xref: /linux/kernel/workqueue.c (revision 2d6ffcca623a9a16df6cdfbe8250b7a5904a5f5e)
1 /*
2  * linux/kernel/workqueue.c
3  *
4  * Generic mechanism for defining kernel helper threads for running
5  * arbitrary tasks in process context.
6  *
7  * Started by Ingo Molnar, Copyright (C) 2002
8  *
9  * Derived from the taskqueue/keventd code by:
10  *
11  *   David Woodhouse <dwmw2@infradead.org>
12  *   Andrew Morton <andrewm@uow.edu.au>
13  *   Kai Petzke <wpp@marie.physik.tu-berlin.de>
14  *   Theodore Ts'o <tytso@mit.edu>
15  *
16  * Made to use alloc_percpu by Christoph Lameter.
17  */
18 
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
36 
37 /*
38  * The per-CPU workqueue (if single thread, we always use the first
39  * possible cpu).
40  */
41 struct cpu_workqueue_struct {
42 
43 	spinlock_t lock;
44 
45 	struct list_head worklist;
46 	wait_queue_head_t more_work;
47 	struct work_struct *current_work;
48 
49 	struct workqueue_struct *wq;
50 	struct task_struct *thread;
51 
52 	int run_depth;		/* Detect run_workqueue() recursion depth */
53 } ____cacheline_aligned;
54 
55 /*
56  * The externally visible workqueue abstraction is an array of
57  * per-CPU workqueues:
58  */
59 struct workqueue_struct {
60 	struct cpu_workqueue_struct *cpu_wq;
61 	struct list_head list;
62 	const char *name;
63 	int singlethread;
64 	int freezeable;		/* Freeze threads during suspend */
65 #ifdef CONFIG_LOCKDEP
66 	struct lockdep_map lockdep_map;
67 #endif
68 };
69 
70 /* Serializes the accesses to the list of workqueues. */
71 static DEFINE_SPINLOCK(workqueue_lock);
72 static LIST_HEAD(workqueues);
73 
74 static int singlethread_cpu __read_mostly;
75 static cpumask_t cpu_singlethread_map __read_mostly;
76 /*
77  * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
78  * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
79  * which comes in between can't use for_each_online_cpu(). We could
80  * use cpu_possible_map, the cpumask below is more a documentation
81  * than optimization.
82  */
83 static cpumask_t cpu_populated_map __read_mostly;
84 
85 /* If it's single threaded, it isn't in the list of workqueues. */
86 static inline int is_single_threaded(struct workqueue_struct *wq)
87 {
88 	return wq->singlethread;
89 }
90 
91 static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq)
92 {
93 	return is_single_threaded(wq)
94 		? &cpu_singlethread_map : &cpu_populated_map;
95 }
96 
97 static
98 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
99 {
100 	if (unlikely(is_single_threaded(wq)))
101 		cpu = singlethread_cpu;
102 	return per_cpu_ptr(wq->cpu_wq, cpu);
103 }
104 
105 /*
106  * Set the workqueue on which a work item is to be run
107  * - Must *only* be called if the pending flag is set
108  */
109 static inline void set_wq_data(struct work_struct *work,
110 				struct cpu_workqueue_struct *cwq)
111 {
112 	unsigned long new;
113 
114 	BUG_ON(!work_pending(work));
115 
116 	new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
117 	new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
118 	atomic_long_set(&work->data, new);
119 }
120 
121 static inline
122 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
123 {
124 	return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
125 }
126 
127 static void insert_work(struct cpu_workqueue_struct *cwq,
128 				struct work_struct *work, int tail)
129 {
130 	set_wq_data(work, cwq);
131 	/*
132 	 * Ensure that we get the right work->data if we see the
133 	 * result of list_add() below, see try_to_grab_pending().
