1 /* 2 * linux/kernel/workqueue.c 3 * 4 * Generic mechanism for defining kernel helper threads for running 5 * arbitrary tasks in process context. 6 * 7 * Started by Ingo Molnar, Copyright (C) 2002 8 * 9 * Derived from the taskqueue/keventd code by: 10 * 11 * David Woodhouse <dwmw2@infradead.org> 12 * Andrew Morton <andrewm@uow.edu.au> 13 * Kai Petzke <wpp@marie.physik.tu-berlin.de> 14 * Theodore Ts'o <tytso@mit.edu> 15 * 16 * Made to use alloc_percpu by Christoph Lameter. 17 */ 18 19 #include <linux/module.h> 20 #include <linux/kernel.h> 21 #include <linux/sched.h> 22 #include <linux/init.h> 23 #include <linux/signal.h> 24 #include <linux/completion.h> 25 #include <linux/workqueue.h> 26 #include <linux/slab.h> 27 #include <linux/cpu.h> 28 #include <linux/notifier.h> 29 #include <linux/kthread.h> 30 #include <linux/hardirq.h> 31 #include <linux/mempolicy.h> 32 #include <linux/freezer.h> 33 #include <linux/kallsyms.h> 34 #include <linux/debug_locks.h> 35 #include <linux/lockdep.h> 36 37 /* 38 * The per-CPU workqueue (if single thread, we always use the first 39 * possible cpu). 40 */ 41 struct cpu_workqueue_struct { 42 43 spinlock_t lock; 44 45 struct list_head worklist; 46 wait_queue_head_t more_work; 47 struct work_struct *current_work; 48 49 struct workqueue_struct *wq; 50 struct task_struct *thread; 51 52 int run_depth; /* Detect run_workqueue() recursion depth */ 53 } ____cacheline_aligned; 54 55 /* 56 * The externally visible workqueue abstraction is an array of 57 * per-CPU workqueues: 58 */ 59 struct workqueue_struct { 60 struct cpu_workqueue_struct *cpu_wq; 61 struct list_head list; 62 const char *name; 63 int singlethread; 64 int freezeable; /* Freeze threads during suspend */ 65 #ifdef CONFIG_LOCKDEP 66 struct lockdep_map lockdep_map; 67 #endif 68 }; 69 70 /* Serializes the accesses to the list of workqueues. */ 71 static DEFINE_SPINLOCK(workqueue_lock); 72 static LIST_HEAD(workqueues); 73 74 static int singlethread_cpu __read_mostly; 75 static cpumask_t cpu_singlethread_map __read_mostly; 76 /* 77 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD 78 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work 79 * which comes in between can't use for_each_online_cpu(). We could 80 * use cpu_possible_map, the cpumask below is more a documentation 81 * than optimization. 82 */ 83 static cpumask_t cpu_populated_map __read_mostly; 84 85 /* If it's single threaded, it isn't in the list of workqueues. */ 86 static inline int is_single_threaded(struct workqueue_struct *wq) 87 { 88 return wq->singlethread; 89 } 90 91 static const cpumask_t *wq_cpu_map(struct workqueue_struct *wq) 92 { 93 return is_single_threaded(wq) 94 ? &cpu_singlethread_map : &cpu_populated_map; 95 } 96 97 static 98 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu) 99 { 100 if (unlikely(is_single_threaded(wq))) 101 cpu = singlethread_cpu; 102 return per_cpu_ptr(wq->cpu_wq, cpu); 103 } 104 105 /* 106 * Set the workqueue on which a work item is to be run 107 * - Must *only* be called if the pending flag is set 108 */ 109 static inline void set_wq_data(struct work_struct *work, 110 struct cpu_workqueue_struct *cwq) 111 { 112 unsigned long new; 113 114 BUG_ON(!work_pending(work)); 115 116 new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING); 117 new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work); 118 atomic_long_set(&work->data, new); 119 } 120 121 static inline 122 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work) 123 { 124 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK); 125 } 126 127 static void insert_work(struct cpu_workqueue_struct *cwq, 128 struct work_struct *work, int tail) 129 { 130 set_wq_data(work, cwq); 131 /* 132 * Ensure that we get the right work->data if we see the 133 * result of list_add() below, see try_to_grab_pending(). 