 break; 2089 2090 schedule_timeout_interruptible(CREATE_COOLDOWN); 2091 2092 if (!need_to_create_worker(pool)) 2093 break; 2094 } 2095 2096 del_timer_sync(&pool->mayday_timer); 2097 spin_lock_irq(&pool->lock); 2098 /* 2099 * This is necessary even after a new worker was just successfully 2100 * created as @pool->lock was dropped and the new worker might have 2101 * already become busy. 2102 */ 2103 if (need_to_create_worker(pool)) 2104 goto restart; 2105 } 2106 2107 /** 2108 * manage_workers - manage worker pool 2109 * @worker: self 2110 * 2111 * Assume the manager role and manage the worker pool @worker belongs 2112 * to. At any given time, there can be only zero or one manager per 2113 * pool. The exclusion is handled automatically by this function. 2114 * 2115 * The caller can safely start processing works on false return. On 2116 * true return, it's guaranteed that need_to_create_worker() is false 2117 * and may_start_working() is true. 2118 * 2119 * CONTEXT: 2120 * spin_lock_irq(pool->lock) which may be released and regrabbed 2121 * multiple times. Does GFP_KERNEL allocations. 2122 * 2123 * Return: 2124 * %false if the pool doesn't need management and the caller can safely 2125 * start processing works, %true if management function was performed and 2126 * the conditions that the caller verified before calling the function may 2127 * no longer be true. 2128 */ 2129 static bool manage_workers(struct worker *worker) 2130 { 2131 struct worker_pool *pool = worker->pool; 2132 2133 if (pool->flags & POOL_MANAGER_ACTIVE) 2134 return false; 2135 2136 pool->flags |= POOL_MANAGER_ACTIVE; 2137 pool->manager = worker; 2138 2139 maybe_create_worker(pool); 2140 2141 pool->manager = NULL; 2142 pool->flags &= ~POOL_MANAGER_ACTIVE; 2143 wake_up(&wq_manager_wait); 2144 return true; 2145 } 2146 2147 /** 2148 * process_one_work - process single work 2149 * @worker: self 2150 * @work: work to process 2151 * 2152 * Process @work. This function contains all the logics necessary to 2153 * process a single work including synchronization against and 2154 * interaction with other workers on the same cpu, queueing and 2155 * flushing. As long as context requirement is met, any worker can 2156 * call this function to process a work. 2157 * 2158 * CONTEXT: 2159 * spin_lock_irq(pool->lock) which is released and regrabbed. 2160 */ 2161 static void process_one_work(struct worker *worker, struct work_struct *work) 2162 __releases(&pool->lock) 2163 __acquires(&pool->lock) 2164 { 2165 struct pool_workqueue *pwq = get_work_pwq(work); 2166 struct worker_pool *pool = worker->pool; 2167 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE; 2168 int work_color; 2169 struct worker *collision; 2170 #ifdef CONFIG_LOCKDEP 2171 /* 2172 * It is permissible to free the struct work_struct from 2173 * inside the function that is called from it, this we need to 2174 * take into account for lockdep too. To avoid bogus "held 2175 * lock freed" warnings as well as problems when looking into 2176 * work->lockdep_map, make a copy and use that here. 2177 */ 2178 struct lockdep_map lockdep_map; 2179 2180 lockdep_copy_map(&lockdep_map, &work->lockdep_map); 2181 #endif 2182 /* ensure we're on the correct CPU */ 2183 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) && 2184 raw_smp_processor_id() != pool->cpu); 2185 2186 /* 2187 * A single work shouldn't be executed concurrently by 2188 * multiple workers on a single cpu. Check whether anyone is 2189 * already processing the work. If so, defer the work to the 2190 * currently executing one. 2191 */ 2192 collision = find_worker_executing_work(pool, work); 2193 if (unlikely(collision)) { 2194 move_linked_works(work, &collision->scheduled, NULL); 2195 return; 2196 } 2197 2198 /* claim and dequeue */ 2199 debug_work_deactivate(work); 2200 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work); 2201 worker->current_work = work; 2202 worker->current_func = work->func; 2203 worker->current_pwq = pwq; 2204 work_color = get_work_color(work); 2205 2206 /* 2207 * Record wq name for cmdline and debug reporting, may get 2208 * overridden through set_worker_desc(). 2209 */ 2210 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN); 2211 2212 list_del_init(&work->entry); 2213 2214 /* 2215 * CPU intensive works don't participate in concurrency management. 2216 * They're the scheduler's responsibility. This takes @worker out 2217 * of concurrency management and the next code block will chain 2218 * execution of the pending work items. 2219 */ 2220 if (unlikely(cpu_intensive)) 2221 worker_set_flags(worker, WORKER_CPU_INTENSIVE); 2222 2223 /* 2224 * Wake up another worker if necessary. The condition is always 2225 * false for normal per-cpu workers since nr_running would always 2226 * be >= 1 at this point. This is used to chain execution of the 2227 * pending work items for WORKER_NOT_RUNNING workers such as the 2228 * UNBOUND and CPU_INTENSIVE ones. 2229 */ 2230 if (need_more_worker(pool)) 2231 wake_up_worker(pool); 2232 2233 /* 2234 * Record the last pool and clear PENDING which should be the last 2235 * update to @work. Also, do this inside @pool->lock so that 2236 * PENDING and queued state changes happen together while IRQ is 2237 * disabled. 2238 */ 2239 set_work_pool_and_clear_pending(work, pool->id); 2240 2241 spin_unlock_irq(&pool->lock); 2242 2243 lock_map_acquire(&pwq->wq->lockdep_map); 2244 lock_map_acquire(&lockdep_map); 2245 /* 2246 * Strictly speaking we should mark the invariant state without holding 2247 * any locks, that is, before these two lock_map_acquire()'s. 2248 * 2249 * However, that would result in: 2250 * 2251 * A(W1) 2252 * WFC(C) 2253 * A(W1) 2254 * C(C) 2255 * 2256 * Which would create W1->C->W1 dependencies, even though there is no 2257 * actual deadlock possible. There are two solutions, using a 2258 * read-recursive acquire on the work(queue) 'locks', but this will then 2259 * hit the lockdep limitation on recursive locks, or simply discard 2260 * these locks. 2261 * 2262 * AFAICT there is no possible deadlock scenario between the 2263 * flush_work() and complete() primitives (except for single-threaded 2264 * workqueues), so hiding them isn't a problem. 2265 */ 2266 lockdep_invariant_state(true); 2267 trace_workqueue_execute_start(work); 2268 worker->current_func(work); 2269 /* 2270 * While we must be careful to not use "work" after this, the trace 2271 * point will only record its address. 2272 */ 2273 trace_workqueue_execute_end(work, worker->current_func); 2274 lock_map_release(&lockdep_map); 2275 lock_map_release(&pwq->wq->lockdep_map); 2276 2277 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 2278 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n" 2279 " last function: %ps\n", 2280 current->comm, preempt_count(), task_pid_nr(current), 2281 worker->current_func); 2282 debug_show_held_locks(current); 2283 dump_stack(); 2284 } 2285 2286 /* 2287 * The following prevents a kworker from hogging CPU on !PREEMPTION 2288 * kernels, where a requeueing work item waiting for something to 2289 * happen could deadlock with stop_machine as such work item could 2290 * indefinitely requeue itself while all other CPUs are trapped in 2291 * stop_machine. At the same time, report a quiescent RCU state so 2292 * the same condition doesn't freeze RCU. 2293 */ 2294 cond_resched(); 2295 2296 spin_lock_irq(&pool->lock); 2297 2298 /* clear cpu intensive status */ 2299 if (unlikely(cpu_intensive)) 2300 worker_clr_flags(worker, WORKER_CPU_INTENSIVE); 2301 2302 /* tag the worker for identification in schedule() */ 2303 worker->last_func = worker->current_func; 2304 2305 /* we're done with it, release */ 2306 hash_del(&worker->hentry); 2307 worker->current_work = NULL; 2308 worker->current_func = NULL; 2309 worker->current_pwq = NULL; 2310 pwq_dec_nr_in_flight(pwq, work_color); 2311 } 2312 2313 /** 2314 * process_scheduled_works - process scheduled works 2315 * @worker: self 2316 * 2317 * Process all scheduled works. Please note that the scheduled list 2318 * may change while processing a work, so this function repeatedly 2319 * fetches a work from the top and executes it. 2320 * 2321 * CONTEXT: 2322 * spin_lock_irq(pool->lock) which may be released and regrabbed 2323 * multiple times. 2324 */ 2325 static void process_scheduled_works(struct worker *worker) 2326 { 2327 while (!list_empty(&worker->scheduled)) { 2328 struct work_struct *work = list_first_entry(&worker->scheduled, 2329 struct work_struct, entry); 2330 process_one_work(worker, work); 2331 } 2332 } 2333 2334 static void set_pf_worker(bool val) 2335 { 2336 mutex_lock(&wq_pool_attach_mutex); 2337 if (val) 2338 current->flags |= PF_WQ_WORKER; 2339 else 2340 current->flags &= ~PF_WQ_WORKER; 2341 mutex_unlock(&wq_pool_attach_mutex); 2342 } 2343 2344 /** 2345 * worker_thread - the worker thread function 2346 * @__worker: self 2347 * 2348 * The worker thread function. All workers belong to a worker_pool - 2349 * either a per-cpu one or dynamic unbound one. These workers process all 2350 * work items regardless of their specific target workqueue. The only 2351 * exception is work items which belong to workqueues with a rescuer which 2352 * will be explained in rescuer_thread(). 2353 * 2354 * Return: 0 2355 */ 2356 static int worker_thread(void *__worker) 2357 { 2358 struct worker *worker = __worker; 2359 struct worker_pool *pool = worker->pool; 2360 2361 /* tell the scheduler that this is a workqueue worker */ 2362 set_pf_worker(true); 2363 woke_up: 2364 spin_lock_irq(&pool->lock); 2365 2366 /* am I supposed to die? */ 2367 if (unlikely(worker->flags & WORKER_DIE)) { 2368 spin_unlock_irq(&pool->lock); 2369 WARN_ON_ONCE(!list_empty(&worker->entry)); 2370 set_pf_worker(false); 2371 2372 set_task_comm(worker->task, "kworker/dying"); 2373 ida_simple_remove(&pool->worker_ida, worker->id); 2374 worker_detach_from_pool(worker); 2375 kfree(worker); 2376 return 0; 2377 } 2378 2379 worker_leave_idle(worker); 2380 recheck: 2381 /* no more worker necessary? */ 2382 if (!need_more_worker(pool)) 2383 goto sleep; 2384 2385 /* do we need to manage? */ 2386 if (unlikely(!may_start_working(pool)) && manage_workers(worker)) 2387 goto recheck; 2388 2389 /* 2390 * ->scheduled list can only be filled while a worker is 2391 * preparing to process a work or actually processing it. 2392 * Make sure nobody diddled with it while I was sleeping. 2393 */ 2394 WARN_ON_ONCE(!list_empty(&worker->scheduled)); 2395 2396 /* 2397 * Finish PREP stage. We're guaranteed to have at least one idle 2398 * worker or that someone else has already assumed the manager 2399 * role. This is where @worker starts participating in concurrency 2400 * management if applicable and concurrency management is restored 2401 * after being rebound. See rebind_workers() for details. 2402 */ 2403 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND); 2404 2405 do { 2406 struct work_struct *work = 2407 list_first_entry(&pool->worklist, 2408 struct work_struct, entry); 2409 2410 pool->watchdog_ts = jiffies; 2411 2412 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) { 2413 /* optimization path, not strictly necessary */ 2414 process_one_work(worker, work); 2415 if (unlikely(!list_empty(&worker->scheduled))) 2416 process_scheduled_works(worker); 2417 } else { 2418 move_linked_works(work, &worker->scheduled, NULL); 2419 process_scheduled_works(worker); 2420 } 2421 } while (keep_working(pool)); 2422 2423 worker_set_flags(worker, WORKER_PREP); 2424 sleep: 2425 /* 2426 * pool->lock is held and there's no work to process and no need to 2427 * manage, sleep. Workers are woken up only while holding 2428 * pool->lock or from local cpu, so setting the current state 2429 * before releasing pool->lock is enough to prevent losing any 2430 * event. 2431 */ 2432 worker_enter_idle(worker); 2433 __set_current_state(TASK_IDLE); 2434 spin_unlock_irq(&pool->lock); 2435 schedule(); 2436 goto woke_up; 2437 } 2438 2439 /** 2440 * rescuer_thread - the rescuer thread function 2441 * @__rescuer: self 2442 * 2443 * Workqueue rescuer thread function. There's one rescuer for each 2444 * workqueue which has WQ_MEM_RECLAIM set. 2445 * 2446 * Regular work processing on a pool may block trying to create a new 2447 * worker which uses GFP_KERNEL allocation which has slight chance of 2448 * developing into deadlock if some works currently on the same queue 2449 * need to be processed to satisfy the GFP_KERNEL allocation. This is 2450 * the problem rescuer solves. 2451 * 2452 * When such condition is possible, the pool summons rescuers of all 2453 * workqueues which have works queued on the pool and let them process 2454 * those works so that forward progress can be guaranteed. 2455 * 2456 * This should happen rarely. 2457 * 2458 * Return: 0 2459 */ 2460 static int rescuer_thread(void *__rescuer) 2461 { 2462 struct worker *rescuer = __rescuer; 2463 struct workqueue_struct *wq = rescuer->rescue_wq; 2464 struct list_head *scheduled = &rescuer->scheduled; 2465 bool should_stop; 2466 2467 set_user_nice(current, RESCUER_NICE_LEVEL); 2468 2469 /* 2470 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it 2471 * doesn't participate in concurrency management. 2472 */ 2473 set_pf_worker(true); 2474 repeat: 2475 set_current_state(TASK_IDLE); 2476 2477 /* 2478 * By the time the rescuer is requested to stop, the workqueue 2479 * shouldn't have any work pending, but @wq->maydays may still have 2480 * pwq(s) queued. This can happen by non-rescuer workers consuming 2481 * all the work items before the rescuer got to them. Go through 2482 * @wq->maydays processing before acting on should_stop so that the 2483 * list is always empty on exit. 2484 */ 2485 should_stop = kthread_should_stop(); 2486 2487 /* see whether any pwq is asking for help */ 2488 spin_lock_irq(&wq_mayday_lock); 2489 2490 while (!list_empty(&wq->maydays)) { 2491 struct pool_workqueue *pwq = list_first_entry(&wq->maydays, 2492 struct pool_workqueue, mayday_node); 2493 struct worker_pool *pool = pwq->pool; 2494 struct work_struct *work, *n; 2495 bool first = true; 2496 2497 __set_current_state(TASK_RUNNING); 2498 list_del_init(&pwq->mayday_node); 2499 2500 spin_unlock_irq(&wq_mayday_lock); 2501 2502 worker_attach_to_pool(rescuer, pool); 2503 2504 spin_lock_irq(&pool->lock); 2505 2506 /* 2507 * Slurp in all works issued via this workqueue and 2508 * process'em. 2509 */ 2510 WARN_ON_ONCE(!list_empty(scheduled)); 2511 list_for_each_entry_safe(work, n, &pool->worklist, entry) { 2512 if (get_work_pwq(work) == pwq) { 2513 if (first) 2514 pool->watchdog_ts = jiffies; 2515 move_linked_works(work, scheduled, &n); 2516 } 2517 first = false; 2518 } 2519 2520 if (!list_empty(scheduled)) { 2521 process_scheduled_works(rescuer); 2522 2523 /* 2524 * The above execution of rescued work items could 2525 * have created more to rescue through 2526 * pwq_activate_first_delayed() or chained 2527 * queueing. Let's put @pwq back on mayday list so 2528 * that such back-to-back work items, which may be 2529 * being used to relieve memory pressure, don't 2530 * incur MAYDAY_INTERVAL delay inbetween. 