134 	 */
135 	smp_wmb();
136 	if (tail)
137 		list_add_tail(&work->entry, &cwq->worklist);
138 	else
139 		list_add(&work->entry, &cwq->worklist);
140 	wake_up(&cwq->more_work);
141 }
142 
143 static void __queue_work(struct cpu_workqueue_struct *cwq,
144 			 struct work_struct *work)
145 {
146 	unsigned long flags;
147 
148 	spin_lock_irqsave(&cwq->lock, flags);
149 	insert_work(cwq, work, 1);
150 	spin_unlock_irqrestore(&cwq->lock, flags);
151 }
152 
153 /**
154  * queue_work - queue work on a workqueue
155  * @wq: workqueue to use
156  * @work: work to queue
157  *
158  * Returns 0 if @work was already on a queue, non-zero otherwise.
159  *
160  * We queue the work to the CPU on which it was submitted, but if the CPU dies
161  * it can be processed by another CPU.
162  */
163 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
164 {
165 	int ret = 0;
166 
167 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
168 		BUG_ON(!list_empty(&work->entry));
169 		__queue_work(wq_per_cpu(wq, get_cpu()), work);
170 		put_cpu();
171 		ret = 1;
172 	}
173 	return ret;
174 }
175 EXPORT_SYMBOL_GPL(queue_work);
176 
177 /**
178  * queue_work_on - queue work on specific cpu
179  * @cpu: CPU number to execute work on
180  * @wq: workqueue to use
181  * @work: work to queue
182  *
183  * Returns 0 if @work was already on a queue, non-zero otherwise.
184  *
185  * We queue the work to a specific CPU, the caller must ensure it
186  * can't go away.
187  */
188 int
189 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
190 {
191 	int ret = 0;
192 
193 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
194 		BUG_ON(!list_empty(&work->entry));
195 		__queue_work(wq_per_cpu(wq, cpu), work);
196 		ret = 1;
197 	}
198 	return ret;
199 }
200 EXPORT_SYMBOL_GPL(queue_work_on);
201 
202 static void delayed_work_timer_fn(unsigned long __data)
203 {
204 	struct delayed_work *dwork = (struct delayed_work *)__data;
205 	struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
206 	struct workqueue_struct *wq = cwq->wq;
207 
208 	__queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
209 }
210 
211 /**
212  * queue_delayed_work - queue work on a workqueue after delay
213  * @wq: workqueue to use
214  * @dwork: delayable work to queue
215  * @delay: number of jiffies to wait before queueing
216  *
217  * Returns 0 if @work was already on a queue, non-zero otherwise.
218  */
219 int queue_delayed_work(struct workqueue_struct *wq,
220 			struct delayed_work *dwork, unsigned long delay)
221 {
222 	if (delay == 0)
223 		return queue_work(wq, &dwork->work);
224 
225 	return queue_delayed_work_on(-1, wq, dwork, delay);
226 }
227 EXPORT_SYMBOL_GPL(queue_delayed_work);
228 
229 /**
230  * queue_delayed_work_on - queue work on specific CPU after delay
231  * @cpu: CPU number to execute work on
232  * @wq: workqueue to use
233  * @dwork: work to queue
234  * @delay: number of jiffies to wait before queueing
235  *
236  * Returns 0 if @work was already on a queue, non-zero otherwise.
237  */
238 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
239 			struct delayed_work *dwork, unsigned long delay)
240 {
241 	int ret = 0;
242 	struct timer_list *timer = &dwork->timer;
243 	struct work_struct *work = &dwork->work;
244 
245 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
246 		BUG_ON(timer_pending(timer));
247 		BUG_ON(!list_empty(&work->entry));
248 
249 		timer_stats_timer_set_start_info(&dwork->timer);
250 
251 		/* This stores cwq for the moment, for the timer_fn */
252 		set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
253 		timer->expires = jiffies + delay;
254 		timer->data = (unsigned long)dwork;
255 		timer->function = delayed_work_timer_fn;
256 
257 		if (unlikely(cpu >= 0))
258 			add_timer_on(timer, cpu);
259 		else
260 			add_timer(timer);
261 		ret = 1;
262 	}
263 	return ret;
264 }
265 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
266 
267 static void run_workqueue(struct cpu_workqueue_struct *cwq)
268 {
269 	spin_lock_irq(&cwq->lock);
270 	cwq->run_depth++;
271 	if (cwq->run_depth > 3) {
272 		/* morton gets to eat his hat */
273 		printk("%s: recursion depth exceeded: %d\n",
274 			__func__, cwq->run_depth);
275 		dump_stack();
276 	}
277 	while (!list_empty(&cwq->worklist)) {
278 		struct work_struct *work = list_entry(cwq->worklist.next,
279 						struct work_struct, entry);
280 		work_func_t f = work->func;
281 #ifdef CONFIG_LOCKDEP
282 		/*
283 		 * It is permissible to free the struct work_struct
284 		 * from inside the function that is called from it,
285 		 * this we need to take into account for lockdep too.