134 */ 135 smp_wmb(); 136 if (tail) 137 list_add_tail(&work->entry, &cwq->worklist); 138 else 139 list_add(&work->entry, &cwq->worklist); 140 wake_up(&cwq->more_work); 141 } 142 143 static void __queue_work(struct cpu_workqueue_struct *cwq, 144 struct work_struct *work) 145 { 146 unsigned long flags; 147 148 spin_lock_irqsave(&cwq->lock, flags); 149 insert_work(cwq, work, 1); 150 spin_unlock_irqrestore(&cwq->lock, flags); 151 } 152 153 /** 154 * queue_work - queue work on a workqueue 155 * @wq: workqueue to use 156 * @work: work to queue 157 * 158 * Returns 0 if @work was already on a queue, non-zero otherwise. 159 * 160 * We queue the work to the CPU on which it was submitted, but if the CPU dies 161 * it can be processed by another CPU. 162 */ 163 int queue_work(struct workqueue_struct *wq, struct work_struct *work) 164 { 165 int ret = 0; 166 167 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { 168 BUG_ON(!list_empty(&work->entry)); 169 __queue_work(wq_per_cpu(wq, get_cpu()), work); 170 put_cpu(); 171 ret = 1; 172 } 173 return ret; 174 } 175 EXPORT_SYMBOL_GPL(queue_work); 176 177 /** 178 * queue_work_on - queue work on specific cpu 179 * @cpu: CPU number to execute work on 180 * @wq: workqueue to use 181 * @work: work to queue 182 * 183 * Returns 0 if @work was already on a queue, non-zero otherwise. 184 * 185 * We queue the work to a specific CPU, the caller must ensure it 186 * can't go away. 187 */ 188 int 189 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work) 190 { 191 int ret = 0; 192 193 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { 194 BUG_ON(!list_empty(&work->entry)); 195 __queue_work(wq_per_cpu(wq, cpu), work); 196 ret = 1; 197 } 198 return ret; 199 } 200 EXPORT_SYMBOL_GPL(queue_work_on); 201 202 static void delayed_work_timer_fn(unsigned long __data) 203 { 204 struct delayed_work *dwork = (struct delayed_work *)__data; 205 struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work); 206 struct workqueue_struct *wq = cwq->wq; 207 208 __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work); 209 } 210 211 /** 212 * queue_delayed_work - queue work on a workqueue after delay 213 * @wq: workqueue to use 214 * @dwork: delayable work to queue 215 * @delay: number of jiffies to wait before queueing 216 * 217 * Returns 0 if @work was already on a queue, non-zero otherwise. 218 */ 219 int queue_delayed_work(struct workqueue_struct *wq, 220 struct delayed_work *dwork, unsigned long delay) 221 { 222 if (delay == 0) 223 return queue_work(wq, &dwork->work); 224 225 return queue_delayed_work_on(-1, wq, dwork, delay); 226 } 227 EXPORT_SYMBOL_GPL(queue_delayed_work); 228 229 /** 230 * queue_delayed_work_on - queue work on specific CPU after delay 231 * @cpu: CPU number to execute work on 232 * @wq: workqueue to use 233 * @dwork: work to queue 234 * @delay: number of jiffies to wait before queueing 235 * 236 * Returns 0 if @work was already on a queue, non-zero otherwise. 