2531 */ 2532 if (need_to_create_worker(pool)) { 2533 spin_lock(&wq_mayday_lock); 2534 /* 2535 * Queue iff we aren't racing destruction 2536 * and somebody else hasn't queued it already. 2537 */ 2538 if (wq->rescuer && list_empty(&pwq->mayday_node)) { 2539 get_pwq(pwq); 2540 list_add_tail(&pwq->mayday_node, &wq->maydays); 2541 } 2542 spin_unlock(&wq_mayday_lock); 2543 } 2544 } 2545 2546 /* 2547 * Put the reference grabbed by send_mayday(). @pool won't 2548 * go away while we're still attached to it. 2549 */ 2550 put_pwq(pwq); 2551 2552 /* 2553 * Leave this pool. If need_more_worker() is %true, notify a 2554 * regular worker; otherwise, we end up with 0 concurrency 2555 * and stalling the execution. 2556 */ 2557 if (need_more_worker(pool)) 2558 wake_up_worker(pool); 2559 2560 spin_unlock_irq(&pool->lock); 2561 2562 worker_detach_from_pool(rescuer); 2563 2564 spin_lock_irq(&wq_mayday_lock); 2565 } 2566 2567 spin_unlock_irq(&wq_mayday_lock); 2568 2569 if (should_stop) { 2570 __set_current_state(TASK_RUNNING); 2571 set_pf_worker(false); 2572 return 0; 2573 } 2574 2575 /* rescuers should never participate in concurrency management */ 2576 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING)); 2577 schedule(); 2578 goto repeat; 2579 } 2580 2581 /** 2582 * check_flush_dependency - check for flush dependency sanity 2583 * @target_wq: workqueue being flushed 2584 * @target_work: work item being flushed (NULL for workqueue flushes) 2585 * 2586 * %current is trying to flush the whole @target_wq or @target_work on it. 2587 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not 2588 * reclaiming memory or running on a workqueue which doesn't have 2589 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to 2590 * a deadlock. 2591 */ 2592 static void check_flush_dependency(struct workqueue_struct *target_wq, 2593 struct work_struct *target_work) 2594 { 2595 work_func_t target_func = target_work ? target_work->func : NULL; 2596 struct worker *worker; 2597 2598 if (target_wq->flags & WQ_MEM_RECLAIM) 2599 return; 2600 2601 worker = current_wq_worker(); 2602 2603 WARN_ONCE(current->flags & PF_MEMALLOC, 2604 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps", 2605 current->pid, current->comm, target_wq->name, target_func); 2606 WARN_ONCE(worker && ((worker->current_pwq->wq->flags & 2607 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM), 2608 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps", 2609 worker->current_pwq->wq->name, worker->current_func, 2610 target_wq->name, target_func); 2611 } 2612 2613 struct wq_barrier { 2614 struct work_struct work; 2615 struct completion done; 2616 struct task_struct *task; /* purely informational */ 2617 }; 2618 2619 static void wq_barrier_func(struct work_struct *work) 2620 { 2621 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 2622 complete(&barr->done); 2623 } 2624 2625 /** 2626 * insert_wq_barrier - insert a barrier work 2627 * @pwq: pwq to insert barrier into 2628 * @barr: wq_barrier to insert 2629 * @target: target work to attach @barr to 2630 * @worker: worker currently executing @target, NULL if @target is not executing 2631 * 2632 * @barr is linked to @target such that @barr is completed only after 2633 * @target finishes execution. Please note that the ordering 2634 * guarantee is observed only with respect to @target and on the local 2635 * cpu. 2636 * 2637 * Currently, a queued barrier can't be canceled. This is because 2638 * try_to_grab_pending() can't determine whether the work to be 2639 * grabbed is at the head of the queue and thus can't clear LINKED 2640 * flag of the previous work while there must be a valid next work 2641 * after a work with LINKED flag set. 2642 * 2643 * Note that when @worker is non-NULL, @target may be modified 2644 * underneath us, so we can't reliably determine pwq from @target. 2645 * 2646 * CONTEXT: 2647 * spin_lock_irq(pool->lock). 2648 */ 2649 static void insert_wq_barrier(struct pool_workqueue *pwq, 2650 struct wq_barrier *barr, 2651 struct work_struct *target, struct worker *worker) 2652 { 2653 struct list_head *head; 2654 unsigned int linked = 0; 2655 2656 /* 2657 * debugobject calls are safe here even with pool->lock locked 2658 * as we know for sure that this will not trigger any of the 2659 * checks and call back into the fixup functions where we 2660 * might deadlock. 2661 */ 2662 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func); 2663 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work)); 2664 2665 init_completion_map(&barr->done, &target->lockdep_map); 2666 2667 barr->task = current; 2668 2669 /* 2670 * If @target is currently being executed, schedule the 2671 * barrier to the worker; otherwise, put it after @target. 2672 */ 2673 if (worker) 2674 head = worker->scheduled.next; 2675 else { 2676 unsigned long *bits = work_data_bits(target); 2677 2678 head = target->entry.next; 2679 /* there can already be other linked works, inherit and set */ 2680 linked = *bits & WORK_STRUCT_LINKED; 2681 __set_bit(WORK_STRUCT_LINKED_BIT, bits); 2682 } 2683 2684 debug_work_activate(&barr->work); 2685 insert_work(pwq, &barr->work, head, 2686 work_color_to_flags(WORK_NO_COLOR) | linked); 2687 } 2688 2689 /** 2690 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing 2691 * @wq: workqueue being flushed 2692 * @flush_color: new flush color, < 0 for no-op 2693 * @work_color: new work color, < 0 for no-op 2694 * 2695 * Prepare pwqs for workqueue flushing. 2696 * 2697 * If @flush_color is non-negative, flush_color on all pwqs should be 2698 * -1. If no pwq has in-flight commands at the specified color, all 2699 * pwq->flush_color's stay at -1 and %false is returned. If any pwq 2700 * has in flight commands, its pwq->flush_color is set to 2701 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq 2702 * wakeup logic is armed and %true is returned. 2703 * 2704 * The caller should have initialized @wq->first_flusher prior to 2705 * calling this function with non-negative @flush_color. If 2706 * @flush_color is negative, no flush color update is done and %false 2707 * is returned. 2708 * 2709 * If @work_color is non-negative, all pwqs should have the same 2710 * work_color which is previous to @work_color and all will be 2711 * advanced to @work_color. 2712 * 2713 * CONTEXT: 2714 * mutex_lock(wq->mutex). 2715 * 2716 * Return: 2717 * %true if @flush_color >= 0 and there's something to flush. %false 2718 * otherwise. 2719 */ 2720 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq, 2721 int flush_color, int work_color) 2722 { 2723 bool wait = false; 2724 struct pool_workqueue *pwq; 2725 2726 if (flush_color >= 0) { 2727 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush)); 2728 atomic_set(&wq->nr_pwqs_to_flush, 1); 2729 } 2730 2731 for_each_pwq(pwq, wq) { 2732 struct worker_pool *pool = pwq->pool; 2733 2734 spin_lock_irq(&pool->lock); 2735 2736 if (flush_color >= 0) { 2737 WARN_ON_ONCE(pwq->flush_color != -1); 2738 2739 if (pwq->nr_in_flight[flush_color]) { 2740 pwq->flush_color = flush_color; 2741 atomic_inc(&wq->nr_pwqs_to_flush); 2742 wait = true; 2743 } 2744 } 2745 2746 if (work_color >= 0) { 2747 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color)); 2748 pwq->work_color = work_color; 2749 } 2750 2751 spin_unlock_irq(&pool->lock); 2752 } 2753 2754 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush)) 2755 complete(&wq->first_flusher->done); 2756 2757 return wait; 2758 } 2759 2760 /** 2761 * flush_workqueue - ensure that any scheduled work has run to completion. 2762 * @wq: workqueue to flush 2763 * 2764 * This function sleeps until all work items which were queued on entry 2765 * have finished execution, but it is not livelocked by new incoming ones. 2766 */ 2767 void flush_workqueue(struct workqueue_struct *wq) 2768 { 2769 struct wq_flusher this_flusher = { 2770 .list = LIST_HEAD_INIT(this_flusher.list), 2771 .flush_color = -1, 2772 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map), 2773 }; 2774 int next_color; 2775 2776 if (WARN_ON(!wq_online)) 2777 return; 2778 2779 lock_map_acquire(&wq->lockdep_map); 2780 lock_map_release(&wq->lockdep_map); 2781 2782 mutex_lock(&wq->mutex); 2783 2784 /* 2785 * Start-to-wait phase 2786 */ 2787 next_color = work_next_color(wq->work_color); 2788 2789 if (next_color != wq->flush_color) { 2790 /* 2791 * Color space is not full. The current work_color 2792 * becomes our flush_color and work_color is advanced 2793 * by one. 2794 */ 2795 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow)); 2796 this_flusher.flush_color = wq->work_color; 2797 wq->work_color = next_color; 2798 2799 if (!wq->first_flusher) { 2800 /* no flush in progress, become the first flusher */ 2801 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2802 2803 wq->first_flusher = &this_flusher; 2804 2805 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color, 2806 wq->work_color)) { 2807 /* nothing to flush, done */ 2808 wq->flush_color = next_color; 2809 wq->first_flusher = NULL; 2810 goto out_unlock; 2811 } 2812 } else { 2813 /* wait in queue */ 2814 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color); 2815 list_add_tail(&this_flusher.list, &wq->flusher_queue); 2816 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2817 } 2818 } else { 2819 /* 2820 * Oops, color space is full, wait on overflow queue. 2821 * The next flush completion will assign us 2822 * flush_color and transfer to flusher_queue. 2823 */ 2824 list_add_tail(&this_flusher.list, &wq->flusher_overflow); 2825 } 2826 2827 check_flush_dependency(wq, NULL); 2828 2829 mutex_unlock(&wq->mutex); 2830 2831 wait_for_completion(&this_flusher.done); 2832 2833 /* 2834 * Wake-up-and-cascade phase 2835 * 2836 * First flushers are responsible for cascading flushes and 2837 * handling overflow. Non-first flushers can simply return. 2838 */ 2839 if (READ_ONCE(wq->first_flusher) != &this_flusher) 2840 return; 2841 2842 mutex_lock(&wq->mutex); 2843 2844 /* we might have raced, check again with mutex held */ 2845 if (wq->first_flusher != &this_flusher) 2846 goto out_unlock; 2847 2848 WRITE_ONCE(wq->first_flusher, NULL); 2849 2850 WARN_ON_ONCE(!list_empty(&this_flusher.list)); 2851 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color); 2852 2853 while (true) { 2854 struct wq_flusher *next, *tmp; 2855 2856 /* complete all the flushers sharing the current flush color */ 2857 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) { 2858 if (next->flush_color != wq->flush_color) 2859 break; 2860 list_del_init(&next->list); 2861 complete(&next->done); 2862 } 2863 2864 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) && 2865 wq->flush_color != work_next_color(wq->work_color)); 2866 2867 /* this flush_color is finished, advance by one */ 2868 wq->flush_color = work_next_color(wq->flush_color); 2869 2870 /* one color has been freed, handle overflow queue */ 2871 if (!list_empty(&wq->flusher_overflow)) { 2872 /* 2873 * Assign the same color to all overflowed 2874 * flushers, advance work_color and append to 2875 * flusher_queue. This is the start-to-wait 2876 * phase for these overflowed flushers. 2877 */ 2878 list_for_each_entry(tmp, &wq->flusher_overflow, list) 2879 tmp->flush_color = wq->work_color; 2880 2881 wq->work_color = work_next_color(wq->work_color); 2882 2883 list_splice_tail_init(&wq->flusher_overflow, 2884 &wq->flusher_queue); 2885 flush_workqueue_prep_pwqs(wq, -1, wq->work_color); 2886 } 2887 2888 if (list_empty(&wq->flusher_queue)) { 2889 WARN_ON_ONCE(wq->flush_color != wq->work_color); 2890 break; 2891 } 2892 2893 /* 2894 * Need to flush more colors. Make the next flusher 2895 * the new first flusher and arm pwqs. 2896 */ 2897 WARN_ON_ONCE(wq->flush_color == wq->work_color); 2898 WARN_ON_ONCE(wq->flush_color != next->flush_color); 2899 2900 list_del_init(&next->list); 2901 wq->first_flusher = next; 2902 2903 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1)) 2904 break; 2905 2906 /* 2907 * Meh... this color is already done, clear first 2908 * flusher and repeat cascading. 2909 */ 2910 wq->first_flusher = NULL; 2911 } 2912 2913 out_unlock: 2914 mutex_unlock(&wq->mutex); 2915 } 2916 EXPORT_SYMBOL(flush_workqueue); 2917 2918 /** 2919 * drain_workqueue - drain a workqueue 2920 * @wq: workqueue to drain 2921 * 2922 * Wait until the workqueue becomes empty. While draining is in progress, 2923 * only chain queueing is allowed. IOW, only currently pending or running 2924 * work items on @wq can queue further work items on it. @wq is flushed 2925 * repeatedly until it becomes empty. The number of flushing is determined 2926 * by the depth of chaining and should be relatively short. Whine if it 2927 * takes too long. 2928 */ 2929 void drain_workqueue(struct workqueue_struct *wq) 2930 { 2931 unsigned int flush_cnt = 0; 2932 struct pool_workqueue *pwq; 2933 2934 /* 2935 * __queue_work() needs to test whether there are drainers, is much 2936 * hotter than drain_workqueue() and already looks at @wq->flags. 2937 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers. 2938 */ 2939 mutex_lock(&wq->mutex); 2940 if (!wq->nr_drainers++) 2941 wq->flags |= __WQ_DRAINING; 2942 mutex_unlock(&wq->mutex); 2943 reflush: 2944 flush_workqueue(wq); 2945 2946 mutex_lock(&wq->mutex); 2947 2948 for_each_pwq(pwq, wq) { 2949 bool drained; 2950 2951 spin_lock_irq(&pwq->pool->lock); 2952 drained = !pwq->nr_active && list_empty(&pwq->delayed_works); 2953 spin_unlock_irq(&pwq->pool->lock); 2954 2955 if (drained) 2956 continue; 2957 2958 if (++flush_cnt == 10 || 2959 (flush_cnt % 100 == 0 && flush_cnt <= 1000)) 2960 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n", 2961 wq->name, flush_cnt); 2962 2963 mutex_unlock(&wq->mutex); 2964 goto reflush; 2965 } 2966 2967 if (!--wq->nr_drainers) 2968 wq->flags &= ~__WQ_DRAINING; 2969 mutex_unlock(&wq->mutex); 2970 } 2971 EXPORT_SYMBOL_GPL(drain_workqueue); 2972 2973 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr, 2974 bool from_cancel) 2975 { 2976 struct worker *worker = NULL; 2977 struct worker_pool *pool; 2978 struct pool_workqueue *pwq; 2979 2980 might_sleep(); 2981 2982 rcu_read_lock(); 2983 pool = get_work_pool(work); 2984 if (!pool) { 2985 rcu_read_unlock(); 2986 return false; 2987 } 2988 2989 spin_lock_irq(&pool->lock); 2990 /* see the comment in try_to_grab_pending() with the same code */ 2991 pwq = get_work_pwq(work); 2992 if (pwq) { 2993 if (unlikely(pwq->pool != pool)) 2994 goto already_gone; 2995 } else { 2996 worker = find_worker_executing_work(pool, work); 2997 if (!worker) 2998 goto already_gone; 2999 pwq = worker->current_pwq; 3000 } 3001 3002 check_flush_dependency(pwq->wq, work); 3003 3004 insert_wq_barrier(pwq, barr, work, worker); 3005 spin_unlock_irq(&pool->lock); 3006 3007 /* 3008 * Force a lock recursion deadlock when using flush_work() inside a 3009 * single-threaded or rescuer equipped workqueue. 