286 		 * To avoid bogus "held lock freed" warnings as well
287 		 * as problems when looking into work->lockdep_map,
288 		 * make a copy and use that here.
289 		 */
290 		struct lockdep_map lockdep_map = work->lockdep_map;
291 #endif
292 
293 		cwq->current_work = work;
294 		list_del_init(cwq->worklist.next);
295 		spin_unlock_irq(&cwq->lock);
296 
297 		BUG_ON(get_wq_data(work) != cwq);
298 		work_clear_pending(work);
299 		lock_acquire(&cwq->wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
300 		lock_acquire(&lockdep_map, 0, 0, 0, 2, _THIS_IP_);
301 		f(work);
302 		lock_release(&lockdep_map, 1, _THIS_IP_);
303 		lock_release(&cwq->wq->lockdep_map, 1, _THIS_IP_);
304 
305 		if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
306 			printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
307 					"%s/0x%08x/%d\n",
308 					current->comm, preempt_count(),
309 				       	task_pid_nr(current));
310 			printk(KERN_ERR "    last function: ");
311 			print_symbol("%s\n", (unsigned long)f);
312 			debug_show_held_locks(current);
313 			dump_stack();
314 		}
315 
316 		spin_lock_irq(&cwq->lock);
317 		cwq->current_work = NULL;
318 	}
319 	cwq->run_depth--;
320 	spin_unlock_irq(&cwq->lock);
321 }
322 
323 static int worker_thread(void *__cwq)
324 {
325 	struct cpu_workqueue_struct *cwq = __cwq;
326 	DEFINE_WAIT(wait);
327 
328 	if (cwq->wq->freezeable)
329 		set_freezable();
330 
331 	set_user_nice(current, -5);
332 
333 	for (;;) {
334 		prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
335 		if (!freezing(current) &&
336 		    !kthread_should_stop() &&
337 		    list_empty(&cwq->worklist))
338 			schedule();
339 		finish_wait(&cwq->more_work, &wait);
340 
341 		try_to_freeze();
342 
343 		if (kthread_should_stop())
344 			break;
345 
346 		run_workqueue(cwq);
347 	}
348 
349 	return 0;
350 }
351 
352 struct wq_barrier {
353 	struct work_struct	work;
354 	struct completion	done;
355 };
356 
357 static void wq_barrier_func(struct work_struct *work)
358 {
359 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
360 	complete(&barr->done);
361 }
362 
363 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
364 					struct wq_barrier *barr, int tail)
365 {
366 	INIT_WORK(&barr->work, wq_barrier_func);
367 	__set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
368 
369 	init_completion(&barr->done);
370 
371 	insert_work(cwq, &barr->work, tail);
372 }
373 
374 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
375 {
376 	int active;
377 
378 	if (cwq->thread == current) {
379 		/*
380 		 * Probably keventd trying to flush its own queue. So simply run
381 		 * it by hand rather than deadlocking.
382 		 */
383 		run_workqueue(cwq);
384 		active = 1;
385 	} else {
386 		struct wq_barrier barr;
387 
388 		active = 0;
389 		spin_lock_irq(&cwq->lock);
390 		if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
391 			insert_wq_barrier(cwq, &barr, 1);
392 			active = 1;
393 		}
394 		spin_unlock_irq(&cwq->lock);
395 
396 		if (active)
397 			wait_for_completion(&barr.done);
398 	}
399 
400 	return active;
401 }
402 
403 /**
404  * flush_workqueue - ensure that any scheduled work has run to completion.