237 */ 238 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq, 239 struct delayed_work *dwork, unsigned long delay) 240 { 241 int ret = 0; 242 struct timer_list *timer = &dwork->timer; 243 struct work_struct *work = &dwork->work; 244 245 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) { 246 BUG_ON(timer_pending(timer)); 247 BUG_ON(!list_empty(&work->entry)); 248 249 timer_stats_timer_set_start_info(&dwork->timer); 250 251 /* This stores cwq for the moment, for the timer_fn */ 252 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id())); 253 timer->expires = jiffies + delay; 254 timer->data = (unsigned long)dwork; 255 timer->function = delayed_work_timer_fn; 256 257 if (unlikely(cpu >= 0)) 258 add_timer_on(timer, cpu); 259 else 260 add_timer(timer); 261 ret = 1; 262 } 263 return ret; 264 } 265 EXPORT_SYMBOL_GPL(queue_delayed_work_on); 266 267 static void run_workqueue(struct cpu_workqueue_struct *cwq) 268 { 269 spin_lock_irq(&cwq->lock); 270 cwq->run_depth++; 271 if (cwq->run_depth > 3) { 272 /* morton gets to eat his hat */ 273 printk("%s: recursion depth exceeded: %d\n", 274 __func__, cwq->run_depth); 275 dump_stack(); 276 } 277 while (!list_empty(&cwq->worklist)) { 278 struct work_struct *work = list_entry(cwq->worklist.next, 279 struct work_struct, entry); 280 work_func_t f = work->func; 281 #ifdef CONFIG_LOCKDEP 282 /* 283 * It is permissible to free the struct work_struct 284 * from inside the function that is called from it, 285 * this we need to take into account for lockdep too. 286 * To avoid bogus "held lock freed" warnings as well 287 * as problems when looking into work->lockdep_map, 288 * make a copy and use that here. 289 */ 290 struct lockdep_map lockdep_map = work->lockdep_map; 291 #endif 292 293 cwq->current_work = work; 294 list_del_init(cwq->worklist.next); 295 spin_unlock_irq(&cwq->lock); 296 297 BUG_ON(get_wq_data(work) != cwq); 298 work_clear_pending(work); 299 lock_acquire(&cwq->wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_); 300 lock_acquire(&lockdep_map, 0, 0, 0, 2, _THIS_IP_); 301 f(work); 302 lock_release(&lockdep_map, 1, _THIS_IP_); 303 lock_release(&cwq->wq->lockdep_map, 1, _THIS_IP_); 304 305 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) { 306 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: " 307 "%s/0x%08x/%d\n", 308 current->comm, preempt_count(), 309 task_pid_nr(current)); 310 printk(KERN_ERR " last function: "); 311 print_symbol("%s\n", (unsigned long)f); 312 debug_show_held_locks(current); 313 dump_stack(); 314 } 315 316 spin_lock_irq(&cwq->lock); 317 cwq->current_work = NULL; 318 } 319 cwq->run_depth--; 320 spin_unlock_irq(&cwq->lock); 321 } 322 323 static int worker_thread(void *__cwq) 324 { 325 struct cpu_workqueue_struct *cwq = __cwq; 326 DEFINE_WAIT(wait); 327 328 if (cwq->wq->freezeable) 329 set_freezable(); 330 331 set_user_nice(current, -5); 332 333 for (;;) { 334 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE); 335 if (!freezing(current) && 336 !kthread_should_stop() && 337 list_empty(&cwq->worklist)) 338 schedule(); 339 finish_wait(&cwq->more_work, &wait); 340 341 try_to_freeze(); 342 343 if (kthread_should_stop()) 344 break; 345 346 run_workqueue(cwq); 347 } 348 349 return 0; 350 } 351 352 struct wq_barrier { 353 struct work_struct work; 354 struct completion done; 355 }; 356 357 static void wq_barrier_func(struct work_struct *work) 358 { 359 struct wq_barrier *barr = container_of(work, struct wq_barrier, work); 360 complete(&barr->done); 361 } 362 363 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq, 364 struct wq_barrier *barr, int tail) 365 { 366 INIT_WORK(&barr->work, wq_barrier_func); 367 __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work)); 368 369 init_completion(&barr->done); 370 371 insert_work(cwq, &barr->work, tail); 372 } 373 374 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq) 375 { 376 int active; 377 378 if (cwq->thread == current) { 379 /* 380 * Probably keventd trying to flush its own queue. So simply run 381 * it by hand rather than deadlocking. 