3010 * 3011 * For single threaded workqueues the deadlock happens when the work 3012 * is after the work issuing the flush_work(). For rescuer equipped 3013 * workqueues the deadlock happens when the rescuer stalls, blocking 3014 * forward progress. 3015 */ 3016 if (!from_cancel && 3017 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) { 3018 lock_map_acquire(&pwq->wq->lockdep_map); 3019 lock_map_release(&pwq->wq->lockdep_map); 3020 } 3021 rcu_read_unlock(); 3022 return true; 3023 already_gone: 3024 spin_unlock_irq(&pool->lock); 3025 rcu_read_unlock(); 3026 return false; 3027 } 3028 3029 static bool __flush_work(struct work_struct *work, bool from_cancel) 3030 { 3031 struct wq_barrier barr; 3032 3033 if (WARN_ON(!wq_online)) 3034 return false; 3035 3036 if (WARN_ON(!work->func)) 3037 return false; 3038 3039 if (!from_cancel) { 3040 lock_map_acquire(&work->lockdep_map); 3041 lock_map_release(&work->lockdep_map); 3042 } 3043 3044 if (start_flush_work(work, &barr, from_cancel)) { 3045 wait_for_completion(&barr.done); 3046 destroy_work_on_stack(&barr.work); 3047 return true; 3048 } else { 3049 return false; 3050 } 3051 } 3052 3053 /** 3054 * flush_work - wait for a work to finish executing the last queueing instance 3055 * @work: the work to flush 3056 * 3057 * Wait until @work has finished execution. @work is guaranteed to be idle 3058 * on return if it hasn't been requeued since flush started. 3059 * 3060 * Return: 3061 * %true if flush_work() waited for the work to finish execution, 3062 * %false if it was already idle. 3063 */ 3064 bool flush_work(struct work_struct *work) 3065 { 3066 return __flush_work(work, false); 3067 } 3068 EXPORT_SYMBOL_GPL(flush_work); 3069 3070 struct cwt_wait { 3071 wait_queue_entry_t wait; 3072 struct work_struct *work; 3073 }; 3074 3075 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key) 3076 { 3077 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait); 3078 3079 if (cwait->work != key) 3080 return 0; 3081 return autoremove_wake_function(wait, mode, sync, key); 3082 } 3083 3084 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork) 3085 { 3086 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq); 3087 unsigned long flags; 3088 int ret; 3089 3090 do { 3091 ret = try_to_grab_pending(work, is_dwork, &flags); 3092 /* 3093 * If someone else is already canceling, wait for it to 3094 * finish. flush_work() doesn't work for PREEMPT_NONE 3095 * because we may get scheduled between @work's completion 3096 * and the other canceling task resuming and clearing 3097 * CANCELING - flush_work() will return false immediately 3098 * as @work is no longer busy, try_to_grab_pending() will 3099 * return -ENOENT as @work is still being canceled and the 3100 * other canceling task won't be able to clear CANCELING as 3101 * we're hogging the CPU. 3102 * 3103 * Let's wait for completion using a waitqueue. As this 3104 * may lead to the thundering herd problem, use a custom 3105 * wake function which matches @work along with exclusive 3106 * wait and wakeup. 3107 */ 3108 if (unlikely(ret == -ENOENT)) { 3109 struct cwt_wait cwait; 3110 3111 init_wait(&cwait.wait); 3112 cwait.wait.func = cwt_wakefn; 3113 cwait.work = work; 3114 3115 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait, 3116 TASK_UNINTERRUPTIBLE); 3117 if (work_is_canceling(work)) 3118 schedule(); 3119 finish_wait(&cancel_waitq, &cwait.wait); 3120 } 3121 } while (unlikely(ret < 0)); 3122 3123 /* tell other tasks trying to grab @work to back off */ 3124 mark_work_canceling(work); 3125 local_irq_restore(flags); 3126 3127 /* 3128 * This allows canceling during early boot. We know that @work 3129 * isn't executing. 3130 */ 3131 if (wq_online) 3132 __flush_work(work, true); 3133 3134 clear_work_data(work); 3135 3136 /* 3137 * Paired with prepare_to_wait() above so that either 3138 * waitqueue_active() is visible here or !work_is_canceling() is 3139 * visible there. 3140 */ 3141 smp_mb(); 3142 if (waitqueue_active(&cancel_waitq)) 3143 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work); 3144 3145 return ret; 3146 } 3147 3148 /** 3149 * cancel_work_sync - cancel a work and wait for it to finish 3150 * @work: the work to cancel 3151 * 3152 * Cancel @work and wait for its execution to finish. This function 3153 * can be used even if the work re-queues itself or migrates to 3154 * another workqueue. On return from this function, @work is 3155 * guaranteed to be not pending or executing on any CPU. 3156 * 3157 * cancel_work_sync(&delayed_work->work) must not be used for 3158 * delayed_work's. Use cancel_delayed_work_sync() instead. 3159 * 3160 * The caller must ensure that the workqueue on which @work was last 3161 * queued can't be destroyed before this function returns. 3162 * 3163 * Return: 3164 * %true if @work was pending, %false otherwise. 3165 */ 3166 bool cancel_work_sync(struct work_struct *work) 3167 { 3168 return __cancel_work_timer(work, false); 3169 } 3170 EXPORT_SYMBOL_GPL(cancel_work_sync); 3171 3172 /** 3173 * flush_delayed_work - wait for a dwork to finish executing the last queueing 3174 * @dwork: the delayed work to flush 3175 * 3176 * Delayed timer is cancelled and the pending work is queued for 3177 * immediate execution. Like flush_work(), this function only 3178 * considers the last queueing instance of @dwork. 3179 * 3180 * Return: 3181 * %true if flush_work() waited for the work to finish execution, 3182 * %false if it was already idle. 3183 */ 3184 bool flush_delayed_work(struct delayed_work *dwork) 3185 { 3186 local_irq_disable(); 3187 if (del_timer_sync(&dwork->timer)) 3188 __queue_work(dwork->cpu, dwork->wq, &dwork->work); 3189 local_irq_enable(); 3190 return flush_work(&dwork->work); 3191 } 3192 EXPORT_SYMBOL(flush_delayed_work); 3193 3194 /** 3195 * flush_rcu_work - wait for a rwork to finish executing the last queueing 3196 * @rwork: the rcu work to flush 3197 * 3198 * Return: 3199 * %true if flush_rcu_work() waited for the work to finish execution, 3200 * %false if it was already idle. 3201 */ 3202 bool flush_rcu_work(struct rcu_work *rwork) 3203 { 3204 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) { 3205 rcu_barrier(); 3206 flush_work(&rwork->work); 3207 return true; 3208 } else { 3209 return flush_work(&rwork->work); 3210 } 3211 } 3212 EXPORT_SYMBOL(flush_rcu_work); 3213 3214 static bool __cancel_work(struct work_struct *work, bool is_dwork) 3215 { 3216 unsigned long flags; 3217 int ret; 3218 3219 do { 3220 ret = try_to_grab_pending(work, is_dwork, &flags); 3221 } while (unlikely(ret == -EAGAIN)); 3222 3223 if (unlikely(ret < 0)) 3224 return false; 3225 3226 set_work_pool_and_clear_pending(work, get_work_pool_id(work)); 3227 local_irq_restore(flags); 3228 return ret; 3229 } 3230 3231 /** 3232 * cancel_delayed_work - cancel a delayed work 3233 * @dwork: delayed_work to cancel 3234 * 3235 * Kill off a pending delayed_work. 3236 * 3237 * Return: %true if @dwork was pending and canceled; %false if it wasn't 3238 * pending. 3239 * 3240 * Note: 3241 * The work callback function may still be running on return, unless 3242 * it returns %true and the work doesn't re-arm itself. Explicitly flush or 3243 * use cancel_delayed_work_sync() to wait on it. 3244 * 3245 * This function is safe to call from any context including IRQ handler. 3246 */ 3247 bool cancel_delayed_work(struct delayed_work *dwork) 3248 { 3249 return __cancel_work(&dwork->work, true); 3250 } 3251 EXPORT_SYMBOL(cancel_delayed_work); 3252 3253 /** 3254 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish 3255 * @dwork: the delayed work cancel 3256 * 3257 * This is cancel_work_sync() for delayed works. 3258 * 3259 * Return: 3260 * %true if @dwork was pending, %false otherwise. 3261 */ 3262 bool cancel_delayed_work_sync(struct delayed_work *dwork) 3263 { 3264 return __cancel_work_timer(&dwork->work, true); 3265 } 3266 EXPORT_SYMBOL(cancel_delayed_work_sync); 3267 3268 /** 3269 * schedule_on_each_cpu - execute a function synchronously on each online CPU 3270 * @func: the function to call 3271 * 3272 * schedule_on_each_cpu() executes @func on each online CPU using the 3273 * system workqueue and blocks until all CPUs have completed. 3274 * schedule_on_each_cpu() is very slow. 3275 * 3276 * Return: 3277 * 0 on success, -errno on failure. 3278 */ 3279 int schedule_on_each_cpu(work_func_t func) 3280 { 3281 int cpu; 3282 struct work_struct __percpu *works; 3283 3284 works = alloc_percpu(struct work_struct); 3285 if (!works) 3286 return -ENOMEM; 3287 3288 get_online_cpus(); 3289 3290 for_each_online_cpu(cpu) { 3291 struct work_struct *work = per_cpu_ptr(works, cpu); 3292 3293 INIT_WORK(work, func); 3294 schedule_work_on(cpu, work); 3295 } 3296 3297 for_each_online_cpu(cpu) 3298 flush_work(per_cpu_ptr(works, cpu)); 3299 3300 put_online_cpus(); 3301 free_percpu(works); 3302 return 0; 3303 } 3304 3305 /** 3306 * execute_in_process_context - reliably execute the routine with user context 3307 * @fn: the function to execute 3308 * @ew: guaranteed storage for the execute work structure (must 3309 * be available when the work executes) 3310 * 3311 * Executes the function immediately if process context is available, 3312 * otherwise schedules the function for delayed execution. 3313 * 3314 * Return: 0 - function was executed 3315 * 1 - function was scheduled for execution 3316 */ 3317 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 3318 { 3319 if (!in_interrupt()) { 3320 fn(&ew->work); 3321 return 0; 3322 } 3323 3324 INIT_WORK(&ew->work, fn); 3325 schedule_work(&ew->work); 3326 3327 return 1; 3328 } 3329 EXPORT_SYMBOL_GPL(execute_in_process_context); 3330 3331 /** 3332 * free_workqueue_attrs - free a workqueue_attrs 3333 * @attrs: workqueue_attrs to free 3334 * 3335 * Undo alloc_workqueue_attrs(). 3336 */ 3337 void free_workqueue_attrs(struct workqueue_attrs *attrs) 3338 { 3339 if (attrs) { 3340 free_cpumask_var(attrs->cpumask); 3341 kfree(attrs); 3342 } 3343 } 3344 3345 /** 3346 * alloc_workqueue_attrs - allocate a workqueue_attrs 3347 * 3348 * Allocate a new workqueue_attrs, initialize with default settings and 3349 * return it. 3350 * 3351 * Return: The allocated new workqueue_attr on success. %NULL on failure. 3352 */ 3353 struct workqueue_attrs *alloc_workqueue_attrs(void) 3354 { 3355 struct workqueue_attrs *attrs; 3356 3357 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL); 3358 if (!attrs) 3359 goto fail; 3360 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL)) 3361 goto fail; 3362 3363 cpumask_copy(attrs->cpumask, cpu_possible_mask); 3364 return attrs; 3365 fail: 3366 free_workqueue_attrs(attrs); 3367 return NULL; 3368 } 3369 3370 static void copy_workqueue_attrs(struct workqueue_attrs *to, 3371 const struct workqueue_attrs *from) 3372 { 3373 to->nice = from->nice; 3374 cpumask_copy(to->cpumask, from->cpumask); 3375 /* 3376 * Unlike hash and equality test, this function doesn't ignore 3377 * ->no_numa as it is used for both pool and wq attrs. Instead, 3378 * get_unbound_pool() explicitly clears ->no_numa after copying. 3379 */ 3380 to->no_numa = from->no_numa; 3381 } 3382 3383 /* hash value of the content of @attr */ 3384 static u32 wqattrs_hash(const struct workqueue_attrs *attrs) 3385 { 3386 u32 hash = 0; 3387 3388 hash = jhash_1word(attrs->nice, hash); 3389 hash = jhash(cpumask_bits(attrs->cpumask), 3390 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash); 3391 return hash; 3392 } 3393 3394 /* content equality test */ 3395 static bool wqattrs_equal(const struct workqueue_attrs *a, 3396 const struct workqueue_attrs *b) 3397 { 3398 if (a->nice != b->nice) 3399 return false; 3400 if (!cpumask_equal(a->cpumask, b->cpumask)) 3401 return false; 3402 return true; 3403 } 3404 3405 /** 3406 * init_worker_pool - initialize a newly zalloc'd worker_pool 3407 * @pool: worker_pool to initialize 3408 * 3409 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs. 3410 * 3411 * Return: 0 on success, -errno on failure. Even on failure, all fields 3412 * inside @pool proper are initialized and put_unbound_pool() can be called 3413 * on @pool safely to release it. 3414 */ 3415 static int init_worker_pool(struct worker_pool *pool) 3416 { 3417 spin_lock_init(&pool->lock); 3418 pool->id = -1; 3419 pool->cpu = -1; 3420 pool->node = NUMA_NO_NODE; 3421 pool->flags |= POOL_DISASSOCIATED; 3422 pool->watchdog_ts = jiffies; 3423 INIT_LIST_HEAD(&pool->worklist); 3424 INIT_LIST_HEAD(&pool->idle_list); 3425 hash_init(pool->busy_hash); 3426 3427 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE); 3428 3429 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0); 3430 3431 INIT_LIST_HEAD(&pool->workers); 3432 3433 ida_init(&pool->worker_ida); 3434 INIT_HLIST_NODE(&pool->hash_node); 3435 pool->refcnt = 1; 3436 3437 /* shouldn't fail above this point */ 3438 pool->attrs = alloc_workqueue_attrs(); 3439 if (!pool->attrs) 3440 return -ENOMEM; 3441 return 0; 3442 } 3443 3444 #ifdef CONFIG_LOCKDEP 3445 static void wq_init_lockdep(struct workqueue_struct *wq) 3446 { 3447 char *lock_name; 3448 3449 lockdep_register_key(&wq->key); 3450 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name); 3451 if (!lock_name) 3452 lock_name = wq->name; 3453 3454 wq->lock_name = lock_name; 3455 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0); 3456 } 3457 3458 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3459 { 3460 lockdep_unregister_key(&wq->key); 3461 } 3462 3463 static void wq_free_lockdep(struct workqueue_struct *wq) 3464 { 3465 if (wq->lock_name != wq->name) 3466 kfree(wq->lock_name); 3467 } 3468 #else 3469 static void wq_init_lockdep(struct workqueue_struct *wq) 3470 { 3471 } 3472 3473 static void wq_unregister_lockdep(struct workqueue_struct *wq) 3474 { 3475 } 3476 3477 static void wq_free_lockdep(struct workqueue_struct *wq) 3478 { 3479 } 3480 #endif 3481 3482 static void rcu_free_wq(struct rcu_head *rcu) 3483 { 3484 struct workqueue_struct *wq = 3485 container_of(rcu, struct workqueue_struct, rcu); 3486 3487 wq_free_lockdep(wq); 3488 3489 if (!(wq->flags & WQ_UNBOUND)) 3490 free_percpu(wq->cpu_pwqs); 3491 else 3492 free_workqueue_attrs(wq->unbound_attrs); 3493 3494 kfree(wq->rescuer); 3495 kfree(wq); 3496 } 3497 3498 static void rcu_free_pool(struct rcu_head *rcu) 3499 { 3500 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu); 3501 3502 ida_destroy(&pool->worker_ida); 3503 free_workqueue_attrs(pool->attrs); 3504 kfree(pool); 3505 } 3506 3507 /** 3508 * put_unbound_pool - put a worker_pool 3509 * @pool: worker_pool to put 3510 * 3511 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU 3512 * safe manner. get_unbound_pool() calls this function on its failure path 3513 * and this function should be able to release pools which went through, 3514 * successfully or not, init_worker_pool(). 