405  * @wq: workqueue to flush
406  *
407  * Forces execution of the workqueue and blocks until its completion.
408  * This is typically used in driver shutdown handlers.
409  *
410  * We sleep until all works which were queued on entry have been handled,
411  * but we are not livelocked by new incoming ones.
412  *
413  * This function used to run the workqueues itself.  Now we just wait for the
414  * helper threads to do it.
415  */
416 void flush_workqueue(struct workqueue_struct *wq)
417 {
418 	const cpumask_t *cpu_map = wq_cpu_map(wq);
419 	int cpu;
420 
421 	might_sleep();
422 	lock_acquire(&wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
423 	lock_release(&wq->lockdep_map, 1, _THIS_IP_);
424 	for_each_cpu_mask_nr(cpu, *cpu_map)
425 		flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
426 }
427 EXPORT_SYMBOL_GPL(flush_workqueue);
428 
429 /*
430  * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
431  * so this work can't be re-armed in any way.
432  */
433 static int try_to_grab_pending(struct work_struct *work)
434 {
435 	struct cpu_workqueue_struct *cwq;
436 	int ret = -1;
437 
438 	if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
439 		return 0;
440 
441 	/*
442 	 * The queueing is in progress, or it is already queued. Try to
443 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
444 	 */
445 
446 	cwq = get_wq_data(work);
447 	if (!cwq)
448 		return ret;
449 
450 	spin_lock_irq(&cwq->lock);
451 	if (!list_empty(&work->entry)) {
452 		/*
453 		 * This work is queued, but perhaps we locked the wrong cwq.
454 		 * In that case we must see the new value after rmb(), see
455 		 * insert_work()->wmb().
456 		 */
457 		smp_rmb();
458 		if (cwq == get_wq_data(work)) {
459 			list_del_init(&work->entry);
460 			ret = 1;
461 		}
462 	}
463 	spin_unlock_irq(&cwq->lock);
464 
465 	return ret;
466 }
467 
468 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
469 				struct work_struct *work)
470 {
471 	struct wq_barrier barr;
472 	int running = 0;
473 
474 	spin_lock_irq(&cwq->lock);
475 	if (unlikely(cwq->current_work == work)) {
476 		insert_wq_barrier(cwq, &barr, 0);
477 		running = 1;
478 	}
479 	spin_unlock_irq(&cwq->lock);
480 
481 	if (unlikely(running))
482 		wait_for_completion(&barr.done);
483 }
484 
485 static void wait_on_work(struct work_struct *work)
486 {
487 	struct cpu_workqueue_struct *cwq;
488 	struct workqueue_struct *wq;
489 	const cpumask_t *cpu_map;
490 	int cpu;
491 
492 	might_sleep();
493 
494 	lock_acquire(&work->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
495 	lock_release(&work->lockdep_map, 1, _THIS_IP_);
496 
497 	cwq = get_wq_data(work);
498 	if (!cwq)
499 		return;
500 
501 	wq = cwq->wq;
502 	cpu_map = wq_cpu_map(wq);
503 
504 	for_each_cpu_mask_nr(cpu, *cpu_map)
505 		wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
506 }
507 
508 static int __cancel_work_timer(struct work_struct *work,
509 				struct timer_list* timer)
510 {
511 	int ret;
512 
513 	do {
514 		ret = (timer && likely(del_timer(timer)));
515 		if (!ret)
516 			ret = try_to_grab_pending(work);
517 		wait_on_work(work);
518 	} while (unlikely(ret < 0));
519 
520 	work_clear_pending(work);
521 	return ret;
522 }
523 
524 /**
525  * cancel_work_sync - block until a work_struct's callback has terminated
526  * @work: the work which is to be flushed
527  *
528  * Returns true if @work was pending.
529  *
530  * cancel_work_sync() will cancel the work if it is queued. If the work's
531  * callback appears to be running, cancel_work_sync() will block until it
532  * has completed.
533  *
534  * It is possible to use this function if the work re-queues itself. It can
535  * cancel the work even if it migrates to another workqueue, however in that
536  * case it only guarantees that work->func() has completed on the last queued
537  * workqueue.