382 */ 383 run_workqueue(cwq); 384 active = 1; 385 } else { 386 struct wq_barrier barr; 387 388 active = 0; 389 spin_lock_irq(&cwq->lock); 390 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) { 391 insert_wq_barrier(cwq, &barr, 1); 392 active = 1; 393 } 394 spin_unlock_irq(&cwq->lock); 395 396 if (active) 397 wait_for_completion(&barr.done); 398 } 399 400 return active; 401 } 402 403 /** 404 * flush_workqueue - ensure that any scheduled work has run to completion. 405 * @wq: workqueue to flush 406 * 407 * Forces execution of the workqueue and blocks until its completion. 408 * This is typically used in driver shutdown handlers. 409 * 410 * We sleep until all works which were queued on entry have been handled, 411 * but we are not livelocked by new incoming ones. 412 * 413 * This function used to run the workqueues itself. Now we just wait for the 414 * helper threads to do it. 415 */ 416 void flush_workqueue(struct workqueue_struct *wq) 417 { 418 const cpumask_t *cpu_map = wq_cpu_map(wq); 419 int cpu; 420 421 might_sleep(); 422 lock_acquire(&wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_); 423 lock_release(&wq->lockdep_map, 1, _THIS_IP_); 424 for_each_cpu_mask_nr(cpu, *cpu_map) 425 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu)); 426 } 427 EXPORT_SYMBOL_GPL(flush_workqueue); 428 429 /* 430 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit, 431 * so this work can't be re-armed in any way. 432 */ 433 static int try_to_grab_pending(struct work_struct *work) 434 { 435 struct cpu_workqueue_struct *cwq; 436 int ret = -1; 437 438 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) 439 return 0; 440 441 /* 442 * The queueing is in progress, or it is already queued. Try to 443 * steal it from ->worklist without clearing WORK_STRUCT_PENDING. 444 */ 445 446 cwq = get_wq_data(work); 447 if (!cwq) 448 return ret; 449 450 spin_lock_irq(&cwq->lock); 451 if (!list_empty(&work->entry)) { 452 /* 453 * This work is queued, but perhaps we locked the wrong cwq. 454 * In that case we must see the new value after rmb(), see 455 * insert_work()->wmb(). 456 */ 457 smp_rmb(); 458 if (cwq == get_wq_data(work)) { 459 list_del_init(&work->entry); 460 ret = 1; 461 } 462 } 463 spin_unlock_irq(&cwq->lock); 464 465 return ret; 466 } 467 468 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq, 469 struct work_struct *work) 470 { 471 struct wq_barrier barr; 472 int running = 0; 473 474 spin_lock_irq(&cwq->lock); 475 if (unlikely(cwq->current_work == work)) { 476 insert_wq_barrier(cwq, &barr, 0); 477 running = 1; 478 } 479 spin_unlock_irq(&cwq->lock); 480 481 if (unlikely(running)) 482 wait_for_completion(&barr.done); 483 } 484 485 static void wait_on_work(struct work_struct *work) 486 { 487 struct cpu_workqueue_struct *cwq; 488 struct workqueue_struct *wq; 489 const cpumask_t *cpu_map; 490 int cpu; 491 492 might_sleep(); 493 494 lock_acquire(&work->lockdep_map, 0, 0, 0, 2, _THIS_IP_); 495 lock_release(&work->lockdep_map, 1, _THIS_IP_); 496 497 cwq = get_wq_data(work); 498 if (!cwq) 499 return; 500 501 wq = cwq->wq; 502 cpu_map = wq_cpu_map(wq); 503 504 for_each_cpu_mask_nr(cpu, *cpu_map) 505 wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work); 506 } 507 508 static int __cancel_work_timer(struct work_struct *work, 509 struct timer_list* timer) 510 { 511 int ret; 512 513 do { 514 ret = (timer && likely(del_timer(timer))); 515 if (!ret) 516 ret = try_to_grab_pending(work); 517 wait_on_work(work); 518 } while (unlikely(ret < 0)); 519 520 work_clear_pending(work); 521 return ret; 522 } 523 524 /** 525 * cancel_work_sync - block until a work_struct's callback has terminated 526 * @work: the work which is to be flushed 527 * 528 * Returns true if @work was pending. 