3515 * 3516 * Should be called with wq_pool_mutex held. 3517 */ 3518 static void put_unbound_pool(struct worker_pool *pool) 3519 { 3520 DECLARE_COMPLETION_ONSTACK(detach_completion); 3521 struct worker *worker; 3522 3523 lockdep_assert_held(&wq_pool_mutex); 3524 3525 if (--pool->refcnt) 3526 return; 3527 3528 /* sanity checks */ 3529 if (WARN_ON(!(pool->cpu < 0)) || 3530 WARN_ON(!list_empty(&pool->worklist))) 3531 return; 3532 3533 /* release id and unhash */ 3534 if (pool->id >= 0) 3535 idr_remove(&worker_pool_idr, pool->id); 3536 hash_del(&pool->hash_node); 3537 3538 /* 3539 * Become the manager and destroy all workers. This prevents 3540 * @pool's workers from blocking on attach_mutex. We're the last 3541 * manager and @pool gets freed with the flag set. 3542 */ 3543 spin_lock_irq(&pool->lock); 3544 wait_event_lock_irq(wq_manager_wait, 3545 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock); 3546 pool->flags |= POOL_MANAGER_ACTIVE; 3547 3548 while ((worker = first_idle_worker(pool))) 3549 destroy_worker(worker); 3550 WARN_ON(pool->nr_workers || pool->nr_idle); 3551 spin_unlock_irq(&pool->lock); 3552 3553 mutex_lock(&wq_pool_attach_mutex); 3554 if (!list_empty(&pool->workers)) 3555 pool->detach_completion = &detach_completion; 3556 mutex_unlock(&wq_pool_attach_mutex); 3557 3558 if (pool->detach_completion) 3559 wait_for_completion(pool->detach_completion); 3560 3561 /* shut down the timers */ 3562 del_timer_sync(&pool->idle_timer); 3563 del_timer_sync(&pool->mayday_timer); 3564 3565 /* RCU protected to allow dereferences from get_work_pool() */ 3566 call_rcu(&pool->rcu, rcu_free_pool); 3567 } 3568 3569 /** 3570 * get_unbound_pool - get a worker_pool with the specified attributes 3571 * @attrs: the attributes of the worker_pool to get 3572 * 3573 * Obtain a worker_pool which has the same attributes as @attrs, bump the 3574 * reference count and return it. If there already is a matching 3575 * worker_pool, it will be used; otherwise, this function attempts to 3576 * create a new one. 3577 * 3578 * Should be called with wq_pool_mutex held. 3579 * 3580 * Return: On success, a worker_pool with the same attributes as @attrs. 3581 * On failure, %NULL. 3582 */ 3583 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs) 3584 { 3585 u32 hash = wqattrs_hash(attrs); 3586 struct worker_pool *pool; 3587 int node; 3588 int target_node = NUMA_NO_NODE; 3589 3590 lockdep_assert_held(&wq_pool_mutex); 3591 3592 /* do we already have a matching pool? */ 3593 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) { 3594 if (wqattrs_equal(pool->attrs, attrs)) { 3595 pool->refcnt++; 3596 return pool; 3597 } 3598 } 3599 3600 /* if cpumask is contained inside a NUMA node, we belong to that node */ 3601 if (wq_numa_enabled) { 3602 for_each_node(node) { 3603 if (cpumask_subset(attrs->cpumask, 3604 wq_numa_possible_cpumask[node])) { 3605 target_node = node; 3606 break; 3607 } 3608 } 3609 } 3610 3611 /* nope, create a new one */ 3612 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node); 3613 if (!pool || init_worker_pool(pool) < 0) 3614 goto fail; 3615 3616 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */ 3617 copy_workqueue_attrs(pool->attrs, attrs); 3618 pool->node = target_node; 3619 3620 /* 3621 * no_numa isn't a worker_pool attribute, always clear it. See 3622 * 'struct workqueue_attrs' comments for detail. 3623 */ 3624 pool->attrs->no_numa = false; 3625 3626 if (worker_pool_assign_id(pool) < 0) 3627 goto fail; 3628 3629 /* create and start the initial worker */ 3630 if (wq_online && !create_worker(pool)) 3631 goto fail; 3632 3633 /* install */ 3634 hash_add(unbound_pool_hash, &pool->hash_node, hash); 3635 3636 return pool; 3637 fail: 3638 if (pool) 3639 put_unbound_pool(pool); 3640 return NULL; 3641 } 3642 3643 static void rcu_free_pwq(struct rcu_head *rcu) 3644 { 3645 kmem_cache_free(pwq_cache, 3646 container_of(rcu, struct pool_workqueue, rcu)); 3647 } 3648 3649 /* 3650 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt 3651 * and needs to be destroyed. 3652 */ 3653 static void pwq_unbound_release_workfn(struct work_struct *work) 3654 { 3655 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue, 3656 unbound_release_work); 3657 struct workqueue_struct *wq = pwq->wq; 3658 struct worker_pool *pool = pwq->pool; 3659 bool is_last; 3660 3661 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND))) 3662 return; 3663 3664 mutex_lock(&wq->mutex); 3665 list_del_rcu(&pwq->pwqs_node); 3666 is_last = list_empty(&wq->pwqs); 3667 mutex_unlock(&wq->mutex); 3668 3669 mutex_lock(&wq_pool_mutex); 3670 put_unbound_pool(pool); 3671 mutex_unlock(&wq_pool_mutex); 3672 3673 call_rcu(&pwq->rcu, rcu_free_pwq); 3674 3675 /* 3676 * If we're the last pwq going away, @wq is already dead and no one 3677 * is gonna access it anymore. Schedule RCU free. 3678 */ 3679 if (is_last) { 3680 wq_unregister_lockdep(wq); 3681 call_rcu(&wq->rcu, rcu_free_wq); 3682 } 3683 } 3684 3685 /** 3686 * pwq_adjust_max_active - update a pwq's max_active to the current setting 3687 * @pwq: target pool_workqueue 3688 * 3689 * If @pwq isn't freezing, set @pwq->max_active to the associated 3690 * workqueue's saved_max_active and activate delayed work items 3691 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero. 3692 */ 3693 static void pwq_adjust_max_active(struct pool_workqueue *pwq) 3694 { 3695 struct workqueue_struct *wq = pwq->wq; 3696 bool freezable = wq->flags & WQ_FREEZABLE; 3697 unsigned long flags; 3698 3699 /* for @wq->saved_max_active */ 3700 lockdep_assert_held(&wq->mutex); 3701 3702 /* fast exit for non-freezable wqs */ 3703 if (!freezable && pwq->max_active == wq->saved_max_active) 3704 return; 3705 3706 /* this function can be called during early boot w/ irq disabled */ 3707 spin_lock_irqsave(&pwq->pool->lock, flags); 3708 3709 /* 3710 * During [un]freezing, the caller is responsible for ensuring that 3711 * this function is called at least once after @workqueue_freezing 3712 * is updated and visible. 3713 */ 3714 if (!freezable || !workqueue_freezing) { 3715 pwq->max_active = wq->saved_max_active; 3716 3717 while (!list_empty(&pwq->delayed_works) && 3718 pwq->nr_active < pwq->max_active) 3719 pwq_activate_first_delayed(pwq); 3720 3721 /* 3722 * Need to kick a worker after thawed or an unbound wq's 3723 * max_active is bumped. It's a slow path. Do it always. 3724 */ 3725 wake_up_worker(pwq->pool); 3726 } else { 3727 pwq->max_active = 0; 3728 } 3729 3730 spin_unlock_irqrestore(&pwq->pool->lock, flags); 3731 } 3732 3733 /* initialize newly alloced @pwq which is associated with @wq and @pool */ 3734 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq, 3735 struct worker_pool *pool) 3736 { 3737 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK); 3738 3739 memset(pwq, 0, sizeof(*pwq)); 3740 3741 pwq->pool = pool; 3742 pwq->wq = wq; 3743 pwq->flush_color = -1; 3744 pwq->refcnt = 1; 3745 INIT_LIST_HEAD(&pwq->delayed_works); 3746 INIT_LIST_HEAD(&pwq->pwqs_node); 3747 INIT_LIST_HEAD(&pwq->mayday_node); 3748 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn); 3749 } 3750 3751 /* sync @pwq with the current state of its associated wq and link it */ 3752 static void link_pwq(struct pool_workqueue *pwq) 3753 { 3754 struct workqueue_struct *wq = pwq->wq; 3755 3756 lockdep_assert_held(&wq->mutex); 3757 3758 /* may be called multiple times, ignore if already linked */ 3759 if (!list_empty(&pwq->pwqs_node)) 3760 return; 3761 3762 /* set the matching work_color */ 3763 pwq->work_color = wq->work_color; 3764 3765 /* sync max_active to the current setting */ 3766 pwq_adjust_max_active(pwq); 3767 3768 /* link in @pwq */ 3769 list_add_rcu(&pwq->pwqs_node, &wq->pwqs); 3770 } 3771 3772 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */ 3773 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq, 3774 const struct workqueue_attrs *attrs) 3775 { 3776 struct worker_pool *pool; 3777 struct pool_workqueue *pwq; 3778 3779 lockdep_assert_held(&wq_pool_mutex); 3780 3781 pool = get_unbound_pool(attrs); 3782 if (!pool) 3783 return NULL; 3784 3785 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node); 3786 if (!pwq) { 3787 put_unbound_pool(pool); 3788 return NULL; 3789 } 3790 3791 init_pwq(pwq, wq, pool); 3792 return pwq; 3793 } 3794 3795 /** 3796 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node 3797 * @attrs: the wq_attrs of the default pwq of the target workqueue 3798 * @node: the target NUMA node 3799 * @cpu_going_down: if >= 0, the CPU to consider as offline 3800 * @cpumask: outarg, the resulting cpumask 3801 * 3802 * Calculate the cpumask a workqueue with @attrs should use on @node. If 3803 * @cpu_going_down is >= 0, that cpu is considered offline during 3804 * calculation. The result is stored in @cpumask. 3805 * 3806 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If 3807 * enabled and @node has online CPUs requested by @attrs, the returned 3808 * cpumask is the intersection of the possible CPUs of @node and 3809 * @attrs->cpumask. 3810 * 3811 * The caller is responsible for ensuring that the cpumask of @node stays 3812 * stable. 3813 * 3814 * Return: %true if the resulting @cpumask is different from @attrs->cpumask, 3815 * %false if equal. 3816 */ 3817 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node, 3818 int cpu_going_down, cpumask_t *cpumask) 3819 { 3820 if (!wq_numa_enabled || attrs->no_numa) 3821 goto use_dfl; 3822 3823 /* does @node have any online CPUs @attrs wants? */ 3824 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask); 3825 if (cpu_going_down >= 0) 3826 cpumask_clear_cpu(cpu_going_down, cpumask); 3827 3828 if (cpumask_empty(cpumask)) 3829 goto use_dfl; 3830 3831 /* yeap, return possible CPUs in @node that @attrs wants */ 3832 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]); 3833 3834 if (cpumask_empty(cpumask)) { 3835 pr_warn_once("WARNING: workqueue cpumask: online intersect > " 3836 "possible intersect\n"); 3837 return false; 3838 } 3839 3840 return !cpumask_equal(cpumask, attrs->cpumask); 3841 3842 use_dfl: 3843 cpumask_copy(cpumask, attrs->cpumask); 3844 return false; 3845 } 3846 3847 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */ 3848 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq, 3849 int node, 3850 struct pool_workqueue *pwq) 3851 { 3852 struct pool_workqueue *old_pwq; 3853 3854 lockdep_assert_held(&wq_pool_mutex); 3855 lockdep_assert_held(&wq->mutex); 3856 3857 /* link_pwq() can handle duplicate calls */ 3858 link_pwq(pwq); 3859 3860 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 3861 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq); 3862 return old_pwq; 3863 } 3864 3865 /* context to store the prepared attrs & pwqs before applying */ 3866 struct apply_wqattrs_ctx { 3867 struct workqueue_struct *wq; /* target workqueue */ 3868 struct workqueue_attrs *attrs; /* attrs to apply */ 3869 struct list_head list; /* queued for batching commit */ 3870 struct pool_workqueue *dfl_pwq; 3871 struct pool_workqueue *pwq_tbl[]; 3872 }; 3873 3874 /* free the resources after success or abort */ 3875 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx) 3876 { 3877 if (ctx) { 3878 int node; 3879 3880 for_each_node(node) 3881 put_pwq_unlocked(ctx->pwq_tbl[node]); 3882 put_pwq_unlocked(ctx->dfl_pwq); 3883 3884 free_workqueue_attrs(ctx->attrs); 3885 3886 kfree(ctx); 3887 } 3888 } 3889 3890 /* allocate the attrs and pwqs for later installation */ 3891 static struct apply_wqattrs_ctx * 3892 apply_wqattrs_prepare(struct workqueue_struct *wq, 3893 const struct workqueue_attrs *attrs) 3894 { 3895 struct apply_wqattrs_ctx *ctx; 3896 struct workqueue_attrs *new_attrs, *tmp_attrs; 3897 int node; 3898 3899 lockdep_assert_held(&wq_pool_mutex); 3900 3901 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL); 3902 3903 new_attrs = alloc_workqueue_attrs(); 3904 tmp_attrs = alloc_workqueue_attrs(); 3905 if (!ctx || !new_attrs || !tmp_attrs) 3906 goto out_free; 3907 3908 /* 3909 * Calculate the attrs of the default pwq. 3910 * If the user configured cpumask doesn't overlap with the 3911 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask. 3912 */ 3913 copy_workqueue_attrs(new_attrs, attrs); 3914 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask); 3915 if (unlikely(cpumask_empty(new_attrs->cpumask))) 3916 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask); 3917 3918 /* 3919 * We may create multiple pwqs with differing cpumasks. Make a 3920 * copy of @new_attrs which will be modified and used to obtain 3921 * pools. 3922 */ 3923 copy_workqueue_attrs(tmp_attrs, new_attrs); 3924 3925 /* 3926 * If something goes wrong during CPU up/down, we'll fall back to 3927 * the default pwq covering whole @attrs->cpumask. Always create 3928 * it even if we don't use it immediately. 3929 */ 3930 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs); 3931 if (!ctx->dfl_pwq) 3932 goto out_free; 3933 3934 for_each_node(node) { 3935 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) { 3936 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs); 3937 if (!ctx->pwq_tbl[node]) 3938 goto out_free; 3939 } else { 3940 ctx->dfl_pwq->refcnt++; 3941 ctx->pwq_tbl[node] = ctx->dfl_pwq; 3942 } 3943 } 3944 3945 /* save the user configured attrs and sanitize it. */ 3946 copy_workqueue_attrs(new_attrs, attrs); 3947 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask); 3948 ctx->attrs = new_attrs; 3949 3950 ctx->wq = wq; 3951 free_workqueue_attrs(tmp_attrs); 3952 return ctx; 3953 3954 out_free: 3955 free_workqueue_attrs(tmp_attrs); 3956 free_workqueue_attrs(new_attrs); 3957 apply_wqattrs_cleanup(ctx); 3958 return NULL; 3959 } 3960 3961 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */ 3962 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx) 3963 { 3964 int node; 3965 3966 /* all pwqs have been created successfully, let's install'em */ 3967 mutex_lock(&ctx->wq->mutex); 3968 3969 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs); 3970 3971 /* save the previous pwq and install the new one */ 3972 for_each_node(node) 3973 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node, 3974 ctx->pwq_tbl[node]); 3975 3976 /* @dfl_pwq might not have been used, ensure it's linked */ 3977 link_pwq(ctx->dfl_pwq); 3978 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq); 3979 3980 mutex_unlock(&ctx->wq->mutex); 3981 } 3982 3983 static void apply_wqattrs_lock(void) 3984 { 3985 /* CPUs should stay stable across pwq creations and installations */ 3986 get_online_cpus(); 3987 mutex_lock(&wq_pool_mutex); 3988 } 3989 3990 static void apply_wqattrs_unlock(void) 3991 { 3992 mutex_unlock(&wq_pool_mutex); 3993 put_online_cpus(); 3994 } 3995 3996 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq, 3997 const struct workqueue_attrs *attrs) 3998 { 3999 struct apply_wqattrs_ctx *ctx; 4000 4001 /* only unbound workqueues can change attributes */ 4002 if (WARN_ON(!