538  *
539  * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
540  * pending, otherwise it goes into a busy-wait loop until the timer expires.
541  *
542  * The caller must ensure that workqueue_struct on which this work was last
543  * queued can't be destroyed before this function returns.
544  */
545 int cancel_work_sync(struct work_struct *work)
546 {
547 	return __cancel_work_timer(work, NULL);
548 }
549 EXPORT_SYMBOL_GPL(cancel_work_sync);
550 
551 /**
552  * cancel_delayed_work_sync - reliably kill off a delayed work.
553  * @dwork: the delayed work struct
554  *
555  * Returns true if @dwork was pending.
556  *
557  * It is possible to use this function if @dwork rearms itself via queue_work()
558  * or queue_delayed_work(). See also the comment for cancel_work_sync().
559  */
560 int cancel_delayed_work_sync(struct delayed_work *dwork)
561 {
562 	return __cancel_work_timer(&dwork->work, &dwork->timer);
563 }
564 EXPORT_SYMBOL(cancel_delayed_work_sync);
565 
566 static struct workqueue_struct *keventd_wq __read_mostly;
567 
568 /**
569  * schedule_work - put work task in global workqueue
570  * @work: job to be done
571  *
572  * This puts a job in the kernel-global workqueue.
573  */
574 int schedule_work(struct work_struct *work)
575 {
576 	return queue_work(keventd_wq, work);
577 }
578 EXPORT_SYMBOL(schedule_work);
579 
580 /*
581  * schedule_work_on - put work task on a specific cpu
582  * @cpu: cpu to put the work task on
583  * @work: job to be done
584  *
585  * This puts a job on a specific cpu
586  */
587 int schedule_work_on(int cpu, struct work_struct *work)
588 {
589 	return queue_work_on(cpu, keventd_wq, work);
590 }
591 EXPORT_SYMBOL(schedule_work_on);
592 
593 /**
594  * schedule_delayed_work - put work task in global workqueue after delay
595  * @dwork: job to be done
596  * @delay: number of jiffies to wait or 0 for immediate execution
597  *
598  * After waiting for a given time this puts a job in the kernel-global
599  * workqueue.
600  */
601 int schedule_delayed_work(struct delayed_work *dwork,
602 					unsigned long delay)
603 {
604 	return queue_delayed_work(keventd_wq, dwork, delay);
605 }
606 EXPORT_SYMBOL(schedule_delayed_work);
607 
608 /**
609  * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
610  * @cpu: cpu to use
611  * @dwork: job to be done
612  * @delay: number of jiffies to wait
613  *
614  * After waiting for a given time this puts a job in the kernel-global
615  * workqueue on the specified CPU.
616  */
617 int schedule_delayed_work_on(int cpu,
618 			struct delayed_work *dwork, unsigned long delay)
619 {
620 	return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
621 }
622 EXPORT_SYMBOL(schedule_delayed_work_on);
623 
624 /**
625  * schedule_on_each_cpu - call a function on each online CPU from keventd
626  * @func: the function to call
627  *
628  * Returns zero on success.
629  * Returns -ve errno on failure.
630  *
631  * schedule_on_each_cpu() is very slow.
632  */
633 int schedule_on_each_cpu(work_func_t func)
634 {
635 	int cpu;
636 	struct work_struct *works;
637 
638 	works = alloc_percpu(struct work_struct);
639 	if (!works)
640 		return -ENOMEM;
641 
642 	get_online_cpus();
643 	for_each_online_cpu(cpu) {
644 		struct work_struct *work = per_cpu_ptr(works, cpu);
645 
646 		INIT_WORK(work, func);
647 		set_bit(WORK_STRUCT_PENDING, work_data_bits(work));
648 		__queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work);
649 	}
650 	flush_workqueue(keventd_wq);
651 	put_online_cpus();
652 	free_percpu(works);
653 	return 0;
654 }
655 
656 void flush_scheduled_work(void)
657 {
658 	flush_workqueue(keventd_wq);
659 }
660 EXPORT_SYMBOL(flush_scheduled_work);
661 
662 /**
663  * execute_in_process_context - reliably execute the routine with user context
664  * @fn:		the function to execute
665  * @ew:		guaranteed storage for the execute work structure (must
666  *		be available when the work executes)
667  *
668  * Executes the function immediately if process context is available,
669  * otherwise schedules the function for delayed execution.