529 * 530 * cancel_work_sync() will cancel the work if it is queued. If the work's 531 * callback appears to be running, cancel_work_sync() will block until it 532 * has completed. 533 * 534 * It is possible to use this function if the work re-queues itself. It can 535 * cancel the work even if it migrates to another workqueue, however in that 536 * case it only guarantees that work->func() has completed on the last queued 537 * workqueue. 538 * 539 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not 540 * pending, otherwise it goes into a busy-wait loop until the timer expires. 541 * 542 * The caller must ensure that workqueue_struct on which this work was last 543 * queued can't be destroyed before this function returns. 544 */ 545 int cancel_work_sync(struct work_struct *work) 546 { 547 return __cancel_work_timer(work, NULL); 548 } 549 EXPORT_SYMBOL_GPL(cancel_work_sync); 550 551 /** 552 * cancel_delayed_work_sync - reliably kill off a delayed work. 553 * @dwork: the delayed work struct 554 * 555 * Returns true if @dwork was pending. 556 * 557 * It is possible to use this function if @dwork rearms itself via queue_work() 558 * or queue_delayed_work(). See also the comment for cancel_work_sync(). 559 */ 560 int cancel_delayed_work_sync(struct delayed_work *dwork) 561 { 562 return __cancel_work_timer(&dwork->work, &dwork->timer); 563 } 564 EXPORT_SYMBOL(cancel_delayed_work_sync); 565 566 static struct workqueue_struct *keventd_wq __read_mostly; 567 568 /** 569 * schedule_work - put work task in global workqueue 570 * @work: job to be done 571 * 572 * This puts a job in the kernel-global workqueue. 573 */ 574 int schedule_work(struct work_struct *work) 575 { 576 return queue_work(keventd_wq, work); 577 } 578 EXPORT_SYMBOL(schedule_work); 579 580 /* 581 * schedule_work_on - put work task on a specific cpu 582 * @cpu: cpu to put the work task on 583 * @work: job to be done 584 * 585 * This puts a job on a specific cpu 586 */ 587 int schedule_work_on(int cpu, struct work_struct *work) 588 { 589 return queue_work_on(cpu, keventd_wq, work); 590 } 591 EXPORT_SYMBOL(schedule_work_on); 592 593 /** 594 * schedule_delayed_work - put work task in global workqueue after delay 595 * @dwork: job to be done 596 * @delay: number of jiffies to wait or 0 for immediate execution 597 * 598 * After waiting for a given time this puts a job in the kernel-global 599 * workqueue. 600 */ 601 int schedule_delayed_work(struct delayed_work *dwork, 602 unsigned long delay) 603 { 604 return queue_delayed_work(keventd_wq, dwork, delay); 605 } 606 EXPORT_SYMBOL(schedule_delayed_work); 607 608 /** 609 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay 610 * @cpu: cpu to use 611 * @dwork: job to be done 612 * @delay: number of jiffies to wait 613 * 614 * After waiting for a given time this puts a job in the kernel-global 615 * workqueue on the specified CPU. 616 */ 617 int schedule_delayed_work_on(int cpu, 618 struct delayed_work *dwork, unsigned long delay) 619 { 620 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay); 621 } 622 EXPORT_SYMBOL(schedule_delayed_work_on); 623 624 /** 625 * schedule_on_each_cpu - call a function on each online CPU from keventd 626 * @func: the function to call 627 * 628 * Returns zero on success. 629 * Returns -ve errno on failure. 