(wq->flags & WQ_UNBOUND))) 4003 return -EINVAL; 4004 4005 /* creating multiple pwqs breaks ordering guarantee */ 4006 if (!list_empty(&wq->pwqs)) { 4007 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4008 return -EINVAL; 4009 4010 wq->flags &= ~__WQ_ORDERED; 4011 } 4012 4013 ctx = apply_wqattrs_prepare(wq, attrs); 4014 if (!ctx) 4015 return -ENOMEM; 4016 4017 /* the ctx has been prepared successfully, let's commit it */ 4018 apply_wqattrs_commit(ctx); 4019 apply_wqattrs_cleanup(ctx); 4020 4021 return 0; 4022 } 4023 4024 /** 4025 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue 4026 * @wq: the target workqueue 4027 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs() 4028 * 4029 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA 4030 * machines, this function maps a separate pwq to each NUMA node with 4031 * possibles CPUs in @attrs->cpumask so that work items are affine to the 4032 * NUMA node it was issued on. Older pwqs are released as in-flight work 4033 * items finish. Note that a work item which repeatedly requeues itself 4034 * back-to-back will stay on its current pwq. 4035 * 4036 * Performs GFP_KERNEL allocations. 4037 * 4038 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus(). 4039 * 4040 * Return: 0 on success and -errno on failure. 4041 */ 4042 int apply_workqueue_attrs(struct workqueue_struct *wq, 4043 const struct workqueue_attrs *attrs) 4044 { 4045 int ret; 4046 4047 lockdep_assert_cpus_held(); 4048 4049 mutex_lock(&wq_pool_mutex); 4050 ret = apply_workqueue_attrs_locked(wq, attrs); 4051 mutex_unlock(&wq_pool_mutex); 4052 4053 return ret; 4054 } 4055 4056 /** 4057 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug 4058 * @wq: the target workqueue 4059 * @cpu: the CPU coming up or going down 4060 * @online: whether @cpu is coming up or going down 4061 * 4062 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and 4063 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of 4064 * @wq accordingly. 4065 * 4066 * If NUMA affinity can't be adjusted due to memory allocation failure, it 4067 * falls back to @wq->dfl_pwq which may not be optimal but is always 4068 * correct. 4069 * 4070 * Note that when the last allowed CPU of a NUMA node goes offline for a 4071 * workqueue with a cpumask spanning multiple nodes, the workers which were 4072 * already executing the work items for the workqueue will lose their CPU 4073 * affinity and may execute on any CPU. This is similar to how per-cpu 4074 * workqueues behave on CPU_DOWN. If a workqueue user wants strict 4075 * affinity, it's the user's responsibility to flush the work item from 4076 * CPU_DOWN_PREPARE. 4077 */ 4078 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu, 4079 bool online) 4080 { 4081 int node = cpu_to_node(cpu); 4082 int cpu_off = online ? -1 : cpu; 4083 struct pool_workqueue *old_pwq = NULL, *pwq; 4084 struct workqueue_attrs *target_attrs; 4085 cpumask_t *cpumask; 4086 4087 lockdep_assert_held(&wq_pool_mutex); 4088 4089 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) || 4090 wq->unbound_attrs->no_numa) 4091 return; 4092 4093 /* 4094 * We don't wanna alloc/free wq_attrs for each wq for each CPU. 4095 * Let's use a preallocated one. The following buf is protected by 4096 * CPU hotplug exclusion. 4097 */ 4098 target_attrs = wq_update_unbound_numa_attrs_buf; 4099 cpumask = target_attrs->cpumask; 4100 4101 copy_workqueue_attrs(target_attrs, wq->unbound_attrs); 4102 pwq = unbound_pwq_by_node(wq, node); 4103 4104 /* 4105 * Let's determine what needs to be done. If the target cpumask is 4106 * different from the default pwq's, we need to compare it to @pwq's 4107 * and create a new one if they don't match. If the target cpumask 4108 * equals the default pwq's, the default pwq should be used. 4109 */ 4110 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) { 4111 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask)) 4112 return; 4113 } else { 4114 goto use_dfl_pwq; 4115 } 4116 4117 /* create a new pwq */ 4118 pwq = alloc_unbound_pwq(wq, target_attrs); 4119 if (!pwq) { 4120 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n", 4121 wq->name); 4122 goto use_dfl_pwq; 4123 } 4124 4125 /* Install the new pwq. */ 4126 mutex_lock(&wq->mutex); 4127 old_pwq = numa_pwq_tbl_install(wq, node, pwq); 4128 goto out_unlock; 4129 4130 use_dfl_pwq: 4131 mutex_lock(&wq->mutex); 4132 spin_lock_irq(&wq->dfl_pwq->pool->lock); 4133 get_pwq(wq->dfl_pwq); 4134 spin_unlock_irq(&wq->dfl_pwq->pool->lock); 4135 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq); 4136 out_unlock: 4137 mutex_unlock(&wq->mutex); 4138 put_pwq_unlocked(old_pwq); 4139 } 4140 4141 static int alloc_and_link_pwqs(struct workqueue_struct *wq) 4142 { 4143 bool highpri = wq->flags & WQ_HIGHPRI; 4144 int cpu, ret; 4145 4146 if (!(wq->flags & WQ_UNBOUND)) { 4147 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue); 4148 if (!wq->cpu_pwqs) 4149 return -ENOMEM; 4150 4151 for_each_possible_cpu(cpu) { 4152 struct pool_workqueue *pwq = 4153 per_cpu_ptr(wq->cpu_pwqs, cpu); 4154 struct worker_pool *cpu_pools = 4155 per_cpu(cpu_worker_pools, cpu); 4156 4157 init_pwq(pwq, wq, &cpu_pools[highpri]); 4158 4159 mutex_lock(&wq->mutex); 4160 link_pwq(pwq); 4161 mutex_unlock(&wq->mutex); 4162 } 4163 return 0; 4164 } 4165 4166 get_online_cpus(); 4167 if (wq->flags & __WQ_ORDERED) { 4168 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]); 4169 /* there should only be single pwq for ordering guarantee */ 4170 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node || 4171 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node), 4172 "ordering guarantee broken for workqueue %s\n", wq->name); 4173 } else { 4174 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]); 4175 } 4176 put_online_cpus(); 4177 4178 return ret; 4179 } 4180 4181 static int wq_clamp_max_active(int max_active, unsigned int flags, 4182 const char *name) 4183 { 4184 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE; 4185 4186 if (max_active < 1 || max_active > lim) 4187 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n", 4188 max_active, name, 1, lim); 4189 4190 return clamp_val(max_active, 1, lim); 4191 } 4192 4193 /* 4194 * Workqueues which may be used during memory reclaim should have a rescuer 4195 * to guarantee forward progress. 4196 */ 4197 static int init_rescuer(struct workqueue_struct *wq) 4198 { 4199 struct worker *rescuer; 4200 int ret; 4201 4202 if (!(wq->flags & WQ_MEM_RECLAIM)) 4203 return 0; 4204 4205 rescuer = alloc_worker(NUMA_NO_NODE); 4206 if (!rescuer) 4207 return -ENOMEM; 4208 4209 rescuer->rescue_wq = wq; 4210 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name); 4211 ret = PTR_ERR_OR_ZERO(rescuer->task); 4212 if (ret) { 4213 kfree(rescuer); 4214 return ret; 4215 } 4216 4217 wq->rescuer = rescuer; 4218 kthread_bind_mask(rescuer->task, cpu_possible_mask); 4219 wake_up_process(rescuer->task); 4220 4221 return 0; 4222 } 4223 4224 __printf(1, 4) 4225 struct workqueue_struct *alloc_workqueue(const char *fmt, 4226 unsigned int flags, 4227 int max_active, ...) 4228 { 4229 size_t tbl_size = 0; 4230 va_list args; 4231 struct workqueue_struct *wq; 4232 struct pool_workqueue *pwq; 4233 4234 /* 4235 * Unbound && max_active == 1 used to imply ordered, which is no 4236 * longer the case on NUMA machines due to per-node pools. While 4237 * alloc_ordered_workqueue() is the right way to create an ordered 4238 * workqueue, keep the previous behavior to avoid subtle breakages 4239 * on NUMA. 4240 */ 4241 if ((flags & WQ_UNBOUND) && max_active == 1) 4242 flags |= __WQ_ORDERED; 4243 4244 /* see the comment above the definition of WQ_POWER_EFFICIENT */ 4245 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient) 4246 flags |= WQ_UNBOUND; 4247 4248 /* allocate wq and format name */ 4249 if (flags & WQ_UNBOUND) 4250 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]); 4251 4252 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL); 4253 if (!wq) 4254 return NULL; 4255 4256 if (flags & WQ_UNBOUND) { 4257 wq->unbound_attrs = alloc_workqueue_attrs(); 4258 if (!wq->unbound_attrs) 4259 goto err_free_wq; 4260 } 4261 4262 va_start(args, max_active); 4263 vsnprintf(wq->name, sizeof(wq->name), fmt, args); 4264 va_end(args); 4265 4266 max_active = max_active ?: WQ_DFL_ACTIVE; 4267 max_active = wq_clamp_max_active(max_active, flags, wq->name); 4268 4269 /* init wq */ 4270 wq->flags = flags; 4271 wq->saved_max_active = max_active; 4272 mutex_init(&wq->mutex); 4273 atomic_set(&wq->nr_pwqs_to_flush, 0); 4274 INIT_LIST_HEAD(&wq->pwqs); 4275 INIT_LIST_HEAD(&wq->flusher_queue); 4276 INIT_LIST_HEAD(&wq->flusher_overflow); 4277 INIT_LIST_HEAD(&wq->maydays); 4278 4279 wq_init_lockdep(wq); 4280 INIT_LIST_HEAD(&wq->list); 4281 4282 if (alloc_and_link_pwqs(wq) < 0) 4283 goto err_unreg_lockdep; 4284 4285 if (wq_online && init_rescuer(wq) < 0) 4286 goto err_destroy; 4287 4288 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq)) 4289 goto err_destroy; 4290 4291 /* 4292 * wq_pool_mutex protects global freeze state and workqueues list. 4293 * Grab it, adjust max_active and add the new @wq to workqueues 4294 * list. 4295 */ 4296 mutex_lock(&wq_pool_mutex); 4297 4298 mutex_lock(&wq->mutex); 4299 for_each_pwq(pwq, wq) 4300 pwq_adjust_max_active(pwq); 4301 mutex_unlock(&wq->mutex); 4302 4303 list_add_tail_rcu(&wq->list, &workqueues); 4304 4305 mutex_unlock(&wq_pool_mutex); 4306 4307 return wq; 4308 4309 err_unreg_lockdep: 4310 wq_unregister_lockdep(wq); 4311 wq_free_lockdep(wq); 4312 err_free_wq: 4313 free_workqueue_attrs(wq->unbound_attrs); 4314 kfree(wq); 4315 return NULL; 4316 err_destroy: 4317 destroy_workqueue(wq); 4318 return NULL; 4319 } 4320 EXPORT_SYMBOL_GPL(alloc_workqueue); 4321 4322 static bool pwq_busy(struct pool_workqueue *pwq) 4323 { 4324 int i; 4325 4326 for (i = 0; i < WORK_NR_COLORS; i++) 4327 if (pwq->nr_in_flight[i]) 4328 return true; 4329 4330 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1)) 4331 return true; 4332 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4333 return true; 4334 4335 return false; 4336 } 4337 4338 /** 4339 * destroy_workqueue - safely terminate a workqueue 4340 * @wq: target workqueue 4341 * 4342 * Safely destroy a workqueue. All work currently pending will be done first. 4343 */ 4344 void destroy_workqueue(struct workqueue_struct *wq) 4345 { 4346 struct pool_workqueue *pwq; 4347 int node; 4348 4349 /* 4350 * Remove it from sysfs first so that sanity check failure doesn't 4351 * lead to sysfs name conflicts. 4352 */ 4353 workqueue_sysfs_unregister(wq); 4354 4355 /* drain it before proceeding with destruction */ 4356 drain_workqueue(wq); 4357 4358 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */ 4359 if (wq->rescuer) { 4360 struct worker *rescuer = wq->rescuer; 4361 4362 /* this prevents new queueing */ 4363 spin_lock_irq(&wq_mayday_lock); 4364 wq->rescuer = NULL; 4365 spin_unlock_irq(&wq_mayday_lock); 4366 4367 /* rescuer will empty maydays list before exiting */ 4368 kthread_stop(rescuer->task); 4369 kfree(rescuer); 4370 } 4371 4372 /* 4373 * Sanity checks - grab all the locks so that we wait for all 4374 * in-flight operations which may do put_pwq(). 4375 */ 4376 mutex_lock(&wq_pool_mutex); 4377 mutex_lock(&wq->mutex); 4378 for_each_pwq(pwq, wq) { 4379 spin_lock_irq(&pwq->pool->lock); 4380 if (WARN_ON(pwq_busy(pwq))) { 4381 pr_warn("%s: %s has the following busy pwq\n", 4382 __func__, wq->name); 4383 show_pwq(pwq); 4384 spin_unlock_irq(&pwq->pool->lock); 4385 mutex_unlock(&wq->mutex); 4386 mutex_unlock(&wq_pool_mutex); 4387 show_workqueue_state(); 4388 return; 4389 } 4390 spin_unlock_irq(&pwq->pool->lock); 4391 } 4392 mutex_unlock(&wq->mutex); 4393 mutex_unlock(&wq_pool_mutex); 4394 4395 /* 4396 * wq list is used to freeze wq, remove from list after 4397 * flushing is complete in case freeze races us. 4398 */ 4399 mutex_lock(&wq_pool_mutex); 4400 list_del_rcu(&wq->list); 4401 mutex_unlock(&wq_pool_mutex); 4402 4403 if (!(wq->flags & WQ_UNBOUND)) { 4404 wq_unregister_lockdep(wq); 4405 /* 4406 * The base ref is never dropped on per-cpu pwqs. Directly 4407 * schedule RCU free. 4408 */ 4409 call_rcu(&wq->rcu, rcu_free_wq); 4410 } else { 4411 /* 4412 * We're the sole accessor of @wq at this point. Directly 4413 * access numa_pwq_tbl[] and dfl_pwq to put the base refs. 4414 * @wq will be freed when the last pwq is released. 4415 */ 4416 for_each_node(node) { 4417 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]); 4418 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL); 4419 put_pwq_unlocked(pwq); 4420 } 4421 4422 /* 4423 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is 4424 * put. Don't access it afterwards. 4425 */ 4426 pwq = wq->dfl_pwq; 4427 wq->dfl_pwq = NULL; 4428 put_pwq_unlocked(pwq); 4429 } 4430 } 4431 EXPORT_SYMBOL_GPL(destroy_workqueue); 4432 4433 /** 4434 * workqueue_set_max_active - adjust max_active of a workqueue 4435 * @wq: target workqueue 4436 * @max_active: new max_active value. 4437 * 4438 * Set max_active of @wq to @max_active. 4439 * 4440 * CONTEXT: 4441 * Don't call from IRQ context. 4442 */ 4443 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active) 4444 { 4445 struct pool_workqueue *pwq; 4446 4447 /* disallow meddling with max_active for ordered workqueues */ 4448 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 4449 return; 4450 4451 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name); 4452 4453 mutex_lock(&wq->mutex); 4454 4455 wq->flags &= ~__WQ_ORDERED; 4456 wq->saved_max_active = max_active; 4457 4458 for_each_pwq(pwq, wq) 4459 pwq_adjust_max_active(pwq); 4460 4461 mutex_unlock(&wq->mutex); 4462 } 4463 EXPORT_SYMBOL_GPL(workqueue_set_max_active); 4464 4465 /** 4466 * current_work - retrieve %current task's work struct 4467 * 4468 * Determine if %current task is a workqueue worker and what it's working on. 4469 * Useful to find out the context that the %current task is running in. 4470 * 4471 * Return: work struct if %current task is a workqueue worker, %NULL otherwise. 4472 */ 4473 struct work_struct *current_work(void) 4474 { 4475 struct worker *worker = current_wq_worker(); 4476 4477 return worker ? worker->current_work : NULL; 4478 } 4479 EXPORT_SYMBOL(current_work); 4480 4481 /** 4482 * current_is_workqueue_rescuer - is %current workqueue rescuer? 4483 * 4484 * Determine whether %current is a workqueue rescuer. Can be used from 4485 * work functions to determine whether it's being run off the rescuer task. 4486 * 4487 * Return: %true if %current is a workqueue rescuer. %false otherwise. 4488 */ 4489 bool current_is_workqueue_rescuer(void) 4490 { 4491 struct worker *worker = current_wq_worker(); 4492 4493 return worker && worker->rescue_wq; 4494 } 4495 4496 /** 4497 * workqueue_congested - test whether a workqueue is congested 4498 * @cpu: CPU in question 4499 * @wq: target workqueue 4500 * 4501 * Test whether @wq's cpu workqueue for @cpu is congested. There is 4502 * no synchronization around this function and the test result is 4503 * unreliable and only useful as advisory hints or for debugging. 