670  *
671  * Returns:	0 - function was executed
672  *		1 - function was scheduled for execution
673  */
674 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
675 {
676 	if (!in_interrupt()) {
677 		fn(&ew->work);
678 		return 0;
679 	}
680 
681 	INIT_WORK(&ew->work, fn);
682 	schedule_work(&ew->work);
683 
684 	return 1;
685 }
686 EXPORT_SYMBOL_GPL(execute_in_process_context);
687 
688 int keventd_up(void)
689 {
690 	return keventd_wq != NULL;
691 }
692 
693 int current_is_keventd(void)
694 {
695 	struct cpu_workqueue_struct *cwq;
696 	int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
697 	int ret = 0;
698 
699 	BUG_ON(!keventd_wq);
700 
701 	cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
702 	if (current == cwq->thread)
703 		ret = 1;
704 
705 	return ret;
706 
707 }
708 
709 static struct cpu_workqueue_struct *
710 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
711 {
712 	struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
713 
714 	cwq->wq = wq;
715 	spin_lock_init(&cwq->lock);
716 	INIT_LIST_HEAD(&cwq->worklist);
717 	init_waitqueue_head(&cwq->more_work);
718 
719 	return cwq;
720 }
721 
722 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
723 {
724 	struct workqueue_struct *wq = cwq->wq;
725 	const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d";
726 	struct task_struct *p;
727 
728 	p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
729 	/*
730 	 * Nobody can add the work_struct to this cwq,
731 	 *	if (caller is __create_workqueue)
732 	 *		nobody should see this wq
733 	 *	else // caller is CPU_UP_PREPARE
734 	 *		cpu is not on cpu_online_map
735 	 * so we can abort safely.
736 	 */
737 	if (IS_ERR(p))
738 		return PTR_ERR(p);
739 
740 	cwq->thread = p;
741 
742 	return 0;
743 }
744 
745 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
746 {
747 	struct task_struct *p = cwq->thread;
748 
749 	if (p != NULL) {
750 		if (cpu >= 0)
751 			kthread_bind(p, cpu);
752 		wake_up_process(p);
753 	}
754 }
755 
756 struct workqueue_struct *__create_workqueue_key(const char *name,
757 						int singlethread,
758 						int freezeable,
759 						struct lock_class_key *key,
760 						const char *lock_name)
761 {
762 	struct workqueue_struct *wq;
763 	struct cpu_workqueue_struct *cwq;
764 	int err = 0, cpu;
765 
766 	wq = kzalloc(sizeof(*wq), GFP_KERNEL);
767 	if (!wq)
768 		return NULL;
769 
770 	wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
771 	if (!wq->cpu_wq) {
772 		kfree(wq);
773 		return NULL;
774 	}
775 
776 	wq->name = name;
777 	lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
778 	wq->singlethread = singlethread;
779 	wq->freezeable = freezeable;
780 	INIT_LIST_HEAD(&wq->list);
781 
782 	if (singlethread) {
783 		cwq = init_cpu_workqueue(wq, singlethread_cpu);
784 		err = create_workqueue_thread(cwq, singlethread_cpu);
785 		start_workqueue_thread(cwq, -1);
786 	} else {
787 		get_online_cpus();
788 		spin_lock(&workqueue_lock);
789 		list_add(&wq->list, &workqueues);
790 		spin_unlock(&workqueue_lock);
791 
792 		for_each_possible_cpu(cpu) {
793 			cwq = init_cpu_workqueue(wq, cpu);
794 			if (err || !cpu_online(cpu))
795 				continue;
796 			err = create_workqueue_thread(cwq, cpu);
797 			start_workqueue_thread(cwq, cpu);
798 		}
799 		put_online_cpus();
800 	}
801 
802 	if (err) {
803 		destroy_workqueue(wq);
804 		wq = NULL;
805 	}
806 	return wq;
807 }
808 EXPORT_SYMBOL_GPL(__create_workqueue_key);
809 
810 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq)
811 {
812 	/*
813 	 * Our caller is either destroy_workqueue() or CPU_DEAD,
814 	 * get_online_cpus() protects cwq->thread.