630 * 631 * schedule_on_each_cpu() is very slow. 632 */ 633 int schedule_on_each_cpu(work_func_t func) 634 { 635 int cpu; 636 struct work_struct *works; 637 638 works = alloc_percpu(struct work_struct); 639 if (!works) 640 return -ENOMEM; 641 642 get_online_cpus(); 643 for_each_online_cpu(cpu) { 644 struct work_struct *work = per_cpu_ptr(works, cpu); 645 646 INIT_WORK(work, func); 647 set_bit(WORK_STRUCT_PENDING, work_data_bits(work)); 648 __queue_work(per_cpu_ptr(keventd_wq->cpu_wq, cpu), work); 649 } 650 flush_workqueue(keventd_wq); 651 put_online_cpus(); 652 free_percpu(works); 653 return 0; 654 } 655 656 void flush_scheduled_work(void) 657 { 658 flush_workqueue(keventd_wq); 659 } 660 EXPORT_SYMBOL(flush_scheduled_work); 661 662 /** 663 * execute_in_process_context - reliably execute the routine with user context 664 * @fn: the function to execute 665 * @ew: guaranteed storage for the execute work structure (must 666 * be available when the work executes) 667 * 668 * Executes the function immediately if process context is available, 669 * otherwise schedules the function for delayed execution. 670 * 671 * Returns: 0 - function was executed 672 * 1 - function was scheduled for execution 673 */ 674 int execute_in_process_context(work_func_t fn, struct execute_work *ew) 675 { 676 if (!in_interrupt()) { 677 fn(&ew->work); 678 return 0; 679 } 680 681 INIT_WORK(&ew->work, fn); 682 schedule_work(&ew->work); 683 684 return 1; 685 } 686 EXPORT_SYMBOL_GPL(execute_in_process_context); 687 688 int keventd_up(void) 689 { 690 return keventd_wq != NULL; 691 } 692 693 int current_is_keventd(void) 694 { 695 struct cpu_workqueue_struct *cwq; 696 int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */ 697 int ret = 0; 698 699 BUG_ON(!keventd_wq); 700 701 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu); 702 if (current == cwq->thread) 703 ret = 1; 704 705 return ret; 706 707 } 708 709 static struct cpu_workqueue_struct * 710 init_cpu_workqueue(struct workqueue_struct *wq, int cpu) 711 { 712 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu); 713 714 cwq->wq = wq; 715 spin_lock_init(&cwq->lock); 716 INIT_LIST_HEAD(&cwq->worklist); 717 init_waitqueue_head(&cwq->more_work); 718 719 return cwq; 720 } 721 722 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) 723 { 724 struct workqueue_struct *wq = cwq->wq; 725 const char *fmt = is_single_threaded(wq) ? "%s" : "%s/%d"; 726 struct task_struct *p; 727 728 p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu); 729 /* 730 * Nobody can add the work_struct to this cwq, 731 * if (caller is __create_workqueue) 732 * nobody should see this wq 733 * else // caller is CPU_UP_PREPARE 734 * cpu is not on cpu_online_map 735 * so we can abort safely. 736 */ 737 if (IS_ERR(p)) 738 return PTR_ERR(p); 739 740 cwq->thread = p; 741 742 return 0; 743 } 744 745 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu) 746 { 747 struct task_struct *p = cwq->thread; 748 749 if (p != NULL) { 750 if (cpu >= 0) 751 kthread_bind(p, cpu); 752 wake_up_process(p); 753 } 754 } 755 756 struct workqueue_struct *__create_workqueue_key(const char *name, 757 int singlethread, 758 int freezeable, 759 struct lock_class_key *key, 760 const char *lock_name) 761 { 762 struct workqueue_struct *wq; 763 struct cpu_workqueue_struct *cwq; 764 int err = 0, cpu; 765 766 wq = kzalloc(sizeof(*wq), GFP_KERNEL); 767 if (!wq) 768 return NULL; 769 770 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct); 771 if (!wq->cpu_wq) { 772 kfree(wq); 773 return NULL; 774 } 775 776 wq->name = name; 777 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0); 778 wq->singlethread = singlethread; 779 wq->freezeable = freezeable; 780 INIT_LIST_HEAD(&wq->list); 781 782 if (singlethread) { 783 cwq = init_cpu_workqueue(wq, singlethread_cpu); 784 err = create_workqueue_thread(cwq, singlethread_cpu); 785 start_workqueue_thread(cwq, -1); 786 } else { 787 get_online_cpus(); 788 spin_lock(&workqueue_lock); 789 list_add(&wq->list, &workqueues); 790 spin_unlock(&workqueue_lock); 791 792 for_each_possible_cpu(cpu) { 793 cwq = init_cpu_workqueue(wq, cpu); 794 if (err || !cpu_online(cpu)) 795 continue; 796 err = create_workqueue_thread(cwq, cpu); 797 start_workqueue_thread(cwq, cpu); 798 } 799 put_online_cpus(); 800 } 801 802 if (err) { 803 destroy_workqueue(wq); 804 wq = NULL; 805 } 806 return wq; 807 } 808 EXPORT_SYMBOL_GPL(__create_workqueue_key); 809 810 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq) 811 { 812 /* 813 * Our caller is either destroy_workqueue() or CPU_DEAD, 814 * get_online_cpus() protects cwq->thread. 815 */ 816 if (cwq->thread == NULL) 817 return; 818 819 lock_acquire(&cwq->wq->lockdep_map, 0, 0, 0, 2, _THIS_IP_); 820 lock_release(&cwq->wq->lockdep_map, 1, _THIS_IP_); 821 822 flush_cpu_workqueue(cwq); 823 /* 824 * If the caller is CPU_DEAD and cwq->worklist was not empty, 825 * a concurrent flush_workqueue() can insert a barrier after us. 826 * However, in that case run_workqueue() won't return and check 827 * kthread_should_stop() until it flushes all work_struct's. 828 * When ->worklist becomes empty it is safe to exit because no 829 * more work_structs can be queued on this cwq: flush_workqueue 830 * checks list_empty(), and a "normal" queue_work() can't use 831 * a dead CPU. 832 */ 833 kthread_stop(cwq->thread); 834 cwq->thread = NULL; 835 } 836 837 /** 838 * destroy_workqueue - safely terminate a workqueue 839 * @wq: target workqueue 840 * 841 * Safely destroy a workqueue. All work currently pending will be done first. 842 */ 843 void destroy_workqueue(struct workqueue_struct *wq) 844 { 845 const cpumask_t *cpu_map = wq_cpu_map(wq); 846 int cpu; 847 848 get_online_cpus(); 849 spin_lock(&workqueue_lock); 850 list_del(&wq->list); 851 spin_unlock(&workqueue_lock); 852 853 for_each_cpu_mask_nr(cpu, *cpu_map) 854 cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu)); 855 put_online_cpus(); 856 857 free_percpu(wq->cpu_wq); 858 kfree(wq); 859 } 860 EXPORT_SYMBOL_GPL(destroy_workqueue); 861 862 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb, 863 unsigned long action, 864 void *hcpu) 865 { 866 unsigned int cpu = (unsigned long)hcpu; 867 struct cpu_workqueue_struct *cwq; 868 struct workqueue_struct *wq; 869 870 action &= ~CPU_TASKS_FROZEN; 871 872 switch (action) { 873 case CPU_UP_PREPARE: 874 cpu_set(cpu, cpu_populated_map); 875 } 876 877 list_for_each_entry(wq, &workqueues, list) { 878 cwq = per_cpu_ptr(wq->cpu_wq, cpu); 879 880 switch (action) { 881 case CPU_UP_PREPARE: 882 if (!create_workqueue_thread(cwq, cpu)) 883 break; 884 printk(KERN_ERR "workqueue [%s] for %i failed\n", 885 wq->name, cpu); 886 return NOTIFY_BAD; 887 888 case CPU_ONLINE: 889 start_workqueue_thread(cwq, cpu); 890 break; 891 892 case CPU_UP_CANCELED: 893 start_workqueue_thread(cwq, -1); 894 case CPU_DEAD: 895 cleanup_workqueue_thread(cwq); 896 break; 897 } 898 } 899 900 switch (action) { 901 case CPU_UP_CANCELED: 902 case CPU_DEAD: 903 cpu_clear(cpu, cpu_populated_map); 904 } 905 906 return NOTIFY_OK; 907 } 908 909 void __init init_workqueues(void) 910 { 911 cpu_populated_map = cpu_online_map; 912 singlethread_cpu = first_cpu(cpu_possible_map); 913 cpu_singlethread_map = cpumask_of_cpu(singlethread_cpu); 914 hotcpu_notifier(workqueue_cpu_callback, 0); 915 keventd_wq = create_workqueue("events"); 916 BUG_ON(!keventd_wq); 917 } 918