4504 * 4505 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. 4506 * Note that both per-cpu and unbound workqueues may be associated with 4507 * multiple pool_workqueues which have separate congested states. A 4508 * workqueue being congested on one CPU doesn't mean the workqueue is also 4509 * contested on other CPUs / NUMA nodes. 4510 * 4511 * Return: 4512 * %true if congested, %false otherwise. 4513 */ 4514 bool workqueue_congested(int cpu, struct workqueue_struct *wq) 4515 { 4516 struct pool_workqueue *pwq; 4517 bool ret; 4518 4519 rcu_read_lock(); 4520 preempt_disable(); 4521 4522 if (cpu == WORK_CPU_UNBOUND) 4523 cpu = smp_processor_id(); 4524 4525 if (!(wq->flags & WQ_UNBOUND)) 4526 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu); 4527 else 4528 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu)); 4529 4530 ret = !list_empty(&pwq->delayed_works); 4531 preempt_enable(); 4532 rcu_read_unlock(); 4533 4534 return ret; 4535 } 4536 EXPORT_SYMBOL_GPL(workqueue_congested); 4537 4538 /** 4539 * work_busy - test whether a work is currently pending or running 4540 * @work: the work to be tested 4541 * 4542 * Test whether @work is currently pending or running. There is no 4543 * synchronization around this function and the test result is 4544 * unreliable and only useful as advisory hints or for debugging. 4545 * 4546 * Return: 4547 * OR'd bitmask of WORK_BUSY_* bits. 4548 */ 4549 unsigned int work_busy(struct work_struct *work) 4550 { 4551 struct worker_pool *pool; 4552 unsigned long flags; 4553 unsigned int ret = 0; 4554 4555 if (work_pending(work)) 4556 ret |= WORK_BUSY_PENDING; 4557 4558 rcu_read_lock(); 4559 pool = get_work_pool(work); 4560 if (pool) { 4561 spin_lock_irqsave(&pool->lock, flags); 4562 if (find_worker_executing_work(pool, work)) 4563 ret |= WORK_BUSY_RUNNING; 4564 spin_unlock_irqrestore(&pool->lock, flags); 4565 } 4566 rcu_read_unlock(); 4567 4568 return ret; 4569 } 4570 EXPORT_SYMBOL_GPL(work_busy); 4571 4572 /** 4573 * set_worker_desc - set description for the current work item 4574 * @fmt: printf-style format string 4575 * @...: arguments for the format string 4576 * 4577 * This function can be called by a running work function to describe what 4578 * the work item is about. If the worker task gets dumped, this 4579 * information will be printed out together to help debugging. The 4580 * description can be at most WORKER_DESC_LEN including the trailing '\0'. 4581 */ 4582 void set_worker_desc(const char *fmt, ...) 4583 { 4584 struct worker *worker = current_wq_worker(); 4585 va_list args; 4586 4587 if (worker) { 4588 va_start(args, fmt); 4589 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args); 4590 va_end(args); 4591 } 4592 } 4593 EXPORT_SYMBOL_GPL(set_worker_desc); 4594 4595 /** 4596 * print_worker_info - print out worker information and description 4597 * @log_lvl: the log level to use when printing 4598 * @task: target task 4599 * 4600 * If @task is a worker and currently executing a work item, print out the 4601 * name of the workqueue being serviced and worker description set with 4602 * set_worker_desc() by the currently executing work item. 4603 * 4604 * This function can be safely called on any task as long as the 4605 * task_struct itself is accessible. While safe, this function isn't 4606 * synchronized and may print out mixups or garbages of limited length. 4607 */ 4608 void print_worker_info(const char *log_lvl, struct task_struct *task) 4609 { 4610 work_func_t *fn = NULL; 4611 char name[WQ_NAME_LEN] = { }; 4612 char desc[WORKER_DESC_LEN] = { }; 4613 struct pool_workqueue *pwq = NULL; 4614 struct workqueue_struct *wq = NULL; 4615 struct worker *worker; 4616 4617 if (!(task->flags & PF_WQ_WORKER)) 4618 return; 4619 4620 /* 4621 * This function is called without any synchronization and @task 4622 * could be in any state. Be careful with dereferences. 4623 */ 4624 worker = kthread_probe_data(task); 4625 4626 /* 4627 * Carefully copy the associated workqueue's workfn, name and desc. 4628 * Keep the original last '\0' in case the original is garbage. 4629 */ 4630 probe_kernel_read(&fn, &worker->current_func, sizeof(fn)); 4631 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq)); 4632 probe_kernel_read(&wq, &pwq->wq, sizeof(wq)); 4633 probe_kernel_read(name, wq->name, sizeof(name) - 1); 4634 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1); 4635 4636 if (fn || name[0] || desc[0]) { 4637 printk("%sWorkqueue: %s %ps", log_lvl, name, fn); 4638 if (strcmp(name, desc)) 4639 pr_cont(" (%s)", desc); 4640 pr_cont("\n"); 4641 } 4642 } 4643 4644 static void pr_cont_pool_info(struct worker_pool *pool) 4645 { 4646 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask); 4647 if (pool->node != NUMA_NO_NODE) 4648 pr_cont(" node=%d", pool->node); 4649 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice); 4650 } 4651 4652 static void pr_cont_work(bool comma, struct work_struct *work) 4653 { 4654 if (work->func == wq_barrier_func) { 4655 struct wq_barrier *barr; 4656 4657 barr = container_of(work, struct wq_barrier, work); 4658 4659 pr_cont("%s BAR(%d)", comma ? "," : "", 4660 task_pid_nr(barr->task)); 4661 } else { 4662 pr_cont("%s %ps", comma ? "," : "", work->func); 4663 } 4664 } 4665 4666 static void show_pwq(struct pool_workqueue *pwq) 4667 { 4668 struct worker_pool *pool = pwq->pool; 4669 struct work_struct *work; 4670 struct worker *worker; 4671 bool has_in_flight = false, has_pending = false; 4672 int bkt; 4673 4674 pr_info(" pwq %d:", pool->id); 4675 pr_cont_pool_info(pool); 4676 4677 pr_cont(" active=%d/%d refcnt=%d%s\n", 4678 pwq->nr_active, pwq->max_active, pwq->refcnt, 4679 !list_empty(&pwq->mayday_node) ? " MAYDAY" : ""); 4680 4681 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4682 if (worker->current_pwq == pwq) { 4683 has_in_flight = true; 4684 break; 4685 } 4686 } 4687 if (has_in_flight) { 4688 bool comma = false; 4689 4690 pr_info(" in-flight:"); 4691 hash_for_each(pool->busy_hash, bkt, worker, hentry) { 4692 if (worker->current_pwq != pwq) 4693 continue; 4694 4695 pr_cont("%s %d%s:%ps", comma ? "," : "", 4696 task_pid_nr(worker->task), 4697 worker->rescue_wq ? "(RESCUER)" : "", 4698 worker->current_func); 4699 list_for_each_entry(work, &worker->scheduled, entry) 4700 pr_cont_work(false, work); 4701 comma = true; 4702 } 4703 pr_cont("\n"); 4704 } 4705 4706 list_for_each_entry(work, &pool->worklist, entry) { 4707 if (get_work_pwq(work) == pwq) { 4708 has_pending = true; 4709 break; 4710 } 4711 } 4712 if (has_pending) { 4713 bool comma = false; 4714 4715 pr_info(" pending:"); 4716 list_for_each_entry(work, &pool->worklist, entry) { 4717 if (get_work_pwq(work) != pwq) 4718 continue; 4719 4720 pr_cont_work(comma, work); 4721 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4722 } 4723 pr_cont("\n"); 4724 } 4725 4726 if (!list_empty(&pwq->delayed_works)) { 4727 bool comma = false; 4728 4729 pr_info(" delayed:"); 4730 list_for_each_entry(work, &pwq->delayed_works, entry) { 4731 pr_cont_work(comma, work); 4732 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED); 4733 } 4734 pr_cont("\n"); 4735 } 4736 } 4737 4738 /** 4739 * show_workqueue_state - dump workqueue state 4740 * 4741 * Called from a sysrq handler or try_to_freeze_tasks() and prints out 4742 * all busy workqueues and pools. 4743 */ 4744 void show_workqueue_state(void) 4745 { 4746 struct workqueue_struct *wq; 4747 struct worker_pool *pool; 4748 unsigned long flags; 4749 int pi; 4750 4751 rcu_read_lock(); 4752 4753 pr_info("Showing busy workqueues and worker pools:\n"); 4754 4755 list_for_each_entry_rcu(wq, &workqueues, list) { 4756 struct pool_workqueue *pwq; 4757 bool idle = true; 4758 4759 for_each_pwq(pwq, wq) { 4760 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) { 4761 idle = false; 4762 break; 4763 } 4764 } 4765 if (idle) 4766 continue; 4767 4768 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags); 4769 4770 for_each_pwq(pwq, wq) { 4771 spin_lock_irqsave(&pwq->pool->lock, flags); 4772 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) 4773 show_pwq(pwq); 4774 spin_unlock_irqrestore(&pwq->pool->lock, flags); 4775 /* 4776 * We could be printing a lot from atomic context, e.g. 4777 * sysrq-t -> show_workqueue_state(). Avoid triggering 4778 * hard lockup. 4779 */ 4780 touch_nmi_watchdog(); 4781 } 4782 } 4783 4784 for_each_pool(pool, pi) { 4785 struct worker *worker; 4786 bool first = true; 4787 4788 spin_lock_irqsave(&pool->lock, flags); 4789 if (pool->nr_workers == pool->nr_idle) 4790 goto next_pool; 4791 4792 pr_info("pool %d:", pool->id); 4793 pr_cont_pool_info(pool); 4794 pr_cont(" hung=%us workers=%d", 4795 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000, 4796 pool->nr_workers); 4797 if (pool->manager) 4798 pr_cont(" manager: %d", 4799 task_pid_nr(pool->manager->task)); 4800 list_for_each_entry(worker, &pool->idle_list, entry) { 4801 pr_cont(" %s%d", first ? "idle: " : "", 4802 task_pid_nr(worker->task)); 4803 first = false; 4804 } 4805 pr_cont("\n"); 4806 next_pool: 4807 spin_unlock_irqrestore(&pool->lock, flags); 4808 /* 4809 * We could be printing a lot from atomic context, e.g. 4810 * sysrq-t -> show_workqueue_state(). Avoid triggering 4811 * hard lockup. 4812 */ 4813 touch_nmi_watchdog(); 4814 } 4815 4816 rcu_read_unlock(); 4817 } 4818 4819 /* used to show worker information through /proc/PID/{comm,stat,status} */ 4820 void wq_worker_comm(char *buf, size_t size, struct task_struct *task) 4821 { 4822 int off; 4823 4824 /* always show the actual comm */ 4825 off = strscpy(buf, task->comm, size); 4826 if (off < 0) 4827 return; 4828 4829 /* stabilize PF_WQ_WORKER and worker pool association */ 4830 mutex_lock(&wq_pool_attach_mutex); 4831 4832 if (task->flags & PF_WQ_WORKER) { 4833 struct worker *worker = kthread_data(task); 4834 struct worker_pool *pool = worker->pool; 4835 4836 if (pool) { 4837 spin_lock_irq(&pool->lock); 4838 /* 4839 * ->desc tracks information (wq name or 4840 * set_worker_desc()) for the latest execution. If 4841 * current, prepend '+', otherwise '-'. 4842 */ 4843 if (worker->desc[0] != '\0') { 4844 if (worker->current_work) 4845 scnprintf(buf + off, size - off, "+%s", 4846 worker->desc); 4847 else 4848 scnprintf(buf + off, size - off, "-%s", 4849 worker->desc); 4850 } 4851 spin_unlock_irq(&pool->lock); 4852 } 4853 } 4854 4855 mutex_unlock(&wq_pool_attach_mutex); 4856 } 4857 4858 #ifdef CONFIG_SMP 4859 4860 /* 4861 * CPU hotplug. 4862 * 4863 * There are two challenges in supporting CPU hotplug. Firstly, there 4864 * are a lot of assumptions on strong associations among work, pwq and 4865 * pool which make migrating pending and scheduled works very 4866 * difficult to implement without impacting hot paths. Secondly, 4867 * worker pools serve mix of short, long and very long running works making 4868 * blocked draining impractical. 4869 * 4870 * This is solved by allowing the pools to be disassociated from the CPU 4871 * running as an unbound one and allowing it to be reattached later if the 4872 * cpu comes back online. 4873 */ 4874 4875 static void unbind_workers(int cpu) 4876 { 4877 struct worker_pool *pool; 4878 struct worker *worker; 4879 4880 for_each_cpu_worker_pool(pool, cpu) { 4881 mutex_lock(&wq_pool_attach_mutex); 4882 spin_lock_irq(&pool->lock); 4883 4884 /* 4885 * We've blocked all attach/detach operations. Make all workers 4886 * unbound and set DISASSOCIATED. Before this, all workers 4887 * except for the ones which are still executing works from 4888 * before the last CPU down must be on the cpu. After 4889 * this, they may become diasporas. 4890 */ 4891 for_each_pool_worker(worker, pool) 4892 worker->flags |= WORKER_UNBOUND; 4893 4894 pool->flags |= POOL_DISASSOCIATED; 4895 4896 spin_unlock_irq(&pool->lock); 4897 mutex_unlock(&wq_pool_attach_mutex); 4898 4899 /* 4900 * Call schedule() so that we cross rq->lock and thus can 4901 * guarantee sched callbacks see the %WORKER_UNBOUND flag. 4902 * This is necessary as scheduler callbacks may be invoked 4903 * from other cpus. 4904 */ 4905 schedule(); 4906 4907 /* 4908 * Sched callbacks are disabled now. Zap nr_running. 4909 * After this, nr_running stays zero and need_more_worker() 4910 * and keep_working() are always true as long as the 4911 * worklist is not empty. This pool now behaves as an 4912 * unbound (in terms of concurrency management) pool which 4913 * are served by workers tied to the pool. 4914 */ 4915 atomic_set(&pool->nr_running, 0); 4916 4917 /* 4918 * With concurrency management just turned off, a busy 4919 * worker blocking could lead to lengthy stalls. Kick off 4920 * unbound chain execution of currently pending work items. 4921 */ 4922 spin_lock_irq(&pool->lock); 4923 wake_up_worker(pool); 4924 spin_unlock_irq(&pool->lock); 4925 } 4926 } 4927 4928 /** 4929 * rebind_workers - rebind all workers of a pool to the associated CPU 4930 * @pool: pool of interest 4931 * 4932 * @pool->cpu is coming online. Rebind all workers to the CPU. 4933 */ 4934 static void rebind_workers(struct worker_pool *pool) 4935 { 4936 struct worker *worker; 4937 4938 lockdep_assert_held(&wq_pool_attach_mutex); 4939 4940 /* 4941 * Restore CPU affinity of all workers. As all idle workers should 4942 * be on the run-queue of the associated CPU before any local 4943 * wake-ups for concurrency management happen, restore CPU affinity 4944 * of all workers first and then clear UNBOUND. As we're called 4945 * from CPU_ONLINE, the following shouldn't fail. 4946 */ 4947 for_each_pool_worker(worker, pool) 4948 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, 4949 pool->attrs->cpumask) < 0); 4950 4951 spin_lock_irq(&pool->lock); 4952 4953 pool->flags &= ~POOL_DISASSOCIATED; 4954 4955 for_each_pool_worker(worker, pool) { 4956 unsigned int worker_flags = worker->flags; 4957 4958 /* 4959 * A bound idle worker should actually be on the runqueue 4960 * of the associated CPU for local wake-ups targeting it to 4961 * work. Kick all idle workers so that they migrate to the 4962 * associated CPU. Doing this in the same loop as 4963 * replacing UNBOUND with REBOUND is safe as no worker will 4964 * be bound before @pool->lock is released. 4965 */ 4966 if (worker_flags & WORKER_IDLE) 4967 wake_up_process(worker->task); 4968 4969 /* 4970 * We want to clear UNBOUND but can't directly call 4971 * worker_clr_flags() or adjust nr_running. Atomically 4972 * replace UNBOUND with another NOT_RUNNING flag REBOUND. 4973 * @worker will clear REBOUND using worker_clr_flags() when 4974 * it initiates the next execution cycle thus restoring 4975 * concurrency management. Note that when or whether 4976 * @worker clears REBOUND doesn't affect correctness. 4977 * 4978 * WRITE_ONCE() is necessary because @worker->flags may be 4979 * tested without holding any lock in 4980 * wq_worker_running(). Without it, NOT_RUNNING test may 4981 * fail incorrectly leading to premature concurrency 4982 * management operations. 