815 	 */
816 	if (cwq->thread == NULL)
817 		return;
818 
819 	lock_acquire(&cwq->wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_);
820 	lock_release(&cwq->wq->lockdep_map, 1, _THIS_IP_);
821 
822 	flush_cpu_workqueue(cwq);
823 	/*
824 	 * If the caller is CPU_DEAD and cwq->worklist was not empty,
825 	 * a concurrent flush_workqueue() can insert a barrier after us.
826 	 * However, in that case run_workqueue() won't return and check
827 	 * kthread_should_stop() until it flushes all work_struct's.
828 	 * When ->worklist becomes empty it is safe to exit because no
829 	 * more work_structs can be queued on this cwq: flush_workqueue
830 	 * checks list_empty(), and a "normal" queue_work() can't use
831 	 * a dead CPU.
832 	 */
833 	kthread_stop(cwq->thread);
834 	cwq->thread = NULL;
835 }
836 
837 /**
838  * destroy_workqueue - safely terminate a workqueue
839  * @wq: target workqueue
840  *
841  * Safely destroy a workqueue. All work currently pending will be done first.
842  */
843 void destroy_workqueue(struct workqueue_struct *wq)
844 {
845 	const cpumask_t *cpu_map = wq_cpu_map(wq);
846 	int cpu;
847 
848 	get_online_cpus();
849 	spin_lock(&workqueue_lock);
850 	list_del(&wq->list);
851 	spin_unlock(&workqueue_lock);
852 
853 	for_each_cpu_mask_nr(cpu, *cpu_map)
854 		cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu));
855 	put_online_cpus();
856 
857 	free_percpu(wq->cpu_wq);
858 	kfree(wq);
859 }
860 EXPORT_SYMBOL_GPL(destroy_workqueue);
861 
862 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
863 						unsigned long action,
864 						void *hcpu)
865 {
866 	unsigned int cpu = (unsigned long)hcpu;
867 	struct cpu_workqueue_struct *cwq;
868 	struct workqueue_struct *wq;
869 
870 	action &= ~CPU_TASKS_FROZEN;
871 
872 	switch (action) {
873 	case CPU_UP_PREPARE:
874 		cpu_set(cpu, cpu_populated_map);
875 	}
876 
877 	list_for_each_entry(wq, &workqueues, list) {
878 		cwq = per_cpu_ptr(wq->cpu_wq, cpu);
879 
880 		switch (action) {
881 		case CPU_UP_PREPARE:
882 			if (!create_workqueue_thread(cwq, cpu))
883 				break;
884 			printk(KERN_ERR "workqueue [%s] for %i failed\n",
885 				wq->name, cpu);
886 			return NOTIFY_BAD;
887 
888 		case CPU_ONLINE:
889 			start_workqueue_thread(cwq, cpu);
890 			break;
891 
892 		case CPU_UP_CANCELED:
893 			start_workqueue_thread(cwq, -1);
894 		case CPU_DEAD:
895 			cleanup_workqueue_thread(cwq);
896 			break;
897 		}
898 	}
899 
900 	switch (action) {
901 	case CPU_UP_CANCELED:
902 	case CPU_DEAD:
903 		cpu_clear(cpu, cpu_populated_map);
904 	}
905 
906 	return NOTIFY_OK;
907 }
908 
909 void __init init_workqueues(void)
910 {
911 	cpu_populated_map = cpu_online_map;
912 	singlethread_cpu = first_cpu(cpu_possible_map);
913 	cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu);
914 	hotcpu_notifier(workqueue_cpu_callback, 0);
915 	keventd_wq = create_workqueue("events");
916 	BUG_ON(!keventd_wq);
917 }
918