4983 */ 4984 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND)); 4985 worker_flags |= WORKER_REBOUND; 4986 worker_flags &= ~WORKER_UNBOUND; 4987 WRITE_ONCE(worker->flags, worker_flags); 4988 } 4989 4990 spin_unlock_irq(&pool->lock); 4991 } 4992 4993 /** 4994 * restore_unbound_workers_cpumask - restore cpumask of unbound workers 4995 * @pool: unbound pool of interest 4996 * @cpu: the CPU which is coming up 4997 * 4998 * An unbound pool may end up with a cpumask which doesn't have any online 4999 * CPUs. When a worker of such pool get scheduled, the scheduler resets 5000 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any 5001 * online CPU before, cpus_allowed of all its workers should be restored. 5002 */ 5003 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu) 5004 { 5005 static cpumask_t cpumask; 5006 struct worker *worker; 5007 5008 lockdep_assert_held(&wq_pool_attach_mutex); 5009 5010 /* is @cpu allowed for @pool? */ 5011 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask)) 5012 return; 5013 5014 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask); 5015 5016 /* as we're called from CPU_ONLINE, the following shouldn't fail */ 5017 for_each_pool_worker(worker, pool) 5018 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0); 5019 } 5020 5021 int workqueue_prepare_cpu(unsigned int cpu) 5022 { 5023 struct worker_pool *pool; 5024 5025 for_each_cpu_worker_pool(pool, cpu) { 5026 if (pool->nr_workers) 5027 continue; 5028 if (!create_worker(pool)) 5029 return -ENOMEM; 5030 } 5031 return 0; 5032 } 5033 5034 int workqueue_online_cpu(unsigned int cpu) 5035 { 5036 struct worker_pool *pool; 5037 struct workqueue_struct *wq; 5038 int pi; 5039 5040 mutex_lock(&wq_pool_mutex); 5041 5042 for_each_pool(pool, pi) { 5043 mutex_lock(&wq_pool_attach_mutex); 5044 5045 if (pool->cpu == cpu) 5046 rebind_workers(pool); 5047 else if (pool->cpu < 0) 5048 restore_unbound_workers_cpumask(pool, cpu); 5049 5050 mutex_unlock(&wq_pool_attach_mutex); 5051 } 5052 5053 /* update NUMA affinity of unbound workqueues */ 5054 list_for_each_entry(wq, &workqueues, list) 5055 wq_update_unbound_numa(wq, cpu, true); 5056 5057 mutex_unlock(&wq_pool_mutex); 5058 return 0; 5059 } 5060 5061 int workqueue_offline_cpu(unsigned int cpu) 5062 { 5063 struct workqueue_struct *wq; 5064 5065 /* unbinding per-cpu workers should happen on the local CPU */ 5066 if (WARN_ON(cpu != smp_processor_id())) 5067 return -1; 5068 5069 unbind_workers(cpu); 5070 5071 /* update NUMA affinity of unbound workqueues */ 5072 mutex_lock(&wq_pool_mutex); 5073 list_for_each_entry(wq, &workqueues, list) 5074 wq_update_unbound_numa(wq, cpu, false); 5075 mutex_unlock(&wq_pool_mutex); 5076 5077 return 0; 5078 } 5079 5080 struct work_for_cpu { 5081 struct work_struct work; 5082 long (*fn)(void *); 5083 void *arg; 5084 long ret; 5085 }; 5086 5087 static void work_for_cpu_fn(struct work_struct *work) 5088 { 5089 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work); 5090 5091 wfc->ret = wfc->fn(wfc->arg); 5092 } 5093 5094 /** 5095 * work_on_cpu - run a function in thread context on a particular cpu 5096 * @cpu: the cpu to run on 5097 * @fn: the function to run 5098 * @arg: the function arg 5099 * 5100 * It is up to the caller to ensure that the cpu doesn't go offline. 5101 * The caller must not hold any locks which would prevent @fn from completing. 5102 * 5103 * Return: The value @fn returns. 5104 */ 5105 long work_on_cpu(int cpu, long (*fn)(void *), void *arg) 5106 { 5107 struct work_for_cpu wfc = { .fn = fn, .arg = arg }; 5108 5109 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn); 5110 schedule_work_on(cpu, &wfc.work); 5111 flush_work(&wfc.work); 5112 destroy_work_on_stack(&wfc.work); 5113 return wfc.ret; 5114 } 5115 EXPORT_SYMBOL_GPL(work_on_cpu); 5116 5117 /** 5118 * work_on_cpu_safe - run a function in thread context on a particular cpu 5119 * @cpu: the cpu to run on 5120 * @fn: the function to run 5121 * @arg: the function argument 5122 * 5123 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold 5124 * any locks which would prevent @fn from completing. 5125 * 5126 * Return: The value @fn returns. 5127 */ 5128 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg) 5129 { 5130 long ret = -ENODEV; 5131 5132 get_online_cpus(); 5133 if (cpu_online(cpu)) 5134 ret = work_on_cpu(cpu, fn, arg); 5135 put_online_cpus(); 5136 return ret; 5137 } 5138 EXPORT_SYMBOL_GPL(work_on_cpu_safe); 5139 #endif /* CONFIG_SMP */ 5140 5141 #ifdef CONFIG_FREEZER 5142 5143 /** 5144 * freeze_workqueues_begin - begin freezing workqueues 5145 * 5146 * Start freezing workqueues. After this function returns, all freezable 5147 * workqueues will queue new works to their delayed_works list instead of 5148 * pool->worklist. 5149 * 5150 * CONTEXT: 5151 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5152 */ 5153 void freeze_workqueues_begin(void) 5154 { 5155 struct workqueue_struct *wq; 5156 struct pool_workqueue *pwq; 5157 5158 mutex_lock(&wq_pool_mutex); 5159 5160 WARN_ON_ONCE(workqueue_freezing); 5161 workqueue_freezing = true; 5162 5163 list_for_each_entry(wq, &workqueues, list) { 5164 mutex_lock(&wq->mutex); 5165 for_each_pwq(pwq, wq) 5166 pwq_adjust_max_active(pwq); 5167 mutex_unlock(&wq->mutex); 5168 } 5169 5170 mutex_unlock(&wq_pool_mutex); 5171 } 5172 5173 /** 5174 * freeze_workqueues_busy - are freezable workqueues still busy? 5175 * 5176 * Check whether freezing is complete. This function must be called 5177 * between freeze_workqueues_begin() and thaw_workqueues(). 5178 * 5179 * CONTEXT: 5180 * Grabs and releases wq_pool_mutex. 5181 * 5182 * Return: 5183 * %true if some freezable workqueues are still busy. %false if freezing 5184 * is complete. 5185 */ 5186 bool freeze_workqueues_busy(void) 5187 { 5188 bool busy = false; 5189 struct workqueue_struct *wq; 5190 struct pool_workqueue *pwq; 5191 5192 mutex_lock(&wq_pool_mutex); 5193 5194 WARN_ON_ONCE(!workqueue_freezing); 5195 5196 list_for_each_entry(wq, &workqueues, list) { 5197 if (!(wq->flags & WQ_FREEZABLE)) 5198 continue; 5199 /* 5200 * nr_active is monotonically decreasing. It's safe 5201 * to peek without lock. 5202 */ 5203 rcu_read_lock(); 5204 for_each_pwq(pwq, wq) { 5205 WARN_ON_ONCE(pwq->nr_active < 0); 5206 if (pwq->nr_active) { 5207 busy = true; 5208 rcu_read_unlock(); 5209 goto out_unlock; 5210 } 5211 } 5212 rcu_read_unlock(); 5213 } 5214 out_unlock: 5215 mutex_unlock(&wq_pool_mutex); 5216 return busy; 5217 } 5218 5219 /** 5220 * thaw_workqueues - thaw workqueues 5221 * 5222 * Thaw workqueues. Normal queueing is restored and all collected 5223 * frozen works are transferred to their respective pool worklists. 5224 * 5225 * CONTEXT: 5226 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's. 5227 */ 5228 void thaw_workqueues(void) 5229 { 5230 struct workqueue_struct *wq; 5231 struct pool_workqueue *pwq; 5232 5233 mutex_lock(&wq_pool_mutex); 5234 5235 if (!workqueue_freezing) 5236 goto out_unlock; 5237 5238 workqueue_freezing = false; 5239 5240 /* restore max_active and repopulate worklist */ 5241 list_for_each_entry(wq, &workqueues, list) { 5242 mutex_lock(&wq->mutex); 5243 for_each_pwq(pwq, wq) 5244 pwq_adjust_max_active(pwq); 5245 mutex_unlock(&wq->mutex); 5246 } 5247 5248 out_unlock: 5249 mutex_unlock(&wq_pool_mutex); 5250 } 5251 #endif /* CONFIG_FREEZER */ 5252 5253 static int workqueue_apply_unbound_cpumask(void) 5254 { 5255 LIST_HEAD(ctxs); 5256 int ret = 0; 5257 struct workqueue_struct *wq; 5258 struct apply_wqattrs_ctx *ctx, *n; 5259 5260 lockdep_assert_held(&wq_pool_mutex); 5261 5262 list_for_each_entry(wq, &workqueues, list) { 5263 if (!(wq->flags & WQ_UNBOUND)) 5264 continue; 5265 /* creating multiple pwqs breaks ordering guarantee */ 5266 if (wq->flags & __WQ_ORDERED) 5267 continue; 5268 5269 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs); 5270 if (!ctx) { 5271 ret = -ENOMEM; 5272 break; 5273 } 5274 5275 list_add_tail(&ctx->list, &ctxs); 5276 } 5277 5278 list_for_each_entry_safe(ctx, n, &ctxs, list) { 5279 if (!ret) 5280 apply_wqattrs_commit(ctx); 5281 apply_wqattrs_cleanup(ctx); 5282 } 5283 5284 return ret; 5285 } 5286 5287 /** 5288 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask 5289 * @cpumask: the cpumask to set 5290 * 5291 * The low-level workqueues cpumask is a global cpumask that limits 5292 * the affinity of all unbound workqueues. This function check the @cpumask 5293 * and apply it to all unbound workqueues and updates all pwqs of them. 5294 * 5295 * Retun: 0 - Success 5296 * -EINVAL - Invalid @cpumask 5297 * -ENOMEM - Failed to allocate memory for attrs or pwqs. 5298 */ 5299 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask) 5300 { 5301 int ret = -EINVAL; 5302 cpumask_var_t saved_cpumask; 5303 5304 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) 5305 return -ENOMEM; 5306 5307 /* 5308 * Not excluding isolated cpus on purpose. 5309 * If the user wishes to include them, we allow that. 5310 */ 5311 cpumask_and(cpumask, cpumask, cpu_possible_mask); 5312 if (!cpumask_empty(cpumask)) { 5313 apply_wqattrs_lock(); 5314 5315 /* save the old wq_unbound_cpumask. */ 5316 cpumask_copy(saved_cpumask, wq_unbound_cpumask); 5317 5318 /* update wq_unbound_cpumask at first and apply it to wqs. */ 5319 cpumask_copy(wq_unbound_cpumask, cpumask); 5320 ret = workqueue_apply_unbound_cpumask(); 5321 5322 /* restore the wq_unbound_cpumask when failed. */ 5323 if (ret < 0) 5324 cpumask_copy(wq_unbound_cpumask, saved_cpumask); 5325 5326 apply_wqattrs_unlock(); 5327 } 5328 5329 free_cpumask_var(saved_cpumask); 5330 return ret; 5331 } 5332 5333 #ifdef CONFIG_SYSFS 5334 /* 5335 * Workqueues with WQ_SYSFS flag set is visible to userland via 5336 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the 5337 * following attributes. 5338 * 5339 * per_cpu RO bool : whether the workqueue is per-cpu or unbound 5340 * max_active RW int : maximum number of in-flight work items 5341 * 5342 * Unbound workqueues have the following extra attributes. 5343 * 5344 * pool_ids RO int : the associated pool IDs for each node 5345 * nice RW int : nice value of the workers 5346 * cpumask RW mask : bitmask of allowed CPUs for the workers 5347 * numa RW bool : whether enable NUMA affinity 5348 */ 5349 struct wq_device { 5350 struct workqueue_struct *wq; 5351 struct device dev; 5352 }; 5353 5354 static struct workqueue_struct *dev_to_wq(struct device *dev) 5355 { 5356 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5357 5358 return wq_dev->wq; 5359 } 5360 5361 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr, 5362 char *buf) 5363 { 5364 struct workqueue_struct *wq = dev_to_wq(dev); 5365 5366 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND)); 5367 } 5368 static DEVICE_ATTR_RO(per_cpu); 5369 5370 static ssize_t max_active_show(struct device *dev, 5371 struct device_attribute *attr, char *buf) 5372 { 5373 struct workqueue_struct *wq = dev_to_wq(dev); 5374 5375 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active); 5376 } 5377 5378 static ssize_t max_active_store(struct device *dev, 5379 struct device_attribute *attr, const char *buf, 5380 size_t count) 5381 { 5382 struct workqueue_struct *wq = dev_to_wq(dev); 5383 int val; 5384 5385 if (sscanf(buf, "%d", &val) != 1 || val <= 0) 5386 return -EINVAL; 5387 5388 workqueue_set_max_active(wq, val); 5389 return count; 5390 } 5391 static DEVICE_ATTR_RW(max_active); 5392 5393 static struct attribute *wq_sysfs_attrs[] = { 5394 &dev_attr_per_cpu.attr, 5395 &dev_attr_max_active.attr, 5396 NULL, 5397 }; 5398 ATTRIBUTE_GROUPS(wq_sysfs); 5399 5400 static ssize_t wq_pool_ids_show(struct device *dev, 5401 struct device_attribute *attr, char *buf) 5402 { 5403 struct workqueue_struct *wq = dev_to_wq(dev); 5404 const char *delim = ""; 5405 int node, written = 0; 5406 5407 get_online_cpus(); 5408 rcu_read_lock(); 5409 for_each_node(node) { 5410 written += scnprintf(buf + written, PAGE_SIZE - written, 5411 "%s%d:%d", delim, node, 5412 unbound_pwq_by_node(wq, node)->pool->id); 5413 delim = " "; 5414 } 5415 written += scnprintf(buf + written, PAGE_SIZE - written, "\n"); 5416 rcu_read_unlock(); 5417 put_online_cpus(); 5418 5419 return written; 5420 } 5421 5422 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr, 5423 char *buf) 5424 { 5425 struct workqueue_struct *wq = dev_to_wq(dev); 5426 int written; 5427 5428 mutex_lock(&wq->mutex); 5429 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice); 5430 mutex_unlock(&wq->mutex); 5431 5432 return written; 5433 } 5434 5435 /* prepare workqueue_attrs for sysfs store operations */ 5436 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq) 5437 { 5438 struct workqueue_attrs *attrs; 5439 5440 lockdep_assert_held(&wq_pool_mutex); 5441 5442 attrs = alloc_workqueue_attrs(); 5443 if (!attrs) 5444 return NULL; 5445 5446 copy_workqueue_attrs(attrs, wq->unbound_attrs); 5447 return attrs; 5448 } 5449 5450 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr, 5451 const char *buf, size_t count) 5452 { 5453 struct workqueue_struct *wq = dev_to_wq(dev); 5454 struct workqueue_attrs *attrs; 5455 int ret = -ENOMEM; 5456 5457 apply_wqattrs_lock(); 5458 5459 attrs = wq_sysfs_prep_attrs(wq); 5460 if (!attrs) 5461 goto out_unlock; 5462 5463 if (sscanf(buf, "%d", &attrs->nice) == 1 && 5464 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE) 5465 ret = apply_workqueue_attrs_locked(wq, attrs); 5466 else 5467 ret = -EINVAL; 5468 5469 out_unlock: 5470 apply_wqattrs_unlock(); 5471 free_workqueue_attrs(attrs); 5472 return ret ?: count; 5473 } 5474 5475 static ssize_t wq_cpumask_show(struct device *dev, 5476 struct device_attribute *attr, char *buf) 5477 { 5478 struct workqueue_struct *wq = dev_to_wq(dev); 5479 int written; 5480 5481 mutex_lock(&wq->mutex); 5482 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5483 cpumask_pr_args(wq->unbound_attrs->cpumask)); 5484 mutex_unlock(&wq->mutex); 5485 return written; 5486 } 5487 5488 static ssize_t wq_cpumask_store(struct device *dev, 5489 struct device_attribute *attr, 5490 const char *buf, size_t count) 5491 { 5492 struct workqueue_struct *wq = dev_to_wq(dev); 5493 struct workqueue_attrs *attrs; 5494 int ret = -ENOMEM; 5495 5496 apply_wqattrs_lock(); 5497 5498 attrs = wq_sysfs_prep_attrs(wq); 5499 if (!attrs) 5500 goto out_unlock; 5501 5502 ret = cpumask_parse(buf, attrs->cpumask); 5503 if (!ret) 5504 ret = apply_workqueue_attrs_locked(wq, attrs); 5505 5506 out_unlock: 5507 apply_wqattrs_unlock(); 5508 free_workqueue_attrs(attrs); 5509 return ret ?: count; 5510 } 5511 5512 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr, 5513 char *buf) 5514 { 5515 struct workqueue_struct *wq = dev_to_wq(dev); 5516 int written; 5517 5518 mutex_lock(&wq->mutex); 5519 written = scnprintf(buf, PAGE_SIZE, "%d\n", 5520 !wq->unbound_attrs->no_numa); 5521 mutex_unlock(&wq->mutex); 5522 5523 return written; 5524 } 5525 5526 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr, 5527 const char *buf, size_t count) 5528 { 5529 struct workqueue_struct *wq = dev_to_wq(dev); 5530 struct workqueue_attrs *attrs; 5531 int v, ret = -ENOMEM; 5532 5533 apply_wqattrs_lock(); 5534 5535 attrs = wq_sysfs_prep_attrs(wq); 5536 if (!attrs) 5537 goto out_unlock; 5538 5539 ret = -EINVAL; 5540 if (sscanf(buf, "%d", &v) == 1) { 5541 attrs->no_numa = !v; 5542 ret = apply_workqueue_attrs_locked(wq, attrs); 5543 } 5544 5545 out_unlock: 5546 apply_wqattrs_unlock(); 5547 free_workqueue_attrs(attrs); 5548 return ret ?: count; 5549 } 5550 5551 static struct device_attribute wq_sysfs_unbound_attrs[] = { 5552 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL), 5553 __ATTR(nice, 0644, wq_nice_show, wq_nice_store), 5554 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store), 5555 __ATTR(numa, 0644, wq_numa_show, wq_numa_store), 5556 __ATTR_NULL, 5557 }; 5558 5559 static struct bus_type wq_subsys = { 5560 .name = "workqueue", 5561 .dev_groups = wq_sysfs_groups, 5562 }; 5563 5564 static ssize_t wq_unbound_cpumask_show(struct device *dev, 5565 struct device_attribute *attr, char *buf) 5566 { 5567 int written; 5568 5569 mutex_lock(&wq_pool_mutex); 5570 written = scnprintf(buf, PAGE_SIZE, "%*pb\n", 5571 cpumask_pr_args(wq_unbound_cpumask)); 5572 mutex_unlock(&wq_pool_mutex); 5573 5574 return written; 5575 } 5576 5577 static ssize_t wq_unbound_cpumask_store(struct device *dev, 5578 struct device_attribute *attr, const char *buf, size_t count) 5579 { 5580 cpumask_var_t cpumask; 5581 int ret; 5582 5583 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL)) 5584 return -ENOMEM; 5585 5586 ret = cpumask_parse(buf, cpumask); 5587 if (!ret) 5588 ret = workqueue_set_unbound_cpumask(cpumask); 5589 5590 free_cpumask_var(cpumask); 5591 return ret ? ret : count; 5592 } 5593 5594 static struct device_attribute wq_sysfs_cpumask_attr = 5595 __ATTR(cpumask, 0644, wq_unbound_cpumask_show, 5596 wq_unbound_cpumask_store); 5597 5598 static int __init wq_sysfs_init(void) 5599 { 5600 int err; 5601 5602 err = subsys_virtual_register(&wq_subsys, NULL); 5603 if (err) 5604 return err; 5605 5606 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr); 5607 } 5608 core_initcall(wq_sysfs_init); 5609 5610 static void wq_device_release(struct device *dev) 5611 { 5612 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev); 5613 5614 kfree(wq_dev); 5615 } 5616 5617 /** 5618 * workqueue_sysfs_register - make a workqueue visible in sysfs 5619 * @wq: the workqueue to register 5620 * 5621 * Expose @wq in sysfs under /sys/bus/workqueue/devices. 5622 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set 5623 * which is the preferred method. 5624 * 5625 * Workqueue user should use this function directly iff it wants to apply 5626 * workqueue_attrs before making the workqueue visible in sysfs; otherwise, 5627 * apply_workqueue_attrs() may race against userland updating the 5628 * attributes. 5629 * 5630 * Return: 0 on success, -errno on failure. 5631 */ 5632 int workqueue_sysfs_register(struct workqueue_struct *wq) 5633 { 5634 struct wq_device *wq_dev; 5635 int ret; 5636 5637 /* 5638 * Adjusting max_active or creating new pwqs by applying 5639 * attributes breaks ordering guarantee. Disallow exposing ordered 5640 * workqueues. 5641 */ 5642 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT)) 5643 return -EINVAL; 5644 5645 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL); 5646 if (!wq_dev) 5647 return -ENOMEM; 5648 5649 wq_dev->wq = wq; 5650 wq_dev->dev.bus = &wq_subsys; 5651 wq_dev->dev.release = wq_device_release; 5652 dev_set_name(&wq_dev->dev, "%s", wq->name); 5653 5654 /* 5655 * unbound_attrs are created separately. Suppress uevent until 5656 * everything is ready. 5657 */ 5658 dev_set_uevent_suppress(&wq_dev->dev, true); 5659 5660 ret = device_register(&wq_dev->dev); 5661 if (ret) { 5662 put_device(&wq_dev->dev); 5663 wq->wq_dev = NULL; 5664 return ret; 5665 } 5666 5667 if (wq->flags & WQ_UNBOUND) { 5668 struct device_attribute *attr; 5669 5670 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) { 5671 ret = device_create_file(&wq_dev->dev, attr); 5672 if (ret) { 5673 device_unregister(&wq_dev->dev); 5674 wq->wq_dev = NULL; 5675 return ret; 5676 } 5677 } 5678 } 5679 5680 dev_set_uevent_suppress(&wq_dev->dev, false); 5681 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD); 5682 return 0; 5683 } 5684 5685 /** 5686 * workqueue_sysfs_unregister - undo workqueue_sysfs_register() 5687 * @wq: the workqueue to unregister 5688 * 5689 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister. 5690 */ 5691 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) 5692 { 5693 struct wq_device *wq_dev = wq->wq_dev; 5694 5695 if (!wq->wq_dev) 5696 return; 5697 5698 wq->wq_dev = NULL; 5699 device_unregister(&wq_dev->dev); 5700 } 5701 #else /* CONFIG_SYSFS */ 5702 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { } 5703 #endif /* CONFIG_SYSFS */ 5704 5705 /* 5706 * Workqueue watchdog. 5707 * 5708 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal 5709 * flush dependency, a concurrency managed work item which stays RUNNING 5710 * indefinitely. Workqueue stalls can be very difficult to debug as the 5711 * usual warning mechanisms don't trigger and internal workqueue state is 5712 * largely opaque. 5713 * 5714 * Workqueue watchdog monitors all worker pools periodically and dumps 5715 * state if some pools failed to make forward progress for a while where 5716 * forward progress is defined as the first item on ->worklist changing. 5717 * 5718 * This mechanism is controlled through the kernel parameter 5719 * "workqueue.watchdog_thresh" which can be updated at runtime through the 5720 * corresponding sysfs parameter file. 5721 */ 5722 #ifdef CONFIG_WQ_WATCHDOG 5723 5724 static unsigned long wq_watchdog_thresh = 30; 5725 static struct timer_list wq_watchdog_timer; 5726 5727 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES; 5728 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES; 5729 5730 static void wq_watchdog_reset_touched(void) 5731 { 5732 int cpu; 5733 5734 wq_watchdog_touched = jiffies; 5735 for_each_possible_cpu(cpu) 5736 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5737 } 5738 5739 static void wq_watchdog_timer_fn(struct timer_list *unused) 5740 { 5741 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ; 5742 bool lockup_detected = false; 5743 struct worker_pool *pool; 5744 int pi; 5745 5746 if (!thresh) 5747 return; 5748 5749 rcu_read_lock(); 5750 5751 for_each_pool(pool, pi) { 5752 unsigned long pool_ts, touched, ts; 5753 5754 if (list_empty(&pool->worklist)) 5755 continue; 5756 5757 /* get the latest of pool and touched timestamps */ 5758 pool_ts = READ_ONCE(pool->watchdog_ts); 5759 touched = READ_ONCE(wq_watchdog_touched); 5760 5761 if (time_after(pool_ts, touched)) 5762 ts = pool_ts; 5763 else 5764 ts = touched; 5765 5766 if (pool->cpu >= 0) { 5767 unsigned long cpu_touched = 5768 READ_ONCE(per_cpu(wq_watchdog_touched_cpu, 5769 pool->cpu)); 5770 if (time_after(cpu_touched, ts)) 5771 ts = cpu_touched; 5772 } 5773 5774 /* did we stall? */ 5775 if (time_after(jiffies, ts + thresh)) { 5776 lockup_detected = true; 5777 pr_emerg("BUG: workqueue lockup - pool"); 5778 pr_cont_pool_info(pool); 5779 pr_cont(" stuck for %us!\n", 5780 jiffies_to_msecs(jiffies - pool_ts) / 1000); 5781 } 5782 } 5783 5784 rcu_read_unlock(); 5785 5786 if (lockup_detected) 5787 show_workqueue_state(); 5788 5789 wq_watchdog_reset_touched(); 5790 mod_timer(&wq_watchdog_timer, jiffies + thresh); 5791 } 5792 5793 notrace void wq_watchdog_touch(int cpu) 5794 { 5795 if (cpu >= 0) 5796 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies; 5797 else 5798 wq_watchdog_touched = jiffies; 5799 } 5800 5801 static void wq_watchdog_set_thresh(unsigned long thresh) 5802 { 5803 wq_watchdog_thresh = 0; 5804 del_timer_sync(&wq_watchdog_timer); 5805 5806 if (thresh) { 5807 wq_watchdog_thresh = thresh; 5808 wq_watchdog_reset_touched(); 5809 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ); 5810 } 5811 } 5812 5813 static int wq_watchdog_param_set_thresh(const char *val, 5814 const struct kernel_param *kp) 5815 { 5816 unsigned long thresh; 5817 int ret; 5818 5819 ret = kstrtoul(val, 0, &thresh); 5820 if (ret) 5821 return ret; 5822 5823 if (system_wq) 5824 wq_watchdog_set_thresh(thresh); 5825 else 5826 wq_watchdog_thresh = thresh; 5827 5828 return 0; 5829 } 5830 5831 static const struct kernel_param_ops wq_watchdog_thresh_ops = { 5832 .set = wq_watchdog_param_set_thresh, 5833 .get = param_get_ulong, 5834 }; 5835 5836 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh, 5837 0644); 5838 5839 static void wq_watchdog_init(void) 5840 { 5841 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE); 5842 wq_watchdog_set_thresh(wq_watchdog_thresh); 5843 } 5844 5845 #else /* CONFIG_WQ_WATCHDOG */ 5846 5847 static inline void wq_watchdog_init(void) { } 5848 5849 #endif /* CONFIG_WQ_WATCHDOG */ 5850 5851 static void __init wq_numa_init(void) 5852 { 5853 cpumask_var_t *tbl; 5854 int node, cpu; 5855 5856 if (num_possible_nodes() <= 1) 5857 return; 5858 5859 if (wq_disable_numa) { 5860 pr_info("workqueue: NUMA affinity support disabled\n"); 5861 return; 5862 } 5863 5864 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(); 5865 BUG_ON(!wq_update_unbound_numa_attrs_buf); 5866 5867 /* 5868 * We want masks of possible CPUs of each node which isn't readily 5869 * available. Build one from cpu_to_node() which should have been 5870 * fully initialized by now. 5871 */ 5872 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL); 5873 BUG_ON(!tbl); 5874 5875 for_each_node(node) 5876 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL, 5877 node_online(node) ? node : NUMA_NO_NODE)); 5878 5879 for_each_possible_cpu(cpu) { 5880 node = cpu_to_node(cpu); 5881 if (WARN_ON(node == NUMA_NO_NODE)) { 5882 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu); 5883 /* happens iff arch is bonkers, let's just proceed */ 5884 return; 5885 } 5886 cpumask_set_cpu(cpu, tbl[node]); 5887 } 5888 5889 wq_numa_possible_cpumask = tbl; 5890 wq_numa_enabled = true; 5891 } 5892 5893 /** 5894 * workqueue_init_early - early init for workqueue subsystem 5895 * 5896 * This is the first half of two-staged workqueue subsystem initialization 5897 * and invoked as soon as the bare basics - memory allocation, cpumasks and 5898 * idr are up. It sets up all the data structures and system workqueues 5899 * and allows early boot code to create workqueues and queue/cancel work 5900 * items. Actual work item execution starts only after kthreads can be 5901 * created and scheduled right before early initcalls. 5902 */ 5903 void __init workqueue_init_early(void) 5904 { 5905 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL }; 5906 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ; 5907 int i, cpu; 5908 5909 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long)); 5910 5911 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL)); 5912 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags)); 5913 5914 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC); 5915 5916 /* initialize CPU pools */ 5917 for_each_possible_cpu(cpu) { 5918 struct worker_pool *pool; 5919 5920 i = 0; 5921 for_each_cpu_worker_pool(pool, cpu) { 5922 BUG_ON(init_worker_pool(pool)); 5923 pool->cpu = cpu; 5924 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu)); 5925 pool->attrs->nice = std_nice[i++]; 5926 pool->node = cpu_to_node(cpu); 5927 5928 /* alloc pool ID */ 5929 mutex_lock(&wq_pool_mutex); 5930 BUG_ON(worker_pool_assign_id(pool)); 5931 mutex_unlock(&wq_pool_mutex); 5932 } 5933 } 5934 5935 /* create default unbound and ordered wq attrs */ 5936 for (i = 0; i < NR_STD_WORKER_POOLS; i++) { 5937 struct workqueue_attrs *attrs; 5938 5939 BUG_ON(!(attrs = alloc_workqueue_attrs())); 5940 attrs->nice = std_nice[i]; 5941 unbound_std_wq_attrs[i] = attrs; 5942 5943 /* 5944 * An ordered wq should have only one pwq as ordering is 5945 * guaranteed by max_active which is enforced by pwqs. 5946 * Turn off NUMA so that dfl_pwq is used for all nodes. 5947 */ 5948 BUG_ON(!(attrs = alloc_workqueue_attrs())); 5949 attrs->nice = std_nice[i]; 5950 attrs->no_numa = true; 5951 ordered_wq_attrs[i] = attrs; 5952 } 5953 5954 system_wq = alloc_workqueue("events", 0, 0); 5955 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0); 5956 system_long_wq = alloc_workqueue("events_long", 0, 0); 5957 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND, 5958 WQ_UNBOUND_MAX_ACTIVE); 5959 system_freezable_wq = alloc_workqueue("events_freezable", 5960 WQ_FREEZABLE, 0); 5961 system_power_efficient_wq = alloc_workqueue("events_power_efficient", 5962 WQ_POWER_EFFICIENT, 0); 5963 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient", 5964 WQ_FREEZABLE | WQ_POWER_EFFICIENT, 5965 0); 5966 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq || 5967 !system_unbound_wq || !system_freezable_wq || 5968 !system_power_efficient_wq || 5969 !system_freezable_power_efficient_wq); 5970 } 5971 5972 /** 5973 * workqueue_init - bring workqueue subsystem fully online 5974 * 5975 * This is the latter half of two-staged workqueue subsystem initialization 5976 * and invoked as soon as kthreads can be created and scheduled. 5977 * Workqueues have been created and work items queued on them, but there 5978 * are no kworkers executing the work items yet. Populate the worker pools 5979 * with the initial workers and enable future kworker creations. 5980 */ 5981 void __init workqueue_init(void) 5982 { 5983 struct workqueue_struct *wq; 5984 struct worker_pool *pool; 5985 int cpu, bkt; 5986 5987 /* 5988 * It'd be simpler to initialize NUMA in workqueue_init_early() but 5989 * CPU to node mapping may not be available that early on some 5990 * archs such as power and arm64. As per-cpu pools created 5991 * previously could be missing node hint and unbound pools NUMA 5992 * affinity, fix them up. 5993 * 5994 * Also, while iterating workqueues, create rescuers if requested. 5995 */ 5996 wq_numa_init(); 5997 5998 mutex_lock(&wq_pool_mutex); 5999 6000 for_each_possible_cpu(cpu) { 6001 for_each_cpu_worker_pool(pool, cpu) { 6002 pool->node = cpu_to_node(cpu); 6003 } 6004 } 6005 6006 list_for_each_entry(wq, &workqueues, list) { 6007 wq_update_unbound_numa(wq, smp_processor_id(), true); 6008 WARN(init_rescuer(wq), 6009 "workqueue: failed to create early rescuer for %s", 6010 wq->name); 6011 } 6012 6013 mutex_unlock(&wq_pool_mutex); 6014 6015 /* create the initial workers */ 6016 for_each_online_cpu(cpu) { 6017 for_each_cpu_worker_pool(pool, cpu) { 6018 pool->flags &= ~POOL_DISASSOCIATED; 6019 BUG_ON(!create_worker(pool)); 6020 } 6021 } 6022 6023 hash_for_each(unbound_pool_hash, bkt, pool, hash_node) 6024 BUG_ON(!create_worker(pool)); 6025 6026 wq_online = true; 6027 wq_watchdog_init(); 6028 } 6029